
0LispWorks®

Common Lisp
Interface Manager 2.0
User’s Guide
Version 2.0

Copyright and Trademarks
LispWorks Common Lisp Interface Manager 2.0 User’s Guide

Version 2.0

October 1998

Part number: 3LADT3A15LG

Copyright © 1994–1998 by Harlequin Group plc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Harlequin Group plc.

The information in this publication is provided for information only and is subject to change without notice. Harlequin Group plc and its
affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The
software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license.

LispWorks is a registered trademark of Harlequin Group plc. Harlequin, Delivery, Transducer/PC, The Authoring Book, ClassWorks, and
KnowledgeWorks are all trademarks of Harlequin Group plc.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

CLX and CLUE bear the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Texas Instruments Incorporated, P.O. Box 149149, MS 2151, Austin, Texas 78714-9149
Copyright © 1987, 1988, 1989, 1990, 1991 Texas Instruments Incorporated.
Permission is granted to any individual or institution to use, modify and distribute this software, provided that this complete copyright and
permission notice is maintained, intact, in all copies and documentation. Texas Instruments Incorporated provides this software “as is” with-
out express or implied warranty.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all
warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

US Government Use

The LispWorks Software is a computer software program developed at private expense and is subject to the following Restricted Rights Leg-
end: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in (i) FAR 52.227-14 Alt III or (ii)
FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is subject to Harlequin’s customary commercial license
as contained in the accompanying license agreement, in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be
deemed to be `unpublished’ and licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States.
Harlequin Incorporated, One Cambridge Center, Cambridge, Massachusetts 02142.”

http://www.harlequin.com/

Europe:

Harlequin Limited
Barrington Hall
Barrington
Cambridge CB2 5RG
UK

telephone +44 1223 873 800
fax +44 1223 873 873
support +44 1625 58 8040

North America:

Harlequin Incorporated
One Cambridge Center
Cambridge, MA 02142
USA

telephone +1 617 374 2400
fax +1 617 252 6505
support +1 617 374 2433

Asia Pacific:

Harlequin Australia Pty. Ltd.
Level 12
12 Moore Street
Canberra, ACT 2601
Australia

telephone +61 2 6206 5522
fax +61 2 6206 5525
support +44 1625 58 8040

g
a
ach

 of a

xt.

es.

s

us
Preface

About the User’s Guide

The Common Lisp Interface Manager (CLIM) is a powerful Lisp-based toolkit that
provides a layered set of portable facilities for constructing user interfaces. TheCommon
Lisp Interface Manager User’s Guide is intended for CLIM programmers who are lookin
for material arranged by concept. The Guide, based on the CLIM II Specification, is
complete reference for both LispWorks and Liquid Common Lisp versions of CLIM. E
chapter of theUser’s Guide explains a key aspect of CLIM and includes summaries of
conditions, constants, functions, macros, and presentation types that pertain to the
particular topic, as well as many code examples. For a detailed syntactic description
particular CLIM construct, refer to the on-line CLIM manual pages.

Notational Conventions

TheUser’s Guide employs the following conventions to distinguish different types of te

construct Lisp and CLIM constructs, such as functions or class

significant term Significant terms introduced for the first time. These
terms appear in the glossary.

code examples Computer-generated text, prompts, and messages, a
well as code examples and user entries.

KEYSTROKES References to keystrokes, as inMETA or SHIFT .
Logical keystrokes are enclosed in angle brackets. Th
for <ABORT>, you might typeCONTROL-z; for
<END>, CONTROL-]; and for<HELP>, META-?.

function arguments Arguments to functions.
iii

.

t the
specified arguments Specific values for arguments within code examples

unspecified arguments Arguments within code examples for which the user
must supply a value.

Menu Item Menu items, as inExit or File>Saveor Up.

filename Pathnames, filenames, and parts of filenames.

References to the Unix release directory are enclosed in angle brackets to represen
actual name of the directory. So:<release-directory>/demo/puzzle.lispfor one user might
be/usr/local/clim/demo/puzzle.lisp. For another, it might be/hqn/bin/demo/puzzle.lisp.

Mouse pointer gestures are capitalized, as in Left orSHIFT- Middle.
iv CLIM User’s Guide

... 1

...... 3

..... 4

... 5

..... 7

.... 7
.. 11
.... 14

.. 15

.. 17

.. 19
... 19
... 19
.... 20
..... 21

. 22

.. 23
... 23
... 29
.... 30
.... 32

.... 35

... 35
.. 35
. 36

... 37
.. 37
.. 45
.. 46
Contents
Chapter 1 Using CLIM ...

1.1 Conceptual Overview...

1.2 Highlights of Tools and Techniques..

1.3 How CLIM Helps You Achieve a Portable User Interface

1.4 What Is CLIM? ...
1.4.1 The Core of CLIM ..
1.4.2 CLIM Facilities...
1.4.3 Summary...

1.5 Testing Code Examples in Liquid CLIM...

Chapter 2 Drawing Graphics ...

2.1 Conceptual Overview of Drawing Graphics ..
2.1.1 Drawing Functions and Options ..
2.1.2 The Drawing Plane ..
2.1.3 Coordinates ...
2.1.4 Mediums, Sheets, and Streams ..

2.2 Examples of Using CLIM Drawing Functions

2.3 CLIM Drawing Functions..
2.3.1 Arguments..
2.3.2 Compound Drawing Functions..
2.3.3 Patterns and Stencils ...
2.3.4 Pixmaps...

2.4 Graphics Protocols ...
2.4.1 Arguments..
2.4.2 General Behavior of Drawing Functions
2.4.3 Medium-Specific Drawing Functions..

2.5 General Geometric Objects in CLIM..
2.5.1 Regions in CLIM ..
2.5.2 CLIM Point Objects..
2.5.3 Polygons and Polylines in CLIM..
 Contents v

.. 49
... 51
 53
.... 58

 65

.. 67

.. 71
. 72
.. 74

.. 75

.. 79

... 80

.. 81
. 84
.. 85
.. 86
. 90

.. 93

... 95

.. 96

.. 98

. 101

 102

105

107
. 108
.. 108

109

 111
2.5.4 Lines in CLIM...
2.5.5 Rectangles in CLIM...
2.5.6 Ellipses and Elliptical Arcs in CLIM..
2.5.7 Bounding Rectangles ..

Chapter 3 The CLIM Drawing Environment

3.1 CLIM Mediums ...

3.2 Using CLIM Drawing Options ..
3.2.1 Set of CLIM Drawing Options ..
3.2.2 Using the :filled Option ..

3.3 CLIM Line Styles ..

3.4 Transformations in CLIM ..

3.5 The Transformations Used by CLIM..
3.5.1 CLIM Transformation Constructors ...
3.5.2 CLIM Transformation Protocol ...
3.5.3 CLIM Transformation Predicates ...
3.5.4 CLIM Transformation Functions..
3.5.5 Applying CLIM Transformations..

Chapter 4 Text Styles ...

4.1 Conceptual Overview of Text Styles...

4.2 CLIM Text Style Objects ...

4.3 CLIM Text Style Functions..

4.4 Text Style Binding Forms ...

4.5 Controlling Text Style Mappings...

Chapter 5 Drawing in Color...

5.1 Conceptual Overview of Drawing With Color
5.1.1 Color Objects ...
5.1.2 Rendering..

5.2 CLIM Operators for Drawing in Color..

5.3 Predefined Color Names in LispWorks CLIM.......................................
vi CLIM User’s Guide

 111

. 112

. 112

. 113
 115

. 117

 119
119
... 120
. 120
. 121
.. 121
.. 121
. 122

 122

 124
.. 125
127

 130

... 135

.. 136
.. 137
.. 138
... 138
.. 138
... 141
.. 142
.. 142
.. 143

. 144

 149
5.4 Predefined Color Names in Liquid CLIM ...

5.5 Indirect Inks ..

5.6 Flipping Ink...

5.7 Examples of Simple Drawing Effects...
5.7.1 Using Flipping Ink ..

Chapter 6 Presentation Types..

6.1 Conceptual Overview of CLIM Presentation Types
6.1.1 User Interaction With Application Objects...................................
6.1.2 Presentations and Presentation Types..
6.1.3 Output With Its Semantics Attached..
6.1.4 Input Context ...
6.1.5 Inheritance...
6.1.6 Presentation Translators..
6.1.7 What the Application Programmer Does.....................................

6.2 How to Specify a CLIM Presentation Type ...

6.3 Using CLIM Presentation Types for Output ..
6.3.1 CLOS Operators..
6.3.2 Additional Functions for Operating on Presentations in CLIM....

6.4 Using CLIM Presentation Types for Input...

6.5 Predefined Presentation Types ..
6.5.1 Basic Presentation Types ..
6.5.2 Numeric Presentation Types...
6.5.3 Character and String Presentation Types....................................
6.5.4 Pathname Presentation Types ..
6.5.5 One-Of and Some-Of Presentation Types
6.5.6 Sequence Presentation Types...
6.5.7 Constructor Presentation Types ..
6.5.8 Compound Presentation Types ...
6.5.9 Command and Form Presentation Types....................................

6.6 Functions That Operate on CLIM Presentation Types

Chapter 7 Defining a New Presentation Type..................
 Contents vii

. 151
 152
 153

 155
 157
62

 164

.. 166

169

.. 171

173
 174
. 175

. 175

 177

 182
182
. 182
 183
. 183

.. 184

189

191

193
 195
. 196
.. 197
 199

99
 204
7.1 Conceptual Overview of Defining a New Presentation Type
7.1.1 CLIM Presentation Type Inheritance..
7.1.2 Defining an Accept for a Structure With Several Fields

7.2 CLIM Operators for Defining New Presentation Types
7.2.1 Presentation Methods in CLIM...
7.2.2 CLIM Operators for Defining Presentation Type Abbreviations . 1

7.3 Using Views With CLIM Presentation Types ..

7.4 Advanced Topics..

Chapter 8 Presentation Translators in CLIM

8.1 Conceptual Overview of Presentation Translators...............................

8.2 Applicability of CLIM Presentation Translators
8.2.1 Input Contexts in CLIM..
8.2.2 Nested Presentations in CLIM...

8.3 Pointer Gestures in CLIM...

8.4 CLIM Operators for Defining Presentation Translators

8.5 Examples of Defining Presentation Translators in CLIM......................
8.5.1 Defining a Translation from Floating Point Number to Integer ...
8.5.2 Defining a Presentation-to-Command Translator........................
8.5.3 Defining Presentation Translators for the Blank Area..................
8.5.4 Defining a Presentation Action..

8.6 Advanced Topics..

Chapter 9 Defining Application Frames

9.1 Conceptual Overview of CLIM Application Frames.............................

9.2 Defining CLIM Application Frames..
9.2.1 The Application Frame Protocol...
9.2.2 Using the :pane Option ..
9.2.3 Using the :panes and :layouts Options..
9.2.4 Example of the :pane Option to define-application-frame
9.2.5 Examples of the :panes and :layout Options to define-applica-

tion-frame.. 1
9.2.6 Using an :accept-values Pane in a CLIM Application Frame.......
viii CLIM User’s Guide

04

 207

 207

208

 208
08

 210

.. 210
 211
215

... 219
.. 220
.. 222

.. 224

.. 227

... 229
.. 230
. 231
... 232

... 233

.. 233

... 235
.. 238
. 239

.... 243

... 244

.... 246

. 247

.. 248

... 249

.. 250
9.3 Initializing CLIM Application Frames .. 2

9.4 Accessing Slots and Components of CLIM Application Frames

9.5 Running a CLIM Application ..

9.6 Exiting a CLIM Application ..

9.7 Examples of CLIM Application Frames..
9.7.1 Defining a CLIM Application Frame ... 2
9.7.2 Constructing a Function as Part of Running an Application

9.8 Application Frame Operators and Accessors.......................................
9.8.1 CLIM Application Frame Accessors ..
9.8.2 Operators for Running CLIM Applications..................................

9.9 Frame Managers..
9.9.1 Finding Frame Managers ..
9.9.2 Frame Manager Operators ..

9.10 Advanced Topics..

Chapter 10 Panes and Gadgets.......................................

10.1 Panes ...
10.1.1 Basic Pane Construction ...
10.1.2 Pane Initialization Options...
10.1.3 Pane Properties...

10.2 Layout Panes...
10.2.1 Layout Pane Options...
10.2.2 Layout Pane Classes ..
10.2.3 Composite Pane Generic Functions..
10.2.4 The Layout Protocol ..

10.3 Extended Stream Panes..
10.3.1 Extended Stream Pane Options..
10.3.2 Extended Stream Pane Classes ...
10.3.3 Making CLIM Extended Stream Panes

10.4 Defining A New Pane Type: Leaf Panes..

10.5 Gadgets ...
10.5.1 Abstract Gadgets...
 Contents ix

... 254
.. 261
.. 274

. 277

 279

.. 280

.. 281
 281

.. 283

. 286

. 289

 290

 291

... 291

.. 293

.. 296
 296
298
. 302
303
304
. 307

 309

. 311

. 311

. 317

 321
.. 321
. 322
10.5.2 Basic Gadget Classes ...
10.5.3 Abstract Gadget Classes ...
10.5.4 Integrating Gadgets and Output Records..................................

Chapter 11 Commands..

11.1 Introduction to CLIM Commands ...

11.2 Defining Commands the Easy Way ...
11.2.1 Command Names and Command Line Names.........................
11.2.2 The Command-Defining Macro..

11.3 Command Objects..

11.4 CLIM Command Tables ...

11.5 CLIM Predefined Command Tables ...

11.6 Conditions Relating to CLIM Command Tables

11.7 Styles of Interaction Supported by CLIM..

11.8 Command-Related Presentation Types ...

11.9 The CLIM Command Processor ..

11.10 Advanced Topics..
11.10.1 CLIM Command Tables ...
11.10.2 CLIM Command Menu Interaction Style
11.10.3 Mouse Interaction Via Presentation Translators......................
11.10.4 CLIM Command Line Interaction Style
11.10.5 CLIM Keystroke Interaction Style..
11.10.6 The CLIM Command Processor ..

Chapter 12 Menus and Dialogs..

12.1 Conceptual Overview of Menus and Dialogs

12.2 CLIM Menu Operators ...

12.3 CLIM Dialog Operators..

12.4 Examples of Menus and Dialogs in CLIM ..
12.4.1 Using accepting-values ...
12.4.2 Using accept-values-command-button.......................................
x CLIM User’s Guide

 323
. 324
.. 325
. 327

 329

... 331

... 332

.. 334

. 336

. 337

.. 338

. 338
 340
. 340

 342

. 342

. 343

 345

. 347

 348
. 350
. 353
. 354
.. 358

. 365

 366

. 368

 370

 373
12.4.3 Using:resynchronize-every-pass in accepting-values................
12.4.4 Using the third value from accept in accepting-values..............
12.4.5 Using menu-choose...
12.4.6 Using menu-choose-from-drawer ..

Chapter 13 Extended Stream Output Facilities..............

13.1 Basic Output Streams..

13.2 Extended Output Streams ...

13.3 The Text Cursor ...
13.3.1 The Text Cursor Protocol...
13.3.2 The Stream Text Cursor Protocol ..

13.4 Text...
13.4.1 The Text Protocol ..
13.4.2 Mixing Text and Graphics ..
13.4.3 Wrapping Text Lines ...

13.5 Attracting the User’s Attention ..

13.6 Buffering Output ...

13.7 CLIM Window Stream Pane Functions ..

Chapter 14 Output Recording and Redisplay

14.1 Conceptual Overview of Output Recording..

14.2 CLIM Operators for Output Recording ...
14.2.1 The Basic Output Record Protocol ..
14.2.2 The Output Record “Database” Protocol...................................
14.2.3 Types of Output Records ...
14.2.4 Output Recording Streams..

14.3 Conceptual Overview of Incremental Redisplay

14.4 CLIM Operators for Incremental Redisplay ..

14.5 Using updating-output ..

14.6 Example of Incremental Redisplay in CLIM.......................................

Chapter 15 Extended Stream Input Facilities
 Contents xi

.. 375

... 376
. 377
. 381

.... 382

.. 385

.. 386

95

. 397
 399
. 400

. 403

. 405

.. 406

.. 408

.. 414

.. 415

 419

 421
 421
 422
. 428

 435
 435
 436
 439

 441

 443

.. 445
15.1 Basic Input Streams ...

15.2 Extended Input Streams ..
15.2.1 The Extended Input Stream Protocol...
15.2.2 Extended Input Stream Conditions ..

15.3 Gestures and Gesture Names ...

15.4 The Pointer Protocol ..

15.5 Pointer Tracking...

Chapter 16 Input Editing and Completion Facilities 3

16.1 Input Editing ...
16.1.1 Operators for Input Editing...
16.1.2 Input Editor Commands...

16.2 Activation and Delimiter Gestures..

16.3 Signalling Errors Inside accept Methods ..

16.4 Reading and Writing Tokens..

16.5 Completion...

16.6 Using with-accept-help: some examples ...

16.7 Advanced Topics..

Chapter 17 Formatted Output ..

17.1 Formatting Tables in CLIM ...
17.1.1 Conceptual Overview of Formatting Tables...............................
17.1.2 CLIM Operators for Formatting Tables......................................
17.1.3 Examples of Formatting Tables...

17.2 Formatting Graphs in CLIM ..
17.2.1 Conceptual Overview of Formatting Graphs..............................
17.2.2 CLIM Operators for Graph Formatting
17.2.3 Examples of CLIM Graph Formatting..

17.3 Formatting Text in CLIM...

17.4 Bordered Output in CLIM ...

17.5 Advanced Topics..
xii CLIM User’s Guide

. 446
 450
. 451

. 455

 457
.. 458
.. 458

.... 460

... 461

.. 461
... 464

... 465

.. 465

... 467

.. 469
. 469
.. 471

... 473

.. 481

. 481
. 484
.. 484
. 485

.. 487

. 487

.. 488

. 489
 489
. 489

 491

. 493
17.5.1 The Table Formatting Protocol..
17.5.2 The Item List Formatting Protocol ...
17.5.3 The Graph Formatting Protocol ...

Chapter 18 Sheets ...

18.1 Overview of Window Facilities ...
18.1.1 Properties of Sheets...
18.1.2 Sheet Protocols..

18.2 Basic Sheet Classes..

18.3 Relationships Between Sheets ..
18.3.1 Sheet Relationship Functions..
18.3.2 Sheet Genealogy Classes ...

18.4 Sheet Geometry...
18.4.1 Sheet Geometry Functions..
18.4.2 Sheet Geometry Classes...

18.5 Sheet Protocols: Input ..
18.5.1 Input Protocol Functions..
18.5.2 Input Protocol Classes...

18.6 Standard Device Events ..

18.7 Sheet Protocols: Output ...
18.7.1 Mediums and Output Properties ..
18.7.2 Output Protocol Functions ...
18.7.3 Output Protocol Classes..
18.7.4 Associating a Medium With a Sheet..

18.8 Repaint Protocol...
18.8.1 Repaint Protocol Functions..
18.8.2 Repaint Protocol Classes...

18.9 Sheet Notification Protocol ...
18.9.1 Relationship to Window System Change Notifications..............
18.9.2 Sheet Geometry Notifications..

Chapter 19 Ports, Grafts, and Mirrored Sheets

19.1 Introduction...
 Contents xiii

... 494

.. 497

. 500
 500
. 501

505

21

. 521

.. 521

522

23

... 523

. 525

.. 527

 528

9

1

533

... 533

.. 535

.. 536

.. 537
19.2 Ports ..

19.3 Grafts..

19.4 Mirrors and Mirrored Sheets...
19.4.1 Mirror Functions ...
19.4.2 Internal Interfaces for Native Coordinates.................................

Appendix A Glossary ...

Appendix B Implementation Specifics 5

B.1 Setting Up Your Packages to Use CLIM ..

B.2 CLIM Packages ..

B.3 Liquid CLIM Specifics ...

Appendix C The CLIM-SYS Package 5

C.1 Resources ..

C.2 Multi-Processing ...

C.3 Locks ..

C.4 Multiple-Value Setf ..

Appendix D LispWorks CLIM and CAPI 52

Appendix E Liquid CLIM and Motif 53

Appendix F Common Lisp Streams

F.1 Stream Classes ...

F.2 Basic Stream Functions ..

F.3 Character Input ...

F.4 Character Output ...
xiv CLIM User’s Guide

.. 540

. 540

543

 543

 545

 549
F.5 Binary Streams ..

F.6 Hardcopy Streams in CLIM ...

Appendix G Windows ..

G.1 Window Stream Operations in CLIM ..

G.2 Functions for Operating on Windows Directly

Index ...
 Contents xv

xvi CLIM User’s Guide

Chapter 1 Using CLIM
Using CLIM 1

...... 3

..... 4

... 5

..... 7

.... 7
.... 7
...... 7
...... 9
.... 9
... 10
... 10
... 10
... 10
.. 11
... 11
.. 11
.... 12
... 12
.... 12
... 13
.... 14

.. 15
Chapter 1 Using CLIM

1.1 Conceptual Overview...

1.2 Highlights of Tools and Techniques..

1.3 How CLIM Helps You Achieve a Portable User Interface

1.4 What Is CLIM? ...
1.4.1 The Core of CLIM ..

1.4.1.1 Application Frames..
1.4.1.2 Panes ..
1.4.1.3 Sheets ...
1.4.1.4 Enabling Input and Output...
1.4.1.5 Graphics ..
1.4.1.6 Text ...
1.4.1.7 Events..
1.4.1.8 Mediums ...

1.4.2 CLIM Facilities...
1.4.2.1 Look and Feel ...
1.4.2.2 Controlling Look and Feel ...
1.4.2.3 Streams...
1.4.2.4 Extended Input and Output ...
1.4.2.5 Presentations ..
1.4.2.6 Command Loop ..

1.4.3 Summary...

1.5 Testing Code Examples in Liquid CLIM...
Using CLIM 2

clude

 that

h as
, to

ions
.

ects

mple,
s and
 given

d,

f use
mer
he
 or

 that
1.1 Conceptual Overview

The Common Lisp Interface Manager (CLIM) is a powerful Lisp-based toolkit that
provides a layered set of portable facilities for constructing user interfaces. These in
application building facilities; basic windowing, input, output, and graphics services;
stream-oriented input and output augmented by facilities such as output recording,
presentations, and context sensitive input; high-level “formatted output” facilities;
command processing; and a compositional toolkit similar to those found in the X world
supports look-and-feel independence.

CLIM does not compete with the window system or toolkits of the host machine (suc
Motif or OpenLook), but rather uses their services, to the extent that it makes sense
integrate Lisp applications into the host’s window environment. For example, CLIM
“windows” are mapped onto one or more host windows, and input and output operat
performed on the CLIM window are ultimately carried out by the host window system
CLIM supports a large number of host environments, including Motif, CLX, and the
Macintosh.

The CLIM programmer is insulated from most of the complexities of portability.
Regardless of the operating platform (that is, the combination of Lisp system, host
computer, and host window environment), applications only need deal with CLIM obj
and functions. CLIM makes abstractions out of many of the concepts common to all
window environments. The programmer is encouraged to think in terms of these
abstractions, rather than in the specific capabilities of a particular host system. For exa
using CLIM, the programmer can specify the appearance of output in high-level term
those high-level descriptions are then turned into the appropriate appearance for the
host. Thus, the application has the same fundamental interface across multiple
environments, although the details will differ from system to system.

CLIM provides a spectrum of user interface building options, all the way from detaile
low-level specification of “what goes where,” to high-level specifications in which the
programmer leaves all of the details up to CLIM. This allows CLIM to balance ease o
on the one hand and versatility on the other. By using high-level facilities, a program
can build portable user interfaces quickly, whereas by utilizing lower-level facilities, s
can customize her programming and user interfaces according to her specific needs
requirements. For example, CLIM supports the development of applications that are
independent of look and feel, as well as the portable development of toolkit libraries
define and implement a particular look and feel.
3 CLIM User’s Guide

s

f
ink-
-
ed,

 is

rt

d
-

-
w

vel

ro-
dis-

-
t

lect-
e-

nce
The CLIM architecture is divided into several layers, each with an explicitly-defined
protocol. These protocols allow the programmer to customize or re-implement variou
parts of CLIM.

1.2 Highlights of Tools and Techniques

The facilities provided by CLIM include:

Graphics CLIM offers a rich set of drawing functions, a wide variety o
drawing options (such as line thickness), a sophisticated
ing model, and color. CLIM provides full affine transforma
tions, so that a drawing may be arbitrarily translated, rotat
and scaled to the extent that the underlying window system
capable of rendering such objects.

Windowing CLIM provides a portable layer for implementing win-
dow-like objects known as sheets that are suited to suppo
particular high-level facilities or interfaces. The windowing
module of CLIM defines a uniform interface for creating an
managing hierarchies of these objects. This layer also pro
vides event management.

Output Recording CLIM offers a facility for capturing all output done to a win
dow. This facility provides the support for automatic windo
repainting and scrollable windows. In addition, this facility
serves as the foundation for a variety of interesting high-le
tools, including incremental redisplay.

Formatted Output CLIM provides a set of macros and functions that enable p
grams to produce neatly formatted tabular and graphical
plays with very little effort.

Context Sensitive Input The presentation type facility of CLIM links textual or graph
ical output on a window with the underlying Lisp object tha
it represents, so that objects may be retrieved later by se
ing their displayed representation with the pointer. This “s
mantic typing” of output allows the application builder to
separate the semantics of the application from the appeara
and interaction style.
4 CLIM User’s Guide 1.2

ss-
p-

r in-

iv-

si-
i-
us

n-
g
the
ses

fa-
u-
s.

se

.

any

o

ies of
Application Building CLIM provides an application framework for organizing an
application’s top-level user interface and command proce
ing loops. This framework provides support for laying out a
plication windows under arbitrary constraints, managing
command menus and/or menu bars, and associating use
terface gestures with application commands. Using these
tools, application writers can easily and quickly construct
user interfaces that can grow flexibly from prototype to del
ery.

Adaptive Toolkit CLIM provides a uniform interface to the standard compo
tional toolkits available in many commercial computer env
ronments. CLIM defines abstract classes that are analogo
to the gadgets or widgets of toolkits such as Motif or Ope
Look. CLIM fosters look-and-feel independence by definin
these gadgets in terms of their function, without respect to
details of their appearance or operation. If an application u
these gadgets, its user interface will ultimately draw upon
whatever toolkit is available in the host environment. This
cility lets programmers easily construct applications that a
tomatically conform to a variety of user interface standard
In addition, a portable CLIM-based implementation of the
gadgets is provided.

1.3 How CLIM Helps You Achieve a Portable
User Interface

Portability is one of the features that sets CLIM apart from other interface managers

CLIM provides a uniform interface to the standard compositional toolkits available in m
environments. By defining user interfaces in terms of CLIM objects rather than by
accessing windows and widgets of a given windowing system directly, you are able t
achieve a highly portable interface. In addition to CLIM functionality, you may also
incorporate aspects of Common Lisp and CLOS into your program. The dependenc
your application are outlined in Figure 1.
Using CLIM 1.3 5

ized
, the
uld be
 2
tion.

 of
y the
rns
ent.
Figure 1. The Foundation of a Portable Application

The portability of your code comes from the fact that it is written in terms of standard
packages: Common Lisp, CLOS, and CLIM. From the perspective of your application
details of the host windowing system, host operating system, and host computer sho
invisible. CLIM handles the interaction with the underlying windowing system. Figure
shows the elements of the host environment from which CLIM insulates your applica

Figure 2. How CLIM Is Layered Over the Host System

CLIM shields you from the details of any one window system by making abstractions
the concepts that many window systems have in common. In using CLIM, you specif
appearance of your application’s interface in general, high-level terms. CLIM then tu
your high-level description into the appearance appropriate for a given host environm

Portable application

CLIM Common Lisp CLOS

Portable application

CLIM

Common Lisp CLOS

Operating System

Hardware Platform

Window System
6 CLIM User’s Guide 1.3

 scroll

 your
t
tem.

of its
ashion
, as

.
arts,
nts,

frame
ure 3.
rovide

pecific
 placed

ation
For example, a request for a scroll bar pane would be interpreted as a request for the
bar widget in the current windowing system.

In some cases, you may prefer to have more explicit control over the appearance of
application. At the expense of portability, you may, at any time, bypass CLIM abstrac
interface objects and directly use functions provided by the underlying windowing sys

1.4 What Is CLIM?

In the first three sections you have been given a brief introduction to CLIM and some
features. This section addresses the nature of CLIM in a more concrete and tangible f
by defining important CLIM terms and discussing the fundamental elements of CLIM
well as higher-level facilities that have been built from this core.

1.4.1 The Core of CLIM

1.4.1.1 Application Frames

An application frame, or simply aframe, is the locus of all application-specific knowledge
It is a physical, bordered object that is composed of smaller, individually functioning p
calledpanes. The frame maintains information regarding the layout of these compone
keeps track of the Lisp state variables that contain the state of the application, and
optionally has an interface to the window manager.

In developing a simple application such as an on-line address book, the application
could be divided into several units to accomplish various tasks, as you can see in Fig
One pane could be used to accept commands; another section of the screen could p
an index of names in the address book; another portion could be used to display a s
address entry. We might also choose to have a general menu and a few conveniently
scroll bars. Each of these components of the application frame is a pane

1.4.1.2 Panes

A pane is a window-like object that knows how to behave as a component of an applic
frame. That is, it supports the pane protocol operations for layout.
Using CLIM 1.4 7

ngs as
fined

s
nes can
 panes
es that
Panes come in many different varieties. For example, gadget panes include such thi
buttons and scroll bars. Stream panes deal specifically with text. Some panes are de
only in terms of their functionality, without regard to their specific appearance or
implementation. These panes are called abstract panes. The abstract definition allow
various instances of the pane class to take on a platform-dependent look and feel. Pa
also be classified according to their role in pane hierarchies. Panes that can have child
are called composite panes; those that cannot are called leaf panes. Composite pan
are in charge of spatially organizing their children are called layout panes.

Figure 3. An Example of Panes Within an Application Frame

interactor pane

application
 panes

menu pane

scroll bar
panes

scroller
pane
8 CLIM User’s Guide 1.4

pane, or
 a
sure

ce they
static
n the
 pane
 can be
s to say,

tput
 and

t. This
y
ch are

her.)
tly.
t

The address book application frame shows a typical pane hierarchy. There are three
instances of text panes that have associated scroll bars. For every extended stream
text field, with affiliated scroll bar panes there is an “invisible” parent pane, known as
scroller pane, which does such things as control the layout of the child panes and en
that its children are given the space they need.

The ability to address space allocation and composition concerns is the primary
characteristic that sets panes apart from their superclass, sheets, to be discussed in
Subsubsection 1.4.1.3, “Sheets”. Panes, therefore, understand how much screen spa
want and need. For instance, the menu pane in the address book application has a
height, so that if the window is resized, the menu pane will not be scaled vertically. O
other hand, the scroller pane labeled in Figure 3 (the pane controlling the application
for the address book index and the gadget panes for the two associated scroll bars)
resized as long as the scroll bars are granted enough screen space to function, that i
to display the minimum graphics necessary to implement scrolling.

1.4.1.3 Sheets

Panes are built from more general objects calledsheets. Sheets are the fundamental
“window-like” entities that specify the areas of the screen to be used for input and ou
interactions. Sheets consist of, in part, a region on the screen, a coordinate system,
optionally a parent and/or child sheets. For a complete discussion on sheets, refer to
Chapter 18, “Sheets”. CLIM programmers will typically not need to deal with sheets
directly, but instead will use the higher-level pane objects.

1.4.1.4 Enabling Input and Output

A pane hierarchy must be attached to a display server so as to permit input and outpu
is handled by the use ofports andgrafts. A port specifies the device acting as the displa
server, whereas grafts are special sheets, typically representing the root window, whi
directly connected to the display server. (The termgraft is derived from the horticultural
practice of grafting, in which the trunk of one tree is joined onto the rootstock of anot
Again, a CLIM application programmer will not normally deal with these objects direc
A call tomake-application-frame automatically results in a port specification and graf
instantiation. Refer to Section 9.2, “Defining CLIM Application Frames,” for details.
Using CLIM 1.4 9

hics.

uch

nt,

 the
ation
 the

ow
ation

as
nd
us,
tosh
1.4.1.5 Graphics

Once your panes are ready to accept output, you may be interested in creating grap
CLIM provides elementary graphic functions such asdraw-point anddraw-circle as well
as higher-level graphic functions such asdraw-arrow andmake-elliptical-arc (see
Section 3.2, “Using CLIM Drawing Options”). CLIM also supports region operations s
asregion-intersection andregion-difference (see Section 2.5, “General Geometric
Objects in CLIM”).

1.4.1.6 Text

The fundamental function for displaying text isdraw-text. In addition to many of the
graphic drawing options, text functions take a text-style argument that controls the fo
face, and size.

1.4.1.7 Events

An event is a CLIM object that represents some sort of user gesture (such as moving
pointer or pressing a key on the keyboard) or that corresponds to some sort of notific
from the display server. Event objects store such things as the sheet associated with
event, thex andy position of the pointer within that sheet, the key name or character
corresponding to a key on the keyboard, and so forth.

1.4.1.8 Mediums

Graphical operations performed on panes must ultimately be carried out by the wind
system of the underlying host computer. This is accomplished primarily via communic
with an underlying object called amedium. A medium understands how to implement
CLIM graphics operations, such asdraw-line, by calling the underlying host window
system’s graphics functions. A medium also contains default drawing options, such
foreground and background colors, clipping region, transformations, line thickness, a
fonts. There are different medium classes to support different windowing systems; th
there is one medium class for the X Window System and a different one for the Macin
Common Lisp environment.
10 CLIM User’s Guide 1.4

selves
 build

ses,
o the
 a
There
ish to

e of
 look
istics
g on

e.
ssed
e
ic”
l
g
 to give
This host-specific behavior is kept in a separate medium so that the pane classes them
will be host-independent. Thus, when you build a new pane class, you do not have to
one version with X graphics mixed in, another one for the Mac, an so forth.

CLIM application programmers will not usually deal with mediums directly. In most ca
panes will automatically be allocated a medium upon creation, and output directed t
pane will be appropriately forwarded to the medium. In situations where efficiency is
concern, you may choose to send graphical output directly to the underlying medium.
are also situations, particularly when a pane has infrequent output, when you may w
have many “light-weight” panes that share a medium.

1.4.2 CLIM Facilities

CLIM provides many higher-level facilities that are built from the fundamental CLIM
elements.

1.4.2.1 Look and Feel

CLIM offers a variety of tools and features for creating portable Lisp applications. On
these techniques, made possible by the adaptive toolkit, is the ability to transform the
and feel of a given application easily. Thus, an application can take on Motif character
when running on a Unix workstation, can have a Macintosh look and feel when runnin
that platform, or can be presented in a different customized manner.

1.4.2.2 Controlling Look and Feel

Frame managers are responsible for controlling the look and feel of an application fram
Each different kind of appearance, whether it be Motif or MicroSoft Windows, is expre
by a different frame manager. CLIM provides frame managers that interface to a larg
number of host environments, including X and the Macintosh. There is also a “gener
frame manager that allows applications to maintain a “CLIM look and feel” across al
platforms, rather than adopting the style of the underlying windowing system. Existin
frame managers can be customized, or entirely new frame managers can be created
your application the look and feel you desire.
Using CLIM 1.4 11

dent
d by

, will be
gadget

eam

 input
hics.

put
ouse
 cursors,

ng is
apter

put
er
 type

put on
A frame manager is responsible for interpreting the portable, window-system-indepen
layout specification of an application frame in the context of the look and feel supporte
the frame manager. The abstract gadget panes, such as the scroll bars and buttons
mapped into specific pane classes that implement the gadget in terms of the native
of the host window system. For example, scroll-bar will be mapped onto
gpcapi-scroll-bar-pane in the CAPI-based supporting windows system.

