Essential C++

© Nick Parlante, 1996.Free for non-commerical use.

This handout briefly reviews the principle C++ features and their syntax. It's actually patched
together from three handouts, so excuse the rought transitions. The three parts are:

1) OOP Vocabulary and Concepts — appliesto any OOP language
2) Essential C++ features

3) C++ examples

1 — OOP Vocabulary

Object Oriented Programming is paradigm which appliesin avariety of languages. This handout
summarizes the basic style, elements, and vocabulary of OOP which are common to all OOP
languages. In aclassical compiled language like Pascal or C, data-structures and their procedures
tended to group logically, but it is the programmer's duty to devise and enforce these groupings. In
OOP, the language groups procedures with their data type. This produces a decomposition

grouped around the types in a program. The programmer does not have to match up the right
procedure with the right data-type. Instead, variables know which operations they implement. OOP
isproving itself to be a better way to engineer software. OOP yields better decomposition and more
opportunities for code reuse. These strengths are especially important for writing large programs,
packaging up code into libraries for use by others, and programming in teams.

Class

The most basic concept in OOP isthe Class. A ClassislikeaTypein classical language. Instead of
just storing size and structural information like a Type, a Class also stores the operations relevant
toitself. A Classislike an Abstract Data Typein Pascal or C— it bundles traditional datatyping
information with information on the procedures which will operate on that type.

Object

An object isarun-time value which belongs to some class. So if Classes are like Types, then
Objects are like variables. Run-time values are known as Objects or Instances of their Class. The
Class collects and defines the propertiesthat al of its instances have.

Message

OOP uses Messages instead of procedure calls. Sending a message to an object causes that object
to perform some action. It is the Object's responsibility to look at the message and think about
what's appropriate. An object raises an error if it is ever messaged to do something it does not
know how to do. Each Class defines code to be used to respond to messages. The code
corresponding to a particular Message is known as the "Method" for that Message. A Messageis
just astring like "Pop". The Method for Pop is the code in the Stack class which istriggered by the
"Pop" Message. Thereisonly one "Pop" message, but many classes may have methods for Pop.
The C++ specific term for method is " member function".

Encapsulation

Theinternals of aclass can be protected or "hidden" by the compiler. In C and Pascal, itsjust a
convention that the client should not mess with or depend on the implementation of an ADT. With
Encapsulation, the implementor can indicate that parts of the implementation are protected so that
client code accessing these parts will not compile.

Hierarchy

Classesin OOP are arranged in atree-like hierarchy. A Class Superclassisthe class aboveit in the
tree. The Classes below are Subclasses. The semantics of the hierarchy are that Classes have all the
properties of their Superclasses. In thisway the hierarchy is general towards the root and specific
towards its leaves. The hierarchy helps add logic to a collection of classes. It also enables similar
classes to share properties through Inheritance below. In C++, a"base class" is a synonym for
superclass and "derived class' isa synonym for subclass.

Object

AN

Anima

N
P

Duck

Inheritance

Inheritance is the process by which a Class inherits the properties of its Superclasses. Methods in
particular are inherited. When an Object recelves aMessage, it checks for a corresponding Method.
If oneisfound, it is executed. Otherwise the search for a matching Method travels up the tree to the
Superclass of the Object's Class. This means that a Class automatically responds to al the
Messages of its Superclasses. Most OOP languages include controls to limit which properties are
inherited.

Overriding

When an Object receives a Message, it checks its own Methods first before consulting its
Superclass. This means that if the Object's Class and its Superclass both contain a Method for a
Message, the Object's Method takes precedence. In other words, the first Method found in the
hierarchy takes precedence. Thisis known as Overriding, because it gives a Class an easy way to
intercept Messages before they get to its Superclass. Most OOP languages implement overriding
based on the run-time class of objects. In C++, run-time overriding is an option invoked with the
"virtual" keyword.

Polymorphism

A big word for a simple concept. Often, many classesin a program will respond to some common
message. In a graphics program, many of the classes are likely to implement the method
"DrawSelf." In the program, such an object can safely be sent the DrawSelf message without
knowing its exact class since all the classes implement DrawSelf. In other words, you can send the
object a message without worrying about its class and be confident that it will just do the right
thing. Polymorphism isimportant where the class of an object cannot be determined at compile-
time.

