
Games of No Chance
MSRI Publications
Volume 29, 1996

The Reduced Canonical Form of a Game

DAN CALISTRATE

Abstract. Cooling by ∗, followed by the elimination of the stars, is used
to define an operator G → G on short games, having the following prop-
erties: G is the simplest game infinitesimally close to G; the operator is a
homomorphism; it can be used for recursive calculations, provided that the
games involved are not in a “strictly cold” form.

1. Introduction

We will use the classical definitions and facts about two-person, perfect infor-
mation combinatorial games with the normal winning convention, as developed
inWinning Ways [Berlekamp et al. 1982] and On Numbers and Games [Conway
1976]. We recapitulate them briefly.

Formally, games are constructed recursively as ordered pairs {ΓL |ΓR}, where
ΓL and ΓR are sets of games, called, respectively, the set of Left options and
the set of Right options from G. We will restrict ourselves to short games, that
is, games where the sets of options ΓL and ΓR are required to be finite in this
recursive definition. The basis for this recursion is the game {? |?}, which is
called 0. We will often let GL and GR represent typical Left and Right options
of a game G, and write G = {GL |GR}.

The ≤ relation, defined inductively by

G ≤ H ⇐⇒ there is no HR with HR ≤ G and no GL with H ≤ GL,

is a quasi-order (it is not antisymmetric). We identify G with H if G ≤ H and
H ≤ G; we then say that G and H have the same value, and write G = H . The
relation ≤ becomes a partial order on the set of game values.

Two games G and H are identical, or have the same form, if they have identical
sets of left options and identical sets of right options. In this case we write G ≡ H .
Whenever the distinction between the value and the form of a game is essential,
we will specify it; otherwise, by G we will mean the form of G.

In the normal winning convention, the player who makes the last move wins.
The four possible classes of outcome for a game are determined by how the game’s
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value compares with 0, as shown in the following table (where G||0 means that
G is not comparable to 0):

G is a win for Left whoever goes first ⇐⇒ G > 0;
G is a win for Right whoever goes first ⇐⇒ G < 0;
G is a win for whoever goes first ⇐⇒ G || 0;
G is a loss for whoever goes first ⇐⇒ G = 0.

One can define an addition operation on the set of game values, making it
into a group. Certain game values can be associated with real numbers; they are
therefore called numbers. Since we only consider short games, all number values
will be dyadic rationals. The Left stop L(G) and Right stop R(G) of a game G

are the numbers recursively defined by: L(G) = R(G) = x if G = x, where x

is a number; otherwise L(G) = maxGL R(GL) and R(G) = minGR L(GR). An
infinitesimal is a game whose stops are both 0. Any infinitesimal lies strictly
between all negative and all positive numbers.

Any game G admits a unique canonical form, that is, a form with no dominated
options and no reversible moves. The canonical form has the earliest birthday
among all the games that have the same value as G. (For details and proofs, see
Winning Ways, pp. 62–65, or On Numbers and Games, pp. 110–112). Actually,
the canonical form of a game G has the even stronger property of minimizing
the size of the edge-set for the game-tree of G. For the purposes of this paper, a
game G will be called simpler than H if the size of the edge-set of the game-tree
of G is less than or equal to the size corresponding to H , so the canonical form
is the simplest (in this sense) among all games with a given value.

The aim of this paper is to introduce a yet simpler form, called the reduced
canonical form, by relaxing the condition that it should have the same value as
the initial game to the condition that it should be infinitesimally close to the
initial game. This new form should be the simplest possible subject to this condi-
tion, and the transformation G →G should be linear. Algebraically, we will show
that the reduced canonical forms form a subgroup Rcf , and the group of games
(with the disjunctive compound operation) is the direct sum I ⊕Rcf , where I
is the subgroup of infinitesimals. Often, the information provided by the Rcf -
component of a game G is enough to decide the outcome class of G. For games
of this type, it is important to know when knowledge of the reduced canonical
forms of the options of G would imply knowledge of the reduced canonical form
of G. This will be answered by Theorem 5.

