85321, Systems Administration Chapter 6: The shell

Chapter 6

The Shell

| ntroduction

Y ou will hear many people complain that the UNIX operating system is hard
to use. They are wrong. What they actually mean to say isthat the UNIX
command line interface is difficult to use. Thisisthe interface that many
people think isUNIX. Infact, thiscommand line interface, provided by a
program called ashell, is not the UNIX operating system and it is only one of
the many different interfaces that you can use to perform tasks under UNIX.
By this stage many of you will have used some of the graphical user interfaces
provided by the X—Windows system.

The shell interface is a powerful tool for a Systems Administrator and one that
isoften used. This chapter introduces you to the shell, it's facilities and
advantages. It isimportant to realise that the shell isjust another UNIX
command and that there are many different sorts of shell. The responsibilities
of the shell include

providing the command line interface
performing 1/0 redirection
performing filename substitution
performing variable substitution

w W W W W

and providing an interpreted programming language

The aim of this chapter isto introduce you to the shell and the first four of the
responsibilities listed above. The interpreted programming language provided
by ashell isthe topic of chapter 8.

Executing Commands

As mentioned previoudly the commands you use such as| s and cd are stored
on aUNIX computer as executable files. How are these files executed? This
isone of the major responsibilities of ashell. The command line interface at
which you type commands is provided by the particular shell program you are
using (under Linux you will usually be using ashell called bash). When you
type acommand at thisinterface and hit enter the shell performs the following
steps

§ wait for the user to enter acommand

§ perform anumber of tasksif the command contains any special characters

§ find the executable file for the command, if the file can’t be found generate
an error message

§ fork off achild process that will execute the command,
§ wait until the command is finished (the child process dies) and then return
to the top of thelist

David Jones, Bruce Jamieson (25/ 02/ 00) Page 1

85321, Systems Administration Chapter 6: The shell

Different shells

There are many different types of shells. Table 6.1 provides alist of some of
the more popular UNIX shells. Under Linux most users will be using bash,
the Bourne Again Shell. bash is an extension of the Bourne shell and uses the
Bourne shell syntax. All of the examplesin thistext are written using the
bash syntax.

All shellsfulfil the same basic responsibilities. The main differences between
shellsinclude

§ theextrafeatures provided
Many shells provide command history, command line editing, command
completion and other special features.

§ thesyntax
Different shells use dightly different syntax for some commands.

Shell Program name Description
Bourne shell sh the origina shell from AT&T, available on

all UNIX machines

C shell csh shell developed as part of BSD UNIX

Korn shell ksh AT&T improvement of the Bourne shell
Bourne again shell bash Shell distributed with Linux, version of

Bourne shell that includes command line
editing and other nice things

Table 6.1
Different UNIX shells
The C shell and its various versions have been popular in some fields.
However, there are a number of problems with the C shell. The 85321
Website contains a pointer to a document entitled "C Shell Considered
Harmful". If you really want to know why we use the Bourne shell syntax
read this document.

Starting a shell

When you log onto a UNIX machine the UNIX login process automatically
executes a shell for you. Which shell is executed is defined in the last field of
your entry inthe/ et ¢/ passwd file.

Thelast field of every line of / et ¢/ passwd specifies which program to
execute when the user logsin. The program is usualy a shell (but it doesn’t
have to be).

Exercises
|| * What shell is started when you login? ||

The shell itself isjust another executable program. This means you can choose
to run another shell in the same way you would run any other command by
smply typing in the name of the executable file. When you do the shell you
are currently running will find the program and execute it.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 2

85321, Systems Administration Chapter 6: The shell

To exit ashell any of the following may work (depending on how your
environment is set up).

§ logout

§ exit

§ CTRL-D
By default control D isthe end of file (EOF) marker in UNIX. By
pressing CTRL-D you aretelling the shell that it has reached the end of

thefileand so it exits. In alater chapter which examines shell
programming you will see why shells work with files.

For example

The following is a simple example of starting other shells. Most different
shells use a different command-line prompt.

bash$ sh
$ csh

% tcsh

> exit
%

$

bash$
In the above my original login shell isbash. A number of different shells are
then started up. Each new shell in this example changes the prompt (this

doesn’'t always happen). After starting up thet csh shell I’ ve then exited out of
all the new shells and returned to the original bash.

Parsing the command line

Thefirst task the shell performs when you enter acommand is to parse the
command line. This means the shell takes what you typed in and breaks it up
into components and a so changes the command-line if certain special
charactersexist. Special characters are used for a number of purposes and are
used to modify the operation of the shell.

Table 6.2 lists most of the specia characters which the shell recognises and the
meaning the shell places on these characters. In the following discussion the
effect of this meaning and what the shell does with these special characters
will be explained in more detail.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 3

85321, Systems Administration Chapter 6: The shell

Character(s) Meaning

white space Any white space characters (tabs, spaces)
are used to separate arguments multiple
white space characters are ignored

new i ne character used to indicate the end of the command-
line
C special

HREF="#Quotes'SMACROBUTTON
HtmlIResAnchor quote characters that
change the way the shell interprets special
characters

& Used after acommand, tells the shell to
run the command in the background

< >> << | I/O redirection characters
A I B filename substitution characters
$ indicate a shell variable

used to separate multiple commands on
the oneline

Table 6.2
Shell special characters

The Command Line

The following section examines, and attempts to explain, the special shell
characters which influence the command line. Thisinfluence includes

§ breaking the command line into arguments
§ allowsmore than one command to aline
§ alowscommandsto be run in the background

Arguments

One of thefirst steps for the shell isto break the line of text entered by the
user into arguments. Thisisusually the task of whitespace characters.