1.4.2.3 Streams

Because Common Lisp performs its input and output on objects calledstreams, CLIM
does, too. In CLIM, streams are specialized sheets that implement the sheet and str
protocols. The basic stream protocols for input and output provide fundamental
functionality such as reading and writing characters and flushing the output. Stream
is provided by low-level events; stream output is accomplished through low-level grap

1.4.2.4 Extended Input and Output

Streams in CLIM also support extended input and output protocols. The extended in
stream protocol handles issues pertaining to, in part, non-character input such as m
clicks. The extended output stream protocol addresses advanced issues such as text
margins, text styles, inter-line spacing, andoutput recording.

Output recording is a facility CLIM offers for capturing all output done to an extended
stream. This information is stored in structures called output records. Output recordi
used in the implementation of scrollable windows and incremental redisplay. See Ch
14, “Output Recording and Redisplay,” and Chapter 15, “Extended Stream Input
Facilities,” for more details.

1.4.2.5 Presentations

The presentation facility extends output recording to remember the semantics of out
displayed in a CLIM window.Presentations are specialized output records that rememb
not only output, but also the Lisp object associated with the output and the semantic
affiliated with that object. This semantic type, called thepresentation type, allows display
objects to be classified. Such semantic tagging allows the user to re-use existing out
the window to satisfy future input requests.
12 CLIM User’s Guide 1.4

icking
ious
 in an

ould
itive.

ch you
 is

r to

ts of
mple,
nd

resent
 such
and,
When a CLIM application is expecting input, aninput context is established, which means
the application is awaiting input of a certain semantic type. Presentations with an
appropriate presentation type for the input context become sensitive; that is to say, cl
on them with the mouse will cause some action to happen. For instance, in the prev
address book application example, when entering a new address, a user could type
address or could specify input by clicking on any sensitive presentation. Addresses w
be the only logical entry in this case, so only address presentation types will be sens
Nothing would happen if you clicked on a name or a phone number.

In a specific input context, when a given presentation type is valid input, all of the
subclasses of this type are also acceptable. There are many cases, however, in whi
may wish to expand the list of valid presentation types for a given input context. This
possible by the use ofpresentation translators.

1.4.2.6 Command Loop

The outermost level of an application is an infinite interaction processing loop, simila
the Lispread-eval-print loop, called acommand loop. The arguments to commands are
defined in terms of the presentation type facility, so that command arguments can be
specified via keyboard or mouse input.

It is also possible to map presentation types to commands that operate on argumen
those types. Thus you can invoke commands by clicking on displayed data. For exa
in the address book example, as the command loop awaits commands, any comma
display objects would be sensitive. By using the
define-presentation-to-command-translator macro, however, many other presentation
types can in effect be turned into commands. A click on a name in the index could rep
the “Select Address” command. Similarly, clicking on a field in the displayed address,
as the “Number:” field, could be translated into the “Change Address Number” comm
as illustrated in Figure 4.
Using CLIM 1.4 13

es as

adgets
s and
d

may
ng the
Figure 4. Using Presentation-to-Command Translators

1.4.3 Summary

The CLIM core, comprised of sheets, mediums, graphics, and input and output, serv
the foundation for higher-level functionality. CLIM itself provides many advanced
capabilities that have been developed from this kernel. Presentations, streams, and g
are all descendants of the fundamental CLIM kernel. This resulting hierarchy of object
functionality gives CLIM a layered structure. For instance, we notice that streams an
gadgets are specialized panes that are themselves specialized sheets. Similarly,
presentations are customized output records. At any point in these hierarchies, one
customize and specialize objects by making subclasses of existing objects and addi
14 CLIM User’s Guide 1.4

ur
d
ase

. To
nes
desired functionality. Although CLIM provides many advanced facilities, it is always
possible to return to the fundamental CLIM building blocks and start creating anew.

1.5 Testing Code Examples in Liquid CLIM

These instructions assume that a Liquid CLIM image has already been built. (See yo
Liquid Release and Installation Notes if this is not the case). To start a CLIM image, loa
your CLIM code. If you are a first-time user, load the sample file provided in the rele
directory:

> (load " <release directory>/template.lisp")

Next, type the following at the Lisp prompt:

> (run-frame-top-level
 (make-application-frame ’test :width 400 :height 500))

To exit the application and return to the Lisp top level, left-click on theExit menu item.
Type(LCL:QUIT) to quit Lisp.

To keep theUser’s Guide concise, many of the examples in it are simply code segments
try them out in Liquid Common Lisp, you need some supporting CLIM code that defi
an application frame. The file loaded previously is one such template. It contains the
following code:

(in-package :clim-user)

(define-application-frame test
 ()
 ((height :initform 55 :accessor height))
 (:panes
 (main :application :display-function ’display-main)
 (prompter :interactor))
 (:layouts
 (:default (vertically ()
 (2/3 (bordering () main))
 (1/3 prompter)))))
Using CLIM 1.5 15

(defmethod display-main ((frame test) stream)
 (let ((x 55)
 (y 55)
 (width 55))
 (draw-rectangle* stream x y (+ x width) (+ y (height frame))
 :ink +red+)))

(define-test-command (com-exit :menu "Exit" :name t) ()
 (frame-exit *application-frame*))

(define-test-command (com-test :menu "Test" :name t)
 ((new-height ’integer :default (height *application-frame*)))
 "Changes the default value of the height slot."
 (setf (height *application-frame*) new-height))
16 CLIM User’s Guide 1.5

Chapter 2 Drawing Graphics
Drawing Graphics 17

.. 19
... 19
... 19
.... 20
..... 21

. 22

.. 23
... 23
... 29
.... 30
.... 32

.... 35

... 35
.. 35
. 36

... 37
.. 37
.. 40
. 41
.. 45
.. 46
. 48
. 49
.. 49
... 51
 53

55
 57
.... 58
.. 61
... 62
Chapter 2 Drawing Graphics

2.1 Conceptual Overview of Drawing Graphics ..
2.1.1 Drawing Functions and Options ..
2.1.2 The Drawing Plane ..
2.1.3 Coordinates ...
2.1.4 Mediums, Sheets, and Streams ..

2.2 Examples of Using CLIM Drawing Functions

2.3 CLIM Drawing Functions..
2.3.1 Arguments..
2.3.2 Compound Drawing Functions..
2.3.3 Patterns and Stencils ...
2.3.4 Pixmaps...

2.4 Graphics Protocols ...
2.4.1 Arguments..
2.4.2 General Behavior of Drawing Functions
2.4.3 Medium-Specific Drawing Functions..

2.5 General Geometric Objects in CLIM..
2.5.1 Regions in CLIM ..

2.5.1.1 Region Predicates in CLIM ...
2.5.1.2 Composition of CLIM Regions ..

2.5.2 CLIM Point Objects..
2.5.3 Polygons and Polylines in CLIM..

2.5.3.1 Constructors for CLIM Polygons and Polylines...................
2.5.3.2 Accessors for CLIM Polygons and Polylines

2.5.4 Lines in CLIM...
2.5.5 Rectangles in CLIM...
2.5.6 Ellipses and Elliptical Arcs in CLIM..

2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in
CLIM ..

2.5.6.2 Accessors for CLIM Elliptical Objects..................................
2.5.7 Bounding Rectangles ..

2.5.7.1 The Bounding Rectangle Protocol
2.5.7.2 Bounding Rectangle Convenience Functions
Drawing Graphics 18

 rect-
rawn
ans-
e Sec-

The
ls).
wing

n the

e pre-
to the
sical
2.1 Conceptual Overview of Drawing Graphics

2.1.1 Drawing Functions and Options

CLIM offers a set of drawing functions that enable you to draw points, lines, polygons,
angles, ellipses, circles, and text. You can affect the way the geometric objects are d
by supplying options to the drawing functions. The drawing options specify clipping, tr
formation, line style, text style, ink, and other aspects of the graphic to be drawn. Se
tion 3.2, “Using CLIM Drawing Options”.

2.1.2 The Drawing Plane

When drawing graphics in CLIM, you imagine that they appear on a drawing plane.
drawing plane extends infinitely in four directions and has infinite resolution (no pixe
The drawing plane has no material existence and cannot be viewed directly. The dra
plane provides an idealized version of the graphics you draw. A line that you draw o
drawing plane is infinitely thin.

Figure 5. Rendering from Drawing Plane to Window

Of course, you intend that the graphics should be visible to the user, so they must b
sented on a real display device. CLIM transfers the graphics from the drawing plane
window via therendering process. Because the window lives on hardware that has phy

Drawing
Functions

Drawing Plane

Screen

Rendering
19 CLIM User’s Guide

ics on
 the

put to
distinc-
p pro-
vice.

 reso-
sis.

iven

e out-

n of

 of the
sfor-

e the
plane,
constraints, the rendering process is forced to compromise when it draws the graph
the window. The actual visual appearance of the window is only an approximation of
idealized drawing plane.

Figure 5 shows the conceptual model of the drawing functions sending graphical out
the drawing plane, and the graphics being transferred to a screen by rendering. The
tion between the idealized drawing plane and the real window enables you to develo
grams without considering the constraints of a real window or other specific output de
This distinction makes CLIM’s drawing model highly portable.

CLIM application programs can inquire about the constraints of a device, such as its
lution and other characteristics, and modify the desired visual appearance on that ba
This practice trades portability for a finer degree of control of the appearance on a g
device.

2.1.3 Coordinates

When producing graphic output on the drawing plane, you indicate where to place th
put with coordinates.Coordinates are a pair of numbers that specify thex andy placement
of a point. When a window is first created, the origin (that is, x = 0,y = 0) of the drawing
plane is positioned at the top-left corner of the window. Figure 6 shows the orientatio
the drawing plane. X extends toward the right, and Y extends downward.

Figure 6. X and Y Axes of the Drawing Plane

Each window looks into some rectangular area of its drawing plane. The specific area
drawing plane that is visible is determined by the window’s region and coordinate tran
mation. As the window scrolls downward, the origin of the drawing plane moves abov
top edge of the window. Because windows can be located anywhere in the drawing

Y

X

20 CLIM User’s Guide 2.1

an be

 For
d to
m
 which
rms
lane.

aphics

ium
w Sys-
le-

 me-
urrent
it may be inconvenient to keep track of the coordinates of the drawing plane, and it c
easier to think in terms of alocal coordinate system.

Figure 7. Using a Local Coordinate System

For example, you might want to draw some business graphics as shown in Figure 7.
these graphics, it is more natural to think in terms of the Y axis growing upwards, an
have an origin other than the origin of the drawing plane, which might be very far fro
where you want the graphics to appear. You can create a local coordinate system in
to produce your graphics. The way you do this is to define a transformation that info
CLIM how to map from the local coordinate system to the coordinates of the drawing p
For more information, seewith-room-for-graphics .

2.1.4 Mediums, Sheets, and Streams

Mediums, sheets, and streams are classes of primary importance in the creation of gr
in CLIM.

One of the arguments taken by drawing functions is amedium. A medium keeps track of
device-specific information necessary for creating graphics. There are different med
classes to support different devices; thus, there is one medium class for the X Windo
tem and a different one for the Macintosh Common Lisp environment. A medium imp
ments the low-level graphic functions such as drawing a line or displaying a color. A
dium also keeps track of its drawing environment, which includes such things as the c
transformation, text style, line style, and foreground and background inks.

Y

X

local
Y

local X
Drawing Graphics 2.1 21

iums
ave
ch as
lso been
ever,

eam is
 A sheet specifies the destination for the graphical output of a medium.Whereas med
are device-specific, sheets are completely portable. Sheets are visible objects that h
properties such as a position, a region, a parent, and children. Interface elements su
scrollbars and pushbuttons are subclasses of sheets. For convenience, sheets have a
made to support the graphics protocol. A graphics function call to a sheet object, how
simply results in the same graphics function call being made to the medium object.

Streams are specialized sheets that implement the sheet and stream protocols. A str
thus a sheet that supports stream methods likewrite-string and keeps track of additional
stream-related state information, such as current cursor position.

2.2 Examples of Using CLIM Drawing
Functions

Figure 8 shows the result of evaluating the following forms:

(clim:draw-rectangle* *my-sheet* 10 10 200 150 :filled nil
 :line-thickness 2)
(clim:draw-line* *my-sheet* 200 10 10 150)
(clim:draw-point* *my-sheet* 180 25)
(clim:draw-circle* *my-sheet* 100 75 40 :filled nil)
(clim:draw-ellipse* *my-sheet* 160 110 30 0 0 10 :filled nil)
(clim:draw-ellipse* *my-sheet* 160 110 10 0 0 30)
(clim:draw-polygon* *my-sheet* ’(20 20 50 80 40 20) :filled nil)
(clim:draw-polygon* *my-sheet* ’(30 90 40 110 20 110))

Figure 8. Simple Use of the Drawing Functions
22 CLIM User’s Guide 2.2

ents
int

(*) ap-
 aster-

oordi-

ing
n of
ents

text

. This
argu-
ed to

lso be

 if

nfor-
 If
ects”.
2.3 CLIM Drawing Functions

Many of the drawing functions come in pairs. One function in the pair takes two argum
to specify a point by itsx andy coordinates; the other function takes one argument, a po
object. The function accepting coordinates of the point has a name with an asterisk
pended to it, and the function accepting a point object has the same name without an
isk. For example,draw-point accepts a point object, anddraw-point* accepts coordinates
of a point. We expect that using the starred functions and specifying points by their c
nates will be more convenient in most cases.

Any drawing functions may create an output record that corresponds to the figure be
drawn. See Chapter 15, “Extended Stream Input Facilities,” for a complete discussio
output recording. During output recording, none of these functions capture any argum
that are points, point sequences, coordinate sequences, or text strings. Line styles,
styles, transformations, and clipping regions may be captured.

The drawing functions are all specified as ordinary functions, not as generic functions
is intended to ease the task of writing compile-time optimizations that avoid keyword
ment taking, check for such things as constant drawing options, and so forth. If you ne
specialize any of the drawing methods, usedefine-graphics-method.

Although the functions in this section are specified to be called on sheets, they can a
called on streams and mediums.

2.3.1 Arguments

■ point-seq is a sequence of point objects.

■ coord-seq is a sequence of coordinate pairs, which are real numbers. It is an errorco-
ord-seq does not contain an even number of elements.

■ The drawing functions take keyword arguments specifying drawing options. For i
mation on the drawing options, see Section 3.2, “Using CLIM Drawing Options”.
you prefer to create and use point objects, see Subsection 2.5.2, “CLIM Point Obj

draw-point [Function]

Arguments: sheet point&key ink clipping-region transformation line-style line-thickness
line-unit
Drawing Graphics 2.3 23

ingle

.2,
g

et of

e seg-
draw-point* [Function]

Arguments: sheet x y&key ink clipping-region transformation line-style line-thickness
line-unit

Summary: These functions (structured and spread arguments, respectively) draw a s
point on the sheetsheet at the pointpoint (or the position (x, y)).

 The unit and thickness components of the current line style (see Section 3
“Using CLIM Drawing Options”) affect the drawing of the point by controllin
the number of pixels used to render the point on the display device.

draw-points [Function]

Arguments: sheet point-seq&key ink clipping-region transformation line-style
line-thickness line-unit

draw-points* [Function]

Arguments: sheet coord-seq&key ink clipping-region transformation line-style
line-thickness line-unit

Summary: These functions (structured and spread arguments, respectively) draw a s
points on the sheetsheet.

 For convenience and efficiency, these functions exist as equivalents to

(map nil #’(lambda (point) (draw-point sheet point)) point-seq)

 and

 (do ((i 0 (+ i 2)))
 ((= i (length coord-seq)))
 (draw-point* sheet (elt coord-seq i) (elt coord-seq (+ i 1))))

draw-line [Function]

Arguments: sheet point1 point2&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-line* [Function]

Arguments: sheet x1 y1 x2 y2&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a lin
ment on the sheetsheet from the pointpoint1 topoint2 (or from the position (x1,
y1) to (x2, y2)).
24 CLIM User’s Guide 2.3

cts
o

et of

end-
rrent
ng
en”
 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affe
the drawing of the line in the obvious way, except that the joint shape has n
effect. Dashed lines start dashing atpoint1.

draw-lines [Function]

Arguments: sheet point-seq&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-lines* [Function]

Arguments: sheet coord-seq&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a s
disconnected line segments. These functions are equivalent to

 (do ((i 0 (+ i 2)))
 ((= i (length point-seq)))
 (draw-line sheet (elt point-seq i) (elt point-seq (1+ i))))

 and

 (do ((i 0 (+ i 4)))
 ((= i (length coord-seq)))
 (draw-line* sheet
 (elt coord-seq i) (elt coord-seq (+ i 1))
 (elt coord-seq (+ i 2))
 (elt coord-seq (+ i 3))))

draw-polygon [Function]

Arguments: sheet point-seq&key (filled t) (closedt) ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-joint-shape
line-cap-shape

draw-polygon* [Function]

Arguments: sheet coord-seq&key (filled t) (closedt) ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-joint-shape
line-cap-shape

Summary: Draws a polygon or polyline on the sheetsheet. Whenfilled is nil , this draws a
set of connected lines; otherwise, it draws a filled polygon. Ifclosed is t (the
default) andfilled isnil , it ensures that a segment is drawn that connects the
ing point of the last segment to the starting point of the first segment. The cu
line style (see Section 3.3, “CLIM Line Styles” for details) affects the drawi
of unfilled polygons in the obvious way. The cap shape affects only the “op
Drawing Graphics 2.3 25

g
tices,

er of

n-

cts
hape

et of
vertices in the case whenclosed is nil . Dashed lines start dashing at the startin
point of the first segment, and may or may not continue dashing across ver
depending on the window system.

 If filled is t, a closed polygon is drawn and filled in. In this case,closed is assumed
to bet as well.

draw-rectangle [Function]

Arguments: sheet point1 point2&key (filled t) ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

draw-rectangle* [Function]

Arguments: sheet x1 y1 x2 y2&key (filled t) ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

Summary: Draws either a filled or unfilled rectangle on the sheetsheet that has its sides
aligned with the coordinate axes of the native coordinate system. One corn
the rectangle is at the position (x1, y1) orpoint1 and the opposite corner is at (x2,
y2) or point2. The argumentsx1, y1, x2, andy1 are real numbers that are cano
icalized in the same way as formake-bounding-rectangle. filled is as for
draw-polygon*.

 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affe
the drawing of unfilled rectangles in the obvious way, except that the cap s
has no effect.

draw-rectangles [Function]

Arguments: sheet points&key ink clipping-region transformation line-style line-thickness
line-unit line-dashes line-joint-shape

draw-rectangles* [Function]

Arguments: sheet position-seq&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

Summary: These functions (structured and spread arguments, respectively) draw a s
rectangles on the sheetsheet. points is a sequence of point objects;position-seq
is a sequence of coordinate pairs. It is an error ifposition-seq does not contain an
even number of elements.

 Ignoring the drawing options, these functions are equivalent to:

 (do ((i 0 (+ i 2)))
 ((= i (length points)))
 (draw-rectangle sheet (elt points i) (elt points (1+ i))))
26 CLIM User’s Guide 2.3

llipse

eral
rs

ned

om-

t

 and

 (do ((i 0 (+ i 4)))
 ((= i (length position-seq)))
 (draw-rectangle* sheet
 (elt position-seq i)
 (elt position-seq (+ i 1))
 (elt position-seq (+ i 2))
 (elt position-seq (+ i 3))))

draw-ellipse [Function]

Arguments: sheet center-pt radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key (filled t)
start-angle end-angle ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-ellipse* [Function]

Arguments: sheet center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key
(filled t) start-angle end-angle ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw an e
(whenfilled is t, the default) or an elliptical arc (whenfilled is nil) on the sheet
sheet. The center of the ellipse is the pointcenter-pt (or the position (center-x,
center-y)).

 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) specify
the bounding parallelogram of the ellipse as explained in Section 2.5, “Gen
Geometric Objects in CLIM.” All of the radii are real numbers. If the two vecto
are collinear, the ellipse is not well-defined and theellipse-not-well-defined
error will be signaled. The special case of an ellipse with its major axes alig
with the coordinate axes can be obtained by setting bothradius-1-dy and
radius-2-dx to 0.

start-angle andend-angle are real numbers that specify an arc rather than a c
plete ellipse. Angles are measured with respect to the positivex axis. The ellip-
tical arc runs positively (counter-clockwise) fromstart-angle to end-angle. The
default forstart-angle is 0; the default forend-angle is 2π.

 In the case of a “filled arc” (that is, whenfilled is t andstart-angle or end-angle
are supplied and are not 0 and 2π), the figure drawn is the “pie slice” area swep
out by a line from the center of the ellipse to a point on the boundary as the
boundary point moves fromstart-angle to end-angle.
Drawing Graphics 2.3 27

ing
the

ircle

te
 When drawing unfilled ellipses, the current line style (see Section 3.2, “Us
CLIM Drawing Options”) affects the drawing in the obvious way, except that
joint shape has no effect. Dashed elliptical arcs start dashing atstart-angle.

draw-circle [Function]

Arguments: sheet center-pt radius&key (filled t) start-angle end-angle ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-cap-shape

draw-circle* [Function]

Arguments: sheet center-x center-y radius&key (filled t) start-angle end-angle ink
clipping-region transformation line-style line-thickness line-unit
line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a c
(whenfilled is t, the default) or a circular arc (whenfilled is nil) on the sheet
sheet. The center of the circle iscenter-pt or (center-x, center-y) and the radius
is radius. These are just special cases ofdraw-ellipse anddraw-ellipse*. filled
is as fordraw-ellipse*.

start-angle andend-angle allow the specification of an arc rather than a comple
circle in the same manner as that of the ellipse functions.

 The “filled arc” behavior is the same as that of an ellipse.

draw-text [Function]

Arguments: sheet string-or-char point&key text-style (start0) end (align-x:left) (align-y
:baseline) toward-point transform-glyphs ink clipping-region
transformation text-style text-family text-face text-size

draw-text* [Function]

Arguments: sheet string-or-char x y&key text-style (start0) end (align-x:left) (align-y
:baseline) toward-x toward-y transform-glyphs ink clipping-region
transformation text-style text-family text-face text-size

Summary: The text specified bystring-or-char is drawn on the sheetsheet starting at the
position specified by the pointpoint (or the position (x, y)). The exact definition
of “starting at” depends onalign-x andalign-y. align-x is one of:left , :center, or
:right . align-y is one of:baseline, :top, :center, or :bottom. align-x defaults to
:left andalign-y defaults to:baseline; with these defaults, the first glyph is
drawn with its left edge and its baseline atpoint.
28 CLIM User’s Guide 2.3

xt

an
n

 is

one.

, the

here

ions
ed by

e seg-

d

text-style defaults tonil , meaning that the text will be drawn using the current te
style of the sheet’s medium.

start andend specify the start and end of the string, in the case where
string-or-char is a string. Ifstart is supplied, it must be an integer that is less th
the length of the string. Ifend is supplied, it must be an integer that is less tha
the length of the string, but greater than or equal tostart.

 Normally, glyphs are drawn from left to right no matter what transformation
in effect.toward-x or toward-y (derived fromtoward-point in the case of
draw-text) can be used to change the direction from one glyph to the next
For example, iftoward-x is less than thex position ofpoint, then the glyphs will
be drawn from right to left. Iftoward-y is greater than they position ofpoint, then
the glyphs’ baselines will be positioned one above another. More precisely
reference point in each glyph lies on a line frompoint to toward-point, and the
spacing of each glyph is determined by packing rectangles along that line, w
each rectangle is “char-width” wide and “char-height” high.

transform-glyphs is not supported in this version of CLIM.

2.3.2 Compound Drawing Functions

CLIM also provides a few compound drawing functions. The compound drawing funct
could be composed by a programmer from the basic drawing functions, but are provid
CLIM because they are commonly used.

draw-arrow [Function]

Arguments: sheet point-1 point-2&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape to-head from-head
head-length head-width

draw-arrow* [Function]

Arguments: sheet x1 y1 x2 y2&key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape from-head to-head
head-length head-width

Summary: These functions (structured and spread arguments, respectively) draw a lin
ment on the sheetsheet from the pointpoint1 topoint2 (or from the position (x1,
y1) to (x2, y2)). If to-head is t (the default), then the “to” end of the line is cappe
by an arrowhead. Iffrom-head is t (the default isnil), then the “from” end of the
Drawing Graphics 2.3 29

cts
the

ed or

 that

rd.
create

ss
l (
line is capped by an arrowhead. The arrowhead has lengthhead-length (default
10) and widthhead-width (default 5).

 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affe
the drawing of the line portion of the arrow in the obvious way, except that
joint shape has no effect. Dashed arrows start dashing atpoint1.

draw-oval [Function]

Arguments: sheet center-pt x-radius y-radius&key (filled t) ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-capshape

draw-oval* [Function]

Arguments: sheet center-x center-y x-radius y-radius&key (filled t) ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-capshape

Summary: These functions (structured and spread arguments, respectively) draw a fill
unfilled oval (that is, a “race-track” shape) on the sheetsheet. The oval is cen-
tered oncenter-pt (or (center-x, center-y)). If x-radius ory-radius is 0, then a cir-
cle is drawn with the specified non-zero radius. Otherwise, a figure is drawn
is a rectangle with dimensionx-radiusby y-radius, with the two short sides
replaced by a semicircular arc of the appropriate size.

2.3.3 Patterns and Stencils

Patterning creates a bounded rectangular arrangement of designs, like a checkerboa
Drawing a pattern draws a different design in each rectangular cell of the pattern. To
an infinite pattern, applymake-rectangular-tile to a pattern.

A stencil is a special kind of pattern that contains only opacities.

make-pattern [Function]

Arguments: array inks
Summary: Returns a pattern ink that has(array-dimension array 0) cells in the

vertical direction and(array-dimension array 1) cells in the horizontal
direction.array must be a two-dimensional array of non-negative integers le
than the length ofinks. inks must be a sequence of designs. The design in celi,
j) of the resulting pattern is thenth element ofinks, if n is the value of(aref
30 CLIM User’s Guide 2.3

show
t
 the

 trans-
how
ing
 array.

hose

e pat-
ith a

a-

 the
ge
 that
array i j) . For example,array can be a bit-array andinks can be a list of two
inks, the ink drawn for 0 and the one drawn for 1.

 Each cell of a pattern can be regarded as a hole that allows the ink in it to
through. Each cell might have a different ink in it. The portion of the ink tha
shows through a hole is the portion on the part of the drawing plane where
hole is located. In other words, incorporating an ink into a pattern does not
change its alignment to the drawing plane, and does not apply a coordinate
formation to the design. Drawing a pattern collects the pieces of inks that s
through all the holes and draws the pieces where the holes lie on the draw
plane. The pattern is completely transparent outside the area defined by the

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

Tiling repeats a rectangular portion of a pattern throughout the drawing plane.

make-rectangular-tile [Function]

Arguments: pattern width height
Summary: Returns a pattern that, when used as an ink, tiles a rectangular portion of th

ternpattern across the entire drawing plane. The resulting pattern repeats w
period ofwidth horizontally andheight vertically.width andheight must both be
integers. The portion ofpattern that appears in each tile is a rectangle whose
top-left corner is at (0, 0) and whose bottom-right corner is at (width, height).
The repetition ofpattern is accomplished by applying a coordinate transform
tion to shiftpattern into position for each tile, and then extracting a
width-by-height portion of that pattern.

 Applying a coordinate transformation to a rectangular tile does not change
portion of the argument pattern that appears in each tile. However, it can chan
the period, phase, and orientation of the repeated pattern of tiles. This is so
adjacent figures drawn using the same tile have their inks “line up.”

draw-pattern* [Function]

Arguments: sheet pattern x y&key clipping-region transformation
Summary: Draws the patternpattern on the sheetsheet at the position (x, y). pattern is any

pattern created bymake-pattern. clipping-region andtransformation are as for
with-drawing-options or any of the drawing functions.
Drawing Graphics 2.3 31

n,
all

 con-

ed

s

used
ed to
e that
stem

LSI

 be-
 medi-
 Note thattransformation only affects the position at which the pattern is draw
not the pattern itself. If you want to affect the pattern, you should explicitly c
transform-region on the pattern.

 You draw a bitmap by drawing an appropriately aligned and scaled pattern
structed from the bitmap’s bits. A 1 in the bitmap corresponds to+foreground-
ink+ . A 0 corresponds to+background-ink+ if an opaque drawing operation is
desired, or to+nowhere+ if a transparent drawing operation is desired.

 Drawing a (colored) raster image consists of drawing an appropriately align
and scaled pattern constructed from the raster array and raster color map.

draw-pattern* could be implemented as follows, assuming that the function
pattern-width andpattern-height return the width and height of the pattern.

 (defun draw-pattern* (sheet pattern x y &key clipping-region
 transformation)
 (check-type pattern pattern)
 (let ((width (pattern-width pattern))
 (height (pattern-height pattern)))
 (if (or clipping-region transformation)
 (with-drawing-options
 (sheet
 :clipping-region clipping-region
 :transformation transformation)
 (draw-rectangle* sheet x y
 (+ x width) (+ y height)
 :filled t :ink pattern))
 (draw-rectangle* sheet x y (+ x width) (+ y height)
 :filled t :ink pattern))))

2.3.4 Pixmaps

A pixmap can be thought of as an “off-screen window,” that is, a medium that can be
for graphical output, but that is not visible on any display device. Pixmaps are provid
allow a programmer to generate a piece of output associated with some display devic
can then be rapidly drawn on a real display device. For example, an electrical CAD sy
might generate a pixmap that corresponds to a complex, frequently-used part in a V
schematic, and then usecopy-from-pixmap to draw the part as needed.

The exact representation of a pixmap is explicitly unspecified. There is no interaction
tween the pixmap operations and output recording; that is, displaying a pixmap on a
32 CLIM User’s Guide 2.3

ome

at
r-

.

ion of

ht,
um is a pure drawing operation that affects only the display, not the output history. S
mediums may not support pixmaps; in this case, an error will be signaled.

allocate-pixmap [Generic Function]

Arguments: medium width height
Summary: Allocates and returns a pixmap object that can be used on any medium th

shares the same characteristics asmedium. (What constitutes “shared characte
istics” varies from host to host.)medium can be a sheet, a medium, or a stream

 The resulting pixmap will bewidth units wide,height units high, and as deep as
is necessary to store the information for the medium. The exact representat
pixmaps is explicitly unspecified. The returned value is the pixmap.

deallocate-pixmap [Generic Function]

Arguments: pixmap
Summary: Deallocates the pixmappixmap.

pixmap-width [Generic Function]

Arguments: pixmap

pixmap-height [Generic Function]

Arguments: pixmap

pixmap-depth [Generic Function]

Arguments: pixmap
Summary: These functions return, respectively, the programmer-specified width, heig

and depth of the pixmappixmap.

copy-to-pixmap [Generic Function]

Arguments: medium medium-x medium-y width height&optional pixmap (pixmap-x0)
(pixmap-y0)

Summary: Copies the pixels from the mediummedium starting at the position specified by
(medium-x, medium-y) into the pixmappixmap at the position specified by (pix-
map-x, pixmap-y). A rectangle whose width and height is specified bywidth and
height is copied.medium-x andmedium-y are specified in user coordinates. (If
medium is a medium or a stream, thenmedium-x andmedium-y are transformed
by the user transformation.)
Drawing Graphics 2.3 33

-

-

 to

 by
m
.

are
 If pixmap is not supplied, a new pixmap will be allocated. Otherwise,pixmap
must be an object returned byallocate-pixmap that has the appropriate charac
teristics formedium.

 The returned value is the pixmap.

copy-from-pixmap [Generic Function]

Arguments: pixmap pixmap-x pixmap-y width height medium window-x window-y
Summary: Copies the pixels from the pixmappixmap starting at the position specified by

(pixmap-x, pixmap-y) into the mediummedium at the position (medium-x,
medium-y). A rectangle whose width and height is specified bywidth andheight
is copied.medium-x andmedium-y are specified in user coordinates. (Ifmedium
is a medium or a stream, thenmedium-x andmedium-y are transformed by the
user transformation.)

pixmap must be an object returned byallocate-pixmap that has the appropriate
characteristics formedium.

 The returned value is the pixmap. This is intended to specialize on both thepix-
map andmedium arguments.

copy-area [Generic Function]

Arguments: medium from-x from-y width height to-x to-y
Summary: Copies the pixels from the mediummedium starting at the position specified by

(from-x, from-y) to the position (to-x, to-y) on the same medium. A rectangle
whose width and height is specified bywidth andheight is copied.from-x,
from-y, to-x, andto-y are specified in user coordinates. (Ifmedium is a medium
or a stream, thenmedium-x andmedium-y are transformed by the user transfor
mation.)

with-output-to-pixmap [Macro]

Arguments: (medium-var medium&key width height)&body body
Summary: Bindsmedium-var to a “pixmap medium” (that is, a medium that does output

a pixmap with the characteristics appropriate to the mediummedium) and then
evaluatesbody in that context. All the output done to the medium designated
medium-var inside ofbody is drawn on the pixmap stream. The pixmap mediu
supports the medium output protocol, including all of the graphics functions

width andheight are integers that give the dimensions of the pixmap. If they
omitted, the pixmap will be large enough to contain all the output done bybody.
34 CLIM User’s Guide 2.3

ap

ns.
e meth-
t’s me-

nction
eneric

f
’s

ice
 the

d de-

sly

en
he
medium-var must be a symbol; it is not evaluated. The returned value is a pixm
that can be drawn ontomedium usingcopy-from-pixmap.

2.4 Graphics Protocols

Every medium implements methods for the various graphical drawing generic functio
Furthermore, every sheet that supports the standard output protocol implements thes
ods as well; often, the sheet methods will simply call the same methods on the shee
dium.

2.4.1 Arguments

■ All these generic functions take the same arguments as the non-generic spread fu
equivalents, except that the arguments that are keyword arguments in the non-g
functions are required arguments in the generic functions.

■ The drawing-function-specific arguments are eitherx andy positions, or a sequence o
x andy positions. Note that these positions will first be transformed by the medium
current transformation, and then transformed a second time by the medium’s dev
transformation in order to produce the coordinates as they will actually appear on
screen.

■ The ink, line style (or text style), and clipping regions arguments are optional, an
fault from the medium (medium-ink, medium-line-style (or medium-cur-
rent-text-style), andmedium-clipping-region, respectively).

2.4.2 General Behavior of Drawing Functions

Usingdraw-line* as an example, calling any of the drawing functions specified previou
results in the following series of function calls on a non-output recording sheet:

■ A program callsdraw-line* on argumentssheet, x1, y1, x2, andy2, and perhaps some
drawing options.

■ draw-line* merges the supplied drawing options into the sheet’s medium, and th
callsmedium-draw-line* on the sheet. (Note that a compiler macro could detect t
Drawing Graphics 2.4 35

is at

 me-

hods
case where there are no drawing options or constant drawing options, and do th
compile time.)

■ medium-draw-line* on the sheet calls the same method—medium-draw-line*—on
the medium.

■ medium-draw-line* performs the necessary user transformations by applying the
dium transformation tox1, y1, x2, andy2, and to the clipping region.

2.4.3 Medium-Specific Drawing Functions

All mediums and all sheets that support the standard output protocol implement met
for the following generic functions.

medium-draw-point* [Generic Function]

Arguments: medium x y
Summary: Draws a point on the mediummedium.

medium-draw-points* [Generic Function]

Arguments: medium coord-seq
Summary: Draws a set of points on the mediummedium.

medium-draw-line* [Generic Function]

Arguments: medium x1 y1 x2 y2
Summary: Draws a line from (x1, y1) to (x2, y2) on the mediummedium.

medium-draw-lines* [Generic Function]

Arguments: medium coord-seq
Summary: Draws a set of disconnected lines on the mediummedium.

medium-draw-polygon* [Generic Function]

Arguments: medium coord-seq closed
Summary: Draws a polygon or polyline on the mediummedium.

medium-draw-rectangle* [Generic Function]

Arguments: medium x1 y1 x2 y2
Summary: Draws a rectangle whose corners are at (x1, y1) and (x2, y2) onmedium.
36 CLIM User’s Guide 2.4

ound-

um-
-

ter 5,

lass
medium-draw-ellipse* [Generic Function]

Arguments: medium center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle

Summary: Draws a rectangle onmedium. The center is at (x, y). The vectors (radius-1-dx,
radius-1-dy) and (radius-2-dx, radius-2-dy) specify the radii.start-angle and
end-angle are real numbers that specify an arc, not a complete ellipse.

medium-draw-text* [Generic Function]

Arguments: medium text x y (start0) end (align-x:left) (align-y :baseline) toward-x
toward-y transform-glyphs

Summary: Draws a character or a string on the mediummedium. The text is drawn starting
at (x, y), and towards (toward-x, toward-y).

