
Algorithms and Complexity

Herbert S. Wilf
University of Pennsylvania

Philadelphia, PA 19104-6395

Copyright Notice

Copyright 1994 by Herbert S. Wilf. This material may be reproduced for any educational purpose, multiple
copies may be made for classes, etc. Charges, if any, for reproduced copies must be just enough to recover
reasonable costs of reproduction. Reproduction for commercial purposes is prohibited. This cover page must
be included in all distributed copies.

Internet Edition, Summer, 1994

This edition of Algorithms and Complexity is available at the web site <http://www/cis.upenn.edu/ wilf>.
It may be taken at no charge by all interested persons. Comments and corrections are welcome, and should
be sent to wilf@math.upenn.edu

Chapter 5: NP -completeness

5.1 Introduction
In the previous chapter we met two computational problems for which fast algorithms have never been

found, but neither have such algorithms been proved to be unattainable. Those were the primality-testing
problem, for which the best-known algorithm is delicately poised on the brink of polynomial time, and the
integer-factoring problem, for which the known algorithms are in a more primitive condition.

In this chapter we will meet a large family of such problems (hundreds of them now!). This family is not
just a list of seemingly difficult computational problems. It is in fact bound together by strong structural
ties. The collection of problems, called the NP -complete problems, includes many well known and important
questions in discrete mathematics, such as the following.
The travelling salesman problem (‘TSP’): Given n points in the plane (‘cities’), and a distance D. Is
there a tour that visits all n of the cities, returns to its starting point, and has total length ≤ D?
Graph coloring: Given a graph G and an integer K. Can the vertices of G be properly colored in K or
fewer colors?
Independent set: Given a graph G and an integer K. Does V (G) contain an independent set of K vertices?
Bin packing: Given a finite set S of positive integers, and an integer N (the number of bins). Does there
exist a partition of S into N or fewer subsets such that the sum of the integers in each subset is ≤ K? In
other words, can we ‘pack’ the integers of S into at most N ‘bins,’ where the ‘capacity’ of each bin is K?

These are very difficult computational problems. Take the graph coloring problem, for instance. We
could try every possible way of coloring the vertices of G in K colors to see if any of them work. There are
Kn such possibilities, if G has n vertices. Hence a very large amount of computation will be done, enough
so that if G has 50 vertices and we have 10 colors at our disposal, the problem would lie far beyond the
capabilities of the fastest computers that are now available.

Hard problems can have easy instances. If the graph G happens to have no edges at all, or very few of
them, then it will be very easy to find out if a coloring is possible, or if an independent set of K vertices is
present.

The real question is this (let’s use ‘Independent Set’ as an illustration). Is it possible to design an
algorithm that will come packaged with a performance guarantee of the following kind:

The seller warrants that if a graph G, of n vertices,
and a positive integer K are input to this program, then
it will correctly determine if there is an independent set
of K or more vertices in V (G), and it will do so in an
amount of time that is at most 1000n8 minutes.

Hence there is no contradiction between the facts that the problem is hard and that there are easy
cases. The hardness of the problem stems from the seeming impossibility of producing such an algorithm
accompanied by such a manufacturer’s warranty card. Of course the ‘1000n8’ didn’t have to be exactly that.
But some quite specific polynomial in the length of the input bit string must appear in the performance
guarantee. Hence ‘357n9’ might have appeared in the guarantee, and so might ‘23n3,’ but ‘nK ’ would not
be allowed.

Let’s look carefully at why nK would not be an acceptable worst-case polynomial time performance
bound. In the ‘Independent Set’ problem the input must describe the graph G and the integer K. How
many bits are needed to do that? The graph can be specified, for example, by its vertex adjacency matrix
A. This is an n× n matrix in which the entry in row i and column j is 1 if (i, j) ∈ E(G) and is 0 else.

Evidently n2 bits of input will describe the matrix A. The integers K and n can be entered with just
O(log n) bits, so the entire input bit string for the ‘Independent Set’ problem is ∼ n2 bits long. Let B denote
the number of bits in the input string. Suppose that on the warranty card the program was guaranteed to
run in a time that is < nK .

Is this a guarantee of polynomial time performance? That question means ‘Is there a polynomial P such
that for every instance of ‘Independent Set’ the running time T will be at most P (B)?’ Well, is T bounded

104

What is a language?

by a polynomial in B if T = nK and B ∼ n2? It would seem so; in fact obviously T = O(BK/2), and that’s
a polynomial, isn’t it?

The key point resides in the order of the qualifiers. We must give the polynomial that works for
every instance of the problem first. Then that one single polynomial must work on every instance. If
the ‘polynomial’ that we give is BK/2, well that’s a different polynomial in B for different instances of
the problem, because K is different for different instances. Therefore if we say that a certain program for
‘Independent Set’ will always get an answer before BK/2 minutes, where B is the length of the input bit
string, then we would not have provided a polynomial-time guarantee in the form of a single polynomial in
B that applies uniformly to all problem instances.

The distinction is a little thorny, but is worthy of careful study because it’s of fundamental importance.
What we are discussing is usually called a worst-case time bound, meaning a bound on the running time that
applies to every instance of the problem. Worst-case time bounds aren’t the only possible interesting ones.
Sometimes we might not care if an algorithm is occasionally very slow as long as it is almost always fast. In
other situations we might be satisfied with an algorithm that is fast on average. For the present, however,
we will stick to the worst-case time bounds and study some of the theory that applies to that situation. In
sections 5.6 and 5.7 we will study some average time bounds.

Now let’s return to the properties of the NP-complete family of problems. Here are some of them.
10: The problems all seem to be computationally very difficult, and no polynomial time algorithms have

been found for any of them.
20: It has not been proved that polynomial time algorithms for these problems do not exist.
20: But this is not just a random list of hard problems. If a fast algorithm could be found for one

NP-complete problem then here would be fast algorithms for all of them.
20: Conversely, if it could be proved that no fast algorithm exists for one of the NP-complete problems,

then there could not be a fast algorithm for any other of those problems.
The above properties are not intended to be a definition of the concept of NP-completeness. We’ll get to

that later on in this section. They are intended as a list of some of the interesting features of these problems,
which, when coupled with their theoretical and practical importance, accounts for the intense worldwide
research effort that has gone into understanding them in recent years.

The question of the existence or nonexistence of polynomial-time algorithms for the NP-complete prob-
lems probably rates as the principal unsolved problem that faces theoretical computer science today.

Our next task will be to develop the formal machinery that will permit us to give precise definitions
of all of the concepts that are needed. In the remainder of this section we will discuss the additional ideas
informally, and then in section 5.2 we’ll state them quite precisely.

What is a decision problem? First, the idea of a decision problem. A decision problem is one that asks
only for a yes-or-no answer: Can this graph be 5-colored? Is there a tour of length ≤ 15 miles? Is there a
set of 67 independent vertices?

Many of them problems that we are studying can be phrased as decision problems or as optimization
problems: What is the smallest number of colors with which G can be colored? What is the length of the
shortest tour of these cities? What is the size of the largest independent set of vertices in G?

Usually if we find a fast algorithm for a decision problem then with just a little more work we will
be able to solve the corresponding optimization problem. For instance, suppose we have an algorithm that
solves the decision problem for graph coloring, and what we want is the solution of the optimization problem
(the chromatic number).

Let a graph G be given, say of 100 vertices. Ask: can the graph be 50-colored? If so, then the chromatic
number lies between 1 and 50. Then ask if it can be colored in 25 colors. If not, then the chromatic
number lies between 26 and 50. Continue in this way, using bisection of the interval that is known to
contain the chromatic number. After O(logn) steps we will have found the chromatic number of a graph of
n vertices. The extra multiplicative factor of logn will not alter the polynomial vs. nonpolynomial running
time distinction. Hence if there is a fast way to do the decision problem then there is a fast way to do the
optimization problem. The converse is obvious.

Hence we will restrict our discussion to decision problems.

105

Chapter 5: NP -completeness

What is a language?
Since every decision problem can have only the two answers ‘Y/N,’ we can think of a decision problem

as asking if a given word (the input string) does or does not belong to a certain language. The language is
the totality of words for which the answer is ‘Y.’

The graph 3-coloring language, for instance, is the set of all symetric, square matrices of 0,1 entries,
with zeroes on the main diagonal (these are the vertex adjacency matrices of graphs) such that the graph
that the matrix represents is 3-colorable. We can image that somewhere there is a vast dictionary of all of
the words in this language. A 3-colorability computation is therefore nothing but an attempt to discover
whether a given word belongs to the dictionary.

What is the class P?
We say that a decision problem belongs to the class P if there is an algorithm A and a number c such

that for every instance I of the problem the algorithm A will produce a solution in time O(Bc), where B is
the number of bits in the input string that represents I.

To put it more briefly, P is the set of easy decision problems.
Examples of problems in P are most of the ones that we have already met in this book: Are these two

integers relatively prime? Is this integer divisible by that one? Is this graph 2-colorable? Is there a flow of
value greater than K in this network? Can this graph be disconnected by the removal of K or fewer edges?
Is there a matching of more than K edges in this bipartite graph? For each of these problems there is a fast
(polynomial time) algorithm.

What is the class NP?
The class NP is a little more subtle. A decision problem Q belongs to NP if there is an algorithm A

that does the following:
(a) Associated with each word of the language Q (i.e.,with each instance I for which the answer is ‘Yes’)

there is a certificate C(I) such that when the pair (I, C(I)) are input to algorithm A it recognizes
that I belongs to the language Q.

(b) If I is some word that does not belong to the language Q then there is no choice of certificate C(I)
that will cause A to recognize I as a member of Q.

(c) Algorithm A operates in polynomial time.
To put this one more briefly, NP is the class of decision problems for which it is easy to check the

correctness of a claimed answer, with the aqid of a little extra information. So we aren’t asking for a way to
find a solution, but only to verify that an alleged solution really is correct.

Here is an analogy that may help to clarify the distinction between the classes P and NP. We have all
had the experience of reading through a truly ingenious and difficult proof of some mathematical theorem,
and wondering how the person who found the proof in the first place ever did it. Our task, as a reader, was
only to verify the proof, and that is a much easier job than the mathematician who invented the proof had.
To pursue the analogy a bit farther, some proofs are extremely time consuming even to check (see the proof
of the four-color theorem!), and similarly, some computational problems are not even known to belong to
NP, let alone to P.

In P are the problems where it’s easy to find a solution, and in NP are the problems where it’s easy to
check a solution that may have been very tedious to find.

Here’s another example. Consider the graph coloring problem to be the decision problem Q. Certainly
this problem is not known to be in P. It is, however, in NP, and here is an algorithm, and a method of
constructing certificates that proves it.

Suppose G is some graph that is K-colorable. The certificate of G might be a list of the colors that get
assigned to each vertex in some proper K-coloring of the vertices of G. Where did we get that list, you ask?
Well, we never said it was easy to construct a certificate. If you actually want to find one then you will have
to solve a hard problem. But we’re really only talking about checking the correctness of an alleged answer.
To check that a certain graph G really is K-colorable we can be convinced if you will show us the color of
each vertex in a proper K-coloring.

