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Eyespace Values in Go
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Abstract. Most of the application of combinatorial game theory to Go
has been focussed on late endgame situations and scoring. However, it
is also possible to apply it to any other aspect of the game that involves
counting. In particular, life-and-death situations often involve counting
eyes. Assuming all surrounding groups are alive, a group that has two or
more eyes is alive, and a group that has one eye or less is dead.

This naturally raises the question of which game-theoretical values can
occur for an eyemaking game. We define games that provide a theoretical
framework in which this question can be asked precisely, and then give the
known results to date. For the single-group case, eyespace values include 0,
1, 2,
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new discoveries, even though they occur frequently in actual games.
For a battle between two or more opposed groups, the theory gets more

complicated.

1. Go

1.1. Rules of Go. Go is played on a square grid with Black and White stones.
The players alternate turns placing a stone on an unoccupied intersection. Once
placed, a stone does not move, although it may sometimes be captured and
removed from the board.

Stones of the same color that are adjacent along lines of the grid are considered
to be connected into a single indivisible unit. For example, if one takes the
subgraph of the board grid whose vertices are the intersections with Black stones
and whose edges are the grid lines that connect two such vertices, the Black units
are the connected components of that subgraph. (There is little terminological
consistency in the English-language literature; a unit has also variously been
called a chain [Remus 1963; Zobrist 1969; Harker 1987; Kraszek 1988], a string
[Hsu and Liu 1989; Berlekamp and Wolfe 1994], a group [Thorp and Walden
1964; 1972; Fotland 1986; Becker 1987], a connected group [Millen 1981], a block
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[Kierulf et al. 1989; Kierulf 1990; Chen 1990], or an army [Good 1962]. This is
unfortunate because the terms chain, group and army are frequently used for
completely different concepts.)

An empty intersection adjacent to one or more stones of a unit along a grid
line is said to be a liberty for that unit. When a player’s move reduces a unit to
zero liberties, that unit is captured, and its stones are removed from the board;
the intersections formerly occupied by them revert to being empty. A player
may play on any empty intersection, except that the move may not recreate a
position that existed at the end of any earlier move (the generalized ko rule), and
(in some rules) may not end up part of a unit with no liberties (the no suicide
rule). Note that capture of enemy stones happens before one’s own liberties are
counted, and any capture creates at least one liberty, so that any move that
captures is guaranteed not to be a suicide.

For a more detailed discussion of the rules of Go, their variants, and the
mathematical formalization thereof, see appendices A and B of [Berlekamp and
Wolfe 1994]. There have also been earlier attempts to formalize the rules of Go,
including [Thorp and Walden 1964; 1972; Zobrist 1969; Ing 1991].

1.2. Fundamentals of life and death in Go. Single-point eyes. When a
unit (or a set of units of the same color) completely surrounds a single empty
intersection, we call that intersection a single-point eye. One of the most fun-
damental “theorems” of Go is that it is possible for sets of units to become
uncapturable even against an arbitrarily large number of consecutive moves by
the opponent. Consider a single Black unit that surrounds two or more single-
point eyes (Figure 1, left); even if White removes all other liberties first, it is still
illegal by the suicide rule for White to play in either single-point eye. Thus the
unit is unconditionally alive, with no further need for Black to play to defend it.

Figure 1. Left: A unit with two single-point eyes cannot be captured. Right:

Units may share eyes to make life.

1.3. Static life and topological life. More generally, a set of units can achieve
life through shared eyes. We introduce some definitions. A group is a set of units
of the same color. A group is said to be alive if no unit of the group can be
captured given optimal defense, even if the opponent moves first. (This definition
is more vague and flawed than it might seem at first: to give just one example, it
is possible for two disjoint groups to both be alive by this definition, and yet have
it be the case that the opponent has a move that threatens both simultaneously
so that only one of the two can be saved.) A group is said to be statically alive
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Figure 2. This Black group has one real eye and one false eye, and is dead.

if the opponent cannot capture any unit of the set even given an arbitrarily
large number of consecutive moves. Most alive groups are alive because they can
achieve static life, although other possibilities (such as seki) exist. A group is
said to be topologically alive if (1) the units of the group completely surround two
or more single-point eyes, and (2) each unit of the group is adjacent to at least
two of those eyes. It is straightforward to prove that topologically alive implies
statically alive: each unit of the set has at least two liberties from the eyes alone,
so an opponent move into any of the eyes captures no units, hence would form
a unit with no liberties that dies immediately (such a move is forbidden by the
no suicide rule if it applies). The opposite is not true, since a group may be
statically alive even if one or more of its eyes are not single-point. However, it
appears to be the case (although I will not attempt to prove it here) that any
statically alive group can be made into a topologically alive one, and also that
any topologically alive group can be made into one with only two eyes. This
is the basis for the traditional beginner’s guideline that “you need two eyes to
live”.

For an alternate formulation of life and death fundamentals, which goes be-
yond that presented here, see [Benson 1976; 1980; Müller 1995, pp. 61–65].

1.4. False eyes. When condition (2) of topological life is violated, the units
adjacent to only one eye may be subject to capture (which would destroy the
eye) unless they are connected to the group by filling in the eye (which, since
the eye is single-point, also destroys it). Such an eye is called a false eye in the
Go literature, since it does not contribute to life (Figure 2).

The traditional criterion for determining whether an eye is false is local in
nature: In addition to occupying all the intersections adjacent to the eye, one
must also control enough of the diagonal points (one if the eye is in a corner,
two if on an edge, and three if in the middle of the board). Thus the following
eyes are all considered false:

This criterion is sometimes inaccurate, since a locally “false” eye may be
globally real if the topology of the group includes a loop that contains the eye.
This leads to the apparent paradox of “living with two false eyes”, which is really
not a paradox at all since it clearly falls within the definition of topological life



230 HOWARD A. LANDMAN

given above. The following Black group is alive even though both its eyes are
locally false:

Situations like this are extremely rare, but not unknown, in actual play.
Nakayama [1989] comments on one occurrence in a game between Hotta Seiji
4-dan (White) and Nakano Hironari 5-dan (Black) on November 3, 1988. There
was also a group that lived with one real and one false eye in a game between
Shinohara 9-dan and Ishigure 8-dan some twenty years earlier [Haruyama 1979].

1.5. Eyespaces. An eyespace for a group X is a set E of connected intersections
such that there exists a sequence of moves that results in at least one intersection
of E being an eye of a group X ′, and the stones of X ′ include all the stones of X .
It sometimes occurs that a group has the potential to make eyes in more than one
area, and that moves made in one of these eyespaces do not affect which moves
are legal in the other ones. In this case we say that the eyespaces are independent.
When this happens, the normal theory of sums of games (described in the next
section) applies; we can evaluate each area separately, then just add up the
results.

