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Stable Winning Coalitions

DANIEL E. LOEB

Abstract. We introduce the notion of a stable winning coalition in a multi-
player game as a new system of classification of games. An axiomatic
refinement of this classification for three-player games is also presented.
These classifications are compared in light of a probabilistic model and the
existing literature.

1. Introduction

Are multi-player combinatorial games essentially different from two-player
combinatorial games? John Nash was recently awarded the Nobel prize in eco-
nomics in part for his resolution of the analog question about classical or matricial
games: matricial games have equilibria regardless of the number of players.

From a classical game-theoretic point of view, combinatorial games are a
“trivial” sort of zero-sum game: one of the two players has a forced win in any
finite two-player deterministic sequential-move perfect-knowledge winner-take-
all game.

When a game has more than two players, it is no longer the case that one
always has a forced win. In Section 2, we will study Propp’s so-called “queer”
three-player games [Propp a], in which no player can force a win, but rather one
player chooses which of his two opponents will win.

For example, the game of nim is played with several piles of stones. Players
take turns removing stones from a single pile of their choice. At least one stone
and up to an entire pile may be taken. The player who makes the last move is
the sole winner. With a pile of one stone and a pile of two stones, no player can
force a win alone (see Figure 1).

The most obvious classification of two-player combinatorial games is according
to who can force a win alone. One begins to understand a game upon discovering
who can force a win. (After dividing games into types by “outcome”, the next
logical step is to refine these types so that the outcome of a sum of games is
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1+2
↙ ↓ ↘

0+2 1+0 1+1
↙ ↓ ↓ ↓ ↘

0+1 0+0 0+0 0+1 1+0
↓ ↓ ↓

0+0 0+0 0+0

Figure 1. Three-player nim position 1 + 2 game tree.

unchanged under replacement of one game with another in its class. For two-
player impartial games, the two possible results, namely, next player wins and
previous player wins, are further refined by Sprague–Grundy numbers [Grundy
1939; Sprague 1935]. All two-player impartial games are equivalent to one-pile
nim. Similarly, in three-player nim, all nim positions are equivalent to one
member of two countable families of nim positions and three sporadic positions
[Propp a].)

However, the classification according to who can force a win is inappropriate
to the vast majority of multi-player games, in which no player can force a win.
Many authors have proposed various solutions to this problem. In Section 3,
we classify multi-player combinatorial games according to which combinations
of players can force a win. The set of all winning coalitions is itself a well-
known combinatorial object: a maximal intersecting family of sets [Loeb and
Meyerowitz]. In essence, an n-player game is reduced by the win classification
into its 2n−1 two-player quotient games.

According to matricial game theory, the value of a combinatorial game to
each player depends only on the win classification of the game [Shapley 1953].
For example, a three-player queer game has value 1

3 to each player. Such frac-
tional values arise because classical cooperative game theory allows binding side-
agreements between players [von Neumann 1928].

However, in some contexts, such side-agreements may be unenforceable, and
in other contexts, the players may not be allowed to communicate except through
their moves and hence may not make any agreements whatsoever. Is there any
hope for cooperative play without the use of side-payments, repeated play or
binding agreements?

Just as a three-dimensional object is not completely described by its vari-
ous two-dimensional projections, the win classification does not reveal all the
essential information about a game. According to the probabilistic model intro-
duced in Section 6.1, nearly all three-player games are classified together as queer
games. The win classification does not distinguish between these games, and it
does not distinguish between winning coalitions. Should players have preferences
among queer games? Are all winning coalitions really equally effective?

The notion of a stable coalition is defined in Section 4 to answer these ques-
tions. In the example of Figure 1, two players form the only stable coalition.
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They have a winning strategy by which either of them can win. The actual win-
ner will be named by the third player. Despite the inability to share winnings,
stable coalitions provide each member an incentive to cooperate. We will prove
that stable winning coalitions exist in all multi-player combinatorial games.

This classification of multi-player games according to their stable coalitions
contrasted with those of [Li 1978; Propp a; Straffin 1985]; however, we refer the
reader to the bibliography for the full development of these promising systems
for classifying multi-player games.

The fine classification introduced in Section 5 refines all the three-player game
classifications above, with the exception of Li’s. The fine type of a game is defined
axiomatically via a number of tree rewriting rules similar to those of [Straffin
1985]. Thus, Section 5 makes heavy use of the language of graph grammars
[Courcelle 1990].

As compared to the case of two-player games, we are confronted here with
an embarrassing wealth of conflicting classification schemes. Before spending
considerable effort classifying particular multi-player games, we must choose the
most appropriate system of classification among the many alternatives. We hope
that this paper is a step in that direction.

In order to focus on the general classification problem, we do not attempt an
encyclopedic classification of particular games. However, we include examples for
pedagogical reasons. To avoid unnecessary distractions, all examples are taken
from one of the simplest combinatorial games of all: nim.

Although it is hardly mentioned in this paper, perhaps the most important
concept in multi-player games is negotiation; it has close philosophical ties with
many of the issues in this paper. Some relevant remarks on negotiation and how
these classifications may be used to play a game can be found in [Loeb 1992, § 3].

2. Queer Games

We will consider finite deterministic sequential-move winner-take-all perfect-
information games. That is, we make the following “combinatorial” assumptions
about all games discussed here:

• They have a finite number of legal positions.
• There is no element of chance involved.
• There is no simultaneous movement.
• The players are at all times completely aware of the state of the game.
• The game necessarily terminates after a finite number of moves with a single

unique winner.

