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Sowing Games
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Abstract. At the Workshop, John Conway and Richard Guy proposed
the class of “sowing games”, loosely based on the ancient African games
Mancala and Wari, as an object of study in combinatorial game theory.
This paper presents an initial investigation into two simple sowing games,
Sowing and Atomic Wari.

1. Introduction

Most well-studied combinatorial games can be classified into a few broad
classes.

Taking and Breaking: Games played with piles of chips, in which the basic
move is to take some chips and/or split some piles. They include Nim, Kayles,
Dawson’s Chess, other octal and hexadecimal games. Higher-dimensional
variants include Maundy Cake, Cutcake, Eatcake, and Chomp.

Cutting and Coloring: Games played on (colored) graphs, in which the
basic move is to cut out a small piece of the graph of the appropriate color,
possibly changing other nearby pieces. They include Hackenbush, Col, Snort,
Domineering, and Dots and Boxes.

Sliding and Jumping: Games played with tokens on a grid-like board, in which
the basic move is to move a token to a nearby spot, possibly by jumping over
opponent’s pieces, which may then be (re)moved. Examples include Ski-
Jumps, Toads and Frogs, Checkers, and Konane.

At the Workshop, John Conway and Richard Guy suggested that studying en-
tirely new classes of games, fundamentally different from all of these, might lead
to a more thorough understanding of combinatorial game theory, and proposed
a class of games loosely based on the African games Mancala and Wari, which
they called “sowing games”. These games are played with a row of pots, each
containing some number of seeds. The basic move consists of taking all the
seeds from one pot and “sowing” them one at a time into succeeding pots. In
this paper, we offer a few introductory results on two simple sowing games.
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Almost all the values given in this paper were derived with the help of David
Wolfe’s games package [Wolfe 1996].

2. Sowing

The first game in this family, simply called Sowing, was invented by John Con-
way. The basic setup is a row of pots, each containing some number of uncolored
seeds. A legal move by Left consists of taking all the seeds out of any pot and
putting them in successive pots to the right, subject to the restriction that the
last seed cannot go into an empty pot. Right’s moves are defined symmetrically.

We represent a Sowing position by a string of boldface digits, where each digit
represents the number of seeds in a pot. For example, from the position 312,
Left’s only legal move is to move the single seed in the second pot into the third
pot, leaving the position 303. Right has two legal moves, to 402 and 420. Thus,
this position can be evaluated as follows.

312 = {303|402,420} = {0 |{|510}, 0} = {0 |{|{|600}}, 0} = {0 |−2}
There is a natural impartial version of this game as well, in which either player

can move in either direction. For example:

312 = {303,402,420} = {0, {510}, 0} = {0, {{600}}, 0} = ∗
Simplifying Positions. There are some obvious ways of simplifying a Sowing
position. First, if the first or last pot is empty, we can just ignore it, since it will
always be empty.

We will call a pot full if the number of seeds is greater than the distance to
either the first or last (nonempty) pot. Since neither player can ever move from
a full pot, the exact number of seeds it contains is unimportant. Unlike empty
pots, however, we can’t simply ignore full pots at the ends, since it is still possible
to end a turn by dropping a seed into a full pot. In this paper, we represent full
pots with the symbol •. Thus, for example, 110451000 = 110451 = 110••1.

Finally, sometimes Sowing positions can be split into independent compo-
nents. For example, we can write 1200021 = 12+21 and 110••1 = 110•+•1.
Unfortunately, while in many cases, it is easy to detect such splits by hand, we
do not know of a general method that always finds a split whenever one is possi-
ble. Clearly, any two positions separated by sufficiently many empty or full pots
should be considered independent, but we don’t know how many “sufficiently
many” is!

The Towers of Hanoi Go to Africa: Sowing is Hard. Suppose we start
with n pots, each with one seed, and we want to move all the seeds into the last
pot. We can use the following algorithm to accomplish this task.