2.5 General Geometric Objects in CLIM

2.5.1 Regions in CLIM

A region is an object that denotes a set of points in the plane. Regions include their b
aries; that is, they are closed. Regions have infinite resolution.

A bounded region is a region that contains at least one point for which there exists a n
ber,d, called the region’s diameter, such that if p1 andp2 are points in the region, the dis
tance betweenp1 andp2 is always less than or equal tod.

An unbounded region either contains no points or contains points arbitrarily far apart.+no-
where+ and+everywhere+ are examples of unbounded regions.

Another way to describe a region is to say that it maps every (x, y) pair into either true or
false (meaning member or not a member, respectively, of the region). Later, in Chap
we will generalize a region to something called anink that maps every point (x, y) into color
and opacity values.

CLIM classifies the various types of regions in the following way. All regions are a subc
of region, and all bounded regions are also a subclass of eitherpoint, path, orarea, as
shown in Figure 9.
Drawing Graphics 2.5 37

bclass
Figure 9. The Class Structure for All Regions

region [Protocol Class]

Summary: The protocol class that corresponds to a set of points. This includes both
bounded and unbounded regions. This is a subclass ofink (see Chapter 5,
“Drawing in Color,” for details).

 If you want to create a new class that behaves like a region, it should be a su
of region. Subclasses ofregion must obey the region protocol.

 There is no general constructor calledmake-region because of the impossibility
of a uniform way to specify the arguments to such a function.

regionp [Function]

Arguments: object
Summary: Returns t if object is a region; otherwise, it returnsnil .

path [Protocol Class]

Summary: The protocol classpath denotes bounded regions that have dimensionality 1
(that is, lines or curves). It is a subclass ofregion andbounding-rectangle. If

region

everywhere nowhere path point area

polyline elliptical-arc polygon ellipse

line rectangle

unbounded-region bounded-region region-set

 unbounded-region bounded-region region-set
38 CLIM User’s Guide 2.5

lass of

 path.
s not

bclass

d sub-
-

ngles

 of the
you want to create a new class that behaves like a path, it should be a subc
path. Subclasses ofpath must obey the path protocol.

 Constructing apath object with no length (viamake-line*, for example) canon-
icalizes it to+nowhere+.

 Some rendering models support the constructing of areas by filling a closed
In this case, the path needs a direction associated with it. Since CLIM doe
currently support the path-filling model, paths are directionless.

pathp [Function]

Arguments: object
Summary: Returnst if object is a path; otherwise, it returnsnil .

 Note that constructing apath object with no length (by callingmake-line with
two coincident points, for example) canonicalizes it to+nowhere+.

area [Protocol Class]

Summary: The protocol classarea denotes bounded regions that have dimensionality 2
(that is, are flat surfaces). It is a subclass ofregion andbounding-rectangle. If
you want to create a new class that behaves like an area, it should be a su
of area. Subclasses ofarea must obey the area protocol.

 Note that constructing anarea object with no area (by callingmake-rectangle
with two coincident points, for example) canonicalizes it to+nowhere+.

areap [Function]

Arguments: object
Summary: Returnst if object is an area; otherwise, it returnsnil .

coordinate [Type]

Summary: The type that represents a coordinate. All of the specific region classes an
classes ofbounding-rectangle will use this type to store their coordinates. How
ever, the constructor functions for the region classes and for bounding recta
accept numbers of any type and coerce them tocoordinate.

The following two constants represent the regions that correspond, respectively, to all
points on the drawing plane and to none of the points on the drawing plane.
Drawing Graphics 2.5 39

t are
ns.

f

+everywhere+ [Constant]

Summary: The region that includes all the points on the infinite drawing plane.

+nowhere+ [Constant]

Summary: The empty region (the opposite of+everywhere+).

2.5.1.1 Region Predicates in CLIM

The following generic functions comprise the region predicate protocol. All classes tha
subclasses ofregion must either inherit or implement methods for these generic functio

The methods forregion-equal, region-contains-region-p, andregion-intersects-re-
gion-p will typically specialize both theregion1 andregion2 arguments.

region-equal [Generic Function]

Arguments: region1 region2
Summary: Returnst if the two regionsregion1 andregion2 contain exactly the same set o

points; otherwise, it returnsnil .

region-contains-region-p [Generic Function]

Arguments: region1 region2
Summary: Returnst if all points in the regionregion2 are members of the regionregion1;

otherwise, it returnsnil .

region-contains-position-p [Generic Function]

Arguments: region x y
Summary: Returnst if the point at (x, y) is contained in the regionregion; otherwise, it

returnsnil . Since regions in CLIM are closed, this must returnt if the point at (x,
y) is on the region’s boundary.

region-contains-position-p is a special case ofregion-contains-region-p in
which the region is the point (x, y).

region-intersects-region-p [Generic Function]

Arguments: region1 region2
Summary: Returnsnil if region-intersection of the two regionsregion1 andregion2 would

be+nowhere+; otherwise, it returnst.
40 CLIM User’s Guide 2.5

e

mple
dimen-
e an

d

us re-
n

ction,
2.5.1.2 Composition of CLIM Regions

Region composition in CLIM is the process in which two regions are combined in som
way (such as union or intersection) to produce a third region.

Since all regions in CLIM are closed, region composition is not always equivalent to si
set operations. Instead, composition attempts to return an object that has the same
sionality as one of its arguments. If this is not possible, then the result is defined to b
empty region, which is canonicalized to+nowhere+. (The exact details of this are specifie
with each function.)

Sometimes composition of regions can produce a result that is not a simple contiguo
gion. For example,region-union of two rectangular regions might not be rectangular. I
order to support cases like this, CLIM has the concept of aregion set, an object that repre-
sents one or more region objects related by some region operation, usually a union.

region-set [Protocol Class]

Summary: The protocol class that represents a region set; a subclass ofregion andbound-
ing-rectangle.

 Members of this class are immutable.

region-set-p [Function]

Arguments: object
Summary: Returnst if object is a region set; otherwise, it returnsnil .

standard-rectangle-set [Class]

Summary: This instantiable subclass ofregion-set andbounding-rectangle represents the
union of several axis-aligned rectangles.

standard-region-union [Class]

standard-region-intersection [Class]

standard-region-difference [Class]

Summary: These three instantiable classes respectively implement the union, interse
and differences of regions.
Drawing Graphics 2.5 41

lized
 the

 that

nce

ify

ectan-

is

-
t
LIM
Region sets that are composed entirely of axis-aligned rectangles must be canonica
into either a single rectangle or a union of rectangles. Furthermore, the rectangles in
union must not overlap each other.

The following generic functions comprise the region composition protocol. All classes
are subclasses ofregion must implement methods for these generic functions.

The methods forregion-union, region-intersection, andregion-difference will typically
specialize both theregion1 andregion2 arguments.

region-set-regions [Generic Function]

Arguments: region&key normalize
Summary: Returns a sequence of the regions in the region setregion. region can be either

a region set or a “simple” region, in which case the result is simply a seque
of one element:region.

Note: This function returns objects that reveal CLIM’s internal state; do not mod
these objects.

 For the case of region sets that are unions of axis-aligned rectangles, the r
gles returned byregion-set-regions are guaranteed not to overlap.

 If normalize is supplied, it must be either:x-banding or :y-banding. If it is
:x-banding and all the regions inregion are axis-aligned rectangles, the result
normalized by merging adjacent rectangles with banding done in thex direction.
If it is :y-banding and all the regions inregion are rectangles, the result is nor
malized with banding done in they direction. Normalizing a region set that is no
composed entirely of axis-aligned rectangles using x- or y-banding causes C
to signal theregion-set-not-rectangular error.
42 CLIM User’s Guide 2.5

;
n

ion-
x-
Figure 10. Normalization of Rectangular Region Sets

map-over-region-set-regions [Generic Function]

Arguments: function region&key normalize
Summary: Callsfunction on each region in the region setregion. This is often more efficient

than callingregion-set-regions. function is a function of one argument, a region
it has dynamic extent.region can be either a region set or a “simple” region, i
which casefunction is called once onregion itself.normalize is as for
region-set-regions.

region-union [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points that are in either of the regionsregion1

or region2 (possibly with some points removed in order to satisfy the dimens
ality rule). The result ofregion-union always has dimensionality that is the ma
imum dimensionality ofregion1 andregion2. For example, the union of a path
and an area produces an area; the union of two paths is a path.

region-union will return either a simple region or a member of the classstan-
dard-region-union.

A Region Consisting of Four
 Rectangles

After Normalizing
 with X-Banding

After Normalizing
 with Y-Banding
Drawing Graphics 2.5 43

hose

n-

s

hose

 the
to stay

 of

hose
 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

region-intersection [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points that are in both of the regionsregion1

andregion2 (possibly with some points removed in order to satisfy the dime
sionality rule). The result ofregion-intersection has dimensionality that is the
minimum dimensionality ofregion1 andregion2, or is+nowhere+. For exam-
ple, the intersection of two areas is either another area or+nowhere+; the inter-
section of two paths is either another path or+nowhere+; the intersection of a
path and an area produces the path clipped to stay inside of the area.

region-intersection will return either a simple region or a member of the clas
standard-region-intersection.

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

region-difference [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points in the regionregion1 that are not in the

regionregion2 (possibly plus additional boundary points to make the result
closed). The result ofregion-difference has the same dimensionality asregion1,
or is+nowhere+. For example, the difference of an area and a path produces
same area; the difference of a path and an area produces the path clipped
outside of the area.

region-difference will return either a simple region, a region set, or a member
the classstandard-region-difference.

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.
44 CLIM User’s Guide 2.5

s, a
 same

lterna-
c-

that,

class
Figure 11. Examples of Region Union, Intersection, and Difference

2.5.2 CLIM Point Objects

A point is a mathematical point in the drawing plane that is identified by its coordinate
pair of real numbers. Points have neither area nor length. Note that a point is not the
thing as a pixel; CLIM’s model of the drawing plane has continuous coordinates.

You can create point objects and use them as arguments to the drawing functions. A
tively, you can use thespread versions of the drawing functions, that is, the drawing fun
tions with stars appended to their names. For example, instead ofdraw-point , use
draw-point* , which takes two arguments specifying a point by its coordinates. (Note
for performance reasons, we generally recommend the use of the spread versions.)

The operations for creating and dealing with points are:

point [Protocol Class]

Summary: The protocol class that corresponds to a mathematical point. This is a sub
of region andbounding-rectangle. If you want to create a new class that
behaves like a point, it should be a subclass ofpoint. Subclasses ofpoint obey
the point protocol.

 Their Intersection Their Difference

Two Rectangular Regions Their Union (X-Banded)
Drawing Graphics 2.5 45

e.

.

t their
pointp [Function]

Arguments: object
Summary: Returnst if object is a point; otherwise, it returnsnil .

standard-point [Class]

Summary: An instantiable class that implements a point. This is a subclass ofpoint. This
is the class thatmake-point instantiates. Members of this class are immutabl

make-point [Function]

Arguments: x y
Summary: Returns an object of classstandard-point whose coordinates arex andy. x and

y must be real numbers.

The following generic functions comprise the point Application Programmer Interface
Only point-position is in the point protocol; that is, all classes that are subclasses ofpoint
must implement methods forpoint-position, but need not implement methods forpoint-x
andpoint-y.

point-position [Generic Function]

Arguments: point
Summary: Returns both thex andy coordinates of the pointpoint as two values.

point-x [Generic Function]

Arguments: point

point-y [Generic Function]

Arguments: point
Summary: Returns thex or y coordinate of the pointpoint, respectively. CLIM will supply

default methods forpoint-x andpoint-y on the protocol classpoint that are
implemented by callingpoint-position.

2.5.3 Polygons and Polylines in CLIM

A polyline is a path that consists of one or more line segments joined consecutively a
end-points. Aline is a polyline that has only one segment.
46 CLIM User’s Guide 2.5

oint
n-

oly-
ry an

ass of

y-
 be a
Polylines that have the end-point of their last line segment coincident with the start-p
of their first line segment are calledclosed; this use of the term “closed” should not be co
fused with closed sets of points.

A polygon is an area bounded by a closed polyline.

If the boundary of a polygon intersects itself, the odd-even winding-rule defines the p
gon: a point is inside the polygon if a ray from the point to infinity crosses the bounda
odd number of times.

Polylines and polygons are closed under affine transformations.

The classes that correspond to polylines and polygons are:

polyline [Protocol Class]

Summary: The protocol class that corresponds to a polyline. It is a subclass ofpath. If you
want to create a new class that behaves like a polyline, it should be a subcl
polyline. Subclasses ofpolyline must obey the polyline protocol.

polylinep [Function]

Arguments: object
Summary: Returnst if object is a polyline; otherwise, it returnsnil .

polygon [Class]

Summary: The protocol class (a subclass ofarea) that corresponds to a mathematical pol
gon. If you want to create a new class that behaves like a polygon, it should
subclass ofpolygon. Subclasses ofpolygon must obey the polygon protocol.

polygonp [Function]

Arguments: object
Summary: Returnst if object is a polygon; otherwise, it returnsnil .

standard-polyline [Class]

Summary: A class that implements a polyline. This is a subclass ofpolyline. This is the
class thatmake-polyline andmake-polyline* instantiate. Members of this class
are immutable.

standard-polygon [Class]
Drawing Graphics 2.5 47

i-

s

ing

ts in

ing
Summary: A class that implements a polygon. This is a subclass ofpolygon. This is the
class thatmake-polygonandmake-polygon* instantiate. Members of this class
are immutable.

2.5.3.1 Constructors for CLIM Polygons and Polylines

The following functions can be used to create polylines and polygons:

make-polyline [Function]

Arguments: point-seq&key closed

make-polyline* [Function]

Arguments: coord-seq&key closed
Summary: Returns an object of classstandard-polyline consisting of the segments con-

necting each of the points inpoint-seq (or the points represented by the coord
nate pairs incoord-seq).

 If closed is t, then the segment connecting the first point and the last point i
included in the polyline. The default forclosed is nil .

 These functions capture their mutable inputs; the consequences of modify
those objects are unspecified.

make-polygon [Function]

Arguments: point-seq

make-polygon* [Function]

Arguments: coord-seq
Summary: Returns an object of classstandard-polygon consisting of the area contained in

the boundary that is specified by the segments connecting each of the poin
point-seq (or the points represented by the coordinate pairs incoord-seq).

 These functions capture their mutable inputs; the consequences of modify
those objects are unspecified.
48 CLIM User’s Guide 2.5

es
e

y

t,
t.

king
2.5.3.2 Accessors for CLIM Polygons and Polylines

The following generic functions comprise the polygon and polyline protocol. All class
that are subclasses ofpolygon orpolyline must implement methods for them. Some of th
functions take an argumentpolygon-or-polyline, which may be a polygon or a polyline.

polygon-points [Generic Function]

Arguments: polygon-or-polyline
Summary: Returns a sequence of points that specify the segments inpolygon-or-polyline.

This function returns objects that reveal CLIM’s internal state; do not modif
those objects.

map-over-polygon-coordinates [Generic Function]

Arguments: function polygon-or-polyline
Summary: Appliesfunction to all of the coordinates of the vertices ofpolygon-or-polyline.

function is a function of two arguments, thex andy coordinates of the vertex; it
has dynamic extent.

map-over-polygon-segments [Generic Function]

Arguments: function polygon-or-polyline
Summary: Appliesfunction to the segments that composepolygon-or-polyline. function is

a function of four arguments, thex andy coordinates of the start of the segmen
and thex andy coordinates of the end of the segment; it has dynamic exten
Whenmap-over-polygon-segments is called on a closed polyline, it will call
function on the segment that connects the last point back to the first point.

polyline-closed [Generic Function]

Arguments: polyline
Summary: Returnst if the polylinepolyline is closed; otherwise, it returnsnil .

2.5.4 Lines in CLIM

 A line is a special case of a polyline having only one segment. The functions for ma
and dealing with lines are the following:

line [Protocol Class]
Drawing Graphics 2.5 49

is, a

ing

nly
e

Summary: The protocol class that corresponds to a mathematical line segment, that
polyline with only a single segment. This is a subclass ofpolyline. If you want
to create a new class that behaves like a line, it should be a subclass ofline. Sub-
classes ofline must obey the line protocol.

linep [Function]

Arguments: object
Summary: Returnst if object is a line; otherwise, it returnsnil .

standard-line [Class]

Summary: An instantiable class that implements a line segment. This is a subclass ofline.
This is the class thatmake-line andmake-line* instantiate. Members of this
class are immutable.

make-line [Function]

Arguments: start-point end-point

make-line* [Function]

Arguments: start-x start-y end-x end-y
Summary: Returns an object of classstandard-line that connects the two pointsstart-point

andend-point (or the positions (start-x, start-y) and (end-x, end-y)).

 These functions capture their mutable inputs; the consequences of modify
those objects are unspecified.

The following generic functions comprise the line Application Programmer Interface. O
line-start-point* andline-end-point* are in the line protocol; that is, all classes that ar
subclasses ofline must implement methods forline-start-point* andline-end-point*, but
need not implement methods forline-start-point andline-end-point.

line-start-point* [Generic Function]

Arguments: line

line-end-point* [Generic Function]

Arguments: line
Summary: Returns the starting or ending point, respectively, of the lineline as two real

numbers representing the coordinates of the point.
50 CLIM User’s Guide 2.5

 coor-

osed
oses,

 rect-
 sub-
gle,

ub-
line-start-point [Generic Function]

Arguments: line

line-end-point [Generic Function]

Arguments: line
Summary: Returns the starting or ending point of the lineline, respectively.

CLIM will supply default methods forline-start-point andline-end-point on the protocol
classline that are implemented by callingline-start-point* andline-end-point*.

2.5.5 Rectangles in CLIM

 A rectangle is a special case of a four-sided polygon whose edges are parallel to the
dinate axes. A rectangle can be specified completely by four real numbers (min-x, min-y,
max-x, max-y). They are not closed under affine transformations, although they are cl
under rectilinear transformations. CLIM uses rectangles extensively for various purp
particularly in optimizations.

The functions for creating and dealing with rectangles are the following:

rectangle [Protocol Class]

Summary: The protocol class that corresponds to a mathematical rectangle, that is, a
angular polygons whose sides are parallel to the coordinate axes. This is a
class ofpolygon. If you want to create a new class that behaves like a rectan
it should be a subclass ofrectangle. Subclasses ofrectangle must obey the rect-
angle protocol.

rectanglep [Function]

Arguments: object
Summary: Returnst if object is a rectangle; otherwise, it returnsnil .

standard-rectangle [Class]

Summary: An instantiable class that implements an axis-aligned rectangle. This is a s
class ofrectangle. This is the class thatmake-rectangle andmake-rectangle*
instantiate. Members of this class are immutable.
Drawing Graphics 2.5 51

hose

ace.
es of
make-rectangle [Function]

Arguments: point1 point2

make-rectangle* [Function]

Arguments: x1 y1 x2 y2
Summary: Returns an object of classstandard-rectangle whose edges are parallel to the

coordinate axes. One corner is at the pointpoint1 (or the position (x1, y1)) and
the opposite corner is at the pointpoint2 (or the position (x2, y2)). There are no
ordering constraints amongpoint1 andpoint2 (or x1 andx2, andy1 andy2).

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

The following generic functions comprise the rectangle Application Programmer Interf
Only rectangle-edges* is in the rectangle protocol; that is, all classes that are subclass
rectangle must implement methods forrectangle-edges*, but need not implement meth-
ods for the remaining functions.

rectangle-edges* [Generic Function]

Arguments: rectangle
Summary: Returns the coordinates of the minimumx andy and maximumx andy of the

rectanglerectangle as four values,min-x, min-y, max-x, andmax-y.

rectangle-min-point [Generic Function]

Arguments: rectangle

rectangle-max-point [Generic Function]

Arguments: rectangle
Summary: Returns the min point and max point of the rectanglerectangle, respectively. The

position of a rectangle is specified by its min point.

CLIM supplies default methods forrectangle-min-point andrectangle-max-point on the
protocol classrectangle that are implemented by callingrectangle-edges*.

rectangle-min-x [Generic Function]

Arguments: rectangle
52 CLIM User’s Guide 2.5

ases
rectangle-min-y [Generic Function]

Arguments: rectangle

rectangle-max-x [Generic Function]

Arguments: rectangle

rectangle-max-y [Generic Function]

Arguments: rectangle
Summary: Returns (respectively) the minimumx andy coordinate and maximumx andy

coordinate of the rectanglerectangle.

CLIM supplies default methods for these four generic functions on the protocol classrect-
angle that are implemented by callingrectangle-edges*.

rectangle-width [Generic Function]

Arguments: rectangle

rectangle-height [Generic Function]

Arguments: rectangle

rectangle-size [Generic Function]

Arguments: rectangle
Summary: rectangle-width returns the width of the rectanglerectangle, which is the dif-

ference between its maximum and minimumx values.rectangle-height returns
the height, which is the difference between its maximum and minimumy values.
rectangle-size returns two values, the width and the height.

CLIM supplies default methods for these four generic functions on the protocol classrect-
angle that are implemented by callingrectangle-edges*.

2.5.6 Ellipses and Elliptical Arcs in CLIM

An ellipseis an area that is the outline and interior of an ellipse. Circles are special c
of ellipses.

An elliptical arc is a path consisting of all or a portion of the outline of an ellipse.Circular
arcs are special cases of elliptical arcs.
Drawing Graphics 2.5 53

 an
bound-
 sub-

tained

 cor-
An ellipse is specified in a manner that is easy to transform, and treats all ellipses on
equal basis. An ellipse is specified by its center point and two vectors that describe a
ing parallelogram of the ellipse. The bounding parallelogram is made by adding and
tracting the vectors from the center point in the following manner:

The special case of an ellipse with its axes aligned with the coordinate axes can be ob
by settingdx2 anddy1 to 0, or settingdx1 anddy2 to 0.

Note that several different parallelograms specify the same ellipse, as shown here:

Figure 12. Ellipses Specified by Parallelograms

One parallelogram is bound to be a rectangle—the vectors will be perpendicular and
respond to the semi-axes of the ellipse.

x coordinate y coordinate

Center of Ellipse xc yc

Vectors dx1
dx2

dy1
dy2

Corners of Parallelogram xc + dx1 + dx2
xc + dx1– dx2
xc – dx1– dx2
xc – dx1 + dx2

yc + dy1 + dy2
yc + dy1– dy2
yc– dy1 – dy2
yc – dy1 + dy2

Table 1. Bounding Parallelogram of an Ellipse
54 CLIM User’s Guide 2.5

d ellip-

class
uld

s a
ical
The following classes and functions are used to represent and operate on ellipses an
tical arcs.

ellipse [Protocol Class]

Summary: The protocol class that corresponds to a mathematical ellipse. This is a sub
of area. If you want to create a new class that behaves like an ellipse, it sho
be a subclass ofellipse. Subclasses of ellipse must obey the ellipse protocol.

ellipsep [Function]

Arguments: object
Summary: Returnst if object is an ellipse; otherwise, it returnsnil .

standard-ellipse [Class]

Summary: An instantiable class that implements an ellipse. This is a subclass ofellipse.
This is the class thatmake-ellipse andmake-ellipse* instantiate. Members of
this class are immutable.

elliptical-arc [Protocol Class]

Summary: The protocol class that corresponds to a mathematical elliptical arc. This i
subclass ofpath. If you want to create a new class that behaves like an ellipt
arc, it should be a subclass ofelliptical-arc . Subclasses of elliptical-arc must
obey the elliptical arc protocol.

elliptical-arc-p [Function]

Arguments: object
Summary: Returns t if object is an elliptical arc; otherwise, it returnsnil .

standard-elliptical-arc [Class]

Summary: An instantiable class that implements an elliptical arc. This is a subclass ofellip-
tical-arc. This is the class thatmake-elliptical-arc andmake-elliptical-arc*
instantiate. Members of this class are immutable.
Drawing Graphics 2.5 55

adii
ned

tting

pt

hose
2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in
CLIM

make-ellipse [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key start-angle
end-angle

make-ellipse* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key
start-angle end-angle

Summary: Returns an object of classstandard-ellipse. The center of the ellipse is at the
pointcenter-point (or the position (center-x, center-y)).

 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) specify
the bounding parallelogram of the ellipse as explained previously. All of the r
are real numbers. If the two vectors are collinear, the ellipse is not well-defi
and theellipse-not-well-defined error will be signaled. The special case of an
ellipse with its axes aligned with the coordinate axes can be obtained by se
bothradius-1-dy andradius-2-dx to 0.

 If start-angle or end-angle are supplied, the ellipse is the “pie slice” area swe
out by a line from the center of the ellipse to a point on the boundary as the
boundary point moves from the anglestart-angle to end-angle. Angles are mea-
sured counter-clockwise with respect to the positivex axis. Ifend-angle is sup-
plied, the default forstart-angle is 0; if start-angle is supplied, the default for
end-angle is 2π; if neither is supplied, then the region is a full ellipse and the
angles are meaningless.

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

make-elliptical-arc [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key start-angle
end-angle

make-elliptical-arc* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy&key
start-angle end-angle

Summary: Returns an object of classstandard-elliptical-arc. The center of the ellipse is
at the pointcenter-point (or the position (center-x, center-y)).
56 CLIM User’s Guide 2.5

adii
ned

 by

ve

hose

e
neric

r-

ut
 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy), specify
the bounding parallelogram of the ellipse as explained previously. All of the r
are real numbers. If the two vectors are collinear, the ellipse is not well-defi
and theellipse-not-well-defined error will be signaled. The special case of an
elliptical arc with its axes aligned with the coordinate axes can be obtained
setting bothradius-1-dy andradius-2-dx to 0.

 If start-angle andstart-angle are supplied, the arc is swept fromstart-angle to
end-angle. Angles are measured counter-clockwise with respect to the positix
axis. Ifend-angle is supplied, the default forstart-angle is 0; ifstart-angle is sup-
plied, the default forend-angle is 2π; if neither is supplied, then the region is a
closed elliptical path and the angles are meaningless.

 This function captures its mutable inputs; the consequences of modifying t
objects are unspecified.

2.5.6.2 Accessors for CLIM Elliptical Objects

The following functions apply to both ellipses and elliptical arcs. In all cases, the namel-
liptical-object means that the argument may be an ellipse or an elliptical arc. These ge
functions comprise the ellipse protocol. All classes that are subclasses of eitherellipse or
elliptical-arc must implement methods for these functions.

ellipse-center-point* [Generic Function]

Arguments: elliptical-object
Summary: Returns the center point ofelliptical-objectas two values representing the coo

dinate pair.

ellipse-center-point [Generic Function]

Arguments: elliptical-object
Summary: Returns the center point ofelliptical-object.

ellipse-center-point is part of the ellipse Application Programmer Interface, b
not part of the ellipse protocol. CLIM will supply default methods forellipse-
center-point on the protocol classesellipse andelliptical-arc that are imple-
mented by callingellipse-center-point*.

ellipse-radii [Generic Function]

Arguments: elliptical-object
Drawing Graphics 2.5 57

me as

ints
dows

bound-

e con-
d in the
ing
ut

 as the
trans-
Summary: Returns four values corresponding to the two radius vectors ofelliptical-arc.
These values may be canonicalized in some way, and so may not be the sa
the values passed to the constructor function.

ellipse-start-angle [Generic Function]

Arguments: elliptical-object
Summary: Returns the start angle ofelliptical-object. If elliptical-object is a full ellipse or

closed path, thenellipse-start-angle will returnnil ; otherwise the value will be
a number greater than or equal to zero, and less than 2π.

ellipse-end-angle [Generic Function]

Arguments: elliptical-object
Summary: Returns the end angle ofelliptical-object. If elliptical-object is a full ellipse or

closed path, thenellipse-end-angle will returnnil ; otherwise the value will be a
number greater than zero, and less than or equal to 2π.

2.5.7 Bounding Rectangles

Every bounded region in CLIM has aderived bounding rectangle, which is the smallest
rectangle that contains every point in the region and which may contain additional po
as well. Unbounded regions do not have any bounding rectangle. For example, all win
and output records have bounding rectangles whose coordinates are relative to the
ing rectangle of the parent of the window or output record.

The coordinate system in which the bounding rectangle is maintained depends on th
text. For example, the coordinates of the bounding rectangle of a sheet are expresse
sheet’s parent’s coordinate system. For output records, the coordinates of the bound
rectangle are maintained in the coordinate system of the stream with which the outp
record is associated.

Note that the bounding rectangle of a transformed region is not in general the same
result of transforming the bounding rectangle of a region, as shown in Figure 13. For
formations that satisfyrectilinear-transformation-p , the following equality holds. For all
other transformations, it does not hold.
58 CLIM User’s Guide 2.5

f win-
h a

ing
e,
ord,
ord.

nding
g text
rably

ate a
of
(region-equal
 (transform-region transformation
 (bounding-rectangle region))
 (bounding-rectangle (transform-region
 transformation region)))

Figure 13. The Bounding Rectangle of an Output Record

CLIM uses bounding rectangles for a variety of purposes. For example, repainting o
dows is driven from the bounding rectangle of the window’s viewport, intersected wit
“damage” region. The formatting engines used byformatting-table andformatting-
graph operate on the bounding rectangles of the output records in the output. Bound
rectangles are also used internally by CLIM to achieve greater efficiency. For instanc
when performing hit detection to see if the pointer is within the region of an output rec
CLIM first checks to see if the pointer is within the bounding rectangle of the output rec

Note that the bounding rectangle for an output record may have a different size depe
on the medium on which the output record is rendered. Consider the case of renderin
on different output devices; the font chosen for a particular text style may vary conside
in size from one device to another.

bounding-rectangle [Protocol Class]

Summary: The protocol class that represents a bounding rectangle. If you want to cre
new class that behaves like a bounding rectangle, it should be a subclass
bounding-rectangle. Subclasses ofbounding-rectangle must obey the bound-
ing rectangle protocol.

Bounding Rectangles

A polygon and
its bounding
rectangle The bounding

rectangle after
the polygon has
been rotated
Drawing Graphics 2.5 59

ound-

such
latile.
ciated

ct-

lass

t.
 cor-

 this
tions
sfor-
ways
atisfy

e

es of
 Note that bounding rectangles are not a subclass ofrectangle, nor even a subclass
of region. This is because, in general, bounding rectangles do not obey the
region protocols. However, all bounded regions and sheets that obey the b
ing rectangle protocol are subclasses ofbounding-rectangle.

 Bounding rectangles are immutable, but since they reflect the live state of
mutable objects as sheets and output records, bounding rectangles are vo
Therefore, programmers must not depend on the bounding rectangle asso
with a mutable object remaining constant.

bounding-rectangle-p [Function]

Arguments: object
Summary: Returnst if objectis a bounding rectangle (that is, supports the bounding re

angle protocol); otherwise, it returnsnil .

standard-bounding-rectangle [Class]

Summary: An instantiable class that implements a bounding rectangle. This is a subc
of bothbounding-rectangle andrectangle; that is, standard bounding rectan-
gles obey the rectangle protocol.

make-bounding-rectangle returns an object of this class.

 The representation of bounding rectangles in CLIM is chosen to be efficien
CLIM represents such rectangles by storing the coordinates of two opposing
ners of the rectangle, namely, the “min point” and the “max point.” Because
representation is not sufficient to represent the result of arbitrary transforma
of arbitrary rectangles, CLIM returns a polygon as the result of such a tran
mation. (The most general class of transformations that is guaranteed to al
turn a rectangle into another rectangle is the class of transformations that s
rectilinear-transformation-p .)

make-bounding-rectangle [Function]

Arguments: x1 y1 x2 y2
Summary: Returns an object of the classstandard-bounding-rectangle with the edges

specified byx1, y1, x2, andy2, which must be real numbers.

x1, y1, x2, andy2 are “canonicalized” in the following way. The min point of th
rectangle has anx coordinate that is the smaller ofx1 andx2 and ay coordinate
that is the smaller ofy1 andy2. The max point of the rectangle has anx coordi-
nate that is the larger ofx1 andx2 and ay coordinate that is the larger ofy1 and
y2. (Therefore, in a right-handed coordinate system the canonicalized valu
Drawing Graphics 60

ect-

 that
-

as
, such

g
ed by

er
 a
x1, y1, x2, andy2 correspond to the left, top, right, and bottom edges of the r
angle, respectively.)

 This function returns fresh objects that may be modified.

2.5.7.1 The Bounding Rectangle Protocol

The following generic functions comprise the bounding rectangle protocol. All classes
participate in this protocol (including all subclasses ofregion that are bounded regions) im
plement a method forbounding-rectangle*.

These functions take the argumentregion, which must be either a bounded region (such
a line or an ellipse) or some other object that obeys the bounding rectangle protocol
as a sheet or an output record.

bounding-rectangle* [Generic Function]

Arguments: region
Summary: Returns the bounding rectangle ofregion as four real numbers specifying thex

andy coordinates of the min point and thex andy coordinates of the max point
of the rectangle.

 The four returned valuesmin-x, min-y, max-x, andmax-y satisfy the inequalities:

min-x≤ max-x

min-y≤ max-y

bounding-rectangle [Generic Function]

Arguments: region
Summary: Returns the bounding rectangle ofregion as an object that is a subclass ofrect-

angle (described in Subsection 2.5.5, “Rectangles in CLIM”). Since boundin
rectangles are volatile, programmers should not depend on the object return
bounding-rectangle remaining constant.

bounding-rectangle is part of the bounding rectangle Application Programm
Interface, but is not part of the bounding rectangle protocol. CLIM supplies
default method forbounding-rectangle on the protocol classbounding-rectan-
gle that callsbounding-rectangle*.
61 CLIM User’s Guide

nter-
ve-
g rect-
 their

s

f

 that
d.
2.5.7.2 Bounding Rectangle Convenience Functions

The following functions are part of the bounding rectangle Application Programmer I
face, but are not part of the bounding rectangle protocol. They are provided as a con
nience to programmers who wish to specialize classes that participate in the boundin
angle protocol, but they will not complicate the task of those programmers who define
own types (such as sheet classes) that participate in this protocol.

CLIM supplies default methods for all of these generic functions on the protocol clas
bounding-rectangle that are implemented by callingbounding-rectangle*.

with-bounding-rectangle* [Macro]

Arguments: (min-x min-y max-x max-y) region&body body
Summary: Bindsmin-x, min-y, max-x, andmax-y to the edges of the bounding rectangle o

region, and then executesbody in that context. The argumentregion must be
either a bounded region (such as a line or an ellipse) or some other object
obeys the bounding rectangle protocol, such as a sheet or an output recor

 The argumentsmin-x, min-y, max-x, andmax-y are not evaluated.body may have
zero or more declarations as its first forms.

with-bounding-rectangle* callsbounding-rectangle*.

bounding-rectangle-position [Generic Function]

Arguments: region
Summary: Returns the position of the bounding rectangle ofregion. The position of a

bounding rectangle is specified by its min point.

bounding-rectangle-min-x [Generic Function]

Arguments: region

bounding-rectangle-min-y [Generic Function]

Arguments: region

bounding-rectangle-max-x [Generic Function]

Arguments: region
62 CLIM User’s Guide 2.5

the

e

bounding-rectangle-max-y [Generic Function]

Arguments: region
Summary: Returns (respectively) thex andy coordinates of the min point and thex andy

coordinates of the max point of the bounding rectangle ofregion. The argument
region must be either a bounded region or some other object that obeys the
bounding rectangle protocol.

bounding-rectangle-width [Generic Function]

Arguments: region

bounding-rectangle-height [Generic Function]

Arguments: region

bounding-rectangle-size [Generic Function]

Arguments: region
Summary: Returns the width, height, or size (as two values, the width and height) of

bounding rectangle ofregion, respectively.region must be either a bounded
region or some other object that obeys the bounding rectangle protocol.