If you do provide that certificate, then our checking algorithm A is very simple. It checks first that every
vertex has a color and only one color. It then checks that no more than K colors have been used altogether.

106

What is NP-completeness?

It finally checks that for each edge e of G it is true that the two endpoints of e have different colors.
Hence the graph coloring problem belongs to NP.
For the travelling salesman problem we would provide a certificate that contains a tour, whose total

length is ≤ K, of all of the cities. The checking algorithm A would then verify that the tour really does visit
all of the cities and really does have total length ≤ K.

The travelling salesman probelm, therefore, also belongs to NP.
‘Well,’ you might reply, ‘if we’re allowed to look at the answers, how could a problem fail to belong to

NP?’
Try this decision problem: an instance I of the problem consists of a set of n cities in the plane and a

positive number K. The question is ‘Is it true that there is not a tour of all of these cities whose total length
is less than K?’ Clearly this is a kind of a negation of the travelling salesman problem. Does it belong to
NP? If so, there must be an algorithm A and a way of making a certificate C(I) for each instance I such
that we can quickly verify that no such tour exists of the given cities. Any suggestions for the certificate?
The algorithm? No one else knows how to do this either.

It is not known if this negation of the travelling salesman problem belongs to NP.
Are there problems that do belong to NP but for which it isn’t immediately obvious that this is so?

Yes. In fact that’s one of the main reasons that we studied the algorithm of Pratt, in section 4.10. Pratt’s
algorithm is exactly a method of producing a certificate with the aid of which we can quickly check that a
given integer is prime. The decision problem ‘Given n, is it prime?’ is thereby revealed to belong to NP,
although that fact wasn’t obvious at a glance.

It is very clear that P⊆NP. Indeed if Q ∈ P is some decision problem then we can verify membership in
the language Q with the empty certificate. That is, we don’t even need a certificate in order to do a quick
calculation that checks membership in the language because the problem itself can be quickly solved.

It seems natural to suppose that NP is larger than P. That is, one might presume that there are problems
whose solutions can be quickly checked with the aid of a certificate even though they can’t be quickly found
in the first place.

No example of such a problem has ever been produced (and proved), nor has it been proved that no
such problem exists. The question of whether or not P=NP is the one that we cited earlier as being perhaps
the most important open question in the subject area today.

It is fairly obvious that the class P is called ‘the class P’ because ‘P’ is the first letter of ‘Polynomial
Time.’ But what does ‘NP’ stand for? Stay tuned. The answer will appear in section 5.2.

What is reducibility?
Suppose that we want to solve a system of 100 simultaneous linear equations in 100 unknowns, of the

form Ax = b. We run down to the local software emporium and quickly purchase a program for $49.95 that
solves such systems. When we get home and read the fine print on the label we discover, to our chagrin,
that the system works only on systems where the matrix A is symmetric, and the coefficient matrix in the
system that we want to solve is, of course, not symmetric.

One possible response to this predicament would be to look for the solution to the system ATAx = AT b,
in which the coefficient matrix ATA is now symmetric.

What we would have done would be to have reduced the problem that we really are interested in to an
instance of a problem for which we have an algorithm.

More generally, let Q and Q′ be two decision problems. We will say that Q′ is quickly reducible to Q if
whenever we are given an instance I ′ of the problem Q′ we can convert it, with only a polynomial amount
of labor, into an instance I of Q, in such a way that I ′ and I both have the same answer (‘Yes’ or ‘No’).

Thus if we buy a program to solve Q, then we can use it to solve Q′, with just a small amount of extra
work.

What is NP-completeness?
How would you like to buy one program, for $49.95, that can solve 500 different kinds of problems?

That’s what NP-completeness is about.
To state it a little more carefully, a decision problem is NP-complete if it belongs to NP and every

problem in NP is quickly reducible to it.

107

Chapter 5: NP -completeness

The implications of NP-completeness are numerous. Suppose we could prove that a certain decision
problem Q is NP-complete. Then we could concentrate our efforts to find polynomial-time algorithms on
just that one problem Q. Indeed if we were to succeed in finding a polynomial time algorithm to do instances
of Q then we would automatically have found a fast algorithm for doing every problem in NP. How does
that work?

Take an instance I ′ of some problem Q′ in NP. Since Q′ is quickly reducible to Q we could transform
the instance I ′ into an instance I of Q. Then use the super algorithm that we found for problems in Q to
decide I. Altogether only a polynomial amount of time will have been used from start to finish.

Let’s be more specific. Suppose that tomorow morning we prove that the graph coloring problem is
NP-complete, and that on the next morning you find a fast algorithm for solving it. Then consider some
instance of the bin packing problem. Since graph coloring is NP-complete, the instance of bin packing can
be quickly converted into an instance of graph coloring for which the ‘Yes/No’ answer is the same. Now use
the fast graph coloring algorithm that you found (congratulations, by the way!) on the converted problem.
The answer you get is the correct answer for the original bin packing problem.

So, a fast algorithm for some NP-complete problem implies a fast algorithm for every problem in NP.
Conversely suppose we can prove that it is impossible to find a fast algorithm for some particular problem
Q in NP. Then we can’t find a fast algorithm for any NP-complete problem Q′ either. For if we could then
we would be able to solve instances of Q by quickly reducing them to instances of Q′ and solving them.

If we could prove that there is no fast way to test the primality of a given integer then we would have
proved that there is no fast way to decide of graphs are K-colorable, because, as we will see, the graph coloring
problem is NP-complete and primality testing is in NP. Think about that one for a few moments, and the
extraordinary beauty and structural unity of these computational problems will begin to reveal itself.

To summarize: quick for one NP-complete problem implies quick for all of NP; provably slow for one
problem in NP implies provably slow for all NP-complete problems.

There’s just one small detail to attend to. We’ve been discussing the economic advantages of keeping
flocks of unicorns instead of sheep. If there aren’t any unicorns then the discussion is a little silly.

NP-complete problems have all sorts of marvellous properties. It’s lovely that every problem in NP can
be quickly reduced to just that one NP-complete problem. But are there any NP-complete problems? Why,
after all, should there be a single computational problem with the property that every one of the diverse
creatures that inhabit NP should be quickly reducible to it?

Well, there are NP-complete problems, hordes of them, and proving that will occupy our attention for
the next two sections. Here’s the plan.

In section 5.2 we are going to talk about a simple computer, called a Turing machine. It is an idealized
computer, and its purpose is to standardize ideas of computability and time of computation by referring all
problems to the one standard machine.

A Turing machine is an extremely simple finite-state computer, and when it performs a computation,
a unit of computational labor will be very clearly and unambiguously describable. It turns out that the
important aspects of polynomial time computability do not depend on the particular computer that is
chosen as the model. The beauty of the Turing machine is that it is at once a strong enough concept that it
can in principle perform any calculation that any other finite state machine can do, while at the same time
it is logically clean and simple enough to be useful for proving theorems about complexity.

The microcomputer on your desktop might have been chosen as the standard against which polynomial
time computability is measured. If that had been done then the class P of quickly solvable problems would
scarcely have changed at all (the polynomials would be different but they would still be polynomials), but
the proofs that we humans would have to give in order to establish the relevant theorems would have gotten
much more complicated because of the variety of different kinds of states that modern computers have.

Next, in section 5.3 we will prove that there is an NP-complete problem. It is called the satisfiability
problem. Its status as an NP-complete problem was established by S. Cook in 1971, and from that work all
later progress in the field has flowed. The proof uses the theory of Turing machines.

The first NP-complete problem was the hardest one to find. We will find, in section 5.4, a few more
NP-complete problems, so the reader will get some idea of the methods that are used in identifying them.

Since nobody knows a fast way to solve these problems, various methods have been developed that give
approximate solutions quickly, or that give exact solutions in fast average time, and so forth. The beautiful

108

5.2 Turing Machines

book of Garey and Johnson (see references at the end of the chapter) calls this ‘coping with NP-completeness,’
and we will spend the rest of this chapter discussing some of these ideas.

Exercises for section 5.1

1. Prove that the following decision problem belongs to P: Given integers K and a1, . . . , an. Is the median
of the a’s smaller than K?
2. Prove that the following decision problem is in NP: given an n × n matrix A of integer entries. Is
detA = 0?
3. For which of the following problems can you prove membership in P?

(a) Given a graph G. Does G contain a circuit of length 4?
(b) Given a graph G. Is G bipartite?
(c) Given n integers. Is there a subset of them whose sum is an even number?
(d) Given n integers. Is there a subset of them whose sum is divisible by 3?
(e) Given a graph G. Does G contain an Euler circuit?

4. For which of the following problems can you prove membership in NP?
(a) Given a set of integers and another integer K. Is there a subset of the given integers whose sum is

K?
(b) Given a graph G and an integer K. Does G contain a path of length ≥ K?
(c) Given a set of K integers. Is it true that not all of them are prime?
(d) Gievn a set of K integers. Is it true that all of them are prime?

5.2 Turing Machines
A Turing machine consists of

(a) a doubly infinite tape, that is marked off into squares that are numbered as shown in Fig. 5.2.1 below.
Each square can contain a single character from the character set that the machine recognizes. For
simplicity we can assume that the character set contains just three symbols: ‘0,’ ‘1,’ and ‘’ (blank).

(b) a tape head that is capable of either reading a single character from a square on the tape or writing a
single character on a square, or moving its position relative to the tape by an increment of one square in
either direction.

(c) a finite list of states such that at every instant the machine is in exactly one of those states. The possible
states of the machine are, first of all, the regular states q1, . . . , qs, and second, three special states

q0: the initial state
qY , the final state in a problem to which the answer is ‘Yes’
qN : the final state in a problem to which the answer is ‘No’

(d) a program (or program module, if we think of it as a pluggable component) that directs the machine
through the steps of a particular task.

Fig. 5.2.1: A Turing machine tape

Let’s describe the program module in more detail. Suppose that at a certain instant the machine is in
state q (other than qY or qN) and that the symbol that has just been read from the tape is ‘symbol.’ Then
from the pair (q, symbol) the program module will decide
(i) to what state q′ the machine shall next go, and
(ii) what single character the machine will now write on the tape in the square over which the head is now

positioned, and
(iii) whether the tape head will next move one square to the right or one square to the left.

109

Chapter 5: NP -completeness

One step of the program, therefore, goes from

(state, symbol) to (newstate,newsymbol , increment). (5.2.1)

If and when the state reaches qY or qN the computation is over and the machine halts.
The machine should be thought of as part hardware and part software. The programmer’s job is, as

usual, to write the software. To write a program for a Turing machine, what we have to do is to tell it how
to make each and every one of the transitions (5.2.1). A Turing machine program looks like a table in which,
for every possible pair (state, symbol) that the machine might find itself in, the programmer has specified
what the newstate, the newsymbol and the increment shall be.

To begin a computation with a Turing machine we take the input string x, of length B, say, that describes
the problem that we want to solve, and we write x in squares 1, 2, . . . , B of the tape. The tape head is then
positioned over square 1, the machine is put into state q0, the program module that the programmer prepared
is plugged into its slot, and the computation begins.

