Appendix B—Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring

* * * * *

3. Data Quality Assessment Requirements

All ambient monitoring methods or analyzers used in PSD monitoring shall be tested periodically, as described in this section 3, to quantitatively assess the quality of the data being routinely collected. The results of these tests shall be reported as specified in section 6. Concentration standards used for the tests must be as specified in section 2.3. Additional information and guidance in the technical aspects of conducting these tests may be found in Reference 3 or in the operation or instruction manual associated with the analyzer or sampler. Concentration measurements reported from analyzers or analytical systems must be derived by means of the same calibration curve and data processing system used to obtain the routine air monitoring data. Table B–1 provides a summary of the minimum data quality assessment requirements, which are described in more detail in the following sections.

3.1 Precision of Automated Methods

A one-point precision check must be carried out at least once every two weeks on each automated analyzer used to measure SO₂, NO₂, O₂, and CO. The precision check is made by challenging the analyzer with a precision check gas of known concentration (effective concentration for open path analyzers) between 0.08 and 0.10 ppm for SO₂, NO₂, and O₃ analyzers, and between 8 and 10 ppm for CO analyzers. The standards from which precision check test concentrations are obtained must meet the specifications of section 2.3. Except for certain CO analyzers described below, point analyzers must operate in their normal sampling mode during the precision check, and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. If permitted by the associated operation or instruction manual, a CO point analyzer may be temporarily modified during the precision check to reduce vent or purge flows, or the test atmosphere may enter the analyzer at a point other than the normal sample inlet, provided that the analyzer's response is not likely to be altered by these deviations from the normal operational mode.

Open path analyzers are tested by inserting a test cell containing a precision check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the test, and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the precision check gas in the test cell must be selected to produce an "effective concentration" in the range specified above. Generally, the precision test concentration measurement will be the sum of the atmospheric pollutant concentration and the precision test concentration. If so, the result must be corrected to remove the atmospheric concentration contribution. The "corrected concentration" is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the precision check test from the precision test concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path analyzers should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

If a precision check is made in conjunction with a zero or span adjustment, it must be made prior to such zero or span adjustment. The difference between the actual concentration (effective concentration for open path analyzers) of the precision check gas and the corresponding concentration measurement (corrected concentration, if applicable, for open path analyzers) indicated by the analyzer is used to assess the precision of the monitoring data as described in section 4.1. Report data only from automated analyzers that are approved for use in the PSD network.

3.2 Accuracy of Automated Methods

Each sampling quarter, audit each analyzer that monitors for SO₂, NO₂, O₃, or CO at least once. The audit is made by challenging the analyzer with at least one audit gas of known concentration (effective concentration for open path analyzers) from each of the following ranges that fall within the measurement range of the analyzer being audited:

* * * *

For point analyzers, the audit shall be carried out by allowing the analyzer to analyze the audit test atmosphere in the same manner as described for precision checks in section 3.1. The exception given in section 3.1 for certain CO analyzers does not apply for audits.

Open path analyzers are audited by inserting a test cell containing an audit gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the audit, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the audit. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce "effective concentrations" in the range specified in this section 3.2. Generally, each audit concentration measurement result will be the sum of the atmospheric pollutant concentration and the audit test concentration. If so, the result must be corrected to remove the atmospheric concentration contribution. The "corrected concentration" is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the audit test (or preferably before and after each audit concentration level) from the audit concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas standards, discard the test result for that concentration level and repeat the test for that level. If possible, open path analyzers should be audited during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, the monitoring path length must be reverified to within ± 3 percent to validate the audit, since the monitoring path length is critical to the determination of the effective concentration.

The differences between the actual concentrations (effective concentrations for open path analyzers) of the audit test gas and the corresponding concentration measurements (corrected