
Games of No Chance
MSRI Publications
Volume 29, 1996

Solving the Game of Checkers

JONATHAN SCHAEFFER AND ROBERT LAKE

Abstract. In 1962, a checkers-playing program written by Arthur Samuel
defeated a self-proclaimed master player, creating a sensation at the time
for the fledgling field of computer science called artificial intelligence. The
historical record refers to this event as having solved the game of checkers.
This paper discusses achieving three different levels of solving the game:
publicly (as evidenced by Samuel’s results), practically (by the checkers
program Chinook , the best player in the world) and provably (by consid-
ering the 5× 1020 positions in the search space). The latter definition may
be attainable in the near future.

1. Introduction

Checkers is a popular game around the world, with over 150 documented
variations. Only two versions, however, have a large international playing com-
munity. What is commonly known as checkers (or draughts) in North America is
widely played in the United States and the British Commonwealth. It is played
on an 8×8 board, with checkers moving one square forward and kings moving one
square in any direction. Captures take place by jumping over an opposing piece,
and a player is allowed to jump multiple men in one move. Checkers promote to
kings when they advance to the last rank of the board. So-called international
checkers is popular in the Netherlands and the former Soviet Union. This vari-
ant uses a 10× 10 board, with checkers allowed to capture backwards, and kings
allowed to move many squares in one direction, much like bishops in chess. This
paper is restricted to the 8×8 variant, but many of the ideas presented here also
apply to the 10× 10 game.

People enjoy playing games of skill because of the intellectual challenge and
the satisfaction derived from playing well. Many board games, such as chess
and checkers, have too many possibilities for a human to understand them all.
Hence they use knowledge and search to make their decisions at the board. The
person with the best “algorithm” for playing the game wins in the long run.
Without perfect knowledge, mistakes are made, and even World Champions will

119

120 JONATHAN SCHAEFFER AND ROBERT LAKE

lose occasionally (for example, the world chess champion, Gary Kasparov, may
lose three or four games a year).

This gives rise to an intriguing question: is it possible to program a computer
to play a game perfectly? Can the game-theoretic value of checkers be deter-
mined? In other words, is it possible to solve the game? In recent years, some
games have been solved, including Connect-Four [Allen 1989; Allis 1988], Qubic
[Patashnik 1980], Nine Men’s Morris [Gasser 1994] and Go-Moku [Allis et al.
1993].

This paper describes three ways in which it is possible to solve the game of
checkers. Section 2 deals with publicly solving the game, creating the impression
in the media that checkers has been solved. Section 3 deals with practically
solving the game, creating a computer player that is better than all humans but
is not perfect. Section 4 deals with provably solving the game, determining the
game-theoretic value and a strategy for always achieving that value. For the
game of checkers, publicly solving the game is a thing of the past, practically
solving it is the present, and provably solving it is the near future.

2. Publicly Solving Checkers

In the late 1950’s and early 1960’s, Arthur Samuel did pioneering work in arti-
ficial intelligence using the game of checkers as his experimental testbed [Samuel
1959; Samuel 1967]. Thirty years later, his work is still remembered, both for
the significance of his research contributions, and for the legacy of his checkers-
playing program. In 1962, Robert Nealy, blind checkers champion of Stamford,
Connecticut, lost a single game to Dr. Samuel’s program. For the fledgling field
of artificial intelligence, this event was viewed as a milestone and its significance
was misrepresented in the media. Reporting of this event resulted in the game
of checkers being labeled as “solved”: computers were better than all humans.
Thus, a 1965 article by Richard Bellin in the Proceedings of the National Acad-
emy of Sciences declared that “ . . . it seems safe to predict that, within ten
years, checkers will be a completely decidable game” (vol. 53, p. 246), while
Richard Restak, in the influential book The Brain: The Last Frontier (1979),
stated that “ . . . an improved model of Samuel’s checker-playing computer is
virtually unbeatable, even defeating checkers champions foolhardy enough to
‘challenge’ it to a game” (p. 336).

How good was Samuel’s program? Although Nealy advertised himself as a
master, the highest level he achieved was the class below master [Fortman 1978].
Analysis of the fateful game showed that Nealy made a trivial mistake, possibly
indicating that he was not taking his electronic opponent seriously. A match
played a year later resulted in a decisive victory for Nealy, without loss of a
single game.

