
SE
G

A 
C

on
fid

en
tia

l

   

General Notice

When using this document, keep the following in mind:

1. This document is confidential.  By accepting this document you acknowledge that you are bound
by the terms set forth in the non-disclosure and confidentiality agreement signed separately and /in
the possession of SEGA.  If you have not signed such a non-disclosure agreement, please contact
SEGA immediately and return this document to SEGA.

2. This document may include technical inaccuracies or typographical errors.  Changes are periodi-
cally made to the information herein; these changes will be incorporated in new versions of the
document.  SEGA may make improvements and/or changes in the product(s) and/or the
program(s) described in this document at any time.

3. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without SEGA’S written permission.  Request for copies of this document and for technical
information about SEGA products must be made to your authorized SEGA Technical Services
representative.

4. No license is granted by implication or otherwise under any patents, copyrights, trademarks, or
other intellectual property rights of SEGA Enterprises, Ltd., SEGA of America, Inc., or any third
party.

5. Software, circuitry, and other examples described herein are meant merely to indicate the character-
istics and performance of SEGA’s products.  SEGA assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples
describe herein.

6. It is possible that this document may contain reference to, or information about, SEGA products
(development hardware/software) or services that are not provided in countries other than Japan.
Such references/information must not be construed to mean that SEGA intends to provide such
SEGA products or services in countries other than Japan.  Any reference of a SEGA licensed prod-
uct/program in this document is not intended to state or simply that you can use only SEGA’s
licensed products/programs.  Any functionally equivalent hardware/software can be used instead.

7. SEGA will not be held responsible for any damage to the user that may result from accidents or any
other reasons during operation of the user’s equipment, or programs according to this document.

(11/2/94-  002)

NOTE:  A reader's comment/correction form is provided with this 
document.  Please address comments to :

 SEGA of America, Inc., Developer Technical Support (att. Evelyn Merritt)
 150 Shoreline Drive, Redwood City, CA 94065
 
SEGA may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you.
 



SE
G

A 
C

on
fid

en
tia

l

   

TM

SH2
Dynamic Load Linkage

Editor Function
Specification

Doc. #- ST-19-R1-B-050994

© 1994 SEGA.  All Rights Reserved.



SE
G

A 
C

on
fid

en
tia

l

    

READER CORRECTION/COMMENT SHEET

Chpt. pg. # Correction

Corrections:

General Information:

Your Name Phone

Document number Date

Document name

Questions/comments:

Keep us updated!
 If you should come across any incorrect or outdated information while reading through the attached
document, or come up with any questions or comments, please let us know so that we can make the
required changes in subsequent revisions.  Simply fill out all information below and return this form to
the Developer Technical Support Manager at the address below.   Please make more copies of this form if
more space is needed.  Thank you.

Fax: (415) 802-3963
Attn:  Manager,
Developer Technical Support

Mail: SEGA OF AMERICA
Attn:  Manager,
Developer Technical Support
275 Shoreline Dr.  Ste 500
Redwood City, CA  94065

Where to send your corrections:

ST-19-R1-B-050994

SH2 Dynamic Load Linkage Editor



SE
G

A 
C

on
fid

en
tia

l

    

1st Revision May 20, 1993
2nd Revision July 20, 1993
3rd Revision April 12, 1994

                Model Name: HS0700LECU1SM

SH2 Dynamic Load Linkage
 Editor Function Specification

SH2 Dynamic Load Linkage Editor 1



SE
G

A 
C

on
fid

en
tia

l

   

1.0 Overview

1.1 Introduction

This software was developed by request of SEGA and this specification was deter-
mined through arrangements with SEGA.

1.2 Reason for Development

Will be used to develop a tool which will enable dynamic load in the SH2 program
(limited to the PC compatible jump command description).

1.3 Basic Direction

(1) Premise Conditions
• Specifications will reflect SH2 user opinions.
• The objects output by this tool can be loaded into the SH2 emulator and

debugged at the source level.   Emulator specifications will also change for
this reason.

