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Spectral Covers

RON DONAGI

Abstract. Spectral curves have acquired a central role in understanding
the moduli spaces of vector bundles and Higgs bundles on a curve. A
Higgs G-bundle on an arbitrary variety S (together with some additional
data, such as a representation of G) determines a spectral cover S̃ of S and
an equivariant sheaf on S̃. The purpose of these notes is to combine and
review various results about spectral covers, focusing on the decomposition
of their Picards (and the resulting Prym identities) and the interpretation
of a distinguished Prym component as parameter space for Higgs bundles.

1. Introduction

Spectral curves arose historically out of the study of differential equations
of Lax type. Following Hitchin’s work [H1], they have acquired a central role
in understanding the moduli spaces of vector bundles and Higgs bundles on a
curve. Simpson’s work [S] suggests a similar role for spectral covers S̃ of higher-
dimensional varieties S in moduli questions for bundles on S.

The purpose of these notes is to combine and review various results about
spectral covers, focusing on the decomposition of their Picards (and the resulting
Prym identities) and the interpretation of a distinguished Prym component as
parameter space for Higgs bundles. Much of this is modeled on Hitchin’s system,
which we recall in Section 1, and on several other systems based on moduli of
Higgs bundles, or vector bundles with twisted endomorphisms, on curves. By
peeling off several layers of data that are not essential for our purpose, we arrive
at the notions of an abstract principal Higgs bundle and a cameral (roughly,
a principal spectral) cover. Following [D3], this leads to the statement of the
main result, Theorem 12, as an equivalence between these somewhat abstract
‘Higgs’ and ‘spectral’ data, valid over an arbitrary complex variety and for a
reductive Lie group G. Several more familiar forms of the equivalence can then
be derived in special cases by adding choices of representation, value bundle
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and twisted endomorphism. This endomorphism is required to be regular , but
not semesimple. Thus the theory works well even for Higgs bundles that are
everywhere nilpotent. After touching briefly on the symplectic side of the story
in Section 6, we discuss some of the issues involved in removing the regularity
assumption, as well as some applications and open problems, in Section 7.

This survey is based on talks at the Vector Bundle Workshop at UCLA (Oc-
tober 92) and the Orsay meeting (July 92), and earlier talks at Penn, UCLA
and MSRI. I would like to express my thanks to Rob Lazarsfeld and Arnaud
Beauville for the invitations, and to them and Ching Li Chai, Phillip Griffiths,
Nigel Hitchin, Vasil Kanev, Ludmil Katzarkov, Eyal Markman, Tony Pantev,
Emma Previato and Ed Witten for stimulating and helpful conversations.

We work throughout over C. The total space of a vector bundle (= locally
free sheaf) K is denoted K . Some more notation:

Groups: G B T N C

algebras: g b t n c

Principal bundles: G B T N C
bundles of algebras: g b t n c

2. Hitchin’s system

Let M := MC(n, d) be the moduli space of stable vector bundles of rank
n and degree d on a smooth projective complex curve C. It is smooth and
quasiprojective of dimension

g̃ := n2(g − 1) + 1.(1)

Its cotangent space at a point E ∈ M is given by

T ∗EM := H0(End(E)⊗ ωC),(2)

where ωC is the canonical bundle of C. Our starting point is:

Theorem 1 (Hitchin [H1]). The cotangent bundle T ∗M is an algebraically
completely integrable Hamiltonian system.

Complete integrability means that there is a map

h : T ∗M−→ B

to a g̃-dimensional vector space B that is Lagrangian with respect to the natural
symplectic structure on T ∗M (i.e., the tangent spaces to a general fiber h−1(a)
over a ∈ B are maximal isotropic subspaces with respect to the symplectic
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form). In this situation one gets, by contraction with the symplectic form, a
trivialization of the tangent bundle:

Th−1(a)
≈−→ Oh−1(a) ⊗ T ∗a B.(3)

In particular, this produces a family of (‘Hamiltonian’ ) vector fields on h−1(a)
that is parametrized by T ∗a B, and the flows generated by these fields on h−1(a)
all commute. Algebraic complete integrability means additionally that the fibers
h−1(a) are Zariski open subsets of abelian varieties on which the Hamiltonian
flows are linear, i.e., the vector fields are constant.

We describe the idea of the proof in a slightly more general setting, following
[BNR]. Let K be a line bundle on C, with total space K . (In Hitchin’s situation,
K is ωC and K is T ∗C.) A K-valued Higgs bundle is a pair

(E, φ : E −→ E ⊗K)

consisting of a vector bundle E on C and a K-valued endomorphism. One
imposes an appropriate stability condition, and obtains a good moduli space
MK parametrizing equivalence classes of K-valued semistable Higgs bundles,
with an open subsetMs

K parametrizing isomorphism classes of stable ones [S].
Let B := BK be the vector space parametrizing polynomial maps

pa : K −→ Kn

of the form

pa(x) = xn + a1x
n−1 + · · ·+ an, ai ∈ H0(K⊗i).

In other words,

B :=
n⊕

i=1

H0(K⊗i).(4)

The assignment

(E, φ) 7−→ char(φ) := det (xI − φ)(5)

gives a morphism

hK :MK −→ BK .(6)

In Hitchin’s case, the desired map h is the restriction of hωC to T ∗M, which
is an open subset of Ms

ωC
. Note that in this case dimB is, in Hitchin’s words,

‘somewhat miraculously’ equal to g̃ = dimM.
The spectral curve C̃ := C̃a defined by a ∈ BK is the inverse image in K of

the 0-section of K⊗n under pa : K −→ Kn . It is finite over C of degree n. The
general fiber of hK is given by



68 RON DONAGI

Proposition 2. [BNR] For a ∈ B with integral spectral curve C̃a, there is a
natural equivalence between isomorphism classes of

(i) rank-1, torsion-free sheaves on C̃a, and
(ii) pairs (E , φ : E → E ⊗K) with char(φ) = a.

