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2.1 Introduction

Chapter 2: Recursive Algorithms

2.1 Introduction

Here are two different ways to define n!, if n is a positive integer. The first definition is nonrecursive,
the second is recursive.

(1) ‘n! is the product of all of the whole numbers from 1 to n, inclusive.’

(2) ‘If n = 1 then n! = 1, else n! = n · (n− 1)!.’

Let’s concentrate on the second definition. At a glance, it seems illegal, because we’re defining something,
and in the definition the same ‘something’ appears. Another glance, however, reveals that the value of n! is
defined in terms of the value of the same function at a smaller value of its argument, viz. n− 1. So we’re
really only using mathematical induction in order to validate the assertion that a function has indeed been
defined for all positive integers n.

What is the practical import of the above? It’s monumental. Many modern high-level computer
languages can handle recursive constructs directly, and when this is so, the programmer’s job may be
considerably simplified. Among recursive languages are Pascal, PL/C, Lisp, APL, C, and many others.
Programmers who use these languages should be aware of the power and versatility of recursive methods
(conversely, people who like recursive methods should learn one of those languages!).

A formal ‘function’ module that would calculate n! nonrecursively might look like this.

function fact(n);
{computes n! for given n > 0}

fact := 1;
for i := 1 to n do fact := i · fact;

end.

On the other hand a recursive n! module is as follows.

function fact(n);
if n = 1 then fact := 1

else fact := n · fact(n− 1);
end.

The hallmark of a recursive procedure is that it calls itself, with arguments that are in some sense
smaller than before. Notice that there are no visible loops in the recursive routine. Of course there will
be loops in the compiled machine-language program, so in effect the programmer is shifting many of the
bookkeeping problems to the compiler (but it doesn’t mind!).

Another advantage of recursiveness is that the thought processes are helpful. Mathematicians have
known for years that induction is a marvellous method for proving theorems, making constructions, etc.
Now computer scientists and programmers can profitably think recursively too, because recursive compilers
allow them to express such thoughts in a natural way, and as a result many methods of great power are being
formulated recursively, methods which, in many cases, might not have been developed if recursion were not
readily available as a practical programming tool.

Observe next that the ‘trivial case,’ where n = 1, is handled separately, in the recursive form of the n!
program above. This trivial case is in fact essential, because it’s the only thing that stops the execution of
the program. In effect, the computer will be caught in a loop, reducing n by 1, until it reaches 1, then it will
actually know the value of the function fact, and after that it will be able to climb back up to the original
input value of n.

The overall structure of a recursive routine will always be something like this:
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procedure calculate(list of variables);
if {trivialcase} then do {trivialthing}

else do
{call calculate(smaller values of the variables)};
{maybe do a few more things}

end.

In this chapter we’re going to work out a number of examples of recursive algorithms, of varying
sophistication. We will see how the recursive structure helps us to analyze the running time, or complexity,
of the algorithms. We will also find that there is a bit of art involved in choosing the list of variables that
a recursive procedure operates on. Sometimes the first list we think of doesn’t work because the recursive
call seems to need more detailed information than we have provided for it. So we try a larger list, and then
perhaps it works, or maybe we need a still larger list ..., but more of this later.

Exercises for section 2.1

1. Write a recursive routine that will find the digits of a given integer n in the base b. There should be no
visible loops in your program.

2.2 Quicksort
Suppose that we are given an array x[1], . . . , x[n] of n numbers. We would like to rearrange these

numbers as necessary so that they end up in nondecreasing order of size. This operation is called sorting the
numbers.

For instance, if we are given {9, 4, 7, 2, 1}, then we want our program to output the sorted array
{1, 2, 4, 7, 9}.

There are many methods of sorting, but we are going to concentrate on methods that rely on only
two kinds of basic operations, called comparisons and interchanges. This means that our sorting routine is
allowed to

(a) pick up two numbers (‘keys’) from the array, compare them, and decide which is larger.
(b) interchange the positions of two selected keys.

Here is an example of a rather primitive sorting algorithm:
(i) find, by successive comparisons, the smallest key
(ii) interchange it with the first key

(iii) find the second smallest key
(iv) interchange it with the second key, etc. etc.

Here is a more formal algorithm that does the job above.

procedure slowsort(X: array[1..n]);
{sorts a given array into nondecreasing order}

for r := 1 to n− 1 do
for j := r + 1 to n do

if x[j] < x[r] then swap(x[j], x[r])
end.{slowsort}

If you are wondering why we called this method ‘primitive,’ ‘slowsort,’ and other pejorative names, the
reason will be clearer after we look at its complexity.

What is the cost of sorting n numbers by this method? We will look at two ways to measure that cost.
First let’s choose our unit of cost to be one comparison of two numbers, and then we will choose a different
unit of cost, namely one interchange of position (‘swap’) of two numbers.
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2.2 Quicksort

How many paired comparisons does the algorithm make? Reference to procedure slowsort shows that it
makes one comparison for each value of j = r+ 1, . . . , n in the inner loop. This means that the total number
of comparisons is

f1(n) =
n−1∑
r=1

n∑
j=r+1

1

=
n−1∑
r=1

(n− r)

= (n− 1)n/2.

The number of comparisons is Θ(n2), which is quite a lot of comparisons for a sorting method to do. Not
only that, but the method does that many comparisons regardless of the input array, i.e. its best case and
its worst case are equally bad.

The Quicksort* method, which is the main object of study in this section, does a maximum of cn2

comparisons, but on the average it does far fewer, a mere O(n log n) comparisons. This economy is much
appreciated by those who sort, because sorting applications can be immense and time consuming. One
popular sorting application is in alphabetizing lists of names. It is easy to imagine that some of those lists
are very long, and that the replacement of Θ(n2) by an average of O(n logn) comparisons is very welcome.
An insurance company that wants to alphabetize its list of 5,000,000 policyholders will gratefully notice the
difference between n2 = 25, 000, 000, 000, 000 comparisons and n logn = 77, 124, 740 comparisons.

If we choose as our unit of complexity the number of swaps of position, then the running time may
depend strongly on the input array. In the ‘slowsort’ method described above, some arrays will need no
swaps at all while others might require the maximum number of (n− 1)n/2 (which arrays need that many
swaps?). If we average over all n! possible arrangements of the input data, assuming that the keys are
distinct, then it is not hard to see that the average number of swaps that slowsort needs is Θ(n2).

Now let’s discuss Quicksort. In contrast to the sorting method above, the basic idea of Quicksort is
sophisticated and powerful. Suppose we want to sort the following list:

26, 18, 4, 9, 37, 119, 220, 47, 74 (2.2.1)

The number 37 in the above list is in a very intriguing position. Every number that precedes it is smaller
than it is and every number that follows it is larger than it is. What that means is that after sorting the list,
the 37 will be in the same place it now occupies, the numbers to its left will have been sorted but will still be
on its left, and the numbers on its right will have been sorted but will still be on its right.

If we are fortunate enough to be given an array that has a ‘splitter,’ like 37, then we can
(a) sort the numbers to the left of the splitter, and then
(b) sort the numbers to the right of the splitter.

Obviously we have here the germ of a recursive sorting routine.
The fly in the ointment is that most arrays don’t have splitters, so we won’t often be lucky enough to

find the state of affairs that exists in (2.2.1). However, we can make our own splitters, with some extra work,
and that is the idea of the Quicksort algorithm. Let’s state a preliminary version of the recursive procedure
as follows (look carefully for how the procedure handles the trivial case where n=1).

procedure quicksortprelim(x : an array of n numbers);
{sorts the array x into nondecreasing order}

if n ≥ 2 then
permute the array elements so as to create a splitter;
let x[i] be the splitter that was just created;
quicksortprelim(the subarray x1, . . . , xi−1) in place;
quicksortprelim(the subarray xi+1, . . . , xn) in place;

end.{quicksortprelim}

* C. A. R. Hoare, Comp. J., 5 (1962), 10-15.
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This preliminary version won’t run, though. It looks like a recursive routine. It seems to call itself twice
in order to get its job done. But it doesn’t. It calls something that’s just slightly different from itself in
order to get its job done, and that won’t work.

Observe the exact purpose of Quicksort, as described above. We are given an array of length n, and
we want to sort it, all of it. Now look at the two ‘recursive calls,’ which really aren’t quite. The first one
of them sorts the array to the left of xi. That is indeed a recursive call, because we can just change the ‘n’
to ‘i − 1’ and call Quicksort. The second recursive call is the problem. It wants to sort a portion of the
array that doesn’t begin at the beginning of the array. The routine Quicksort as written so far doesn’t have
enough flexibility to do that. So we will have to give it some more parameters.

Instead of trying to sort all of the given array, we will write a routine that sorts only the portion of the
given array x that extends from x[left] to x[right], inclusive, where left and right are input parameters.
This leads us to the second version of the routine:

procedure qksort(x:array; left, right:integer);
{sorts the subarray x[left], . . . , x[right]}

if right− left ≥ 1 then
create a splitter for the subarray in the ith array position;
qksort(x, left, i− 1);
qksort(x, i+ 1, right)

end.{qksort}

Once we have qksort, of course, Quicksort is no problem: we call qksort with left := 1 and right := n.

The next item on the agenda is the little question of how to create a splitter in an array. Suppose we
are working with a subarray

x[left], x[left+ 1], . . . , x[right].

The first step is to choose one of the subarray elements (the element itself, not the position of the element)
to be the splitter, and the second step is to make it happen. The choice of the splitter element in the
Quicksort algorithm is done very simply: at random. We just choose, using our favorite random number
generator, one of the entries of the given subarray, let’s call it T , and declare it to be the splitter. To repeat
the parenthetical comment above, T is the value of the array entry that was chosen, not its position in the
array. Once the value is selected, the position will be what it has to be, namely to the right of all smaller
entries, and to the left of all larger entries.

The reason for making the random choice will become clearer after the smoke of the complexity discussion
has cleared, but briefly it’s this: the analysis of the average case complexity is realtively easy if we use the
random choice, so that’s a plus, and there are no minuses.

Second, we have now chosen T to be the value around which the subarray will be split. The entries of
the subarray must be moved so as to make T the splitter. To do this, consider the following algorithm.*

* Attributed to Nico Lomuto by Jon Bentley, CACM 27 (April 1984).
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2.2 Quicksort

procedure split(x, left, right, i)
{chooses at random an entry T of the subarray

[xleft, xright], and splits the subarray around T}
{the output integer i is the position of T in the

output array: x[i] = T};
1 L := a random integer in [left, right];
2 swap(x[left], x[L]);
3 {now the splitter is first in the subarray}
4 T := x[left];
5 i := left;
6 for j := left+ 1 to right do

begin
7 if x[j] < T then

begin
8 i := i+ 1

swap(x[i], x[j])
end;

end
9 swap(x[left], x[i])
10 end.{split}

We will now prove the correctness of split.

Theorem 2.2.1. Procedure split correctly splits the array x around the chosen value T .

Proof: We claim that as the loop in lines 7 and 8 is repeatedly executed for j := left + 1 to right, the
following three assertions will always be true just after each execution of lines 7, 8:

(a) x[left] = T and
(b) x[r] < T for all left < r ≤ i and
(c) x[r] ≥ T for all i < r ≤ j

Fig. 2.2.1 illustrates the claim.