(2) Applicable Range
This is a dynamic load tool for the SH2 program developed at the request of
SEGA.

USE: This is a tool to create load modules for the SH2 program described in
Position Independent Instructions only (data reference is not applicable) for
easy loading via the user-created dynamic loader.

Applicable Users: Specialized Customers (SEGA)

(3) Relations with Other Systems
Cross Software: This tool is configured of the linker preprocessor dlt and out
put merge/S type conversion dlt2.  Therefore, it is also closely related to the H
series linker.

Host Systems: Operates on IBM-PC, SPARC, HP9000/700.   It also can be
connected to the cross software, emulator, and small ever board of each host.

Window: Does not use window interface.

(4) Consideration for Function Expansion
Empty area in the control table has been provided to allow the dynamic load
format to use flexible formats depending on how the loader was created.

1.4 Related Documentation

(1) H Series Linkage Editor User’s Manual

2



SE
G

A 
C

on
fid

en
tia

l

     

1.5 System Configuration

(1) Tool Operating Environment (UNIX environment, IBM-PC environment)

Workstation IBM-PC/AT
Sun SPARC station
HP9000/700

(2) Equipment Configuration

Minimum System Requirements:

IBM-PC: OS must be MS-DOS V5.0 or above
Uses less than 1MB
Uses DOS extender.

SPARC: Sun-OS V4.0.1
Uses less than 1MB

HP9000/700: HP-UX  V8.0
Uses less than 1MB

SH2 Dynamic Load Linkage Editor 3



SE
G

A 
C

on
fid

en
tia

l

    

2.0 Dynamic Load Method Overview and How to use DLT

2.1 Overview

2.1.1  Example of a General Dynamic Load Format

Block1 Block3 Block6

Block2

Block4

Page1

Page2

Page3

Program2

OSTable 
Revision

Logical -> Physical 
Address Conversion 

Table

Memory  (Absolute Address)
MMU

(Memory 
Management 

Unit)

Logical -> Physical 
Address Conversion 

Block1

Block3

Block6

Block2

Block4

Block5

(4KB)

(4KB)

(4KB)

(4KB)

(4KB)

(4KB)

Program2

Program1
$0

$0

Logical Address

Inside an external storage device (HDD, etc.)

Roll IN/OUT

Figure 2-1  Example of a general dynamic load format

Figure 2-1 shows the most commonly used dynamic load format. Dynamic load is
the method used when the size of the program being executed is larger than the
actual amount of memory; multi-job OS systems such as UNIX, MS-Windows com-
monly use this method.
The common method of executing dynamic load is listed below.

1.  All of the user program is stored at the logical address (in other words, the lead address is
$0) on the storage device.

2.  The MMU is used to convert the logical address and the physical memory address
(absolute address).

3.  The OS revises the table used to control the address conversion information.  When the
program isexecuting, only the portions that are required for the program to run are
loaded into memory; the unnecessary portion is saved on the storage device.  This is

4



SE
G

A 
C

on
fid

en
tia

l

     

controlled by the OS, and address conversion is controlled by the MMU.  (Here load /
save units are called pages, and load and save are called ROLL IN/OUT.)  To use this
method, the MMU hardware and an OS are required.

In the case where SEGA’s support is considered, the following problems exist: the
external storage device is a ROM cassette; adding the MMU would increase the cost;
mutli-job processing is not required; and adding an OS would degrade the perfor-
mance.  For these reasons a simple dynamic load method that does not require an
MMU is used.

2.1.2  Dynamic Load Method for SEGA

High Speed RAM
Boot

ROM
Mask ROM (low speed)
Absolute Address Format
Program:  All PC-compatible Reference
Variables, Constants:  Absolute Address Reference

Loader 
(Segment, Stage 
Information)

Library
Common Variables

Stage 3
(a,g)

Stage 2 (a,b,c,d)

Stage 1 (a,b,e,f)

Stack / Variables

Library

Segmenta

Segmentb

Segmentc

Segmentd

Segmente

Segmentf

Segmentg

High speed execution 
is made possible by 
loading each stage to 
high speed RAM.