2 — Core C++ Features

Class = Storage + Behavior

In OOPin generd, a"class' defines the memory size/layout its objects should have as well asthe
methods they should implement. In C++ the memory layout information looks like the members of
a C struct, and the methods are at least reminiscent of C function headers. The instance variables
and methods are collectively called the "members’ of the class. The following creates an Account
class with no superclass. The "virtual" keyword for each method enables run-tme method
resolution which will come up later when we introduce subclasses.

cl ass Account {

private:
fl oat bal ance; //"instance variabl es" or "data nmenbers"

int transactions;

publi c:
virtual void Wthdraw(fl oat ant); /1" met hods” or "nenber functions”

virtual void Deposit(float am);
virtual float GetBal ance(void);

s

Access Control
In the class header, the specifierspubl i c: , private:, and protected: control wherethe
members can be accessed.

publ i c: accessible anywhere— the "client” access level. Public members
represent the abstract interface which the object presents to other objects which want to
own, cooperate, or otherwise send messages to this object. Stylistically, some people
feel that data members should never be public — that clients should always need to go
through methods to interact with the state of an object.

private: accessible only within the methods of this class— the "implementor”
access level. The access level for the implementation specific parts of the object. Clients
will not be able to access any of the private parts of the class

pr ot ect ed: accessible in amethod of this class or one of its subclasses. Like
"private" but extended to include subclasses— see Subclassing below.

Message Send

Sending amessage in C++ islike accessing a member of astruct in C. The recipient object of the
message is known as the "receiver" of the message. The class of the receiver will determine which
method isinvoked by the message (how the message-to-method resol ution happens and whether it
happens at compile-time or run-time is atopic for later) The following code shows the basic syntax
on the client side of an object. A client can declare an object and send it messages. Usually the data
membersin the object will be private so the client cannot manipulate the object internals directly.

{

Account Xx, v; /1 Declare Account objects
.<initialize x and y sonehow - see Constructors bel ow>. ..

x. Deposi t (100); /1 Send the "deposit" message to the receiver X
/1 which is of the Account cl ass.
// Adds $100 to the x account.

y. Deposi t (200); /1 Adds $200 to the y account.

By keeping data members pr i vat e: and forcing clients to send messages to interact, the
programmer can keep the abstraction and implementation separate. Thisisthe same old Abstract
Data Type procedural programming technique with all its attendant restrictions and advantages. The
difference hereisthat C++ has official compiler support for keeping the internals of the object
private— the programmer does not need to fiddle around with voi d* and caststo keep the
implementation private.

Methods
Method definitions look like function definitions but the accessible members of thereceiver, in
particular its instance variables, are available by name in the method body.

voi d Account::Wthdraw(float ant) {
bal ance -= ant
transacti ons++;

}

In this case the instance variablesbal ance andt r ansact i ons areautomaticaly availablein
the method body. All of the instance variables and methods defined or inherited by the Account
classare available. As a practical matter, having al the data of the receiver automatically available
by nameis ahuge convenience. A special additional variable named "t hi s" pointsto the receiver
of the message. In the above case thet hi s variableistype (Account *) . Thi s isuseful a
times when an object needs to pass a pointer to itself or otherwise explicitly refer to itself. The
referencesto bal ance andt r ansact i ons inthe method refer to the balance and transactions
of the instance which received the message. So the code could be re-written equivalently in long
formusingt hi s- >bal ance andt hi s- >t ransact i ons. C++ programmers never use the
long form.

An object can send amessage to itself. Messagesin the public interface of a class are often used by
the implementor aswell as the client. For example, thedeposi t method might want to send the
wi t hdr awmessage to itself to levy a$0.50 fee. Aswith the instance variables, message names
are available without any extra syntax.

voi d Account::Deposit (float anmt) {
bal ance += ant
transacti ons++;
W t hdr aw(0. 50) ; /1 equivalently in longhand: "this->Wthdraw0.50)"

}

Constructors

Congtructors are a convenient way to define the initial state of anewly alocated object. A
constructor is syntactically similar to amethod, but it is not invoked by the normal message-send
mechanism. The constructor aways has the same name as the name of the class and no return type,
but it can have any type of parameter list. The following prototypes an Account constructor which
takes an initial balance for the account.

cl ass Account {
publi c:
Account (float initial Anount); // Initializes new accounts. No return type

An Object is Born

Although syntactically constructors look like methods, they cannot be called or messaged explicitly
as methods are. Instead constructors are automatically spliced in by the compiler whenever an
object isinitially alocated and needs to be given aninitial state. The most common case where a
constructor isinvoked iswhen an object is declared locally like avariablein C.

{

Account account (100); /1 Allocates an Account object named "account" with
/1 bal ance $100. The Account constructor is invoked by the
/1 conpiler automatically to initialize the new object.

or the following syntactic variant looks a little different but does exactly the same thing...

Account account = Account (100);

Syntactically, the definition of a constructor looks like a method except for the absent return type.
It doesn't need areturn type because it is not going to be invoked like a method. Instead, it's going
to "happen to" an uninitialized receiver to initidize it.

Account: : Account (float initial Anobunt) {

bal ance = initial Anbunt;
transactions = O;

}

All told, there are three cases where an object is newly allocated and so the compiler invokesits
constructor.

1) (asabove) An object isdeclared like alocal variable and so is allocated on the stack.
2) An object is dynamically alocated in the heap with the new operator (below).

