
85321, Systems Administration Chapter 6: The shell

Chapter 6
The Shell

Introduction

You will hear many people complain that the UNIX operating system is hard
to use. They are wrong. What they actually mean to say is that the UNIX
command line interface is difficult to use. This is the interface that many
people think is UNIX. In fact, this command line interface, provided by a
program called a shell, is not the UNIX operating system and it is only one of
the many different interfaces that you can use to perform tasks under UNIX.
By this stage many of you will have used some of the graphical user interfaces
provided by the X−Windows system.

The shell interface is a powerful tool for a Systems Administrator and one that
is often used. This chapter introduces you to the shell, it’s facilities and
advantages. It is important to realise that the shell is just another UNIX
command and that there are many different sorts of shell. The responsibilities
of the shell include

�
providing the command line interface

�
performing I/O redirection

�
performing filename substitution

�
performing variable substitution

�
and providing an interpreted programming language

The aim of this chapter is to introduce you to the shell and the first four of the
responsibilities listed above. The interpreted programming language provided
by a shell is the topic of chapter 8.

Executing Commands

As mentioned previously the commands you use such as l s and cd are stored
on a UNIX computer as executable files. How are these files executed? This
is one of the major responsibilities of a shell. The command line interface at
which you type commands is provided by the particular shell program you are
using (under Linux you will usually be using a shell called bash). When you
type a command at this interface and hit enter the shell performs the following
steps

�
wait for the user to enter a command

�
perform a number of tasks if the command contains any special characters

�
find the executable file for the command, if the file can’ t be found generate
an error message

�
fork off a child process that will execute the command,

�
wait until the command is finished (the child process dies) and then return
to the top of the list

David Jones, Bruce Jamieson (25/02/00) Page 1

85321, Systems Administration Chapter 6: The shell

Different shells

There are many different types of shells. Table 6.1 provides a list of some of
the more popular UNIX shells. Under Linux most users will be using bash,
the Bourne Again Shell. bash is an extension of the Bourne shell and uses the
Bourne shell syntax. All of the examples in this text are written using the
bash syntax.

All shells fulfil the same basic responsibilities. The main differences between
shells include

�
the extra features provided
Many shells provide command history, command line editing, command
completion and other special features.

�
the syntax
Different shells use slightly different syntax for some commands.

Shell Program name Descr iption
Bourne shell sh the original shell from AT&T, available on

all UNIX machines

C shell csh shell developed as part of BSD UNIX

Korn shell ksh AT&T improvement of the Bourne shell

Bourne again shell bash Shell distributed with Linux, version of
Bourne shell that includes command line
editing and other nice things
T a b l e 6 . 1

D i f f e r e n t U N I X s h e l l s

The C shell and its various versions have been popular in some fields.
However, there are a number of problems with the C shell. The 85321
Website contains a pointer to a document entitled "C Shell Considered
Harmful". If you really want to know why we use the Bourne shell syntax
read this document.

Star ting a shell

When you log onto a UNIX machine the UNIX login process automatically
executes a shell for you. Which shell is executed is defined in the last field of
your entry in the / et c/ passwd file.

The last field of every line of / et c/ passwd specifies which program to
execute when the user logs in. The program is usually a shell (but it doesn’ t
have to be).

Exercises

• What shell is started when you login?

The shell itself is just another executable program. This means you can choose
to run another shell in the same way you would run any other command by
simply typing in the name of the executable file. When you do the shell you
are currently running will find the program and execute it.

David Jones, Bruce Jamieson (25/02/00) Page 2

85321, Systems Administration Chapter 6: The shell

To exit a shell any of the following may work (depending on how your
environment is set up).

�
logout

�
exit

�
CTRL−D
By default control D is the end of file (EOF) marker in UNIX. By
pressing CTRL−D you are telling the shell that it has reached the end of
the file and so it exits. In a later chapter which examines shell
programming you will see why shells work with files.

For example

The following is a simple example of starting other shells. Most different
shells use a different command−line prompt.

bash$ sh
$ csh
% t csh
> exi t
%
$
bash$

In the above my original login shell is bash. A number of different shells are
then started up. Each new shell in this example changes the prompt (this
doesn’ t always happen). After starting up the t csh shell I’ ve then exited out of
all the new shells and returned to the original bash.

Parsing the command line

The first task the shell performs when you enter a command is to parse the
command line. This means the shell takes what you typed in and breaks it up
into components and also changes the command−line if certain special
characters exist. Special characters are used for a number of purposes and are
used to modify the operation of the shell.

Table 6.2 lists most of the special characters which the shell recognises and the
meaning the shell places on these characters. In the following discussion the
effect of this meaning and what the shell does with these special characters
will be explained in more detail.

David Jones, Bruce Jamieson (25/02/00) Page 3

85321, Systems Administration Chapter 6: The shell

Character(s) Meaning
whi t e space Any white space characters (tabs, spaces)

are used to separate arguments multiple
white space characters are ignored

newl i ne char act er used to indicate the end of the command−
line

’ " \ special
HREF="#Quotes"§MACROBUTTON
HtmlResAnchor quote characters that
change the way the shell interprets special
characters

& Used after a command, tells the shell to
run the command in the background

< >> << ‘ | I/O redirection characters
* ? [] [^ filename substitution characters

$ indicate a shell variable
; used to separate multiple commands on

the one line
T a b l e 6 . 2

S h e l l s p e c i a l c h a r a c t e r s

The Command L ine

The following section examines, and attempts to explain, the special shell
characters which influence the command line. This influence includes

�
breaking the command line into arguments

�
allows more than one command to a line

�
allows commands to be run in the background

Arguments

One of the first steps for the shell is to break the line of text entered by the
user into arguments. This is usually the task of whitespace characters.

