
SE
G

A
C

on
fid

en
tia

l

General Notice

When using this document, keep the following in mind:

1. This document is confidential. By accepting this document you acknowledge that you are bound
by the terms set forth in the non-disclosure and confidentiality agreement signed separately and /in
the possession of SEGA. If you have not signed such a non-disclosure agreement, please contact
SEGA immediately and return this document to SEGA.

2. This document may include technical inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be incorporated in new versions of the
document. SEGA may make improvements and/or changes in the product(s) and/or the
program(s) described in this document at any time.

3. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without SEGA’S written permission. Request for copies of this document and for technical
information about SEGA products must be made to your authorized SEGA Technical Services
representative.

4. No license is granted by implication or otherwise under any patents, copyrights, trademarks, or
other intellectual property rights of SEGA Enterprises, Ltd., SEGA of America, Inc., or any third
party.

5. Software, circuitry, and other examples described herein are meant merely to indicate the character-
istics and performance of SEGA’s products. SEGA assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples
describe herein.

6. It is possible that this document may contain reference to, or information about, SEGA products
(development hardware/software) or services that are not provided in countries other than Japan.
Such references/information must not be construed to mean that SEGA intends to provide such
SEGA products or services in countries other than Japan. Any reference of a SEGA licensed prod-
uct/program in this document is not intended to state or simply that you can use only SEGA’s
licensed products/programs. Any functionally equivalent hardware/software can be used instead.

7. SEGA will not be held responsible for any damage to the user that may result from accidents or any
other reasons during operation of the user’s equipment, or programs according to this document.

(6/27/95- 002)

NOTE: A reader's comment/correction form is provided with this
document. Please address comments to :

 SEGA of America, Inc., Developer Technical Support (att. Evelyn Merritt)
 150 Shoreline Drive, Redwood City, CA 94065

SEGA may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

SE
G

A
C

on
fid

en
tia

l

TM

SATURN
System Library
User's Guide

ver. 1.0

Doc. # ST-162-R1-092994

© 1994-95 SEGA. All Rights Reserved.

SE
G

A
C

on
fid

en
tia

l

READER CORRECTION/COMMENT SHEET

Chpt. pg. # Correction

Corrections:

General Information:

Your Name Phone

Document number ST-162-R1-092994 Date

Document name Saturn System Library User's Guide, ver. 1.0

Questions/comments:

Keep us updated!
 If you should come across any incorrect or outdated information while reading through the attached
document, or come up with any questions or comments, please let us know so that we can make the
required changes in subsequent revisions. Simply fill out all information below and return this form to
the Developer Technical Support Manager at the address below. Please make more copies of this form if
more space is needed. Thank you.

Where to send your corrections:

Fax: (415) 802-1717
Attn: Evelyn Merritt,
Developer Technical Support

Mail: SEGA OF AMERICA
Attn: Evelyn Merritt,
Developer Technical Support
150 Shoreline Dr.
Redwood City, CA 94065

SE
G

A
C

on
fid

en
tia

l

REFERENCES

In translating/creating this document, certain technical words and/or phrases were interpreted
with the assistance of the technical literature listed below.

1. KenKyusha New Japanese-English Dictionary
1974 Edition

2. Nelson’s Japanese-English Character Dictionary
2nd revised version

3. Microsoft Computer Dictionary

4. Japanese-English Computer Terms Dictionary
Nichigai Associates
4th version

SE
G

A
C

on
fid

en
tia

l

Table of Contents

SYSTEM PROGRAM USER’S MANUAL.. 1

1.0 GUIDE... 1
1.1 Explanation .. 1

2.0 REFERENCE .. 7
2.1 List of Functions .. 7
2.2 Function Specifications.. 8

SMPC I/F USER’S MANUAL .. 15

1.0 GUIDE... 15

2.0 FEATURES ... 15

3.0 OVERVIEW ... 16
3.1 Function Overview ... 16
3.2 Process Overview .. 16

4.0 DETAILS ... 17
4.1 Functions ... 17
4.2 Process ... 18
4.3 Peripheral Control .. 22

5.0 CALLING SEQUENCE.. 23

6.0 DATA SPECIFICATIONS... 24
6.1 List of Data .. 24
6.2 Data Specifications .. 25

7.0 FUNCTION SPECIFICATIONS ... 33
7.1 List of Functions .. 33
7.2 Function Specifications.. 33

BACKUP LIBRARY USER’S MANUAL ... 39
1.0 Guide .. 39

1.1 Purpose ... 39
1.2 Explanation .. 39
1.3 Program Example .. 40

2.0 Reference.. 41
2.1 Data List .. 41
2.2 Function List .. 42
2.3 Data Flow .. 43
2.4 Function Specification ... 43

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 1

System Program User’s Manual

1.0 Guide

1.1 Explanation

Interrupt Process Routine Registration and Reference Operations
After booting up from the boot ROM, the master SH2 interrupt vector table is at the
beginning of the work RAM, and the VBR (vector base register) indicates this ad-
dress.

The slave SH2 interrupt vector table is the work RAM lead + 400H, and the slave
SH2 VBR indicates that address. The interrupt vector (programmable) of every
built-in SH2 module is assigned by the initial settings in the table below. Dummy
routines that do nothing are set in the vector table. (With the exception of invalid
commands and address errors, these are infinite loops.)

The FRT input capture interrupt is assigned for use in master and slave communica-
tions, and its initial priority is 15 (highest priority). In the table below, the priority of
all interrupts, except for the FRT input capture interrupt, is set at 0 and interrupt is
unauthorized.

In changing the priority of the built-in module interrupts, the content of the inter-
rupt control register must change in response to the needs of the application.

* for slave > master passing * for master > slave passing
* * IRL2, IRL6 level interrupts

Master SH2 Vector Initial Settings Slave SH2 Vector Initial Settings

40H ~ SCU interrupt vector 41H H-Blank In * *
5FH (set by hardware) 43H V-Blank In
60H SCI receive error 60H SCI receive error
61H SCI receive buffer full 61H SCI receive buffer full
62H SCI send buffer empty 62H SCI send buffer empty
63H SCI send quit 63H SCI send quit
* 64H FRT input capture * 64H FRT input capture
65H FRT compare match 65H FRT compare match
66H FRT overflow 66H FRT overflow
67H Free 67H free
68H WDT interval 68H WDT interval
69H BSC compare match 69H BSC compare match
6AH Free 6AH Free
6BH Free 6BH Free
6CH DMACH1 (SH2 built-in) 6CH DMACH1 (SH2 built-in)
6DH DMACH0 (SH2 built-in) 6DH DMA CH0 (SH2 built-in)
6EH DIVU (division) 6EH DIVU (division)
6FH Free 6FH Free

SE
G

A
C

on
fid

en
tia

l

2

This operation routine should be used to register the interrupt process routine to the
interrupt vector and to reference the address of the current process routine. Further-
more, a SCU interrupt routine (the master SCU interrupt) that implements the inter-
rupt process via a format that subroutine calls the C function is provided. The C
function can be registered there and the registration address can also be referenced.

The function registered in the SCU interrupt routine is called whenever interrupt
occurs. Before and after this call, register save and return are performed per register
retention (save) protocol of the SHC compiler. If the routine is one that complies
with the C function or that protocol, it can be registered and processed. If a separate
interrupt process routine is registered in the SCU interrupt vector, the SCU interrupt
process routine is bypassed and becomes invalid. However, it may not be suitable
for an interrupt process requiring a rapid response such as HBlank.

SCU Interrupt Mask Set, Reference, and Change Operations
Because this register cannot be read, the mask value set to the SCU interrupt mask
register cannot perform computation against the actually set values when changes,
etc. are implemented. Therefore, this value is stored separately in memory and a
service routine, which preserves and updates in consistency with the actual SCU
interrupt mask register, is provided.

