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Torelli Groups and Geometry of

Moduli Spaces of Curves

RICHARD M. HAIN

Abstract. The Torelli group Tg is the group of isotopy classes of diffeo-
morphisms of a compact orientable surface of genus g that act trivially on
the homology of the surface. The aim of this paper is to show how facts
about the homology of the Torelli group imply interesting results about
algebraic curves. We begin with an exposition of some of Dennis John-
son’s work on the Torelli groups. We then show how these results imply
that the Picard group of the moduli space of curves of genus g ≥ 3 with a
level-l structure is finitely generated. A classification of all “natural” nor-
mal functions over the moduli space of curves of genus g ≥ 3 and a level l
structure is obtained by combining Johnson’s results with M. Saito’s theory
of Hodge modules. This is used to prove results that generalize the classi-
cal Franchetta Conjecture to the generic curve of genus g with n marked
points and a level-l structure. Other applications are given, for example,
to computing heights of cycles defined over a moduli space of curves.

1. Introduction

The Torelli group Tg is the kernel of the natural homomorphism Γg → Spg(Z)
from the mapping class group in genus g to the group of 2g × 2g integral sym-
plectic matrices. It accounts for the difference between the topology of Ag, the
moduli space of principally polarized abelian varieties of dimension g, and Mg,
the moduli space of smooth projective curves of genus g, and therefore should
account for some of the difference between their geometries. For this reason,
it is an important problem to understand its structure and its cohomology. To
date, little is known about Tg apart from Dennis Johnson’s few fundamental
results—he has proved that Tg is finitely generated when g ≥ 3 and has com-
puted H1(Tg,Z). It is this second result that will concern us in this paper.
Crudely stated, it says that there is an Spg(Z)-equivariant isomorphism

H1(Tg,Q) ≈ PH3(JacC,Q),
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where C is a smooth projective curve of genus g, and P denotes primitive part.
My aim in this paper is to give a detailed exposition of Johnson’s homomor-

phism
PH3(JacC,Q) → H1(Tg,Q)

and to explain how Johnson’s computation, alone and in concert with M. Saito’s
theory of Hodge modules [43], has some remarkable consequences for the geom-
etry of Mg. It implies quite directly, for example, that for each l, the Picard
group of the moduli space Mg(l) of curves of genus g ≥ 3 with a level-l structure
is finitely generated. Combined with Saito’s work, it enables one to completely
write down all “natural” generically defined normal functions over Mg(l) when
g ≥ 3. The result is that, modulo torsion, all are half-integer multiples of the
normal function of the cycle C − C−. This is applied to give a new proof of
the Harris–Pulte Theorem [27, 41], which relates the mixed Hodge structure on
the fundamental group of a curve C to the algebraic cycle C − C− in its jaco-
bian. Another application is to show that the cycles C(a) − i∗C(a) in JacC, for
1 ≤ a < g − 1, are of infinite order modulo algebraic equivalence for the general
curve C. This result is due to Ceresa [10].

Understanding all normal functions over Mg(l) also allows us to “compute”
the archimedean height pairing between any two “natural” cycles in a smooth
projective variety defined over the moduli space of curves, provided they are ho-
mologically trivial over each curve, disjoint over the generic curve, and satisfy the
usual dimension restrictions. The precise statement can be found in Section 14.

Our final application is to the Franchetta conjecture. The classical version
of this conjecture asserts that the Picard group of the generic curve is isomor-
phic to Z and is generated by the canonical divisor. Beauville (unpublished),
and later Arbarello and Cornalba [1], deduced this from Harer’s computation
of H2(Γg). As another application of the classification of normal functions over
Mg(l), we prove a “Franchetta Conjecture” for the generic curve with a level-l
structure. The statement is that the Picard group of the generic curve of genus
g with a level-l structure is finitely generated of rank 1—the torsion subgroup
is isomorphic to (Z/lZ)2g; mod torsion, it is generated by the canonical bundle
if l is odd, and by a square root of the canonical bundle if l is even. Our proof
is valid only when g ≥ 3; it does not use the computation of PicMg(l), which
is not known at this time. We also compute the Picard group of the generic
genus-g curve with a level-l structure and n marked points.

Our results on normal functions are inspired by those in the last section of
Nori’s remarkable paper [40], where he studies functions on finite covers of Zariski
open subsets of the moduli space of principally polarized abelian varieties. There
are analogues of our main results for Ag(l), the moduli space of principally
polarized abelian varieties of dimension g with a level-l structure. These results
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are similar to Nori’s, but differ. The detailed statements, as well as a discussion
of the relation between the results, are in Section 15. Our results on abelian
varieties are related to some results of Silverberg [45].

Sections 3 and 4 contain an exposition of the three constructions of the John-
son homomorphism that are given in [33]. Since no proof of their equivalence
appears in the literature, I have given a detailed exposition, especially since the
equivalence of two of these constructions is essential in one of the applications
to normal functions.

In Section 13 Johnson’s result is used to give an explicit description of the
action of the Γg on the n-th roots of the canonical bundle. This is a slight
refinement of a result of Sipe [46]. A consequence of this computation is that the
only roots of the canonical bundle defined over Torelli space are the canonical
bundle itself and all theta characteristics.

Acknowledgements. First and foremost, I would like to thank Eduard Looijenga
for his hospitality and for stimulating discussions during a visit to the University
of Utrecht in the spring of 1992 during which some of the work in this paper
was done. I would also like to thank the University of Utrecht and the Dutch
NWO for their generous support during that visit. Thanks also to Pietro Pirola
and Enrico Arbarello for pointing out to me that the non-existence of sections
of the universal jacobian implies the classical Franchetta conjecture. From this
it was a short step to the generalizations in Section 12. Thanks also to Arnaud
Beauville for useful discussions on roots of the canonical bundle and for bringing
Sipe’s work to my attention.

2. Mapping class groups and moduli

At this time there is no argument within algebraic geometry to compute the
Picard groups of all Mg, and one has to resort to topology to do this com-
putation. Let S be a compact orientable surface of genus g with r boundary
components and let P be an ordered set of n distinct marked points of S − ∂S.
Denote the group of orientation-preserving diffeomorphisms of S that fix P ∪∂S
pointwise by Diff+(S, P ∪ ∂S). Endowed with the compact-open topology, this
is a topological group. The mapping class group Γn

g,r is defined to be its group
of path components:

Γn
g,r = π0 Diff+(S, P ∪ ∂S).

Equivalently, it is the group of isotopy classes of orientation-preserving diffeomor-
phisms of S that fix P ∪∂S pointwise. It is conventional to omit the decorations
n and r when they are zero. So, for example, Γn

g = Γn
g,0.

The link between moduli spaces and mapping class groups is provided by
Teichmüller theory. Denote the moduli space of smooth genus g curves with
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n marked points by Mn
g . Teichmüller theory provides a contractible complex

manifold Xn
g on which Γn

g acts properly discontinuously—when 2g + n+ 2 > 0,
it is the space of all complete hyperbolic metrics on S − P equivalent under
diffeomorphisms isotopic to the identity. The quotient Γn

g \Xn
g is analytically

isomorphic to Mn
g . It is useful to think of Γn

g as the orbifold fundamental group
of Mn

g . As we shall explain shortly, there is a natural isomorphism

H•(Mn
g ,Q) ≈ H•(Γn

g ,Q).

One can compactify S by filling in the r boundary components of S by attach-
ing disks. Denote the resulting genus-g surface by S. Elements of Γn

g,r extend
canonically to S to give a homomorphism Γn

g,r → Γg. Denote the composite

Γn
g,r → Γg → AutH1(S,Z)

by ρ. Since elements of Γn
g,r are represented by orientation-preserving diffeomor-

phisms, each element of Γn
g,r preserves the intersection pairing

q : Λ2H1(S,Z)→ Z.

Consequently, we obtain a homomorphism

ρ : Γn
g,r → Aut(H1(S,Z), q)≈ Spg(Z).

This homomorphism is well-known to be surjective.
Denote the moduli space of principally polarized abelian varieties of dimension

g by Ag. Since this is the quotient of the Siegel upper half plane by Spg(Z), it is
an orbifold with orbifold fundamental group Spg(Z) and, as in the case of Mn

g ,
there is a natural isomorphism

H•(Ag ,Q) ≈ H•(Spg(Z),Q).

The period map Mn
g → Ag is a map of orbifolds and induces ρ on fundamental

groups.
The Torelli group T n

g,r is the kernel of the homomorphism

ρ : Γn
g,r → Spg(Z).

Since ρ is surjective, we have an extension

1 → T n
g,r → Γn

g,r → Spg(Z)→ 1.

The Torelli group Tg encodes the differences between the topology of Mg and
that of Ag—between curves and abelian varieties. More formally, we have the
Hochschild–Serre spectral sequence

Hs(Spg(Z), Ht(T n
g,r)) =⇒ Hs+t(Γn

g,r).
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Much more (although not enough) is known about the topology of the Ag

than about that of the Mg. For example, the rational cohomology groups of the
Ag stabilize as g →∞, and this stable cohomology is known by Borel’s work [6]:
it is a polynomial ring generated by classes c1, c3, c5, . . . , where ck has degree 2k.
As with Ag, the rational cohomology of the Mg is known to stabilize, as was
proved by Harer [22], but the stable cohomology of the Mg is known only up to
dimension 4; the computations are due to Harer [24, 26].

Torelli space T n
g is the quotient T n

g \Xn
g of Teichmüller space. When g ≥ 3,

it is the moduli space of smooth projective curves C, together with n ordered
distinct points and a symplectic basis of H1(C,Z).

The Torelli group is torsion-free. Perhaps the simplest way to see this is to
note that, by standard topology, since Xn

g is contractible, each element of Γn
g of

prime order must fix a point of Xn
g . If φ ∈ Γn

g fixes the point corresponding to
the marked curve C, there is an automorphism of C that lies in the mapping
class φ. Since the automorphism group of a compact Riemann surface injects
into AutH0(C,Ω1

C), and therefore into H1(C), it follows that T n
g is torsion-free.

Because of this, the Torelli space T n
g is the classifying space of T n

g .
One can view Siegel space hg as the classifying space of principally polarized

abelian varieties of dimension g together with a symplectic basis of H1. The
period map therefore induces a map

T n
g → hg,

which is 2:1 when g ≥ 2, and ramified along the hyperelliptic locus when g ≥ 3.
For a finite-index subgroup L of Spg(Z), let Γn

g,r(L) be the inverse image of L
in Γn

g,r under the canonical homomorphism Γn
g,r → Spg(Z). It may be expressed

as an extension

1 → T n
g,r → Γn

g,r(L) → L→ 1.

Set Mn
g (L) = Γn

g (L)\Xn
g . We will call Γn

g,r(L) the level -L subgroup of Γn
g,r,

and we will say that points in Mn
g (L) are curves with a level-L structure and n

marked points. The traditional moduli space of curves with a level-l structure,
where l ∈ N+ , is obtained by taking L to be the elements of Spg(Z) that are
congruent to the identity mod l.

Since the Torelli groups are torsion-free, Γn
g,r(L) is torsion-free when L is.

Note, however, that by the Lefschetz fixed point formula, Γn
g,r is torsion-free

when n+ 2r > 2g + 2, so that Γn
g,r(L) may be torsion-free even when L is not.

Proposition 2.1. For all g, n ≥ 0 and for each finite-index subgroup L of
Spg(Z), there is a natural homomorphism

H•(Mn
g (L),Z)→ H•(Γn

g (L),Z),
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which is an isomorphism when Γn
g (L) is torsion-free, and is an isomorphism

after tensoring with Q for all L.