2. Construction of the Reduced Canonical Form

The operation of cooling a game by a positive number is essential for the
Theory of Temperature in the World of Games (see Winning Ways, Chapter 6,
or On Numbers and Games, chapter 9). Similarly, one can define cooling by a
non-number, and specifically by ∗ = {0 |0}:
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Definition. Given G = {GL |GR}, we recursively define a new game G∗, called
G cooled by ∗, as follows:

G∗ =
{

G if G is a number,
{GL

∗ +∗|GR
∗ +∗} otherwise,

where, as usual, GL and GR are generic Left and Right options of G, and we
write GL∗ for (GL)∗.

It is easy to check that, if G − H is a zero game, so is G∗ − H∗. Thus the
definition above is independent of the form of G, and G∗ is well-defined for any
game value G.

Definition. If H0 ≡ {HL
0 |HR

0 } is the canonical form of a game H , we recur-
sively define p(H), the ∗-projection of H , as follows:

p(H) =
{

x if H = x or x + ∗, where x is a number,
{p(HL

0 )|p(HR
0 )} otherwise.

Because of the uniqueness of the canonical form, the definition of p(H) is inde-
pendent of the form of H .

Definition. The reduced canonical form G of G is defined as p(G∗).

Observe that p(G∗) is a canonical form, because p is defined in terms of the
canonical form of G∗, and it follows by induction that p(G∗) is in canonical form
as well.

Example. Let G = {{2 |0}, 1 ||0}. This game is in canonical form. Then

G∗ = {{2 |0}∗+∗, 1+∗||∗} = {{2+∗|∗}+∗, 1+∗||∗}.

Now we use the translation principle for stars (Winning Ways, p. 123), which
says that, for any numbers x, y, we have {x|y}+∗ = {x∗|y∗} if x ≥ y and
{x|y∗}+∗ = {x∗|y} if x > y. We obtain G∗ = {{2 |0}, 1∗||∗}. Since G∗ > 0 (the
game is a win for Left no matter who starts), the Left option {2 |0} is reversible,
and can be replaced by all the Left options from 0. There are no Left options
from 0, so G∗ = 1∗|∗. It is easy to check that 1∗|∗ has no reversible moves, so
it is the canonical form of G∗. Hence

p(G∗) = {p(1∗)|p(∗)} = {1 |0}.

We see that, in this example, the reduced canonical form of G is strictly simpler
than the canonical form of G.
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3. Properties of the Reduced Canonical Form

Theorem 1. The transformation G →G is a homomorphism.

Proof. We will show that G → G∗ and H → p(H) are homomorphisms,
hence their composition is a homomorphism. It is a straightforward inductive
check that none of the players can win going first in the game (G−H)∗−G∗+H∗;
therefore (G−H)∗ = G∗−H∗. If we consider first the more general case when G,
H and G−H are not numbers, we have:

(G−H∗)−G∗+H∗ = {(GL−H)∗+∗, (G−HR)∗+∗||(GR−H)∗+∗, (G−HL)∗+∗}
+{(−GR)∗+∗||(−GL)∗+∗}+{HL

∗ +∗||HR
∗ +∗}.

We can then see that, assuming the property true for pairs such as (GL, H),
(GR, H), (G, HL), and (G, HR), every move in (G−H)∗−G∗ +H∗ has an exact
counter, that is, for any move of one player, there is a reply by the other player
that brings the position to a value of 0.

If at least two of G, H , and G−H are numbers, then all of them are numbers
and the equality to be proved is trivial since we are in the first case of the
definiton of cooling by ∗.

If precisely one of G, H is a number, say H = x, we need to show that
(G− x)∗ = G∗− x. We are in the second case of the definiton of cooling, so this
is equivalent to

{(GL−x)∗+∗|(GR−x)∗+∗} = {GL
∗ +∗|GR

∗ +∗}−x.

Applying the translation principle (with x) one more time, we are done, because
(GL−x)∗ = GL∗−x and (GR−x)∗ = GR∗ −x by the induction hypothesis.

The proof that H → p(H) is a homomorphism is very similar: it is enough to
show that p(G)+p(H)+p(K) = 0 if G+H+K = 0 and G, H , K are in canonical
form.