Fig. 2.2.1: Conditions (a), (b), (c)

To see this, observe first that (a), (b), (c) are surely true at the beginning, when j = left+ 1. Next, if
for some j they are true, then the execution of lines 7, 8 guarantee that they will be true for the next value
of j.

Now look at (a), (b), (c) when j = right. It tells us that just prior to the execution of line 9 the
condition of the array will be

(a) x[left] = T and
(b) x[r] < T for all left < r ≤ i and
(c) x[r] ≥ T for all i < r ≤ right.

When line 9 executes, the array will be in the correctly split condition.

Now we can state a ‘final’ version of qksort (and therefore of Quicksort too).
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procedure qksort(x:array; left, right:integer);
{sorts the subarray x[left], . . . , x[right]};
if right− left ≥ 1 then

split(x, left, right, i);
qksort(x, left, i− 1);
qksort(x, i+ 1, right)

end.{qksort}

procedure Quicksort(x :array; n:integer)
{sorts an array of length n};

qksort(x, 1, n)
end.{Quicksort}

Now let’s consider the complexity of Quicksort. How long does it take to sort an array? Well, the
amount of time will depend on exactly which array we happen to be sorting, and furthermore it will depend
on how lucky we are with our random choices of splitting elements.

If we want to see Quicksort at its worst, suppose we have a really unlucky day, and that the random
choice of the splitter element happens to be the smallest element in the array. Not only that, but suppose
this kind of unlucky choice is repeated on each and every recursive call.

If the splitter element is the smallest array entry, then it won’t do a whole lot of splitting. In fact, if
the original array had n entries, then one of the two recursive calls will be to an array with no entries at all,
and the other recursive call will be to an array of n− 1 entries. If L(n) is the number of paired comparisons
that are required in this extreme scenario, then, since the number of comparisons that are needed to carry
out the call to split an array of length n is n− 1, it follows that

L(n) = L(n− 1) + n− 1 (n ≥ 1;L(0) = 0).

Hence,
L(n) = (1 + 2 + · · ·+ (n− 1)) = Θ(n2).

The worst-case behavior of Quicksort is therefore quadratic in n. In its worst moods, therefore, it is as bad
as ‘slowsort’ above.

Whereas the performance of slowsort is pretty much always quadratic, no matter what the input is,
Quicksort is usually a lot faster than its worst case discussed above.

We want to show that on the average the running time of Quicksort is O(n logn).
The first step is to get quite clear about what the word ‘average’ refers to. We suppose that the entries

of the input array x are all distinct. Then the performance of Quicksort can depend only on the sequence of
size relationships in the input array and the choices of the random splitting elements.

The actual numerical values that appear in the input array are not in themselves important, except that,
to simplify the discussion we will assume that they are all different. The only thing that will matter, then,
will be the set of outcomes of all of the paired comparisons of two elements that are done by the algorithm.
Therefore, we will assume, for the purposes of analysis, that the entries of the input array are exactly the
set of numbers 1, 2, . . . , n in some order.

There are n! possible orders in which these elements might appear, so we are considering the action of
Quicksort on just these n! inputs.

Second, for each particular one of these inputs, the choices of the splitting elements will be made by
choosing, at random, one of the entries of the array at each step of the recursion. We will also average over
all such random choices of the splitting elements.

Therefore, when we speak of the function F (n), the average complexity of Quicksort, we are speaking of
the average number of pairwise comparisons of array entries that are made by Quicksort, where the averaging
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2.2 Quicksort

is done first of all over all n! of the possible input orderings of the array elements, and second, for each such
input ordering, we average also over all sequences of choices of the splitting elements.

Now let’s consider the behavior of the function F (n). What we are going to show is that F (n) =
O(n logn).

The labor that F (n) estimates has two components. First there are the pairwise comparisons involved
in choosing a splitting element and rearranging the array about the chosen splitting value. Second there are
the comparisons that are done in the two recursive calls that follow the creation of a splitter.

As we have seen, the number of comparisons involved in splitting the array is n− 1. Hence it remains
to estimate the number of comparisons in the recursive calls.

For this purpose, suppose we have rearranged the array about the splitting element, and that it has
turned out that the splitting entry now occupies the ith position in the array.

Our next remark is that each value of i = 1, 2, . . . , n is equally likely to occur. The reason for this is that
we chose the splitter originally by choosing a random array entry. Since all orderings of the array entries are
equally likely, the one that we happened to have chosen was just as likely to have been the largest entry as
to have been the smallest, or the 17th-from-largest, or whatever.

Since each value of i is equally likely, each i has probability 1/n of being chosen as the residence of the
splitter.

If the splitting element lives in the ith array position, the two recursive calls to Quicksort will be on
two subarrays, one of which has length i− 1 and the other of which has length n− i. The average numbers
of pairwise comparisons that are involved in such recursive calls are F (i− 1) and F (n− i), respectively. It
follows that our average complexity function F satisfies the relation

F (n) = n− 1 +
1

n

n∑
i=1

{F (i− 1) + F (n− i)} (n ≥ 1). (2.2.2)

together with the initial value F (0) = 0.
How can we find the solution of the recurrence relation (2.2.2)? First let’s simplify it a little by noticing

that
n∑
i=1

{F (n− i)} = F (n− 1) + F (n− 2) + · · ·+ F (0)

=
n∑
i=1

{F (i− 1)}

(2.2.3)

and so (2.2.2) can be written as

F (n) = n− 1 +
2

n

n∑
i=1

F (i− 1). (2.2.4)

We can simplify (2.2.4) a lot by getting rid of the summation sign. This next step may seem like a trick
at first (and it is!), but it’s a trick that is used in so many different ways that now we call it a ‘method.’
What we do is first to multiply (2.2.4) by n, to get

nF (n) = n(n− 1) + 2
n∑
i=1

F (i− 1). (2.2.5)

Next, in (2.2.5) we replace n by n− 1, yielding

(n− 1)F (n− 1) = (n− 1)(n− 2) + 2
n−1∑
i=1

F (i− 1). (2.2.6)

Finally we subtract (2.2.6) from (2.2.5), and the summation sign obligingly disappears, leaving behind just

nF (n)− (n− 1)F (n− 1) = n(n− 1)− (n− 1)(n− 2) + 2F (n− 1). (2.2.7)

37



After some tidying up, (2.2.7) becomes

F (n) = (1 +
1

n
)F (n− 1) + (2−

2

n
). (2.2.8)

which is exactly in the form of the general first-order recurrence relation that we discussed in section 1.4.
In section 1.4 we saw that to solve (2.2.8) the winning tactic is to change to a new variable yn that is

defined, in this case, by

F (n) =
n+ 1

n

n

n− 1

n− 1

n− 2
· · ·

2

1
yn

= (n+ 1)yn.
(2.2.9)

If we make the change of variable F (n) = (n+ 1)yn in (2.2.8), then it takes the form

yn = yn−1 + 2(n− 1)/n(n + 1) (n ≥ 1) (2.2.10)

as an equation for the yn’s (y0 = 0).
The solution of (2.2.10) is obviously

yn = 2
n∑
j=1

j − 1

j(j + 1)

= 2
n∑
j=1

{
2

j + 1
−

1

j
}

= 2
n∑
j=1

1

j
− 4n/(n + 1).

Hence from (2.2.9),

F (n) = 2(n+ 1){
n∑
j=1

1/j} − 4n (2.2.11)

is the average number of pairwise comparisons that we do if we Quicksort an array of length n. Evidently
F (n) ∼ 2n logn (n→∞) (see (1.1.7) with g(t) = 1/t), and we have proved

Theorem 2.2.2. The average number of pairwise comparisons of array entries that Quicksort makes when
it sorts arrays of n elements is exactly as shown in (2.2.11), and is ∼ 2n logn (n→∞).

Quicksort is, on average, a very quick sorting method, even though its worst case requires a quadratic
amount of labor.

Exercises for section 2.2

1. Write out an array of 10 numbers that contains no splitter. Write out an array of 10 numbers that
contains 10 splitters.

2. Write a program that does the following. Given a positive integer n. Choose 100 random permutations
of [1, 2, . . . , n],* and count how many of the 100 had at least one splitter. Execute your program for n =
5, 6, . . . ,12 and tabulate the results.

3. Think of some method of sorting n numbers that isn’t in the text. In the worst case, how many comparisons
might your method do? How many swaps?

* For a fast and easy way to do this see A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd ed. (New
York: Academic Press, 1978), chap. 6.
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2.3 Recursive graph algorithms

4. Consider the array

x = {2, 4, 1, 10, 5, 3, 9, 7, 8, 6}

with left = 1 and right = 10. Suppose that the procedure split is called, and suppose the random integer
L in step 1 happens to be 5. Carry out the complete split algorithm (not on a computer; use pencil and
paper). Particularly, record the condition of the array x after each value of j is processed in the for j = . . .
loop.

5. Suppose H(0) = 1 and H(n) ≤ 1 + 1
n

∑n
i=1 H(i− 1) (n ≥ 1). How big might H(n) be?

6. If Q(0) = 0 and Q(n) ≤ n2 +
∑n

i=1 Q(i− 1) (n ≥ 1), how big might Q(n) be?

7. (Research problem) Find the asymptotic behavior, for large n, of the probability that a randomly chosen
permutation of n letters has a splitter.

2.3 Recursive graph algorithms
Algorithms on graphs are another rich area of applications of recursive thinking. Some of the problems

are quite different from the ones that we have so far been studying in that they seem to need exponential
amounts of computing time, rather than the polynomial times that were required for sorting problems.

We will illustrate the dramatically increased complexity with a recursive algorithm for the ‘maximum
independent set problem,’ one which has received a great deal of attention in recent years.

Suppose a graph G is given. By an independent set of vertices of G we mean a set of vertices no two of
which are connected by an edge of G. In the graph in Fig. 2.3.1 the set {1, 2, 6} is an independent set and so
is the set {1, 3}. The largest independent set of vertices in the graph shown there is the set {1, 2, 3, 6}. The
problem of finding the size of the largest independent set in a given graph is computationally very difficult.
All algorithms known to date require exponential amounts of time, in their worst cases, although no one has
proved the nonexistence of fast (polynomial time) algorithms.

If the problem itself seems unusual, and maybe not deserving of a lot of attention, be advised that in
Chapter 5 we will see that it is a member in good standing of a large family of very important computational
problems (the ‘NP-complete’ problems) that are tightly bound together, in that if we can figure out better
ways to compute any one of them, then we will be able to do all of them faster.

Fig. 2.3.1

Here is an algorithm for the independent set problem that is easy to understand and to program,
although, of course, it may take a long time to run on a large graph G.

We are looking for the size of the largest independent set of vertices ofG. Suppose we denote that number
by maxset(G). Fix some vertex of the graph, say vertex v∗. Let’s distinguish two kinds of independent sets
of vertices of G. There are those that contain vertex v∗ and those that don’t contain vertex v∗.

If an independent set S of vertices contains vertex v∗, then what does the rest of the set S consist of?
The remaining vertices of S are an independent set in a smaller graph, namely the graph that is obtained
from G by deleting vertex v∗ as well as all vertices that are connected to vertex v∗ by an edge. This latter
set of vertices is called the neighborhood of vertex v∗, and is written Nbhd(v∗).