We make no assumptions about the preferences of players among possible losses
(compare [Li 1978]).

Every such game can be represented by a finite labeled game tree, like the
one in Figure 2. All nodes are labeled with the name of a player. The label of
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A

↙↘
A B

↙ ↓ ↓ ↘
B C A C

Figure 2. Example game.

an interior node indicates the player whose turn it is. This player selects one of
the node’s children and play continues at that point. Play terminates at a leaf
node. The label of the leaf indicates who wins. Play begins at the root of the
tree.

In theory, the minimax algorithm can be used to play any two-player, deter-
ministic, sequential-move game perfectly. (In practice, however, the size of the
game tree is too large to analyze directly via the minimax algorithm. The key
idea in combinatorial game theory [Berlekamp et al. 1982; Conway 1976] has
thus been to express games as a combination of simpler games, and relate them
to special families of games such as impartial games and cold games for which
rich mathematical theories have been discovered.)

However, what happens when a third player is added?
Let P be a node in a game tree corresponding to player A’s turn. Suppose all

of P ’s children Succ(P ) have been evaluated. How do we evaluate P . Obviously,
if P has a child whose value is equal to an A-win, then this child is a good
strategy for player A, and the value of P will be a win for A. Similarly, if all of
the children of P are wins for say player B, then P is itself a win for player B.
However, what happens if some of the children of P are wins for player B and
some are wins for player C? It is then impossible to evaluate P without some
psychological information regarding A’s attitude to such situations. Given that
both choices are losing for A, we have no manner to predict how A will make
his choice: randomly or according to some unknown criterion. Nevertheless, A’s
move is crucial to B and C.

Definition 2.1 [Propp a]. A position in a three-player combinatorial game is
called queer if no player can force a win.

For example, consider the game of nim from the introduction, played with three
players: N next (first), F following (second), and P previous (third). The
position 0+0 is a win for P . Thus, N wins 1+0, 0+1, 2+0 and 0+2 by taking
all the remaining stones from the remaining pile. Hence, 1+1 is a forced win for
F . Therefore, the position 1+2 is queer as it yields a choice by N betweens wins
for P and F (Figure 1).

Are queer positions very common? If not, we can hope to frequently apply the
traditional techniques of two-player game tree analysis. Unfortunately, we have
the following result (see Proposition 6.1 for similar probabilistic arguments):
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Proposition 2.2 [Propp a, Claim 11a,e,f]. If G is an impartial three-player
game, 2 + 2 + G is a queer game. In other words , any impartial game large
enough to contain a 2 + 2 component is queer .

Recall that an n-player impartial game is an unlabeled tree, or rather a tree
whose internal nodes have labels equal to their depth modulo n, and whose
leaves have labels one less than their depth modulo n. Thus, players take turns
moving. When playing the sum of two combinatorial games, players may play in
either component. The game ends when a player has no available move in either
component. The last player to move wins. See [Propp a] for a study of the win
types of sums of three-player games.

Proof. First we will show that G+2 is not a win for P , and then that G+2+2
is not a win for N or F .

Type P : If P can win G+2, then F must win the options G+1 and G. However,
this is a contradiction since G is an option of G+ 1.

Type N : Every move in G+ 2 + 2 leaves a heap of size 2, so G+ 2 + 2 has no
P options. Thus, it has no winning moves for N .

Type F : Suppose F can win G + 2 + 2. Clearly, G is not the trivial game,
since 2 + 2 is queer. Thus, G has at least one option G′. Now, N must win
G′ + 2 + 2, which contradicts the preceding argument. �

3. The Win Classification

Games with four or more players can also be classified according to which sets
of players form winning coalitions. For four-player games, instead of four win
types of games A,B,C,Q, twelve are needed (Table 1). In Types 1–4, one player
can force a win. In Types 5–8, a coalition of three players is needed to stop a
certain player from winning. In Types 9–12, one player plays no significant role,
and the three remaining players participate in a “queer” game (in other words,
any of the three players can be stopped by the other two).

To generalize this classification to any number of players, we first define the
quotient of a game.

Definition 3.1. Given a combinatorial game G with players V and a function
f : V → W of its players, we define the quotient game G/f to be a new game
with players W , and whose game tree is obtained by taking the game tree for
the game G and replacing each label p with the label f(p).

Thus, G/f represents a variant of the game G. Player f(p) moves for the player
p, and player f(p) wins if p would have won the original game. If f is not
surjective, some players in W will have no effect on the game, and no possibility
of winning. If f is bijective, G and G/f are isomorphic as games.

Definition 3.2. The set of players A ⊆ V is said to be a winning (or losing)
coalition in the game G if the quotient game G/χA is a win (or loss) for 1, where
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win type F(P ) nim example probability

1 A 1
2 B 1 + 1
3 C 1 + 1 + 1

0

4 D 1 + 1 + 1 + 1

5 AB AC BC 2 + 1
6 AB AD BD 3 + 2 + 1 + 1
7 AC AD CD 2 + 1 + 1

(4−√
10)/8 ∼ 10.47%

8 BC BD CD 2 + 2 + 2 + 2

9 AB AC AD BCD 2 + 2 + 1
10 AB BC BD ACD 2 + 2
11 AC BC CD ABD 3 + 3 + 3

(4 +
√

10)/8 ∼ 14.53%

12 AD BD CD ABC 4 + 4 + 3 + 2 + 1

Table 1. Four-player win types, their probabilities in a random game, and ex-

amples from nim.