What will the following command display?
echo hello there ny friend
It won't display
hell o there ny friend
instead it will display
hello there ny friend

When the shell examines the text of acommand it dividesit into the command
and alist of arguments. A white space character separates the command and
each argument. Any duplicate white space characters areignored. The
following diagram demonstrates.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 4

85321, Systems Administration Chapter 6: The shell

coramand line echo hello there mv friend

Shell

L

command echo
arguments 1:heilo
2: there
3 my
4: friend

Figure 6.1
Shells, white space and arguments

Eventually the shell will execute the command. The shell passesto the
command alist of arguments. The command then proceeds to perform its
function. In the case above the command the user entered was the echo
command. The purpose of the echo command isto display each of its
arguments onto the screen separated by a single space character.

The important part here isthat the echo command never sees all the extra
gpace characters between hel | o andt her e. The shell removesthiswhilst it
is performing its parsing of the command line.

Onecommand to aline

The second shell specia character in Table 6.2 isthe newline character. The
newline character tells the shell that the user has finished entering a command
and that the shell should start parsing and then executing the command. The
shell makes a number of assumptions about the command line a user has
entered including

§ thereisonly one command to each line

§ the shell should not present the next command prompt until the command
the user entered is finished executing.

This section examines how some of the shell special characters can be used to
change these assumptions.

Multiple commandsto aline

The; character can be used to place multiple commands onto the one line.

Is ; cd /etc ; Is

The shell seesthe; characters and knows that this indicates the end of one
command and the start of another.

Commands in the background

David Jones, Bruce Jamieson (25/ 02/ 00) Page 5

bash$
bash$

l's —I

85321, Systems Administration Chapter 6: The shell

By default the shell will wait until the command it is running for the user has
finished executing before presenting the next command line prompt. This
default operation can be changed by using the & character. The & character
tells the shell that it should immediately present the next command line prompt
and run the command in the background.

This provides major benefitsif the command you are executing is going to
take along time to complete. Running it in the background allows you to go
on and perform other commands without having to wait for it to complete.

However, you won't wish to use this all the time as some confusion between
the output of the command running in the background and shell command
prompt can occur.

For example

The sl eep command usually takes on argument, anumber. This number
represents the number of secondsthe s| eep command should wait before
finishing. Try the following commands on your system to see the difference
the & character can make.

sl eep 10
sleep 10 &

Filename substitution

In the great majority of situations you will want to use UNIX commands to
manipulate files and directoriesin someway. To make it easier to manipulate
large numbers of commands the UNIX shell recognises a number of characters
which should be replaced by filenames.

This processis caled ether filename substitution or filename globbing.

For example

Y ou have a directory which contains HTML files (an extension of . ht m),
GIF files (an extension of . gi f), JPEG files (an extension . j pg) and arange
of other files. You wish to find out how big all the HTML filesare.

The hard way to do thisisto usethel s —|I command and typein al the
filenames.

The simple method is to use the shell special character * , which represents any
0 or more charactersin afile name

*. htni

In the above, the shell seesthe* character and recognisesit as a shell specia
character. The shell knowsthat it should replace* . ht m with any files that

have filenames which match. That is, have O or more characters, followed by
.htm

UNI X doesn’t use extensions

MS-DOS and Windows treat afile'’s extension as special.
UNIX does not do this. Refer to the previous chapter and its
discussion of magic numbers.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 6

85321, Systems Administration Chapter 6: The shell
Table 6.3 lists the other shell special characters which are used in filename
substitution.

Character What it matches
* O or nore characters
? 1 character
[] nmat ches any one character between
t he brackets
[~] mat ches any one character NOT in
t he brackets
Table 6.3

Filename substitution special characters

Some examples of filename substitution include

§ cat *
* will be replaced by the names of al the files and directoriesin the
current directory. The cat command will then display the contents of all
thosefiles.

§ Is a*bc
a*bc matches all filenames that start with a, end with bc and have any
charactersin between.

§ Is a?bc
a?bc matches all filenamesthat start with a, end with bc and have only
ONE character in between.

§ Is [ic]???
[i c¢] ??? matches any filename that starts with either ai or ¢ followed by
any other three letters.

§ Is ["ic]???
Same as the previous command but instead of any file that startswithi or
¢ match any filethat DOESN’T start withi or c.

Exercises

» Given thefollowing filesin your current directory:

$1s

feb86 janl2.89

j anl9. 89 jan26. 89

| an5. 89 jan85 jan86 jan87
J an88 rmar 88 nenol nenoll
meno2 nmeno2. sv

What would be the output from the following commands?
echo *

echo *["0-9]

echo nf a-df -z] *

echo [A-Z] *

echo jan*

echo *.*

echo ??2?77??

echo *89
echo jan?? feb?? nar??
echo [fjn[ae][bnr]

Removing special meaning

David Jones, Bruce Jamieson (25/ 02/ 00) Page 7

hell o

echo

85321, Systems Administration Chapter 6: The shell
There will be times when you won’t want to use the shell special characters as
shell specia characters. For example, what happensif you really do want to

display
there ny friend
How do you do it?
It's for circumstances like this that the shell provides shell special characters

caled quotes. The quote characters’ " \ tell the shell to ignore the meaning
of any shell special character.