(i) Recursively move to the position (n − 1)0n−21.
(ii) Sow the contents of the first pot, giving the position 1n−22.
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(iii) Recursively move to the position n, by pretending the last pot contains only
one seed.

The reader should immediately recognize the recursive algorithm for solving the
Towers of Hanoi! See p. 753 of Winning Ways. Since this algorithm requires
2n−1 − 1 moves to complete, we conclude that the position 1n has at least
2n−1 − 1 distinct followers. This immediately implies the following theorem.

Theorem 2.1. Evaluating Sowing positions (by recursively evaluating all their
followers) requires exponential time in the worst case.

Despite this result, it is possible that a subexponential algorithm exists for deter-
mining the value of a Sowing position, by exploiting higher-level patterns. But
this seems quite unlikely.

The algorithm we have just described is not the fastest way to get all the
seeds into one pot. Consider the following alternate algorithm, which uses only
polynomially many steps.

• If n = 2m:

(i) Move recursively to m0m−1m.

(ii) Sow the first pot to 1m−1(m + 1).

(iii) Move recursively to (2m).

• If n = 2m + 1:

(i) Move recursively to m10m−1m.

(ii) Move to (m + 1)0mm.

(iii) Sow the first pot to 1m(m + 1).

(iv) Move recursively to (2m + 1).

The number of moves T (n) used by this algorithm obeys the following recurrence:

T (1) = 0,

T (2m) = 3T (m) + 1,

T (2m + 1) = 2T (m) + T (m + 1) + 2.

Asymptotically, T (n) = O(nlog2 3) = O(n1.5850). Restricting our attention to
powers of two, we get the exact expression T (2k) = 1

2 (3k − 1).

Some Sowing Patterns. Very little can be said about the types of values that
Sowing positions can take. The only general pattern we have found so far is that
there are Sowing positions whose values are arbitrary integers and switches with
arbitrarily high temperatures.

Theorem 2.2. (10)m03(01)n = 0 for all m and n.

Proof. If Left goes first, she loses immediately, since she has no legal moves. If
Right goes first, his only legal move is to the position (10)m−1211(01)n, from
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which Left can move to (10)m−10220(01)n, which has value zero since there are
no more legal moves. Thus, the second player always wins. �

Theorem 2.3. (01)m2(01)n = n+1, for all m and n except m = n = 0.

Proof. Right has no legal moves. If n = 0, Left has only one legal move,
to (10)m−103 = 0 by the previous theorem. Otherwise, Left has exactly two
legal moves, to (01)m+12(01)n−1 = n by induction, and to (10)m−13(01)n = 0,
which is a terminal position. �

Theorem 2.4. 11(01)n = {n+1 |0} for all positive n.

Proof. Left has only one move, to 2(01)n = n + 1 by the previous theorem.
Right has only one move, to the terminal position 20(01)n. �

Theorem 2.5. (10)m2(01)n = {n |−m} for all positive m and n.

Proof. Left has only one move, to (10)m012(01)n−1, which, by a slight gen-
eralization of Theorem 3, has value n. Similarly, Right has only one move, to
(10)m−1210(01)n = m. �

We have seen Sowing positions whose values are fractions, ups, tinies, higher-
order switches, and even some larger Nim-heaps, but no other general patterns
are known. Table 1 lists a few interesting values. Values for some “starting”
positions, in which all pots have the same number of seeds, are listed in Table 2.

Even less is known about the impartial version. Table 3 lists the “smallest”
known positions with values 0 through ∗9. Table 4 lists values for some impartial
starting positions.

Open Questions. We close this section with a few open questions. For what
values of n do Sowing positions exist with values 2−n, and if they all exist, can
we systematically construct them? What about n · ↑? +n? ∗n?

Is there a simple algorithm that splits Sowing positions into multiple indepen-
dent components? Are there any other high-level simplification rules that would
allow faster evaluation?

3. Atomic Wari

“Is it . . . atomic?”
“Yes! Very atomic!”