When C̃a is non-singular, the fiber is thus Jac(C̃a), an abelian variety. In
T ∗M the fiber is an open subset of this abelian variety. One checks that the
missing part has codimension ≥ 2, so the symplectic form, which is exact, must
restrict to 0 on the fibers, completing the proof.

3. Some related systems

Polynomial matrices. One of the earliest appearances of an ACIHS (algebraically
completely integrable Hamiltonian system) was in Jacobi’s work on the geodesic
flow on an ellipsoid (or more generally, on a nonsingular quadric in Rk). Ja-
cobi discovered that this differential equation, taking place on the tangent (=
cotangent!) bundle of the ellipsoid, can be integrated explicitly in terms of hy-
perelliptic theta functions. In our language, the total space of the flow is an
ACIHS, fibered by (Zariski open subsets of) hyperelliptic Jacobians. We are
essentially in the special case of Proposition 2, where

C = P 1, n = 2, K = OP 1(k).

A variant of this system appeared in Mumford’s solution [Mu1] of the Schottky
problem for hyperelliptic curves.

The extension to all values of n is studied in [B] and, somewhat more analyt-
ically, in [AHP] and [AHH]. Beauville considers, for fixed n and k, the space B

of polynomials

p = yn + a1(x)yn−1 + · · ·+ an(x), deg (ai) ≤ ki(7)

in variables x and y. Each p determines an n-sheeted branched cover

C̃p → P 1.

The total space is the space of polynomial matrices

M := H0(P 1, End(O⊕n)⊗O(d)),(8)

the map h : M → B is the characteristic polynomial, and Mp is the fiber over
a given p ∈ B. The result is that, for smooth spectral curves C̃p, PGL(n) acts
freely and properly on Mp; the quotient is isomorphic to J(C̃p)rΘ. (In order to
obtain the entire J(C̃p), one must allow all pairs (E, φ) with E of given degree,
say 0. Among those, the ones with E ≈ OP 1

⊕n correspond to the open set
J(C̃p) r Θ.) This system is an ACIHS, in a slightly weaker sense than before:
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instead of a symplectic structure, it has a Poisson structure, i.e., a section β of
∧2T , such that the C-linear sheaf map given by contraction with β

O → T
f 7→ dfcβ

sends the Poisson bracket of functions to the bracket of vector fields. Any Poisson
manifold is naturally foliated, with (locally analytic) symplectic leaves. For
a Poisson ACIHS, we want each leaf to inherit a (symplectic) ACIHS, so the
symplectic foliation should be pulled back via h from a foliation of the base B.

The result of [BNR] suggests that analogous systems should exist when P 1

is replaced by an arbitrary base curve C. The main point is to construct the
Poisson structure. This was achieved by Bottacin [Bn] and Markman [M1];
see Section 6. In the case of the polynomial matrices, though, everything—the
commuting vector fields, the Poisson structure, and so on—can be written very
explicitly. What makes these explicit results possible is that every vector bundle
over P 1 splits. This of course fails in genus > 1, but for elliptic curves the moduli
space of vector bundles is still completely understood, so here too the system
can be described explicitly, as follows.

For simplicity, consider vector bundles with fixed determinant. When the
degree is 0, the moduli space is a projective space Pn−1 (or, more canonically,
the fiber over 0 of the Abel–Jacobi map

C [n] −→ J(C) = C.)

The ACIHS that arises is essentially the Treibich–Verdier theory [TV] of elliptic
solitons. When, on the other hand, the degree is one (or, more generally, rela-
tively prime to n), the moduli space is a single point; the corresponding system
was studied explicitly in [RS].

Reductive groups. In another direction, one can replace the vector bundles by
principal G-bundles G for any reductive group G. Again, there is a moduli
space MG,K parametrizing equivalence classes of semistable K-valued G-Higgs
bundles, i.e., pairs (G, φ) with φ ∈ K ⊗ ad(G). The Hitchin map goes to

B :=
⊕

i

H0(K⊗di),

where the di are the degrees of the fi, a basis for the G-invariant polynomials
on the Lie algebra g:

h : (G, φ) −→ (fi(φ))i.

When K = ωC , Hitchin showed [H1] that one still gets a completely inte-
grable system, and that it is algebraically completely integrable for the classical
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groups GL(n), SL(n), SP(n), SO(n). The generic fibers are in each case isomor-
phic (though not quite canonically—one must choose various square roots; see
Sections 5.2 and 5.3) to abelian varieties given in terms of the spectral curves C̃:

GL(n) C̃ has degree n over C, the AV is Jac(C̃).
SL(n) C̃ has degree n over C, the AV is Prym(C̃/C).
SP(n) C̃ has degree 2n over C and an involution x 7→ −x.

The map factors through the quotient C.
The AV is Prym(C̃/C).

SO(n) C̃ has degree n and an involution, with:
• a fixed component, when n is odd.
• some fixed double points, when n is even.
One must desingularize C̃ and the quotient C, and
ends up with the Prym of the desingularized double cover.

(9)

The algebraic complete integrability was verified in [KP1] for the exceptional
group G2. A sketch of the argument for any reductive G is in [BK], and a
complete proof was given in [F1]. We will outline a proof in Section 5 below.

Higher dimensions. Finally, a sweeping extension of the notion of Higgs bundle
is suggested by the work of Simpson [S]. To him, a Higgs bundle on a projective
variety S is a vector bundle (or principal G-bundle . . . ) E with a symmetric,
Ω1

S-valued endomorphism
φ : E −→ E ⊗ Ω1

S .