The machine reads the symbol in square 1. It now is in state q0 and has read symbol, so it can consult
the program module to find out what to do. The program instructs it to write at square 1 a newsymbol, to
move the head either to square 0 or to square 2, and to enter a certain newstate, say q′. The whole process
is then repeated, possibly forever, but hopefully after finitely many steps the machine will enter the state
qY or state qN , at which moment the computation will halt with the decision having been made.

If we want to watch a Turing machine in operation, we don’t have to build it. We can simulate one.
Here is a pidgin-Pascal simulation of a Turing machine that can easily be turned into a functioning program.
It is in two principal parts.

The procedure turmach has for input a string x of length B, and for output it sets the Boolean variable
accept to True or False, depending on whether the outcome of the computation is that the machine halted
in state qY or qN respectively. This procedure is the ‘hardware’ part of the Turing machine. It doesn’t vary
from one job to the next.

Procedure gonextto is the program module of the machine, and it will be different for each task. Its
inputs are the present state of the machine and the symbol that was just read from the tape. Its outputs
are the newstate into which the machine goes next, the newsymbol that the tape head now writes on the
current square, and the increment (±1) by which the tape head will now move.

procedure turmach(B:integer; x :array[1..B]; accept:Boolean);
{simulates Turing machine action on input string x of length B}
{write input string on tape in first B squares}
for square := 1 to B do

tape[square] :=x[square];
{record boundaries of written-on part of tape}

leftmost:=1; rightmost := B;
{initialize tape head and state}
state:=0; square:=1;
while state 6= ‘Y’ and state 6= ‘N’ do
{read symbol at current tape square}
if square< leftmost or square> rightmost

then symbol:=‘’ else symbol:= tape[square]
{ask program module for state transition}
gonnextto(state,symbol,newstate,newsybol,increment);
state:=newstate;
{update boundaries and write new symbol};

if square> rightmost then leftmost:= square;
tape[square]:=newsymbol;
{move tape head}
square := square+increment

end;{while}
accept:={ state=‘Y’}

end.{turmach}

110

5.2 Turing Machines

Now let’s try to write a particular program module gonextto. Consider the following problem: given
an input string x, consisting of 0’s and 1’s, of length B. FInd out if it is true that the string contains an
odd number of 1’s.

We will write a program that will scan the input string from left to right, and at each moment the
machine will be in state 0 if it has so far scanned an even number of 1’s, in state 1 otherwise. In Fig. 5.2.2
we show a program that will get the job done.

state symbol newstate newsymbol increment
0 0 0 0 +1
0 1 1 1 +1
0 blank qN blank −1
1 0 1 0 +1
1 1 0 1 +1
1 blank qY blank −1

Fig. 5.2.2: A Turing machine program for bit parity

Exercise. Program the above as procedure gonextto, run it for some input string, and print out the state of
the machine, the contents of the tape, and the position of the tape head after each step of the computation.

In the next section we are going to use the Turing machine concept to prove Cook’s theorem, which
is the assertion that a certain problem is NP-complete. Right now let’s review some of the ideas that have
already been introduced from the point of view of Turing machines.

We might immediately notice that some terms that were just a little bit fuzzy before are now much more
sharply in focus. Take the notion of polynomial time, for example. To make that idea precise one needs a
careful definition of what ‘the length of the input bit string’ means, and what one means by the number of
‘steps’ in a computation.

But on a Turing machine both of these ideas come through with crystal clarity. The input bit string x
is what we write on the tape to get things started, and its length is the number of tape squares it occupies.
A ‘step’ in a Turing machine calculation is obviously a single call to the program module. A Turing machine
caluclation was done ‘in time P (B)’ if the input string occupied B tape squares and the calculation took
P (B) steps.

Another word that we have been using without ever nailing down precisely is ‘algorithm.’ We all
understand informally what an algorithm is. But now we understand formally too. An algorithm for a
problem is a program module for a Turing machine that will cause the machine to halt after finitely many
steps in state ‘Y’ for every instance whose answer is ‘Yes,’ and after finitely many steps in state ‘N’ for every
instance whose answer is ‘No.’

A Turing machine and an algorithm define a language. The language is the set of all input strings x
that lead to termination in state ‘Y,’ i.e., to an accepting calculation.

Now let’s see how the idea of a Turing machine can clarify the description of the class NP. This is
the class of problems for which the decisions can be made quickly if the input strings are accompanied by
suitable certificates.

By a certificate we mean a finite strip of Turing machine tape, consisting of 0 or more squares, each
of which contains a symbol from the character set of the machine. A certificate can be loaded into a
Turing machine as follows. If the certificate contains m > 0 tape squares, then replace the segment from
square number −m to square number −1, inclusive, of the Turing machine tape with the certificate. The
information on the certificate is then available to the program module just as any other information on the
tape is available.

To use a Turing machine as a checking or verifying computer, we place the input string x that describes
the problem instance in squares 1, 2, . . . , B of the tape, and we place the certificate C(x) of x in squares
−m,−m + 1, . . . ,−1 of the tape. We then write a verifying program for the program module in which the
program verifies that the string x is indeed a word in the language of the machine, and in the course of the
verification the program is quite free to examine the certificate as well as the problem instance.

A Turing machine that is being used as a verifying computer is called a nondeterministic machine. The
hardware is the same, but the manner of input and the question that is being asked are different from the

111

Chapter 5: NP -completeness

situation with a deterministic Turing machine, in which we decide whether or not the input string is in the
language, without using any certificates.

The class NP (‘Nondeterministic Polynomial’) consists of those decision problems for which there exists
a fast (polynomial time) algorithm that will verify, given a problem instance string x and a suitable certificate
C(x), that x belongs to the language recognized by the machine, and for which, if x does not belong to the
language, no certificate would cause an accepting computation to ensue.

5.3 Cook’s Theorem
The NP-complete problems are the hardest problems in NP, in the sense that if Q′ is any decision

problem in NP and Q is an NP-complete problem, then every instance of Q′ is polynomially reducible to an
instance of Q. As we have already remarked, the surprising thing is that there is an NP-complete problem
at all, since it is not immediately clear why any single problem should hold the key to the polynomial time
solvability of every problem in the class NP. But there is one. As soon as we see why there is one, then we’ll
be able to see more easily why there are hundreds of them, including many computational questions about
discrete structures such as graphs, networks and games and about optimization problems, about algebraic
structures, formal logic, and so forth.

Here is the satisfiability problem, the first problem that was proved to be NP-complete, by Stephen Cook
in 1971.

We begin with a list of (Boolean) variables x1, . . . , xn. A literal is either one of the variables xi or the
negation of one of the variables, as x̄i. There are 2n possible literals.

A clause is a set of literals.
The rules of the game are these. We assign the value ‘True’ (T) or ‘False’ (F), to each one of the

variables. Having done that, each one of the literals inherits a truth value, namely a literal xi has the same
truth or falsity as the corresponding variable xi, and a literal x̄i has the opposite truth value from that of
the variable xi.

Finally each of the clauses also inherits a truth value from this process, and it is determined as follows.
A clause has the value ‘T’ if and only if at least one of the literals in that clause has the value ‘T,’ and
otherwise it has the value ‘F.’

Hence starting with an assignment of truth values to the variables, some true and some false, we end
up with a determination of the truth values of each of the clauses, some true and some false.

Definition. A set of clauses is satisfiable if there exists an assignment of truth values to the variables that
makes all of the clauses true.

Think of the word ‘or’ as being between each of the literals in a clause, and the word ‘and’ as being
between the clauses.

The satisfiability problem (SAT). Given a set of clauses. Does there exist a set of truth values (=T or
F), one for each variable, such that every clause contains at least one literal whose value is T (i.e., such that
every clause is satisfied)?

Example: Consider the set x1, x2, x3 of variables. From these we might manufacture the following list of
four clauses:

{x1, x̄2}, {x1, x3}, {x2, x̄3}, {x̄1, x3}.

If we choose the truth values (T, T, F) for the variables, respectively, then the four clauses would
acquire the truth values (T, T, T, F), and so this would not be a satisfying truth assignment for the set
of clauses. There are only eight possible ways to assign truth values to three variables, and after a little
more experimentation we might find out that these clauses would in fact be satisfied if we were to make the
assignments (T, T, T) (how can we recognize a set of clauses that is satisfied by assigning to every variable
the value ‘T’?).

The example already leaves one with the feeling that SAT might be a tough computational problem,
because there are 2n possible sets of truth values that we might have to explore if we were to do an exhaustive
search.

It is quite clear, however, that this problem belongs to NP. Indeed, it is a decision problem. Furthermore
we can easily assign a certificate to every set of clauses for which the answer to SAT is ‘Yes, the clauses

112

5.3 Cook’s Theorem

are satisfiable.’ The certificate contains a set of truth values, one for each variable, that satisfy all of the
clauses. A Turing machine that receives the set of clauses, suitably encoded, as input, along with the above
certificate, would have to verify only that if the truth values are assigned to the variables as shown on the
certificate then indeed every clause does contain at least one literal of value ‘T.’ That verification is certainly
a polynomial time computation.

Now comes the hard part. We want to show

Theorem 5.3.1. (S. Cook, 1971): SAT is NP-complete.

Before we carry out the proof, it may be helpful to give a small example of the reducibility ideas that
we are going to use.

1

2

3

4

Fig. 5.3.1: A 3-coloring problem
Example. Reducing graph-coloring to SAT

Consider the graph G of four vertices that is shown in Fig. 5.3.1, and the decision problem ‘Can the
vertices of G be properly colored in 3 colors?’

Let’s see how that decision problem can be reduced to an instance of SAT. We will use 12 Boolean
variables: the variable xi,j corresponds to the assertion that ‘vertex i has been colored in color j’ (i =
1, 2, 3, 4; j = 1, 2, 3).

The instance of SAT that we construct has 31 clauses. The first 16 of these are

C(i) := {xi,1, xi,2, xi,3} (i = 1, 2, 3, 4)
T (i) := {x̄i,1, x̄i,2} (i = 1, 2, 3, 4)
U(i) := {x̄i,1, x̄i,3} (i = 1, 2, 3, 4)
V (i) := {x̄i,2, x̄i,3} (i = 1, 2, 3, 4).

(5.3.1)

In the above, the four clauses C(i) assert that each vertex has been colored in at least one color. The
clauses T (i) say that no vertex has both color 1 and color 2. Similarly the clauses U(i) (resp. V (i)) guarantee
that no vertex has been colored 1 and 3 (resp. 2 and 3).

All 16 of the clauses in (5.3.1) together amount to the statement that ‘each vertex has been colored in
one and only one of the three available colors.’

Next we have to construct the clauses that will assure us that the two endpoints of an edge of the graph
are never the same color. For this purpose we define, for each edge e of the graph G and color j (=1,2,3),
a clause D(e, j) as follows. Let u and v be the two endpoints of e; the D(e, j) := {x̄u,j , x̄v,j}, which asserts
that not both endpoints of the edge e have the same color j.