—The 5000 Fingers of Dr. T

The second sowing game we consider, called Atomic Wari, is my invention.
Atomic Wari is loosely based on a different family of African games, variously
called wari or oware. The board is the same as in Sowing, but the moves are
different. A legal move consists of taking all the seeds from one pot, and sowing
them to the left or right, starting with the original pot. As in Sowing, Left moves
seeds to the right; Right moves them to the left. To avoid trivial infinite play,
it is illegal to start a move at a pot that contains only one seed. At the end
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211 = 1
2

12202 = 1
4

122011 = 1
8

2121202 = 1
16

2202 = ↑
31011 = ↑∗

201321 = ↑↑
22011 = ↑↑∗

122112 = ↑↑↑

2121 = 1||∗|−1

41122 = 2|0||−2|−4

�2011 = +1

�013 = +2

�0114 = +3

332011 = +1/2

11 = ∗
31�13 = ∗2

313005 = ↑∗3 = ∗2|0

Table 1. Some interesting partisan Sowing values

of a move, if the last pot in which a seed was dropped contains either two or
three seeds, those seeds are captured, that is, removed from the game. Multiple
captures are possible: after any capture, if the previous pot has two or three
seeds, they are also captured. The game ends when there are no more legal
moves, or equivalently, when no pot contains more than one seed. As usual, the
first player who is unable to move loses.

For example, consider the position 312. Left can sow the contents of the
first pot, then capture the contents of the other two pots, leaving the position
100 = 1. Left can also sow the contents of the rightmost pot, leaving the position
3111. Right can move to either 301 or 11112. Thus, the Atomic Wari position
312 has the following value:

312 = {1,3111|301,11112}
= {0, {1001|111111}|{11|11101}, {111111|11101}}
= {0, ∗|∗, ∗}
= ↑

Clearly, for every move by Left, there is a corresponding move by Right.
Thus, Atomic Wari is an “all small” game, in the terminology ofWinning Ways.
All Atomic Wari positions have infinitesimal values, and in the presence of re-
mote stars, correct play in a collection of Atomic Wari positions is completely
determined by the position’s atomic weights. (Hence, the name.)

There is also a naturally defined impartial version of the game. For example,

312 = {1,3111,301,11112}
= {0, {1001,111111}, {11,11101}, {111111,11101}}
= {0, ∗, ∗, ∗}
= ∗2
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12 = ∗
13 = 0

14 = ± 1
2

15 = 0

16 = 0

17 = ∗2
18 = ∗
19 = 0

�11
� = ∗

�12
� = 0

�13
� = 0

�14
� = ±�

0, {1|0}�

�15
� = 0

�16
� = ∗

�17
� = ±�{2|1||+1, +3|1}, {1|{3|1||0|||−1}}�

�18
� = 0

 �11
�! = ∗

 �12
�! = 0

 �13
�! = 0

 �14
�! = 0

 �15
�! = ±�

4∗| 1
2
, { 7

2
|0}�

 �16
�! = 0

 �17
�! = ±�{4|3||0}, { 5

2
∗|{2|−2}, {2| 1

2
|||0|−1||−3}}�

 �18
�! = ±� 23

4
|4, {{{6∗|||6|5||−4}|1}, 4+(2−5) ||| ±

�
4+(2−5) | 1

2

� || ±�
4+(2−5) | 1

2

�
,

{4|3, {3||∗|−1}||∗, {1||−2|−5}}�

23 = 2�2 = ∗
24 = ∗
25 = 0

26 = ±�
1|||1, {1| 7

8
}|{1|−1∗}, {∗, {1|0, ∗}, {1|↓∗}|0, {0|−1}}||0|−1

�

27 = ∗

�22
� = ∗

�23
� = ∗2

�24
� = 0

�25
� = ∗

�26
� = 0

 �22
�! = 0

 �23
�! = ±1

 �24
�! = 0

 �25
�! = ±�

3
4
|{ 1

2
|0}, {0||0, {0|−1}|−3|||0|−4}�

 �26
�! = ∗

34 = 3��3 = ∗
35 = 33�33 = ∗
36 = ∗
37 = ∗

�33
� = �3�3� = ∗

�34
� = ±(1+1)