3) An object is adata-member inside of a containing object, and the containing object has
itself just been alocated. In that case, the constructors are invoked first on any contained
objects and later on the containing object. The object must be literally a data member
inside the containing object. A pointer in the containing object to the contained object
does not count.

To remember the order for the last case, remember the following truism "an object must bein as
valid a state as possible when a method, constructor, or destructor (below) isinvoked.”
Constructing the contained objects before their container puts the container in the best state possible
(albeit incomplete) before its constructor is invoked.

Overloading

C++, aswell as many other languages, can deal with many methods sharing the same name.
Through afacility known as "overloading," alanguage resolves which of several methods (or
functions or procedures or whatever) with the same name should be called by considering the
number and type of the actual arguments and the return type.

Overloading works for constructors as well as methods. For example, the following adds a second
constructor which takes no arguments and gives the account an initial balance of 0 to the Account
class. The overloading mechanism looks at the client code and deduces which is the appropriate
constructor to use without any extra syntactic specification by the client.

class Account {

public:
Account (fl oat initial Amount); // the original constructor
Account (voi d) ; /1 a second constructor which takes no argunents

b

Account : : Account (voi d) {
bal ance = 0;
transactions = O;

{

Account x(100); /1 I nvokes the constructor which takes a fl oat

Account vy; /1 1nvokes the zero argunent constructor
/1 Aso known as the "default constructor"

/1 not the same as "Account y();"

/1 which, of course, defines a function y which

/1 returns an Account.

/1 This is one of those tines where it's pretty obvious
/1 the need to be backward conpatible with C syntax has
/1 has conprom sed the quality of C++.

Account y = Account(); // Aternate invocation of the default constructor

Default Arguments

The header of amethod constructor can specify constant default values for its formal parameters.
The default values will substitute for omitted arguments when the message is sent. Syntacticaly,
there isthe restriction that actual arguments can only be omitted from right to left. In other words,
if an argument is omitted, so must all the argumentsto itsright. Without this restriction, the
compiler could not unambiguoudly figure out which arguments were being omitted. Default
arguments are very often used with constructors. The following declaration of the Account
constructor achieves the same effect as before using just one constructor and a default argument.

class Account {

"public:
Account (float initial Amount = 0.0); // The argunent defaults to 0.0
/!l if the caller omts it.

b

If an actual parameter isgivenit will be used. Alternately, if there is no actual argument vaue for
initial Amount, the default will be used.

Account x(100); [/initial Amount = 100

Account vy; //Rely on the default value so initial Amount = 0.0

Destructors

Classes may define adestructor which is automatically invoked by the compiler whenever the
memory for the object is reclaimed. The destructor can take care of any clean up which should
happen whenever an instance goes away. The most common useisif an object owns a pointer to
some dynamic memory, the object's destructor can free that memory. The destructor has the same
name as the class but preceded by atilde (~) and may not take arguments e.g.

~Account (voi d).

Destructors should almost always be virtual. Like Constructors, you do not explicitly invoke
destructorsin your code. Instead, they are "spliced in" automatically by the compiler just before an
object is deleted. In particular, the compiler automatically knows to invoke the destructors al the
way up the inheritance chain— starting with the deepest subclass and working up.

The three times the compiler realizes an object is going away are and so invokes its destructor
are...

1) The object was alocal variable in some block. At the end of the block, the variable will
be deall ocated.

2) The object isin the heap and del et e iscalled on it (dynamic alocation is discussed
below).

3) The object is a data member inside a containing object, and the containing object is about
to be reclaimed. First the containing object's destructor isinvoked, followed by the
destructors for its contained objects. This order obeys the rule that an object should bein
as complete a state as possible when code isinvoked on it.

Dynamic Objects

For many programs, al objects are allocated in the heap and referenced through pointers. The new
operator alocates new dynamic memory. Unlikemal | oc, newgets the return type right. Like
mal | oc, newwill return NULL if it could not allocate the requested memory. Thedel et e
operator takes a pointer to an object and reclaims its memory (like free). Asaconvenience, it's ok
to call delete on aNULL pointer— delete knows to just not do anything in that case.

Account *account; /1 a pointer to an Account object.

account = new Account (100); /1 allocate dynami cally and invoke the
/] constructor

del et e account; /1 invoke the destructor and reclaimthe nmem

Dynamic Arrays

The new operator can also be used to alocate arrays of objects. C++ usesthe [] syntax to indicate
the size of the array. The following syntax allocates and deallocates an array of charactersjust as
you could with malloc() and free() in C.

char* buff;

int i = 13;

buf f = new char[1000]; /1 Dynamically allocate array of 1000 chars
del ete buff;

buff = new char[i]; /! Sane as above, but shows that size

/] does not need to be a constant

The following code allocates and deallocates an array objects. This different from the smple C type
case above because the class may have a constructor and destructor to invoke asthe array is
alocated and deallocated.

