
0LispWorks® for the Windows® Operating System

Common LispWorks®

User Guide
Version 4.1

Copyright and Trademarks
Common LispWorks User Guide

Version 4.1

November 1998

Part number: 3LBDT2A15ND

Copyright © 1994–1998 by Harlequin Group plc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Harlequin Group plc.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by Harlequin Limited, Harlequin Incorporated, Harlequin Australia Pty. Limited, or Harlequin Group plc. Harlequin Group
plc assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this
book is furnished under license and may only be used or copied in accordance with the terms of that license.

LispWorks is a registered trademark of Harlequin Group plc. Delivery, Transducer/PC, The Authoring Book, ClassWorks, and Knowledge-
Works are all trademarks of Harlequin Group plc.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

CLX and CLUE bear the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Texas Instruments Incorporated, P.O. Box 149149, MS 2151, Austin, Texas 78714-9149
Copyright © 1987, 1988, 1989, 1990, 1991 Texas Instruments Incorporated.
Permission is granted to any individual or institution to use, modify and distribute this software, provided that this complete copyright and
permission notice is maintained, intact, in all copies and documentation. Texas Instruments Incorporated provides this software “as is” with-
out express or implied warranty.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all
warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

US Government Use

The LispWorks Software is a computer software program developed at private expense and is subject to the following Restricted Rights Leg-
end: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in (i) FAR 52.227-14 Alt III or (ii)
FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is subject to Harlequin’s customary commercial license
as contained in the accompanying license agreement, in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be
deemed to be `unpublished’ and licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States. Harle-
quin Incorporated, One Cambridge Center, Cambridge, Massachusetts 02142.”

Europe:

Harlequin Limited
Barrington Hall
Barrington
Cambridge CB2 5RG
U.K.

telephone +44 1223 873 800
fax +44 1223 873 873

North America:

Harlequin Incorporated
One Cambridge Center
Cambridge, MA 02142
U.S.A.

telephone +1 617 374 2400
fax +1 617 252 6505

Electronic Access:

http://www.harlequin.co.uk/
http://www.harlequin.com/

Contents
Preface ix

1 Introduction 1

Major tools 2

2 A Short Tutorial 5

Starting the environment 5
Creating a listener 6
Using the debugger 8
Viewing output 11
Inspecting objects using the inspector 12
Examining classes in the class browser 15
Summary 17

3 Common Features 19

Loading and displaying tools 20
Setting global preferences 23
Quitting the environment 24
Performing editing functions 24
The history list 26
Operating on files 28
Displaying packages 29
Performing operations on selected objects 31
Using different views 34
iii

iv
Tracing symbols from tools 36
Linking tools together 37
Filtering information 38
Examining the window itself 39

4 Getting Help 41

Online manuals in HTML format 41
Online help for editor commands 44
Browsing manuals online using Adobe Acrobat 44

5 Manipulating Graphs 45

An overview of the graph view 45
Searching graphs 47
Expanding and collapsing graphs 47
Moving nodes in graphs 48
Displaying plans of graphs 48
Preferences for graph layouts 50

6 The LispWorks podium 57

7 The Class Browser 59

Simple use of the class browser 60
Examining slot information 67
Examining superclasses and subclasses 71
Examining classes graphically 74
Examining generic functions and methods 78
Examining initargs 81
Examining class precedences 83

8 The Compilation Conditions Browser 87

Introduction 87
Examining error conditions 88
Examining output 89
Configuring the display 90
Access to other tools 92

9 The Debugger Tool 93

Description of the debugger 95
What the debugger tool does 97
Simple use of the debugger tool 97
The stack in the debugger 98
An example debugging session 99
Performing operations on the error condition 101
Performing operations on frames in the stack 102
Performing operations on variables in a frame 102
Configuring the debugger tool 103

10 The Editor 107

Displaying and editing files 108
Displaying and swapping between buffers 112
Displaying Common Lisp definitions 114
Finding definitions 115
Changed definitions 115
Displaying output messages in the editor 115
Setting editor preferences 115
Getting started with the editor 117
Other essential commands 122
Cutting, copying and pasting using the clipboard 122
Cutting, copying and pasting using the kill ring 123
Searching and replacing text 127
Using Lisp-specific commands 129
Help with editing 134

11 The Function Call Browser 135

Introduction 135
Examining functions using the graph view 136
The Function Description button 137
Examining functions using the text view 139
Configuring the function call browser 141
Configuring graph displays 143
Performing operations on functions 144
v

vi
12 The Generic Function Browser 145

Examining information about methods 145
Examining information about combined methods 149
Configuring the generic function browser 153

13 The Inspector 155

Examining objects 157
Filtering the display 160
Operating upon objects and items 162
Configuring the inspector 166
Customizing the inspector 168
Creating new inspection formats 169

14 Example: Using The Interface Builder 173

Creating the basic layout 175
Specifying attribute values 177
Creating the menu system 180
Specifying callbacks in the interface definition 183
Saving the interface 186
Defining the callbacks 186
Creating a system 189
Testing the example interface 189

15 The Interface Builder 191

Creating or loading interfaces 193
Creating an interface layout 196
Creating a menu system 199
Editing and saving code 204
Performing operations on objects 208
Performing operations on the current interface 213

16 The Listener 217

The basic features of a listener 217
Evaluating simple forms 219
Re-evaluating forms 220
Interrupting evaluation 221
The History menu 221

The Expression submenu 222
The Values submenu 223
The Debug menu 223
Execute mode 224
Help with editing in the listener 225

17 The Output Browser 227

18 The Process Browser 231

Displaying and sorting the output 232
Process control 233
Other ways of breaking processes 234
Updating the process browser 234

19 The Profiler 235

Introduction 235
A description of profiling 238
Steps involved in profiling code 238
Format of the results 243
Interpreting the results 244
Some examples 245

20 The System Browser 249

Introduction 249
Defining a system 250
A description of the system browser 252
Examining the system graph 253
Examining systems in the text view 256
Generating and executing plans in the preview view 258
Examining output in the output view 261
Configuring the display 263
Setting options in the system browser 264

21 The Window Browser 265

Introduction 265
Configuring the window browser 268
Performing operations on windows 270
vii

viii
Index 273

Preface
Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common
Lisp. Many source code examples are used throughout the manual to illus-
trate important concepts, but only extensions to Common Lisp which are spe-
cific to the environment are explained in detail.

This manual does provide a complete description of the windowed develop-
ment environment available in your Lisp image. This includes a description of
the user interface itself, and a description of how the user interface interacts
with Common Lisp.

Using the mouse

Throughout this manual, actions that you perform using the mouse are
described in terms of the gesture used, rather than the combination of mouse
buttons and keys that need to be used to perform the operation. This is
because the buttons that are used are highly dependent on the platform you
are running your Lisp image on, the operating system you are using, and even
the type of mouse that you have attached to your computer. The mouse ges-
tures available in the environment are described below.
ix

x

Select

This is by far the most common mouse gesture, and is used for nearly all
mouse operations in the environment. Use the select gesture to

• display a menu,

• choose a command from a menu which is already displayed,

• select items from a list or graph

• select or deselect a toggle switch,

• click on a button,

• position the mouse pointer in a piece of text.

Depending on the characteristics of your operating system or (if you are using
a UNIX system) your window manager, you may also need to use select in
order to move the mouse focus to another window.

If you are using a mouse with several buttons, you can nearly always select by
clicking the left-most button, but you should refer to the documentation for
your operating system or window manager if you are unsure. This is particu-
larly true if you are using a mouse which has been set up for use by a left-
handed person, since it is possible that the function of the mouse buttons has
been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more
than one item. You can select several items from any list or graph in the envi-
ronment, and there are a large number of commands which can operate
equally well on these multiple selections.

There are a number of standard ways of making multiple selections in a list or
graph, depending on your operating system or window manager. Check the
relevant documentation if you are unsure, or try any of the following:

• Holding down the Shift key while selecting an item.

• Holding down the Control key while selecting an item.

• The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the Shift key lets you make a contiguous
selection, and holding down the Control key lets you make a discontiguous
selection.

• To select a block of items from a list, select the first item, hold down the
Shift key, and then select the last item; the intervening items are also
selected.

• To select several items which do not form a block, hold down the Con-
trol key while selecting each item individually.

This behavior is typical in a number of operating systems or window manag-
ers. You are probably familiar with it if you are familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid
succession. In general, any item in a list or graph may be double-clicked.

Double-clicking is usually a shortcut for selecting an item and choosing a
common menu command, and the precise action that takes place depends on
the context in which the double-click was performed.

Double-clicking can only be performed on single selections.

Alternate select

This is a less common gesture, and is used almost exclusively within Common
LispWorks to display a popup menu.

If you are using a mouse with several buttons, you should find that you can
perform this gesture by clicking the right-most mouse button. Refer to the
documentation for your window manager or operating system if you are
unsure.

Choosing menu commands

Throughout this manual, menu commands are shown in This Bold Font . In
addition, submenus are indicated by use of the > character. Thus, for instance,
the instruction

“Choose File > Open ”
xi

xii
means that you should select the File menu on a menu bar, and choose the
Open command in the menu that appears. Similarly,

“Choose Works > Tools > Editor ”

means that you should display the Works menu by selecting it, select Tools
from this menu to display a submenu, and choose the Editor command from
this submenu.

Using the keyboard

Throughout this manual there are descriptions of commands that you can
choose by typing at the keyboard. This is especially true when discussing the
built-in editor, which relies heavily on the use of keyboard commands, and
the Common Lisp listener, which uses many of the same commands.

Keyboard commands generally use a combination of alphanumeric characters
together with the Control, Shift, Escape, and Meta keys.

In all cases, the Control, Shift, and Meta keys should be held down concur-
rently with the specified letter, whereas the Escape key should be pressed and
released before pressing the specified letter. In the editor, Escape and Alt can
be used interchangeably. This manual refers to Alt when referring to editor
commands to reflect its ease of use.

Thus, for example:

Ctrl+S is read as “hold down the Control key and press S”.

Ctrl+Shift+A is read as “hold down the Control and Shift keys and
press A”.

Esc E is read as “press and release the Escape key, then press E”.

Meta+E is read as “hold down the Alt key and press E” (remember that,
in the editor, you could use Esc+E if you preferred).

For more information on using keyboard commands in the built-in editor and
the listener, see Section 10.1.3 on page 111.

1

1Introduction
This manual gives you a complete guide to the Common LispWorks develop-
ment environment. This environment comprises a large number of window-
based tools which have been designed with the Common Lisp developer in
mind. The following are among the features provided by the environment:

• A fully functional editor specifically designed to make writing Com-
mon Lisp source code as swift as possible.

• A Common Lisp listener for evaluating Common Lisp forms interac-
tively.

• A range of other tools essential to the development process, such as a
debugger, code profiler, and inspector.

• A wide range of browsers for examining different objects in your Lisp
image, such as the generic functions or CLOS classes that have been
defined.

• A tool for simplifying source code management; vital if you are
involved in developing large applications.

• A tool for designing window-based interfaces to your applications.
Apoint-and-click interface is used to design the interface itself, and all
the necessary Common Lisp code is generated for you.
1

Introduction

2

Because of the large number of tools available, consistency is a vital theme in
the environment; each tool has a similar look and feel so that you need only
spend a minimum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available.
This means that it is possible to transfer pieces of information throughout the
environment in a logical fashion; if you create an object in the listener, you can
examine it by transferring it directly to the inspector. The class of objects that
it belongs to can be examined by transferring it to a class browser, and from
there, the generic functions which have methods defined on it can be
browsed.

To reflect these themes of consistency and integration, the earlier chapters in
this manual deal with the generic aspects of the environment, while at the
same time introducing you to the more important tools.

1.1 Major tools
The environment supports a wide range of tools which can help you to
develop and maintain Common Lisp source code more quickly and efficiently.
This section gives you a brief introduction to the most important ones. You
can create any of the tools described here by choosing the appropriate com-
mand from the Tools menu of the podium window.

For full details about any of these tools, see the relevant chapter. The second
part of this manual covers each of the tools in the order that they are found on
the Tools menu of the LispWorks podium.

1.1.1 The listener

A Common Lisp listener is provided to let you evaluate Common Lisp forms.
This tool is invaluable as a method of testing your code without necessitating
compilation or evaluation of whole files of Common Lisp source code.

1.1.2 The editor

A built-in editor is provided to allow you to develop Common Lisp code. It is
based on EMACS, an editor which you may already be familiar with. The
built-in editor offers a wide range of functions specifically designed to help

1.1 Major tools
you develop Common Lisp code, and it is fully integrated into the environ-
ment so that code being developed is immediately available for testing.

1.1.3 The class browser

This tool allows you to examine the Common Lisp classes that are defined in
your environment. You can look at the superclasses and subclasses of a given
class and see the relationships between them, and you can examine the slots
available for each class.

In addition, you can examine the functions and methods defined on a given
class, or the precedence list or initargs for the class.

1.1.4 The output browser

The output browser collects and displays all output from the environment
which may be of use. This includes warning and error messages displayed
during compilation and output generated by tracing or profiling functions.
Many other tools in the environment also provide you with an output view,
which lets you see any output which is appropriate to that tool.

1.1.5 The inspector

The inspector lets you examine and destructively modify the contents of Com-
mon Lisp objects. It is an invaluable tool during development, since it lets you
inspect the state of any part of your data at any stage during execution. Thus,
it is easy to see the value of a slot and, if necessary, alter its value, so that you
can test out the effects of such an alteration before you make the changes nec-
essary in the source code itself.
3

Introduction

4

2

2A Short Tutorial
This chapter gives you a short tutorial illustrating simple use of some of the
major tools in the environment, and attempts to familiarize you with the way
that tools can be used to good effect when developing Common Lisp applica-
tions.

Note that some of the examples given in this chapter use symbols taken from
the CAPI library. Do not worry if you are not familiar with the CAPI. It is not
essential that you fully understand the example code used in order to gain
benefit from the tutorial. If you wish to learn more about the CAPI, you
should refer to the CAPI User Guide and the CAPI Reference Manual, both of
which are supplied with your software.

To maintain continuity, try to work your way through the whole of this tuto-
rial in one session.

2.1 Starting the environment
To start Lisp under Windows 95, Windows 98 or Windows NT 4.0:

1. Click Start on the task bar.

2. From the Start menu, choose Programs > Harlequin > LispWorks .
5

A Short Tutorial

6

After a short pause, you should see a copyright banner, followed closely by
the LispWorks podium window and a listener. The LispWorks podium is
shown in Figure 2.1.

Figure 2.1 LispWorks Podium

The podium window is automatically displayed whenever you start the envi-
ronment. It contains a menu bar, which gives you access to various functions,
as well as all the other tools in the environment, and a button bar, which gives
you quick access to some of the more convenient menu commands.

Like many other applications, the menu bar contains File , Edit , Windows and
Help menus. The Works menu contains commands that apply to the active win-
dow. The active window is listed in the LispWorks podium, underneath the
button bar. The File menu contains file saving, compilation and printing
options. The Tools menu gives you access to all of the Common LispWorks
tools. The Debug menu is active when you are in the debugger and provide
access to debugging commands. The Windows menu lists all the active win-
dows you have running. The History menu contains a list of commands you
have recently performed for that tool.

Note: If you wish to exit the Lisp image during this tutorial or at any other
time, choose File > Exit .

2.2 Creating a listener
The listener is a tool that interactively evaluates the Lisp forms you enter. Dur-
ing a typical session, you evaluate pieces of code in the listener, then examine

2.2 Creating a listener
the effects in other tools, returning to the listener whenever you want to make
more changes. The structure of this tutorial reflects this two-stage approach.

A listener is created when you start up LispWorks. This section of the tutorial
demonstrates some of its more useful features. A listener is shown in Figure
2.2 below.

Figure 2.2 Listener

The listener contains two views: the listener view and the output view. At the
bottom of the listener is an echo area that is visible in either view. The echo
area is used to prompt you for information when performing editor com-
7

A Short Tutorial

8

mands such as searching for text. You can switch between the two views by
clicking the Listener and Output tabs respectively. You can evaluate Lisp
forms in the listener view by typing the form, followed by Return. Any output
that is produced is displayed in the Listener view.

1. Type the following form into the listener and press Return.

(+ 1 2)

The result of the evaluation, 3, appears in the listener, and a new prompt
is printed. Notice that the number in the prompt has been incremented,
indicating that a form has been evaluated.

Because you may want to enter a number of very similar forms, com-
mands are provided which make this easy.

2. Press Meta+P.

The form that you just evaluated is printed at the new prompt. You can
press Return to evaluate this form again, or, more usefully, you can edit
the form slightly before evaluating it.

3. Press Ctrl+B to move the cursor back one space. Now press the Back-
space key to delete the number 2, and type 3 in its place.

You have edited the form (+ 1 2) to create a new form, (+ 1 3) .

4. Press Return to evaluate the new form.

The result of the evaluation, 4, appears in the listener, followed by another
new prompt, with the prompt number incremented once again.

2.3 Using the debugger
A debugger tool is provided to help track down the cause of problems in your
source code. This section introduces you to some of the ways in which it can
be used.

1. Type the following definition into the listener:

(defun test ()
 (let ((total 0))
 (loop for i below 100 do
 (incf total i) when (= i 50) do
 (break "We’ve reached fifty"))))

2.3 Using the debugger
This function counts from 0 to 100, accumulating the total as it
progresses, and forces entry into the debugger when the count has
reached 50.

2. Next, call the function by typing (test) into the listener.

Initially, the command line debugger is entered. This is a debugger
which can be used from within the listener itself. More details about the
command line debugger can be found in the relevant documentation for
the Lisp image that you are running.

3. To enter the debugger tool at this point, choose Debug > Listener > Start
GUI Debugger from the podium.

The debugger tool appears, as shown in Figure 2.3.
9

A Short Tutorial

10
Figure 2.3 Debugger tool

2.4 Viewing output
The debugger tool gives a view of the backtrace (in the Backtrace pane),
showing the functions that are on the stack, and their internal variables
(including any arguments) at the point that the error occurred.

4. In the Backtrace pane, click on TEST if it is not already selected.

This displays, in the Variables list, the values of the variables in the
example. Notice that the value for i is 50, as you would expect.

There is a row of buttons at the bottom of the debugger which let you
perform a number of different actions.

5. Click Continue to exit the debugger.

The debugger disappears from the screen, and the command line debugger in
the listener is exited, leaving you at the Lisp prompt in the listener.

2.4 Viewing output
There are many different ways to view output generated by the environment.
In many tools, for example, output appears as soon as it is generated — this
happens, for instance, when you compile code in the built-in editor.

At other times, you can view output in a tool called the output browser. This
tools collects together all the output generated by the environment, and is par-
ticularly useful for viewing output generated by your own processes (which
cannot be displayed in any other environment tool). The output browser dis-
plays all the output sent to the default value of the variable *standard-out-

put* .

1. Evaluate the following in the listener.

(capi:contain
 (make-instance ’capi:push-button-panel
 :items ’(:red :yellow :blue)
 :selection-callback
 #’(lambda (data interface)
 (format t
 "Pressed button in interface ~S~% data=~S~%"
 interface data))))

This is a piece of CAPI code that creates a window with three buttons,
labeled RED, YELLOW and BLUE , as shown in Figure 2.4. Pressing any of
these buttons returns the value of the button pressed.
11

A Short Tutorial

12
Figure 2.4 Example CAPI window

2. Click on the Output tab in the listener.

3. Try clicking on any of the buttons in the window you just created, and
look at the output generated.

4. Now try a second example by typing the form below into the listener at
the current prompt (remember to click the Listener tab in the listener
first).

(capi:contain (make-instance
 ’capi:text-input-pane
 :callback #’(lambda (text interface)
 (format t
 "You entered: ~S~%" text))
 :title "My Text Input Pane"))

The object that this code creates is going to demonstrate the inspector
tool. The code above creates a window containing a text input pane. You
can type text directly into a text input pane, and this can be passed, for
instance, to other functions for further processing.

5. Type the word hello into the text input pane and press Return. Look at
the generated output in the output view.

2.5 Inspecting objects using the inspector
The variables * , ** , and *** hold the results of expressions which have been
evaluated in the listener. * always holds the result of the last expression evalu-
ated; ** holds the previous value of * , and *** holds the previous value of ** .
These variables (* in particular) are not only useful in their own right; the
environment uses them to pass values between different tools.

1. Make sure the listener view is visible, and type * .

2.5 Inspecting objects using the inspector
If you have followed this tutorial so far, the text input pane object that
you created above is returned. This is because the capi:contain func-
tion returns the object that is being contained. You can easily inspect this
object more closely in the inspector tool.

2. Choose Works > Values > Inspect from the podium menu bar.

This creates an inspector tool which displays the object currently con-
tained in * , as shown in Figure 2.5.

Figure 2.5 Examining a text input pane in the inspector
13

A Short Tutorial

14
The commands in the Works > Values menu always act upon the current value
of * . This enables you to pass a value easily from one tool to another. Similar
menus can be found in all tools in the environment, and the behavior of each
command is consistent throughout the environment. For a full description of
the functionality of these menus, see Section 3.8 on page 31.

The main part of the inspector is a list of all the slots in the object being
inspected. This list shows both the name of each slot and its current value.
Above this list is an box labeled Filter. This lets you filter the information
shown in the main list, which can be useful when you are inspecting objects
with a large number of slots. The name of the object being inspected appears
immediately below the menu bar.

3. Click in the Filter box, type the word text and then press Return.

This restricts the display in the inspector to only those items which con-
tain the string “text”, either in the slot name or in the slot value.

After using the filter, you can easily see that one of the available slots
contains the text that you typed into the text input pane.

The inspector always displays the actual instantiation of a given object
(as opposed to a copy of it), so that you can be certain that any changes
to the object itself are reflected in the inspector.

4. Display the text input pane that you created earlier.

If you can no longer see it, choose Windows > Container ; this is a simple
way to display any of the windows and tools that you have created so
far. (There are actually two windows with this name; if you choose the
wrong one first of all, then just choose the other one.)

5. Click in the text input pane and delete the word hello . Type goodbye

and press Return.

6. Select the inspector to make it the active window and choose Tools >
Update .|

The description of the text slot now reflects the new value you specified.

7. Close the inspector by clicking the Close button in its title bar.

You can close any window in the environment in this way, although there are
often other ways of closing windows.

2.6 Examining classes in the class browser
2.6 Examining classes in the class browser
This section shows you how to use the class browser tool to examine informa-
tion about the Common Lisp class of any given object. The examples given
use the text input pane object that you created earlier, and show you how you
can programmatically change the values of a slot.

1. In the listener, type * once again.

Notice that the * variable still contains the value of the text input pane
object. This means that it is easy to perform several actions on that
object. Notice further that the environment is aware that the object has
been changed: the value returned by * reflects the change to the text slot
that you made in the last section.

2. From the LispWorks listener, choose Works > Values > Class .

This creates a class browser, shown in Figure 2.6, which allows you to
examine the class of the object contained in * .
15

A Short Tutorial

16
Figure 2.6 Examining the class of an object using the class browser

The class browser contains more areas than the inspector. In the Class box, the
name of the current Common Lisp class is printed. The list below the Filter
box displays the slots available to the current class, and list labeled Descrip-
tion displays the description of any selected slot. The filter works in the same
way as the inspector’s filter. There is also a checkbox labeled Include Inherited
Slots. Clicking this checkbox lets you switch between displaying all the slots
defined on the current class and all its superclasses, and only those slots

2.7 Summary
defined directly on the current class. By default, slots defined on any super-
classes (inherited slots) are shown in the main area.

3. Filter the display as you did for the inspector; click in the Filter box, and
this time type the word foreground and press Return.

Only those slots with the string “foreground” in their names are dis-
played.

4. Select the CAPI::FOREGROUND slot from the list. A description of the slot
appears in the description area, including information such as the ini-
targs, readers, and writers of the slot.

Notice that the text input pane has both a reader, capi:simple-pane-fore-

ground , and a writer, (setf capi:simple-pane-foreground) . We can use this
information to programmatically change the text shown in the text input
pane.

5. Type this form into the listener:

(setf (capi:simple-pane-foreground *) :red)

The text displayed in the text input pane is displayed in red to reflect the new
value you have specified. Notice how you were able to use the * variable to
refer directly to the text input pane object itself.

2.7 Summary
In this introductory tutorial you have seen how to perform the following
actions:

• Start the windowing environment.

• Evaluate and re-evaluate Common Lisp forms using the listener.

• Invoke the debugger, follow the backtrace that it produces, and return
from the error which caused entry to the debugger.

• Collect and display data generated by your own code in the output
browser.

• Use the inspector to examine the current state of an object.
17

A Short Tutorial

18
• Use the class browser to find out detailed information about a given
class, so that you can make arbitrary programmatic changes to an
instance of that class.

The next two chapters describe elements of the environment which are com-
mon to all tools.

Other chapters in this manual describe the other tools available in the envi-
ronment. Each chapter is intended to be reasonably independent of the others,
so you can look at them in any order you wish. You are advised to study the
chapters on the basic tools, such as the inspector, the class browser and the
editor first, since a knowledge of these tools is vital if you want to get the best
out of the environment.

3

3Common Features
The environment has been designed so that its features are consistent
throughout, and tools have a uniform look and feel. All tools have certain
characteristics which look the same, and behave in a consistent manner. By
making as many common features as possible, learning how to use each tool
is much simpler.

Chapter 2, “A Short Tutorial”, introduced you to some of the major tools in
the environment, demonstrating the commonality and high integration
between them, and showing how this can be used to good effect in the devel-
opment process. This chapter describes these common features in more detail.

Most of the common features in the environment can be found under the File ,
Edit , Works , History , Windows and Help menus in the LispWorks podium. Using
the commands available under these menus you can:

• move to any other tool

• cut, copy or paste via the clipboard

• perform search and replace operations

• re-issue a previous command, or re-examine an object

• perform operations such as loading and saving files
19

Common Features

20
The commands in these and all other menus in the podium operate on the
active window, the name of which is displayed at the bottom of the LispWorks
podium. The active window can be any window within the Common
LispWorks environment: even the LispWorks podium itself. In addition, some
other conventions have been adopted throughout the environment:

• Many tools have a number of different views: ways of displaying infor-
mation. Each view is made available by clicking on a different tab in the
tool.

• Lists displayed in many tools can be filtered in order to hide redundant
or uninteresting information.

These features are described in full in this chapter. Please note that subsequent
descriptions of individual tools in the environment do not include a descrip-
tion of these menus, unless a feature specific to the individual tool is
described.

Online help is also available from the Help menu in any window. These facili-
ties are described in Chapter 4, “Getting Help”.

Many tools allow you to display information in the form of a graph. These
graph views behave consistently throughout the environment, and a descrip-
tion of the graph features offered is given in Chapter 5, “Manipulating
Graphs”.

3.1 Loading and displaying tools
There are many tools available, and you can display them in a number of
ways. You can also control how a given tool is re-used within the environ-
ment.

3.1.1 Displaying existing windows

Choose the Windows menu from the LispWorks podium to display a list of all
the windows currently available in the environment. Choosing any item from
this list brings the window to the front of the display.

3.1 Loading and displaying tools
3.1.2 Loading and displaying tools

To load or display any tool:

1. Choose the Tools menu from the LispWorks podium.

Every tool in the environment is listed in this menu.

2. Choose the tool you require from the menu.

The tool is loaded (if necessary), and displayed. Using this method can be
very useful if you have several windows open, since you may not remember
immediately whether a given tool is loaded or not.

3.1.3 Re-using windows

By default, the environment always re-uses an existing window if possible.
So, if you choose Tools > Editor , an existing editor appears if one has already
been loaded.

If you prefer, you can configure the environment so that a new tool is created
every time you choose one of the options under the Tools menu. You can do
only for specific tools, of for every tool in Common LispWorks.

To switch off the reuse of a specific tool:

1. Choose Tools > Options from the LispWorks podium. The options dialog
appears.

Reuse all tools is one of the options displayed on this dialog. By default,
this is selected, indicating that the active window is re-used.

2. Uncheck Reuse all tools to deselect the option.

The active windows are now no longer reusable. Next time you create a
new instance of a tool from the Tools menu, a new instance of it is cre-
ated.

3. Choose Tools > Options and check Reuse all tools again to switch the
option back on.

Note: You can also control the reuse of tools from the Tools > Customize > Reus-
able menu in the LispWorks podium.
21

Common Features

22
3.1.4 Creating menu bars

By default, the only window in Common LispWorks to contain a menu bar is
the LispWorks podium. The menu commands in this menu bar operate on
whichever Common LispWorks window is currently active. If you prefer each
tool to have its own menu bar, you can configure this by choosing Tools >
Options and toggle Each tool has its own menu bar .

Note: This manual assumes the default Common LispWorks configuration:
only the LispWorks podium has a menu bar.

3.1.5 Copying windows

Choose Tools > Clone in a given tool or window to make a copy of that tool or
window. This is useful, for instance, if you wish to have two different views
on an object simultaneously, and allows you to have several copies of a tool or
application without having to change its properties using Tools > Customize >
Reusable .

3.1.6 Closing windows

Close any window in the environment using one of the following methods:

• Click the Close button at the top right of the window.

• Click in the icon at the top left of the window to display the windows
control menu, and choose Close .

• Press Alt+F4 .

3.1.7 Updating windows

To manually update any tool, choose Tools > Update .

Updating a tool is a useful way of making a snapshot of an aspect of the envi-
ronment that you are interested in. For instance, imagine you want to com-
pare a number of instances of a CLOS class against a known instance of the
same class using the inspector. You can do this as follows:

1. Inspect the known instance using an inspector.

3.2 Setting global preferences
You might do this by creating the instance in a listener and then using
Works > Values > Inspect to transfer the instance to the inspector.

1. Make sure the inspector is the active window, and choose Tools > Clone
to make a copy of it.

2. In the listener, create a new instance of the same class, transfer it to the
inspector, and compare them to the original instance that is still dis-
played in the clone.

3.2 Setting global preferences
Chose Tools > Options... from the podium to invoke the global preferences dia-
log. This dialog is used to specify global preferences, such as the name of the
initialization file to use.

Figure 3.1 The Global Preferences dialog.

3.2.1 The windows options

Checking Each tool has it’s own menu bar tells LispWorks to attach menu bars
to all LispWorks tool windows, such as the editor, the class browser, the
23

Common Features

24
inspector, and so on. If this is not checked then the podium is the only tool
containing a menu bar.

Checking Reuse all tools ensures that LispWorks uses an existing tool rather
than starting up a new copy. For example, if an editor is already open, choos-
ing File > Open and selecting a new file causes the file to be opened in the exist-
ing editor.

3.2.2 Initialization file

The .lispworks file is the default file to be loaded automatically when
LispWorks is started. You can edit it to contain Common Lisp code for evalua-
tion to initialize the image to suit your needs.

The global preferences dialog can be used to specify a different initialization
file. You can either enter the path and filename directly into the text input box,
or use the button to call up a file browser to select a file. Clicking on

undoes any alterations entered.

3.3 Quitting the environment
Choose File > Exit to exit Lisp completely. A dialog asks you to confirm your
exit when you choose this command.

3.4 Performing editing functions
This section discusses commands available in the Edit menu while any win-
dow is active. These commands fall into five areas:

• Undoing changes.

• Using the clipboard.

• Selecting text and objects.

• Searching for text.

• Substituting text.

3.4 Performing editing functions
3.4.1 Undoing changes

You can undo changes made in a tool using Edit > Undo . This facility is most
useful in the editor and listener— see Section 10.9 on page 122 for more
details.

3.4.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the
environment and other applications that you are running. There are three
commands available, as follows:

Choose Edit > Copy to put the selection or “primary object” onto the clip-
board.

Choose Edit > Cut to put the selection or “primary object” onto the clip-
board and remove it from the tool it was copied from.

Choose Edit > Paste to put the contents of the clipboard into the current
tool.

Unlike the clipboard in many other applications, the Common LispWorks
clipboard can contain the Common Lisp object itself. This makes the Common
LispWorks clipboard an exceptionally powerful tool, allowing you to pass
objects between different tools in the environment so that they can be exam-
ined in different ways.

Use of Copy or Cut followed by Paste lets you transfer items between tools, or
to different parts of the same tool. There are several ways to use these com-
mands:

• In the listener you can Copy the previous form to the clipboard and then
Paste it into another tool. Because the Common Lisp object itself is cop-
ied to the clipboard, it is treated correctly—for instance, if you paste it
into an inspector, it is inspected.

• In the editor, you can Copy chunks of text and Paste them into different
places, either within the same file or between different files. If you have
sections of code which are very similar, rather than typing each section
out explicitly, just Paste in the same section as many times as you need
and change only the relevant parts. Section 10.11 on page 123 describes
a number of more sophisticated methods that can be used in the editor.
25

Common Features

26
• Between any of the tools, you can Copy, Cut , and Paste Common Lisp
objects. You can, for instance, make an instance of a class in the listener,
Copy it, then Paste it into a class browser to examine its description.

As well as the menu commands, you can use the , and buttons in
the button bar of the LispWorks podium.

Note: You can also transfer data within the environment using the standard
actions commands described in Section 3.8 on page 31.

3.4.3 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all the text in
an editor or listener window, or all the items in a list or graph. These com-
mands are useful whenever there is too much information to be able to select
items one at a time.

3.4.4 Searching for text and objects

You can search for and change text in most tools using Edit > Find , Edit > Find
Next , and Edit > Replace .

Choose Edit > Find to find an item in the current tool (this might be a piece of
text, or a fragment of Common Lisp, or an object, depending on the tool). You
must supply an item to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item
you have already found. This command does not prompt you for an item to
find, and so is only available if you have already found something.

Choose Edit > Replace if you want to replace one string of text with another.
The echo area of the active window prompts you for a text string to find, and a
text string to replace it with. This command is only available in the editor and
the listener, and is most useful in the editor.

3.5 The history list
The history list of a tool stores the most recent events which have been carried
out in that tool, or the most recent objects which have been browsed in it.

3.5 The history list
The History > Items submenu provides a list of these events (or objects), allow-
ing you to repeat any of them (or browse them again) by choosing them from
the menu. This gives you an easy way of repeating forms in the listener,
inspecting objects or browsing classes again, and so on.

The menu lists the last ten unique items to have entered the history list of the
active window. Because each entry is unique, some items may have occurred
more than ten events ago.

If the editor is the active window, the History> Items submenu lists the buffers
currently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list is to choose it from
the History > Items submenu. There may be times, though, when this is incon-
venient (the items on the list may be too long to be able to distinguish between
them easily, or you might want to repeat an item that occurred more than ten
events ago). In such cases, there are three commands which offer an alterna-
tive way of choosing items.

Choose History > Previous to perform the previous item in the history list of the
tool. This is usually the most recent event you have performed, but may not
be (if, for instance, the last action was itself an event that was already on the
history list).

Choose History > Next to perform the next item in the history list. This item is
not usually available unless the last event you performed involved an item
already on the history list.

Note: You can also use the and buttons in the button bar on the Lisp-
Works podium.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dia-
log appears that contains all of the items in the current History menu. Select
the items you wish to retain, and click OK. Any items which were not selected
in the dialog are removed from the history list.
27

Common Features

28
3.6 Operating on files
The File menu allows you to perform operations on files stored on disk. It is
only available for tools which need to interact with the files you have stored
on disk, such as the listener and editor.

The default commands available in the File menu are described below. Note
that in some tools, the File menu contains additional commands specific to
that tool. Please refer to the relevant chapters for each tool for a description of
these additional commands.

Choose File > New to open a new buffer in the built-in editor. If an editor win-
dow has not yet been created, this command also creates one. The new buffer
is unnamed. Alternatively, you can click the button in the button bar on
the LispWorks podium, shown in Figure 2.1, page 6.

Choose File > Open to open an existing file in a new editor buffer. Where
appropriate, a dialog appears, allowing you to choose a filename. If an editor
window has not yet been created, this command creates one. Alternatively,
you can click the button in the button bar on the LispWorks podium,
shown in Figure 2.1, page 6.

