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The Schottky Problem: An Update

OLIVIER DEBARRE

Abstract. The aim of these lecture notes is to update Beauville’s beau-
tiful 1987 Séminaire Bourbaki talk on the same subject. The Schottky
problem is the problem of finding characterizations of Jacobians among all
principally polarized abelian varieties. We review the numerous approaches
to this problem. In the “analytical approach”, one tries to find polynomials
in the thetaconstants that define the Jacobian locus in the moduli space
of principally polarized abelian varieties. We review van Geemen’s (1984)
and Donagi’s (1987) work in that direction. The loci they get contain
the Jacobian locus as an irreducible component. In the “geometrical ap-
proach”, one tries to give geometric properties that are satisfied only by
Jacobians. We review the following: singularities of the theta divisor (An-
dreotti and Mayer 1967); reducibility of intersections of a theta divisor with
a translate (Welters 1984) and trisecants to the Kummer variety (Welters

1983, Beauville and Debarre 1986, Debarre 1992); the K–P equation and
Novikov’s conjecture (Shiota 1986, Arbarello and De Concini 1984); double
translation hypersurfaces (Little 1989); the van Geemen–van der Geer con-
jectures on the base locus of the set of second order theta functions that
vanish with multiplicity ≥ 4 at the origin (Beauville and Debarre 1989,
Izadi 1993); subvarieties with minimal class (Ran 1981, Debarre 1992); the
Buser–Sarnak approach (1993).

Introduction

For g ≥ 2, the moduli space Ag of principally polarized abelian varieties
of dimension g has dimension 1

2g(g + 1) and the moduli space Mg of smooth
connected projective algebraic curves of genus g has dimension 3g − 3. To any
such curve C is associated a principally polarized abelian variety of dimension
g, its Jacobian (JC, θ). This defines a map

Mg −→ Ag,

Partially supported by NSF Grant DMS 9203919 and the European Science Project “Ge-
ometry of Algebraic Varieties”, Contract no. SCI-0398-C (A).

57



58 OLIVIER DEBARRE

which is injective (Torelli theorem). The closure Jg of its image is equal to Ag

only for g = 2 or 3. For g ≥ 4, it is a proper closed subset. The Schottky problem
is the problem of finding characterizations of Jacobians among all principally
polarized abelian varieties (for g ≥ 4). For the sake of simplicity, we will say
that a property is a weak characterization of Jacobians if Jg is an irreducible
component of the set of principally polarized abelian varieties with this property.

1. The analytical approach

Certain modular forms, called “thetaconstants”, define an embedding of a
finite cover of Ag into some projective space [I]. The idea is to use the corre-
sponding “coordinates” to give equations of Jg in Ag. A brief history of this
approach goes as follows:

Schottky [S, 1888] found a polynomial of degree 16 in the thetaconstants
that vanishes on J4 but not on A4.

Schottky and Jung [SJ, 1909], starting from polynomials in the thetacon-
stants that vanish on Ag−1, constructed polynomials that vanish on Jg.

Igusa [I, 1981] and Freitag [F, 1983] proved that the divisor defined by the
Schottky polynomial is irreducible, hence equal to J4.

Van Geemen [vG, 1984] proved that Jg is an irreducible component of the
locus Sg defined by the Schottky–Jung polynomials.

Donagi [Do1, 1984] remarked that the Schottky–Jung polynomials depend
on the choice of a point of order two on the abelian variety, hence that they
define in fact two loci Sg and Sbig

g , depending on whether one considers all or
just one single such point. They satisfy

Jg ⊂ Sg ⊂ Sbig
g .

While van Geemen proved that Jg is a component of Sg, Donagi proved that it
is also a component of Sbig

g , and that Jg 6= Sbig
g for g ≥ 5 [Do2]. For example,

intermediate Jacobians of cubic threefolds are in Sbig
5 , but not in S5. Donagi has

a conjecture on the structure of Sbig
g for any g, which would imply Sg = Jg. He

has announced in [Do3] a proof of this conjecture for g = 5.

2. The geometrical approach

The idea here is to give geometric properties of a principally polarized abelian
variety that are satisfied only by Jacobians.

a) Singularities of the theta divisor. If Θ is a theta divisor on a g-
dimensional Jacobian, dimSing Θ ≥ g − 4. Andreotti and Mayer proved [AM,
1967] that this property is a weak characterization of Jacobians. However, the
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locus in Ag defined by this property always has components other than Jg for
g ≥ 4, although Jg is the only known component that is not contained in θnull

(the divisor in Ag of principally polarized abelian varieties for which a theta-
constant vanishes) [D1].

b) Reducibility of Θ ∩ Θa and trisecants. Weil observed in [W] that if Θ
is a theta divisor on the Jacobian JC of a smooth curve C, then, for any points
p, q, r and s of C, one has the inclusion

Θ ∩Θp−q ⊂ Θp−r ∪Θs−q, (∗)

where Θx stands for the translate Θ + x. Now let (A, θ) be an indecomposable
principally polarized abelian variety and let Θ be a symmetric theta divisor.
Assume that