What will the following command display?

echo hel l o t her e my f r i end

It won’ t display

hel l o t her e my f r i end

instead it will display

hel l o t her e my f r i end

When the shell examines the text of a command it divides it into the command
and a list of arguments. A white space character separates the command and
each argument. Any duplicate white space characters are ignored. The
following diagram demonstrates.

David Jones, Bruce Jamieson (25/02/00) Page 4

85321, Systems Administration Chapter 6: The shell

F i g u r e 6 . 1
S h e l l s , w h i t e s p a c e a n d a r g u m e n t s

Eventually the shell will execute the command. The shell passes to the
command a list of arguments. The command then proceeds to perform its
function. In the case above the command the user entered was the echo

command. The purpose of the echo command is to display each of its
arguments onto the screen separated by a single space character.

The important part here is that the echo command never sees all the extra
space characters between hel l o and t her e. The shell removes this whilst it
is performing its parsing of the command line.

One command to a line

The second shell special character in Table 6.2 is the newline character. The
newline character tells the shell that the user has finished entering a command
and that the shell should start parsing and then executing the command. The
shell makes a number of assumptions about the command line a user has
entered including

�
there is only one command to each line

�
the shell should not present the next command prompt until the command
the user entered is finished executing.

This section examines how some of the shell special characters can be used to
change these assumptions.

Multiple commands to a line

The ; character can be used to place multiple commands onto the one line.

l s ; cd / et c ; l s

The shell sees the ; characters and knows that this indicates the end of one
command and the start of another.

Commands in the background

David Jones, Bruce Jamieson (25/02/00) Page 5

85321, Systems Administration Chapter 6: The shell

By default the shell will wait until the command it is running for the user has
finished executing before presenting the next command line prompt. This
default operation can be changed by using the & character. The & character
tells the shell that it should immediately present the next command line prompt
and run the command in the background.

This provides major benefits if the command you are executing is going to
take a long time to complete. Running it in the background allows you to go
on and perform other commands without having to wait for it to complete.

However, you won’t wish to use this all the time as some confusion between
the output of the command running in the background and shell command
prompt can occur.

For example

The sl eep command usually takes on argument, a number. This number
represents the number of seconds the sl eep command should wait before
finishing. Try the following commands on your system to see the difference
the & character can make.

bash$ sl eep 10
bash$ sl eep 10 &

Filename substitution
In the great majority of situations you will want to use UNIX commands to
manipulate files and directories in some way. To make it easier to manipulate
large numbers of commands the UNIX shell recognises a number of characters
which should be replaced by filenames.

This process is called ether filename substitution or filename globbing.

For example

You have a directory which contains HTML files (an extension of . ht ml),
GIF files (an extension of . gi f), JPEG files (an extension . j pg) and a range
of other files. You wish to find out how big all the HTML files are.

The hard way to do this is to use the l s –l command and type in all the
filenames.

The simple method is to use the shell special character * , which represents any
0 or more characters in a file name

l s –l * . ht ml

In the above, the shell sees the * character and recognises it as a shell special
character. The shell knows that it should replace * . ht ml with any files that
have filenames which match. That is, have 0 or more characters, followed by
. ht ml

UNIX doesn’t use extensions

MS−DOS and Windows treat a file’ ’s extension as special.
UNIX does not do this. Refer to the previous chapter and its
discussion of magic numbers.

David Jones, Bruce Jamieson (25/02/00) Page 6

85321, Systems Administration Chapter 6: The shell

Table 6.3 lists the other shell special characters which are used in filename
substitution.

Character What it matches
* 0 or mor e char act er s

? 1 char act er

[] mat ches any one char act er bet ween
t he br acket s

[^] mat ches any one char act er NOT i n
t he br acket s

T a b l e 6 . 3
F i l e n a m e s u b s t i t u t i o n s p e c i a l c h a r a c t e r s

Some examples of filename substitution include
�

cat *

* will be replaced by the names of all the files and directories in the
current directory. The cat command will then display the contents of all
those files.

�
l s a* bc

a* bc matches all filenames that start with a, end with bc and have any
characters in between.

�
l s a?bc

a?bc matches all filenames that start with a, end with bc and have only
ONE character in between.

�
l s [i c] ???

[i c] ??? matches any filename that starts with either a i or c followed by
any other three letters.

�
l s [^ i c] ???

Same as the previous command but instead of any file that starts with i or
c match any file that DOESN’T start with i or c.

Exercises

• Given the following files in your current directory:
$ l s
f eb86 j an12. 89
j an19. 89 j an26. 89
j an5. 89 j an85 j an86 j an87
j an88 mar 88 memo1 memo10
memo2 memo2. sv

What would be the output from the following commands?
echo *
echo * [^0−9]
echo m[a−df −z] *
echo [A−Z] *
echo j an*
echo * . *
echo ?????
echo * 89
echo j an?? f eb?? mar ??
echo [f j m] [ae] [bnr]

Removing special meaning

David Jones, Bruce Jamieson (25/02/00) Page 7

85321, Systems Administration Chapter 6: The shell

There will be times when you won’t want to use the shell special characters as
shell special characters. For example, what happens if you really do want to
display

hel l o t her e my f r i end

How do you do it?