The set S consists, therefore, of vertex v∗ together with an independent set of vertices from the graph
G− {v∗} −Nbhd(v∗).

Now consider an independent set S that doesn’t contain vertex v∗. In that case the set S is simply an
independent set in the smaller graph G− {v∗}.
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We now have all of the ingredients of a recursive algorithm. Suppose we have found the two numbers
maxset(G−{v∗}) and maxset(G−{v∗}−Nbhd(v∗)). Then, from the discussion above, we have the relation

maxset(G) = max
{
maxset(G− {v∗}), 1 +maxset(G− {v∗} −Nbhd(v∗))

}
.

We obtain the following recursive algorithm.

function maxset1(G);
{returns the size of the largest independent set of

vertices of G}
if G has no edges

then maxset1 := |V (G)|
else

choose some nonisolated vertex v∗ of G;
n1 := maxset1(G− {v∗});
n2 := maxset1(G− {v∗} −Nbhd(v∗));
maxset1 := max(n1, 1 + n2)

end.{maxset1}

Example:
Here is an example of a graph G and the result of applying the maxset1 algorithm to it. Let the graph

G be a 5-cycle. That is, it has 5 vertices and its edges are (1, 2), (2, 3), (3, 4), (4, 5), (1, 5). What are the two
graphs on which the algorithm calls itself recursively?

Suppose we select vertex number 1 as the chosen vertex v in the algorithm. Then G − {1} and G −
{1}−Nbhd(1) are respectively the two graphs shown in Fig. 2.3.2.

2 3 4 5 3 4

Fig. 2.3.2: G− {1} G− {1} −Nbhd(1)

The reader should now check that the size of the largest independent set of G is equal to the larger of
the two numbers maxset1(G− {1}), 1 +maxset1(G− {1} −Nbhd(1)) in this example.

Of course the creation of these two graphs from the original input graph is just the beginning of the
story, as far as the computation is concerned. Unbeknownst to the programmer, who innocently wrote the
recursive routine maxset1 and then sat back to watch, the compiler will go ahead with the computation by
generating a tree-full of graphs. In Fig. 2.3.3 we show the collection of all of the graphs that the compiler
might generate while executing a single call to maxset1 on the input graph of this example. In each case,
the graph that is below and to the left of a given one is the one obtained by deleting a single vertex, and the
one below and to the right of each graph is obtained by deleting a single vertex and its entire neighborhood.

Now we are going to study the complexity of maxset1. The results will be sufficiently depressing that
we will then think about how to speed up the algorithm, and we will succeed in doing that to some extent.

To open the discussion, let’s recall that in Chapter 0 it was pointed out that the complexity of a
calculation is usefully expressed as a function of the number of bits of input data. In problems about graphs,
however, it is more natural to think of the amount of labor as a function of n, the number of vertices of the
graph. In problems about matrices it is more natural to use n, the size of the matrix, and so forth.

Do these distinctions alter the classification of problems into ‘polynomial time do-able’ vs. ‘hard’? Take
the graph problems, for instance. How many bits of input data does it take to describe a graph? Well,
certainly we can march through the entire list of n(n− 1)/2 pairs of vertices and check off the ones that are
actually edges in the input graph to the problem. Hence we can describe a graph to a computer by making

40



2.3 Recursive graph algorithms

Fig. 2.3.3: A tree-full of graphs is created

a list of n(n− 1)/2 0’s and 1’s. Each 1 represents a pair that is an edge, each 0 represents one that isn’t an
edge.

Thus Θ(n2) bits describe a graph. Since n2 is a polynomial in n, any function of the number of input
data bits that can be bounded by a polynomial in same, can also be bounded by a polynomial in n itself.
Hence, in the case of graph algorithms, the ‘easiness’ vs. ‘hardness’ judgment is not altered if we base the
distinction on polynomials in n itself, rather than on polynomials in the number of bits of input data.

Hence, with a clear conscience, we are going to estimate the running time or complexity of graph
algorithms in terms of the number of vertices of the graph that is input.

Now let’s do this for algorithm maxset1 above.
The first step is to find out if G has any edges. To do this we simply have to look at the input data.

In the worst case we might look at all of the input data, all Θ(n2) bits of it. Then, if G actually has some
edges, the additional labor needed to process G consists of two recursive calls on smaller graphs and one
computation of the larger of two numbers.

If F (G) denotes the total amount of computational labor that we do in order to find maxset1(G), then
we see that

F (G) ≤ cn2 + F (G− {v∗}) + F (G− {v∗} −Nbhd(v∗)). (2.3.1)

Next, let f(n) = max|V (G)|=n F (G), and take the maximum of (2.3.1) over all graphs G of n vertices. The
result is that

f(n) ≤ cn2 + f(n− 1) + f(n− 2) (2.3.2)

because the graph G− {v∗} −Nbhd(v∗) might have as many as n− 2 vertices, and would have that many
if v∗ had exactly one neighbor.

Now it’s time to ‘solve’ the recurrent inequality (2.3.2). Fortunately the hard work has all been done,
and the answer is in theorem 1.4.1. That theorem was designed expressly for the analysis of recursive
algorithms, and in this case it tells us that f(n) = O((1.619n)). Indeed the number c in that theorem is
(1 +

√
5)/2 = 1.61803.... We chose the ‘ε’ that appears in the conclusion of the theorem simply by rounding

c upwards.
What have we learned? Algorithm maxset1 will find the answer in a time of no more than O(1.619n)

units if the input graph G has n vertices. This is a little improvement of the most simple-minded possible
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algorithm that one might think of for this problem, which is to examine every single subset of the vertices of
of G and ask if it is an independent set or not. That algorithm would take Θ(2n) time units because there
are 2n subsets of vertices to look at. Hence we have traded in a 2n for a 1.619n by being a little bit cagey
about the algorithm. Can we do still better?

There have in fact been a number of improvements of the basic maxset1 algorithm worked out. Of
these the most successful is perhaps the one of Tarjan and Trojanowski that is cited in the bibliography at
the end of this chapter. We are not going to work out all of those ideas here, but instead we will show what
kind of improvements on the basic idea will help us to do better in the time estimate.

We can obviously do better if we choose v∗ in such a way as to be certain that it has at least two
neighbors. If we were to do that then although we wouldn’t affect the number of vertices of G−{v∗} (always
n− 1) we would at least reduce the number of vertices of G− {v∗} −Nbhd(v∗) as much as possible.

So, as our next thought, we might replace the instruction ‘choose some nonisolated vertex v∗ of G’ in
maxset1 by an instruction ‘choose some vertex v∗ of G that has at least two neighbors.’ Then we could be
quite certain that G− {v∗} −Nbhd(v∗) would have at most n− 3 vertices.

What if there isn’t any such vertex in the graph G? Then G would contain only vertices with 0 or 1
neighbors. Such a graph G would be a collection of E disjoint edges together with a number m of isolated
vertices. The size of the largest independent set of vertices in such a graph is easy to find. A maximum
independent set contains one vertex from each of the E edges and it contains all m of the isolated vertices.
Hence in this case, maxset = E +m = |V (G)| − |E(G)|, and we obtain a second try at a good algorithm in
the following form.

procedure maxset2(G);
{returns the size of the largest independent set of

vertices of G}
if G has no vertex of degree ≥ 2

then maxset2 := |V (G)| − |E(G)|
else

choose a vertex v∗ of degree ≥ 2;
n1 := maxset2(G− {v∗});
n2 := maxset2(G− {v∗} −Nbhd(v∗) );
maxset2 := max(n1, 1 + n2)

end.{maxset2}

How much have we improved the complexity estimate? If we apply to maxset2 the reasoning that led
to (2.3.2) we find

f(n) ≤ cn2 + f(n− 1) + f(n− 3) (f(0) = 0; n = 2, 3, . . .), (2.3.3)

where f(n) is once more the worst-case time bound for graphs of n vertices.
Just as before, (2.3.3) is a recurrent inequality of the form that was studied at the end of section 1.4,

in theorem 1.4.1. Using the conclusion of that theorem, we find from (2.3.3) that f(n) = O((c+ ε)n) where
c = 1.46557.. is the positive root of the equation c3 = c2 + 1.

The net result of our effort to improve maxset1 to maxset2 has been to reduce the running-time bound
from O(1.619n) to O(1.47n), which isn’t a bad day’s work. In the exercises below we will develop maxset3,
whose running time will be O(1.39n). The idea will be that since in maxset2 we were able to insure that v∗

had at least two neighbors, why not try to insure that v∗ has at least 3 of them?
As long as we have been able to reduce the time bound more and more by insuring that the selected

vertex has lots of neighbors, why don’t we keep it up, and insist that v∗ should have 4 or more neighbors?
Regrettably the method runs out of steam precisely at that moment. To see why, ask what the ‘trivial case’
would then look like. We would be working on a graph G in which no vertex has more than 3 neighbors.
Well, what ‘trivialthing’ shall we do, in this ‘trivial case’?

The fact is that there isn’t any way of finding the maximum independent set in a graph where all
vertices have ≤ 3 neighbors that’s any faster than the general methods that we’ve already discussed. In fact,
if one could find a fast method for that restricted problem it would have extremely important consequences,
because we would then be able to do all graphs rapidly, not just those special ones.
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We will learn more about this phenomenon in Chapter 5, but for the moment let’s leave just the
observation that the general problem of maxset turns out to be no harder than the special case of maxset
in which no vertex has more than 3 neighbors.

Aside from the complexity issue, the algorithm maxset has shown how recursive ideas can be used to
transform questions about graphs to questions about smaller graphs.

Here’s another example of such a situation. Suppose G is a graph, and that we have a certain supply
of colors available. To be exact, suppose we have K colors. We can then attempt to color the vertices of G
properly in K colors (see section 1.6).

If we don’t have enough colors, and G has lots of edges, this will not be possible. For example, suppose
G is the graph of Fig. 2.3.4, and suppose we have just 3 colors available. Then there is no way to color the
vertices without ever finding that both endpoints of some edge have the same color. On the other hand, if
we have four colors available then we can do the job.

Fig. 2.3.4

There are many interesting computational and theoretical problems in the area of coloring of graphs.
Just for its general interest, we are going to mention the four-color theorem, and then we will turn to a study
of some of the computational aspects of graph coloring.

First, just for general cultural reasons, let’s slow down for a while and discuss the relationship between
graph colorings in general and the four-color problem, even though it isn’t directly relevant to what we’re
doing.

The original question was this. Suppose that a delegation of Earthlings were to visit a distant planet
and find there a society of human beings. Since that race is well known for its squabbling habits, you can
be sure that the planet will have been carved up into millions of little countries, each with its own ruling
class, system of government, etc., and of course, all at war with each other. The delegation wants to escape
quickly, but before doing so it draws a careful map of the 5,000,000 countries into which the planet has
been divided. To make the map easier to read, the countries are then colored in such a way that whenever
two countries share a stretch of border they are of two different colors. Surprisingly, it was found that the
coloring could be done using only red, blue, yellow and green.