To get an approximate measure of the frequency with which multiple separate
eyespaces occur in real situations, I examined all the problems in Maeda’s tsume-
go series [Maeda 1965a; 1965b; 1965c]. This set of books presents 585 life-
and-death problems, ranging from elementary to advanced. Sixty-one of them
(10.4%) seem to have two independent eyespaces. There are also several problems
whose key is that two eyespaces that naively appear to be independent in fact
have a subtle interaction that can be exploited (see for example [Maeda 1965b,
problems 88, 127, and 163]), and at least one [Maeda 1965b, problem 67] where
the key is to make two captures simultaneously so that the opponent can only
play in one of the resulting independent eyespaces.

Determining independence can sometimes be quite difficult. However, if we
are unable to prove that two eyespaces are independent, we can just lump them
together and treat them as a single eyespace. Also, if we merely want to construct
an example of a group with multiple independent eyespaces, it is simple to do so
by putting solid walls of stones between them. Thus the occasional difficulty of
establishing independence does not present a serious impediment to developing
a theory of eyespace values.



EYESPACE VALUES IN GO 231

1.6. Conventions for eyespace diagrams. As in [Berlekamp and Wolfe
1994], we draw diagrams with the convention that White stones cut by the
diagram boundary are assumed to be immortal, that is, safely connected to a
White group with two or more eyes in such a way that no set of moves within
the diagram itself can have any effect on their safety. Unlike [Berlekamp and
Wolfe 1994], however, Black stones cut by the boundary are not considered to
be immortal, but only to be connected out to the remainder of the Black group
(which may have other eyespaces) with sufficient liberties that their liberty count
does not affect the analysis within the diagram. This condition on liberties is
necessary, as can be seen in this example:

As long as the Black unit has at least one liberty outside of the diagram, it is
worth one eye for Black; White has no legal move. However, if we maliciously
assume that no such liberty exists, then White can capture the Black unit by
playing on the empty intersection.

Thus, all the eyespace diagrams should be interpreted as follows: The Black
stones cut by the boundary are part of a “backbone” unit that solidly connects
all the eyespaces of the group, and that also has enough external liberties that
the local analysis need not worry about it being captured.

Normally the backbone will only connect to the diagram at one point. When
multiple separate Black units are cut by the boundary, we need to know whether
loops exist containing the eyespace (i.e., which of the units is connected to the
backbone), and thus whether any eyes that are locally false are also globally
false. We assume that all Black units that are contiguous along the cut-line
are connected, and only those separated by intervening White stones (as in the
false-eye diagrams on page 229) are not.

2. Modeling Life and Death Problems

2.1. The phases of a life and death battle. From a Go player’s perspective,
life-and-death battles proceed through two or three distinct phases:

• A hot eye-making phase, where Black and White each attempt to make eyes
for themselves, and to destroy the other player’s eyes. This continues until
each group either has at least two eyes (so it lives), or has at most one eye (so
it dies), or rarely the situation becomes played out in some other way (seki,
bent-four, mannen ko, and so on).

• If both sides live, then comes a warm point-making phase in which the re-
maining points between the Black and White groups are decided. This phase
may include some moves that threaten a group’s life, but they will almost
always be answered.
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• A cool phase (what [Berlekamp and Wolfe 1994, p. 124] calls an encore), in
which neither player’s moves are worth much. In Japanese rules this phase is
not even played; in Chinese rules it is part of the final filling in of territory
and capturing of dead stones.

Since the difference between a group living and dying is usually large (locally
at least fourteen points, and often much more), the first phase can be very hot.
Given the current state of game theory, it is difficult (and not very enlightening)
to try to analyze a life-and-death battle in terms of points. Our intuition is that
the first phase above, the eye-making phase, is the most important. Further,
optimal play in an eyespace usually does not depend on the number of points
at stake if the group lives or dies. It seems worthwhile to develop a theoretical
framework in which only the number of eyes made matters.

2.2. Tsume-go and Bargo. The study of life-and-death problems in Go is
called, in Japanese, tsume-go; but the term has no direct connotation of life or
death. It derives from the transitive verb tsumeru, whose main meaning is to
stuff, fill, pack, or plug up, and that can also mean to checkmate or to hold one’s
breath. The sense is that life-and-death problems occur when a group becomes
closely surrounded and can no longer run away to safety.

When a Black group is surrounded by White groups that are already alive,
and is thus isolated from other Black groups, it must make life on its own. Such
a Black group will usually die unless it can make at least two eyes. Although for
the purposes of life-and-death we do not care whether Black makes more than
two eyes, it is natural to first study the games that may occur without worrying
about that limit. To model this, we define the game Bargo, which has the same
rules as Go except for scoring; in Bargo, the final score is the number of distinct
Black eyes. It doesn’t seem to matter much whether we count any kind of eye
or only single-point eyes, since any eye should be convertible to a single-point
one. The reader demanding mathematical rigor can assume we are counting
single-point eyes as defined above.

2.3. Ignoring Infinitesimals. Cooling, chilling, and warming. The
E Operator. This paper presumes that the reader is familiar with the theory
of two-person, zero-sum, perfect-information games developed in [Milnor 1953;
Hanner 1959; Conway 1976; Berlekamp et al. 1982; Yedwab 1985; Berlekamp
1988; Berlekamp and Wolfe 1994]. In this theory, every move matters, and games
are played out until one player has no moves (and thus loses). When considering
the eyes of a group, however, we are normally uninterested in whether or not
there are moves remaining after the number of eyes has been decided. This leads
to some theoretical difficulties: the standard theory treats {1 |0} as different from
{1 |∗} or {1∗|0}, but for our purposes here they are identical.

Roughly, this difference corresponds to the question of allowing or disallowing
passes. If passing is allowed, it is impossible to not have a legal move. The precise
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{1|∗} {1|0}

1 ∗ 1 0

Figure 3. Each of these positions chills to {0|1} = 1
2
.

Go endgame theory requires either forbidding passes, or charging one point for
them [Berlekamp and Wolfe 1994, Appendices A and B]. By doing neither, we
lose some rigor and exactness. It is not even clear (yet) who “wins” Bargo, since
we can no longer define winning as getting the last move.