Θ ∩Θa ⊂ Θx ∪Θy

for some distinct non-zero points a, x and y of A (in particular, Θ ∩ Θa is
reducible). This inclusion has a nice geometric interpretation in terms of the
Kummer map K : A → |2Θ|∗ associated with the linear system |2Θ|: for any
point ζ of A such that 2ζ = x+y, it is equivalent to the fact that K(ζ), K(ζ−a)
and K(ζ − x) are collinear . In other words, the Kummer variety K(JC) of a
Jacobian has a family of dimension 4 of trisecant lines. Mumford suggested that
this property should characterize Jacobians. The most ambitious version of this
conjecture is due to Welters [We1]:

Conjecture. If the Kummer variety of an indecomposable principally polarized
abelian variety (A, θ) has one trisecant line, then (A, θ) is a Jacobian.

The following is known:

Welters [We2, 1983], using Gunning’s criterion [Gu], showed that if K(A)
has a one-dimensional family of trisecants and dimSing Θ ≤ dimA − 4, then
(A, θ) is a Jacobian.

Beauville and Debarre [BD1, 1986] showed that if K(A) has one trisecant,
then dim Sing Θ ≥ dim A−4. This result, combined with the result of Andreotti–
Mayer mentioned above, implies that the existence of one trisecant is a weak
characterization of Jacobians.

Debarre [D2, 1989] proved that Welters’ conjecture holds for g ≤ 5. More-
over, if (A, θ) is indecomposable, if K(a), K(b) and K(c) are collinear and if
the subgroup of A generated by a − b and a − c is dense in A, then (A, θ) is a
Jacobian [D3, D4].

c) The K–P equation. If one lets p, q, r and s go to the same point of C

in (∗), one gets that a theta function of a Jacobian satisfies the K–P equation,
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a non-linear partial differential equation that depends on three constant vector
fields.

Shiota [Sh, 1986] proved that the K–P equation characterizes Jacobians
among all indecomposable principally polarized abelian varieties.

Shiota’s proof is analytical. It was later partially algebraized and simplified
by Arbarello and De Concini [AD], but they could not bypass a crucial point in
Shiota’s proof. At this point, all existing algebraic proofs need extra hypotheses.

d) Double translation type. If Θ is a symmetric theta divisor on the Jaco-
bian of a curve C of genus g, the existence of an Abel–Jacobi map Cg−1 → Θ
implies that Θ can be locally parametrized by

(t1, . . . , tg−1) 7→ α1(t1) + · · ·+ αg−1(tg−1),

where αi : C → Cg are curves. By symmetry of Θ, there are actually two such
parametrizations if C is not hyperelliptic, and the theta divisor of a Jacobian is
said to be a double translation hypersurface. The following is known:

Lie [L1, L2, 1935] and Wirtinger [Wi] proved that a non-developable (having
a generically finite Gauss map) double translation hypersurface in Cg is a piece
of the theta divisor of a Gorenstein curve of arithmetic genus g.

Little [Li1, 1989] later showed that if the theta divisor of a principally polar-
ized abelian variety is locally a generalized double translation hypersurface, that
is, has two local parametrizations of the type

(t1, . . . , tg−1) 7→ α(t1) + A(t2, . . . , tg−1),

the principally polarized abelian variety is a Jacobian. He recently made the
connection with other approaches by showing that if the Kummer variety of an
indecomposable complex principally polarized abelian variety has a “curve of
flexes” (that is, satisfies a one-dimensional family of K–P equations), the theta
divisor is a generalized translation hypersurface [Li2].

e) Second order theta functions. Let (A, θ) be a principally polarized
abelian variety of dimension g. The linear system |2Θ| is independent of the
choice of a symmetric theta divisor Θ. It has dimension 2g − 1. When (A, θ)
is indecomposable, the subsystem |2Θ|00 of divisors that have multiplicity ≥ 4
at 0 has codimension 1

2g(g + 1). When (A, θ) is the Jacobian of a smooth curve
C, Welters showed [We3] that the base locus of |2Θ|00 is (as a set) the surface
C−C in JC (except possibly when g = 4, when there might be two extra isolated
points). One might hope to use this property to characterize Jacobians:

Conjecture [vGvG]. If the indecomposable principally polarized abelian variety
(A, θ) is not a Jacobian, the base locus of |2Θ|00 is {0} as a set.
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As explained in [BD2], this conjecture is connected to the trisecant conjecture
in the following way: the linear system |2Θ|00 corresponds to hyperplanes in |2Θ|∗
that contain the point K(0) and the Zariski tangent space TK(0)K(A). Its base
locus is therefore the inverse image by the Kummer map of K(A)∩ TK(0)K(A).
The conjecture says that if (A, θ) is not a Jacobian, there are no lines through
K(0) and another point of K(A) that are contained in TK(0)K(A). Note that
such a line meets K(A) with multiplicity ≥ 3. What is known is the following:

Beauville and Debarre [BD2, 1989] proved that if (A, θ) is generic of di-
mension ≥ 4, then the base locus of |2Θ|00 is finite. Also, the conjecture holds
for the intermediate Jacobian of a cubic threefold and various other examples.

