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Abstract
We describe public key cryptosystems and analyse the RSA

cryptosystem, pointing out a weakness (already known) of the
RSA system.  We define Lucas functions and derive some of
their properties.  Then we introduce a public key system based
on Lucas functions instead of exponentiation.  The
computational requirements of the new system are only a little
greater than those for the RSA system, and we prove that the
new system is cryptographically stronger than the RSA system.
Finally, we present a Lucas function equivalent of the Diffie-
Hellman key negotiation method.
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1.  Public Key Encryption

Public-key encryption was first discussed by Diffie and
Hellman [1] as a general principle.  The new concept which
they introduced was the use of trapdoor functions for
cryptography.  A trapdoor function is a computable function
whose inverse can be computed in a reasonable amount of time
only if a (small) amount of additional information is known.
Both the function and the information needed to invert it are
not dependent on the message being sent.  As the trapdoor
function is usually a numeric computation based on a number



called a key, the initial computation and the inverse
computation are usually expressed in terms of a public key
process for the function computation and a private key process
for the inverse computation.  This concept finds its most
secure application for cryptography in cases where the
inversion process occurs at only one site.  In this case, the
private key (ie the information needed for the inversion
process) can be kept in a highly secure manner.  The public
key process, however, can be widely publicised, so anyone can
send an encrypted message to the possessor of the private key
process.  This message cannot be decrypted or changed in a
non-detectable manner by a third party, since to do so, the
private key process must be known.
As Diffie and Hellman pointed out, the trapdoor function

technique can be used not only to encrypt messages to ensure
privacy of communication, but also to sign them to ensure non-
repudiability.  In order for this to be possible, the trapdoor
function involved must be mathematically bijective - in other
words, the inverse of the inverse computation is the original
function.  In order to sign a document,  the private key
process is performed on the document, or possibly on a number
(a checksum) derived from it by a publicly defined compression
process.  Any recipient of the message can use the matching
public key process (previously publicised by the sender) to
obtain the original document, or the checksum.
The main content of this paper is to describe a new public

key system, the LUC system, which uses a trapdoor function
based on Lucas functions.  In the next section, we describe
the best-known public key system, the RSA system, invented by
Rivest, Shamir and Adelman (see [9]).  The mathematics of this
system is described in some detail, in order to point out the
similarities and difference with the LUC system.  In section
3, we describe the LUC public key system, including a
mathematical proof that it does work.  We also prove that,
cryptographically, it is stronger than the RSA system, and
requires an approximately equal computational effort.
Since writing the initial version of this paper, we have

found that a public key system very similar to LUC has
appeared in the literature on at least two previous occasions,
but in neither case were details of a practical system given.
In [6], Müller and Nöbauer describe a public key system using
Dickson polynomials.  However, they give no practical way of
computing these encrypted messages.  In a later paper [7] they
show how to compute the encryptions in logarithmic time using
a "square and multiply" technique; Williams' technique in [10]
is an improved version of this algorithm.  The results in
Section 3 of that paper show that the Dickson polynomials they
use are the same as the Lucas functions we use.  In [11]
Williams defines a rather complex system, using quadratic
field extensions.  The results in Section 2 in his paper show
that his functions X n  are nearly the same as the Lucas
polynomials we use (2 X n ( W 1 , W 2 ) = V n ( 2 W 1 , 1 ) ), and the computation
method he gives for X n  is based on his paper [10] which



provides our computation method.  However, his system has
serious flaws (it was designed to obtain a specific result
concerning factorisation, not to provide a practical
cryptosystem) and our discovery that Lucas functions lead to a
simple, strong, non multiplicative public key system is
independent from his results.



2. The RSA Public Key System

Since Diffie and Hellman's paper, a number of possible
trapdoor functions have been proposed.  Of these, the best-
known and most widely used are the ones used for the RSA
encryption method, and for the El Gamal method.  Both of these
are based on raising the message (regarded as a number) to a
power, modulo a large number.
The public key process used by the RSA method is defined by

two numbers, e  and N , which are used in the function:

f RSA ( M ) = M e mod N .