Suppose that none of G, H , K is of the form x or x∗ for some number x.
If Left moves first in p(G)+p(H)+p(K), he will leave for Right a position like
p(GL)+p(H)+p(K). Since G, H and K were in canonical form and G+H+K =
0, there is a Right reply, HR say, in a different component, so that GL+HR+K ≤
0 (otherwise GLR would be reversible). Applying the induction hypothesis to
this, we obtain p(GL)+p(HR)+p(K) ≤ 0, which means that, going second in
p(G)+p(H)+p(K), Right wins. Thus p(G)+p(H)+p(K) ≤ 0. Note that we have
only assumed inductively (and proved) the inequality p(G)+p(H)+p(K) ≤ 0.
Because of symmetry, the opposite inequality can be obtained in the same way.

Finally, if exactly one of G, H , and K is of the form x or x∗ for some num-
ber x, the implication G+H+K = 0 ⇒ p(G)+p(H)+p(K) = 0 is immedi-
ate, given the observation that if {GL |GR} is a game in canonical form, so is
{(GL+x∗)c |(GR+x∗)c}, where we are denoting by M c the canonical form of a
game M . �
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The following lemma shows one sense in which G approximates G.

Lemma 2. If G is any game, G and G have the same stops , that is , L(G) = L(G)
and R(G) = R(G). In particular , they have the same stops as G∗.

Proof. We need to show separately that L(G∗) = L(G) and L(p(H)) =
L(H). The second relation can be obtained inductively: If H 6= x or x∗, and
H is in canonical form, L(p(H)) = L({p(HL)|p(HR)}) = maxR(p(HL)) =
max R(HL) = L(H), and similarly for the Right stops.

For the first relation, we observe that R(G + ∗) = R(G) for any game G.
Hence, if G is not a number,

L(G∗) = maxR(GL
∗ + ∗) = max R(GL

∗ ) = maxR(GL) = L(G). �

Theorem 3. A game G is an infinitesimal if and only if G = 0.

Proof. The “if” direction follows from the lemma. Next, we will prove that, if
G is an infinitesimal, then G∗ = 0 (and hence G = 0). We will do so by showing
inductively that

L(G) ≤ 0 and R(G) ≤ 0 imply G∗ ≤ 0,

L(G) ≥ 0 and R(G) ≥ 0 imply G∗ ≥ 0.

Because of the symmetry of the definition of G∗, it is enough to prove the first
of these implications. Thus we assume that L(G) ≤ 0 and R(G) ≤ 0. Suppose
G∗ is a number. This is an easy case because, from the lemma, G∗ has the
same stops as G, so G∗ ≤ 0 and we are done. Suppose G∗ is not a number.
Then, Left’s move in G∗ will lead to a position GL∗ + ∗. Now, if GL∗ is a number,
we apply the lemma again to conclude that GL∗ ≤ 0; hence Right’s move from
GL

∗ + ∗ to GL
∗ will force a loss for Left, so G∗ ≤ 0. Suppose now that GL

∗ is not
a number. Then

GL
∗ +∗ = {GLL

∗ +∗|GLR
∗ +∗}+∗.

Since L(G) ≤ 0, there exists a Right-option GLR0 in GL such that L(GLR0) ≤ 0.
Therefore, Right can move from GL

∗ +∗ to GLR0∗ +∗+∗ = GLR0∗ and, applying the
lemma one more time, we conclude that L(GLR0∗ ) ≤ 0. Now, if GLR0∗ is a number,
it cannot be strictly positive, so Left will lose going first in GLR0∗ . Finally, if
GLR0∗ is not a number, we have R(GLR0∗ ) ≤ 0 (because we already know that
L(GLR0∗ ) ≤ 0), so GLR0∗ satisfies the conditions of the induction hypothesis, so
GLR0∗ ≤ 0, so Left will lose going first in G∗ in any case, so G∗ ≤ 0 and the proof
is completed. �

Theorem 4. The reduced canonical form G is infinitesimally close to G.

Proof. We will show first that G∗ is infinitesimally close to G and then
that p(H) is infinitesimally close to H . We will establish inductively that
G∗−G−x ≤ 0 for every positive number x. This will be enough to ensure
that G is infinitesimally close to G, because applying the induction assumption
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to −G yields (−G)∗+G−x ≤ 0, so −(−G)∗−G+x ≥ 0. Using the fact that
−(−G)∗ = G∗ (since G∗ is a homomorphism), we get G∗−G+x ≥ 0, so G∗−G

will be greater than all negative numbers and smaller than all positive numbers.
We only have to consider the case when G is not a number. In this case,

G∗−G−x = {GL
∗ +∗|GR

∗ +∗}+{−GR−x|−GL−x}.