One approach to this dilemma is to define equivalence classes of games modulo
small [Conway 1976, p. 100–101] or infinitesimal games. That is, two games are
in the same equivalence class if their difference is infinitesimal. We define 〈G〉
to be the class of games H such that G − H is infinitesimal. Most standard
operations on games have natural mappings into operations on these classes;
〈G〉 + 〈H〉 = 〈G + H〉, µ(〈G〉) = µ(G), etc.

Cooling [Conway 1976, p. 103] by any amount greater than zero eliminates
these infinitesimal differences. Cooling by 1, or chilling, has an important place
in both the endgame theory and here. It is easy to find eye-making games that
differ only slightly, and chill to the same game: see Figure 3.

Warming is the approximate inverse of chilling. Both games in Figure 3
are infinitesimally close to

∫
1
2 , where

∫
represents the warming operator of

mathematical Go endgame theory [Berlekamp and Wolfe 1994, p. 52 ff.]. We
can encompass all such games by defining a one-to-many warming G 7→ 〈∫

G
〉
,

and gain further notational convenience by defining a postfix operator E with
dimension of “eyes” such that GE =

〈∫
G
〉

eyes. Since
∫

is linear, so is E. As
in the endgame theory, integers are unchanged by warming, so that if n is an
integer, nE =

〈∫
n
〉

eyes = 〈n〉 eyes = n-ish eyes. The “ish” suffix can be read as
“infinitesimally shifted”; for the purposes of this paper it means “plus or minus
an infinitesimal”. 〈G〉 is just the set of all games that are G-ish.

2.4. “Half eye”. The situation of Figure 3, where a potential eye can be made
by Black (in gote) or permanently destroyed by White (also in gote), is fairly
common. This is sometimes called a “half eye” [Davies 1975, p. 71]. In what
sense is it really one-half?
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If we write this game with the number of Black eyes as the score, it is {1 |0}-
ish. A little analysis shows that the sum of two copies of the game always results
in exactly one eye, no matter who moves first, as long as the opponent responds.
If Black moves first, he makes one eye and White eliminates the other; if White
moves first, she eliminates one eye and Black makes the other. This is equivalent
to saying that {1 |0}+{1 |0} = 1. From this it follows that µ({1 |0}) = 1

2 , because

2µ({1 |0}) = µ({1 |0})+µ({1 |0}) = µ({1 |0}+{1 |0}) = µ(1) = 1.

So the mean value of the game is one-half eye. But, more powerfully, we can
observe that {1 |0} chilled is {0 |1} = 1

2 , and that
〈∫

1
2

〉
= 〈{1 |0}〉. So we can

write the game as simply 1
2E (pronounced “one-half eye”). The power of this

notation is great; instead of the detailed case analysis above, it is enough to note
that

1
2E + E = ( + )E = E = ish eye.

This simple formulaic reduction constitutes a rigorous proof that “half an eye
plus half an eye equals one eye”.

2.5. An eye and a half. Another game that appears fairly frequently is {2 |1}
eyes, which can be written 1 1

2E. The simplest example of this is a three-point
eyespace:

2 1

Most Go books refer to this kind of eyespace with terms such as “unsettled
shape” [Davies 1975], or merely note that it is “intermediate” between life and
death [Segoe 1960]. Such wording is unacceptably vague; as we shall see, there are
several different values of eyespaces that could be covered by those descriptions.
In addition, a group with an “unsettled” eyespace may in fact be quite settled if
it has another eyespace worth half an eye or more. That is, “unsettled” is really
best applied to an entire group, and it does not make much sense to apply it to
a single eyespace of a group with multiple eyespaces.

Since games can be translated by adding numbers [Conway 1976, p. 112], we
have the equality

{2 |1} = 1+{1 |0},
or, in terms of eyes,

1 1
2E = eye + E.
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In Go terms, this means that an “eye and a half” situation like that shown above
is exactly equivalent (in terms of eyes made) to a single secure eye plus an eye
in gote:

2 1

2.6. Larger “unsettled” shapes. Restriction to two eyes. Bargo[0,2].
Collapsing. When we analyze larger “unsettled” shapes in Bargo, we frequently
find games that have one or more integer endpoints of greater than two eyes.
For example, the common four- and five-point nakade shapes

have Bargo values of {3 |1}-ish eyes and {{3 |2}|1}-ish eyes, respectively. These
values can be written 2∗E and 1 3

4E. However, for living, there is no value to ad-
ditional eyes beyond two. To model this effectively, we need to restrict Bargo so
that more than two eyes don’t count. Since Bargo is also restricted by definition
to nonnegative eyes, I call this restricted game Bargo[0,2].

To calculate game values in Bargo[0,2], we first analyze the game as in Bargo
(simplifying to canonical form with number-ish stopping points), then restrict the
game by changing all stopping points that are greater than 2 to 2 (resimplifying
if necessary). This process of restriction I call collapsing. We write the game
that G collapses into as c(G). Formally:

(i) c(G) = 2 if G ≥ 2, else
(ii) c(G) = G if G is number-ish, else
(iii) c({GB |GW }) = c{c(GB)|c(GW )} if c(GB) 6= GB or c(GW ) 6= GW , else
(iv) c(G) = G.

Using the above shapes as examples, we see that {3 |1} collapses to {2 |1}, and
{{3 |2}|1} collapses to {{2 |2}|1} = {2∗|1}. Generalizing collapsing to apply
to the equivalence classes of games defined earlier, we can write c(2∗E) = E,
and also c(1 3

4E) = E. So in Bargo[0,2], because of the restriction to two eyes,
both these shapes have the same eye value as a three-point eye, although the
larger eyeshapes (“big eyes”) are worth more liberties. This is in good accord
with the way Go players view these shapes. Another way of looking at this is



236 HOWARD A. LANDMAN

that collapsing induces an equivalence relation ∼, where G ∼ H if and only if
c(G) = c(H); we can say 2∗E ∼ E ∼ E. In each equivalence class, there is a
unique element G for which c(G) = G; we say such a G is already collapsed. G

is the natural representative of the class, since c(H) = G for all H in the class.
Since a collapsed game has no endpoints greater than two, collapsing it again

has no effect, which is to say that collapsing is idempotent: c(c(G)) = c(G). For
the games occurring in Bargo, which have all nonnegative endpoints, it also has
the property that

c(G + H) = c(c(G) + c(H)).

But it is not always the case that c(G + H) = c(G) + c(H), since c(G) + c(H)
may have endpoints greater than 2.