If M  is a message, then f RSA ( M )  is the encrypted message,
M ' .  In order for the inversion of f  to be difficult to
compute (ie to make f RSA  a trapdoor function), N  is chosen to
be the product of two large primes, p  and q .  For the private
key process, a number d  is needed such that

ed ≡ 1 mod ( p − 1 ) ( q − 1 ) .

If e  is relatively prime to ( p − 1 ) ( q − 1 ) , then d  will always
exist and is easy to compute (if p  and q  are known).  Then if
M '  is an encrypted message, the original message M  may be
recovered by using the fact that

M = ( M ' ) d mod N ,

(provided the process started with M < N ), so the private key
process is identical to the public key process except that e 
has been replaced by d .
An apparent difficulty in the method is the calculation of

M e mod N  and ( M ' ) d mod N .  The message M  is broken into pieces,
each of which is smaller than N , but this number will have
well over one hundred digits in an actual application.  The
process of repeated multiplication will require some
computational effort.  The number e  is often chosen to be
65537, which is relatively small, but d  could be any number in

the approximate range 
N 

e 
 to N , so a very long multiplication

process is involved.  Fortunately, exponentiation can be done
with relative ease by repeated squaring, and the number of
multiplication operations will never be more than O( log 2 N ) (a
few hundred, in most applications).  However, the private key
process is still many times as much work as the public key
process, although hardware has been developed which enables
very fast decryption rates to be attained.
The function f RSA 

 is a trapdoor function because there is no
known way of duplicating the private key process without



knowledge of d , and there is no known way of discovering d 
from e  and N , except by factoring N .  Surely the only way of
finding ( M ' ) 

d 
mod N , without knowing d , is to try all

possibilities, until a sensible message is obtained.  As d 
will have well over 100 digits, factorising N  is a simpler
task.  Several hundred years of searching for rapid methods of
factorisation, by renowned mathematicians, have not revealed
any easy way to do this task.  Furthermore, the difficulty of
factorisation increases rapidly as  increases in size, so
that future increases in computational power can be matched by
choosing N  to be a little larger.  It has not been proven
mathematically that the discovery of d  from e  and N , is
equivalent to factorising N  (except in special cases), but it
is commonly accepted that, even if it is not equivalent to
factorisation, any method of enabling d  to be computed easily
would be of tremendous mathematical significance, probably
with far-reaching ramifications in number theory, and is
highly unlikely.

2.1 The mathematics of the RSA System
The Euler totient function of N , denoted ϕ ( N ) , is the number

of numbers less than N  which are relatively prime to N  (ie
have no common factor with N ).  If N = pq  where p  and q  are
different primes, then

ϕ ( N ) = ( p − 1 ) ( q − 1 ) .

If e  is any number relatively prime to ϕ ( N ) , then by the
extended Euclidean algorithm, a number d  can be found such
that

ed = k ϕ ( N ) + 1 , for some integer k ; (2.1)

this is simply another way of writing the identity given
above, ed ≡ 1 mod ϕ ( N ) .
When the public key process is applied to a number M ,

followed by the private key process, we obtain

  ( M e mod N ) d mod N = M ed mod N .