Load 
(Segment, Stage 
Information)

*  Loader: Program that loads each segment from ROM to RAM.  This includes stage
and segment information.  It is brought to the lead of the RAM by the boot
program when the power is first switched on.

*  Stage: A stage indicates the load unit for one time.  When one stage is finished this
is called to load the next stage.

*  Segment: Link units are called segments; in other words, load modules.  Each stage is
made up of several segments.

*  Library: Program segments that are referred to commonly by each segment.
*  Common Variable: Variable group used commonly with respect to each segment.

Figure 2-2  SEGA's Dynamic Load Method

SH2 Dynamic Load Linkage Editor 5



SE
G

A 
C

on
fid

en
tia

l

    

SEGA’s dynamic load method is as follows:
1. When power is turned on, the boot ROM loads the loader program.  The address

of each segment, the size and the segments information to be loaded per each
stage are included in the loader.

2. The loader first loads the libraries that are common among the segments; then the
first stage of the segment is loaded after securing the area of common variables.

3. After loading, jump to the stage entrance .
4. After the end of each stage, the loader is called (user described).  With this call,

the control passes to the loader and the next stage is loaded.

The dynamic load operates according to the above procedure, but the following
items are required to execute the process:  a loader that has segment and stage infor-
mation; information to solve for JMP between each segment; creation of common
libraries; common variable information; common constant information, etc.  The
dynamic load linker (DLT) is what is used to create all of this information.

2.1.3 Procedure for Using the Dynamic Load Linker

Figure 2-3  Procedure for Using the Dynamic Load Linker

As shown in Figure 2-3, the dynamic load information is created by the DLT, and the
overall load module is created by inputting the output of the DLT into a standard H
series linker.

Dynamic Load 
Linker (DLT)

H Series Standard 
Linker (LINK)

Dynamic Load 
Converter (DLT2)

Set Command for the 
Dynamic Load Information

(User Defined)

Parameters for the H 
Series Linker

(Created by DLT)

User Program 
Object

Dynamic Load Object
(Created by DLT)

Load Module
(Multi-load Module 

SYSROF)

Load Module 
(S-type Multi-load Module)

Load Module
(Creates Multiple Load 

Modules)

or

6



SE
G

A 
C

on
fid

en
tia

l

     

Because the H series linker output load module creates one load module for each
segment, DLT2 is the tool used to combine the many load modules into one file.
Depending on the option selected, the DLT2 can create either SYSROF or S type load
modules.

2.2 How to Use the Dynamic Load Linker

2.2.1 Using the DLT

(1)  Function

     Figure 2-4  Using the DLT

As shown in Figure 2-4, the DLT inputs object files specified by the command file
and its commands, and creates specified parameter file of the H-series standard
linker as well as creating dynamic load information data.

A description of the dynamic load information can be found in “Dynamic Load
Method.”

Dynamic Load 
Linker (DLT)

Set Command for  
Dynamic Load Information

(User Defined)

Parameters for the H 
Series Linker

(Created by DLT)

User Program 
Object

Segment Information 
Table for the Loader, 

Stage Information Table

H Series Linker
(LINK)

Definition/Reference 
Table for JMP Between 

Segments

Load Module
(Creates Multiple Files)

SH2 Dynamic Load Linkage Editor 7



SE
G

A 
C

on
fid

en
tia

l

       

(2) Command Designations
A command file like the one below is created and designated during DLT startup.
Details concerning commands can be found in the command volume.  Figure 2-6
shows an example of a command designation.