Here symmetric means the vanishing of

φ ∧ φ : E −→ E ⊗ Ω2
S ,

a condition that is obviously vacuous on curves. He constructs a moduli space for
such Higgs bundles (satisfying appropriate stability conditions), and establishes
diffeomorphisms to corresponding moduli spaces of representations of π1(S) and
of connections.

4. Decomposition of spectral Picards

4.1. The question. Let (G, φ) be a K-valued principal Higgs bundle on a com-
plex variety S. Each representation

ρ : G −→ Aut(V )

determines an associated K-valued Higgs bundle

(V := G ×G V, ρ(φ) ),

which in turn determines a spectral cover S̃V −→ S.
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The question, raised first in [AvM] when S = P 1, is to relate the Picard
varieties of the S̃V as V varies, and in particular to find pieces common to all
of them. For Adler and van Moerbeke, the motivation was that many evolu-
tion differential equations (of Lax type) can be linearized on the Jacobians of
spectral curves. This means that the ‘Liouville tori’, which live naturally in the
complexified domain of the differential equation (and hence are independent of
the representation V ) are mapped isogenously to their image in Pic(S̃V ) for each
nontrivial V ; so one should be able to locate these tori among the pieces that
occur in an isogeny decomposition of each of the Pic(S̃V ). There are many spe-
cific examples where a pair of abelian varieties constructed from related covers
of curves are known to be isomorphic or isogenous, and some of these lead to
important identities among theta functions.

Example 3. Take G = SL(4). The standard representation V gives a branched
cover S̃V −→ S of degree 4. On the other hand, the 6-dimensional representation
∧2V (= the standard representation of the isogenous group SO(6)) gives a cover
≈
S −→ S of degree 6, which factors through an involution

≈
S −→ S −→ S.

One has the isogeny decompositions

Pic (S̃) ∼ Prym(S̃/S)⊕ Pic (S)

Pic (
≈
S) ∼ Prym(

≈
S /S)⊕ Prym(S/S)⊕ Pic (S).

It turns out that

Prym(S̃/S) ∼ Prym(
≈
S /S).

For S = P 1, this is Recillas’ trigonal construction [R]. It says that every Jacobian
of a trigonal curve is the Prym of a double cover of a tetragonal curve, and vice
versa.

Example 4. Take G = SO(8) with its standard 8-dimensional representation

V . The spectral cover has degree 8 and factors through an involution,
≈
S −→

S −→ S. The two half-spin representations V1, V2 yield similar covers

≈
S1 −→ S1 −→ S,

≈
S2 −→ S2 −→ S.

The tetragonal construction [D1] says that the three Pryms of the double covers
are isomorphic. (These examples, as well as Pantazis’ bigonal construction and
constructions based on some exceptional groups, are discussed in the context of
spectral covers in [K] and [D2].)
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It turns out in general that there is indeed a distinguished, Prym-like isogeny
component common to all the spectral Picards, on which the solutions to Lax-
type differential equations evolve linearly. This was noticed in some cases already
in [AvM], and was greatly extended by Kanev’s construction of Prym–Tyurin
varieties. (He still needs S to be P 1 and the spectral cover to have generic ram-
ification; some of his results apply only to minuscule representations.) Various
parts of the general story have been worked out recently by a number of authors,
based on either of two approaches: one, pursued in [D2, Me, MS], is to decom-
pose everything according to the action of the Weyl group W and to look for
common pieces; the other, used in [BK, D3, F1, Sc], relies on the correspondence
of spectral data and Higgs bundles. The group-theoretic approach is described in
the rest of this section. We take up the second method, known as abelianization,
in Section 5.

4.2. Decomposition of spectral covers. The decomposition of spectral
Picards arises from three sources. First, the spectral cover for a sum of repre-
sentations is the union of the individual covers S̃V . Next, the cover S̃V for an
irreducible representation is still the union of subcovers S̃λ indexed by weight
orbits. And finally, the Picard of S̃λ decomposes into Pryms. We start with a
few observations about the dependence of the covers themselves on the repre-
sentation. The decomposition of the Picards is taken up in the next subsection.

Spectral covers. There is an infinite collection (of irreducible representations
V := Vµ, hence) of spectral covers S̃V , which can be parametrized by their
highest weights µ in the dominant Weyl chamber C, or equivalently by the W -
orbit of extremal weights, in Λ/W . Here T is a maximal torus in G, Λ :=
Hom(T,C∗) is the weight lattice (also called character lattice) for G, and W is
the Weyl group. Each of these S̃V decomposes as the union of its subcovers
S̃λ, parametrizing eigenvalues in a given W -orbit Wλ. (Here λ runs over the
weight-orbits in Vµ.)

Parabolic covers. There is a finite collection of covers S̃P , parametrized by the
conjugacy classes in G of parabolic subgroups (or equivalently by arbitrary-
dimensional faces FP of the chamber C) such that (for general S) each eigenvalue
cover S̃λ is birational to some parabolic cover S̃P , the one whose open face FP

contains λ.

The cameral cover. There is a W -Galois cover S̃ −→ S such that each S̃P

is isomorphic to S̃/WP , where WP is the Weyl subgroup of W that stabilizes
FP . We call S̃ the cameral cover , since, at least generically, it parametrizes
the chambers determined by φ (in the duals of the Cartans), or equivalently
the Borel subalgebras containing φ. This is constructed as follows: There is a
morphism g −→ t/W sending g ∈ g to the conjugacy class of its semisimple
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part gss. (More precisely, this is Spec of the composed ring homomorphism
C[t]W '←C[g]G ↪→ C[g].) Taking fiber product with the quotient map t −→ t/W ,
we get the cameral cover g̃ of g. The cameral cover S̃ −→ S of a K-valued
principal Higgs bundle on S is glued from covers of open subsets in S (on which
K and G are trivialized) that in turn are pullbacks by φ of g̃ −→ g.