Choose File > Load , File > Compile , and File > Compile and Load to load, compile,
or compile and load a file of Lisp source code. When appropriate, each com-
mand displays a dialog, allowing you to choose the file you want to load or
compile.

Choose File > Print to print a file. A dialog allows you to choose a file to print.
The current printer can be changed or configured by using the standard Win-
dows Control Panel.

Choose File > Browse Parent System to view the parent system of the current
file in the system browser. This command is only available if the parent sys-
tem has already been loaded into the environment. See Chapter 20, “The Sys-
tem Browser” for a complete description of the system browser.

Note: As described above, the behavior of each command can vary slightly
according to which tool is active when the command is chosen. For instance,
choosing File > Print in the editor prints out the displayed file, whereas choos-
ing File > Print in the listener prompts you for a file to print.

3.7 Displaying packages
3.7 Displaying packages
Symbols can be displayed either with their package information attached or
not. In Common LispWorks, symbols are displayed with the package name
attached by default.

For example, suppose you have created a package FOO which includes a sym-
bol named bar and a symbol named baz . Suppose further that you created a
new package FOO2, which used the FOO package. This can be done as shown
below:

(defpackage foo (:use "COMMON-LISP"))
(defpackage foo2 (:use "FOO" "COMMON-LISP"))

Note that in defining both packages, the COMMON-LISP package has also been
used. It is good practice to use this package, to ensure that commonly-used
symbols are available.

When creating packages which use other packages, exported symbols can be
called without having to refer to the package name.

To clarify this, let us go back to our example.

Figure 3.2 Two example packages

We have two packages: FOO and FOO2. FOO contains 2 functions, bar and baz .
Suppose that the function bar has been declared as exported, whereas the
function baz is not.

When you are in the package FOO2, you can refer to bar without using the
package name (because FOO2 uses FOO and bar is exported), but you must still
refer to the FOO package name for baz (because baz is not exported). Note also

FOO FOO2

bar

baz foo::baz

bar
29

Common Features

30
that when you are in any package other than FOO or FOO2, you can refer to
foo:bar , but you must still refer to foo::baz .

Package names are usually displayed alongside symbols in a list. Having a
package entry on every line can be confusing, especially if the majority of
items listed are from the same package. To hide the package names for the
symbols in the active window:

1. Choose Tools > Preferences .

The Preferences dialog for the active window appears.

2. Uncheck Show Package Names in this dialog.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the current tool to
display its symbols as you would refer to them from that package—that is, as
the package sees them. This can make listings clearer and, more importantly,
can show you which symbols have been exported from a package.

Doing this changes the process package of the tool. This means that both dis-
played symbols and symbols typed into the tool are assumed to be in the
package specified. This can be useful in a browser, for example, if you intend
to browse a number of different objects which come from the same package.

To change the process package for the active window:

1. Choose Tools > Preferences .

2. Delete the package name in the Package text field, and type in the name
of the new package.

3. Click to confirm this new name.

4. Click Apply or OK to make the change.

Note: If you wish, you can partially type the package name and, then produce
a list of possible completions by clicking .

As an example, imagine you are looking at a list of symbols in the inspector.
You are working in the package FOO, and some of the symbols in the inspector

3.8 Performing operations on selected objects
are in that package, while others are in another package. To change the current
package of the inspector to FOO, follow the instructions below:

1. Choose Tools > Preferences .

The Preferences dialog indicates that COMMON-LISP-USER is the current
package in this window.

2. In the Package field, delete the string COMMON-LISP-USER, and type FOO.

3. Click OK to make the change.

In the inspector all the symbols available from FOO appear without the pack-
age prefix FOO. Similarly, all exported symbols in packages which FOO uses
appear without a package prefix, while all others have an appropriate pack-
age prefix.

3.8 Performing operations on selected objects
In any tool, there are a number of operations that you can always perform on
the selected objects, irrespective of the type of objects you have selected. This
allows you to perform some powerful operations and also ensures a consis-
tent feel to every tool in the environment.

In this context the term “selected objects” is meant in the widest sense, and
can refer to any items selected anywhere in a tool, be it in a list of items, or a
graph. It can also refer to the tool’s current object: that is, the object which is
currently being examined.

These operations are available throughout the environment, and are referred
to as standard action commands. As with other commands that are specific to
the active window, standard action commands are usually available from
menus on the main menu bar of the tool you are using. The objects which are
operated on by a given standard action command depend on the menu from
which you chose the command.

As a more concrete example, consider examining the contents of Common
Lisp objects using the inspector.

The standard action commands for the inspector are present in two places: the
Works > Object menu, and the Works > Slots menu.
31

Common Features

32
• Choose a standard action command from the Works > Object menu to
perform an operation on the inspector’s current object.

• Choose a standard action command from the Works > Slots menu to per-
form an operation on the selected components of the Common Lisp
object.

Notice that in the first case, the object operated on is the tool’s current object:
you do not have to take any further action before performing the operation.

In the second case, the objects examined represent more specific pieces of
information: you need to select them before you can perform the operation.
This, therefore, examines more discrete pieces of information about the cur-
rent object.

In general, any tool has at least two submenus like those described above. The
first operates on the current object. What that object is, and hence the name of
the submenu in which the commands are to be found, depends on the tool
you are using. For instance, if you are examining classes, the commands can
be found in a Works > Classes menu. If you are examining methods, they can
be found in a Works > Methods menu.

Some tools may contain more than two such menus; precise details are given
in the relevant chapters.

As a guide, if a menu has a plural for a name, the commands in that menu can
be performed on multiple selections. If the menu name is not pluralized, com-
mands only affect a single selection.

3.8.1 Operations available

The standard action commands available are described below. In these
descriptions, the term “current object” refers to the Lisp object that is being
acted upon by the menu command. This depends on the tool being used and
the menu in which the command appears, but should be obvious from the
context.

Choose Browse to browse the current object using an appropriate browser. A
browser is a tool which lets you examine a particular type of Common Lisp
object, and there are a large number of them available in the environment.
Some of the browsers available are:

3.8 Performing operations on selected objects
• the class browser, which lets you examine CLOS classes

• the generic function browser, which lets you examine the generic func-
tions in the environment, and the methods you have defined on them

See the appropriate chapters for a full description of each browser; there is a
chapter of this manual devoted each to available browser. The precise name of
the Browse menu command reflects the type of browser that is used to exam-
ine the selected object. Thus, if the command is Browse – Generic Function , a
generic function browser is used.

Choose Class to look at the class of the current object in a class browser. See
Chapter 7, “The Class Browser” for full details about this tool.

Choose Copy to copy the current object to the clipboard, thus making it avail-
able for use elsewhere in the environment. Note that performing this opera-
tion on the object currently being examined by the tool (for example, choosing
the command from the Object menu when an inspector is the active window)
has the same effect as choosing Edit > Copy , whereas choosing this option from
other menus (such as a Description menu) copies more discrete information to
the clipboard.

Choose Documentation to display the Common Lisp documentation for the
current object, if any exists. It is printed in a help window.

Choose Find Source to search for the source code definition of the current
object. If it is found, the file is displayed in the editor: the cursor is placed at
the start of the definition. See Chapter 10, “The Editor” for an introduction to
the editor.

You can find only the definitions of objects you have defined yourself (those
for which you have written source code)—not those provided by the environ-
ment or the LispWorks implementation.

Choose Inspect to invoke an inspector on the current object. See Chapter 13,
“The Inspector”, for details about the inspector. If you are ever in any doubt
about which object is operated on by a standard action command, choose this
command.

Choose Listen to paste the current object into the listener. Chapter 16, “The
Listener” provides you with full details about this tool.
33

Common Features

34
Choose Function Calls to describe the current object in a function call browser.
See Chapter 11, “The Function Call Browser” for more details.

Choose Generic Function to describe the current object in a generic function
browser. See Chapter 12, “The Generic Function Browser” for more details.

3.9 Using different views
Every tool in the environment has several different views, each of which can
display information which is pertinent to the task at hand. You can switch to
any of the available views by clicking on the appropriate tab at the top of the
tool. When choosing a different view, the layout of the tool itself changes.

Figure 3.3 Clicking on tabs to display different views of a tool

In tools which are browsers, different views allow you to display different
pieces of information about the same objects; for instance, in the class browser
you can switch from a view which shows you information about the slots in a
given Common Lisp class to one which shows information about the initargs
of the class.

In other tools, different views may show you completely different types of
related information. For example, in the listener you can switch from the lis-
tener view to a view that shows you any output that has been generated by
the listener.

All tools have a default view when you first start them. The default view is the
one which you are most likely to make most use of, or the one which you use
first. When you first start the built-in editor, the default view is the text view.

The slots view is
currently visible.

Click here to display
the hierarchy view.

Click here to display
the precedence view.

3.9 Using different views
When you start a class browser, the default view shows you the slots available
for the current class, as you have already seen.

3.9.1 Sorting items in views

You can sort the items displayed in the main area of any view using the Pref-
erences dialog for a given tool. In tools where items can be sorted in this way,
there are at least the following three commands available:

1. For any tool, choose Tools > Preferences .

Figure 3.4 Example Preferences dialog

Notice that some Preference dialogs, such as the one shown above, have
several tabs. In these cases, the options described in this section are
always available in the General tab.

The left hand side of the Preferences dialog is labeled Sort.

2. Choose one of the options in this area of the dialog to control the sort
order of items in the active window.

The options available vary according to the tool, but at least the follow-
ing will be available:

Control the sort order
of a tool using the
options in this panel.
35

Common Features

36
By Name Sorts symbols in a list or graph according to the name
of each item. The packages that the symbols are resi-
dent in are ignored when this option is used; thus, the
symbol vv:allocate would be listed before aa:vec-

torize .

By Package Sorts symbols in a list or graph according to the pack-
age they are listed in. Thus, all symbols in the aa pack-
age would be listed together, as would all symbols in
the vv package. In addition, the aa package would be
listed before the vv package. Within a given package,
objects are listed in alphabetical order when using this
option: thus, aa:carry-out-conditions would be
listed before aa:vectorize .

Unsorted Lists all symbols in a graph or list in the order in which
they are defined in the source code. This can sometimes
be a useful option in itself, and is always the quickest
option available. You may sometimes want to use this
option if you are displaying a large number of items
and you are not filtering those items in any way.

Note: There are often other sort options available in the Sort area of the Prefer-
ences dialog, depending on the nature of the tool itself. These options are
described in the chapter specific to each tool.

Only those views whose main area consists of a list or a graph can be sorted.
In particular, the default views of tools such as the listener or the editor, which
is an editor window which you can type directly into, cannot be sorted.

3.10 Tracing symbols from tools
For some tools, submenus under the some relevant main menues (for exam-
ple, the Works > Function menu on the function browser) contain a Trace sub-
menu that allows you to set tracing options for the selected function, method,
macro, or generic function. This is a useful shortcut to the trace macro, since
it gives you some control over tracing in the environment without having to
work directly at the Common Lisp prompt.

3.11 Linking tools together
A Trace submenu generally has the following commands:

Choose Trace to trace the currently selected function.

Choose Trace Inside to trace the currently selected function within the
current context. Choosing this command sets the :inside option.

Choose Trace with Break to trace the currently selected function, and
enter the debugger on entry to it. Choosing this command sets the
:break option to t .

Choose Untrace to turn off tracing on the currently selected function.

Choose Untrace All to turn off tracing on currently traced functions. Note
that this does not turn off tracing in the environment as a whole.

Choose Toggle Tracing to turn all tracing commands in the environment
on or off.

3.11 Linking tools together
You can link together pairs of tools, so that changing the information dis-
played in one tool automatically updates the other. This can be done for virtu-
ally any tool in Common LispWorks, and provides a simple way for you to
browse information and see how the state of the Lisp environment changes as
you run your code. For instance, you can make a link from the inspector to the
class browser so that every time you choose a class in the class browser, it is
automatically inspected. Linking an editor window to the class browser is a
good way of studying the implementation and design of a series of classes.

You can also link two copies of the same tool. This can be a very useful way of
seeing two views of a tool at once. For instance, you could create a copy of the
class browser by choosing Tools > Clone , and then link them together. By keep-
ing one browser in the subclasses view, and the other in the slots view, you
can automatically see both the subclasses and the available slots for a given
class.

Linked tools have a master-slave relationship. One tool (the slave) gets
updated automatically, and the other tool (the master) controls the linking
process. To link together any two tools:
37

Common Features

38
1. Select the tool that the link is to be established to. For example, to form a
link from an inspector to a class browser to ensure that a class selected in
the class browser is automatically inspected, you would user the Edit
menu of the class browser.

2. Choose Edit > Link > fromtool where fromtool is the title of the tool you
wish to link from.

To break a link, select -- No Link -- instead of a specific tool.

To view all the current links that have been established, choose Edit > Link from
> Browse Links... Select any links listed and click on Remove Link(s) remove
them.

3.12 Filtering information
Many tools have views which display information of some sort in the form of
a list. Items in these lists may be selected, and you can usually perform opera-
tions on selected items (for instance, by means of the standard action com-
mands, as described in Section 3.8 on page 31).

Such lists are often very long, and there may be information displayed which
you are not interested in. For instance, Common Lisp objects may contain a
large number of slots, most of which are of no importance to your work.

Very often a list is accompanied by a Filter box which lets you hide such
redundant information. Filter boxes consist of a pane into which you can type
a string of text, as shown below, and are always positioned immediately
above the list on which the Filter box operates.

3.13 Examining the window itself
Figure 3.5 Example Filter box

To use a Filter box, type in a text string and press Return, or click the Confirm
button. Only those items that contain the specified string are displayed in the
list—all the others are hidden from the display. The number of items that are
listed is printed in the Matches area to the right of the Filter box.

To display all the items in a list once again, delete the string in the Filter box
and press Return, or click the Cancel button.

3.13 Examining the window itself
You can examine either the CAPI representation of any window, or the under-
lying window itself, using the Tools > Interface menu.

This menu contains the standard action commands described in Section 3.8 on
page 31. Thus, choose Tools > Interface > Browse to browse the CAPI represen-
tation of any window in a window browser, or choose Tools > Interface >
Inspect to browse the underlying library object in a window browser.

Similarly, you can browse the Common Lisp classes of either the CAPI repre-
sentation or the library model, or you can inspect their values, or paste them
into a listener.

Type the string to filter by here.

Matching items listed here.

Number of matching items
shown here.
39

Common Features

40
For information about the tools mentioned, see Chapter 7, “The Class
Browser”, Chapter 13, “The Inspector” and Chapter 21, “The Window
Browser”.

4

4Getting Help
All tools contain a Help menu which gives you access to a variety of forms of
online help. This chapter describes how to use this online help.

4.1 Online manuals in HTML format
A complete documentation set is provided in the standard distribution, in the
form of HTML files. These files can be found in the LispWorks distribution
directory <lwdir>\lib\4-1-0-0\manual\online\web\ , where <lwdir> is your
LispWorks installation directory, as described in the Release and Installation
Notes. HTML is the SGML-derived markup language which has become the
standard format for publishing information on the World-Wide Web. A wide
variety of HTML browsers are commonly available, and you can use your pre-
ferred browser to view the online documentation.

Common LispWorks can link directly to the HTML files provided, allowing
you to go straight to the most relevant documentation for the current context.

The documentation set was generated using Harlequin WebMaker. No pro-
prietary extensions to HTML have been used, so you can use any HTML
browser you want, although the Common LispWorks help menu only drives
Netscape and Microsoft Internet Explorer.
41

Getting Help

42
4.1.1 Browsing manuals online

Choose Help > Manuals to browse any of the available manuals online. A dia-
log appears, allowing you to choose a manual to browse.

If you already have an HTML browser running, a link to the first page of the
manual you choose is displayed in it. If you do not have a browser running,
one is started for you.

4.1.2 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog,
shown in Figure 4.1, appears.

Figure 4.1 Search dialog

Enter string to search for here.

Select manuals to search here. Select packages to search here.

Select other options here.

4.1 Online manuals in HTML format
This dialog lets you specify what you want to search for, and which manuals
you want to search in.

Enter a string of text in the Search for area.

There are a number of additional options that you can set if you want:

• Select Whole Word if you want to confine your search to whole words
only. Select Partial Search if you want to match part of a word as well.
By default, partial searches are performed.

For example, if Whole Word is selected, searching for “pane” only
matches the word “pane”. If Partial Search is selected, searching for
“pane” also matches “panels”.

• You can choose whether to search the index or the table of contents of
any given manual; select Index or Contents as appropriate. By default,
indexes are searched, as these tend to produce the richest information.

Select the manuals you want to search in the Manuals list. If nothing is
selected, all manuals are searched. You can select any number of items in this
list.

Select the packages you want to search from the Packages list. If nothing is
selected (the default), all packages are searched. You can select any number of
items in this list.

Note that selections made in the Manuals and Packages lists reflect each other.
If you choose one or more manuals, the relevant packages are also selected,
and if you choose one or more packages, the relevant manuals are selected.

Once you have specified the search options, click OK. The results of the search
are displayed in your HTML browser.

4.1.3 Getting help on the current tool

Choose Help > On Tool to get help on the current tool. This takes you to the
appropriate online chapter of this manual.

4.1.4 Getting help on the current symbol

Choose Help > On Symbol to search for help on the symbol under the point (in
an editor-based window) or the current object of a tool. This option displays
43

Getting Help

44
the Search dialog described in Section 4.1.2, but with options pre-selected to
enable you to search for documentation on the current symbol. Click OK, and
the results of the search are displayed in your HTML browser.

4.2 Online help for editor commands
You can display online help for any available editor command using the com-
mands under Help > Editing . See Section 10.14 on page 134 for details.

4.3 Browsing manuals online using Adobe Acrobat
A complete documentation set is also provided in PDF (Portable Document
Format). These can be found on the CD in the directory Doc\lib\4-1-0-

0\manual\offline\pdf\ . The installer creates links to these files in the Print-
able Documentation menu accessible from the Windows Start menu. You can
view these files online and print them using Adobe Acrobat Reader Version
3.0 or above, which can be downloaded freely from the Adobe web site at
http://www.adobe.com/ .

5

5Manipulating Graphs
Views that use graphs are provided in the class browser, function call browser,
and window browser. These views let you, for instance, produce a graph of all
the subclasses or superclasses of a given class, or the layouts of a given CAPI
interface.

In the class browser, the subclasses and superclasses views use graphs. The
function call browser uses graph views for its Called By and Calls Into views.
There is only one view in the window browser, and that uses a graph.

All graphs can be manipulated in the same way. This chapter gives you a com-
plete description of the features available.

All graphs have an associated graph layout menu, available by displaying a
popup menu over the graph itself by using the alternate select gesture. This
menu contains all the commands that are directly relevant to graphs.

5.1 An overview of the graph view
An example graph is shown in Figure 5.1 below. All graphs are laid out by
Common LispWorks, so that their elements are displayed in an intuitive and
easily visible hierarchy. A graph consists of a number of nodes, linked together
by branches. By default, graphs in the environment are plotted from left to
right: for any given node, the node to which it is linked on the left is known as
45

Manipulating Graphs

46
its parent, and the nodes to which it is linked on the right are known as its chil-
dren. The originating node of the graph (on the far left) is referred to as the root
node, and the outer most nodes of the graph (on the far right) are referred to as
leaf nodes. The root node does not have a parent, and leaf nodes do not have
any children.

Figure 5.1 Example graph pane

You can select nodes in a graph pane in exactly the same way that you select
items in a list. Similarly, you can copy nodes from a graph onto the clipboard
in a manner consistent with use of the clipboard in the rest of the environ-
ment. When you copy any selected node onto the clipboard, the Lisp object
itself is copied onto the clipboard, so that it can be transferred into other
Common LispWorks tools.

Root node.

Leaf nodes.

Nodes.

Branches.

5.2 Searching graphs
5.2 Searching graphs
Sometimes graphs can be too large to fit onto the screen at once. In this case, it
is useful to be able to search the graph for any nodes you are interested in.
There are two commands which let you do this.

Choose Edit > Find to find any node in the graph whose name contains a given
string. Choose Edit > Find Next to find the next node in the graph that contains
that string. Whenever a matching node is found, it is selected in the graph. If
necessary, the window scrolls so that the selected node is visible.

Note that you do not have to specify a complete node name: to find all nodes
that include the word “debug” in their name, just type debug into the dialog.
All searches are case insensitive.

A full description of these commands can be found in Section 3.4.4 on page 26.

5.3 Expanding and collapsing graphs
You may often find that you are only interested in certain nodes of a graph.
Other nodes may be of no interest and it is useful, especially in large graphs,
to be able to remove their children from the display. You can do this in a num-
ber of ways.

To collapse or expand any node in a graph, double-click on it. Thus, double-
click on a leaf node to display its children (if it has any), and double-click on a
non-leaf node to hide its children.

Figure 5.2 Expanding and collapsing nodes

For instance, in Figure 5.2, double-click on A to display B, C and D. Double-
click on A once again to hide them. A small arrow is displayed next to any
nodes which has any hidden children.

You can also collapse or expand nodes using the popup menu:

A

B

C

D

47

Manipulating Graphs

48
Choose Expand Nodes to expand the selected node.

Choose Collapse Nodes to collapse the selected node.

5.4 Moving nodes in graphs
Although the layout of any graph is calculated automatically, you can move
any node in a graph manually. This can be useful if the information in the
graph is dense enough that some nodes are overlapping others.

To move the selected node, hold down the Shift key and select and drag the
node to the desired location.

Figure 5.3 Moving a node in a graph

5.5 Displaying plans of graphs
Many graphs are too large to be able to display in their entirety on the screen.
As with any other window, you can use the scroll bars to display hidden parts
of the graph. However, you can also display a plan view of the entire graph.

To display the plan view of any graph, hold down the Control key and select
the graph, or choose Enter Plan Mode from the popup menu. The graph is
replaced by its plan view, similar to the one shown in Figure 5.4.

1. Select node.

2. Hold down Shift key.

3. Select and drag node to new location.

5.5 Displaying plans of graphs
Figure 5.4 Example plan view

Each node in the original graph is represented by a rectangle in the plan view.
The currently selected node is shown as a filled rectangle, and all other nodes
are clear. You can select nodes in the plan view, just as you can in the normal
view.

A dotted grid is drawn over the plan view; you can use this grid to alter the
section of the graph that is shown in the normal view. The size and position of
the grid represents the portion of the graph that is currently displayed in the
normal view.

• To move the grid, so that a different part of the graph is shown in the
normal view, hold down the Shift key and select and drag the inner-
most rectangle of the grid. The entire grid moves with the mouse
pointer.

Nodes.
Currently selected
node.

Boundary of current
normal view.

Select inside inner rectangle
to move the boundary of the
normal view

Select inside outer rectangle
to resize the boundary of the
normal view
49

Manipulating Graphs

50
• To resize the grid, so that a different proportion of the graph is shown,
hold down the Shift key and select and drag the outermost rectangle of
the grid. The entire grid will resize. You can select any part of the grid
except the innermost rectangle to perform this action.

To return to the normal view, hold down the Control key and select the graph
again, or choose Exit Plan Mode from the popup menu. The part of the graph
indicated by the grid in the plan view is displayed.

5.6 Preferences for graph layouts
A number of graph layout preferences can be set for any tool that uses graphs.
These preference settings are available in the Preferences dialog for the tool,
and can be displayed by doing either of the following:

• Choose Preferences from the graph layout popup menu.

• Choose Tools > Preferences from the relevant tool, and click on a graph
layout tab in the Preferences dialog.

For example, the graph layout preferences for the class browser are shown in
Figure 5.5.

5.6 Preferences for graph layouts
Figure 5.5 Graph layout preferences

This section describes the options available in the graph layout tabs of the
Preference dialogs for any tool that uses graphs.

5.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to alter the maximum depth
and breadth in order to simplify the information shown. Each graph has its
own depth and breadth setting, which is used for all graphs drawn in that
tool. These are available in the Max Expansion panel of the graph layout tab in
the Preferences dialog.

The depth and breadth of a graph are depicted in Figure 5.6.
51

Manipulating Graphs

52
Figure 5.6 Depth and breadth of graphs

Choose a number from the Depth list to change the maximum depth of graphs
in a given tool. The depth of a graph is the number of generations of node
which are displayed. Most graphs have a default initial depth of 2, which
means that you must expand any nodes you want to investigate by double-
clicking on them yourself. The default value is 2.

Note that the maximum depth setting is ignored for nodes which you have
expanded or collapsed. See Section 5.3 on page 47.

Choose a number from the Breadth list to change the maximum breadth of a
given tool. The breadth of a graph is the number of child nodes which are dis-
played for each parent. If there are more children than can be displayed (the
maximum breadth setting is less than the number of children for a given
node) an extra node is visible. This node is labeled “…”, followed by the num-
ber of nodes that remain undisplayed. Double-clicking on this node expands
it, allowing you to display the additional children without having to alter the
maximum breadth setting for the whole graph. By default, the maximum
breadth is set to None, so that all the children for a node are displayed, no
matter how many there are. An example of this feature is shown in Figure 5.7
below.

Depth = 3

Breadth = 3

Breadth = 2

5.6 Preferences for graph layouts
Figure 5.7 Displaying children hidden by the maximum breadth setting

To ensure that all available information is graphed in a given tool, set both the
maximum depth and maximum breadth to None.

5.6.2 Displaying different graph layouts

As already mentioned, graphs are laid out from left to right by default, but
they can be laid out in any orientation you want. This can be configured in the
Layout panel of the graph layout tab in the Preferences dialog.

Click “Left to Right” to layout a graph from the left of the screen to the right,
as shown in Figure 5.8. This is the default orientation for every graph in the
environment.

Double-click here to reveal
three more hidden nodes.

Double-click here to reveal three
more nodes (currently hidden).
53

Manipulating Graphs

54
Figure 5.8 Left to right layout

Click “Right to Left” to layout a graph from the right of the screen to the left,
as shown in Figure 5.9.

Figure 5.9 Right to left layout

Click “Top Down” to layout a graph from the top of the screen to the bottom,
as shown in Figure 5.10.

Figure 5.10 Top down layout

Click “Bottom Up” to layout a graph from the bottom of the screen to the top,
as shown in Figure 5.11.

A

D

A

D

A

D

5.6 Preferences for graph layouts
Figure 5.11 Bottom up layout

At any time, you can choose Force Re-layout of Graph from the popup menu to
force the graph to redisplay using the current layout method.

A

D

55

Manipulating Graphs

56

6

6The LispWorks podium
When you start the environment, by default a window known as the Lisp-
Works podium appears.

Figure 6.1 LispWorks podium

The LispWorks podium contains a menu bar, a button bar, a message area and
a display area that shows the active window; that is, the window on which
commands chosen from the Works menu will have effect.

The LispWorks tools have most if not all of these menu items in common with
the podium.
57

The LispWorks podium

58
The menu bar contains eight menus:

• The File , Edit and History menus contains commands described in Chap-
ter 3, “Common Features”.

• The Tools menu contains commands to create and configure Common
LispWorks tools.

• The Works menu contains commands that operate on the active win-
dow.

• The Debug menu contains commands for debugging and is active only
when you are in the debugger described in Chapter 9, “The Debugger
Tool”.

• The Windows menu lists all the current windows in the environment. To
make any window the active window, choose it from this menu.

• The Help menu contains commands described in Chapter 4, “Getting
Help”.

Users already familiar with Windows will find that the File menu contain
command available in similar menus in other applications.

The button bar provides quick access to some of the more common commands
in the menus. Figure 6.1 shows each button, together with the menu com-
mand it represents.

Figure 6.2 LispWorks podium buttons and their functions

File > New

File > Open

File > Save

Edit > Cut

Edit > Copy

Edit > Paste

History > Previous

History > Next

7

7The Class Browser
The class browser allows you to examine Common Lisp classes. It contains
seven views, allowing you to view class information in a number of different
ways. You can display each view by clicking the appropriate tab. The avail-
able views are as follows:

• The slots view is used to look at the slots available to the class browsed.
This view is rich in information, showing you details about items such
as the readers and writers of the selected slot.

• The subclasses view produces a graph of the subclasses of the current
class, giving you an easy way to see the relationship between different
classes in the environment.

• The superclasses view produces a graph of the superclasses of the cur-
rent class, giving you an easy way to see the relationship between dif-
ferent classes in the environment.

• The hierarchy view lets you see the superclasses and subclasses of the
current class. It shows the immediate subclasses and superclasses using
a text-based interface.

• The initargs view allows you to see the initargs of the current class
together with information about each initarg. See Section 7.6 on page 81
for more details on how you can use this view.
59

The Class Browser

60
• The functions view allows you to see information about the methods
and generic functions that have been defined on the current class. See
Section 7.5 on page 78 for details on using the information in this view.

• The precedence view is used to show the class precedence list for the
current class. See Section 7.7 on page 83 for more details on how you
can use this information.

To create a class browser, choose Tools > Class Browser from the podium.
Alternatively, use Meta-x Describe Class from an editor or choose Class
from any submenu that provides the standard action commands to invoke a
class browser on the Lisp object referred to by that submenu. This automati-
cally browses the class of the Lisp object. For more information on how the
standard action commands refer to objects in the environment, see Section 3.8
on page 31.

7.1 Simple use of the class browser
This section describes some of the basic ways in which you can use the class
browser by giving some examples. If you wish, you can skip this section and
look at the descriptions of each individual view: these start with Section 7.2 on
page 67.

When examining a class, the slot names of the class are displayed by default.

To examine a class, follow the instructions below:

1. In the listener, create a push button panel by typing the following:

(capi:contain
 (make-instance ’capi:push-button-panel
 :title "Test Buttons"
 :items ’(:one :two :three)))

The push button panel appears on your screen.

2. With the listener as the active window, choose Works > Values > Class .

This invokes the class browser on the button panel. The capi:push-but-

ton-panel class is then described in the class browser.

7.1 Simple use of the class browser
Figure 7.1 Examining classes in the class browser

Notice that, although you invoked the browser on an object that is an instance
of a class, the class itself is described in the class browser. Similarly, if you had
pasted the object into an inspector, the instance of that object would be
61

The Class Browser

62
inspected. Using the environment, it is very easy to pass Common Lisp objects
between different tools in this intelligent fashion. This behavior is achieved
using the Common LispWorks clipboard; see Section 3.4.2 on page 25 for
details.

See Section 3.8 on page 31 for a full description of the standard action com-
mands available.

7.1.1 Examining slots

A list of the slots in the current class is printed in the Slots area. By selecting
any slot, you can examine it in more detail in the Description area.

While still examining the capi:push-button-panel class, select any slot in the
Slots area.

Figure 7.2 Description of a slot

A description of the slot is given in the Description area. For details about the
information contained in this description, see Section 7.2.4 on page 70.

7.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the
current class, rather than the current class itself) are listed in the Slots area
along with the slots defined in the current class. Deselect the Include Inherited
Slots button just above the Filter box to inhibit this listing.

7.1 Simple use of the class browser
1. While still examining the capi:push-button-panel class, click Include
Inherited Slots .

No slots are displayed in the Slots area. This is because all the slots available
to the capi:push-button-panel class are inherited from its superclasses. No
slots are defined explicitly on the capi:push-button-panel class.

2. Select Include Inherited Slots again, and then select a few slots in the Slot
area in turn.

Notice that the slot description for each slot tells you which superclass the slot
is defined on.

7.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not
interested in. This is especially useful if you are examining classes which con-
tain a large number of slots.

The example below shows you how to create an instance of a CAPI object, and
then limit the display in the class browser so that the only slots displayed are
those you are interested in:

1. In a listener, create a button object by typing the following:

(capi:contain (make-instance ’capi:list-panel
 :items ’("Apple" "Orange" "Pear")))

This creates a list panel object and displays it on your screen.

2. Choose Works > Values > Class in the listener to examine the class of the
object in the class browser.

3. Click the Initargs tab in the class browser to switch to the initargs view.

Suppose you are only interested in seeing the callbacks that can be
defined in a list panel.

4. Type callback in the Filter box and press Return.
63

The Class Browser

64
Figure 7.3 Using filters to limit the display in the class browser

You can immediately see the types of callback that are available to CAPI list
panel objects. See the CAPI Reference Manual for details about these callbacks.

7.1 Simple use of the class browser
7.1.4 Examining other classes

There are two ways that you can examine other classes. The first is to type the
name of the class you wish to see into the Class text box at the top of the
browser. Press Return or click and the named class is described.

1. While still examining class capi:list-panel , type
capi:push-button-panel into the Class area.

The class capi:push-button-panel is described.

Because some class names may be potentially quite long, you can use comple-
tion to help save typing. If you press when you have partially specified
the name of a class in the Class text box, the environment attempts to com-
plete what you have typed. If it cannot complete the class name, a dialog
appears that lists all the possible alternatives. Double-click on any of these
alternatives to place it in the Class text box.

The second way to examine other classes is by using the Superclasses and
Subclasses lists available in the hierarchy view. Click on the Hierarchy tab to
display the hierarchy view.

The main part of the hierarchy view consists of two lists:

• The Superclasses list shows all the superclasses of the current class.

• The Subclasses list shows all the subclasses of the current class.

Double-click on any superclass or subclass of the current class to examine it.

1. Double-click on CAPI:BUTTON-PANEL in the Superclasses list.

The capi:button-panel class is described.

2. Double-click on CAPI:PUSH-BUTTON-PANEL in the Subclasses list.

The capi:push-button-panel class is described again.

So, using the text view, you can easily look through the related classes in a sys-
tem.
65

The Class Browser

66
7.1.5 Sorting information

As with many of the other tools in Common LispWorks, you can sort the
items in any of the lists or graphs of the class browser using the Preferences
dialog. Choose Tools > Preferences in the class browser to display this dialog.

Figure 7.4 Setting class browser preferences

Under the General tab, there are three options for sorting items, listed in the
Sort panel.

By Name Sorts items alphabetically by name. This is the default
setting.

By Package Sorts items alphabetically by package name.

Unsorted Displays items in the order they are defined in.

For more information on sorting items, see Section 3.9.1 on page 35.

7.2 Examining slot information
7.2 Examining slot information
When the class browser is first invoked, the default view is the slots view. You
can also click the Slots tab to swap to it from another view. The slots view is
shown in Figure 7.5.
67

The Class Browser

68
Figure 7.5 Examining slots in the class browser

Section 7.1 on page 60 introduced you to the slots view in the class browser.
This section gives a complete description of this view. For completeness, some
information may be repeated.

7.2 Examining slot information
The areas available in the slots view are described below.

7.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You
can type in a class name explicitly, or you can transfer a class to the class
browser using the Class standard action command in another tool, or by past-
ing a class in explicitly.

Note: You can use Edit > Paste to paste a class name into this area, even if the
clipboard currently contains the string representation of the class name, rather
than a class object itself. This lets you copy class names from other applica-
tions directly into the class browser. See Section 3.4.2 on page 25 for a com-
plete description of the way the Common LispWorks clipboard operates.

7.2.2 Filter box

The Filter box lets you restrict the information displayed in the Slots list. See
Section 3.12 on page 38 for a description of how to use the Filter box in any
tool, and Section 7.1.3 on page 63 for an example of how to use it in the class
browser.

7.2.3 Slots list

The largest section of the slots view lists the slot names of the current class.
Selecting a slot in this list displays a description of it in the Description list,
and you can operate on any number of selected slots using the commands in
the Works > Slots menu.

If Include Inherited Slots is selected, slots inherited from the superclasses of the
current class are listed as well as those explicitly defined on the current class.
Deselect this button to see only those slots defined on the current class. In the
slots/Functions tab of the Class Browser Preferences dialog, you can also con-
figure the default setting of this option. Choose Tools > Preferences in the class
browser to display this dialog.

The number of items listed in the Slots area is printed in the Matches box.
69

The Class Browser

70
7.2.4 Description list

This list displays a description of the selected slot. The following information
is printed:

From Classes The classes that this slot is defined in.

Slot Name The name of the slot.

Type The slot type.