Proof. Set Γ = Γn
g , Γ(L) = Γn

g (L), M(L) = Mn
g (L) and X = Xn

g . Let EΓ
be any space on which Γ acts freely and properly discontinuously—so EΓ is the
universal covering space of some model of the classifying space of Γ. Since X is
contractible, the quotient EΓ×Γ(L)X of EΓ×X by the diagonal action of Γ(L)
is a model BΓ(L) of the classifying space of Γ(L). The projection EΓ×X → X
induces a map f : BΓ(L) → M(L), which induces the map of the theorem. If
Γ(L) is torsion-free, f is a homotopy equivalence. Otherwise, choose a finite-
index, torsion-free normal subgroup L′ of L. Then Γ(L) is torsion-free. Set

G = Γ(L)/Γ(L′) ≈ L/L′.

This is a finite group. We have the commutative diagram of Galois G-coverings

BΓ(L′) → M(L′)
↓ ↓

BΓ(L) → M(L),

where the top map is a homotopy equivalence. Thus it induces a G-equivariant
isomorphism

H•(M(L′)) → H•(BΓ(L′)).

The result follows as the vertical projections induce isomorphisms

H•(M(L),Q) ∼→ H•(M(L′),Q)G and H•(Γ(L),Q) ∼→ H•(Γ(L′),Q)G . �

The group Γn
g,r(L) also admits a moduli interpretation when r > 0, even

though algebraic curves have no boundary components. The idea is that a topo-
logical boundary component of a compact orientable surface should correspond
to a first-order local holomorphic coordinate about a cusp of a smooth algebraic
curve. Denote by Mn

g,r(L) the moduli space of smooth curves of genus g with
a level-L structure and with n distinct marked points and r distinct, non-zero
cotangent vectors, where the cotangent vectors do not lie over any of the marked
points, and where no two of the cotangent vectors are anchored at the same
point. This is a (C ∗ )r bundle over Mr+n

g (L).

Proposition 2.2. For all finite-index subgroups L of Spg(Z) and for all g, n, r ≥
0, there is a natural homomorphism

H•(Mn
g,r(L),Z)→ H•(Γn

g,r(L),Z),

which is an isomorphism when Γn
g,r(L) is torsion-free, and is an isomorphism

after tensoring with Q for all L. �
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3. The Johnson homomorphism

Dennis Johnson, in a sequence of pioneering papers [30, 31, 32], began a
systematic study of the Torelli groups. From the point of view of computing
the cohomology of the Mg, the most important of his results is his computation
of H1(T 1

g ) [32]. Let S be a compact oriented surface of genus g ≥ 3 with a
distinguished base point x0.

Theorem 3.1. There is an Spg(Z)-equivariant homomorphism

τ1
g : H1(T 1

g ,Z)→ Λ3H1(S),

which is an isomorphism mod 2-torsion.

Johnson has also computed H1(T 1
g ,Z/2Z). It is related to theta characteris-

tics. Bert van Geemen has interesting ideas regarding its relation to the geometry
of curves. A proof of Johnson’s theorem is beyond our scope, but we will give
three constructions of the homomorphism τ1

g and establish their equality.
We begin by sketching the first of these constructions. Since the Torelli group

is torsion-free, there is a universal curve

C → T 1
g

over Torelli space. This has a tautological section σ : T 1
g → C. There is also the

jacobian

J → T 1
g

of the universal curve. The universal curve can be embedded in its jacobian
using the section σ—the restriction of this mapping to the fiber over the point
of Torelli space corresponding to (C, x) is the Abel–Jacobi mapping

νx : (C, x) → (JacC, 0)

associated to (C, x). Since T 1
g acts trivially on the first homology of the curve, the

local system associated to H1(C) is framed. There is a corresponding topological
trivialization of the jacobian bundle:

J ∼→ T 1
g × JacC.

Let p : J → JacC be the corresponding projection onto the fiber. Each element
φ of H1(T 1

g ,Z) can be represented by an embedded circle φ : S1 → T 1
g . Regard

the universal curve C as subvariety of J via the Abel–Jacobi mapping. Then the
part of the universal curve M(φ) lying over the circle φ is a 3-cycle in J . The
Johnson homomorphism is defined by

τ1
g (φ) = p∗[M(φ)] ∈ H3(JacC,Z)≈ Λ3H1(C,Z).
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This definition is nice and conceptual, but is not so easy to work with. In the
remainder of this section, we remake this definition without appealing to Torelli
space. In the next section, we will give two more constructions of it, both due
to Johnson, and prove that all three constructions agree.

Recall that the mapping torus of a diffeomorphism φ of a manifold S is the
quotient M(φ) of S × [0, 1] obtained by identifying (x, 1) with (φ(x), 0):

M(φ) = S × [0, 1]
/
{(x, 1) ∼ (φ(x), 0)}.

The projection S × [0, 1] → [0, 1] induces a bundle projection

M(φ) → [0, 1]
/
{0 ∼ 1} = S1

whose fiber is S and whose geometric monodromy is φ.
Now suppose that φ : (S, x0) → (S, x0) is a diffeomorphism of S that repre-

sents an element of T 1
g . The mapping torus bundle

M(φ) → S1

has a canonical section σ : S1 →M(φ), which takes t ∈ S1 to (x0, t) ∈M(φ).
Denote H•(S,R/Z), the “jacobian” of S, by JacS. The next task is to embed

M(φ) into JacS using the section σ of base points. To this end, choose a basis
ω1, . . . , ω2g of H1(S,Z). This gives an identification of JacS with (R/Z)2g.
Choose closed, real-valued one-forms w1, . . . , w2g representing ω1, . . . , ω2g. They
have integral periods. Since φ acts trivially onH1(S), there are smooth functions
fj : S → R such that

φ∗wj = wj + dfj .

These functions are uniquely determined if we insist, as we shall, that fj(x0) = 0
for each j. Set ~w = (w1, . . . , wg) and ~f = (f1, . . . , fg). The map

S × [0, 1] → JacS

defined by

(x, t) 7→ t ~f(x) +
∫ x

x0

~w

preserves the equivalence relations of the mapping torus M(φ), and therefore
induces a map

ν(φ) : (M(φ), σ(S1)) → (JacS, 0).

Define τ̃(φ) to be the homology class of M(φ) in H3(JacS, Z):

τ̃ (φ) = ν(φ)∗[M(φ)] ∈ Λ3H1(S,Z).

Proposition 3.2. Suppose φ, ψ are diffeomorphisms of S that act trivially on
H1(S). Then:



THE TORELLI GROUPS AND GEOMETRY 105

(a) τ̃ (φ) is independent of the choice of representatives w1, . . . , wg of the basis
ω1, . . . , ω2g of H1(S,Z);

(b) τ̃ (φ) is independent of the choice of basis ω1, . . . , ω2g of H1(S,Z);
(c) τ̃ (φ) depends only on the isotopy class of φ;
(d) τ̃ (φψ) = τ̃(φ) + τ̃(ψ);
(e) τ̃ (gψg−1) = g∗τ̃ (φ) for all diffeomorphisms g of S, where g∗ is the automor-

phism of Λ3H1(S) induced by g.

Proof. If w′1, . . . , w
′
2g is another set of representatives of the ωj, there are

functions gj : S → R such that w′j = wj +dgj and gj(x0) = 0. For each s ∈ [0, 1],
the one-form wj(s) = wj + sdgj is closed on S and represents ωj. The map

νs : M(φ) → JacS

defined using the representatives wj(s) takes (x, t) to

t
(
fj(x) + s(gj(φ(x)) − gj(x))

)
+ sgj(x) +

∫ x

x0

wj .

Since this depends continuously on s, it follows that ν0 is homotopic to ν1, which
proves (a).

Assertion (b) follows from linear algebra. The proof of (c) is similar to that
of (a).

To prove (d), observe that the quotient of M(φψ) obtained by identifying
(x, 1) with (ψ(x), 1

2 ) is the union of M(φ) and M(ψ). The map ν(φψ) factors
through the quotient M(φ) ∪M(ψ) of M(φψ), and its restrictions to M(φ) and
M(ψ) are ν(φ) and ν(ψ). Additivity follows.

Suppose that g : (S, x0) → (S, x0) is a diffeomorphism. The map (g, id) :
S × [0, 1] → S × [0, 1] induces a diffeomorphism

F (g) : M(φ) →M(gφg−1).

To prove (e), it suffices to verify that the diagram

M(φ)
F (g)−−−−→ M(gφg−1)

ν(φ)

y
yν(gφg−1)

JacS
g∗−−−−→ JacS

commutes up to homotopy. In the proof of (a) we saw that the homotopy class
of ν depends only on the basis of H1(S,Z) and not on the choice of de Rham
representatives. Set w′j = g∗wj . Since the diagram

H1(S)
g∗−−−−→ H1(S)∫

w′j

y
y∫

wj

R R
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commutes, it suffices to verify that the diagram

M(φ)
F (g)−−−−→ M(gφg−1)

ν′
y

yν

(R/Z)2g id−−−−→ (R/Z)2g

commutes, where ν is defined using w1, . . . , w2g, and ν′ is defined using the
representatives w′1, . . . , w

′
2g. This is easily done. �

Recall that the homology groups of T 1
g are Spg(Z)-modules; the action on

H1(Tg) is given by

g : [φ] 7→ [g̃φg̃−1],

where g ∈ Spg(Z) and g̃ is any element of Γ1
g that projects to g under the

canonical homomorphism.

Corollary 3.3. The map τ̃ induces an Spg(Z)-equivariant homomorphism

τ1
g : H1(T 1

g ,Z)→ Λ3H1(S,Z). �

From τ1
g , we can construct a representation τg of H1(Tg). The kernel of the

natural surjection T 1
g → Tg is isomorphic to π1(S, x0). The composition of the

induced map H1(S,Z) → H1(T 1
g ,Z) with τ1

g is easily seen to be the canonical
inclusion

× [S] : H1(S,Z) ↪→ H3(JacS, Z)

induced by taking Pontrjagin product with ν∗[S]. We therefore have an induced
Spg(Z)-equivariant map

τg : H1(Tg,Z)→ Λ3H1(S,Z)/H1(S,Z).

The following result of Johnson is an immediate corollary of Theorem 3.1.

Theorem 3.4. The homomorphism τg is an isomorphism modulo 2-torsion.

It is not difficult to bootstrap up from Johnson’s basic computation to prove
the following result.

Theorem 3.5. There is a natural Spg(Z)-equivariant isomorphism

τn
g,r : H1(T n

g,r,Q) → H1(S,Q)⊕(n+r) ⊕ Λ3H1(S,Q)/H1(S,Q).

An important consequence of Johnson’s theorem is that the action of Spg(Z)
on H1(T n

g,r,Q) factors through a rational representation of the Q-algebraic group
Spg. Let λ1, . . . , λg be a fundamental set of dominant integral weights of Spg.
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Denote the irreducible Spg-module with highest weight λ by V (λ). The fun-
damental representation of Spg is H1(S). It is well-known (and easily verified)
that

Λ3H1(S) ≈ V (λ1)⊕ V (λ3).

The previous result can be restated by saying that

H1(T n
g,r,Q) ≈ V (λ3)⊕ V (λ1)⊕(n+r)

as Spg-modules.

4. A second definition of the Johnson homomorphism

In this section we relate the definition of τ1
g given in the previous section to

Johnson’s original definition, which is defined using the action of T 1
g on the lower

central series of π1(S, x0). It is better suited to computations. In order to relate
this definition to the one given in the previous section, we need to study the
cohomology ring of the mapping torus associated to an element of the Torelli
group.

Suppose that the diffeomorphism φ : (S, x0) → (S, x0) represents an element
of T 1

g . As explained in the previous section, the associated mapping torus M =
M(φ) fibers over S1 and has a canonical section σ. These data guarantee that
there is a canonical decomposition of the cohomology of M .