 The width of a bounding rectangle is the difference between its maximumx coor-
dinate and its minimumx coordinate. The height is the difference between th
maximumy coordinate and its minimumy coordinate.
Drawing Graphics 2.5 63

64 CLIM User’s Guide 2.5

Chapter 3 The CLIM Drawing
Environment
The CLIM Drawing Environment 2.5 65

.. 67

.. 71
. 72
.. 74

.. 75

.. 79

... 80

.. 81
. 84
.. 85
.. 86
. 90
Chapter 3 The CLIM Drawing Environment

3.1 CLIM Mediums ...

3.2 Using CLIM Drawing Options ..
3.2.1 Set of CLIM Drawing Options ..
3.2.2 Using the :filled Option ..

3.3 CLIM Line Styles ..

3.4 Transformations in CLIM ..

3.5 The Transformations Used by CLIM..
3.5.1 CLIM Transformation Constructors ...
3.5.2 CLIM Transformation Protocol ...
3.5.3 CLIM Transformation Predicates ...
3.5.4 CLIM Transformation Functions..
3.5.5 Applying CLIM Transformations..
The CLIM Drawing Environment 66

t

s
fore-
text
erwise
nd

vi-
er
by

t. The
vided

hese
ions
ned by

nents.

ic

p-
ts that
es that
 sheet
sses
3.1 CLIM Mediums

Drawing in CLIM is done through a medium. Amedium can be thought of as an object tha
knows how to draw on a specific device. For example, a medium translates a CLIM
draw-rectangle call into the appropriate draw-rectangle call to the underlying graphic
host. Mediums also keep track of default drawing options, such as a drawing plane,
ground and background inks, a transformation, a clipping region, a line style, and a
style. These default values are used when these function-call parameters are left oth
unspecified. For related information, refer to Subsection 2.1.4, “Mediums, Sheets, a
Streams.”

The drawing environment is dynamic. The CLIM facilities for affecting the drawing en
ronment do so within their dynamic extent. For example, any drawing done by the us
functiondraw-stuff (as well as any drawing performed by its callees) will be affected
the scaling transformation:

 (clim:with-scaling (medium 2 1) (draw-stuff medium))

The medium has components that are used to keep track of the drawing environmen
drawing environment is controlled through the use of drawing options that can be pro
as keyword arguments to all of the drawing functions.

Each CLIM medium contains components that correspond to the drawing options. T
components provide the default values for the drawing options. When drawing funct
are called and some options are unspecified, the options default to the values maintai
the medium.

CLIM provides accessors that enable you to read and write the values of these compo
Also, these components are temporarily bound within a dynamic context by using
with-drawing-options, with-text-style, and related forms. Usingsetf on a component
while it is temporarily bound takes effect immediately but is undone when the dynam
context is exited.

The following functions read and write components of a medium related to drawing o
tions. While these functions are defined for mediums, they can also be called on shee
support the sheet output protocol and on streams that output to such sheets. All class
support the medium protocol implement methods for these generic functions. Often, a
class that supports the output protocol will implement a “trampoline” method that pa
the operation directly on tosheet-medium of the sheet.
67 CLIM User’s Guide

dium
ng.
g in

 time

rding
ng the

apter
medium-foreground [Generic Function]

Arguments: medium

medium-background [Generic Function]

Arguments: medium
Summary: Returns the foreground and background inks (which are designs) for the me

medium, respectively. The foreground ink is the default ink used when drawi
The background ink is the ink used when erasing. See Chapter 5, “Drawin
Color,” for a more complete description of designs.

 Any indirect inks are resolved against the foreground and background at the
a design is rendered.

(setf medium-foreground) [Generic Function]

Arguments: ink medium

(setf medium-background) [Generic Function]

Arguments: ink medium
Summary: Sets the foreground and background ink, respectively, for the mediummedium

to ink. You may not setmedium-foreground or medium-background to an
indirect ink.

 Changing the foreground or background of a sheet that supports output reco
causes the contents of the stream’s viewport to be erased and redrawn usi
new foreground and background.

medium-ink [Generic Function]

Arguments: medium
Summary: The current drawing ink for the mediummedium, which can be any design. The

drawing functions draw with the color and pattern that this specifies. See Ch
5, “Drawing in Color,” for a more complete description of inks. The:ink drawing
option temporarily changes the value ofmedium-ink.

(setf medium-ink) [Generic Function]

Arguments: ink medium
Summary: Sets the current drawing ink for the mediummedium to ink. ink is as for

medium-foreground, and may be an indirect ink as well.
68 CLIM User’s Guide 3.1

ordi-
sed

 for
medium-transformation [Generic Function]

Arguments: medium
Summary: The current user transformation for the mediummedium. This is used to trans-

form the coordinates supplied as arguments to drawing functions to the co
nate system of the drawing plane. See Section 3.5, “The Transformations U
by CLIM,” for a complete description of transformations. The:transformation
drawing option temporarily changes the value ofmedium-transformation.

(setf medium-transformation) [Generic Function]

Arguments: transformation medium
Summary: Sets the current user transformation for the mediummedium to the transforma-

tion transformation.

medium-clipping-region [Generic Function]

Arguments: medium
Summary: The current clipping region for the mediummedium. The drawing functions do

not affect the drawing plane outside this region. The:clipping-region drawing
option temporarily changes the value ofmedium-clipping-region.

 The clipping region is expressed in user coordinates.

(setf medium-clipping-region) [Generic Function]

Arguments: region medium
Summary: Sets the current clipping region for the mediummedium to region. region must

be a subclass ofarea.

medium-line-style [Generic Function]

Arguments: medium
Summary: The current line style for the mediummedium. The line and arc drawing func-

tions render according to this line style. See Section 3.3, “CLIM Line Styles,”
a complete description of line styles. The:line-style drawing option temporarily
changes the value ofmedium-line-style.

(setf medium-line-style) [Generic Function]

Arguments: line-style medium
Summary: Sets the current line style for the mediummedium to the line styleline-style.
The CLIM Drawing Environment 3.1 69

 the

rged
t

medium-default-text-style [Generic Function]

Arguments: medium
Summary: The default text style for the mediummedium. medium-default-text-style will

return a fully specified text style, unlikemedium-text-style, which may return a
text style with null components. Any text styles that are not fully specified by
time they are used for rendering are merged againstmedium-default-text-style
usingmerge-text-styles.

 The default value formedium-default-text-style for any medium is*default-
text-style*.

 See Chapter 4 for a complete description of text styles.

(setf medium-default-text-style) [Generic Function]

Arguments: text-style medium
Summary: Sets the default text style for the mediummedium to the text styletext-style.

text-style must be a fully specified text style.

medium-text-style [Generic Function]

Arguments: medium
Summary: The current text style for the mediummedium. The text drawing functions,

including ordinary stream output, render text as directed by this text style me
against the default text style. This controls both graphical text (such as tha
drawn bydraw-text*) and stream text (such as that written bywrite-string). See
Chapter 4 for a complete description of text styles. The:text-style drawing
option temporarily changes the value ofmedium-text-style.

(setf medium-text-style) [Generic Function]

Arguments: text-style medium
Summary: Sets the current text style for the mediummedium to the text styletext-style.

text-style need not be a fully merged text style.

medium-current-text-style [Generic Function]

Arguments: medium
Summary: The current, fully merged text style for the mediummedium. This is the text style

that will be used when drawing text output, and is the result of merging
medium-text-style againstmedium-default-text-style.
70 CLIM User’s Guide 3.1

wing

. If a
e pre-

o-

ns.

. Both
line
 exam-
ext

hile
re is a

 not
ubop-

spec-

 The
3.2 Using CLIM Drawing Options

Drawing options control various aspects of the drawing process. You can supply dra
options in a number of ways:

■ The medium (the destination for graphic output) itself has default drawing options
drawing option is not supplied elsewhere, the medium supplies the value. See th
ceding section, “Components of CLIM Mediums.”

■ You can usewith-drawing-options to bind the drawing options of the medium temp
rarily. In many cases, it is convenient to usewith-drawing-options to surround several
calls to drawing functions, each using the same options.

■ You can supply the drawing options as keyword arguments to the drawing functio
These override the drawing options specified bywith-drawing-options.

In some cases, it is important to distinguish between drawing options and suboptions
text and lines have an option that controls the complete specification of the text and
style, and there are suboptions that can affect one aspect of the text or line style. For
ple, the value of the:text-style option is a text style object, which describes a complete t
style consisting of family, face, and size. There are also suboptions called:text-family ,
:text-face, and:text-size. Each suboption specifies a single aspect of the text style, w
the option specifies the entire text style. Line styles are analogous to text styles; the
:line-style option and some suboptions.

In a given call towith-drawing-options or a drawing function, you would normally supply
either the:text-style option or a text style suboption (or more than one suboption), but
both. If you do supply both, then the text style comes from the result of merging the s
tions with the:text-style option, and then merging that with the prevailing text style.

with-drawing-options [Macro]

Arguments: (medium&rest drawing-options)&body body
Summary: Binds the state of the medium designated bymedium to correspond to the sup-

plied drawing options, and executes the body with the new drawing options
ified bydrawing-options in effect. Each option causes binding of the
corresponding component of the medium for the dynamic extent of the body.
drawing functions effectively do awith-drawing-options when drawing option
arguments are supplied to them.
The CLIM Drawing Environment 3.2 71

or a

ic

or a
ocol

ne
 to

bop-

s.
medium can be a medium, a sheet that supports the sheet output protocol,
stream that outputs to such a sheet. Themedium argument is not evaluated, and
must be a symbol that is bound to a sheet or medium. Ifmedium is t, *standard-
output* is used.body may have zero or more declarations as its first forms.

with-drawing-options expands into a call toinvoke-with-drawing-options,
supplying a function that executesbody as thecontinuation argument toinvoke-
with-drawing-options.

invoke-with-drawing-options [Generic Function]

Arguments: medium continuation&rest drawing-options
Summary: Binds the state of the mediummedium to correspond to the supplied drawing

options, and then calls the functioncontinuation with the new drawing options
in effect.continuation is a function of one argument, the medium; it has dynam
extent.drawing-options is a list of alternating keyword-value pairs, and must
have even length. Each option indrawing-options causes binding of the corre-
sponding component of the medium for the dynamic extent of the body.

medium can be a medium, a sheet that supports the sheet output protocol,
stream that outputs to such a sheet. All classes that obey the medium prot
implement a method forinvoke-with-drawing-options.

drawing-options can be any of the following, plus any of the suboptions for li
and text styles. The default value specified for a drawing option is the value
which the corresponding component of a medium is normally initialized.

3.2.1 Set of CLIM Drawing Options

Drawing options can be any of the following, plus any of the line-style or text-style su
tions.

:ink [Option]

Summary: The drawing functions draw with the color and pattern that this ink specifie
The default value is+foreground-ink+. See Chapter 5, “Drawing in Color,” for
a complete description of inks.

 The:ink drawing option temporarily changes the value of(medium-ink
medium) to ink, replacing (not combining) the previous ink.
72 CLIM User’s Guide 3.2

o the

-

hich
er
 to

he

of
om-

line
”

c-

f

:transformation [Option]

Summary: This transforms the coordinates used as arguments to drawing functions t
coordinate system of the drawing plane. The default value is+identity-transfor-
mation+. See Section 3.5, “The Transformations Used by CLIM,” for a com
plete description of transformations.

 The:transformation xform drawing option temporarily changes the value of
(medium-transformation medium) to:

(compose-transformations (medium-transformation medium) xform)

:clipping-region [Option]

Summary: The drawing functions do not affect the drawing plane outside this region, w
must be anarea. Rendering is clipped both by this clipping region and by oth
clipping regions associated with the mapping from the target drawing plane
the viewport that displays a portion of the drawing plane. The default is+every-
where+, or in other words, no clipping occurs in the drawing plane, only in t
viewport.

 The:clipping-region region drawing option temporarily changes the value of
(medium-clipping-region medium) to:

 (region-intersection
 (transform-region
 (medium-transformation medium) region)
 (medium-clipping-region medium))

 If both a clipping region and a transformation are supplied in the same set
drawing options, the clipping region argument is transformed by the newly c
posed transformation before callingregion-intersection.

:line-style [Option]

Summary: The line- and arc-drawing functions render according to this line style. The
style suboptions and default are defined in Section 3.3, “CLIM Line Styles.

 The:line-style ls drawing option temporarily changes the value of
(medium-line-style medium) to ls, replacing the previous line style;
the new and old line styles are not combined in any way.

 If line-style suboptions are supplied, they temporarily change the value of
(medium-line-style medium) to a line style constructed from the spe
ified suboptions. Components not specified by suboptions default from the
:line-style drawing option, if it is supplied, or else from the previous value o
The CLIM Drawing Environment 3.2 73

 com-

s
alue
tion

c-

e

 con-
(medium-line-style medium) . That is, if both the:line-style option and
line-style suboptions are supplied, the suboptions take precedence over the
ponents of the:line-style option.

:text-style [Option]

Summary: The text drawing functions, including ordinary stream output, render text a
directed by this text style merged against the default text style. The default v
has all null components. See Chapter 4, “Text Styles,” for a complete descrip
of text styles, including the text style suboptions.

 The:text-style ts drawing option temporarily changes the value of
(medium-text-style medium) to:

 (merge-text-styles ts (medium-text-style medium))

 If text-style suboptions are supplied, they temporarily change the value of
(medium-text-style medium) to a text style constructed from the spe
ified suboptions, merged with the:text-style drawing option if it is specified, and
then merged with the previous value of(medium-text-style medium) .
That is, if both the:text-style option and text-style suboptions are supplied, th
suboptions take precedence over the components of the:text-style option.

3.2.2 Using the :filled Option

Certain drawing functions can draw either an area or the outline of that area. This is
trolled by the:filled keyword argument to these functions. If the value ist (the default),
then the function paints the entire area. If the value isnil , then the function outlines the area
under the control of the line-style drawing option.

The:filled keyword argument is not a drawing option and cannot be specified to
with-drawing-options.

The following functions have a:filled keyword argument:

■ draw-circle

■ draw-circle*

■ draw-ellipse

■ draw-ellipse*

■ draw-polygon
74 CLIM User’s Guide 3.2

 line
ject to
ering.

quent-

aves

ta-

.
LIM

tract a
 line
s.
■ draw-polygon*

■ draw-rectangle*

3.3 CLIM Line Styles

A line is a one-dimensional object. In order to be visible, however, the rendering of a
must occupy some non-zero area on the display hardware. CLIM uses a line style ob
represent the advice supplied to the rendering substrate on how to perform the rend

It is often useful to create a line style object that represents a style you wish to use fre
ly, rather than continually specifying the corresponding line style suboptions.

line-style [Protocol Class]

Summary: The protocol class for line styles. If you want to create a new class that beh
like a line style, it should be a subclass ofline-style. Subclasses ofline-style
must obey the line style protocol.

line-style-p [Function]

Arguments: object
Summary: Returnst if object is a line style; otherwise, it returnsnil .

standard-line-style [Class]

Summary: An instantiable class that implements line styles. A subclass ofline-style, this
is the class thatmake-line-style instantiates. Members of this class are immu
ble.

make-line-style [Function]

Arguments: &key unit thickness joint-shape cap-shape dashes
Summary: Returns an object of classstandard-line-style with the supplied characteristics

The arguments and their default values are described in Subsection 3.3, “C
Line Styles.”

Each of the following suboptions has a corresponding reader that can be used to ex
particular component from a line style. The following generic functions comprise the
style protocol; all subclasses ofline-style implement methods for these generic function
The CLIM Drawing Environment 3.3 75

r the

s of
bly
the

s of
n so
n-
ixel

d for
rrent

 1,

sible

 will
:line-unit [Option]

line-style-unit [Generic Function]

Arguments: line-style
Summary: Gives the unit used for measuring line thickness and dash pattern length fo

line style. Possible values are as follows:

• :normal—thicknesses and lengths are given in a relative measure in term
the usual or “normal” line thickness, which is the thickness of the “comforta
visible thin line,” a property of the underlying rendering substrate. (This is
default value.)

• :point—thicknesses and lengths are given in an absolute measure in term
printer’s points (approximately 1/72 of an inch). This measure was chose
that CLIM implementors who interface CLIM to an underlying rendering e
gine (the window system) may legitimately choose to make it render as 1 p
on current (1992) display devices.

• :coordinate—the same units should be used for line thickness as are use
coordinates. In this case, the line thickness is scaled by the medium’s cu
transformation, whereas:normal and:point do not scale the line thickness.

:line-thickness [Option]

line-style-thickness [Generic Function]

Arguments: line-style
Summary: The thickness, in the units indicated byline-style-unit, of the lines or arcs drawn

by a drawing function. The thickness must be a real number. The default is
which, when combined with the default unit of:normal , means that the default
line drawn is the “comfortably visible thin line.”

:line-joint-shape [Option]

line-style-joint-shape [Generic Function]

Arguments: line-style
Summary: Specifies the shape of joints between segments of unfilled figures. The pos

shapes are:miter , :bevel, :round , and:none; the default is:miter . Note that the
joint shape is implemented by the host window system, so not all platforms
necessarily fully support it.
76 CLIM User’s Guide 3.3

tion,

rms
Figure 14. Line Joint Shapes

:line-cap-shape [Option]

line-style-cap-shape [Generic Function]

Arguments: line-style
Summary: Specifies the shape for the ends of lines and arcs drawn by a drawing func

one of:butt , :square, :round , or :no-end-point; the default is:butt . Note that
the cap shape is implemented by the host window system, so not all platfo
will necessarily fully support it.

Figure 15. Line Cap Shapes

:line-dashes [Option]

line-style-dashes [Generic Function]

Arguments: line-style

 :miter :bevel :round

:square:butt :round :no-end-point
The CLIM Drawing Environment 3.3 77

t the

 vary
 pro-
 to

 pat-
an
 real
ents
ps.

le val-
.

-

any
l

Summary: Controls whether lines or arcs are drawn as dashed figures, and if so, wha
dashing pattern is. Possible values are:

• nil—lines are drawn solid, with no dashing. This is the default.

• t—lines are drawn dashed, with a dash pattern that is unspecified and may
with the rendering engine. This allows the underlying display substrate to
vide a default dashed line for the programmer whose only requirement is
draw a line that is visually distinguishable from the default solid line.

• A sequence—specifies a sequence, usually a vector, controlling the dash
tern of a drawing function. It is an error if the sequence does not contain
even number of elements. The elements of the sequence are lengths (as
numbers) of individual components of the dashed line or arc. The odd elem
specify the length of inked components; the even elements specify the ga
All lengths are expressed in the units described byline-style-unit.

make-contrasting-dash-patterns [Function]

Arguments: n &optional k
Summary: If k is not supplied, this returns a vector ofn dash patterns with recognizably

different appearance. Elements of the vector are guaranteed to be acceptab
ues for:dashes, and do not includenil , but their class is not otherwise specified
The vector is a fresh object that may be modified.

 If k is supplied, it must be an integer between 0 andn–1 (inclusive), in which case
make-contrasting-dash-patterns returns thekth dash-pattern rather than return
ing a vector of dash-patterns.

 CLIM has at least 8 different contrasting dash patterns. If n is greater than 8,
make-contrasting-dash-patterns signals an error.

contrasting-dash-pattern-limit [Generic Function]

Arguments: port
Summary: Returns the number of contrasting dash patterns that can be rendered on

medium on the portport. It is at least 8. All classes that obey the port protoco
implement a method for this generic function.
78 CLIM User’s Guide 3.3

trans-
ause
the de-

noth-
eam.
trans-
c con-

 draw
3.4 Transformations in CLIM

One of the features of CLIM’s graphical capabilities is the use of coordinate system
formations. By using transformations, you can often write simpler graphics code bec
you can choose a coordinate system in which to express the graphics that simplifies
scription of the drawing.

A transformation is an object that describes how one coordinate system is related to a
er. A graphic function performs its drawing in the current coordinate system of the str
A new coordinate system is defined by describing its relationship to the old one (the
formation). The drawing can now take place in the new coordinate system. The basi
cept of graphic transformations is illustrated in Figure 16.

Figure 16. Graphic Transformation

For example, you might define the coordinates of a five-pointed star and a function to
it.

(defvar *star* '(0 3 2 -3 -3 1/2 3 1/2 -2 -3))

(defun draw-star (stream)
 (clim:draw-polygon* stream *star* :closed t :filled nil))

Transformation

The Original Coordinate
System

Original Graphics Graphics under the Transformation

The Transformed Coordinate System
The CLIM Drawing Environment 3.4 79

n. By
 any-

take
ir co-
 sys-

l geo-

tities.
 can

ates.

l
ies)
orma-

hang-
arent
Without any transformation, the function draws a small star centered around the origi
applying a transformation, the same function can be used to draw a star of any size,
where. For example:

(clim:with-room-for-graphics (stream)
 (clim:with-translation (stream 100 100)
 (clim:with-scaling (stream 10)
 (draw-star stream)))
 (clim:with-translation (stream 240 110)
 (clim:with-rotation (stream -0.5)
 (clim:with-scaling (stream 12 8)
 (draw-star stream)))))

will draw a picture somewhat like Figure 16 onstream .

3.5 The Transformations Used by CLIM

The type of transformations that CLIM uses are called affine transformations. Anaffine
transformation is a transformation that preserves straight lines. In other words, if you
a number of points that fall on a straight line and apply an affine transformation to the
ordinates, the transformed coordinates will fall on a straight line in the new coordinate
tem. Affine transformations include translations, scalings, rotations, and reflections.

A translation is a transformation that preserves the length, angle, and orientation of al
metric entities.

A rotation is a transformation that preserves the length and angles of all geometric en
Rotations also preserve one point and the distance of all entities from that point. You
think of that point as the “center of rotation”; it is the point around which everything rot

There is no single definition of ascaling transformation. Transformations that preserve al
angles and multiply all lengths by the same factor (preserving the “shape” of all entit
are certainly scaling transformations. However, scaling is also used to refer to transf
tions that scale distances in thex direction by one amount and distances in they direction
by another amount.

A reflection is a transformation that preserves lengths and magnitudes of angles but c
es the sign (or “handedness”) of angles. If you think of the drawing plane on a transp
sheet of paper, a reflection is a transformation that “turns the paper over.”
80 CLIM User’s Guide 3.5

ird co-
on re-
ful

ation

for-
sition

g its
gion,

LIM
ed by

 in a
 of

ation
If we transform from one coordinate system to another, then from the second to a th
ordinate system, we can regard the resulting transformation as a single transformati
sulting fromcomposing the two component transformations. It is an important and use
property of affine transformations that they are closed under composition.

Note that composition is not commutative; in general, the result of applying transform
A and then applying transformation B is not the same as applying B first, then A.

Any arbitrary transformation can be built up by composing a number of simpler trans
mations, but that same transformation can often be constructed by a different compo
of different transformations.

Transforming a region applies a coordinate transformation to that region, thus movin
position on the drawing plane, rotating it, or scaling it. Note that this creates a new re
but it does not affect theregion argument.

The user interface to transformations is the:transformation option to the drawing func-
tions. Users can create transformations with constructors. See Subsection 3.5.1, “C
Transformation Constructors”. The other operators documented in this section are us
CLIM itself, and are not often needed by users.

3.5.1 CLIM Transformation Constructors

The following functions create transformation objects that can be used, for instance,
call tocompose-transformations. The transformation constructors do not capture any
their inputs. The constructors all create objects that are subclasses oftransformation .

make-translation-transformation [Function]

Arguments: translation-x translation-y
Summary: A translation is a transformation that preserves the length, angle, and orient

of all geometric entities.

make-translation-transformation returns a transformation that translates all
points bytranslation-x in thex direction andtranslation-y in they direction.
translation-x andtranslation-y must be real numbers.

make-rotation-transformation [Function]

Arguments: angle&optional origin
The CLIM Drawing Environment 3.5 81

omet-
of all

s
oint
,

tion.

0,

gles,
g
turns
make-rotation-transformation* [Function]

Arguments: angle&optional origin-x origin-y
Summary: A rotation is a transformation that preserves the length and angles of all ge

ric entities. Rotations also preserve one point (the origin) and the distance
entities from that point.

make-rotation-transformation returns a transformation that rotates all point
by angle (which is a real number indicating an angle in radians) around the p
origin. If origin is supplied it must be a point; if not supplied, it defaults to (0
0). origin-x andorigin-y must be real numbers.

make-scaling-transformation [Function]

Arguments: scale-x scale-y&optional origin

make-scaling-transformation* [Function]

Arguments: scale-x scale-y&optional origin-x origin-y
Summary: As discussed previously, there is no single definition of a scaling transforma

make-scaling-transformation returns a transformation that multiplies the
x-coordinate distance of every point fromorigin byscale-x and they-coordinate
distance of every point fromorigin by scale-y. scale-x andscale-y must be real
numbers. Iforigin is supplied it must be a point; if not supplied, it defaults to (
0). origin-x andorigin-y must be real numbers.

make-reflection-transformation [Function]

Arguments: point1 point2

make-reflection-transformation* [Function]

Arguments: x1 y1 x2 y2
Summary: A reflection is a transformation that preserves lengths and magnitudes of an

but changes the sign (or “handedness”) of angles. If you think of the drawin
plane on a transparent sheet of paper, a reflection is a transformation that “
the paper over.”

make-reflection-transformation returns a transformation that reflects every
point through the line passing through the pointspoint1 andpoint2 (or through
the positions (x1, y1) and(x2, y2) in the case of the spread version).
82 CLIM User’s Guide 3.5

and

trans-

no

ge
make-transformation [Function]

Arguments: mxx mxy myx myy tx ty
Summary: Returns a general transformation whose effect is:

 wherex andy are the coordinates of a point before the transformation and
 are the coordinates of the corresponding point after.

 All of the arguments tomake-transformation must be real numbers.

make-3-point-transformation [Function]

Arguments: point-1 point-2 point-3 point-1-image point-2-image point-3-image
Summary: Returns a transformation that takes pointspoint-1 into point-1-image, point-2

into point-2-image, andpoint-3 into point-3-image. Three non-collinear points
and their images under the transformation are enough to specify any affine
formation.

 If point-1, point-2, andpoint-3 are collinear, thetransformation-underspeci-
fied error will be signaled. Ifpoint-1-image, point-2-image, andpoint-3-image
are collinear, the resulting transformation will be singular (that is, will have
inverse), but this is not an error.

make-3-point-transformation* [Function]

Arguments: x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image y2-image x3-image y3-ima
Summary: Returns a transformation that takes the points at the positions (x1, y1) into

(x1-image, y1-image), (x2, y2) into (x2-image, y2-image) and (x3, y3) into
(x3-image, y3-image). Three non-collinear points and their images under the
transformation are enough to specify any affine transformation.

 If the positions(x1, y1), (x2, y2), and(x3, y3) are collinear, thetransforma-
tion-underspecified error will be signaled. If (x1-image, y1-image), (x2-image,
y2-image), and (x3-image, y3-image) are collinear, the resulting transformation
will be singular, but this is not an error.

 This is the spread version ofmake-3-point-transformation.

x′ mxxx mxyy tx+ +=

y′ myxx myyy ty+ +=

x′
y′
The CLIM Drawing Environment 3.5 83

s of
re

rans-

ble.

rma-

s is a
3.5.2 CLIM Transformation Protocol

transformation [Protocol Class]

Summary: The protocol class of all transformations. There are one or more subclasse
transformation that implement transformations, the exact names of which a
explicitly unspecified. If you want to create a new class that behaves like a t
formation, it should be a subclass oftransformation . Subclasses oftransfor-
mation obey the transformation protocol.

 All of the instantiable transformation classes provided by CLIM are immuta

transformationp [Function]

Arguments: object
Summary: Returnst if object is a transformation; otherwise, it returnsnil .

+identity-transformation+ [Constant]

Summary: An instance of a transformation that is guaranteed to be an identity transfo
tion, that is, the transformation that “does nothing.”

transformation-error [Error Condition]

Summary: The class that is the superclass of the following three conditions. This clas
subclass oferror .

transformation-underspecified [Error Condition]

Summary: The error that is signaled whenmake-3-point-transformation is given three
collinear image points.

reflection-underspecified [Error Condition]

Summary: The error that is signaled whenmake-reflection-transformation is given two
coincident points.

singular-transformation [Error Condition]

Summary: The error that is signaled wheninvert-transformation is called on a singular
transformation, that is, a transformation that has no inverse.
84 CLIM User’s Guide 3.5

t a

the-

t

;
a-
inate

t,
er-
3.5.3 CLIM Transformation Predicates

The following predicates are provided in order to be able to determine whether or no
transformation has a particular characteristic.

transformation-equal [Generic Function]

Arguments: transformation1 transformation2
Summary: Returnst if the two transformations have equivalent effects (that is, are ma

matically equal); otherwise, it returnsnil .

identity-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation is equal (in the sense oftransformation-equal) to

the identity transformation; otherwise, it returnsnil .

translation-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation is a pure translation, that is, a transformation tha

moves every point by the same distance inx and the same distance iny. Other-
wise, it returnsnil .

invertible-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation has an inverse; otherwise, it returnsnil .

reflection-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation inverts the “handedness” of the coordinate system

otherwise, it returnsnil . Note that this is a very inclusive category—transform
tions are considered reflections even if they distort, scale, or skew the coord
system, as long as they invert the handedness.

rigid-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation transforms the coordinate system as a rigid objec

that is, as a combination of translations, rotations, and pure reflections. Oth
wise, it returnsnil .
The CLIM Drawing Environment 3.5 85

t pre-

-

o

s for
form-

ents.
re-
 Rigid transformations are the most general category of transformations tha
serve magnitudes of all lengths and angles.

even-scaling-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation multiplies allx-lengths andy-lengths by the same

magnitude; otherwise, it returnsnil . This includes pure reflections through ver
tical and horizontal lines.

scaling-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation multiplies allx-lengths by one magnitude and all

y-lengths by another magnitude; otherwise, it returnsnil . This category includes
even scalings as a subset.

rectilinear-transformation-p [Generic Function]

Arguments: transformation
Summary: Returnst if transformation will always transform any axis-aligned rectangle int

another axis-aligned rectangle; otherwise, it returnsnil . This category includes
scalings as a subset, and also includes 90 degree rotations.

 Rectilinear transformations are the most general category of transformation
which the bounding rectangle of a transformed object can be found by trans
ing the bounding rectangle of the original object.

3.5.4 CLIM Transformation Functions

compose-transformations [Generic Function]

Arguments: transformation1 transformation2
Summary: Returns a transformation that is the mathematical composition of its argum

Composition is in right-to-left order; that is, the resulting transformation rep
sents the effects of applying the transformationtransformation2 followed by the
transformationtransformation1.

invert-transformation [Generic Function]

Arguments: transformation
86 CLIM User’s Guide 3.5

ntity

ion

 a

ns

oint

tion

on”

truc-
as a
Summary: Returns a transformation that is the inverse of the transformationtransformation.
The result of composing a transformation with its inverse is equal to the ide
transformation.

 If transformation is singular,invert-transformation will signal thesingular-
transformation error, with a named restart that is invoked with a transformat
and makesinvert-transformation return that transformation. This is to allow a
drawing application, for example, to use a generalized inverse to transform
region through a singular transformation.

 Note that with finite-precision arithmetic there are several low-level conditio
that might occur during the attempt to invert a singular or “almost singular”
transformation. (These include computation of a zero determinant, floating-p
underflow during computation of the determinant, or floating-point overflow
during subsequent multiplication.)invert-transformation signals thesingu-
lar-transformation error for all of these cases.

compose-translation-with-transformation [Function]

Arguments: transformation dx dy

compose-scaling-with-transformation [Function]

Arguments: transformation sx sy&optional origin

compose-rotation-with-transformation [Function]

Arguments: transformation angle&optional origin
Summary: These functions create a new transformation by composing the transforma

transformation with a given translation, scaling, or rotation, respectively. The
order of composition is that the translation, scaling, or rotation “transformati
is first, followed bytransformation.

dx anddy are as formake-translation-transformation. sx andsy are as for
make-scaling-transformation. angle andorigin are as formake-rotation-
transformation .

 Note that these functions could be implemented by using the various cons
tors. They are provided because it is common to build up a transformation
series of simple transformations.

compose-transformation-with-translation [Function]

Arguments: transformation dx dy
The CLIM Drawing Environment 3.5 87

tion,

,

ctors

t

, rota-

ple is
compose-transformation-with-scaling [Function]

Arguments: transformation sx sy&optional origin

compose-transformation-with-rotation [Function]

Arguments: transformation angle&optional origin
Summary: These functions create a new transformation by composing a given transla

scaling, or rotation, respectively, with the transformationtransformation. The
order of composition istransformation first, followed by the translation, scaling
or rotation “transformation.”

dx anddy are as formake-translation-transformation. sx andsy are as for
make-scaling-transformation. angle andorigin are as formake-rotation-
transformation .

 Note that these functions could be implemented by using the various constru
andcompose-transformations. They are provided because it is common to
build up a transformation as a series of simple transformations.

The following three functions are no different than usingwith-drawing-options with the
:transformation keyword argument supplied. However, they are sufficiently useful tha
they are provided as a convenience to programmers.

In order to preserve referential transparency, these three forms apply the translation
tion, or scaling transformation first, then the rest of the transformation from(medi-
um-transformation medium) . That is, the following two forms would return the
same transformation (assuming that the medium’s transformation in the second exam
the identity transformation):

(compose-transformations
 (make-translation-transformation dx dy)
 (make-rotation-transformation angle))

(with-translation (medium dx dy)
 (with-rotation (medium angle)
 (medium-transformation medium)))

with-translation [Macro]

Arguments: (medium dx dy)&body body
Summary: Establishes a translation on the mediummedium that translates bydx in thex

direction anddy in they direction, and then executesbody with that transforma-
tion in effect.

dx anddy are as formake-translation-transformation.
The CLIM Drawing Environment 88

 to a

 to a

 to a

f a

the
 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

with-scaling [Macro]

Arguments: (medium sx&optional sy origin)&body body
Summary: Establishes a scaling transformation on the mediummedium that scales bysx in

thex direction andsy in they direction, and then executesbody with that trans-
formation in effect. Ifsy is not supplied, it defaults tosx. If origin is supplied, the
scaling is about that point; if it is not supplied, it defaults to (0, 0).

sx andsy are as formake-scaling-transformation.

 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

with-rotation [Macro]

Arguments: (medium angle&optional origin) &body body
Summary: Establishes a rotation on the mediummedium that rotates byangle, and then exe-

cutesbody with that transformation in effect. Iforigin is supplied, the rotation is
about that point; if it is not supplied, it defaults to (0, 0).

angle andorigin are as formake-rotation-transformation .

 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

These two functions also compose a transformation into the current transformation o
stream, but have more complex behavior.

with-local-coordinates [Macro]

Arguments: (medium&optional x y)&body body
Summary: Binds the dynamic environment to establish a local coordinate system on

mediummedium with the origin of the new coordinate system at the position(x,
y). The “directionality” of the coordinate system is otherwise unchanged.x and
y are real numbers, and both default to 0.
89 CLIM User’s Guide

 to a

the

posi-

 to a

g its
does
ting

ore,

ze

.

 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

with-first-quadrant-coordinates [Macro]

Arguments: (medium&optional x y)&body body
Summary: Binds the dynamic environment to establish a local coordinate system on

mediummedium with the positivex axis extending to the right and the positivey
axis extending upward, with the origin of the new coordinate system at the
tion (x, y). x andy are real numbers, and both default to 0.

 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

3.5.5 Applying CLIM Transformations

Transforming a region applies a coordinate transformation to that region, thus movin
position on the drawing plane, rotating it, or scaling it. Note that transforming a region
not affect theregion argument; it is free to either create a new region or return an exis
(cached) region.