The original instance of the graph coloring problem has now been reduced to an instance of SAT. In
more detail, there exists an assignment of values T, F to the 12 Boolean variables x1,1, . . . , x4,3 such that
each of the 31 clauses contains at least one literal whose value is T if and only if the vertices of the graph G
can be properly colored in three colors. The graph is 3-colorable if and only if the clauses are satisfiable.

It is clear that if we have an algorithm that will solve SAT, then we can also solve graph coloring
problems. A few moments of thought will convince the reader that the transformation of one problem to the
other that was carried out above involves only a polynomial amount of computation, despite the seemingly
large number of variables and clauses. Hence graph coloring is quickly reducible to SAT.

113

Chapter 5: NP -completeness

Proof of Cook’s theorem
We want to prove that SAT is NP-complete, i.e., that every problem in NP is polynomially reducible

to an instance of SAT. Hence let Q be some problem in NP and let I be an instance of problem Q. Since Q
is in NP there exists a Turing machine that recognizes encoded instances of problem Q, if accompanied by
a suitable certificate, in polynomial time.

Let TMQ be such a Turing machine, and let P (n) be a polynomial in its argument n with the property
that TMQ recognizes every pair (x,C(x)), where x is a word in the language Q and C(x) is its certificate,
in time ≤ P (n), where n is the length of x.

We intend to construct, corresponding to each word I in the language Q, and instance f(I) of SAT for
which the answer is ‘Yes, the clauses are all simultaneously satisfiable.’ Conversely, if the word I is not in
the language Q, the clauses will not be satisfiable.

The idea can be summarized like this: the instance of SAT that will be constructed will be a collection
of clauses that together express the fact that there exists a certificate that causes Turing machine TMQ to do
an accepting calculation. Therefore, in order to test whether or not the word Q belongs to the language, it
suffices to check that the collection of clauses is satisfiable.

To construct an instance of SAT means that we are going to define a number of variables, of literals,
and of clauses, in such a way that the clauses are satisfiable if and only if x is in the language Q, i.e., the
machine TMQ accepts x and its certificate.

What we must do, then, is to express the accepting computation of the Turing machine as the simul-
taneous satisfaction of a number of logical propositions. It is precisely here that the relative simplicity of a
Turing machine allows us to enumerate all of the possible paths to an accepting computation in a way that
would be quite unthinkable with a ‘real’ computer.

Now we will describe the Boolean variables that will be used in the clauses under construction.
Variable Qi,k is true if after step i of the checking calculation it is true that the Turing machine TMQ

is in state qk, false otherwise.
Variable Si,j,a = {after step i, symbol a is in tape square j}.
Variable Ti,j = {after step i, the tape head is positioned over square j}.
Let’s count the variables that we’ve just introduced. Since the Turing machine TMQ does its accepting

calculation in time ≤ P (n) it follows that the tape head will never venture more than ±P (n) squares away
from its starting position. Therefore the subscript j, which runs through the various tape squares that are
scanned during the computation, can assume only O(P (n)) different values.

Index a runs over the letters in the alphabet that the machine can read, so it can assume at most some
fixed number A of values.

The index i runs over the steps of the accepting computation, and so it takes at most O(P (n)) different
values.

Finally, k indexes the states of the Turing machine, and there is only some fixed finite number, K, say,
of states that TMQ might be in. Hence there are altogether O(P (n)2) variables, a polynomial number of
them.

Is it true that every random assignment of true or false values to each of these variables corresponds to
an accepting computation on (x,C(x))? Certainly not. For example, if we aren’t careful we might assign
true values to T9,4 and to T10,33, thereby burning out the bearings on the tape transport mechanism! (why?)

Our remaining task, then, will be to describe precisely the conditions under which a set of values assigned
to the variables listed above actually defines a possible accepting calculation for (x,C(x)). Then we will be
sure that whatever set of satisfying values of the variables might be found by solving the SAT problem, they
will determine a real accepting calculation of the machine TMQ.

This will be done by requiring that a number of clauses be all true (‘satisfied’) at once, where each
clause will exprss one necessary condition. In the following, the bold face type will describe, in words, the
condition that we want to express, and it will be followed by the formal set of clauses that actually expresses
the condition on input to SAT.

At each step, the machine is in at least one state.
Hence at least one of the K available state variables must be true. This leads to the first set of clauses,

114

At step P (n) the machine is in state qY .

one for each step i of the computation:

{Qi,1, Qi,2, . . . , Qi,K}

Since i assumes O(P (n)) values, these are O(P (n)) clauses.

At each step, the machine is not in more than one state
Therefore, for each step i, and each pair j′, j′′ of distinct states, the clause

{Q̄i,j′ , Q̄i,j′′}

must be true. These are O(P (n)) additonal clauses to add to the list, but still more are needed.

At each step, each tape square contains exactly one symbol from the alphabet of the machine.
This leads to two lists of clauses which require, first, that there is at least one symbol in each square at

each step, and second, that there are not two symbols in each square at each step. The clauses that do this
are

{Si,j,1, Si,j,2, . . . , Si,j,A}

where A is the number of letters in the machine’s alphabet, and

{S̄i,j,k′ , S̄i,j,k′′}

for each step i, square j, and pair k′, k′′ of distinct symbols in the alphabet of the machine.
The reader will by now have gotten the idea of how to construct the clauses, so for the next three

categories we will simply list the functions that must be performed by the corresponding lists of clauses, and
leave the construction of the clauses as an exercise.

At each step, the tape head is positioned over a single square.

Initially the machine is in state 0, the head is over square 1, the input string x is in squares 1
to n, and C(x) (the input certificate of x) is in squares 0, -1, ..., −P (n).

At step P (n) the machine is in state qY .

The last set of restrictions is a little trickier:
At each step the machine moves to its next configuration (state, symbol, head position) in
accordance with the application of its program module to its previous (state, symbol).

To find the clauses that will do this job, consider first the following condition: the symbol in square j
of the tape cannot change during step i of the computation if the tape head isn’t positioned there at that
moment. This translates into the collection

{Ti,j, S̄i,j,k, Si+1,j,k}

of clauses, one for each triple (i, j, k) = (state, square, symbol). These clauses express the condition in the
following way: either (at time i) the tape head is positioned over square j (Ti,j is true) or else the head is
not positioned there, in which case either symbol k is not in the jth square before the step or else symbol k
is (still) in the jth square after the step is executed.

It remains to express the fact that the transitions from one configuration of the machine to the next are
the direct results of the operation of the program module. The three sets of clauses that do this are

{T̄i,j , Q̄i,k, S̄i,j,l,T̄i+1,j+INC}
{T̄i,j , Q̄i,k, S̄i,j,l,Qi+1,k′}
{T̄i,j , Q̄i,k, S̄i,j,l,Si+1,j,l′}.

115

Chapter 5: NP -completeness

In each case the format of the clause is this: ‘either the tape head is not positioned at square j, or the
present state is not qk or the symbol just read is not l, but if they are then ...’ There is a clause as above for
each step i = 0, . . . , P (n) of the computation, for each square j = −P (n), P (n) of the tape, for each symbol
l in the alphabet, and for each possible state qk of the machine, a polynomial number of clauses in all. The
new configuration triple (INC, k′, l′) is, of course, as computed by the program module.

Now we have constructed a set of clauses with the following property. If we execute a recognizing
computation on a string x and its certificate, in time at most P (n), then this computation determines a
set of (True, False) values for all of the variables listed above, in such a way that all of the clauses just
constructed are simultaneously satisfied.

Conversely if we have a set of values of the SAT variables that satisfy all of the clauses at once, then
that set of values of the variables describes a certificate that would cause TMQ to do a computation that
would recognize the string x and it also describes, in minute detail, the ensuing accepting computation that
TMQ would do if it were given x and that certificate.

Hence every language in NP can be reduced to SAT. It is not difficult to check through the above
construction and prove that the reduction is accomplishable in polynomial time. It follows that SAT is
NP-complete.

5.4 Some other NP-complete problems
Cook’s theorem opened the way to the identification of a large number of NP-complete problems. The

proof that Satisfiability is NP-complete required a demonstration that every problem in NP is polynomially
reducible to SAT. To prove that some other problem X is NP-complete it will be sufficient to prove that
SAT reduces to problem X. For if that is so then every problem in NP can be reduced to problem X by
first reducing to an instance of SAT and then to an instance of X .

In other words, life after Cook’s theorem is a lot easier. To prove that some problem is NP-complete
we need show only that SAT reduces to it. We don’t have to go all the way back to the Turing machine
computations any more. Just prove that if you can solve your problem then you can solve SAT. By Cook’s
theorem you will then know that by solving your problem you will have solved every problem in NP.

For the honor of being ‘the second NP-complete problem,’ consider the following special case of SAT,
called 3-satisfiability, or 3SAT. An instance of 3SAT consists of a number of clauses, just as in SAT, except
that the clauses are permitted to contain no more than three literals each. The question, as in SAT, is ‘Are
the clauses simultaneously satisfiable by some assignment of T, F values to the variables?’

Interestingly, though, the general problem SAT is reducible to the apparently more special problem
3SAT, which will show us

Theorem 5.4.1. 3-satisfiability is NP-complete.

Proof. Let an instance of SAT be given. We will show how to transform it quickly to an instance of 3SAT
that is satisfiable if and only if the original SAT problem was satisfiable.

More precisely, we are going to replace clauses that contain more than three literals with collections
of clauses that contain exactly three literals and that have the same satisfiability as the original. In fact,
suppose our instance of SAT contains a clause

{x1, x2, . . . , xk} (k ≥ 4). (5.4.1)

Then this clause will be replaced by k− 2 new clauses, utilizing k− 3 new variables zi (i = 1, . . . , k− 3) that
are introduced just for this purpose. The k − 2 new clauses are

{x1, x2, z1}, {x3, z̄1, z2}, {x4, z̄2, z3}, . . . , {xk−1, xk, z̄k−3}. (5.4.2)

We now make the following
Claim. If x∗1, . . . , x

∗
k is an assignment of truth values to the x’s for which the clause (5.4.1) is true, then there

exist assignments z∗1 , . . . , z∗k−3 of truth values to the z’s such that all of the clauses (5.4.2) are simultaneously
satisfied by (x∗, z∗). Conversely, if (x∗, z∗) is some assignment that satisfies all of (5.4.2), then x∗ alone
satisfies (5.4.1).

116

5.4 Some other NP-complete problems

To prove the claim, first suppose that (5.4.1) is satisfied by some assignment x∗. Then one, at least, of
the k literals x1, . . . , xk, say xr, has the value ‘T.’ Then we can satisfy all k − 2 of the transformed clauses
(5.4.2) by assigning z∗s := ‘T ′ for s ≤ r − 2 and z∗s = ‘F ′ for s > r − 2. It is easy to check that each one of
the k − 2 new clauses is satisfied.

Conversely, suppose that all of the new clauses are satisfied by some assignment of truth values to the
x’s and the z’s. We will show that at least one of the x’s must be ‘True,’ so that the original clause will be
satisfied.