It’ s for circumstances like this that the shell provides shell special characters
called quotes. The quote characters ’ " \ tell the shell to ignore the meaning
of any shell special character.

To display the above you could use the command

echo ’ hel l o t her e my f r i end’

The first quote character ’ tells the shell to ignore the meaning of any special
character between it and the next ’ . In this case it will ignore the meaning of
the multiple space characters. So the echo command receives one argument
instead of four separate arguments. The following diagram demonstrates.

David Jones, Bruce Jamieson (25/02/00) Page 8

85321, Systems Administration Chapter 6: The shell

F i g u r e 6 . 2
S h e l l s , c o m m a n d s a n d q u o t e s

Table 6.4 lists each of the shell quote characters, their names and how the
influence the shell.

Character Name Action
’ single quote the shell will ignore all

special characters contained
within a pair of single
quotes

" double quote the shell will ignore all
special characters EXCEPT
$ ‘ \ contained within a
pair of double quotes

\ backslash the shell ignores any special
character immediately
following a backslash

T a b l e 6 . 4
Q u o t e c h a r a c t e r s

Examples with quotes

Try the following commands and observe what happens
�

echo I ’ m Davi d.

This causes an error because the ‘ quote character must be used as one of
a pair. Since this line doesn’t have a second ‘ character the shell
continues to ignore all the shell special characters it sees, including the
new line character which indicates the end of a command.

�
echo I \ ’ m Davi d.
This is the “correct” implementation of what was attempted above. The \
quote character is used to remove the special meaning of the ‘ character so
it is used as a normal character

�
echo *

�
echo ’ * ’

�
echo \ *
The previous three show two different approaches to removing the special
meaning from a single character.

�
echo one t wo t hr ee f our

David Jones, Bruce Jamieson (25/02/00) Page 9

85321, Systems Administration Chapter 6: The shell�
echo ’ one t wo t hr ee f our ’

�
echo " one t wo t hr ee f our "

�
echo hel l o t her e \
my name i s davi d
Here the \ is used to ignore the special meaning of the newline character at
the end of the first line. This will only work if the newline character is
immediately after the \ character. Remember, the \ character only
removes the special meaning from the next character.

�
echo f i l es = ; l s

�
echo f i l es = \ ; l s
Since the special meaning of the ; character is removed by the \ character
means that the shell no longer assumes there are two commands on this
line. This means the l s characters are treated simply as normal characters,
not a command which must be executed.

Exercises

• Create files with the following names
st ar s*
−t op
hel l o my f r i end
" goodbye"
Now delete them.

• As was mentioned in the previous chapter the { } and ; used in the exec

and ok actions of the f i nd command must be quoted. The normal way of
doing this is to use the \ character to remove the special meaning. Why
doesn’ t the use of the single quote character work. e.g. why the following
command doesn’ t work.
f i nd . −name \ * . bak −ok r m ’ { } ; ’

Input/output redirection

As the name suggests input/output (I/O) redirection is about changing the
source of input or destination of output. UNIX I/O redirection is very similar
(in part) to MS−DOS I/O redirection (guess who stole from who). I/O
redirection, when combined with the UNIX philosophy of writing commands
to perform one task, is one of the most important and useful combinations in
UNIX.

How it works

All I/O on a UNIX system is achieved using files. This includes I/O to the
screen and from a keyboard. Every process under UNIX will open a number of
different files. To keep a track of the files it has, a process maintains a file
descriptor for every file it is using.

File descr iptors

David Jones, Bruce Jamieson (25/02/00) Page 10

85321, Systems Administration Chapter 6: The shell

A file descriptor is a small, non−negative integer. When a process reads/writes
to/from a file it passes the kernel the file descriptor and asks it to perform the
operation. The kernel knows which file the file descriptor refers to.

Standard file descr iptors

Whenever the shell runs a new program (that is when it creates a new process)
it automatically opens three file descriptors for the new process. These file
descriptors are assigned the numbers 0, 1 and 2 (numbers from then on are
used by file descriptors the process uses). The following table summarises
their names, number and default destination.

Name File descr iptor Default destination
standard input (stdin) 0 the keyboard

standard output (stdout) 1 the screen

standard error (stderr) 2 the screen
T a b l e 6 . 5

S t a n d a r d f i l e d e s c r i p t o r s

By default whenever a command asks for input it takes that input from
standard input. Whenever it produces output it puts that output onto standard
output and if the command generates errors then the error messages are placed
onto standard error.

For example, the ls command displays an error message when it can’ t find the
file it was given.

[r oot @f ai l e 85321] # l s / f r ed
l s: / f r ed: No such f i l e or di r ect or y

The "No such file or directory" message is sent to standard error.

Changing direction

By using the special characters in the table below it is possible to tell the shell
to change the destination for standard input, output and error.

For example

 cat / et c/ passwd > hel l o

tells the shell rather than send the contents of the / et c/ passwd file to standard
output, it should send it to a file called hel l o.

David Jones, Bruce Jamieson (25/02/00) Page 11

85321, Systems Administration Chapter 6: The shell

Character(s) Result
Command < f i l e Take standard input from file
Command > f i l e Place output of command into f i l e.