Initargs The initargs, if any, which can be used to refer to the
slot.

Initform The initform, or initial value, of the slot.

Readers The readers of the slot. These are the names of any func-
tions which can be used to read the current value of the
slot.

Writers The writers of the slot. These are the setf methods
which may be used to change the slot value.

Allocation The allocation of the slot.

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu. This submenu contains the
standard action commands described in Section 3.8 on page 31. You can oper-
ate on more than one item at once by making multiple selections in this area.

7.2.5 Performing operations on the current class

You can operate on the current class using the commands in the Works >
Classes menu. The standard action commands described in Section 3.8 on
page 31 are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the nor-
mal way, the class of the current class.

7.3 Examining superclasses and subclasses
7.3 Examining superclasses and subclasses
The hierarchy view of the class browser lists the immediate superclasses and
subclasses of the current class. This view can be useful for navigating the class
hierarchy if you want to be able to see both superclasses and subclasses at the
same time.

Click on the Hierarchy tab to browse classes with the hierarchy view. The hier-
archy view shown in Figure 7.6 appears.
71

The Class Browser

72
Figure 7.6 Viewing superclass and subclass information in the class browser

The areas available in the hierarchy view are described below.

7.3.1 Class box

As with other views in the class browser, the name of the class being browsed
is given here. See Section 7.2.1 on page 69 for more details.

7.3 Examining superclasses and subclasses
7.3.2 Superclasses list

This list displays the superclasses of the current class. Double-clicking on any
class makes it the current class.

Selecting a class in this list displays its description in the Description list.

7.3.3 Subclasses list

This list displays the subclasses of the current class. Double-clicking on any
class makes it the current class.

Selecting a class in this list displays its description in the Description list.

7.3.4 Description list

This list displays a description of the first class selected in either the Super-
classes or Subclasses lists, or the current class if there is no selection in either
of these lists. The following information is printed:

Package The name of the package that the selected class is
defined in.

Name The name of the selected class.

Metaclass The metaclass of the selected class. The metaclass is the
class of Lisp object which the current class belongs to.

Accessibility The accessibility of the selected class—whether the
symbol is external or internal, as returned by
find-symbol .

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu. This menu contains the stan-
dard actions commands described in Section 3.8 on page 31. You can operate
on more than one item at once by making a multiple selection in this area.
73

The Class Browser

74
7.3.5 Performing operations on the selected classes or the current class

You can use the Works > Classes menu to perform operations on any number
of items selected in either the Subclasses area or the Superclasses area. If no
items are selected, then the current class is operated on by the commands in
this submenu. The standard actions commands described in Section 3.8 on
page 31 are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the nor-
mal way, the class of the selected classes, or the current class.

Note: If more than one item is selected, and the command chosen from the
Works > Classes menu invokes a tool which can only display one item at a
time, then the extra items are added to the History > Items submenu of the tool,
so that you can easily display them.

7.4 Examining classes graphically
As already mentioned, you can view class relationships graphically using
either the superclasses or subclasses views. This gives an immediate impres-
sion of the class hierarchy, but contains no details about information such as
slots, readers and writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the
Superclasses tab to view superclasses in a graph. Except for the type of infor-
mation shown, these two views are visually identical. The subclasses view is
shown in Figure 7.7.

7.4 Examining classes graphically
Figure 7.7 Viewing subclasses graphically in the class browser

The areas available in the subclasses and superclasses views are described
below.
75

The Class Browser

76
7.4.1 Class box

As with other views in the class browser, the name of the class being browsed
is given here. See Section 7.2.1 on page 69 for details.

7.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the
superclasses of the current class, depending on the view you have chosen. The
generic facilities available to all graph views throughout the environment are
available here: see Chapter 5, “Manipulating Graphs” for details.

Selecting a node in this displays a description of the class it represents in the
Description list.

7.4.3 Description list

This list displays a description of the first class selected in the graph. This
gives the same information as the Description list in the hierarchy and prece-
dence views. See Section 7.3.4 for details.

7.4.4 Performing operations on the selected classes or the current class

You can operate on the selected node in the graph using the commands in the
Works > Classes menu. If no node is selected, then the current class is operated
on by the commands in this menu. The standard actions commands described
in Section 3.8 on page 31 are available in this menu.

Choose Works > Classes > Browse Metaclass to select, and describe in the nor-
mal way, the class of the selected classes, or the current class.

7.4.5 An example

1. Examine the class capi:choice by typing capi:choice into the Class
area of the class browser and pressing Return.

The class is described in the current view.

2. Click on the Subclasses tab in the class browser.

7.4 Examining classes graphically
The relationships between capi:choice and its subclasses are shown in
a graph, as in Figure 7.8.

Figure 7.8 Relationship between capi:choice class and its subclasses

By default, the subclasses of the current class are shown in the graph. To
expand any node in the graph, double-click on it.

3. Double-click on the CAPI:BUTTON-PANEL node to see the subclasses of
this class.

The classes of button panel object available are displayed in the graph,
including the push button panel class that you saw in the examples in
Section 7.1 on page 60.

4. To graph the superclasses, click the Superclasses tab.

The relationships between capi:choice and its superclasses are shown
in a graph, as in Figure 7.9.

Figure 7.9 Relationship between capi:choice class and its superclasses
77

The Class Browser

78
7.5 Examining generic functions and methods
Click the Functions tab to examine information about the generic functions
and methods defined on the current class. The functions view shown in Figure
7.10 appears.

Figure 7.10 Displaying function information in the class browser

7.5 Examining generic functions and methods
This view can be especially useful when used in conjunction with the generic
function browser. The areas available are described below.

7.5.1 Class box

As with other views in the class browser, the name of the class being browsed
is given here. See Section 7.2.1 on page 69 for more details.

7.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of func-
tions or methods. See Section 3.12 on page 38 for a description of how to use
the Filter box in any tool, and Section 7.1.3 on page 63 for an example of how
to use it in the class browser.

7.5.3 List of functions or methods

This lists each generic function or method defined on the current class. Items
selected in this list can be operated on via the Works > Methods menu, as
described in Section 7.5.6 on page 80. Double-clicking on a function or method
displays its source code definition in the editor, if possible.

Select Methods or Generic Functions from the drop-down list box to choose
which type of information to list. If Include Inherited Methods/Functions is
checked, generic functions or methods inherited from the superclasses of the
current class are also displayed. In the slots/Functions tab of the Class
Browser Preferences dialog, you can also configure the default settings of
these options in the class browser. Choose Tools > Preferences to display this
dialog.

7.5.4 Description list

The list at the bottom of the tool gives a description of the function or method
selected in the main list. The following information is shown:

Name The name of the selected generic function or method.

Function The function which the selected function or method
relates to.
79

The Class Browser

80
Lambda List The lambda list of the selected generic function or
method.

Documentation The Common Lisp documentation for the selected func-
tion or method, if any exists.

Source Files The source files for the selected generic function or
method.

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu. This submenu contains the
standard actions commands described in Section 3.8 on page 31. You can oper-
ate on more than one item at once by making a multiple selection in this area.

7.5.5 Performing operations on the current class

You can operate on the current class using the commands in the Works >
Classes menu. The standard action commands described in Section 3.8 on
page 31 are available from this submenu.

Choose Works > Classes > Browse Metaclass to select and describe the class of
the current class.

7.5.6 Operations specific to the current function or method

In addition to the commands described above, the following commands are
available when using the functions view.

The standard action commands described in Section 3.8 on page 31 are avail-
able from the Works > Methods menu.

Choose Works > Methods > Undefine to remove the selected functions or meth-
ods from the environment. You are prompted before the functions or methods
are removed.

Choose Works > Methods > Trace to display the Trace submenu available from
several tools. This submenu lets you trace the selected methods or generic
functions. A full description of the commands in this submenu is given in Sec-
tion 3.10 on page 36.

7.6 Examining initargs
7.6 Examining initargs
Click the Initargs tabs to examine information about the initargs of the current
class. The initargs view shown in Figure 7.11 appears.

Figure 7.11 Displaying initarg information in the class browser
81

The Class Browser

82
The initargs of a class are similar to the slots, except that initargs give you a
more precise representation of the values that may be assigned to an instance
of a class, for instance using the writers for that class.

The areas available are described below.

7.6.1 Class box

This area gives the name of the class being browsed. See Section 7.2.1 on page
69 for details.

7.6.2 Filter box

The Filter box lets you restrict the information displayed in the initargs list.
See Section 3.12 on page 38 for a description of how to use the Filter box in any
tool, and Section 7.1.3 on page 63 for an example of how to use it in the class
browser.

7.6.3 List of initargs

This lists the slots in the current class for which initargs have been defined.
Selecting an item in this list displays information in the Description list. Any
items selected can also be operated on via the Works > Slots menu.

7.6.4 Description list

This area gives a description of the initarg selected in the Initargs area. The
following items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined
with :default-initargs .

Default From Class

The class providing the default for the initarg.

From Classes The class from which the selected initarg is inherited.

7.7 Examining class precedences
Slot Name The name of the slot to which this initarg relates.

Type The type of the selected initarg.

Initargs All initargs applicable to the same slot

Initform The initform for the slot which is represented by the
selected initarg.

Readers The readers for the slot which is represented by the
selected initarg.

Writers The writers for the slot which is represented by the
selected initarg.

Allocation The allocation for the selected initarg. See CLOS in the
ANSI Common Lisp specification.

Items selected in this list can be operated on via the Works > Description menu.

7.6.5 Performing operations on the current class

You can operate on the current class using commands in the Works > Classes
menu. The standard action commands described in Section 3.8 on page 31 are
available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the nor-
mal way, the class of the current class.

7.7 Examining class precedences
Click the Precedence tag to examine information about the precedence list of
the current class. The precedence list is used to generate the method combina-
tions for a class, and thus can be used to tell you which method applies in a
given case. The precedence view shown in Figure 7.12 appears.
83

The Class Browser

84
Figure 7.12 Displaying precedence information in the class browser

The areas available are described below.

7.7.1 Class box

As with all other views in the class browser, the current class is printed in this
area. See Section 7.2.1 on page 69 for full details of its use.

7.7 Examining class precedences
7.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of prece-
dences. See Section 3.12 on page 38 for a description of how to use the Filter
box in any tool, and Section 7.1.3 on page 63 for an example of how to use it in
the class browser.

7.7.3 List of precedences

This list is the class precedence list of the current class. Precedences are listed
highest first. Double-clicking on an item in this list describes that class in the
class browser.

7.7.4 Description list

This gives the same class description available in the superclasses, subclasses,
and hierarchy views. See Section 7.3.4 on page 73 for details.

7.7.5 Performing operations on the selected classes or the current class

You can operate on any number of selected items in the list of precedences
using the commands in the Works > Classes menu. If no items are selected,
then the current class is operated on by the commands in this submenu. The
standard actions commands described in Section 3.8 on page 31 are available
in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the nor-
mal way, the class of the selected classes, or the current class.

Note: If more than one item is selected, and the command chosen from the
Works > Classes menu invokes a tool which can only display one item at a
time, then the extra items are added to the History > Items submenu of the tool,
so that you can easily display them.
85

The Class Browser

86

8

8The Compilation Conditions
Browser
8.1 Introduction
The compilation conditions browser gives you an interface to the warning and
error conditions you are likely to encounter when compiling your source
code. It allows you to see the relationship between different errors or warn-
ings encountered during compilation, and gives you immediate access to the
source code which produced those errors or warnings.

You can use it to view the conditions signaled during compilation of files from
any part of the environment: whether you are compiling files using the system
browseror indeed the editor, any ensuing errors can be displayed in the com-
pilation conditions browser.

The compilation conditions browser has two views.

• The text view, which gives you a list of the errors, grouping together
errors of a similar type, and from the same file.

• The output view, which can be used to display the output messages in
the environment.

To create a compilation conditions browser, choose Tools > Compilation
Conditions Browser from the LispWorks podium.
87

8 The Compilation Conditions Browser

88
8.2 Examining error conditions
The text view is the default view in the compilation conditions browser, and is
therefore visible when the browser is first invoked. The compilation condi-
tions browser appears as shown in Figure 8.1.

Figure 8.1 The compilation conditions browser

The text view has a filter area and two description areas, as described below.

8.2.1 Filter area

This area lets you restrict the information displayed in the compilation condi-
tions area so that only the conditions you are interested in are shown. See Sec-
tion 3.12 on page 38 for details about how to use the Filter area in a tool.

8.2.2 Compilation conditions area

The compilation conditions area displays a list divided into three columns.

• The first column shows the condition itself.

8.3 Examining output
• The second column names the form in which the condition was sig-
naled.

• The third column shows the filename in which the condition was sig-
naled.

Note that you may have to scroll the compilation conditions area horizontally
in order to see all three columns.

Double-click on any item to display the form that signaled the condition in the
editor.

8.2.3 Description area

The description area shows a description of any item selected in the compila-
tion conditions area containing more detailed information about the condi-
tions selected in the compilation conditions area. The following information is
listed:

Condition The error condition for the selected item in the message
area.

Class The class of the selected condition.

Definition The name of the form in which the condition was sig-
naled.

File The name of the file that contains the Lisp source code
that caused the selected condition.

Items selected in this area may be examined using the Works > Description
menu which allows a variety of LispWorks tools to be invoked on the selected
item in the description area.

8.3 Examining output
Click on the output tag to switch to the output view of the compilation condi-
tions browser. The output view is similar to that seen in an output browser.
See Chapter 17, “The Output Browser” for more information.
89

8 The Compilation Conditions Browser

90
8.4 Configuring the display
The manner in which the compilation conditions browser displays informa-
tion can be customized by selecting Tools > Preferences in the browser, to
invoke the compilation conditions browser preference dialog. When first
invoked, it appears as shown in Figure 8.2, with the general view active.

Figure 8.2 The compilation conditions browser preferences dialog

8.4.1 Package names preferences

In the general view select Show Package Names to toggle display of packages
in all references to symbols. Use the package selection box to select which
package to show. The default package is CL-USER. Setting the right package
and turning off package names can simplify a complicated list to a large
degree.

8.4 Configuring the display
8.4.2 Pathname preferences

In the display view, the preferences dialog appears as in Figure 8.3.

Figure 8.3 The display view of the preferences dialog

The major part of this dialog is taken up by the pathnames selection area,
which has two radio buttons

Check Show Full Pathname to show the full pathname of all files displayed.
This is the default setting.

Check Show Leaf Pathname to show just the filename and relative pathname of
all files displayed, and omit the full pathname.

8.4.3 Condition type preferences

Clicking on Types to Display... in the display view of the preferences dialog
calls up the condition types dialog. It consists of a standard filter box and two
lists.

• The Selected Types list shows the error types that are displayed in the
browser.
91

8 The Compilation Conditions Browser

92
• The Unselected Types list shows the error types that are not displayed
in the browser.

By default, all condition types are displayed.

To remove an error type from the Selected Types list, select it in the Selected
Types list and click on <<<. It is transferred into the Unselected Types list.

To add an error type back into the Selected Types list, either:

• select it in the Unselected Types list and click on >>>, or

• type its name in the Select Type area and press Return.

If you use the second of these methods, note that you can press the Tab key at
any point to either complete the name of the error type, or display a dialog
listing all the possible completions, as appropriate. If a dialog appears, dou-
ble-click on any item to select it.

To display all error types, click on All .

To display no error types, click on None . If you only want to display a few
error types, click on this button and then transfer the error types you do want
to see into the Selected Types list using one of the methods described above.

When you have finished choosing the error types, click on OK. The dialog is
dismissed, and the compilation conditions browser is updated to display the
error types you have requested.

Click on Cancel to cancel the dialog. The dialog is dismissed, and no changes
are made to the display.

8.5 Access to other tools
Like many other tools in the environment, items selected in the compilation
conditions browser may be transferred into other tools for further examina-
tion.

Items selected in the Description area may be examined using the Works >
Description menu. See Section 3.8.1 on page 32 for more information on the
operations available from this menu.

9

9The Debugger Tool
When developing source code, mistakes may prevent your programs from
working properly, or even at all. Sometimes you can see what is causing a bug
in a program immediately, and correcting it is trivial. For example, you might
make a spelling mistake while typing, which you may instantly notice and
correct.

More often, however, you need to spend time studying the program and the
errors it caused before you can debug it. This is especially likely when you are
developing large or complex programs.

A debugger tool is provided to make this process easier. This tool is a graphi-
cal front-end to the command line debugger which is supplied with your Lisp
image. In order to get the best use from the debugger tool, it is helpful if you
are familiar with the command line debugger supplied.

The debugger tool can be used to inspect the behavior of programs which
behave in unexpected ways, or which contain Common Lisp forms which are
syntactically incorrect.
93

The Debugger Tool

94
The command line debugger is invoked automatically whenever errors occur.
There are two ways that you can invoke the debugger tool:

• If you have entered the command line debugger by evaluating code
that contains bugs in a listener, choose Debug > Listener > Start GUI
Debugger to invoke the debugger tool.

• If code containing bugs is run from another source (for example, as a
result of running a windowed application, or compiling code in a file of
source code), a notifier window appears. Click on the Debug button in
this notifier to invoke the debugger tool.

The command line debugger can be entered by signaling an error in interpre-
tation or execution of a Common Lisp form. For each error signaled, a further
level of the debugger is entered. Thus, if, while in the debugger, you execute
code which signals an error, a lower level of the debugger is entered. The
number in the debugger prompt is incremented to reflect this.

For example:

1. Define the following function in the listener.

(defun thing (number)
 (/ number 0))

This function which attempts to divide a number given as an argument
by zero.

2. Now call this function as follows:

(thing 12)

The call to thing invokes the command line debugger.

3. Choose Debug > Listener > Start GUI Debugger to invoke the debugger
tool.

4. For now, click Abort at the bottom of the debugger tool to return to the
top level event loop in the listener.

Note that you can also invoke the command line debugger by tracing a func-
tion and forcing a break on entry to or exit from that function. See Section 3.10
on page 36 for details.

9.1 Description of the debugger
9.1 Description of the debugger
The debugger tool has only one view, and is shown in Figure 9.1 below.

Figure 9.1 Debugger tool

Debugger backtrace.

State of variables for
selected frame.

Error condition.

Control buttons.Echo area.
95

The Debugger Tool

96
The debugger tool has three areas, and a row of buttons at the bottom. These
are described below. If you invoke the debugger tool by clicking Debug in a
notifier window, the tool also contains a listener pane. This provides you with
a useful way of evaluating Common Lisp forms interactively in the context of
the bug.

9.1.1 Condition box

This area displays the error condition which caused entry to the debugger.
You cannot edit the text in this box.

The error condition can be operated on by commands in the Debug > Condition
menu. See Section 9.6 on page 101 for details.

9.1.2 Backtrace list

The backtrace list displays the function calls on the debugger stack. Each item,
referred to as a frame on the stack, shows a separate function call.

Selecting any frame displays any variables associated with that function in the
Variables area.

Double-clicking on any frame finds and displays the source code definition
for that function in the editor, prompting you for a tags file first, if necessary.

Any item selected in this area can be operated on using the commands in the
Debug > Frame menu: See Section 9.7 on page 102 for details.

9.1.3 Variables list

This list displays any variables associated with the function selected in the
Frame area, together with their values for that frame in the stack.

Double-click on any variable to inspect it.

Any items selected in this area can be operated on using the commands in the
Debug > Variables menu: see Section 9.8 on page 102 for details.

9.1.4 Buttons

At the bottom of the debugger tool is a row of buttons, as described below.

9.2 What the debugger tool does
Click Report Bug if you wish to report a bug to Harlequin via electronic mail.
Clicking on this button prompts you for a short description of the bug, and
then invokes an editor into which you can type your bug report. See Section
29.1 on page 376 for more details.

Click Continue to return from the debugger and invoke the continue restart.

Click Abort to return from the debugger and invoke the abort restart.

9.2 What the debugger tool does
The debugger tool provides a number of important facilities for inspecting
programs.

Common Lisp, like most programming languages, uses a stack to store data
about programs during execution. The debugger tool allows you to inspect
and change this stack to help get your programs working properly.

You can use it to trace backwards through the history of function calls on the
stack, to see if the program behaves as expected, and locate points at which
things have gone wrong.

You can also inspect variables within those functions, again to verify that the
program is doing what is expected of it.

The debugger tool also allows you to change variables on the stack. This is
useful when testing possible solutions to the problems caused by a bug. You
can run a bugged program, and then test fixes within the debugger tool by
altering values of variables, and then resuming execution of the program.

9.3 Simple use of the debugger tool
When you enter the debugger tool, the Condition area displays a message
describing the error. The Debug > Restarts menu lists a number of restart
options, which offer you different ways to continue execution.

1. For example, type the name of a variable which you know is unbound
(say fubar) at the listener prompt.

2. Choose Debug > Listener > Start GUI debugger to enter the debugger tool.

3. Select the Debug > Restarts menu to display the options available.
97

The Debugger Tool

98
A number of restarts are displayed that offer you different ways in
which to proceed. These are the same options as those displayed at the
command line debugger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These
are indicated by the prefixes (abort) and (continue) respectively. As a
shortcut, you can click on the Abort or Continue buttons to invoke them,
instead of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in
different circumstances. In this example, you can evaluate the form
again. If you first set the variable to some value, and then invoke the
continue restart, the debugger is exited.

4. In the listener, set the value of fubar as follows:

(setq fubar 12)

5. Click Continue in the debugger tool.

The debugger tool disappears, and the command line debugger is exited in
the listener, and the value 12 is returned; the correct result if the variable had
been bound in the first place.

You can also click Abort to invoke the abort restart. This restart always exits
the current level of the debugger and returns to the previous one, ignoring the
error which caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem
and want to continue execution, and the abort restart if you want to ignore the
problem completely and stop execution.

9.4 The stack in the debugger
As already mentioned, the debugger tool allows you to examine the state of
the execution stack, which is listed in the Backtrace area. This area consists of a
sequence of stack frames. A stack frame is a description of some part of a pro-
gram, or something relating to the program, which is packaged into a block of
memory and placed on the stack during program execution. These frames are
not directly readable without the aid of the debugger.

9.5 An example debugging session
There can be frames on the stack representing active function invocations,
special variable bindings, restarts, and system-related code. In particular, the
execution stack has a call frame for each active function call. That is, it stores
information describing calls of functions which have been entered but not yet
exited. This includes information such as the arguments with which the func-
tions were called. By default, only call frames for active function calls are dis-
played in the Backtrace area. See Section 9.9 on page 103 for details of how to
display other types of call frame.

The top of the stack contains the most recently-created frames (and so the
innermost calls), and the bottom of the stack contains the oldest frames (and
so the outermost calls). You can examine a call frame to find the name of a
function, and the names and values of its arguments, and local variables.

9.5 An example debugging session
To better understand how you can make use of the debugger, try working
through the following example session. In this example, you define the facto-
rial function, save the definition to a file on disk, compile that file and then call
the function erroneously.

1. Choose File > New or click on .

A new file is created and displayed in the editor. If you have not already
invoked the editor, it is started for you automatically.

2. In the new file, define the function fac to calculate factorial numbers.

(defun fac (n)
 (if (= n 1) 1
 (* n (fac (- n 1)))))

3. Choose File > Save or click on , and type a filename when prompted
in the echo area of the editor.

4. Choose File > Compile and Load to compile the file and load it into the
environment.

The editor switches to the output view while compilation takes place.
When prompted, press Space to return to the text view. The fac function
is now available to you for use in the environment.

5. In the listener, call fac erroneously with a string argument.
99

The Debugger Tool

100
(fac "turtle")

The environment notices the error: The arguments of = should be num-
bers, and one of them is not.

6. Choose Debug > Listener > Start GUI Debugger to invoke the debugger
tool.

Take a moment to examine the backtrace that is printed in the Backtrace
area.

7. Starting from the selected frame, select the next three frames in the Back-
trace area in turn to examine the state of the variables which were
passed to the functions in each call frame. Pay particular attention to the
fac function.

The error displayed in the Condition box informs you that the = function
is called with two arguments: the integer 1 and the string “turtle”.
Clearly, one of the arguments was not the correct type for =, and this has
caused entry into the debugger. However, the arguments were passed to
= by fac , and so the real problem lies in the fac function.

In this case, the solution is to ensure that fac generates an appropriate
error if it is given an argument which is not an integer.

8. Double-click on the line FAC in the Backtrace area of the debugger tool.

The editor appears, with the cursor placed at the beginning of the defini-
tion for fac . Double-clicking on a line in the Backtrace area is a shortcut
for choosing Debug > Frame > Find Source .

9. Edit the definition of the fac function so that an extra if statement is
placed around the main clause of the function. The definition of fac now
reads as follows:

(defun fac (n)
 (if (integerp n)
 (if (= n 1) 1
 (* n (fac (- n 1))))
 (print "Error: argument must be an integer")))

The function now checks that the argument it has been passed is an inte-
ger, before proceeding to evaluate the factorial. If an integer has not been
passed, an appropriate error message is generated.

9.6 Performing operations on the error condition
10. Choose File > Save and File > Compile and Load again, to save, recompile
and load the new definition into the environment.

11. Click on the Abort button in the debugger tool, to destroy the tool and
return the listener to the top level loop.

12. In the listener, type another call to fac , once again specifying a string as
an argument. Note that the correct error message is generated.

This next part of the example shows you how you can use the various restarts
which are listed as commands in the Debug > Restarts menu.

1. Call fac again with a new argument, but this time type the word length

incorrectly.

(fac (legnth "turtle"))

2. Choose Debug > Listener > Start GUI Debugger to invoke the debugger
tool.

You can spot immediately what has gone wrong here, so the simplest strategy
is to return a value to use.

3. Choose Debug > Restarts > Return some values from the call to LEGNTH .

You are prompted for a form to be evaluated in the listener.

4. Type 6, which is the value that would have been returned from the cor-
rect call to (length "turtle") .

Having returned the correct value from (length "turtle") , fac is called with
the correct argument and returns the value 720.

9.6 Performing operations on the error condition
You can perform operations on the error condition that caused entry into the
debugger using the commands available in the Debug > Condition menu.

The standard action commands are available in the Debug > Condition menu.
For more details about these commands, see Section 3.8 on page 31.

Choose Debug > Condition > Report Bug to submit a bug to Harlequin by elec-
tronic mail.
101

The Debugger Tool

102
9.7 Performing operations on frames in the stack
Any frame selected in the Backtrace list can be operated on using commands
in the Debug > Frame menu. This menu is also available as a popup from the
backtrace list itself. The commands available allow you to operate on the func-
tion displayed in each frame.

Choose Debug > Frame > Find Source to search for the source code definition of
the object pointed to by the current frame. If it is found, the file is displayed in
the editor: the cursor is placed at the start of the definition. See Chapter 10,
“The Editor” for an introduction to the editor.

Choose Debug > Frame > Documentation to display the Common Lisp docu-
mentation for the object pointed to by the current frame, if any exists. It is
printed in a special output browser window.

Choose Debug > Frame > Restart Frame to continue execution from the selected
restart frame. The action that is taken when choosing this command is printed
with each restart frame in the Backtrace area. Note that restart frames must be
listed for this command to be available: see Section 9.9.1 for details.

Choose Debug > Frame > Return From Frame to resume execution from the
selected frame. You are prompted for a value to return from the selected
frame. This option allows you to continue execution smoothly after you have
dealt with the error which caused entry into the debugger.

Choose Debug > Frame > Trace to display the standard Trace menu. This lets
you trace the function in the selected frame in a variety of ways: see Section
3.10 on page 36 for details.

9.8 Performing operations on variables in a frame
There are two commands which you can choose to perform operates on any
variables selected in the Variables area. These are both available in the Debug >
Variables menu or from the popup menu of the variables list itself.

The standard action commands are available in the Debug > Variables menu.
For more details about these commands, see Section 3.8 on page 31.

9.9 Configuring the debugger tool
Choose Debug > Variables > Set to set the values of any variables selected in the
Variables area. A dialog prompts you to enter a new value to which the vari-
ables are set.

9.9 Configuring the debugger tool
You can control the behavior of the debugger using the Debugger Preferences
dialog, which appears when you choose Tools > Preferences from the debug-
ger.

Figure 9.2 Debugger Preferences dialog

9.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtrace is listed
in the Backtrace area. There are a number of other types of call frame which
are hidden by default. Displac call frames of these types by selecting them in
the View Frame panel of the debugger Preferences dialog.

Bindings Displays all the binding frames in the Backtrace list.

Catchers Lists the catch frames in the Backtrace list.

Handlers Lists the handler frames in the Backtrace list.

Hidden SymbolsLists any hidden symbols in the Backtrace list.
103

The Debugger Tool

104
Restarts Lists all the restart frames in the Backtrace list. Each
restart frame is listed, with the restart action to be taken
given in brackets. To restart execution at any restart
frame, select the frame, and choose Debug > Frame >
Restart Frame .

Invisible Functions

Lists all invisible frames (such as the call to the error
function itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command
switches the display option on or off, depending on its current state. By
default, all the options are off when the debugger is first invoked.

9.9.2 Configuring the symbols displayed

You can configure the debugger tool so that only certain symbols are dis-
played in the Backtrace area. For any package in the environment, you can
choose to do any of the following:

• Hide all symbols in the package.

• Hide all internal symbols in the package.

• Display all symbols in the package.

To configure the display of symbols, choose Change Hidden Packages from the
Packages panel of the Debugger Preferences dialog.

This dialog contains three lists, as follows:

• The Show All Symbols list shows the packages from which all symbols
are displayed in the Backtrace area.

• The Show External Symbols Only list shows those packages from which
internal symbols are be displayed.

• The Hide All Symbols list shows those packages from which no sym-
bols are displayed in the Backtrace area.

To move packages from one list to any other, select them and click on >>> or
<<< as appropriate.

9.9 Configuring the debugger tool
When you have finished changing the configuration, click on OK to accept the
changes, or Cancel to leave the settings as they are.

9.9.3 Displaying package information

As with other tools, you can configure the way package names are displayed
in the debugger tool in the Package panel of the Debugger Preferences dialog.

Check Show Package Names to turn the display of package names in the Back-
trace and Variables lists on and off.

Specify a package name in the text box to change the process package of the
debugger tool. Click on to complete the package name as far as possible.
By default, the current package is the same as the package from which the
error was generated.
105

The Debugger Tool

106

10

10The Editor
The environment has a text editor which is designed specifically to make writ-
ing Lisp source code easier. It is very similar to the EMACS text editor, and
you should refer to the Editor User Guide supplied with your software, for a
full description of the extensive range of functions and commands available.

The editor features a comprehensive set of menus, as well as a number of dif-
ferent views, and it has an interface which is completely consistent with all the
other tools in the environment. This chapter gives a complete description of
these aspects of the editor, as well as giving you a general overview of how
the editor is used. If you have not used EMACS before, this chapter tells you
all you need to know to get started.

The advantage of the editor is its ability to perform a wide range of operations
by using menu commands, as well as the keyboard commands described in
more detail in the Editor User Guide. These operations range from simple tasks
such as navigating around a file, to more complex actions which have been
specifically designed to ease the task of writing Lisp code.

By becoming familiar with the menu commands available, you can learn to
use the editor effectively in a very short space of time, before moving on to
more advanced operations.
107

The Editor

108
Like other tools, the editor offers a number of different views, which you can
switch between using the tabs at the top of the editor window. Unlike other
tools, one view in particular is used more often than any other.

• The text view is the most commonly used view in the editor. This lets
you read and edit text files which are stored in your filesystem.

• The output view lets you examine any output messages from the envi-
ronment.

• You can edit many different files at once in the same editor. The buffers
view provides a quick way of navigating between different files that
you have open.

• The definitions view is a convenient way of seeing the classes, func-
tions, macros, variables and so on that are defined in the current file.

• Files may contain many definitions. The find definitions view lets you
search for particular definitions of interest across many files.

You can create an editor using any of the following methods:

• Choose Tools > Editor from the LispWorks podium.

• Choose File > Open from the LispWorks podium, or click on in the
button bar, and choose a filename in the dialog that appears.

• Make the listener the active window, and press Ctrl+X Ctrl+F . Type in
the name of a file that you want to edit, including its drive and full
pathname if it is not in the current directory.

Notice that when you create an editor from the Tools menu, you are not actu-
ally editing a file immediately.

10.1 Displaying and editing files
The text view is the default view in the editor, and is the one which you will
become most familiar with. In this view, a buffer containing the text of the cur-
rent file is displayed, and you can move around it and change its contents as
you wish, then save it back to the original file (assuming that you have per-
mission to write to it). The text view is automatically displayed when you first
invoked the editor, and you can click on the Text tab to switch back to it from

10.1 Displaying and editing files
any other view. Figure 10.1 below shows an editor in the text view with a file
open.

Figure 10.1 Text view in the editor

The text view has two areas, described below.

10.1.1 The editor window

The editor window is the main part of the editor. The text of the current file is
shown in this area. As in many other editors, a block cursor is used to denote
the current position in the file. Text is entered into the file at this position
when you type.

To move the cursor to a particular point in the file, you can use any combina-
tion of the following methods:
109

The Editor

110
• Position the cursor by moving the mouse pointer and selecting the
point at which you want to place the cursor.

• If the file is too large to display all of it in the editor window, use the
scroll bars to move up and down the file.

• Use any of the numerous keyboard commands that are available for
navigating within a file.

If you are unfamiliar with the editor, you can use the first two methods to
begin with. As you become more familiar, you will find it is often quicker to
use the keyboard commands described in the Editor User Guide. Some of the
most basic commands are also described in this chapter, in Section 10.8 on
page 117.

10.1.2 The echo area

Underneath the editor window is an echo area, identical to the echo area in
the other tools. This is used by the editor to display status messages, and to
request more information from you when necessary. The echo area is con-
tained in every view in the editor.

Whenever you invoke a command which requires further input (for instance,
if you search a file for a piece of text, in which case you need to specify the text
you want to search for), you are prompted for that input in the echo area. Type
any information that is needed by the editor, and the characters you type are
echoed in the echo area.

For many commands, you can save time by using tab completion. When you
have partially specified input in the echo area, you can press the Tab key and
the editor attempts to complete what you have typed. If it cannot complete the
string uniquely, a dialog appears which lists all the possible alternatives. Dou-
ble-click on any item in this dialog to place it in the echo area.

For example, suppose you have three files in the current directory,
test1.lisp , test2.lisp and test3.lisp , and you want to edit test2.lisp

using keyboard commands. Type Ctrl+X Ctrl+F , then type test and press
Tab. A list appears which shows all three files. To edit test2.lisp , double-
click on the item marked test2.lisp in this list.

10.1 Displaying and editing files
To get the hang of when tab completion is appropriate and when it is not,
experiment by pressing the Tab key when specifying input in the echo area.
As a rule, if there are a finite number of things you could type, then tab com-
pletion is appropriate. Thus, when opening a file already on disk, tab comple-
tion is appropriate (there is a finite number of files in the current directory).
When specifying a string to search for, however, tab completion is not appro-
priate (you could specify practically any string).

10.1.3 Using keyboard commands

A full description of the keyboard commands available in the editor is beyond
the scope of this manual, and you are advised to study the Editor User Guide to
gain a full appreciation of the capabilities of the editor. However, of necessity,
certain basic keyboard commands are discussed in this chapter. See Section
10.8 on page 117 of this manual for a brief introduction to some of the most
important ones. The menu commands available are described throughout the
rest of this chapter.

As with other keyboard commands used in the environment, the keyboard
commands used in the editor are invoked by using a combination of the Con-
trol, Shift and Escape or Alt keys in conjunction with the letters of the alpha-
bet. Some of the commands available perform the same, or a similar task as a
menu command.

Each keyboard command in the editor is actually a shortcut for an extended
editor command. You can invoke any extended command by typing its com-
mand name in full, preceded by the keyboard command Alt+X . Thus, to
invoke the extended command Visit Tags File, type Alt+X visit tags file

followed by Return. Case is not significant in these commands, and tab com-
pletion (described in Section 10.1.2 on page 110) may be used to avoid the
need to type long command names out in full. This method is often useful if
you are not certain what the keyboard shortcut is, and there are many
extended commands which do not have keyboard shortcuts at all.