Account * accounts,;

accounts = new Account[1000]; /1 Dynamically allocate 1000 Account objects.
/1 The default constructor is invoked for
/1 each of the 1000 objects.

delete [] accounts; [// The [] before the array reference reninds the conpiler
/1 that this is an array of objects and so it should
/1 invoke the destructor for each object.
/1 Do not use the "delete [] xxx" syntax unless
/1 xxx really is an array of objects.

Const

"Const" isatype qualifier much like "static" or "unsigned". The const qualifier applies to the type
or variable which immediately follows it. Const specifies that the modified value may not be
changed. In the following, the character variable ch may not be changed. Const variables must be
given initial values. Const variables are preferable to #define for defining program constants—
they keep their type explicitly and they are entered in the real program variable name space instead
of being hacked in by the preprocessor.

const char ch = "x"; // char character ch may not be changed

ch =....; [/ NOnothing of this formw Il conpile

In the following pointer to a character, the const appliesto the pointer. So the pointer s may not be
changed. However the characters pointed to do not have any special protection.

char * const s = "hi there"; /1 the pointer s cannot be changed
S = ... /1 NO nothing of this formw Il conpile

*s = 'x'; /1 YES, not changing the pointer s

s[6] = 'x"; /] YES, the []'s are a form of pointer derefence

There can be multiple consts in a single declaration, so the following declares a character pointer
where both the pointer and the character are protected.

const char * const s = "read only string";
S = ... /1 NO
*sS = ... /1 NO

Finally, const can follow the paramter list of a method prototype in which case it means that the
method will not change the receiver.

Account : : Get Bal ance(void) const; // will not change the receiver account

The language uses the const information for variables and methods to add a layer of logical
consistency to the data flow in the program. A const variable may not be changed. Its address may
not be given to a pointer or reference if that pointer does not also carry the const restriction. And
finally, a const obect may only be sent const messages. Depending on the compiler and computer
architecture, const may enable some significant code optimization.

Reference

Reference types set up aliases to objects. In C, programmers implement references using pointers.
References play the same rolein C++ abstractly, but the compiler takes care of the bookkeeping.
They are useful to avoid making copies, and to propogate data-structure changes from one part of
the program to another.

A reference acts as an alias to an object. Once the referenceis set up, operations on the reference
behave asif they were on the original referenced object. Syntactically, areference typeis set up by
following the base type with an '&'. Asapractical matter, references are ailmost always used as
formal parameters, but they can be used for normal variables as well.

char ch;
char & char Ref erence = ch;

The reference must beinitialized when it is declared, and once set up, the reference cannot be
changed to refer to another object. So conceptually, the refernceis like atemporary constant alias.
However, operations on the reference variable "follow the reference” to the original referenced
object.

char Ref erence = 'x'; /1 The type of charReference is just char
// but all actions "follow the reference,"”
// in this case to the char variable ch,
// so ch is now'Xx'.

» When you declare avariable, you are creating two distinct things: the memory in which that
variable's state is stored and a variable name which refers to that memory.

» When you declare areference, you are only creating one thing: a new variable name which refers
to some memory which has already been allocated (by a variable declaration).

For example, the following code:

int i;
int &r =i;

creates one integer sized area of memory, and two variable names ("i" and "ir"). The names"i"
and "ir" may be used interchangeably. Both variables are of typei nt (noti nt *).

Reference Parameters

Parametersare by far the most common use of reference types. The called code wants to be able to
refer some datain the caller. In C you get this effect by manually inserting & 's and *'sto explicitly
pass pointers. In C++ you can just make the type of argument a reference paramter and everything
will just work. The following simple example shows an integer being passed as a reference
parameter.

void I ncrement (i nt& value) {
val ue++; // 'value' is of type int and can be treated as such
/! However, because it is an & argunent, the conpiler ensures

/1 that operations really go back to the actual caller argunent.

}
void Caller()

int i = 6;
I ncrenent (i); /1 No need to pass "& " the conpiler takes care of it
/1 i is now 7

}

The Effective Type Is Not Changed by the &

The effective type of areference variablein the source text is not affected by the reference.
Something of type char & behaves exactly in the source asif it were of type char . This means
that parameters and variables can be changed to reference and back to adjust the dataflow ina
program without disrupting the source code at all. Thisisasignificant improvement over using &
and* in C.

Y ou should still use C style pointers when you might want to keep or change the references over
time— so you still use pointers to build data-structures. References are used more as a tun-time
information transfer mechanism either as parameters or return values. For example, the .next field
inalinked list should still be implemented using pointers. It would be hard to implement alinked
list with references given the restrictions that references be initialized when declared and never
changed.

Aswith const, reference arguments may enable some significant code optimization. In particular,
since the compiler knows that the reference will not change once defined, its a natural to implement
referencesin registers and so avoid churning the stack. A quick rule of thumb is: const&
arguments are the best possible form for the compiler optimizer. In that case the compiler hasthe
latitude to choose between pass by value and pass by address, and passin the stack vs. passin
registers.