When this routine is used, setting and changing the SCU interrupt mask must al-
ways be done by the library and application through these functions. After the SCU
interrupt mask register is set and changed, the SCU interrupt status register, and if
necessary, the A-Bus interrupt acknowledge register, are cleared.

Simple Semaphore Operation
A service is available that enables memory (256 bytes) provided by the Boot ROM to
be used as 256 bytes of simple semaphore. The first half (numbers 0 ~ 127) of sema-
phore can be used in any way. The second half (128 ~ 255) is used in operations
related to the library. When the library uses a specific function such as DMA, it sets
semaphore MSB(80H) to 1 and shows that it is in use. After that, it clears MSB and
shows that it is free.

In a process that requires resources to be secured over a comparatively long period
of time, the semaphore operation and reference procedure should be determined so
that those resources are not accessed arbitrarily by an interrupt process during that
period of time.

The SH2 TAS command is used when setting MSB for semaphore memory. This
command allows only one process to reliably acquire semaphore since execution is
indivisible (bus control [authorization] is not cleared). This must be cleared when
the process that acquired semaphore is completed. All semaphore memory is
cleared when reset.

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 3

System Clock Switching
System clock switching cannot be performed by issuing independent commands to
the SMPC. Use of this system program is required. System clock switching entails a
partial hardware reset.

CPU Clock 26 MHz ←→ 28 MHz
Horizontal Resolution 320/640 ←→ 352/704

Reset Devices OFF or non guaranteed Devices Unaffected Devices
SCU Slave SH (OFF) Master SH * note
VDP1 DRAM (previous content destroyed) SDRAM
VDP2 SCSP (OFF) CD
SCSI/SCC (development devices only) SIMM (development devices only)

* Note Because master SH is in the standby mode during clock switching, of the built-in SH modules,
the FRT and the SCI within the SH must be reset. WDT is used during this process.

NMI goes to its existed status after the process; for example, the DMAC control goes to inter-
rupt status by NMI. See the SH manual. If necessary, perform the reopen process.

Reinitializing process after reset:
SCU: Reinitializes the bus, interrupt mask, etc. However, the value of

SYS_GETSCUIM is used for the interrupt mask value.

Postprocesses required with applications:
VDP2: The TV mode must be set comparatively fast. Because the 320/640 mode is

used after the device itself is reset, especially when the system clock is
changed to the 352/704 mode, the synchronous signal shifts in the TV and
turbulence occurs on the screen.

VDP1, 2, SCSP: All previous settings are invalid. Must be reset.

SMPC: Hot reset must be enabled.

The clock change process time is about 110 ms, which includes the reset time of the
device.

SE
G

A
C

on
fid

en
tia

l

4

SCU Interrupt Routine Priority Change
The Boot ROM has an interrupt priority control table used for the SCU interrupt
process service, making rewrite possible.

Note: This is a risky service. The system may hang up if priority relationship inconsistencies
exist in the table contents.

With this, the interrupt process (items using SYS_SETUINT) can be optimized in the
application.

To use this, prepare the same structural data for the application as the table, and call
SYS_CHGUIPR.

Tables are of 32 long words. 1 long word has the following contents.

The value set to SR at the beginning ORed with the current mask set value
of the interrupt process and written to the SCU interrupt mask

register at the beginning of the interrupt
process.

This long word position inside the table corresponds to the SCU 30 interrupt factor.
(V-Blank In is the start and V-Blank Out is the 2nd,…but 2 long word spaces that
correspond to vectors 4EH and 4FH are included.)

Tables must be created very carefully so that there is no inconsistency between the
SR, SCU interrupt mask, and interrupt factor.

For example, the Boot ROM uses the following table for its initial set values:

Uint32 PRITab[32] = {
0x00F0FFFF, /* VBI SR=15 All prohibited (highest priority) */
0x00E0FFFE, /* VBO SR=14 Only VBI is allowed */
0x00D0FFFF, /* HBI SR=13 VBI and VBO are allowed */

.

.
0x0070FE00, /* External 15 SR=7 SCU interrupt unique priority;

all masked when 7 or less. */
/* A bus interrupt unique priority that assumes 7, 4,and

1 by cause factor, but because
of the common use and 1 bit
mask, it is set to 7. */

} ;

SH2 SR insignificant word value SCU interrupt mask insignificant word value

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 5

The creation example shown is one in which the SR value is always set to 0, and
priorities are described only using SCU mask values (priority relationship). Here,
SH always receives an interrupt and only the SCU mask controls authorization and
prohibition.

Uint32 PRITab[32] = {
0x0000FFF9, /* during VBI process HBI and VBO authorization */
0x0000FFFB, /* during VBO process only HBI authorization */
0x00D0FFFC, /* during HBI process all prohibited (highest priority) */

.

.
0x00000000, /* during external 15 process, all authorized (lowest priority) */

} ;

The inverse of the example above is prohibiting mask interrupt at SR value levels without
changing the SCU mask value. (0 or 15 only are possible.)

In the example above, the interrupt authorize and prohibit register of each built-in
module must also be operated for SH internal module interrupt authorization and
prohibition.

Note: When the SCU factor interrupt is allowed and interrupt occurs, it is okay if the SH SR mask is
higher than the interrupt unique level (value decided by SCU hardware) and if interrupt can
never be refused by SH. (However, one exception is that all of SR mask 15 can be prohibited.)

CD Multiplayer Startup Execution
This is a service that activates and executes the CD multiplayer when an application
ends. When this service is called, the CD multiplayer screen is displayed exactly the
same as when the power-on sequence is activated. Regardless of the called status,
the CD multiplayer screen is displayed and operation is enabled.

Power On Clear Memory Operation
This provides the 8 bytes of memory on the SDRAM controlled by the Boot ROM.
The 8 bytes are initialized to 0 when power-on is activated, but the contents can be
saved with the reset button (NMI).

SE
G

A
C

on
fid

en
tia

l

6

(This page is blank in the original Japanese document.)

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 7

2.0 Reference

2.1 List of Functions

Function Function Name No.

Interrupt Process Routine Registration / Reference

Registers process routine to the interrupt vector SYS_SETSINT 1.1

Registers function to SCU interrupt routine SYS_SETUINT 1.2

Gets registration contents of interrupt vector SYS_GETSINT 1.3

Gets registration contents of SCU interrupt
routine

SYS_GETUINT 1.4

SCU Interrupt Mask Set, Reference, and Change Operations

Sets SCU interrupt mask SYS_SETSCUIM 2.1

Changes SCU interrupt mask SYS_CHGSCUIM 2.2

References SCU interrupt mask SYS_GETSCUIM 2.3

Simple Semaphore Operation

Gets semaphore SYS_TASSEM 3.1

Clears semaphore SYS_CLRSEM 3.2

System Clock Switching

Switches system clock SYS_CHGSYSCK 4.1

References system clock value SYS_GETSYSCK 4.2

SCU Interrupt Routine Priority Change

Changes SCU interrupt routine priority SYS_CHGUIPR 5.1

CD Multi-player Startup Execution

Executes startup of CD multi-player SYS_EXECDMP 6.1

Power On Clear Memory Operation

Operates power-on clear memory SYS_PCLRMEM 7.1

SE
G

A
C

on
fid

en
tia

l

8

2.2 Function Specifications

Format: void SYS_SETSINT (Uint 32 Num, void* Hdr);
Input: Num : vector number (0..7FH)

Hdr : interrupt process routine address (dummy routine when 0,
or that interrupt process routine when Num is the SCU
interrupt vector)

Output: None
Function Value: None
Function: Hdr must be a process routine that ends by register save, return, and

RTE command (# pragma interrupt is added if using C language).
When Hdr is 0, Num re-registers the SCU interrupt routine within the
SCU interrupt (40H..4DH,50H..5FH), others register dummy routine.
There is no range check. Values beyond restricted range must not be
specified.

Remarks: This routine can be used with both master and slave SH2
and is registered to vector addresses based on each VBR.