4.3. Decomposition of spectral Picards. The decomposition of the Picard
varieties of spectral covers can be described as follows:

The cameral Picard. From each isomorphism class of irreducible W -represen-
tations, choose an integral representative Λi. (This can always be done for Weyl
groups.) The group ring Z[W ] that acts on Pic(S̃) has an isogeny decomposition

Z[W ] ∼
⊕

iΛi ⊗Z Λ∗i ,(10)

which is just the decomposition of the regular representation. There is a corre-
sponding isotypic decomposition

Pic(S̃) ∼
⊕

iΛi ⊗Z PrymΛi(S̃),(11)

where

PrymΛi
(S̃) := HomW (Λi, Pic(S̃)).(12)

Parabolic Picards. There are at least three reasonable ways of obtaining an
isogeny decomposition of Pic(S̃P ), for a parabolic subgroup P ⊂ G:
• The ‘Hecke’ ring CorrP of correspondences on S̃P over S acts on Pic(S̃P ),

so every irreducible integral representation M of CorrP determines a gener-
alized Prym

HomCorrP
(M, Pic(S̃P )),

and we obtain an isotypic decomposition of Pic(S̃P ) as before.
• Pic(S̃P ) maps, with torsion kernel, to Pic(S̃), so we obtain a decomposition

of the former by intersecting its image with the isotypic components Λi ⊗Z

PrymΛi
(S̃) of the latter.

• Since S̃P is the cover of S associated to the W -cover S̃ via the permutation
representation Z[WP \W ] of W , we get an isogeny decomposition of Pic(S̃P )
indexed by the irreducible representations in Z[WP \W ].

It turns out [D2, Section 6] that all three decompositions agree and can be given
explicitly as⊕

iMi ⊗ PrymΛi
(S̃) ⊂

⊕
iΛi ⊗ PrymΛi

(S̃), Mi := (Λi)WP .(13)
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Spectral Picards. To obtain the decomposition of the Picards of the original
covers S̃V or S̃λ, we need, in addition to the decomposition of Pic(S̃P ), some
information on the singularities. These can arise from two separate sources:

Accidental singularities of the S̃λ. For a sufficiently general Higgs bundle, and
for a weight λ in the interior of the face FP of the Weyl chamber C, the natural
map

iλ : S̃P −→ S̃λ

is birational. For the standard representations of the classical groups of types
An, Bn or Cn, this is an isomorphism. But for general λ it is not : In order for
iλ to be an isomorphism, λ must be a multiple of a fundamental weight [D2,
Lemma 4.2]. In fact, the list of fundamental weights for which this happens is
quite short; for the classical groups we have only: ω1 for An, Bn and Cn, ωn

(the dual representation) for An, and ω2 for B2. Note that for Dn the list is
empty. In particular, the covers produced by the standard representation of
SO(2n) are singular; this fact, noticed by Hitchin in [H1], explains the need for
desingularization in his result (9).

Gluing the S̃V . In addition to the singularities of each iλ, there are the singu-
larities created by the gluing map qλS̃λ −→ S̃V . This makes explicit formulas
somewhat simpler in the case, studied by Kanev [K], of minuscule representa-
tions, i.e., representations whose weights form a single W -orbit. These singular-
ities account, for instance, for the desingularization required in the SO(2n + 1)
case in (9).

4.4. The distinguished Prym. Combining much of the above, the Adler–
van Moerbeke problem of finding a component common to the Pic(S̃V ) for all
non-trivial V translates into:

Find the irreducible representations Λi of W that occur in Z[WP \W ]
with positive multiplicity for all proper Weyl subgroups WP \W.

By Frobenius reciprocity, or (13), this is equivalent to:

Find the irreducible representations Λi of W such that for every proper
Weyl subgroup WP $ W, the space of invariants Mi := (Λi)WP is non-
zero.

One solution is now obvious: the reflection representation of W acting on the
weight lattice Λ has this property. In fact, ΛWP in this case is just the face FP

of C. The corresponding component PrymΛ(S̃) is called the distinguished Prym.
We will see in Section 5 that its points correspond, modulo some corrections, to
Higgs bundles.

For the classical groups, this turns out to be the only common component. For
G2 and E6 it turns out [D2, Section 6] that a second common component exists.
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The geometric significance of points in these components is not known. As far as
I know, the only component other than the distinguished Prym that has arisen
‘in nature’ is the one associated to the one-dimensional sign representation of
W ; see Section 7 and [KP2].

5. Abelianization

5.1. Abstract versus K-valued objects. We want to describe the abelian-
ization procedure in a somewhat abstract setting, as an equivalence between
principal Higgs bundles and certain spectral data. Once we fix a values vector
bundle K, we obtain an equivalence between K-valued principal Higgs bundles
and K-valued spectral data. Similarly, the choice of a representation V of G will
determine an equivalence of K-valued Higgs bundles (of a given representation
type) with K-valued spectral data.