Suppose, to the contrary, that all of the x’s are false. Since, in the new clauses none of the x’s are
negated, the fact that the new clauses are satisfied tells us that they would remain satisfied without any of
the x’s. Hence the clauses

{z1}, {z̄1, z2}, {z̄2, z3}, . . . , {z̄k−4, zk−3}, {z̄k−3}

are satisfied by the values of the z’s. If we scan the list from left to right we discover, in turn, that z1 is true,
z2 is true, . . . , and finally, much to our surprise, that zk−3 is true, and zk−3 is also false, a contradiction
which establishes the truth of the claim made above.

The observation that the transformations just discussed can be carried out in polynomial time completes
the proof of theorem 5.4.1.

We remark, in passing, that the problem ‘2SAT’ is in P.

Our collection of NP-complete problems is growing. Now we have two, and a third is on the way. We
will show next how to reduce 3SAT to a graph coloring problem, thereby proving

Theorem 5.4.2. The graph vertex coloring problem is NP-complete.

Proof: Given an instance of 3SAT, that is to say, given a collection of k clauses, involving n variables and
having at most three literals per clause, we will construct, in polynomial time, a graph G with the property
that its vertices can be properly colored in n + 1 colors if and only if the given clauses are satisfiable. We
will assume that n > 4, the contrary case being trivial.

The graph G will have 3n+ k vertices:

{x1, . . . , xn}, {x̄1, . . . , x̄n}, {y1, . . . , yn}, {C1, . . . , Ck}

Now we will describe the set of edges of G. First each vertex xi is joined to x̄i(i = 1, . . . , n). Next, every
vertex yi is joined to every other vertex yj(j 6= i), to every other vertex xj(j 6= i), and to every vertex
x̄j(j 6= i).

Vertex xi is connected to Cj if xi is not one of the literals in clause Cj . Finally, x̄i is connected to Cj
if x̄i is not one of the literals in Cj .

May we interrupt the proceedings to say again why we’re doing all of this? You have just read the
description of a certain graph G. The graph is one that can be drawn as soon as someone hands us a 3SAT
problem. We described the graph by listing its vertices and then listing its edges. What does the graph do
for us?

Well suppose that we have just bought a computer program that can decide if graphs are colorable in
a given number of colors. We paid $ 49.95 for it, and we’d like to use it. But the first problem that needs
solving happens to be a 3SAT problem, not a graph coloring problem. We aren’t so easily discouraged,
though. We convert the 3SAT problem into a graph that is (n+ 1)-colorable if and only if the original 3SAT
problem was satisfiable. Now we can get our money’s worth by running the graph coloring program even
though what we really wanted to do was to solve a 3SAT problem.

117

Chapter 5: NP -completeness

In Fig. 5.4.1 we show the graph G of 11 vertices that correesponds to the following instance of 3SAT:

Fig. 5.4.1: The graph for a 3SAT problem
Now we claim that this graph is n+ 1 colorable if and only if the clauses are satisfiable.
Clearly G cannot be colored in fewer than n colors, because the n vertices y1, . . . , yn are all connected

to each other and therefore they alone already require n different colors for a proper coloration. Suppose
that yi is assigned color i (i = 1, . . . , n).

Do we need new colors in order to color the xi vertices? Since vertex yi is connected to every x vertex
and every x̄ vertex except xi, x̄i, if color i is going to be used on the x’s or the x̄’s, it will have to be assigned
to one of xi, x̄i, but not to both, since they are connected to each other. Hence a new color, color n+ 1, will
have to be introduced in order to color the x’s and x̄’s.

Further, if we are going to color the vertices of G in only n + 1 colors, the only way to do it will be
to assign color n + 1 to exactly one member of each pair (xi, x̄i), and color i to the other one, for each
i = 1, . . . , n. That one of the pair that gets color n+ 1 will be called the False vertex, the other one is the
True vertex of the pair (xi, x̄i), for each i = 1, . . . , n.

It remains to color the vertices C1, . . . , Ck. The graph will be n+1 colorable if and only if we can do this
without using any new colors. Since each clause contains at most three literals, and n > 4, every variable Ci
must be adjacent to both xj and x̄j for at least one value of j. Therefore no vertex Ci can be colored in the
color n+ 1 in a proper coloring of G, and therefore every Ci must be colored in one of the colors 1, . . . , n.

Since Ci is connected by an edge to every vertex xj or x̄j that is not in the clause Ci, it follows that Ci
cannot be colored in the same color as any xj or x̄j that is not in the clause Ci.

Hence the color that we assign to Ci must be the same as the color of some ‘True’ vertex Xj or x̄j that
corresponds to a literal that is in clause Ci. Therefore the graph is n+ 1 colorable if and only if there is a
‘True’ vertex for each Ci, and this means exactly that the clauses are satisfiable.

It is easy to verify that the transformation from the 3SAT problem to the graph coloring problem can
be carried out in polynomial time, and the proof is finished.

By means of many, often quite ingenious, transformations of the kind that we have just seen, the list of
NP-complete problems has grown rapidly since the first example, and the 21 additional problems found by
R. Karp. Hundreds of such problems are now known. Here are a few of the more important ones.

118

5.5 Half a loaf ...

Maximum clique: We are given a graph G and an integer K. The question is to determine whether or
not there is a set of K vertices in G, each of which is joined, by an edge of G, to all of the others.
Edge coloring: Given a graph G and an integer K. Can we color the edges of G in K colors, so that
whenever two edges meet at a vertex, they will have different colors?

Let us refer to an edge coloring of this kind as a proper coloring of the edges of G.
A beautiful theorem of Vizing∗ deals with this question. If ∆ denotes the largest degree of any vertex

in the given graph, the Vizing’s theorem asserts that the edges of G can be properly colored in either ∆ or
∆ + 1 colors. Since it is obvious that at least ∆ colors will be needed, this means that the edge chromatic
number is in doubt by only one unit, for every graph G! Nevertheless the decision as to whether the correct
answer is ∆ or ∆ + 1 is NP-complete.
Hamilton path: In a given graph G, is there a path that visits every vertex of G exactly once?
Target sum: Given a finite set of positive integers whose sum is S. Is there a subset whose sum is S/2?

The above list, together with SAT, 3SAT, Travelling Salesman and Graph Coloring, constitutes a modest
sampling of the class of these seemingly intractable problems. Of course it must not be assumed that every
problem that ‘sounds like’ an NP-complete problem is necessarily so hard. If for example we ask for an Euler
path instead of a Hamilton path (i.e., if we want to traverse edges rather than vertices) the problem would
no longer be NP-complete, and in fact it would be in P, thanks to theorem 1.6.1.

As another example, the fact that one can find the edge connectivity of a given graph in polynomial
time (see section 3.8) is rather amazing considering the quite difficult appearance of the problem. One
of our motivations for including the network flow algorithms in this book was, indeed, to show how very
sophisticated algorithms can sometimes prove that seemingly hard problems are in fact computationally
tractable.

Exercises for section 5.4

1. Is the claim that we made and proved above (just after (5.4.2)) identical with the statement that the
clause (5.4.1) is satisfiable if and only if the clauses (5.4.2) are simultaneously satisfiable? Discuss.
2. Is the claim that we made and proved above (just after (5.4.2)) identical with the statement that the
Boolean expression (5.4.1) is equal to the product of the Boolean expressions (5.4.2) in the sense that their
truth values are identical on every set of inputs? Discuss.
3. Let it be desired to find out if a given graph G, of V vertices, can be vertex colored in K colors. If we
transform the problem into an instance of 3SAT, exactly how many clauses will there be?

5.5 Half a loaf ...
If we simply have to solve an NP-complete problem, then we are faced with a very long computation. Is

there anything that can be done to lighten the load? In a number of cases various kinds of probabilistic and
approximate algorithms have been developed, some very ingenious, and these may often be quite serviceable,
as we have already seen in the case of primality testing. Here are some of the strategies of ‘near’ solutions
that have been developed.

Type I: ‘Almost surely ...’
Suppose we have an NP-complete problem that asks if there is a certain kind of substructure embedded

inside a given structure. Then we may be able to develop an algorithm with the following properties:
(a) It always runs in polynomial time
(b) When it finds a solution then that solution is always a correct one
(c) It doesn’t always find a solution, but it ‘almost always’ does, in the sense that the ratio of successes to

total cases approaches unity as the size of the input string grows large.
An example of such an algorithm is one that will find a Hamilton path in almost all graphs, failing to

do so sometimes, but not often, and running always in polynomial time. We will describe such an algorithm
below.

∗ V. G. Vizing, On an estimate of the chromatic class of a p-graph (Russian), Diskret. Analiz. 3 (1964),
25-30.

119

Chapter 5: NP -completeness

Type II: ‘Usually fast ...’

In this category of quasi-solution are algorithms in which the uncertainty lies not in whether a solution
will be found, but in how long it will take to find one. An algorithm of this kind will

(a) always find a solution and the solution will always be correct, and

(b) operate in an average of subexponential time, although occasionally it may require exponential time.
The averaging is over all input strings of a given size.

An example of this sort is an algorithm that will surely find a maximum independent set in a graph,
will on the average require ‘only’ O(nc logn) time to do so, but will occasionally, i.e., for some graphs, require
nearly 2n time to get an answer. We will outline such an algorithm below, in section 5.6. Note that O(nc log n)
is not a polynomial time estimate, but it’s an improvement over 2n.

Type II: ‘Usually fast ...’

In this kind of an algorithm we don’t even get the right answer, but it’s close. Since this means giving
up quite a bit, people like these algorithms to be very fast. Of course we are going to drop our insistence
that the questions be posed as decision problems, and instead they will be asked as optimization problems:
find the shortest tour through these cities, or, find the size of the maximum clique in this graph, or, find a
coloring of this graph in the fewest possible colors, etc.

In response these algorithms will

(a) run in polynomial time

(b) always produce some output

(c) provide a guarantee that the output will not deviate from the optimal solution by more than such-and-
such.

An example of this type is the approximate algorithm for the travelling salesman problem that is given
below, in section 5.8. It quickly yields a tour of the cities that is guaranteed to be at most twice as long as
the shortest possible tour.

Now let’s look at examples of each of these kinds of approximation algorithms.

An example of an algorithm of Type I is due to Angluin and Valiant. It tries to find a Hamilton path
(or circuit) in a graph G. It doesn’t always find such a path, but in theorem 5.5.1 below we will see that it
usually does, at least if the graph is from a class of graphs that are likely to have Hamilton paths at all.

Input to the algorithm are the graph G and two distinguished vertices s, t. It looks for a Hamilton path
between the vertices s, t (if s = t on input then we are looking for a Hamilton circuit in G).

The procedure maintains a partially constructed Hamilton path P , from s to some vertex ndp, and it
attempts to extend P by adjoining an edge to a new, previously unvisited vertex. In the process of doing
so it will delete from the graph G, from time to time, an edge, so we will also maintain a variable graph G′,
that is initially set to G, but which is acted upon by the program.

To do its job, the algorithm chooses at random an edge (ndp, v) that is incident with the current endpoint
of the partial path P , and it deletes the edge (ndp, v) from the graph G′, so it will never be chosen again. If
v is a vertex that is not on the path P then the path is extended by adjoining the new edge (ndp, v).