χA is the characteristic function of A (that is, χA(p) = 1 if p ∈ A and χA(p) = 0
if p /∈ A). The win type of G is given by its set of winning coalitions F(G).

The quotient defined above is compatible with the quotient in [Loeb a] in the
sense that F(G/f) = F(G)/f .

Win types are in one-to-one correspondence with maximal intersecting families
of sets [Shapley 1962] (Table 2).

Definition 3.3 [Loeb and Meyerowitz]. Given a set V of players, a maximal
intersecting family of subsets of V is a collection F of winning coalitions subject
to the condition that if V ⊇ B ⊇ A ∈ F then B ∈ F, and if A = V − B then
exactly one of A and B can be a member of F.

In other words, a maximal intersecting family defines an order-preserving map f
from the subsets of V to {0, 1} such that f(A) = 1− f(V −A). The number of
maximal intersecting families and thus the number of win types grows extremely
rapidly as n increases [Korshunov 1991]. For example, there are 1,422,564 seven-
player win types [Loeb 1992; Bioch and Ibarki 1994], and 229,809,982,112 eight-
player win types [Conway and Loeb 1995]. See also Table 2.
F(G) is a maximal intersecting family, since adding players to a coalition can

only strengthen it, and given a pair of opposing coalitions exactly one can win
while the other must lose. It is from this connection that the terminology of
strong/simple games is derived [Shapley 1953].

4. Stable Coalitions

All queer games have the same win type. Moreover, under the hypotheses
of matricial game theory [von Neumann 1928], every three-player game is either
strictly determined (forced win) with pay-offs (1, 0, 0), or symmetric non-strictly



STABLE WINNING COALITIONS 457

determined (queer) with payoffs (1
3 ,

1
3 ,

1
3 ). However, when side-agreements are

not allowed, are queer games always “symmetric”? Or are there queer games
that favor certain winning coalitions over others?

For example, consider the game in Figure 2, where player A can choose be-
tween two queer positions: one where A would name B or C as winner, and
one where B would name A or C as winner. Perhaps A would prefer the sec-
ond choice even though both are queer games, since then he would retain some
chance of winning [Straffin 1985, Axiom St2].

In this section, we propose a criteria by which certain “favored” coalitions of
players may be deemed stable.

Definition 4.1. Let P be a game tree. The set of stable coalitions St(P ) or
stable type is defined recursively as follows.

Case 0: In a terminal position P , a player p has won the game. Player p himself
forms the only stable coalition. St(P ) = {{p}}.

In a non-terminal position P resulting in a set Succ(P ) of choices for the player
p, one must consider two cases to determine if a set of players C is stable.

Case 1 (p ∈ C): C ∈ St(P ) if and only if (1.1) there exists a choice that keeps
C stable, and (1.2) there is no stable coalition strictly included in C:

(1.1) ∃P ′ ∈ Succ(P ) : C ∈ St(P ′),
(1.2) (D ⊂ C) ⇒ (D /∈ St(P )).

Case 2 (p /∈ C): C ∈ St(P ) if and only if (2.1) all choices keep some part of
C stable, (2.2) for every player q ∈ C, there is some choice by which some
subcoalition containing q is stable, and (2.3) there is no stable coalition strictly
included in C:

(2.1) P ′ ∈ Succ(P ) ⇒ ∃D ⊆ C : D ∈ St(P ′).
(2.2) q ∈ C ⇒ ∃P ′ ∈ Succ(P ), D ∈ St(P ) : q ∈ D ⊆ C.

(2.3) D ⊂ C ⇒ D /∈ St(P ).

In other words, a stable coalition must be a winning coalition; that is to say, it
must have a strategy that guarantees a win for one of its members, regardless of
the futile resistance of its opposition (Conditions 0, 1.1 and 1.2). However, it is
the opposition who, via their choice of resistance, chooses which member of the
coalition will actually win the game. In fact, every member of the coalition must
be eligible to be elected winner by the opposition (Condition 2.2). Furthermore,
we require that no member of the coalition can do better by joining a strictly
included stable coalition (Conditions 1.2 and 2.3). (This last requirement seems
the least plausible. However, it is not essential for certain of the results that
follow; for example, in the proof of Theorem 4.2, nonminimal members of E(P )∪
F (P ) would also be considered stable.)

As a game proceeds, stable coalitions will sometimes disappear, as each player
is confronted with a choice of conflicting strategies corresponding to different
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stable coalitions of which he is a member. Stable coalitions will never enlarge in
size under ideal play, but they may decrease in size, as the opposition makes an
arbitrary resistance. This reduction continues until the stable coalition consists
of only a single player, at which point that player can force a win.

The following important result shows that our definition is not devoid of con-
tent. In fact, the proof gives a direct method by which St(P ) may be calculated.

Theorem 4.2. All games have at least one stable coalition.

Proof. Clearly this is true for terminal positions, so proceed by induction.
Let P be a position with player p to move. Let F (P ) be the set of “friendly
coalitions” (p ∈ A) such that A ∈ St(P ′) for some move P ′ ∈ Succ(P ). Let
E(P ) be the set of “enemy coalitions” of the form

A =
⋃

P ′∈Succ(P )

AP ′ ,

where p /∈ AP ′ ∈ St(P ′) for each choice P ′ ∈ Succ(P ). Note that St(P ) is the
set of minimal elements of E(P ) ∪ F (P ).