To display the above you could use the command

"hello there ny friend

Thefirst quote character * tells the shell to ignore the meaning of any special
character between it and the next’ . In this case it will ignore the meaning of
the multiple space characters. So the echo command receives one argument
instead of four separate arguments. The following diagram demonstrates.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 8

85321, Systems Administration Chapter 6: The shell

command line echo ‘helio there my friend:

Shell

L

command echo
arguments 1: helio there my friend

Figure 6.2
Shells, commands and quotes

Table 6.4 lists each of the shell quote characters, their names and how the
influence the shell.

Char acter Name Action

single quote (the shell will ignore all
specia characters contained
within apair of single
quotes

double quote |the shell will ignore all
specia characters EXCEPT
$ * \ contained within a
pair of double quotes

\ backdash |the shell ignores any special
character immediately
following a backslash

Table 6.4
Quote characters

Exampleswith quotes

Try the following commands and observe what happens

§

§

echo |’ m Davi d.

This causes an error because the® quote character must be used as one of
apair. Sincethisline doesn't have asecond® character the shell
continues to ignore al the shell special charactersit sees, including the
new line character which indicates the end of a command.

echo I\’ m Davi d.

Thisisthe “correct” implementation of what was attempted above. The\
guote character is used to remove the special meaning of the * character so
itisused asanormal character

echo *
echo ' *’

echo *
The previous three show two different approaches to removing the special
meaning from a single character.

echo one two three four

David Jones, Bruce Jamieson (25/ 02/ 00) Page 9

85321, Systems Administration Chapter 6: The shell
§ echo 'one two three four’

§ echo "one two three four"

§ echo hello there \
ny name is david
Herethe\ isused to ignore the special meaning of the newline character at
the end of the first line. Thiswill only work if the newline character is
immediately after the\ character. Remember, the\ character only
removes the special meaning from the next character.

§ echo files =; Is

§ echo files =\; Is
Since the special meaning of the ; character isremoved by the\ character
means that the shell no longer assumes there are two commands on this
line. Thismeansthel s characters are treated ssimply as normal characters,
not a command which must be executed.

Exercises

» Create files with the following names
st ar s*
-top
hello ny friend
"goodbye"
Now delete them.

* Aswas mentioned in the previous chapter the{} and; used intheexec
and ok actions of the fi nd command must be quoted. The normal way of
doing thisisto use the\ character to remove the special meaning. Why
doesn’t the use of the single quote character work. e.g. why the following

command doesn’t work.
find . -name *.bak -ok rm’'{} ;’

| nput/output redirection

As the name suggests input/output (1/O) redirection is about changing the
source of input or destination of output. UNIX 1/O redirection is very similar
(in part) to MS-DOS I/O redirection (guess who stole from who). 1/0
redirection, when combined with the UNIX philosophy of writing commands
to perform one task, is one of the most important and useful combinationsin
UNIX.

How it works

All'1/0 on aUNIX system is achieved using files. Thisincludes1/O to the
screen and from a keyboard. Every process under UNIX will open a number of
different files. To keep atrack of thefilesit has, a process maintains afile
descriptor for every fileit isusing.

File descriptors

David Jones, Bruce Jamieson (25/ 02/ 00) Page 10

85321, Systems Administration Chapter 6: The shell
A file descriptor isasmall, non—negative integer. When a process reads/writes
to/from afileit passes the kernel the file descriptor and asks it to perform the
operation. The kernel knows which file the file descriptor refersto.

Standard file descriptors

Whenever the shell runs a new program (that iswhen it creates a new process)
it automatically opens three file descriptors for the new process. Thesefile
descriptors are assigned the numbers 0, 1 and 2 (numbers from then on are
used by file descriptors the process uses). The following table summarises
their names, number and default destination.

Name Filedescriptor | Default destination
standard input (stdin) 0 the keyboard
standard output (stdout) 1 the screen
standard error (stderr) 2 the screen

Table 6.5
Standard file descriptors

By default whenever a command asks for input it takes that input from
standard input. Whenever it produces output it puts that output onto standard
output and if the command generates errors then the error messages are placed
onto standard error.

For example, the Is command displays an error message when it can’t find the
fileit was given.

[root @aile 85321]# Is /fred
Is: /fred: No such file or directory

The "No such file or directory” message is sent to standard error.

Changing direction

By using the special charactersin the table below it is possible to tell the shell
to change the destination for standard input, output and error.

For example

cat /etc/passwd > hello

tells the shell rather than send the contents of the/ et ¢/ passwd file to standard
output, it should send it to afile called hel | o.

David Jones, Bruce Jamieson (25/02/00) Page 11

85321, Systems Administration Chapter 6: The shell

Character(s) Result
Command < file Take standard input from file
Command > file Place output of conmand intofil e.
Overwrite anything already in the file.
Command >> file Append the output of conmand intofil e.
command << | abel Take standard input for conmand from the
following lines until aline that contains
| abel by itself
* command’ execute conmand and replace command:
with the output of the command
commandl | conmmand2 pass the output of conmand1 to the input
of command2
commandl 2> file redirect standard error of conmand1 to
file. The?2 can actualy be replaced by
any number which represents afile
descriptor
commandl >& file_descriptor redirect output of conmand1 to a
file_descriptor (theactua number for
the file descriptor)

Table 6.6
1/O redirection constructs

Using standard 1/O

Not all commands use standard input and standard output. For example the cd
command doesn’t take any input and doesn’t produce any output. It smply
takes the name of a directory as an argument and changes to that directory. It
does however use standard error if it can’t change into the directory.