These generic functions are implemented for all classes of transformations. Furtherm
all subclasses ofregion andink implement methods fortransform-region anduntrans-
form-region. That is, methods for the following generic functions will typically speciali
both thetransformation andregion arguments.

transform-region [Generic Function]

Arguments: transformation region
Summary: Appliestransformation to the regionregion, and returns the transformed region

untransform-region [Generic Function]

Arguments: transformation region
Summary: This is exactly equivalent to:

(transform-region (invert-transformation transformation) region)

 CLIM provides a default method foruntransform-region on thetransforma-
tion protocol class that does exactly this.
90 CLIM User’s Guide 3.5

al

r

transform-position [Generic Function]

Arguments: transformation x y
Summary: Applies the transformationtransformation to the point whose coordinates are

the real numbersx andy, and returns two values, the transformedx coordinate
and the transformedy coordinate.

transform-position is the spread version oftransform-region in the case where
the region is a point.

untransform-position [Generic Function]

Arguments: transformation x y
Summary: This is exactly equivalent to:

(transform-position (invert-transformation transformation) x y)

 CLIM provides a default method foruntransform-position on thetransforma-
tion protocol class that does exactly this.

transform-distance [Generic Function]

Arguments: transformation dx dy
Summary: Applies the transformationtransformation to the distance represented by the re

numbersdx anddy, and returns two values, the transformeddx and the trans-
formeddy.

 A distance represents the difference between two points. It doesnot transform
like a point.

untransform-distance [Generic Function]

Arguments: transformation dx dy
Summary: This is exactly equivalent to:

(transform-distance (invert-transformation transformation) dx dy)

 CLIM provides a default method foruntransform-distance on thetransforma-
tion protocol class that does exactly this.

transform-rectangle* [Generic Function]

Arguments: transformation x1 y1 x2 y2
Summary: Applies the transformationtransformation to the rectangle specified by the fou

coordinate arguments, which are real numbers. The argumentsx1, y1, x2, andy2
are canonicalized in the same way as formake-bounding-rectangle. Returns
The CLIM Drawing Environment 3.5 91

ed
four values that specify the minimum and maximum points of the transform
rectangle in the ordermin-x, min-y, max-x, andmax-y.

 It is an error iftransformation does not satisfyrectilinear-transformation-p .

transform-rectangle* is the spread version oftransform-region in the case
where the transformation is rectilinear and the region is a rectangle.

untransform-rectangle* [Generic Function]

Arguments: transformation x1 y1 x2 y2
Summary: This is exactly equivalent to:

(transform-rectangle* (invert-transformation transformation) x1 y1
x2 y2)

 CLIM provides a default method foruntransform-rectangle* on thetransfor-
mation protocol class that does exactly this.
92 CLIM User’s Guide 3.5

Chapter 4 Text Styles
Text Styles 3.5 93

... 95

.. 96

.. 98

. 101

 102
Chapter 4 Text Styles

4.1 Conceptual Overview of Text Styles...

4.2 CLIM Text Style Objects ...

4.3 CLIM Text Style Functions..

4.4 Text Style Binding Forms ...

4.5 Controlling Text Style Mappings...
Text Styles 94

ribe
tails

pecific
ers.
he
bility

pear.

y,
oth-

n

an be
 in the
s

y
r or
4.1 Conceptual Overview of Text Styles

CLIM’s model for the appearance of text is that the application program should desc
how the text should appear in high-level terms, and that CLIM will take care of the de
of choosing a specific device font. This approach emphasizes portability.

You specify the appearance of text by giving it an abstracttext style. Each CLIM medium
defines a mapping between these abstract style specifications and particular device-s
fonts. At runtime, CLIM chooses an appropriate device font to represent the charact
However, some programmers may require direct access to particular device fonts. T
text-style mechanism allows you to specify device fonts by name, thus trading porta
for control.

A text style is a combination of three characteristics that describe how characters ap
Text style objects have components for family, face, andsize:

family Characters of the same family have a typographic integrit
so that all characters of the same family resemble one an
er. One of:fix , :serif, :sans-serif, ornil .

face A modification of the family, such as bold or italic. One of
:roman (meaning normal),:bold, :italic , (:bold :italic), or
nil .

size The size of the character. One of the logical sizes (:tiny ,
:very-small, :small, :normal , :large, :very-large, :huge,
:smaller, :larger), or a real number representing the size i
printer’s points, ornil .

Not all of these attributes need be specified for a given text style object. Text styles c
merged in much the same way as pathnames are merged; unspecified components
style object (that is, components that havenil in them) may be filled in by the component
of a “default” style object.

default-text-style [Variable]

Summary: This is the default text style used by all streams.

Note that the sizes:smaller and:larger are treated differently than the others, in that the
are merged with the default text style size to produce a size that is discernibly smalle
95 CLIM User’s Guide

ific de-
ncept
 it is

s. If
, a spe-

 text

quent-

 you

ense
larger. For example, a text style size of:larger would merge with a default text size of
:small to produce the resulting size:normal .

A text style object is called fully specified if none of its components isnil and the size com-
ponent is not a relative size (that is, neither:smaller nor :larger).

When text is rendered on a medium, the text style is mapped to some medium-spec
scription of the glyphs for each character. This description is usually that medium’s co
of a font object. This mapping is mostly transparent to the application developer, but
worth noting that not all text styles have mappings associated with them on all medium
the text style used does not have a mapping associated with it on the given medium
cial text style reserved for this case will be used.

undefined-text-style [Variable]

Summary: The text style that is used as a fallback if no mapping exists for some other
style when some text is about to be rendered on a display device (via
write-string anddraw-string* , for example). This text style must be fully
merged, and it must have a mapping for all display devices.

4.2 CLIM Text Style Objects

It is often useful to create a text style object that represents a style you wish to use fre
ly, rather than continually specifying the corresponding text style suboptions.

For example, if you want to write on a stream with a particular family, face, and size,
can create a text style object usingmake-text-style:

(clim:with-text-style
 ((clim:make-text-style :fix :bold :large) my-stream)
 (write-string "Here is a text-style example." my-stream))

Note that text style objects are interned. That is, two different invocations ofmake-text-
style with the same combination of family, face and size will result in the same (in the s
of eq) text style object. For this reason, you should not modify text style objects.

=> Here is a text-style example.
96 CLIM User’s Guide 4.2

aves

ical

h text
ent
text-style [Protocol Class]

Summary: The protocol class for text styles. If you want to create a new class that beh
like a text style, it should be a subclass oftext-style. Subclasses oftext-style
must obey the text style protocol.

text-style-p [Function]

Arguments: object
Summary: Returnst if object is a text style; otherwise, it returnsnil .

standard-text-style [Class]

Summary: An instantiable class that implements text styles. It is a subclass oftext-style.
This is the class thatmake-text-style instantiates. Members of this class are
immutable.

make-text-style [Function]

Arguments: family face size
Summary: Returns an object of classstandard-text-style with a family offamily, a face of

face, and a size ofsize.

family is one of:fix , :serif, :sans-serif, ornil .

face is one of:roman, :bold, :italic , (:bold :italic) , ornil .

size is a real number representing the size in printer’s points, one of the log
sizes (:normal , :tiny , :very-small, :small, :large, :very-large, :huge), a rela-
tive size (:smaller or :larger), ornil .

You can use text style suboptions to specify characteristics of a text style object. Eac
style suboption has a reader function which returns the current value of that compon
from a text style object. The suboptions are listed as follows.

:text-family [Option]

text-style-family [Generic Function]

Arguments: text-style
Summary: Specifies the family of the text styletext-style.
Text Styles 4.2 97

s well

t,
size
s

e a

d by
:text-face [Option]

text-style-face [Generic Function]

Arguments: text-style
Summary: Specifies the face of the text styletext-style.

:text-size [Option]

text-style-size [Generic Function]

Arguments: text-style
Summary: Specifies the size of the text styletext-style.

4.3 CLIM Text Style Functions

The following functions can be used to parse, merge, and create text-style objects, a
as to read the components of the objects.

parse-text-style [Generic Function]

Arguments: style-spec
Summary: Returns a text-style object.style-spec may be a text-style object or a device fon

in which case it is returned as is, or it may be a list of the family, face, and
(that is, a “style spec”), in which case it is “parsed” and a text-style object i
returned.

 This function is for efficiency, since a number of common functions that tak
style object as an argument can also take a style spec, in particulardraw-text.

merge-text-styles [Generic Function]

Arguments: style1 style2
Summary: Merges the text stylesstyle1 with style2; that is, returns a new text style that is

the same asstyle1, except that unspecified components instyle1 are filled in from
style2. For convenience, the two arguments may be also be style specs.

 When merging the sizes of two text styles, if the size fromstyle1 is a relative size,
the resulting size is either the next smaller or next larger size than is specifie
style2. The ordering of sizes, from smallest to largest, is:tiny , :very-small,
:small, :normal , :large, :very-large, and:huge.
98 CLIM User’s Guide 4.3

ces
spec-

f

to
char-

f

 to
e bot-
 Merging font faces is also possible. For example, merging bold and italic fa
results in a bold-italic face. When the faces are mutually exclusive, the face
ified bystyle1 prevails.

text-style-components [Generic Function]

Arguments: text-style
Summary: Returns the components oftext-styleas three values (family, face, and size).

text-style-family [Generic Function]

Arguments: text-style
Summary: Returns the family component oftext-style.

text-style-face [Generic Function]

Arguments: text-style
Summary: Returns the face component oftext-style.

text-style-size [Generic Function]

Arguments: text-style
Summary: Returns the size component of text-style.

text-style-ascent [Generic Function]

Arguments: text-style port
Summary: The ascent (an integer) oftext-style as it would be rendered on any medium o

portport.

Summary: Theascent of a text style is the ascent of the medium’s font corresponding
text-style. The ascent of a font is the distance between the top of the tallest
acter in that font and the baseline.

text-style-descent [Generic Function]

Arguments: text-style port
Summary: The descent (an integer) oftext-styleas it would be rendered on any medium o

portport.

 Thedescent of a text style is the descent of the medium’s font corresponding
text-style. The descent of a font is the distance between the baseline and th
tom of the lowest descending character (usually “y,” “q,” “p,” or “g”).
Text Styles 4.3 99

or

al

e text
d on
text-style-height [Generic Function]

Arguments: text-style port
Summary: Returns the height (an integer) of the “usual character” intext-style on any

medium of portport.

 Theheight of a text style is the sum of its ascent and descent.

text-style-width [Generic Function]

Arguments: text-style port
Summary: Returns the width (an integer) of the “usual character” intext-style on any

medium of portport.

text-style-fixed-width-p [Generic Function]

Arguments: text-style port
Summary: Returnst if text-stylewill map to a fixed-width font on any medium of portport;

otherwise, it returnsnil .

 The methods for this generic function will typically specialize both thetext-style
andport arguments. CLIM provides a “trampoline” for this generic function f
mediums and output sheets which will simply call the method for the port.

text-size [Generic Function]

Arguments: medium string&key text-style (start0) end
Summary: Computes the “cursor motion” in device units that would take place ifstring

(which may be either a string or a character) were output to the mediummedium
starting at the position (0, 0).

 Five values are returned: the total width of the string in device units, the tot
height of the string in device units, the finalx cursor position (which is the same
as the width if there are no#\Newline characters in the string), the finaly cur-
sor position (which is 0 if the string has no#\Newline characters in it, and is
incremented by the line height ofmedium for each#\Newline character in the
string), and the string’s baseline.

text-style specifies what text style is to be used when doing the output, and
defaults tomedium-merged-text-style of the medium.text-style must be a fully
specified text style.start andend may be used to specify a substring ofstring.

 Programmers needing to account for kerning or the ascent or descent of th
style should measure the size of the bounding rectangle of the text rendere
medium.
Text Styles 100

n.

r a
 bind-

of a

 to a

ly, a
s

or a
ocol

bound
 All mediums and output sheets implement a method for this generic functio

4.4 Text Style Binding Forms

CLIM provides several forms with which you can establish a binding of a text style o
text-style component. The extent of the binding is the dynamic extent of the particular
ing form.

with-text-style [Macro]

Arguments: (medium text-style)&body body
Summary: Binds the current text style of the mediummedium to correspond to the new text

style.text-style may either be a text style object or a style spec (that is, a list
family, a face, and a size).body is executed with the new text style in effect.

 Themedium argument is not evaluated, and must be a symbol that is bound
sheet or medium. Ifmedium is t, *standard-output* is used.body may have
zero or more declarations as its first forms.

with-text-style expands into a call toinvoke-with-text-style and supplies a func-
tion that executesbody as thecontinuation argument toinvoke-with-text-style.

invoke-with-text-style [Generic Function]

Arguments: medium continuation text-style
Summary: Binds the current text style of the mediummedium to correspond to the new text

style, and calls the functioncontinuation with the new text style in effect.text-
style may either be a text style object or a style spec (that is, a list of a fami
face, and a size).continuation is a function of one argument, the medium; it ha
dynamic extent.

medium can be a medium, a sheet that supports the sheet output protocol,
stream that outputs to such a sheet. All classes that obey the medium prot
implement a method forinvoke-with-text-style.

The following macros are “convenience” forms ofwith-text-style that expand into calls to
invoke-with-text-style.

Themedium argument of these macros is not evaluated, and must be a symbol that is
to a sheet or medium. Ifmedium is t, *standard-output* is used.body may have zero or
more declarations as its first forms.
101 CLIM User’s Guide

ing

from
 port,
 the

 text

ds
with-text-face [Macro]

Arguments: (medium face)&body body
Summary: Binds the current text face ofmedium to correspond to the new text faceface,

within thebody. face is one of:roman, :bold, :italic , (:bold :italic), ornil .

with-text-family [Macro]

Arguments: (medium family)&body body
Summary: Binds the current text family ofmedium to correspond to the new text family

family, within thebody. family is one of:fix , :serif, :sans-serif, ornil .

with-text-size [Macro]

Arguments: (medium size)&body body
Summary: Binds the current text size ofmedium to correspond to the new text sizesize,

within thebody.

4.5 Controlling Text Style Mappings

Text styles are mapped to fonts using thetext-style-mapping function, which takes a port
and a text style, and returns a font object. All ports implement methods for the follow
generic functions, for all classes of text style.

The objects used to represent a font mapping are unspecified and are likely to vary
port to port. For instance, a mapping might be some sort of font object on one type of
or might simply be the name of a font on another. Part of initializing a port is to define
mappings between text styles and font names for the port’s host window system.

text-style-mapping [Generic Function]

Arguments: port text-style
Summary: Returns the font mapping that will be used when rendering characters in the

styletext-style on any medium on the portport. If there is no mapping associated
with text-style onport, then some other object will be returned that correspon
to the “unmapped” text style.

(setf text-style-mapping) [Generic Function]

Arguments: mapping port text-style
102 CLIM User’s Guide 4.5

me

ice
les
ific,

cters.
Summary: Sets the text style mapping forport andtext-style tomapping. port andtext-style
are as fortext-style-mapping. mapping is either a font name or a list of the form
(:style family face size); in the latter case, the given style is translated at runti
into the font represented by the specified style.

make-device-font-text-style [Function]

Arguments: display-device device-font-name
Summary: Returns a text style object that will be mapped directly to the specified dev

font when text is output to the display device with this style. Device font sty
do not merge with any other kind of style. As the specified font is device-spec
the use of this function may result in non-portable applications.

 This code creates a device font text style and applies it to a string of chara

 (let
 ((my-device-font
 (clim:make-device-font-text-style
 (port my-sheet)
 "-adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1")))
 (draw-text* my-sheet "This appears in the specified device font."
 10 10 :text-style my-device-font))
Text Styles 4.5 103

104 CLIM User’s Guide 4.5

Chapter 5 Drawing in Color
Drawing in Color 4.5 105

107
. 108
.. 108

109

 111

 111

. 112

. 112

. 113
 113
.. 113
 113
. 114
114
. 114
. 114
 115
Chapter 5 Drawing in Color

5.1 Conceptual Overview of Drawing With Color
5.1.1 Color Objects ...
5.1.2 Rendering..

5.2 CLIM Operators for Drawing in Color..

5.3 Predefined Color Names in LispWorks CLIM.......................................

5.4 Predefined Color Names in Liquid CLIM ...

5.5 Indirect Inks ..

5.6 Flipping Ink...

5.7 Examples of Simple Drawing Effects...
5.7.1 Drawing in the Foreground Color...
5.7.2 Erasing ..
5.7.3 Drawing in Color ..
5.7.4 Drawing an Opaque Gray ..
5.7.5 Drawing a Stipple of Little Bricks..
5.7.6 Drawing a Tiled Pattern...
5.7.7 Drawing a Pixmap..
5.7.8 Using Flipping Ink ..
Drawing in Color 106

ied

with

be a
 the out-
his

pple

is
g the
und at
ng on
d then
n us-
5.1 Conceptual Overview of Drawing With
Color

This chapter describes the:ink drawing option and the simpler values that can be suppl
for that option, such as colors.

To draw in color, you supply the:ink drawing option to CLIM’s drawing functions (see
Chapter 2, “Drawing Graphics in CLIM,” for details).:ink can take as its value:

■ a color

■ the constant+foreground-ink+

■ the constant+background-ink+

■ a flipping ink

The drawing functions work by selecting a region of the drawing plane and painting it
color. The region is clipped by the current:clipping-region drawing option in effect, and
is then transformed by the current:transformation drawing option (see Chapter 3, “The
CLIM Drawing Environment,” for the rules controlling these options). The shape can
graphical area (such as a rectangle or an ellipse), a path (such as a line segment or
line of an ellipse), or the letter forms of text. Any viewports or dataports attached to t
drawing plane are updated accordingly. The:ink drawing option is never affected by the
:transformation drawing option nor by the sheet transformation; this ensures that sti
patterns on adjacent sheets join seamlessly.

Along with its drawing plane, a medium has aforeground and abackground. The fore-
ground is the default ink when the:ink drawing option is not specified. The background
drawn all over the drawing plane before any output is drawn. You can erase by drawin
background over the region to be erased. You can change the foreground or backgro
any time. This changes the contents of the drawing plane. The effect is as if everythi
the drawing plane is erased, the background is drawn on the entire drawing plane, an
everything that was ever drawn (provided it was saved in the output history) is redraw
ing the new foreground and background.
107 CLIM User’s Guide

d,
ribed

r can
unsat-
nd 1,

es

.

lass

ble.

vice,
xima-
ated

d and
vice in-
5.1.1 Color Objects

A color in CLIM is an object representing the intuitive definition of color: white, black, re
pale yellow, and so forth. The visual appearance of a single point is completely desc
by its color.

A color can be specified by three real numbers between 0 and 1 inclusive, giving the
amounts of red, green, and blue. Three 0’s mean black; three 1’s mean white. A colo
also be specified by three numbers giving the intensity, hue, and saturation. A totally
urated color (a shade of gray) can be specified by a single real number between 0 a
giving the amount of white.

You can obtain a color object by calling one ofmake-rgb-color, make-ihs-color, or
make-gray-color, or by using one of the predefined colors listed in Section 5.3, “Pre-
defined Color Names in LispWorks CLIM,” or Subsection 5.4, “Predefined Color Nam
in Liquid CLIM”. Specifying a color object as the:ink drawing option, the foreground, or
the background causes CLIM to use that color in the appropriate drawing operations

color [Protocol Class]

Summary: Thecolor class is the protocol class for a color. If you want to create a new c
that behaves like a color, it should be a subclass ofcolor. Subclasses ofcolor
must obey the color protocol.

 All of the standard instantiable color classes provided by CLIM are immuta

colorp [Function]

Arguments: object
Summary: Returnst if object is a color; otherwise, it returnsnil .

5.1.2 Rendering

When CLIM renders the graphics and text in the drawing plane onto a real display de
physical limitations of the display device force the visual appearance to be an appro
tion of the drawing plane. Colors that the hardware doesn’t support might be approxim
by using a different color or by using a stipple pattern. Even primary colors such as re
green can’t be guaranteed to have distinct visual appearance on all devices, so if de
dependence is desired, it is best to usemake-contrasting-inks (which produces designs of
different appearances) rather than a fixed palette of colors.
108 CLIM User’s Guide 5.1

s col-

valent
com-
pproxi-
s cre-

s also

nding

hite,
e, 0

 for the
The line style and text style respectively control the region of the display device that i
ored when a path or text is rendered.

5.2 CLIM Operators for Drawing in Color

The following functions create colors. These functions produce objects that have equi
effects and are indistinguishable when drawn; the only difference is in how the color
ponents are specified. Whether these functions use the specified values exactly or a
mate them because of limited color resolution is unspecified. Whether these function
ate a new object or return an existing object with equivalent color component values i
unspecified.

make-rgb-color [Function]

Arguments: red green blue
Summary: Returns a member of the classcolor. Thered, green, andblue arguments are real

numbers between 0 and 1 (inclusive) that specify the values of the correspo
color components.

make-ihs-color [Function]

Arguments: intensity hue saturation
Summary: Returns a member of classcolor. Theintensity argument is a real number

between 0 and (inclusive). Thehue andsaturation arguments are real num-
bers between 0 and 1 (inclusive).

make-gray-color [Function]

Arguments: luminance
Summary: Returns a member of classcolor. luminance is a real number between 0 and 1

(inclusive). On a black-on-white display device, 0 means black, 1 means w
and the other values are shades of gray. On a white-on-black display devic
means white, 1 means black, and the other values are shades of gray.

make-contrasting-inks [Function]

Arguments: n &optional k
Summary: If k is not supplied, this returns a vector ofn designs with recognizably different

appearance. Elements of the vector are guaranteed to be acceptable values
:ink argument to the drawing functions, and will not include+foreground-ink+,

3

Drawing in Color 5.2 109

 a

r

g on

 func-

po-
.

ond
+background-ink+, ornil . Their class is otherwise unspecified. The vector is
fresh object that may be modified.

 If k is supplied, it must be an integer between 0 andn – 1 (inclusive), in which
casemake-contrasting-inks returns thekth design rather than returning a vecto
of designs.

 CLIM supports at least 8 different contrasting inks. Ifn is greater than the number
of contrasting inks,make-contrasting-inks signals an error.

 The rendering of the design may be a color or a stippled pattern, dependin
whether the output medium supports color.

contrasting-inks-limit [Generic Function]

Arguments: port
Summary: Returns the number of contrasting colors (or stipple patterns ifport is mono-

chrome or grayscale) that can be rendered on any medium on the portport. All
classes that obey the medium protocol implement a method for this generic
tion.

The following two functions comprise the color protocol. Both of them return the com
nents of a color. All subclasses ofcolor implement methods for these generic functions

color-rgb [Generic Function]

Arguments: color
Summary: Returns three values, thered, green, andblue components of the colorcolor. The

values are real numbers between 0 and 1 (inclusive).

color-ihs [Generic Function]

Arguments: color
Summary: Returns three values, theintensity, hue, andsaturation components of the color

color. The first value is a real number between 0 and (inclusive). The sec
and third values are real numbers between 0 and 1 (inclusive).

3

110 CLIM User’s Guide 5.2

+,
ilable

ro-
5.3 Predefined Color Names in LispWorks
CLIM

The following color constants are provided in LispWorks CLIM: +black+, +white+, +red
+blue+, +green+, +cyan+, +magenta+, and +yellow+. Other predefined colors are ava
through the facility of a palette. Application programs can define other colors.

5.4 Predefined Color Names in Liquid CLIM

The following table lists all the color constants provided in Liquid CLIM. Application p
grams can define other colors. These symbols are all in theclim package.

+alice-blue+ +antique-white+ +aquamarine+ +azure+ +beige+
+bisque+ +black+ +blanched-almond+ +blue+ +blue-violet+
+brown+ +burlywood+ +cadet-blue+ +chartreuse+ +chocolate+
+coral+ +cornflower-blue+ +cornsilk+ +cyan+ +dark-goldenrod+
+dark-green+ +dark-khaki+ +dark-olive-green+ +dark-orange+ +dark-orchid+
+dark-salmon+ +dark-sea-green+ +dark-slate-blue+ +dark-slate-gray+ +dark-turquoise+
+dark-violet+ +deep-pink+ +deep-sky-blue+ +dim-gray+ +dodger-blue+
+firebrick+ +floral-white+ +forest-green+ +gainsboro+ +ghost-white+
+gold+ +goldenrod+ +gray+ +green+ +green-yellow+
+honeydew+ +hot-pink+ +indian-red+ +ivory+ +khaki+
+lavender+ +lavender-blush+ +lawn-green+ +lemon-chiffon+ +light-blue+
+light-coral+ +light-cyan+ +light-goldenrod+ +light-goldenrod-yellow+ +light-gray+
+light-pink+ +light-salmon+ +light-sea-green+ +light-sky-blue+ +light-slate-blue+
+light-slate-gray+ +light-steel-blue+ +light-yellow+ +lime-green+ +linen+
+magenta+ +maroon+ +medium-aquamarine+ +medium-blue+ +medium-orchid+
+medium-purple+ +medium-sea-green+ +medium-slate-blue+ +medium-spring-green+ +medium-turquoise+
+medium-violet-red+ +midnight-blue+ +mint-cream+ +misty-rose+ +moccasin+
+navajo-white+ +navy-blue+ +old-lace+ +olive-drab+ +orange+
+orange-red+ +orchid+ +pale-goldenrod+ +pale-green+ +pale-turquoise+
+pale-violet-red+ +papaya-whip+ +peach-puff+ +peru+ +pink+
+plum+ +powder-blue+ +purple+ +red+ +rosy-brown+
+royal-blue+ +saddle-brown+ +salmon+ +sandy-brown+ +sea-green+
+seashell+ +sienna+ +sky-blue+ +slate-blue+ +slate-gray+
+snow+ +spring-green+ +steel-blue+ +tan+ +thistle+
+tomato+ +turquoise+ +violet+ +violet-red+ +wheat+
+white+ +white-smoke+ +yellow+ +yellow-green+

Table 2. Color Constants in Liquid CLIM
Drawing in Color 5.3 111

or
d is

ecific

hang-
awing
very-
gain,

recur-
 been

 the
b-
5.5 Indirect Inks

Drawing with anindirect ink is the same as drawing another design named directly. F
example,+foreground-ink+ is a design that draws the medium’s foreground design an
the default value of the:ink drawing option.

Indirect ink is a useful abstraction that enables your code to ignore the issue of what sp
ink to use. It is also useful for output recording. For example, you can draw with+fore-
ground-ink+ , change to a differentmedium-foreground, and replay the output record; the
replayed output will come out in the new color.

You can change the foreground or background design of a medium at any time. This c
es the contents of the medium’s drawing plane. The effect is as if everything on the dr
plane is erased, the background design is drawn onto the drawing plane, and then e
thing that was ever drawn (provided it was saved in the output history) is drawn over a
using the medium’s new foreground and background.

If an infinite recursion is created using an indirect ink, an error is signaled when the
sion is created, when the design is used for drawing, or both. Two indirect inks have
defined:

+foreground-ink+ [Constant]

Summary: An indirect ink that uses the medium’s foreground design.

+background-ink+ [Constant]

Summary: An indirect ink that uses the medium’s background design.

5.6 Flipping Ink

Use “flipping ink” to exchange the colors of two inks. You can also use it to exchange
values of+foreground-ink+ and+background-ink+. For an example of its use, see Su
section 5.7.1.

+flipping-ink+ [Constant]

Summary: A flipping ink that flips+foreground-ink+ and+background-ink+.
Drawing in Color 112

und

er
ing
en-
ci-

gray-
make-flipping-ink [Function]

Arguments: ink1 ink2
Summary: Returns a design that interchanges occurrences of the two designsink1 andink2.

 Drawing a flipping ink over a background changes the color in the backgro
that would have been drawn byink1 at that point into the color that would have
been drawn byink2 at that point, and vice versa. The effect on any color oth
than the colors determined by those two inks is unspecified; however, draw
the same figure twice using the same flipping ink is guaranteed to be an “id
tity” operation. If eitherink1 or ink2 is not solid, the consequences are unspe
fied. The purpose of flipping is to allow the use of(xor) operations for
temporary changes to the display.

 If ink1 andink2 are equivalent, the result can be+nowhere+.

Note: make-flipping-ink is available only in Liquid CLIM.

5.7 Examples of Simple Drawing Effects

To draw in the foreground color, use the default, or specify:ink +foreground-ink+ .

To erase, specify:ink +background-ink+ .

To draw in color, specify:ink +green+ , :ink (make-rgb-color 0.6 0.0
0.4) , and so forth.

To draw an opaque gray, specify:ink (make-gray-color 0.25) . This will draw
a shade of gray independent of the window’s foreground color. On a non-color, non-
scale display this will generally turn into a stipple.

To draw a stipple of little bricks, specify:ink bricks , wherebricks is defined as:
113 CLIM User’s Guide

(make-rectangular-tile
 (make-pattern #2a(0 0 0 0 1 0 0 0 0)
 (0 0 0 1 0 0 0 0)
 (0 0 0 1 0 0 0 0)
 (1 1 1 1 1 1 1 1)
 (0 0 0 0 0 0 0 1)
 (0 0 0 0 0 0 0 1)
 (0 0 0 0 0 0 0 1)
 (1 1 1 1 1 1 1 1))
 (list +background+ +foreground+)) 8 8)

To draw a tiled pattern, specify:ink (make-rectangular-tile (make-pat-
tern array colors)).

To draw a pixmap, use(draw-design (make-pattern array colors) me-
dium).
114 CLIM User’s Guide 5.7

5.7.1 Using Flipping Ink

(defun cmd-rubberband ()
 (let ((x1 0) ; x1, y1 represents the fix point
 (y1 0)
 (x2 0) ; x2,y2 represents the point that is changing
 (y2 0)
 (mouse-button-press nil)
 ;; press to select pivot
 (stream (get-frame-pane *application-frame* ’main)))
 (tracking-pointer (stream)
 (:pointer-button-press
 (event x y)
 (setf x1 x y1 y x2 x y2 y)
 (draw-line* stream x1 y1 x2 y2
 :ink +flipping-ink+)
 (setf mouse-button-press t))
 (:pointer-motion
 (window x y)
 (when Mouse-button-press
 ;;erase
 (draw-line* stream x1 y1 x2 y2
 :ink +flipping-ink+)
 ;; draw
 (draw-line* stream x1 y1 x y
 :ink +flipping-ink+)
 (setf x2 x y2 y)))
 (:pointer-button-release
 (event x y)
 (cond
 ((eq mouse-button-press t)
 (return
 (list x1 y1 x2 y2))))))))
Drawing in Color 5.7 115

116 CLIM User’s Guide 5.7

Chapter 6 Presentation Types
Presentation Types 117

 119
119
... 120
. 120
. 121
.. 121
.. 121
. 122

 122

 125
.. 125
128

 130

... 136

.. 136
.. 137
.. 138
... 139
.. 139
... 142
.. 142
.. 143
.. 144

. 145
Chapter 6 Presentation Types

6.1 Conceptual Overview of CLIM Presentation Types
6.1.1 User Interaction With Application Objects...................................
6.1.2 Presentations and Presentation Types..
6.1.3 Output With Its Semantics Attached..
6.1.4 Input Context ...
6.1.5 Inheritance...
6.1.6 Presentation Translators..
6.1.7 What the Application Programmer Does.....................................

6.2 How to Specify a CLIM Presentation Type ...

6.3 Using CLIM Presentation Types for Output ..
6.3.1 CLOS Operators..
6.3.2 Additional Functions for Operating on Presentations in CLIM....

6.4 Using CLIM Presentation Types for Input...

6.5 Predefined Presentation Types ..
6.5.1 Basic Presentation Types ..
6.5.2 Numeric Presentation Types...
6.5.3 Character and String Presentation Types....................................
6.5.4 Pathname Presentation Types ..
6.5.5 One-Of and Some-Of Presentation Types
6.5.6 Sequence Presentation Types...
6.5.7 Constructor Presentation Types ..
6.5.8 Compound Presentation Types ...
6.5.9 Command and Form Presentation Types....................................

6.6 Functions That Operate on CLIM Presentation Types
Presentation Types 118

s that
ty has
 cir-

em has

interact
e ap-
hem-

ract
plica-
ates
6.1 Conceptual Overview of CLIM Presentation
Types

6.1.1 User Interaction With Application Objects

In object-oriented programming systems, applications are built around internal object
model something in the real world. For example, an application that models a universi
objects representing students, professors, and courses. A CAD system for designing
cuits has objects representing gates, resistors, and so on. A desktop publishing syst
objects representing paragraphs, headings, and illustrations.

Figure 17. User Interaction With Application Objects

Application objects have to be presented to the user, and the user has to be able to
with them. In CLIM, an interface enables the user to see visual representations of th
plication objects and, via these representations, operate on the application objects t
selves.

A very basic part of designing a CLIM user interface is specifying how the user will inte
with application objects. There are two directions of interaction: you must present ap
tion objects to the user as output, and you must accept input from the user that indic
application objects. This is done with two basic functions,present andaccept, plus some
related functions.

Application
Object

Presentation

presentaccept
119 CLIM User’s Guide

d the

only
ith that

tion-
ation
ntity:

about
t.

s a vi-
l repre-
age of
eman-
layed
-
ations
6.1.2 Presentations and Presentation Types

CLIM keeps track of the association between a visual representation of an object an
object itself. CLIM maintains this association in a data structure called apresentation. A
presentation embodies three things:

■ The underlying application object

■ Its presentation type

■ Its visual representation

In other words, a presentation is a special kind of output record that remembers not
output, but the object associated with the output and the semantic type associated w
object.

A presentation type can be thought of as a CLOS class that has some additional func
ality pertaining to its roles in the user interface of an application. In defining a present
type, the application programmer defines all of the user interface components of the e

■ Its displayed representation, textual or graphical

■ Textual representation, for user input via the keyboard

■ Pointer sensitivity, for user input via the pointer

In other words, the application programmer describes in one place all the information
an object necessary to display it to the user and interact with the user for object inpu

6.1.3 Output With Its Semantics Attached

For example, a university application has a “student” application object. The user see
sual representation of a student, which might be a textual representation, a graphica
sentation (such as a form with name, address, and student id number), or even an im
the face of the student. The presentation type of the student is “student”; that is, the s
tic type of the object that appears on the screen is “student.” Since the type of a disp
object is known, CLIM knows which operations are appropriate to perform on the dis
played object. For example, when a student is displayed, it is possible to perform oper
such assend-tuition-bill or show-transcript.
120 CLIM User’s Guide 6.1

t use
put

d to
a user
nts
layed

us user
 has

For ex-
ent.”
 they

LOS
ntation
 the

 more
t con-
. How-
. In the
nds can

s, how-
ed, the
6.1.4 Input Context

Presentations are the basis of many of the higher-level application-building tools tha
accept to get input andpresent to display output. A command that takes arguments as in
specifies the presentation type of each argument. When a call toaccept is made, CLIM es-
tablishes an “input-context” based on the presentation type. This input context is use
determine which presentations will be sensitive to mouse clicks. For instance, when
gives thesend-tuition-bill command, the input context is of type “student,” so any stude
displayed—both those being displayed for the first time and those that have been disp
before—are sensitive. This is because presentations that have been output in previo
interactions retain their semantics; that is, CLIM has recorded the fact that a student
been displayed and has saved this information.

6.1.5 Inheritance

CLIM presentation types are designed to use inheritance, just as CLOS classes do.
ample, a university might need to model “night-student,” which is a subclass of “stud
When the input context is looking for a student, night-students are sensitive because
are represented as a subtype of student.

The set of presentation types forms a type lattice, an extension of the Common Lisp C
type lattice. When a new presentation type is defined as a subtype of another prese
type, it inherits all the attributes of the supertype except those explicitly overridden in
definition.

6.1.6 Presentation Translators

You can define presentation translators to make the user interface of your application
flexible. For example, suppose the input context is expecting a command. In this inpu
text, all displayed commands are sensitive, so the user can point to one to execute it
ever, suppose the user points to another kind of displayed object, such as a student
absence of a presentation translator, the student is not sensitive because only comma
be entered to this input context.

In the presence of a presentation translator that translates from students to command
ever, both students and commands would be sensitive. When the student is highlight
middle pointer button might execute the commandshow-transcript for that student.
Presentation Types 6.1 121

igned
 need

nd ac-

 pre-
n type.
resen-

d oth-
 types

iption
resen-

ing a

le, the
s are
sh-ta-
6.1.7 What the Application Programmer Does

By the time you get to the point of designing the user interface, you have probably des
the rest of the application and know what the application objects are. At this point, you
to do the following:

1. Decide what types of application objects will be presented to the user as output a
cepted from the user as input.

2. For each type of application object that the user will see, assign a corresponding
sentation type. In many cases, this means simply using a predefined presentatio
In other cases, you need to define a new presentation type yourself. Usually the p
tation type is the same as the class of the application object.