It suffices to show that E(P ) ∪ F (P ) 6= ?. If E(P ) is empty, there must be
some P ′ for which p belongs to all stable coalitions. By induction, P ′ must have
at least one stable coalition A. Thus A ∈ F (P ). �

Proposition 4.3. (i) If the number of players is greater than one, the set of
all players is not stable.

(ii) No stable coalition can contain another (in other words , St(P ) is an an-
tichain).

(iii) Any pair of stable coalitions has a nonempty intersection.

The set of all players is winning. Intuitively, however, it is not stable since there
is no opposition to choose the winner.

Proof. (i) By contradiction. Let P be a smallest counterexample. Thus,
V ∈ St(P ). If P is of depth zero, Condition 0 is contradicted. Otherwise,
by Condition 1.1, there must be a simpler position P ′ with V ∈ St(P ′). This
contradicts the minimality of P .

(ii) Conditions 1.2 and 2.3.

(iii) Stable coalitions are winning (Conditions 1.1 and 2.1). Subsets of their
complements are losing. �

We have the following “converse” to Theorem 4.2 and Proposition 4.3.

Proposition 4.4. Let F be a nonempty family of intersecting subsets of X .
Suppose that X /∈ F, and that F is an antichain. Then there is some game
position P (with players X) such that St(P ) = F.

Proof. The game is played as follows. Players take turns eliminating all but
one of the coalitions in F to which they belong (if any). After each player has
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number of players 0 1 2 3 4 5 6 7

win types (Section 3) 0 1 2 4 12 81 2646 1,422,564
stable types (Section 4) 0 1 2 10 79 2644 1,422,562 229, 809, 982, 110

Li types [Li 1978] 0 1 2 3 4 5 6 7
Straffin types [Straffin 1985] 0 1 2 6

Fine types (Section 5) 0 1 2 3ℵ
nim-sum types [Propp a] 0 1 2 2ℵ+ 3

Table 2. Systems of classification of multi-player games.

taken his turn there will be one set left. The first non-member of the set can
then choose a member of the set to be the winner. �

Proposition 4.5. The number of n-player stable types St(P ), for n ≥ 2, is
equal to two less than the number of maximal intersecting families of subsets of
an (n+ 1)-element set . (See Table 2.)

Proof. The antichains F of pairwise intersecting subsets of {1, 2, . . . , n} are in
bijection with maximal intersecting families M on {1, 2, . . . , n+ 1}:

F = min{A : A ⊆ {1, 2, . . . , n} and A ∈M}.
However, two maximal intersecting families must not be counted: the “dictator-
ship”

M = {A : n+ 1 ∈ A}
corresponds to F = ?, and the “constitutional monarchy”

M = {A : n+ 1 ∈ A, |A| ≥ 2} ∪ {{1, 2, . . . , n}}.
corresponds to F = {{1, 2, . . . , n}}. �

We study the stable classification, since a winning coalition itself does not win,
but rather only one member of the coalition wins. Thus, in the end, many
winning coalitions are “unstable.” For example, in Table 2, if player A chooses
the winner between playersB and C, then the only stable coalition would be BC.
A together with any other player wins, but would not be not stable. A would
therefore prefer to let B choose between A and C (compare [Straffin 1985]).

Of the ten three-player stable types, three correspond to forced victories for
one of the players. The other seven correspond to queer games. (See Table 3.)
Nevertheless, the stable classification is not in general finer than the win classi-
fication (Table 2). For example, the four-player nim positions 5 + 1 and 3 + 3
both have stable type ABD ACD, whereas 5 + 1 has win type AB AC BC and
3 + 3 has win type AB BC BD ABD. Note in particular that, according to the
win classification, player D is a spectator in the game 5 + 1; he has no chance
to affect the game. However, according to the stable classification, player D is
a member of the only two stable coalitions. Depending on the interpretation
chosen, player D is either a spectator with no chance of winning, or an active
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win type stable type fine type Straffin type nim prob. F(P ) =
F(P ) (§ 3) St(P ) (§ 4) (§ 5) [Straffin 1985] example St(P )?

next N N n0 N wins 1 0 yes
following F F f0 F wins 1 + 1 0 yes
previous P P p0 P wins 1 + 1 + 1 0 yes

queer FP n1 N picks 2 + 1 3/23 no
NF NP FP NP f1 F picks 3 + 1 3/23 no

NF f1 P picks 3 + 3 3/23 no
NF NP p1 N picks 4 + 1 2/23 no
NF FP n2 F picks 4 + 4 2/23 no
NP FP f2 P picks 4 + 4 + 4 2/23 no

NF NP FP p2 ? picks 6 + 6 8/23 yes

Table 3. Classification of three-player games along with probabilities in a random

game, and examples from the game of nim.

participant with at least as good a chance of winning the game as any other
player.

5. The Fine Classification

Consider three-player games. Although the classification by stable winning
coalitions is an improvement over classification by winning coalitions, does the
stable classification completely express the preferences of all players? For exam-
ple, if three two-player coalitions are stable, is the game necessarily symmetrical?
In this section we define a finer classification of three-player games. Two posi-
tions are in the same fine class if their game trees are identical after pruning
dominated options from the game tree, and eliminating moves consisting of a
single choice. Using a system of axioms similar to those used in [Straffin 1985],
we reduce all game trees to a set of basic trees. Interestingly, none of the basic
trees will be invariant under permutation of players.