It doesn’t make senseto redirect the I/O of some commands

For example, the cp command doesn’t produce any output. It may produce
errorsif it cannot copy the requested file but otherwise there is no output. So

cp /etc/passwd /tmp/passwd > output.dat
does not make sense.

Filters

On the other hand some commands will always take their input from standard
input and put their output onto standard output. All of the
HREF="../chap2/sec4p5.html"8MACROBUTTON HtmlResAnchor filters
discussed earlier in the textbook act thisway.

As an example lets take the cat command mentioned previoudly. If you
execute the cat command without supplying it with any parametersit will take
itsinput from standard input and place its output onto standard outpui.

Try it. Execute the command cat with no arguments. Hit CTRL-D, on aline by
itself,to signal the end of input. You should find that cat echoes back to the
screen every line you type.

Try the same experiment with the other filters mentioned earlier.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 12

85321, Systems Administration Chapter 6: The shell

1/O redirection examples

§ Is >the.files
Create afilet he. fi | es that containsthelist of filesin the current
directory.

§ Is/fred 2> /dev/null
Send any error messages to the null device (throw it away).

§ cat the.files | nore
Same effect as the command nor e t he. fi | es. Display the content of the
filethe. fil es one page at atime.

§ Is /etc >> the.files
Add thelist of filesin from the/ et ¢ directory onto the end of thefile
the.files.

§ echo nunber of lines in the.files = ‘wc -l the.files'
Execute the commandwe -1 the. fil es. Replaceit with its output and
then execute the echo command. Will display output smilar to nunber of
lines in the.files = 66

§ cat << finished > input
Ask the user to type in information until they enter aline with just
fi ni shed on it. Then copy all the information entered by the user into the
filecaledi nput

§ cd/etc > output.file
Create an empty file called out put . fi | e. The cd command generates no
output so redirecting its output creates an empty file.

§ Is | cd
An error message. cd doesn’'t accept input so when the shell triesto send
the output of the | s command to the cd command it doesn’t work.

§ echo ‘wec -l /etc/passwd’
Execute thewc command and pass its output to the echo command as
arguments.

Redirecting standard error

There will be times where you wish to either throw standard error away, join
standard error and standard output, or just view standard error. This section
provides examples of how this can be accomplished using 1/O redirection.

the file xx doesn’t exist
display an error message on standard error

redirect standard output to the file
errors, no change

redirect standard error to thefile
er r or s nothing on the screen

David Jones, Bruce Jamieson (25/ 02/ 00) Page 13

85321, Systems Administration Chapter 6: The shell
$Isxx

/bin/ls: xx: No such file or

directory

$lsxx>errors
/bin/ls; xx: No such file or
directory

$lsxx 2> errors

filechapl. ps doesexist sO
we get output but the errors still go to the
file

try to send both stdout and stderr to the
errors file, but stdout doesn’t go

try adifferent order and it
does work, why?

$lschapl.psxx 2> errors
chapl.ps

$lschapl.psxx >& 22> errors
chapl.ps

$lschapl.psxx 2> errors>& 2
$

Evaluating from left to right

The shell evaluates arguments from left to right, that isit works with each
argument starting with those from the left. This can influence how you might
want to use the 1/0 redirection special characters.

For example

An example of why thisisimportant is when you want to send both standard
output and standard error of a command to the same file.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 14

85321, Systems Administration Chapter 6: The shell
L ets say we are attempting to view the attributes of the two fileschapl. ps
and xx. Theideaisthat the file xx does not exist so thel s command will
generate an error when it can't find the file. Both the error and the file
attributes of thechapl. ps file are meant to be sent to afilecaled err or s.
So wetry to use

« 2>&1
This should redirect file descriptor 2 to standard output (refer back to Table
6.6). It should make standard error (file descriptor 2) go to the same place
as standard output (file descriptor 1)

* > output.and.errors
This sends standard output to the file output.and.errors (we hope).

Letstry and find out.

$Is -l chapl.ps xx 2>& > output.and.errors

I's: xx: No such file or directory

[david@aile tnp]$ cat output.and.errors

=r W=I W-I —— 1 david davi d 0 Jan 9 16:23 chapl. ps
Asyou can seeit doesn’'t work. The error message till appears on the screen
and doesn’t get sent to the output.and.errorsfile.

Can you explain why?

The reason it doesn’t work is that the shell evaluates the arguments of this
command from left to right. The order of evaluation goes like this

§ Is
The first argument tells the shell what command should be executed.

§ -l
The shell won't recognise any special charactersin thisargument so it will
passit on directly to the command.

§ chapl. ps
Again the shell won't see any shell special characters and so passes this
argument directly onto the command.

§ xx
Same again.

§ 2>&1
Now some action. The shell recognises some special characters here. It
knowsthat >& are I/O redirection characters. These characterstell the
shell that it should redirect standard error for this command to the same
place as standard output. The current location for standard output isthe
terminal (the screen). So standard error isredirected to the terminal. No
change from normal.

§ >
Again the shell will see ashell special character. In this case, the shell

knows that standard output should be redirected to the location specified in
the next argument.

§ output.and.errors
Thisiswhere the shdll will send the standard error of the command, afile
caled out put . and. errors.