After Left makes his first move in this, Right can reply to one of the following:

GL
∗ +∗−GL−x = (GL

∗−GL− 1
2x)+(∗− 1

2x),

−GR−x+GR
∗ +∗ = (GR

∗ −GR−1
2x)+(∗−1

2x).

The induction hypothesis applies to (GL
∗−GL−1

2x) and (GR
∗ −GR−1

2x), so
they are both negative. Since (∗− 1

2x) is also negative, Left loses, and we obtain
G∗−G−x ≤ 0, as desired.

The proof that p(G)−G−x ≤ 0 follows precisely the same steps if we choose
G to be in canonical form. �

Theorem 5. G is the simplest game infinitesimally close to G.

Proof. Let H be infinitesimally close to G. We need to show that G is at
least as simple as H . Since G−H is an infinitesimal, we have G−H = 0, and
therefore G = H. Since both sides of this equation are in canonical form, we
have G≡H, so all we need to show is that H is at least as simple as H for any
game H . For this purpose, we can relax the definition of G in the sense that p

is not applied to the canonical form of G∗, but directly to G∗ (that is, to the
form obtained after cooling G by ∗, without deleting any dominated options or
bypassing any reversible moves). If we denote the result by G̃, then G̃ will be
at least as simple as G; it can be seen inductively that the only thing achieved
in the process of forming G̃ is to replace x∗ by x everywhere in (the form of)
G, which is clearly a “simplification”. Yet, G is at least as simple as G̃, for the
following reason. When p is applied to the canonical form Kc of a game K, the
outcome will be at least as simple as when p is applied directly to K (consider
the sequence K, K1, K2, ..., Kn = Kc, where each Ki+1 is obtained from Ki by
deleting a dominated option or by bypassing a reversible move; by induction,
p(Ki+1) will be at least as simple as p(Ki)). We have thus proved that G̃ is at
least as simple as G, and G is at least as simple as G̃, which implies that G is at
least as simple as G. �

Note. We needed this kind of argument because it can occur that G is simpler
than G∗; for example, when G = 1 |∗, we have G∗ = 1∗|∗. Here, the “simplifica-
tion” is made by p to p(G∗) = 1 |0.

Definition. Let G = {GL |GR}. A number x is permitted by G if GL � x � GR

for every GL and GR.
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Theorem 6. Let G = {GL|GR} be such that {GL |GR} permits at most one
number . Then

G = GL |GR.

Proof. Suppose that at least one of G and {GL |GR} is not a number. Then,
for any positive number x, the translation principle can be applied to H =
{GL |GR}+{−GR |−GL}−x, so that one of these equalities is satisfied:

H = {GL−x|GR−x}+{−GR |−GL},
H = {GL |GR}+{−GR−x|−GL−x}

.

Therefore, for any Left option in H , there is a Right response in the other com-
ponent that leaves a negative game (applying Theorem 3). This means that Left,
going first in H , loses, so H ≤ 0. Similarly, H ′ = {GL |GR}+{−GR |−GL}+x ≥
0, so G−{GL |GR} is an infinitesimal, so

0 = G−{GL |GR}= G−{GL |GR}

and the result is proved in this case.
Suppose, now, that G and {GL |GR} are both numbers. Denote by IL

and IR the closures of the confusion intervals for GL and GR, that is, IL =
[L(GL), R(GL)] and IR = [L(GR), R(GR)]. Since {GL |GR} permits at most
one number, and is a number itself, we must have R(GL) = L(GR) = {GL |GR}.
Applying the lemma to GL and GR we find that GL and GR have the same
closures of the confusion intervals as GL and GR. Since G is a number as well,
we obtain G = {GL |GR}, hence G = {GL |GR}. �

Notes. 1. The reduced canonical form operator can be used to exhibit, within
small errors, the recursively obtained values for games such as 2×n Domineering
[Berlekamp 1988], where the main complications are due to increasingly complex
infinitesimals.

2. David Wolfe has implemented this approximation operator in his Gamesman’s
Toolkit [Wolfe 1996]: if the user types G[e], the program will return the reduced
canonical form of G.
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