Many of the keyboard commands described in this chapter and in the Editor
User Guide also work in the listener. Feel free to experiment in the listener with
any of the keyboard commands that are described.
111

The Editor

112
10.2 Displaying and swapping between buffers
The contents of the editor window is usually referred to as the buffer. Techni-
cally speaking, when you edit a file, its contents are copied into a buffer which
is then displayed in the window. You actually edit the contents of the buffer,
and never the file. When you save the buffer, its contents are copied back to
the actual file on disk. Working in this way ensures that there is always a copy
of the file on disk—if you make a mistake, or if your computer crashes, the last
saved version of the file is always on disk, ensuring that you do not lose it
completely.

Because of this distinction, the term buffer is used throughout, when referring
to the text in the window.

An editor can only have one editor window, although there can be many buff-
ers open at once. This means that you can edit more than one file at once,
although only one buffer can be displayed at a time in the window—any oth-
ers remain hidden.

The diagram below shows the distinctions between the window, buffers and
files on disk.

Figure 10.2 Distinctions between the window, buffers, and files on disk

Files on disk

Buffers

Editor Window

10.2 Displaying and swapping between buffers
The buffers view allows you to display a list of all the buffers that are cur-
rently open in the editor, and gives you an easy way of navigating between
them. Click on the Buffers tab to switch to this view, or press Ctrl+X Ctrl+B .
The editor appears as shown in Figure 10.3 below.

Figure 10.3 Listing buffers in the editor

The buffers view has two areas, described below.

10.2.1 Filter box

You can use this area to restrict the number of buffers displayed in the Buffers
area. See Section 3.12 on page 38 for details about how to use the Filter box in
a tool.
113

The Editor

114
10.2.2 Buffers area

Double-click on any buffer to display it in the editor using the text view. Buff-
ers selected in this list can be operated on by commands in the Works > Buffers
menu. See Section 10.13 on page 129 for more details.

10.3 Displaying Common Lisp definitions
The definitions view lists all the Common Lisp definitions which can be found
in the current buffer. Click on the Definitions tab to switch to this view. The
editor appears as shown in Figure 10.4 below.

Figure 10.4 Examining Common Lisp definitions in the editor

The definitions view has two areas, described below.

10.3.1 Filter box

You can use this area to restrict the number of definitions displayed in the def-
initions area. See Section 3.12 on page 38 for details about how to use the Filter
box in a tool.

10.4 Finding definitions
10.3.2 Definitions area

Double-click on any definition in this area to display its source code in the edi-
tor window. Definitions selected in this area can be operated on using com-
mands in the editor’s Works > Definitions menu. See Section 10.13.6 on page
133 for complete details of the commands available.

10.4 Finding definitions
Use the Find Definitions view to locate definitions with a given name. Type
the name of the definition you are searching for in the name area and press
Return or click on to display the matches and their locations. Double-click on
a match to display the source. In addition, after using the Find Source editor
command (bound to Alt+.), the Find Definitions view can be invoked using
Alt+X View Source Search to give a complete list of the matches.

10.5 Changed definitions
The Changed Definitions view is identical to the Definitions view, except that
only definitions that have been edited in the current session are listed. Click
on the Changed Definitions tab to see this view. See the Guide to the Editor for
more information on Buffer Changed Definitions and related commands.

10.6 Displaying output messages in the editor
As with several other tools, the editor provides an output view which can be
used to examine any output messages which have been generated by the envi-
ronment. Click on the Output tab to switch to this view. See Chapter 17, “The
Output Browser”, for more information about this view.

10.7 Setting editor preferences
You can configure the way in which items are listed in buffers, definitions and
find definitions views using the Editor Preferences dialog. Choose Tools > Pref-
erences within an editor to display this dialog.
115

The Editor

116
Figure 10.5 Editor Preferences dialog

10.7.1 Sorting items in lists

By default, items in the buffers, definitions and find definitions views are
sorted alphabetically according to their name. The options in the Sort panel of
the Editor Preferences dialog let you change this.

Unsorted Leaves items in these lists unsorted. For views which
list definitions, choosing this option lists definitions in
the order in which they appear in the source code.

By Name Sort buffers according to their names. This is the default
setting.

By Package Sort buffers according to the buffer package.

By Type Sorts items according to the type of each item. This
sorts different types of definition, or different types of
buffer, as appropriate.

10.7.2 Displaying package information

As with many other tools, you can configure the way package names are dis-
played in the editor. Because of the nature of this tool, you need to be a little
more aware of the precise nature of these commands in order to avoid confu-

10.8 Getting started with the editor
sion. This information can be configured using the Package panel of the Editor
Preferences dialog.

Click Show Package Names to toggle display of package names in the main
areas of the buffers, definitions and changed definitions views.

Type a package name into the text field to change the current package in the
editor. Click the button to confirm the package name, or the button to
display a completion list for all package names. Note that this does not change
the package currently displayed; it merely changes the editor’s notion of
“where” it is in the environment, and this in turn affects the way symbols are
printed in the buffers, definitions and changed definitions views.

By default, the current package is CL-USER.

10.8 Getting started with the editor
This section deals with some of the most basic commands available in the edi-
tor. It describes how to perform simple file management, how to move around
a buffer, and tells you about some other more general commands available.

10.8.1 Opening, saving and printing files

When you first start up the editor, the first thing you must do is open a file.

Use file extensions .lisp or .lsp for Common Lisp files. The editor recog-
nizes these extensions and places the buffer in Lisp mode. Lisp mode provides
special features for use in Lisp editing.

You can create a new Lisp buffer by choosing File > New or clicking on .
The new file is automatically in Lisp mode, and the buffer is called
“Unnamed”. As soon as you try to save this buffer, the editor prompts you for
a filename.

As you have already seen, you can open an existing file by choosing File >
Open or clicking on . A dialog appears from which you can select a file to
edit.

To save a file, choose File > Save or click on . If the file has not been saved
before (that is, if you created the file by choosing File > New and this is the first
117

The Editor

118
time you have saved the file), you are prompted for a directory and a file-
name.

You can also save a file by using the keyboard command Ctrl+X Ctrl+S .

If you want to make a copy of the file (save the file under a different name)
choose File > Save As and specify a name in the dialog that appears.

Choose File > Revert to revert back to the last saved version of the file. This
replaces the contents of the current buffer with the version of that file which
was last saved on disk. This command can be useful if you make a number of
changes which you want to lose.

As well as saving whole files to disk, you can save any part of a file to disk
under a different filename. To do this:

1. Select a region of text by clicking and holding down the select mouse
button, and dragging the pointer across the region of text you want to
save. The text is highlighted as you drag the pointer across it.

2. With the text still highlighted, choose File > Save Region As .

3. In the echo area, specify the name of a file to save the selected text to.

Note that the selected text is copied into the new file, rather than moved; it is
still available in the original buffer.

To find out more about selecting regions of text, see Section 10.11.1 on page
123. To find out more about operating on regions of text, see Section 10.13 on
page 129.

To print the file in the current buffer to your default printer, choose File > Print .
The printer on which your hard copy appears can be changed or configured
by using the standard Windows Control Panel

10.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There
are a variety of commands, allowing you to move sideways, up, or down by
one character, or by a number of characters.

To move directly to any point in the buffer, position the pointer and click the
left mouse button. If necessary, use the scroll bars to reveal sections of the
buffer which are not visible in the window.

10.8 Getting started with the editor
You can either use the arrow keys, or the keyboard commands shown below
to move the cursor in any direction by one character.

Figure 10.6 Moving the cursor by one character

The keyboard commands below move to the beginning or end of the line, or
the top or bottom of the buffer.

Figure 10.7 Keyboard commands for basic movement within an editor buffer

Press Ctrl+V or the Page Down key to scroll down one screenful of text.

Press Alt+V or the Page Up key to scroll up one screenful of text.

You should ensure that you learn all the keyboard commands described
above, since they make navigation in a buffer much easier.

Ctrl+P

Ctrl+B Ctrl+F

Ctrl+N

Alt+<

Ctrl+A Ctrl+E

Alt+>
119

The Editor

120
10.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which
are described in Section 10.11 on page 123. However, the two basic commands
for deleting text which you should remember are as follows:

• To erase the previous character, use the Backspace key.

• To erase the next character, use Ctrl+D or the Delete key.

You can insert text into a buffer by typing characters, or by pasting (see Sec-
tion 10.11 on page 123).

By default, when inserting text into a buffer, any characters to the right of the
cursor are moved further to the right. If you wish to write over these charac-
ters, rather than preserve them, press the Insert key. To return to the default
behavior again, just press the Insert key once more.

To insert the contents of one file into another, choose File > Insert . A dialog
appears so that you can choose a file to insert, and this is then inserted into the
current buffer, starting from the current position of the cursor.

10.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once as you like.
Repeated use of File > Open or Ctrl+X Ctrl+F just creates extra buffers.

Because the editor can only display one buffer at a time, you can use either
menu commands or keyboard commands to swap between buffers.

Each item in the History > Items submenu is an open buffer. To swap to a given
buffer, choose it from the menu, and it is displayed in the editor window.

Alternatively, click on the Buffers tab to swap to the buffers view; see Section
10.2 on page 112 for details.

To use the keyboard, type Ctrl+X B . You are prompted for the name of the
buffer you wish to display. The last buffer you displayed is chosen by default,
and is listed in the echo area in brackets, as shown below.

Select Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Return. To swap to another
buffer, type in the name of that buffer. Remeber that Tab completion can help.

10.8 Getting started with the editor
To close the buffer that is currently displayed, choose File > Close , or press
Ctrl+X K .

• If you use File > Close , the current buffer is closed.

• If you use Ctrl+X K , you can close any buffer, not just the current one.
Type a buffer name in the echo area, or press Return to close the current
buffer.

Note: If you attempt to close any buffer which you have changed but not yet
saved, a dialog appears, giving you the opportunity to cancel the operation.

To save all the buffers in the editor, choose File > Save All . A dialog appears
which lists each modified buffer. By default, each buffer is selected, indicating
that it is to be saved. If there are any buffers that you do not want to save,
deselect them by clicking on them. The dialog has four buttons, as follows:

Click Yes to save the selected buffers.

Click All to save all the listed buffers.

Click No to save none of the listed buffers.

Click Cancel to cancel the operation.

This dialog is also displayed if there are any unsaved files when you exit the
environment.

Sometimes you may find that being able to display only one buffer in the win-
dow simply does not give you enough flexibility. For instance, you may have
several buffers open, and you may want to look at two different buffers at
once. Or you may have a very large buffer, and want to look at the beginning
and end of it at the same time.

You can do any of these by creating a new editor window. Choose Tools >
Clone or press Ctrl+X 2 . This creates a copy of your original editor. The new
editor displays the same buffer as the original one.

• If you want to look at two different sections of this buffer at once, sim-
ply move to the section that you want to look at in one of the editors.

• If you want to look at a different buffer, use the History > Items submenu
or the keyboard commands described above to switch buffers.

Changes made to a buffer are automatically reflected across all editor win-
dows—the buffer may be displayed in two different windows, but there is still
121

The Editor

122
only one buffer. This means that it is impossible to save two different versions
of the same file on disk.

10.9 Other essential commands
Finally, there are three basic functions which you should add to your stock of
familiar commands.

10.9.1 Aborting commands

To abort any command which requires you to type information at the echo
area, type Ctrl+G at any point up to where you would normally press Return.
For instance, if you type Ctrl+X Ctrl+F in order to open a file, and then
decide against it, type Ctrl+G instead of specifying a filename.

10.9.2 Undoing commands

If you choose Edit > Undo , or press Ctrl+_ , the last editor action performed is
undone. Successive use of Edit > Undo revokes more actions (rather than undo-
ing the last Undo command, as is the case with many other editors). Thus, to
undo the last five words typed, press Ctrl+_ five times.

10.9.3 Repeating commands

To perform the same command n times, type Ctrl+U n followed by the com-
mand you want to perform.

For instance, to move forward 10 characters, type Ctrl+U 10 Ctrl+F .

10.10 Cutting, copying and pasting using the clipboard
The editor provides the standard methods of cutting, copying and pasting text
using the clipboard. To select a region of text, click and hold down the select
button, and drag the pointer across the region you want to select: the text is
highlighted as you select it.

Choose Edit > Select All to select all the text in the buffer, and Edit > Deselect All
if you want to deselect it.

10.11 Cutting, copying and pasting using the kill ring
Once you have selected a region use either of the following commands:

Choose Edit > Copy to copy the region to the clipboard. This leaves the
selected region unchanged in the editor buffer.

Choose Edit > Cut to delete the region from the current buffer, and place
it in the Common LispWorks clipboard. This removes the selected
region from the buffer.

Choose Edit > Paste to copy text from the clipboard into the current buffer. The
text is placed at the current cursor position.

These commands are also available from a popup menu that you can display
by using the alternate select gesture (usually clicking the right mouse button)
over the editor window.

The editor also provides a much more sophisticated system for cutting, copy-
ing and pasting text, as described below.

10.11 Cutting, copying and pasting using the kill ring
The editor provides a sophisticated range of commands for cutting or copying
text onto a special kind of clipboard, known as the kill ring, and then pasting
that text back into your editor later on. There are three steps in the process, as
follows:

• Marking a region of text.

• Cutting or copying the text in that region to place it in the kill ring.

• Pasting the text from the kill ring back into a buffer.

10.11.1 Marking the region

First of all, you need to mark a region of text in the current buffer which you
want to transfer into the kill ring. There are two ways that you can do this:

• Select the text you want to copy or cut using the mouse. Click and hold
down the Select mouse button, and drag the pointer across the region
you want to mark.

The selected text is highlighted using a bold font.

• Using keyboard commands
123

The Editor

124
To mark the region with the keyboard, place the cursor at the beginning
of the text you want to mark, press Ctrl+Space , and move the cursor to
the end of the region you want to mark, using keyboard commands to do so.
Unlike marking with the mouse, this does not highlight the region.

Because the editor does not highlight the marked region when you use key-
board commands, a useful command to remember is Ctrl+X Ctrl+X . Pressing
this exchanges the current cursor position with the start of the marked region,
highlighting the region in the process. Press Ctrl+X Ctrl+X a second time to
return the cursor to its original position, but leave the region marked.

Press Ctrl+G to turn off the highlighting in a region.

10.11.2 Cutting or copying text

Once you have marked the region, you need to transfer the text to the kill ring
by either cutting or copying it.

Cutting text moves it from the current buffer into the kill ring, and deletes it
from the current buffer, whereas copying just places a copy of the text in the
kill ring.

• Choose Edit > Cut or press Ctrl+W to cut the text.

• Choose Edit > Copy or press Alt+W to copy the text.

Notice that these commands transfer the selected text to the Common
LispWorks clipboard as well as the kill ring. This is so that the selected text
can be transferred into other tools, or even into other applications.

10.11.3 Pasting text

Once you have an item in the kill ring, you can paste it back into a buffer as
many times as you like.

• Press Ctrl+Y to paste the text in the kill ring back into the buffer.

Note that you must use the keyboard command if you wish to paste the
item that is in the kill ring (as opposed to the item in the Common
LispWorks clipboard).

10.11 Cutting, copying and pasting using the kill ring
With many editors you can only do this with one item at a time. The clipboard
is only able to contain one item, and so it is the only one available for pasting
back into the text.

However, the kill ring allows you to keep many items. Any of these items can
be pasted back into your document at any time. Every time you cut or copy
something, it is added to the kill ring, so you accumulate more items in the kill
ring as your session progresses.

Consider the following example. In Figure 10.8, the kill ring contains three
items; the words factorial , function and macro respectively.

Figure 10.8 Kill ring with three items

First, the word factorial was cut from the current buffer (this would remove
it from the buffer). Next, the word function was copied (which would leave it
in the buffer but add a copy of it to the kill ring), and lastly, the word macro

was cut.

Note the concept of the kill ring rotating (this is why it is known as a ring).
Every time a new item is added (at the top, in these figures), the others are all
shunted around in a counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring—the word
macro in this case—is copied back into the buffer wherever the cursor cur-
rently is. Note that the current item is not removed from the kill ring.

factorialfunction

macro
125

The Editor

126
Figure 10.9 Pasting from the kill ring

What you have seen so far does exactly the same thing as the standard clip-
board. True, all three items have been kept in the kill ring, but they are of no
use if you cannot actually get at them.

The command to do this is Alt+Y . This rotates the kill ring in the opposite
direction—thus making the previous item the current one—and pastes it into
the buffer in place of the item just pasted. In Figure 10.9, the word macro

would be replaced with the word function .

You can use Alt+Y as many times as you like. For instance, if you actually
wanted to paste the word factorial in the document, pressing Alt+Y would
replace the word function with the word factorial .

Figure 10.10 Rotating the kill ring

If you pressed Alt+Y a third time, the kill ring would have rotated completely,
and macro would have been the current item once again.

Note: You can never use Alt+Y without having used Ctrl+Y immediately
beforehand.

factorialfunction

macro

factorial

function

macro

factorial

macro function

10.12 Searching and replacing text
Here is a summary of the way Ctrl+Y and Alt+Y work:

• Ctrl+Y pastes the current item in the kill ring into the buffer.

• Alt+Y rotates the kill ring back one place, and then pastes the current
item into the buffer, replacing the previously pasted item.

10.12 Searching and replacing text
The editor provides a wide range of facilities to search for and replace text.
The examples below introduce you to the basic principles; please refer to the
Editor User Guide for a complete description of the facilities available.

10.12.1 Searching for text

The simplest way of searching for text in a buffer is to use the commands
available in the menu bar.

Choose Edit > Find to search for text in the current buffer. Type a string to
search for in the dialog that appears, and click OK. The cursor is placed imme-
diately after the next occurrence in the current buffer of the string you speci-
fied. Choose Edit > Find Next to find the next occurrence of the same string.

10.12.2 Incremental searches

Press Ctrl+S to perform an incremental search (in which every character you
type further refines the search). A prompt appears in the echo area, asking
you to type a string to search for. As soon as you start typing, the search com-
mences.

Consider the following example: You want to search for the word “defmacro”
in a file.

1. Select Edit > Find... or press Ctrl+S

The following prompt appears in the echo area.

I-Search:

2. Type the letter d.

The prompt in the echo area changes to
127

The Editor

128
I-Search: d

The cursor moves to the first occurrence of “d” after its current position.

3. Type the letter e.

The prompt in the echo area changes to

I-Search: de

The cursor moves to the first occurrence of “de”.

4. Type the letter f .

The prompt in the echo area changes to

I-Search: def

The cursor moves to the first occurrence of “def”.

This continues until you stop typing, or until the editor fails to find the string
you have typed in the current buffer. If at any point this does occur, the
prompt in the echo area changes to reflect this. For instance, if your file con-
tains the word “defun” but not the word “defmacro”, the prompt changes to

Failing I-Search: defm

as soon as you type m.

10.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace .
In the echo area, you are prompted to supply the text to be found and the text
to replace it. In addition, whenever that text is found, you are asked whether
or not to replace that occurrence of it. Note that this type of searching is not
incremental.

For instance, assume you wanted to replace every occurrence of “equal” to
“equalp”.

1. Choose Edit > Replace .

The following appears in the echo area:

Query Replace string:

2. Type equal and press Return.

10.13 Using Lisp-specific commands
The echo area now shows the following:

Replace "equal" with:

3. Type equalp and press Return.

At every occurrence of “equal” after the current cursor position, the following
message is printed in the echo area:

Replace equal with equalp?

• If you want to replace this occurrence, type y.

• If you do not want to replace this occurrence, type n.

• If you want to abandon the operation altogether, press Esc.

Other options are also available. See the LispWorks Guide to the Editor for more
details. You can also immediately use the editor command Help on Parse to see
a list of these options. (Type ? at the prompt in the echo area to invoke Help on
Parse).

Note: Both Edit > Find and Edit > Replace start searching from the current posi-
tion in the buffer. When Edit > Find reaches the end of the buffer, it starts again
at the beginning, but Edit > Replace stops. To replace all occurrences of a text
string in the buffer, you must ensure you are at the top when you begin.

10.13 Using Lisp-specific commands
One of the main benefits of using the built-in editor is the large number of
keyboard and menu commands available which can work directly on Lisp
code. As well as providing editing facilities which work intelligently in a
buffer containing Lisp code, there are commands which let you load, evaluate
or compile the code in any part of a buffer easily and quickly.

In addition, a high degree of integration exists between other Common
LispWorks tools and the editor. This allows you, for example, to find the
source code definition of an object being examined in a browser, or to flag
symbols in editor buffers for specific actions, such as tracing or lambda list
printing.
129

The Editor

130
This section provides an introduction to the Lisp-specific facilities that are
available using menu commands. For a full description of the extended editor
commands, please refer to the Editor User Guide.

All of the commands described below are available in the editor’s Works >
Buffers , Works > Definitions , and Works > Expression menus. They operate on
the current buffers, definitions, or expression, the choice of which is affected
by the current view. In the Text view, the Buffers menu applies to the currently
visible buffer, the Definitions menu applies to the highlighted definitions or to
the definition under the cursor and the Expression menu depends on the exact
location of the cursor, as described below. In the Buffers view, the Buffers
menu applies to all the selected buffers and the Definitions and Expression
menus are not available. In the Definitions, Changed Definitions and Find
Definitions views, the Definitions menu applies to the selected definitions and
the Buffers and Expression menus are not available.

An expression is the symbol over which the cursor is positioned (or the one
immediately before it if it is not on a symbol), and a definition is the definition
in which that symbol occurs.

(defun test ()
 (test2))

In the function shown above, if the cursor were placed on the letter “e” of
test2 , the expression would be the symbol test2 , and the definition would be
test .

In this section, the term “current definition(s)” is used to denote either the def-
inition under the cursor (in the text view), or the selected definitions (in either
the definitions or the find definitions views).

10.13.1 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the
buffer in order to test the code. The easiest way to do this is using menu com-
mands, although there are keyboard commands which allow you to evaluate
Lisp in the editor as well.

There are three menu commands which allow you to evaluate Lisp in the cur-
rent buffer.

10.13 Using Lisp-specific commands
Choose Works > Buffers > Evaluate to evaluate all the code in the current buffer.
If you are in the buffers view, then this command evaluates the code in all the
selected buffers.

Choose Works > Expression > Evaluate Region to evaluate the Lisp code in the
current region. You must make sure you have marked a region before choos-
ing this command; see Section 10.11.1 on page 123. Whether you use the
mouse or keyboard commands to mark a region does not matter. If you have a
few Lisp forms that you want to evaluate, but do not want to evaluate the
whole buffer, you should use this command.

Choose Works > Definitions > Evaluate to evaluate the definition in which the
cursor currently lies. This is a little like evaluating the marked region, except
that only the current definition is evaluated, whereas working with a marked
region lets you evaluate several. This command is useful if you have a single
function in the current buffer which you want to test without taking the time
to evaluate the whole buffer or mark a region.

In the definitions or find definitions views, this command evaluates the code
for all the selected definitions, allowing you to evaluate code for a number of
definitions with one command.

To load the code for any file into the environment (even if it is a file not cur-
rently loaded into the editor), choose File > Load . You are prompted for a path-
name in the echo area.

10.13.2 Compiling code

You can also compile Lisp code in an editor buffer in much the same way that
you can evaluate it.

Choose Works > Buffers > Compile to compile all the code in the current buffer.

Choose Works > Expression > Compile Region to compile the Lisp code in the
current region.

Choose Works > Definitions > Compile to compile the definition in which the
cursor currently lies.

During compilation, the editor window temporarily displays compiler output
in an output window. Once compilation has finished, press the space bar to
131

The Editor

132
display the current buffer once again. You can view this output window at
any time by clicking the Output tab of the editor.

To compile the code for any file, even if it is not loaded into the editor, choose
File > Compile . You are prompted for a filename in the echo area. If you wish to
load the compiled file into the environment as well, choose File > Compile and
Load .

10.13.3 Tracing symbols and functions

A wide variety of tracing operations are available in the Works > Buffers , Works
> Definitions and Works > Expression menus. The scope of each operation
depends on which menu the command is chosen from.

Choose Trace from either the Works > Buffers , Works > Definitions or Works >
Expression menus to display a menu of trace commands that you can apply to
the current region or expression, or the currently selected buffers or defini-
tions, as appropriate. See Section 3.10 on page 36 for full details. Note that you
can select several items in the buffers, definitions and find definitions views.

See Section 3.10 on page 36 for full details of the tracing facilities available in
the editor.

10.13.4 Packages

Each buffer has a package associated with it, known as the primary package.
If there is an in-package form in a file when it is first read in, this is taken to
specify the primary package; otherwise it is taken to be CL-USER. If the pri-
mary package has not already been seen by the environment, you are
prompted for its creation. The primary package is shown in the message line
at the bottom of the editor window.

When evaluating parts of the current buffer (as opposed to all of it), the envi-
ronment only uses the buffer’s primary package if no in-package form is
found in the selected regions. It tries to find the current package within the
section of code which is being evaluated. This is done so that any occurrences
of in-package in the buffer (other than on the first occurence) can be allowed
for—if the current package was always assumed to be the primary package of
the current buffer, many sections of code would evaluate wrongly.

10.13 Using Lisp-specific commands
This means that you do not have to worry about setting the package explicitly
before evaluating part of a buffer.

10.13.5 Indentation of forms

The editor provides facilities for indenting your code to help you see its struc-
ture. These facilities are available only in Lisp mode.

Alt+Ctrl+Q indents the current Lisp form, and the Tab key indents a single
line.

10.13.6 Other facilities

A number of other Lisp-specific facilities are available using the menus in the
editor.

Choose Works > Definitions > Undefine to remove the selected definitions from
the environment. Similarly, choose Works > Buffers > Undefine to remove the
definitions in the selected buffers. By selecting items in the buffers, definitions
or find definitions views, you have precise control over the definitions which
can be removed with one command.

Choose Works > Definitions > Generic Function to describe the current definition
in a generic function browser. See Chapter 12, “The Generic Function
Browser” for more details.

Standard action commands can be found on the Works > Expression menu,
allowing you to perform a number of operations on the current expression.
See Section 3.8 on page 31 for full details.

Choose Works > Expression > Arguments to print the lambda list of the current
expression in the echo area, if it is a function, generic function or method. This
is the same as using the keyboard command Alt+= , except that the current
expression is automatically used.

Choose Works > Expression > Value to display the value of the current expres-
sion in the echo area.

Choose Works > Expression > Macroexpand to macroexpand the current form.
The macroexpansion is printed in an output window, in the same way that
133

The Editor

134
compilation output is shown. Click on the Output tab to redisplay the output
at any time.

Choose Works > Expression > Walk to recursively macroexpand the current
form.

10.14 Help with editing
Two help commands are available which are specific to the editor and any
tools which use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the function it is bound to, if any.

Choose Help > Editing > Command to Key and supply an editor command name
to see the key sequence it is bound to, if any.

11

11The Function Call Browser
11.1 Introduction
The function call browser gives you a way to view any function in the envi-
ronment together with the functions that call it or the functions it calls. It has
three views available.

• The Called By view allows you to examine a graph of the functions
which call the function being browsed. This is the default view.

• The Calls Into view allows you to examine a graph of the functions
which are called by the function being browsed.

• The Text view lets you see immediate callers and callees of the browsed
function using lists rather than a graph.

To create a function call browser, choose Tools > Function Call Browser from the
LispWorks podium. Alternatively, select a function in another tool, and
choose Browse from the appropriate actions menu to browse the selected func-
tion in the function call browser. Finally, in an editor executing Alt-x List

Callers or Alt-x List Callees calls up a function call browser on the func-
tion over which the cursor is placed.
135

11 The Function Call Browser

136
11.2 Examining functions using the graph view
The Called By view is the default view in the function call browser. When in
the graph view, the function call browser appears as in Figure 11.1.

Figure 11.1 Viewing functions using the “Called By” view

In this view, the function call browser has three areas.

11.2.1 Function area

The Function area is used to enter the name of the function you want to exam-
ine. As with similar areas in other tools, you can press the Tab key at any point
while you type the function to either complete the function name or (if there is
more than one possible completion) display a dialog listing all the functions
available in the current package.

11.3 The Function Description button
11.2.2 Graph area

A graph of all the callers of the function is displayed in the Graph area. Note
that if the toggle-source-debugging function has not been used to set source
debugging to t (it’s default setting), the graph view has no information to dis-
play.

The graph area of the Calls Into view is the same, other than the fact that the
graph displayed is of the functions called by the function being browsed.

The generic facilities available to all graph views throughout the environment
are available here; see Chapter 5, “Manipulating Graphs” for details.

11.2.3 Echo area

The echo area of the function call browser is similar to the echo area of the
podium. It displays messages concerning the function call browser.

11.3 The Function Description button
Clicking on Function Description >> changes the view of the function call
browser to include more information on the function being browsed. The
browser appears as in Figure 11.2
137

11 The Function Call Browser

138
Figure 11.2 The function call browser in function description mode

Two further panes appear, a function description area, and a documentation
area.

11.3.1 Function description area

The Function Description area gives a description of the function selected in the
Graph area, or, if nothing is selected, the current function (as displayed in the
Function area). The following items of information are displayed:

Name The name of the function.

Function The function object.

11.4 Examining functions using the text view
Lambda List The lambda list of the function.

Source Files The source file in which the function is defined, if any.

You can operate on any of the items in this area using the commands in the
Works > Description menu. This contains the standard actions described in Sec-
tion 3.8 on page 31.

11.3.2 Documentation area

The Documentation area shows the documentation for the function selected in
the graph area, if there is any. If no function is selected, the documentation for
the current function is shown, if there is any.

11.4 Examining functions using the text view
Click on the Text tab to see a textual display of the callees and callers of a func-
tion. This view has the advantage that both callees and callers can be seen
simultaneously. It is very similar to the text view in the class browser, as
described in Section 7.1.4 on page 65. When in the text view, the function call
browser appears as shown in Figure 11.3.
139

11 The Function Call Browser

140
Figure 11.3 Viewing functions using the text view

When in this view, four areas are available.

11.4.1 Function area

The name of the current function is shown here. This area is exactly the same
as the Function area in the graph view; see Section 11.2.1 on page 136 for
details.

11.4.2 Called By area

The Called By area lists those functions which the current function calls.

To make any function in this list the current function, double-click on it.

11.5 Configuring the function call browser
11.4.3 Calls Into area

The Calls Into area lists those functions which call the current function.

To make any function in this list the current function, double-click on it.

11.4.4 Echo area

The echo area of the function call browser is similar to the echo area of the
podium. It displays messages concerning the function call browser.

Clicking on Function Description >> calls up two more areas:

11.4.5 Function description area

This gives a description of the function selected in the Callees or Callers areas,
or the current function if nothing is selected in either of these areas. The same
information is listed as in the graph view; see Section 11.3.1 on page 138 for
details.

11.4.6 Documentation area

This area displays documentation for the function selected in either the
Callees or Callers areas, or the current function.

11.5 Configuring the function call browser
The function call browser can be configured using the preferences dialog.
Select Tools > Preferences in the function call browser to call up the dialog,
which is shown in Figure 11.4
141

11 The Function Call Browser

142
Figure 11.4 The function call preferences dialog.

11.5.1 Sorting entries

Entries in the Graph area, Callers are and Callees area can be sorted in a num-
ber of ways.

Choose By Name to sort entries according to the function name. This is the
default setting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

11.5.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the function call browser.

Choose Show Package Names to turn the display of package names in the
Graph, Callers, Callees and Description areas on and off.

11.6 Configuring graph displays
Enter a different package name in the Package text input box to change the
current package in the function call browser. By default, the current package is
CL-USER.

11.6 Configuring graph displays
The preferences dialog can also be used to configure how the function call
browser displays graphical information in the Called By and Calls Into views.
Click on the Called By Layout or Calls Into Layout tab in the preferences dialog.
Both views perform the same operations on the relevant function call browser
view.

Figure 11.5 A layout view in the preferences dialog

11.6.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is
displayed. The default setting is Left to Right .
143

11 The Function Call Browser

144
11.6.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display.
The default depth value is 2—this ensures that only functions that directly call
(or are directly called by) are shown in the graph. If this value were set to 3,
for example, then functions that call a function that calls the function being
browsed would also be displayed.

The breadth value has a default value of 40, and sets how many functions are
displayed at each level of the graph.

11.6.3 Plan mode settings

The Rotation checkbox determines whether the graph layout can be rotated
when in plan mode. By default it is checked.

You can enter plan mode when displaying a graph by holding down your
right mouse button and selecting Enter Plan Mode from the pop-up menu. If
rotation is enabled, you can rotate the plan by holding down the Shift key and
moving the mouse left or right.

11.7 Performing operations on functions
A number of operations can be performed on functions selected in the Text
area (when in the text view) or in the Callees or Callers areas, or on the current
function (when there are no functions selected elsewhere).

The Works > Function menu gives you access to the standard actions described
in Section 3.8 on page 31.

The Works > Function > Trace submenu gives you the ability to trace and
untrace the functions selected in the Text, Callers or Callees area.

12

12The Generic Function
Browser
The generic function browser allows you to examine the generic functions in
the environment, together with any methods that have been defined on them.
It has two views which allow you to browse different types of information:

• The methods view, which shows you a description of the generic func-
tion and the methods defined on it. This is the default view.

• The method combinations view, which lets you examine the list of
method combinations for any generic function.

To create a generic function browser, choose Tools > Generic Function Browser .
Alternatively, if the current object in a tool is a generic function or method,
choose the Generic Function standard action command from the appropriate
menu, or use the editor command Alt+X Describe Generic Function , to dis-
play it in the generic function browser.

12.1 Examining information about methods
When the generic function browser is first displayed, the default view is the
methods view. You can also choose it explicitly by clicking on the Methods tab
of the generic function browser.

The methods view is shown in Figure 12.1 below.
145

The Generic Function Browser

146
Figure 12.1 Generic function browser

The methods view has four main sections, described below.

12.1.1 Function box

The Function box shows the name of the generic function you are examining.
To browse a generic function, type its name into the Function area, or paste it
in from another tool in one of two ways:

12.1 Examining information about methods
• Choose Edit > Copy or the standard action command Copy in another
tool to copy the generic function to the clipboard, then choose Edit >
Paste in the generic function browser to transfer the generic function in.

• Choose the standard action command Generic Function in the other tool
to display the generic function in the generic function browser in one
action.

When typing in the name of a function, you can click to complete the
name of the function, or display a list of possible completions from which you
can select the function you want to browse.

Note: You can use Edit > Paste to paste in a generic function, even if the
Common LispWorks clipboard currently contains the string representation of
the function, rather than the function itself. This lets you copy in generic func-
tions from other applications, as well as from the environment. See Section
3.4.2 on page 25 for a complete description of the way the Common
LispWorks clipboard operates.

You can operate on the current generic function using the commands in the
generic function browser’s Works > Function menu. See Section 12.1.5 on page
149 for details.

12.1.2 Filter box

The Filter box lets you restrict the information displayed in the list of meth-
ods, so that only the methods you are interested in are displayed. See Section
3.12 on page 38 for details about how to use the Filter box.

12.1.3 List of methods

The list of methods provides a list of the methods defined on the generic func-
tion.

• Selecting a method in this list displays its description in the Description
list.

• Double-clicking on a method displays its source code definition in the
editor, if it is available.
147

The Generic Function Browser

148
The number of items listed in the list of methods is printed in the Matches
box.

You can operate on any number of selected methods in this area using the
commands in the generic function browser’s Works > Methods menu. See Sec-
tion 12.1.5 on page 149 for details.

12.1.4 Description list

The Description list shows a description of the method selected in the list of
methods. The following information is listed:

Generic Function

The name of the generic function on which the method
is defined.

Class The class of the generic function on which the method
is defined.

Lambda List The lambda list of the generic function.

Combination The class of method combination for the generic func-
tion.