Similarly, if the private key process is applied to M ,
followed by the public key process, we obtain the same
expression, M ed mod N .  Because of equation (2.1), M ed

 is equal
to

M 
ed = M 

k ϕ ( N ) + 1 = ( M 
ϕ ( N ) 

) 
k × M . (2.2)

The RSA method works because, if M  is relatively prime to
N , then M ϕ ( N ) mod N  is 1, by a well-known theorem of Euler.
(The probability of M  not being relatively prime to N  is



around 10-50, for any likely N  - it effectively "can't
happen", in that exposure of the private key due to unforseen
circumstances is much more likely.)  Hence, if M  is less than
N ,

M ed mod N = ( M 
ϕ ( N ) ) k 

× M mod N                  by (2.2)
≡ 1 k 

× M mod N 
= M . (2.3)

Note that the number ϕ ( N )  can be replaced by the least
common multiple of p − 1  and q − 1 ; the proof above needs a
trivial change in one place.  In practice, however, p − 1  and
q − 1  will not have a large common factor, for otherwise N 
would be easy to factorise.  The proof can be easily modified
to cope with the case where N  is the product of more than two
prime numbers (as long as they are all different), but this
does not increase the security of the encryption/ decryption
process.  A final point of interest is the symmetry between d 
and e ; if p  and q  are known, then either one can be found from
the other.  If it was desired to have a quicker private key
process, a short d  could be chosen (not too short, though),
and the corresponding e  worked out and published.

2.2 A weakness of the RSA System
One weakness of the RSA system is that signature forging is

possible if particular messages, chosen beforehand by the
intending forger, are signed by the victim (see Goldwasser,
Micali and Rivest [2]).  This is called an "adaptive chosen-
message attack" and it is possible because of the
multiplicative nature of the trapdoor function used.  Since

M d L d 
= ( ML) d 

,

if M , M d mod N , L  and L d mod N  are known, then both ML and
( ML) 

d 
mod N  can be computed without knowledge of d .  Note that

M d mod N  is the signature attached to M  by the private key
process.  If M  and L  were very carefully chosen so that ML
was the message which the forger wished to sign, then the
signature of ML can be generated by multiplying the signatures
of M  and L .  This scenario is admittedly rather unlikely, but
in order to prevent it a hash function is normally applied to
M  before the signature is computed; the hash function of ML
is not the product of the hash functions of M  and L , so this
forging method breaks down.
It should be noted, however, that the use of a hash function

does not seem to prevent forging.  It is possible to proceed
as follows:
• Choose a message, hash it if a hash function is being
used, and factorise the result into primes.



• Generate lots of innocent messages, hash them if
necessary, factorise the results, and choose those which
contain one of the primes obtained in the first step (or in
a previous version of this step).
• Obtain the signatures of the messages chosen in the second
step.
• Use an elimination process to obtain the signatures of the
constituent primes.
• Multiply these signatures together to get the signature
desired.
A very large number of innocent messages would be needed in

practice; it appears to be simpler just to factorise N .
However, there are other ways of obtaining the signatures of a
set of primes, and this attack could become feasible at some
point.   The point we wish to make is that the use of a
hashing technique is not a real barrier to forging; the RSA
system has a fundamental weakness because of its
multiplicative nature, which cannot be resolved by hashing.
No such weakness is known for LUC.
3. The LUC Public Key System

We now explain our new public key system.  It is based on a
different trapdoor function from the RSA and El Gamal systems,
which is defined by Lucas functions (described in section
3.1).  Because the properties of Lucas functions mirror those
of exponentiation, public key and private key processes can be
developed in an exactly analogous manner to the RSA system.
This enables us to prove that any successful attack on the LUC
system would give a successful attack on the RSA system.
Since the weakness of the RSA system described in section 2.2
does not occur for the LUC system, the LUC system is
cryptographically stronger than RSA.

3.1 Lucas Functions
Lucas functions are an example of higher order linear

recurrences.  If P 
1 
, P 

2 
, P 

3 
, . . . , P 

m 
 are integers, then we can define a

sequence of integers {T 
n 
} by:

T n = P 1 T n − 1 + P 2 T n − 2 + . . . + P m T n − m .