The outcome of thisisthat standard output still goes to the termina and
standard error goesto thefile out put . and. errors.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 15

85321, Systems Administration Chapter 6: The shell
What we wanted is for both standard output and standard error to go to the
file. The problem isthe order in which the shell evaluated the arguments. The
solution isto switch the I/O redirection shell characters.

[david@aile tnmp]$ |Is -I chapl.ps xx > output.and.errors 2>&1

[david@aile tnp]$ cat output.and.errors

[s: xx: No such file or directory

=r W=r W-I —— 1 david davi d 0 Jan 9 16:23 chapl. ps
Changing the order means that standard output is redirected to the file
out put . and. err or s FIRST and then standard error is redirected to where
standard output is pointing (the samefile).

Everythingisafile

One of the features of the UNIX operating system is that almost everything
can be treated as afile. This combined with 1/O redirection alows you to
achieve some powerful and interesting results.

You've aready seen that by default stdin is the keyboard and stdout is the
screen of your terminal. The UNIX operating system treats these devices as
files (remember the shell sets up file descriptors for standard input/output).
But which file is used?

tty
Thetty command is used to display the filename of the terminal you are
using.

$tty
/dev/ttypl

In the above example my terminal is accessed through the file/ dev/ ttyp1l.
Thismeansif | execute the following command

cat /etc/passwd > /dev/ttypl

standard output will be redirected to / dev/ t t yp1 which iswhere it would’ ve
gone anyway.

Exercises

David Jones, Bruce Jamieson (25/ 02/ 00) Page 16

85321, Systems Administration Chapter 6: The shell

* What would the following command do?
s > "tty"

Devicefiles

/ dev/ ttypl isan example of adevicefile. A devicefileisainterfaceto one
of the kernel’sdevice drivers. A device driver isapart of the Linux kernel. It
knows how to talk to a specific hardware device and presents a standard
programming interface that is used by software.

When you redirect 1/0 to/from a device file the information is passed through
the devicefile, to the device driver and eventually to the hardware device or
peripheral. In the previous example the contents of the/ et c/ passwd file were
sent through the devicefile/ dev/ t typl, to adevice driver. The device driver
then displayed it on an appropriate device.

/ dev

All of the system’s device files will be stored under the directory / dev. A
standard Linux system islikely to have over 600 different devicefiles. The
following table summarises some of the devicefiles.

filename purpose filename purpose
I dev/hda [Thefirst IDE disk / dev/ hdal the first partition on
drive thefirst IDE disk
drive
I dev/sda [Thefirst SCSI disk / dev/ sdal the first partition on
drive the first SCSI drive
I dev/audi o Sound card / dev/ cdrom CD-ROM drive
/dev/td0 |First floppy drive /dev/ttySl the second serial
port

Table 6.7
Example device files

Redirecting 1/O to devicefiles

Asyou've seen it is possible to send output or obtain input from a devicefile.
That particular example was fairly boring, here' s another.

cat HREF="../../sounds/ beam au" 8MACROBUTTON Ht nl ResAnchor beam au >
/ dev/ audi o

This one sends a sound file to the audio device. The result (if you have a sound
card) isthat the sound is played.
When not to

If you examine the file permissions of the devicefile/ dev/ hdal you'll find
that only ther oot user and the group di sk can write to that file. Y ou should
not be able to redirect 1/0 to/from that device file (unless you are the root
user).

David Jones, Bruce Jamieson (25/ 02/ 00) Page 17

85321, Systems Administration Chapter 6: The shell
If you could it would corrupt the information on the hard—drive. There are
other device files that you should not experiment with. These other devicefile
should also be protected with appropriate file permissions.

/ dev/ nul |

/ dev/ nul | isthe UNIX "garbage bin". Any output redirected to/ dev/ nul | is
thrown away. Any input redirected from/ dev/ nul | isempty. / dev/ nul | can
be used to throw away output or create an empty file.

cat /etc/passwd > /dev/null
cat > newfile < /dev/null

The last command is one way of creating an empty file.

Exercises

» Using I/O redirection how would you perform the following tasks
— display thefirst field of the/ et ¢/ passwd file sorted in descending
order
- find the number of linesin the/ et c/ passwd file that contain the word
bash

Shell variables

The shell provides a variable mechanism where you can store information for
future use. Shell variables are used for two main purposes: shell programming
and environment control. This section provides an introduction to shell
variables and their use in environment control. A later chapter discusses shell
programming in more detail.

Environment control

Whenever you run a shell it creates an environment. This environment
includes pre—defined shell variables used to store special valuesincluding

§ theformat of the prompt the shell will present to you
your current path

your home directory

the type of terminal you are using

w W W W

and agreat deal more.

Any shell variable you create will be stored within thisenvironment. A later
section in this chapter goes into more detail about environment control.

Theset command

The set command can be used to view you shell’ s environment. By executing
the set command without any parametersit will display al the shell variables
currently within your shell’ s environment.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 18

85321, Systems Administration Chapter 6: The shell

Using shell variables

There are two main operations performed with shell variables
§ assignavariableavalue

§ useavariable svalue

Assigning a value

Assigning value to a shell variable is much the same asin any programming
language vari abl e_name=val ue.
ny_vari abl e=hell o

t heNume5
nmyName="Davi d Jones"

A shell variable can be assigned just about any value, though there are afew
guidelinesto keep in mind.