As our model of a W -cover we take the natural quotient map

G/T −→ G/N

and its partial compactification

G/T −→ G/N.(14)

Here T ⊂ G is a maximal torus, and N is its normalizer in G. The quo-
tient G/N parametrizes maximal tori (= Cartan subalgebras) t in g, while G/T

parametrizes pairs t ⊂ b with b ⊂ g a Borel subalgebra. An element x ∈ g is
regular if the dimension of its centralizer c ⊂ g equals dimT (= the rank of g).
The partial compactifications G/N and G/T parametrize regular centralizers c

and pairs c ⊂ b, respectively.
In constructing the cameral cover in Section 4.2, we used the W -cover t −→

t/W and its pullback cover g̃ −→ g. Over the open subset greg of regular ele-
ments, the same cover is obtained by pulling back (14) via the map α : greg −→
G/N sending an element to its centralizer:

t ←− g̃reg −→ G/T

↓ ↓ ↓
t/W ←− greg

α−→ G/N .

(15)

When working with K-valued objects, it is usually more convenient to work
with the left-hand side of (15), i.e., with eigenvalues . When working with the ab-
stract objects, this is unavailable, so we are forced to work with the eigenvectors,
or the right-hand side of (15). Thus:

Definition 5. An abstract cameral cover of S is a finite morphism S̃ −→ S

with W -action, which locally (étale) in S is a pullback of (14 ).
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Definition 6. A K-valued cameral cover (for K a vector bundle on S) consists
of a cameral cover π : S̃ −→ S together with an S-morphism

S̃ × Λ −→ K(16)

that is W -invariant (W acts on S̃ and Λ, hence diagonally on S̃×Λ) and linear
in Λ.

We note that a cameral cover S̃ determines quotients S̃P for parabolic sub-
groups P ⊂ G. A K-valued cameral cover determines additionally the S̃λ for
λ ∈ Λ, as images in K of S̃ × {λ}. The data of (16) is equivalent to a W -
equivariant map S̃ −→ t⊗C K.

Definition 7. A G-principal Higgs bundle on S is a pair (G, c) with G a prin-
cipal G-bundle and c ⊂ ad(G) a subbundle of regular centralizers.

Definition 8. A K-valued G-principal Higgs bundle consists of (G, c) as above,
together with a section ϕ of c⊗K.

A principal Higgs bundle (G, c) determines a cameral cover S̃ −→ S and a
homomorphism Λ −→ Pic(S̃). Let F be a parameter space for Higgs bundles
with a given S̃. Each non-zero λ ∈ Λ gives a non-trivial map F −→ Pic(S̃). For
λ in a face FP of C, this factors through Pic(S̃P ). The discussion in Section 4.4
now suggests that F should be given roughly by the distinguished Prym,

HomW (Λ, Pic(S̃)).

It turns out that this guess needs two corrections. The first correction involves
restricting to a coset of a subgroup; the need for this is visible even in the simplest
case where S̃ is étale over S, so (G, c) is everywhere regular and semisimple
(i.e., c is a bundle of Cartans.) The second correction involves a twist along
the ramification of S̃ over S. We explain these corrections in the next two
subsections.

5.2. The regular semisimple case: the shift.

Example 9. Fix a smooth projective curve C and a line bundle K ∈ Pic(C)
such that K⊗2 ≈ OC . This determines an étale double cover π : C̃ −→ C with
involution i, and homomorphisms

π∗ : Pic(C) −→ Pic(C̃),
Nm : Pic(C̃) −→ Pic(C),
i∗ : Pic(C̃) −→ Pic(C̃),
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satisfying

1 + i∗ = π∗ ◦Nm.

For G = GL(2) we have Λ = Z⊕Z, and W = S2 permutes the summands, so

HomW (Λ, Pic(C̃)) ≈ Pic(C̃).

And, indeed, the Higgs bundles corresponding to C̃ are parametrized by Pic(C̃):
send L ∈ Pic(C̃) to (G, c), where G has associated rank-two vector bundle V :=
π∗L, and c ⊂ End(V) is π∗OC̃

.

On the other hand, for G = SL(2) we have Λ = Z and W = S2 acts by ±1, so

HomW (Λ, Pic(S̃)) ≈ {L ∈ Pic(C̃) | i∗L ≈ L−1} = ker(1 + i∗).

This group has four connected components. The subgroup ker(Nm) consists of
two of these. The connected component of 0 is the classical Prym variety [Mu2].
Now the Higgs bundles correspond, via the above bijection L 7→ π∗L, to

{L ∈ Pic(C̃) | det(π∗L) ≈ OC} = Nm−1(K).

Thus they form the non-zero coset of the subgroup ker(Nm). (If we return to a
higher-dimensional S, it is possible for K not to be in the image of Nm, so there
may be no SL(2)-Higgs bundles corresponding to such a cover.)

This example generalizes to all G, as follows. The equivalence classes of
extensions

1 −→ T −→ N ′ −→W −→ 1

(in which the action of W on T is the standard one) are parametrized by the
group cohomology H2(W, T ). Here the 0 element corresponds to the semidirect
product. The class [N ] ∈ H2(W, T ) of the normalizer N of T in G may be 0, as
it is for G = GL(n), PGL(n), and SL(2n + 1); or it may not, as for G = SL(2n).

Assume first, for simplicity, that S and S̃ are connected and projective. There
is then a natural group homomorphism

c : HomW (Λ, Pic(S̃)) −→ H2(W, T ).(17)

Algebraically, this is an edge homomorphism for the Grothendieck spectral se-
quence of equivariant cohomology, which gives the exact sequence

0 −→ H1(W, T ) −→ H1(S, C) −→ HomW (Λ, Pic(S̃)) c−→ H2(W, T ),(18)

where C := S̃×W T. Geometrically, this expresses a Mumford group construction:
giving L ∈ Hom(Λ, Pic(S̃)) is equivalent to giving a principal T -bundle T over
S̃; for L ∈ HomW (Λ, Pic(S̃)), c(L) is the class in H2(W, T ) of the group N ′ of
automorphisms of T that commute with the action on S̃ of some w ∈W .
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To remove the restriction on S and S̃, we need to replace each occurrence of
T in (17, 18) by Γ(S̃, T ), the global sections of the trivial bundle on S̃ with fiber
T . The natural map H2(W, T ) −→ H2(W, Γ(S̃, T )) allows us to think of [N ] as
an element of H2(W, Γ(S̃, T )).