As a result of the one win against Nealy, checkers was classified as an unin-
teresting problem domain and all the artificial intelligence research that might

SOLVING THE GAME OF CHECKERS 121

have used checkers as an experimental testbed switched to using chess. The
perception that checkers is a solved game persists to the present time, and has
been a major obstacle to anyone conducting research using this game. Modern
artificial intelligence books now treat the subject of Samuel’s program’s perfor-
mance more realistically, for example indicating that it “came close to expert
play” [Barr and Feigenbaum 1981].

Dr. Samuel had no illusions about the strength of his program. In personal
correspondence, he apologized for the problems created by the misconception
that checkers was solved [Tinsley 1994] and admitted he had no idea how he
could make his program good enough to compete with the world champion [Smith
1994].

3. Practically Solving Checkers

The first checkers-playing program is credited to Strachey [1952]. Samuel be-
gan his program in the early 1950’s and continued working on it on and off for
over two decades [Samuel 1959; 1967]. In 1965, the program played four games
each against Walter Hellman and Derek Oldbury (then playing a match for the
World Championship), and lost all eight games. In the late 1970’s a team at Duke
University headed by Eric Jansen developed the first program capable of defeat-
ing masters [Truscott 1978]. In May 1977, their program PAASLOW had the
distinction of defeating Grandmaster Elbert Lowder in a nontournament game
(the program recovered from a lost position), but lost their friendly match with
one win, two losses and two draws [Fortman 1978]. The Duke team originally
accepted a $5,000 challenge match to play the World Champion, Dr. Marion
Tinsley, but eventually decided not to play [Anonymous 1979].

In 1989 and 1990, the First and Second Computer Olympiads were held in
London, and three strong programs emerged [Levy and Beal 1989; 1991]. The
programs Colossus (Martin Bryant) and Checkers (Gil Dodgen) were aimed at
the PC market, while Chinook (Jonathan Schaeffer et al.) was a research project.
Colossus and Checkers are still commercially available and are continually being
updated. Both are ranked among the top twenty players in the world.

Chinook is a checkers program developed at the University of Alberta be-
ginning in 1989. In 1990, it earned the right to play for the human World
Checkers Championship, by coming an undefeated second to Tinsley, the World
Champion, at the U.S. Open. This was the first time a program had earned
the right to play for a human World Championship. Computers have played
World Champions before—for example BKG9 at backgammon [Berliner 1980]
and DeepThought at chess [Kopec 1990]—but these were exhibition events with
no title at stake.

The American Checker Federation and English Draughts Association (the
governing bodies for checkers) refused to sanction the Chinook–Tinsley match,
arguing that the World Championship was for humans, not machines. Even-

122 JONATHAN SCHAEFFER AND ROBERT LAKE

tually, they created the Man-Machine World Championship title to allow the
match to proceed, but only after Tinsley resigned his “human” World Champi-
onship title in protest. In 1992, Tinsley defeated Chinook in their title match by
a score of four wins to two with 33 draws [Schaeffer 1992; Schaeffer et al. 1993a].

In 1994, Chinook became World Champion when, after six games in their
rematch (all draws), Tinsley resigned the match and the title citing health con-
cerns. Chinook is the first computer program to become World Champion in
any nontrivial game of skill. Obviously this was not a satisfactory way to win
a World Championship. Subsequently, Chinook successfully defended its title
twice against Grandmaster Don Lafferty. Unfortunately, with the recent passing
of Marion Tinsley [Schaeffer 1995], mankind has lost its best chance of wresting
the title away from the computer.

Chinook has not solved the game, but it is playing at a level that makes it
almost unbeatable. In its last 242 games against the strongest players in the
world (over 220 of which were against Grandmasters), Chinook only lost one
game (to be fair, it also drew one game from a lost position). Since the program
continues to automatically increase its checkers knowledge every day, Chinook
will eventually be almost unbeatable. In effect, checkers will be solved in practice,
if not in theory.

Chinook ’s strength comes from deep searches (deciding which positions to
examine), a good evaluation function (deciding how favorable a position is),
endgame databases (containing perfect information on all positions with eight
pieces or less) and a library of opening moves [Schaeffer et al. 1992].