Format: void SYS_SETUINT (Uint 32 Num, void* Hdr);

Input: Num : vector number (SCU vector number)
Hdr : function routine address (dummy routine when 0)

Output: None
Function Value: None
Function: Hdr must be a function by SHC. If the routine is created by the

assembler, it must follow the SHC register save protocol.
Num is limited to SCU interrupt vectors (40H..4DH,50H..5FH).
A dummy routine is registered when Hdr is 0. There is no range
check. Values beyond restricted range must not be specified.

Remarks: When a routine is registered to a vector by SYS_SETSINT, the SCU
interrupt process routine of that vector becomes ineffective and
the registration function is not called. Results are not guaranteed
when this routine is called via SH2 slave.

Title Function Function Name No.

Function
Specifications

To the interrupt vector; registers interrupt process
routine

SYS_SETSINT 1.1

Title Function Function Name No.

Function
Specifications

To SCU interrupt routine; registers process
function

SYS_SETUINT 1.2

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 9

Format: void (*) () SYS_GETSINT (Uint 32 Num) ;
Input: Num : vector number (0..7FH)
Output: None
Function Value: Vector registration contents (interrupt process routine address)
Function: Contents of the Num vector returned as function values.

There is no range check. Values beyond restricted range must
not be specified.

Remarks: This routine can be used with both master and slave SH2 and refers to
the vector addresses based on each VBR.

Format: void (*) () SYS_GETUINT (Uint 32 Num) ;
Input: Num : vector number (SCU vector number)
Output: None
Function Value: Registration contents (function routine address)
Function: The registration contents of the SCU interrupt routine that pertains to

Num returned as function values. There is no range check. Values
beyond restricted range must not be specified.

Remarks: Results are not guaranteed when this routine is called via slave SH2.

Format: void SYS_SETSCUIM (Uint 32 MaskPat) ;
Input: MaskPat : SCU interrupt mask value
Output: None
Function Value: None
Function: Writes the MaskPat value to mask save memory and to the SCU

interrupt register, and then writes the same value to the SCU interrupt
status register. However, if the A-bus interrupt mask bit is allowed,
the upper word of the status register is cleared, and the A-bus inter-
rupt acknowledge register is cleared as well.

Remarks: This routine must not be used from the interrupt process (for SCU
interrupt only) (The value of SYS_GETSCUIM becomes undefined
during the SCU interrupt process.)
The SCU interrupt may disappear when it occurs during the process
(SCU specifications). This possibility should either be avoided or the
usage should occur under conditions where there is no related knowl-
edge thereof. Results cannot be guaranteed when this routine is
called via slave SH2.

Title Function Function Name No.

Function
Specifications

Gets registration contents of SCU interrupt
routine

SYS_GETUINT 1.4

Title Function Function Name No.

Function
Specifications

Gets registration contents of interrupt vector SYS_GETSINT 1.3

Title Function Function Name No.

Function
Specifications

Sets SCU interrupt mask SYS_SETSCUIM 2.1

SE
G

A
C

on
fid

en
tia

l

Format: void SYS_CHGSCUIM (Uint 32 AndMask, Uint32 OrMask) ;
Input: AndMask : Mask value used for authorizing

OrMask : Mask value used for denying
Output: None
Function Value: None
Function: Takes the logical product of the contents of the mask memory and the

AndMask and writes the result of the logical sum of that and the Or-
Mask to the mask save memory and the SCU interrupt. However, if
the A-bus interrupt mask bit is allowed, the upper word of the status
register is cleared, and the A-bus interrupt acknowledge register is
cleared as well. These operations are executed inseparably.

Remarks: This routine must not be used from the interrupt process (for SCU
interrupt only) (The value of SYS_GETSCUIM becomes undefined
during the SCU interrupt process.)
The SCU interrupt may disappear when it occurs during the
process (SCU specifications). This possibility should either be
avoided or the usage should occur under conditions where there is no
related knowledge thereof. Results cannot be guaranteed when this
routine is called via slave SH2.

Format: Uint 32 SYS_GETSCUIM ;

Input: None
Output: None
Function Value: Mask save memory value
Function: This function reads the mask save memory value. If this value

performs settings and changes of the SCU interrupt mask register
using the aforementioned function, it is the same as the value actually
set in the SCU interrupt mask register.

Remarks: During the SCU interrupt process, the change is made to the value
that is set when the application uses SYS_SETSCUIM () and
SYS_CHGSCUIM () where the change is made to the logical sum
of the mask value by interrupt cause factor (when the application uses
SYS_CHGUIPR() and setting has been made, the corresponding
values within that table). However, the interrupt becomes multi-level
and changes to the logical sum. Consequently, this value becomes
undefined during the SCU interrupt process. During this procedure,
a process that relies on referenced values should not be performed.

10

Title Function Function Name No.

Function
Specifications

Changes SCU interrupt mask SYS_CHGSCUIM 2.2

Title Function Function Name No.

Function
Specifications

References SCU interrupt mask value SYS_GETSCUIM 2.3

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 11

Format: Uint 32 SYS_TASSEM (Uint 32 Num) ;
Input: Num : semaphore number (0 ~ FFH)
Output: None
Function Value: Result (1: acquired, 0: already acquiring another)
Function: TAS command to memory (1 byte) linked to Num number is executed

and the results are returned to function values. There is no range
check. Values beyond the restricted range must not be specified. This
routine can be used with both master and slave SH2.

Format: void SYS_CLRSEM (Uint 32 Num) ;
Input: Num : semaphore number (0 ~ FFH)
Output: None
Function Value: None
Function: Clears the memory (1 byte) linked to Num number. There is no range

check. Values outside restrictions must not be specified. This routine
can be used with both master and slave SH2.

Format: void SYS_CHGSYSCK (Uint 32 CkMode) ;

Input: CkMode: 0: CPU 26 MHz, 320/640 Mode
1: CPU 28 MHz, 352/704 Mode

Output: None
Function Value: None
Function: System clock is switched to the value specified by CkMode.
Remarks: See the overview and the SMPC Manual regarding reset devices and

processing time. The system hangs up when this routine is called via
slave SH2. Be sure to call via master SH2.

Title Function Function Name No.

Function
Specifications

Gets semaphore SYS_TASSEM 3.1

Title Function Function Name No.

Function
Specifications

Clears semaphore SYS_CLRSEM 3.2

Title Function Function Name No.

Function
Specifications

Switches System Clock SYS_CHGSYSCK 4.1

SE
G

A
C

on
fid

en
tia

l

12

Format: Uint 32 SYS_GETSYSCK ;

Input: None
Output: None
Function Value: 0 or 1: the final SYS_CHGSYSCK () parameter value
Function: Reads the system clock value. Parameter value when

SYS_CHGSYSCK () is called for the last time.
Remarks: Please reference this value via master SH2.

Format: void SYS_CHGUIPR (Uint 32 *IprTab) ;
Input: IprTab : 32 long word data array
Output: None
Function Value: None
Function: The SCU interrupt routine priority table of the Boot ROM is rewritten

as the table value specified by IprTab. If rewrite is performed once,
 interrupt processing by the SCU interrupt routine is executed in
accordance with the priority of the table values pertaining to each
factor.

Note: The table contents are not checked. If inconsistencies relating to priority exist in the table, the
system may hang up.

Remarks: Table settings are valid until the next rewrite. During this interval,
there is no need for the application to save the table specified in the
parameters. Further, reset returns to the initial set value of the Boot
ROM. The results cannot be guaranteed when this routine is called
via slave SH2.

Format: void SYS_EXECDMP (void) ;
Input: None
Output: Does not return to call side.
Function Value: None
Function: Starts and executes the CD multiplayer.
Remarks: The system hangs up when this routine is called via slave SH2.

Be sure to call via master SH2.

Title Function Function Name No.

Function
Specifications

References System Clock Value SYS_GETSYSCK 4.2

Title Function Function Name No.