It was noticed over 100 years ago that no matter how complicated a map is drawn, and no matter how
many countries are involved, it seems to be possible to color the countries in such a way that

(a) every pair of countries that have a common stretch of border have different colors and
(b) no more than four colors are used in the entire map.
It was then conjectured that four colors are always sufficient for the proper coloring of the countries

of any map at all. Settling this conjecture turned out to be a very hard problem. It was finally solved in
1976 by K. Appel and W. Haken* by means of an extraordinary proof with two main ingredients. First they
showed how to reduce the general problem to only a finite number of cases, by a mathematical argument.
Then, since the ‘finite number’ was over 1800, they settled all of those cases with quite a lengthy computer
calculation. So now we have the ‘Four Color Theorem,’ which asserts that no matter how we carve up the
plane or the sphere into countries, we will always be able to color those countries with at most four colors
so that countries with a common frontier are colored differently.

We can change the map coloring problem into a graph coloring problem as follows. Given a map. From
the map we will construct a graph G. There will be a vertex of G corresponding to each country on the
map. Two of these vertices will be connected by an edge of the graph G if the two countries that they
correspond to have a common stretch of border (we keep saying ‘stretch of border’ to emphasize that if the
two countries have just a single point in common they are allowed to have the same color). As an illustration

* Every planar map is four colorable, Bull. Amer. Math. Soc., 82 (1976), 711-712.

43



Fig. 2.3.5(a) Fig. 2.3.5(b)

of this construction, we show in Fig. 2.3.5(a) a map of a distant planet, and in Fig. 2.3.5(b) the graph that
results from the construction that we have just described.

By a ‘planar graph’ we mean a graph G that can be drawn in the plane in such a way that two edges
never cross (except that two edges at the same vertex have that vertex in common). The graph that results
from changing a map of countries into a graph as described above is always a planar graph. In Fig. 2.3.6(a)
we show a planar graph G. This graph doesn’t look planar because two of its edges cross. However, that isn’t
the graph’s fault, because with a little more care we might have drawn the same graph as in Fig. 2.3.6(b), in
which its planarity is obvious. Don’t blame the graph if it doesn’t look planar. It might be planar anyway!

Fig. 2.3.6(a) Fig. 2.3.6(b)

The question of recognizing whether a given graph is planar is itself a formidable problem, although the
solution, due to J. Hopcroft and R. E. Tarjan,* is an algorithm that makes the decision in linear time, i.e.
in O(V ) time for a graph of V vertices.

Although every planar graph can be properly colored in four colors, there are still all of those other
graphs that are not planar to deal with. For any one of those graphs we can ask, if a positive integer K is
given, whether or not its vertices can be K-colored properly.

As if that question weren’t hard enough, we might ask for even more detail, namely about the number
of ways of properly coloring the vertices of a graph. For instance, if we have K colors to work with, suppose
G is the empty graph Kn, that is, the graph of n vertices that has no edges at all. Then G has quite a large
number of proper colorings, Kn of them, to be exact. Other graphs of n vertices have fewer proper colorings
than that, and an interesting computational question is to count the proper colorings of a given graph.

We will now find a recursive algorithm that will answer this question. Again, the complexity of the
algorithm will be exponential, but as a small consolation we note that no polynomial time algorithm for this
problem is known.

Choose an edge e of the graph, and let its endpoints be v and w. Now delete the edge e from the graph,
and let the resulting graph be called G − {e}. Then we will distinguish two kinds of proper colorings of
G−{e}: those in which vertices v and w have the same color and those in which v and w have different colors.
Obviously the number of proper colorings of G− {e} in K colors is the sum of the numbers of colorings of
each of these two kinds.

* Efficient planarity testing, J. Assoc. Comp. Mach. 21 (1974), 549-568.
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2.3 Recursive graph algorithms

Consider the proper colorings in which vertices v and w have the same color. We claim that the number
of such colorings is equal to the number of all colorings of a certain new graph G/{e}, whose construction
we now describe:

The vertices of G/{e} consist of the vertices of G other than v or w and one new vertex that we will
call ‘vw’ (so G/{e} will have one less vertex than G has).

Now we describe the edges of G/{e}. First, if a and b are two vertices of G/{e} neither of which is the
new vertex ‘vw’, then (a, b) is an edge of G/{e} if and only if it is an edge of G. Second, (vw, b) is an edge
of G/{e} if and only if either (v, b) or (w, b) (or both) is an edge of G.

We can think of this as ‘collapsing’ the graph G by imagining that the edges of G are elastic bands,
and that we squeeze vertices v and w together into a single vertex. The result is G/{e} (anyway, it is if we
replace any resulting double bands by single ones!).

In Fig. 2.3.7(a) we show a graph G of 7 vertices and a chosen edge e. The two endpoints of e are v
and w. In Fig. 2.3.7(b) we show the graph G/{e} that is the result of the construction that we have just
described.

Fig. 2.3.7(a) Fig. 2.3.7(b)

The point of the construction is the following

Lemma 2.3.1. Let v and w be two vertices of G such that e = (v, w) ∈ E(G). Then the number of proper
K-colorings of G− {e} in which v and w have the same color is equal to the number of all proper colorings
of the graph G/{e}.

Proof: Suppose G/{e} has a proper K-coloring. Color the vertices of G− {e} itself in K colors as follows.
Every vertex of G−{e} other than v or w keeps the same color that it has in the coloring of G/{e}. Vertex v
and vertex w each receive the color that vertex vw has in the coloring of G/{e}. Now we have a K-coloring
of the vertices of G− {e}.

It is a proper coloring because if f is any edge of G − {e} then the two endpoints of f have different
colors. Indeed, this is obviously true if neither endpoint of f is v or w because the coloring of G/{e} was a
proper one. There remains only the case where one endpoint of f is, say, v and the other one is some vertex
x other than v or w. But then the colors of v and x must be different because vw and x were joined in
G/{e} by an edge, and therefore must have gotten different colors there.

To get back to the main argument, we were trying to compute the number of proper K-colorings of
G − {e}. We observed that in any K-coloring v and w have either the same or different colors. We have
shown that the number of colorings in which they receive the same color is equal to the number of all proper
colorings of a certain smaller (one less vertex) graph G/{e}. It remains to look at the case where vertices v
and w receive different colors.

Lemma 2.3.2. Let e = (v,w) be an edge of G. Then the number of proper K-colorings of G−{e} in which
v and w have different colors is equal to the number of all proper K-colorings of G itself.

Proof: Obvious (isn’t it?).
Now let’s put together the results of the two lemmas above. Let P (K;G) denote the number of ways of

properly coloring the vertices of a given graph G. Then lemmas 2.3.1 and 2.3.2 assert that

P (K;G− {e}) = P (K;G/{e}) + P (K;G)
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or if we solve for P (K;G), then we have

P (K;G) = P (K;G− {e})− P (K;G/{e}). (2.3.4)

The quantity P (K;G), the number of ways of properly coloring the vertices of a graph G in K colors,
is called the chromatic polynomial of G.

We claim that it is, in fact, a polynomial in K of degree |V (G)|. For instance, if G is the complete
graph of n vertices then obviously P (K,G) = K(K − 1) · · · (K − n+ 1), and that is indeed a polynomial in
K of degree n.
Proof of claim: The claim is certainly true if G has just one vertex. Next suppose the assertion is true for
graphs of < V vertices, then we claim it is true for graphs of V vertices also. This is surely true if G has V
vertices and no edges at all. Hence, suppose it is true for all graphs of V vertices and fewer than E edges,
and let G have V vertices and E edges. Then (2.3.4) implies that P (K;G) is a polynomial of the required
degree V because G−{e} has fewer edges than G does, so its chromatic polynomial is a polynomial of degree
V . G/{e} has fewer vertices than G has, and so P (K;G/{e}) is a polynomial of lower degree. The claim is
proved, by induction.

Equation (2.3.4) gives a recursive algorithm for computing the chromatic polynomial of a graph G, since
the two graphs that appear on the right are both ‘smaller’ than G, one in the sense that it has fewer edges
than G has, and the other in that it has fewer vertices. The algorithm is the following.

function chrompoly(G:graph): polynomial;
{computes the chromatic polynomial of a graph G}
if G has no edges then chrompoly:=K|V (G)|

else
choose an edge e of G;
chrompoly:=chrompoly(G− {e})−chrompoly(G/{e})

end.{chrompoly}

Next we are going to look at the complexity of the algorithm chrompoly (we will also refer to it as ‘the
delete-and-identify’ algorithm). The graph G can be input in any one of a number of ways. For example,
we might input the full list of edges of G, as a list of pairs of vertices.

The first step of the computation is to choose the edge e and to create the edge list of the graph G−{e}.
The latter operation is trivial, since all we have to do is to ignore one edge in the list.

Next we call chrompoly on the graph G− {e}.
The third step is to create the edge list of the collapsed graph G/{e} from the edge list of G itself. That

involves some work, but it is rather routine, and its cost is linear in the number of edges of G, say c|E(G)|.
Finally we call chrompoly on the graph G/{e}.
Let F (V,E) denote the maximum cost of calling chrompoly on any graph of at most V vertices and at

most E edges. Then we see at once that

F (V,E) ≤ F (V,E − 1) + cE + F (V − 1,E − 1) (2.3.5)

together with F (V, 0) = 0. If we put, successively, E = 1, 2, 3, we find that F (V, 1) ≤ c, F (V, 2) ≤ 4c, and
F (V, 3) ≤ 11c. Hence we seek a solution of (2.3.5) in the form F (V,E) ≤ f(E)c, and we quickly find that if

f(E) = 2f(E − 1) +E (f(0) = 0) (2.3.6)

then we will have such a solution.
Since (2.3.6) is a first-order difference equation of the form (1.4.5), we find that

f(E) = 2E
E∑
j=0

j2−j

∼ 2E+1.

(2.3.7)
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The last ‘∼’ follows from the evaluation
∑
j2−j = 2 that we discussed in section 1.3.

To summarize the developments so far, then, we have found out that the chromatic polynomial of a graph
can be computed recursively by an algorithm whose cost is O(2E) for graphs of E edges. This is exponential
cost, and such computations are prohibitively expensive except for graphs of very modest numbers of edges.

Of course the mere fact that our proved time estimate is O(2E) doesn’t necessarily mean that the
algorithm can be that slow, because maybe our complexity analysis wasn’t as sharp as it might have been.
However, consider the graph G(s, t) that consists of s disjoint edges and t isolated vertices, for a total of
2s+ t vertices altogether. If we choose an edge of G(s, t) and delete it, we get G(s− 1, t+ 2), whereas the
graph G/{e} is G(s− 1, t+ 1). Each of these two new graphs has s− 1 edges.

We might imagine arranging the computation so that the extra isolated vertices will be ‘free,’ i.e., will
not cost any additional labor. Then the work that we

do on G(s, t) will depend only on s, and will be twice as much as the work we do on G(s−1, ·). Therefore
G(s, t) will cost at least 2s operations, and our complexity estimate wasn’t a mirage, there really are graphs
that make the algorithm do an amount 2|E(G)| of work.

Considering the above remarks it may be surprising that there is a slightly different approach to the
complexity analysis that leads to a time bound (for the same algorithm) that is a bit sharper than O(2E) in
many cases (the work of the complexity analyst is never finished!). Let’s look at the algorithm chrompoly
in another way.