Search: Chinook uses an iterative, alpha-beta search with transposition ta-
bles and the history heuristic [Schaeffer 1989]. Under tournament conditions
(thirty moves an hour), the program searches to an average minimum depth
of nineteen ply (one ply is one move by one player). The search uses selec-
tive deepening to extend lines that are tactically or positionally interesting.
Consequently, major lines of play are often searched many plies deeper. It is
not uncommon for the program to produce analyses that are thirty-ply deep
or more.

Knowledge: The evaluation function has 25 heuristic components, each of
which is weighted and summed to give a position evaluation. The game is
divided into four phases, each with their own set of weights. The definition of
the heuristics and their weights was arrived at only after long discussions with
a checkers expert. The knowledge acquisition process goes on. The knowledge
we add to the program nowadays tends to be subtle: it is harder to define and
often covers exceptions to the general knowledge that is already programmed
into Chinook .

Databases: All checkers positions with eight or fewer pieces (checkers or kings)
on the board have had their game-theoretic value (win, loss or draw) computed
[Lake et al. 1994]. The knowledge contained in the eight-piece databases

SOLVING THE GAME OF CHECKERS 123

exceeds human capabilities. Databases are discussed in more detail in the
next section.

Opening Book: The program has a library of 60,000 opening positions, each
of which has been computer verified. Most of the positions originate from the
checkers literature. However, computer verification has resulted in hundreds
of corrections to the literature and some refutations of major lines of play (not
published, until we have a chance to use them in a game!).

It is difficult for humans to compete with a program searching as deep as Chinook
does. Only the best players in the world can maintain a level of vigilance sufficient
to compensate for this. Nevertheless, it is clear that there is an important class
of positions where even fifty-ply searches are insufficient to uncover the subtleties
of the position [Schaeffer et al. 1993b]. The rare times that the program loses all
have the same pattern. The opponent gets the program out of its opening library
early in the game where the strategic aspects of the position require a search of
roughly more than 25 ply. If the program does not have the proper knowledge to
play this position, it may make a mistake and, against only the very best players,
possibly lose a game. With a deeper search, an improving evaluation function,
more endgame databases and a growing opening library, the probability of this
happening is rapidly decreasing.

Although Chinook is not perfect and can still lose a game, in practice checkers
can be regarded as “solved”.

4. Provably Solving Checkers

What does it mean to solve a game? Allis [1994] defines three levels:

Ultra-weakly solved: The game-theoretic value for the initial position has
been determined.

Weakly solved: The game is ultra-weakly solved and a strategy exists for
achieving the game-theoretic value from the opening position, assuming rea-
sonable computing resources.

Strongly solved: For all possible positions, a strategy is known for determin-
ing the game-theoretic value for both players, assuming reasonable computing
resources.

Ultra-weakly solving a game is of theoretical interest but means little in practice.
For example, Allis cites the game of Hex, which is known to be a win for the first
player on all diamond-shaped boards, but no one knows a strategy for achieving
this result. Strongly solved games include simple domains such as tic-tac-toe,
and more complex domains such as chess and checkers endgames (for which
databases enumerating all possibilities have been constructed).

Note the qualification on resources in the above definitions. In some sense, a
game such as chess is solved since we have an algorithm (alpha-beta searching)

124 JONATHAN SCHAEFFER AND ROBERT LAKE

that could return the game-theoretic value given an unlimited amount of time.
The resource constraints preclude such solutions.

To these definitions, we can add a fourth:

Ultra-strongly solved: For all positions in a strongly solved game, a strat-
egy is known that improves the chances of achieving more than the game-
theoretic value against a fallible opponent.

This point is very important in practice. Knowing that a position is, for exam-
ple, a draw only means that this is the best one can achieve against a perfect
opponent. Many opponents (particularly humans) are fallible, and selecting a
move based on the probability of opponent error increases the expected outcome
of a game.

How difficult is it to solve a game? Allis, van den Herik and Herschberg argue
that there are two dimensions [Allis et al. 1991]:

Space complexity: the number of positions in the search space.

Decision complexity: the difficulty required to make correct decisions.