Method The method object that is selected in the list of methods.

Method Class The method class of which the selected method is an
instance.

Method Signature

The signature for the selected method.

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu. This menu contains the stan-
dard action commands described in Section 3.8 on page 31. You can operate
on more than one item at once by making a multiple selection in this area.

12.2 Examining information about combined methods
12.1.5 Performing operations on the current function or selected methods

You can use the Works > Function and Works > Methods menus to access com-
mands that operate on the current generic function or the selected methods.
These commands are similar to commands available in other tools, and so you
should find them familiar.

The following commands are available from either the Works > Function or
Works > Methods menus:

The standard action commands let you perform a number of operations
on the selected methods or the current function. For details on the com-
mands available, see Section 3.8 on page 31.

Choose Undefine to undefine the current generic function or the selected
methods so that they are no longer available in the environment. Choos-
ing Undefine on a method undefines the method function and removes it
from the methods on the generic function. However, the generic func-
tion can still be called with its different method selection.

The Trace submenu gives you the ability to trace and untrace the current
generic function or the selected methods. See Section 3.10 on page 36 for
details about the commands available in this submenu.

12.2 Examining information about combined methods
The method combinations view lets you examine information about the com-
bined methods of the current generic function. On supplying a signature to
the generic function browser, the combined methods of the generic function
are displayed together with the arguments that match that method combina-
tion point.

Method combinations show you the calling order of methods defined on a
generic function. They use the class precedence lists of the classes on which
the methods of a generic function operate. Being able to view these combina-
tions gives you a simple way of seeing how before, after, and around methods
are used in a particular generic function.

You can display this view by clicking the Method Combinations tab. The
method combinations view is shown in Figure 12.2 below.
149

The Generic Function Browser

150
Figure 12.2 Generic function browser displaying method combinations

The method combinations view has a number of main sections, described
below.

12.2.1 Function box

As with the methods view, the name of the generic function being browsed is
shown here. See Section 12.1.1 on page 146 for details.

12.2 Examining information about combined methods
12.2.2 Signatures button

Click Signatures to display the Method Signature dialog shown in Figure 12.3.
This dialog lists the signatures for the methods defined on the current generic
function. The signatures of a method are the types of the arguments that each
method defined takes.

Figure 12.3 Method Signatures dialog

To list the method combinations of any defined method in the generic func-
tion browser, select its signature from the list in the Signatures panel and click
OK.

You can also manipulate the signatures displayed using the Restricted Class
panel. See Section 12.2.6 on page 153 for details.
151

The Generic Function Browser

152
12.2.3 Arguments types box

The Arguments types box is used to specify a signature, in order to see the
method combinations. You can specify a signature by either

• Choosing a signature using the Method Signatures dialog, as described
in Section 12.2.2.

• Typing the signature list in directly and clicking .

The method combinations for the relevant method are displayed in the list of
method combinations.

12.2.4 List of method combinations

The main list in the method combinations view shows method combinations
for the signature specified in the Arguments Types box.

• Selecting any method in the list displays its description in the Descrip-
tion list.

• Double-clicking on any method in the list displays its source code defi-
nition in the editor, if it is available.

You can operate on any number of selected methods in this area using the
commands in the Works > Methods menu. See Section 12.1.5 on page 149 for
details.

12.2.5 Description list

The Description list displays a description of any method selected in the list of
method combinations. The same items of information are shown as in the
methods view; see Section 12.1.4.

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu. This menu contains the stan-
dard commands described in Section 3.8 on page 31. You can operate on more
than one item at once by making a multiple selection.

12.3 Configuring the generic function browser
12.2.6 Performing operations on signatures

You can manipulate the signatures displayed using the Restricted Class panel
of the Method Signatures dialog, shown in Figure 12.3, page 151. You can dis-
play this dialog by clicking Signatures in the generic function browser.

By default, the generic function browser displays the signatures of all meth-
ods defined on the generic function. When there are many methods, or when
the distinction between different classes is not clear, this can be confusing.

To simplify the display, you can restrict the signatures to a chosen class and its
superclasses. To do this, type the name of the class that you wish to restrict the
signatures displayed to into text box in the Restricted Class panel. As with
similar text boxes in Common LispWorks, click to confirm your choice,

 to cancel the current setting, and to display a list of possible comple-
tions.

Once you have made a choice, only those signatures that belong to the speci-
fied class or any of its superclasses are listed in the Signatures panel of the dia-
log. In situations where there are a large number of complicated signatures,
this can simplify the display and add to your understanding of the methods
defined.

Be aware of the difference between this approach and the use of the Argument
box in the Signatures panel.

• Restricting signatures confines the signatures offered in the dialog by
means of the class of the signatures.

Click to display the signatures for all methods defined once again.

12.3 Configuring the generic function browser
As with other Common LispWorks tools, choose Tools > Preferences to display
the Generic Function Browser Preferences dialog.

Using the options in the Sort panel, you can sort the items in the generic func-
tion browser as you can in many of the other Common LispWorks tools.

By Name Sorts items alphabetically by name. This is the default
setting.
153

The Generic Function Browser

154
By Package Sorts items alphabetically by package name.

By Method Qualifier

Sorts items by the CLOS qualifier of the method. This
groups together before, after, and around methods.

Unsorted Displays items in the order they are defined in.

For more information on sorting items, see Section 3.9.1 on page 35.

You can also set the process package of the generic function browser, and
choose to hide package names in the display, using the Package panel. See
Section 3.7 on page 29 for full details.

13

13The Inspector
The inspector is a tool for examining and changing the contents of any sym-
bol. To create an inspector, choose Tools > Inspector from the LispWorks
podium.

The inspector has the following areas:

• At the top of the inspector, the tab of the main view shows the name of
the object.

• A Filter box provides a method of filtering out those parts of an object
that you are not interested in.

• A list of components shows the contents of the object.

• A small listener pane can be added to the inspector tool, allowing you
to evaluate Common Lisp forms in context, without having to switch
back to the main listener itself. Select Show Listener from the popup
menu.
155

The Inspector

156
Figure 13.1 Inspector

Depending on the type of object being inspected, there may be a number of
different views available.

13.1 Examining objects
13.1 Examining objects
The main list is the most interesting part of the inspector. Each item in this list
describes an attribute of the inspected object by displaying its name (the first
field in each entry) and the printed representation of its value (the second
field). For example, the inspection of a CLOS object yields a list of its slots and
their values. The description is called an inspection.

1. Type the following Common Lisp form into a listener:

(make-instance ’capi:display-pane :text "My Display Pane")

2. Choose Works > Values > Inspect from the listener’s menu bar.

The object you created is inspected in the inspector.
157

The Inspector

158
Figure 13.2 Examining an item in the inspector

When inspecting instances of CLOS classes, you can choose to display
only those slots which are local to the class. By default, all slots are dis-
played, including those inherited from superclasses of the class of the
inspected object.

3. Click the Local Slots tab.

13.1 Examining objects
Figure 13.3 Inspector showing local slots

Because the text slot is the only slot defined locally for a display-pane , it is
the only one listed.
159

The Inspector

160
13.2 Filtering the display
Sometimes an object may contain so many items that the list is confusing. If
this happens, use the Filter box to limit the display to only those items you are
interested in.

The example below shows you how to create and display an instance of a
CAPI object, and then filter the list so that the only slots displayed are those
you are interested in:

1. In a listener, create and display a button by typing the following:

(capi:contain (make-instance ’capi:button))

2. Choose Works > Values > Inspect to copy the object into the inspector.

As you can see, this object has a large number of slots, but you can use
the filter to screen out everything except the available callbacks.

3. Type callback in the Filter box and press Return.

13.2 Filtering the display
Figure 13.4 Using filters to limit the display in the inspector

You can immediately see that the callback types that have slots in CAPI button
objects. The names of the slots, together with their slot values for the object
created, are displayed in the inspector.
161

The Inspector

162
13.3 Operating upon objects and items
The Works > Object and Works > Slots submenus can be used to perform a
number of different operations on either the object being inspected, or the
items currently selected in the main list. The commands available are largely
identical in both menus, and so are described together in this section.

13.3.1 Examination operations

The standard action commands are available in both the Works > Object and
Works > Slots menus, allowing you to perform a variety of operations on the
current object or any items selected in the list. For full details on the standard
action commands, see Section 3.8 on page 31.

13.3.1.1 Example

Consider the following example, where a closure is defined:

(let ((test-button (make-instance ’capi:button)))
 (defun is-button-enabled ()
 (slot-value test-button ’capi::enabled)))

This has defined the function is-button-enabled , which is a closure over the
variable test-button , where the value of test-button is an instance of the
capi:button class.

1. Type the definition of the closure shown above into a listener.

2. Choose Works > Values > Inspect .

The inspector examines the symbol is-button-enabled .

3. Click on the FUNCTION item to select the closure.

4. Choose Works > Slots > Inspect to inspect the selected item.

The closure is inspected.

You can also double-click on an item in the Main area to inspect it.

13.3.2 Inspecting attributes

The Works > Slots > Inspect Attributes option on the Works > Slots menu causes
the inspector to view the attributes of the selected slots. This is useful when

13.3 Operating upon objects and items
inspecting hash tables or alists, since the attributes (keys) might be composite
objects themselves.

13.3.3 Tracing operations

The Works > Slots > Trace and Works > Object > Trace submenus provides four
options. Slot access on CLOS objects may be traced using these commands.

Break on Read causes a break to the debugger if the slot is accessed for
read, either by a defined accessor or by slot-value .

Break on Write causes a break to the debugger if the slot is accessed for
write, either by a defined accessor or by slot-value .

Break on Access causes a break to the debugger if the slot is accessed for
read or write, either by a defined accessor or by slot-value .

Untrace turns off tracing on the selected object or slot.

13.3.4 Manipulation operations

As well as examining objects in the inspector, you can destructively modify
the contents of any composite object.

This sort of activity is particularly useful when debugging; you might inspect
an object and see that it contains incorrect values. Using the options available
you can modify the values in the slots, before continuing execution of a pro-
gram.

Choose Works > Slots > Set to change the value of any selected slots. A dialog
appears into which you can type a new value for the items you have selected.

Choose Works > Slots > Paste to paste the contents of the clipboard into the
currently selected items.

13.3.4.1 Example

This example takes you through the process of creating an object, examining
its contents, and then modifying the object.

1. In a listener, define the following function, which examines the contents
of an button object to find out whether or not it is enabled:
163

The Inspector

164
(defun button-enabled-p (capi:button)
 (slot-value capi:button ’capi::enabled))

2. Next, create a button as follows:

(setq button1 (make-instance ’capi:button))

3. Choose Works > Values > Inspect in the listener to inspect the button in
the inspector.

4. In the listener, use the function you just defined to find out whether
button1 is enabled.

(button-enabled-p button1)

This returns t , so, buttons are enabled by default. The next step is to
destructively modify button1 so that it is not enabled.

5. Choose Tools > Preferences from the inspector’s menu bar.

The Inspector Preferences dialog appears, so that you can change the
current package of the inspector.

6. In the text box in the Package panel, replace the default package name
with CAPI and click OK.

This changes the process package of the inspector to the CAPI package,
and the package name disappears from all the slots listed. This makes
the display a lot easier to read.

7. In the inspector, type enabled into the Filter box and press Return.

Button objects have a large number of slots, and so it is easier to filter out
the slots that you do not want to see than to search through the whole
list. After applying the filter, only one slot is listed.

8. Select the slot enabled to t .

9. Choose Works > Slots > Set...

A dialog appears into which you can type a new value for the slot
enabled .

13.3 Operating upon objects and items
Figure 13.5 Entering a new slot value

10. Type nil in the dialog and click on OK.

The Main area reflects the new value of ENABLED.

11. Click on the button. This removes the filter and displays all the slots
once again.

12. To confirm that the change happened, type the following in the listener.
(You should be able to recall the last command using Alt+P .)

(button-enabled-p button1)

This now returns nil , as expected.

The next part of this example shows you how you can modify the slots of an
object by pasting in the contents of the clipboard. By default, the background

slot of button objects is nil . This example shows you how to modify the back-

ground of button1 so that it is red.

13. Type the following into the listener and then press Return:

"Hello World!"

14. Choose Works > Values > Copy to copy the string to the clipboard.

15. Select the TEXT slot of button1 in the inspector.

16. Choose Works > Slots > Paste to paste the "Hello World!" string into the
text slot of button1 .

This sets the text slot of button1 to the string.

You can confirm the effect of this change by displaying the button object.
To do this, transfer it back into the listener and display it as follows:
165

The Inspector

166
17. Choose Works > Values > Listen .

This transfers the button object back into the listener. As feedback, the
string representation of the object is printed in the listener above the cur-
rent prompt. The object is automatically transferred to the * variable so
that it can be operated on.

18. In the listener, type the following:

(capi:contain *)

This displays a window containing the button object. Note that the text now
reads “Hello World!”, as you would expect. Note further that you cannot click
on the button; it is not enabled. This is because you modified the setting of the
enabled slot in the earlier part of this example.

You can also use Works > Slots> Copy to copy this value to other objects in the
inspector, or even to other tools.

13.4 Configuring the inspector
The Inspector Preferences dialog lists a number of different display options in
its default general view. These include the standard options for sorting items
in the main list and displaying package information, together with some addi-
tional options specific to the inspector.

Figure 13.6 Inspector Preferences dialog

13.4 Configuring the inspector
Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items alphabetically according to the printed rep-
resentation of the item.

By Name Sorts items alphabetically according to their names.
This is the default setting.

By Package Sorts items alphabetically according to the packages of
the name field.

Unsorted Leaves items unsorted. This displays them in the order
they were originally defined.

In the Package panel, specify the name of the process package for the inspec-
tor. Select Show Package Names if you want package names to be displayed in
the inspector. See Section 3.7 on page 29 for more details.

The Maximum panel contains options to let you configure the amount of
information displayed in the inspector.

Choose a value from the Attribute Length drop-down list box to limit the
length of any attributes displayed in the main list (that is, the contents of the
first column in the list). The default value is 100 characters, and the minimum
allowable value is 20 characters.

Choose a value from the Items drop-down list box to limit the number of
items displayed in the main list. By default, 500 items are shown.

If you inspect an object that has more than the maximum number of items,
then the excess items are grouped together in a list which itself becomes the
last item displayed in the main list. Double-clicking on this inspects the
remaining items for the object.

If necessary, the inspector splits any remaining items into several lists, all
linked together in this fashion. For instance, if you limit the maximum num-
ber of items to 10, and inspect an object with 24 items, the inspector displays
the first 10, together with an 11th entry, which is a list containing the next ten
items. Double-clicking on this shows the next ten items, together with an 11th
entry, which is a list containing the last four items. This is illustrated in Figure
13.7 below.
167

The Inspector

168
Figure 13.7 Displaying an object with more items than can be displayed

13.5 Customizing the inspector
The inspector provides two additional commands in the listener view.

Check Bind $ to the current inspector object to bind the variable $ to the current
object in the inspector in the listener.

Check Automatically inspect listener values to inspect listener values automati-
cally.

Both options are checked by default.

13.6 Creating new inspection formats
13.6 Creating new inspection formats
There is a default inspection format for each Lisp object. If you want to cus-
tomize the Common LispWorks inspector, you can change the inspection for-
mat of a class by defining new methods on get-inspector-values . See the
LispWorks Reference Manual for a full description.

The Common LispWorks inspector tool can be customized by adding new
inspection formats. To do this, you need to define new methods on the generic
function get-inspector-values .

get-inspector-values takes two arguments: object and mode, and returns 5
values: names, values, getter, setter and type.

object The object to be inspected.

mode This argument should be either nil or eql to some
other symbol. The default format for inspecting any
object is its nil format. The nil format is defined for all
Lisp objects, but it might not be sufficiently informative
for your classes and it may be overridden.

names The slot-names of object.

values The values of the slots corresponding to names. The
inspector displays the names and values in two columns
in the scrollable pane.

getter This is currently ignored. Use nil .

setter This is a function that takes four arguments: an object
(of the same class as object), a slot-name, an index (the
position of the slot-name in names, counting from 0),
and finally a new-value. (It is usual to ignore either the
slot-name or the index.) This function should be able to
change the value of the appropriate slot of the given
object to the new-value.
169

The Inspector

170
type This is the message to be displayed in the message area
of the inspector. This is typically either mode or—if mode
is nil—then the name of the class of object.

13.6.1 Example

Consider the following implementation of doubly-linked lists.

(in-package "DLL")

(defstruct (dll (:constructor construct-dll)
 (:print-function print-dll))
 previous-cell
 value
 next-cell)

(defun make-dll (&rest list)
 (loop with first-cell
 for element in list
 for previous = nil then cell
 for cell = (construct-dll :previous-cell cell
 :value element)
 doing
 (if previous
 (setf (dll-next-cell previous) cell)
 (setq first-cell cell))
 finally
 (return first-cell)))

(defun print-dll (dll stream depth)
 (declare (ignore depth))
 (format stream "#<dll-cell ~A>" (dll-value dll)))

You can inspect a single cell by inspecting the following object:

(dll::make-dll "mary" "had" "a" "little" "lamb")

The resulting inspector has three slots: dll::previous-cell with value nil ,
value with value "mary" and dll::next-cell with value #<dll-cell had> .

In practice, you are more likely to want to inspect the whole doubly-linked list
in one window. To do this, define the following method on get-inspector-

values .

(in-package "DLL")

13.6 Creating new inspection formats
(defun dll-root (object)
 (loop for try = object then next
 for next = (dll-previous-cell try)
 while next
 finally
 (return try)))

(defun dll-cell (object number)
 (loop for count to number
 for cell = object then (dll-next-cell cell)
 finally
 (return cell)))

(defmethod system::get-inspector-values ((object dll)
 (mode (eql ’follow-links)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting (dll-value cell))
 nil
 #’(lambda (object key index new-value)
 (declare (ignore key))
 (setf (dll-value (dll-cell (dll-root object) index)) new-
value))
 "FOLLOW-LINKS")))

Inspecting the same object with the new method now displays five slots, num-
bered from 0 to 4 with values "mary" "had" "a" "little" and "lamb" .

The following example modifies the above call to get-inspector-values so
that it inspects cells rather than their value slots. The setter updates the next-

cell . Use this new mode to inspect the "lamb" cell and then set its next-cell

slot to (make-dll "with" "mint" "sauce"). The expanded sentence can
now be inspected in the follow-links mode.

(in-package "DLL")
171

The Inspector

172
(defmethod system::get-inspector-values
 ((object dll) (mode (eql ’follow-cells)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting cell)
 nil
 #’(lambda (object key index new-value)
 (declare (ignore key))
 (setf (dll-next-cell (dll-cell (dll-root object) index)) new-
value))
 "FOLLOW-CELLS")))

14

14Example: Using The Interface
Builder
This example shows you how to use the interface builder to design a simple
interface. It explains how to create the layout and the menu system, and dem-
onstrates some of the attributes that you can set. Finally, the interface is saved
to a file, and combined with some other simple code to produce a working
example. You are strongly advised to read Chapter 15, “The Interface
Builder”, before (or in conjunction with) this chapter. It is also useful, though
not essential, if you are familiar with the editor (Chapter 10), the listener
(Chapter 16), and Common Lisp systems.

The final interface created is shown in Figure 14.1. It consists of a column lay-
out which contains a graph pane, a display pane, and a list panel.
173

Example: Using The Interface Builder

174
Figure 14.1 Example interface

Any select action performed in either the graph pane or the list panel is
described in the display pane. This includes the following actions:

• Selecting any item

• Deselecting any item

• Extending the selection (by selecting more than one item)

Double-clicking any item in either the graph pane or the list panel displays a
dialog which shows which item you double-clicked.

14.1 Creating the basic layout
Lastly, there are menu commands available which display, in a dialog, the cur-
rent selection in either pane. Choose Selection > Graph to see the currently
selected items in the graph pane, and choose Selection > List Panel to see the
currently selected items in the list panel.

14.1 Creating the basic layout
This section shows you how to create the basic layout for your interface, with-
out specifying any attributes. Normally, this stage is literally the work of only
a few seconds. The process is described in some detail here, to illustrate the
way that the interface builder ensures that the most appropriate item is
selected in the graphs of both the layouts and menus views, so as to minimize
the steps you need to take when creating an interface.

1. Create an interface builder, if you do not already have one.

2. Choose File > New.

A new, empty, interface skeleton appears.

3. If the layouts view is not displayed, click the Layouts tab in the interface
builder.

To begin, you need to add the main column layout to the interface using
the buttons panels at the bottom of the interface builder. The Layouts tab
at the bottom of the interface builder (as distinct from the Layouts tab
you use to switch to the layouts view), lists the different types of layout
that you can add to an interface.

4. Click Column in the button panel.

A column layout object is added as a child of the interface object. Noth-
ing appears in the interface skeleton yet, since a column layout is a con-
tainer for other window objects, and cannot itself be displayed. Note
that the column layout remains selected in the layout graph. This is
because column layouts are objects which can themselves have children,
and the interface builder assumes that you are going to add some chil-
dren next.

5. In the button panel, click the Graph Panes tab, and then click Graph to
add a graph pane to the interface.
175

Example: Using The Interface Builder

176
The graph pane object is added as the child of the column layout, and a
graph pane appears in the interface skeleton.

6. Next, click the Basic Panes tab and then click Display .

7. Next, click List Panel .

The objects that you specify are added to the interface, and the interface
skeleton is updated accordingly. Note that the column layout object
remains selected throughout. You have now created the basic layout for
the interface.

Next, suppose that you decide to add a title to the left of the display pane. You
might want to do this make it clear what information is being shown in the
display pane.

To do this, you can create a new row layout, add a title pane to it, and then
move the existing display pane into this new row-layout. In addition, you
must reorganize some of the elements in the interface.

1. Ensure that Column-Layout-1 is still selected in the Layout hierarchy
area.

The new row layout needs to be added as a child of the column layout.

2. In the button panel at the bottom of the interface builder, click the Lay-
outs tab to display the available layouts once more.

3. Click on Row.

Notice that the new row layout remains selected, ready for you to add
objects to it.

4. Click the Basic Panes tab again, and click Title .

Next, you must move the display pane you have already created, so that
it is contained in the new row layout.

5. In the Layout hierarchy area, select Display-Pane-1 and choose Edit >
Cut .

6. Select Row-Layout-1 and choose Edit > Paste .

14.2 Specifying attribute values
The items have already been placed in the row layout in the positions
you want them. However, the row layout itself has been added to the
bottom of the interface; you want it to be in the same position as the dis-
play pane you initially created. To do this, move the list panel to the bot-
tom of the interface.

7. Select List-Panel-1 and choose Object > Lower from the menu bar on
the interface builder itself.

You have now finished creating the layout for the example interface. The next
step is to name the elements of the interface in a sensible fashion.

14.2 Specifying attribute values
As you have already seen, the interface builder assigns default names such as
Row-Layout-1 to the elements you add to an interface; you usually want to
replace these with your own names. In addition, there are probably titles that
you want to add to the interface; you can see the default titles that have been
created by looking at the interface skeleton. The next stage of the example
shows you how to change these default names and titles.

Changing the name or title of an element is actually just a case of changing the
value assigned to an attribute of that element, as described in Section 15.5.4 on
page 210. You would normally assign values to a number of different
attributes at once, rather than concentrating on the names and titles of ele-
ments. The example is structured in this way to give you an idea of the sort of
working practices you might find it useful to adopt when generating interface
code.

To recap, the layout hierarchy of the example interface is shown in Figure 14.2.
To ensure that you can understand this layout easily in the future, it is impor-
tant to assign meaningful names and titles to the elements it contains now.
177

Example: Using The Interface Builder

178
Figure 14.2 Layout hierarchy of the example interface

1. Select the INTERFACE-1 object and press Return.

The Attributes dialog appears as shown in Figure 14.3.

Figure 14.3 Attributes dialog for the example interface

14.2 Specifying attribute values
Notice that the NAME attribute of the interface has the value INTER-

FACE-1, and the TITLE attribute has the value "Interface-1" .

Note: If this is not the first interface you have created in the current ses-
sion, the number is different.

2. Delete the value in the NAME text box, and type ib-example .

3. Delete the value in the TITLE text box, and type "Example Interface" .

4. Click OK to dismiss the Attributes dialog and update the interface.

The name of the interface is now displayed as IB-EXAMPLE in the Layout
hierarchy area, and the title of the interface skeleton changes to Example

Interface .

Note: Case is not significant in the NAME attribute, because it is a Com-
mon Lisp symbol, but it is significant in the TITLE attribute, which is a
string.

5. Select the Column-Layout-1 element, display its Attributes dialog, and
change the value of its NAME attribute to main-layout .

Now change the names of the other objects in the interface.

6. Select the graph pane and change its NAME attribute to graph , and its
INTERACTION attribute to :extended-selection . Click OK.

7. Select the list panel and change its NAME attribute to list , and its
INTERACTION attribute to :extended-selection . Do not click OK yet.

The value of the INTERACTION attribute allows you to select several
items from the list panel and the graph pane, using the appropriate
method for your platform.

8. Change the ITEMS attribute of the list panel to the following string:

’("One" "Two" "Three" "Four" "Five" "Six" "Seven" "Eight")

9. Click OK.

The row layout you created contains objects which are used solely to dis-
play information.

10. Select the row layout object and change its NAME attribute to
display-layout .

11. Change the ADJUST attribute of the row layout to :center . Click OK.
179

Example: Using The Interface Builder

180
Changing the ADJUST attribute centers the title pane and the display
pane vertically in the row layout, which ensures they line up more pleas-
ingly.

In the working example, the display-layout object is going to show
information about the current selection, so you need to change the
names and titles of the objects it contains accordingly.

12. Select the title pane and change its NAME attribute to selection-title

and its TEXT attribute to "Selection:" . Click OK.

13. Select the display pane and change its NAME attribute to selection-

text , and its TEXT attribute to "Displays current selection" . Click
OK.

This specifies a text string that is displayed when the interface is initially
created. This string disappears as soon as you perform any action in the
interface.

The layout hierarchy is now as shown in Figure 14.4. The names that you have
assigned to the different objects in the interface make the purpose of each ele-
ment more obvious.

Figure 14.4 Layout hierarchy with names specified

14.3 Creating the menu system
Next, you need to create a menu system for the example interface. This section
shows you how to create the basic objects which comprise it.

1. Click the Menus tab in the interface builder to switch to the menus view.

A menu bar is created automatically when you create a new interface. To
create the menu system for the example interface, you need to add a
menu which contains two items.

14.3 Creating the menu system
2. Select the Menu-Bar object in the Menu hierarchy area.

3. Click Menu to create the menu, then click Item twice to create the two
items in the menu.

Notice that, as in the layouts view, an object remains selected if it can
itself have children. This means that creating the basic menu structure is
a very easy process.

Next, you need to name the objects you have created. As with the layouts, this
is achieved by specifying attribute values.

4. Make sure that the Menu-1 menu is still selected, and press Return to dis-
play its Attributes dialog.

5. Change its NAME attribute to selection-menu . Do not click OK yet.

As well as specifying the NAME attribute for the menu you created, you
need to change the TITLE attribute of each object you created. To do this,
you must ensure that the appropriate attribute categories are displayed
in the Attributes dialog.

6. Click on the Title tab in the Attributes dialog.

The Attributes dialog changes to appear as shown in Figure 14.5.
181

Example: Using The Interface Builder

182
Figure 14.5 Displaying title attributes for a menu

7. In the Title tab view of the Attributes dialog, change the TITLE attribute
to "Selection" . Click OK.

The TITLE attribute is used to specify the title of the menu that appears
in the interface itself; note the change in the interface skeleton.

Next, you need to change the attributes of the two menu items.

14.4 Specifying callbacks in the interface definition
8. Select the "Item-1" object and press Return.

9. In the Attributes dialog, change the TITLE attribute to "Graph" and the
NAME attribute to graph-command . Click OK.

10. Select the "Item-2" object, display its Attributes dialog and change the
TITLE attribute to "List Panel" and the NAME attribute to list-

panel-command . Click OK.

You have now finished the basic definition of the menu system for your exam-
ple interface.

14.4 Specifying callbacks in the interface definition
The interface that you have designed contains a complete description of the
layouts and menus that are available, but does not yet specify what any of the
various elements do. To do this, you need to specify callbacks in the interface
definition. As you might expect, this is done by setting attribute values for the
appropriate elements in the interface.

In this example, the callbacks that you supply are calls to other functions, the
definitions for which are assumed to be available in a separate source code
file, and are discussed in Section 14.6. Note that you do not have to take this
approach; you can just as easily specify callback functions within the interface
definition itself, using lambda notation. It is up to you whether you do this
within the interface builder, or by loading the code in the editor. If you choose
the former, note that it may be easier to use the code view, rather than typing
lambda functions into the Attributes dialog.

14.4.1 Specifying layout callbacks and other callback information

This section shows you how to specify all the callbacks necessary for each ele-
ment in the example interface, together with other attributes that are required
for correct operation of the callback functions. You need to specify attribute
values for the display pane, the list panel and the graph pane.

1. If necessary, click the Layouts tab at the top of the interface builder to
display the layouts view.

For the display pane, you only need to specify one attribute.
183

Example: Using The Interface Builder

184
2. Select the Selection-Text display pane and display the Attributes dia-
log.

3. Set the READER attribute to selection-reader .

This reader allows the display pane to be identified by the callback code.

For the list panel, you need to specify four callbacks and a reader.

4. Select the List list panel and display its Attributes dialog.

5. Set the READER attribute to list-reader . Do not click OK yet.

Like the display pane, this reader is necessary so that the list panel can
be identified by the callback code.

Next, you need to specify the following four types of callback:

Selection callback. The function that is called when you select a list
item.

Extend callback. The function that is called when you extend the current
selection.

Retract callback. The function that is called when you deselect a list
item.

Action callback. The function that is called when you double-click on a
list item.

Callbacks attributes are not currently visible in the Attributes dialog, so you
must display them first.

6. Click Options , and ensure that Callbacks is selected in the Attributes to
View dialog and click OK.

7. Now set the following attributes of the list panel. Click OK when done.

SELECTION-CALLBACK to ’update-selection-select

EXTEND-CALLBACK to ’update-selection-extend

RETRACT-CALLBACK to ’update-selection-retract

ACTION-CALLBACK to ’display-selection-in-dialog

8. Select the Graph graph pane and display its Attributes dialog.

14.4 Specifying callbacks in the interface definition
For the graph pane, you need to set the same four callbacks, as well as a
reader, and two other attributes that are important for the callback code
to run correctly.

9. Set the following attributes of the graph pane.

SELECTION-CALLBACK to ’update-selection-select

EXTEND-CALLBACK to ’update-selection-extend

RETRACT-CALLBACK to ’update-selection-retract

ACTION-CALLBACK to ’display-selection-in-dialog

10. Set the READER attribute to graph-reader .

11. Set the CHILDREN-FUNCTION attribute to ’children-function .

The children function defines what is drawn in the graph, and so is vital
for any graph pane.

12. Set the NODES-CONTRACTABLE-P attribute to nil .

Normally, double-clicking on a graph node expands or collapses the
node, as appropriate. In this example, the action callback calls a different
function explicitly. To ensure that this function is always called, you
must inhibit the normal graph behavior by setting this attribute to nil . If
you do not do this, then the action callback you have specified is only
called on nodes which cannot be expanded or contracted (that is, leaf
nodes).

13. Click OK to dismiss the Attributes dialog.

Note: The graph pane no longer displays a graph. This is because you have
specified a children function which is not yet defined in the environment. You
may also find that a notifier appears, informing you that the function is not
defined. Click Abort to remove the notifier.

14.4.2 Specifying menu callbacks

The callbacks that are necessary for the menu system are much simpler than
for the layouts; the example interface only contains two menu commands, and
they only require one callback each.

1. Click the Menus tab to switch to the menus view.
185

Example: Using The Interface Builder

186
2. Choose the "Graph" menu item, display its Attributes dialog and change
the CALLBACK attribute to ’display-graph-selection . Click OK.

3. Choose the "List Panel" menu item, display its Attributes dialog and
change the CALLBACK attribute to ’display-list-selection . Click
OK.

14.5 Saving the interface
If you have followed this example from the beginning, the interface is now
completely specified. You can now save the source code definition in a file.

1. Choose File > Save or click to save the interface definition. Choose a
directory in the dialog that appears, and specify the filename
ib-example.lisp in the “File name” text box.

The file ib-example.lisp is displayed in the editor.

14.6 Defining the callbacks
This section shows you how to create the callback functions you need to
define in order to complete the working example.

1. Choose File > New or click to create a new file.

2. Choose File > Save or click to save the file. Save it in the same direc-
tory you saved ib-example.lisp , and call this new file ib-call-

backs.lisp .

3. In the editor, specify the package for the callback definitions by typing
the following into the ib-callbacks.lisp file:

(in-package "COMMON-LISP-USER")

4. Type the function definitions given in the rest of this section.

5. Choose File > Save or click to save the file when you have typed in
all the function definitions.

The functions that you need to define in this file are divided into the following
categories:

• Callbacks to update the display pane.

14.6 Defining the callbacks
• Callbacks to display data in a dialog.

• Callbacks for menu items.

• Other miscellaneous functions.

14.6.1 Callbacks to update the display pane

One main function, update-selection , serves to update the display pane
whenever selections are made in the graph pane or the list panel.

(defun update-selection (type data interface)
 (setf (capi:display-pane-text (selection-reader interface))
 (format nil "~A ~A" data type)))

The following three functions are the callbacks specified whenever a select,
retract or extend action is performed in either the list panel or the graph pane.
Each function is named according to the type of callback it is used for, and it
simply calls update-selection with an additional argument denoting the
callback type.

(defun update-selection-select (&rest args)
 (apply ’update-selection "selected" args))

(defun update-selection-retract (&rest args)
 (apply ’update-selection "deselected" args))

(defun update-selection-extend (&rest args)
 (apply ’update-selection "extended" args))

14.6.2 Callbacks to display data in a dialog

As with update-selection , one main function serves to display the data from
any action in a dialog.

(defun display-in-dialog (type data interface)
 (capi:display-message
 "~S: ~A ~S"
 (capi:interface-title interface) type data))

The function display-selection-in-dialog is the action callback for both
the graph pane and the list panel. It calls display-in-dialog , specifying one
of the required arguments.
187

Example: Using The Interface Builder

188
(defun display-selection-in-dialog (&rest args)
 (apply ’display-in-dialog "selected" args))

Note: Although only one action callback is specified in the example interface,
the relevant functions have been defined in this modular way to allow for the
possibility of extending the interface. For instance, you may decide at a later
date that you want to display the information for an extended selection in a
dialog, rather than in the display pane. You could do this by defining a new
callback which calls display-in-dialog , passing it an appropriate argument.

14.6.3 Callbacks for menu items

Both menu items in the interface need a callback function. As with other call-
back functions, these are specified by defining a general callback, display-

pane-selection , which displays, in a dialog, the current selection of any
pane.

(defun display-pane-selection (reader data interface)
 (declare (ignore data))
 (capi:display-message "~S: ~S selected"
 (capi:capi-object-name
 (funcall reader interface))
 (capi:choice-selected-items
 (funcall reader interface))))

The following two functions call display-pane-selection , passing the reader
of a pane as an argument. These functions are specified as the callbacks for the
two menu items.

(defun display-graph-selection (&rest args)
 (apply ’display-pane-selection ’graph-reader args))

(defun display-list-selection (&rest args)
 (apply ’display-pane-selection ’list-reader args))

As with the other callback functions, specifying the callbacks in this way
allows for easy extension of the example.

14.6.4 Other miscellaneous functions

Graph panes require a function which is used to plot information, called the
children function. The value of the ROOTS attribute of a graph is passed as an

14.7 Creating a system
argument to the children function in order to start the plot. The example inter-
face uses the following simple children function.

(defun children-function (x)
 (when (< x 8)
 (list (* x 2) (1+ (* x 2)))))

Note: The ROOTS attribute of a graph pane has a default value of ’(1) . This is
generated automatically by the interface builder.