2.7. Semigroup structure. Collapsed addition. Complement. The set
Ug[0, ] of games for which all integer-ish endpoints are ≥ 0 is closed under ad-
dition, and forms a partially ordered regular abelian semigroup with identity 0.
It is different from the set Ug+ of all games that are nonnegative; neither is a
proper subset of the other, since ↓ is in Ug[0, ] but not Ug+, while

∫
1
4 is in Ug+

but not Ug[0, ]. The structure of Ug[0, ] appears interesting but is beyond the
scope of this paper. The games in Bargo are a proper subset of those in Ug[0, ].

The set Ug[0,2] of games for which all integer endpoints are 0, 1, or 2 is
not closed under normal addition, but is closed under collapsed addition ⊕, de-
fined by G ⊕ H = c(G + H). With this operation, Ug[0,2] and Bargo[0,2] each
form a partially ordered abelian semigroup with identity 0. Since the games in
Bargo[0,2] are a subset of Ug[0,2], ⊕ seems to be the natural addition operation
for Bargo[0,2]. The clipping of values to be ≥ 0 is symmetric with the clipping of
values to be ≤ 2, so Ug[0,2] has a reflective symmetry about 1, that is, the map-
ping f(x) = 2− x is a self-inverse isomorphism for Ug[0,2]. For each (collapsed)
G, there is a unique H such that H = f(G), G = f(H), and G + H = 2. We
call H the complement of G. Even though neither semigroup can have inverses
(negatives) for elements other than 0, the complement acts like an inverse in
some ways. In fact, by subtracting 1, we can map from complements in Ug[0,2]

to inverses in Ug[−1,1], which is an abelian group (under its own, appropriately
clipped, addition).

It is not clear whether Bargo[0,2] has the same reflective symmetry as Ug[0,2],
since we have no proof that if G is a possible eyespace value in Go, then 2− G

is also. There may exist elements in Bargo[0,2] that do not have complements in
Bargo[0,2]. The value of “seki” (see next section) is possibly such an element.

3. Examples of Single-Group Values

This section gives examples of most of the known eyespace values for finite
games in Bargo[0,2], as well as of some values for simple loopy games. For each
value, one has been worked out in detail, and the others are left as exercises.
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3.1. 1
2E. In each of the examples in Figure 4, Black moving first can make one

secure eye, and White moving first can eliminate Black’s eye potential. Some of
the examples are simple; in others it is more difficult to see how Black or White
should play.

1 0

[M1, #7] [K3, #216]

[M1, #46] [M1, #94]

[M1, #37]

[M1, #77] [K3, #220] [M2, #114] [M2, #171]

[M2, #82] [K3, #172] [M3, #113]

Figure 4. In each example, black moving first can go to a position of value 1, and

white moving first can go to 0. We have {1|0} =
R {0|1} =

R
1
2
. The labeled

examples are taken from the Go literature; thus [M1, #37] means Problem 37

in [M1] (also called [Maeda 1965a]).

3.2. 1 1
2E. We saw a few examples of 1 1

2E earlier. Many of the classical unsettled
eyeshapes have this value, including all of the three- to six-point nakade shapes
[Davies 1975, pp. 13–14, 22–27; Berlekamp and Wolfe 1994, p. 156], and “seven on
the second line” [Segoe 1960, p. 10; Davies 1975, pp. 18–19]. It occurs frequently
in the small closed and open corridors whose values are given later, and can also
be constructed as the sum of two smaller eyespaces. See Figure 5.
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12

[Davies 1975, p. 23] [Davies 1975, p. 27]

[M2, #1] [M2, #16] [M2, #82]

Figure 5. {2|1} =
R {1|2} =

R
1 1

2
.

02 adapted from [Miyazawa 1982, #5]

[M1, #2]

[K3, #197] [K3, #150] [M1, #82]

Figure 6. {2|0} =
R {1|1} =

R
1∗.
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3.3. 1∗E. Both 1
2E and 1 1

2E were simple gote games, what Yedwab [1985] calls
switches. The largest possible switch is between two eyes and no eyes, and is
written 1∗E. See Figure 6.

3.4. 3
4E. When Black can make 1 1

2E in one move, it is better than only being
able to make one eye in gote (1

2E), and worse than being able to make two eyes
in gote (1∗E). This game is 3

4E. In each of the examples, it is not enough for
Black to guarantee one eye with his first move; he must also create an additional
half eye. See Figure 7.

0

2 1

[Davies 1975, p. 156]

[M1, #44] [Segoe and Go 1971, t.o.c.]

[Segoe and Go 1971, t.o.c.]

[M1, #156]

[K3, #294]

[K3, #397]

[K4, #190]

[K3, #173]

[M1, #37] [K3, #241]

Figure 7. {{2|1}|0} =
R

3
4
. Here and in following figures t.o.c. stands for

“table of contents”.
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3.5. 1 1
4E. The complement of 3

4E is 1 1
4E. In this situation, Black can make two

eyes in one move, but White can reduce him to only 1
2E. See Figure 8.

2

1 0

[M2, #25] [K3, #222]

[M1, #159]

[K3, #196] [K3, #251] [K3, #194]

[K3, #59] [K3, #195] [Segoe and Go 1971, t.o.c.]

Figure 8. {2|{1|0}} =
R

1 1
4
.

3.6. Values of finite games in Bargo[0,2]. Restricting the number-ish end-
points of games to be one of 0, 1, or 2 is a fairly severe condition that (modulo
infinitesimals) leaves only a few finite games with positive temperature, and a
large class of infinite games of which only a fraction appear to be relevant to Go.
The set of values we have seen so far form a sub-semigroup of Bargo[0,2]. Table 1
shows the result of collapsed addition for these elements.

Early printings of [Berlekamp and Wolfe 1994] erroneously say on page 108
that 1 +

∫
3
4 =

∫
1 1

4 ; but
∫

1 3
4 actually collapses to

∫
1 1

2 .
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0
∫

1
2

∫
3
4

∫
1∗ 1

∫
1 1

4

∫
1 1

2 2

0 0
∫

1
2

∫
3
4

∫
1∗ 1

∫
1 1

4

∫
1 1

2 2
∫

1
2

∫
1
2 1

∫
1 1

4

∫
1 1

4

∫
1 1

2

∫
1 1

2 2 2
∫

3
4

∫
3
4

∫
1 1

4

∫
1 1

2

∫
1 1

2

∫
1 1

2 2 2 2
∫

1∗ ∫
1∗ ∫

1 1
4

∫
1 1

2 2
∫

1 1
2 2 2 2

1 1
∫

1 1
2

∫
1 1

2

∫
1 1

2 2 2 2 2
∫

1 1
4

∫
1 1

4

∫
1 1

2 2 2 2 2 2 2
∫

1 1
2

∫
1 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

Table 1. Collapsed addition of values in Bargo[0,2].