Since φ acts trivially on the homology of S, the E2-term of the Leray–Serre
spectral sequence of the fibration π : M → S1 satisfies

Er,s
2 = Hr(S1)⊗Hs(S).

This spectral sequence degenerates for trivial reasons. Consequently, there is a
short exact sequence

0 → H1(S1,Z) π∗→ H1(M,Z) i∗→ H1(S,Z)→ 0,

where π is the projection to S1 and i : S ↪→M is the inclusion of the fiber over the
base point t = 0 of S1. The section σ induces a splitting of this sequence. Denote
π∗ of the positive generator of H1(S1,Z) by θ. Then we have the decomposition

H1(M,Z) = H1(S,Z)⊕Zθ.(1)

From the spectral sequence, it follows that we have an exact sequence

0 → θ ∧H1(S,Z)→ H2(M,Z) i∗→ H2(S,Z)→ 0.

Denote the Poincaré dual of a homology class u in M by PD(u). Since∫
S

PD(σ) = σ · S = 1,
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it follows that the previous sequence can be split by taking the positive generator
of H2(S,Z) to PD(σ). We therefore have a canonical splitting

H2(M,Z) = ZPD(σ)⊕ θ ∧H1(S,Z).(2)

The cup product pairing

c : H1(M)⊗H2(M) → H3(M) ≈ Z

induces pairings between the summands of the decompositions (1) and (2).

Proposition 4.1. The cup product c satisfies:
(a) c(θ ⊗ PD(σ)) = 1;
(b) the restriction of c to H1(S)⊗ PD(σ) vanishes ;
(c) the restriction of c to θ ⊗

(
θ ∧H1(S)

)
vanishes ;

(d) the restriction of c to H1(S)⊗
(
θ ∧H1(S)

)
takes u⊗ (θ ∧ v) to −

∫
S u ∧ v.

Proof. Since θ is the Poincaré dual of the fiber S, we have∫
M

θ ∧ PD(σ) =
∫

M

PD(S) ∧ PD(σ) = S · σ = 1.

In the decomposition (1), H1(S) is identified with the kernel of σ∗ : H1(M) →
H1(S1); that is, with those u ∈ H1(M) such that∫

σ

u = 0.

The second assertion now follows as∫
M

u ∧ PD(σ) =
∫

σ

u

for all u ∈ H1(M).
The third and fourth assertions are easily verified. �

To complete our understanding of the cohomology ring of M , we consider the
cup product

Λ2H1(M) → H2(M).

Since θ ∧ θ = 0, there is only one interesting part of this mapping, namely, the
component

Λ2H1(S) → ZPD(σ) ⊕ θ ∧H1(S).

There is a unique function

fφ : Λ2H1(S,Z)→ H1(S,Z)

such that

u ∧ v 7→
(∫

S

u ∧ v,−θ ∧ fφ(u ∧ v)
)
∈ H2(M,Z)
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with respect to the decomposition (2). We can view fφ as an element of

H1(S,Z)⊗ Λ2H1(S,Z).

Using Poincaré duality on the last two factors, we can regard fφ as an element
F (φ) of

H1(S,Z)⊗ Λ2H1(S,Z).

There is a canonical embedding of Λ3H1(S,Z) into this group. It is defined
by

a ∧ b ∧ c 7→ a⊗ (b ∧ c) + b⊗ (c ∧ a) + c⊗ (a ∧ b).

Theorem 4.2. The invariant F (φ) of the cohomology ring of M(φ) is the image
of τ̃ (φ) under the canonical embedding

Λ3H1(S,Z) ↪→ H1(S,Z)⊗ Λ2H1(S,Z).

Proof. The dual of τ1
g (φ) is the map

Λ3H1(S) → Z

defined by

u ∧ v ∧ w 7→
∫

M(φ)

u ∧ v ∧ w.

Here we have identified H1(S) with H1(JacS) using the canonical isomorphism

ν∗ : H1(JacS) ∼→ H1(S).

The map ν(φ) : M → JacS collapses σ to the point 0. It follows that the image
of

ν(φ)∗ : H1(JacS) → H1(M)

lies in the subspace we are identifying with H1(S) in the decomposition (1) of
page 107. Since the restriction of ν(φ) to the fiber over the base point t = 0 of
S1 is the isomorphism ν∗, it follows that the diagram

H1(JacS)
ν(φ)∗−−−−→ H1(M)

ν∗
y

∥∥∥
H1(S) i−−−−→ H1(M)

commutes, where i is the inclusion given by the splitting (1). That is, all the
identifications we have made with H1(S) are compatible.

We will compute the dual of τ1
g (φ) using F (φ), which we regard as a homo-

morphism

F (φ) : H1(S)⊗ Λ2H1(S) → Z.
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It follows from Proposition 4.1 that this map takes u⊗ (v ∧ w) to∫
S

u ∧ fφ(v ∧ w).

The assertion that F (φ) lies in Λ3H1(S) is equivalent to the assertion that

F (φ)(u ⊗ (v ∧ w)) = F (φ)(v ⊗ (w ∧ u)) = F (φ)(w ⊗ (u ∧ v)),

which is easily verified using Proposition 4.1. The equality of F (φ) and τ1
g (φ)

follows as

τ1
g (φ)(u ∧ v ∧w) =

∫
M

u ∧ v ∧w = −
∫

M

u ∧ θ ∧ fφ(v ∧w) = F (φ)(u⊗ (v ∧w)).

�

We are now ready to give Johnson’s original definition of τ1
g . Denote the lower

central series of a group π by

π = π(1) ⊇ π(2) ⊇ π(3) ⊇ · · ·

We regard the cup product

Λ2H1(S,Z)→ H2(S,Z)≈ Z

as an element q of Λ2H1(S,Z).

Proposition 4.3. The commutator mapping

[ , ] : π1(S, x0)× π1(S, x0) → π1(S, x0)

induces an isomorphism Λ2H1(S,Z)/q→ π1(S, x0)(2)/π1(S, x0)(3).

Proof. This follows directly from the standard fact (see [44] or [36]) that if
F is a free group, the commutator induces an isomorphism

Λ2H1(F ) ∼→ F (2)/F (3)

and from the standard presentation of π1(S, x0). �

An element φ of T 1
g induces an automorphism of π1(S, x0). Since it acts

trivially on H1(S),
φ(γ)γ−1 ∈ π1(S, x0)(2)

for all γ ∈ π1(S, x0). From Proposition 4.3, it follows that φ induces a well
defined map

τ̂(φ) : H1(S,Z)→ Λ2H1(S,Z)/q

Using Poincaré duality, we may view this as an element L(φ) of

H1(S,Z)⊗
(
Λ2H1(S,Z)/q

)
.

Theorem 4.4. The image of F (φ) in H1(S,Z)⊗
(
Λ2H1(S,Z)/q

)
is L(φ).
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Proof. Since H1(S,Z)⊗
(
Λ2H1(S,Z)/q

)
is torsion-free, it suffices to show

that the image of F (φ) in

H1(S,Q) ⊗
(
Λ2H1(S,Q)/q

)
is L(φ). For the rest of this proof, all (co)homology groups have Q coefficients.

For all groups π with finite-dimensional H1( ,Q), the sequence

0 −→ H1(π) h∗−→
(
π/π(3)

)∗ [ , ]∗−−−→ Λ2H1(π) ∧−→ H2(π)(3)

of Q vector spaces is exact. Here ( )∗ denotes the dual vector space, h∗ the dual
Hurewicz homomorphism, and [ , ] the map induced by the commutator. This
can be proved using results in either [11, §2.1] or [48, §8].

We apply this sequence to the fundamental group of the mapping torus.
Choose m0 = (x0, 0) as the base point of M . Since M fibers over the circle
with fiber S, we have an exact sequence

1 → π1(S, x0) → π1(M,m0) → Z→ 0.

The section σ induces a splitting Z→ π1(M,m0).
Denote the image of 1 by σ. Observe that if γ ∈ π1(S, x0), then

σγσ−1 = φ(γ).

It follows that the inclusion π1(S, x0) ↪→ π1(M,m0) induces isomorphisms

π1(S, x0)(k) ≈ π1(M,m0)(k)

for all k > 1 and, as above, that σ induces an isomorphism

H1(M) = H1(S)⊕ QΣ,

where Σ denotes the homology class of σ. It also follows that for all a ∈ H1(S)

τ̃ (φ)(a) = [Σ, a] ∈ π1(M)(2)/π1(M)(3) ≈ π1(S)(2)/π1(S)(3).

Using Proposition 4.1 and the exact sequence (3), we see that for all u ∈
H1(S), the image of f∗φ(u) in

Λ2H1(S)/q

is [Σ, u], which is τ̂ (φ)(u) as we have seen. The result follows. �

The composite of the inclusion

Λ3H1(S,Z) ↪→ H1(S,Z)⊗ Λ2H1(S,Z)

with the quotient mapping

H1(S,Z)⊗ Λ2H1(S,Z)→ H1(S,Z)⊗
(
Λ2H1(S,Z)/q

)
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is injective. One way to see this is to tensor with Q and note that both of these
maps are maps of Spg-modules. One can then use the fact that Λ3H1(S) is the
sum of the first and third fundamental representations of Spg to check the result.
The following result is therefore a restatement of Theorem 4.2.

Corollary 4.5. L(φ) lies in the image of the canonical injection

Λ3H1(S,Z) ↪→ H1(S,Z)⊗
(
Λ2H1(S,Z)/q

)

and the corresponding point of Λ3H1(S) is τ1
g (φ).

In his fundamental papers, Johnson defines τ1
g (φ) to be L(φ). The other two

definitions we have given were stated in [33].

5. Picard groups

In [39], Mumford showed that

c1 : PicMg ⊗ Q → H2(Mg,Q)

is an isomorphism. Using Johnson’s computation of H1(Tg,Q) and the well-
known Theorem 5.3, we will prove the analogous statement for all Mn

g,r(L) when
g ≥ 3. The novelty lies in the variation of the level, and not in the variation
of the decorations r and n. The first, and principal, step is to establish the
vanishing of the H1(Mn

g,r(L)).

Proposition 5.1. Suppose that L is a finite-index subgroup of Spg(Z). If g ≥ 3,
then H1(Mn

g,r(L),Z) = 0.

Since H1( ,Z) is always torsion-free, it suffices to prove that H1(Mg(L),Q)
vanishes. We will prove a stronger result.

Proposition 5.2. Suppose that L is a finite-index subgroup of Spg(Z) and that
g ≥ 3. If V (λ) is an irreducible representation of Spg with highest weight λ, then

H1(Γn
g,r(L), V (λ)) =



Qr+n if λ = λ1;

Q if λ = λ3;

0 otherwise.

Consequently, H1(Mn
g,r(L),Z) vanishes for all r and n when g ≥ 3.

Proof. It follows from the Hochschild–Serre spectral sequence

Hr(L,Hs(T n
g,r ⊗ V (λ))) =⇒ Hr+s(Γn

g,r(L), V (λ))
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that there is an exact sequence

0 → H1(L, V (λ)) → H1(Γn
g,r(L), V (λ))

→ H0(L,H1(T n
g,r ⊗ V (λ))) d2−→ H2(L, V (λ)).

By a result of Ragunathan [42], the first term vanishes when g ≥ 2. By Theo-
rem 3.5, the third term vanishes except when λ is either λ1 or λ3. This proves
the result except when λ is either λ1 or λ3. In these exceptional cases, the third
term has rank r + n or 1, respectively. To complete the proof, we need to show
that the differential d2 is zero.