Let n0, f0, and p0 denote the one-node basic game trees N , F , and P .
They represent immediate forced wins. Now,

n1 =
N

↙ ↘
F P

denotes the basic game tree giving a choice by the next player between f0 and p0.
The basic trees f1 and p1 can be defined similarly. Player N has the following
preferences:

n0 > f1, p1 > f0, p0︸ ︷︷ ︸
n1

.

Is he indifferent regarding f0 and p0? Can the position n1 leading to such a
choice be simplified by his opponents? Moreover, is N necessarily indifferent
between f1 and p1? Unfortunately, we can not answer these questions until we
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clarify how a player makes a choice between symmetrical positions. We will
propose a system of preference axioms below. In particular, PR3 states that the
preferences of N are invariant under the exchange of F and P .

However, we first review several reasonable alternative hypotheses that have
been proposed.

• One assumption is to make a random move in such a situation [V. Lefevre,
personal communication]. In this model, the forced wins n0, f0 and p0 are
given Lefevre-values (1, 0, 0), (0, 1, 0), and (0, 0, 1) in R3 . Given a nontrivial
game tree

ψ =
i

↙· · ·↘
τ1 . . . τn

in which the i-th player is to move, v(ψ) is calculated by averaging the v(τj)
having maximal i-th coordinate v(τj)i. Thus v(ψ) represents the probabilities
of victory for each of the three players according to this model.

However, consider a game whose game tree has redundant subtrees. For
example, consider chess but allow rooks to be moved by either hand and all
other pieces to be moved only by the left hand. Is it then more likely that
the player will move his rook? Although plausible, this is not a very pleasing
model, since it is strongly affected by redundant branches from our game tree
(compare [Straffin 1985, Axiom Bk1]).

• Another solution [von Neumann 1928; Shapley 1953] is to modify the game
being analyzed, and allow side-payments by the other players in order to entice
player N to agree to a binding agreement.

• Straffin [1985, axiom St3] proposed a rule of vengeance (attack the player who
eliminated you).

• Li [1978] proposed that the players try to come in “second place”. (According
to Li’s model, there is a forced win for some player assuming the players are
ranked in function of position relative to the last player to move. To obtain
this result, it is necessary to assume that the ranking of any one player de-
termines the rankings of all players. The actual permutation used generalizes
the two-player notation of misère variants of games. Sequential composition
[Stromquist and Ullman 1993] of two Li games results in the composition
of the misère permutation of the second game with the rankings of the first
game.) See Table 2.

Instead, we propose rules by which game trees may be simplified. It will be
shown that any position in a three-player game can be reduced to exactly one
of the specific basic games ni, pi, or fi, where i is an integer, ni+1 is recursively
defined to be a choice by player N between the games pi and fi

ni+1 =
N

↙ ↘
fi pi

,
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and fi+1 and pi+1 are defined similarly:

fi+1 =
F

↙ ↘
ni pi

, pi+1 =
P

↙ ↘
ni fi

.

For example, n3 is the choice by player N of who will name the person who will
choose the person who selects the winner.

The reduction rules we use are defined in terms of the preferences of players
for game subtrees. Preferences are defined only for completely reduced game
trees. Note that the preferences defined below are not total. Thus, for certain
positions, we do not suppose that the player will make a certain preferred move;
he may have a preference, he may move randomly, or he may move based on
unknown criteria. We make no assumptions other than the axioms listed below.

Preference Rules

PR1: Let X and Y be distinct players. Player X prefers x0 = X to y0 = Y .
(Players prefer a sure win to a sure loss.)

PR2: Let X and Y be distinct players. Let

σ =
Y

↙ ↘
τ1 τ2

be a completely reduced game tree. If player X prefers τ1 to τ2, player X
also prefers τ1 to σ and σ to τ2. (Players prefer a good result to an uncertain
result, and they prefer an uncertain result to a bad result.)

PR3: If player X prefers τ1 to τ2, player X also prefers τ1 to τ ′2 and τ ′1 to τ2,
where τ ′i is the game subtree obtained by exchanging the two opponents of X
wherever they occur in τi. (Players are impartial.)

PR4: Let ψ =
X

↙· · ·↘
τ1 . . . τn

be a completely reduced game tree.

PR4a: Player X prefers one of τ1, . . . , τn to σ if and only if he prefers ψ to σ.

PR4b: Player X prefers σ to all of τ1, . . . , τn if and only if he prefers σ to ψ.

(A choice is as good as its best option.)

PR5: Let X and Y be distinct players, and let ψ =
Y

↙· · ·↘
τ1 . . . τn

.

PR5a: If player X prefers all of τ1, . . . , τn to σ, player X prefers ψ to σ. (A
tree is good if all its branches are good.)

PR5b: If player X prefers σ to all of τ1, . . . , τn, player X prefers σ to ψ. (A
tree is bad if all its branches are bad.)

PR6.: We assume no preferences other than those implied by PR1–PR5.
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Reduction Rules

RR1: A game tree of the form
X

↓
τ

can be reduced to τ . (We may collapse

non-decisions [Straffin 1985, Axiom Bk2].)

RR2: A game tree of the form
X

↙ · · · ↓↓ · · · ↘
τ1 . . . τ1τ2 . . . τn

may be reduced to
X

↙· · ·↘
τ1 . . . τn

.

(We may remove redundant game subtrees [Straffin 1985, Axiom Bk1].)
RR3: A game tree of the form

X

↙↓· · ·↘
X τn+1 · · · τn+m

↙· · ·↓
τ1 · · · τn

may be reduced to
X

↙· · ·↘
τ1 . . . τn+m

. (We may collapse sequential choices by the

same player [Straffin 1985, Axiom Bk3].)