Note that Table 1 is taking some (infinitesimal) liberties with game arithmetic.
For example,

∫
1
2 +

∫
3
4 = {1 |0}+{{2 |1}|0} =

{
2 |1,

∫
1
2

}
, whereas we call it∫

1 1
4 =

{
2 | ∫ 1

2

}
. In normal game arithmetic, the move to 1 is not dominated by

the move to
∫

1
2 , because in some circumstances 1 is infinitesimally better (for

White) than
∫

1
2 . However, giving Black a sure eye (value 1) is always at least as

bad for White as giving Black a chance to make an eye in gote
(∫

1
2

)
. Ignoring

the infinitesimals left after the number of eyes is decided makes some moves
effectively dominated that would not otherwise be so. We can justify this sort of
reduction by considering the same game cooled by a tiny amount d > 0. Then it
is clear that 1 is always worse for White than {1−d|0+d}, no matter how small
we make d, and regardless of any infinitesimal modifications to either game. So
our method of simplifying game G can be viewed as mapping G 7→ G0+, the
limit of Gδ (G cooled by δ) as δ approaches zero. This is equivalent to taking
the thermal dissociation of G [Berlekamp et al. 1982, p. 164] and discarding the
term of temperature zero, which contains all the infinitesimals.

Wolfe [Berlekamp and Wolfe 1994, p. 107] states that the only (unchilled)
numbers that can occur are 0, 1, and 2, and that therefore the only chilled
values that can occur in this context are 0, 1

2 , 3
4 , 1∗, 1, 1 1

4 , 1 1
2 , and 2. The next

section, however, shows that this need not be the case.

3.7. Seki as an eyespace value. Sometimes an eyespace can be partly filled
with enemy stones in such a way that neither player wants to play next, in one
form of the situation known as seki :

S

If Black tries to capture the White stones, he is left with only one eye; on the
other hand, if White moves inside this eyeshape, Black can capture and gets 2
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eyes. Formally this gives a simple seki-eye like this the value S = {1 |2} = 1 1
2 .

This is a number, not a hot game, and neither player wants to move first in it.
Thus an eyeshape of value S is enough to prevent Black from being killed by
White, even if Black has no other eyes or liberties.

Under some circumstances, living in seki may be almost as good as living with
two eyes. We could construct a consistent theory in which seki is arbitrarily
assigned the value 2, which would model this. That theory would then only have
the finite eyespace values found in the previous section. However, there seems
to be no reason (other than simplicity) to rob ourselves of the extra resolving
power of treating living in seki as different from living with two eyes.

Once we allow S as a value, there are also games where one of the number-ish
endpoints is S. They have values such as the following:

2 |S S |1 S
∣
∣ ∫ 1

2

We have not determined the complete set of seki-related values, but it in-
cludes at least S, 2 |S, S |1, S | ∫ 1

2 , S |0, 2 |S || ∫ 1
2 , 2 ||S |1, 2 ||S | ∫ 1

2 , 2 ||S |0, and{
2 | ∫ 3

4 , {S |0}}.

3.8. Ko, (1 − Ko), (1 + Ko), (2 − Ko). The cyclical situation known as ko
gives rise to a number of loopy games. If we denote as Ko the value in a simple
ko fight over 1 eye, where Black can take the ko and White can win the ko, the
position after Black takes has value (1−Ko). These values can also be translated
by adding one eye to give (1 + Ko) and (2−Ko).

(1−Ko) Ko

1 0

(1−Ko) Ko

1 0

(2−Ko) (1−Ko)

2 1

Since Ko + Ko + Ko = 1, we also have Ko + Ko = (1 − Ko) and µ(Ko) = 1
3 .

These games can also be viewed as the multiples of Ko: 1·Ko = Ko, 2·Ko =
(1 −Ko), 3·Ko = 1, 4·Ko = (1 + Ko), 5·Ko = (2 −Ko), 6·Ko = 2.
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3.9. Ko2 and (2 − Ko2). It is also possible to have a ko fight over two eyes.
The structure of the game is the same as for the one-point ko, but all the values
are twice as large. Ko2 has temperature and mean value of 2

3 .

(2−Ko2) Ko2

2 0

(2−Ko2) Ko2

2 0

3.10. Other loopy values. There are other loopy values that derive from
simple ko fights. They include:

• two-stage ko, where winning the first stage ko advances Black to a second
stage ko;

• approach move ko or multi-step ko, where one side must ignore ko threats to
fill outside liberties;

• mannen-ko (10,000 year ko).

Examples are given in [Davies 1975, pp. 9–10]. Some loopy games in Go have
periods that are longer than two moves, including:

• chosei or eternal life [Haruyama 1979], with period four. Under current Japan-
ese (Nihon Kiin) rules, if chosei occurs the game is declared “no result” and
must be played over; this has happened once [Nakayama 1989]. Under the
generalized ko rule, chosei plays much like a normal ko: after three moves in
the cycle, the fourth move is forbidden, so one player makes a ko threat. If
the threat is answered, three more moves can be played in the cycle, and then
it is the other player’s turn to make a ko threat.

• rotating ko [Haruyama 1979], a loop of period eight, where either player has
the option at certain positions to convert the game to a seki.

Given the bewildering variety of loopy games in Go hinted at by these last two
examples, we cannot hope to provide an exhaustive categorization of their values,
even for the single-group case. Indeed, Robson has shown that the family of life-
and-death problems involving multiple simple kos is Exptime-complete [Robson
1981; 1982; 1983; 1985].

3.11. Connecting out. Sometimes a group can live, not by creating eyes
within its “own” eyespaces, but by connecting out to another group of the same
color. In most tsume-go problems, it is assumed that such a connection makes
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the group completely alive; this implies that we should treat it as being worth
two eyes. This makes a connection in gote worth 1∗E. A connection may also
be made with another group that has G (less than two) eyes; such a potential
connection in gote is worth {G|0} eyes.

3.12. Limitations of Bargo[0,2] as a model for Go eyespace values. An
eye in sente. We’ve seen that Bargo[0,2] is reasonably successful at modeling
eyespace values in Go. However, it is not perfect. One defect is that, by limiting
the maximum eye score to 2, we eliminate any possibility of a large threat in
the process of making or destroying an eye. In particular, the games “an eye in
sente” and “an eye that can be taken away in sente” have values that are outside
of Ug[0,2]. Perhaps an example will make this clearer:

a

What is the value to the Black group in the corner of Black’s eyespace around
a? Within Bargo[0,2] the answer is 3

4E, since Black can make one eye while
threatening to make another. But making the other eye kills the White group!
In Bargo (without collapsing), killing the White group gets Black at least four
more eyes, so the game is roughly {{5 |1}|0}, which chills to {{3 |1}|1} or 1 plus
miny-2, so the eyespace has a value something like 1 −2 E. The precise value of
this “eye in sente” depends on the size of the external threat; different threats
give different (warmed) infinitesimals. However, all of these games collapse to
3
4E. The difference in external threats is lost.