A space isashell special character. If you want your shell variable to contain a
space you must tell the shell to ignore the space’ s specia meaning. In the
above example I’ ve used the double quotes. For the same reason there should
never be any spaces around the = symbol.

Accessing avariable' svalue

To access ashell variable' s value we use the $ symbol. The $ isa shell specia
character that indicates to the shell that it should replace a variable with its
value.

For example

di nbi g$ nyNane="Davi d Jones"

di nbi g$ echo My nane is $nyNane
My name is David Jones

di nbi g$ conmmand=l s

di nbi g$ $command

Mai | ethics.txt papers

di nbi g$ echo A$enpty:

A

Uninitialised variables

The last command in the above example demonstrates what the value of a
variable iswhen you haven't initialised it. The last command tries to access
the value for the variable enpt y.

But because the variable enpt y has never been initialised it is totally empty.
Notice that the result of the command has nothing between the A and the : .

Resetting a variable

It is possible to reset the value of avariable asfollows
my Nanme=
Thisistotaly different from trying this
David Jones, Bruce Jamieson (25/02/00) Page 19

85321, Systems Administration Chapter 6: The shell

my Name='

This example sets the value of nyNane to a space character NOT nothing.

Ther eadonl y command

Asyou might assume ther eadonl y command is used to make a shell variable
readonly. Once you execute a command like

readonly ny variabl e

The shell variable ny_vari abl e can no longer be modified.

To get alist of the shell variables that are currently set to read only you run the
readonl y command without any parameters.

Theunset command

Previously you’ ve been shown that to reset a shell variable to nothing as
follows

vari abl e=

unset

But what happensif you want to remove a shell variable from the current
environment? Thisis where the unset command comesin. The command

vari abl e
Will remove a variable completely from the current environment.

There are some restrictions on the unset command. Y ou cannot use unset on
aread only variable or on the pre-defined variables| FS, PATH, PS1, PS2

Arithmetic

UNIX shells do not support any notion of numeric data types such as integer
or real. All shell variables are strings. How then do you perform arithmetic
with shell variables?

One attempt might be

di nbi g: ~$ count =1
di nbi g: ~$ Rcount =$count +1

But it won’t work. Think about what happensin the second line. The shell sees
$count and replacesit with the value of that variable so we get the command
count =1+1. Since the shell has no notion of an integer data type the variable
count now takeson the value 1+1 (just astring of characters).

Theexpr command

The UNIX command expr isused to evaluate expressions. In particular it can
be used to evaluate integer expressions. For example

di nbig: ~$ expr 5 + 6

11

di nbig: ~$ expr 10 / 5

2
di nbig: ~$ expr 5 * 10

50

dinbig:~$% expr 5 + 6 * 10

expr:

syntax error
David Jones, Bruce Jamieson (25/ 02/ 00) Page 20

) 85321, Systems Administration Chapter 6: The shell
dinbig:~% expr 5 + 6 * 10

65
Note that the shell special character * hasto be quoted. If it isn’'t the shell will
replace it with the list of all the filesin the current directory which resultsin
expr generating a syntax error.
Using expr
By combining the expr command with the grave character © we have a
mechanism for performing arithmetic on shell variables. For example
count =1

count = expr $count + 1

expr restrictions

The expr command only works with integer arithmetic. If you need to
perform floating point arithmetic have alook at the bc and awk commands.

The expr command accepts alist of parameters and then attempts to evauate
the expression they form. Aswith al UNIX commands the parameters for the
expr command must be separated by spaces. If you don’t expr interprets the
input as a sequence of characters.

di nbi g: ~$ expr 5+6

5+6

di nbi g: ~$ expr 5+6 * 10
expr: non-numeric argunent

Alternativesto expr for arithmetic

The expr command is the traditional approach for perform arithmetic but it is
by no means the best and has at |east two major draw backs including

* it doesn’'t handle decimal points
If you want to add 5.5 and 6.5 you can’t do it with expr.
One solution to thisis the bc command

[david@aile tnmp]$ echo 5.5 + 5 | bc
10.5

* every userequiresthe creation of a new process
Chapter 5 includes a discussion of why this can be a problem and cause
shell scriptsto be very slow.
An dternative to thisis to use the arithemetic capabilities provided by many
of the modern shellsincluding bash. Thisiswhat is used in the add2 script
mentioned in the previous chapter.

[david@aile tnmp]$ echo $[5 + 5]
10

Valid variable names

Most programming languages have rules that restrict the format of variable
names. For the Bourne shell, variable names must

§ doart with either aletter or an underscore character,
§ followed by zero or more letters, numbers or underscores

David Jones, Bruce Jamieson (25/02/00) Page 21

85321, Systems Administration Chapter 6: The shell

{}

In some cases you will wish to use the value of a shell variable as part of a
larger word. Curly braces{ } are used to separate the variable name from the
rest of the word.

For example

Y ou want to copy thefile/ et c/ passwd into the directory / home/ davi d. The
following shell variables have been defined.

directory=/etc/
hone=/ hone/ davi d

A first attempt might be

cp $directorypasswd $hone

Thiswon’'t work because the shell islooking for the shell variable called
di rect orypasswd (thereisn’'t one) instead of the variable di rect ory.

The correct solution would be to surround the variable name di r ect or y with
curly braces. Thisindicates to the shell where the variable stops.

cp ${directory}passwd $hone

di

A\

Environment control

Whenever you run ashell it creates an environment in which it runs. This
environment specifies various things about how the shell looks, feels and
operates. To achieve this the shell uses a number of pre-defined shell
variables. Table 6.8 summarises these specia shell variables.