�35
� = ±�

1
2
, {1|∗}�

�36
� = ∗

 �32
�! = 0

 �33
�! = ±1

 �34
�! = ∗

 �35
�! = ±�0, {{1, {1|0}|0, {1|0}},

1−2 |0}
�

Table 2. Values of “starting” positions in partisan Sowing. The symbols � and

�! denote full pots going forever to the left and right.
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102 = 0 = 102
11 = ∗ = 11

111 = ∗2 = 111
1112 = ∗3 = 1112

110111 = ∗4 = 11131
111121 = ∗5 = 12113

10111121 = ∗6 = 111312
11101112 = ∗7 = 1111113
11112111 = ∗8 = 11112111

111111122 = ∗9 = 11132112

Table 3. Simplest impartial Sowing positions with given Nim-values. The left

column gives the position with the fewest seeds; the right column gives the

position with the fewest pots.

�11
� = ∗  �11

�! = ∗
12 = ∗ �12

� = ∗2  �12
�! = 0

13 = ∗2 �13
� = 0  �13

�! = ∗
14 = 0 �14

� = 0  �14
�! = ∗

15 = 0 �15
� = ∗  �15

�! = 0
16 = ∗ �16

� = 0  �16
�! = 0

17 = ∗2 �17
� = ∗4  �17

�! = 0
18 = 0 �18

� = 0  �18
�! = ∗

19 = 0 �19
� = ∗2  �19

�! = ∗
110 = ∗ �110

� = 0  �110
�! = 0

111 = 0
112 = 0

2�2 = ∗ �22
� = ∗  �22

�! = 0
�23
� = ∗  �23

�! = ∗
24 = ∗2 �24

� = ∗  �24
�! = ∗

25 = ∗3 �25
� = 0  �25

�! = 0
26 = 0 �26

� = 0  �26
�! = 0

27 = 0 �27
� = ∗2  �27

�! = ∗
28 = ∗2

3��3 = ∗ �3�3� = ∗  �32
�! = 0

 �33
�! = ∗

33�33 = ∗2 �34
� = ∗  �34

�! = 0
�35
� = ∗3  �35

�! = 0
36 = 0 �36

� = 0  �36
�! = 0

37 = ∗3 �37
� = ∗2

38 = ∗3

Table 4. Values of “starting” positions in impartial Sowing. The symbols  �

and �! denote full pots going forever to the left and right.



294 JEFF ERICKSON

x y = 1 2 3 4 5 6 7 8 9 10

1 0 ∗ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 ∗ ∗2 ↑(1|0) ↑2∗ ↑2∗ ↑2∗ ↑2∗ ↑2∗ ↑2∗ ↑2∗
3 ↓ ↓(1|0) ∗2 ∗2 ↓(1|0) ↓(1|0) ↓(1|0) ↓(1|0) ↓(1|0) ↓(1|0)
4 ↓ ↓2∗ ∗2 ∗2 ↓(1|0) ↑2∗ ↑2∗ ↑2∗ ↑2∗ ↑2∗
5 ↓ ↓2∗ ↑(1|0) ↑(1|0) ↑(±1) ↑(1|0) ↑2∗ ↑2∗ ↑2∗ ↑2∗
6 ↓ ↓2∗ ↑(1|0) ↓2∗ ↓(1|0) ∗2 ∗2 ↑2∗ ↑2∗ ↑2∗
7 ↓ ↓2∗ ↑(1|0) ↓2∗ ↓2∗ ∗2 ∗2 ∗2 ↑2∗ ↑2∗
8 ↓ ↓2∗ ↑(1|0) ↓2∗ ↓2∗ ↓2∗ ∗2 ∗2 ∗2 ↑2∗
9 ↓ ↓2∗ ↑(1|0) ↓2∗ ↓2∗ ↓2∗ ↓2∗ ∗2 ∗2 ∗2

10 ↓ ↓2∗ ↑(1|0) ↓2∗ ↓2∗ ↓2∗ ↓2∗ ↓2∗ ∗2 ∗2

Table 5. Values of Atomic Wari positions of the form xy.