Proposition 10 ([D3]). Fix an étale W -cover π : S̃ −→ S. The following data
are equivalent :

(1) Principal G-Higgs bundles (G, c) with cameral cover S̃.
(2) Principal N -bundles N over S whose quotient by T is S̃.

(3) W -equivariant homomorphisms L : Λ −→ Pic(S̃) with c(L) = [N ] ∈
H2(W, Γ(S̃, T )).

We observe that while the shifted objects correspond to Higgs bundles, the
unshifted objects

L ∈ HomW (Λ, Pic(S̃)), c(L) = 0

come from the C-torsors in H1(S, C).

5.3. The regular case: the twist along the ramification.

Example 11. Modify Example 9 by letting K ∈ Pic(C) be arbitrary, and choose
a section b of K⊗2 that vanishes on a simple divisor B ⊂ C. We get a double
cover π : C̃ −→ C branched along B, ramified along a divisor

R ⊂ C̃, π(R) = B.

Via L 7→ π∗L, the Higgs bundles still correspond to

{L ∈ Pic(C̃) | det(π∗L) ≈ OC} = Nm−1(K).

But this is no longer in HomW (Λ, Pic(S̃)); rather, the line bundles in question
satisfy

i∗L ≈ L−1(R).(19)

For arbitrary G, let Φ denote the root system and Φ+ the set of positive roots.
There is a decomposition

G/T rG/T =
⋃

α∈Φ+

Rα

of the boundary into components, with Rα the fixed locus of the reflection σα in
α. (Via (15), these correspond to the complexified walls in t.) Thus each cameral
cover S̃ −→ S comes with a natural set of (Cartier) ramification divisors , which
we still denote Rα, for α ∈ Φ+.

For w ∈W , set

Fw :=
{
α ∈ Φ+ | w−1α ∈ Φ−

}
= Φ+ ∩ wΦ−,
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and choose a W -invariant form 〈, 〉 on Λ. We consider the variety

HomW,R(Λ, Pic(S̃))

of R-twisted W -equivariant homomorphisms, i.e., homomorphisms L satisfying

w∗L(λ) ≈ L(wλ)

( ∑
α∈Fw

〈−2α, wλ〉
〈α, α〉 Rα

)
, λ ∈ Λ, w ∈ W.(20)

This turns out to be the correct analogue of (19). (For example if w = σα, is
a reflection, Fw is {α}, so this gives

w∗L(λ) ≈ L(wλ)
(
〈α, 2λ〉
〈α, α〉 Rα

)
,

which specializes to (19).) As before, there is a class map

c : HomW,R(Λ, Pic(S̃)) −→ H2(W, Γ(S̃, T ))(21)

that can be described via a Mumford-group construction.
To understand this twist, consider the formal object

1
2 Ram : Λ −→ Q⊗ Pic S̃,

λ 7−→
∑

(α∈Φ+)

〈α, λ〉
〈α, α〉Rα.

In an obvious sense, a principal T -bundle T on S̃ (or a homomorphism L : Λ −→
Pic(S̃)) is R-twisted W -equivariant if and only if T (− 1

2 Ram) is W -equivariant,
i.e., if T and 1

2 Ram transform the same way under W . The problem with this
is that 1

2 Ram itself does not make sense as a T -bundle, because the coefficients
〈α, λ〉/〈α, α〉 are not integers. (This argument shows that if HomW,R(Λ, Pic(S̃))
is non-empty, it is a torsor over the untwisted HomW (Λ, Pic(S̃)).)

Theorem 12 ([D3]). For a cameral cover S̃ −→ S, the following data are equiv-
alent :

(1) G-principal Higgs bundles with cameral cover S̃.
(2) R-twisted W -equivariant homomorphisms L ∈ c−1([N ]).

The theorem has an essentially local nature, as there is no requirement that
S be, say, projective. We also do not need the condition of generic behavior
near the ramification, which appears in [F1, Me, Sc]. Thus we may consider an
extreme case where S̃ is ‘everywhere ramified’:
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Example 13. In Example 11, take the section b = 0. The resulting cover C̃ is a
‘ribbon’, or length-2 non-reduced structure on C: it is the length-2 neighborhood
of C in K . The SL(2)-Higgs bundles (G, c) for this C̃ have an everywhere nilpo-
tent c, so the vector bundle V := G ×SL(2) V ≈ π∗L (where V is the standard
two-dimensional representation) fits in an exact sequence

0 −→ S −→ V −→ Q −→ 0

with S ⊗ K ≈ Q. Such data are specified by the line bundle Q, satisfying
Q⊗2 ≈ K, and an extension class in Ext1(Q,S) ≈ H1(K−1). The kernel of
the restriction map Pic(C̃) −→ Pic(C) is also given by H1(K−1) (use the exact
sequence 0 −→ K−1 −→ π∗O×

C̃
−→ O×C −→ 0), and the R-twist produces the

required square roots of K. (For more details on the nilpotent locus, see [L] and
[DEL].)