We have to define T 0 , T 1 , T 2 , . . . , T m − 1  independently, in order to be
able to use the defining equation.  This equation is called an
m'th order linear recurrence relation.  It is easy to see that
a sequence defined by a first-order linear recurrence relation
consists of numbers which are a constant (T 0 

) times successive
powers of P 1 .  Sequences satisfying higher order linear
relations can be thought of as generalisations of powers, so
it is not too surprising that a generalisation of the RSA
system to some of these sequences is possible.  At present, we
only have a generalisation to sequences satisfying second-



order linear recurrence relations, and we will restrict the
discussion to these relations from here on.
The general second-order linear recurrence relation, in the

form in which we will consider it, is :

T n = PT n − 1 − QT n − 2 . (3.1)

We will always take P  and Q  to be relatively prime
integers.  If we take P  = 1 = -Q , then the sequence of
numbers obtained by choosing T 0 

 = 0 and T 
1 
 = 1 is the well-

known Fibonacci sequence.
The general form of a sequence obtained from a second-order

linear recurrence relation can be found easily.  Let α  and β 
be the roots of the polynomial equation

x 
2 − Px + Q = 0 . (3.2)



If c 1  and c 2  are any numbers, then the sequence {c 1 α 
n 

+ c 2 β 
n 
} has

the property that

P ( c 1 α 
n − 1 

+ c 2 β 
n − 1 ) − Q ( c 1 α 

n − 2 
+ c 2 β 

n − 2 )   = c 1 α 
n − 2 ( P α - Q ) + c 2 β 

n − 2 ( P β - Q ) 

  = c 1 α 
n − 2 ( α 

2 ) + c 2 β 
n − 2 ( β 

2 ) 
by (3.2)

  = c 1 α 
n + c 2 β 

n 
.

So this sequence satisfies the second-order linear
recurrence relation (3.1), and it is not difficult to see that
any sequence {T n } satisfying (3.1) must be of the form

{c 1 
α n + c 2 

β n 
}, where T 0 = c 1 + c 2 ,  T 1 = c 1 α + c 2 β 

Note that if T 0  and T 1  are integers, then by (3.1), all the
terms in the sequence will be integers, even though  α , β , c 1 

and c 2  are (probably) not integers, and may not even be real.
There are two particular solutions of the general second-

order linear recurrence relation which are of particular
interest.  They are denoted by {U n 

} and {V n 
}, and are defined

by:

U n = 
α n − β n 

α − β 
(so c 1 = 

1 

α − β 
= − c 2 )

V n = α 
n 

+ β 
n 

( so  c 1 = 1 = c 2 ) .

These will both be sequences of integers, since we have:

U 0 
= 0 ,   U 1 

= 1 ,   V 0 
= 2 ,   V 1 

= P .

These sequences depend only on the integers P  and Q , and
the terms are called the Lucas functions of P  and Q .  They
are sometimes written U n ( P , Q )  and V n ( P , Q ) , to emphasise their
dependence on P  and Q .  They were first discussed by Lucas in
[5].  A paper by Lehmer [4] extended the theory of these
functions considerably.  A more recent reference is the book
by Ribenboim [8].
Note that if N  is any number, then

U n ( P mod N , Q mod N ) ≡ U n ( P , Q ) mod N ,

because this result is certainly true when n  is 0 or 1, and
for every n  which is 2 or greater,

U n ( P , Q ) mod N ≡ ( P mod N ) ( U n − 1 ( P , Q ) mod N ) − ( Q mod N ) ( U n − 2 ( P , Q ) mod N ) ,

so the stated result follows by induction.  Similarly

V 
n 
( P mod N , Q mod N ) ≡ V 

n 
( P , Q ) mod N . (3.3)





3.2 Lucas Function Relationships
Since the roots of (3.2), α  and β , satisfy the equations

α + β = P ,  α β = Q ,

it is not difficult to find many relationships between the
Lucas functions U n 

 and V n 
, and the coefficients of the

recurrence relation (3.1), P  and Q .  The discriminant of

(3.2), D = P 2 
− 4 Q , can be expressed in terms of α  and β  by:

D = ( α − β ) 
2 
.