RR4: A game tree of the form
X

↙· · ·↘
τ1 . . . τn

may be reduced to τ1 if playerX prefers

τ1 to all τi with 1 < i ≤ n. (We may assume that players will choose what
they prefer [Straffin 1985, Axiom Bk3].)

Contrast PR2 with [Straffin 1985, Axioms St1 and St2]. Note that we do not
adopt McCarthy’s Revenge Rule [Straffin 1985, Axiom St3].

The reduction rules all strictly decrease the number of nodes in the game
tree. Thus, no infinite reductions are possible, and the use of term “completely
reduced” is justified. Since preferences are only defined on completely reduced
game trees, application of RR4 must be carried out in a bottom-up fashion.
Strategies in the reduced trees correspond in an obvious way to strategies in the
original game tree.

Lefevre-values are not conserved by RR2 and RR3. However, the criteria of
“preference” as defined above will be seen to be related to the simple comparison
of Lefevre-values.

Theorem 5.1. By using the above reduction rules , all three-player games can
be reduced to one and only one of ni, fi, or pi.

The fine type of a position P is defined to be the unique game tree ni, fi, or pi

to which it can be reduced.
We first establish the preferences (Lemma 5.2) and non-preferences (Lemma

5.3) for a given player, say N . We will then show that ni, fi, and pi can
not be further reduced (Lemma 5.4). It will then suffice to show that the set
{ni, fi, pi : i ≥ 0} is closed under tree construction.
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a0

b1

c1

a1

b2

c2

a2

b3

c3

a3

b4

c4

a4

A’s preferences

B’s preferences

C’s preferences

Figure 3. Preferences for basic-game trees.

preferences n0 >

n2
z }| {

f1, p1 >

n4
z }| {

f3, p3 > · · · . · · · >

n5
z }| {

f4, p4 >

n3
z }| {

f2, p2 >

n1
z }| {

f0, p0

probability 1 1
2

3
8

1
3

5
16

1
4

0

Table 4. Player N ’s fine type preferences, along with the probability of player

N winning given unbiased play by players F and P .

Lemma 5.2. The relations shown in the first row of Table 4 show preferences by
player N for basic-game trees. (Preferences of other players can be determined
mutatis mutandis ; see Figure 3.)

Proof. Induction on k. The base case follows immediately from PR1. All of the
required preferences for n2k+1 follow easily by hypothesis and the “only if” parts
of PR4ab. We have n2k > f2k+1 > p2k and n2k > p2k+1 > f2k by hypothesis
and PR2. Now, f2k+1 > f2k and p2k+1 > p2k by PR5. Thus, f2k+1 > n2k+1 by
PR4b. Furthermore, f2k+1 < f2k−1, p2k−1 by PR3 and the “if” part of PR4a.
The remaining preferences for f2k+1 follow easily by hypothesis and PR5ab.

Preferences for n2k+2, p2k+2, f2k+2 follows mutatis mutandis making use of the
“if” part of PR4b to show that f2k+2 > f2k, p2k. �

Lemma 5.3. Let τ, σ ∈ {ni, fi, pi : i ≥ 0} be basic game trees . If v(τ)1 ≥ v(σ)1,
the next player N does not prefer τ to σ.
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Proof. It suffices by PR6 to suppose that a counterexample was derived from
one of the axioms PR1–PR5 from earlier preferences, and deduce that at least
one of the earlier preferences is another counterexample.

PR1: Only n0, f0, and p0 apply. PR1 shows that n0 > f0 and n0 > p0,
neither of which are counterexamples, since v(n0)1 = 1 > 0 = v(f0)1 = v(p0)1.

PR2: This rule shows for example that fi+1 =
F

↙ ↘
ni pi

lies between ni and

pi in the preferences of player N . However, v(fi+1)1 lies strictly between v(pi)1
and v(ni)1.

PR3: If v(τ) = (a, b, c) then v(τ ′) = (a, c, b).
PR4ab: In the “only if” direction, the only choice by player N that interest

us here is nj+1.
In the “if” direction, by RR4, the player N must have no preferences between

the τi. The τi may not equal nj+1 by RR3, and they must be unequal. Thus we
have n = 2, τ1 = fj, and τ2 = pj for some j ≥ 0, implying ψ = nj+1.

However, note that v(fj)1 = v(pj)1 = v(nj+1)1.
PR5ab. Suppose, for example, that v(τi)1 > v(σ)1. Now, v(ψ)1 is the average

of certain v(τi)1. Thus v(ψ)1 > v(σ)1. �

Lemma 5.4. The basic game trees ni, fi, and pi are irreducible.