Overwrite anything already in the file.
Command >> f i l e Append the output of command into f i l e.

command << l abel Take standard input for command from the
following lines until a line that contains
l abel by itself

‘ command‘ execute command and replace ‘ command‘

with the output of the command
command1 | command2 pass the output of command1 to the input

of command2
command1 2> f i l e redirect standard error of command1 to

f i l e. The 2 can actually be replaced by
any number which represents a file
descriptor

command1 >& f i l e_descr i pt or redirect output of command1 to a
f i l e_descr i pt or (the actual number for
the file descriptor)

T a b l e 6 . 6
I / O r e d i r e c t i o n c o n s t r u c t s

Using standard I /O

Not all commands use standard input and standard output. For example the cd

command doesn’ t take any input and doesn’ t produce any output. It simply
takes the name of a directory as an argument and changes to that directory. It
does however use standard error if it can’ t change into the directory.

I t doesn’ t make sense to redirect the I /O of some commands

For example, the cp command doesn’ t produce any output. It may produce
errors if it cannot copy the requested file but otherwise there is no output. So

cp /etc/passwd /tmp/passwd > output.dat

does not make sense.

Filters

On the other hand some commands will always take their input from standard
input and put their output onto standard output. All of the
HREF="../chap2/sec4p5.html"§MACROBUTTON HtmlResAnchor filters
discussed earlier in the textbook act this way.

As an example lets take the cat command mentioned previously. If you
execute the cat command without supplying it with any parameters it will take
its input from standard input and place its output onto standard output.

Try it. Execute the command cat with no arguments. Hit CTRL−D, on a line by
itself,to signal the end of input. You should find that cat echoes back to the
screen every line you type.

Try the same experiment with the other filters mentioned earlier.

David Jones, Bruce Jamieson (25/02/00) Page 12

85321, Systems Administration Chapter 6: The shell

I /O redirection examples
�

l s > t he. f i l es

Create a file t he. f i l es that contains the list of files in the current
directory.

�
ls /fred 2> /dev/null
Send any error messages to the null device (throw it away).

�
cat t he. f i l es | mor e

Same effect as the command mor e t he. f i l es. Display the content of the
file t he. f i l es one page at a time.

�
l s / et c >> t he. f i l es

Add the list of files in from the / et c directory onto the end of the file
t he. f i l es.

�
echo number of l i nes i n t he. f i l es = ‘ wc −l t he. f i l es‘

Execute the command wc −l t he. f i l es. Replace it with its output and
then execute the echo command. Will display output similar to number of

l i nes i n t he. f i l es = 66
�

cat << f i ni shed > i nput

Ask the user to type in information until they enter a line with just
f i ni shed on it. Then copy all the information entered by the user into the
file called i nput

�
cd / et c > out put . f i l e

Create an empty file called out put . f i l e. The cd command generates no
output so redirecting its output creates an empty file.

�
l s | cd

An error message. cd doesn’ t accept input so when the shell tries to send
the output of the l s command to the cd command it doesn’ t work.

�
echo ‘ wc −l / et c/ passwd‘

Execute the wc command and pass its output to the echo command as
arguments.

Redirecting standard er ror

There will be times where you wish to either throw standard error away, join
standard error and standard output, or just view standard error. This section
provides examples of how this can be accomplished using I/O redirection.

the file xx doesn’ t exist
display an error message on standard error

redirect standard output to the file
er r or s, no change

redirect standard error to the file
er r or s nothing on the screen

David Jones, Bruce Jamieson (25/02/00) Page 13

85321, Systems Administration Chapter 6: The shell

$ ls xx
/bin/ls: xx: No such file or
directory

$ ls xx > errors
/bin/ls: xx: No such file or
directory

$ ls xx 2> errors

file chap1. ps does exist so
we get output but the errors still go to the
file

try to send both stdout and stderr to the
er r or s file, but stdout doesn’ t go

try a different order and it
does work, why?

$ ls chap1.ps xx 2> errors
chap1.ps

$ ls chap1.ps xx >& 2 2> errors
chap1.ps

$ ls chap1.ps xx 2> errors >& 2
$

Evaluating from left to r ight

The shell evaluates arguments from left to right, that is it works with each
argument starting with those from the left. This can influence how you might
want to use the I/O redirection special characters.

For example

An example of why this is important is when you want to send both standard
output and standard error of a command to the same file.

David Jones, Bruce Jamieson (25/02/00) Page 14

85321, Systems Administration Chapter 6: The shell

Lets say we are attempting to view the attributes of the two files chap1. ps
and xx . The idea is that the file xx does not exist so the l s command will
generate an error when it can’t find the file. Both the error and the file
attributes of the chap1. ps file are meant to be sent to a file called er r or s .
So we try to use

� 2>&1
This should redirect file descriptor 2 to standard output (refer back to Table
6.6). It should make standard error (file descriptor 2) go to the same place
as standard output (file descriptor 1)

� > output.and.errors
This sends standard output to the file output.and.errors (we hope).

Lets try and find out.

$ l s −l chap1. ps xx 2>&1 > out put . and. er r or s
l s: xx: No such f i l e or di r ect or y
[davi d@f ai l e t mp] $ cat out put . and. er r or s
−r w−r w−r −− 1 davi d davi d 0 Jan 9 16: 23 chap1. ps

As you can see it doesn’ t work. The error message still appears on the screen
and doesn’ t get sent to the output.and.errors file.

Can you explain why?

The reason it doesn’ t work is that the shell evaluates the arguments of this
command from left to right. The order of evaluation goes like this

�
l s
The first argument tells the shell what command should be executed.

�
−l
The shell won’ t recognise any special characters in this argument so it will
pass it on directly to the command.

�
chap1. ps
Again the shell won’ t see any shell special characters and so passes this
argument directly onto the command.

�
xx
Same again.