3. Use the application-building tools to specify the windows, menus, commands, an
er elements of the user interface. Most of these elements will use the presentation
of your objects.

6.2 How to Specify a CLIM Presentation Type

This section describes how to specify a CLIM presentation type. For a complete descr
of CLIM presentation types, options, and parameters, see Section 6.5, “Predefined P
tation Types”.

Several CLIM operators take presentation types as arguments. You specify them us
presentation type specifier.

Most presentation type specifiers are also Common Lisp type specifiers. For examp
boolean presentation type is a Common Lisp type specifier. Not all presentation type
Common Lisp types, and not all Common Lisp types are presentation types (e.g., ha
bles), but there is a lot of overlap (e.g., commands, numbers, and strings).

A presentation type specifier appears in one of the following three patterns:

■ name

■ (name parameters ...)

■ ((name parameters ...) options ...)
122 CLIM User’s Guide 6.2

 pre-
pattern

k
duces
 of the
enta-
senta-

 unpa-

of

5.

val-

aning.
resen-
ib-
n the
The first pattern,name, indicates a simple presentation type, which can be one of the
defined presentation types or a user-defined presentation type. Examples of the first
are:

integer A predefined presentation type

pathname A predefined presentation type

boolean A predefined presentation type

student A user-defined presentation type

The second pattern,(name parameters ...) , supports parameterized presentation
types, which are analogous to parameterized Common Lisp types such as(integer 0
9) in method lambda lists. The functionpresentation-typep uses the parameters to chec
object membership in a type. Adding parameters to a presentation type specifier pro
a subtype that contains some but not necessarily all of the objects that are members
unparameterized type. Thus the parameters can turn off the sensitivity of some pres
tions that would otherwise be sensitive. The parameters state a restriction on the pre
tion type, so a parameterized presentation type is a specialization or a subset of the
rameterized presentation type of that name.

Examples of the second pattern are:

(integer 0 10) A parameterized type indicating an integer in the range
zero through ten.

(string 25) A parameterized type indicating a string whose length is 2

(member :yes :no :maybe)

A parameterized type that can be one of the three given
ues::yes, :no, and:maybe.

The third pattern,((name parameters ...) options ...) , enables you to specify
options that affect the use or appearance of the presentation, but not its semantic me
The options are keyword/value pairs, and are defined by the presentation type. All p
tation types accept the:description option, which enables you to provide a string descr
ing the presentation type. If provided, this option overrides the description specified i
define-presentation-type form, and also overrides thedescribe-presentation-type pre-
sentation method.
Presentation Types 6.2 123

ntation

n type.
e pro-

ed class.

 class

nless
.

sed
ve in
s only

trans-
nslates

 input

n trans-
For example, you can use this form to specify an octal integer from 0 to 10:

((integer 0 10) :base 8)

While in theory some presentation type options may appear as an option in any prese
type specifier, currently the only such option is:description.

Each presentation type has a name, which is usually a symbol naming the presentatio
The name can also be a CLOS class object (but not a built-in class object); this usag
vides the support for anonymous CLOS classes.

Every presentation type is associated with a CLOS class. Ifname is a class object or the
name of a class, and that class is not a built-in class, that class is used as the associat
Otherwise,define-presentation-type defines a class with the metaclassclim:presenta-
tion-type-class and superclasses determined by the presentation type definition. This
is not namedname, since that could interfere with built-in Common Lisp types such as
and, member, andinteger. class-name of this class returns a list of the form(presen-
tation-type name) . clim:presentation-type-class is a subclass ofstandard-class.

Programmers are required to evaluate thedefclass form first in the case when the same
name is used in both adefclass and adefine-presentation-type.

Every CLOS class (except for built-in classes) is a presentation type, as is its name. U
it has been defined withdefine-presentation-type, it allows no parameters and no options

Presentation type inheritance is used both to inherit methods (“what parser should be u
for this type?”), and to establish the semantics for the type (“what objects are sensiti
this input context?”). Inheritance of methods is the same as in CLOS and thus depend
on the type name, not on the parameters and options.

During presentation method combination, presentation type inheritance arranges to
late the parameters of a subtype into a new set of parameters for its supertype, and tra
the options of the subtype into a new set of options for the supertype.

6.3 Using CLIM Presentation Types for Output

Presentations for program output so that the objects presented will be acceptable to
functions. Suppose, for example, you present an object, such as5, as a TV channel. When
a command that takes a TV channel as an argument is issued or when a presentatio
124 CLIM User’s Guide 6.3

 Al-
num-
high-

ct pre-
he ob-
lay at
ause

ilable

ted
put is
 re-
e Lisp
. The

e-
been

t

lation function is “looking for” such a thing, the system will make that object sensitive.
so, when a command that is looking for a different kind of object (such as a highway
ber), the object5 is not sensitive, because that object represents a TV channel, not a
way number.

A presentation includes not only the displayed representation itself, but also the obje
sented and its presentation type. When a presentation is output to a CLIM window, t
ject and presentation type are “remembered”—that is, the object and type of the disp
a particular set of window coordinates are recorded in the window’s output history. Bec
this information remains available, previously presented objects are themselves ava
for input to functions for accepting objects.

An application can use the following operators to produce output that will be associa
with a given Lisp object and declared to be of a specified presentation type. This out
saved in the window’s output history as a presentation. Specifically, the presentation
members the output that was performed (by saving the associated output record), th
object associated with the output, and the presentation type specified at output time
object can be any Lisp object.

6.3.1 CLOS Operators

CLOS provides these top-level facilities for presenting output.with-output-as-presenta-
tion is the most general operator, andpresent andpresent-to-string support common idi-
oms.

with-output-as-presentation [Macro]

Arguments: (stream object type&key modifier single-box allow-sensitive-inferiors
record-type)&body body

Summary: The output ofbody to the extended output recording streamstream is used to
generate a presentation whose underlying object isobject and whose presenta-
tion type istype. Each invocation of this macro results in the creation of a pr
sentation object in the stream’s output history unless output recording has
disabled or:allow-sensitive-inferiors nil was specified at a higher level, in
which case the presentation object is not inserted into the history.with-out-
put-as-presentation returns the presentation corresponding to the output.

 Thestream argument must be a symbol that is bound to an extended outpu
stream or output recording stream. Ifstream is t, *standard-output* is used.
body may have zero or more declarations as its first forms.
Presentation Types 6.3 125

on
ent

d. It
a
ting

pe
m

n

ut

x

type is a presentation type specifier and may be an abbreviation.

modifier, which defaults tonil , is a function that describes how the presentati
object might be modified. For example, it might be a function of one argum
(the new value) that can be called in order to store a new value forobject after a
user somehow “edits” the presentation.modifier must have indefinite extent.

single-box is used to specify thepresentation-single-box component of the
resulting presentation. It can take on the values described underpresenta-
tion-single-box.

 When the booleanallow-sensitive-inferiors is nil , nested calls topresent or
with-output-as-presentation inside this one will not generate presentations.
The default ist.

record-type specifies the class of the presentation output record to be create
defaults tostandard-presentation. This argument should only be supplied by
programmer if there is a new class of output record that supports the upda
output record protocol.

 All arguments of this macro are evaluated:

 (with-output-as-presentation (stream #p"foo" ’pathname)
 (princ "FOO" stream))

present [Function]

Arguments: object&optional type&key stream view modifier acceptably
for-context-type single-box allow-sensitive-inferiors sensitive record-ty

Summary: Theobject of presentation typetype is presented to the extended output strea
stream (which defaults to*standard-output*), using the type’spresent method
for the supplied viewview. type is a presentation type specifier, and can be a
abbreviation. It defaults to (presentation-type-ofobject). The other arguments
and overall behavior ofpresent are as forstream-present.

 The returned value ofpresent is the presentation object that contains the outp
corresponding to the object.

present expands any presentation type abbreviations (type andfor-context-type),
and then callsstream-present onstream, object, type, and the remaining key-
word arguments.

stream-present [Generic Function]

Arguments: stream object type&key view modifier acceptably for-context-type single-bo
allow-sensitive-inferiors sensitive record-type
126 CLIM User’s Guide 6.3

-

Summary: stream-present is the per-stream implementation ofpresent, analogous to the
relationship betweenwrite-char andstream-write-char. All extended output
streams and output recording streams implement a method forstream-present.
The default method (onstandard-extended-output-stream) is as follows.

 The objectobject of typetype is presented to the streamstream by calling the
type’spresent method for the supplied viewview. The returned value is the pre
sentation containing the output corresponding to the object.

type is a presentation type specifier.

view is a view object that defaults tostream-default-view of stream.

for-context-type is a presentation type specifier that is passed to thepresent
method fortype, which can use it to tailor how the object will be presented.
for-context-type defaults totype.

modifier, single-box, allow-sensitive-inferiors, andrecord-type are the same as
for with-output-as-presentation.

acceptably defaults tonil , which requests thepresent method to produce text
designed to be read by human beings. Ifacceptably is t, it requests thepresent
method to produce text that is recognized by theaccept method forfor-con-
text-type. This makes no difference to most presentation types.

 The booleansensitive defaults tot. If it is nil , no presentation is produced.

present-to-string [Function]

Arguments: object&optional type&key view acceptably for-context-type string index
Summary: Same aspresent insidewith-output-to-string . If string is supplied, it must be

a string with a fill pointer. Whenindex is supplied, it is used as an index into
string. view, acceptably, andfor-context-type are as forpresent.

 The first returned value is the string. Whenstring is supplied, a second value is
returned, the updatedindex.

6.3.2 Additional Functions for Operating on
Presentations in CLIM

The following functions can be used to examine or modify presentations:

presentation [Protocol Class]
Presentation Types 6.3 127

n, it

 one

hat
at the
part

con-
 by
Summary: The protocol class that corresponds to a presentation and is a subclass ofout-
put-record. If you want to create a new class that behaves like a presentatio
should be a subclass ofpresentation. Subclasses ofpresentation obey the pre-
sentation protocol.

presentationp [Function]

Arguments: object
Summary: Returnst if and only ifobject is of typepresentation.

presentation-object [Generic Function]

Arguments: presentation
Summary: Returns the object represented by the presentationpresentation.

(setf presentation-object) [Generic Function]

Arguments: object presentation
Summary: Changes the object associated with the presentationpresentation to object.

presentation-type [Generic Function]

Arguments: presentation
Summary: Returns the presentation type of the presentationpresentation.

(setf presentation-type) [Generic Function]

Arguments: type presentation
Summary: Changes the type associated with the presentationpresentation to type.

presentation-single-box [Generic Function]

Arguments: presentation
Summary: Returns the “single box” attribute of the presentationpresentation, which con-

trols how the presentation is highlighted and when it is sensitive. This will be
of four values:

• nil (the default)—if the pointer is pointing at a visible piece of the output t
was drawn as part of the presentation, then it is considered to be pointing
presentation. The presentation is highlighted by highlighting each visible
of the output that was drawn as part of the presentation.

• t—if the pointer is inside the bounding rectangle of the presentation, it is
sidered to be pointing at the presentation. The presentation is highlighted
drawing a thin border around the bounding rectangle.
128 CLIM User’s Guide 6.3

en-

e

t be
ue)

espec-
• :position—like t for determining whether the pointer is pointing at the pres
tation, but likenil for highlighting.

• :highlighting —like nil for determining whether the pointer is pointing at th
presentation, but liket for highlighting.

(setf presentation-single-box) [Generic Function]

Arguments: single-box presentation
Summary: Changes the “single box” attribute of the presentationpresentation tosingle-box.

presentation-modifier [Generic Function]

Arguments: presentation
Summary: Returns the “modifier” associated with the presentationpresentation. The mod-

ifier is some sort of object that describes how the presentation object migh
modified. For example, it might be a function of one argument (the new val
that can be called in order to store a new value forobject after a user somehow
“edits” the presentation.

standard-presentation [Class]

Summary: The output record class that represents presentations.present normally creates
output records of this class. Members of this class are mutable.

:object [Initarg]

:type [Initarg]

:view [Initarg]

:single-box [Initarg]

:modifier [Initarg]

All presentation classes must handle these five initargs, which are used to specify, r
tively, the object, type, view, single-box, and modifier components of a presentation.
Presentation Types 6.3 129

ent

 to
ses,

type
ds,

table.
, but

 would
e-

nput
 the in-
 to an
t op-
ection

strict-
6.4 Using CLIM Presentation Types for Input

The primary means for getting input from the end user isaccept. Characters typed in at the
keyboard in response to a call toaccept are parsed, and the application object they repres
is returned to the calling function. (The parsing is done by theaccept method for the pre-
sentation type.) Alternatively, if a presentation of the type specified by theaccept call has
previously been displayed, the user can click on it with the pointer andaccept returns it di-
rectly (that is, no parsing is required).

Examples:

=>(clim:accept ’string)
Enter a string: abracadabra
"abracadabra"
=>(clim:accept ’string)
Enter a string [default abracadabra]: abracadabra
"abracadabra"

In the first call toaccept, abracadabra was typed at the keyboard. In the second call
accept, the user clicked on the keyboard-entered string of the first function. In both ca
the string object"abracadabra" was returned.

Typically, not all objects are acceptable as input. Only an object of the presentation
specified in the currentaccept function (or one of its subtypes) can be input. In other wor
theaccept function establishes the current input context. For example, if the call toaccept
specifies an integer presentation type, only an entered or displayed integer is accep
Numbers displayed as integer presentations would, in this input context, be sensitive
those displayed as part of some other kind of presentation, such as a file pathname,
not. In this manner,accept controls the input context and the sensitivity of displayed pr
sentations.

It is possible, however, to click on a presentation of a type different from the current i
context and invoke a presentation translator that would produce a type acceptable to
put context. For example, you could make a presentation of a file pathname translate
integer—say, its length—if you want. It is very common to translate to a command tha
erates on a presented object. For more information on presentation translators, see S
6.5, “Predefined Presentation Types”.

We said previously that the range of acceptable input is typically restricted, but how re
ed is up to you, the programmer. Using compound presentation types likeand andor, as
130 CLIM User’s Guide 6.4

ree of

gen-

all

nds
t

e a
trol

)

than

t.

s

-
 the

e

well as other predefined or specially devised presentation types, gives you a high deg
flexibility and control over the input context.

CLIM provides the following top-level operators for accepting typed input. The most
eral operator iswith-input-context , andaccept andaccept-from-string support common
idioms.

Note that, in general, CLIMaccept operators do not insert newlines. If you want each c
to accept to appear on a new line, useterpri .

input-context [Variable]

Summary: The current input context. This will be a list, each element of which correspo
to a single call towith-input-context . The first element of the list is the contex
established by the most recent call towith-input-context , and the last element
is the least recent call towith-input-context . This ordering of input contexts is
called “nesting.”

 The exact format of the elements in the list is unspecified, but will typically b
list of a presentation type and a tag that corresponds to the point in the con
structure of CLIM at which the input context was established.*input-context*
and the elements in it may have dynamic extent.

with-input-context [Macro]

Arguments: (type&key override) (&optional object-var type-var event-var options-var
form &body pointer-cases

Summary: Establishes an input context of presentation typetype; this is done by binding
input-context to reflect the new input context. When the booleanoverride is
nil (the default), this invocation ofwith-input-context adds its context presen-
tation type to the current context. In this way an application can solicit more
one type of input at the same time. Alternatively, whenoverride is t, it overrides
the current input context rather than nesting inside the current input contex

type can be a presentation type abbreviation.

 After establishing the new input context,form is evaluated. If no pointer gesture
are made by the user during the evaluation ofform, the values ofform are
returned. Otherwise, one of thepointer-cases is executed (based on the presen
tation type of the object that was clicked on) and its value is returned. (See
descriptions ofcall-presentation-menu andthrow-highlighted-presentation.)
pointer-cases is constructed like atypecase statement clause list whose keys ar
Presentation Types 6.4 131

 that

t
ght

 its
ia-

sen-

e

 of
that
presentation types; the first clause whose key satisfies the condition (presenta-
tion-subtypep type key) is the one that is chosen.

 During the execution of one of thepointer-cases, object-var is bound to the object
that was clicked on (the first returned value from the presentation translator
was invoked),type-var is bound to its presentation type (the second returned
value from the translator), andevent-var is bound to the pointer button event tha
was used.options-var is bound to any options that a presentation translator mi
have returned (the third value from the translator), and will be eithernil or a list
of keyword-value pairs.object-var, type-var, event-var, andoptions-var must all
be symbols.

type, stream, andoverride are evaluated, but the others are not:

 (with-input-context (’pathname)
 (path)
 (read)
 (pathname
 (format t
 "~&The pathname ~A was clicked on."
 path)))

accept [Function]

Arguments: type&key stream view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: Requests input of typetype from the streamstream, which defaults to
query-io . accept returns two values, the object representing the input and
presentation type.type is a presentation type specifier, and can be an abbrev
tion. The other arguments and overall behavior ofaccept are as foraccept-1.

accept first expands any presentation type abbreviations (type, default-type, and
history), handles the interactions between the default, default type, and pre
tation history, prompts the user by callingprompt-for-accept, and then calls
stream-accept onstream, type, and the remaining keyword arguments.

Note: The reasonaccept is specified as a three-function “trampoline” is to allow clos
tailoring of the behavior ofaccept. accept itself is the function that should be
called by application programmers.stream-accept exists so that CLIM imple-
mentors can specialize on a per-stream basis. (For example, the behavior
accepting-values can be implemented by creating a special class of stream
turns calls toaccept into fields of a dialog.)accept-1 is provided as a convenient
132 CLIM User’s Guide 6.4

pre-

istory

iting.

har-

ard
 call
function for thestream-accept methods to call when they require the default
behavior.

stream-accept [Generic Function]

Arguments: stream type&key view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: stream-accept is the per-stream implementation ofaccept, analogous to the
relationship betweenread-char andstream-read-char. All extended input
streams implement a method forstream-accept. The default method (onstan-
dard-extended-input-stream) simply callsaccept-1.

 The arguments and overall behavior ofstream-accept are as foraccept-1.

accept-1 [Function]

Arguments: stream type&key view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: Requests input of typetype from the streamstream. type must be a presentation
type specifier.view is a view object that defaults tostream-default-view of
stream. accept-1 returns two values, the object representing the input and its
sentation type. (Ifframe-maintain-presentation-histories is true for the cur-
rent frame, then the returned object is also pushed on to the presentation h
for that object.)

accept-1 establishes an input context viawith-input-context , and then calls the
accept presentation method fortype andview. accept allows input editing when
called on an interactive stream; see Section 16.1 for a discussion of input ed
The call toaccept will be terminated when theaccept method returns or the user
clicks on a sensitive presentation. The typing of an activation and delimiter c
acter is typically one way in which a call to anaccept method is terminated.

 A top-levelaccept satisfied by keyboard input discards the terminating keybo
gesture (which will be either a delimiter or an activation gesture). A nested
to accept leaves the terminating gesture unread.

 If the user clicked on a matching presentation,accept-1 will insert the object into
the input buffer by callingpresentation-replace-input on the object and type
returned by the presentation translator, unless either the booleanreplace-input is
nil or the presentation translator returned an:echo option ofnil . replace-input
Presentation Types 6.4 133

g

c-

type
t

d,
 the

).

va-

he

m-

e

defaults tot, but this default is overridden by the translator explicitly returnin
an:echo option ofnil .

 If default is supplied, then it anddefault-type are returned as values from
accept-1 when the input is empty.default-type must be a presentation type spe
ifier. If default is not supplied andprovide-default is t (the default isnil), then the
default is determined by taking the most recent item from the presentation
history specified byhistory. If insert-default is t and there is a default, the defaul
will be inserted into the input stream by callingpresentation-replace-input. It
will be editable.

history must be eithernil , meaning that no presentation type history will be use
or a presentation type (or abbreviation) that names a history to be used for
call toaccept. history defaults totype.

prompt can bet, which prompts by describing the type,nil , which suppresses
prompting, or a string, which is displayed as a prompt (viawrite-string). The
default ist, which producesEnter a type: in a top-level call toaccept or
“(type)” in a nested call toaccept.

 If the booleandisplay-default is t, the default is displayed (if one was supplied
If display-default isnil , the default is not displayed.display-default defaults tot
if prompt was provided; otherwise, it defaults tonil .

prompt-mode can be:normal (the default) or:raw, which suppresses putting a
colon after the prompt and/or default in a top-levelaccept and suppresses putting
parentheses around the prompt and/or default in a nestedaccept.

query-identifier is used withinaccepting-values to identify the field within the
dialog.

activation-gestures is a list of gesture names that will override the current acti
tion gestures, which are stored in*activation-gestures*. additional-activa-
tion-gestures can be supplied to add activation gestures without overriding t
current ones. See Subsection 16.2 for a discussion of activation gestures.

delimiter-gestures is a list of gesture names that will override the current deli
iter gestures, which are stored in*delimiter-gestures*. additional-delim-
iter-gestures can be supplied to add delimiter gestures without overriding th
current ones. See Subsection 16.2 for a discussion of delimiter gestures.

accept-from-string [Function]

Arguments: type string&key view default default-type start end
134 CLIM User’s Guide 6.4

 as

ns,
Section
Summary: Like accept, except that the input is taken fromstring, starting at the position
specified bystart and ending atend. view, default, anddefault-type are as for
accept.

accept-from-string returns an object and a presentation type (as inaccept), but
also returns a third value, the index at which input terminated.

prompt-for-accept [Generic Function]

Arguments: stream type view&rest accept-args&allow-other-keys
Summary: Called byaccept to prompt the user for input of presentation typetype on the

streamstream for the viewview. accept-args are all of the keyword arguments
supplied toaccept. The default method (onstandard-extended-input-stream)
simply callsprompt-for-accept-1.

prompt-for-accept-1 [Function]

Arguments: stream type&key default default-type display-default prompt prompt-mode
&allow-other-keys

Summary: Prompts the user for input of presentation typetype on the streamstream.

 If the booleandisplay-default is t, then the default is displayed; otherwise it is
not. When the default is being displayed,default anddefault-type are taken as the
object and presentation type of the default to display.display-default defaults to
t if prompt is non-nil ; otherwise, it defaults tonil .

 If prompt isnil , no prompt is displayed. If it is a string, that string is displayed
the prompt. Ifprompt is t (the default), the prompt is generated by calling
describe-presentation-type to produce a prompt of the formEnter a type:
in a top-level call toaccept, or “(type)” in a nested call toaccept.

prompt-mode can be:normal (the default) or:raw, which suppresses putting a
colon after the prompt and/or default in a top-levelaccept and suppresses putting
parentheses around the prompt and/or default in a nestedaccept.

6.5 Predefined Presentation Types

This section documents predefined CLIM presentation types, presentation type optio
and parameters. For more information on how to use these presentation types, see
6.2, “How to Specify a CLIM Presentation Type”.
Presentation Types 6.5 135

ts the
es).

ame.

tion,
tors

ted

t is a

tation
re-
Note that any presentation type with the same name as a Common Lisp type accep
same parameters as the Common Lisp type (and additional parameters in a few cas

6.5.1 Basic Presentation Types

These basic presentation types correspond to the Common Lisp types of the same n

t [Presentation Type]

Summary: The supertype of all other presentation types.

nil [Presentation Type]

Summary: The subtype of all other presentation types. This has no printed representa
and is useful only in writing “context independent” translators, that is, transla
whoseto-type is nil .

null [Presentation Type]

Summary: The presentation type that represents “nothing.” The single object associa
with this type isnil , and its printed representation is “None.”

boolean [Presentation Type]

Summary: The presentation type that representst ornil . The textual representation is “Yes”
and “No,” respectively.

symbol [Presentation Type]

Summary: The presentation type that represents a symbol.

keyword [Presentation Type]

Summary: The presentation type that represents a symbol in the keyword package. I
subtype ofsymbol.

blank-area [Presentation Type]

Summary: The type that represents all the places in a window where there is no presen
that is applicable in the current input context. CLIM provides a single “null p
sentation” as the object associated with this type.
136 CLIM User’s Guide 6.5

 are

ame

 of all
null-presentation [Variable]

Summary: The null presentation, which occupies all parts of a window in which there
no applicable presentations. This will have a presentation type ofblank-area.

6.5.2 Numeric Presentation Types

The following presentation types represent the Common Lisp numeric types of the s
name.

number [Presentation Type]

Summary: The presentation type that represents a general number. It is the supertype
the number types described here.

complex [Presentation Type]

Summary: The presentation type that represents a complex number.

rational [Presentation Type]

Arguments: &optional low high
Summary: The presentation type that represents either a ratio or an integer betweenlow and

high. Options to this type arebase andradix, which are the same as for theinte-
ger type.

integer [Presentation Type]

Arguments: &optional low high
Summary: The presentation type that represents an integer betweenlow andhigh. Options

to this type arebase (default10) andradix (defaultnil), which correspond to
print-base and*print-radix* , respectively. It is a subtype ofrational .

ratio [Presentation Type]

Arguments: &optional low high.

 The presentation type that represents a ratio betweenlow andhigh. Options to
this type arebase andradix, which are the same as for theinteger type. It is a
subtype ofrational .

float [Presentation Type]

Arguments: &optional low high.
Presentation Types 6.5 137

rings.

ne or
nt, a

ion
single
 The presentation type that represents a floating point number betweenlow and
high.

6.5.3 Character and String Presentation Types

These two presentation types can be used for reading and writing characters and st

character [Presentation Type]

Summary: The presentation type that represents a Common Lisp character object.

string [Presentation Type]

Arguments: &optional length
Summary: The presentation type that represents a string. Iflength is specified, the string

must have exactly that many characters.

6.5.4 Pathname Presentation Types

pathname [Presentation Type]

Summary: The presentation type that represents a pathname.

 The options aredefault-version, which defaults to:newest, default-type, which
defaults tonil , andmerge-default, which defaults to t. If merge-default is nil ,
accept returns the exact pathname that was entered; otherwise,accept merges
against the default anddefault-version. If no default is supplied, it defaults to
default-pathname-defaults. pathname has a default preprocessor that
merges the options into the default.

6.5.5 One-Of and Some-Of Presentation Types

The “one-of” and “some-of” presentation types can be used to accept and present o
more items from a set of items. The set of items can be specified as a “rest” argume
sequence, or an alist.

This table summarizes single (“one-of”) and multiple (“some-of”) selection presentat
types. Each row represents a type of presentation. Columns contain the associated
and multiple selection presentation types.
138 CLIM User’s Guide 6.5

e

ility
n,

f

completion [Presentation Type]

Arguments: sequence&key test value-key
Summary: The presentation type that selects one from a finite set of possibilities, with

“completion” of partial inputs. Several types are implemented in terms of th
completion type, includingtoken-or-type, null-or-type , member, mem-
ber-sequence, andmember-alist.

sequence is a list or vector whose elements are the possibilities. Each possib
has a printed representation, called its name, and an internal representatio
called its value.accept reads a name and returns a value.present is given a value
and outputs a name.

test is a function that compares two values for equality. The default iseql.

value-key is a function that returns a value, given an element ofsequence. The
default isidentity.

 The following presentation type options are available:

• name-key is a function that returns a name as a string, given an element ose-
quence. The default is a function that behaves as follows:

string ➛ the string

null ➛ “NIL”

cons➛ string of thecar

symbol➛ string-capitalize of its name

otherwise➛ princ-to-string of it

Arguments Single Multiple

most general completion subset-completion

&rest elements member subset

sequence member-sequence subset-sequence

alist member-alist subset-alist

Table 3. One-Of and Some-Of Selection Presentation Types
Presentation Types 6.5 139

 of
acter,

d

ple-
• documentation-key is a function that returns eithernil or a descriptive string,
given an element ofsequence. The default always returnsnil .

• test, value-key, name-key, anddocumentation-key must have indefinite extent.

• partial-completers is a possibly empty list of characters that delimit portions
a name that can be completed separately. The default is a list of one char
#\Space .

member [Presentation Type Abbreviation]

Arguments: &rest elements
Summary: The presentation type that specifies one ofelements. The options are the same

as forcompletion.

member-sequence [Presentation Type Abbreviation]

Arguments: sequence&key test
Summary: Like member, except that the set of possibilities is the sequencesequence. The

parametertest and the options are the same as forcompletion.

member-alist [Presentation Type Abbreviation]

Arguments: alist &key test
Summary: Like member, except that the set of possibilities is the alistalist. Each element

of alist is either an atom, as inmember-sequence, or a list whose car is the name
of that possibility and whose cdr is one of the following:

• The value (which must not be a cons)

• A list of one element, the value

• A property list that can contain the following properties:

:value—the value

:documentation—a descriptive string

 Thetest parameter and the options are the same as forcompletion except that
value-key anddocumentation-key default to functions that support the specifie
alist format.

subset-completion [Presentation Type]

Arguments: sequence&key test value-key
Summary: The type that selects one or more from a finite set of possibilities, with “com

tion” of partial inputs. The parameters and options are the same as forcomple-
140 CLIM User’s Guide 6.5

ptions

 of ob-

nce;
tion, plus the additional optionsseparator andecho-space, which are as for the
sequence type. The subset types that follow are implemented in terms of thesub-
set-completion type.

subset [Presentation Type Abbreviation]

Arguments: &rest elements
Summary: The presentation type that specifies a subset ofelements. Values of this type are

lists of zero or more values chosen from the possibilities inelements. The printed
representation is the names of the elements separated by commas. The o
are the same as forcompletion.

subset-sequence [Presentation Type Abbreviation]

Arguments: sequence&key test
Summary: Like subset, except that the set of possibilities is the sequencesequence. The

parametertest and the options are the same as forcompletion.

subset-alist [Presentation Type Abbreviation]

Arguments: alist &key test
Summary: Like subset, except that the set of possibilities is the alistalist.

6.5.6 Sequence Presentation Types

The following two presentation types can be used to accept and present a sequence
jects.

sequence [Presentation Type]

Arguments: type
Summary: The presentation type that represents a sequence of elements of typetype. type

can be a presentation type abbreviation. The printed representation of asequence
type is the elements separated by commas.accept returns a list.

 The options to this type areseparator andecho-space. separator is used to spec-
ify a character that will act as the separator between elements of the seque
the default is the comma character#\, . echo-space is t or nil ; when it ist (the
Presentation Types 6.5 141

user

in

ple,

 first

ome
default) a space will be automatically inserted into the input buffer when the
types a separator character.

sequence-enumerated [Presentation Type]

Arguments: &rest types
Summary: sequence-enumerated is likesequence, except that the type of each element

the sequence is individually specified.The elements oftypes can be presentation
type abbreviations.accept returns a list.

 The options to this type areseparator andecho-space, which are as for the
sequence type.

6.5.7 Constructor Presentation Types

or [Presentation Type]

Arguments: &rest types
Summary: The presentation type that is used to specify one of several types, for exam

(or (member :all :none) integer). The elements oftypes can be
presentation type abbreviations.accept returns one of the possible types as its
second value, not the originalor presentation type specifier.

and [Presentation Type]

Arguments: &rest types
Summary: The type that is used for “multiple inheritance.”and is frequently used in con-

junction withsatisfies, for example:(and integer (satisfies
oddp)) . The elements oftypes can be presentation type abbreviations.

 Theand type has special syntax that supports the two “predicates,”satisfies and
not. satisfies andnot cannot stand alone as presentation types and cannot be
in types. not can surround eithersatisfies or a presentation type.

 The first type intypes is the type whose methods will be used during calls to
accept andpresent.

6.5.8 Compound Presentation Types

The following compound presentation types are provided because they implement s
common idioms.
142 CLIM User’s Guide 6.5

object

 use

f this
.
f

main-
token-or-type [Presentation Type Abbreviation]

Arguments: tokens type
Summary: A compound type that is used to select one of a set of special tokens, or an

of typetype. tokens is anything that can be used as thesequence parameter to
member-alist; typically it is a list of symbols.

null-or-type [Presentation Type Abbreviation]

Arguments: type
Summary: A compound type that is used to selectnil , whose printed representation is the

special token “None,” or an object of typetype.

type-or-string [Presentation Type Abbreviation]

Arguments: type
Summary: A compound type that is used to select an object of typetype or an arbitrary

string, for example:(clim:type-or-string integer) . Any input that
accept cannot parse as the representation of an object of typetype is returned as
a string.

6.5.9 Command and Form Presentation Types

The command and form presentation types are complex types provided primarily for
by the top-level interactor of an application.

expression [Presentation Type]

Summary: The presentation type used to represent any Lisp object. The textual view o
type looks like what the standardprint andread functions produce and accept
The standardprint andread functions produce and accept the textual view o
this type.

 A separate presentation history for each instance of an application frame is
tained for theexpression presentation type.

form [Presentation Type]
Presentation Types 6.5 143

ce

and its

main-

r com-

pro-

.

of
e),
efault
Summary: The presentation type used to represent a Lisp form. This is a subtype ofexpres-
sion and is equivalent to it, except that some presentation translators produ
quote forms.

command [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent a command processor command

arguments.

 A separate presentation history for each instance of an application frame is
tained for thecommand presentation type.

command-name [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent the name of a command processo

mand in the command tablecommand-table.

command-or-form [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent either a Lisp form or a command

cessor command and its arguments.

6.6 Functions That Operate on CLIM
Presentation Types

These are some general-purpose functions that operate on CLIM presentation types

describe-presentation-type [Function]

Arguments: type&optional stream plural-count
Summary: Describes the presentation typetype on thestream, which defaults to*stan-

dard-output* . If stream is nil , a string containing the description is returned.
plural-count is eithernil (that is, the description should be the singular form
the name),t (meaning that the description should the plural form of the nam
or an integer greater than zero (the number of items to be described). The d
is 1.

type can be a presentation type abbreviation.
144 CLIM User’s Guide 6.6

pe or

ation

m

mon

ype
presentation-type-name [Function]

Arguments: type
Summary: Returns the presentation type name of the presentation type specifiertype. This

function is provided as a convenience. It could be implemented as follows:

(defun presentation-type-name (type)
 (with-presentation-type-decoded (name) type name))

presentation-type-parameters [Function]

Arguments: type-name&optional env
Summary: Returns a lambda-list of the parameters specified when the presentation ty

presentation type abbreviation whose name istype-name was defined.type-name
is a symbol or a class.env is a macro-expansion environment, as infind-class.

presentation-type-options [Function]

Arguments: type-name&optional env
Summary: Returns the list of options specified when the presentation type or present

type abbreviation whose name istype-name was defined. This does not include
the standard options unless the presentation-type definition mentioned the
explicitly. type-name is a symbol or a class.env is a macro-expansion environ-
ment, as infind-class.

presentation-typep [Function]

Arguments: object type
Summary: Returnst if object is of the type specified bytype, otherwise returnsnil . type

may not be a presentation type abbreviation. This is analogous to the Com
Lisp typep function.

with-presentation-type-decoded [Macro]

Arguments: (name-var&optional parameters-var options-var) type&body body
Summary: The specified variables are bound to the components of the presentation t

specifier, the forms inbody are executed, and the values of the last form are
returned.name-var, if non-nil , is bound to the presentation type name.parame-
ters-var, if non-nil , is bound to a list of the parameters.options-var, if non-nil , is
bound to a list of the options. When supplied,name-var, parameters-var, and
options-var must be symbols.

 Thename-var, parameters-var, andoptions-var arguments are not evaluated.
body may have zero or more declarations as its first forms.
Presentation Types 6.6 145

ation
c-

 is

resen-

 is

t
o be
bject.
with-presentation-type-options [Macro]

Arguments: (type-name type)&body body
Summary: Variables with the same name as each option in the definition of the present

type are bound to the option values intype, if present, or else to the defaults spe
ified in the definition of the presentation type. The forms inbody are executed in
the scope of these variables and the values of the last form are returned.

 The value of the formtype must be a presentation type specifier whose name
type-name. Thetype-name andtype arguments are not evaluated.body may have
zero or more declarations as its first forms.

with-presentation-type-parameters [Macro]

Arguments: (type-name type)&body body
Summary: Variables with the same name as each parameter in the definition of the p

tation type are bound to the parameter values intype, if present, or else to the
defaults specified in the definition of the presentation type. The forms inbody are
executed in the scope of these variables and the values of the last form are
returned.