① :  Specifies ROM area address and size.
≠  :  Specifies RAM area address and size.
③ :  Specifies the object file that configures the loader.
④ :  Specifies the object file that configures the common variable area.
∞  :  Specifies the object file that configures the common constant area.
±  :  Specifies the object file that configures the library area.
≤  :  Specifies the object file that configures the segment.
≥  :  Specifies the segment name that configures the stage.
⑨ :  Specifies the function name that becomes the entrance to each stage.

Figure 2-6  Example of DLT Commands

ROM 1000000,4000

RAM 2000000,2000

loader segalode.obj

glvar glvar.obj
glconst ROM,glconst.obj
libseg clibseg.lib

segment seg00
in sa01.obj,sa02.obj
segment seg01
in ss1.obj,ss2.obj
segment seg02
in s21.obj,s22.obj,s23.obj
segment seg03
in s31.obj,s32.obj
segment seg04
in s41.obj,s42.obj,s43.obj
segment seg05
in sr51.obj,sr52.obj
stage 0
sin seg00,seg01
stage 1
sin seg00,seg02,seg03
stage 2
sin seg00,seg04,seg05

entry 0=st0ent,1=stlent
entry 2=st2ent
end

––– ROM address designation①

––– RAM address designation②

––– Loader designation③

––– Common variable designation④
––– Common constant designation⑤
––– Library designation⑥

––– Segment 0 composition module designation⑦

––– Segment composition 1 module designation

––– Segment composition 2 module designation

––– Segment composition 3 module designation

––– Segment composition 4 module designation

––– Segment composition 5 module designation

––– Stage 0 composition segment designation⑧

––– Stage 1 composition segment designation

––– Stage 2 composition segment designation⑨
––– Stage entrance function name
––– Specifies command file end

8



SE
G

A 
C

on
fid

en
tia

l

     

2.2.2  Using DLT2
(1) Function

Dynamic Load 
Linker (DLT)

Specified Command for  
Dynamic Load Information

(User Defined)

Parameters for the H 
Series Linker

(Created by DLT)

User Program Object

H Series Standard 
Linker
(LINK)

Dynamic Load Object
(Created by DLT)

LOADER
Load Module

Common Variable
Load Module

Common Constant
Load Module

Library
Load Module

Segment Load Module
(Created in Segment Units)

Dynamic Load 
Converter (DLT2)

Load Module
(Multi-load Module SYSROF)

Load Module 
(S type Multi-load Module)

or

Figure  2-7  Using DLT2

As shown in Figure 2-7, the DLT2 is used to combine the multiple load modules that
are output from the H series linker into one file.  The output file formats of the load
module are SYSROF and S-type format.

SH2 Dynamic Load Linkage Editor 9



SE
G

A 
C

on
fid

en
tia

l

    

(2) Command
By designating the command file specified by the DLT, DLT2 will analyze this
command file and automatically select the input file and input it.  Startup method
and command operand are shown below.

DLT2  <Name of the command file specified by DLT>, <Output file
name>, [<Output load module format>]<cr>

<Name of the command file indicated by DLT> :  Automatically selects
the input file from this information.
<Output file name> :  Name of the output file.
<Output load module format> :  If designated by an “S”, an S type
format load module will be output.

2.2.3  Limits on User Program Coding
As shown in 2.1.2 of SEGA’s dynamic load method, the following limits must be
followed to realize the dynamic load when coding into the user program.

(1) The global variable (common variable) only compiles (assembles) the declara-
tion portion. In other words, it is created and compiled as only a source file
that does not include the execution command.
—Specifies this object file to the DLT glvar command.

(2) The global constant (common constant) only compiles (assembles) the declara-
tion portion.  In other words, it is compiled as only a source file that does not
include the execution command.
—Specifies this object file to the DLT glconst command.

(3) Local variables are all stored in the stack as automatic variable declarations.  In
the assembly description, area is reserved in either the stack or in the RAM
absolute address.
—With static declaration, DLT is error.

(4) When the stage ends, a special function (supplied by SEGA) is called.  The next
stage is loaded through this function call.