�
2>&1
Now some action. The shell recognises some special characters here. It
knows that >& are I/O redirection characters. These characters tell the
shell that it should redirect standard error for this command to the same
place as standard output. The current location for standard output is the
terminal (the screen). So standard error is redirected to the terminal. No
change from normal.

�
>
Again the shell will see a shell special character. In this case, the shell
knows that standard output should be redirected to the location specified in
the next argument.

�
out put . and. er r or s
This is where the shell will send the standard error of the command, a file
called out put . and. er r or s .

The outcome of this is that standard output still goes to the terminal and
standard error goes to the file out put . and. er r or s .

David Jones, Bruce Jamieson (25/02/00) Page 15

85321, Systems Administration Chapter 6: The shell

What we wanted is for both standard output and standard error to go to the
file. The problem is the order in which the shell evaluated the arguments. The
solution is to switch the I/O redirection shell characters.

[davi d@f ai l e t mp] $ l s −l chap1. ps xx > out put . and. er r or s 2>&1
[davi d@f ai l e t mp] $ cat out put . and. er r or s
l s: xx: No such f i l e or di r ect or y
−r w−r w−r −− 1 davi d davi d 0 Jan 9 16: 23 chap1. ps

Changing the order means that standard output is redirected to the file
out put . and. er r or s FIRST and then standard error is redirected to where
standard output is pointing (the same file).

Everything is a file

One of the features of the UNIX operating system is that almost everything
can be treated as a file. This combined with I/O redirection allows you to
achieve some powerful and interesting results.

You’ve already seen that by default stdin is the keyboard and stdout is the
screen of your terminal. The UNIX operating system treats these devices as
files (remember the shell sets up file descriptors for standard input/output).
But which file is used?

t t y

The t t y command is used to display the filename of the terminal you are
using.

$ t t y
/ dev/ t t yp1

In the above example my terminal is accessed through the file / dev/ t t yp1.
This means if I execute the following command

cat / et c/ passwd > / dev/ t t yp1

standard output will be redirected to / dev/ t t yp1 which is where it would’ve
gone anyway.

Exercises

David Jones, Bruce Jamieson (25/02/00) Page 16

85321, Systems Administration Chapter 6: The shell

• What would the following command do?
l s > ‘ t t y ‘

Device files

/ dev/ t t yp1 is an example of a device file. A device file is a interface to one
of the kernel’s device drivers. A device driver is a part of the Linux kernel. It
knows how to talk to a specific hardware device and presents a standard
programming interface that is used by software.

When you redirect I/O to/from a device file the information is passed through
the device file, to the device driver and eventually to the hardware device or
peripheral. In the previous example the contents of the / et c/ passwd file were
sent through the device file / dev/ t t yp1, to a device driver. The device driver
then displayed it on an appropriate device.

/ dev

All of the system’s device files will be stored under the directory / dev. A
standard Linux system is likely to have over 600 different device files. The
following table summarises some of the device files.

filename purpose filename purpose
/ dev/ hda The first IDE disk

drive
/ dev/ hda1 the first partition on

the first IDE disk
drive

/ dev/ sda The first SCSI disk
drive

/ dev/ sda1 the first partition on
the first SCSI drive

/ dev/ audi o Sound card / dev/ cdr om CD−ROM drive
/ dev/ f d0 First floppy drive / dev/ t t yS1 the second serial

port
T a b l e 6 . 7

E x a m p l e d e v i c e f i l e s

Redirecting I /O to device files

As you’ve seen it is possible to send output or obtain input from a device file.
That particular example was fairly boring, here’s another.

cat HREF=" . . / . . / sounds/ beam. au" §MACROBUTTON Ht ml ResAnchor beam. au >
/ dev/ audi o

This one sends a sound file to the audio device. The result (if you have a sound
card) is that the sound is played.

When not to

If you examine the file permissions of the device file / dev/ hda1 you’ ll find
that only the r oot user and the group di sk can write to that file. You should
not be able to redirect I/O to/from that device file (unless you are the root
user).

David Jones, Bruce Jamieson (25/02/00) Page 17

85321, Systems Administration Chapter 6: The shell

If you could it would corrupt the information on the hard−drive. There are
other device files that you should not experiment with. These other device file
should also be protected with appropriate file permissions.

/ dev/ nul l

/ dev/ nul l is the UNIX "garbage bin". Any output redirected to / dev/ nul l is
thrown away. Any input redirected from / dev/ nul l is empty. / dev/ nul l can
be used to throw away output or create an empty file.

cat / et c/ passwd > / dev/ nul l
cat > newf i l e < / dev/ nul l

The last command is one way of creating an empty file.

Exercises

• Using I/O redirection how would you perform the following tasks
− display the first field of the / et c/ passwd file sorted in descending
order
− find the number of lines in the / et c/ passwd file that contain the word
bash

Shell var iables

The shell provides a variable mechanism where you can store information for
future use. Shell variables are used for two main purposes: shell programming
and environment control. This section provides an introduction to shell
variables and their use in environment control. A later chapter discusses shell
programming in more detail.

Environment control

Whenever you run a shell it creates an environment. This environment
includes pre−defined shell variables used to store special values including

�
the format of the prompt the shell will present to you

�
your current path

�
your home directory

�
the type of terminal you are using

�
and a great deal more.

Any shell variable you create will be stored within this environment. A later
section in this chapter goes into more detail about environment control.

The set command

The set command can be used to view you shell’ s environment. By executing
the set command without any parameters it will display all the shell variables
currently within your shell’ s environment.