A first impression suggests that, the larger the search space, the harder the
problem is to solve. This is not true, as illustrated by a trivial variant of the
game of Go on a 19 × 19 board (361 squares). In this game, the two players
alternate making moves, where a move consists of placing a stone on an empty
square. The first person to fill in 181 squares wins [Allis et al. 1991]. This game
has a search complexity of 3361 ≈ 10170, but is trivial to solve.

All the games solved thus far have either low decision complexity (1030 posi-
tions for Qubic, 10105 positions for Go-Moku) or low space complexity (1011 posi-
tions for Nine Men’s Morris) or both (1014 positions for Connect-Four). Checkers
is rated as having high decision complexity (more complex than 9×9 Go and the
play of bridge hands, on a par with backgammon and 10× 10 draughts, and less
complex than chess) and moderate space complexity (1020 positions versus un-
solved games such as backgammon with 1019 positions, chess with 1044 positions,
and Scrabble with 10150 positions).

A bound on the space complexity of checkers can be derived. The naive
calculation of 532 (each of 32 squares can be occupied by a checker or king of
either color, or be empty) can be improved upon. Let b be the number of black
checkers, w the number of white checkers, B the number of black kings, W the
number of white kings and f the number of black checkers on the first rank. In
the following, 12 is the maximum number of pieces per side, 32 is the number of
squares on the board that can be occupied, 28 is the number of squares that it
is legal to place a checker on (checkers become kings on the last rank) and 4 is
the number of squares on black’s first rank (these squares cannot hold any white

SOLVING THE GAME OF CHECKERS 125

pieces positions

1 120
2 6,972
3 261,224
4 7,092,774
5 148,688,232
6 2,503,611,964
7 34,779,531,480
8 406,309,208,481

9 4,048,627,642,976
10 34,778,882,769,216
11 259,669,578,902,016
12 1,695,618,078,654,976
13 9,726,900,031,328,256
14 49,134,911,067,979,776
15 218,511,510,918,189,056
16 852,888,183,557,922,816
17 2,905,162,728,973,680,640
18 8,568,043,414,939,516,928
19 21,661,954,506,100,113,408
20 46,352,957,062,510,379,008
21 82,459,728,874,435,248,128
22 118,435,747,136,817,856,512
23 129,406,908,049,181,900,800
24 90,072,726,844,888,186,880

total 500,995,484,682,338,672,639

Table 1. Search space complexity of checkers.

checkers). The number of positions having n or fewer pieces on the board is

min(n,12)∑
b=0

min(n,12)−b∑
B=0

min(n−b−B,12)∑
w=0

min(n−b−B,12)−w∑
W=0

min(b,4)∑
f=0

Num(b, B, w, W, f)−1,

where

Num(b, B, w, W, f)=
(

4
f

)(
24

b−f

)(
28−(b−f)

w

)(
32−b−w

B

)(
32−b−w−B

W

)
.

The subtraction of one position in the above formula handles the impossible case
of zero pieces on the board. This yields a search complexity of roughly 5× 1020

positions (Table 1).
This number is misleading, since it includes positions that are not legally

reachable from the start of the game. For example, although there are 9× 1019

126 JONATHAN SCHAEFFER AND ROBERT LAKE

plausible positions with 24 pieces on the board, only a small fraction of this
number are legal. It is possible to place 24 pieces on the board and have 10 of
them be kings. However, there is no legal move sequence from the start of the
game that can reach such a position, since the forced capture rule precludes this.
It is possible to have 24 pieces on the board with two of them being kings, but
this move sequence is contorted and cooperative and has no relationship to a
reasonable playing strategy.

A bound on the number of reasonable positions one might encounter in trying
to prove checkers is obtained using the following assumptions. First, consider
only those positions where the difference between the number of black and white
pieces is less than three, that is, |(b + B) − (w + W)| < 3. More lopsided
positions will always be a win for the strong side unless (1) there is an immediate
capture present to restore the material balance (which reduces the position to one
satisfying the above condition), or (2) the pieces of the strong side are constricted
in a manner that is impossible to reach either by the rules of the game, or by
considering a reasonable playing strategy.