Function
Specifications

Change SCU Interrupt Routine Priority SYS_CHGUIPR 5.1

Title Function Function Name No.

Function
Specifications

Starts and Executes CD Multiplayer SYS_EXECDMP 6.1

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 13

Format: Uint8 *SYS_PCLRMEM
Input: Perform normal memory access.
Output: Perform normal memory access.
Function Value: None
Function: 8 byte memory address controlled by the Boot ROM. This memory is

initialized to 0 only when the power is turned on, but the contents are
saved by the reset button (NMI).

Remarks: A check of the range is not performed. Be careful not to access outside
the range.

Title Function Function Name No.

Function
Specifications

Operates Power On Clear Memory SYS_PCLRMEM 7.1

SE
G

A
C

on
fid

en
tia

l

14

(This page is blank in the original Japanese version.)

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 15

SMPC I/F User’s Manual

1.0 Guide

This library uses functions of the SMPC (System Management and Peripheral Con-
trol).

2.0 Features

• Able to greatly decrease the main CPU burden.
• The main CPU and SMPC interface is a software handshake method using the

SMPC register.

SE
G

A
C

on
fid

en
tia

l

16

3.0 Overview

3.1 Function Overview
SMPC functions can be divided into the system management system and peripheral
control system.

• System Management System
The system management system resets the hardware (CPU, sound, etc.), sets the
clock, and performs acquisition.

• Peripheral Control System
The peripheral control system collects data automatically from peripherals con-
nected to the peripheral I/F, and returns it to the main CPU.

3.2 Process Overview
The interface between the SMPC and the main CPU is a handshake. In executing a
function (command), required parameters are written to the SMPC register. The
command write procedure is followed. SMPC executes processing in response to
commands when commands are written. Processes include IntBack and Non-
IntBack.

• IntBack
Intback is the process of returning results through interrupts (SMPC interrupts)
after commands are passed to the SMPC. SMPC interrupt processing and regis-
tration are performed in the library. Also, other interrupt processes are prohib-
ited during the SMPC interrupt process. Timing of issuing command issuance
differs according to the function.

• Non-IntBack
Non-IntBack is a process that only passes commands to the SMPC. The library
function waits for the SMPC process to end. (See the SMPC User’s Manual for
details of each SMPC process time.) The functions (reset, etc.) that can be used
by this process are functions which do not have to receive results after a com-
mand has been passed.

Shown below are the processing systems that can be used by each function.

O : Processing, X : Not processing

IntBack Non-IntBack

System Management O O

Peripheral Control O X

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 17

4.0 Details

4.1 Functions

• System Management System
The system management system has the following functions.

 (Note) Clock change 320,352 is provided by the system library.

• Peripheral Control System
The following peripherals are supported by the library.

Function IntBack Non-IntBack

Master SH2 ON X O

Slave SH2 ON X O

Slave SH2 OFF X O

Sound ON X O

Sound OFF X O

CD ON X O

CD OFF X O

Entire system reset X O

NMI Request X O

Hot reset enable X O

Hot reset disable X O

Get cartridge code O X

Get area code O X

Get system status O X

Set SMPC memory X O

Get SMPC memory O X

Set time X O

Get time O X

Game Device Peripheral Name

Saturn Peripherals Digital Devices
Analog Devices
Pointing Devices (mouse)
Keyboard
Multitap (6P)

Mega Drive Peripherals 3-button Pad
6-button Pad
4P adapter
Mouse

SE
G

A
C

on
fid

en
tia

l

18

4.2 Process

4.2.1 Library Configuration

• Non-IntBack Command Issuance
This is the Non-IntBack system process.

• IntBack Command Issuance
Gets system data (except for time)
This process is performed once per game.

Gets peripheral data and time data
This is a process required for each frame.

4.2.2 Recommended Examples
Recommended examples of three patterns are shown below.

1 2 3

Non-IntBack Command Issuance O

IntBack
Commnad
Issuance

Get system data O

Get peripheral data O O O

Get peripheral data and time data O O

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 19

• Chart Descriptions

Main Process
IntBack initialization (1) : Specifies system data acquisition
IntBack initialization (2) : Specifies peripheral data acquisition
IntBack initialization (3) : Specifies peripheral data acquisition and time data
acquisition

SMPC Process
(1) : System data collection process
(2) : Peripheral data collection process
(3) : Time data collection process

 (1) Pattern 1

**

SE
G

A
C

on
fid

en
tia

l

20

4.2.3 Restrictions

• Common
• Do not issue commands after V-Blank IN until 300 µs has elapsed.
• Do not issue commands after issuing the IntBack command until the next V-Blank

IN.
• Cautions when executing in multiple tasks

In cases in which the interrupt task is changed when using the library with
multiple tasks, because SMPC exclusive control is not performed in the library,
SMPC deadlock may occur and SMPC operation may become abnormal. As a
result, when executing with multiple tasks, the exclusive control of library must
be performed by the user.

• For restrictions from slave SH2 see the SMPC User’s Manual.
• Command process time may vary between 20 µs to 100 µs, because there is 1 SMPC

internal process per second.

• Non-IntBack Command Issue Function
• There are no restrictions other than Common (above).

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 21

• IntBack Command Issue Function

System Data Acquisition (Excluding time)
• There are no restrictions other than Common (above).

Peripheral Data Acquisition, Time Data Acquisition
• Do not issue a command after issuing the IntBack command until the next V-Blank

IN.
• Issue a IntBack command 14 ms before the specified V-Blank IN.
• The peripheral data collection process within SMPC is done during one vertical

display period.
• (Time out) data that could not be acquired at the instructed V-Blank IN after the

IntBack command is issued cannot be acquired thereafter.
• If a time out frequently occurs, peripherals are handled as unconnected.
• In SMPC, peripheral acquisition begins in such a way that the peripheral

acquisiton ends 1ms before the specified V-Blank.
• Number of V-Blank IN Skips

The number of V-Blank skips indicates the execution timing of the peripheral
data collection process in SMPC after the IntBack command is issued. This is
provided for games that change frames by 2 frames or more. The peripheral
data collection process in SMPC is executed in V-DISP before the (V-Blank In
skip number + 1)th V-Blank IN after the IntBack command is issued . Set 0
when executing in V-Blank IN immediately after issuing the IntBack command.

SE
G

A
C

on
fid

en
tia

l

22

4.3 Peripheral Control

Peripheral controls must be created in accordance with game creation standards.
The library is created intelligently, thus enabling them to be created easily.

4.3.1 Policy
The peripheral acquisition process is created according to the following policies for
flexible response to the user.
• Able to accommodate peripherals to be sold in the future.
• Methods that do not provide multitap awareness.
• Perform corrective measures against problems.

4.3.2 Method
(1) Overview
• Each peripheral IDs and peripheral data is obtained by specifying as inputs the

required number of peripherals, peripheral IDs and preferred size.
• Even when the peripheral acquisition ID and connected peripheral ID are different,

data is obtained if peripherals are connected. For example, analog device data is
obtained as mouse data.

(Example)

Input
Required number of peripherals = 3
Peripheral ID = digital device
Peripheral size = digital device size

Connection Status
Main connector 1 = multi-tap 6P
Multi-tap connector 1 = digital device
Multi-tap connector 3 = analog device
Main connector 2 = keyboard device
(Other devices are not connected to peripherals)

Output

Peripheral ID Peripheral Data

No. 1 Digital Digital Format

No. 2 Unconnected Invalid

No. 3 Analog Digital Format

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 23

5.0 Calling Sequence

Recommended example of pattern 3 calling sequence.

Uint32 work[10]; /* peripheral data acquisition work area */
PerGetSys *sys_data; /* system data */

PerDgtInfo *get_per; /* peripheral output data pointer */
Uint8 *get_tim; /* time output data pointer */

• Initial Process (Immediately after the V-Blank Process).