David Jones, Bruce Jamieson (25/02/00) Page 18

85321, Systems Administration Chapter 6: The shell

Using shell var iables

There are two main operations performed with shell variables
�

assign a variable a value
�

use a variable’s value

Assigning a value

Assigning value to a shell variable is much the same as in any programming
language variable_name=value.

my_var i abl e=hel l o
t heNum=5
myName=" Davi d Jones"

A shell variable can be assigned just about any value, though there are a few
guidelines to keep in mind.

A space is a shell special character. If you want your shell variable to contain a
space you must tell the shell to ignore the space’s special meaning. In the
above example I’ ve used the double quotes. For the same reason there should
never be any spaces around the = symbol.

Accessing a var iable’s value

To access a shell variable’s value we use the $ symbol. The $ is a shell special
character that indicates to the shell that it should replace a variable with its
value.

For example

di nbi g$ myName=" Davi d Jones"
di nbi g$ echo My name i s $myName
My name i s Davi d Jones
di nbi g$ command=l s
di nbi g$ $command
Mai l et hi cs. t xt paper s
di nbi g$ echo A$empt y:
A:

Uninitialised var iables

The last command in the above example demonstrates what the value of a
variable is when you haven’ t initialised it. The last command tries to access
the value for the variable empt y.

But because the variable empt y has never been initialised it is totally empty.
Notice that the result of the command has nothing between the A and the : .

Resetting a var iable

It is possible to reset the value of a variable as follows

myName=

This is totally different from trying this

David Jones, Bruce Jamieson (25/02/00) Page 19

85321, Systems Administration Chapter 6: The shell
myName=’ ’

This example sets the value of myName to a space character NOT nothing.

The r eadonl y command

As you might assume the r eadonl y command is used to make a shell variable
readonly. Once you execute a command like

r eadonl y my_var i abl e

The shell variable my_var i abl e can no longer be modified.

To get a list of the shell variables that are currently set to read only you run the
r eadonl y command without any parameters.

The unset command

Previously you’ve been shown that to reset a shell variable to nothing as
follows

var i abl e=

But what happens if you want to remove a shell variable from the current
environment? This is where the unset command comes in. The command

unset var i abl e

Will remove a variable completely from the current environment.

There are some restrictions on the unset command. You cannot use unset on
a read only variable or on the pre−defined variables I FS, PATH, PS1, PS2

Ar ithmetic

UNIX shells do not support any notion of numeric data types such as integer
or real. All shell variables are strings. How then do you perform arithmetic
with shell variables?

One attempt might be

di nbi g: ~$ count =1
di nbi g: ~$ Rcount =$count +1

But it won’ t work. Think about what happens in the second line. The shell sees
$count and replaces it with the value of that variable so we get the command
count =1+1. Since the shell has no notion of an integer data type the variable
count now takes on the value 1+1 (just a string of characters).

The expr command

The UNIX command expr is used to evaluate expressions. In particular it can
be used to evaluate integer expressions. For example

di nbi g: ~$ expr 5 + 6
11
di nbi g: ~$ expr 10 / 5
2
di nbi g: ~$ expr 5 \ * 10
50
di nbi g: ~$ expr 5 + 6 * 10
expr : synt ax er r or

David Jones, Bruce Jamieson (25/02/00) Page 20

85321, Systems Administration Chapter 6: The shell
di nbi g: ~$ expr 5 + 6 \ * 10
65

Note that the shell special character * has to be quoted. If it isn’ t the shell will
replace it with the list of all the files in the current directory which results in
expr generating a syntax error.

Using expr

By combining the expr command with the grave character ‘ we have a
mechanism for performing arithmetic on shell variables. For example

count =1
count =‘ expr $count + 1‘

expr restr ictions

The expr command only works with integer arithmetic. If you need to
perform floating point arithmetic have a look at the bc and awk commands.

The expr command accepts a list of parameters and then attempts to evaluate
the expression they form. As with all UNIX commands the parameters for the
expr command must be separated by spaces. If you don’ t expr interprets the
input as a sequence of characters.

di nbi g: ~$ expr 5+6
5+6
di nbi g: ~$ expr 5+6 \ * 10
expr : non−numer i c ar gument

Alternatives to expr for ar ithmetic

The expr command is the traditional approach for perform arithmetic but it is
by no means the best and has at least two major draw backs including

� it doesn’ t handle decimal points
If you want to add 5.5 and 6.5 you can’ t do it with expr.
One solution to this is the bc command

[davi d@f ai l e t mp] $ echo 5. 5 + 5 | bc
10. 5

� every use requires the creation of a new process
Chapter 5 includes a discussion of why this can be a problem and cause
shell scripts to be very slow.
An alternative to this is to use the arithemetic capabilities provided by many
of the modern shells including bash. This is what is used in the add2 script
mentioned in the previous chapter.

[davi d@f ai l e t mp] $ echo $[5 + 5]
10

Valid var iable names

Most programming languages have rules that restrict the format of variable
names. For the Bourne shell, variable names must

�
start with either a letter or an underscore character,

�
followed by zero or more letters, numbers or underscores

David Jones, Bruce Jamieson (25/02/00) Page 21

85321, Systems Administration Chapter 6: The shell

{}

In some cases you will wish to use the value of a shell variable as part of a
larger word. Curly braces { } are used to separate the variable name from the
rest of the word.

For example

You want to copy the file / et c/ passwd into the directory / home/ davi d. The
following shell variables have been defined.

di r ect or y=/ et c/
home=/ home/ davi d

A first attempt might be

cp $di r ect or ypasswd $home

This won’ t work because the shell is looking for the shell variable called
di r ect or ypasswd (there isn’ t one) instead of the variable di r ect or y.