Within the subset of positions created by the above assumption, a number of
positions can be further discarded because they are prevented from occurring by
the rules of the game or by reasonable playing strategy. For example, the rules
condition eliminates all positions with 24 kings on the board. The reasonable
playing strategy assumption enables us to consider only those positions that will
occur in normal play. One observation is that as the number of pieces on the
board decreases, the probability of there being multiple kings increases. The
number of kings can be restricted so that scenarios such as 12 kings versus 12
kings are eliminated. Define a subset of the search space that limits the number
of kings for positions with 12 or more pieces as follows:

(B ≤ d24− 1
2ne, W ≤ b24− 1

2nc) ∪ (B ≤ b24− 1
2nc, W ≤ d24− 1

2ne)
subject to the conditions 12 ≤ n ≤ 24 and |(b + B) − (w + W)| < 3. Even
this assumption is generous: it includes unlikely positions such as 6 black kings
against 6 white checkers.

Summing the positions satisfying these conditions reduces the search space to
slightly less than 1018 positions. Still included in this number are some positions
not legally reachable from the start of the game. We have found no way to
mathematically define this set. It is possible that the exclusion of these positions
may reduce the plausible search space from 1018 to 1017 or less.

A search space of 1018 still seems impossibly large. If 106 positions were
solved per second, 100, 000 years of computing would be required to enumerate
all the positions. What makes the problem of finding the game-theoretic value
of checkers feasible is the idea of a proof tree. When analyzing a position that
is a win, one need only consider one winning move; the alternatives moves are
either inferior or redundant. When considering a position that is a loss or a
draw, all alternatives must be considered (since you have to prove you cannot

SOLVING THE GAME OF CHECKERS 127

do better). In the best case—a game that is provably winning—the search only
has to explore roughly the square root of the search space: a single move at
winning positions and all moves at losing positions. This means that a proof
of the game-theoretic value of checkers might require a search of as few as 109

positions. Of course, knowing which 109 positions out of 1018 is the hard part.
To weakly solve checkers (determine the game-theoretic value), we have de-

vised a three-pronged approach:

Bottom-up: The only positions with known game-theoretic values, as defined
by the rules of the game, are those positions where one side has no pieces
or no moves (a loss). Using retrograde analysis, the value of these terminal
positions can be backed up to positions many moves from the end of the
game [Thompson 1986]. We have built endgame databases that solve all
443,748,401,247 positions with eight or fewer pieces on the board [Lake et al.
1994].

Endgame databases essentially reduce the number of moves required to be
played from the start of the game before one reaches a position with a known
game-theoretic value.

Middle: We have collected thousands of positions with more than eight pieces
on the board for which we have determined the game-theoretic value. They
come from games played by Chinook , where the search was deep enough to
demonstrate that an endgame database value could be backed up to the root
position of the search. For example, we have proved that a position with
as many as 22 pieces on the board is a win. The proof is simpler than one
might expect, because forced capture moves in the analysis quickly reduce the
number of pieces to eight.

In effect, we are building a middlegame database of solved positions with
more than eight pieces on the board.

Top-down: A proof consists of demonstrating a sequence of moves from the
start of the game to the endgame databases that achieves the maximum pos-
sible value (of win, draw or loss). Once the start of the game is assigned
an accurate value, the game theoretic value of checkers has been determined.
In tournament checkers, the first three half-moves are randomly chosen (or
balloted) among a set of 144 opening sequences. In other words, the proof
can be treated as 144 subproblems.

Starting at the beginning of the game and doing a search is counterpro-
ductive: the search will be too large. Instead, we use published checkers
analysis to identify the “best” lines of play for each side in each opening. By
playing down these lines, we try to solve positions further down the line of
play (thereby creating new entries for the middlegame database) and then use
those results to try and solve positions closer to the start of the line. In effect,
the opening is used to guide the search to the parts of the search space most
likely to be profitable.

128 JONATHAN SCHAEFFER AND ROBERT LAKE

1 1
2 2

3 3
4 4

5 5
6 6

7 7
8 8

9 9
10 10

11 11
12 12

13 13
14 14

15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24

0

Figure 1. Checkers search space.