We can also have an eye that can be taken away in sente, {1 |{0 |−x}. In that
case the pure game-theoretical value is a positive (warmed) infinitesimal that
depends on x. But all of these collapse to 1

2E. Again the difference in threats is
lost.

A serious problem arises when trying to add such values. Given the collapsed
values above, one would expect the sum of an eye in sente and an eye that can
be taken away in sente to be 1

2E+ E = E. But 1 1
4E has Black stop two eyes and

White stop one eye, whereas the actual result depends on which threat is greater.
If White’s threat is greater, the Black stop is only one eye, and the White stop
zero eyes. Thus we see that some vital information can be lost through collapsing
when large external threats are involved.

3.13. Values of open and closed corridors. Figures 9–11 give the Bargo[0,2]

values for all closed corridors of length one to five and all open (at one end)
corridors of length one to six. All of the non-ko-related, non-seki-related values
described previously

(
0,

∫
1
2 ,

∫
3
4 , 1,

∫
1∗, ∫

1 1
4 ,

∫
1 1

2 , 2
)

occur in this context.
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Every closed corridor is worth at least one eye to Black; this makes 0,
∫

1
2 ,∫

3
4 ,

∫
1∗, and

∫
1 1

4 impossible, since they all have a 0-ish endpoint.
If the Black stones surrounding an open corridor are all considered immortal,

then the corridor is what Moews [Moews a] calls a hyper-Black room. In that
case, the eye value of the corridor is irrelevant since the group has two eyes
elsewhere, and the best point-making move for either player is at the mouth
of the corridor (blocking for Black, pushing in for White). However, when the
number of eyes matters, this is no longer so; in some corridors the move at the
mouth is not optimal for either player.

1
1

∫
1 1

2 1

1
∫

1 1
2 2

2 2 2 |S

2 2 2

∫
1 1

2 2 S

∫
1 1

2 2 2

∫
1 1

2 2 2

1 2 2

1 2 |S 2

2 2 2

2 2 2

Figure 9. Eyes in closed corridors of length 1 to 5.
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0

∫
1
2 1

∫
1
2

∫
1
2 1

∫
1
2

1
∫

1 1
2

∫
1 1

2

1
∫

1 1
2

∫
1 1

2

1 1 1

1 1
∫

1 1
4

1
∫

1 1
2 1

∫
1 1

4

∫
1 1

2

∫
1 1

4

∫
1
2 1

∫
1
2

∫
3
4 1

∫
1∗

Figure 10. Eyes in open corridors of length 1 to 5.

2 2
∫

1 1
2

∫
1 1

2

2 2
∫

1 1
2

∫
1 1

2

∫
1 1

2

∫
1 1

2

∫
1 1

2

∫
1 1

4

∫
1 1

2 2
∫

1 1
2

∫
1 1

4

2 |S ∫
1 1

2

∫
1 1

2

∫
1 1

4

2 2 2
∫
1 1

4

∫
1 1

2 S
∣∣ ∫ 1

2

∫
1 1

4

∫
1∗

∫
1 1

2 2
∫

1 1
2

∫
1∗

Figure 11. Eyes in open corridors of length 6.
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4. A Mathematical Definition of Miai

One of the more subtle concepts of Go is miai, from miru (see, look at, observe)
and au (meet, fit, be appropriate for). In non-Go Japanese, miai means “a
marriage interview” or “an exchanging of glances”. Nagahara devotes a chapter
to miai [1972, pp. 3–4], and defines the Go sense of the word: “Miai means ‘seeing
together’. It refers to two points that are related in such a way that if one of
them is occupied by a player, his opponent can handle the situation by taking
the other.” Davies [1975, p. 12] says that “Two points are miai if they represent
two independent ways of accomplishing the same thing, so that if the enemy
deprives you of one of them, you can always fall back on the other of them.”
As long as we view miai in terms of points or intersections, it is hard to apply
game theory to it, for single intersections in general are not usually subgames, let
alone independent ones. However, miai is also frequently applied to independent
subgames, either in the context of scoring points, or in the context of making
eyes. For example, Davies [1975, p. 71] describes a and b in the following position
as miai:

b

a

A little analysis shows that the eyespaces around a and b (call them A and
B) are independent of each other, and that A is 1

2E and B is 1 1
2E. Their sum

is exactly two eyes. If White plays a, Black can live by playing b; and if White
plays b, Black can live at a. Since A + B is a number (in terms of eyes), the
Number Avoidance Theorem [Berlekamp et al. 1982, pp. 144 and 179] tells us
that neither player needs to move in this sum while there are still nonnumber
games to be played. This lack of urgency is characteristic of miai. Nagahara
writes “An important point to notice about miai is that the two moves involved
are often not urgent. That is, they are in a state of equilibrium. . . . it is not
necessary for [Black] to rush to play either ‘a’ or ‘b’ since either point will give
him life.” It thus seems possible to formalize the concept of miai as follows:

Definition. A set of games is miai if none of them are numbers but their sum
is a number.

The proviso that the sum not contain numbers prevents using miai to describe a
single number-valued eyespace, which seems outside the spirit of the Go usage.
In practice, it is possible to extend this definition slightly, and to call sums of
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unchilled games miai if they are infinitesimally close to a number. In that case,
the chilled games will be miai by the above definition, since even a tiny amount
of cooling makes the infinitesimals vanish.

Since any sum of miai is also miai, just knowing that a set of games is miai
doesn’t say much about the relationships among specific games in the set. We
can address this by tightening the definition a bit:

Definition. A set of games is irreducible miai if it is miai and no proper subset
of it is miai.

The irreducible miai in Bargo[0,2] include (but are not limited to):

1
2E + E = 1 eye
1
2E + E = 2 eyes

1
2E + E + E = 2 eyes

3
4E + E = 2 eyes

1∗E + ∗E = 2 eyes

KoE+ KoE + KoE = 1 eye

KoE + (−Ko)E = 1 eye

KoE + (−Ko)E = 2 eyes

(1 + Ko)E + (−Ko)E = 2 eyes

Ko2E + KoE + KoE = 2 eyes

Ko2E + (−Ko)E = 2 eyes

The above only includes miai that are exact without collapsing, and hence
are miai in Bargo as well as Bargo[0,2]. There are others that do not meet this
criterion, such as:

1 1
2E⊕ ∗E = ( ∗E) = eyes.