The correct solution would be to surround the variable name di r ect or y with
curly braces. This indicates to the shell where the variable stops.

cp ${ di r ect or y} passwd $home

Environment control

Whenever you run a shell it creates an environment in which it runs. This
environment specifies various things about how the shell looks, feels and
operates. To achieve this the shell uses a number of pre−defined shell
variables. Table 6.8 summarises these special shell variables.

Var iable name Purpose
HOME your home directory

SHELL the executable program for the shell you
are using

UI D your user id
USER your username
TERM the type of terminal you are using

DI SPLAY your X−Windows display
PATH your executable path

T a b l e 6 . 8
E n v i r o n m e n t v a r i a b l e s

PS1 and PS2

The shell variables PS1 and PS2 are used to store the value of your command
prompt. Changing the values of PS1 and PS2 will change what your command
prompt looks like.

di nbi g: ~$ echo : $PS1: and : $PS2:
: \ h: \ w\ $: and : > :

David Jones, Bruce Jamieson (25/02/00) Page 22

85321, Systems Administration Chapter 6: The shell

PS2 is the secondary command prompt. It is used when a single command is
spread over multiple lines. You can change the values of PS1 and PS2 just like
you can any other shell variable.

bash extensions

You’ ll notice that the value of PS1 above is \ h: \ w\ $ but my command prompt
looks like di nbi g: ~$.

This is because the bash shell provides a number of extra facilities. One of
those facilities is that it allows the command prompt to contain the hostname
\ h(the name of my machine) and the current working directory \ w.

With older shells it was not possible to get the command prompt to display the
current working directory.

• Many first time users of older shells attempt to get the command prompt
to contain the current directory by trying this
PS1=‘ pwd‘
The pwd command displays the current working directory. Explain why
this will not work. (HINT: When is the pwd command executed?)

Var iables and sub−shells

Every time you start a new shell, the new shell will create a new environment
separate from its parent’s environment. The new shell will not be able to
access or modify the environment of its parent shell.

For example

Here’s a simple example.

di nbi g: ~$ myName=davi d create a shell variable
di nbi g: ~$ echo $myName
davi d

use it

di nbi g: ~$ bash start a new shell
di nbi g: ~$ echo my name i s $myName
my name i s

try to use the parent shell’ s variable

di nbi g: ~$ exi t exit from the new shell and return to the
parent

di nbi g: ~$ echo $myName
davi d

use the variable again

As you can see a new shell cannot access or modify the shell variables of its
parent shells.

expor t

There are times when you may wish a child or sub−shell to know about a shell
variable from the parent shell. For this purpose you use the expor t command.
For example,

di nbi g: ~$ myName=Davi d Jones
di nbi g: ~$ bash
di nbi g: ~$ echo my name i s $myName

David Jones, Bruce Jamieson (25/02/00) Page 23

85321, Systems Administration Chapter 6: The shell
my name i s
di nbi g: ~$ l ogout
di nbi g: ~$ expor t myName
di nbi g: ~$ bash
di nbi g: ~$ echo my name i s $myName
my name i s davi d
di nbi g: ~$ exi t

Local var iables

When you export a variable to a child shell the child shell creates a local copy
of the variable. Any modification to this local variable cannot be seen by the
parent process.

There is no way in which a child shell can modify a shell variable of a parent
process. The expor t command only passes shell variables to child shells. It
cannot be used to pass a shell variable from a child shell back to the parent.

For example

di nbi g: ~$ echo my name i s $myName
my name i s davi d
di nbi g: ~$ expor t myName
di nbi g: ~$ bash
di nbi g: ~$ myName=f r ed # chi l d shel l modi f i es var i abl e
di nbi g: ~$ exi t
di nbi g: ~$ echo my name i s $myName
my name i s davi d
t her e i s no change i n t he par ent

Advanced var iable substitution

The shell provides a number of additional more complex constructs associated
with variable substitution. The following table summarises them.

Construct Purpose
${ variable: −value} replace this construct with the variable’s value if it

has one, if it doesn’ t, use value but don’ t make
variable equal to value

${ variable: =value} same as the above but if variable has no value
assign it value

${ variable: ?message} replace the construct with the value of the variable if
it has one, if it doesn’ t then display message onto
stderr if message is null then display prog:

variable: par amet er nul l or not set on stderr

${ variable: +value} if variable has a value replace it with value
otherwise do nothing

T a b l e 6 . 9
A d v a n c e d v a r i a b l e s u b s t i t u t i o n

For example

di nbi g: ~$ myName=
di nbi g: ~$ echo my name i s $myName
my name i s
di nbi g: ~$ echo my name i s ${ myName: −" NO NAME" }
my name i s NO NAME
di nbi g: ~$ echo my name i s $myName
my name i s

David Jones, Bruce Jamieson (25/02/00) Page 24

85321, Systems Administration Chapter 6: The shell
di nbi g: ~$ echo my name i s ${ myName: =" NO NAME" }
my name i s NO NAME
di nbi g: ~$ echo my name i s $myName
my name i s NO NAME
di nbi g: ~$ her Name=
di nbi g: ~$ echo her name i s ${ her Name: ?" she hasn’ t got a name" }
bash: her Name: she hasn’ t got a name
di nbi g: ~$ echo her name i s ${ her Name: ?}
bash: her Name: par amet er nul l or not set

Evaluation order

In this chapter we’ve looked at the steps the shell performs between getting the
user’s input and executing the command. The steps include

�
I/O redirection
Where the shell changes the direction in which I/O is being sent.