Izadi’s [Iz, 1993] work on A4 implies the conjecture for g = 4.

This conjecture has an infinitesimal analog. By associating to an element of
|2Θ|00 the fourth-order term of the Taylor expansion of a local equation at 0, we
get a linear system of quartics in PT0A. Using a result of Green [G], Beauville
showed that, for the Jacobian of a smooth curve C, the base locus of this linear
system is equal to the canonical curve of C (except possibly when g = 4, when
there might be an extra isolated point) [BD2]. Again, one might hope to use
this property to characterize Jacobians:

Conjecture [vGvG]. If the indecomposable principally polarized abelian variety
(A, θ) is not a Jacobian, this linear system of quartics is base-point-free.

Donagi explains in [Do3] the relationship between this conjecture and the K–P
equation: if D1 is a base point, the second-order theta functions θn satisfy an
equation of the type

(D4
1 + lower order terms ) θn(z, τ) = 0,

whereas the K–P equation is equivalent to

(D4
1 −D1D3 + D2

2 + d) θn(z, τ) = 0.

The following is known:

Beauville–Debarre [BD2, 1989] proved the conjecture for a generic princi-
pally polarized abelian variety of dimension ≥ 4, for the intermediate Jacobian
of a cubic threefold and for various other examples.

Izadi’s [Iz, 1993] work on A4 implies the conjecture for g = 4.

The difficulty with these conjectures is that the only known efficient way to
construct elements of |2Θ|00 is to use singular points of the theta divisor (if a is
singular on Θ, then Θa + Θ−a is in |2Θ|00). But in general Θ is smooth!



62 OLIVIER DEBARRE

f) Subvarieties with minimal classes. If (JC, θ) is the Jacobian of a smooth
curve C of genus g, the curve C embeds (non-canonically) into JC by the Abel–
Jacobi map. The image has cohomology class θg−1 (for any integer d, we write θd

for the minimal (that is, non-divisible) cohomology class θd/d!). The existence
of such a curve characterizes Jacobians (Matsusaka’s criterion, [M]). This result
has been improved on:

Ran [R, 1981] (see also [C]), proved that if an irreducible curve C generates a
g–dimensional principally polarized abelian variety (A, θ) and satisfies C · θ = g,
then C is smooth and (A, θ) is isomorphic to its Jacobian.

More generally, for any d ≤ g, the symmetric product C(d) maps onto a
subvariety Wd(C) of JC with cohomology class θg−d. However, the existence
of a subvariety with minimal cohomology class does not characterize Jacobians:
the Fano surface of lines on a cubic threefold maps onto a surface with class θ3

in the intermediate Jacobian [CG, B2]. Nonetheless, the following is known:

Ran [R, 1981] proved that if a principally polarized abelian fourfold contains
a surface with class θ2, it is the Jacobian of a curve C of genus 4 and the surface
is a translate of ±W2(C).

Debarre [D5, 1992] proved that the existence of a subvariety of codimen-
sion ≥ 2 with minimal class is a weak characterization of Jacobians. Moreover,
the only subvarieties of a Jacobian JC with minimal classes are translates of
±Wd(C).

A natural extension of Ran’s result would be:

Conjecture. If the g-dimensional principally polarized abelian variety (A, θ)
contains subvarieties V and W with respective cohomology classes θd and θg−d,
then (A, θ) is a Jacobian.

One can be even more ambitious. Let V be a subvariety of dimension d

of a principally polarized abelian variety (A, θ). Call V non-degenerate if the
restriction map:

H0(A, Ωd
A) −→ H0(Vreg, Ωd

Vreg
)

is injective. For example, a curve is non-degenerate if and only if it generates A.
A divisor is non-degenerate if and only if it is ample. Moreover, any subvariety
with class a multiple of a minimal class is non-degenerate. Ran’s above char-
acterization of Jacobian fourfolds actually holds under the weaker hypotheses
that the surface is non-degenerate and of self-intersection 6. In general, since
θg−d · θd =

(
g
d

)
, a nice generalization of Ran’s results would be:

Conjecture. If the g-dimensional principally polarized abelian variety (A, θ)
contains non-degenerate subvarieties V and W of respective dimensions d and
g − d such that V ·W =

(
g
d

)
, then (A, θ) is a Jacobian.
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g) Buser–Sarnak’s approach. A complex abelian variety (A, θ) can be writ-
ten as the quotient of its universal cover V ' Cg by a lattice L. A polarization
induces a positive definite Hermitian form H on V , whose real part B is sym-
metric positive definite. Set

δ(A) = min
x∈L,x 6=0

B(x, x).

Buser and Sarnak show in [BS] that for any g–dimensional Jacobian JC, one has

δ(JC) ≤ 3
π

log(4g + 3).

On the other hand,

max
A∈Ag

δ(A) ≥
(

πg

2g!

)−1/g

' g

πe
.

In other words, the maximum of δ on Ag is much larger than its maximum
on Mg. This leads to an effective criterion for determining if a given lattice is
not a Jacobian.
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