For a graph G we can define a number γ(G) = |V (G)| + |E(G)|, which is rather an odd kind of thing
to define, but it has a nice property with respect to this algorithm, namely that whatever G we begin with,
we will find that

γ(G− {e}) = γ(G)− 1; γ(G/{e}) ≤ γ(G)− 2. (2.3.8)

Indeed, if we delete the edge e then γ must drop by 1, and if we collapse the graph on the edge e then we
will have lost one vertex and at least one edge, so γ will drop by at least 2.

Hence, if h(γ) denotes the maximum amount of labor that chrompoly does on any graph G for which

|V (G)|+ |E(G)| ≤ γ (2.3.9)

then we claim that

h(γ) ≤ h(γ − 1) + h(γ − 2) (γ ≥ 2). (2.3.10)

Indeed, if G is a graph for which (2.3.9) holds, then if G has any edges at all we can do the delete-and-identify
step to prove that the labor involved in computing the chromatic polynomial of G is at most the quantity
on the right side of (2.3.10). Else, if G has no edges then the labor is 1 unit, which is again at most equal
to the right side of (2.3.10), so the result (2.3.10) follows.

With the initial conditions h(0) = h(1) = 1 the solution of the recurrent inequality (2.3.10) is obviously
the relation h(γ) ≤ Fγ , where Fγ is the Fibonacci number. We have thereby proved that the time complexity
of the algorithm chrompoly is

O(F|V (G)|+|E(G)|) = O

(
(
1 +
√

5

2
)|V (G)|+|E(G)|

)
= O(1.62|V (G)|+|E(G)|).

(2.3.11)

This analysis does not, of course, contradict the earlier estimate, but complements it. What we have
shown is that the labor involved is always

O

(
min(2|E(G)|, 1.62|V (G)|+|E(G)|)

)
. (2.3.12)

On a graph with ‘few’ edges relative to its number of vertices (how few?) the first quantity in the parentheses
in (2.3.12) will be the smaller one, whereas if G has more edges, then the second term is the smaller one. In
either case the overall judgment about the speed of the algorithm (it’s slow!) remains.
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Exercises for section 2.3

1. Let G be a cycle of n vertices. What is the size of the largest independent set of vertices in V (G)?
2. Let G be a path of n vertices. What is the size of the largest independent set of vertices in V (G)?
3. Let G be a connected graph in which every vertex has degree 2. What must such a graph consist of?
Prove.
4. Let G be a connected graph in which every vertex has degree ≤ 2. What must such a graph look like?
5. Let G be a not-necessarily-connected graph in which every vertex has degree ≤ 2. What must such a
graph look like? What is the size of the largest independent set of vertices in such a graph? How long would
it take you to calculate that number for such a graph G? How would you do it?
6. Write out algorithm maxset3, which finds the size of the largest independent set of vertices in a graph.
Its trivial case will occur if G has no vertex of degree ≥ 3. Otherwise, it will choose a vertex v∗ of degree
≥ 3 and proceed as in maxset2.
7. Analyze the complexity of your algorithm maxset3 from exercise 6 above.
8. Use (2.3.4) to prove by induction that P (K;G) is a polynomial in K of degree |V (G)|. Then show that
if G is a tree then P (K;G) = K(K − 1)|V (G)|−1.
9. Write out an algorithm that will change the vertex adjacency matrix of a graph G to the vertex adjacency
matrix of the graph G/{e}, where e is a given edge of G.
10. How many edges must G have before the second quantity inside the ‘O’ in (2.3.12) is the smaller of the
two?
11. Let α(G) be the size of the largest independent set of vertices of a graph G, let χ(G) be its chromatic
number, and let n = |V (G)|. Show that, for every G, α(G) ≥ n/χ(G).

2.4 Fast matrix multiplication
Everybody knows how to multiply two 2× 2 matrices. If we want to calculate(

c11 c12

c21 c22

)
=

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
(2.4.1)

then, ‘of course,’

ci,j =
2∑

k=1

ai,kbk,j (i, j = 1, 2). (2.4.2)

Now look at (2.4.2) a little more closely. In order to calculate each one of the 4 ci,j ’s we have to do 2
multiplications of numbers. The cost of multiplying two 2 × 2 matrices is therefore 8 multiplications of
numbers. If we measure the cost in units of additions of numbers, the cost is 4 such additions. Hence, the
matrix multiplication method that is shown in (2.4.1) has a complexity of 8 multiplications of numbers and
4 additions of numbers.

This may seem rather unstartling, but the best ideas often have humble origins.
Suppose we could find another way of multiplying two 2 × 2 matrices in which the cost was only 7

multiplications of numbers, together with more than 4 additions of numbers. Would that be a cause for
dancing in the streets, or would it be just a curiosity, of little importance? In fact, it would be extremely
important, and the consequences of such a step were fully appreciated only in 1969 by V. Strassen, to whom
the ideas that we are now discussing are due.*

What we’re going to do next in this section is the following:
(a) describe another way of multiplying two 2× 2 matrices in which the cost will be only 7 multipli-

cations of numbers plus a bunch of additions of numbers, and
(b) convince you that it was worth the trouble.

The usefulness of the idea stems from the following amazing fact: if two 2×2 matrices can be multiplied
with only 7 multiplications of numbers, then two N ×N matrices can be multiplied using only O(N2.81...)

* V. Strassen, Gaussian elimination is not optimal, Numerische Math. 13 (1969), 354-6.
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multiplications of numbers instead of theN3 such multiplications that the usual method involves (the number
‘2.81...’ is log2 7).

In other words, if we can reduce the number of multiplications of numbers that are needed to multiply two
2×2 matrices, then that improvement will show up in the exponent of N when we measure the complexity of
multiplying two N×N matrices. The reason, as we will see, is that the little improvement will be pyramided
by numerous recursive calls to the 2× 2 procedure– but we get ahead of the story.

Now let’s write out another way to do the 2× 2 matrix multiplication that is shown in (2.4.1). Instead
of doing it á là (2.4.2), try the following 11-step approach.

First compute, from the input 2× 2 matrices shown in (2.4.1), the following 7 quantities:

I = (a12 − a22)× (b21 + b22)

II = (a11 + a22)× (b11 + b22)

III = (a11 − a21)× (b11 + b12)

IV = (a11 + a12)× b22

V = a11 × (b12 − b22)

V I = a22 × (b21 − b11)

V II = (a21 + a22)× b11

(2.4.3)

and then calculate the 4 entries of the product matrix C = AB from the 4 formulas

c11 = I + II − IV + V I

c12 = IV + V

c21 = V I + V II

c22 = II − III + V − V II.

(2.4.4)

The first thing to notice about this seemingly overelaborate method of multiplying 2 × 2 matrices is that
only 7 multiplications of numbers are used (count the ‘×’ signs in (2.4.3)). ‘Well yes,’ you might reply, ‘but
18 additions are needed, so where is the gain?’

It will turn out that multiplications are more important than additions, not because computers can do
them faster, but because when the routine is called recursively each ‘×’ operation will turn into a multipli-
cation of two big matrices whereas each ‘±’ will turn into an addition or subtraction of two big matrices,
and that’s much cheaper.

Next we’re going to describe how Strassen’s method (equations (2.4.3), (2.4.4)) of multiplying 2 × 2
matrices can be used to speed up multiplications of N ×N matrices. The basic idea is that we will partition
each of the large matrices into four smaller ones and multiply them together using (2.4.3), (2.4.4).

Suppose that N is a power of 2, say N = 2n, and let there be given two N × N matrices, A and B.
We imagine that A and B have each been partitioned into four 2n−1 × 2n−1 matrices, and that the product
matrix C is similarly partitioned. Hence we want to do the matrix multiplication that is indicated by

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
(2.4.5)

where now each of the capital letters represents a 2n−1 × 2n−1 matrix.

To do the job in (2.4.5) we use exactly the 11 formulas that are shown in (2.4.3) and (2.4.4), except
that the lower-case letters are now all upper case. Suddenly we very much appreciate the reduction of the
number of ‘×’ signs because it means one less multiplication of large matrices, and we don’t so much mind
that it has been replaced by 10 more ‘±’ signs, at least not if N is very large.

This yields the following recursive procedure for multiplying large matrices.
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function MatrProd(A, B: matrix; N:integer):matrix;
{MatrProd is AB, where A and B are N ×N}
{uses Strassen method}
if N is not a power of 2 then

border A and B by rows and columns of 0’s until
their size is the next power of 2 and change N ;

if N = 1 then MatrProd := AB
else

partition A and B as shown in (2.4.5);
I := MatrProd(A11 −A22, B21 +B22,N/2);
II := MatrProd(A11 +A22,B11 +B22, N/2);

etc. etc., through all 11 of the formulas
shown in (2.4.3), (2.4.4), ending with ...

C22 := II − III + V − V II
end.{MatrProd}

Note that this procedure calls itself recursively 7 times. The plus and minus signs in the program each
represent an addition or subtraction of two matrices, and therefore each one of them involves a call to a
matrix addition or subtraction procedure (just the usual method of adding, nothing fancy!). Therefore the
function MatrProd makes 25 calls, 7 of which are recursively to itself, and 18 of which are to a matrix
addition/subtraction routine.

We will now study the complexity of the routine in two ways. We will count the number of multiplications
of numbers that are needed to multiply two 2n × 2n matrices using MatrProd (call that number f(n)), and
then we will count the number of additions of numbers (call it g(n)) that MatrProd needs in order to
multiply two 2n × 2n matrices.

The multiplications of numbers are easy to count. MatrProd calls itself 7 times, in each of which it
does exactly f(n− 1) multiplications of numbers, hence f(n) = 7f(n− 1) and f(0) = 1 (why?). Therefore
we see that f(n) = 7n for all n ≥ 0. Hence MatrProd does 7n multiplications of numbers in order to do one
multiplication of 2n × 2n matrices.

Let’s take the last sentence in the above paragraph and replace ‘2n’ by N throughout. It then tells
us that MatrProd does 7logN/ log 2 multiplications of numbers in order to do one multiplication of N ×N
matrices. Since 7logN/ log 2 = N log 7/ log 2 = N2.81..., we see that Strassen’s method uses only O(N2.81)
multiplications of numbers, in place of the N3 such multiplications that are required by the usual formulas.

It remains to count the additions/subtractions of numbers that are needed by MatrProd.
In each of its 7 recursive calls to itself MatrProd does g(n− 1) additions of numbers. In each of its

18 calls to the procedure that adds or subtracts matrices it does a number of additions of numbers that is
equal to the square of the size of the matrices that are being added or subtracted. That size is 2n−1, so each
of the 18 such calls does 22n−2 additions of numbers. It follows that g(0) = 0 and for n ≥ 1 we have

g(n) = 7g(n− 1) + 18 · 4n−1

= 7g(n− 1) +
9

2
4n.

We follow the method of section 1.4 on this first-order linear difference equation. Hence we make the
change of variable g(n) = 7nyn (n ≥ 0) and we find that y0 = 0 and for n ≥ 1,

yn = yn−1 +
9

2
(4/7)n.

If we sum over n we obtain

yn =
9

2

n∑
j=1

(4/7)j

≤
9

2

∞∑
j=0

(4/7)n

= 21/2.
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2.5 The discrete Fourier transform

Finally, g(n) = 7nyn ≤ (10.5)7n = O(7n), and this is O(N2.81) as before. This completes the proof of

Theorem 2.4.1. In Strassen’s method of fast matrix multiplication the number of multiplications of num-
bers, of additions of numbers and of subtractions of numbers that are needed to multiply together two N×N
matrices are each O(N2.81) (in contrast to the Θ(N3) of the conventional method).