 The value of the formtype must be a presentation type specifier whose name
type-name. Thetype-name andtype arguments are not evaluated.body may have
zero or more declarations as its first forms.

presentation-type-specifier-p [Function]

Arguments: object
Summary: Returnst if object is a valid presentation type specifier; otherwise, it returnsnil .

presentation-type-of [Function]

Arguments: object
Summary: Returns a presentation type of whichobject is a member, in particular the mos

specific presentation type that can be conveniently computed and is likely t
useful to the programmer. This is often the class name of the class of the o

presentation-type-of returns an expression when possible andt otherwise.

 This is analogous to the Common Lisptype-of function.

presentation-subtypep [Function]

Arguments: type putative-supertype
146 CLIM User’s Guide 6.6

fier

re-
in.

ic
LOS

ect
Summary: Answers the question “is the type specified by the presentation type speci
type a subtype of the type specified by the presentation type specifierputa-
tive-supertype?” presentation-subtypep returns two values,subtypep and
known-p. Whenknown-p is t, subtypep can be eithert (meaning thattype is def-
initely a subtype ofputative-supertype) ornil (meaning thattype is definitely not
a subtype ofputative-supertype). Whenknown-p is nil , thensubtypep must also
benil ; this means that the answer cannot reliably be determined.

type may not be a presentation type abbreviation.

 This is analogous to the Common Lispsubtypep function.

map-over-presentation-type-supertypes [Function]

Arguments: function type
Summary: Calls the functionfunction on the presentation type specifiertype and each of its

supertypes.function is called with two arguments, the name of a type and a p
sentation type specifier for that type with the parameters and options filled
function has dynamic extent; its two arguments are permitted to have dynam
extent. The traversal of the type lattice is done in the order specified by the C
class precedence rules, and visits each type in the lattice exactly once.

presentation-type-direct-supertypes [Function]

Arguments: type
Summary: Returns a sequence of the names of all the presentation types that are dir

supertypes of the presentation type specifiertype, ornil if type has no supertypes.
The consequences of modifying the returned sequence are unspecified.

find-presentation-type-class [Function]

Arguments: name&optional (errorp t) environment
Summary: Returns the class corresponding to the presentation type namedname, which

must be a symbol or a class object.errorp andenvironment are as forfind-class.

class-presentation-type-name [Function]

Arguments: class&optional environment
Summary: Returns the presentation type name corresponding to the classclass. This is the

inverse offind-presentation-type-class. environment is as forfind-class.

default-describe-presentation-type [Function]

Arguments: description stream plural-count
Presentation Types 6.6 147

end
Summary: Performs the default actions fordescribe-presentation-type, notably pluraliza-
tion and prepending an indefinite article if appropriate.description is a string or
a symbol, typically the:description presentation type option or the:description
option todefine-presentation-type. plural-count is as fordescribe-presenta-
tion-type.

make-presentation-type-specifier [Function]

Arguments: type-name-and-parameters&rest options
Summary: A convenient way to assemble a presentation type specifier with only

non-default options included. For a full description of this function, see the
of Subsection 7.2.1, “Presentation Methods in CLIM.”
148 CLIM User’s Guide 6.6

Chapter 7 Defining a New Presentation
Type
Defining a New Presentation Type 6.6 149

. 151
 152
 153

 155
 157
62

 164

.. 166
Chapter 7 Defining a New Presentation Type

7.1 Conceptual Overview of Defining a New Presentation Type
7.1.1 CLIM Presentation Type Inheritance..
7.1.2 Defining an Accept for a Structure With Several Fields

7.2 CLIM Operators for Defining New Presentation Types
7.2.1 Presentation Methods in CLIM...
7.2.2 CLIM Operators for Defining Presentation Type Abbreviations . 1

7.3 Using Views With CLIM Presentation Types ..

7.4 Advanced Topics..
Defining a New Presentation Type 150

plica-
 appli-

ntity:

ry to

LOS
ntation
 the

te).

in-
ter
7.1 Conceptual Overview of Defining a New
Presentation Type

CLIM’s standard set of presentation types will be useful in many cases, but most ap
tions will need customized presentation types to represent the objects modeled in the
cation.

In defining a presentation type, you define all the user interface components of the e

■ A displayed representation, for example, textual or graphical

■ Pointer sensitivity for user input via the pointer

■ A textual representation for user input via the keyboard (optional)

In other words, in one place you provide all the information about an object necessa
display it to the user and to accept it as input from the user.

The set of presentation types forms a type lattice, an extension of the Common Lisp C
type lattice. When a new presentation type is defined as a subtype of another prese
type, it inherits all the attributes of the supertype except those explicitly overridden in
definition.

To define a new presentation type, you follow these steps:

1. Use thedefine-presentation-type macro.

a. Name the new presentation type.

b. Supply parameters that further restrict the type (if appropriate).

c. Supply options that affect the appearance of the type (if appropriate).

d. State the supertypes of this type, to make use of inheritance (if appropria

2. Define the CLIM presentation methods.

a. Specify how objects are displayed with apresent presentation method. (You
must define apresent method, unless the new presentation type inherits a
method that is appropriate for it.)

b. Specify how objects are parsed with anaccept presentation method. (In most
cases, you must define anaccept method, unless the new presentation type
herits a method that is appropriate for it. If it will never be necessary to en
151 CLIM User’s Guide

 pro-

 nec-

enta-

ass.

 class

 it has
.
e in-
resen-

s, you
 to

 meth-

 you
S

the object by typing its representation on the keyboard, you don’t need to
vide this method.)

c. Specify the type/subtype relationships of this type and its related types, if
essary, withpresentation-typep andpresentation-subtypep presentation
methods. (You must define or inherit these methods when defining a pres
tion type that has parameters.)

7.1.1 CLIM Presentation Type Inheritance

Every presentation type is associated with a CLOS class. In the common case, thename of
the presentation type is a class object or the name of a class, and that class is not a
clos:built-in-class. In this case, the presentation type is associated with that CLOS cl

Otherwise,define-presentation-type defines a class with metaclassclim:presenta-
tion-type-class and superclasses determined by the presentation type definition. This
is not namedname, since that could interfere with built-in Common Lisp types such asand,
member, andinteger. clos:class-name of this class returns a list (presentation-type
name). clim:presentation-type-class is a subclass ofclos:standard-class.

Note: If the same name is defined with bothclos:defclass (or defstruct) and
define-presentation-type, theclos:defclass (or defstruct) must be done
first.

Every CLOS class (except for built-in classes) is a presentation type, as is its name. If
not been defined withdefine-presentation-type, it allows no parameters and no options
As in CLOS, inheriting from a built-in class does not work unless you specify the sam
heritance that the built-in class already has; you may want to do this in order to add p
tation-type parameters to a built-in class.

If you define a presentation type that does not have the same name as a CLOS clas
must define apresentation-typep presentation method for it. The function (as opposed
the presentation method)presentation-typep usesfind-class if the presentation type is
piggybacking on a CLOS type. Otherwise it depends on the user-defined presentation
od.

If you define a presentation type that has parameters, you must define apresentation-sub-
typep for it. As noted previously, CLOS does not allow you to parameterize types, so
must provide apresentation-subtype method even for presentation types based on CLO
classes.
152 CLIM User’s Guide 7.1

ties.

rs or op-
 to call

thods
type
 in
.

t of pa-
of op-

 name
,
arated
elimited
Note that CLIM itself depends on these methods for its own presentation-based utili

If your presentation type has the same name as a class, doesn’t have any paramete
tions, doesn’t have a history, and doesn’t need a special description, you do not need
define-presentation-type.

During method combination, presentation type inheritance is used both to inherit me
(“what parser should be used for this type?”), and to establish the semantics for the
(“what objects are sensitive in this context?”). Inheritance of methods is the same as
CLOS and thus depends only on the type name, not on the parameters and options

Presentation type inheritance translates the parameters of the subtype into a new se
rameters for the supertype, and translates the options of the subtype into a new set
tions for the supertype.

7.1.2 Defining an Accept for a Structure With Several
Fields

The following code shows how to define anaccept for a structure (instance) with several
fields. Thataccept is then used within another similaraccept call.

A presentation type calledticket is defined. Theaccept method has two recursive calls
to accept, one to read the name of a candidate for president and another to read the
of the running mate. We provide two possibleaccept methods; in order to compare them
you will have to compile first one and then the other. The first reads the two names sep
by a comma on the same line. The second reads the two names on separate lines, d
by RETURN. They both do completion within the field. That is, if you do(accept
’ticket :stream win) with the firstaccept method, and type"Bu,Qu<RETURN>",
the screen appearance will be"Bush,Quayle" and the return value will be(BUSH
QUAYLE).

If you use the secondaccept method and type:

"Cl
Go
"

the window will contain:
Defining a New Presentation Type 7.1 153

o can-
"Clinton
Gore"

and the return value will be(CLINTON GORE) .

This example also demonstrates simple cross-field constraints by insisting that the tw
didates be of the same party.

For key implementation details, read the comments in the code.

(in-package :clim-user)

(define-presentation-type ticket ())

(setf (get ’bush ’party) ’republican)
(setf (get ’quayle ’party) ’republican)
(setf (get ’clinton ’party) ’democrat)
(setf (get ’gore ’party) ’democrat)

;;; separated by comma version
(define-presentation-method accept ((type ticket) stream view &key
&allow-other-keys)
 (declare (ignore view))
 (let ((president (accept ’(member bush clinton) :stream stream :prompt nil
 ;; add comma as a completing delimiter
 :blip-characters ’(#,))))
 ;; Make sure that the names were separated by a comma
 (unless (eql (read-gesture :stream stream) #,)
 (simple-parse-error "Ticket members must be separated by commas"))
 (let ((veep (accept ’(member quayle gore) :stream stream :prompt nil)))
 ;; Validate party affiliations
 (unless (eql (get president ’party) (get veep ’party))
 (simple-parse-error "Ticket members must be of the same party"))
 (list president veep))))

 ;;; Separated by Return version
(define-presentation-method accept ((type ticket) stream view &key
 &allow-other-keys)
 (declare (ignore view))
 (let ((president (accept ’(member bush clinton) :stream stream :prompt nil
 ;; Remove Newline from activation characters
 :activation-characters ‘()
 ;; Add Newline as a delimiter, so that we get
 ;; completion and move-to-next-field behavior
 ;; when Return is typed.
 :blip-characters ‘(#\Return #\Newline))))
154 CLIM User’s Guide 7.1

ion

r,

her
 (unless (eql (read-gesture :stream stream) #\Newline)
 (simple-parse-error
 "Ticket members must be entered on separate lines"))
 (let ((veep (accept ’(member quayle gore) :stream stream :prompt nil)))
 ;; Validate party affiliations
 (unless (eql (get president ’party) (get veep ’party))
 (simple-parse-error "Ticket members must be of the same party"))
 (list president veep))))

7.2 CLIM Operators for Defining New
Presentation Types

define-presentation-type [Macro]

Arguments: name parameters&key options inherit-from description history
parameters-are-types

Summary: Defines a presentation type whose name is the symbol or classname and whose
parameters are specified by the lambda-listparameters. These parameters are
visible within inherit-from and within the methods created withdefine-presen-
tation-method. For example, the parameters are used bypresentation-typep
andpresentation-subtypep methods to refine their tests for type inclusion.

options is a list of option specifiers. It defaults tonil . An option specifier is either
a symbol or a list of the form (symbol &optional default supplied-p presenta-
tion-type accept-options), wheresymbol, default, andsupplied-p are as in a nor-
mal lambda-list. Ifpresentation-type andaccept-options are present, they
specify how to accept a new value for this option from the user.symbol can also
be specified in the (keyword variable) form allowed for Common Lisp lambda
lists.symbol is a variable that is visible withininherit-from and within most of
the methods created withdefine-presentation-method. The keyword corre-
sponding tosymbol can be used as an option in the third form of a presentat
type specifier. An option specifier for the standard option:description is auto-
matically added tooptions if an option with that keyword is not present; howeve
it does not produce a visible variable binding.

 Unsupplied optional or keyword parameters default to* (as indeftype) if no
default is specified inparameters. Unsupplied options default tonil if no default
is specified inoptions.

inherit-from is a form that evaluates to a presentation type specifier for anot
type from which the new type inherits.inherit-from can access the parameter
Defining a New Presentation Type 7.2 155

d

pre-

g to

pe
d;

vi-
her
ries

re-
ion

tion

r
e pre-

r

variables bound by theparameters lambda list and the option variables specifie
by options. If name is or names a CLOS class (other than abuilt-in-class), then
inherit-from must specify the class’s direct superclasses (usingand to specify
multiple inheritance). It is useful to do this when you want to parameterize
viously defined CLOS classes.

 If inherit-from is unsupplied, the default behavior is that ifname is or names a
CLOS class, then the type inherits from the presentation type correspondin
the direct superclasses of that CLOS class (usingand to specify multiple inher-
itance). Otherwise, the type named byname inherits fromstandard-class.

description is a string ornil . This should be the term for an instance for the ty
being defined. If it isnil or unsupplied, a description is automatically generate
it will be a “prettied up” version of the type name, for example,small-integer
would become"small integer" . You can also write adescribe-presenta-
tion-type presentation method.description is implemented by the default
describe-presentation-type method, sodescription only works in presentation
types where that default method is not shadowed.

history can bet (the default), meaning that this type has its own history of pre
ous inputs;nil , meaning that this type keeps no history; or the name of anot
presentation type whose history is shared by this type. More complex histo
can be specified by writing apresentation-type-history presentation method.

 If the booleanparameters-are-types is t, this means that the parameters to the p
sentation type are themselves presentation types. If they are not presentat
types,parameters-are-types should be supplied asnil . Types such asand, or, and
sequence will specify this ast.

 Every presentation type must define or inherit presentation methods foraccept
andpresent if the type is going to be used for input and output. For presenta
types that are only going to be used for input via the pointer, theaccept need not
be defined.

 If a presentation type hasparameters, it must define presentation methods for
presentation-typep andpresentation-subtypep that handle the parameters, o
inherit appropriate presentation methods. In many cases it should also defin
sentation methods fordescribe-presentation-type andpresenta-
tion-type-specifier-p.

 There are certain restrictions on theinherit-from form, to allow it to be analyzed
at compile time. The form must be a simple substitution of parameters and
options into positions in a fixed framework. It cannot involve conditionals or
computations that depend on valid values for the parameters or options; fo
156 CLIM User’s Guide 7.2

nd on
me
tions.
be a
 of the
 the
ed.

 its

e

ctions

e

example, it cannot require parameter values to be numbers. It cannot depe
the dynamic or lexical environment. The form will be evaluated at compile ti
with uninterned symbols used as dummy values for the parameters and op
In the type specifier produced by evaluating the form, the type name must
constant that names a type, the type parameters cannot derive from options
type being defined, and the type options cannot derive from parameters of
type being defined. All presentation types mentioned must be already defin
and can be used for multiple inheritance, butor, not, andsatisfies cannot be
used.

 None of the arguments, exceptinherit-from, are evaluated.

7.2.1 Presentation Methods in CLIM

Usedefine-presentation-method to define presentation methods.

define-presentation-method [Macro]

Arguments: name qualifiers* specialized-lambda-list&body body
Summary: Defines a presentation method for the function namedname on the presentation

type named inspecialized-lambda-list.

specialized-lambda-list is a CLOS specialized lambda list for the method, and
contents vary depending on whatname is.qualifiers* is zero or more of the usual
CLOS method qualifier symbols.define-presentation-method supportsstan-
dard method combination (the:before, :after, and:around method qualifiers).

body defines the body of the method.body may have zero or more declarations
as its first forms.

All presentation methods have an argument namedtype that must be specialized with the
name of a presentation type. The value oftype is a presentation type specifier, which can b
for a subtype that inherited the method.

All presentation methods except those forpresentation-subtypep have lexical access to
the parameters from the presentation type specifier. Presentation methods for the fun
accept, present, describe-presentation-type, presentation-type-specifier-p, andac-
cept-present-default also have lexical access to the options from the presentation typ
specifier.
Defining a New Presentation Type 7.2 157

ods.

 in-

eth-
Presentation methods inherit and combine in the same way as ordinary CLOS meth
However, they do not resemble ordinary CLOS methods with respect to thetype argument.
The parameter specializer fortype is handled in a special way, and presentation method
heritance arranges the type parameters and options seen by each method.

 For example, consider three typesint , rrat , andnum defined as follows:

(define-presentation-type int (low high)
 :inherit-from ‘(rrat ,high ,low))

(define-presentation-method presentation-typep :around (object (type int))
 (and (call-next-method)
 (integerp object)
 (<= low object high)))

(define-presentation-type rrat (high low)
 :inherit-from ‘num)

(define-presentation-method presentation-typep :around (object
 (type rrat))
 (and (call-next-method)
 (rationalp object)
 (<= low object high)))

(define-presentation-type num ())

(define-presentation-method presentation-typep (object (type num))
 (numberp object))

(If the user were to evaluate the form (presentation-typep X ’(int 1 5)) ,
then the type parameters will be(1 5) in thepresentation-typep method forint , (5
1) in the method forrrat , andnil in the method fornum. The value fortype will be
((int 1 5)) in each of the methods.

Following are the names of the various presentation methods defined bydefine-presenta-
tion-method, along with the lambda-list for each method. For all of the presentation m
ods, thetype will always be specialized. Where appropriate,view may be specialized as
well. The other arguments are not usually specialized.

accept [Presentation Method]

Arguments: type stream view&key default default-type
Summary: This presentation method is responsible for “parsing” the representation oftype

for a particular viewview on the streamstream.Theaccept method returns a sin-
158 CLIM User’s Guide 7.2

e (a
 the

of

ne a
 a bar
uld

hat
gle value (the object that was “parsed”), or two values, the object and its typ
presentation type specifier). The method’s caller takes care of establishing
input context, defaulting, prompting, and input editing.

 Theaccept method can specialize on theview argument in order to define more
than one input view for the data. Theaccept method for thetextual-view view
must be defined if the programmer wants to allow objects of that type to be
entered via the keyboard.

 Note thataccept presentation methods can call the functionaccept recursively.
In this case, the programmer should be careful to specifynil for :prompt and
:display-default unless recursive prompting is really desired.

present [Presentation Method]

Arguments: object type stream view&key acceptably for-context-type
Summary: This presentation method is responsible for displaying the representation

object having typetype for a particular viewview; see the functionaccept.

 Thepresent method can specialize on theview argument in order to define more
than one view of the data. For example, a spreadsheet program might defi
presentation type for revenue, which can be displayed either as a number or
of a certain length in a bar graph. Typically, at least one canonical view sho
be defined for a presentation type. For example, thepresent method for thetex-
tual-view view must be defined if the programmer wants to allow objects of t
type to be displayed textually.

describe-presentation-type [Presentation Method]

Arguments: type stream plural-count
Summary: This presentation method is responsible for textually describing the typetype.

stream is a stream, and will not benil as it can be for thedescribe-presenta-
tion-type function.

presentation-type-specifier-p [Presentation Method]

Arguments: type
Summary: This presentation method is responsible for checking the validity of the

para-meters and options for the presentation typetype. The default method
returnst.

presentation-typep [Presentation Method]

Arguments: object type
Summary: This presentation method is called when thepresentation-typep function

requires type-specific knowledge. If the type name in the presentation typetype
Defining a New Presentation Type 7.2 159

he

t

e

at is,

ethod

ot

not
is or names a CLOS class, the method is called only ifobject is a member of the
class andtype contains parameters. The method simply tests whetherobject is a
member of the subtype specified by the parameters. For non-class types, t
method is always called.

 For example, the type method will not get called in(presentation-typep
1.0 ‘(integer 10)) because 1.0 is not an integer. The method will ge
called by(presentation-typep 10 ‘(integer 0 5)) .

presentation-subtypep [Presentation Method]

Arguments: type putative-supertype
Summary: This presentation method is called when thepresentation-subtypep function

requires type-specific knowledge.

presentation-subtypep walks the type lattice (usingmap-over-presenta-
tion-supertypes) to determine whether or not the presentation typetype is a sub-
type of the presentation typeputative-supertype, without looking at the type
parameters. When a supertype oftype has been found whose name is the sam
as the name ofputative-supertype, then thesubtypep method for that type is
called in order to resolve the question by looking at the type parameters (th
if the subtypep method is called,type andputative-supertype are guaranteed to
be the same type, differing only in their parameters). Ifputative-supertype is
never found during the type walk, thenpresentation-subtypep will never call
thepresentation-subtypep presentation method forputative-supertype.

 Unlike all other presentation methods,presentation-subtypep receives atype
argument that has been translated to the presentation type for which the m
is specialized;type is never a subtype. The method is only called ifputa-
tive-supertype has parameters and the two presentation type specifiers do n
have equal parameters. The method must return the two values thatpresenta-
tion-subtypep returns.

 Sincepresentation-subtypep takes two type arguments, the parameters are
lexically available as variables in the body of a presentation method.

map-over-presentation-type-supertypes [Presentation Method]

Arguments: function type
Summary: This method is called in order to applyfunction to the superclasses of the pre-

sentation typetype.

accept-present-default [Presentation Method]

Arguments: type stream view default default-supplied-p present-p query-identifier
160 CLIM User’s Guide 7.2

er. It

er the

by
ord.

nta-

re-
Summary: This method specializes the kind of default that is to be presented to the us
is called whenaccept turns intopresent insideaccepting-values. The default
method callspresent or describe-presentation-type, depending on whether
default-supplied-p is t or nil , respectively.

 The booleandefault-supplied-p will be t only in the case when the:default
option was explicitly supplied in the call toaccept that invoked
accept-present-default.

present-pandquery-identifier are arguments that are called internally by the
accept-values mechanism that this method needs to handle. The form of
present-p as it is handed down (internally) fromaccepting-values is a list of the
presentation type of the accepting-values query (accept-values-choice) and the
query object itself, e.g.,(list ’accept-values-choice
<AV-query-object >) . The value ofquery-identifier is an internal
accept-values query identifier object.

presentation-type-history [Presentation Method]

Arguments: type
Summary: This method returns a history object for the presentation typetype, ornil if there

is none.

presentation-refined-position-test [Presentation Method]

Arguments: (record presentation-type x y)
Summary: This method is supplied when the user wants a more precise test of wheth

supplied coordinate arguments (x andy) are “contained” by therecord argument.
Without this test, whether or not a position is within a record is determined
simply by seeing if the position is inside the bounding-rectangle of that rec

highlight-presentation [Presentation Method]

Arguments: type record stream state
Summary: This method is responsible for drawing a highlighting box around the prese

tion record on the output recording streamstream. state will be either:highlight
or :unhighlight .

See Section 7.4, “Advanced Topics,” for more in-depth material relating to defining p
sentation methods.
Defining a New Presentation Type 7.2 161

om-
speci-

 spec-

pe

spec-
7.2.2 CLIM Operators for Defining Presentation Type
Abbreviations

You can define an abbreviation for a presentation type for the purpose of naming a c
monly used cliche. The abbreviation is simply another name for a presentation type
fier.

Exported functions that callexpand-presentation-type-abbreviation allow abbreviations.

■ accept

■ accept-from-string

■ with-output-as-presentation

■ with-input-context

■ present

■ describe-presentation-type

■ presentation-type-history

■ presentation-default-preprocessor

■ define-presentation translator

define-presentation-type-abbreviation [Macro]

Arguments: name parameters equivalent-type&key options
Summary: Defines a presentation type that is an abbreviation for the presentation type

ifier that is the value ofequivalent-type.

 Where presentation type abbreviations are allowed,equivalent-type and abbrevi-
ations are exactly equivalent and can be used interchangeably.

name must be a symbol and must not be the name of a CLOS class.

 Theequivalent-type form might be evaluated at compile time if presentation ty
abbreviations are expanded by compiler optimizers. Unlikeinherit-from, equiv-
alent-type can perform arbitrary computations and is not called with dummy
parameter and option values. The type specifier produced by evaluatingequiva-
lent-type can be a real presentation type or another abbreviation. If the type
ifier doesn’t include the standard option:description, the option is automatically
copied from the abbreviation to its expansion.
162 CLIM User’s Guide 7.2

pe

-
ed as:

ude
neces-
seful

-

the
 Note that you cannot define any presentation methods on a presentation ty
abbreviation. If you need methods, usedefine-presentation-type instead.

define-presentation-type-abbreviation is used to name a commonly used cli
che. For example, a presentation type to read an octal integer might be defin

 (define-presentation-type-abbreviation octal-integer
 (&optional low high)
 ‘((integer ,low ,high) :base 8
 :description "octal integer"))

 None of the arguments, exceptequivalent-type, is evaluated.

When writing presentation type abbreviations, it is sometimes useful to let CLIM incl
or exclude defaults for parameters and options. In some cases, you may also find it
sary to “expand” a presentation type abbreviation. The following three functions are u
in these circumstances.

expand-presentation-type-abbreviation-1 [Function]

Arguments: type&optional environment
Summary: If the presentation type specifiertype is a presentation type abbreviation, or is

anand, or, sequence, orsequence-enumeratedthat contains a presentation
type abbreviation, thenexpand-presentation-type-abbreviation-1 expands the
type abbreviation once and returns two values, the expansion andt. If type is not
a presentation type abbreviation, then the valuestype andnil are returned. env is
a macro-expansion environment, as inmacroexpand.

expand-presentation-type-abbreviation [Function]

Arguments: type&optional environment
Summary: expand-presentation-type-abbreviation is likeexpand-presenta-

tion-type-abbreviation-1, except thattype is repeatedly expanded until all pre
sentation type abbreviations have been removed.

make-presentation-type-specifier [Function]

Arguments: type-name-and-parameters&rest options
Summary: A convenient way to make a presentation type specifier including only

non-default options. This is only useful for abbreviation expanders, not for
:inherit-from clause ofdefine-presentation-type. type-name-and-parameters
is a presentation type specifier that must be in the form of:

(type-name parameters ...)
Defining a New Presentation Type 7.2 163

s to
-

ata.
hich

ese two

d

layed

M

t

options is a list of alternating keywords and values that are added as option
the specifier. If a value is equal totype-name’s default, that option is omitted, pro
ducing a more concise presentation type specifier.

7.3 Using Views With CLIM Presentation Types

Thepresent andaccept presentation methods can define more than one view of the d
For example, a spreadsheet program might define a presentation type for revenue, w
can be displayed either as a number or as a bar of a certain length in a bar graph. Th
views might be implemented by specializing the view arguments for thetextual-view class
and the user-definedbar-graph-view class. Typically, at least one canonical view shoul
be defined for a presentation type. For example, thepresent method for thetextual-view
view should be defined if the programmer wants to allow objects of that type to be disp
textually. A more concrete example is the dialog view of themember presentation type,
which presents the choices in a “radio push-button” style.

CLIM currently supports textual, menu, and dialog views. Operators for views of CLI
presentation types are listed as follows.

view [Protocol Class]

Summary: The protocol class for view objects. If you want to create a new class that
behaves like a view, it should be a subclass ofview. Subclasses ofview must
obey the view protocol. All of the view classes are immutable.

viewp [Function]

Arguments: object
Summary: Returnst if object is a view; otherwise, it returnsnil .

stream-default-view [Generic Function]

Arguments: stream
Summary: Returns the default view for the extended streamstream. accept andpresent get

the default value for theview argument from this. All extended input and outpu
streams must implement a method for this generic function.

(setf stream-default-view) [Generic Function]

Arguments: view stream
164 CLIM User’s Guide 7.3

 as

feel.

 and

 feel.

inter
Summary: Changes the default view forstream to the viewview. All extended input and
output streams must implement a method for this generic function.

Many CLIM streams will have the textual view+textual-view+ as their default view. Inside
menu-choose, the default view will be+menu-view+. Insideaccepting-values, the default
view will be+dialog-view+.

textual-view [Class]

Summary: The class representing all textual views, a subclass ofview. Presentation meth-
ods that apply to a textual view must only do textual input and output (such
read-char andwrite-string).

textual-menu-view [Class]

Summary: This subclass oftextual-view represents the default view used inside
menu-choose for frame managers that are not using a gadget-type look and

textual-dialog-view [Class]

Summary: This subclass oftextual-view represents the default view used insideaccept-
ing-values dialogs for frame managers that are not using a gadget-type look
feel.

gadget-view [Class]

Summary: The class representing all gadget views, a subclass ofview.

gadget-menu-view [Class]

Summary: The class that represents the default view used insidemenu-choose for frame
managers using a gadget-type look and feel. It is a subclass ofgadget-view.

gadget-dialog-view [Class]

Summary: This subclass ofgadget-view represents the default view used insideaccept-
ing-values dialogs for frame managers that are using a gadget-type look and

pointer-documentation-view [Class]

Summary: The class that represents the default view that is used when computing po
documentation. It is a subclass oftextual-view.
Defining a New Presentation Type 7.3 165

irely.
.2.

orms
,
ch
+textual-view+ [Constant]

+textual-menu-view+ [Constant]

+textual-dialog-view+ [Constant]

+gadget-view+ [Constant]

+gadget-menu-view+ [Constant]

+gadget-dialog-view+ [Constant]

+pointer-documentation-view+ [Constant]

Summary: These are objects of classtextual-view, textual-menu-view, textual-dia-
log-view, gadget-view, gadget-menu-view, gadget-dialog-view, and
pointer-documentation-view, respectively.

7.4 Advanced Topics

Material in this section is advanced; most CLIM programmers can skip this section ent
The following constructs apply to defining presentation types, discussed in Section 7

presentation-default-preprocessor [Presentation Method]

Arguments: default type&key default-type
Summary: This method is responsible for taking the objectdefault and coercing it to match

the presentation typetype (which is the type being accepted) anddefault-type
(which is the presentation type ofdefault). This is useful when you want to
change the default gotten from the presentation type’s history so that it conf
to parameters or options intype anddefault-type. The method returns two values
the new object to be used as the default, and a new presentation type, whi
should be at least as specific astype.

define-presentation-generic-function [Macro]

Arguments: generic-function-name presentation-function-name lambda-list&rest options
166 CLIM User’s Guide 7.4

e

-

sec-
,

to it.

er.

:

e
n

g:
Summary: Defines a generic function that will be used for presentation methods.
generic-function-name is a symbol that names the generic function that will b
used internally by CLIM for the individual methods.presentation-function-name
is a symbol that names the function that programmers will call to invoke the
method, andlambda-list andoptions are as fordefgeneric.

 There are some “special” arguments inlambda-list that the presentation type sys
tem knows about. The first argument inlambda-list must be eithertype-key or
type-class; CLIM uses this argument to implement method dispatching. The
ond argument may beparameters, meaning that when the method is invoked
the type parameters will be passed to it. The third argument may beoptions,
meaning that when the method is invoked, the type options will be passed
Finally, an argument namedtype must be included inlambda-list; when the
method is called,type argument will be bound to the presentation type specifi

 For example, thepresent presentation generic function might be defined thus

 (define-presentation-generic-function present-method present
 (type-key parameters options object type stream view
 &key acceptably for-context-type))

 None of the arguments are evaluated.

define-default-presentation-method [Macro]

Arguments: name qualifiers* specialized-lambda-list&body body
Summary: Like define-presentation-method, except that it is used to define a default

method that will be used only if there are no more specific methods.

funcall-presentation-generic-function [Macro]

Arguments: presentation-function-name&rest arguments
Summary: Calls the presentation generic function named bypresentation-function-name on

the argumentsarguments. arguments must match the arguments specified by th
define-presentation-generic-function that were used to define the presentatio
generic function, excluding thetype-key, type-class, parameters, andoptions
arguments, which are filled in by CLIM.

funcall-presentation-generic-function is analogous tofuncall.

 Thepresentation-function-name argument is not evaluated.

 To call thepresent presentation generic function, one might use the followin

 (funcall-presentation-generic-function
 present object presentation-type stream view)
Defining a New Presentation Type 7.4 167

apply-presentation-generic-function [Macro]

Arguments: presentation-function-name&rest arguments
Summary: Like funcall-presentation-generic-function, except thatapply-presenta-

tion-generic-function is analogous toapply. Thepresentation-function-name
argument is not evaluated.
168 CLIM User’s Guide 7.4

Chapter 8 Presentation Translators in
CLIM
169 CLIM User’s Guide

.. 171

173
 174
. 175

. 175

 177

 182
182
. 182
 183
. 183

.. 184
Chapter 8 Presentation Translators in CLIM

8.1 Conceptual Overview of Presentation Translators...............................

8.2 Applicability of CLIM Presentation Translators
8.2.1 Input Contexts in CLIM..
8.2.2 Nested Presentations in CLIM...

8.3 Pointer Gestures in CLIM...

8.4 CLIM Operators for Defining Presentation Translators

8.5 Examples of Defining Presentation Translators in CLIM......................
8.5.1 Defining a Translation from Floating Point Number to Integer ...
8.5.2 Defining a Presentation-to-Command Translator........................
8.5.3 Defining Presentation Translators for the Blank Area..................
8.5.4 Defining a Presentation Action..

8.6 Advanced Topics..
Presentation Translators in CLIM 170

rds,
have

re
t con-
. How-
. In the
nds can

ever,
e mid-

her. In
r

seful

nience
e.

t give

n
light-
enta-
8.1 Conceptual Overview of Presentation
Translators

CLIM provides a mechanism for “translating” between presentation types. In other wo
within an input context for type A, the translator mechanism allows a programmer to
presentations of some other type B treated as though they were objects of type A.

You can definepresentation translatorsto make the user interface of your application mo
flexible. For example, suppose the input context is expecting a command. In this inpu
text, all displayed commands are sensitive, so the user can point to one to execute it
ever, suppose the user points to another kind of displayed object, such as a student
absence of a presentation translator, the student is not sensitive because only comma
be entered to this input context.

If you used a presentation translator that translates from students to commands, how
both students and commands would be sensitive. When the student is highlighted, th
dle pointer button might execute the commandshow-transcript for that student.

A presentation translator defines how to translate from one presentation type to anot
the previous scenario, the input context iscommand. A user-defined presentation translato
states how to translate from thestudent presentation type to thecommand presentation
type.

The concept of translating from an arbitrary presentation type to a command is so u
that CLIM provides the specialdefine-presentation-to-command-translator macro for
this purpose. You can think of these presentation-to-command translators as a conve
for the users; users can select the command and give the argument at the same tim

Note that presentation-to-command translators make it easier to write applications tha
a “direct manipulation” feel to the user.

A presentation that appears on the screen can besensitive. This means that the presentatio
can be operated on directly by using the pointer. A sensitive presentation will be high
ed when the pointer is over it. (In rare cases, the highlighting of some sensitive pres
tions is turned off.)
171 CLIM User’s Guide

g ac-

reen.

il-

iption

r that
odi-

y and

e
, a pre-
s” the

hed to
difier
ns-

resen-
 re-
put.
 body
value;
Sensitivity is controlled by three factors:

■ Input context type—a presentation type describes the type of input currently bein
cepted.

■ Pointer location—the pointer is pointing at a presentation or a blank area on the sc

■ Modifier keys (CONTROL, META, andSHIFT)—these keys expand the space of ava
able gestures beyond what is available from the pointer buttons.

Presentation translators link these three factors.

A presentation translator specifies the conditions under which it is applicable, a descr
to be displayed, and what to do when it is invoked by clicking the pointer.

A presentation is sensitive (and highlighted) if there is at least one applicable translato
could be invoked by clicking a button with the pointer at its current location and the m
fier keys in their current state. If there is no applicable translator, there is no sensitivit
no highlighting.

Each presentation translator has two associated presentation types, itsfrom-presenta-
tion-type andto-presentation-type, which are the primary factors in its applicability. Sinc
a presentation translator translates an output presentation into an input presentation
sentation translator is applicable if the type of the presentation at the pointer “matche
from-presentation-type and the input context type “matches” theto-presentation-type. (We
define what “match” means in the next section.) Each presentation translator is attac
a particular pointer gesture, which is a combination of a pointer button and a set of mo
keys. Clicking the pointer button while holding down the modifier keys invokes the tra
lator.