So much is fairly clear. However if the new vertex v is already on the path P , then we short circuit the
path by deleting an edge from it and drawing in a new edge, as is shown below in the formal statement of
the algorithm, and in Fig. 5.5.1. In that case the path does not get longer, but it changes so that it now has

120

5.5 Half a loaf ...

enhanced chances of ultimate completion.

Fig. 5.5.1: The short circuit
Here is a formal statement of the algorithm of Angluin and Valiant for finding a Hamilton path or circuit

in an undirected graph G.
procedure uhc(G:graph; s, t: vertex);
{finds a Hamilton path (if s 6= t) or a Hamilton

circuit (if s = t) P in an undirected graph G
and returns ‘success’, or fails, and returns ‘failure’}

G′ := G; ndp := s; P := empty path;
repeat

if ndp is an isolated point of G′

then return ‘failure’
else

choose uniformly at random an edge (ndp, v) from
among the edges of G′ that are incident with ndp
and delete that edge from G′;

if v 6= t and v /∈ P
then adjoin the edge (ndp, v) to P ; ndp := v
else

if v 6= t and v ∈ P
then
{This is the short-circuit of Fig. 5.5.1}
u := neighbor of v in P that is closer to ndp;
delete edge (u, v) from P ;
adjoin edge (ndp, v) to P ;
ndp := u

end; {then}
end {else}

until P contains every vertex of G (except T , if
s 6= t) and edge (ndp, t) is in G but not in G′;

adjoin edge (ndp, t) to P and return ‘success’
end. {uhc}

As stated above, the algorithm makes only a very modest claim: either it succeeds or it fails! Of course
what makes it valuable is the accompanying theorem, which asserts that in fact the procedure almost always
succeeds, provided the graph G has a good chance of having a Hamilton path or circuit.

121

Chapter 5: NP -completeness

What kind of graph has such a ‘good chance’? A great deal of research has gone into the study of how
many edges a graph has to have before almost surely it must contain certain given structures. For instance,
how many edges must a graph of n vertices have before we can be almost certain that it will contain a
complete graph of 4 vertices?

To say that graphs have a property ‘almost certainly’ is to say that the ratio of the number of graphs
on n vertices that have the property to the number of graphs on n vertices approaches 1 as n grows without
bound.

For the Hamilton path problem, an important dividing line, or threshold, turns out to be at the level
of c logn edges. That is to say, a graph of n vertices that has o(n log n) edges has relatively little chance
of being even connected, whereas a graph with > cn logn edges is almost certainly connected, and almost
certainly has a Hamilton path.

We now state the theorem of Angluin and Valiant, which asserts that the algorithm above will almost
surely succeed if the graph G has enough edges.

Theorem 5.5.1. Fix a positive real number a. There exist numbers M and c such that if we choose a graph
G at random from among those of n vertices and at least cn logn edges, and we choose arbitrary vertices s, t
in G, then the probability that algorithm UHC returns ‘success’ before making a total of Mn log n attempts
to extend partially constructed paths is 1−O(n−a).

5.6 Backtracking (I): independent sets
In this section we are going to describe an algorithm that is capable of solving some NP-complete

problems fast, on the average, while at the same time guaranteeing that a solution will always be found, be
it quickly or slowly.

The method is called backtracking, and it has long been a standard method in computer search problems
when all else fails. It has been common to think of backtracking as a very long process, and indeed it can be.
But recently it has been shown that the method can be very fast on average, and that in the graph coloring
problem, for instance, it functions in an average of constant time, i.e.,the time is independent of the number
of vertices, although to be sure, the worst-case behavior is very exponential.

We first illustrate the backtrack method in the context of a search for the largest independent set of
vertices (a set of vertices no two of which are joined by an edge) in a given graph G, an NP-complete
problem. In this case the average time behavior of the method is not constant, or even polynomial, but is
subexponential. The method is also easy to analyze and to describe in this case.

Hence consider a graph G of n vertices, in which the vertices have been numbered 1, 2, . . . , n. We want
to find, in G, the size of the largest independent set of vertices. In Fig. 5.6.1 below, the graph G has 6
vertices.

Fig. 5.6.1: Find the largest independent set
Begin by searching for an independent set S that contains vertex 1, so let S := {1}. Now attempt to

enlarge S. We cannot enlarge S by adjoining vertex 2 to it, but we can add vertex 3. Our set S is now
{1, 3}.

Now we cannot adjoin vertex 4 (joined to 1) or vertex 5 (joined to 1) or vertex 6 (joined to 3), so we are
stuck. Therefore we backtrack, by replacing the most recently added member of S by the next choice that
we might have made for it. In this case, we delete vertex 3 from S, and the next choice would be vertex 6.
The set S is {1, 6}. Again we have a dead end.

If we backtrack again, there are no further choices with which to replace vertex 6, so we backtrack even
further, and not only delete 6 from S but also replace vertex 1 by the next possible choice for it, namely
vertex 2.

122

5.6 Backtracking (I): independent sets

To speed up the discussion, we will now show the list of all sets S that turn up from start to finish of
the algorithm:

{1}, {13}, {16}, {2}, {24}, {245}, {25}, {3},
{34}, {345}, {35}, {4}, {45}, {5}, {6}

A convenient way to represent the search process is by means of the backtrack search tree T . This is
a tree whose vertices are arranged on levels L := 0, 1, 2, . . . , n for a graph of n vertices. Each vertex of T
corresponds to an independent set of vertices in G. Two vertices of T , corresponding to independent sets
S′, S′′ of vertices of G, are joined by an edge in T if S′ ⊆ S′′, and S′′ − S′ consists of a single element: the
highest-numbered vertex in S′′. On level L we find a vertex S of T for every independent set of exactly L
vertices of G. Level 0 consists of a single root vertex, corresponding to the empty set of vertices of G.

The complete backtrack search tree for the problem of finding a maximum independent set in the graph
G of Fig. 5.6.1 is shown in Fig. 5.6.2 below.

Fig. 5.6.2: The backtrack search tree
The backtrack algorithm amounts just to visiting every vertex of the search tree T , without actually

having to write down the tree explicitly, in advance.
Observe that the list of sets S above, or equivalently, the list of nodes of the tree T , consists of exactly

every independent set in the graph G. A reasonable measure of the complexity of the searching job, therefore,
is the number of independent sets that G has. In the example above, the graph G had 19 independent sets
of vertices, including the empty set.

The question of the complexity of backtrack search is therefore the same as the question of determining
the number of independent sets of the graph G.

Some graphs have an enormous number of independent sets. The graph Kn of n vertices and no edges
whatever has 2n independent sets of vertices. The backtrack tree will have 2n nodes, and the search will be
a long one indeed.

The complete graph Kn of n vertices and every possible edge, n(n−1)/2 in all, has just n+1 independent
sets of vertices.

Any other graph G of n vertices will have a number of independent sets that lies between these two
extremes of n + 1 and 2n. Sometimes backtracking will take an exponentially long time, and sometimes it
will be fairly quick. Now the question is, on the average how fast is the backtrack method for this problem?

What we are asking for is the average number of independent sets that a graph of n vertices has. But
that is the sum, over all vertex subsets S ⊆ {1, . . . , n}, of the probability that S is an independent set. If
S has k vertices, then the probability that S is independent is the probability that, among the k(k − 1)/2
possible edges that might join a pair of vertices in S, exactly zero of these edges actually live in the random
graph G. Since each of these

(
k
2

)
edges has a probability 1/2 of appearing in G, the probability that none of

them appear is 2−k(k−1)/2. Hence the average number of independent sets in a graph of n vertices is

In =
n∑
k=0

(
n

k

)
2−k(k−1)/2. (5.6.1)

123

Chapter 5: NP -completeness

Hence in (5.6.1) we have an exact formula for the average number of independent sets in a graph of n
vertices. A short table of values of In is shown below, in Table 5.6.1, along with values of 2n, for comparison.
Clearly the average number of independent sets in a graph is a lot smaller than the maximum number that
graphs of that size might have.

n In 2n

2 3.5 4
3 5.6 8
4 8.5 16
5 12.3 32

10 52 1024
15 149.8 32768
20 350.6 1048576
30 1342.5 1073741824
40 3862.9 1099511627776

Table 5.6.1: Independent sets and all sets

In the exercises it will be seen that the rate of growth of In as n grows large is O(nlogn). Hence the
average amount of labor in a backtrack search for the largest independent set in a graph grows subexponen-
tially, although faster than polynomially. It is some indication of how hard this problem is that even on the
average the amount of labor needed is not of polynomial growth.

Exercises for section 5.6

1. What is the average number of independent sets of size k that are in graphs of V vertices and E edges?
2. Let tk denote the kth term in the sum (5.6.1).

(a) Show that tk/tk−1 = (n− k + 1)/(k2k+1).
(b) Show that tk/tk−1 is > 1 when k is small, then is < 1 after k passes a certain critical value k0. Hence

show that the terms in the sum (5.6.1) increase in size until k = k0 and then decrease.
3. Now we will estimate the size of k0 in the previous problem.

(a) Show that tk < 1 when k = blog2 nc and tk > 1 when k = blog2 n− log2 log2 nc. Hence the index k0 of
the largest term in (5.6.1) satisfies

blog2 n− log2 log2 nc ≤ k0 ≤ blog2 nc

(b) The entire sum in (5.6.1) is at most n+1 times as large as its largest single term. Use Stirling’s formula
(1.1.10) and 3(a) above to show that the k0th term is O((n+ ε)logn) and therefore the same is true of
the whole sum, i.e., of In.

5.7 Backtracking (II): graph coloring
In another NP-complete problem, that of graph-coloring, the average amount of labor in a backtrack

search is O(1) (bounded) as n, the number of vertices in the graph, grows without bound. More precisely,
for fixed K, if we ask ‘Is the graph G, of V vertices, properly vertex-colorable in K colors?,’ then the average
labor in a backtrack search for the answer is bounded. Hence not only is the average of polynomial growth,
but the polynomial is of degree 0 (in V).

To be even more specific, consider the case of 3 colors. It is already NP-complete to ask if the vertices of
a given graph can be colored in 3 colors. Nevertheless, the average number of nodes in the backtrack search
tree for this problem is about 197, averaged over all graphs of all sizes. This means that if we input a random
graph of 1,000,000 vertices, and ask if it is 3-colorable, then we can expect an answer (probably ‘No’) after
only about 197 steps of computation.

To prove this we will need some preliminary lemmas.

124

5.7 Backtracking (II): graph coloring

Lemma 5.7.1. Let s1, . . . , sK be nonnegative numbers whose sum is L. Then the sum of their squares is
at least L2/K.

Proof: We have

0 ≤
K∑
i=1

(si −
L

K
)2

=
K∑
i=1

(s2
i − 2

Lsi
K

+
L2

K2
)

=
K∑
i=1

s2
i − 2

L2

K
+
L2

K

=
K∑
i=1

s2
i −

L2

K
.

The next lemma deals with a kind of inside-out chromatic polynomial question. Instead of asking ‘How
many proper colorings can a given graph have?,’ we ask ‘How many graphs can have a given proper coloring?’