The sum of any (noninteger) game and its complement is necessarily a miai
for two eyes.

One surprising consequence of the above definitions is that a set of three or
more games may be miai even though no subset of them is! This possibility has
not, to my knowledge, been considered by professional Go players or writers; this
may be because ai is usually used to indicate a relationship between two objects.

Since the temperature of a number is less than the temperature of any non-
number (except for infinitesimals, which we are ignoring anyway), miai involves
a kind of mutual cancellation of temperature. The temperature of the sum is
less than the temperature of any summand. Such cancellation may occur more
weakly than in miai:

Definition. A set of games is partial miai if it is not miai but the sum of the
games has lower temperature than any game in the set.

We can also define irreducible partial miai ; an example is 3
4E+ E = E.
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5. Semeai: Two-group Life and Death

5.1. Semeai. Sometimes life and death problems in Go involve more than a
single group at risk. One common situation is called semeai, defined by Bauer
[Segoe 1960, p. 6] as “a localized situation where only one of the two opposing
groups of stones can live (unless the result is a seki), and therefore each must
try to kill the other without any reference to or connection with other stones on
the board”.

To analyze semeai we must take account of both Black and White eyes, which
will be the motivation for introducing the game Argo below. However, before
proceeding, it is necessary to discuss the manner in which eyes and liberties
affect the outcome of a semeai.

5.2. Semeai where no eyes are possible. Before considering the role of
eyemaking moves in a semeai, it will help to understand the values of semeai
where the eyes have already been decided. The simplest case is one where neither
Black nor White can make any eyes, there are no kos, and all liberties are simple
dame. In this case, life or death is entirely a function of liberty count.

←− Black’s outside liberties

←− Shared liberties

←−White’s outside liberties

If the number of shared liberties is less than two, seki is not possible; either
the Black group or the White group must die. This means that there are no zero
games, and all values are either positive or negative or fuzzy. Whichever group
has the most outside liberties wins, or if the outside liberties are equal then the
player moving first wins. Letting BOL and WOL stand for the number of Black
outside liberties and White outside liberties respectively, we can summarize the
above by saying that the game’s outcome class is the same as that of the game
(BOL−WOL+ ∗). Whether the number of shared liberties is zero or one makes
no difference. If the number of shared liberties is two or more, then seki is
a conceivable result. For Black to capture White, Black must fill all White’s
outside liberties as well as all the shared liberties. Black must also have at least
one outside liberty remaining when he fills the next-to-last shared liberty, else
White will capture him.

Table 2 summarizes this in formulas and in a grid. We can see that the
result space is partitioned into three large cool areas (W, S, and L), with thin
hot boundaries (WS, WL, and SL) between them. Cool cells adjacent to the
boundaries imply that there are ko threats for the side that is one move away
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Black wins if (BOL−WOL) ≥ Shared.
Black wins moving first if (BOL−WOL) ≥ Shared− 1.
White wins if (WOL− BOL) ≥ Shared.
White wins moving first if (WOL− BOL) ≥ Shared− 1.
If neither Black nor White wins, the result is seki.

BOL−WOL
5 4 3 2 1 0 −1 −2 −3 −4 −5

5 W WS S S S S S S S SL L
4 W W WS S S S S S SL L L

Sh
ar

ed
L
ib

er
ti

es

3 W W W WS S S S SL L L L
2 W W W W WS S SL L L L L
1 W W W W W WL L L L L L
0 W W W W W WL L L L L L

Table 2. Semeai outcomes when no eyes are possible. BOL = Black outside

liberties; WOL = White outside liberties; W = Black wins, White loses; S =

Seki; L = Black loses, White wins; WL = {W |L}; WS = {W |S}; SL = {S|L}.

from being able to improve its status. For example, Black filling a White outside
liberty and moving left from an L cell to an SL cell threatens to make a seki;
White must answer (either by filling a Black outside liberty and moving right,
or, if Black has no outside liberties, by filling a shared liberty and moving down)
to return to L status and keep Black dead. The S cell with two shared liberties
and (BOL−WOL) = 0 is unique in that both sides have ko threats.

5.3. Semeai where each side has one eye. When each side in a semeai
has one single-point eye, the situation is similar to that for no eyes. The pair
of opposing eyes behaves somewhat like a single shared liberty. The results are
shown in Table 3.

Note that, for a seki to be possible between two one-eyed groups, they must
also have at least one shared liberty.

BOL−WOL
5 4 3 2 1 0 −1 −2 −3 −4 −5

5 WS S S S S S S S S S SL
4 W WS S S S S S S S SL L

Sh
ar

ed
L
ib

er
ti

es

3 W W WS S S S S S SL L L
2 W W W WS S S S SL L L L
1 W W W W WS S SL L L L L
0 W W W W W WL L L L L L

Table 3. Semeai outcomes when each side has one eye.
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BOL−WOL
5 4 3 2 1 0 −1 −2 −3 −4 −5

5 W W W W W W W W W W W
4 W W W W W W W W W W WL

Sh
ar

ed
L
ib

er
ti

es
3 W W W W W W W W W WL L
2 W W W W W W W W WL L L
1 W W W W W W W WL L L L
0 W W W W W W WL L L L L

Table 4. Semeai outcomes when black has one eye and white has none.

5.4. Semeai with unbalanced eyes. We have already looked at cases with
0 versus 0 eyes and 1 versus 1 eyes. Semeai where one group has two eyes are
not semeai at all; the group with two eyes is alive, and if the other group cannot
make two eyes it is simply dead, regardless of liberty count.

The only remaining possibility with integer eyes is 1 eye versus 0 eyes. As
in all two-group semeai with unequal number of eyes, seki is not possible; one
group or the other must die. For the case where Black has one eye and White
has none, the results are shown in Table 4. The case where White has one eye
and Black has none is symmetric.