Finally, the function test-ib-example is used to create an instance of the
example interface.

(defun test-ib-example ()
 (capi:display (make-instance ’ib-example)))

14.7 Creating a system
If you have followed this example from the beginning, the interface and its
callbacks are now completely specified. Next, you can create a Common Lisp
system which integrates the interface definition with the callback code.

1. Choose File > New or click . This creates a new, unnamed file in the
editor.

2. Type the following form into this new file:

(defsystem ib-test
 (:package "CL-USER")
 :members ("ib-callbacks" "ib-example"))

This form creates a system called ib-test that contains two members;
ib-example.lisp (the file containing the interface definition) and ib-

callbacks.lisp (the file containing the callback code).

3. Choose File > Save or click to save the new file. Save it in the same
directory that you saved the ib-example.lisp and ib-callbacks.lisp

files, and call this file defsys.lisp .

14.8 Testing the example interface
You have now finished specifying the example interface and its callback func-
tions, so you can test it.
189

Example: Using The Interface Builder

190
1. Choose File > Save or click to save ib-example.lisp , ib-call-

backs.lisp , and defsys.lisp if you have not already done so.

Next, you need to load the ib-test system into the environment.

2. In the editor, make sure that the file defsys.lisp is visible, and choose
File > Compile and Load to compile and load it into the environment.

3. Press Space when the compilation has finished.

4. In the listener, type the following form.

(load-system ’ib-test)

The ib-test system, together with its members, is loaded into the envi-
ronment.

5. To test the interface, type the following form into the listener.

(cl-user::test-ib-example)

A fully functional instance of the example interface is created for you to exper-
iment with.

15

15The Interface Builder
The interface builder lets you construct graphical user interfaces (GUIs) for
your applications. You design and test each window or dialog in your applica-
tion, and the interface builder generates the necessary source code to create
the windows you have designed; all you need to do is add callbacks to the
generated code so that your own source code is utilized.

As you create each window, it is automatically displayed and updated on-
screen, so that you can see what you are designing without having to type in,
evaluate, or compile large sections of source code.

As well as making code development significantly faster, the interface builder
allows you to try out different GUI designs, making it easier to ensure that the
final design best suits your users’ needs.

The interface builder has three views to let you design an interface.

• The layouts view is used to specify the elements in each window or dia-
log of an application.

• The menus view is used to create menus and menu items for each win-
dow of an application.

• The code view lets you examine the source code that is automatically
generated as you create an interface.
191

The Interface Builder

192
Like the debugger tool, the interface builder also has its own menu bar, con-
taining commands that let you work with a loaded interface, or any of its
components.

To create an interface builder, choose Tools > Interface Builder from the
LispWorks podium.

Figure 15.1 The interface builder

Because the interface builder generates source code which uses the CAPI
library, this chapter assumes at least a minimum knowledge of the CAPI. See
the CAPI User Guide and the CAPI Reference Manual for details.

15.1 Creating or loading interfaces
A complete example showing you how to use the interface builder to design
an interface, and how to integrate the design with your own code, is given in
Chapter 14, “Example: Using The Interface Builder”. You are strongly advised
to work through this example after reading this chapter, or in conjunction
with it.

15.1 Creating or loading interfaces
In the context of this chapter, an interface refers to any single window which is
used in an application. Thus, an editor, an Open File dialog, or a confirmer
containing an error message are all examples of interfaces. The GUI for a com-
plete application is liable to comprise many interfaces. You can load as many
different interfaces into the interface builder as you like, although you can
only work on one interface at once. More formally, the class capi:interface

is the superclass of all CAPI interface classes, which is the set of classes used
to create elements for on-screen display. You can load any code which defines
instances of this class and its subclasses into the interface builder.

Once you have invoked the interface builder, you can create new interfaces, or
load any that have already been saved in a previous session. You must load or
create at least one interface before you can proceed.

15.1.1 Creating a new interface

When you first start the interface builder, a new interface is created for you
automatically. You can also choose File > New or click on to create a new
interface. A blank Common LispWorks window, known as the interface skele-
ton, appears on-screen, as shown in Figure 15.2. The interface skeleton con-
tains no layouts or panes, or menus.
193

The Interface Builder

194
Figure 15.2 Skeleton Common LispWorks window

You can use File > New to create as many interfaces as you want; they are all
displayed as soon as you create them. Since you can only work on one inter-
face at a time, use the History > Items submenu to switch between different
interfaces that are currently loaded in the interface builder.

As an alternative, type the name of an interface directly into the Interface text
box and press Return to create a new interface, or to switch to an interface
which is already loaded.

15.1.2 Loading existing interfaces

Choose File > Open or click to load an existing interface into the interface
builder. You can load any CAPI interface, whether it is one that you have
designed using the interface builder, or one that has been coded by hand
using the CAPI library. You can load as many interfaces as you want, and then
use the History > Items submenu to swap between the loaded interfaces when
working on them.

To load one or more existing interfaces:

1. Choose File > Open .

15.1 Creating or loading interfaces
A file prompter dialog appears.

2. Choose a file of Common Lisp source code.

You should choose a file that contains the source code for at least one CAPI
interface. If the file does not contain any such definitions, an error message
appears informing you of this.

Once you have chosen a file, a dialog appears listing all the interface defini-
tions that have been found in the file, as shown in Figure 15.3. This lets you
choose which interface definitions to load into the interface builder. By
default, all the definitions are selected.

Figure 15.3 Choosing which interfaces to load into the interface builder

3. Select the interfaces you want to load into the interface builder and click
OK.

You can select as many or as few of the listed interfaces as you like; the All or
None buttons can help to speed your selection. Click Cancel to cancel loading
the interfaces altogether.
195

The Interface Builder

196
15.2 Creating an interface layout
The default view in the interface builder is the layouts view, as shown in Fig-
ure 15.4. You use this view to specify the entire GUI design, with the exception
of the menus. Click the Layouts tab to swap to this view from any other in the
interface builder.

Figure 15.4 Displaying the layouts in the interface builder

The interface builder has three sections in the layouts view.

15.2 Creating an interface layout
15.2.1 Interface box

The interface text box displays the name of the current interface; the interface
that you are currently working on. Note that there may be several other inter-
faces loaded into the interface builder, but only one can be current.

To switch to another loaded interface, or to create a new interface, type the
name of the interface into this area and press Return. The interface you specify
appears and its layouts are shown in the interface builder.

15.2.2 Graph area

This area displays, in graph form, the CAPI elements of the current interface.

A popup menu gives you access to the standard graph commands described
in Chapter 5, “Manipulating Graphs”.

By default, the graph is laid out from left to right. The main interface name is
shown at the extreme left, and the layouts and elements defined for that inter-
face are shown to the right. The hierarchy of the layouts (that is, which ele-
ments are contained in which layouts, and so on) is immediately apparent in
the graph.

An item selected in the graph can be operated on by commands in the Object
menu in the interface builder’s menu bar. This menu contains the standard
action commands described in Section 3.8 on page 31, as well as a number of
other commands described throughout this chapter.

15.2.3 Button panels

At the bottom of the interface builder are several tab layouts, each of which
contains a large selection of buttons. These tabs list the types of CAPI interface
class that can be used in the design of the current interface.

• Click the Layouts tab to see the different types of layout that you can
use in an interface. This is the default tab and is displayed when you
first switch to the layouts view.All other elements must be contained in
layouts in order for them to be displayed.
197

The Interface Builder

198
• There are four different types of Panes tab: Basic, Graph, Editor and
Range. Click on each to see the different types of pane that you can use
in an interface.

• Click the Buttons tab to see the different types of button that you can
use in an interface.

• Click the Pinboard Objects tab to see the different types of pinboard
object that you can use in an interface.

• Click the Interfaces tab to see a number of types of pre-defined interface
objects that you can use in an interface. These are interfaces which are
already used throughout the Common LispWorks environment, and
which may be useful in your own applications. Many of the tools
described in this manual area listed in this pane.

• Click on the Dividers tab to select between Column and Row layout
dividers.

15.2.4 Adding new elements to the layout

To add a new element to the layout, click the relevant button in any of the tabs
in the button panel. The element is added as the child of the currently selected
graph node. If nothing is currently selected, the element is added as the child
of the last selected node.

Because construction of the interface layout is performed by selecting CAPI
elements directly, you must be familiar with the way that these elements are
used in the construction of an interface.

For instance, the first element to add to an interface is likely to be a CAPI lay-
out element, such as an instance of the row-layout class or column-layout

class. Not surprisingly, these types of element can be found in the Layouts tab
of the button panel. Elements such as buttons or panes (or other layouts) are
then added to this layout. In order to generate CAPI interfaces, it is important
to know that all window elements must be arranged inside a layout element
in this way.

When you add an element to the design, two windows are updated:

• The graph in the layout view is updated to reflect the position of the
new element in the hierarchy.

15.3 Creating a menu system
• The interface skeleton is updated; the element that has been added
appears.

When you add an item, an instance of that class is created. By default, the val-
ues of certain attributes are set so that the element can be displayed and the
hierarchy layout updated in a sensible way. This typically means that name
and title attributes are initialized with the name of the element that has been
added, together with a numeric suffix. For instance, the first output pane that
is added to an interface is called Output-Pane-1 . You should normally change
these attribute values to something more sensible, as well as set the values of
other attributes. See Section 15.5 for details about this.

For a practical introduction to the process of creating an interface using the
interface builder, see Chapter 14, “Example: Using The Interface Builder”.

15.3 Creating a menu system
The menus view of the interface builder can be used to define a menu system
for the current interface. Click the Menus tab to switch to the menus view
from any other view in the interface builder. The interface builder appears as
shown in Figure 15.5.
199

The Interface Builder

200
Figure 15.5 Displaying the menu structure of an interface

The menus view has two areas, together with six buttons which are used to
create different menu elements. As with layouts, it is important to understand
how CAPI menus are constructed. See the CAPI User Guide for details.

15.3.1 Interface box

This box is identical to the Interface box in the layouts view. See Section 15.2.1
for details.

15.3 Creating a menu system
15.3.2 Graph area

The graph area in the menus view is similar to the graph area in the layouts
view. It displays, in graph form, the menu system that has been defined for
the current interface. Menu items are displayed as the children of menus or
menu components, which in turn are displayed as the children of other
menus, or of the entire menu bar.

Like the layouts view, a new menu element is added as the child of the cur-
rently selected item in the graph, or the last selected element if nothing is cur-
rently selected.

15.3.3 Adding menu bars

A single menu bar is created in any new interface by default. This appears in
the graph area as a child of the entire interface.

If you decide to delete the menu bar for any reason, use the Menu Bar button to
create a new one.

15.3.4 Adding menus

To add a menu, click Menu on the button bar at the bottom of the interface
builder. Each menu must be added as the child of the menu bar, or as the child
of another menu or menu component. In the first case, the new menu is visible
on the main menu bar of the interface. Otherwise, it appears as a submenu of
the relevant menu.

Newly created menus cannot be selected in the interface skeleton until menu
items or components are added to them.

By default, new menus are called MENU-1, MENU-2 and so on, and appear in the
interface skeleton as Menu-1 , Menu -2 and so on, as relevant. See Section 15.5
for details on how to change these default names.

15.3.5 Adding menu items

To add a menu item to the current interface, click Item on the button bar. Each
menu item must be added as the child of either a menu or a menu component.
201

The Interface Builder

202
If added as the child of a menu component, new items have a type appropri-
ate to that component; see Section 15.3.6 for details.

By default, new menu items are named ITEM-1 , ITEM-2 , and so on, and are
displayed in the interface skeleton as Item-1 , Item-2 and so on, as relevant. See
Section 15.5 for details on how to change these default names.

15.3.6 Adding menu components

Menu components are an intermediate layer in the menu hierarchy between
menus and menu items, and are used to organize groups of related menu
items, so as to provide a better structure in a menu system.

There are three types of menu component which can be defined using the
classes in the CAPI interface library:

• Standard menu components.

• Radio components.

• Check components.

15.3.6.1 Standard menu components

A standard menu component can be used to group related menu commands
that would otherwise be placed as direct children of the menu bar they popu-
late. This offers several advantages.

• Related menu items (such as Cut , Copy, and Paste) are grouped with
respect to their code definitions, as well as their physical location in an
interface. This encourages a more logical structure which makes for a
better design philosophy.

• Using standard menu components to group related items is particularly
useful when re-arranging a menu system. Groups of items may be
moved in one action, rather than moving each item individually.

• Grouping items together using standard menu components adds a sep-
arator which improves the physical appearance of any menu.

Click Component in the button bar to add a standard menu component to the
current interface. Menu components must be added as the children of a menu.

15.3 Creating a menu system
Menu components are not visible in the interface skeleton until at least one
item or submenu has been added, using the Item or Menu buttons.

Menu items added to a standard menu component appear as standard menu
items in that component.

15.3.6.2 Radio components

A radio component is a special type of menu component, in which one, and
only one, menu item is active at any time. For any radio component, one item
always returns t , and the others always return nil . The menu item that was
selected last is the one that returns t .

Radio components are used to group together items, only one of which may
be chosen at a time.

Click Radio Component in the button bar of the interface builder to add a radio
component to the current interface. Radio components must be added as the
children of a menu, and, like standard menu components, are not visible in
the interface skeleton until items have been added. To add an item to a radio
component, click Item . New items are automatically of the correct type for
radio components. Note that you cannot add a submenu as an item in a radio
component.

The way that radio components are indicated on-screen depends on the oper-
ating system or window manager you are running; a dot to the left of the
selected item is common. On some systems, a diamond button is placed to the
left of every item, and this is depressed for the item which is currently
selected.

Like standard menu components, separators divide radio components from
other items or components in a given menu.

15.3.6.3 Check components

Like radio components, check components place constraints on the behavior
of their child items when selected. Each item in a check component either
returns t or nil , and repeatedly selecting a given item toggles the value that is
returned. Thus, check components allow you to define groups of menu items
which can be turned on and off independently.
203

The Interface Builder

204
An example of a check component in the Common LispWorks environment
are the commands in the Tools > Customize menu, available from any window
in the environment.

Click Check Component in the button bar of the interface builder to add a
check component to the current interface. Like other components, check com-
ponents must be added as the children of a menu, and are not visible until
items have been added. Use the Item button to add an item to a check compo-
nent; it is automatically given the correct menu type. Note that you cannot
add a submenu as an item in a radio component.

Like radio components, the way that check components are indicated on-
screen depend on the window manager or operating system being used. A
tick to the left of any items which are “switched on” is typical. Alternatively, a
square button to the left of check component items (depressed for items which
are on) may be used.

15.4 Editing and saving code
As you create an interface in the interface builder, source code for the interface
is generated. You can use the code view to examine and, if you want, edit this
code. You can also save the source code to disk for use in your application.
This section discusses how to edit and save the code generated by the inter-
face builder, and discusses techniques which let you use the interface builder
in the most effective way.

15.4.1 Integrating the design with your own code

As the design for a GUI evolves, it is useful to include the code generated by
the interface builder with your own code, in order to produce a working
application that you can test.

The flexible design of the interface builder means that you can use the soft-
ware development strategy that you find the most appropriate. You do not
have to change the way you work in order to get the best out of the interface
builder. Rather, your usage of the interface builder fits in with your own
working practice.

At one extreme, you can specify the entire GUI for an application using the
interface builder: even callbacks, keyboard accelerators for menu items, and

15.4 Editing and saving code
so on. This means that the source code for the entire GUI is generated auto-
matically, and can then be integrated with your own hand-written source code
in the manner which suits you best, perhaps by using Common Lisp systems,
as described in the LispWorks User Guide.

Alternatively, you may prefer to use the interface builder for the basic design
only. Once you have created an interface skeleton that you are happy with,
you could start to augment the automatically generated source code with
hand-written code. At this stage, you could dispense with the interface
builder completely if you wished.

There are, of course, many stages between these two extremes. Because of the
iterative nature of software evolution, the interface builder is often best used
in parallel with other tools. A cyclic work pattern is often most effective,
whereby you develop part of the interface (using the interface builder)
together with the underlying code (using other tools), then save and test the
results, and then go back and fine-tune the code you have already developed.

The interface builder is flexible enough that you can use it to whatever level
you feel is most suited to your working methods, and to the needs of the
application itself.

15.4.2 Editing code

Click the Code tab to switch to the code view. You can use this view to display
and edit the code that is generated by the interface builder. The interface
builder appears as shown in Figure 15.6.
205

The Interface Builder

206
Figure 15.6 Displaying source code in the interface builder

Like the other views in the interface builder, an Interface box at the top of the
code view displays the name of the current interface. See Section 15.2.1 for
details.

The rest of this view is dedicated to a an editor window that displays the code
generated for the interface. Like other editor windows in Common
LispWorks, all the keyboard commands available in the built-in editor are
available in the Code area.

15.4 Editing and saving code
If you want to change the definition of the current interface by editing the
source code directly, edit the code in the Code area and then click Update . Any
changes you have made are reflected in the interface skeleton.

15.4.3 Saving code

There are several ways to save the code generated by the interface builder into
files of source code. Any files that you save are also displayed as buffers in the
editor.

Choose File > Save or click to save the current interface. If it has already
been saved to a file, the new version is saved to the same file. If the interface
has not been saved before, you are prompted for a filename. After saving, the
file is displayed in the editor.

Choose File > Save As to save the current interface to a specific file. This com-
mand always prompts you for a filename; if the interface has not been saved
before, this command is identical to File > Save , and if the interface has already
been saved, this command saves a copy into the file you specify, regardless of
the file it was originally saved in. After saving, the file is displayed in the edi-
tor.

Choose File > Save All to save all of the interfaces that have been modified. A
dialog allows you to specify precisely which interfaces to save. Choosing this
command is analogous to choosing File > Save individually for each of the
interfaces you want to save. If there are any interfaces which have not been
saved previously, you are prompted for filenames for each one.

Choose File > Revert to revert the current interface to the last version saved.

Choose File > Close to close the current interface. You are prompted to save
any changes if you have not already done so. The interface name is removed
from the History > Items submenu.

Individual interface definitions are saved in an intelligent fashion. You can
specify the same filename for any number of interfaces without fear of over-
writing existing data. Interface definitions which have not already been saved
in a given file are added to the end of that file, and existing interface defini-
tions are replaced by their new versions. Source code which does not relate
directly to the definition of an interface is ignored. In this way, you can safely
combine the definitions for several interfaces in one file, together with other
207

The Interface Builder

208
source code which might be unrelated to the user interface for your applica-
tion.

Conversely, when loading interfaces into the environment (using File > Open
or), you do not have to specify filenames which only contain definitions
of interfaces. The interface builder scans a given file for interface definitions,
loads the definitions that you request, and ignores any other code that is in the
file. See Section 15.1.2 for details on loading interfaces into the interface
builder.

This approach to saving and loading interface definitions ensures that your
working practices are not restricted in any way when you use the interface
builder to design a GUI. You have complete control over the management of
your source files, and are free to place the source code definitions for different
parts of the GUI wherever you want; the interface builder can load and save
to the files of your choice without failing to load interface definitions and
without overwriting parts of the source code which do not relate directly to
the GUI.

15.5 Performing operations on objects
There are a large number of operations you can perform on any object selected
in the graph of either the layouts view or the menus view. These operations
allow you to refine the design of the current interface.

The techniques described in this section apply to an object selected in either
the layouts view or the menus view. Any changes made are automatically
reflected in both the interface builder and the interface skeleton.

15.5.1 Editing the selected object

As in any other Common LispWorkstool, you can use the commands in the
Edit menu to edit the object currently selected in any graph of the interface
builder. See Section 3.4 on page 24 for full details on the commands available.

15.5.2 Browsing the selected object

As in other tools, you can transfer any object selected in the graph into a num-
ber of different browsers for further examination. The standard action com-

15.5 Performing operations on objects
mands that let you do this are available in the Object menu. See Section 3.8 on
page 31 for details.

15.5.3 Rearranging components in an interface

Rearranging the components of an interface in the most appropriate way is an
important part of interface design. This might involve rearranging the layouts
and window elements in an interface, or it might involve rearranging the
menu system.

The main way to rearrange the components of an interface (either the layouts
or the menu components) is to use the cut, copy and paste functions available,
as described below.

To move any object (together with its children, if there are any):

1. Select the object in a graph in the interface builder (either the layouts
view or the menus view, depending on the type of objects you are rear-
ranging).

2. Choose Edit > Cut .

The selected object, and any children, are transferred to the clipboard.
The objects are removed from the graph in the interface builder, and the
interface skeleton.

3. Select the object that you want to be the parent of the object you just cut.

You must make sure you select an appropriate object. For instance, in the
layouts view you must make sure you do not select a window element
such as a button panel or output window, since window elements can-
not have children. Instead, you should probably select a layout.

4. Choose Edit > Paste .

The objects that you transferred to the clipboard are pasted back into the inter-
face design as the children of the newly selected object. The change is immedi-
ately visible in both the graph and the interface skeleton.

Note: You can copy whole areas of the design, rather than moving them, by
selecting Edit > Copy instead of Edit > Paste . This is useful if you have a num-
ber of similar areas in your design.
209

The Interface Builder

210
The menu commands Object > Raise and Object > Lower can be used to raise or
lower the position of an element in the interface. This effects the position of
the element in the interface skeleton, the layout or menu hierarchy, and the
source code definition of the interface. Note that these commands are avail-
able from the menu bar in the interface builder, rather than from the
LispWorks podium.

15.5.4 Setting the attributes for the selected object

Choose Object > Attributes from the interface builder’s menu bar to display the
Attributes dialog for the selected object. This is shown in Figure 15.7. You can
also double-click on an object to display this dialog.

The Attributes dialog lets you set any of the attributes available to the selected
object, such as symbol names, titles, and callbacks. This gives you a high
degree of control over the appearance of any object in the interface.

15.5 Performing operations on objects
Figure 15.7 Setting the attributes of the selected object

The precise list of attributes displayed in the dialog depends on the class of
the object that you selected in the graph of the interface builder.

To set an attribute, type its value into the appropriate text box in the
Attributes dialog. Click OK to dismiss the Attributes dialog when you have
finished setting attribute values.

Because of the large number of attributes which can be set for any class of
object, you can configure which ones are displayed in the Attributes dialog.
For any object, the available attributes are divided into six general categories,
as follows:

• Basic attributes
211

The Interface Builder

212
• Advanced attributes

• Title attributes

• Callbacks attributes

• Geometry attributes

• Style attributes

15.5.4.1 Basic attributes

These are the attributes that you are most likely to want to specify new values
for. This includes the following information, depending on the class of the
selected object:

• The name of the object.

• The items available (for list panels).

• The orientation and borders (for layouts).

• The text representation (for menu items).

15.5.4.2 Advanced attributes

This category lets you specify more advanced attributes of the selected object,
such as its property list.

15.5.4.3 Title attributes

This category lets you specify the title attributes of the selected object. These
attributes affect the way an object is titled on-screen.

15.5.4.4 Callbacks attributes

This category lets you specify any of the callback types available for the
selected object. Many objects do not require any callbacks, and many require
several.

15.6 Performing operations on the current interface
15.5.4.5 Geometry attributes

This category lets you control the geometry of the selected object, by specify-
ing any of the available height and width attributes. Geometry attributes are
not available for menu objects.

15.5.4.6 Style attributes

This category lets you specify advanced style settings for the selected object.
This includes the following attributes:

• The font used to display items in a list.

• The background and foreground colors of an object.

• The mnemonic used for a menu item.

15.6 Performing operations on the current interface
You can perform a number of operations on the current interface, using the
commands in the Interface menu in the interface builder.

15.6.1 Setting attributes for the current interface

Choose Interface > Attributes to set any of the attributes for the current inter-
face. An Attributes dialog similar to that shown in Figure 15.7 appears. You
set attributes for the current interface in exactly the same way as you do for
any selected object in the interface. See Section 15.5.4 for details.

15.6.2 Displaying the current interface

As already mentioned, an interface skeleton is automatically displayed when
you load an interface into the interface builder, and any changes you make to
the design are immediately reflected in the skeleton. There are also a number
of commands which give you more control over the way that the interface
appears on-screen as you work on its design.

Choose Interface > Raise to bring the interface skeleton to the front of the dis-
play. This command is very useful if you have a large number of windows on-
screen, and want to locate the interface skeleton quickly.
213

The Interface Builder

214
Choose Interface > Regenerate to force a new interface skeleton to be created.
The existing interface skeleton is removed from the screen and a new one
appears. This command is useful if you have changed the size of the window,
and want to see what the default size is; this is especially applicable if you
have altered the geometry of any part of the interface while specifying
attribute values.

Regenerating the interface is also useful if you set an interface attribute which
does not cause the interface skeleton to be updated automatically. This can
happen, for instance, if you change the default layout of the interface, which
you might want to specify if an interface has several views.

Many interfaces in a GUI are used in the final application as dialogs or con-
firmers. For such interfaces, the interface skeleton is not necessarily be the
most accurate method of display. Choose Interface > Dialog or Interface > Con-
firmer to display the current interface as a dialog or as a confirmer, as appro-
priate. Dialogs are displayed without a menu bar, and with minimal window
decoration, so that the window cannot be resized. Confirmers are similar to
dialogs, but have OK and Cancel buttons added to the bottom of the interface.
To remove a dialog, click in its Close box.

15.6.3 Arranging objects in a pinboard layout

Most types of layout automatically place their children, so that you do not
have to be concerned about the precise arrangement of different objects in an
interface. Pinboard layouts, however, allow you to place objects anywhere
within the layout.

Objects which are added to a pinboard layout using the interface builder have
borders drawn around them in the interface skeleton. You can interactively
resize and place such objects by selecting and dragging these borders with the
mouse.

When you have rearranged the objects in a pinboard layout to your satisfac-
tion, choose Interface > Display Borders . This turns off the border display,
allowing you to see the appearance of the final interface.

Note: You can only move and resize objects in a pinboard layout when bor-
ders are displayed in the interface skeleton. Choosing Interface > Display Bor-
ders toggles the border display.

15.6 Performing operations on the current interface
15.6.4 Loading the current interface into the environment

Choose Interface > Evaluate to evaluate the definition for the current interface
in the environment. Choose File > Compile from the LispWorks podium to
compile the definition for the current interface in the environment. Using
either of these commands allows you to create instances of the interface, either
from the listener or from other code loaded into the environment. This is
therefore a useful way of testing out your GUI design with your application
source code.

If you have loaded a compiled version of your application source code into
the environment, you should use File > Compile to load the current interface. If
you have evaluated your application source code in the environment, then
load the current interface with Interface > Evaluate .
215

The Interface Builder

216

16

16The Listener
The listener is a tool that lets you evaluate Common Lisp expressions interac-
tively and immediately see the results. It is useful for executing short pieces of
Common Lisp, and extensive use is made of it in the examples given in this
manual. This chapter describes all the facilities of the listener.

16.1 The basic features of a listener
A listener is created automatically when you start Common LispWorks. You
can also create a listener yourself by choosing Tools > Listener from the menu
bar on the LispWorks podium.
217

The Listener

218
Figure 16.1 Listener

In the listener view, the main area of the listener contains a prompt in its top
left-hand corner.

Rather like the other types of command line prompt, this prompt helps you
identify the point in the listener at which anything you type is evaluated. It

Main area.Prompt.

Echo area.

Tabs.

16.2 Evaluating simple forms
may also contain other useful information, such as the current package or the
current number in the history list. Throughout this chapter, the prompt is
shown in pieces of example code as PROMPT >.

You can click the Output tab to display the output view of the listener; this
view displays any output that is created by the listener, or any child processes
created from the listener..

As with other tools, commands available in the Works menu of the LispWorks
podium are specific to the listener, when it is the active window.

To familiarize yourself with the listener, follow the instructions in the rest of
this chapter, which forms a short lesson. Note that, depending on the nature of
the image you are using, and the configuration that the image has been saved
with, the messages displayed by Lisp may be different to those shown here.

16.2 Evaluating simple forms
1. Type the number 12 at the prompt, and press Return.

In general, assume that you should press Return after typing something at the
prompt, and that you should type at the current prompt (that is, the one at the
bottom of the screen). In fact, the latter is not always necessary; Section 16.9 on
page 224 describes how to move the cursor to different places, and thus you
may not always be on the current prompt.

Any Common Lisp form typed at the prompt is evaluated and its results
printed immediately below in the listener.

Common Lisp evaluates this input and prints the result of that evaluation.
When Common Lisp evaluates a number, the result is the number itself, and
so 12 is printed out:

PROMPT > 12
12

PROMPT >

When results are printed in the listener, they start on the line following the last
line of input. The 12 has been printed immediately below the first prompt,
and below that, another prompt has been printed.

2. Type * at the current prompt.
219

The Listener

220
PROMPT > *
12

PROMPT >

* always has as its value the result of the previous expression; in this case, 12 ,
which was the result of the expression typed at the first prompt. For a full
description, see the ANSI standard for Common Lisp (ANSI X3.226:1994),
which is also available in this distribution.

3. Type (setq val 12) at the current prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression sets the variable val to 12 . The result of evaluating the
form is the value to which val has been set, and thus the listener prints
12 below the form typed at the prompt.

This is exactly the same behavior as before, when you typed a number it
was evaluated and the result printed in the listener. What is different
this time, of course, is that Lisp has been told to “remember” that 12 is
associated with val .

4. Type val .

The form is evaluated and 12 is printed below it.

5. Type (+ val val val) .

The form, which computes the sum of three val s, is evaluated, and 36 is
printed below it.

16.3 Re-evaluating forms
If you change val to some other number, and want to know the sum of three
val s again, you can avoid re-typing the form which computes it. To see how
this is done, follow the instructions below.

1. Type (setq val 1) .

The variable val is now set to 1.

2. Press Alt+P .

16.4 Interrupting evaluation
PROMPT > (setq val 1)

The form you previously typed appears at the prompt. At this point, you
could edit this form and press Return to evaluate the edited form. For
the moment, just carry on with the next instruction.

3. Press Alt+P again, and then press Return.

PROMPT > (+ val val val)
3

PROMPT >

Pressing Alt+P a second time displayed the second to last form that you eval-
uated. This time, pressing Return immediately afterwards simply re-evaluates
the form. Note that you could have edited the recalled form before evaluating
it. You can use Alt+P repeatedly, recalling any form that you have evaluated
in the current session.

This time the form evaluates to the number 3, because val changed in the
interim.

16.4 Interrupting evaluation
The key sequence Ctrl+Break interrupts evaluation of interpreted Lisp forms.
This is useful for stopping execution in the middle of a loop, or for debugging.
When the interrupt is processed, the debugger is entered, with a continue
restart available.

16.5 The History menu
The forms and commands typed at previous prompts are stored in the history
list of the listener. It is so named because it records all the forms and com-
mands you have typed into the listener. Many other command line systems
have a similar concept of a history. Each form or command in the history is
known as an event.

You can obtain a list of up to the last ten events in the history by displaying
the History > Items submenu from the LispWorks podium. To re-evaluate any
event, choose it from this submenu.
221

The Listener

222
For more information about history lists in the environment, see Section 3.5 on
page 26.

16.6 The Expression submenu
The Works > Expression menu lets you perform operations on the current
expression, that is, the symbol in which the cursor currently lies. It behaves in
exactly the same way as the Works > Expression menu in the editor.

Choose Works > Expression > Documentation to display the Common Lisp doc-
umentation for the current expression, if any exists. It is printed in a help win-
dow.

Choose Works > Expression > Find Source to search for the source code defini-
tion of the current expression. If it is found, the file is displayed in the editor:
the cursor is placed at the start of the definition. See Chapter 10, “The Editor”
for an introduction to the editor.

You can find only the definitions of expressions you have defined yourself
(those for which you have written source code) — not those provided by the
environment.

Choose Works > Expression > Class to look at the class of the current expres-
sion in a class browser. See Chapter 7, “The Class Browser” for full details
about this tool.

Choose Works > Expression > Arguments to print the lambda list of the current
expression in the echo area, if it is a function, generic function or method. This
is the same as using the keyboard command Alt+= , except that the current
expression is automatically used.

Choose Works > Expression > Value to display the value of the current expres-
sion in the echo area.

Choose Works > Expression > Trace to display a menu of trace commands
which can be applied to the current expression. See Section 14.4 on page 215
for full details.

Choose Works > Expression > Evaluate Region to evaluate the Lisp code in the
current region. You must make sure you have marked a region before choos-
ing this command; see Section 10.11.1 on page 123. Whether you use the
mouse or keyboard commands to mark a region does not matter.

16.7 The Values submenu
Choose Works > Expression > Compile Region to compile the Lisp code in the
current region.

Choose Works > Expression > Macroexpand to macroexpand the current form.
The macroexpansion is printed in the output view, which is displayed auto-
matically. Click the Output tab to redisplay the output at any time.

Choose Works > Expression > Walk to walk the current form. This performs a
recursive macroexpansion on the form. The macroexpansion is printed in the
output view, which is displayed automatically. Click the Output tab to redis-
play the output at any time.

Choose Works > Expression > Generic Function to browse the current expres-
sion in a generic function browser. This command is only available if the cur-
rent expression is a generic function. See Chapter 12, “The Generic Function
Browser” for more details.

16.7 The Values submenu
The Works > Values menu lets you perform operations on the results of the last
expression typed. The values returned from this expression are referred to as
the current values.

The menu is not available if the most recently-typed expression was not a
Common Lisp form. This is because the evaluation of the last expression
typed must have produced at least one value to work on.

The Works > Values menu gives you access to the standard action commands
described in Section 3.8 on page 31.

16.8 The Debug menu
This menu allows you to perform command line debugger operations upon
the current stack frame. The menu is only available when the debugger has
been invoked by some activity within the listener.

Some of the most commonly-used command line debugger commands are
available from the Debug menu. You can also invoke the debugger tool from
this menu.
223

The Listener

224
Choose Debug > Restarts to display a submenu containing all the possible
restarts for the debugger, including the abort and continue restarts. Choose
any of the commands on this submenu to invoke the appropriate restart.

Choose Debug > Listener > Backtrace to produce a backtrace of the error.

Choose Debug > Listener > Bindings to display information about the current
stack frame.

Choose Debug > Condition > Find Source to find the source code definition of
the function at the current call frame and display it in an editor.

Choose Debug > Listener > Next to move to the next call frame in the stack.

Choose Debug > Listener > Previous to move to the previous call frame in the
stack.

Choose Debug > Listener > Start GUI Debugger to invoke a debugger tool on the
current error. See Chapter 9, “The Debugger Tool”, for full details about using
this tool.

Choose Debug > Report Bug to report a bug in the environment via electronic
mail.

You can also invoke any of the commands from this menu by typing keyboard
commands into the listener itself. The precise commands you need to use
depend on the Lisp image that you are running; see the appropriate manual
for your image for more details.

16.9 Execute mode
The listener is actually a special type of editor window, which is run in a mode
known as execute mode. This means that, as well as the normal keyboard com-
mands available to the editor, a number of additional commands are available
which are especially useful when working with an interactive prompt. Some
of the commands available are as follows:

Press Alt+P or Ctrl+C Ctrl+P to display the previous event on the his-
tory list.

Press Alt+N or Ctrl+C Ctrl+N to display the next event on the history
list (this is not available if you are at the end of the history list).

Press Alt+R or Ctrl+C Ctrl+R to perform a search of the history list.

16.10 Help with editing in the listener
These commands are very useful when you are repeating a series of similar
commands several times. You can also use the and buttons on the
LispWorks podium button bar to move up and down the listener history list.

For more details about other keyboard commands available in the editor, see
Chapter 10, “The Editor”, and the Editor User Guide.

16.10 Help with editing in the listener
Two help commands are available to provide you with more information
about editor commands which can be used in the listener.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the extended editor command it is bound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor com-
mand to see the key sequence it is bound to, if any.