5.4. Adding values and representations. Fix a vector bundle K, and con-
sider the moduli space MS,G,K of K-valued G-principal Higgs bundles on S.
(It can be constructed as in Simpson’s [S], even though the objects we need to
parametrize are slightly different from his. In this subsection we outline a direct
construction.) It comes with a Hitchin map

h :MS,G,K −→ BK(22)

where B := BK parametrizes all possible Hitchin data. Theorem 12 gives a
precise description of the fibers of this map, independent of the values bundle
K. This leaves us with the relatively minor task of describing, for each K, the
corresponding base, that is, the closed subvariety Bs of B parametrizing split
Hitchin data, or K-valued cameral covers. The point is that Higgs bundles satisfy
a symmetry condition, which in Simpson’s setup is

ϕ ∧ ϕ = 0,

and is built into our Definition 7 through the assumption that c is regular, hence
abelian. Since commuting operators have common eigenvectors, this gives a
splitness condition on the Hitchin data, which we describe below. (When K is a
line bundle, the condition is vacuous, Bs = B.) The upshot is:

Lemma 14. The following data are equivalent:
(a) A K-valued cameral cover of S.
(b) A split, graded homomorphism R˙ −→ Sym˙K.

(c) A split Hitchin datum b ∈ Bs.

Here R˙ is the graded ring of W -invariant polynomials on t:
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R˙ := (Sym˙t∗)W ≈ C[σ1, . . . , σl], deg(σi) = di(23)

where l := Rank(g) and the σi form a basis for the W -invariant polynomials.
The Hitchin base is the vector space

B := BK := ⊕l
i=1H

0(S, SymdiK) ≈ Hom(R˙, Sym˙K).

For each λ ∈ Λ (or λ ∈ t∗, for that matter), the expression

qλ(x, t) :=
∏

w∈W

(x− wλ(t)), t ∈ t,(24)

in an indeterminate x is W -invariant (as a function of t), so it defines an element
qλ(x) ∈ R˙[x]. A Hitchin datum b ∈ B ≈ Hom(R˙, Sym˙K) sends this to

qλ,b(x) ∈ Sym˙(K)[x].

We say that b is split if, at each point of S and for each λ, the polynomial qλ,b(x)
factors completely, into terms linear in x.

We note that, for λ in the interior of C (the positive Weyl chamber), qλ,b

gives the equation in K of the spectral cover S̃λ of Section (4.2): qλ,b gives a
morphism K −→ SymNK , where N := #W , and S̃λ is the inverse image of the
zero-section. (When λ is in a face FP of C, we define analogous polynomials
qP
λ (x, t) and qP

λ,b(x) by taking the product in (24) to be over w ∈WP \W. These
give the reduced equations in this case, and qλ is an appropriate power.)

Over Bs there is a universal K-valued cameral cover

S̃ −→ Bs

with ramification divisor R ⊂ S̃. From the relative Picard, Pic(S̃/Bs), we con-
coct the relative N -shifted, R-twisted Prym

PrymΛ,R(S̃/Bs).

By Theorem 12, this can then be considered as a parameter spaceMS,G,K for all
K-valued G-principal Higgs bundles on S. (Recall that our objects are assumed
to be everywhere regular !) It comes with a ‘Hitchin map’, namely the projection
to Bs, and the fibers corresponding to smooth projective S̃ are abelian varieties.
When S is a smooth, projective curve, we recover this way the algebraic complete
integrability of Hitchin’s system and its generalizations.
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6. Symplectic and Poisson structures

The total space of Hitchin’s original system is a cotangent bundle, hence
has a natural symplectic structure. For the polynomial matrix systems of [B]
and [AHH] there is a natural Poisson structure, which one writes down explicitly.

In [Bn] and [M1], this result is extended to the systems MC,K of K-valued
GL(n) Higgs bundles on C, when K ≈ ωC(D) for an effective divisor D on
C. There is a general-nonsense pairing on the cotangent spaces, so the point
is to check that this pairing is ‘closed’, that is, satisfies the identity required
for a Poisson structure. Bottacin does this by an explicit computation along the
lines of [B]. Markman’s idea is to consider the moduli spaceMD of stable vector
bundles on C with level-D structure. He realizes an open subsetM0

C,K ofMC,K ,
parametrizing Higgs bundles whose covers are nice, as a quotient (by an action
of the level group) of T ∗MD, so the natural symplectic form on T ∗MD descends
to a Poisson structure on M0

C,K . This is identified with the general-nonsense
form (wherever both exist), proving its closedness.

In [Muk], Mukai constructs a symplectic structure on the moduli space of
simple sheaves on a K3 surface S. Given a curve C ⊂ S, one can consider the
moduli of sheaves having the numerical invariants of a line bundle on a curve in
the linear system |nC| on S. This has a support map to the projective space
|nC|, which turns it into an ACIHS. This system specializes, by a ‘degeneration
to the normal cone’ argument [DEL] to Hitchin’s, allowing translation of various
results about Hitchin’s system (such as Laumon’s description of the nilpotent
cone [L]) to Mukai’s.

In higher dimensions, the moduli space M of Ω1-valued Higgs bundles car-
ries a natural symplectic structure [S]. (Corlette points out in [C] that certain
components of an open subet in M can be described as cotangent bundles.) It
is not clear at the moment exactly when one should expect to have an ACIHS,
with symplectic, Poisson or quasi-symplectic structure, on the moduli spaces
of K-valued Higgs bundles for higher-dimensional S, arbitrary G, and arbitrary
vector bundle K. A beautiful new idea [M2] is that Mukai’s results extend to the
moduli of those sheaves on a (symplectic, Poisson or quasi-symplectic) variety X