To a first approximation, the advantage of one eye converts the “seki region”
in the previous tables into wins for Black. This is so beneficial that one might
be tempted to infer that it is always better to make an eye than to worry about
liberties. In fact there is a Go proverb that states “The semeai where only one
player has an eye is a fight over nothing” [Segoe 1960, p. 76]. However, making
an eye sometimes uses up more than one liberty (one converted to the eye, and
one used up by the play), as well as taking a move (which might otherwise be
used to fill an enemy liberty). In the borderline cases, there are counterexamples
to this generalization.

a

In this example, if Black makes an eye at a White will have enough outside
liberties to kill him. The locally correct line of play is for Black to fill one of
White’s outside liberties, which forces White to play a, and then Black fills the
other outside liberty to leave a seki. If Black had even one more liberty, either
outside or shared, then the locally correct line of play would be to make the eye,
which kills White. Segoe [1960, p. 79] observes: “Even in those cases where one
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player has one eye and the other has none the number of dame available to each
player must be carefully analyzed or the semeai may be lost.”

This interaction between eyes and liberties is awkward, and a full analysis of
it is beyond the scope of the present paper. Such an analysis might also require,
as a prerequisite, a better understanding of the subgames of Go where making
or destroying liberties is the main objective, which seems to be a fairly rich topic
in its own right. However, if the number of shared liberties is sufficiently greater
than the absolute value of BOL − WOL, these complications do not occur. In
order to simplify the analysis in what follows, we will usually assume that the
number of shared liberties is sufficiently large that the outside liberty count can
be ignored, so that whichever side makes the most eyes wins the battle or, if the
eyes made are equal and less than two, both sides live in seki. Table 5 shows the
possible results of a semeai as a function of the number of Black and White eyes,
in the fully general case and after the simplifying assumption has been made.
After this simplification, the result depends only on the difference between the
number of Black eyes and White eyes.

0
White eyes

1 ≥ 2

≥ 2 W W both
live

B
la

ck
ey

es

1 W, L W, S, L L

0 W, S, L W, L L

0
White eyes

1 ≥ 2

≥ 2 W W both
live

B
la

ck
ey

es

1 W* S* L

0 S* L* L

Table 5. Possible results as a function of the number of eyes, under no assump-

tions (left) and under the assumption of enough shared liberties (right). Stars

mark cases that depend on the assumption.

5.5. Modeling Semeai: Argo. When two groups are locked together in a
semeai, the one to make the most eyes usually wins (as we have seen above).
Under appropriately restrictive conditions (neither group can make more than
two eyes, it is not possible for both groups to make two eyes, and there are enough
shared liberties), these struggles can be solved simply by counting eyes, with the
value of each eyespace being a game whose integer endpoints are between −2
and 2. Since both White and Black can make eyes in such a semeai, the natural
score is the number of Black eyes minus the number of White eyes. If this is
≥ 1, Black wins; if it’s ≤ −1, White wins; if it’s 0, both groups are alive in seki;
otherwise, the result depends on who moves first.

To model this we define a Go-like game that I call Argo (after Argus Panoptes,
who had a hundred eyes; the ship Argo which the Argonauts sailed was named
after a different Argus, son of Phrixus and quite human). The rules of Argo are



EYESPACE VALUES IN GO 253

the same as Go, with the exception of scoring: in Argo Black and White each
get one point for every eye they have at the end of the game. That is, we count
each Black eye as +1 and each White eye as −1.

In the case of Bargo (whose name, we can now reveal, stands for Black Argo),
we wanted to restrict all values to have integer endpoints between 0 and 2 inclu-
sive. For Argo, the natural limits are −2 and 2.

Using Argo[−2,2] we can model situations where both Black and White eyes can
be made. All of the values from Bargo[0,2], their negatives, and many additional
values such as 1

4E and ∗E occur. Note that some of the games given above as
examples for Bargo[0,2] have different values in Argo[−2,2], since the White eyes
now count!

However, something seems not quite right. If we represent a result where
Black has b eyes and White has w eyes by the ordered pair (b, w), the central
problem is that there are real differences between (0, 0), (1, 1), and (2, 2) when
it comes to adding them to other games; but, they are all represented in Argo
as the game 0. And (0, 0) + G is always equal to G, but (2, 2) + G is equal to
(2, 2) regardless of G.

The conclusion seems to be that adding negative White eyes to positive Black
eyes is too simplistic; we really need to treat each separately (clipping against
limits of 0 and 2). But that implies that the “integer” endpoints of each game
need to be represented as an ordered pair of integers (x, y), or as a complex
integer x + iy. Accepting that means that we must go outside of the established
theoretical framework and construct a combinatorial game theory of complex-
or (more generally) vector-valued games.

6. Directions for Future Research

6.1. Completely characterizing single-group seki-related values. The
set of seki-related values in Bargo[0,2] is probably finite, and not much larger
than the set of values mentioned earlier. It should be possible to identify all
elements of this set and provide examples of each.

The asymmetry introduced by S as a value could be eliminated if a Go position
was found that had value {0 |1} = 1

2 eyes. I do not know of any examples of
this value. However, there are several known Go positions other than seki that
have the property that neither player wants to move first, such as “three points
without capturing” [Berlekamp and Wolfe 1994, pp. 165–168], so its existence
does not seem impossible.

6.2. Characterizing loopy game values. Even for the single-group case,
there are clearly many loopy games that still need to be identified and their
values characterized. The same holds true for multi-group problems. There
does not appear to be much hope of a general solution for all loopy games in
Go, since already, as mentioned earlier, the family of life-and-death problems
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involving multiple simple kos is Exptime-complete [Robson 1981; 1982; 1983;
1985]. Robson’s construction involves extremely complicated topologies that are
unlikely to occur in real games, however. It may still be possible to understand
the most common kos, which all have simple topologies.

6.3. Counting liberties. Since the number of liberties of a unit or group often
has a critical effect on its survival, we can apply the theory to games in which
making or eliminating liberties is the main goal. Liberties can be gained by
connection, so the study of cut-or-connect problems will be relevant. Unlike eye-
counting, liberty-counting has no built-in upper limit, so we should expect much
hotter games to appear. In fact, making two eyes effectively supplies an infinite
number (on) of liberties, so infinitely-hot games would not be unreasonable.

A firm theory of liberties, plus the vector-valued game theory mentioned ear-
lier, might allow accurate analysis of situations where both eye-count and liberty-
count are critical.

6.4. Ko threats. The existing theory, from [Conway 1976] to the present work,
has the unfortunate effect of simplifying away ko threats. For example, if Black is
topologically alive with two eyes, White has no threats against the Black group,
but if Black is alive with exactly 1 eye+ 1

2E+ E, White has at least one ko threat
against Black (by moving one of the 1

2E subgames to 0). Yet we treat both of
these situations as identical, calling them two eyes.

Getting beyond this limitation would seem to require changes to the very
foundations of the theory, altering the definition of equality and restricting the
simplifications allowed.
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