10



SE
G

A 
C

on
fid

en
tia

l

      

2.2.4  Limits on User Programs (Coding Example)

(1) The global constant (global constant) only compiles (assembles) the declaration
portion.  In other words, it is created and compiled as only a source file that
does not include the execution command.  Specifies this object file name to the
DLT glvar (glconst) command.

Example 1:  C language

Example 2:  ASM language

Common variable declaration
(declaration only file)

Common variable reference DLT  command

extern int ab[10];
int ab[10];
struct ss {
 int mas;
 char *cptr;

extern struct ss{
 int mas;
 char *cptr;
 } stvar;

 } stvar;
char cc;
int *ptr;
struct  ss ssp

extern char cc;
extern int *ptr;
extern struct ss ssp;

glvar
  glb.obj

; int sub(int a,char cc
)
 {

* This file is complied
separately (glb.obj)

 a += 4;

Common variable declaration
(Only the declaration file)

Common variable reference DLT  command

extern ab
ab:   res.W 10
stvar_mas:  res,w
1
stvar_cptr: res.w

extern stvar_mas
extern stvar_cptr
extern cc
extern ptr

1
cc:   res.b 1
ptr:  res.w 1

extern ssp_mas
extern ssp_cptr

glvar
  glb.obj

ssp_mas:  res.w
ssp_cptr:  res.w 1

    add #4, r1

* This file is complied separately
(glb.obj)

SH2 Dynamic Load Linkage Editor 11



SE
G

A 
C

on
fid

en
tia

l

     

(2) Local variables are all stored in the stack as automatic variable declarations.
In the assembly description, area is reserved in either the stack or in the RAM
absolute address.

Example 1:  C language

Example 2:  ASM language

 Automatic variable declaration

char exa (int a) ;
{
 int cnt;
 char ary[5];
 int *ptri;

 cnt += 1;
   :

Assign local variable to an
absolute address

cnt: .equ h’ 40000
ary: .equ h’ 40004
ptri: .equ h’ 4000a

 mov.w cnt, r1
 add.w #1,r1
 mov.w r1,cnt
   :

12



SE
G

A 
C

on
fid

en
tia

l

      

(3) Relationship between each area, stage and DLT commands
Commands (shown in Figure 2-5,) specifies the information for each area and
stage.  ROM indicates a command.

High Speed RAM

Loader
(Segment, Stage 

Information)

Library
Common Variables

Stage 3
(a,g)

Stage 2 (a,b,c,d)

Stage 1 (a,b,e,f)

Stack / Variables

Loader 
(segment, stage 
information)

Library
Segmenta

Segmentb

Segmentc

Segmentd

Segmente

Segmentf

Segmentg

GLVAR

Common ConstantsGLCONST

LOADER

Mask ROM  ROM

STAGE

SEGMENT

LIB

RAM

Figure 2-5  Relationship between each area, stage and DLT commands

SH2 Dynamic Load Linkage Editor 13



SE
G

A 
C

on
fid

en
tia

l

   

3.0 Dynamic Load Method

3.1 Overview

Refer to Figure 2-2 in the SEGA Dynamic Load Method for the basic format.  There
were execution method problems in the following areas.

(1) Referring to functions between segments (JMP between segments).
(2) Control method for each segment load while loading the stage with the loader

(segment load).
(3) C library control method.
(4) Debugging method with the emulator.

The methods used for solving these problems are examined on the following pages.

14



SE
G

A 
C

on
fid

en
tia

l

    

3.2 Method for JMP Between Segments

Segment Control Table (Fixed Address)

JMP

      Segment Y entry (See Caution 1)
   (1) If loading is finished, this is the           
         lead segment address in RAM +
         offset.
   (2) Initial value/ROM fixed segment:
         Lead segment address in ROM +
         offset
  

Segment X

a : JMP

Segment Y

Entry a

JMP

Entry a

a () ;

Called Module

  a ( )
   {
 }

Caution:     The initial value is (2) ROM address.  Each time the stage is initialized (loader), (1) is set.