whose support in X is Lagrangian. Again, there is a general-nonsense pairing.
At points where the support is non-singular projective, this can be identified
with another, more geometric pairing, constructed using the cubic condition of
[DM1], which is known to satisfy the closedness requirement. This approach
is quite powerful, as it includes many non-linear examples such as Mukai’s, in
addition to the line-bundle valued spectral systems of [Bn, M1] and also Simp-
son’s Ω1-valued GL(n)-Higgs bundles: just take X := T ∗S π→ S, with its natural
symplectic form, and the support in X to be proper over S of degree n; such
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sheaves correspond to Higgs bundles by π∗.
The structure group GL(n) can of course be replaced by an arbitrary reduc-

tive group G. Using Theorem 12, this yields (in the analogous cases) a Poisson
structure on the Higgs moduli spaceMS,G,K described at the end of the previous
section. The fibers of the generalized Hitchin map are Lagrangian with respect
to this structure. Along the lines of our general approach, the necessary modi-
fications are clear: π∗ is replaced by the equivalence of Theorem 12. One thus
considers only Lagrangian supports that retain a W -action, and only equivari-
ant sheaves on them (with the numerical invariants of a line bundle). These two
restrictions are symplectically dual, so the moduli space of Lagrangian sheaves
with these invariance properties is a symplectic (respectively, Poisson) subspace
of the total moduli space, and the fibers of the Hitchin map are Lagrangian as
expected.

A more detailed review of the ACIHS aspects of Higgs bundles will appear in
[DM2].

7. Some applications and problems

Some applications. In [H1], Hitchin used his integrable system to compute sev-
eral cohomology groups of the moduli space SM (of rank-two, fixed odd de-
terminant vector bundles on a curve C) with coefficients in symmetric powers
of its tangent sheaf T . The point is that the symmetric algebra Sym˙T is the
direct image of OT∗SM, and sections of the latter all pull back via the Hitchin
map h from functions on the base B, since the fibers of h are open subsets in
abelian varieties, and the missing locus has codimension ≥ 2. Hitchin’s system
is used in [BNR] to compute a couple of ‘Verlinde numbers’ for GL(n), namely
the dimensions

h0(M, Θ) = 1, h0(SM, Θ) = ng.

These results are now subsumed in the general Verlinde formulas; see [F2], [BL],
and other references therein.

A pretty application of spectral covers was obtained by Katzarkov and Pan-
tev [KP2]. Let S be a smooth, projective, complex variety, and ρ : π1(S) −→ G

a Zariski dense representation into a simple G (over C). Assume that the Ω1-
valued Higgs bundle (V , φ) associated to ρ by Simpson is (regular and) generically
semisimple, so the cameral cover is reduced. Among other things, they show that
ρ factors through a representation of an orbicurve if and only if the non-standard
component Prymε(S̃) is non-zero, where ε is the one-dimensional sign represen-
tation of W . (In a sense, this is the opposite of PrymΛ(S̃): while PrymΛ(S̃)
is common to Pic(S̃P ) for all proper Weyl subgroups, Prymε(S̃) occurs in none
except for the full cameral Picard.)
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Another application is in [KoP]: the moduli spaces of SL(n)- or GL(n)-stable
bundles on a curve have certain obvious automorphisms, coming from tensoring
with line bundles on the curve, from inversion, or from automorphisms of the
curve. Kouvidakis and Pantev use the dominant direct-image maps from spectral
Picards and Pryms to the moduli spaces to show that there are no further,
unexpected automorphisms. This then leads to a ‘non-abelian Torelli theorem’,
stating that a curve is determined by the isomorphism class of the moduli space
of bundles on it.

Compatibility? Hitchin’s construction [H2] of the projectively flat connection on
the vector bundle of non-abelian theta functions over the moduli space of curves
does not really use much about spectral covers. Nor do other constructions
of Faltings [F1] and Witten et al. [APW]. Hitchin’s work suggests that the
‘right’ approach should be based on comparison of the non-abelian connection
near a curve C with the abelian connection for standard theta functions on
spectral covers C̃ of C. One conjecture concerning the possible relationship
between these connections appears in [A], and some related versions have been
attempted by several people, so far in vain. What’s missing is a compatibility
statement between the actions of the two connections on pulled-back sections.
If the expected compatibility turns out to hold, it would give another proof of
the projective flatness. It should also imply projective finiteness and projective
unitarity of monodromy for the non-abelian thetas, and may or may not bring us
closer to a ‘finite-dimensional’ proof of Faltings’ theorem (= the former Verlinde
conjecture).

Irregulars? The Higgs bundles we consider in this survey are assumed to be ev-
erywhere regular. This is a reasonable assumption for line-bundle valued Higgs
bundles on a curve or surface, but not in dim ≥ 3. This is because the com-
plement of greg has codimension 3 in g. The source of the difficulty is that the
analogue of (15) fails over g. There are two candidates for the universal cameral
cover: g̃, defined by the left-hand side of (15), is finite over g with W action, but
does not have a family of line bundles parametrized by Λ. These live on

≈
g, the

object defined by the right-hand side, which parametrizes pairs

(x, b), x ∈ b ⊂ g.

This suggests that the right way to analyze irregular Higgs bundles may involve
spectral data consisting of a tower

≈
S

σ−→ S̃ −→ S

together with a homomorphism L : Λ −→ Pic(
≈
S) such that the collection of
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sheaves
σ∗(L(λ)), λ ∈ Λ,

on S̃ is R-twisted W -equivariant in an appropriate sense. As a first step, one
may wish to understand the direct images Riσ∗(L(λ)) and in particular the
cohomologies H i(F,L(λ)), where F , usually called a Springer fiber , is a fiber of
σ. For regular x, this fiber is a single point. For x = 0, the fiber is all of G/B,
so the fiber cohomology is given by the Borel–Weil–Bott theorem. The question
may thus be considered as a desired extension of BWB to general Springer fibers.
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