In the years that have elapsed since Strassen’s original paper many researchers have been whittling
away at the exponent of N in the complexity bounds. Several new, and more elaborate algorithms have
been developed, and the exponent, which was originally 3, has progressed downwards through 2.81 to values
below 2.5. It is widely believed that the true minimum exponent is 2 + ε, i.e., that two N ×N matrices can
be multiplied in time O(N2+ε), but there seems to be a good deal of work to be done before that result can
be achieved.

Exercises for section 2.4

1. Suppose we could multiply together two 3 × 3 matrices with only 22 multiplications of numbers. How
fast, recursively, would we then be able to multiply two N ×N matrices?
2. (cont.) With what would the ‘22’ in problem 1 above have to be replaced in order to achieve an
improvement over Strassen’s algorithm given in the text?
3. (cont.) Still more generally, with how few multiplications would we have to be able to multiply two
M ×M matrices in order to insure that recursively we would then be able to multiply two N ×N matrices
faster than the method given in this section?
4. We showed in the text that if N is a power of 2 then two N ×N matrices can be multiplied in at most
time CN log2 7, where C is a suitable constant. Prove that if N is not a power of 2 then two N ×N matrices
can be multiplied in time at most 7CN log2 7.

2.5 The discrete Fourier transform
It is a lot easier to multiply two numbers than to multiply two polynomials.
If you should want to multiply two polynomials f and g, of degrees 77 and 94, respectively, you are

in for a lot of work. To calculate just one coefficient of the product is already a lot of work. Think about
the calculation of the coefficient of x50 in the product, for instance, and you will see that about 50 numbers
must be multiplied together and added in order to calculate just that one coefficient of fg, and there are
171 other coefficients to calculate!

Instead of calculating the coefficients of the product fg it would be much easier just to calculate the
values of the product at, say, 172 points. To do that we could just multiply the values of f and of g at each
of those points, and after a total cost of 172 multiplications we would have the values of the product.

The values of the product polynomial at 172 distinct points determine that polynomial completely, so
that sequence of values is the answer. It’s just that we humans prefer to see polynomials given by means of
their coefficients instead of by their values.

The Fourier transform, that is the subject of this section, is a method of converting from one representa-
tion of a polynomial to another. More exactly, it converts from the sequence of coefficients of the polynomial
to the sequence of values of that polynomial at a certain set of points. Ease of converting between these two
representations of a polynomial is vitally important for many reasons, including multiplication of polynomi-
als, high precision integer arithmetic in computers, creation of medical images in CAT scanners and NMR
scanners, etc.

Hence, in this section we will study the discrete Fourier transform of a finite sequence of numbers,
methods of calculating it, and some applications.

This is a computational problem which at first glance seems very simple. What we’re asked to do,
basically, is to evaluate a polynomial of degree n − 1 at n different points. So what could be so difficult
about that?

If we just calculate the n values by brute force, we certainly won’t need to do more than n multiplications
of numbers to find each of the n values of the polynomial that we want, so we surely don’t need more than
O(n2) multiplications altogether.
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The interesting thing is that this particular problem is so important, and turns up in so many different
applications, that it really pays to be very efficient about how the calculation is done. We will see in this
section that if we use a fairly subtle method of doing this computation instead of the obvious method, then
the work can be cut down from O(n2) to O(n logn). In view of the huge arrays on which this program is
often run, the saving is very much worthwhile.

One can think of the Fourier transform as being a way of changing the description, or coding of a
polynomial, so we will introduce the subject by discussing it from that point of view.

Next we will discuss the obvious way of computing the transform.
Then we will describe the ‘Fast Fourier Transform’, which is a rather un-obvious, but very fast, method

of computing the same creature.
Finally we will discuss an important application of the subject, to the fast multiplication of polynomials.
There are many different ways that might choose to describe (‘encode’) a particular polynomial. Take

the polynomial f(t) = t(6 − 5t + t2), for instance. This can be uniquely described in any of the following
ways (and a lot more).

It is the polynomial whose
(i) coefficients are 0, 6, −5, 1 or whose

(ii) roots are 0, 2 and 3, and whose highest coefficient is 1 or whose
(iii) values at t = 0, 1, 2, 3 are 0, 2, 0, 0, respectively, or whose
(iv) values at the fourth-roots of unity 1, i,−1,−i are 2, 5 + 5i, −12, 5− 5i, or etc.

We want to focus on two of these ways of representing a polynomial. The first is by its coefficient
sequence; the second is by its sequence of values at the nth roots of unity, where n is 1 more than the degree
of the polynomial. The process by which we pass from the coefficient sequence to the sequence of values at
the roots of unity is called forming the Fourier transform of the coefficient sequence. To use the example
above, we would say that the Fourier transform of the sequence

0, 6,−5, 1 (2.5.1)

is the sequence
2, 5 + 5i,−12, 5− 5i. (2.5.2)

In general, if we are given a sequence

x0, x1, . . . , xn−1 (2.5.3)

then we think of the polynomial

f(t) = x0 + x1t+ x2t
2 + · · ·+ xn−1t

n−1 (2.5.4)

and we compute its values at the nth roots of unity. These roots of unity are the numbers

ωj = e2πij/n (j = 0, 1, . . . , n− 1). (2.5.5)

Consequently, if we calculate the values of the polynomial (2.5.4) at the n numbers (2.5.5), we find the
Fourier transform of the given sequence (2.5.3) to be the sequence

f(ωj) =
n−1∑
k=0

xkωj
k

=
n−1∑
k=0

xke
2πijk/n (j = 0, 1, . . . n− 1).

(2.5.6)

Before proceeding, the reader should pause for a moment and make sure that the fact that (2.5.1)-(2.5.2)
is a special case of (2.5.3)-(2.5.6) is clearly understood. The Fourier transform of a sequence of n numbers
is another sequence of n numbers, namely the sequence of values at the nth roots of unity of the very same
polynomial whose coefficients are the members of the original sequence.

52



2.5 The discrete Fourier transform

The Fourier transform moves us from coefficients to values at roots of unity. Some good reasons for
wanting to make that trip will appear presently, but for the moment, let’s consider the computational side
of the question, namely how to compute the Fourier transform efficiently.

We are going to derive an elegant and very speedy algorithm for the evaluation of Fourier transforms.
The algorithm is called the Fast Fourier Transform (FFT) algorithm. In order to appreciate how fast it is,
let’s see how long it would take us to calculate the transform without any very clever procedure.

What we have to do is to compute the values of a given polynomial at n given points. How much work
is required to calculate the value of a polynomial at one given point? If we want to calculate the value of
the polynomial x0 + x1t + x2t

2 + . . .+ xn−1t
n−1 at exactly one value of t, then we can do (think how you

would do it, before looking)

function value(x :coeff array; n:integer; t:complex);
{computes value := x0 + x1t+ · · ·+ xn−1t

n−1}
value := 0;
for j := n− 1 to 0 step −1 do

value := t · value+ xj
end.{value}

This well-known algorithm (= ‘synthetic division’) for computing the value of a polynomial at a single
point t obviously runs in time O(n).

If we calculate the Fourier transform of a given sequence of n points by calling the function value n
times, once for each point of evaluation, then obviously we are looking at a simple algorithm that requires
Θ(n2) time.

With the FFT we will see that the whole job can be done in time O(n logn), and we will then look
at some implications of that fact. To put it another way, the cost of calculating all n of the values of a
polynomial f at the nth roots of unity is much less than n times the cost of one such calculation.

First we consider the important case where n is a power of 2, say n = 2r. Then the values of f , a
polynomial of degree 2r − 1, at the (2r)th roots of unity are, from (2.5.6),

f(ωj) =
n−1∑
k=0

xkexp{2πijk/2
r} (j = 0, 1, . . . , 2r − 1). (2.5.7)

Let’s break up the sum into two sums, containing respectively the terms where k is even and those where k
is odd. In the first sum write k = 2m and in the second put k = 2m+ 1. Then, for each j = 0, 1, . . . , 2r − 1,

f(ωj) =
2r−1−1∑
m=0

x2me
2πijm/2r−1

+
2r−1−1∑
m=0

x2m+1e
2πij(2m+1)/2r

=
2r−1−1∑
m=0

x2me
2πijm/2r−1

+ e2πij/2r
2r−1−1∑
m=0

x2m+1e
2πijm/2r−1

.

(2.5.8)

Something special just happened. Each of the two sums that appear in the last member of (2.5.8) is
itself a Fourier transform, of a shorter sequence. The first sum is the transform of the array

x[0], x[2], x[4], . . . , x[2r − 2] (2.5.9)

and the second sum is the transform of

x[1], x[3], x[5], . . . , x[2r − 1]. (2.5.10)

The stage is set (well, almost set) for a recursive program.
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There is one small problem, though. In (2.5.8) we want to compute f(ωj) for 2r values of j, namely for
j = 0, 1, . . . ,2r − 1. However, the Fourier transform of the shorter sequence (2.5.9) is defined for only 2r−1

values of j, namely for j = 0, 1, . . . ,2r−1 − 1. So if we calculate the first sum by a recursive call, then we
will need its values for j’s that are outside the range for which it was computed.

This problem is no sooner recognized than solved. Let Q(j) denote the first sum in (2.5.8). Then we
claim that Q(j) is a periodic function of j, of period 2r−1, because

Q(j + 2r−1) =
2r−1−1∑
m=0

x2mexp{2πim(j + 2r−1)/2r−1}

=
2r−1−1∑
m=0

x2mexp{2πimj/2
r−1}e2πim

=
2r−1−1∑
m=0

x2mexp{2πimj/2
r−1}

= Q(j)

(2.5.11)

for all integers j. If Q(j) has been computed only for 0 ≤ j ≤ 2r−1 − 1 and if we should want its value for
some j ≥ 2r−1 then we can get that value by asking for Q(j mod 2r−1).

Now we can state the recursive form of the Fast Fourier Transform algorithm in the (most important)
case where n is a power of 2. In the algorithm we will use the type complexarray to denote an array of
complex numbers.

function FFT (n:integer; x :complexarray):complexarray;
{computes fast Fourier transform of n = 2k numbers x }
if n = 1 then FFT [0] := x[0]

else
evenarray := {x[0], x[2], . . . , x[n− 2]};
oddarray := {x[1], x[3], . . . , x[n− 1]};
{u[0], u[1], . . . u[n

2
− 1]} := FFT (n/2, evenarray);

{v[0], v[1], . . . v[n
2
− 1]} := FFT (n/2, oddarray);

for j := 0 to n− 1 do
τ := exp{2πij/n};
FFT [j] := u[j mod n

2 ] + τv[j mod n
2 ]

end.{FFT}

Let y(k) denote the number of multiplications of complex numbers that will be done if we call FFT on
an array whose length is n = 2k. The call to FFT (n/2, evenarray) costs y(k − 1) multiplications as does
the call to FFT (n/2, oddarray). The ‘for j:= 0 to n’ loop requires n more multiplications. Hence

y(k) = 2y(k − 1) + 2k (k ≥ 1; y(0) = 0). (2.5.12)

If we change variables by writing y(k) = 2kzk, then we find that zk = zk−1 + 1, which, together with z0 = 0,
implies that zk = k for all k ≥ 0, and therefore that y(k) = k2k. This proves

Theorem 2.5.1. The Fourier transform of a sequence of n complex numbers is computed using only
O(n logn) multiplications of complex numbers by means of the procedure FFT , if n is a power of 2.