We will need the following relationships, which are easy to
obtain by using the definitions of U n 

, V n 
, D   and Q  in terms

of α  and β  :

V 2 n = V n 

2 
− 2 Q n 

(3.4)

V 2 n − 1 = V n V n − 1 − PQ n − 1 
(3.5)

V 2 n + 1 
= PV n 

2 − QV n V n − 1 
− PQ n 

(3.6)

V n 

2 = DU n 

2 + 4 Q n 
(3.7)

2 V n + m 
= V n V m 

+ DU n U m 
(3.8)

2 Q m V n − m 
= V n V m 

− DU n U m (3.9)

Consider the linear recurrence relation created by using
V k ( P , Q )  for P  and Q 

k  for Q :

T n 
= V k ( P , Q ) T n − 1 

− Q k T n − 2 .

The roots of the corresponding quadratic equation, α '  and β ' ,
must satisfy

α ' + β ' = V k ( P , Q ) = α k + β k 

    and   α ' β ' = Q k 
= α 

k 
β 

k 
,

so we must have α '  = α 
k 
 and β '  = β k  (or vice versa).  This

means that

V n ( V k ( P , Q ) , Q 
k 
)    = ( α k 

) 
n + ( β k 

) 
n 
   = α nk + β nk

   = V nk ( P , Q ) 

This composition result is crucial; it is a clear
generalisation of the rule for composition of powers, with the
subscript of a Lucas function playing the role of a power.  If
we take Q  = 1, then we get the simple relationship



V nk ( P , 1 ) = V n ( V k ( P , 1 ) , 1 ) . (3.10)

Lucas functions have been used to prove divisibility results
(see Williams [10]), because there are relationships between
the subscript of a Lucas function and the divisors of its
value.  To explain these, we need to define the Legendre
symbol:

D 

p 

 
 
  

 = 0 if 
p  divides D , otherwise

= 1 if there is a number x  such that D ≡ x 
2 

mod p , or
= -1 if no such number exists.

If p  is an odd prime number which does not divide Q  or D ,

and ε  is 
D 

p 

 
 
  

 , then Lehmer proved in [4] (see also Williams

[10]) that

U 
k ( p − ε ) 

( P , Q ) ≡ 0 mod p  for any integer k . (3.11)

It is also true that

V k ( p − ε ) ( P , Q ) ≡ 2 Q k ( 1 − ε ) 2 mod p  for any integer k ; (3.12)

this can be derived from Lehmer's article, in the same way as
(3.11), for k  = 1, and the result for general k  follows by
induction from

V ( k + 1 ) ( p − ε ) = 
1 

2 
( V k ( p − ε ) 

V p − e + DU k ( p − ε ) 
U p − ε 

) by (3.8)

≡ V k ( p − ε ) Q 
( 1 − ε ) 2 

mod p  by (3.11).

With any sequence of Lucas functions defined by mutually
prime integers P  and Q , there is a generalisation of the
Euler totient function for Lucas functions, the Lehmer totient
function (see [4]).  Its general definition, and a full
explanation of its relationship to the Euler totient function,
are not our concern here.  We will only need to apply it to
numbers N  of the form N = pq , with p  and q  different odd
primes.  In this case, the Lehmer totient function of N  is

T ( N ) = ( p − 
D 

p 

 
 
  

 ) ( q − 
D 

q 

 
 
  

 ) .

Just as in the case of the Euler totient function, the full
product is not needed for the results we will use, and we only
need the least common multiple of the factors; writing lcm for
least common multiple, we define



S ( N ) = lcm ( ( p − 
D 

p 

 
 
  

 ) , ( q − 
D 

q 

 
 
  

 ) ) .

