commenters stated that the proposed limit based on composite mesh-pad systems (0.013 mg/dscm) was too low. Five commenters stated that the proposed emission limit for packed-bed scrubbers was also too high, noting that some units tested by the EPA did not achieve this limit.

The proposed emission limit of 0.013 mg/dscm for large hard chromium electroplaters was based on tests that the EPA conducted on actual control devices operating under normal process conditions. Lower limits than the one selected for large sources were measured from these devices, but the EPA based the emission limit on the highest measured data point and believes that this limit is consistently achievable. Regarding the emission limit based on packed-bed scrubbers, the EPA did test some packed-bed scrubber systems that were not achieving the level of 0.03 mg/dscm required by the proposed standard. However, these devices were not optimized to achieve the higher removal efficiencies. Specifically, when scrubbers were operated with periodic or continuous washdown in which fresh water was supplied as makeup to the top of the bed, a limit of at least 0.03 mg/dscm was achieved. The final rule includes work practice standards that require the use of fresh water added to the top of the packed bed whenever makeup additions occur. Thus, packed-bed scrubbers that are operated in accordance with the requirements of the rule should be able to achieve a limit of 0.03 mg/dscm. The EPA does not think it is appropriate to substantially change the emission limits based on the use of composite mesh-pad systems or packed-bed scrubbers; the commenters did not provide data that supported their claim that different emission limits are more appropriate.

As discussed previously, the emission limit for decorative chromium electroplating tanks and chromium anodizing tanks has been changed to 0.01 mg/dscm in the final rule by applying a safety factor to the highest data point (0.007 mg/dscm) in the fume suppressant data base. Similarly, the emission limit that is based on packedbed scrubbers is based on rounding the highest value (0.028 mg/dscm) in the packed-bed scrubber data base to 0.03 mg/dscm to incorporate a safety factor. Therefore, in the final rule, the emission limit that is based on the use of composite mesh-pad systems (0.013 mg/ dscm) has been adjusted to 0.015 mg/ dscm by applying a safety factor to the highest value (0.013 mg/dscm) in the data base to ensure that the limit is achievable on a consistent basis.

G. Selection of Compliance Dates

Several commenters stated that the proposed compliance dates for affected existing sources did not allow sufficient time to achieve compliance with the proposed rule. The majority of these commenters suggested compliance timeframes of 2 to 3 years. According to the commenters, the compliance period specified in the proposed rule did not allow enough time to inform and educate affected owners and operators; acquire capital; conduct research and test systems; identify, purchase, and install control equipment; develop startup, shutdown, and malfunction plans; train staff; build inventories; and establish reporting and recordkeeping systems.

The Agency agrees with the commenters that the compliance timeframes for affected sources should be increased. The EPA recognizes that some of the facilities within all of the source categories will have to investigate the technical feasibility of installing control devices or using other technologies at their facility to meet the standards. Also, many area sources are not yet aware that a rule is to be promulgated for their industry, and time is needed for them to be made aware of the requirements of this rule. Therefore, the EPA has extended the compliance date to 1 year after the promulgation date for existing decorative chromium electroplaters and 2 years after the promulgation date for existing hard chromium electroplaters and chromium anodizers. The EPA believes that the 1 year timeframe for decorative chromium electroplaters is sufficient because, based on the EPA's survey data, 80 percent of existing sources already use fume suppressants and very few will need to install add-on air pollution control devices. The EPA thinks that the compliance timeframes in the final rule will address commenters concerns and still ensure implementation of controls in a timely fashion. Due to the toxicity of chromium compounds and the importance of controlling chromium emissions to protect human health and the environment, the Agency decided against a compliance time longer than 2 years for any of the source categories affected.

To accommodate sources that cannot comply with the standard by the compliance date, § 63.6(i) of the General Provisions and § 63.343(a)(6) of subpart N allows a source to request a 1-year compliance extension, which must be submitted 6 months in advance of the compliance date identified in the regulation. This extension combined with the compliance timeframes in the proposed rule could provide a total of 2 years for compliance for decorative chromium electroplaters and 3 years for compliance for hard chromium electroplaters and chromium anodizers.

H. Selection of Monitoring Requirements

Section 114(a)(3) of the Act requires enhanced monitoring and compliance certification of all major stationary sources. The annual compliance certifications certify whether compliance has been continuous or intermittent. Enhanced monitoring shall be capable of detecting deviations from each applicable emission limit or standard with sufficient representativeness, accuracy, precision, reliability, frequency, and timeliness to determine if compliance is continuous during a reporting period. The monitoring in this regulation satisfies the requirements of enhanced monitoring.

1. Compliance Monitoring for Add-on Air Pollution Control Devices

Eleven comments addressed the suitability of measuring gas velocity to demonstrate on-going compliance when add-on air pollution control devices are used to comply with an emission limit. The commenters stated that measuring gas velocity is very complicated, redundant with measuring pressure drop, and not indicative of control device performance. Two commenters pointed out that no suitable testing point may be accessible, and a permanent measurement device may be fouled by chromic acid.

Several commenters remarked on the requirement for measuring chromium concentration in the scrubber water. Four of these commenters stated that there is no obvious relationship between scrubber water chromium concentration and scrubber performance. Other commenters indicated that measurement of chromium concentration in scrubber water with a hydrometer is not accurate.

In revising the proposed rule, the EPA recognizes that the measurement of gas velocity could be burdensome and that other control system parameters could potentially be used to determine ongoing compliance. Therefore, in the final rule, sources using composite mesh-pad systems are required to monitor pressure drop across the device for compliance purposes. Based on information gathered by the EPA, pressure drop is directly related to composite mesh-pad system performance, measurement of pressure drop is straightforward, and some users of composite mesh-pad systems are currently monitoring pressure drop. The