required individual permits in the past with limits. This affects permits issued by EPA Region VI for Louisiana (LAR05*###), New Mexico (NMR05*###), Oklahoma (OKR05*###), Texas (TXR05*###), and Federal Indian Reservations in these States (LAR05*##F, NMR05*##F, OKR05*##F, or TXR05*##F).

L. Storm Water Discharges Associated With Industrial Activity From Landfills and Land Application Sites

1. Industry Profile.

This section of today's permit addresses special requirements for storm water discharges associated with industrial activity from landfill and land application sites. Pursuant to 40 CFR 122.26, storm water discharges from landfills, land application sites, and open dumps that receive or have received industrial waste, including sites subject to regulation under Subtitle D of the Resource Conservation and Recovery Act (RCRA), are required to seek permit coverage. Under this section, industrial waste is defined as waste generated by any of the industrial activities described at 40 CFR 122.26(b)(14).

When an industrial facility, described by the above coverage provisions of this section, has industrial activities being conducted onsite that meet the description(s) of industrial activities in another section(s), that industrial facility shall comply with any and all applicable monitoring and pollution prevention plan requirements of the other section(s) in addition to all applicable requirements in this section. The monitoring and pollution prevention plan terms and conditions of this multi-sector permit are additive for industrial activities being conducted at the same industrial facility (co-located industrial activities). The operator of the facility shall determine which other monitoring and pollution prevention plan section(s) of this permit (if any) are applicable to the facility.

Special conditions contained in this section apply to land disposal sites that meet the definition of a landfill under RCRA Subtitle D contained at 40 CFR Part 257, which establishes criteria for the classification of solid waste disposal facilities and practices. Part 257 defines landfills as areas of land or excavation in which wastes are placed for permanent disposal, and that are not land application units, surface impoundments, injection wells, or waste piles. Included in this definition are municipal solid waste landfills (MSWLFs) and industrial solid nonhazardous waste landfills. (Many of

the 1,410 landfill facilities participating in the group application process are classified as MSWLFs). Therefore, the special conditions in this section apply to both MSWLFs and industrial landfills as defined under Part 257. This section also applies to industrial waste land application sites. Land application sites are defined as facilities at which wastes are applied onto or incorporated into the soil surface for the purpose of beneficial use or waste treatment and disposal. No open dumps were included in the facilities participating in the group application process (open dumps are defined as solid waste disposal units not in compliance with State/Federal criteria established under RCRA Subtitle D) and operation of an open dump is prohibited under RCRA Section 4004. Therefore, storm water discharges from open dumps are not addressed by this section. This section also does not apply to inactive landfills or inactive land application sites located on Federal lands, unless an operator can be identified. These discharges are more appropriately covered under a permit currently being developed by EPA.

The following sections describe industrial and municipal solid waste landfills and industrial waste land application sites.

a. Municipal Solid Waste Landfills. In 1988, EPA estimated that there were approximately 9,300 MSWLFs in the United States. The wastes which are disposed of in MSWLF landfills are highly variable. Examples include household waste (including household hazardous waste which is excluded from RCRA hazardous waste regulation), nonhazardous incinerator ashes, commercial wastes, yard wastes, tires, white goods, construction wastes, municipal and industrial sludges, asbestos, and other industrial wastes. Only a small percentage of all wastes disposed of in MSWLFs are industrial wastes. In 1988, EPA's Report to Congress on solid waste generation indicated that nearly 90 percent of wastes disposed of in all MSWLFs were household or commercial (office) wastes. Industrial process wastes represented only 2.73 percent of the total wastestream (although most MSWLFs currently or have previously accepted industrial wastes and are therefore subject to storm water permitting requirements). The Report also indicated that about half of the total number of MSWLFs received small quantity generator hazardous wastes. In addition, MSWLFs that operated prior to the implementation of RCRA hazardous waste management requirements in 1980 may have received wastes that after that date that would

have been classified as hazardous wastes under current RCRA requirements.

À typical MSWLF is a constantly evolving facility which is constructed over its operating life as received wastes are spread, compacted, and covered. Most modern landfills contain one or more separate "units," planned final waste containment areas. Active units continue to receive wastes until they have reached disposal capacity. When capacity is reached, a unit is capped with a final cover, and additional wastes must be placed in other active units. As a result, a landfill may consist of multiple inactive and active units at various stages of completion.

Within each unit, wastes are added in layers referred to as lifts. Received wastes are spread across the working face of the landfill to a depth of six to twenty feet and then compacted. At the end of each working day a thin layer of soil (daily cover) is spread on top of the added wastes and compacted. A large unit may consist of multiple lifts, depending on the planned final depth.

Historically, landfills have been constructed according to one of two generic designs, the trench method and the area method, or a combination of these. The trench method requires the excavation of a trench into which wastes will be placed. Soil from the excavation provides the cover material as disposal continues. In the area method, wastes are placed directly on the ground surface and disposal follows the natural contours of the land. Some landfills use combinations of the two methods at different times depending on the location of the active unit.

MSWLF construction creates constant changes in the contours of the facility resulting in changing patterns of storm water runon and runoff. Controlling erosion of landfill slopes is among the primary concerns of the landfill operator. Current practices generally include a combination of temporary controls (straw bales, silt fences, etc.), in active disposal areas, and permanent controls (recontouring, revegetation, etc.), in areas where waste disposal has been completed.

Daily and intermediate covers serve primarily to protect against disease vectors and to prevent fires and the blowing of refuse. Typically, daily covers consist of the minimum amount of soil excavated from the site needed to cover exposed wastes in the active areas of the landfill. After spreading, the cover is usually compacted to reduce loss from erosion. Intermediate covers, which are also typically soil excavated from the site, are often applied to areas of a unit which will be inactive for