10

Subclassing
The following creates a subclass of Account.

cl ass MonthlyFee : public Account { /1 a "public" subclass of Account
voi d EndMont h(voi d);

s

Thepubl i ¢ keyword in this context controls the access of inherited members. Essentially:
publ i c retains the access from the superclass, pr ot ect ed forces the public membersto
become protected in the subclass, and pr i vat e forces the public and protected membersto
become private in the subclass. This control mechanism can be used to keep subclasses from
getting too much access to the internals of their superclasses.

"Subclassing" and "superclass’ are the broadly accepted termsin the OOP world. The C++
subculture sometimes calls a superclass a"base" class and a subclass a"derived” class. "Derive'
and "subclass" can both be used as verbs, but not in polite conversation. e.g. " So then thinking
quickly, I just derived off of the scroll-bar base class and | was good to go.”

Class Substitutions
An instance of aclass can stand in for an instance of its superclass. In the following example,
MommaBear isasubclass of Bear .

Bear *bear;
MommaBear *nom

bear = nmom /1 ok-- MommaBear has all the properties of Bear so nbm can

// stand in for a Bear

nom = bear; /1 not ok

v0| d Foo(Bear *aBear);
voi d Bar (MonmaBear *aMom ;

Foo(mom ; /1 ok
Bar (bear) ; /1 not ok

11

12

Compile Time Error Checking

C++ uses compile time type information to error check as much as possible. So in the compile time
pass of the source code, objects are assumed to have exactly their declared type. Using compile
time types is areasonable compromise and the best a compile-time oriented process can do. With
that assumption, C++ can consistency check the uses and definitions of instance variables and
methods. However, as demonstrated above, objects may not have their compile time type at run-
time. For awell-behaved program, the best we can assume at run timeis that an object will be an
instance of the compile time class, or a subclass of the compile time class.

Run-Time Message Resolution — Virtual Methods

What the statement obj - >Foo() dependson the class of obj if more than one class responds to
theFoo() message. Sometimes, the class of obj can be determined at compile-time. In that case,
the compiler can generate code for the message send much like atraditional function call. More
often, the exact class of an object will be determined at run-time. To deal with this case, OOP
compilerswill introduce extra bits kept at run-time for each object to indicate its class. This enables
run-time " polymorphism™ which is invaluable for some problems.

In C++, methods where the message to method resol ution should be done according to the run-
time class of the receiver are called "virtual". By default, C++ source code must specify that a
method requires the virtual option in the class header as below. A method which is not virtual will
not consider the run time class of an object. Instead the message to method resolution will happen
at compile time based on (often inaccurate) compile time variable and type declarations. Often the
compiler has an option where it just assumes that all methods are virtual (-fall-virtual in gcc). If
your code depends on this option, your comments should say so.

If you forget the virtual keyword, sadly, your code will compile perfectly, and you will just get the
following the classic symptom at run time: "I send the object the correct message, but it doesn't
execute the method code in its class, instead it skips immediately to the method code in its
superclass.”

Compiling with virtual-by-default does not mean that all message to method resolution will happen
at run time. It just means that it is the compiler's problem to figure out when the resolution can be
done accurately at compile time, and then to do so as an optimization invisible to the programmer.

Early on, virtual methods were regarded as a fancy option because they added to the message send
overhead. However, virtual methods make some things so much easier for the programmer that
they are now regarded as standard equipment. Nonetheless, the older, more conservative view that
non-virtual isthe default persistsin C++. If a superclass declares that a method is virtual, then
overriding subclasses do not strictly need to redeclare that it is virtual, but it doesn't hurt.

In the following exampl e there are three types of bank account subclassed from Account. Each
class hasits own definition of the SendNast yLet t er () method.

cl ass Account {

"virtual voi d SendNastylLetter(void);
i
class Monthly : public Account ({

..virtual voi d SendNastylLetter(void);
1

class NickleNDi nme : public Account {

..virtual voi d SendNastylLetter(void);
1

class Ganbler : public Account ({

.virtual voi d SendNastyletter(void);

i nt acct Num nunmAccounts;
Account *accounts[]; // all the accounts

for (acctNum=0; acct NunknumAccounts; acct Numk+)
account s[acct Nunj - >SendNastyLetter(); // Polynorphismat run tine
}

The accounts array contains al the accounts for the bank. All of the accounts are subclasses of the
Account class. At compile-time there is no way to know which of the accounts are

(N ckl eNDi nme*) , which are(Ganbl er *) , and which are (Mont hl y*) . The only way for
theline"account s[acct Nunj - >SendNast yLet t er () " to do theright thing at run-timeis
for each object to know what classit isat run-time and so direct the SendNast yLet t er ()
message to the method for its class. Thisis canonical "virtua" behavior and its indispensable for
some problems. (The "banking" problem isworked completely the examples section below)

13

3 — C++ Examples

This handout has some basic but compelete C++ examples. They mainly demonstrate properties of
inheritance and polymorphism. They are aso good examples to have at hand to remind you of the
basics of C++ syntax.