There are several ways to do this. Perhaps the most straightforward is to use
the result, due to Borel [7], that asserts that the last group vanishes when g ≥ 8.
This establishes the result when g ≥ 8. When r ≥ 1, the vanishing of dr for all
g ≥ 3 follows from the fact that the diagram

H0(L,H1(T n
g,r ⊗ V (λ))) d2−−−−→ H2(L, V (λ))x

x
H0(L,H1(T n

g+8,r ⊗ V (λ))) d2−−−−→ H2(Lg+8, V (λ))

commutes. Here Lg+8 is any finite-index subgroup of Spg+8(Z) such that

Lg+8 ∩ Spg(Z)⊆ L

and the vertical maps are induced by the “stabilization map”

Γn
g,r(L) → Γn

g+8, r(Lg+8).

When r = 0 and λ = λ1, there is nothing to prove. This leaves only the case
r = 0 and λ = λ3, which follows from the fact that the diagram

H0(L,H1(T n
g ⊗ V (λ))) d2−−−−→ H2(L, V (λ))x

x
H0(L,H1(T n

g,1 ⊗ V (λ))) d2−−−−→ H2(L, V (λ)) ,

which arises from the homomorphism Γn
g,1 → Γn

g , commutes. �

Denote the category of Zmixed Hodge structures by H. Denote the group of
“integral (0, 0) elements” HomH(Z, H) of a mixed Hodge structure H by ΓH .

Suppose that X is a smooth variety. Since H1(X,Z) is torsion-free, we can
define

W1H
1(X,Z) = W1H

1(X,Q) ∩H1(X,Z).

This is a polarized, torsion-free Hodge structure of weight 1. Set

JH1(X) =
W1H

1(X, C )
W1H1(X,Z)+ F 1W1H1(X, C )

.
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This is a polarized Abelian variety.

Theorem 5.3. If X is a smooth variety, there is a natural exact sequence

0 → JH1(X) → PicX → ΓH2(X,Z(1))→ 0.

Alternatively, this theorem may be stated as saying that the cycle map

PicX → H2
H(X,Z(1))

is an isomorphism, where H•
H denotes Beilinson’s absolute Hodge cohomology,

the refined version of Deligne cohomology defined in [4].

Proof. Choose a smooth completion X of X for which X −X is a normal
crossings divisor D in X with smooth components. Denote the dimension of X
by d. From the usual exponential sequence, we have a short exact sequence

0 → JH1(X) → PicX → ΓH2(X,Z)→ 0.

From [12, (1.8)], we have an exact sequence

CH0(D) → PicX → PicX → 0.

The Gysin sequence

0 → H1(X) → H1(X) → H2d−2(D)(−2d) → H2(X) →
H2(X) → H2d−3(D)(−2d)

is an exact sequence of ZHodge structures. Since H2d−2(D)(−2d) is torsion-free
and of weight 2, it follows that

W1H
1(X,Z) = H1(X,Z),

and therefore that JH1(X) = JH1(X). Next, since each component Di of D is
smooth, it follows that

H2d−3(D)(−2d) =
⊕

i

H1(Di,Z)(−1),

and is therefore torsion-free and of weight 3. It follows that the sequence

H2d−2(D)(−2d) → ΓH2(X) → ΓH2(X) → 0

is exact. Since the cycle map

CH0(D) → H2d−2(D)

is an isomorphism [12, (1.5)], the result follows. �

It is now an easy matter to show that the Picard groups of the Mn
g,r(L) are

finitely generated.
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Theorem 5.4. Suppose that L is a finite-index subgroup of Spg(Z). If g ≥ 3,
then for all r, n, the Chern class map

c1 : PicMn
g,r(L) → ΓH2(Mn

g,r(L),Z)

is an isomorphism when Γn
g,r(L) is torsion-free, and is an isomorphism after

tensoring with Q in general.

Proof. The case when Γn
g,r(L) is torsion-free follows directly from Proposi-

tion 5.1 and Theorem 5.3. To prove the assertion in general, choose a finite-index
normal subgroup L′ of L such that Γn

g,r(L
′) is torsion-free. Let

G = Γn
g,r(L)/Γn

g,r(L
′) ≈ L/L′.

Then it follows from the Teichmüller description of moduli spaces that the pro-
jection

π : Mn
g,r(L

′) →Mn
g,r(L)

is a Galois covering with Galois group G. It follows from the first case that

c1 : PicMn
g,r(L

′) → ΓH2(Mn
g,r(L

′),Z)

is a G-equivariant isomorphism. The result now follows as the projection π

induces isomorphisms

PicMn
g,r(L)⊗ Q ≈ H0(G, PicMn

g,r(L
′)⊗ Q)

and

ΓH2(Mn
g,r(L),Q) ≈ ΓH0(G, H2(Mn

g,r(L
′),Q)).

�

If we knew that H2(Tg,Q) were finite-dimensional and a rational representa-
tion of Spg, we would know from Borel’s work [6] that H2(Mn

g,r(L),Q) would be
independent of the level L, once g is sufficiently large; g ≥ 8 should do it [7]. It
would then follow, for sufficiently large g, that the Picard number of Mn

g,r(L) is
n+r+1. At present it is not even known whetherH2(Tg,Q) is finite-dimensional.
The computation of this group, and the related problem of finding a presenta-
tion of Tg, appear to be deep and difficult. It should be mentioned that the only
evidence for the belief that the Picard number of each Mg(L) is one comes from
Harer’s computation [25] of the Picard numbers of the moduli spaces of curves
with a distinguished theta characteristic.
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6. Normal functions

In this section, we define abstract normal functions that generalize the normal
functions of Poincaré and Griffiths. We begin by reviewing how a family of
homologically trivial algebraic cycles in a family of smooth projective varieties
gives rise to a normal function.

Suppose that X is a smooth variety. A homologically trivial algebraic d-cycle
in X canonically determines an element of

Ext1H(Z, H2d+1(X,Z(−d))).

This extension is obtained by pulling back the exact sequence

0 → H2d+1(X,Z(−d))→ H2d+1(X,Z,Z(−d))→ H2d(Z,Z(−d))→ · · ·

of mixed Hodge structures along the inclusion

Z→ H2d(|Z|,Z(−d))

that takes 1 to the class of Z.
When H is a mixed Hodge structure all of whose weights are non-positive,

there is a natural isomorphism

JH ≈ Ext1H(Z, H),

where
JH =

HC

F 0HC +HZ

.

(This is well-known; see [9], for example. Our conventions will be taken from
[18, (2.2)].)

When X is projective, Poincaré duality provides an isomorphism of the com-
plex torus JH2d+1(X,Z(−d)) with the Griffiths intermediate jacobian

HomC (F dHd+1(X), C )/H2d+1(X,Z).

The point in JH2d+1(X,Z(d)) corresponding to the cycle Z under this isomor-
phism is

∫
Γ
, where Γ is a real 2d+ 1 chain that satisfies ∂Γ = Z.

Now suppose that X → T is a family of smooth projective varieties over a
smooth base T . Suppose that Z is an algebraic cycle in X , which is proper over
T of relative dimension d. Denote the fibers of X and Z over t ∈ T by Xt and Zt.

The set of H2d+1(Xt,Z(−d)) form a variation of Hodge structure V over T of
weight −1. We can form the relative intermediate jacobian

Jd → T,

which has fiber JH2d+1(Xt,Z(−d)) over t ∈ T . The family of cycles Z defines a
section of this bundle. Such a section is what Griffiths calls the normal function
of the cycle Z [14]. Griffiths’ normal functions generalize those of Poincaré.



THE TORELLI GROUPS AND GEOMETRY 117

We will generalize this notion further. Before we do, note that the elements
of Ext1H(Z, H2d+1(Xt,Z(−d))) defined by the cycles Zt fit together to form a
variation of mixed Hodge structure over T . It follows from the main result of
[15] that this variation is good in the sense of [47] along each curve in T , and is
therefore good in the sense of Saito [43].

Suppose that T is a smooth variety and that V → T is a variation of Hodge
structure over T of negative weight. Denote by JV the bundle over T whose
fiber over t ∈ T is

JVt ≈ Ext1H(Z, Vt).

Definition 6.1. A holomorphic section s : T → JV of JV → T is a normal
function if it defines an extension

0 → V → E → ZT → 0

in the category H(T ) of good variations of mixed Hodge structure over T .
Remark 6.2. We know from the preceding discussion that families of homolog-
ically trivial cycles in a family X → T define normal functions in this sense.

The asymptotic properties of good variations of mixed Hodge structure guar-
antee that these normal functions have nice properties.

Lemma 6.3 (Rigidity). If V → T and V′ → T are two good variations of
mixed Hodge structure over T with the same fiber Vt0 (viewed as a mixed Hodge
structure) over some point t0 of T and with the same monodromy representations

π1(T, t0) → Aut Vt0 ,

then V1 and V2 are isomorphic as variations.

Proof. The proof is a standard application of the theorem of the fixed part.
The local system HomZ(V,V′) underlies a good variation of mixed Hodge struc-
ture. From Saito’s work [43], we know that each cohomology group of a variety
with coefficients in a good variation of mixed Hodge structure has a natural
mixed Hodge structure. So, in particular,

H0(T,HomZ(V,V′))

has a mixed Hodge structure, and the restriction map

H0(T,HomZ(V,V′)) → HomZ(Vt0 , V
′
t0)

is a morphism. The result now follows since there are natural isomorphisms

H0(T,HomZ(V,V′)) ≈ HomZπ1(T,t0)(Vt0 , V
′
t0)

and
ΓH0(T,HomZ(V,V′)) ≈ HomH(T )(V,V′),
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where H(T ) denotes the category of good variations of mixed Hodge structure
over T . �

Corollary 6.4. Two normal functions s1, s2 : T → JV are equal if and only if
there is a point t0 ∈ T such that s1(t0) = s2(t0) and such that the two induced
homomorphisms

(sj)∗ : π1(T, t0) → π1(JV , s1(t0))

are equal. �

7. Extending normal functions

The strong asymptotic properties of variations of mixed Hodge structure imply
that almost all normal functions extend across subvarieties where the original
variation of Hodge structure is non-singular. Suppose thatX is a smooth variety
and that V is a variation of Hodge structure over X of negative weight. Denote
the associated intermediate jacobian bundle by J → X .

Theorem 7.1. Suppose that U is a Zariski open subset of X and s : U → J |U
is a normal function defined on U . If the weight of V is not −2, then s extends
to a normal function s̃ : X → J .

Proof. Write U = X − Z. By Hartog’s Theorem, it suffices to show that
s extends to a normal function on the complement of the union of the singular
locus of Z and the union of the components of Z of codimension ≥ 2 in X . That
is, we may assume that Z is a smooth divisor.

The problem of extending s is local. By taking a transverse slice, we can
reduce to the case where X is the unit disk ∆ and Z is the origin. In this case,
we have a variation of Hodge structure over ∆. The normal function s : ∆∗ → J
corresponds to a good variation of mixed Hodge structure E over the punctured
disk ∆∗, which is an extension

0 → V|∆∗ → E → Z∆∗ .

To prove that the normal function extends, it suffices to show that the mon-
odromy of E is trivial, for then the local system E extends uniquely as a flat
bundle to ∆ and the Hodge filtration extends across the origin as E is a good
variation.

Since V is defined on the whole disk, it has trivial monodromy. It follows that
the local monodromy operator T of E satisfies

(T − I)2 = 0

and that the local monodromy logarithmN is T −I. Since E is a good variation,
it has a relative weight filtration M• [47], which is defined over Q and satisfies
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NMl ⊆Ml−2. From the defining properties of M• ([47, (2.5)]), we have

M0 = E , Mm = V, and Mm−1 = 0,

where m is the weight of V.
In the case m = −1, the proof that N = 0 is simpler. Since this case is the

most important (as it is the one that applies to normal functions of cycles), we
prove it first. The condition m = −1 implies that M−2 = 0. Since NM0 ⊆M−2,
it follows that N = 0 and consequently, that the normal function extends.