For more details about the keyboard commands and extended editor com-
mands available, see Chapter 10, “The Editor”.
225

The Listener

226

17

17The Output Browser
The output browser is a simple tool that displays the output generated by
your programs, and by operations such as macroexpansion, compilation and
tracing. You can create one by choosing Tools > Output Browser .
227

The Output Browser

228
Figure 17.1 Output browser

The output browser has one main area that displays any textual output from
the environment. Output mainly consists of compilation, and macroexpansion
messages produced by the editor, but can also include output from other
tools, such as the profiler. The main area is actually an editor window, so all
the usual editor keyboard commands can be used in it. See Chapter 10, “The
Editor” for more details about these operations.

The output browser is invaluable when you are developing code, because it
can be used to collect any output generated by your code. An example of how
to do this is given in Section 2.4 on page 11.

Many other tools in the environment contain an output view, which you can
displayed by clicking the Output tab in the relevant tool. Such views are used
to collect all the output which has been generated by that tool. For instance,
the listener has an output view that displays all the output from forms evalu-
ated in the listener, and the editor has an output view that collects any output
generated by the editor, such as compilation messages or macroexpansions.
Note that the output browser is the only tool which collects any output from
your own code without any need for further action on your part.
229

The Output Browser

230

18

18The Process Browser
Each individual window in the Lisp environment runs as a lightweight pro-
cess of the original UNIX process that started the image. The process browser
gives you control over these lightweight processes. To create a process
browser, choose Tools > Process Browser from the podium. Note that you can-
not control the GC monitor from the process browser, since this runs as a sep-
arate UNIX process.
231

18 The Process Browser

232
Figure 18.1 Process browser

The process browser consists of a main area in which all the current processes
in the environment are listed, and a Filter area which you can use to restrict
the information displayed in the main area.

Like other filter areas in the environment, type a string in the Filter area and
press Return to limit the display to only those items which contain the string.
See Section 3.12 on page 38 for details on using the Filter area.

18.1 Displaying and sorting the output
The main area contains a list of all the current processes in the environment
are listed. If you have many processes running, you can use the filter area to
only list processes containing a given string. For example, if you enter “Run-

18.2 Process control
ning” in the filter area, and click on , only processes that have the word
“Running” in their description will be shown.

The processes displayed in the main area can be sorted by clicking the rele-
vant button above each column. For example, to sort all listed processes by
name, click on the Name title button. The other two buttons are Priority and
Status .

18.2 Process control
The Works > Processes menu contains commands that let you control the exe-
cution of processes in the environment. Process commands act on the process
that has been selected in the main area. You can select a process by clicking on
the line in the main area that contains the process name and status informa-
tion.

Choose Works > Processes > Break to break the current process. This breaks
Lisp and gives you the opportunity to follow any of the normal debugger
restarts.

Choose Works > Processes > Kill to kill the selected process.

Choose Works > Processes > Stop to stop the selected process. The process can
be started again by choosing Works > Processes > Unstop .

Choose Works > Processes > Unstop to restart a process which has been
stopped using Works > Processes > Stop .

Choose Works > Process > Inspect to call up a LispWorks inspector to inspect
the selected process. See Chapter 13, “The Inspector” for more information on
inspecting objects and processes.

Finally, choosing Works > Process > Remote Debug breaks the selected process
and puts it in the debugger. This this equivalent to selecting Works > Process >
Break and then choosing Debug on the consequent notifier.
233

18 The Process Browser

234
18.3 Other ways of breaking processes
If you do not wish to use the process browser to break a particular process,
you can use the following keyboard command:

• Press Ctrl+Break to break the current process.

18.4 Updating the process browser
The process browser updates itself automatically when a new process is cre-
ated and when a process terminates. Other changes such as processes sleeping
and wake are not notices automatically so you may need to choose Tools >
Update to view the latest status displayed for each process.

19

19The Profiler
19.1 Introduction
The profiler provides a way of monitoring Lisp functions during the execution
of source code. The data that you obtain can be used to improve the efficiency
of your code by highlighting procedures which are commonly used or are par-
ticularly slow, and which would therefore benefit from extra optimization
effort.

To create a profiler, choose Tools > Profiler .

The profiler has several areas. The Code to Profile panel lets you set up and
profile any amount of Lisp source code.

• Use the large text box to paste or type in the Lisp source code that you
wish to profile.

• The Symbols and Packages buttons let you choose which symbols and
packages you want to profile.

• The Profile button starts code profiling.

The Results area is used to display the results of a profile.

• The main list displays the functions called during the last profile,
together with statistical details such as the number of times each func-
tion was called and the number of times it was found on the stack.
235

The Profiler

236
• The Filter box lets you restrict the display of information in the Results
area.

• The Profile Summary box provides a summary of the last profile per-
formed.

19.1 Introduction
Figure 19.1 The profiler

You can add a description pane to the profile by clicking on Description >> . The
Description area provides a description of any item selected in the Results
237

The Profiler

238
area, giving you the name, function, lambda list, documentation string and
source files of the selected item.

19.2 A description of profiling
When code is being profiled, the Lisp process is interrupted regularly at a
specified time interval. At each interruption, the profiler scans the execution
stack and records the name of every function found. A special note is made of
which function is at the top of the stack. When profiling stops (when the code
being profiled has stopped execution) the profiler presents aggregated infor-
mation about each function that includes the following information:

• The number of times each function being profiled was called.

• The number of times each function was found on the stack by the pro-
filer, both in absolute terms and as a percentage of the total number of
scans of the stack.

• The number of times each function was found on the top of the stack,
both in absolute terms and as a percentage of the total number of scans
of the stack.

The profiler gives you an easy way of choosing which functions you wish to
profile, which code you want to run while profiling, and provides you with a
straightforward display of the results of each profile.

19.3 Steps involved in profiling code
Each time you profile code, you first need to set up the profiler to ensure that
you find out the sort of information you are interested in. This section gives
you details about how to go about this.

The steps that you need to take when profiling code are as follows:

1. Choose which functions you want to profile.

2. Specify the code that you want to run while profiling, and the package
that you want to run the code in.

3. Perform the profile.

19.3 Steps involved in profiling code
Note: You do not have to adhere strictly to the sequence shown above, but this
is the order that you should usually follow.

19.3.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but
this involves significant effort in determining which functions are suitable for
profiling and in keeping track of the results. To minimize this effort you
should specify which functions you want to profile. The profiler checks that
these functions have indeed got function definitions and are therefore suitable
for profiling. For more information on the types of function that can be pro-
filed, see Section 19.5.1.

There are two ways of specifying functions that you want to profile:

• Choose which individual functions you want to profile.

• Choose whole packages, all of whose functions are profiled.

19.3.1.1 Choosing individual functions

Click Symbols to specify a list of Lisp functions that you want to profile. The
dialog shown in Figure 19.2 appears.
239

The Profiler

240
Figure 19.2 Select Symbols to Profile dialog

This dialog displays the list of functions to be profiled.

• To add a function to the list, type its name in the New Symbol text box
and click . To generate a completion list of symbols from which to
choose, click .

• To remove a function from the list, select it from the list and click
Remove .

• To remove several functions, select them all before clicking Remove .

Click OK when you have finished choosing symbols.

19.3 Steps involved in profiling code
19.3.1.2 Choosing packages

You may often want to profile every function in a package. Click Packages to
specify a list of packages whose functions you want to profile. The dialog
shown in Figure 19.3 appears.

Figure 19.3 Select Packages to Profile dialog

The main part of this dialog consists of two lists:

• The Unselected Packages list shows packages in the Lisp image whose
functions are not to be profiled.

• The Selected Packages list shows packages in the Lisp image whose
functions are to be profiled.
241

The Profiler

242
A global function definition is profiled if its symbol is visible in one of the
Selected Packages.

In order to add a package to the Selected Packages list, you can do one of three
things:

• For each package, type the package name in the Select Package box and
press Return or click .

• Select the package in the Unselected Packages list and click on >>>.

• Double-click on the package in the Unselected Packages list.

To remove a package from the Selected Packages list, do one of the following:

• Select the package in the Selected Packages list and click on <<<.

• Double-click on the package in the Selected Packages list.

In addition, there are four buttons.

Click All if you wish to profile all functions in all packages. Be aware that
there are significant processing overheads involved if you wish to do
this, and the results you get will probably include a lot of unwanted
information.

Click None to clear the list of Selected Package. This is useful is you only
want to profile a few functions, which you can specify easily using the
Symbols button on the Profiler tool itself.

Click OK when you have finished selecting the packages whose func-
tions you want to profile. The dialog disappears after clicking on this
button.

Click Cancel to cancel the operation. This also dismisses the dialog.

19.3.2 Specifying the code to run while profiling

Code which is to be executed during profiling should be typed in the Code to
Profile area. This is actually an editor window, and so you can use all the key-
board commands which can be used in the editor.

Code may be placed in this window in three ways:

• type it directly into the window

19.4 Format of the results
• paste it in from other editor windows in the environment

• paste it in from other applications

Specify the package in which you want to run the code to be profiled using the
Package panel of the Profiler Preferences dialog. Choose Tools > Preferences to
display this dialog. If you are unsure, full details on how to do this can be
found in Section 3.7.1 on page 30. Like all other tools in the environment, the
profiler can have a particular package associated with it; the default package
is CL-USER.

19.3.3 Performing the profile

Once you have set up the profile as described above, perform the profile itself
by clicking on the Profile button in the profiler.

19.4 Format of the results
After you have run the profile, a four column table is printed in the large list
in the Results panel. These columns are laid out as follows:

Call# The call count of each function, that is, the number of
times it was called during execution of the code.

Stack#(%) The number of times the function was found on the
stack when the Lisp process was interrupted. The
parenthesized figure shows the percentage of time the
function was found on the stack.

Top#(%) The number of times the function was found on the top
of the stack when the Lisp process was interrupted.
Again, the figure in brackets shows the percentage of
time the function was found on top of the stack.

Name The name of the function.

You can order the items in the list by clicking on the relevant heading button.

Selecting any item in the list displays a description of that function in the
Description list. In addition, an item selected in the main list can be acted
243

The Profiler

244
upon by any relevant commands in the Works > Function menu. For instance, if
you select a generic function in the main list and choose Works > Function >
Generic Function , you can view the generic function in a generic function
browser. This is consistent with many of the other tools in the environment.

Double-clicking on an item in the Description list invokes an inspector on the
selected item. In addition, an item selected in this area may be acted on by any
relevant commands in the Works > Description menu, as is the case with many
other tools in the environment. For instance, choose Works > Description > Copy
to copy the item selected in the Description list to the clipboard. See Section
3.8 on page 31 for details on the commands available.

19.5 Interpreting the results
The most important columns in the Results area are those showing call count
(call#) and number of times on the top of the stack (stack#). Looking solely at
the number of times a function is found on the stack (stack#) can be mislead-
ing, because functions which are on the stack are not necessarily using up
much processing time. However, functions which are consistently found on
the top of the stack are likely to have a significant execution time. Similarly the
functions that are called most often are likely to have the most significant
effect on the program as a whole.

Always remember that the numbers produced are from random samples, so
you should be careful when interpreting their meaning. The rate of sampling
is always coarse in comparison to the function call rate, so it is possible for
strange effects to occur and significant events to be missed. For example, reso-
nance may occur when an event always occurs between regular sampling
times. In practice, however, this is not usually a problem.

19.5.1 Profiling Pitfalls

It is generally only worth profiling code which has been compiled. If you pro-
file interpreted code, the interpreter itself is profiled, and this skews the
results for the actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation
process. Similarly, the compiler may transform some functions such that they
are present in the source code but not in the compiled code.

19.6 Some examples
For example, the compiler transforms this source expression:

(member ’x ’(x y z) :test #’eq)

into this compiled expression:

(memq ’x ’(x y z))

Therefore the function member cannot be profiled, since it is not called in com-
piled code.

Similarly, you cannot profile inlined functions.

Recursive functions need special attention. A recursive function may well be
found on the stack in more than one place during one interrupt. The profiler
counts each occurrence of the function, and so the total number of times a
function is found on the stack may be greater than the number of times the
stack is examined.

You must take care when profiling structure accessors. These compile down
into a call to a closure, of which there is one for all structure setters and one for
all structure getters. Therefore it is not possible to profile individual structure
setters or getters by name.

Even if you configure the profiler to profile all the known functions of an
application, it is possible that less than 100% of the time is spent monitoring
the top function. This is because an internal system function could be on the
top of the stack at the time of the interrupt.

19.6 Some examples
The examples below demonstrate different ways in which the profiler can be
configured and code profiled so as to produce different sets of results. In each
example, the following piece of code is profiled:

(contain (setq title (make-instance ’title-pane
 :text "Title")))

This is a simple piece of code which creates and displays a CAPI title pane;
each time you run the code a small window is created on-screen, which you
can ignore or remove as soon as it is created.

1. Create a profiler if you have not already done so.
245

The Profiler

246
2. Type the code above into the box in the Code to Profile panel.

3. Choose Tools > Preferences to change the package of the profiler.

Figure 19.4 Profiler Preferences dialog

4. In the Profiler Preferences dialog, replace the default package in the
Package text box with CAPI and click .

5. Click OK to dismiss the Preferences dialog and apply the change you
have made.

6. Click on Profile .

This profiles the functions in the COMMON-LISP, CL-USER and LISPWORKS pack-
ages.

Next, add the CAPI package to the list of packages whose functions are pro-
filed.

7. Click Packages .

8. In the dialog, double-click on CAPI in the Unselected Packages list, and
click on OK.

9. Click on Profile to profile the code again.

Notice that this time there are many more functions which appear on the
stack during profiling.

19.6 Some examples
10. Select a few of the functions listed at the top of the Results area, and look
at their function descriptions.

Notice that most of the functions appearing on the stack are in the CAPI

package. It is worth profiling a few functions explicitly, and removing
unwanted packages from the list of packages to profile.

11. Click Symbols , and add the following four functions to the list in the dia-
log:

funcall unwind-protect make-instance eval

Type the name of each function and press Return to add it to the list.

12. Click OK when you have finished adding to this list.

Now remove the unwanted packages from the list of packages to profile,
as follows:

13. Click Packages .

14. In the dialog, double-click on the following items in the Selected Pack-

ages list:

COMMON-LISP COMMON-LISP-USER LISPWORKS

15. Click on OK, and profile the code again by clicking on Profile .

Notice that the four functions in the COMMON-LISP package are still being pro-
filed, even though you are no longer profiling all functions from that package
by default.
247

The Profiler

248

20

20The System Browser
20.1 Introduction
When an application becomes large, it is usually prudent to divide its source
into separate files. This makes the individual parts of the program easier to
find and speeds up editing and compiling. When you make a small change to
one file, just recompiling that file may be all that is necessary to bring the
whole program up to date.

The drawback of this approach is that it is difficult to keep track of many sep-
arate files of source code. If you want to load the whole program from scratch,
you need to load several files, which is tedious to do manually, as well as
prone to error. Similarly, if you wish to recompile the whole program, you
must check every file in the program to see if the source file is out of date with
respect to the object file, and if so re-compile it.

To make matters more complicated, files often have interdependencies; files
containing macros must be loaded before files that use them are compiled.
Similarly, compilation of one file may necessitate the compilation of another
file even if its object file is not out of date. Furthermore, one application may
consist of files of more than one source code language, for example Lisp files
and C files. This means that different compilation and loading mechanisms
are required.
249

20 The System Browser

250
The Common LispWorks system tools, and the system browser in particular,
are designed to take care of these problems, allowing consistent development
and maintenance of large programs spread over many files. A system is basi-
cally a collection of files that together constitute a program (or a part of a pro-
gram), plus rules expressing any interdependencies which exist between these
files.

You can define a system in your source code using the defsystem macro. See
the User Guide for more on the use of defsystem . Once defined, operations
such as loading, compiling and printing can be performed on the system as a
whole. The system tool ensures that these operations are carried out com-
pletely and consistently, without doing unnecessary work, by providing you
with a GUI front end for defsystem .

A system may itself have other systems as members, allowing a program to
consist of a hierarchy of systems. Each system can have compilation and load
interdependencies with other systems, and can be used to collect related
pieces of code within the overall program. Operations on higher-level systems
are invoked recursively on member systems.

20.2 Defining a system
A system is defined with a defsystem form in an ordinary Lisp source file.
This form must be evaluated in the Lisp image in order to define the system in
the environment. Once loaded, operations can be carried out on the system by
invoking Lisp functions, or, more conveniently, by using the system browser.

For example, the expression:

CL-USER 5 > (compile-system ’debug-app :force t)

would compile every file in a system called debug-app .

Note: When defining a hierarchy of systems, the leaf systems must be defined
first—that is, a system must be defined before any systems that include it.

By convention, system definitions are placed in a file called defsys.lisp

which usually resides in the same directory as the members of the system.

The full syntax of defsystem is given in the LispWorks Reference Manual, and
further examples and a summary are given in the LispWorks User Guide.

20.2 Defining a system
20.2.1 Examples

Consider an example system, demo, defined as follows:

(defsystem demo (:package "USER")
 :members ("macros"
 "demo-utils"
 "demo-functions")
 :rules ((:in-order-to :compile ("child1" "child2")
 (:caused-by (:compile "parent"))
 (:requires (:load "parent")))))

This system compiles and loads members into the USER package if the mem-
bers themselves do not specify packages. The system contains three mem-
bers—macros , demo-utils , and demo-functions —which may themselves be
either files or other systems. There is only one explicit rule in the example. If
macros needs to be compiled (for instance, if it has been changed), then this
causes demo-utils and demo-functions to be compiled as well, irrespective
of whether they have themselves changed. In order for them to be compiled,
parent must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be com-
piled when you compile the system. The explicit rule above means that if the
changed member happens to be macros , then every member gets compiled. If
the changed member is not macros , then macros must at least be loaded before
compiling takes place.

The next example shows a system consisting of three files:

(defsystem my-system
 (:default-pathname "~/junk/")
 :members ("a" "b" "c")
 :rules ((:in-order-to :compile ("c")
 (:requires (:load "a"))
 (:caused-by (:compile "b")))))

What plan is produced when all three files have already been compiled, but
the file b.lisp has since been changed?

First, file a.lisp is considered. This file has already been compiled, so no
instructions are added to the plan.

Second, file b.lisp is considered. Since this file has changed, the instruction
compile b is added to the plan.
251

20 The System Browser

252
Finally file c.lisp is considered. Although this has already been compiled,
the clause

(:caused-by (:compile "b"))

causes the instruction compile c to be added to the plan. The compilation of
c.lisp also requires that a.lisp is loaded, so the instruction load a is added to
the plan first. This gives us the following plan:

1. Compile b.lisp .

2. Load a.lisp .

3. Compile c.lisp .

20.3 A description of the system browser
The system browser provides an intuitive way to examine systems which
have been loaded into the environment, together with their members. You can
use it to perform system-wide actions, thereby creating plans which you can
review before executing. The system browser has a total of four views avail-
able:

• The graph view is used to display a graph of all the requested systems
defined in the image, together with their members.

• The text view lists the systems defined in the image together with the
members of the current system.

• The preview view provides a powerful way of generating and execut-
ing systems plans.

• The output view is used to display any output messages which have
been created by the system browser as a result of executing plans.

To create a system browser, choose Tools > System Browser from the podium.
Alternatively, choose File > Browse Parent System from any appropriate tool in
the environment or execute Alt+X Browse System in an editor, to display the
parent system for the selected or current file in the system browser. See Sec-
tion 3.6 on page 28 for details.

20.4 Examining the system graph
20.4 Examining the system graph
When you first invoke the system browser, the graph view is the default view.
You can also switch to it from another view by choosing the relevant tab above
the main view. The graph view is shown in Figure 20.1 below.

Figure 20.1 Displaying loaded systems using the graph view
253

20 The System Browser

254
The system browser window has four areas, described below.

20.4.1 System area

The System area is used to type in the name of the system you want to exam-
ine.

In order to browse a given system:

1. Load the Lisp source code defining the system into the environment.

For instance, select the file in the file browser or display it in the editor and
choose File > Load . Alternatively, choose File > Load from the system browser
and choose a file to load in the dialog that appears.

2. Type the name of the system into the System area.

You can press the Tab key at any point in your typing to complete the name, or
display a dialog listing the possible completions, as appropriate.

The members of the system are displayed in the graph area.

If you wish to browse the parent system of the current system, choose Works >
Systems > Parent . The parent of all systems defined in the image at any time is
called the ROOT-SYSTEM.

20.4.2 Graph area

The Graph area produces a graph of the current system, together with all its
members. The generic facilities available to all graph views throughout the
environment are available here; see Chapter 5, “Manipulating Graphs” for
details.

• Double-click on a file to display it in the editor.

• Double-click on a system to display its members in the system browser.

• Select either a system or a file to display details in the Description area.

Items selected in this area can be operated on by commands in the Works >
Systems menu. If no items are selected, the commands apply to the current
system, whose name is printed in the System area.

20.4 Examining the system graph
20.4.3 Description area

The Description area shows details about any system member selected in the
Graph area. The following items of information are shown:

Module The name of the selected member. This is either the file-
name (if the member is a file of source code) or the sys-
tem name (if the member is a subsystem).

Pathname The directory pathname of the selected member. This is
the full pathname of the file, if the selected member is a
file of source code, or the default directory of the sys-
tem, if the selected member is a subsystem.

Flags This lists any keyword flags which have been set for the
selected member in the system definition, such as the
:source-only flag.

To operate on any of the items displayed in this area, select them and choose a
command from the Works > Description menu, which contains the standard
actions described in Section 3.8 on page 31. By making multiple selections,
you can operate on as many of the items as you like.

20.4.4 Performing operations on system members

A variety of operations can be performed on any number of nodes selected in
the Graph area. If no nodes are selected, or if you are in another view, the com-
mands are performed on the current system, whose name is printed in the
System area.

The Works > Systems menu gives you access to the standard actions described
in Section 3.8 on page 31.

Choose Works > Systems > Parent to browse the parent system. This takes
you up one level in the hierarchy.

Choose Works > Systems > Compile and Load , Works > Systems > Compile ,
or Works > Systems > Load to compile or load the selected members and
any subsystems selected in the Graph area.
255

20 The System Browser

256
Choose Works > Systems > Concatenate to produce one fasl file from sev-
eral fasl files.

Choose Works > Systems > Search Files to search any of the selected
members (and any subsystems) for a given string. The matches are dis-
played in the editor.

Choose Works > Systems > Replace to search all the files in the selected
members (and any subsystems) for a given string and replace it with
another string. You are prompted for a search string a string to replace it
with in the echo podium.

20.5 Examining systems in the text view
The text view allows you to list the parent system, subsystems and files in the
current system in one view, and gives you an easy way of changing the cur-
rent system. Choose the Text tab to display this view. The system browser
appears as shown in Figure 20.2 below.

20.5 Examining systems in the text view
Figure 20.2 Displaying loaded systems using the text view

The system browser contains the areas described below when in the text view.

20.5.1 System area

As with the graph view, the current system is shown here. See Section 20.4.1
on page 254 for details about this area.

20.5.2 Parent system area

This area lists any parent systems of the current system. Note that every sys-
tem apart from the ROOT-SYSTEM must have at least one parent.
257

20 The System Browser

258
Double-click on any item in this list to make it the current system. Its name is
printed in the System area.

20.5.3 Subsystems area

This area lists any systems which are subsystems of the current system.

Double-click on any item in this list to make it the current system. Its name is
shown in the System area.

20.5.4 Files area

This area lists any files which are members of the current system. Source files
containing either Lisp or non-Lisp code (such as C code which is loaded in via
the foreign language interface) are listed in this area.

• Select a file to display its description in the Description area.

• Double-click on a file to display it in the editor.

20.5.5 File description area

The File Description area displays information about any system member
selected in the Files area. If no such member is selected, information about the
current system (the one named in the System area) is shown instead. The same
pieces of information are shown as in the graph view. See Section 20.4.3 on
page 255 for details. As with other views, items selected in this area can be
operated on using commands in the Works > Description menu.

20.6 Generating and executing plans in the preview view
The preview view allows you to generate different system plans automatically
based on three things:

• the current compilation and load status of each member of a system

• the rules specified in the system definition

• the specific actions that you wish to perform

You can use this view to browse the plan and to execute all or any part of it, as
well as generate it.

20.6 Generating and executing plans in the preview view
Click on the Preview tab to switch to the preview view in the system browser.
The system browser appears as in Figure 20.3 below.

Figure 20.3 Previewing system plans using the preview view

The system browser has the areas described below.

20.6.1 System area

As with the graph view, the current system is shown here. See Section 20.4.1
on page 254 for details about this area.
259

20 The System Browser

260
20.6.2 Actions area

The Actions area contains a number of options allowing you to choose which
actions you want to perform, thereby allowing you to create system plans.

The Compile , Load and Force buttons can be switched on and off as desired.
Note that at least one of Compile and Load must always be selected.

• Select Compile to create a plan for system compilation. The plan dis-
plays what actions need to be performed in order to create an up-to-
date compilation of the entire system.

• Select Load to create a plan for loading the system. The plan displays a
list of the actions required to load an up-to-date version of the system
into the environment.

• Select Force if you want to force compilation or loading of all system
members, whether it is necessary or not.

Click Recompute Events to create a new plan for the specified options. You
should click this button whenever you change the Compile , Load , or Force
options, or whenever you change any of the files in the system or any of its
subsystems.

Click Execute Events to execute the events currently selected in the main area.
See Section 20.6.6 below for details.

20.6.3 Filter area

As with other tools, you can use the Filter area to restrict the output in the
plan area to just those actions you are interested in. This may be useful, for
instance, if you want to see only compile actions, or only load actions, or if
you are only interested in the actions that need to be performed for a particu-
lar file.

20.6.4 Plan area

The Plan area lists the actions in the current plan. Items are indented to indi-
cate groups of related actions. Thus, if a subsystem needs to be loaded, the
individual files or subsystems that comprise it are listed underneath, and are
indented with respect to it.

20.7 Examining output in the output view
20.6.5 File description area

The File Description area displays information about any system member
selected in the Plan area. If no such member is selected, information about the
current system (the one named in the System area) is shown instead. The same
pieces of information are shown as in the graph view. See Section 20.4.3 on
page 255 for details. As with other views, items selected in this area can be
operated on using commands in the Works > Description menu.

20.6.6 Executing plans in the preview view

Once you have created a plan in the preview view, there are a number of ways
that you can execute either the whole plan, or individual actions within that
plan.

As already mentioned, to execute individual actions in the plan, select them in
the main area and then click Execute Events .

To execute the whole plan, just choose the relevant menu command:

• Choose Works > Systems > Load if you want to execute a plan for load-
ing the system.

• Choose Works > Systems > Compile if you want to execute a plan for
compiling the system.

• Choose Works > Systems > Compile and Load if you want to execute a
plan for both compiling and loading the system.

Note that you can also execute the whole plan by choosing Edit > Select All and
then clicking Execute Events .

20.7 Examining output in the output view
The output view can be used to view any messages that have been generated
as a result of actions performed in the system browser. This largely consists of
compilation and load messages that are generated when system plans or indi-
vidual actions in a plan are executed.

Click on the Output tab to switch to the output view. The system browser
appears as in Figure 20.4.
261

20 The System Browser

262
Figure 20.4 Viewing output in the system browser

The output view has the areas described below.

20.7.1 System area

As with the graph view, the current system is shown here. See Section 20.4.1
on page 254 for details about this area.

20.8 Configuring the display
20.7.2 Output area

The largest area in this view is used to display all the output messages which
have been generated by the system browser. This area has the same properties
as the output browser described in Chapter 17, “The Output Browser”.

20.7.3 File description area

The File Description area displays information about the last system member
selected in another view. If no such member has been selected, information
about the current system (the one named in the System area) is shown instead.
The same pieces of information are shown as in the graph view. See Section
20.4.3 on page 255 for details. As with other views, items selected in this area
can be operated on using commands in the Works > Description menu.

20.8 Configuring the display
The system browser allows you to configure the display so that it best suits
your needs. The commands available for this are described below.

20.8.1 Sorting entries

Entries in the system browser can be sorted in a number of ways. Choose
Tools > Preferences to display the System Browser Preferences dialog. Click on
the General tab to view the sorting options.

By Name Sorts entries in the main area of the current view (the
graph in the graph view and the Files area in the text
view) according to the symbol name.

By Paclage Sorts entries in the main area according to their pack-
age.

Unsorted Leave entries in the main area unsorted. This is the
default setting.
263

20 The System Browser

264
20.8.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the system browser, using the Package panel. See Section 3.7 on page 29 for
full details.

20.9 Setting options in the system browser
The Works > Systems menu allows you to set options which apply whenever
you compile or load system members. Each of the commands described below
toggles the respective option.

Choose Works > System> Compilation Options > Force to force the compile or
load operation to be performed. If you are operating on a whole system (as
opposed to system members which are files) this means that actions for all the
members are added to the plan.

Choose Works > System> Compilation Options > Source to force the use of Lisp
source rather than fasls in operations on the system.

Choose Works > System> Compilation Options > Preview to automatically pre-
view the plan prior to execution of a compile or load instruction chosen from
the Works > Systems menu. This switches the system browser to the preview
view and allows you to see what operations are going to be performed, and to
change them if you want. See Section 20.6 on page 258 for full details about
previewing plans.

Choose Works > System > Concatenate to concatenate the selected system into a
single fasl after compiling it.

21

21The Window Browser
21.1 Introduction
The window browser lets you examine any windows that have been created
in the environment. You can examine not only the environment windows
themselves, but also more discrete components of those windows, such
menus and menu commands. To create a window browser, choose Tools >
Window Browser from the LispWorks podium.

The window browser only has one view, shown in Figure 21.1.
265

The Window Browser

266
Figure 21.1 The window browser

The window browser has three sections.

21.1.1 Graph box

This text box shows the window object that is being examined; that is, the
name of the window at the root of the graph.

21.1 Introduction
21.1.2 Window graph

The window graph displays the current window and all its subwindows. The
generic facilities available to all graphs throughout Common LispWorks are
available here; see Chapter 5, “Manipulating Graphs” for details.

When you first create a window browser, it automatically browses the parent
window of the whole environment. A graph of the parent window together
with its children—each individual window that has been created—is drawn
in the main area.

Select any item in the graph to display its description in the Description area.

To examine any child in the graph, double-click on it. The child is expanded in
the current graph. Choose Works > Windows > Browse - Window to make the
selected child the root of the graph.

Any items selected in the graph can be operated on using commands in the
Works > Windows menu. If no items are selected, the commands in this menu
apply to the root window of the graph. See Section 21.3 on page 270 for
details.

21.1.3 Description list

The Description list gives a description of the item selected in the Graph area.
If nothing is selected, a description of the window at the root of the graph is
shown. The following information is listed:

Window The object which represents the selected window

Class The class of the window object.

Name The name of the selected window.

Representation The CAPI representation of the selected window.

Interface The underlying native window system object which
represents the selected window.

Screen The name of the screen on which the selected window
is displayed.
267

The Window Browser

268
Any item selected in the Description list can be operated on by using com-
mands under the Works > Description menu. This menu gives you access to the
standard actions commands described in Section 3.8 on page 31.

21.2 Configuring the window browser
Using the Window Browser Preferences dialog, shown in Figure 21.2, you can
configure the window browser so that it best suits your needs. Choose Tools >
Preferences to display this dialog.

Figure 21.2 Window Browser Preferences dialog

The Window Browser Preferences dialog has three tabs:

• The General tab contains options for configuring general properties of
the window browser.

• The Graph Layout tab contains options for configuring options specific
to the graph. See Section 5.6 on page 50 for a description of these
options.

• The Components tab contains options for configuring properties unique
to the window browser.

21.2 Configuring the window browser
21.2.1 Sorting entries

Entries in the window browser can be sorted using the Sort panel in the Gen-
eral tab of the Preferences dialog. Choose the sort option you require from the
list available.

By Name Sorts items alphabetically by name.

By Package Sorts items alphabetically by package name.

Unsorted Displays items in the order they are defined in. This is
the default setting.

21.2.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the window browser using options available in the General tab.

Check or un-check Show Package Names to turn the display of package names
in the window browser on and off.

Specify the process package of the window browser in the appropriate text
box.

21.2.3 Displaying different types of window

There are several types of window object which can be displayed in the win-
dow browser, and you can configure which types are displayed using the Dis-
play Component panel of the Components tab in the Preferences dialog. Five
options are available; select whichever ones you want to display.

Layouts Displays the major layouts available to the window
being graphed. For the parent window of the environ-
ment, this means all the windows that have been cre-
ated. For an individual window, this means the
configuration of the different panes in that window.
269

The Window Browser

270
Subwindows Displays any subwindows for the current window. This
option only takes effect if the current window is the
parent of a group of windows, rather than a real win-
dow itself.

Pinboard ObjectsDisplays any pinboard objects in the current window.
See the CAPI User Guide for a full description of pin-
board objects.

Menus Displays any menus available to the current window in
the graph.

Menu Items Displays any menu items available to the current win-
dow in the graph. This option only takes effect if Menus
is selected as well.

By default, all five options are already selected in the window browser.

21.2.4 Displaying short or long names

By default, the window browser gives each item in the graph a short name.
You can also display the complete symbol name for each item if you wish, as
displayed in the Window line of the Description list. You can configure this
option from the Components tab of Preferences dialog.

Click Long Names to display the complete symbol name of each item in the
graph.

Click Short Names to display the short name for each item in the graph. This is
the default setting.

Bear in mind that graphs are a lot larger when you display them using long
names, and can therefore be more difficult to examine.

21.3 Performing operations on windows
You can perform a number of operations on any windows selected in the
Graph area using the commands in the Works > Windows menu. If no items are
selected in the Graph area, the commands in this menu apply to the root win-
dow of the graph.

21.3 Performing operations on windows
The Works > Windows menu gives you access to the standard actions com-
mands described in Section 3.8 on page 31.

21.3.1 Navigating the window hierarchy

Choose Works > Windows > Browse Parent to display the parent of the current
window. This takes you back up one level in the window hierarchy.

Choose Works > Windows > Browse Representation to examine the representa-
tion of the current window. This is discussed in Section 3.13 on page 39.

Choose Works > Windows > Browse Screens to examine the parent window of
the environment once again—this takes you back up to the root of the win-
dow hierarchy.

21.3.2 Window control

There are several commands which give you control over the current window.

Choose Works > Windows > Lower to push the current window to the bottom of
the pile of windows on-screen.

Choose Works > Windows > Raise to bring the current window to the front of
your screen.

Choose Works > Windows > Quit to quit the any windows selected in the graph.