Since S ( N )  is a product of both ( p − 
D 

p 

 
 
  

 )  and ( q − 
D 

q 

 
 
  

 ) , the

results (3.11) and (3.12) show that, when N = pq , p  and q 

different odd primes not dividing D  (= P 2 
− 4  in this case):

U kS ( N ) ( P , 1 ) ≡ 0 mod N  for any integer k (3.13)

and  V kS( N ) ( P , 1 ) ≡ 2 mod N  for any integer k . (3.14)

If N = pq  is a product of two different odd primes, P < N  is

relatively prime to N , P 2 − 4  is also relatively prime to N , e 
is any number relatively prime to S ( N ) , and d  is found (by the
extended Euclidean algorithm) so that:

ed = kS( N ) + 1 , for some integer k , then we obtain

V d ( V e ( P , 1 ) , 1 ) = V de ( P , 1 ) by (3.10)
= V kS( N ) + 1 ( P , 1 ) 

= PV kS( N ) ( P , 1 ) − V kS( N ) − 1 ( P , 1 ) by (3.1)

= PV kS( N ) ( P , 1 ) − ( 1 2 ) ( V kS( N ) ( P , 1 ) V 1 ( P , 1 ) − DU kS( N ) ( P , 1 ) U 1 ( P , 1 ) )  by
(3.9)

≡ ( 2 P − ( 1 2 ) ( 2 P − 0 ) ) mod N  by (3.13) and (3.14)
= P . (3.15)

This result, a clear analogy to (2.3), enables us to
construct a bijective trapdoor function using Lucas functions.
One apparent difference with the situation in the case of

powers is an apparent lack of symmetry between the function
V e ( P , 1 )  and its inverse V d ( R , 1 ) .  The numbers d  and e  are related
through the function S ( N ) , which involves quadratic residues
with respect to D , which is defined in terms of P .  By
symmetry, it would be expected that S ( N )  should have the same
value, regardless of whether P  or V e ( P , 1 )  is used in its
definition.  By (3.7) we have:

V e 

2 
( P , 1 ) − 4 = DU e 

2 
( P , 1 ) .

Also, 
D 

p 

 
 
  

 = DU e 
2 

p 

 
 
  

 , since Legendre symbols are not changed by

squares, as can be easily seen from the definition above.
This means



D 

p 

 
 
  

 = P 2 − 4 

p 

 
 
  

 = V e 
2 ( P , 1 ) − 4 

p 

 
 
  

 ,

so the value of S ( N )  is the same, regardless of whether it is
computed for the direct function or the inverse function.
3.3 The New Public Key System, LUC
Using the results in the previous paragraph, a public key

system can be developed by analogy with the RSA system.
Suppose N  and e  are two chosen numbers, with N  the product of
two different odd primes, p  and q .  The number e  must be
chosen so it is relatively prime to ( p − 1 ) ( q − 1 ) ( p + 1 ) ( q + 1 ) .  Let M 
be a message which is less than N  and relatively prime to N 
(as pointed out in section 2.1, this is not a real restriction
on M ).  We define

f LUC ( M ) = V e ( M , 1 ) mod N 

where V e  is a Lucas function, as defined in section 3.1.  This
is the LUC public key process, giving an encrypted message,
M ' .  To define the matching private key process, we need a
number d  such that

de ≡ 1 mod S ( N ) 

where  S ( N ) = lcm ( ( p − 
D 

p 

 
 
  

 ) , ( q − 
D 

q 

 
 
  

 ) ) ,

where D = ( M ' ) 2 − 4 , and 
D 

p 

 
 
  

 , 
D 

q 

 
 
  

  are the Legendre symbols of 
D 

with respect to p  and q .  We can assume that D  is relatively
prime to N  (again, not a real restriction), so the Legendre
symbols are either +1 or -1.  Hence the original choice of e 
ensures that it is relatively prime to S ( N ) , so the number d 
can be found easily by the extended Euclidean algorithm.  The
private key process is then the same as the public key
process, with e  replaced by d .  By (3.15) and (3.3), and the
fact that M < N ,