Figure 1 illustrates this three-pronged approach. Despite the deceptive appear-
ance, the diagram is drawn to scale based on the numbers in Table 1. It shows
the number of pieces on the board (vertically) versus the logarithm of the num-
ber of positions (base 10) with that many pieces on the board (horizontally).
Many of the positions are not legally reachable by the rules of the game, and the
logarithm of the estimated illegal number is shown in the region of dashed lines.
The endgame phase of the proof is the shaded area: all positions with eight or
fewer pieces. The middlegame database contains positions with more than eight
pieces for which a value has been proved (shown as dots in the diagram). Note
that a dot is misleading because each represents the root of a search tree which
has been solved (and, by implication, all positions in that proof tree must also
have been solved). None of these lower-level solved positions is presented in the
diagram. The dotted line represents an opening line of play (as suggested by the
checkers literature). It goes from the start of the opening to the endgame data-
bases. By repeatedly searching that line, more middlegame database positions
can be solved, thereby simplifying the task of proving the start position.

Critical to the success of this approach is the search algorithm chosen. Our
initial experience is with two search approaches: proof number search (PNS)
and alpha-beta. Allis has been successful with his PNS approach [Allis et al.
1994], a variation on McAllester’s conspiracy numbers algorithm [McAllester
1988]. PNS builds a tree to variable depth trying to answer a binary question
(for example, is this position a win?). Each node in a search tree whose value

SOLVING THE GAME OF CHECKERS 129

has not been proven is given a proof and disproof number. The proof number
indicates the number of nodes in the tree whose value has to be determined to
prove the assertion (the position is a win), while the disproof number indicates
the number of nodes in the tree whose value has to be shown false to prove the
assertion untrue (the position is not a win). The search algorithm examines the
path of least resistance, the line of play with the lowest proof/disproof number.
These numbers exploit the nonuniform branching factor in the search tree. For
example, in chess, a forced sequence of checking moves leaves the opponent with
few responses and, hence, few positions that need to be proven. The algorithm is
intuitively appealing and has been successfully used to solve Connect-Four and
Qubic.

There is a simple alternative search method to consider: alpha-beta. It can
be used to prove the value of a position by modifying the evaluation function to
return ∞ for a win, 0 for a draw and −∞ for a loss or unproven position. Under
the pessimistic assumption that all unproven positions are losses, a nonloss value
returned by a search is a useful result and can only be improved by finding the
correct value for the unproven positions. Thus, if a search returns a win value
we know the position is a win, and if it returns a draw value, the position is at
least a draw (it might still be a win).

Initial experience with the two algorithms has had some surprising results.
Generally alpha-beta significantly outperforms PNS, but occasionally PNS wins
by an enormous amount. Experiments performed by Victor Allis and Jonathan
Schaeffer on the games of the 1994 Chinook–Oldbury match showed that many
positions could be solved with 25 ply of search and were quickly found by alpha-
beta. PNS, on the other hand, would explore some lines to excessive search
depths looking for a more complicated solution than was needed. PNS excels
when there is a nonuniform branching factor in the search tree. Ignoring cap-
ture moves (which are forced), the number of legal moves in a position changes
little from move to move. Thus PNS has little information to guide its search.
Research needs to be done on finding a more suitable heuristic for indicating to
PNS where success is likely to be found.

Figure 2 illustrates the potential for deep alpha-beta searching. There are
eighteen pieces on the board, so the endgame databases seem quite distant.
It is white’s tenth move (or ninth if you consider that white’s first move was
balloted). Chinook (white) played its checker from g1 to h2, whereupon Tinsley
immediately remarked “You’re going to regret that”. On move 36, Chinook
resigned. Since this game was played in 1990, the endgame databases have
expanded from six to eight pieces and the search depths of the program have
significantly increased. Today, the program can prove that the move g1 to h2 is
a loss and b4 to a5 is a draw. This proof was done using alpha-beta by starting
at the end of the game (move 36), searching that position and proving it to be
lost, adding that result to the middlegame database, and then backing up to
move 35 and trying to prove that position, etc. Thus this position, only ten

130 JONATHAN SCHAEFFER AND ROBERT LAKE

1

2

3

4

5

6

7

8

a b c d e f g h

Figure 2. Chinook–Tinsley, 1990: White to play

moves from the start of the game (nine if you exclude balloted moves) has been
solved. Subsequent searches of other positions are now simplified, since if they
encounter this complicated position in their search, they need look no further;
the middle game database contains the result.