Next* we will discuss the situation when n is not a power of 2.
The reader may observe that by ‘padding out’ the input array with additional 0’s we can extend the

length of the array until it becomes a power of 2, and then call the FFT procedure that we have already

* The remainder of this section can be omitted at a first reading.
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2.5 The discrete Fourier transform

discussed. In a particular application, that may or may not be acceptable. The problem is that the original
question asked for the values of the input polynomial at the nth roots of unity, but after the padding, we
will find the values at the N th roots of unity, where N is the next power of 2. In some applications, such as
the multiplication of polynomials that we will discuss later in this section, that change is acceptable, but in
others the substitution of N th roots for nth roots may not be permitted.

We will suppose that the FFT of a sequence of n numbers is wanted, where n is not a power of 2, and
where the padding operation is not acceptable. If n is a prime number we will have nothing more to say,
i.e. we will not discuss any improvements to the obvious method for calculating the transform, one root of
unity at a time.

Suppose that n is not prime (n is ‘composite’). Then we can factor the integer n in some nontrivial
way, say n = r1r2 where neither r1 nor r2 is 1.

We claim, then, that the Fourier transform of a sequence of length n can be computed by recursively
finding the Fourier transforms of r1 different sequences, each of length r2. The method is a straightforward
generalization of the idea that we have already used in the case where n was a power of 2.

In the following we will write ξn = e2πi/n. The train of ‘=’ signs in the equation below shows how the
question on an input array of length n is changed into r1 questions about input arrays of length r2. We
have, for the value of the input polynomial f at the jth one of the n nth roots of unity, the relations

f(e2πij/n) =
n−1∑
s=0

xsξn
js

=
r1−1∑
k=0

r2−1∑
t=0

{xtr1+kξn
j(tr1+k)}

=
r1−1∑
k=0

r2−1∑
t=0

{xtr1+kξn
tjr1ξn

kj}

=
r1−1∑
k=0

{r2−1∑
t=0

xtr1+kξr2
tj
}
ξn
kj

=
r1−1∑
k=0

ak(j)ξn
kj .

(2.5.13)

We will discuss (2.5.13), line-by-line. The first ‘=’ sign is the definition of the jth entry of the Fourier
transform of the input array x. The second equality uses the fact that every integer s such that 0 ≤ s ≤ n−1
can be uniquely written in the form s = tr1 + k, where 0 ≤ t ≤ r2 − 1 and 0 ≤ k ≤ r1 − 1. The next ‘=’ is
just a rearrangement, but the next one uses the all-important fact that ξn

r1 = ξr2 (why?), and in the last
equation we are simply defining a set of numbers

ak(j) =

r2−1∑
t=0

xtr1+kξr2
tj (0 ≤ k ≤ r1 − 1; 0 ≤ j ≤ n− 1). (2.5.14)

The important thing to notice is that for a fixed k the numbers ak(j) are periodic in n, of period r2, i.e.,
that ak(j+r2) = ak(j) for all j. Hence, even though the values of the ak(j) are needed for j = 0, 1, . . . , n−1,
they must be computed only for j = 0, 1, . . . , r2 − 1.

Now the entire job can be done recursively, because for fixed k the set of values of ak(j) (j =
0, 1, . . . , r2 − 1) that we must compute is itself a Fourier transform, namely of the sequence

{xtr1+k} (t = 0, 1, . . . , r2 − 1). (2.5.15)

Let g(n) denote the number of complex multiplications that are needed to compute the Fourier transform
of a sequence of n numbers. Then, for k fixed we can recursively compute the r2 values of ak(j) that we need
with g(r2) multiplications of complex numbers. There are r1 such fixed values of k for which we must do the
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computation, hence all of the necessary values of ak(j) can be found with r1g(r2) complex multiplications.
Once the ak(j) are all in hand, then the computation of the one value of the transform from (2.5.13) will
require an additional r1 − 1 complex multiplications. Since n = r1r2 values of the transform have to be
computed, we will need r1r2(r1 − 1) complex multiplications.

The complete computation needs r1g(r2) + r2
1r2 − r1r2 multiplications if we choose a particular factor-

ization n = r1r2. The factorization that should be chosen is the one that minimizes the labor, so we have
the recurrence

g(n) = min
n=r1r2

{r1g(r2) + r2
1r2} − n. (2.5.16)

If n = p is a prime number then there are no factorizations to choose from and our algorithm is no help
at all. There is no recourse but to calculate the p values of the transform directly from the definition (2.5.6),
and that will require p− 1 complex multiplications to be done in order to get each of those p values. Hence
we have, in addition to the recurrence formula (2.5.16), the special values

g(p) = p(p− 1) (if p is prime). (2.5.17)

The recurrence formula (2.5.16) together with the starting values that are shown in (2.5.17) completely
determine the function g(n). Before proceeding, the reader is invited to calculate g(12) and g(18).

We are going to work out the exact solution of the interesting recurrence (2.5.16), (2.5.17), and when
we are finished we will see which factorization of n is the best one to choose. If we leave that question in
abeyance for a while, though, we can summarize by stating the (otherwise) complete algorithm for the fast
Fourier transform.

function FFT (x:complexarray; n:integer):complexarray;
{computes Fourier transform of a sequence x of length n}
if n is prime

then
for j:=0 to n− 1 do
FFT [j] :=

∑n−1
k=0 x[k]ξn

jk

else
let n = r1r2 be some factorization of n;
{see below for best choice of r1, r2}
for k:=0 to r1 − 1 do
{ak[0], ak[1], . . . , ak[r2 − 1]}

:= FFT ({x[k], x[k + r1], . . . , x[k + (r2 − 1)r1]}, r2);
for j:=0 to n− 1 do
FFT [j] :=

∑r1−1
k=0 ak[j mod r2]ξkjn

end.{FFT}

Our next task will be to solve the recurrence relations (2.5.16), (2.5.17), and thereby to learn the best
choice of the factorization of n.

Let g(n) = nh(n), where h is a new unknown function. Then the recurrence that we have to solve takes
the form

h(n) =

{
mind{h(n/d) + d} − 1, if n is composite;
n− 1, if n is prime.

(2.5.18)

In (2.5.18), the ‘min’ is taken over all d that divide n other than d = 1 and d = n.
The above relation determines the value of h for all positive integers n. For example,

h(15) = min
d

(h(15/d) + d)− 1

= min(h(5) + 3, h(3) + 5)− 1

= min(7, 7)− 1 = 6
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2.6 Applications of the FFT

and so forth.
To find the solution in a pleasant form, let

n = pa1
1 pa2

2 · · ·p
as
s (2.5.19)

be the canonical factorization of n into primes. We claim that the function

h(n) = a1(p1 − 1) + a2(p2 − 1) + · · ·+ as(ps − 1) (2.5.20)

is the solution of (2.5.18) (this claim is obviously (?) correct if n is prime).
To prove the claim in general, suppose it to be true for 1, 2, . . . , n− 1, and suppose that n is not prime.

Then every divisor d of n must be of the form d = pb11 p
b2
2 · · ·p

bs
s , where the primes pi are the same as those

that appear in (2.5.19) and each bi is ≤ ai. Hence from (2.5.18) we get

h(n) = min
b
{(a1 − b1)(p1 − 1) + · · ·+ (as − bs)(ps − 1) + pb11 · · · p

bs

s } − 1 (2.5.21)

where now the ‘min’ extends over all admissible choices of the b’s, namely exponents b1, . . . , bs such that
0 ≤ bi ≤ ai (∀i = 1, s) and not all bi are 0 and not all bi = ai.

One such admissible choice would be to take, say, bj = 1 and all other bi = 0. If we let H(b1, . . . , bs)
denote the quantity in braces in (2.5.21), then with this choice the value of H would be a1(p1 − 1) + · · · +
as(ps − 1) + 1, exactly what we need to prove our claim (2.5.20). Hence what we have to show is that the
above choice of the bi’s is the best one. We will show that if one of the bi is larger than 1 then we can reduce
it without increasing the value of H.

To prove this, observe that for each i = 1, s we have

H(b1, . . . , bi + 1, . . . , bs)−H(b1, . . . , bs) = −pi + d(pi − 1)

= (d− 1)(pi − 1).

Since the divisor d ≥ 2 and the prime pi ≥ 2, the last difference is nonnegative. Hence H doesn’t increase
if we decrease one of the b’s by 1 unit, as long as not all bi = 0. It follows that the minimum of H occurs
among the prime divisors d of n. Further, if d is prime, then we can easily check from (2.5.21) that it doesn’t
matter which prime divisor of n that we choose to be d, the function h(n) is always given by (2.5.20). If we
recall the change of variable g(n) = nh(n) we find that we have proved

Theorem 2.5.2. (Complexity of the Fast Fourier Transform) The best choice of the factorization n = r1r2
in algorithm FFT is to take r1 to be a prime divisor of n. If that is done, then algorithm FFT requires

g(n) = n(a1(p1 − 1) + a2(p2 − 1) + · · ·+ as(ps − 1))

complex multiplications in order to do its job, where n = pa1
1 · · ·p

as
s is the canonical factorization of the

integer n.

Table 2.5.1 shows the number g(n) of complex multiplications required by FFT as a function of n. The
saving over the straightforward algorithm that uses n(n− 1) multiplications for each n is apparent.

If n is a power of 2, say n = 2q, then the formula of theorem 2.5.2 reduces to g(n) = n logn/ log 2, in
agreement with theorem 2.5.1. What does the formula say if n is a power of 3? if n is a product of distinct
primes?

2.6 Applications of the FFT
Finally, we will discuss some applications of the FFT. A family of such applications begins with the

observation that the FFT provides the fastest game in town for multiplying two polynomials together.
Consider a multiplication like

(1 + 2x+ 7x2 − 2x3 − x4) · (4− 5x− x2 − x3 + 11x4 + x5).
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n g(n) n g(n)

2 2 22 242
3 6 23 506
4 8 24 120
5 20 25 200
6 18 26 338
7 42 27 162
8 24 28 224
9 36 29 812

10 50 30 210
11 110 31 930
12 48 32 160
13 156 33 396
14 98 34 578
15 90 35 350
16 64 36 216
17 272 37 1332
18 90 38 722
19 342 39 546
20 120 40 280
21 168 41 1640

Table 2.5.1: The complexity of the FFT

We will study the amount of labor that is needed to do this multiplication by the straightforward algorithm,
and then we will see how the FFT can help.

If we do this multiplication in the obvious way then there is quite a bit of work to do. The coefficient of
x4 in the product, for instance, is 1 · 11 + 2 · (−1)+ 7 · (−1)+ (−2) · (−5) +(−1) · 4 = 8, and 5 multiplications
are needed to compute just that single coefficient of the product polynomial.