Variable name Purpose
HOVE your home directory
SHELL the executable program for the shell you
areusing
ub your user id
USER your username
TERM the type of terminal you are using
DI SPLAY your X-Windows display
PATH your executable path
Table 6.8

Environment variables

PS1 and PS2

The shell variables PS1 and PS2 are used to store the value of your command
prompt. Changing the values of PS1 and PS2 will change what your command
prompt looks like.

bi g: ~$ echo : $PS1: and : $PS2:
A\WS$: and >

David Jones, Bruce Jamieson (25/ 02/ 00) Page 22

85321, Systems Administration Chapter 6: The shell
PS2 isthe secondary command prompt. It is used when a single command is
spread over multiple lines. Y ou can change the values of PS1 and PS2 just like
you can any other shell variable.

bash extensions

You'll notice that the value of PS1 aboveis\ h: \ w $ but my command prompt
looks like di nbi g: ~$.

Thisis because the bash shell provides a number of extrafacilities. One of
those facilitiesisthat it allows the command prompt to contain the hosthame
\ h(the name of my machine) and the current working directory \ w.

With older shellsit was not possible to get the command prompt to display the
current working directory.

» Many first time users of older shells attempt to get the command prompt
to contain the current directory by trying this
PS1=' pwd’
The pwd command displays the current working directory. Explain why
thiswill not work. (HINT: When isthe pwd command executed?)

Variables and sub—shells

Every time you start a new shell, the new shell will create a new environment
separate from its parent’ s environment. The new shell will not be able to
access or modify the environment of its parent shell.

For example

Here'sa simple example.

di nbi g: ~$ nyName=davi d create ashell variable
di nbi g: ~$ echo $nyNane useit

davi d

di nbi g: ~$ bash start a new shell

di nbig: ~$ echo ny nane is $nyNane try to use the parent shell’ s variable
ny name is

di nbi g: ~$ exit exit from the new shell and return to the
parent

di nbi g: ~$ echo $myNane use the variable again

davi d

Asyou can see anew shell cannot access or modify the shell variables of its
parent shells.

export

There are times when you may wish a child or sub—shell to know about a shell
variable from the parent shell. For this purpose you use the expor t command.
For example,

di nbi g: ~$ nyNane=Davi d Jones

di nbi g: ~$ bash
di nbi g: ~$ echo ny nane is $nyNane

David Jones, Bruce Jamieson (25/ 02/ 00) Page 23

85321, Systems Administration Chapter 6: The shell
ny name is
di nbi g: ~$ | ogout
di nbi g: ~$ export nyNane
di nbi g: ~$ bash
di nbi g: ~$ echo ny nanme is $nyNane
ny name is david
di nbi g: ~$ exit

Local variables

When you export avariable to a child shell the child shell createsalocal copy
of the variable. Any modification to thislocal variable cannot be seen by the
parent process.

Thereisno way in which achild shell can modify a shell variable of a parent
process. The export command only passes shell variables to child shells. It
cannot be used to pass a shell variable from a child shell back to the parent.

For example

di nbi g: ~$ echo ny nanme is $nyNane

nmy nane is david

di nbi g: ~$ export nyNane

di nbi g: ~$ bash

di nbi g: ~$ nyNane=fred # child shell nodifies variable
di nbi g: ~$ exit

di nbi g: ~$ echo ny nanme is $nyNane

nmy nane is david

there is no change in the parent

Advanced variable substitution

The shell provides a number of additional more complex constructs associated
with variable substitution. The following table summarises them.

Construct Purpose

${vari abl e: -val ue} replace this construct with the variable s value if it
has one, if it doesn’t, useval ue but don’t make
vari abl e equal toval ue

${vari abl e: =val ue} same as the above but if vari abl e has no value
assignitval ue

${vari abl e: ?nessage} replace the construct with the value of the variable if
it hasone, if it doesn’'t then display nessage onto
stderr if nessage isnull then display pr og:

vari abl e: paraneter null or not set on stderr

${vari abl e: +val ue} if vari abl e hasavalue replace it with val ue
otherwise do nothing

Table 6.9
Advanced variable substitution

For example

di nbi g: ~$ nyNane=

di nbi g: ~$ echo ny nanme is $nyNane

nmy nane is

di nbi g: ~$ echo ny nane is ${nmyNane: =" NO NAME"}
ny name i s NO NAVE

di nbi g: ~$ echo ny nanme is $nyNane

nmy nane is

David Jones, Bruce Jamieson (25/ 02/ 00) Page 24

85321, Systems Administration Chapter 6: The shell

di nbi g: ~$ echo ny nanme is ${nmyNanme: ="NO NAME"}

ny name i s NO NAVE

di nbi g: ~$ echo ny nanme is $nyNane

ny name i s NO NAVE

di nbi g: ~$ her Nane=

di nbi g: ~$ echo her nane is ${herNane: ?"she hasn’'t got a nane"}
bash: herNane: she hasn't got a nane

di nbi g: ~$ echo her nane is ${her Nane: ?}

bash: herNanme: paraneter null or not set

Evaluation order

In this chapter we' ve looked at the steps the shell performs between getting the
user’ sinput and executing the command. The stepsinclude

§ /O redirection
Where the shell changes the direction in which /O is being sent.