Proof. In none of the game trees fi, ni, or pi is there a node with a single
child (by RR1), two identical subtrees depending on the same node (by RR2),
or consecutive choices by the same player (by RR3). In all cases of a node with
two children, we have shown that neither child is preferred by the player to move
(by RR4). �

Theorem 5.1. Without loss of generality, we need only show how

σ =
N

↙ ↘
τ1 τ2

can be reduced for all basic game trees τ1, τ2 ∈ {ni, fi, pi : i ≥ 0}. If player N
prefers one of τ1 and τ2 to the other, we are done by RR4. If τ1 = τ2, we are
done by RR2 and RR1. The remaining possibilities for {τ1, τ2} are as follows:

{fi, pi}: By definition, σ = ni+1.
{ni, pi−1}: By RR3 and RR2, σ → ni.
{ni, fi−1}: Same as above. �

It is clear how moves in the reduced game correspond to strategies in the original
game. The analysis in [Propp a] does not assume that the other players will
necessarily play well. However, unless some assumption about the intelligence
of other players is made, there is no way to discriminate between queer games.
Moreover, the mild degree of fairness imposed by PR3 is necessary in order to
compare, say, f0 with f1.
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(i, j) 0 1 2 3 4 5 6 7 8 9 10

0 p0 n0 n0 n0 n0 n0 n0 n0 n0 n0 n0

1 n0 f0 n1 f1 n2 n2 n2 n2 n2 n2 n2

2 n0 n1 f1 n2 n2 n2 n2 n2 n2 n2 n2

3 n0 f1 n2 p1 p1 p1 p1 p1 p1 p1 p1

4 n0 n2 n2 p1 f2 n3 f3 n4 n4 n4 n4

5 n0 n2 n2 p1 n3 f3 n4 n4 n4 n4 n4

6 n0 n2 n2 p1 f3 n4 p3 p3 p3 p3 p3

7 n0 n2 n2 p1 n4 n4 p3 f4 n5 f5 n6

8 n0 n2 n2 p1 n4 n4 p3 n5 f5 n6 n6

9 n0 n2 n2 p1 n4 n4 p3 f5 n6 p5 p5

10 n0 n2 n2 p1 n4 n4 p3 n6 n6 p5 f6

Table 5. Fine classification of three-player two-pile nim position i + j. Regions

associated with the four win types are outlined.

Without loss of generality we assume i ≤ j.

i = 0, j = 0: Fine type p0. The previous player has already won.

j > 0: Fine type n0. The next player wins immediately.

i = 1, j = 1: Fine type f0. Forced win for the following player.

j > 1: Fine type n0. Stable type FP . Queer game.

i = 2, j = 2: Fine type f1. Stable type NP . Queer game.

j > 2: Fine type n2. Stable type NF NP. Queer game.

i = 3: Fine type p1. Stable type NF. Queer game.

i ≥ 4: Queer game. Fine type xn+2m, where xn is the fine type of the nim game
(i− 3m) + (j− 3m) and m = b 1

3
(i− 1)c. Stable type NF FP if i = j = 4, and

NF FP NP otherwise.

There is no two-pile nim position with stable type NP FP, or fine type p2k for
k ≥ 1.

Table 6. Classification of the three-player two-pile nim position i + j.

The fine classification is so named since it is a refinement of the stable classi-
fication and Straffin classification [Straffin 1985], both of which refine the three-
player win classification (Table 3). There are three countable families of fine
types (Table 2). For i > 0, ni corresponds to Straffin’s “N decides”. Note that
the game n2 favors player N according to our theory (N wins half of the time
if F and P are not biased), but should be a loss for N according to Straffin’s
theory.

Calculations with fine types are rather complicated. For example, whereas
two-pile two-player nim is completely trivial (the next player wins unless the
two piles are of equal size), the fine type of the nim game i + j can only be
calculated by a complicated rule (see Tables 5 and 6).

No general pattern is known for three-player nim with an arbitrary number of
piles. Moreover, any attempt to generalize this theory to four or more players,
(even with a simplifying Revenge Rule) seems hopelessly complicated.
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Rules PR1–PR6 and RR1–RR4 are sufficient to play a three-player game.
However, to obtain numerical data concerning the probability of victory for a
given player, say player N , we must make an additional “fairness” assumption
(in addition to PR2). Namely, we must assume that in a position of fine type
fi+1, the option ni will be chosen half of the time, and likewise in a position of
fine type pi+1. The probabilities that follow from these assumptions are given
in Table 4. Note that this probability approaches 1

3 but never attains this limit.
Thus, we have the counter-intuitive result that no game is symmetric under the
hypotheses above.

6. A Probabilistic Model

6.1. Queer Games. A simple heuristic argument shows that virtually all games
are queer.

Any game can be represented by a tree, and without loss of generality a
complete binary tree of some finite depth k. To generate a random game tree
of depth k, we independently assign random labels to all nodes of a complete
binary tree of depth k.

Let ak, bk, and ck represent the probability that a random game of depth k is
a forced win for player A, B, or C, respectively. Let qk represent the probability
that a random game of depth k is queer. For example, a0 = b0 = c0 = 1

3 , and
q0 = 0.

Obviously, there are forced win games with arbitrarily large game trees. How-
ever, most large random games are queer (Table 3).

Proposition 6.1. As the depth of a random binary three-player game tree
increases, the probability that the game is queer approaches a certainty:

lim
k→∞

qk = 1.

Proof. Let k > 0. If player A moves first, he can force a win in the entire game
tree if and only if he can force a win in one of the two principal subtrees; this
occurs with probability 2ak−1 − a2

k−1. However, if player B or C moves first, in
order to force a win A needs a forced win in both principal subtrees; this occurs
with probability a2

k−1. Thus, the a priori probability of A forcing a win is

ak = 1
3 (2ak−1 − a2

k−1) + 2
3a

2
k−1 = ak−1(2

3 + 1
3ak−1).

However, by symmetry, ak = bk = ck. Thus ak ≤ 1
3 . Hence 2

3 + 1
3ak−1 ≤ 7

9 , so

ak ≤ 7
9ak−1 ≤ 1

3 (7
9 )k,

which tends exponentially to zero. Thus qk rapidly converges to one. �
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6.2. Win Types. In general, consider a large random n-player binary game
tree G, and choose a subset C ⊆ V of k players, with k < 1

2n. What is the
probability p that C is a winning coalition?