M = V d ( V e ( M , 1 ) mod N , 1 ) mod N ,

and the private key process and public key process are
inversions of each other by the symmetry between e  and d .
There are two ways in which this process appears to have

difficulties; firstly, the computation of V e  and V d  looks
extremely long, for large values of e  or d , and secondly, the
private key number d  needs to be recomputed for each message.
Both of these difficulties are not serious, as we now explain.
Computation of Lucas functions can be done by a successive

doubling technique, as in the "Russian peasant" method of



multiplication (see Knuth [3, 4.6.3]).  This technique is due
to Williams ([10]).  All arithmetic is done modulo N , and Q 
is 1 for the Lucas functions being used, so that equation
(3.4) can be written

V 2 n ( M , 1 ) mod N = ( ( V n ( M , 1 ) mod N ) 2 
− 2 ) mod N ,

and similarly equations (3.5) and (3.6) have modified forms.



If e  has the binary expansion

e = x i 
i = 0 

t 

∑ 2 t 
− i       ( x 0 

= 1 , x i = 0  or 1  if i > 0 ) ,

then let e k  be the partial sum x i 
i = 0 

k 

∑ 2 t 
− i 
, so that e t  is e  and e 0  is

1.  Define

R k 
= V 2 e k − 1 ( M , 1 ) mod N ,     S k 

= V 2 e k 
( M , 1 ) mod N ,     T k 

= V 2 e k + 1 ( M , 1 ) mod N .

Then for each k ,   R k , S k  and  T k 
 can be computed from V 

e k 
( M , 1 ) mod N 

and V 
e k − 1 

( M , 1 ) mod N , using the modified forms of (3.4), (3.5) and

(3.6).  The values of V 
e k + 1 

( M , 1 ) mod N  and V 
e k + 1 − 1 

( M , 1 ) mod N  can then

be obtained from R k , S k  and  T k 
 using the fact that

e k + 1 
= 2 e k ,   e k + 1 

− 1 = 2 e k 
− 1  if x k + 1 

= 0 , while e k + 1 
= 2 e k 

+ 1 ,  e k + 1 
− 1 = 2 e k 

 if
x k + 1 

= 1 .
This method ensures that V e 

 and V d 
 can be computed in about

the same length of time as the e  and d  powers are computed in
the RSA method.  Having to compute two numbers at each stage
does slow the computation down a little, but there are
optimisations in the calculation which mean that the total
amount of computation is only about 50% more than the amount
needed for the RSA system.
Because the correct private key needs to be obtained for

each decryption, there is a little more work involved in the
LUC private key system than in the RSA private key system.
Firstly note that the "recomputation" of the private key
number d  is more apparent than real, as there are only four
possible values for d .  This follows from the fact that there
are four possible values for S ( N ) :

lcm ( ( p + 1 ) , ( q + 1 ) ) ,

lcm ( ( p + 1 ) , ( q − 1 ) ) ,

lcm ( ( p − 1 ) , ( q + 1 ) ) ,

lcm ( ( p − 1 ) , ( q − 1 ) ) .

These values are all known at the time that N  is first
created, so four different values of d  can be calculated at
that time.  Given a message to which to apply the private key
process, it is necessary to find the quadratic residues

( M ' ) 2 − 4 

p 

 
 
  

  and 
( M ' ) 2 − 4 

q 

 
 
  

 .  This can be done by an algorithm

analogous to the Euclidean algorithm, which will take around
O ( log 2 p ) + O ( log 2 q )  operations, about the same order as the number



needed for the calculation of V d ( M ' , 1 ) mod N .  The p  and q 
calculations are much easier, however, because p  and q  have
about half as many digits as N , and in practice the quadratic
residue calculations take up to 20% of the time needed for the
Lucas function calculation.  Once the quadratic residues are
known, the correct d  value can be used in the Lucas function
calculation, giving a total amount of computational work about
80% more than that needed for the RSA private key process.
One way of avoiding the need to compute the quadratic

residues is to define a new function

R ( N ) = lcm ( ( p − 1 ) , ( q − 1 ) , ( p + 1 ) , ( q + 1 ) ) ,

and choose d  so that

de ≡ 1 mod R ( N ) .