/***** beal'.h *****/
#pragna once

/*

BEAR

Your Basic Bear. Its abstraction is that

it has a weight property which can be get

and set. The bear al so responds to the Meanness()
message which tells the client how nad the

bear is currently.

*/
cl ass Bear {
public:
Bear (fl oat aWight); // constructor
voi d Set Wi ght (fl oat aWi ght); // wei ght accessors
float Get VWi ght(void);
virtual float Meanness(void); // The one interesting pol ynorphi ¢ net hod
/1 once we introduce the Mommabear subcl ass
pr ot ect ed:
float weight; /1 W% could nake this private: and so make Mormabear
/] use the accessors |like other clients.
s

/***** bearcp *****/
#i ncl ude <stdi o. h>
#i ncl ude "bear. h"

[*** Constructor ***/

Bear: : Bear (fl oat aVéight) {
wei ght = aVWi ght;

}

[*** Accessors ***/

voi d Bear:: Set Wi ght (fl oat aWight) {
wei ght = aWéi ght;

}

float Bear:: Get Wi ght (void) {
return(weight);
}

[*** Meanness ***/
float Bear:: Meanness(void) {
if (weight <= 100)
return(wei ght * 2);
el se
return(wei ght * 3);

14

/* nonmabear. h */
#pragma once

// W need to see our supercl asses header
#i ncl ude "bear. h"

/*

MOMVA- BEAR

The nomma bear extends the basic bear by possibly having
a cub. The cub instance variable will point to the cub
or will be NLL if no cub is present.

Mommabears al so differ frombears by bei ng 2x

nmeaner. Al so Mormabear al so respond to the

Tot al Meanness() message whi ch adds in the meanness of the cub if
if it is present.

*/

cl ass Mommabear : public Bear {

public:

Mommabear (f1 oat aWi ght) ;

voi d Set Qub(Bear *aCub);

Bear *Get Qub(void);

virtual float Meanness(void);
fl oat Total Meanness(voi d);

pr ot ect ed:
Bear *cub;

public:

static void TestBears(void);
s
/***** rmmrabear i Cp **-k**/
#i ncl ude <stdio. h>
#i ncl ude "nomrabear. h"
[*** Constructor ***/
Mommabear : : Mommabear (f1 oat aVei ght)

Bear (aVéi ght) /|l pass along to the Bear constructor

cub = NULL;

[*** Acessors ***/

Bear* Mbmmabear : : Get Qub(voi d) {
return(cub);

}

voi d Momrabear : : Set Qub(Bear *aCub) {
cub = aCub;
}

16

[*** Meannness ***/

/* Use the inherited neanness and then multiply by 2. */

fl oat Mommabear : : Meanness(voi d) {
return(Bear::Manness() * 2);

}

/* The total Meanness is just the nom's nmeanness + the cub's. */
fl oat Mommabear : : Tot al Meanness(voi d) {
fl oat cubMeanness;

if (cub !'= NULL)

cubMeanness = cub->Meanness();
el se
cubMeanness = 0. 0;

return(Meanness() + cubMeanness); // send oursel ves the Meanness() nsg

}

voi d Mormabear : : Test Bear s(voi d) {
Bear* cub;
Mommrabear * nom

cub = new Bear (50);
nom = new Monmabear (300) ;

printf("%)\n", cub->Meanness()); /* prints 50*2 = 100 */

printf("%\n", nrom>Manness()), /* prints 300*3*2 = 1800 */

nmom >Set Qub(cub) ;

cub- >Set Wi ght (75) ;

printf("%\n", mom>Total Meanness()); /* prints 300*3*2 + 75*2 = 1950 */

17

Banking Problem

Consider an object-oriented design for the following problem. Y ou need to store information for
bank accounts. For purposes of the problem, assume that you only need to store the current
balance, and the total number of transactions for each account. The goal for the problem isto avoid
duplicating code between the three types of account. An account needs to respond to the following

messages:

Constructor or Init nessage
Initialize a new account

voi d Deposit(float amt)
add the ant to the bal ance and i ncrenent the nunber of transactions

void Wthdraw(fl oat ant)
subtract the ant to the bal ance and i ncrenent the nunber of transactions

fl oat GetBal ance();
return the current bal ance

voi d EndMont h()

the account will be sent this nessage once a nonth, so it should | evy any
nonthly fees at that tinme and print out the account nonthly sunmmary

There are three types of account:

Normal: deposit and withdraw just affect the balance. Thereisa $5.00 monthly fee which
counts as anormal withdrawal transaction.

Nickle 'n Dime: Each withdrawal generates a $0.50 fee. Both the withdrawal and the fee
count as a transaction.