Except for deleting leading and trailing empty pots, there don’t seem to be
any clear-cut rules for simplifying Atomic Wari positions. The situation is similar
to Sowing. Positions can often be split into sums independent components by
hand, but no algorithm is known to find such splits in general. For example,
1231110101311 = 123111 + 1311. Similarly, there are several cases where
the first or last pot contains only one seed, where the position’s value does not
change when this pot is removed, but no algorithm is known for detecting such
positions. For example, 1001321 = 1321.

Simple Values. Table 5 lists the values for all Atomic Wari games with two
adjacent nonempty pots, each containing ten or fewer seeds. We use the following
notation from [Conway 1976]: For any game G = {GL |GR}, we recursively define
↑G = {∗, ↑GL |∗, ↑GR} and ↓G = ↑(−G) = −(↑G). For all positive integers n, we
define ↑n = ↑n−↑(n−1), and ↓n = −(↑n).

We note that only ten different games appear in Table 5: 0, ∗, ↑, ↓, ∗2, and
the “exotic” games

↑(1 |0) = {↑, ∗|0, ∗}
↓(1 |0) = {0, ∗|↓, ∗}

↑(±1) = {↑, ∗|↓, ∗} ↑2∗ = {0, ∗|↓}
↓2∗ = {↑|0, ∗}

The games ↑ and ↑(1|0) have atomic weight 1; ↓ and ↓(1|0) have atomic weight
−1; all the other have atomic weight zero. These games are partially ordered as
follows:

↑ ↑(1 |0) ↑2∗
↙ ↘ ↙ ↘ ↙ ↘

0 ∗2 ↑(±1) ∗
↘ ↙ ↘ ↙ ↘ ↙
↓ ↓(1 |0) ↓2∗

There are Atomic Wari positions with arbitrary integer atomic weights. For
example, the position (01300)n has value n · ↑ and atomic weight n. Even so,
for positions arising in normal play, the atomic weight is almost always 0, 1, or
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−1, occasionally 2 or −2, and in extremely rare cases, 3 or −3. We have yet
to see even one “natural” position with any other atomic weight. It is an open
question whether noninteger or nonnumeric atomic weights are possible.

Partisan Atomic Wari Is Partially Impartial. Even though Atomic Wari
is a partisan game, there is a special case that can be analyzed as if it were
impartial. We call an Atomic Wari position “sparse” if every pot has two or
fewer seeds.

Theorem 3.1. Every sparse Atomic Wari position has the same value as the
corresponding Impartial Atomic Wari position, and any such position can be split
into independent components by removing all pots with fewer than two seeds .

Proof. We prove the claim by induction on the number of deuces (pots with
two seeds). The base case, in which each pot contains either one seed or none,
is trivial.

Consider a position X with n deuces, and let X ′ denote the sum of positions
obtained by deleting pots with fewer than two seeds. Each of the options of X is
a sparse position with either n− 1 or n− 2 deuces. For each move by Left, there
is a corresponding move by Right in the same contiguous “string” of deuces that
results in exactly the same position, once the inductive hypothesis is applied.
For example, given the position 1222201, the Left move to 12102201 = 2+22
is matched by the Right move to 12201201 = 22 + 2. Clearly, X and X ′ have
the same options, once the inductive hypothesis is applied. The theorem follows
immediately. �

Sparse Atomic Wari is equivalent to the following take-away game. There are
several piles of seeds. Each player can remove one seed from any pile, or remove
two seeds from any pile and optionally split the remainder into two piles. In the
octal notation ofWinning Ways, this is the game ·37. A computer search of the
first 200,000 values of this game reveals no periodicity, and finds only thirteen
P-positions:

{0, 3, 11, 19, 29, 45, 71, 97, 123, 149, 175, 313, 407}.
It seems quite likely that these are in fact the only P-positions. For a short list
of Nim values, see page 102 ofWinning Ways.