�
variable substitution
The shell replaces shell variables with the corresponding values.

�
filename substitution
This is where the shell replaces globbing characters with matching
filenames.

An important question is in what order does the shell perform these steps?

Why order is impor tant

Look at the following example

di nbi g: ~$ pi pe=\ |
di nbi g: ~$ echo $pi pe
|
di nbi g: ~$ st ar =\ *
di nbi g: ~$ echo $st ar
Mai l News README VMSpec. ps. bak acm. bhx acm2. dot

In the case of the echo $st ar t command the shell has seen $st ar and
replaced it with its value * . The shell sees the * and replaces it with the list of
the files in the current directory.

In the case of the echo $pi pe command the shell sees $pi pe and replaces it
with its value | . It then displays | onto the screen.

Why didn’ t it treat the | as a special character? If it had then echo |

would’ve produced something like the following.

[davi d@f ai l e t mp] $ echo |
>

The >, produced by the shell not typed in by the user, indicates that the shell
is still waiting for input. The shell is still expecting another command name.

The reason this isn’ t produced in the previous example is related to the order
in which the shell performs its analysis of shell special variables.

The order

The order in which the shell performs the steps is
�

I/O redirection
�

variable substitution

David Jones, Bruce Jamieson (25/02/00) Page 25

85321, Systems Administration Chapter 6: The shell�
filename substitution

For the command

echo $PI PE

the shell performs the following steps
�

check for any I/O redirection characters, there aren’ t any, the command
line is currently echo $PI PE

�
check for variables, there is one $PI PE, replace it with its value, the
command line is now echo |

�
check for any wildcards, there aren’ t any

So it now executes the command echo | .

If you do the same walk through for the echo $st ar command you should see
how its output is achieved.

The eval command

What happens if I want to execute the following command

l s $pi pe mor e

using the shell variable pi pe from the example above?

The intention is that the pi pe shell variable should be replaced by its value |
and that the | be used to redirect the output of the l s command to the mor e

command.

Due to the order in which the shell performs its evaluation this won’ t work.

Doing it twice

The eval command is used to evaluate the command line twice. eval is a
built−in shell command. Take the following command (using the pi pe shell
variable from above)

eval l s $pi pe mor e

The shell sees the $pi pe and replaces it with its value, | . It then executes the
eval command.

The eval command repeats the shell’ s analysis of its arguments. In this case it
will see the | and perform necessary I/O redirection while running the
commands.

Conclusion

The UNIX command line interface is provided by programs called shells. A
shell’ s responsibilities include

�
providing the command line interface

�
performing I/O redirection

�
performing filename substitution

�
performing variable substitution

David Jones, Bruce Jamieson (25/02/00) Page 26

85321, Systems Administration Chapter 6: The shell�
and providing an interpreted programming language

A shell recognises a number of characters as having special meaning.
Whenever it sees these special characters it performs a number of tasks that
replace the special characters.

When a shell is executed it creates an environment in which to run. This
environment consists of all the shell variables created including a number of
pre−defined shell variables that control its operation and appearance.

Review Questions

6.1

What is the effect of the following command sequences?
�

l s | wc −l
�

r m ???
�

who | wc −l
�

mv pr ogs/ * / usr / st eve/ backup
�

l s * . c | wc −l
�

r m * . o
�

who | sor t
�

cd ; pwd
�

cp memo1 . .
�

l s −l | sor t +4n

6.2

What is the output of the following commands? Are there any problems? How
would you fix it?

�
echo t hi s i s a st ar *

�
echo ai n\ \ \ \ ’ t you my f r i end

�
echo " * * hel l o * * "

�
echo " t he out put of t he l s command i s ‘ l s ‘ "

�
echo ‘ t he out put of t he pwd command i s ‘ pwd‘ ‘

6.3

Which of the following are valid shell variable names?
�

XxXxXxXx
�

_
�

12345
�

HOMEDI R
�

f i l e. name
�

_dat e
�

f i l e_name

David Jones, Bruce Jamieson (25/02/00) Page 27

85321, Systems Administration Chapter 6: The shell�
x0−9

�
f i l e1

�
Sl i mi t

6.4

Suppose your HOME directory is / usr / st eve and that you have sub−
directory as shown in figure 6.3.

Assuming you just logged onto the system and executed the following
commands:
docs=/ usr / st eve/ document s
l et =$docs/ l et t er s
pr op=$docs/ pr oposal s
write commands to do the following using these variables

�
List the contents of the document s directory

�
Copy all files from the l et t er s directory to the pr oposal s directory

�
Move all files with names that contain a capital letter from the l et t er s

directory to the current directory.
�

Count the number of files in the memos directory.

What would be the effect of the following commands?
�

l s $l et / . .
�

cat $pr op/ sys. A >> $l et / no. JSK
�

echo $l et / *
�

cp $l et / no. JSK $pr op
�

cd $pr op
�

f i l es_i n_pr op=‘ echo $pr op* ‘
�

cat ‘ echo $l et \ * ‘

F i g u r e 6 . 3
R e v i e w Q u e s t i o n 6 . 4

David Jones, Bruce Jamieson (25/02/00) Page 28

Chapter X Chapter Title

David Jones and Bruce Jamieson (25/02/00) Page 29

Chapter X Chapter Title

David Jones and Bruce Jamieson (25/02/00) Page 30