The Gambler: A withdrawal returns the requested amount of money- however the amount
deducted from the balance is as follows: there is a 0.49 probability that no money will
actually be subtracted from the balance. Thereisa0.51 probability that twice the amount
actually withdrawn will be subtracted.

Propose some classes to store the idea of an account. Y ou may use an abstract super class or you
may subclass some of the account from others.

Where are the instance variables declared?

Give the definitions of thewi t hdr aw. methods

Where do you use overriding?

How difficult would it be to extend your scheme so each account also stored its minimum monthly

balance? What ramifications does this have for using (inherited withdraw) versus just changing the
balance instance variable directly?

[***x*x* gccount . h**** */

/*

The Account class is an abstract super class with the default
characteristics of a bank account. It maintains a bal ance
and a current nunber of transactions. It does not have a
ful'l inplenmentation of EndMont h() behavi or which shoul d

be filled in by its subcl asses.

*/

class Account {
publ i c:
Account (voi d) ;
virtual void Wthdraw (float am);
virtual void Deposit (float ant);
virtual float GetBal ance(void);
virtual void EndMont h(void) = NULL; /| force subcl asses to inpl enment

pr ot ect ed:

fl oat bal ance;

int transactions;

void EndMont hWei | (voi d) ; // save sone code repetition in the subcl asses

// dass Function

public:

static voi d Test OheMont h(voi d);
s

[****%* gccount.cp *****/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#i ncl ude "account. h"

Account : : Account (voi d) {
bal ance = 0. 0;
transacti ons = O;

void Account::Wthdraw (float ant) {
bal ance = bal ance - an;
transacti ons++;

void Account::Deposit (float am) {
bal ance = bal ance + ant;
transacti ons++;

float Account:: Get Bal ance(void) {
ret urn(bal ance) ;
}

/* Factors some common behavi or up which will occur in
t he subcl asses EndMont h(). */
voi d Account:: EndMont hWi | (void) {

printf("transactions: % bal ance: %\ n", transactions, bal ance);
transactions = O;

}

/*The Monthly Fee type of account*/

class MonthlyFee : public Account {
voi d EndMont h(voi d);

b

/*The Nickle 'n'" Dine type of account.*/

class NckleNDme : public Account {
voi d EndMont h(voi d);

b

/*The Ganbl er type of account*/
class Ganbler : public Account {
void Wthdraw (fl oat amt);

voi d EndMont h(void) { EndMonthWil(); } // this is a syntax

}s

voi d N ckl eND ne: : EndMont h(voi d) {
Wt hdraw(transactions * 0.50);
Account : : EndMont hki | () ;

}

voi d Mont hl yFee: : EndMont h(voi d) {
Wt hdraw(5. 00) ;
Account : : EndMont hW i | () ;

}

static int RandomN\un(int num {
return(rand() % num;
}

void Ganbl er:: Wthdraw (float ant) {
i f (Random\un{100) <= 50) Account::Wthdraw(2 * ant);
el se Account:: Wt hdraw(0. 00);

/* If C++ kept class nanme infornmation around at run-time,
this would be easier. */
static Account *RandomAccount (void) {
swi tch (Random\un(3)) {
case 0: return(new Ganbl er); break;
case 1: return(new N ckl eND ne); break;
case 2: return(new Monthl yFee); break;

return(0);

19

20

#def i ne NUVACCOUNTS 20

/*
This is a static class function, so you call it like regular function,
except with Account:: before the function nane.
*/
voi d Account : : Test neMont h(voi d) {
Account * account s[NUMACCOUNTS] ;
i nt account Num
int day;

/* Oreate a bunch of accounts of various types */

for (account Nun¥0; account NumkNUVACOOUNTS; account Num#+) {
account s[account Nunj = RandonAccount () ;
account s[account Nunj - >Deposi t (100) ;

}

/* do a nonths worth of randomtransactions */
for (day=1; day<=31; day++) {

account Num = RandoniNun{ NUVACOOUNTS) ; // select an account at random
i f (Random\un{(2)) // deposit or withdraw
account s[account Nunj - >Deposi t (Randorm\un{(100)) ; /1 yeah! pol ynor phisni!
el se

account s[account Nunj - >W t hdr aw(RandonNun{ 100)) ; /1 yeah! pol ynor phi sm !
}

for (account Nun¥0; account NumkNUVACOOUNTS; account Numt+) {
printf("account: %l ", accountNunj;
account s[account Nunj - >EndMont h() ;

/* main.cp */

#i ncl ude "account. h"
#i ncl ude "bear. h"

#i ncl ude "nomrabear. h"

voi d nmai n(void) {

Account : : Test CneMont h() ;

Momrabear : : Test Bear s() ;

out put :

Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account
Account

Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :
Nunber :

OCO~NOOUITAWNPE

transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti
transacti

ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:
ons:

WWNWWNWWOAOUONWENRFRPWRED

I nvoke the

bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:
bal ance:

static class function

99. 50
83.00
187. 00

22

Instructor Inheritance Example

Thisis my favorite inheritance example of al time. The first parts demonstrate basic overriding. In
the last part, if you can grasp how GetMail() is written to surgically factor out the shared behavior
between the three classes, then you truly understand inheritance. Thisis actually an CS107 final
exam problem— more evidence that you never want to take a class from mel

For this problem, you will design C++ classes suitable for storing information about university
instructors. The goa of the example isto demonstrate arranging classesin ahierarchy for
maximum code-sharing. There are three types of instructor: Faculty, Lecturer, and Grad student.
At any time, an instructor can best be described by three quantities. number of unread e-mail
messages, age, and number of eccentricities. An instructor should initially have no unread mail and
no eccentricities.