External 
Definition
Table

External 
Reference
Table

External 
Definition
Table

External 
Reference
Table

Calling Module

Figure 3-1  Segment JMP Method

SH2 Dynamic Load Linkage Editor 15



SE
G

A 
C

on
fid

en
tia

l

    

3.2.1 Details of the JMP Method between Segments

3.2.1.1 Between Segment Call Format for Positioning Independent Code
In positioning independent code (PIC), each segment can be loaded into an arbitrary
address, but a mechanism for calling segments in the middle is needed.  Below, this
tool shows the premise to this format.

•  Premise Conditions
Listed below are the premise conditions for this proposal.

1. Call between segments must be described in exactly the same format as in C language.
2. Only segment dynamic load will be able to execute at the lead of each stage.  Dynamic load and

purge in each stage is not being considered.

•  Support Format
1. The tables needed to call up the external reference, external definition symbols and library names

when C is executed are created using this tool.  The tool creates an external reference table and
external definition table for each segment to make an overall system segment control table.  By
using this type of table, items between segments can be called and executed.  Table entries are run
in code rather than data to achieve high call process speed.

Example:
seg_tbl : Absolute address of the segment control table.
entry_size: Size of one entry in the segment control table.
seg_addr_arom: Absolute address of segments in group a (in-ROM address)
seg_addr_a: Absolute address of segments in group a (Determined at loading)
seg_addr_asize: Size of the segments in group a.
seg_no_a: Segment number that belongs to group a.
sym_no_a: Number of a in segment.
sym_size: Entry size of the external definition table.

(a) External Reference Table
Table used to call up external segment functions that are referred to from the segment. One entry
is made for each external reference.  To call up a function external of a segment within a segment,
control is transferred to the external of the segment through this table code.  This table links each
segment.  The contents of this entry are shown below.

   ; External name reference
a:    ; Label called from inside the segment.

MOV. L #seg_tb|+entry_size*seg_no_a, R1
   ; Entry address of the segment control table

MOV. L #sym_no_a*sym_size+4, R0
   ; Symbol number offset calculation

JMP R1    ; Jump to the segment control table
MOV. L #seg_addr_arom,R1  ;  (delay slot)

  ; Segment control table lead command
(b) External Definition Table

Table used to execute functions that are referenced from the external of the segment. One entry is
made for each external definition.  With respect to the reference from the external of a segment,
the control is transferred to the function entity within the segment through this table.  This table
links the head of each segment.

MOV #a–*, R0 ; Address a acquisition
(Finished execution with segment control table

DELAY SLOT)
JMP @ (R0, PC) ; Move control to entity a
N O P

16



SE
G

A 
C

on
fid

en
tia

l

   

(c) Segment Control Table
This table is used to link (a) and (b) above.  There is only one per system and it is divided up in
fixed addresses.  The emulator finds the base address of each segment by referring to this table
and executes C level symbol debugging.  Contents of this entry are shown below.

(Before the segment is loaded)
MOV. L #seg_addr_arom, R1

 ;        Loads absolute ROM address of the segment
(Executes the external reference table with the DELAY SLOT)

ADD R0,R1  ;        Address acquisition of external definition table
JMP @R1  ;        Jump to external definition table
MOV #a–*, R0  ;        Get the address of a

          (External reference table lead command)
.DATA.W  0  ;        4 byte boundary adjustment
data.|   #seg_addr_arom
data.|   #seg_addr_asize

During the segment load, it is converted to the code below and executed again.  From here on,
control is moved directly to the call up destination.  When the segment is purged, the contents are
returned to the pre-load state.