PER_Init (PER_KD_SYS, 0, 0, 0, NULL, 0); /* get system data is specified*/
. . .

sys_data = PER_GET_SYS () ; /* get system data */

• Normal (Immediately after the V-Blank Process).

PER_Init (PER_KD_PERTIM, 3, PER_ID_DGT, PER_SIZE_DGT, work, 0);
/* Peripheral data and time data acquisition are specified */

...

• Normal for 2 or more times (Immediately after the V-Blank Process).

PER_GetPer (PerGetPer **) &get_per); /* get peripheral data */
get_tin = PER_GET_TIM (); /* get time */
if (((get_per[2].data) & PER_DGT_U) == PER_DGT_U_) { /* current pe-
ripheral data of connector 3 is UP ? */

. . .

. . .

SE
G

A
C

on
fid

en
tia

l

24

6.0 Data Specifications

6.1 List of Data

Function Function name N o .

IntBack Peripheral ID data type PerId 1

Peripheral size data type PerSize 2

IntBack Kind PerKind 3

Required number of peripherals PerNum 4

System data output data type PerGetSys 5

Peripheral data output data type PerGetPer 6

Device information data type Digital device info data type PerDgtInfo 7

Analog device info data type PerAnlInfo 8

Pointing device info data type PerPntInfo 9

Keyboard device info data type PerKbdInfo 10

Mega Drive 3-button pad info data type PerM3bpInfo 11

Mega Drive 6-button pad info data type PerM6bpInfo 12

Device Data Type Digital device data type PerDgtData 13

Analog device data type PerAnlData 14

Pointing device data type PerPntData 15

Keyboard device data type PerKbdData 16

Mega Drive 3-button pad data type PerM3bpData 17

Mega Drive 6-button pad data type PerM6bpData 18

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 25

6.2 Data Specifications

IntBack command issuance

Title Data Data Name No.
Data
Specifications

Peripheral ID data type PerId 1

This data type shows the peripheral ID.

Constant name Description

PER_ID_NCON Unconnected

PER_ID_UNKNOW Peripherals that cannot be processed by SMPC

PER_ID_DGT Digital Device

PER_ID_ANL Analog Device

PER_ID_PNT Pointing Device (Mega Drive mouse)

PER_ID_KBD Keyboard

PER_ID_M3BP Mega Drive 3-button pad

PER_ID_M6BP Mega Drive 6-button pad

Title Data Data Name No.
Data
Specifications

Peripheral size data type PerSize 2

This data type shows the peripheral size.

Constant name Description

PER_SIZE_DGT Digital Device

PER_SIZE_ANL Analog Device

PER_SIZE_PNT Pointing Device (Mega Drive mouse)

PER_SIZE_KBD Keyboard

PER_SIZE_M3BP Mega Drive 3-button pad

PER_SIZE_M6BP Mega Drive 6-button pad

SE
G

A
C

on
fid

en
tia

l

26

Title Data Data Name No.
Data
Specifications

IntBack kind data type PerKind 3

This data type shows the IntBack kind.

Constant name Description

PER_KD_SYS System data acquisition (except time)

PER_KD_PER Peripheral data acquisition

PER_KD_PERTIM Peripheral data acquisition + time data acquisition

Title Data Data Name No.
Data
Specifications

Required number of peripherals data type PerNum 4

This data type shows the required number of peripherals.

Value Meaning

0 ~ 31 1P ~ 32P

Title Data Data Name No.
Data
Specifications

System data output data type PerGetSys 5

This data type shows the system data output.

PerGetSys *data
Access Macro Type Description

PER_GS_AC (data) Uint8 Area code

PER_GS_SS (data) Uint16 System status

PER_GS_SM (data) Uint32 SMPC memory

PER_GS_SMPC_STAT (data) Uint8 SMPC status

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 27

Shown below are the constants and values that can be used by each access macro.

PER_GS_CC (data)

bit 7 bit 0

0 0 0 0 0 0 CTR1 CTR0

PER_GS_AC (data)

bit 7 bit 0

0 0 0 0
ACODE

3

ACODE

2

ACODE

1

ACODE

0

See the hardware manual for areas indicated an area codes.

PER_GS_SS (data)

Bit Position Constant Acquisition Value

PER_SS_DOTSEL DOTSEL signal status

PER_SS_SYSRES SYSRES signal status

PER_SS_MSHNMI MSHNMI signal status

PER_SS_SNDRES SNDRES signal status

PER_SS_CDRES CDRES signal status

Description of Acquisition Values
Value Meaning

0 OFF

1 ON

PER_GS_SM (data)
Areas which are used in common by applications and Boot ROM.
Bit Position Constant Acquisition Value

PER_MSK_LANGU Language (see below)

PER_MSK_SE SE (0: ON, 1: OFF)

PER_MSK_STEREO STEREO or MONO (0: STEREO, 1: MONO)

PER_MSK_HELP HELP (0: ON, 1: OFF)

Language Constant
Constant Description

PER_JAPAN Japanese
PER_ENGLISH English
PER_FRANCAIS French
PER_DEUTSCH German
PER_ITALIANO Italian
PER_ESPNOL Spanish

SE
G

A
C

on
fid

en
tia

l

28

PER_GS_SMPC_STAT (data)

This data type shows peripheral data output.

• Device Information Data Type

This data type shows digital device information.

typedef struct { /* digital device */
PerDgtData data; /* current peripheral data */
PerDgtData push; /* previously not pressed currently pressed button */

PerId id; /* peripheral ID */
} PerDgtInfo;

This data type shows analog device information.

typedef struct { /* analog device */
PerAnlData data; /* current peripheral data */
PerAnlData push; /* previously not pressed currently pressed button */

PerId id; /* peripheral ID */
} PerAnlInfo;

Title Data Data Name No.
Data
Specifications

Analog device information data type PerAnlInfo 8

Title Data Data Name No.
Data
Specifications

Digital device information data type PerDgtInfo 7

Bit Position Constant Acquisition Value

PER_SS_RESET Reset mask condition

0: reset enable

1: reset disable (default)

PER_SS_SETTIME Time set condition

0: time is not set after SMPC cold reset

1: time is set after SMPC cold reset

Title Data Data Name No.
Data
Specifications

Peripheral data output data type PerGetPer 6

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 29

This data type shows pointing device information.

typedef struct { /* pointing device */
PerPntData data; /* current peripheral data */
PerPntData push; /* previously not pressed currently pressed button */
PerId id; /* peripheral ID */

} PerPntInfo;

This data type shows keyboard device information.

typedef struct { /* keyboard device */
PerKbdData data; /* current peripheral data */
PerKbdData push; /* previously not pressed currently pressed button */
PerId id; /* peripheral ID */

} PerKbdInfo;

This data type shows Mega Drive 3-button pad information.

typedef struct { /* Mega Drive 3-button pad */
PerM3bpData data; /* current peripheral data */
PerM3bpData push; /* previously not pressed currently pressed button */
PerId id; /* peripheral ID */

} PerM3bpInfo;

This data type shows Mega Drive 6-button pad information.

typedef struct { /* Mega Drive 6-button pad */
PerM6bpData data; /* current peripheral data */
PerM6bpData push; /* previously not pressed currently pressed button */
PerId id; /* peripheral ID */

} PerM6bpInfo;

Title Data Data Name No.
Data
Specifications

Pointing device information data type PerPntInfo 9

Title Data Data Name No.
Data
Specifications

Keyboard device information data type PerKbdInfo 10

Title Data Data Name No.
Data
Specifications

Mega Drive 3-button pad information data type PerM3bpInfo 11

Title Data Data Name No.
Data
Specifications

Mega Drive 6-button pad information data type PerM6bpInfo 12

SE
G

A
C

on
fid

en
tia

l

30

• Device Data Type
The meaning of the device data bit acquisition value is explained below.