Choose Works > Windows > Destroy to destroy any windows which are selected
in the graph. You are prompted before the windows are destroyed.
271

The Window Browser

272

Index
Symbols
$ variable 168
* variable 12, 17, 166, 220
** variable 12
*** variable 12
.lispworks file 24

A
aborting commands in the editor 122
action callbacks 184
Actions menu 31–34

Documentation 102
Find Definition 102

Alt key
use of 111

Arguments command 133, 222
Attributes command 210, 213

B
Backtrace command 224
backtraces 100
binding $ to the current inspector

object 168
binding frames 103
Bindings button 103
Bindings command 224
Break command 233
Break on Access command 163
Break on Read command 163
Break on Write command 163
breaking a process 233
Browse command 32, 39, 267

variations in name 33
Browse Metaclass command 70, 74, 76, 80,

83, 85

Browse Parent command 271
Browse Parent System command 28, 252
Browse Representation command 271
Browse Screens command 271
browsing

Common Lisp classes 59–85
compilation conditions 87–92
errors 87
function calls 135–144
generic functions 145–154
native window system 271
online manuals 42
output 11, 227–229
selected object, class of the 33, 222
systems 28, 252–264
window definitions 265–271

buffers
closing 120
swapping between 120

Buffers menu 114, 130
Compile 131
Evaluate 131
Trace. See Trace menu
Undefine 133

bugs, reporting 97, 224
By Name option 36
By Package option 36

C
call frames 99, 103
callbacks

action 184
extend 184
retract 184
selection 184
273

274
specifying 183–186
catch frames 103
Catchers button 103
:center keyword 179
Change Hidden Packages command 104
check components 203
choosing menu commands xi
class browser 59–85

Class area 69
current class, operations specific to

the 70, 74, 76, 80, 83, 85
description 3
Description area 73, 76, 82
examining a class 65
Filter area 69
filtering information 63
Function description area 79
functions list 79
functions view 78–80
generic functions, operating on 80
Graph area 76
graph view 74–77
hierarchy view 65
Include Inherited Methods/Functions

button 79
inherited slots 62
Initargs area 82
initargs view 81
invoking on the current

expression 222
invoking on the selected object 33
menu commands, see menu or com-

mand name
overview of the 59
Precedence area 85
precedence view 83
Slot description area 70
slot information 62–64
Slots area 69
slots view 62–64
sorting information 66
tracing classes from the 80
undefining functions and methods 80
See also classes

Class command 15, 33, 60, 63, 69, 222
classbrowser

methods list 79
classes 59–85

changing slot values in the
inspector 163–166

column-layout 198
displaying graphs of 74–77
examining 65
examining functions and methods

defined on 78–80
inherited slots in 62
initargs 81
inspecting local slots 158
interface 193
list-panel 63
operations specific to the current

class 70, 74, 76, 80, 83, 85
precedence list 83
push-button-panel 65
row-layout 198
tracing 80
See also class browser

Classes menu
Browse Metaclass 70, 74, 76, 80, 83, 85
objects operated on by the 70, 74, 76, 80,

83, 85
clipboard

general use 25–26
usage in editor 122
See also clipboard, kill ring, UNIX clip-

board
Clone command 22, 23, 37, 121
Close command 121

interface builder 207
closing

editor buffers 120
Collapse Nodes command 48
collapsing graphs 47
column-layout class 198
Command to Key command 134, 225
commands

completion of 110
repeating 26

common features in the environment 19–
40

See also under graphs
Common Lisp

classes. See classes
debugging 93–105
displaying documentation for

expressions 222
displaying documentation for selected

object 33, 102
evaluating forms 219–220
file extension 117
indentation of forms in source code 133
prompt 218
systems. See system

compilation conditions browser 87–92

pathnames 91
preference dialog 90
types to display 91

Compilation Options menu
Force 264
Preview 264
Source 264

Compile and Load command 28, 99, 132,
255, 261

Compile command 28, 131, 132, 215, 255,
261

Compile Region command 223
in editor 131

compiler output 131
compile-system function 250
compiling code

editor 131–132
interface builder 215

compiling files in the listener 28
completion

in class browser 65
Concatenate command 256, 264
Condition menu

Actions. See Actions menu
Report Bug 101

confirmer
description 214

Confirmer command 214
consistency in the environment. See com-

mon features in the environment
contain function 13, 63, 160, 166
Contents radio button 43
Control key, use of xii, 111
conventions used in the manual ix–xii
Copy command 25–26, 33, 123, 124, 165

in Actions menu 244
interface builder 209
standard action command 33

copying windows 22
creating new files 28, 117
current

object. See selected object
package of any tool 30
prompt 219
value, operating on 223

current class, operations specific to the 70,
74, 76, 80, 83, 85

current expression
displaying lambda list for 133, 222
displaying value 133, 222
tracing 222

current form

macroexpanding 223
walking 223

Customize menu
Reuse 22
Reuse all tools 21

Cut command 25–26, 123, 124
interface builder 176, 209

D
Debug menu

Debugger 9, 94, 94, 97, 100, 101
Listener 9
Restarts 224

debugger 93–105
abort restart 98
binding frames 103
call frames 99, 103
catch frames 103
continue restart 98
controlling from the listener 223–224
debugger tool 224
description 97
displaying documentation for object in

current frame 102
example session 99–101
finding source code for object in current

frame 102
handler frames 103
invisible frames 104
invoking 95
invoking from the tracer 37
menu commands in the listener 223
restart frames 104
restart options 97–98
stack 98–99
stack frames 98
See also debugger tool

Debugger command 9, 94, 94, 97, 100, 101,
224

debugger tool 93–105
Backtrace area 96
buttons 96
Condition area 96
invoking 94
invoking from notifier 96
package information 105
Restarts menu 97
types of frame, displaying 103
Variables area 96
See also debugger

Definitions menu 115, 130
Compile 131
275

276
Evaluate 131
Generic Function 133
Trace. See Trace menu
Undefine 133

defsystem macro 252
examples of use 251

deleting text in the editor 120
See also kill ring

description
of compilation conditions 89

Description menu 89, 139, 148
Deselect All command 26, 122
Destroy command 271
Dialog command 214
Display Borders command 214
display function 189
displaying

package information 29–31
windows 20

display-message function 187
Documentation command 33, 102, 222
documentation, online. See online help
$ variable 168

E
Each tool has its own menu bar 22
Edit menu 24

Copy 25, 33, 123, 124, 209
Cut 25, 123, 124, 176, 209
Deselect All 26, 122
Find 26, 127, 129
Find Next 26, 127
Find Next, for graph view 47
Find, for graph view 47
interface builder 208
Link. See Link Menu
Paste 25, 69, 123, 147, 176, 209
Replace 26, 128, 129
Select All 26, 122, 261
Undo 25, 122

Editing menu
Command to Key 134, 225
Key to Command 134, 225

editing the history list 27
editor

aborting commands 122
buffers view 113, 120
buffers. See buffers
changed definitions list 115
closing buffers 120
compiling source code 131–132
creating a new window 121
creating files 28, 117
current expression, displaying value 133
current package and displayed

package 117
definitions list 114
definitions, operating on 133–134
deleting text 120
EMACS, comparison with 107
evaluating source code 130–131
expressions, operating on 133–134
History menu 120, 121
indenting forms 133
inserting files into the current buffer 120
inserting text 120
invoking 108
keyboard commands, use of 111
kill ring. See kill ring
Lisp-specific commands 129–134
macroexpanding forms in the 133
menu and keyboard commands,

distinctions 117
menu commands. See menu or command

name
moving around in the buffer 118–119
new files 28, 117
online help 134, 225
opening files 28, 108, 117
output view 115
overview 2
package information 116
package usage 132
repeating commands 122
replacing text 128–129
reverting to last saved version 118
saving files 117, 121
saving text regions 118
scrolling text 119
searching 127–128
sorting entries 116
swapping between buffers 120
tracing 132
undefining symbols 133
undoing commands 122
using the clipboard 122
viewing two sections of the same file 121
views available 108
walking forms 134

Editor command 21, 108
editor commands

finding keyboard command for 225
Visit Tags File 111

EMACS

comparison with built-in editor 107
Enter Search String dialog 42
environment

common features 19–40
quitting 24

error conditions 89
Escape key, use of xii, 111
Evaluate command 215

in editor 131
Evaluate Region command

in editor 131
in listener 222

evaluating
code in the editor 130–131
forms 219–220

event
next 224
previous 224
repeating 27

examining objects 157
execute mode 224
Exit command 6
Expand Nodes command 48
expanding graphs 47
Expression menu 130

Arguments 133, 222
Class 222
Compile Region 131, 223
Documentation 222
Evaluate Region 131, 222
Find Source 222
Generic Function 223
Macroexpand 133
Macroexpand Form 223
Trace. See Trace menu
Value 133, 222
Walk 134
Walk Form 223

expressions
browsing the class of 222
displaying documentation 222
finding source code 222

extend callbacks 184
extended editor commands, finding key-

board command for 225
:extended-selection keyword 179

F
File menu 6, 58

Browse Parent System 28, 252
Close 121, 207
Compile 28, 132, 215

Compile and Load 28, 99, 132
description 28
Exit 24
Insert 120
Load 28, 131, 254
New 28, 117, 175, 189, 193
Open 28, 108, 117, 194
Print 28, 118
Revert 118, 207
Save 117, 186, 189, 207
Save All 121, 207
Save As 118, 207
Save Region As 118

filenames
completion of 110
extensions for CL files 117

files
compiling in listener 28
creating new 28, 117
inserting one into another 120
loading 28
navigating in the editor 118–119
opening 28, 108, 117
printing 28
reverting to last saved version 118
saving 117
saving all 121

filtering information 38–39, 63, 260
in inspector 160

Find command 26
in editor 127, 129
in graph view 47

Find Definition command 102
Find Next command 26, 127

in graph view 47
Find Source command 33, 222

in Debug menu 224
shortcut in debugger tool 100

Force command 264
forms

compiling in editor 131–132
evaluating 219–220
evaluating in editor 130–131
indentation of 133
re-evaluating 220–221

Frame menu
Find Source 100
Restart Frame 102, 104
Return From Frame 102
Trace. See Trace menu

function call browser 135–144
By Name command 142
277

278
By Package command 142
Callees area 140
Callers area 141
description 135
Documentation area 139
Function area 136
Function description area 138
Function menu 144

Trace submenu 144
Graph area 137
graphing callers and callees 137
invoking on selected object 34
menu commands, see menu or com-

mand name
operating on functions 144
package information 142
Show Package Names command 142
sorting entries 142
text view 139
tracing from 144
Unsorted command 142
views available 135

Function Calls command 34
Function menu 147

in the profiler 244
Trace. See Trace menu

functions
compile-system 250
contain 13, 63, 160, 166
display 189
display-message 187
undefining 80

Functions menu
in the class browser 80
in the function call browser 144

G
generic function browser 145–154

Arguments types area 152
description 145
Description area 148
displaying signatures 153
Filter area 147
Function area 146
invoking on selected object 34, 133,

223
menu commands. See menu or com-

mand name
Method combination list 152
method combinations, viewing 149
methods list 147
operating on signatures 153
Signatures area 151
Generic Function command 34, 133, 223,

244
generic functions

browsing from listener 223
in class browser 80
defined on selected object 34, 133

get-inspector-values 169
global preferences

setting 23
graph layout menu 45

Collapse Nodes 48
Expand Nodes 48
Force Re-layout of Graph 55
Preferences 50

graph view
system browser 253–255

graphical user interface. See interfaces
graphs 45–55

altering breadth 51
altering depth 51
children function 185, 188
different layouts 53–55
expanding and collapsing nodes 47, 185
menu commands. See menu or command

name
searching 47
sorting items 35

GUI. See interfaces

H
handler frames 103
Handlers button 103
Help menu 41, 58

Editing. See Editing menu
Manuals 42
On Symbol 43
On Tool 43
Search 42

help. See online help
Hidden Symbols button 103
hierarchy view

in class browser 65
history list 26

editing the 27
in the listener 221
repeating next event 27, 224
repeating previous event 27, 224
searching the 224

History menu 27
in editor 120, 121
in the listener 221

interface builder 194
in listener 221–222
Modify 27
Next 27
Previous 27

HTML browsers
use for online help 41

I
Include Inherited Slots button 62, 69
Include Inherited Slots checkbox 16
incremental search 127
Index radio button 43
initargs of slot, displaying 70
initform of slot, displaying 70
initialization file 24
Insert command 120
inserting files in editor 120
inserting text in editor 120
Inspect command 13, 23, 33, 157, 160, 162,

164, 233
inspecting listener values

automatically 168
inspector 155–172

changing values 163–166
description 155
display options 166–168
filtering display 160
inspecting selected object 33
menu commands. See menu or command

name
overview 3
simple use 157
sorting entries 167
tracing 163
tracing in the 163
viewing local class slots 158

Inspector command 155
interface builder 191–215

adding your own code 204
attribute categories 212–213
Attributes dialog box 178, 181, 210
Attributes to View dialog box 184
button panels 197
Check Component button 204
code area 206
code view 183, 205
Component button 202
current interface 197
default names of elements 177, 199
default names of menus 201
Edit menu 208

editing code 205
example of use 173–190
interface area 197
Interface menu 213–215
interfaces, creating 175, 193–194
interfaces, loading 194–195, 208
introduction 191
invoking 192
Item button 181, 201
layout hierarchy area 175, 197
layouts view 175–177, 196–199
Menu Bar button 201
Menu button 181, 201
menu hierarchy area 175, 201
menus view 180–183, 199–204
methods of use 204
Options button 184
Radio Component button 203
rearranging components 176–177, 209–

210
saving code 186, 189, 207–208
setting attributes 177–180, 210–213
switching between interfaces 194
Update button 207
views, description 191
See also interfaces

interface class 193
Interface menu 39

Attributes 213
Confirmer 214
Dialog 214
Display Borders 214
Evaluate 215
interface builder 213–215
Raise 213
Regenerate 214

interface skeleton
default menus in 193
description 193

interfaces
callbacks 183–186, 212
compiling 215
confirmers 214
constructing 175–177
creating menus for 199–204
creating new 175, 193–194
definition 193
development strategy 204
dialog boxes 214
evaluating 215
geometry of elements 213
graph area 197
279

280
layout elements, adding 198
layout hierarchy 197
loading 194–195, 208
menu hierarchy 201
operating on the current 213–215
rearranging components 176–177,

209–210
regenerating 214
setting attributes 177–180, 210–213
titles 177–179, 212
types of attribute 212–213

invisible frames 104
Invisible Functions button 104
:items keyword 63

K
Key to Command command 134, 225
keyboard commands

comparison with menu
commands 117

finding editor command for 225
in the editor 111

keyboard conventions xii
keywords

:center 179
:extended-selection 179
:items 63

Kill command 233
kill ring 123–127

copying text from 124–127
marking the region 123
putting text into 124
rotating 126
summary of use 127

killing a process 233

L
lambda list, displaying 133, 222
layouts

adding to an interface 175–177
pinboard 214
rearranging 176–177, 209–210
specifying callbacks 183–185
See also interfaces

layouts, displaying in window
browser 269

Link from command 38
linking tools together 37
.lisp files 117
LispWorks clipboard. See clipboard
LispWorks podium 57–58
Listen command 33, 166
listener

basic tutorial 219–221
browsing generic functions from 223
compiling files in 28
current expression, displaying value 222
debugging in the 223
description 217–219
evaluating forms 219–220
execute mode 224
Expression menu. See Expression menu
history list 221
History menu 221
loading files in 28
macroexpanding forms 223
next event 224
online help 225
operating on expressions 222
overview 2
pasting selected object into 33
previous event 224
prompt 218
re-evaluating forms 8, 220–221
searching history list 224
*** variable 12
** variable 12
* variable 12, 17, 166, 220
tracing current expression 222
Values submenu. See Values menu
walking forms 223

Listener Bind $ command 168
Listener command 217
list-panel class 63
Load command 28, 131, 254, 255, 261
loading files 28
loading tools into the environment 21
local slots, inspecting 158
Long Names button 270
Lower command 210, 271

M
Macroexpand command 133
Macroexpand Form command 223
macros

defsystem 252
trace 36

major tools, overview 2–3
manipulating values with inspector 163–

166
Manuals command 42
manuals, online. See online help
menu commands

check components 203
choosing xi
comparison with keyboard commands in

editor 117
creating with the interface builder 199–

204
debugger commands 223
names, specifying 183
radio components 203
rearranging 209–210
specifying callbacks 185–186
See also interface

menu components 202–204
check 203
radio 203

menus
creating with the interface builder 180–

183, 199–204
rearranging 209–210
See also interface

Meta key
use of xii

methods
displaying signatures 153
operating on signatures 153
undefining 80
viewing method combinations 149

Methods menu 79, 148
Trace. See Trace menu
Trace submenu. See Trace menu
Undefine 80

Modify command 27

N
native window representation 271
navigating within files in the editor 118–

119
New command 28, 117, 189

interface builder 175, 193
new files, creating 28, 117
Next command

command line debugger 224
history list 27

next event
repeating 27, 224

O
Object menu 31

Actions. See Actions menu
Attributes 210
interface builder 197

Lower 210
Raise 210

objects
inspecting 157
operating on 31–34
searching for 26
selecting 26
See also selected object

On Symbol command 43
On Tool command 43
online help 41–44

browsing manuals 41
current symbol 43
current tool 43
packages, searching 43
searching 42–43

Open command 28, 108, 117, 120
interface builder 194

opening files 28, 108, 117
operating on objects 31–34

See also objects
Options command 23
output

compiler 131
editor 115
standard 227–229

output browser 11, 227–229
menu commands. See menu or command

name
overview 3

overview of major tools 2–3
overview of profiling 238

P
packages

current package 30
display of 29–31
in editor 132
searching for documentation 43

Packages button 241, 246, 247
Page Down key 119
Page Up key 119
Parent command 254, 255
Partial Search radio button 43
Paste command 25–26, 123

in class browser 69
in generic function browser 147
in inspector 163, 165
interface builder 176, 209

pinboard objects
moving and resizing 214

podium. See LispWorks podium
281

282
Preferences command 30, 50, 66, 69, 79,
103, 115, 153, 243, 268

Preview command 264
previewing a system plan 258–261, 264
Previous command

command line debugger 224
history list 27

previous event
repeating 27, 224

primary package in editor 132
Print command 28, 118
PRINTER UNIX environment

variable 118
printing files 28
process browser 231–234

menu commands. See menu or com-
mand name

sorting processes 233
processes

breaking 234
inspecting 233
killing 233
sorting 232

Processes menu 233
profiler 235–247

choosing packages 241–242
choosing symbols 239–242
description 235–237
example of use 245–247
information returned 238, 243–244
interpreting results 244
menu commands. See menu or com-

mand name
overview of profiling 238
pitfalls 244
running a profile 243
sorting results 243
specifying code to run 242
symbols that can be profiled 244

prompt in the listener 218
push-button-panel class 65

Q
Quit command 271
quitting the environment 24

R
radio components 203
Raise command 210, 213, 271
readers of a slot, displaying 70
Recompute Events button 260
recursive macroexpansion 223
re-evaluating forms in listener 8, 220–221
Regenerate command 214
repeating commands 26

in the editor 122
repeating the next event 27
repeating the previous event 27
Replace command 26, 128, 129, 256
replacing text 128–129
Report Bug command 101, 224
reporting bugs 97, 101, 224
Restart Frame command 102, 104
restart frames 104
Restarts button 104
Restarts menu 97
Restarts submenu 224
retract callbacks 184
Return From Frame command 102
Reusable checkbox 22
Reusable command 21
Reuse all tools command 21
re-using windows 21
Revert command 118

interface builder 207
reverting a file to the version stored on

disk 118
row-layout class 198

S
Save All command 121

interface builder 207
Save As command 118

interface builder 207
Save command 117, 189

interface builder 186, 207
Save Region As command 118
saving all files 121
saving files 117

interface builder 207–208
saving regions of text 118
scrolling text in editor 119
Search command 42
Search Files command 256
searching

for objects 26
for text 26, 127–128
history list 224
online manuals 42

Select All command 26, 122, 261
selected object

browsing 32
browsing the class of 33

copying 33
displaying documentation 33
finding source code 33
inspecting 33
pasting into listener 33
showing function calls 34
showing generic functions 34, 133, 223

selection callbacks 184
Set command 163, 164

debugger 103
Shift key, use of xii, 111
Short Names button 270
Show Package Names button 30, 105, 167,

269
Signature menu 153
signatures

displaying 153
operating on 153

simple-pane-foreground reader 17
Slots menu 31, 69, 82

Copy 166
Inspect 162
Paste 163, 165
Set 163, 164

sort options
By Name 36
By Package 36
Unsorted 36

sorting
in class browser 66
in editor 116
in inspector 167
in process browser 233
views 35
in window browser 269

source code
debugging 93–105
for current expression 222
for object in current frame of

debugger 102
for selected object 33

Source command 264
stack frames in the debugger 98
standard action command

Browse 32
Class 33
Copy 33
Documentation 33
Find Source 33
Generic Function 34, 133, 223
Inspect 33
Listen 33

standard output 227–229
standard-output variable 11
*** variable 12
** variable 12
* variable 12, 17, 166, 220
Stop command 233
stopping a process 233
swapping editor buffers 120
symbols

online help for 43
tracing 132
undefining 133

Symbols button 239, 247
system

browsing 254
compiling and loading 255
concatenating 256
creating plans for 260
defining 189, 250–252
executing plans for 260
forcing compilation and loading of

members 264
introduction to 249–250
parent system, browsing 254
plan 258
previewing a plan 258–261, 264
ROOT-SYSTEM 254, 257
searching 256
using source files 264

system browser 249–264
Actions area 260
compiling and loading systems 255
creating plans 260
description 252
executing plans 260
File description area 255
Filter area 260
forcing compilation and loading 264
Graph area 254
graph view 253–255
menu commands. See menu or command

name
output view 261–263
package information 264
parent system, browsing 254
Plan area 260
previewing the plan 258–261
sorting information 263
System area 254
system plan, previewing 258–261, 264
text view 256–258
using 254–255
283

284
using source files 264
views available 252

Systems menu 255
Compile 255, 261
Compile and Load 255, 261
Concatenate 256
Load 255, 261
Parent 254, 255
Replace 256
Search Files 256

T
tab completion 110

in generic function browser 147
text

deleting 120
inserting 120
replacing 128–129
saving regions of 118
scrolling in editor 119
searching for 26, 127–128
selecting 26
See also under editor

text view
in editor 108
in function call browser 139
in system browser 256–258

Toggle Tracing command 37
tools

current package of 30
linking together 37
loading into the environment 21
online help for 43
overview of major 2–3
reusing 24
tracing from 36–37

Tools menu 2, 6, 21, 21, 58
Class Browser 60
Clone 22, 23, 37, 121
Editor 21, 108
Generic Function Browser 145
Inspector 155
Interface Builder 192
Listener 217
Options 23
Output Browser 227
Preferences 30, 50, 66, 69, 79, 103, 115,

153, 243, 268
Profiler 235
Update 22
update 14
Window Browser 265
Trace command 37, 132, 222
Trace Inside command 37
trace macro 36
Trace menu

Break on Access 163
Break on Read 163
Break on Write 163
Trace 37
Trace Inside 37
Trace Read 163
Trace with Break 37
Tracing 37
Untrace 37, 163
Untrace All 37

Trace with Break command 37
tracing

classes 80
in function call browser 144
in the inspector 163
in inspector 163

U
Undefine command 80, 133, 149
undefining

current definition 133
functions 80
generic functions 149
methods 80

Undo command 25
editor 122

UNIX environment variables
PRINTER 118

Unsorted option 36
Unstop command 233
unstopping a process 233
Untrace All command 37
Untrace command 37, 163
Update command 14, 22
updating windows 22
using the clipboard 25–26

See also kill ring
using the keyboard xii
using the mouse ix–xi

V
Value command 133, 222
Value menu

Listen 166
values

changing in inspector 163–166
Values menu

Class 15, 60, 63
Copy 165
Inspect 23, 157, 160, 162, 164

variables
$ 168
* 12 , 17, 166, 220
** 12
*** 12
standard-output 11

Variables menu
Actions. See Actions menu
Set 103

views
in class browser 59
description 34–36
in editor 108
in function call browser 135
in generic function browser 145
graph 45–55, 253–255
hierarchy 65
in inspector 166
output 115, 227–229, 261–263
slots 62–64
sorting items in 35
in system browser 252
text 139, 256–258

Visit Tags File editor command 111

W
Walk command 134
Walk Form command 223
Whole Word radio button 43
window browser 265–271

changing root of graph 267
complete window names,

displaying 270
destroying a window 271
different types of window 269
lowering a window 271
menu commands. See menu or command

name
moving around different windows 271
native representation 271
package information 269
quitting a window 271
raising a window 271
sorting entries 269
using 267
whole environment 271

windows
displaying 20
making copies of 22

re-using 21
updating 22

Windows menu 14, 20, 58, 270
Actions. See Actions menu
Browse 267
Browse Parent 271
Browse Representation 271
Browse Screen 271
Destroy 271
Lower 271
Quit 271
Raise 271
in window browser 271

Works menu 58
Exit 6
Object submenu. See Object menu
Packages submenu. See Packages menu
Symbols submenu. See Symbols menu

writers for a slot, displaying 70
285

286

	LispWorks® for the Windows® Operating System Commo...
	Preface
	Introduction
	1.1 Major tools
	1.1.1 The listener
	1.1.2 The editor
	1.1.3 The class browser
	1.1.4 The output browser
	1.1.5 The inspector

	A Short Tutorial
	2.1 Starting the environment
	2.2 Creating a listener
	2.3 Using the debugger
	2.4 Viewing output
	2.5 Inspecting objects using the inspector
	2.6 Examining classes in the class browser
	2.7 Summary

	Common Features
	3.1 Loading and displaying tools
	3.1.1 Displaying existing windows
	3.1.2 Loading and displaying tools
	3.1.3 Re-using windows
	3.1.4 Creating menu bars
	3.1.5 Copying windows
	3.1.6 Closing windows
	3.1.7 Updating windows

	3.2 Setting global preferences
	3.2.1 The windows options
	3.2.2 Initialization file

	3.3 Quitting the environment
	3.4 Performing editing functions
	3.4.1 Undoing changes
	3.4.2 Using the clipboard
	3.4.3 Selecting text and objects
	3.4.4 Searching for text and objects

	3.5 The history list
	3.5.1 Repeating events from the history list
	3.5.2 Editing the history list

	3.6 Operating on files
	3.7 Displaying packages
	3.7.1 Specifying a package

	3.8 Performing operations on selected objects
	3.8.1 Operations available

	3.9 Using different views
	3.9.1 Sorting items in views

	3.10 Tracing symbols from tools
	3.11 Linking tools together
	3.12 Filtering information
	3.13 Examining the window itself

	Getting Help
	4.1 Online manuals in HTML format
	4.1.1 Browsing manuals online
	4.1.2 Searching the online manuals
	4.1.3 Getting help on the current tool
	4.1.4 Getting help on the current symbol

	4.2 Online help for editor commands
	4.3 Browsing manuals online using Adobe Acrobat

	Manipulating Graphs
	5.1 An overview of the graph view
	5.2 Searching graphs
	5.3 Expanding and collapsing graphs
	5.4 Moving nodes in graphs
	5.5 Displaying plans of graphs
	5.6 Preferences for graph layouts
	5.6.1 Altering the depth and breadth of graphs
	5.6.2 Displaying different graph layouts

	The LispWorks podium
	The Class Browser
	7.1 Simple use of the class browser
	7.1.1 Examining slots
	7.1.2 Examining inherited slots
	7.1.3 Filtering slot information
	7.1.4 Examining other classes
	7.1.5 Sorting information

	7.2 Examining slot information
	7.2.1 Class box
	7.2.2 Filter box
	7.2.3 Slots list
	7.2.4 Description list
	7.2.5 Performing operations on the current class

	7.3 Examining superclasses and subclasses
	7.3.1 Class box
	7.3.2 Superclasses list
	7.3.3 Subclasses list
	7.3.4 Description list
	7.3.5 Performing operations on the selected classe...

	7.4 Examining classes graphically
	7.4.1 Class box
	7.4.2 Subclasses and superclasses graphs
	7.4.3 Description list
	7.4.4 Performing operations on the selected classe...
	7.4.5 An example

	7.5 Examining generic functions and methods
	7.5.1 Class box
	7.5.2 Filter box
	7.5.3 List of functions or methods
	7.5.4 Description list
	7.5.5 Performing operations on the current class
	7.5.6 Operations specific to the current function ...

	7.6 Examining initargs
	7.6.1 Class box
	7.6.2 Filter box
	7.6.3 List of initargs
	7.6.4 Description list
	7.6.5 Performing operations on the current class

	7.7 Examining class precedences
	7.7.1 Class box
	7.7.2 Filter box
	7.7.3 List of precedences
	7.7.4 Description list
	7.7.5 Performing operations on the selected classe...

	The Compilation Conditions Browser
	8.1 Introduction
	8.2 Examining error conditions
	8.2.1 Filter area
	8.2.2 Compilation conditions area
	8.2.3 Description area

	8.3 Examining output
	8.4 Configuring the display
	8.4.1 Package names preferences
	8.4.2 Pathname preferences
	8.4.3 Condition type preferences

	8.5 Access to other tools

	The Debugger Tool
	9.1 Description of the debugger
	9.1.1 Condition box
	9.1.2 Backtrace list
	9.1.3 Variables list
	9.1.4 Buttons

	9.2 What the debugger tool does
	9.3 Simple use of the debugger tool
	9.4 The stack in the debugger
	9.5 An example debugging session
	9.6 Performing operations on the error condition
	9.7 Performing operations on frames in the stack
	9.8 Performing operations on variables in a frame
	9.9 Configuring the debugger tool
	9.9.1 Configuring the call frames displayed
	9.9.2 Configuring the symbols displayed
	9.9.3 Displaying package information

	The Editor
	10.1 Displaying and editing files
	10.1.1 The editor window
	10.1.2 The echo area
	10.1.3 Using keyboard commands

	10.2 Displaying and swapping between buffers
	10.2.1 Filter box
	10.2.2 Buffers area

	10.3 Displaying Common Lisp definitions
	10.3.1 Filter box
	10.3.2 Definitions area

	10.4 Finding definitions
	10.5 Changed definitions
	10.6 Displaying output messages in the editor
	10.7 Setting editor preferences
	10.7.1 Sorting items in lists
	10.7.2 Displaying package information

	10.8 Getting started with the editor
	10.8.1 Opening, saving and printing files
	10.8.2 Moving around files
	10.8.3 Inserting and deleting text
	10.8.4 Using several buffers

	10.9 Other essential commands
	10.9.1 Aborting commands
	10.9.2 Undoing commands
	10.9.3 Repeating commands

	10.10 Cutting, copying and pasting using the clipb...
	10.11 Cutting, copying and pasting using the kill ...
	10.11.1 Marking the region
	10.11.2 Cutting or copying text
	10.11.3 Pasting text

	10.12 Searching and replacing text
	10.12.1 Searching for text
	10.12.2 Incremental searches
	10.12.3 Replacing text

	10.13 Using Lisp-specific commands
	10.13.1 Evaluating code
	10.13.2 Compiling code
	10.13.3 Tracing symbols and functions
	10.13.4 Packages
	10.13.5 Indentation of forms
	10.13.6 Other facilities

	10.14 Help with editing

	The Function Call Browser
	11.1 Introduction
	11.2 Examining functions using the graph view
	11.2.1 Function area
	11.2.2 Graph area
	11.2.3 Echo area

	11.3 The Function Description button
	11.3.1 Function description area
	11.3.2 Documentation area

	11.4 Examining functions using the text view
	11.4.1 Function area
	11.4.2 Called By area
	11.4.3 Calls Into area
	11.4.4 Echo area
	11.4.5 Function description area
	11.4.6 Documentation area

	11.5 Configuring the function call browser
	11.5.1 Sorting entries
	11.5.2 Displaying package information

	11.6 Configuring graph displays
	11.6.1 Graph layout settings
	11.6.2 Graph expansion settings
	11.6.3 Plan mode settings

	11.7 Performing operations on functions

	The Generic Function Browser
	12.1 Examining information about methods
	12.1.1 Function box
	12.1.2 Filter box
	12.1.3 List of methods
	12.1.4 Description list
	12.1.5 Performing operations on the current functi...

	12.2 Examining information about combined methods
	12.2.1 Function box
	12.2.2 Signatures button
	12.2.3 Arguments types box
	12.2.4 List of method combinations
	12.2.5 Description list
	12.2.6 Performing operations on signatures

	12.3 Configuring the generic function browser

	The Inspector
	13.1 Examining objects
	13.2 Filtering the display
	13.3 Operating upon objects and items
	13.3.1 Examination operations
	13.3.1.1 Example

	13.3.2 Inspecting attributes
	13.3.3 Tracing operations
	13.3.4 Manipulation operations
	13.3.4.1 Example

	13.4 Configuring the inspector
	13.5 Customizing the inspector
	13.6 Creating new inspection formats
	13.6.1 Example

	Example: Using The Interface Builder
	14.1 Creating the basic layout
	14.2 Specifying attribute values
	14.3 Creating the menu system
	14.4 Specifying callbacks in the interface definit...
	14.4.1 Specifying layout callbacks and other callb...
	14.4.2 Specifying menu callbacks

	14.5 Saving the interface
	14.6 Defining the callbacks
	14.6.1 Callbacks to update the display pane
	14.6.2 Callbacks to display data in a dialog
	14.6.3 Callbacks for menu items
	14.6.4 Other miscellaneous functions

	14.7 Creating a system
	14.8 Testing the example interface

	The Interface Builder
	15.1 Creating or loading interfaces
	15.1.1 Creating a new interface
	15.1.2 Loading existing interfaces

	15.2 Creating an interface layout
	15.2.1 Interface box
	15.2.2 Graph area
	15.2.3 Button panels
	15.2.4 Adding new elements to the layout

	15.3 Creating a menu system
	15.3.1 Interface box
	15.3.2 Graph area
	15.3.3 Adding menu bars
	15.3.4 Adding menus
	15.3.5 Adding menu items
	15.3.6 Adding menu components
	15.3.6.1 Standard menu components
	15.3.6.2 Radio components
	15.3.6.3 Check components

	15.4 Editing and saving code
	15.4.1 Integrating the design with your own code
	15.4.2 Editing code
	15.4.3 Saving code

	15.5 Performing operations on objects
	15.5.1 Editing the selected object
	15.5.2 Browsing the selected object
	15.5.3 Rearranging components in an interface
	15.5.4 Setting the attributes for the selected obj...
	15.5.4.1 Basic attributes
	15.5.4.2 Advanced attributes
	15.5.4.3 Title attributes
	15.5.4.4 Callbacks attributes
	15.5.4.5 Geometry attributes
	15.5.4.6 Style attributes

	15.6 Performing operations on the current interfac...
	15.6.1 Setting attributes for the current interfac...
	15.6.2 Displaying the current interface
	15.6.3 Arranging objects in a pinboard layout
	15.6.4 Loading the current interface into the envi...

	The Listener
	16.1 The basic features of a listener
	16.2 Evaluating simple forms
	16.3 Re-evaluating forms
	16.4 Interrupting evaluation
	16.5 The History menu
	16.6 The Expression submenu
	16.7 The Values submenu
	16.8 The Debug menu
	16.9 Execute mode
	16.10 Help with editing in the listener

	The Output Browser
	The Process Browser
	18.1 Displaying and sorting the output
	18.2 Process control
	18.3 Other ways of breaking processes
	18.4 Updating the process browser

	The Profiler
	19.1 Introduction
	19.2 A description of profiling
	19.3 Steps involved in profiling code
	19.3.1 Choosing the functions to profile
	19.3.1.1 Choosing individual functions
	19.3.1.2 Choosing packages

	19.3.2 Specifying the code to run while profiling
	19.3.3 Performing the profile

	19.4 Format of the results
	19.5 Interpreting the results
	19.5.1 Profiling Pitfalls

	19.6 Some examples

	The System Browser
	20.1 Introduction
	20.2 Defining a system
	20.2.1 Examples

	20.3 A description of the system browser
	20.4 Examining the system graph
	20.4.1 System area
	20.4.2 Graph area
	20.4.3 Description area
	20.4.4 Performing operations on system members

	20.5 Examining systems in the text view
	20.5.1 System area
	20.5.2 Parent system area
	20.5.3 Subsystems area
	20.5.4 Files area
	20.5.5 File description area

	20.6 Generating and executing plans in the preview...
	20.6.1 System area
	20.6.2 Actions area
	20.6.3 Filter area
	20.6.4 Plan area
	20.6.5 File description area
	20.6.6 Executing plans in the preview view

	20.7 Examining output in the output view
	20.7.1 System area
	20.7.2 Output area
	20.7.3 File description area

	20.8 Configuring the display
	20.8.1 Sorting entries
	20.8.2 Displaying package information

	20.9 Setting options in the system browser

	The Window Browser
	21.1 Introduction
	21.1.1 Graph box
	21.1.2 Window graph
	21.1.3 Description list

	21.2 Configuring the window browser
	21.2.1 Sorting entries
	21.2.2 Displaying package information
	21.2.3 Displaying different types of window
	21.2.4 Displaying short or long names

	21.3 Performing operations on windows
	21.3.1 Navigating the window hierarchy
	21.3.2 Window control

	Index