Since  is a multiple of all possible S ( N )  values, the
calculations leading to (3.15) are unchanged, and the d 
obtained in this way would work in all cases.  The only
problem is that it would probably have around twice as many
digits as N , so the computational effort to calculate
V d ( M ' , 1 ) mod N  for this d  will be almost exactly doubled.
If sufficient computing power is available, the quadratic

residue calculations may be done in "no" extra time.  The
computation of V 

d 
( M ' , 1 ) mod N , for all four possible values of d ,

can proceed independently on four processors at the same time
as the quadratic residues are being computed on another
processor.  The correct private key processed form can be
selected once the correct quadratic residues are known, and
the other three computations discarded.
The RSA exponentiation calculations may be speeded up by

various heuristic methods.  These methods turn out to be
applicable to Lucas function calculations, with a few changes.
It appears that the calculation time for LUC will always be
roughly comparable to the calculation time for RSA.

3.3 Cryptographic Strength of LUC
Just as for the RSA method, the LUC private key process can

be discovered only if there is a way of computing V d ( M ' , 1 ) mod N 

without knowledge of d , or if there is a way of finding d  from
e  and N .  The second problem is harder than the corresponding
problem for the RSA method, because there are four different
values of d  for each pair of e  and N , only one of which will
work for an arbitrary M ' .  The first problem is really no
different from the problem of computing powers; trial of all
possible values seems to be the only way.
The fact that Lucas functions are a generalisation of powers

makes it certain that any successful attack on the LUC public
key system would automatically lead to a successful attack on



the RSA public key system.  Because of the additional
complications with Lucas functions, however, the reverse may
not be true; successful attack on RSA may not lead to a
successful attack on LUC.  For example, the weakness of RSA,
due to its multiplicative nature, is not shared by LUC.  Thus
we say, with confidence, that LUC is cryptographically
stronger than RSA.
The discussion in the previous section shows that the

computational effort required for the LUC public key process
is about the same as that required for the RSA public key
process, while the LUC private key process involves less than
double the computational effort of the RSA private key process
(and may take considerably less, if parallel computation is
available).  Some signature formation time could be saved by
omitting the hashing process, since LUC is not susceptible to
adaptive chosen-message attacks, but in practice a simple
hashing method would be used to compress the message before
signing.

3.4 A new version of the Diffie-Hellman Method
The first public key application described was the Diffie-

Hellman key negotiation method ([1]).  This method enables two
correspondents to agree upon the same private number, using
only public information.  Each publishes a number of the form
α X 

mod q , where q  is a fixed prime number, α  is a fixed
primitive root, and X  is private.  Since

α X mod q ( ) 
Y 

mod q = α Y mod q ( ) 
X 

mod q = K 

both can obtain the same number K  without revealing their
private numbers X  and Y .  The security of the method is based
on the discrete logarithm problem; if q  and X  are large then

computation of X  from α X mod q  is infeasible.
This method has an alternative in Lucas functions.  A large

prime q  is agreed upon as above, and also a number α   with the
property that

α 

q 

 
 
  

 = − 1  and  k ( q + 1 ) ,   V k ( α , 1 ) ≡ 2 mod q   ⇒   k = q + 1 .

Then numbers of the form V X ( α , 1 ) mod q  are published.  Since

V Y ( V X ( α , 1 ) mod q , 1 ) mod q = V X ( V Y ( α , 1 ) mod q , 1 ) mod q ,

as proved above, this method works in the same way as the
Diffie-Hellman method.  Little research appears to have been
published on the Lucas function equivalent of the discrete
logarithm problem, so the security of this method is not
known, but it appears likely that it is at least as strong as
the Diffie-Hellman method.
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