Description of Acquisition Values
Value Meaning

0 Button is pressed

1 Button is not pressed

Title Data Data Name No.
Data
Specifications

Digital device data type PerDgtData 13

This data type shows the digital device.

typedef Uint16 PerDgtData; /* digital device data type */

Bit Position Constant Acquisition Value

PER_DGT_U UP

PER_DGT_D DOWN

PER_DGT_R RIGHT

PER_DGT_L LEFT

PER_DGT_A A

PER_DGT_B B

PER_DGT_C C

PER_DGT_S START

PER_DGT_X X

PER_DGT_Y Y

PER_DGT_Z Z

PER_DGT_TR TRG-RIGHT (upper right of the device)

PER_DGT_TL TRG-LEFT (upper left of the device)

Title Data Data Name No.
Data
Specifications

Analog device data type PerAnlData 14

This data type shows the analog device.

typedef struct { /* analog device data type */
PerDgtData dgt; /* digital device data type */
Sint16 x; /* X axis absolute value (0 ~ 255) */
Sint16 y; /* Y axis absolute value (0 ~ 255) */
Sint16 z; /* Z axis absolute value (0 ~ 255) */

} PerAnlData;

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 31

Title Data Data Name No.
Data
Specifications

Pointing device data type PerPntData 15

This data type shows the pointing device.

typedef struct { /* pointing device data type */
PerPntData dgt; /* digital device data type */
Sint16 data; /* data */
Uint16 x; /* amount of X axis movement (-128 ~ 127) */
Sint16 y; /* amount of Y axis movement (-128 ~ 127) */

} PerPntData;

Shown below are constants and values that can be used by each member.

Data
Bit Position Constant Acquired value

PER_PNT_R RIGHT

PER_PNT_L LEFT

PER_PNT_MID MIDDLE

PER_PNT_CNT CENTER

PER_PNT_X0 X axis overflow (0: overflows, 1: does not overflow)

PER_PNT_Y0 Y axis overflow (0: overflows, 1: does not overflow)

Title Data Data Name No.
Data
Specifications

Keyboard device data type PerKbdData 16

This data type shows the keyboard device.

typedef struct { /* keyboard device data type */
PerDgtInfo dgt; /* digital device data type */
Uint8 skey; /* special key */
Uint8 key; /* key */

} PerKbdData;

Shown below are constants and values that can be used by each member.

skey
Bit Position Constant Acquired value

PER_KBD_CL Caps Lock

PER_KBD_NL Num Lock

PER_KBD_SL Scroll Lock

PER_KBD_MK Make (0: key pressed, 1: key not pressed)

PER_KBD_BR Break (0: key released, 1: key not released)

SE
G

A
C

on
fid

en
tia

l

32

Title Data Data Name No.
Data
Specifications

Mega Drive 3-button pad data type PerM3bpData 17

This data type shows the Mega Drive 3-button pad.

typedef Uint8 PerM3bpData; /* Mega Drive 3-button pad data type */

PER_M3BP_U ~ PER_M3BP_S is the same as PER_DGT_U ~ PER_DGT_S. PER_DGT_X ~ PER_DGT_TL
is the condition when the button is not pressed.

Bit Position Constant Acquired Value

PER_M3BP_U UP

PER_M3BP_D DOWN

PER_M3BP_R RIGHT

PER_M3BP_L LEFT

PER_M3BP_A A

PER_M3BP_B B

PER_M3BP_C C

PER_M3BP_S START

Title Data Data Name No.
Data
Specifications

Mega Drive 6-button pad data type PerM6bpData 18

This data type shows the Mega Drive 6-button pad.

typedef Uint16 PerM6bpData; /* Mega Drive 6-button pad data type */

PER_M6BP_U ~ PER_M6BP_MD is the same as PER_DGT_U ~ PER_DGT_TR.
PER_DGT_TL is the condition when the button is not pressed.

Bit Position Constant Acquisition Value

PER_M6BP_U UP

PER_M6BP_D DOWN

PER_M6BP_R RIGHT

PER_M6BP_L LEFT

PER_M6BP_A A

PER_M6BP_B B

PER_M6BP_C C

PER_M6BP_S START

PER_M6BP_X X

PER_M6BP_Y Y

PER_M6BP_Z Z

PER_M6BP_MD MODE (upper right of device)

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 33

7.0 Function Specifications

7.1 List of Functions

7.2 Function Specifications

Non-IntBack

Format: void PER_SMPC_XXX (void)

Input: None
Output: None
Function Value: None
Function: As per the list of function specifications. See the SMPC hardware

manual for details.

Function Function Name N o .

Non-IntBack Command Issue Master SH2 ON PER_SMPC_MSH_ON 1

Slave SH2 ON PER_SMPC_SSH_ON 2

Slave SH2 OFF PER_SMPC_SSH_OFF 3

Sound ON PER_SMPC_SND_ON 4

Sound OFF PER_SMPC_SND_OFF 5

CD ON PER_SMPC_CD_ON 6

CD OFF PER_SMPC_CD_OFF 7

Reset entire system PER_SMPC_SYS_RES 8

NMI request PER_SMPC_NMI_REQ 9

Hot reset enable PER_SMPC_RES_ENA 10

Hot reset disable PER_SMPC_RES_DIS 11

SMPC memory set PER_SMPC_SET_SM 12

Time set PER_SMPC_SET_TIM 13

IntBack Command Issue IntBack Initialization PER_Init 14

Peripheral data acquisition PER_GetPer 15

Other Time acquisition PER_GET_TIM 16

System data acquisition PER_GET_SYS 17

Other Hot reset acquisition PER_GET_HOT_RES 18

Title Function Function Name No.

Function
Specifications

Master SH2 ON ~ hot reset disable PER_SMPC_MSK_ON ~
PER_SMPC_RES_DIS

1 ~ 11

SE
G

A
C

on
fid

en
tia

l

34

Format: void PER_SMPC_SET_SM (Uint32 input_dt)

Input: input_dt : SMPC memory
 See System data output data type for the meaning of each bit value.

Output: None
Function Value: None
Function: Sets the SMPC memory. Because the SMPC memory is an area that

is used in common by applications and the Boot ROM, the format
must be observed.

Format: void PER_SMPC_SET_TIM (Uint8 * input_dt)

Input: input_dt: time

Input Format

 • Day data: Sunday is 0, Monday is 1, Tuesday is 2 . . .
• Month data is hexadecimal data.

Output: None
Function Value: None
Function: Sets the time.

bit7 bit4 bit3 bit0

*(input_dt) second (10 digit) second (1 digit)

*(input_dt + 1) minute (10 digit) minute(1 digit)

*(input_dt + 2) hour (10 digit) hour (1 digit)

*(input_dt + 3) day (10 digit) day (1 digit)

*(input_dt + 4) day of week (0 ~ 6) month (1H ~ CH)

*(input_dt + 5) year (10 digit) year (1digit)

*(input_dt + 6) year (1000 digit) year (100 digit)

Title Function Function Name No.

Function
Specifications

Sets SMPC memory PER_SMPC_SET_SM 12

Title Function Function Name No.

Function
Specifications

Sets time PER_SMPC_SET_TIM 13

SE
G

A
C

on
fid

en
tia

l

IntBack

Format: Uint32 PER_Init (PerKind kind, PerNum num, PerId id,

PerSize size, Uint32 work[n], Uint8 v_blank)
Input: kind : IntBack type

num : Required number of peripherals
id : Peripheral ID
size : Peripheral size
work : Work area (Use for getting peripheral data. Must be

 declared by a global variable.)
v_blank : Number of V-Blank skip

• Method for calculating the work area

n = (num x data A)/4 + data B
 round up to nearest digit

Data A and data B change depending on the peripheral.

Output: none
Function Value: execution condition

Function: Initializes IntBack and issues the IntBack command. Execution rules
must be obvserved. Set Null or 0 to unneeded parameters. Execute at
least 1 time before executing PER_GetPer (), PER_GetTim(),
PER_GetSys().

Remarks: Generally, this should be executed immediately after the V-Blank
process. Other interrupts are prohibited during SMPC interrupts.