In general, we use the defining property [47, (3.13.iii)] of good variations of
mixed Hodge structure, which says that

(Et,M•, F •lim)

is a mixed Hodge structure and N is a morphism of mixed Hodge structures of
type (−1,−1), where F •lim denotes the limit Hodge filtration. In this case, N
induces a morphism

Z≈ GrM
0 → GrM

−2,

which is zero if m 6= −2. Since N is a morphism of mixed Hodge structures, the
vanishing of this map implies the vanishing of N . �

When m = −2, there are normal functions that don’t extend. For example, if
we take V = Z(1), the bundle of intermediate jacobians is the bundleX×C ∗ and
the normal functions are precisely the invertible regular functions f : X → C .
For details see, for example, [20, (9.3)].

8. Normal functions over Mn
g,r(L)

Throughout this section, we will assume that g ≥ 3 and L is a finite-index
subgroup of Spg(Z) such that Γn

g,r(L) is torsion-free. With this condition on L,
Mn

g,r(L) is smooth. Each irreducible representation of Spg defines a polarized
Q variation of Hodge structure over Mn

g,r(L), which is unique up to Tate twist:
see Proposition 9.1. It follows that every rational representation of Spg underlies
a polarized Z variation of Hodge structure over Mg(L).

Lemma 8.1. If V →Mn
g,r(L) is a good variation of Hodge structure of negative

weight whose monodromy representation

Γn
g,r(L) → Aut V◦ ⊗ Q

factors through a rational representation of Spg and contains no copies of the
trivial representation, the group of normal functions s : Mn

g,r(L) → JV is finitely
generated of rank bounded by

dimH1(Γn
g,r(L), VZ).
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Proof. A normal function corresponds to a variation of mixed Hodge struc-
ture whose underlying local system is an extension

0 → V → E → Z→ 0

of the trivial local system by V.
One can form the semidirect product Γn

g,r(L)n VZ, where the mapping class
group acts on VZ via a representation L→ AutV . The monodromy representa-
tion of the local system E gives a splitting

ρ : Γn
g,r(L) → Γn

g,r(L)n VZ

of the natural projection

Γn
g,r(L)n VZ→ Γn

g,r(L).(4)

The splitting is well defined up to conjugation by an element of VZ.
The first step in the proof is to show that an extension of Q by V in the cate-

gory of Q variations of mixed Hodge structure is determined by its monodromy
representation. Two such variations can be regarded as elements of the group

Ext1H(Mn
g,r(L))(Q,V).(5)

It is easily seen that their difference is an extension whose monodromy repre-
sentation factors through the homomorphism Γn

g,r → Spg(Q). It now follows
from Proposition 9.2 and the assumption that V contain no copies of the trivial
representation that this difference is the trivial element of (5). The assertion
follows.

From [35, p. 106] it follows that the set of splittings of (4), modulo conjugation
by elements of VZ, is isomorphic to

H1(Γn
g,r(L), VZ).

It follows from Proposition 5.2 that this group is finitely generated. Since normal
functions are determined by their monodromy, the result follows. �

If V contains the trivial representation, the group of normal functions is an
uncountably generated divisible group. For example, if V has trivial monodromy,
then all such extensions are pulled back from a point. The set of normal functions
is then

Ext1H(Z, Vo) ≈ JVo,

where Vo denotes the fiber over the base point.
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Theorem 8.2. If, in addition, the fiber over the base point is an irreducible
Spg-module with highest weight λ and Hodge weight m, then the group of normal
functions s : Mn

g,r(L) → JV is finitely generated of rank

dimH1(Γn
g,r(L), V (λ)) =




1 if λ = λ3 and m = −1;

r + n if λ = λ1 and m = −1;

0 otherwise.

The upper bounds for the rank of the group of normal functions follow from
Lemma 8.1, Proposition 5.2, and the fact that the monodromy representation
associated to a normal function has to be a morphism of variations of mixed
Hodge structure Proposition 9.3. It remains to show that these upper bounds
are achieved. We do this by explicitly constructing normal functions.

Multiples of the generators mod torsion of the normal functions associated to
V (λ1) can be pulled back fromM1

g(L) along the n+r forgetful mapsMn
g,r(L) →

M1
g(L). There the normal function can be taken to be the one that takes (C, x)

to the point (2g−2)x−κC of Pic0 C, where κC denotes the canonical class of C.
A multiple of the normal function associated to λ3 can be pulled back from

Mg(L) along the forgetful map Mn
g,r(L) →Mg(L). We will describe how this

normal function over Mg(L) arises geometrically. If C is a smooth projective
curve of genus g and x ∈ C, we have the Abel–Jacobi mapping

νx : C → JacC.

Denote the algebraic one-cycle νx∗C in JacC by Cx. Denote the cycle i∗Cx by
C−x , where i : JacC → JacC takes u to −u. The cycle Cx − C− is homologous
to zero, and therefore defines a point ẽ(C, x) in JH3(JacC,Z(−1)). Pontrjagin
product with the class of C induces a homomorphism

A : JacC → JH3(JacC,Z(−1)).

Denote the cokernel of A by JQ(JacC). It is not difficult to show that

ẽ(C, x) − ẽ(C, y) = A(x − y).

It follows that the image of ẽ(C, x) in JQ(JacC) is independent of x. The image
will be denoted by e(C).

The primitive decomposition

H3(JacC,Q) = H1(JacC,Q) ⊕ PH3(JacC,Q)

is the decomposition of H3(JacC) into irreducible Spg-modules, the highest
weights of the pieces being λ1 and λ3, respectively.
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Fix a level L so that Mg(L) is smooth. The union of the JQ(JacC) forms
the bundle Jλ3 of intermediate jacobians over Mg(L) associated to the varia-
tion of Hodge structure of weight −1 and monodromy the third fundamental
representation V (λ3) of Spg.

Theorem 8.3. The section e of Jλ3 is a normal function. Every other normal
function associated to this bundle is, up to torsion, a half-integer multiple of e.

Proof. This result is essentially proved in [19]. We give a brief sketch.
To see that e is a normal function, consider the bundle of intermediate jaco-

bians JH3(JacC,Z(−1)) over M1
g(L). It follows from Remark 6.2 that (C, x) 7→

ẽ(C, x) is a normal function. The argument of [19, p. 97] shows that there is
a canonical quotient of the variation corresponding to ẽ. (It is the extension E

in [19, display 10].) This variation does not depend on the base point x, and is
therefore constant along the fibers of M1

g(L) →Mg(L). It follows that this quo-
tient variation is the pullback of a variation on Mg(L). This quotient variation
is classified by e. It follows that e is a normal function.

Each normal function f associated to this bundle of intermediate jacobians
induces an L-equivariant homomorphism

f∗ : H1(Tg,Z)→ H1(JQ,Z)≈ Λ3H1(C,Z)/H1(C,Z).

It follows from a monodromy computation in [18, (4.3.5)] (see also [19, (6.3)])
that e∗ is twice the Johnson homomorphism

τg : H1(Tg,Z)→ Λ3H1(C,Z)/H1(C,Z).

Since this homomorphism is primitive—that is, not a non-trivial integral multiple
of another such normal function—all other normal functions associated to λ3

must have monodromy representations that are half-integer multiples of that of e.
As we have seen in the proof of Lemma 8.1, such normal functions are determined,
up to torsion, by their monodromy representation. The result follows. �

I don’t know how to realize e/2 as a normal function in this sense. But I
do know to construct a more general kind of normal function associated to the
one-cycle C in JacC that does realize e/2. It is a section of a bundle whose fiber
over C is a principal JQ(JacC) bundle. The details may be found in [19, p. 92].
Remark 8.4. Using the results in Section 9 and Theorem 8.2, one can easily
show that the rank of the group of normal functions in the theorem above is

dim Γ HomSpg(Q)(H1(T n
g,r,Q), VQ,C ),

where H1(T n
g,r) is given the Hodge structure of weight −1 described in §9.
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9. Technical results on variations over Mg

In this section we prove several technical facts about variations of mixed Hodge
structure over moduli spaces of curves that were used in Section 8. Throughout
we will assume that L has been chosen so that Γn

g,r(L) is torsion-free.

Proposition 9.1. The local system V(λ) over Mn
g,r(L) associated to the irre-

ducible representation of Spg with highest weight λ underlies a good Q variation
of (mixed) Hodge structure, and this variation is unique up to Tate twist.

Proof. First observe that the local system H corresponding to the fundamen-
tal representation V (λ1) occurs as a variation of Hodge structure over Mn

g,r(L)
of weight 1; it is simply the local system R1π∗Q associated to the universal curve
C →Mn

g,r(L). The existence of the structure of a good variation of Hodge struc-
ture on the local system corresponding the the Spg-module with highest weight
λ now follows using Weyl’s construction of the irreducible representations of
Spg—see, for example, [13, §17.3].

To prove uniqueness, suppose that V and V′ are both good variations of mixed
Hodge structure corresponding to the same irreducible Spg-module. From Saito
[43], we know that

HomΓn
g,r(L)(V,V′)

has a mixed Hodge structure. By Schur’s lemma, this group is one-dimensional.
It follows that this group is isomorphic to Q(n) for some n, and therefore that
V′ = V(n). �

Proposition 9.2. If E is a good variation of Q mixed Hodge structure over
Mg(L) whose monodromy representation factors through a rational represen-
tation of the algebraic group Spg, then for each dominant integral weight λ of
Spg, the λ-isotypical part Eλ of E is a good variation of mixed Hodge structure.
Consequently,

E =
⊕

λ

Eλ

in the category of good variations of Q mixed Hodge structure over Mg(L). More-
over, for each λ, there is a mixed Hodge structure Aλ such that Eλ = Aλ⊗V(λ).

Proof. Fix λ, and let V(λ) → Mg(L) be a variation of Hodge structure
whose fiber over some fixed base point is the irreducible Spg-module with highest
weight λ. It follows from Saito’s work [43] that

Aλ := HomΓg(L)

(
V(λ), E

)
= H0

(
Mg(L),HomQ(V(λ), E )

)
is a mixed Hodge structure. Let

E ′ =
⊕

λ

Aλ ⊗ V(λ).
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This is a good variation of mixed Hodge structure that is isomorphic to E as a
Q local system. Now

HomΓg(L)(E ′ , E) =
⊕

λ

A∗λ ⊗HomΓg(L)(V(λ), E ) =
⊕

λ

HomQ(Aλ, Aλ).

The element of this group that corresponds to id : Aλ → Aλ in each factor is an
isomorphism of local systems and an element of

Γ HomΓg(L)(E ′ , E).

It is therefore an isomorphism of variations of mixed Hodge structure. �

Now suppose that g ≥ 3. The local system
{
H1(T n

g,r)
}

over Mn
g,r(L) naturally underlies a variation of mixed Hodge structure of weight

−1. The λ1 isotypical component is simply r + n copies of the variation V(λ1).
We shall denote this variation by H 1 (T n

g,r).

Proposition 9.3. Suppose that V is a variation of mixed Hodge structure over
Mn

g,r(L) whose monodromy representation factors through a rational represen-
tation of Spg. If E is an extension of Q by V in the category of variations
of mixed Hodge structure over Mn

g,r(L), then the restriction of the monodromy
representation to H1(T n

g,r),

H 1 (T n
g,r) → V,

is a morphism of variations of mixed Hodge structure.

Proof. It suffices to prove the assertion for Q variations of mixed Hodge
structure. We will prove the case n = r = 0, the proofs of the other cases being
similar.

If the monodromy representation of E is trivial, the result is trivially true. So
we shall assume that the monodromy representation is non-trivial.