There are two measures of an instructor's current mood: Stress and Respect.

Stress— an instructor's stress level isthe number of unread messages. However, Stressis
never more than 1000. Grad students are the exception. Their stressis double the
number of unread messages and their maximum stressis 2000.

Respect- generally an instructor's level of respect in the community is their age minusthe
number of eccentricities. Respect can never be negative. Faculty are the exception—
Faculty eccentricities are regarded as "signs of atroubled genius' thereby increasing
respect. So for faculty respect is age plus number of eccentricities.

Everything in an instructor'slife is driven by receiving e-mail. Several things happen when an
instructor gets new, un-read e-mail:

First, the amount of unread-mail isincreased.

Second, 90% of the time, there will be no change in the number of eccentricities. 10% of
the time the number of eccentricities will randomly go up or down by one.

Third, the new unread mail may cause the instructor's Stress factor to become larger than
their Respect factor which makes the instructor unhappy. In this case, instructors have
different coping mechanisms. Faculty react by gaining 10 eccentricities. Lecturers react
by accidentally deleting half their unread mail. Grad students react by reading all of their
unread mail. The resulting mental anguish causes the Grad student's eccentricitiesto go
up or down by one randomly. The coping mechanisms may or may not bring the Stress
and Respect factors back in line. The coping mechanism is activated at most one time for
each batch of incoming mail.

23

Thisisthe sort of design drawing you might make to help think about your solution:

| nst ance vari abl es: | nstructor Met hods:
e unr eadMni | -Stress()
e age - Respect ()

eeccentricities -CGetMail (int)

Grad L ecturer Faculty
Met hods: Met hods: Met hods:
-Stress() - Cope() - Respect ()

- Cope() - Cope()

#i ncl ude <stdlib. h>
const int kMaxStress = 1000;

class Instructor {

publi c:
Instructor(int anAge);
virtual int Stress() const;
virtual int Respect() const;
virtual void GetMil (int);

pr ot ect ed:
i nt unreadMhi |l ;
i nt age;
int eccentricities;

voi d RandonEccentric();// private hel per to change eccentricities by +-1

/1 "pure virtual" hel per method

/1 This indicates to the conpiler that Instructor
/1 is an abstract super class.

virtual void Cope() = NULL;

b

/1 Construct with an age and init other to O.
Instructor::lnstructor(int anAge) {

age = anAge;

unreadMai | = 0;

eccentricities = 0;

int Instructor::Stress() const {
if (unreadMail <= kMaxStress) return(unreadMail)
el se return(kMaxStress);

int Instructor::Respect() const {
int stress = age - eccentricities;

if (stress>=0) return(stress);
el se return(0);

void Instructor::GetMil (int numvessages) {
unreadMai | += numMessages;

if ((rand() % 10) == 0) RandonEccentric(); // 10% chance of ecc. change

if (Stress() > Respect()) Cope();// the key polymorphic Iine

/1 Hel per which randomy change the eccentricities
/1 up or down by 1. Does not allow negative nunber
/1 of eccentricities.
void Instructor::RandonEccentric() {

int delta;

[1if ((rand() %2) == 0) delta = 1;
/lelse delta = -1;

eccentricities += delta;

if (eccentricities<0) eccentricities = 0;

}

/**********GQAD STUI:ENT**********/

class GradStudent : public Instructor {
GradSt udent (i nt anAge) : I nstructor(anAge){};
int Stress() const;
voi d Cope();

1

int GadStudent:: Stress() const {
return(2 * Instructor::Stress());

}

voi d GradSt udent:: Cope() {
unreadMai | = 0;
RandonEccentric();

}

/********** LEC‘I’URER **********/

class Lecturer : public Instructor {
Lecturer(int anAge): Instructor(anAge){};
voi d Cope();

s

voi d Lecturer:: Cope() {
unreadMai| = unreadMail [/ 2;

}

/********** PRO:ESSm **********/

class Professor : public Instructor {
Prof essor (i nt anAge): I nstructor(anAge){};
i nt Respect() const;
voi d Cope();

i nt Professor::Respect() const {
return(age + eccentricities);
}

voi d Professor:: Cope() {
eccentricities += 10;
}

25