Note: DO NOT perform this function within the interrupt process. Be sure
to perform via the main process.

Saturn System Library User's Guide 35

Peripheral Data A Data B

Digital device 12 1

Analog device 36 2

Pointing device 36 2

Keyboard device 20 1

Mega Drive 3-button pad 6 1

Mega Drive 6-button pad 12 1

Constant Description

PER_INT_ERR Could not issue the IntBack command

PER_INT_OK Could issue the IntBack command

Title Function Function Name No.

Function
Specifications

Initializes IntBack PER_Init 14

SE
G

A
C

on
fid

en
tia

l

36

Format: Uint32 PER_GetPer (PerGetPer **output_dt)

Input: none
Output: output_dt: peripheral output address (Null = cannot get)
Function Value: Execution conditions.

Function Value: Issues the IntBack command and gets peripheral data. Execution
rules must be observed. Before this function is executed, specify “pe-
ripheral data get” to PER_Init() and execute at least once. Null is
output to the peripheral data address when peripheral data get is not
specified.

Remarks: Generally, this should be executed immediately after the V-Blank
process. Other interrupts are prohibited during SMPC interrupt.

Format: Uint8 *PER_GET_TIM (void)
Input: none
Output: none
Function Value: Time data address
Function: Gets time data. Before this function is executed, instructs peripheral

data get and time get to PER_Init() and execute at least once.

Format: PerGetSys *PER_GET_SYS (void)

Input: none
Output: none
Function Value: System data address (NULL = could not get)
Function: Gets system data. Instructs system data get to PER_Init () before this

function is executed and execute at least once. Execute this function
about 300 µs after executing PER_Init.

Constant Description

PER_INT_ERR Could not issue the IntBack command.

PER_INT_OK Could not issue the IntBack command.

Title Function Function Name No.

Function
Specifications

Peripheral data acquisition PER_GetPer 15

Title Function Function Name No.

Function
Specifications

Gets time PER_GET_TIM 16

Title Function Function Name No.

Function
Specifications

Gets system data PER_GET_SYS 17

SE
G

A
C

on
fid

en
tia

l

Other

Format: Uint8 PER_GET_HOT_RES (void)

Input: none
Output: none
Function Value: Hot reset condition address

Function: Gets the hot reset condition. This function can be executed at any
time. Update is performed by PER_GetPer().

Saturn System Library User's Guide 37

Constant Description

PER_HOT_RES_ON Hot reset ON

PER_HOT_RES_OFF Hot reset OFF

Title Function Function Name No.

Function
Specifications

Gets hot reset PER_GET_HOT_RES 18

SE
G

A
C

on
fid

en
tia

l

38

(This page is blank in the original Japanese version.)

SE
G

A
C

on
fid

en
tia

l

Saturn System Library User's Guide 39

Backup Library User’s Manual

1.0 Guide

1.1 Purpose
In addition to the builit-in memory in this game machine, several types of storage
devices are being planned for storing information during a game.

This library provides functions for reading, writing and searching these backup
storage devices.

1.2 Explanation

1.2.1 Introduction
Always use this library when accessing storage devices for backup.

1.2.2 How to Use This Library
The library itself is compressed and stored in the boot ROM. The application pro-
grammer expands the library and uses it. Expansion is performed by securing a
program expansion area and executing BPU_Init(). Once this is done, each function
can be used.

1.2.3 Storage Capacity
The object of this library is to facilitate access of devices to be supported in the future
through a common interface, and therefore the capacity of the storage devices to be
developed in the future is not known. Also, depending on the device, it will be
divided up into multiple areas. Each one of these unit areas is called a partition (the
capacity of each partition may be different).

When storing data, execute BUP_SelPart() and BUP_Stat() and confirm the capacity
before writing. The built-in backup memory is 32 Kbyte.

1.2.4 Date Setting
In order to preserve the uniqueness of this library, it does not have a function for
acquiring the date and time. Set the date and time data by having the application use
BPU_SetDate().

1.2.5 Precautions
This library will destroy data if writing is interrupted. Before executing BUP_Init(),
BUP_Format(), BUP_Write() and BUP_Delete, disable the reset button by using
PER_SMPC_RES_DIS() in the system library.

SE
G

A
C

on
fid

en
tia

l

40

1.3 Program Example
An example of a program written in C is shown below.

#include “sega_per.h”
#define BUP_START_ADDR 0x60????0 /*sets write address for library */
#include “sega_bup.h”

Unit32 BackUpRamWork[2048];

main()
[
 BupConfig conf[3]
 BupStat sttb;
 BupDir writetb;
 BupDate datatb;
 Unit8 *time;

 PER_SMPC_RES_DIS(); /*disables reset button */
 BUP_Init(BUP_START_ADDR, BackUpRamWork, conf);
 if(BUP_Stat(0, &sttb)==BUP_UNFORMAT) {
 BUP_Format(0);
 }
 PER_SMPC_RES_ENA(); /*enables reset button */
 BUP_Stat(0, &sttb);
 if(sttb.freeblock > 0) {
 strcpy((char *)writetb.filename, “FILE_NAME01”);
 STRCPY((char *)writetb.comment, “test”);
 writetb.language = BUP_JAPANESE;
 time = PER_GET_TIM(); /*get date and time */
 datetb.year = (Uint8)((Uint16)(time[6]>>4) * 1000
 + (Uint16)(time[6] & 0x0F) * 100
 + (Uint16)(time[5]>>4) * 10
 + (Uint16)(time[5] & 0x0F) - 1980);
 datetb.month = time[4] & 0x0F;
 datetb.day = (time[3]>>4)*10 + (time[3] & 0x0F);
 datetb.time = (time[2]>>4)*10 + (time[2] & 0x0F);
 datetb.min = (time[1]>>4)*10 + (time[1] & 0x0F);
 writetb.date = BUP_SetDate(&datetb);
 writetb.datasize = 10;
 PER_SMPC_RES_DIS(); /*disable reset button */
 BUP_Write(0, &writetb, “Dummy Data”);
 PER_SMPC_RES_ENA(); /*enable reset button */

SE
G

A
C

on
fid

en
tia

l

2.0 Reference

2.1 Data List

Saturn System Library User's Guide 41

Title
Data specification

Data
Storage device connection information

Data Name
BupConfig

No.

typedef struct BupConfig {
 Uint16 unit_id; /*unit ID */
 Uint16 partition; /*number of partitions */
} BupConfig;

*When unit_id is "0", it indicates non-connection.

Type of device unit_id partition
Built-in memory 1 1
External cartridge 2 1

Title
Data specification

Function
Status information

Function Name
BupStat

No.

typedef struct BupStat {
 Uint32 totalsize; /*total capacity (bytes) */
 Uint32 totalblock; /*number of blocks */
 Uint32 blocksize; /*size of one block (bytes) */
 Uint32 freesize; /*open space */
 Uint32 freeblock; /*number of open blocks */
 Uint32 datanum; /*number of items that can be written */
} BupStat;

The value for the size specified by BUP_Stat() for datasize is stored in datanum.