Using the previous result, we can write

V =
⊕

λ

Vλ

as variations of mixed Hodge structure over V. By pushing out the extension

0 → V → E → Q → 0

along the projection V → Vλ3 onto the λ3 isotypical component, we obtain an
extension

0 → Vλ3 → E ′ → Q → 0.
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It follows from Johnson’s computation that the restricted monodromy represen-
tation of E factors through that of E ′ :

H 1 (Tg) → Vλ3 → V.

We have therefore reduced to the case where V = Vλ3 .
Let V(λ3) be the unique variation of Hodge structure of weight−1 overMg(L)

with monodromy representation given by λ3. Let S be the variation of mixed
Hodge structure over Mg(L) given by the cycle C−C− that was constructed in
Section 8. It is an extension of Q by V(λ3).

By [43], the exact sequence

0 → HomΓg(L)(S,Vλ3) → HomΓg(L)(S, E′ ) → HomΓg(L)(S,Q)

is a sequence of mixed Hodge structures. The group on the right is easily seen
to be isomorphic to Q(0); it is generated by the projection S→ Q. The group
on the left is easily seen to be zero. It follows that

HomΓg(L)(S, E′ ) ≈ Q(0).

Since the monodromy representation of S is a morphism, so are those of E ′ and E .
�

10. Normal functions and cycles mod algebraic equivalence

As our first application of the classification of normal functions, we show that
certain homologically trivial cycles defined over Mn

g,r(L) are of infinite order
modulo algebraic equivalence for the general curve. We first recall a basic result,
which follows from the fact that algebraic equivalences are parameterized by
curves, and because the correspondence corresponding to a cycle algebraically
equivalent to zero induces a map from the jacobian of the base curve to the
appropriate intermediate jacobian of the ambient variety.

Proposition 10.1. Suppose that X is a smooth projective variety. If Z is a
d-cycle that is algebraically equivalent to zero, the corresponding point ν(Z) of
Jd(X) lies in an abelian subvariety of Jd(X). �

Lemma 10.2. Suppose that V → M is a polarized variation of Hodge structure
of weight −1. If the monodromy representation of V is irreducible, then either
JV is a family of abelian varieties, or else the set

{m ∈M : JVm contains an abelian variety of positive dimension}

is a countable union of proper subvarieties of M.
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Proof. There are only a countable number of orthogonal decompositions

Vo,Q = A⊕B

of the fiber over the base point o ∈ M. For each such decomposition there is
the idempotent pA ∈ EndVo, which is orthogonal projection onto A. This is,
in general, a multivalued section of the local system EndQV. The locus of the
m ∈M over which the splitting holds in the category of Hodge structures is the
locus over which pA is a Hodge class. This is an analytic subvariety of M. In the
case where A is an abelian variety and this locus is all of M, the irreducibility
of the monodromy implies that A and all its parallel translates span Vo. Since
A has level 1 as a Hodge structure, this implies that Vo, and therefore V also,
has level 1. That is, JV is a family of abelian varieties. �

Now suppose that g ≥ 3. As in the previous section, we shall denote the
unique Q-variation of Hodge structure over Mn

g,r(L) of weight −1 associated
to V (λ3) by V(λ3). We shall denote the fiber over C ∈ Mn

g,r(L) of a family
W →Mn

g,r(L) by WC .

Theorem 10.3. Suppose that π∗ : X → Mn
g,r(L) is a family of projective va-

rieties, smooth over the generic curve, and that Z is a family of homologically
trivial algebraic d-cycles in X defined generically over Mn

g,r(L). If the local
system R2d+1π∗QX (d + 1) contains a copy of the variation V(λ3), and if the
component of the normal function of Z in the corresponding bundle of interme-
diate jacobians Jλ3 is of infinite order, then, for the general curve C, the cycle
ZC has infinite order modulo algebraic equivalence.

Proof. By Theorem 7.1, the normal function of Z is defined over all of the
moduli space. Since the λ3-component ν of this normal function has infinite or-
der, and since Jλ3 is not a family of abelian varieties, it follows from Lemma 10.2
that, for the general curve, ν(C) is of infinite order modulo the maximal abelian
subvariety of JVλ3,C . The result follows. �

Now take X to be the Jacobian of the universal curve over M1
g(L), and Z to

be the cycle whose fiber over (C, x) ∈M1
g is C(a)

x − i∗C
(a)
x . Here

C(a)
x := {x1 + · · ·+ xa − ax : xj ∈ C} ⊆ JacC

and i is the involution D 7→ −D of the jacobian. Applying the previous result
and [19, (8.8)] we obtain the following result of Ceresa [10].

Corollary 10.4. For the general curve C of genus g and g ≥ 3, the cycle
C

(a)
x −i∗C(a)

x is of infinite order modulo algebraic equivalence when 1 ≤ a < g−1.
�
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When g = 2, the cycle Cx − i∗Cx is algebraically equivalent to zero because,
mod algebraic equivalence, we may assume x to be a Weierstrass point. In this
case, the cycle is actually zero.

11. The Harris–Pulte theorem

As an application of the classification of normal functions above, we give a
new proof of the Harris–Pulte theorem, which relates the mixed Hodge structure
on π1(C, x) to the normal function of the cycle Cx−C−x when g ≥ 3. The result
we obtain is slightly stronger.

Fix a level so that Γ1
g(L) is torsion-free. Denote by L the Z variation of Hodge

structure of weight −1 over M1
g(L) whose fiber over the pointed curve (C, x) is

H1(C). Denote the corresponding holomorphic vector bundle by L. The cycle
Cx − C−x defines a normal function ζ, which is a section of

JΛ3L →M1
g(L).

Denote the integral group ring of π1(C, x) by Zπ1(C, x), and its augmentation
ideal by I(C, x), or I when there is no possibility of confusion. There is a
canonical mixed Hodge structure on the truncated augmentation ideal

I(C, x)/I3.

(See, for example, [16].) It is an extension

0 → H1(C)⊗2/q → I(C, x)/I3 → H1(C) → 0,

where q denotes the symplectic form. Tensoring with H1(C) and pulling back
the resulting extension along the map Z→ H1(C)⊗2, we obtain an extension

0 → H1(C)⊗
(
H1(C)⊗2/q

)
→ E(C, x) → Z→ 0.

Since the set of I(C, x) form a good variation of mixed Hodge structure over
M1

g(L) [17], the set of E(C, x) form a good variation of mixed Hodge structure
E over M1

g(L). It therefore determines a normal function ρ, which is a section of

JL ⊗
(
L⊗2/q

)
→M1

g(L).

Define the map
Φ : JΛ3L → JL ⊗ (L⊗2/q)

to be the one induced by the map

Λ3L → L⊗3 → L → L ⊗ (L⊗2/q);

the first map is defined by

x1 ∧ x2 ∧ x3 7→
∑

σ

sgn(σ)xσ(1) ⊗ xσ(2) ⊗ xσ(3)
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where σ ranges over all permutations of {1, 2, 3}.
Our version of the Harris–Pulte Theorem is:

Theorem 11.1. The image of ζ under Φ is 2ρ.

Proof. The proof uses Corollary 6.4. It is a straightforward consequence of
Corollary 4.5 that the monodromy representations of Φ(ζ) and 2ρ are equal. It is
also a straightforward matter to use functoriality to show that both Φ(ζ) and 2ρ
vanish at (C, x) when C is hyperelliptic and x is a Weierstrass point [16, (7.5)].

�

12. The Franchetta conjecture for curves with a level

Suppose that L is a finite-index subgroup of Spg(Z), not necessarily torsion-
free. Denote the generic point of Mg(L) by η. There is a universal curve defined
generically over Mg(L). Denote its fiber over η by Cg(L)η. In the statement
below, S denotes a compact oriented surface of genus g.

Theorem 12.1. For all g ≥ 3 and all finite-index subgroups L of Spg(Z), the
group PicCg(L)η is finitely generated of rank one. The torsion subgroup is iso-
morphic to H0(L,H1(S,Q/Z)). Modulo torsion, either it is generated by the
canonical bundle, or by a divisor of degree g − 1.

This has a concrete statement when L = Spg(Z)(l), the congruence subgroup
of level l of Spg(Z). It is not difficult to show that the only torsion points of
JacS invariant under L are the points of order l. That is,

H0(L,H1(S,Q/Z)) ≈ H1(S,Z/lZ).

In this case we shall denote Cg(L)η by Cg(l)η. During the proof of the theorem,
we will show that, mod torsion, PicCg(l)η is generated by a theta characteristic
when l is even. Combining this with the theorem, we have:

Corollary 12.2. If g ≥ 3, then for all l ≥ 0, PicCg(l)η is a finitely generated
group of rank one with torsion subgroup isomorphic to H1(S,Z/lZ). Modulo
torsion, Pic Cg(l)η is generated by a theta characteristic when l is even, and by
the canonical bundle when l is odd. �

The case g = 2, if true, should follow from Mess’s computation of H1(T2) [37].
One should note that Mess proved that T2 is a countably generated free group.

Sketch of proof of Theorem 12.1. We first suppose that L is torsion-
free. In this case, the universal curve is defined over all of Mg(L). Denote the
restriction of it to a Zariski open subset U of Mg(L) by Cg(L)U . Set

PicCg/U Cg(L) = coker{PicU → PicCg(U)}.
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Then
PicCg(L)η = lim

−→
U

PicCg/U Cg(L),

where U ranges over all Zariski open subsets of Mg(L). There is a natural
homomorphism

deg : PicCg/U Cg → Z

given by taking the degree on a fiber. Denote deg−1(d) by Picd
Cg/U Cg(L).

We first compute Pic0 Cg(L)η. Each element of this group can be represented
by a line bundle over Cg(L)U whose restriction to each fiber of π : Cg(L)U → U

is topologically trivial. This line bundle has a section. By tensoring it with the
pullback of a line bundle on U , if necessary, we may assume that the divisor
of this section intersects each fiber of π in only a finite number of points. We
therefore obtain a normal function

s : U → Pic0
Cg/U Cg(L).

Since the associated variation of Hodge structure is the unique one of weight
−1 associated to V (λ1), it follows from Theorem 8.2 and Theorem 7.1 that this
normal function is torsion. It follows that

Pic0 Cg(L)η = Pic0
Cg/U Cg(L) = H0(L,H1(S,Q/Z)).

Since this group is isomorphic to H1(S,Z/lZ) when L is the congruence l sub-
group of Spg(Z), and since every finite-index subgroup of Spg(Z) contains a
congruence subgroup by [3], it follows that Pic0 Cg(L)η is finite for all L.

The relative dualizing sheaf ω of Cg(L)U gives an element of Pic2g−2 Cg(L)η.
Denote the greatest common divisor of the degrees of elements of PicCg(L)η by
d. Observe that d divides 2g− 2. Let m = (2g− 2)/d. We will show that m = 1
or 2.

Choose an element δ of Picd Cg(L)η. Then

ω −mδ ∈ Pic0 Cg(L)η

and is therefore a torsion element of order k, say. Replace L by

L′ = L ∩ Spg(Z)(km).

Observe that the natural map

Pic0 Cg(L)η → Pic0 Cg(L′)η

is injective. We can find
µ ∈ Pic0 Cg(L′)η

such that mµ = ω−mδ. Then δ+µ is an m-th root of the canonical bundle ω. It
follows from a result of Sipe [46] that the only non-trivial roots of the canonical
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bundle that can be defined over Mg(L) are square roots: see Theorem 13.3.
This implies that m divides 2, as claimed.

It also follows from Theorem 13.3 that square roots of the canonical bundle
are defined over Mg(l) if and only if l is even. Combined with the argument
above, this shows that, mod torsion, Pic0 Cg(l)η is generated by ω if l is odd, and
by a square root of ω if l is even.