The above discussion has concentrated on weakly solving the game. Ultra-
strongly solving the game requires additional information; the program must
choose the move to maximize its chances of improving its result. For example,
given a drawn (lost) position, the program must select the move that maintains
the draw (loss) and maximizes the chances of the opponent making a mistake
that changes the game’s outcome. In general this is a difficult problem, since
maximizing difficulty is usually a function of the strengths and weaknesses of the
opponent.

The biggest software advance in Chinook in the past two years has been
an improvement in its ability to differentiate between drawing moves. In most
game-playing programs, the value of a draw is 0, equality. Chinook differentiates
between drawn positions by assigning them a value in the range of + 1

3 of a checker
to − 1

12 of a checker. Note the asymmetric range of values. A very weak draw is
still a draw and must have a score close to zero. If not, a weak nondrawing move
might lead to a position with a higher score and be selected as the move to play.
In tournaments, this scheme has resulted in several drawn games becoming wins
when the program made it difficult for the opponent to find the drawing line.

The current status of the project is:

• Our endgame database consists of 4.4 × 1011 positions, that is, all positions
with eight or fewer pieces. Completing the nine-piece databases will require
computational and storage requirements beyond our current capabilities. We
have begun the computing but expect to have only a small percent of the 1012

positions completed in 1995.
• The opening lines have been determined. This was done in consultation with

our checkers expert, Martin Bryant, and his extensive literature on the game.
• The middlegame database contains only positions that occurred in Chinook ’s

tournament games. We are currently starting a systematic search of one

SOLVING THE GAME OF CHECKERS 131

particular opening where it appears likely we can prove a draw. Success in
one opening is all that is necessary to validate our approach.

5. Conclusions

With current technology, we believe it is possible to weakly solve the game of
checkers. A database containing a proof tree for the game may contain as few as
109 nodes—a small number by today’s standards. Strongly solving the game will
be much harder, since it requires knowledge of all 1018 legally reachable positions
in the game. The combination of weakly solving the game with the deep search,
endgame databases and draw differentiation facilities in Chinook means that it
will be possible to build a program that is close to ultra-strongly solving the
game in practice.

Acknowledgements

Many people have contributed to Chinook over the years, including Martin
Bryant, Joseph Culberson, Randal Kornelson, Brent Knight, Paul Lu, Steve
Sutphen, Duane Szafron and Norman Treloar. Aske Plaat provided detailed
feedback on the final draft of this paper. The support from Silicon Graph-
ics International and the MPCI project at Lawrence Livermore Laboratories is
greatfully appreciated. This research was supported by the Natural Sciences
and Engineering Research Council of Canada (grant number OGP-8173) and
the Netherlands Organization for Scientific Research (NWO).

References

[Allen 1989] J. D. Allen, “A note on the computer solution of connect-four”,
pp. 134–135 in Heuristic Programming in Artificial Intelligence: The First Computer
Olympiad (edited by D. N. L. Levy and D. F. Beal), Ellis Horwood, Chichester,
England, 1989.

[Allis 1988] L. V. Allis, “A knowledge-based approach to connect-four. The game is
solved: White wins”, M.Sc. thesis, Faculty of Mathematics and Computer Science,
Vrije Universiteit, Amsterdam, 1988.

[Allis 1994] L. V. Allis, “Searching for solutions in games and artificial intelligence”,
Ph.D. thesis, Dept. of Computer Science, University of Limburg, 1994.

[Allis et al. 1991] L. V. Allis, H. J. van den Herik, and I. S. Herschberg, “Which games
will survive”, pp. 232–243 in Heuristic Programming in Artificial Intelligence: The
Second Computer Olympiad (edited by D. N. L. Levy and D. F. Beal), Ellis Horwood,
Chichester, England, 1991.

[Allis et al. 1993] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques”, pp. 1–9 in Proc. AAAI Fall Symposium on Games:
Planning and Learning, AAAI Press, Report FS9302, Menlo Park, California, 1993.

132 JONATHAN SCHAEFFER AND ROBERT LAKE

[Allis et al. 1994] L. V. Allis, M. van der Meulen, and H. J. van den Herik, “Proof-
number search”, Artificial Intelligence 66 (1994), 91–124.

[Anonymous 1979] Anonymous, “Computer Checkers: The Tinsley Challenge”,
Personal Computing (July 1979), 88–89.

[Barr and Feigenbaum 1981] A. Barr and E. Feigenbaum, The Handbook of Artificial
Intelligence, Kaufmann, Los Altos, CA, 1981.