(After the segment is loaded)
MOV. L #seg_addr_arom, R1

 ;     Loads absolute in-ROM address of the segment
(Executes the external reference table with the DELAY SLOT)

ADD R0,R1  ;     Address acquisition of external definition table
JMP @R1  ;     Jump to external definition table
MOV #a–*, R0  ;     Get the address of a

       (External reference table lead command)
.DATA.W  0 ;      4 byte boundary adjustment
data.|   #seg_addr_a (Is ROM address when not loaded)
data.|   #seg_addr_asize

The route to create and link the above table to call up external functions is shown below.

Segment called up  C Object JSR Calling of the external reference table entry
NOP

External Reference Table MOV Loading of the segment control table address
MOV Load symbol offset from inside the segment
JMP Jump to the segment control table
MOV  Load the segment absolute address

Segment Control Table (When already loaded) ADD Calculate external definition table
entry address

JMP Jump to external definition table entry
MOV Load absolute segment address

Called up segment, external def. tbl.
JMP Jump to entity
NOP

C Program a: Entity code

SH2 Dynamic Load Linkage Editor 17



SE
G

A 
C

on
fid

en
tia

l

      

3.3 Loader

The loader is not included in this tool.  The user must create it.  A hypothetical
process format is shown below.

3.3.1  Configuration Loader Segment Contents
The loader is made up of the segment control table, stage information, each
stage entry address, the loader program and common variable areas.  The
segment control table contents are explained above.

Segment Control Table

(a)  Segment control table  
Contents of table are shown below.

Stage Information

(b)  Stage Number
       Currently executing stage number. Set by loader. Individual Stage Entry Address
(c)  Individual stage entry address
      Individual stage entrance function address

Loader Program

(d)  Loader program
(e)  Common variable area
This is the area for common variables used between segments.  Only
created from C source program global variable declaration (no initial value)

Common Variable Area

3.3.2  Function of the Loader Program
1. Initial Loader for individual Stage Units

Searches all segment tables and executes the processing below
(a)Purges old stage information

Returns all table information to initial values
(b)Loads New Stage Segments

Loads new stage number segments all at one time and rewrites the information in the segment control
table.  Contents that are rewritten are shown below.

Segment Control Table Contents (1 entry)

Rewrites inside 
(Before the segment is loaded)

M O V .  L  # s e g _ a d d r _ a r o m ,  R 1
   ; Loads absolute ROM address of the segment

A D D R 0 , R 1 ; Address acquisition of External definition table
J M P @ R 1 ; Jump to external definition table
M O V # a – * ,  R 0 ; G e t  t h e  a d d r e s s  o f  a

     Jump destination(external reference table) lead command
d a t a . w  0

d a t a . w   
d a t a . w    # s e g _ a d d r _ a s i z e

When loaded into a segment, it is converted to the code below.  From here on, control is moved directly to
the call up destination.  When the segment is purged, contents are returned to the pre-load state.

(After the segment is loaded)
M O V .  L  # s e g _ a d d r _ a ,  R 1

     ; Loads absolute ROM address of the segment
A D D R 0 , R 1 ; Address acquisition of external definition table
J M P @ R 1      ; Jump to external definition table
M O V # a – * ,  R 0 ; G e t  t h e  a d d r e s s  o f  a
d a t a . w  0
d a t a . w    # s e g _ a d d r _ a
d a t a . w    # s e g _ a d d r _ a s i z e

# s e g _ a d d r _ a r o m

18



SE
G

A 
C

on
fid

en
tia

l

     

SH2 Dynamic Load Linkage Editor 19

3.4 Handling of the Between Segment Common Library
3.4.1  Overview
By linking in segment units, common routines and C execution libraries are gathered
in one location, these segment must be referenced.  This method is described below.

3.4.2  Librarian
Uses the librarian made by Hitachi (existing) to create libraries.  When linking
libraries created by librarian and designated as a library file, then only necessary
modules are included.