Our final task is to reduce the general case to that where L is torsion-free.
For arbitrary L, we have

PicCg(L)η = lim
−→
U

PicCg/U Cg(L),

where U ranges over all smooth Zariski open subsets ofMg(L). Choose a torsion-
free finite-index normal subgroup L′ of L and a smooth Zariski open subset U of
Mg(L). Denote the inverse image of U in Mg(L′) by U ′. Then the projection
U ′ → U is a Galois cover with Galois group G = L/L′. It follows that

PicCg/U Cg(L) = PicCg/U ′ Cg(L′)G.

Since π1(U) surjects onto Γg(L), and therefore onto L, the result follows. �

Denote the universal curve over the generic point η of Mn
g,r(l) by Cn

g,r(l)η.
The proof of the following more general result is similar to that of Theorem
12.1.

Theorem 12.3. If g ≥ 3, then for all l ≥ 0, PicCn
g,r(l)η is a finitely generated

group of rank r+n+1 whose torsion subgroup is isomorphic to H1(S,Z/lZ). Each
of the n marked points and the anchor point of each of the r marked cotangent
vectors gives an element of Pic1 Cn

g,r(l)η. The pairwise differences of these points
generate a subgroup of Pic0 Cn

g,r(l)η of rank r + n − 1. Moreover, Pic0 Cn
g,r(l)η

is generated by these differences modulo torsion, and PicCn
g,r(l)η is generated

modulo Pic0 Cn
g,r(l)η by the class of one of the distinguished points together with

a theta characteristic when l is even, and by the canonical divisor when l is odd.
�

Note that the independence of the pairwise difference of the points follows
from the discussion following Theorem 8.2.

13. The monodromy of roots of the canonical bundle

In this section we compute the action of Γg on the set of n-th roots of the
canonical bundle of a curve of genus g ≥ 3. This computation is a slight refine-
ment of a result of P. Sipe [46].

If L is an n-th root of the tangent bundle of a smooth projective curve C,
its dual is an n-th root of the canonical bundle. That is, there is a one-one
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correspondence between n-th roots of the canonical bundle and n-th roots of
the tangent bundle of a curve. For convenience, we shall work with roots of the
tangent bundle.

The first point is that roots of the tangent bundle are determined topologically
(see [2, §3] and [46]): denote the C ∗ bundle associated to the holomorphic tangent
bundle TC of C by T ∗. Indeed, an n-th root of TC is a cyclic covering of T ∗

of degree n, which has degree n on each fiber. The complex structure on such a
covering is uniquely determined by that on T ∗.

The first Chern class of TC is 2−2g. So if R is an n-th root of K, the integer
n divides 2g − 2. Since the Euler class of T ∗ is 2− 2g, it follows from the Gysin
sequence that there is a short exact sequence

0 → Z/nZ→ H1(T ∗,Z/nZ)→ H1(C,Z/nZ)→ 0.(6)

By covering space theory, an n-th root of TC is determined by a homomorphism

H1(T ∗,Z/nZ)→ Z/nZ

whose composition with the inclusion Z/nZ ↪→ H1(T ∗,Z/nZ) is the identity.
That is, we have the following result:

Proposition 13.1. There is a natural one-to-one correspondence between n-th
roots of the the canonical bundle of C and splittings of the sequence (6).

�

Throughout this section, we will assume g ≥ 3. Denote the set of n-th roots
of TC by Θn. This is a principal H1(C,Z/nZ) space. The automorphism group
of this affine space is an extension

0 → H1(C,Z/nZ)→ AutΘn
π→ GL2g(Z/nZ)→ 1;

the kernel being the group of translations by elements of H1(C,Z/nZ). The
mapping class group acts on Θn, so we have a homomorphism

Γg → Aut Θn.

The composite of this homomorphism with π is the reduction mod n

ρn : Γg → Spg(Z/nZ)

of the natural homomorphism. Denote the subgroup π−1(Spg(Z/nZ)) of Aut Θn

by Kn. It follows that the action of Γg on Θn factors through a homomorphism

θn : Γg → Kn
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whose composition with the natural projection Kn → Spg(Z/nZ) is ρn. In order
to determine θn, we will need to compute its restriction

θn : H1(Tg) → H1(C,Z/nZ)

to the Torelli group. First some algebra.

Proposition 13.2. There is a natural homomorphism

ψg : H1(Tg,Z)→ H1(C, Z/(g− 1)Z).

Proof. By Theorem 3.4, there is a natural homomorphism

τg : H1(Tg,Z)→ Λ3H1(C,Z)/
(
[C]×H1(C,Z)

)
.

Here we view Λ•H1(C) as the homology of JacC and [C] denotes the homology
class of the image of C under the Abel–Jacobi map. There is also a natural
homomorphism

p : Λ3H1(C,Z)→ H1(C,Z)

defined by
p : x ∧ y ∧ z 7→ (x · y) z + (y · z)x+ (z · x) y.

It is easy to see that the composite

H1(C,Z)
[C]×−→ Λ3H1(C,Z)

p→ H1(C,Z)

is multiplication by g − 1. It follows that p induces a homomorphism

p : Λ3H1(C,Z)→H1(C, Z/(g− 1)Z).

The homomorphism ψg is the composite p ◦ τg. �

Call a translation of Θn even if it is translation by an element of

2H1(C,Z/nZ).

If n is odd, this is the set of all translations. If n = 2m, this is the proper
subgroup of H1(C,Z/nZ) isomorphic to H1(C,Z/mZ).

Theorem 13.3. The image of the natural homomorphism θn : Γg → Kn is a
subgroup K(2)

n of Kn, which is an extension

0 → 2H1(C,Z/nZ)→ Aut Θn
π→ GL2g(Z/nZ)→ 1

of Spg(Z/nZ) by the even translations. The restriction of θn to Tg is the com-
posite of ψg with the homomorphism

H1(C, Z/(g− 1)Z) r−→ H1(C,Z/nZ) PD−−→ H1(C,Z/nZ),

where r(k) equals 2k mod n, and PD denotes Poincaré duality. In particular,
the Torelli group acts trivially on Θn if and only if n divides 2.
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Proof. First, Johnson proved in [31] that the kernel of the composite

Tg → H1(Tg)
τg→ Λ3H1(C,Z)/

(
[C]×H1(C,Z)

)
is generated by Dehn twists on separating simple closed curves. Using this, it is
easy to check that the restriction of θn to Tg factors through τg. In [32], Johnson
shows that Tg is generated by Dehn twists on a bounding pair of disjoint simple
closed curves. (Actually, all we need is that Λ3H1(C,Z)/([C]× H1(C,Z)) be
generated by the images under τg by such bounding pair maps. This is easily
checked directly.)

Now suppose that ϕ is such a bounding pair map. There are two disjoint
embedded circles A and B such that ϕ equals a positive Dehn twist about A and
a negative one about B. When we cut C along A ∪ B, we obtain two surfaces,
of genera g′ and g′′, say. Choose one of these components, and let a be the cycle
obtained by orienting A so that it is a boundary component of this component.
It is not difficult to show that the image of ϕ under ψg equals

−g′ [a] ∈ H1(C, Z/(g− 1)Z),

where g′ is the genus of the chosen component. Since g′+ g′′ = g−1, this is well
defined. Next, one can use Morse theory to show that the image of this same
bounding pair map in H1(C,Z/nZ) is −2g′PD(a). The result follows. �

Corollary 13.4. The only roots of the canonical bundle defined over Torelli
space are the canonical bundle itself and its 22g square roots. �

Remark 13.5. The homomorphism θ2g−2 : Γg → K2g−2 appears in Morita’s
work [38, §4.A].

14. Heights of Cycles defined over Mg(L)

Suppose that X is a compact Kähler manifold of dimension n and that Z
and W are two homologically trivial algebraic cycles in X of dimensions d and
e, respectively. Suppose that d + e = n − 1 and that Z and W have disjoint
supports. Denote the current associated to W by δW . It follows from the ∂∂-
lemma that there is a current ηW of type (d, d) that is smooth away from the
support of Z and satisfies

∂∂ηW = πiδW .

The (archimedean) height pairing between Z and W is defined by

〈Z,W 〉 = −
∫

Z

ηW .

This is a real-valued, symmetric bilinear pairing on such disjoint homologically
trivial cycles. It is important in number theory [5].
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Now suppose that

X →Mg(L)

is a family of smooth projective varieties of relative dimension n. Suppose that
Z → Mg(L) and W → Mg(L) are families of algebraic cycles in X of relative
dimensions d and e, respectively, where d + e = n − 1. Denote the fiber of X ,
Z and W over C ∈ Mg(L) by XC , ZC and WC , respectively. Suppose that ZC

and WC are homologically trivial in XC and that they have disjoint supports for
generic C ∈Mg(L).

We shall suppose that L has been chosen so that every curve has two distin-
guished theta characteristics α and α + δ, where δ is a non-zero point of order
two in JacC. We shall also suppose that g is odd and ≥ 3. Write g in the form
g = 2d+ 1.

Denote the difference divisor

{x1 + · · ·+ xd − y1 − · · · − yd : xj , yj ∈ C}

in JacC by ∆, and the theta divisor

{x1 + · · ·+ x2d − α : xj ∈ C}

in JacC by Θα. By [18, (4,1.2)], there is a rational function fC on JacC whose
divisor is

∆−
(

2d
d

)
Θα.

Denote the unique invariant measure of total mass one on JacC by µ.

Theorem 14.1. Suppose that g is odd and ≥ 3. Suppose that Z and W are
families of homologically trivial cycles over Mg(L) in a family of smooth projec-
tive varieties p : X → Mg(L), as above. If the monodromy of the local system
R2d+1p∗QX factors through a rational representation of Spg, there is a rational
function h on Mg(L) and rational numbers a and b such that

〈ZC ,WC〉 = a

(
log |h(C)|+ 2b

(
log |fC(δ)| −

∫
Jac C

log |fC(x)|dµ(x)
))

.

The numbers a and b are topologically determined, as will become apparent
in the proof. The divisor of h is computable when one has a good understanding
of how the cycles Z and W intersect. One should be able to derive a similar
formula for even g using Bost’s general computation of the height in [8] and
results from [19].

The proof of Theorem 14.1 occupies the remainder of this section. We only
give a sketch. We commence by defining two algebraic cycles in PicdC. For



THE TORELLI GROUPS AND GEOMETRY 135

D ∈ JacC, let C(d)
D be the d-cycle in PicdC obtained by pushing forward the

fundamental class of the d-th symmetric power of C along the map

{x1, . . . , xd} 7→ x1 + · · ·+ xd +D.

Let i be the automorphism of Picd C defined by i : x 7→ α− x. Define

ZD = C
(d)
D − i∗C

(d)
D .

This is a homologically trivial d-cycle in PicdC.
From [8] and [18], we know that

〈Z0, Zδ〉 = 2 log |fC(δ)| − 2
∫

Jac C

log |fC(x)| dµ(x).

So the content of the theorem is that there is a rational function h on Mg(L)
and rational numbers a and b such that

〈Z,W 〉 = a (log |h(C)|+ b 〈Z0, Zδ〉) .

The basic point, as we shall see, is that, up to torsion, all normal functions over
Mg(L) are half-integer multiples of that of C −C−, as was proved in Section 8.

We will henceforth assume that the reader is familiar with the content of [18,
§3]. We will briefly review the most relevant points of that section.

A biextension is a mixed Hodge structure B with only three non-trivial weight
graded quotients: Z, H , and Z(1), where H is a Hodge structure of weight −1.
The isomorphisms

GrW
−2B ≈ Z(1) and GrW

0 B ≈ Z

are considered to be part of the data of the biextension. If one replaces Z by R in
this definition, one obtains the definition of a real biextension. To a biextension
B one can associate a real number ν(B), called the height of B. It depends only
on the associated real biextension B ⊗ R.