[Berliner 1980] H. Berliner, “Backgammon computer program beats World Champion”,
Artificial Intelligence 14 (1980), 205–220.

[Fortman 1978] R. L. Fortman, “Duke vs. Lowder”, Personal Computing (November
1978), 26–28.

[Gasser 1994] R. Gasser, “Harnessing computational resources for efficient exhaustive
search”, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1994.

[Kopec 1990] D. Kopec, “Advances in Man-Machine Play”, pp. 9–32 in Computers,
Chess and Cognition (edited by T. A. Marsland and J. Schaeffer), Springer, New
York, 1990.

[Lake et al. 1994] R. Lake, J. Schaeffer, and P. Lu, “Solving large retrograde analysis
problems using a network of workstations”, pp. 135–162 in Advances in Computer
Chess 7 (edited by H. J. van den Herik et al.), University of Limburg, Maastricht,
Netherlands, 1994.

[Levy and Beal 1989] Heuristic Programming in Artificial Intelligence: The First
Computer Olympiad (edited by D. N. L. Levy and D. F. Beal), Ellis Horwood,
Chichester, England, 1989.

[Levy and Beal 1991] Heuristic Programming in Artificial Intelligence: The Second
Computer Olympiad (edited by D. N. L. Levy and D. F. Beal), Ellis Horwood,
Chichester, England, 1991.

[McAllester 1988] D. A. McAllester, “Conspiracy numbers for min-max search”,
Artificial Intelligence 35 (1988), 287–310.

[Patashnik 1980] O. Patashnik, “Qubic: 4× 4× 4 tic-tac-toe”, Math. Mag. 53 (1980),
202–216.

[Samuel 1959] A. L. Samuel, “Some studies in machine learning using the game of
checkers”, IBM J. Res. Devel. 3 (1959), 210–229.

[Samuel 1967] A. L. Samuel, “Some studies in machine learning using the game of
checkers: recent progress”, IBM J. Res. Devel. 11 (1967), 601–617.

[Schaeffer 1989] J. Schaeffer, “The history heuristic and alpha-beta search enhance-
ments in practice”, IEEE Trans. on Pattern Anal. and Machine Intelligence 11
(1989), 1203–1212.

[Schaeffer 1992] J. Schaeffer, “Man versus machine: The Silicon Graphics World
Checkers Championship”, Technical Report 92-20, Dept. of Computing Science,
University of Alberta, 1992.

[Schaeffer 1995] J. Schaeffer, “Marion Tinsley: Human Perfection at Checkers?”,
pp. 115–118 in this volume.

[Schaeffer et al. 1992] J. Schaeffer et al., “A World Championship caliber checkers
program”, Artificial Intelligence 53(2–3) (1992), 273–290.

SOLVING THE GAME OF CHECKERS 133

[Schaeffer et al. 1993a] J. Schaeffer, N. Treloar, P. Lu, and R. Lake, “Man versus
machine for the World Checkers Championship”, AI Magazine 14(2) (1993), 28–35.

[Schaeffer et al. 1993b] J. Schaeffer, P. Lu, D. Szafron, and R. Lake, “A re-examination
of brute-force search”, pp. 51–58 in Proc. AAAI Fall Symposium on Games: Planning
and Learning, AAAI Press, Report FS9302, Menlo Park, California, 1993.

[Smith 1994] H. Smith, personal communication citing letter sent to Smith by A. L.
Samuel (1994).

[Strachey 1952] C. S. Strachey, “Logical or nonmathematical programs”, Proceedings
of the ACM Conference, Toronto, 1952.

[Thompson 1986] K. Thompson, “Retrograde analysis of certain endgames”, J.
International Computer Chess Assoc. 9(3) (1986), 131–139.

[Tinsley 1994] M. Tinsley, personal communication citing letter sent to Tinsley by A.
L. Samuel (1994).

[Truscott 1978] T. Truscott, “The Duke checkers program”, preprint, Duke University,
1978.

Jonathan Schaeffer

Department of Computing Science

University of Alberta

Edmonton, Alberta

Canada T6G2H1

Robert Lake

Department of Computing Science

University of Alberta

Edmonton, Alberta

Canada T6G2H1