3.4.3  Types of Libraries
If all of the libraries are placed into one segment, in between all segments will be
JMP and the speed of calculation processing (particularly with part of the C library
during execution) will cause some problems.  Because of this, as a precondition
common routines that rely on speed
are divided into two types: libraries to JMP between segments and libraries included
within the segment.   In C execution, libraries are divided into two through the
Hitachi.

1.  Libraries for Segment Inclusion
Library included inside the segment.  C libraries use a lot of integer multiplication and
division calculations so small library C execution file can be prepared from standard C
execution files (provided by Hitachi).  Others can be created by the librarian.  The library
can be designated when linking the segments and included into all of the segments.

2.  Library Segment Library
Library group that should be included in the library segment.  C library routines other
than those described above are taken and prepared from the standard C execution
library (provided by Hitachi).  If others are needed, they are prepared by the librarian.
This tool searches all segments and extracts only the necessary routines, and outputs
library segment.  This segment is made to reside in the RAM.

Segment Control Table (Fixed Address)

JMP

JMP

Segment X Library Segment

e l i b entry

e  l  i  b  ( ) 
   {
 }   
 

Entry ae l i b : JMP

lib:

 e l i b () ;

(Assembled Library)

Calling Module

l i b () ;

External 
Definition 
Table

External
Reference
Table

External 
Definition 
Table



SE
G

A 
C

on
fid

en
tia

l

      

3.5 Source Coding Debug

Program GO

BREAK

Read Segment Information

Calculate Address

Show Source

Stage Number

Stage Table (RAM)

Stage Information Pointer

 Stage Information Table (RAM)

Segment Number         Segment Number

Segment Control Table (RAM)

Segment RAM Lead Address

If the break address is in RAM (designated by an  
additional command), then it searches the stage pointer 
table from the stage number, and acquires the 
corresponding segment number.  The segment address 
is taken from the segment control table in RAM. 
ROM addresses are taken from the segment control 
table in ROM.
The source-bound address=the original address in the 
debug information – the address in ROM+the address in 
RAM.

Source can be shown with the above method.  This processing is included in the emulator.

3.5.1 Processing Method

3.5.2  Additional Functions
To enable source debugging with the emulator, the following functions were added
to the E7000 small evaluation board.
(1) Designation command for RAM ROM area to correspond to dynamic load.
(2) Load control table address designation command.
(3) Loading of the multi-load module. (Added the LOAD command function)

3.5.3  Other
(1) If a segment load occurs while C source trace information is being displayed, it is

OK if the C source before load was incorrect.

20



SE
G

A 
C

on
fid

en
tia

l

    

4.0 Process Format and Command Specifications

This system is created by improving the existing H series linker.  See the second
edition for processing methods and command specifications.

5.0 Development Method

5.1 Development Machine

(1) IBM-PC
Device: IBM-PC (However, a PC98 can be used if testing is done on an IBM-PC)
Language: MS-C  (Ver.6.0) and MS-ASM
OS: MS-DOS V3.3 or later

Testing will be done on MS-DOS V5.0.

(2) SPARC
Device: SPARC
Language: C
OS: UNIX V4.0.3 or later

(3) HP9000/700
Device: SPARC
Language: C
OS: HP-UX V8.0

5.2 Document

Create and deliver the following documents.

(1) Function Design Document:  Create new
This design document

(2) Internal Processing Specification (H series linker flow areas are not described)
Describes the internal processing method.  (Will not create a flow chart
equivalent)

(3) Manual:  Create a user’s manual.  However, it will be simple.  (Less than 50
pages).  Will have both Japanese and English versions.

6. 0 Other

Development Schedule, Guarantees and additional functions will be based on the
contract.

SH2 Dynamic Load Linkage Editor 21


	General Notice
	SH2 Dynamic Load Linkage Editor Function Specification
	1.0 Overview
	2.0 Dynamic Load Method Overview and How to use DLT
	3.0 Dynamic Load Method
	4.0 Process Format and Command Specifications
	5.0 Development Method
	6. 0 Other