Associated to a pair of disjoint homologically trivial cycles in a smooth pro-
jective variety X satisfying

dimZ + dimW + 1 = dimX

there is a canonical biextension BZ(Z,W ), whose weight graded quotients are

Z, H2d+1(X,Z(−d)), Z(1),

where d is the dimension of Z. The extensions

0 → H2d+1(X,Z(−d))→ BZ(Z,W )/Z(1)→ Z→ 0

and
0 → Z(1)→W−1BZ(Z,W ) → H2d+1(X,Z(−d))→ 0
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are the those determined by Z (directly), and W (via duality) [18, (3.3.2)]. We
have

ν(BZ(Z,W )) = 〈Z,W 〉.

The first step in the proof is to reduce the size of the biextension. Suppose
that Λ = Z or R, and that B is a Λ-biextension with weight −1 graded quotient
H . Suppose that there is an inclusion i : A ↪→ H of Λ mixed Hodge structures.
Pulling back the extension

0 → Λ(1) →W1B → H → 0

along i, we obtain an extension

0 → Λ(1) → E → C → 0.

If this extension splits, there is a canonical lift ı̃ : C → B of i. The quotient
B/C is also a Λ biextension.

Proposition 14.2. The biextensions BΛ(Z,W ) and BΛ(Z,W )/C have the same
height.

Proof. This is a special case of [34, (5.3.8)]. It follows directly from [18,
(3.2.11)]. �

We will combine this with Theorem 8.2 to prune the biextension BZ(ZC ,WC)
until its weight −1 graded quotient is either trivial or else one copy of V (λ3).

First observe that if B is a biextension and B′ a mixed Hodge substructure
of B of finite index, then B′ is a biextension and there is a non-zero integer m
such that ν(B′) = mν(B). This can be proved using [18, (3.2.11)].

To prune the biextension B (Z,W ) over Mg(L), we consider the portion of
the monodromy representation

H1(Tg) → HomZ(GrW
−1B(ZC ,WC), Z(1))

associated to the variation W−1B (Z,W ) over Mg(L). This map is Spg equivari-
ant. Denote GrW

−1 B (Z,W ) by H . This monodromy representation corresponds
to the map

H →
{
H1(Tg,Z(1))

}
of local systems over Mg(L), which takes h ∈ HC to the functional {φ 7→ φ(h)}
on H1(Tg). For each C ∈ Mg(L) this is a morphism of Hodge structures by
Proposition 9.3. Denote its kernel by KC . These form a variation of Hodge
structure K over Mg(L). If the monodromy representation is trivial on Tg, then
K = H . Otherwise, Schur’s lemma implies that H /K is isomorphic V(λ3) placed
in weight −1.
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We can pull back the extension

0 → Q(1) →W−1B (Z,W ) → H → 0

along the inclusion K ↪→ H to obtain an extension

0 → Q(1) → E → K → 0.(7)

If this extension splits over Q, then, by replacing the lattice in BZ(Z,W ) by a
commensurable one, we may assume that the splitting is defined over Z. This has
the effect of multiplying the height by a non-zero rational number. Once we have
done this, the inclusion K ↪→ GrW

−1 B (Z,W ) lifts to an inclusion K ↪→ B (Z,W ).
Using Proposition 14.2, we can replace BZ(ZC ,WC) by B ′ = B (Z,W )/K without
changing the height of the biextension. For the time being, we shall assume that
(7) splits over Q. This is the case, for example, when H contains no copies of
the trivial representation, as follows from Proposition 9.2 since K is a trivial
Tg-module by construction.

The weight −1 graded quotient of B ′ is either trivial or isomorphic to V(λ3).
This biextension is defined over the open subset U of Mg(L) where ZC and WC

are disjoint. The related variations W−1B
′ and B ′/Z(1) are defined over all of

Mg(L).
If K = H , then B ′ is an extension of Z by Z(1). It therefore corresponds to

a rational function h on Mg(L), which is defined on U [20, (9.3)]. It follows
from [18, (3.2.11)] that the height of this biextension B ′ is C 7→ log |h(C)|. This
completes the proof of the theorem in this case.

Dually, when the extension

0 → GrW
−1 B

′ → B ′/Z(1)→ Z→ 0

has finite monodromy, there is a rational function h on Mg(L) such that the
height of B′, and therefore B(ZC ,WC), is rational multiple of log |h(C)|.

We have therefore reduced to the case where B ′ has weight graded −1 quotient
V(λ3) and where neither of the extensions

0 → V(λ3) → B ′/Z(1)→ Z→ 0

or
0 → Z(1)→W−1B

′ → V(λ3) → 0

is torsion. We also have the biextension B ′ ′ associated to the cycles Z0 and
Zδ. It has these same properties. After replacing the lattices in each by lattices
of finite index, we may assume that the extensions of variations W−1B

′ and
W−1B

′ ′ are isomorphic, and that B ′/Z(1) and B ′ ′/Z(1) are isomorphic. As in
[18, (3.4)], the biextensions B ′ and B ′ ′ each determine a canonically metrized
holomorphic line bundle over Mg(L). These metrized line bundles depend only
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on the variations B/Z(1) and W−1B , and are therefore isomorphic. Denote this
common line bundle by B →Mg(L). The biextensions B ′ and B ′ ′ determine (and
are determined by) meromorphic sections s′ and s′′ of B, respectively. There is
therefore a meromorphic function h onMg(L) such that s′′ = hs′. It follows from
the main result of [34] that this function is a rational function. (The philosophy
is that period maps of variations of mixed Hodge structure behave well at the
boundary.) The result follows as

ν(B′′C) = log ‖s′′(C)‖ = log |h(C)| + log ‖s′(C)‖ = ν(B′C) + log |h(C)|.

To conclude the proof, we now explain how to proceed when the extension (7)
of page 137 is not split as a Q variation. Write K = T⊕T′, where T is the trivial
submodule of K and T′ is its orthogonal complement. This is a splitting in the
category of Q variations by Proposition 9.2. It also follows from Proposition 9.2
that the restriction of (7) to T′ is split. Consequently, there is an inclusion of
mixed Hodge structures T′ ↪→ B (Z,W ). As above, we may replace B (Z,W ) by
the biextension B ′ = B (Z,W )/T′ after rescaling lattices. This only changes the
height by a non-zero rational number. The weight graded −1 quotient of B ′ is
the sum of at most one copy of V(λ3) and a trivial variation of weight −1.

Now suppose that B1 and B2 are two biextensions. We can construct a new
biextension B1 � B2 from them as follows: Begin by taking their direct sum.
Pull this back along the diagonal inclusion

Z ↪→ Z⊕Z= GrW
0 (B1 ⊕B2)

to obtain a mixed Hodge structure B whose weight −2 graded quotient is

GrW
−2 (B1 ⊕B2) = Z(1)⊕Z(1).

Push this out along the addition map

Z(1)⊕Z(1)→ Z(1)

to obtain the sought after biextension B1 � B2. The following result follows
directly from [18, (3.2.11)].

Proposition 14.3. The height of B1 � B2 is the sum of the heights of B1 and
B2.

The biextension B ′ is easily seen to be the sum, in this sense, of two biexten-
sions. The first is constant with weight −1 quotient equal to the trivial variation
T and the second is a variation with weight −1 quotient equal to H /K , which is
either zero or one copy of V(λ3). Since the height of a constant biextension is a
constant, the result follows from the computation of the height of a biextension
with weight −1 quotient V(λ3) above.
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15. Results for Abelian Varieties

Denote by Ag(L) the quotient of Siegel space hg of rank g by a finite-index
subgroup L of Spg(Z). This is the moduli space of abelian varieties with a level-
L structure. In this section we state results for Ag(L) analogous to those in
Sections 8 and 14. The proofs are similar, but much simpler, and are left to the
reader.

We call a representation of Spg even if it has a symmetric Spg-invariant inner
product, and odd if it has a skew symmetric Spg-invariant inner product. It
follows from Schur’s Lemma that every irreducible representation of Spg is either
even or odd. The even ones occur as polarized variations of Hodge structure of
even weight over each Ag(L), while the odd ones occur as polarized variations
of Hodge structure only over Ag(L) of odd weight provided −I /∈ L. These facts
are easily proved by adapting the arguments in Section 9.

The first theorem is the analogue of Lemma 8.1 for abelian varieties. It
is similar to the result [45] of Silverberg. The point in our approach is that
H1(L, V ) vanishes for all non-trivial irreducible representations of Spg by [42].

Theorem 15.1. Suppose that g ≥ 2 and that L/±I is torsion-free. If V →
Ag(L) is a variation of Hodge structure of negative weight whose monodromy
representation is the restriction to L of a rational representation of Spg, the
group of generically defined normal functions associated to this variation is finite.

�

Since there are no normal functions of infinite order over Ag(L), we have
the following analogue of Theorem 14.1. Suppose that Z and W are families of
homologically trivial cycles over Ag(L) in a family of smooth projective varieties
p : X → Ag(L). Suppose that they are disjoint over the generic point. Suppose
further that d + e = n − 1, where d, e and n are the relative dimensions over
Ag(L) of Z, W and X , respectively. Denote the fiber of Z over A ∈ Ag(L) by
ZA, etc.

Theorem 15.2. If g ≥ 2 and the monodromy of the local system R2d+1p∗QX

is the restriction to L of a rational representation of Spg, there is a rational
function h on Ag(L) such that

〈ZA,WA〉 = log |h(A)|

for all A ∈ Ag(L). �

One can formulate and prove analogues of these results for the moduli spaces
An

g (L) of abelian varieties of dimension g, n marked points, and a level-L struc-
ture.
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We conclude with a discussion of Nori’s results and their relation to Theo-
rems 8.2 and 15.1. We first recall the main result of the last section of [40].

Theorem 15.3 (Nori). Suppose that X is a variety that is an unbranched cov-
ering of a Zariski open subset U of Ag(L), where L is torsion-free. Suppose that
V is a variation of Hodge structure of negative weight over X that is pulled back
from the canonical variation over Ag(L) of the same weight whose monodromy
representation is irreducible and has highest weight λ. Then the group of normal
functions defined on X associated to this variation is finite unless

λ =




0 and g ≥ 2, or

λ1 and g ≥ 3, or

λ3 and g = 3, or

m1λ1 +m2λ2 g = 2 and m1 ≥ 2.

�

This result may seem to contradict Theorem 15.1. The difference can be
accounted for by noting that Theorem 15.1 only applies to open subsets of the
Ag(L), whereas Nori’s theorem applies to a much more general class of varieties
that contains unramified coverings of open subsets of the Ag(L). One instructive
example is M3(l), where l is odd and ≥ 3. The map M3(l) → A3(l) is branched
along the hyperelliptic locus. Theorem 15.1 does not apply. However, Nori’s
Theorem 15.3 does apply—remember, normal functions in weight −1 extend
by Theorem 7.1. In this way we realize the normal function associated to λ3

in Nori’s result. Also, by standard arguments, for each n, there is an open
subset U of M3(l) and an unbranched finite cover V of U over which the natural
projectionMn

3 (l) →M3(l) has a section. From this one can construct n linearly
independent normal sections of the jacobian bundle defined over V . Note that
Nori’s result does apply to V , whereas Theorem 15.1 does not.
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47–62.

3. H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for SLn

(n ≥ 3) and Sp2n (n ≥ 2), Publ. Math. IHES 33 (1967), 59–137.

4. A. Beilinson, Notes on absolute Hodge cohomology , Applications of Algebraic K-Theory
to Algebraic Geometry and Number Theory (S. J. Bloch et al., eds.), Contemp. Math. 55,
AMS, 1986, part 1, pp. 35–68.

5. , Height pairing between algebraic cycles, Current Trends in Arithmetical Algebraic
Geometry (K. Ribet, ed.), Contemp. Math. 67, AMS, 1987, pp. 1–24.



THE TORELLI GROUPS AND GEOMETRY 141

6. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974),
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