Lemma 5.7.2. Let C be one of the KL possible ways to color in K colors a set of L abstract vertices
1, 2, . . . , L. Then the number of graphs G whose vertex set is that set of L colored vertices and for which C
is a proper coloring of G is at most 2L

2(1−1/K)/2.

Proof: In the coloring C , suppose s1 vertices get color 1, . . . , sK get color K, where, of course, s1+· · ·+sK =
L. If a graph G is to admit C as a proper vertex coloring then its edges can be drawn only between vertices
of different colors. The number of edges that G might have is therefore

s1s2 + s1s3 + · · ·+ s1sK + s2s3 + · · ·+ s2sK + · · ·+ sK−1sK

for which we have the following estimate:∑
1≤i<j≤K

sisj =
1
2

∑
i 6=j

sisj

=
1
2

{ K∑
i,j=1

sisj −
K∑
i=1

s2
i

}
=

1
2

(
∑

si)2 − 1
2

∑
s2
i

≤ L2

2
− 1

2
L2

K
(by lemma 5.7.1)

=
L2

2
(1− 1

K
).

(5.7.1)

The number of possible graphs G is therefore at most 2L
2(1−1/K)/2.

Lemma 5.7.3. The total number of proper colorings in K colors of all graphs of L vertices is at most

KL2L
2(1−1/K)/2.

Proof: We are counting the pairs (G, C), where the graph G has L vertices and C is a proper coloring of
G. If we keep C fixed and sum on G, then by lemma 5.7.2 the sum is at most 2L

2(1−1/K)/2. Since there are
KL such C ’s, the proof is finished.

Now let’s think about a backtrack search for a K-coloring of a graph. Begin by using color 1 on vertex
1. Then use color 1 on vertex 2 unless (1, 2) is an edge, in which case use color 2. As the coloring progresses
through vertices 1, 2, . . . , L we color each new vertex with the lowest available color number that does not
cause a conflict with some vertex that has previously been colored.

125

Chapter 5: NP -completeness

At some stage we may reach a dead end: out of colors, but not out of vertices to color. In the graph of
Fig. 5.7.1 if we try to 2-color the vertices we can color vertex 1 in color 1, vertex 2 in color 2, vertex 3 in
color 1 and then we’d be stuck because neither color would work on vertex 4.

Fig. 5.7.1: Color this graph
When a dead end is reached, back up to the most recently colored vertex for which other color choices

are available, replace its color with the next available choice, and try again to push forward to the next
vertex.

The (futile) attempt to color the graph in Fig. 5.7.1 with 2 colors by the backtrack method can be
portrayed by the backtrack search tree in Fig. 5.7.2.

The search is thought of as beginning at ‘Root.’ The label at each node of the tree describes the
colors of the vertices that have so far been colored. Thus ‘212’ means that vertices 1,2,3 have been colored,
respectively, in colors 2,1,2.

Fig. 5.7.2: A frustrated search tree

Fig. 5.7.3: A happy search tree

126

5.7 Backtracking (II): graph coloring

If instead we use 3 colors on the graph of Fig. 5.7.1 then we get a successful coloring; in fact we get 12
of them, as is shown in Fig. 5.7.3.

Let’s concentrate on a particular level of the search tree. Level 2, for instance, consists of the nodes of
the search tree that are at a distance 2 from ‘Root.’ In Fig. 5.7.3, level 2 contains 6 nodes, correspoonding
to the partial colorings 12, 13, 21, 23, 31, 32 of the graph. When the coloring reaches vertex 2 it has seen
only the portion of the graph G that is induced by vertices 1 and 2.

Generally, a node at level L of the backtrack search tree corresponds to a proper coloring in K colors
of the subgraph of G that is induced by vertices 1, 2, . . . , L.

Let HL(G) denote that subgraph. Then we see the truth of

Lemma 5.7.4. The number of nodes at level L of the backtrack search tree for coloring a graph G in K
colors is equal to the number of proper colorings of HL(G) in K colors, i.e., to P (K,HL(G)), where P is the
chromatic polynomial.

We are now ready for the main question of this section: what is the average number of nodes in a
backtrack search tree for K-coloring graphs of n vertices? This is

A(n,K) =
1

no. of graphs

∑
graphs Gn

{no. of nodes in tree for G}

= 2−(n2)
∑
Gn

{
n∑

L=0

{no. of nodes at level L}}

= 2−(n2)
∑
Gn

n∑
L=0

P (K,HL(G)) (by lemma 5.7.4)

= 2−(n2)
n∑

L=0

{
∑
Gn

P (K,HL(G))}.

Fix some value of L and consider the inner sum. As G runs over all graphs of N vertices, HL(G) selects
the subgraph of G that is induced by vertices 1, 2, . . . , L. Now lots of graphs G of n vertices have the same
HL(G) sitting at vertices 1, 2, . . . , L. In fact exactly 2(n2)−(L2) different graphs G of n vertices all have the
same graph H of L vertices in residence at vertices 1, 2, . . . , L (see exercise 15 of section 1.6). Hence (5.7.2)
gives

A(n,K) = 2−(n2)
n∑

L=0

2(n2)−(L2){∑
HL

P (K,H)
}

=
n∑

L=0

2−(L2){∑
HL

P (K,H)
}
.

The inner sum is exactly the number that is counted by lemma 5.7.3, and so

A(n,K) ≤
n∑

L=0

2−(L2)KL2L
2(1−1/K)/2

≤
∞∑
L=0

KL2L/22−L
2/2K .

The infinite series actually converges! Hence A(n, k) is bounded, for all n. This proves

Theorem 5.7.1. Let A(n, k) denote the average number of nodes in the backtrack search trees for K-
coloring the vertices of all graphs of n vertices. Then there is a constant h = h(K), that depends on the
number of colors, K, but not on n, such that A(n, k) ≤ h(K) for all n.

127

Chapter 5: NP -completeness

5.8 Approximate algorithms for hard problems

Finally we come to Type III of the three kinds of ‘half-a-loaf-is-better-than-none’ algorithms that were
described in section 5.5. In these algorithms we don’t find the exact solution of the problem, only an
approximate one. As consolation we have an algorithm that runs in polynomial time as well as a performance
guarantee to the effect that while the answer is approximate, it can certainly deviate by no more than such-
and-such from the exact answer.

An elegant example of such a situation is in the Travelling Salesman Problem, which we will now express
as an optimization problem rather than as a decision problem.

We are given n points (‘cities’) in the plane, as well as the distances between every pair of them, and we
are asked to find a round-trip tour of all of these cities that has minimum length. We will assume throughout
the following discussion that the distances satisfy the triangle inequality. This restriction of the TSP is often
called the ‘Euclidean’ Travelling Salesman Problem.

The algorithm that we will discuss for this problem has the properties
(a) it runs in polynomial time and
(b) the round-trip tour that it finds will never be more than twice as long as the shortest possible tour.

The first step in carrying out the algorithm is to find a minimum spanning tree (MST) for the n given
cities. A MST is a tree whose nodes are the cities in question, and which, among all possible trees on that
vertex set, has minimum possible length.

It may seem that finding a MST is just as hard as solving the TSP, but NIN (No, It’s Not). The MST
problem is one of those all-too-rare computational situations in which it pays to be greedy.

Generally speaking, in a greedy algorithm,
(i) we are trying to construct some optimal structure by adding one piece at a time, and
(ii) at each step we make the decision about which piece will be added next by choosing, among all

available pieces, the single one that will carry us as far as possible in the desirable direction (be
greedy!).

The reason that greedy algorithms are not usually the best possible ones is that it may be better not
to take the single best piece at each step, but to take some other piece, in the hope that at a later step we
will be able to improve things even more. In other words, the global problem of finding the best structure
might not be solveable by the local procedure of being as greedy as possible at each step.

In the MST problem, though, the greedy strategy works, as we see in the following algorithm.

procedure mst(x :array of n points in the plane);
{constructs a spanning tree T of minimum length, on the

vertices {x1, . . . , xn} in the plane}
let T consist of a single vertex x1;

while T has fewer than n vertices do
for each vertex v that is not yet in T , find the

distance d(v) from v to the nearest vertex of T ;
let v∗ be a vertex of smallest d(v);
adjoin v∗ to the vertex set of T ;
adjoin to T the edge from v∗ to the nearest

vertex w 6= v∗ of T ;
end{while}

end.{mst}

Proof of correctness of mst: Let T be the tree that is produced by running mst, and let e1, . . . , en−1 be
its edges, listed in the same order in which the alfgorithm mst produced them.

Let T ′ be a minimum spanning tree for x. Let er be the first edge of T that does not appear in T ′. In
the minimum tree T ′, edges e1, . . . , er−1 all appear, and we let S be the union of their vertex sets. In T ′ let
f be the edge that joins the subtree on S to the subtree on the remaining vertices of x.

Suppose f is shorter than er. Then f was one of the edges that was available to the algorithm mst
at the instant that it chose er, and since er was the shortest edge available at that moment, we have a
contradiction.

128

5.7 Backtracking (II): graph coloring

Suppose f is longer than er. Then T ′ would not be minimal because the tree that we would obtain by
exchanging f for er in T ′ (why is it still a tree if we do that exchange?) would be shorter, contradicting the
minimality of T ′.

Hence f and er have the same length. In T ′ exchange f for er. Then T ′ is still a tree, and is still a
minimum spanning tree.

The index of the first edge of T that does not appear in T ′ is now at least r + 1, one unit larger than
before. The process of replacing edges of T that do not appear in T ′ without affecting the minimality of T
can be repeated until every edge of T appears in T ′, i.e., until T = T ′. Hence T was a minimum spanning
tree.

That finishes one step of the process that leads to a polynomial time travelling salesman algorithm that
finds a tour of at most twice the minimum length.

The next step involves finding an Euler circuit. Way back in theorem 1.6.1 we learned that a connected
graph has an Euler circuit if and only if every vertex has even degree. Recall that the proof was recursive
in nature, and immediately implies a linear time algorithm for finding Euler circuits recursively. We also
noted that the proof remains valid even if we are dealing with a multigraph, that is, with a graph in which
several edges are permitted between single pairs of vertices. We will in fact need that extra flexibility for
the purpose at hand.

Now we have the ingredients for a quick near-optimal travelling salesman tour.

Theorem 5.8.1. There is an algorithm that operates in polynomial time and which will return a travelling
salesman tour whose length is at most twice the length of a minimum tour.

Here is the algorithm. Given the n cities in the plane:
(1) Find a minimum spanning tree T for the cities.
(2) Double each edge of the tree, thereby obtaining a ‘multitree’ T (2) in which between each pair of

vertices there are 0 or 2 edges.
(3) Since every vertex of the doubled tree has even degree, there is an Eulerian tour W of the edges of

T (2); find one, as in the proof of theorem 1.6.1.
(4) Now we construct the output tour of the cities. Begin at some city and follow the walk W . However,

having arrived at some vertex v, go from v directly (via a straight line) to the next vertex of the walk
W that you haven’t visited yet. This means that you will often short-circuit portions of the walk W
by going directly from some vertex to another one that is several edges ‘down the road.’