There are two cases: either a member of C must move (probability x = k/n),
in which case C loses with probability (1 − pk−1)2, or else a member of V \ C
must move, in which case C wins with probability p2

k−1. Thus

pk = x(2pk−1 − p2
k−1)

2 + (1− x)p2
k−1 = pk−1(2x+ pk−1(1− 2x)).

Now, pk−1 ≤ 1
2 by symmetry, for V \ C must have at least as great a chance of

winning as C does. Thus (2x+ pk−1(1− 2x)) ≤ 2x < 1. Therefore,

pk ≤ 2xpk−1 ≤ 1
2 (2x)k.

Thus the probability of a win rapidly approaches zero for all minority coalitions.
The probability approaches one for all majority coalitions. By symmetry, the
probability is one-half for all (1

2n)-player coalitions.
We thus deduce the following theorem.

Theorem 6.2. Let M be a maximal intersecting family of subsets of V =
{1, 2, . . . , 2n+1}. Let Tk be a random (2n+1)-player game tree of depth k. The
limit win type probability , limk=∞ P (M = F(Tk)), is one if

M = {A ⊆ V : |A| > n}

and zero otherwise. �

Thus, the maximal intersecting family corresponding to a typical large combi-
natorial game with an odd number of players is a “democracy.” Its winning
coalitions are exactly the majority coalitions. Thus, of the 81 different five-
player win types, and of the 1,422,564 seven-player win types [Loeb 1992] only
the “democracy” is likely to occur as a large random game.

In the case of an even number of players 2n, all winning coalitions are likely
to contain at least n players. For example, of the twelve four-player win types
listed on Table 1, the forced wins (win types 1–4) have probability zero, and of
the 229,809,982,112 eight-player win-types, at most 235 = 34, 359, 738, 368 may
have non-zero probability. In order to compute the probabilities of the remaining

2
1
2

(
2n
n

)

possible win types additional calculations are necessary.
For example, consider n = 4. Let p be the probability of win types 5–8, and

q that for types 9–12. We consider the 64 possible pairs of win types that might
arise for a player to choose from as left subtree and right subtree in a game, and
determine the win type of the complete game tree. The resulting table leads to
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the system of equations

p = 10p2 + 12pq + 6q2,

q = 6p2 + 20pq + 10q2,

from which we deduce the win type probabilities

p = 1
2 − 1

8

√
10 ∼ 10.47%,

q = 1
2 + 1

8

√
10 ∼ 14.53%.

For six players, 1024 of the 2646 maximal intersecting families may have
nonzero probabilities of occurring as the win type of a random game. Analysis
of the 1,048,576 possible combinations of these games is still tractable. The
result would be a system of thirteen quadratic equations in thirteen variables
(once symmetries are taken into account, there are thirty classes of maximal
intersecting families of subsets of a six-element set, seventeen of which involve
at least one winning minority coalition, and thus have probability zero). This
system of equations could be solved numerically, although probably not formally.

For n = 2k ≥ 8, the calculation of win type probabilities is intractable, with
over three million simultaneous quadratic equations to be solved.

The exact values of these probabilities should not be taken too seriously, since
they are influenced by small changes in the model (such as using complete trinary
tree instead of binary trees). In particular, this probabilistic model should not
be used to study any particular game (such as nim).

6.3. Stable Types. The probability of a large random three-player game hav-
ing a certain stable type was calculated as follows. The forced wins have prob-
ability zero and can be ignored. We consider the remaining 7× 7 = 49 possible
pairs of stable types (G1, G2) that might arise for a player to choose from a
left subtree and right subtree in a game, and determine the stable type of the
complete game. Identifying the probabilities of certain of the remaining seven
stable types, the resulting table leads to the system

x = 7
3x

2 + 8
3xy + 4

3xz,

y = 2
3x

2 + 10
3 xy + 7

3y
2 + 2

3yz,

z = 2x2 + 2xz + 4yz + z2,

from which we deduce the probabilities x = 3
23 , y = 2

23 , and z = 8
23 . Thus, with

probability z = 8
23 , the game will be symmetrical, and all three pairs of players

will be able to form stable coalitions.
Four-player games can be divided into 79 stable types. Up to permutation of

players, there are thirteen stable classes. Only five stable classes (25 stable types)
have non-zero probability, which we can approximate numerically (Table 7).

Note that for twelve of the 79 stable types of four-player games, all winning
coalitions are stable: F(P ) = St(P ). However, unlike the case of three-player
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representative types type class F(P ) = nim
class St(P ) in class prob. prob. St(P )? example

AB AC BC 4 0.0485% 0.194% yes 2+2+2+2+2+1
AB AC BCD 12 1.1818% 14.182% no 6+6+1+1

AB ACD BCD 6 7.1996% 43.197% no 6+6+1
ABC AD BD CD 4 0.4326% 1.731% yes none known

ABC ABD ACD BCD 1 40.595% 40.595% no 7+6

Table 7. The five “common” four-player stable classes, with examples from nim.

games, these stable types have relatively low probabilities (less than 2% in total)
of occurring as the stable type of a large random game.

Numerical approximation of the 2644 five-player stable type probabilities is
probably feasible. However, even that seems impractical for the 1,422,562 six-
player stable type probabilities.
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