Title
Data specification

Function
Date and time

Function Name
BupDate

No.

typedef struct BupStat {
 Uint8 year; /*year (1980 subtracted from year */
 Uint8 month; /*month (1-12) */
 Uint8 day; /*day (1-31) */
 Uint8 time; /*hour (0-23) */
 Uint8 min; /*minute (0-59) */
 Uint8 week; /*day of week (sunday 0- saturday 6) */
} BupDate;

SE
G

A
C

on
fid

en
tia

l

42

Title
Data specification

Function
Directory information

Function Name
BupDir

No.

typedef struct BupStat {
 Uint8 filename[12]; /*file name */

/*total 12 bytes ASCII 11 characters
 + NUL */

 Uint8 comment[11]; /*comment */
/*total 11 bytes ASCII 10 characters
 + NUL */

 Uint8 language; /*language of comment */
/* Japanese BUP_JAPANESE */
/* English BUP_ENGLISH */
/* French BUP_FRACAIS */
/* German BUP_DEUTSCH */
/* Spanish BUP_ESPAN0L */
/* Italian BUP_ITALIANO */

 Uint32 date; /*date and time data */
 Uint32 datasize; /*data size (unit: byte) */
 Uint16 blocksize; /*data size (unit: block) */
} BupDir;

2.2 Function List

Function Function Name No.
Backup library
Initialize backup library BUP_Init 1
Select partition BUP_SelPart 2
Execute format BUP_Format 3
Get status BUP_Stat 4
Write data BUP_Write 5
Read data BUP_Read 6
Delete data BUP_Delete 7
Get directory information BUP_Dir 8
Verify data BUP_Verify 9
Open date and time data BUP_GetDate 10
Compress data and time data BUP_SetDate 11

SE
G

A
C

on
fid

en
tia

l

2.3 Data Flow

HOST
Storage device
for backup

Write

Read

2.4 Function Specifications

Format void BUP_Init(Uint32 *libaddr,Uint32 *workbuff,BupConfig conf[3])

Input libaddr : specifies address to which library is loaded.
 The size of the library is 16 Kbytes.

workbuff : point for library work area
 A work area size of 8192 bytes is required.

Long word access may also be performed, so be sure to secure
with Uint32.

Output conf : Gets information on the connected storage device.
Function Loads the backup library to the specified memory area and prepares it

for use. Gets information on the connected storage device.

The following device numbers correspond to three tables.

Notes Always prepare three storage device connection information tables.
Example

#define BUP_START_ADDR 0x6??????
#include”sega_bup.h”
Uint32 workmemory[2048]

voidsample()
{
 BupConfig conf[3]

 BUP_Init(BUP_START_ADDR, workmemory, conf);

}

Saturn System Library User's Guide 43

Device No. Device Type
0 Built-in memory cartridge
1 Memory cartridge or parallel interface
2 Serial interface

Title
Function specification

Function
Initializes backup library

Function Name
BUP_Init

No.
1

SE
G

A
C

on
fid

en
tia

l

Format Sint32 BUP_SelPart(Uint32 device,Uint16 num)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

num : partition number
 0 - (number of partitions - 1)

Output none
Function value 0 : success

other : failure
Function Selects a partition. In the initial condition, partition 0 is selected.

Format Sint32 BUP_Format(Uint32 device)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

Output none
Function value 0 : success

BUP_WRITE_PROTECT : write protected
other : failure

Function Initializes the backup storage device.
Formats only the current partition in a partitioned backup storage
device.

44

Title
Function specification

Function
Partition selection

Function Name
BUP_SelPart

No.
2

Title
Function specification

Function
Executes format

Function Name
BUP_Format

No.
3

SE
G

A
C

on
fid

en
tia

l

Format Sint32 BUP_Stat(Uint32 device,Uint32 datasize,BupStat

*stat)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

datasize : specify size of data to be written in byte units
Output stat : status information
Function value returns device status

0 : success
BUP_NON : not connected
BUP_UNFORMAT : not formatted

Function Gets status information.

Format Sint32 BUP_Write(Uint32 device, BupDir *dir,Uint8 *data,Uint8

owsw)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

dir : file control information (input other than dir.blocksize)
data : pointer for write data
owsw: overwrite check mode

 ON: does not write if file of same name exists
 OFF: writes on file if file of same name exists

Output none
Function value 0 : success

BUP_NON : not connected
BUP_UNFORMAT : not formatted
BUP_WRITE_PROTECT : write protect exists
BUP_FOUND : file of same name exists
Other : failure

Function Writes data to the backup storage device.

Saturn System Library User's Guide 45

Title
Function specification

Function
Gets status

Function Name
BUP_Stat

No.
4

Title
Function specification

Function
Writes data

Function Name
BUP_Write

No.
5

SE
G

A
C

on
fid

en
tia

l

Format Sint32 BUP_Read(Uint32 device, Uint8 *fname, Uint8

*data)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

fname : file name specification (11 characters are required in ASCII)
Output data : pointer for load destination buffer
Function value 0 : success

BUP_NON : not connected
BUP_UNFORMAT : not formatted
BUP_NOT_FOUND : file not found
BUP_BROKEN : file is damaged
Other : failure

Function Loads data from the backup storage device.

Format Sint32 BUP_Delete(Uint32 device, Uint8 *fname)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

fname : file name (11 characters is required in ASCII)
Output none
Function value 0 : success

BUP_NON : not connected
BUP_UNFORMAT : not formatted
BUP_NOT_FOUND : file not found
BUP_WRITE_PROTECT : write protect exists
Other : failure

Function Deletes data on the backup storage device.

46

Title
Function specification

Function
Deletes data

Function Name
BUP_Delete

No.
7

Title
Function specification

Function
Loads data

Function Name
BUP_Read

No.
6

SE
G

A
C

on
fid

en
tia

l

Format Sint32 BUP_Dir(Uint32 device,Uint8 *fname,Uint16 dirsize, BupDir *dir)

Input device : device number
 0: built-in memory
 1: memory cartridge or parallel interface
 2: serial interface

fname : file name specification (within 11 ASCII characters)
dirsize : specifies the number of directory info secured

Output dir : stores directory information
Function value number of directory information hits
Function The file name is done by searching forward, and the directory infor-

mation is stored in a table. The number of directories hit by the search
is returned as the function value. If negative, it indicates that the table
is too small, and the number of hits can be confirmed by inverting the
sign (if the result is 11 when the tbsize is set to 10 and a search is
performed, -11 is returned).

Format Sint32 BUP_Verify(Uint32 device, Uint8 *filename,Uint8

*data)

Input device : device number
0: built-in memory
1: memory cartridge or parallel interface
2: serial interface

filename : file name (11 characters are required in ASCII)
data : pointer for data verification

Output none
Function value 0 : success

BUP_NON : not connected
BUP_UNFORMAT : not formatted
BUP_NO_MATCH : data do not agree
BUP_NOT_FOUND : file not found
BUP_BROKEN : file is damaged

Function Verifies data written to the backup file.

Saturn System Library User's Guide 47

Title
Function specification

Function
Gets directory information

Function Name
BUP_Dir

No.
8

Title
Function specification

Function
Verify data

Function Name
BUP_Verify

No.
9

SE
G

A
C

on
fid

en
tia

l

Format void BUP_GetDate(Uint32 pdate,BupDate *date)

Input pdate : data and time data of directory information
date : date and time table

Output none
Function value none
Function Expands the date and time data in the directory information table.

Format Uint32 BUP_SetDate(BupDate *date)

Input date : date and time table
Output none
Function value Data in date and time data form in the directory information table.
Function Compresses the date and time data in the directory information table.

48

Title
Function specification

Function
Compress date and time data

Function Name
BUP_SetDate

No.
11

Title
Function specification

Function
Expands data and time data

Function Name
BUP_GetDate

No.
10

	General Notice
	SATURN System Library User's Guide
	Table of Contents
	System Program User ’s Manual
	1.0 Guide
	1.1 Explanation

	2.0 Reference
	2.1 List of Functions
	2.2 Function Specifications

	SMPC I/F User’s Manual
	1.0 Guide
	2.0 Features
	3.0 Overview
	3.1 Function Overview
	3.2 Process Overview

	4.0 Details
	4.1 Functions
	4.2 Process
	4.3 Peripheral Control

	5.0 Calling Sequence
	6.0 Data Specifications
	6.1 List of Data
	6.2 Data Specifications

	7.0 Function Specifications
	7.1 List of Functions
	7.2 Function Specifications

	Backup Library User ’s Manual
	1.0 Guide
	1.1 Purpose
	1.2 Explanation
	1.3 Program Example

	2.0 Reference
	2.1 Data List
	2.2 Function List
	2.3 Data Flow
	2.4 Function Specifications