The tour Z′ that results from (4) above is indeed a tour of all of the cities in which each city is visited
once and only once. We claim that its length is at most twice optimal.

Let Z be an optimum tour, and let e be some edge of Z. Then Z − e is a path that visits all of the
cities. Since a path is a tree, Z − e is a spanning tree of the cities, hence Z − e is at least as long as T is,
and so Z is surely at least as long as T is.

Next consider the length of the tour Z ′. A step of Z ′ that walks along an edge of the walk W has length
equal to the length of that edge of W . A step of Z′ that short circuits several edges of W has length at most
equal to the sum of the lengths of the edges of W that were short-circuited. If we sum these inequalities
over all steps of Z ′ we find that the length of Z ′ is at most equal to the length of W , which is in turn twice
the length of the tree T .

If we put all of this together we find that

length(Z) > length(Z − e) ≥ length(T) =
1
2

length(W) ≥ 1
2

length(Z′)

as claimed (!)
More recently it has been proved (Cristofides, 1976) that in polynomial time we can find a TSP tour

whose total length is at most 3/2 as long as the minimum tour. The algorithm makes use of Edmonds’s
algorithm for maximum matching in a general graph (see the reference at the end of Chapter 3). It will be
interesting to see if the factor 3/2 can be further refined.

Polynomial time algorithms are known for other NP-complete problems that guarantee that the answer
obtained will not exceed, by more than a constant factor, the optimum answer. In some cases the guarantees
apply to the difference between the answer that the algorithm gives and the best one. See the references
below for more information.

129

Chapter 5: NP -completeness

Exercises for section 5.8

1. Consider the following algorithm:

procedure mst2(x :array of n points in the plane);
{allegedly finds a tree of minimum total length that

visits every one of the given points}
if n = 1

then T := {x1}
else

T := mst2(n− 1,x−xn);
let u be the vertex of T that is nearest to xn;
mst2:=T plus vertex xn plus edge (xn, u)

end.{mst2}
Is this algorithm a correct recursive formulation of the minimum spanning tree greedy algorithm? If so then
prove it, and if not then give an example of a set of points where mst2 gets the wrong answer.

Bibliography
Before we list some books and journal articles it should be mentioned that research in the area of

NP-completeness is moving rapidly, and the state of the art is changing all the time. Readers who would
like updates on the subject are referred to a series of articles that have appeared in issues of the Journal
of Algorithms in recent years. These are called ‘NP-completeness: An ongoing guide.’ They are written
by David S. Johnson, and each of them is a thorough survey of recent progress in one particular area of
NP-completeness research. They are written as updates of the first reference below.

Journals that contain a good deal of research on the areas of this chapter include the Journal of Algo-
rithms, the Journal of the Association for Computing Machinery, the SIAM Journal of Computing, Infor-
mation Processing Letters, and SIAM Journal of Discrete Mathematics.

The most complete reference on NP-completeness is
M. Garey and D. S. Johnson, Computers and Intractability; A guide to the theory of NP-completeness, W.
H. Freeman and Co., San Francisco, 1979.
The above is highly recommended. It is readable, careful and complete.
The earliest ideas on the computational intractability of certain problems go back to
Alan Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London
Math. Soc., Ser. 2, 42 (1936), 230-265.
Cook’s theorem, which originated the subject of NP-completeness, is in
S. A. Cook, The complexity of theorem proving procedures, Proc., Third Annual ACM Symposium on the
Theory of Computing, ACM, New York, 1971, 151-158.
After Cook’s work was done, a large number of NP-complete problems were found by
Richard M. Karp, Reducibility among combinatorial problems, in R. E. Miller and J. W. Thatcher, eds.,
Complexity of Computer Computations, Plenum, New York, 1972, 85-103.
The above paper is recommended both for its content and its clarity of presentation.
The approximate algorithm for the travelling salesman problem is in
D. J. Rosencrantz, R. E. Stearns and P. M. Lewis, An analysis of several heuristics for the travelling salesman
problem, SIAM J. Comp. 6, 1977, 563-581.
Another approximate algorithm for the Euclidean TSP which guarantees that the solution found is no more
than 3/2 as long as the optimum tour, was found by
N. Cristofides, Worst case analysis of a new heuristic for the travelling salesman problem, Technical Report,
Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, 1976.
The minimum spanning tree algorithm is due to
R. C. Prim, Shortest connection netwroks and some generalizations, Bell System Tech. J. 36 (1957), 1389-
1401.
The probabilistic algorithm for the Hamilton path problem can be found in

130

5.7 Backtracking (II): graph coloring

D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamilton circuits and matchings, Proc. Ninth
Annual ACM Symposium on the Theory of Computing, ACM, New York, 1977.
The result that the graph coloring problem can be done in constant average time is due to
H. Wilf, Backtrack: An O(1) average time algorithm for the graph coloring problem, Information Processing
Letters 18 (1984), 119-122.
Further refinements of the above result can be found in
E. Bender and H. S. Wilf, A theoretical analysis of backtracking in the graph coloring problem, Journal of
Algorithms 6 (1985), 275-282.
If you enjoyed the average numbers of independent sets and average complexity of backtrack, you might
enjoy the subject of random graphs. An excellent introduction to the subject is
Edgar M. Palmer, Graphical Evolution, An introduction to the theory of random graphs, Wiley-Interscience,
New York, 1985.

131

Index

Index

adjacent 40
Adleman, L. 149, 164, 165, 176
Aho, A. V. 103
Angluin, D. 208-211, 227
Appel, K. 69
average complexity 57, 211ff.

backtracking 211ff.
Bender, E. 227
Bentley, J. 54
Berger, R. 3
big oh 9
binary system 19
bin-packing 178
binomial theorem 37
bipartite graph 44, 182
binomial coefficients 35

—, growth of 38
blocking flow 124
Burnside’s lemma 46

cardinality 35
canonical factorization 138
capacity of a cut 115
Carmichael numbers 158
certificate 171, 182, 193
Cherkassky, B. V. 135
Chinese remainder theorem 154
chromatic number 44
chromatic polynomial 73
Cohen, H. 176
coloring graphs 43
complement of a graph 44
complexity 1

—, worst-case 4
connected 41
Cook, S. 187, 194-201, 226
Cook’s theorem 195ff.
Cooley, J. M. 103
Coppersmith, D. 99
cryptography 165
Cristofides, N. 224, 227
cut in a network 115

—, capacity of 115
cycle 41
cyclic group 152

decimal system 19
decision problem 181
degree of a vertex 40
deterministic 193
Diffie, W. 176
digraph 105
Dinic, E. 108, 134
divide 137
Dixon, J. D. 170, 175, 177
domino problem 3

‘easy’ computation 1
edge coloring 206
edge connectivity 132

132

Index

Edmonds, J. 107, 134, 224
Enslein, K. 103
Euclidean algorithm 140, 168

—, complexity 142
—, extended 144ff.

Euler totient function 138, 157
Eulerian circuit 41
Even, S. 135
exponential growth 13

factor base 169
Fermat’s theorem 152, 159
FFT, complexity of 93

—, applications of 95 ff.
Fibonacci numbers 30, 76, 144
flow 106

—, value of 106
—, augmentation 109
—, blocking 124

flow augmenting path 109
Ford-Fulkerson algorithm 108ff.
Ford, L. 107ff.
four-color theorem 68
Fourier transform 83ff.

—, discrete 83
—, inverse 96

Fulkerson, D. E. 107ff.

Galil, Z. 135
Gardner, M. 2
Garey, M. 188
geometric series 23
Gomory, R. E. 136
graphs 40ff.

—, coloring of 43, 183, 216ff.
—, connected 41
—, complement of 44
—, complete 44
—, empty 44
—, bipartite 44
—, planar 70

greatest common divisor 138
group of units 151

Haken, W. 69
Hamiltonian circuit 41, 206, 208ff.
Hardy, G. H. 175
height of network 125
Hellman, M. E. 176
hexadecimal system 21
hierarchy of growth 11
Hoare, C. A. R. 51
Hopcroft, J. 70, 103
Hu, T. C. 136

independent set 61, 179, 211ff.
intractable 5

Johnson, D. S. 188, 225, 226

Karp, R. 107, 134, 205, 226
Karzanov, A. 134
Knuth, D. E. 102
König, H. 103

133

Index

k-subset 35

language 182
Lawler, E. 99
layered network 120ff.
Lenstra, H. W., Jr. 176
LeVeque, W. J. 175
Lewis, P. A. W. 103
Lewis, P. M. 227
L’Hospital’s rule 12
little oh 8
Lomuto, N. 54

Maheshwari, S. N. 108ff. , 135
Malhotra, V. M. 108ff. , 135
matrix multiplication 77ff.
max-flow-min-cut 115
maximum matching 130
minimum spanning tree 221
moderately exponential growth 12
MPM algorithm 108, 128ff.
MST 221
multigraph 42

network 105
— flow 105ff.
—, dense 107
—, layered 108, 120ff.
—, height of 125

Nijenhuis, A. 60
nondeterministic 193
NP 182
NP-complete 61, 180
NP-completeness 178ff.

octal system 21
optimization problem 181
orders of magnitude 6ff.

P 182
Palmer, E. M. 228
Pan, V. 103
Pascal’s triangle 36
path 41
periodic function 87
polynomial time 2, 179, 185
polynomials, multiplication of 96
Pomerance, C. 149, 164, 176
positional number systems 19ff.
Pramodh-Kumar, M. 108ff. , 135
Pratt, V. 171, 172
Prim, R. C. 227
primality, testing 6, 148ff. , 186
—, proving 170

prime number 5
primitive root 152
pseudoprimality test 149, 156ff.

—, strong 158
public key encryption 150, 165

Quicksort 50ff.

Rabin, M. O. 149, 162, 175
Ralston, A. 103

134

Index

recurrence relations 26ff.
recurrent inequality 31
recursive algorithms 48ff.
reducibility 185
relatively prime 138
ring Zn 151ff.
Rivest, R. 165, 176
roots of unity 86
Rosenkrantz, D. 227
RSA system 165, 168
Rumely, R. 149, 164, 176
Runge, C. 103

SAT 195
satisfiability 187, 195
scanned vertex 111
Schönhage, A. 103
Selfridge, J. 176
Shamir, A. 165, 176
slowsort 50
Solovay, R. 149, 162, 176
splitter 52
Stearns, R. E. 227
Stirling’s formula 16, 216
Strassen, V. 78, 103, 149, 162, 176
synthetic division 86

3SAT 201

target sum 206
Tarjan, R. E. 66, 70, 103, 135
Θ (‘Theta of’) 10
tiling 2
tractable 5
travelling salesman problem 178, 184, 221
tree 45
Trojanowski, A. 66, 103
‘TSP’ 178, 221
Tukey, J. W. 103
Turing, A. 226
Turing machine 187ff.

Ullman, J. D. 103
usable edge 111
Valiant, L. 208-11, 227
vertices 40
Vizing, V. 206

Wagstaff, S. 176
Welch, P. D. 103
Wilf, H. 60, 103, 227, 228
Winograd, S. 99
worst-case 4, 180
Wright, E. M. 175

135