In the general case, we want to multiply

{
n∑
i=0

aix
i} · {

m∑
j=0

bjx
j}. (2.6.1)

In the product polynomial, the coefficient of xk is

min(k,n)∑
r=max(0,k−m)

arbk−r . (2.6.2)

For k fixed, the number of terms in the sum (2.6.2) is min(k, n)−max(0, k−m) + 1. If we sum this amount
of labor over k = 0, m+ n we find that the total amount of labor for multiplication of two polynomials of
degrees m and n is Θ(mn). In particular, if the polynomials are of the same degree n then the labor is
Θ(n2).

By using the FFT the amount of labor can be reduced from Θ(n2) to Θ(n logn).
To understand how this works, let’s recall the definition of the Fourier transform of a sequence. It is

the sequence of values of the polynomial whose coefficients are the given numbers, at the nth roots of unity,
where n is the length of the input sequence.

Imagine two universes, one in which the residents are used to describing polynomials by means of their
coefficients, and another one in which the inhabitants are fond of describing polynomials by their values at
roots of unity. In the first universe the locals have to work fairly hard to multiply two polynomials because
they have to carry out the operations (2.6.2) in order to find each coefficient of the product.
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2.6 Applications of the FFT

In the second universe, multiplying two polynomials is a breeze. If we have in front of us the values
f(ω) of the polynomial f at the roots of unity, and the values g(ω) of the polynomial g at the same roots
of unity, then what are the values (fg)(ω) of the product polynomial fg at the roots of unity? To find each
one requires only a single multiplication of two complex numbers, because the value of fg at ω is simply
f(ω)g(ω).

Multiplying values is easier than finding the coefficients of the product.
Since we live in a universe where people like to think about polynomials as being given by their coefficient

arrays, we have to take a somewhat roundabout route in order to do an efficient multiplication.
Given: A polynomial f , of degree n, and a polynomial g of degree m; by their coefficient arrays. Wanted:

The coefficients of the product polynomial fg, of degree m+ n.
Step 1: Let N − 1 be the smallest integer that is a power of 2 and is greater than m+ n+ 1.
Step 2. Think of f and g as polynomials each of whose degrees is N − 1. This means that we should

adjoin N −n more coefficients, all = 0, to the coefficient array of f and N −m more coefficients, all = 0, to
the coefficient array of g. Now both input coefficient arrays are of length N .

Step 3. Compute the FFT of the array of coefficients of f . Now we are looking at the values of f at the
N th roots of unity. Likewise compute the FFT of the array of coefficients of g to obtain the array of values
of g at the same N th roots of unity. The cost of this step is O(N logN).

Step 4. For each of the N th roots of unity ω multiply the number f(ω) by the number g(ω). We now
have the numbers f(ω)g(ω), which are exactly the values of the unknown product polynomial fg at the N th

roots of unity. The cost of this step is N multiplications of numbers, one for each ω.
Step 5. We now are looking at the values of fg at the Nth roots, and we want to get back to the

coefficients of fg because that was what we were asked for. To go backwards, from values at roots of unity
to coefficients, calls for the inverse Fourier transform, which we will describe in a moment. Its cost is also
O(N logN).

The answer to the original question has been obtained at a total cost of O(N logN) = O((m +
n) log (m+ n)) arithmetic operations. It’s true that we did have to take a walk from our universe to the next
one and back again, but the round trip was a lot cheaper than the O((m+n)2) cost of a direct multiplication.

It remains to discuss the inverse Fourier transform. Perhaps the neatest way to do that is to juxtapose
the formulas for the Fourier transform and for the inverse tranform, so as to facilitate comparison of the two,
so here they are. If we are given a sequence {x0, x1, . . . , xn−1} then the Fourier transform of the sequence is
the sequence (see (2.5.6))

f(ωj) =
n−1∑
k=0

xke
2πijk/n (j = 0, 1, . . . , n− 1). (2.6.3)

Conversely, if we are given the numbers f(ωj) (j = 0, . . . , n−1) then we can recover the coefficient sequence
x0, . . . , xn−1 by the inverse formulas

xk =
1

n

n−1∑
j=0

f(ωj)e
−2πijk/n (k = 0, 1, . . . , n− 1). (2.6.4)

The differences between the inverse formulas and the original transform formulas are first the appearance of
‘1/n’ in front of the summation and second the ‘−’ sign in the exponential. We leave it as an exercise for
the reader to verify that these formulas really do invert each other.

We observe that if we are already in possession of a computer program that will find the FFT, then we
can use it to calculate the inverse Fourier transform as follows:

(i) Given a sequence {f(ω)} of values of a polynomial at the nth roots of unity, form the complex
conjugate of each member of the sequence.

(ii) Input the conjugated sequence to your FFT program.
(iii) Form the complex conjugate of each entry of the output array, and divide by n. You now have the

inverse transform of the input sequence.
The cost is obviously equal to the cost of the FFT plus a linear number of conjugations and divisions

by n.

59



An outgrowth of the rapidity with which we can now multiply polynomials is a rethinking of the methods
by which we do ultrahigh-precision arithmetic. How fast can we multiply two integers, each of which has
ten million bits? By using ideas that developed directly (though not at all trivially) from the ones that we
have been discussing, Schönhage and Strassen found the fastest known method for doing such large-scale
multiplications of integers. The method relies heavily on the FFT, which may not be too surprising since
an integer n is given in terms of its bits b0, b1, . . . , bm by the relation

n =
∑
i≥0

bi2
i. (2.6.5)

However the sum in (2.6.5) is seen at once to be the value of a certain polynomial at x = 2. Hence in asking
for the bits of the product of two such integers we are asking for something very similar to the coefficients
of the product of two polynomials, and indeed the fastest known algorithms for this problem depend upon
the Fast Fourier Transform.

Exercises for section 2.6

1. Let ω be an nth root of unity, and let k be a fixed integer. Evaluate

1 + ωk + ω2k + · · ·+ ωk(n−1).

2. Verify that the relations (2.6.3) and (2.6.4) indeed are inverses of each other.

3. Let f =
∑n−1

j=0 ajx
j . Show that

1

n

∑
ωn=1

|f(ω)|2 = |a0|
2 + · · ·+ |an−1|

2

4. The values of a certain cubic polynomial at 1, i,−1,−i are 1, 2, 3, 4, respectively. Find its value at 2.

5. Write a program that will do the FFT in the case where the number of data points is a power of 2.
Organize your program so as to minimize additional array storage beyond the input and output arrays.

6. Prove that a polynomial of degree n is uniquely determined by its values at n+ 1 distinct points.

2.7 A review
Here is a quick review of the algorithms that we studied in this chapter.
Sorting is an easy computational problem. The most obvious way to sort n array elements takes time

Θ(n2). We discussed a recursive algorithm that sorts in an average time of Θ(n log n).
Finding a maximum independent set in a graph is a hard computational problem. The most obvious

way to find one might take time Θ(2n) if the graph G has n vertices. We discussed a recursive method that
runs in time Θ(1.39n). The best known methods run in time Θ(2n/3).

Finding out if a graph is K-colorable is a hard computational problem. The most obvious way to do it
takes time Θ(Kn), if G has n vertices. We discussed a recursive method that runs in time O(1.62n+E) if G
has n vertices and E edges. One recently developed method * runs in time O((1 + 3

√
3)n). We will see in

section 5.7 that this problem can be done in an average time that is O(1) for fixed K.
Multiplying two matrices is an easy computational problem. The most obvious way to do it takes time

Θ(n3) if the matrices are n × n. We discussed a recursive method that runs in time O(n2.82). A recent
method ** runs in time O(nγ) for some γ < 2.5.

* E. Lawler, A note on the complexity of the chromatic number problem, Information Processing Letters
5 (1976), 66-7.
** D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SIAM J.

Comp. 11 (1980), 472-492.
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2.7 A review

Finding the discrete Fourier transform of an array of n elements is an easy computational problem. The
most obvious way to do it takes time Θ(n2). We discussed a recursive method that runs in time O(n logn)
if n is a power of 2.

When we write a program recursively we are making life easier for ourselves and harder for the compiler
and the computer. A single call to a recursive program can cause it to execute a tree-full of calls to itself
before it is able to respond to our original request.

For example, if we call Quicksort to sort the array

{5, 8, 13, 9, 15, 29, 44, 71, 67}

then the tree shown in Fig. 2.7.1 might be generated by the compiler.

Fig. 2.7.1: A tree of calls to Quicksort

Again, if we call maxset1 on the 5-cycle, the tree in Fig. 2.3.3 of calls may be created.
A single invocation of chrompoly, where the input graph is a 4-cycle, for instance, might generate the

tree of recursive calls that appears in Fig. 2.7.2.

Fig. 2.7.2: A tree of calls to chrompoly
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Fig. 2.7.3: The recursive call tree for FFT

Finally, if we call the ‘power of 2’ version of the FFT algorithm on the sequence {1, i,−i,1} then FFT
will proceed to manufacture the tree shown in Fig. 2.7.3.

It must be emphasized that the creation of the tree of recursions is done by the compiler without any
further effort on the part of the programmer. As long as we’re here, how does a compiler go about making
such a tree?

It does it by using an auxiliary stack. It adopts the philosophy that if it is asked to do two things at
once, well after all, it can’t do that, so it does one of those two things and drops the other request on top of
a stack of unfinished business. When it finishes executing the first request it goes to the top of the stack to
find out what to do next.

Example

Let’s follow the compiler through its tribulations as it attempts to deal with our request for maximum
independent set size that appears in Fig. 2.3.3. We begin by asking for the maxset1 of the 5-cycle. Our
program immediately makes two recursive calls to maxset1, on each of the two graphs that appear on the
second level of the tree in Fig. 2.3.3. The stack is initially empty.

The compiler says to itself ‘I can’t do these both at once’, and it puts the right-hand graph (involving
vertices 3,4) on the stack, and proceeds to call itself on the left hand graph (vertices 2,3,4,5).

When it tries to do that one, of course, two more graphs are generated, of which the right-hand one
(4,5) is dropped onto the stack, on top of the graph that previously lived there, so now two graphs are on
the stack, awaiting processing, and the compiler is dealing with the graph (3,4,5).

This time the graph of just one vertex (5) is dropped onto the stack, which now holds three graphs, as
the compiler works on (4,5).

Next, that graph is broken up into (5), and an empty graph, which is dutifully dropped onto the stack,
so the compiler can work on (5).

Finally, something fruitful happens: the graph (5) has no edges, so the program maxset1 gives, in its
trivial case, very specific instructions as to how to deal with this graph. We now know that the graph that
consists of just the single vertex (5) has a maxset1 values of 1.

The compiler next reaches for the graph on top of the stack, finds that it is the empty graph, which has
no edges at all, and therefore its maxset size is 0.

It now knows the n1 = 1 and the n2 = 0 values that appear in the algorithm maxset1, and therefore it
can execute the instruction maxset1 := max(n1, 1 + n2), from which it finds that the value of maxset1 for
the graph (4,5) is 1, and it continues from there, to dig itself out of the stack of unfinished business.

In general, if it is trying to execute maxset1 on a graph that has edges, it will drop the graph G −
{v∗} −Nbhd(v∗) on the stack and try to do the graph G− {v∗}.

The reader should try to write out, as a formal algorithm, the procedure that we have been describing,
whereby the compiler deals with a recursive computation that branches into two sub-computations until a
trivial case is reached.
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2.7 A review

Exercise for section 2.7

1. In Fig. 2.7.3, add to the picture the output that each of the recursive calls gives back to the box above it
that made the call.
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