Theorem 3.1 implies that the values we see in Table 5 are the only values that
a two-pot Atomic Wari position can have. By straightforward case analysis, we
can classify all positions xy with x ≤ y as follows.

x = 1 1 < x ≤ y − 2 1 < x = y − 1 1 < x = y

0 if y = 1

∗ if y = 2

↑ otherwise

↓(1|0) if 2x = 0

↑2∗ otherwise

↑(1|0) if 2x−2 = 0

↓(1|0) if 2y−2 = 0

∗2 otherwise

∗2 if x = 2

↑(±1) if 2x−2 = 0

∗2 otherwise
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Open Questions. Are noninteger or nonnumeric atomic weights possible in
Atomic Wari? How can we systematically construct Impartial Atomic Wari po-
sitions with value ∗n for any n? Is there a simple algorithm that splits Atomic
Wari positions into multiple independent components? Are there Atomic Wari
positions with exponentially many followers? (The answer is yes if we disallow
capturing groups of three seeds.) Finally, are there any other high-level simpli-
fication rules like Theorem 3.1 that would allow faster evaluation?

4. Other Variants

An amazingly large number of other variations on these games are possible.
Here is a short list of possible games, starting with common versions of the
original African games, which might give interesting results. This list is by no
means exhaustive!

Mancala is played on a two by six grid of pots, where each player owns one
row of six. All moves go counterclockwise, but must begin at one of the moving
player’s pots. Each player has an extra pot called a store. Each player can drop
seeds into his own store as if it were the seventh pot on his side, but not into
his opponent’s. Seeds never leave the stores. If a move ends by putting the last
seed into the store, the same player moves again. If the last stone lands in an
empty pot on the moving player’s side, both that stone and the stones in the
opponent’s pot directly opposite are put into the moving player’s store. If any
player cannot move, the other player collects all the seeds on his side and puts
them in his store, and the game ends. The winner is the player who has more
seeds in his store at the end of the game. In the starting position, there are three
(or sometimes six) seeds in each pot.

Wari (or oware) is also played on a two by six grid of pots, similarly to
mancala, but with no stores. All moves go counterclockwise around the board,
but each move must begin on the moving player’s side. Otherwise, the rules are
identical to Atomic Wari. In one version of the game, if one player cannot move,
his opponent moves again; the game ends only when neither player can move. In
other versions, the ending conditions are considerably more complicated. When
the game ends, the player with more captured seeds wins. Typically, the game
beings with four seeds in each pot.

Sowing can also be played in reverse. In Reaping, a legal move consists of
picking up one seed from each of a successive string of pots and dropping them
into the first available empty pot. One could also play Atomic Wari after revers-
ing the movement rules, but one must be careful not to reverse the capturing
rules as well!

Partisan sowing games could be played with either player moving in either
direction, but with colored seeds. For example, a legal move by Left might
consist of sowing all the blue seeds in any pot, in such a way that the last seed
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is put into a pot containing at least one other blue seed, and capturing all the
red seeds in the last pot.

Finally, consider the following two-dimensional sowing game. The board con-
sists of a two-dimensional grid of pots. Left can sow upwards or downwards;
Right can sow to the left or right. Seeds are sown exactly as in Sowing; in
particular, the last seed must be put into a nonempty pot. Whenever any seed
lands in a nonempty pot, the contents of that pot, including the new seed, are
captured. Thus, at least two seeds are captured on every turn. One special case
of this game is already quite well-known!
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