Normal Operation," it states that all light-water nuclear power reactors must meet the fracture toughness and material surveillance program requirements for the reactor coolant pressure boundary as set forth in Appendices G and H to 10 CFR Part 50. Appendix G to 10 CFR 50 defines pressure/temperature (P/T) limits during any condition of normal operation, including anticipated operational occurrences and system hydrostatic tests to which the pressure boundary may be subjected over its service lifetime. In 10 CFR 50.60(b) it specifies that alternatives to the described requirements in Appendices G and H to 10 CFR Part 50 may be used when an exemption is granted by the Commission under 10 CFR 50.12.

To prevent low temperature overpressure transients that would produce pressure excursions exceeding the Appendix G P/T limits while the reactor is operating at low temperatures, the licensee installed a low temperature overpressure (LTOP) system. The system includes pressure-relieving devices called Power-Operated Relief Valves (PORVs). The PORVs are set at a pressure low enough so that if an LTOP transient occurred, the mitigation system would prevent the pressure in the reactor vessel from exceeding the Appendix G P/T limits. To prevent the PORVs from lifting as a result of normal operating pressure surges (e.g., reactor coolant pump starting, and shifting operating charging pumps) with the reactor coolant system in a water solid condition, the operating pressure must be maintained below the PORV setpoint. In addition, in order to prevent cavitation of a reactor coolant pump, the operator must maintain a differential pressure across the reactor coolant pump seals. Hence, the licensee must operate the plant in a pressure window that is defined as the difference between the minimum required pressure to start a reactor coolant pump and the operating margin to prevent lifting of the PORVs due to normal operating pressure surges. Braidwood, Unit 1, is expected to exceed the 5.37 effective full power years on August 2, 1995; therefore, operating with the current LTOP limits may result in encroachment of the P/T limit curves of the reactor vessel during normal operation of the plant after August 2,

The licensee proposed that in determining the design setpoint for LTOP events for Braidwood Unit 1, the allowable pressure be determined using the safety margins developed in an alternate methodology in lieu of the safety margins currently required by 10

CFR Part 50, Appendix G. The proposed alternate methodology, Code Case N-514, is consistent with guidelines developed by the American Society of Mechanical Engineers (ASME) Working Group on Operating Plant Criteria to define pressure limits during LTOP events that avoid certain unnecessary operational restrictions, provide adequate margins against failure of the reactor pressure vessel, and reduce the potential for unnecessary activation of pressure-relieving devices used for LTOP. Code Case N-514, "Low Temperature Overpressure Protection," has been approved by the ASME Code Committee. The content of this code case has been incorporated into Appendix G of Section XI of the ASME Code and published in the 1993 Addenda to Section XI. The NRC staff is revising 10 CFR 50.55a, which will endorse the 1993 Addenda and Appendix G of Section XI into the regulations.

An exemption from 10 CFR 50.60 is required to use the alternate methodology for calculating the maximum allowable pressure for the LTOP setpoint. By application dated November 30, 1994, as supplemented on May 11, 1995, the licensee requested an exemption from 10 CFR 50.60 for this purpose.

III

Pursuant to 10 CFR 50.12, the Commission may, upon application by any interested person or upon is own initiative, grant exemptions from the requirements of 10 CFR Part 50 when (1) the exemptions are authorized by law, will not present an undue risk to public health or safety, and are consistent with the common defense and security; and (2) when special circumstances are present. Special circumstances are present whenever, according to 10 CFR 50.12(a)(2)(ii), "Application of the regulation in the particular circumstances would not serve the underlying purpose of the rule or is not necessary to achieve the underlying purpose of the rule * * *.

The underlying purpose of 10 CFR Part 50, Appendix G, is to establish fracture toughness requirements for ferritic materials of pressure-retaining components of the reactor coolant pressure boundary to provide adequate margins of safety during any condition of normal operation, including anticipated operational occurrences, to which the pressure boundary may be subjected over its service lifetime. Section IV.A.2 of this Appendix requires that the reactor vessel be operated with P/T limits at least as conservative as those obtained by

following the methods of analysis and the required margins of safety of Appendix G of the ASME Code.

Appendix G of the ASME Code requires that the P/T limits be calculated: (a) using a safety factor of two on the principal membrane (pressure) stresses, (b) assuming a flaw at the surface with a depth of one-quarter (¹/4) of the vessel wall thickness and a length of six (6) times its depth, and (c) using a conservative fracture toughness curve that is based on the lower bound of static, dynamic, and crack arrest fracture toughness tests on material similar to the Braidwood reactor vessel material.

In determining the setpoint for LTOP events, the licensee proposed to use safety margins based on an alternate methodology consistent with the proposed ASME Code Case N-514 guidelines. ASME Code Case N-514 allows determination of the setpoint for LTOP events such that the maximum pressure in the vessel would not exceed 110 percent of the P/T limits of the existing ASME Appendix G. This results in a safety factor of 1.8 on the principal membrane stresses. All other factors, including assumed flaw size and fracture toughness, remain the same. Although this methodology would reduce the safety factor on the principal membrane stresses, the proposed criteria will provide adequate margins of safety to the reactor vessel during LTOP transients and will satisfy the underlying purpose of 10 CFR 50.60 for fracture toughness requirements.

Using the licensee's proposed safety factors instead of Appendix G safety factors to calculate the LTOP setpoint will permit a higher LTOP setpoint than would otherwise be required and will provide added margin to prevent normal operating surges from lifting the PORVs or cavitating the reactor coolant pumps.

IV

For the foregoing reasons, the NRC staff has concluded that the licensee's proposed use of the alternate methodology in determining the acceptable setpoint for LTOP events will not present an undue risk to pubic health and safety and is consistent with the common defense and security. The NRC staff has determined that there are special circumstances present, as specified in 10 CFR 50.12(a)(2), such that application of 10 CFR 50.60 is not necessary in order to achieve the underlying purpose of this regulation.

Accordingly, the Commission has determined that, pursuant to 10 CFR 50.12(a), this exemption is authorized by law, will not endanger life or property or common defense and