§ variable substitution
The shell replaces shell variables with the corresponding values.

§ filename substitution
Thisiswhere the shell replaces globbing characters with matching
filenames.

An important question isin what order does the shell perform these steps?

Why order isimportant

Look at the following example

di nbi g: ~$ pi pe=\|
di nbi g: ~$ echo $pi pe

di nbig: ~$ star=*
di nbi g: ~$ echo $star

Mai |

News README VMSpec. ps. bak acm bhx acn®. dot

In the case of theecho $st art command the shell has seen $st ar and
replaced it with itsvalue *. The shell seesthe* and replacesit with the list of
thefilesin the current directory.

In the case of theecho $pi pe command the shell sees $pi pe and replacesit
withitsvalue| . It then displays| onto the screen.

Why didn't it treat the | asaspecial character? If it had then echo |
would’ ve produced something like the following.

[david@aile tnp]$ echo |

>

The >, produced by the shell not typed in by the user, indicates that the shell
isstill waiting for input. The shell is till expecting another command name.

The reason thisisn’t produced in the previous example is related to the order
in which the shell performsits analysis of shell special variables.

Theorder

The order in which the shell performsthe stepsis
§ /O redirection

§ variable substitution
David Jones, Bruce Jamieson (25/ 02/ 00) Page 25

85321, Systems Administration Chapter 6: The shell
§ filename substitution

For the command
echo $PI PE

the shell performs the following steps

§ check for any 1/O redirection characters, there aren’'t any, the command
lineis currently echo $PI PE

§ check for variables, thereis one $PI PE, replace it with its value, the
command lineisnow echo |

§ check for any wildcards, there aren’'t any
So it now executes the command echo | .

If you do the same walk through for the echo $st ar command you should see
how its output is achieved.

Theeval command

What happensif | want to execute the following command
I's $pi pe nore
using the shell variable pi pe from the example above?

The intention isthat the pi pe shell variable should be replaced by itsvalue |
and that the | be used to redirect the output of thel s command to the nor e
command.

Due to the order in which the shell performsits evaluation this won’'t work.
Doing it twice

Theeval command is used to evaluate the command line twice. eval isa
built—in shell command. Take the following command (using the pi pe shell
variable from above)

eval |s $pipe nore

The shell seesthe $pi pe and replacesit with itsvalue, | . It then executes the
eval command.

Theeval command repeats the shell’s analysis of its arguments. In this case it
will seethe| and perform necessary 1/0 redirection while running the
commands.

Conclusion

The UNIX command line interface is provided by programs called shells. A
shell’ sresponsibilities include

§ providing the command line interface
§ performing I/O redirection

§ performing filename substitution

§ performing variable substitution

David Jones, Bruce Jamieson (25/ 02/ 00) Page 26

85321, Systems Administration Chapter 6: The shell
§ and providing an interpreted programming language

A shell recognises a number of characters as having special meaning.
Whenever it sees these special charactersit performs a number of tasks that
replace the special characters.

When ashell is executed it creates an environment in which to run. This
environment consists of al the shell variables created including a number of
pre—defined shell variablesthat control its operation and appearance.

Review Questions

6.1

What is the effect of the following command sequences?
s | w -l

rm???

who | we -l

nmv progs/* /usr/stevel/ backup

Is *.c | w -l

rm*.o

who | sort

cd ; pwd

cp nmenol ..

s -l | sort +4n

2

o W W W W W W WD W W WD

What is the output of the following commands? Are there any problems? How
would you fix it?

§ echo this is a star *
§ echo ainm\\\\'t you ny friend
§ echo "** hello **"
echo "the output of the Is command is ‘Is'"

§
§ echo ‘the output of the pwd command is ‘pwd**
6.3

Which of the following are valid shell variable names?
XX XX XX XX

12345
HOVEDI R
file.nane
_date

w W W W W W W

file_nane
David Jones, Bruce Jamieson (25/ 02/ 00) Page 27

85321, Systems Administration Chapter 6: The shell

§ x0-9

§ filel
§ Slimt
6.4

Suppose your HOME directory is/ usr/ st eve and that you have sub—
directory as shown in figure 6.3.

Assuming you just logged onto the system and executed the following

commands.

docs=/ usr/ st eve/ docunent s
| et =$docs/l etters

pr op=%$docs/ proposal s

write commands to do the following using these variables
§ List the contents of the docunent s directory
§ Copy al filesfromthel et ters directory to the pr oposal s directory

§ Moveadl fileswith namesthat contain acapital letter fromthel etters
directory to the current directory.

§ Count the number of filesin the nenos directory.

What would be the effect of the following commands?

§ Is $let/..
§ cat $prop/sys. A >> $let/no. IJSK
§ echo $let/*
§ cp $let/no.ISK $prop
§ cd $prop
§ files_in_prop="'echo $prop*’
§ cat ‘echo $let*
!
|
IJSr
| |
pat steve ruth
| |
documents Drogroms
| | | | |
Memos Droposdls letters e collect Mmon
|
| | |

plon dactsys.A new.hire no 5K AMo.reply
Figure 6.3
Review Question 6.4

David Jones, Bruce Jamieson (25/ 02/ 00) Page 28

Chapter X Chapter Title

David Jones and Bruce Jamieson (25/ 02/ 00) Page 29

Chapter X Chapter Title

David Jones and Bruce Jamieson (25/ 02/ 00) Page 30