Note that a translator produces an input presentation consisting of an object and a p
tation type to satisfy the program accepting input. The result of a translator might be
turned fromaccept, or it might be absorbed by a parser and provide only part of the in
An input presentation is not actually represented as an object. Instead, a translator’s
returns two values. The object is the first value. The presentation type is the second
it defaults to theto-presentation-type if the body returns only one value.
172 CLIM User’s Guide 8.1

. This
 re-
.

d table
d Ob-

med

per-

ed
lways
8.2 Applicability of CLIM Presentation
Translators

When CLIM is waiting for input (inside awith-input-context) it is responsible for deter-
mining what translators are applicable to which presentations in a given input context
loop both provides feedback in the form of highlighting sensitive presentations and is
sponsible for calling the applicable translator when the user presses a pointer button

with-input-context usesframe-find-innermost-applicable-presentation (via high-
light-applicable-presentation) as its “input wait” handler, andframe-input-context-but-
ton-press-handler as its button press “event handler.”

Given a presentation, an input context established bywith-input-context , and a user ges-
ture, translator matching proceeds as follows.

The set of candidate translators is initially those translators accessible in the comman
in use by the current application. For more information, see Section 11.3, “Comman
jects”.

A translator “matches” if all of the following are true. Note that these tests are perfor
in the order listed.

■ The presentation’s type ispresentation-subtypep of the translator’sfrom-presenta-
tion-type, ignoring type parameters (for example, iffrom-presentation-type isnumber
and the presentation’s type isinteger or float, or if from-presentation-type is (or inte-
ger string) and presentation’s type isinteger).

■ The translator’sto-presentation-type is presentation-subtypep of the input context
type, ignoring type parameters.

■ The translator’s gesture either ist or is the same as the gesture that the user could
form with the current chord of modifier keys.

■ The presentation’s object ispresentation-typep of the translator’sfrom-presenta-
tion-type, if thefrom-presentation-type has parameters. The translator’s tester return
a non-nil value. If there is no tester, the translator behaves as though the tester a
returnst.

■ If there are parameters in the input context type and the:tester-definitive option is not
used in the translator, the value returned by the body of the translator must bepresen-
Presentation Translators in CLIM 8.2 173

 nested
n that

highest

ing
:

pe of
er the
ers.)

ent

or ex-
h-

at trans-
d,
tor that
tation-typep of the input context type. Indefine-presentation-to-command-transla-
tor anddefine-presentation-action, the tester is always definitive.

The algorithm is somewhat more complicated in the case of nested presentations and
input contexts. In this situation, the sensitive presentation is the smallest presentatio
matches theinnermost input context.

When there are several translators that match for the same gesture, the one with the
:priority is chosen (seedefine-presentation-translator).

8.2.1 Input Contexts in CLIM

Roughly speaking, the current input context indicates what type of input CLIM is ask
the user for. You can establish an input context in CLIM with the following constructs

■ accept

■ accept-from-string

■ present (with anaccept inside)

■ The command loop of an application

■ with-input-context

The input context designates a presentation type. However, the way to accept one ty
object may involve accepting other types of objects as part of the procedure. (Consid
request to accept a complex number, which is likely to involve accepting two real numb
Such input contexts are callednested. In the case of a nested input context, several differ
context presentation types can be available to match theto-presentation-types of presenta-
tion translators.

Each level of input context is established by a call toaccept. The macrowith-input-con-
text also establishes a level of input context.

The most common cause of input context nesting is accepting compound objects. F
ample, you might define a command calledShow File , which reads a sequence of pat
names. When reading the argument to theShow File command, the input context con-
tainspathname nested inside of(sequence clim: pathname) . Acceptable keyboard
input is a sequence of pathnames separated by commas. A presentation translator th
lates to a(sequence clim: pathname) supplies the entire argument to the comman
and the command processor moves on to the next argument. A presentation transla
174 CLIM User’s Guide 8.2

nce be-
r the

e that
r keys.

n at the
r.

ce of

st de-
 at the
tation
 trans-
ifier
te that
ons that

r but-

inter
translates to a pathname is also applicable. It supplies a single element of the seque
ing built up, and the command processor awaits additional input for this argument, o
entry of aSPACE or RETURN to terminate the argument.

When the input context is nested, sensitivity considers only the innermost context typ
has any applicable presentation translators for the currently pressed chord of modifie

8.2.2 Nested Presentations in CLIM

Presentations can overlap on the screen, so there can be more than one presentatio
pointer location. Often when two presentations overlap, one is nested inside the othe

One cause of nesting is presentations of compound objects. For example, a sequen
pathnames has one presentation for the sequence, and another for each pathname.

When there is more than one candidate presentation at the pointer location, CLIM mu
cide which presentation is the sensitive one. It starts with the innermost presentation
pointer location and works outwards through levels of nesting until a sensitive presen
is discovered. This is the innermost presentation that has any applicable presentation
lators to any of the nested input context types for the currently pressed chord of mod
keys. Searching in this way ensures that a more specific presentation is sensitive. No
nested input contexts are searched first, before nested presentations. For presentati
overlap, the most recently presented is searched first.

8.3 Pointer Gestures in CLIM

A gestureis an input action by the user, such as typing a character or clicking a pointe
ton. A pointer gesture refers to those gestures that involve using the pointer.

An eventis a CLIM object that represents a gesture by the user. (The most important po
events are those of classpointer-button-event.)

A gesture name is a symbol that names a gesture. CLIM defines the following gesture
names (the corresponding gesture appears in parentheses) and their uses:
Presentation Translators in CLIM 8.3 175

 ex-
o
.

uch
use
s-

int-

 to

it runs
ecific

ee
tures.
:select(left click) For the most commonly used translator on an object. For
ample, use the:select gesture while reading an argument t
a command to use the indicated object as the argument

:describe(middle click) For translators that produce a description of an object (s
as showing the current state of an object). For example,
the:describe gesture on an object in a CAD program to di
play the parameters of that object.

:menu (right click) For translators that pop up a menu

:delete (SHIFT -middle click) For translators that delete an object

:edit (META-right click) For translators that edit an object

The special gesture namenil is used in translators that are not directly invokable by a po
er gesture. Such a translator can be invoked only from a menu.

The special gesture namet means that the translator is available on every gesture.

You can usedefine-gesture-name (see Section 15.3, “Gestures and Gesture Names”)
define your own pointer gesture name.

Note that with the exception of thedefine-gesture-name forms (which you can use to map
gesture names to keys and buttons), the application is independent of which platform
on. It uses keywords to give names to gestures, rather than making references to sp
pointer buttons and keyboard keys.

The following operators can be used to add or remove new pointer gesture names. S
Chapter 15, “Extended Stream Input Facilities,” for details about the pointer and ges

add-pointer-gesture-name [Function]

Arguments: gesture-name button shifts&key (action:click) (uniquet)
Summary: Adds a pointer gesture namedgesture-name (a symbol) for the pointerbutton

being clicked on the pointer while theshifts shift keys are being held down on.

remove-pointer-gesture-name [Function]

Arguments: gesture-name
Summary: Removes the pointer gesture namedgesture-name.
176 CLIM User’s Guide 8.3

is

 15.3,
 if

e name

,

ed,

umed

-
ated
ry
8.4 CLIM Operators for Defining Presentation
Translators

define-presentation-translator supports presentation translators in general, andde-
fine-presentation-to-command-translator supports a common idiom.

define-presentation-translator [Macro]

Arguments: name (from-type to-type command-table&key gesture tester tester-definitive
documentation pointer-documentation menu priority) arglist&body body

Summary: Defines a presentation translator namedname that translates from objects of type
from-type to objects of typeto-type. from-type andto-type are presentation type
specifiers, but must not include any presentation type options.from-type and
to-type may be presentation type abbreviations.

command-table is a command table designator. The translator created by th
invocation ofdefine-presentation-translator will be stored in the command
tablecommand-table.

gesture is a gesture name that names a pointer gesture (described in Section
“Gestures and Gesture Names”). The body of the translator will be run only
the translator is applicable and gesture used by the user matches the gestur
in the translator.gesture defaults to:select.

tester is either a function or a list of the form(tester-arglist . tester-body) where
tester-arglist takes the same form asarglist andtester-body is the body of the
tester. The tester must return eithert or nil . If it returnsnil , then the translator is
definitely not applicable. If it returnst, then the translator might be applicable
and the body of the translator might be run (iftester-definitive is nil) in order to
decide definitively whether the translator is applicable. If no tester is suppli
CLIM supplies a tester that always returnst.

 When the booleantester-definitive is t, the body of the translator is not run in
order to decide whether the translator is applicable; that is, the tester is ass
to definitively decide whether the translator applies. The default isnil .

 Bothdocumentation andpointer-documentation are objects that will be used for
documenting the translator.pointer-documentation will be used to generate doc
umentation for the pointer documentation window; the documentation gener
by pointer-documentation should be very brief, and computing it should be ve
fast and preferably not cons.documentation is used to generate such things as
Presentation Translators in CLIM 8.4 177

e
nction

en-

 in
fault

ep-
atch

at
t must

.

 two,
items in the:menu-gesture menu. If the object is a string, the string itself will b
used as the documentation. Otherwise, the object must be the name of a fu
or a list of the form(doc-arglist . doc-body) wheredoc-arglist takes the same
form asarglist, but includes a named (keyword)stream argument as well, and
doc-body is the body of the documentation function. The body of the docum
tation function should write the documentation tostream. The default fordocu-
mentation is nil , meaning that there is no explicitly supplied documentation;
this case, CLIM is free to generate the documentation in other ways. The de
for pointer-documentation is documentation.

menu must bet or nil . When it ist, the translator will be included in the
:menu-gesture menu if it matches. When it isnil , the translator will not be
included in the:menu-gesture menu. Other non-nil values are reserved for
future extensions to allow multiple presentation translator menus.

priority is eithernil (the default, which corresponds to 1) or an integer that r
resents the priority of the translator. When there are several translators that m
for the same gesture, the one with the highest priority is chosen.

arglist, tester-arglist, anddoc-arglist are argument lists that must “match” the
“canonical” argument list (object &key presentation context-type frame event
window x y). In order to do so, there must be a single positional argument th
corresponds to the presentation’s object, and several named arguments tha
match the canonical names listed previously (usingstring-equal to do the com-
parison).

 In the body of the translator (or the tester), the positionalobject argument will be
bound to the presentation’s object. The named argumentspresentation will be
bound to the presentation that was clicked on,context-type will be bound to the
presentation type of the context that actually matched,frame will be bound to the
application frame that is currently active (usually*application-frame*), event
will be bound to the pointer button event that the user used,window will be
bound to the window stream from which the event came, andx andy will be
bound to thex andy positions withinwindow that the pointer was at when the
event occurred. The special variable*input-context* will be bound to the cur-
rent input context. Note thatcontext-type and*input-context* will have
dynamic extent, so programmers should not store without first copying them

body is the body of the translator, and is run in the context of the application.body
may have zero or more declarations as its first forms. It returns either one,
or three values. The first value is an object that must bepresentation-typep of
to-type. The second value is a presentation type that must bepresentation-sub-
178 CLIM User’s Guide 8.4

t.

put

or

amed
typep of to-type. The first two returned values ofbody are in effect used as the
returned values for the call toaccept that established the matching input contex

 The third value returned bybody must either benil or a list of options (as key-
word-value pairs) that will be interpreted byaccept. The only option defined so
far is :echo, whose value must be eithert (the default) ornil . If it is t, the object
returned by the translator will be “echoed” byaccept, which will usepresenta-
tion-replace-input to insert the textual representation of the object into the in
buffer. If it isnil , the object will not be echoed.

 None ofdefine-presentation-translator’s arguments are evaluated.

define-presentation-to-command-translator [Macro]

Arguments: name (from-type command-name command-table&key gesture tester
documentation pointer-documentation menu priority echo) arglist&body
body

Summary: This resemblesdefine-presentation-translator, except that theto-type will be
derived to be the command named bycommand-name in the command table
command-table. command-name is the name of the command that this translat
will translate to.

 Theecho option is a boolean value (the default ist) that indicates whether the
command line should be echoed when a user invokes the translator.

 The other arguments todefine-presentation-to-command-translator are the
same as fordefine-presentation-translator. Note that the tester for command
translators is always assumed to be definitive, so there is no:tester-definitive
option. The default forpointer-documentation is the stringcommand-name with
dash characters replaced by spaces, and each word capitalized (as inadd-com-
mand-to-command-table).

 The body of the translator returns a list of the arguments to the command n
by command-name. body is run in the context of the application. The returned
value of the body, appended to the command name, is passed toexe-
cute-frame-command. body may have zero or more declarations as its first
forms.

 None of this macro’s arguments are evaluated.

define-presentation-action [Macro]

Arguments: name (from-type to-type command-table&key gesture tester documentation
pointer-documentation menu priority) arglist&body body
Presentation Translators in CLIM 8.4 179

ead

ry
 for
r the

is

y

-
. The

st

 pre-

ter,
ing

ain,
 trans-
a-
sh

n or
Summary: define-presentation-action is similar todefine-presentation-translator,
except that the body of the action is not intended to return a value, but inst
affects some sort of application state.

 A presentation action does not satisfy a request for input the way an ordina
translator does. Instead, an action is something that happens while waiting
input. After the action has been executed, the program continues to wait fo
same input that it was waiting for prior to executing the action.

 The other arguments todefine-presentation-action are the same as for
define-presentation-translator. Note that the tester for presentation actions
always assumed to be definitive.

 None ofdefine-presentation-action’s arguments are evaluated.

define-drag-and-drop-translator [Macro]

Arguments: name from-type to-type destination-type command-table&key gesture tester
before-drag-tester documentation pointer-documentation menu priorit
feedback highlighting arglist&body body

Note: Liquid CLIM does not implement thebefore-drag-tester argument.

Summary: Defines a presentation translator namedname that will be run when a presenta
tion is dragged with the mouse and dropped on top of another presentation
presentation types of the “dragged” (from-type) and “dropped on” (to-type) pre-
sentations are used to determine which translator (destination-type) is invoked.
from-type, to-type, anddestination-type are presentation type specifiers, but mu
not include any presentation type options.from-type, to-type anddestina-
tion-type may be presentation type abbreviations.

 The interaction style used by these translators is that a user points to a “from
sentation” with the pointer, picks it up by pressing a pointer button matchingges-
ture, drags the “from presentation” to a “to presentation” by moving the poin
and then drops the “from presentation” onto the “to presentation.” The dropp
might be accomplished by either releasing the pointer button or clicking ag
depending on the frame manager. When the pointer button is released, the
lator whosedestination-type matches the presentation type of the “to present
tion” is chosen. For example, dragging a file to the TrashCan on a Macinto
could be implemented by a drag and drop translator.

 When the user drags a “from presentation” over potential targets, the functio
list specified bytester is invoked. This tester is identical totester for define-pre-
180 CLIM User’s Guide 8.4

n or

: the

-

ves,
se the
time

as a

ica-
he

r that
-
se
doc-
sentation-translator except that it can take two additional arguments:destina-
tion-object anddestination-presentation.

 When the user points at a potential “from presentation” to drag, the functio
list specified bybefore-drag-tester is invoked. Thebefore-drag-tester takes the
same arguments astester for define-presentation-translator.

 While the pointer is being dragged, the function specified byfeedback is invoked
to provide feedback to the user. The function is called with eight arguments
application frame object, the “from presentation,” the stream, the initialx andy
positions of the pointer, the currentx andy positions of the pointer, and a feed
back state (either:highlight to draw feedback, or:unhighlight to erase it). The
feedback function is called to draw some feedback the first time pointer mo
and is then called twice each time the pointer moves thereafter (once to era
previous feedback, and then to draw the new feedback). It is called a final
to erase the last feedback when the pointer button is released.feedback defaults
to frame-drag-and-drop-feedback.

 When the “from presentation” is dragged over any other presentation that h
direct manipulation translator, the function specified byhighlighting is invoked
to highlight that object. The function is called with four arguments: the appl
tion frame object, the “to presentation” to be highlighted or unhighlighted, t
stream, and a highlighting state (either:highlight or :unhighlight). highlighting
defaults toframe-drag-and-drop-highlighting .

 Note that it is possible for there to be more than one drag and drop translato
applies to the samefrom-type, to-type, andgesture. In this case, the exact trans
lator that is chosen for use during the dragging phase is unspecified. If the
translators have different feedback, highlighting, documentation, or pointer
umentation, the exact behavior is unspecified.

 The other arguments todefine-drag-and-drop-translator are the same as for
define-presentation-translator.
Presentation Translators in CLIM 8.4 181

ompt
8.5 Examples of Defining Presentation
Translators in CLIM

8.5.1 Defining a Translation from Floating Point
Number to Integer

Here is an example that defines a presentation translator to accept aninteger object from a
float presentation. Users have the options of typing in a float or integer to the input pr
or clicking on anyfloat or integer presentation.

(define-presentation-translator integer-to-float
 (integer float my-command-table
 :documentation "Integer as float"
 :gesture :select
 :tester ((object) (integerp object))
 :tester-definitive t)
 (object)
 (float object))

(clim:present most-positive-fixnum)

(clim:accept ’float)

8.5.2 Defining a Presentation-to-Command Translator

The following example defines thedelete-file presentation-to-command translator:

(clim:define-presentation-to-command-translator
 delete-file
 (pathname com-delete-file my-command-table
 :documentation "Delete this file"
 :gesture :delete)
 (object)
 (list object))
182 CLIM User’s Guide 8.5

at is,

tation
lying

need
rite a

lator is
op up
ple-
8.5.3 Defining Presentation Translators for the Blank
Area

You can also write presentation translators that apply to blank areas of the window, th
areas where there are no presentations. Useblank-area as thefrom-presentation-type.
There is no highlighting when such a translator is applicable, since there is no presen
to highlight. You can write presentation translators that apply in any context by supp
nil as theto-presentation-type.

When you are writing an interactive graphics routine, you will probably encounter the
to have commands available when the mouse is not over any object. To do this, you w
translator from the blank area.

The presentation type of the blank area isblank-area. You probably want the:x and:y ar-
guments to the translator.

For example:

(clim:define-presentation-to-command-translator
 add-circle-here
 (clim:blank-area com-add-circle my-command-table
 :documentation "Add a circle here.")
 (x y)
 ‘(,x ,y))

8.5.4 Defining a Presentation Action

Presentation actions are only rarely needed. Often a presentation-to-command trans
more appropriate. One example where actions are appropriate is when you wish to p
a menu during command input. Here is how CLIM’s general menu action could be im
mented:

(clim:define-presentation-action
 presentation-menu
 (t nil clim:global-command-table
 :tester-definitive t :documentation "Menu"
 :menu nil :gesture :menu)
 (presentation frame window x y)
 (clim:call-presentation-menu presentation clim:*input-context*
 frame window x y :for-menu t))
Presentation Translators in CLIM 8.5 183

xt
.

le, if
ant to
l for

-
st

e.

r’s
8.6 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the ne
chapter. This section discusses low-level functions for CLIM presentation translators

Some applications may wish to deal directly with presentation translators, for examp
you are tracking the pointer yourself and wish to locate sensitive presentations, or w
generate a list of applicable translators for a menu. The following functions are usefu
finding and calling presentation translators directly.

find-presentation-translators [Function]

Arguments: from-type to-type command-table
Summary: Returns a list of all of the translators in the command tablecommand-table that

translate fromfrom-type to to-type, without taking into account any type param
eters or testers.from-type andto-type are presentation type specifiers, and mu
not be abbreviations.frame must be an application frame.

test-presentation-translator [Function]

Arguments: translator presentation context-type frame window x y&key event
modifier-state for-menu

Summary: Returnst if the translatortranslator applies to the presentationpresentation in
input context typecontext-type, otherwise returnsnil . (There is nofrom-type
argument because it is derived frompresentation.) x andy are thex andy posi-
tions of the pointer within the window streamwindow.

event andmodifier-state are a pointer button event and modifier state (see
event-modifier-key-state), and are compared against the translator’s gestur
event defaults tonil , andmodifier-state defaults to 0, meaning that no modifier
keys are held down. Only one ofevent or modifier-state may be supplied.

 If for-menu is t, the comparison againstevent andmodifier-state is not done.

presentation, context-type, frame, window, x, y, andevent are passed along to the
translator’s tester if and when the tester is called.

test-presentation-translator matches type parameters and calls the translato
tester. Under some circumstances,test-presentation-translator may also call
the body of the translator to ensure that its value matchesto-type.
184 CLIM User’s Guide 8.6

 pre-

-
ned.

ust

a

ss

er
find-applicable-translators [Function]

Arguments: presentation input-context frame window x y&key event modifier-state
for-menu fastp

Summary: Returns an object that describes the translators that definitely apply to the
sentationpresentation in the input contextinput-context. The result is a list
whose elements are each of the form(translator the-presentation context-type
tag) wheretranslator is a presentation translator,the-presentation is the presen-
tation that the translator applies to (and which can be different frompresentation
due to nesting of presentations),context-type is the context type in which the
translator applies, andtag is a tag used internally by CLIM.translator, the-pre-
sentation, andcontext-type can be passed to such functions ascall-presenta-
tion-translator anddocument-presentation-translator.

 Since input contexts can be nested,find-applicable-translators must iterate
over all the contexts ininput-context. window, x, andy are as fortest-presenta-
tion-translator . event andmodifier-state (which default tonil and the current
modifier state forwindow, respectively) are used to further restrict the set of
applicable translators. (Only one ofevent ormodifier-state may be supplied; it is
unspecified what will happen if both are supplied.)

 Whenfor-menu is non-nil , the value offor-menu is matched against the presen
tation’s menu specification, and only those translators that match are retur
event andmodifier-state are disregarded in this case.for-menu defaults tonil .

 When the booleanfastp is t, find-applicable-translators will simply returnt if
there are any translators. Whenfastp is nil (the default), the list of translators
returned byfind-applicable-translators must be in order of their “desirability”;
that is, translators having more specific from-types and/or higher priorities m
precede translators having less specific from-types and lower priorities.

 The rules used for ordering the translators returned byfind-applicable-transla-
tors are as follows (in order):

1. Translators with a higher “high order” priority precede translators with a
lower “high order” priority. This allows programmers to set the priority of
translator in such a way that it always precedes all other translators.

2. Translators with a more specific “from type” precede translators with a le
specific “from type.”

3. Translators with a higher “low order” priority precede translators with a low
“low order” priority. This allows programmers to break ties between
translators that translate from the same type.
Presentation Translators in CLIM 8.6 185

d

 trans-

ops
tor is
4. Translators from the current command table precede translators inherite
from superior command tables.

presentation-matches-context-type [Function]

Arguments: presentation context-type frame window x y&key event modifier-state
Summary: Returnst if there are any translators that translate from the presentationpresen-

tation’s type to the input context typecontext-type; otherwise, it returnsnil .
(There is nofrom-type argument because it is derived frompresentation.) frame,
window, x, y, event, andmodifier-state are as fortest-presentation-translator.

 If there are no applicable translators,presentation-matches-context-type will
returnnil .

call-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y
Summary: Calls the function that implements the body of the translatortranslator on the

presentationpresentation’s object, and passespresentation, context-type, frame,
event, window, x, andy to the body of the translator as well.

 The returned values are the same as the values returned by the body of the
lator, namely, the translated object and the translated type.

document-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y&key stream
documentation-type

Summary: Computes the documentation string for the translatortranslator and outputs it
to the streamstream, which defaults to*standard-output* . presentation, con-
text-type, frame, event, window, x, andy are as fortest-presentation-translator.

documentation-type must be either:normal or :pointer. If it is :normal , the
usual translator documentation function is called. If it is:pointer, the translator’s
pointer documentation is called.

call-presentation-menu [Function]

Arguments: presentation input-context frame window x y&key for-menu label
Summary: Finds all the applicable translators for the presentationpresentation in the input

contextinput-context, creates a menu that contains all of the translators, and p
up the menu from which the user can choose a translator. After the transla
chosen, it is called with the arguments supplied tocall-presentation-menu, and
the matching input context established bywith-input-context is terminated.
186 CLIM User’s Guide 8.6

the

t his-

i-
he
on,

lator
 calls
ching

e may
ns-
ing
window, x, y, andevent are as forfind-applicable-translators. for-menu, which
defaults tot, is used to decide which of the applicable translators will go into
menu; only those translators whose:menu option matchesmenu will be
included.

label is either a string to use as a label for the menu, or isnil (the default), mean-
ing the menu will not be labelled.

The following functions are useful for finding an application presentation in an outpu
tory:

find-innermost-applicable-presentation [Function]

Arguments: input-context window x y&key frame modifier-state event
Summary: Given an input contextinput-context, an output recording window streamwin-

dow, x andy positionsx andy, returns the innermost presentation whose sens
tivity region containsx andy that matches the innermost input context, using t
translator matching algorithm described later. If there is no such presentati
this function will returnnil .

event andmodifier-state are a pointer button event and modifier state (see
event-modifier-key-state). event defaults tonil , andmodifier-state defaults to
the current modifier state forwindow. Only one ofevent ormodifier-state may be
supplied; it is unspecified what will happen if both are supplied.

frame defaults to the current frame,*application-frame* .

 The default method for frame-find-innermost-applicable-presentationwill
call this function.

throw-highlighted-presentation [Function]

Arguments: presentation input-context button-press-event
Summary: Given a presentationpresentation, input contextinput-context, and a button

press event (which contains the window, pointer,x andy position of the pointer
within the window, the button pressed, and the modifier state), finds the trans
that matches the innermost presentation in the innermost input context, then
the translator to produce an object and a presentation type. Finally, the mat
input context that was established bywith-input-context will be terminated.

 Note that it is possible that more than one translator having the same gestur
be applicable topresentation in the specified input context. In this case, the tra
lator having the highest priority will be chosen. If there is more than one hav
the same priority, it is unspecified what translator will be chosen.
Presentation Translators in CLIM 8.6 187

n-

Typi-

over.
highlight-applicable-presentation [Function]

Arguments: frame stream input-context&optional prefer-pointer-window
Summary: This is the core of the “input wait” handler used bywith-input-context on

behalf of the application frameframe. It locates the innermost applicable prese
tation onstream in the input contextinput-context, unhighlighting presentations
that are not applicable and highlighting the presentation that is applicable.
cally on entry tohighlight-applicable-presentation, input-context will be the
value of*input-context* andframe will be the value of*application-frame* .

prefer-pointer-window is a boolean. If it ist (the default), CLIM will highlight
the applicable presentation on the same window that the pointer is located
Otherwise, CLIM will highlight an applicable presentation onstream.

set-highlighted-presentation [Function]

Arguments: stream presentation&optional prefer-pointer-window
Summary: Highlights the presentationpresentation onstream. This must callhigh-

light-presentation methods if that is appropriate.

unhighlight-highlighted-presentation [Function]

Arguments: stream&optional prefer-pointer-window
Summary: Unhighlights any highlighted presentations onstream.
188 CLIM User’s Guide 8.6

Chapter 9 Defining Application Frames
Defining Application Frames 189

191

193
 195
. 196
.. 197
 199

99
 204

04

 207

 207

208

 208
08

 210

.. 210
 211
215

... 219
.. 220
.. 222

.. 224
Chapter 9 Defining Application Frames

9.1 Conceptual Overview of CLIM Application Frames.............................

9.2 Defining CLIM Application Frames..
9.2.1 The Application Frame Protocol...
9.2.2 Using the :pane Option ..
9.2.3 Using the :panes and :layouts Options..
9.2.4 Example of the :pane Option to define-application-frame
9.2.5 Examples of the :panes and :layout Options to define-applica-

tion-frame.. 1
9.2.6 Using an :accept-values Pane in a CLIM Application Frame.......

9.3 Initializing CLIM Application Frames .. 2

9.4 Accessing Slots and Components of CLIM Application Frames

9.5 Running a CLIM Application ..

9.6 Exiting a CLIM Application ..

9.7 Examples of CLIM Application Frames..
9.7.1 Defining a CLIM Application Frame ... 2
9.7.2 Constructing a Function as Part of Running an Application

9.8 Application Frame Operators and Accessors.......................................
9.8.1 CLIM Application Frame Accessors ..
9.8.2 Operators for Running CLIM Applications..................................

9.9 Frame Managers..
9.9.1 Finding Frame Managers ..
9.9.2 Frame Manager Operators ..

9.10 Advanced Topics..
Defining Application Frames 190

e-
ed by
) can
her
er ap-

n, a
.

olkits.
tan-
se a

ter 10,

-
 spec-
es,
r takes

 in a
ser to
d a
 the
ill act

ations
gen-
me

 Lisp
9.1 Conceptual Overview of CLIM Application
Frames

Application frames (or simplyframes) are the central abstraction defined by CLIM for pr
senting an application’s user interface. Many of the other features and facilities provid
CLIM (for example, the generic command loop, gadgets, look-and-feel independence
be conveniently accessed through the frame facility. Frames can be displayed as eit
top-level windows or regions embedded within the space of the user interfaces of oth
plications. In addition to controlling the screen real estate managed by an applicatio
frame keeps track of the Lisp state variables that contain the state of the application

The contents of a frame is established by defining a hierarchy ofpanes. CLIM panes are
interactive objects that are analogous to the windows, gadgets, or widgets of other to
Application builders can compose their application’s user interface from a library of s
dard panes or by defining and using their own pane types. Application frames can u
number of different types of panes, includinglayout panes for organizing space,extended
stream panes for presenting application-specific information, andgadget panes for dis-
playing data and obtaining user input. Panes are described in greater detail in Chap
“Panes and Gadgets.”

Frames are managed by special applications calledframe managers. Frame managers con
trol the realization of the look and feel of a frame. The frame manager interprets the
ification of the application frame in the context of the available window system faciliti
taking into account preferences expressed by the user. In addition, the frame manage
care of attaching the pane hierarchy of an application frame to an appropriate place
window hierarchy. The most common type of frame manager is one that allows the u
manipulate the frames of other applications. This type of application is typically calle
desktop manager, or in X Windows terminology, a window manager. In many cases,
window manager will be a non-Lisp application. In these cases, the frame manager w
as a mediator between the Lisp application and the host desktop manager.

Some applications may act as frame managers that allow the frames of other applic
to be displayed with their own frames. For example, a text editor might allow figures
erated by a graphic editor to be edited in place by managing the graphics editor’s fra
within its own frame.

Application frames provide support for a standard interaction processing loop, like the
“read-eval-print” loop, called acommand loop. The application programmer only has to
191 CLIM User’s Guide

tions.
 com-

nd all
appro-

need

 appli-

 spec-

sing

riate
rth. She
 “Con-
type
om-
m
gram-
 the

ine, or
(via a
and
dis-

ction
key-
write the code that implements the frame-specific commands and output display func
A key aspect of the command loop is the separation of the specification of the frame’s
mands from the specification of the end-user interaction style.

The standard interaction loop consists of reading an input “sentence” (the command a
of its operands), executing the command, and updating the displayed information as
priate.

To write an application that uses the standard interaction loop provided by CLIM, you
to:

■ Define the presentation types that correspond to the user-interface entities of the
cation.

■ Define the commands that correspond to the visible operations of the application,
ifying the presentation types of the operands involved in each command.

■ Define the set of frames and panes needed to support the application.

■ Define the output display functions associated with each of the panes (possibly u
other facilities such as the incremental redisplay).

In the case of a simple ECAD program, the programmer would first define the approp
presentation types, such as wires, input and output signals, gates, resistors, and so fo
would then define the program’s commands in terms of these types. For example, the
nect” command might take two operands, one of type “component” and the other of
“wire.” The programmer may wish to specify the interaction style for invoking each c
mand, for example, direct manipulation via translators, or selection of commands fro
menus. After defining an application frame that includes a CLIM stream pane, the pro
mer then writes the frame-specific display routine that displays the circuit layout. Now
application is ready to go. The end-user selects a command (via a menu, command-l
whatever), the top-level loop takes care of collecting the operands for that command
variety of user gestures), and then the application invokes the command. The comm
may affect the frame’s “database” of information, which can in turn affect the output
played by the redisplay phase.

Note that this definition of the standard interaction loop does not constrain the intera
style to be a command-line interface. The input sentence may be entered via single
strokes, pointer input, menu selection, dialogs, or by typing full command lines.
192 CLIM User’s Guide 9.1

me

nce

ult
. This

de-

p-

 a

ut

e

me

th

l

9.2 Defining CLIM Application Frames

define-application-frame [Macro]

Arguments:name superclasses slots&rest options
Summary: Defines a frame and CLOS class named by the symbolname that inherits from

superclasses and has state variables specified byslots. superclasses is a list of
superclasses that the new class will inherit from (as indefclass). Whensuper-
classes is nil , it behaves as though a superclass ofstandard-application-frame
was supplied.slots is a list of additional slot specifiers, whose syntax is the sa
as the slot specifiers indefclass. Each instance of the frame will have slots as
specified by these slot specifiers. These slots will typically hold any per-insta
frame state.

options is a list ofdefclass-style options, and can include the usualdefclass
options, plus any of the following:

• :paneform, whereform specifies the single pane in the application. The defa
is nil , meaning that there are either no panes or there are multiple panes
is the simplest way to define a pane hierarchy. The:pane option cannot be used
with the:panes and:layouts options. See Subsection 9.2.2 for a complete
scription of the:pane option.

• :panesform, whereform is an alist that specifies names and panes of the a
plication. The default isnil , meaning that there are no named panes. The
:panes and:pane options are mutually exclusive. See Subsection 9.2.3 for
complete description of the:panes option.

• :layouts form, whereform specifies the layout. The default layout is to lay o
all of the named panes in horizontal strips. The:layouts and:pane options are
mutually exclusive. See Subsection 9.2.3 for a complete description of th
:layouts option.

• :command-tablename-and-options, wherename-and-options is a list consist-
ing of the name of the application frame’s command table followed by so
keyword-value pairs. The keywords can be:inherit-from or :menu (which are
as indefine-command-table). The default is to create a command table wi
the same name as the application frame.

• :menu-bar form is used to specify what commands will appear in a “menu
bar.” It typically specifies the top-level commands of the application.form is
eithernil , meaning there is no menu bar;t, meaning that the menu from frame’s
command table (from the:command-table option) should be used; a symbo
Defining Application Frames 9.2 193

hould

cro.

c-
east
ents

ft

e
s it.

me
that names a command table, meaning that that command table’s menu s
be used; or a list, which is interpreted the same way the:menu option tode-
fine-command-table is interpreted. The default ist.

• :disabled-commandscommands, wherecommands is a list of command
names that are initially disabled in the application frame.

• :command-definervalue, wherevalue eithernil , t, or another symbol. When
it is nil , no command-defining macro is defined. When it ist, a command-de-
fining macro is defined, whose name is of the formdefine-<name>-command.
When it is another symbol, the symbol names the command-defining ma
The default ist.

• :top-level form, whereform is a list whose first element is the name of a fun
tion to be called to execute the top-level loop. The function must take at l
one argument, the frame. The rest of the list consists of additional argum
to be passed to the function. The default function isdefault-frame-top-level.

 Thename, superclasses, andslots arguments are not evaluated. The values of
each of the options are evaluated.

make-application-frame [Function]

Arguments:frame-name&rest options&key pretty-name frame-manager enable state le
top right bottom width height save-under frame-class
&allow-other-keys

Summary: Makes an instance of the application frame of typeframe-class. If frame-class is
not supplied, it defaults toframe-name.

 The size optionsleft, top, right, bottom, width, andheight can be used to specify
the size of the frame.

options are passed as additional arguments tomake-instance, after the
pretty-name, frame-manager, enable, state, save-under, frame-class, and size
options have been removed.

 If save-under is t, then the sheets used to implement the user interface of th
frame will have the “save under” property, if the host window system support

 If frame-manager is provided, then the frame is adopted by the specified fra
manager. If the frame is adopted and eitherenable orstate is provided, the frame
is pushed into the given state. See Section 9.9, “Frame Managers.”

 Once a frame has been created,run-frame-top-level can be called to make the
frame visible and run its top-level function.
194 CLIM User’s Guide 9.2

n,
LIM
s to
ction

-

s

reate
 of
application-frame [Variable]

Summary: The current application frame. The global value is CLIM’s default applicatio
which serves only as a repository for whatever internal state is needed by C
to operate properly. This variable is typically used in the bodies of command
gain access to the state variables of the application frame, usually in conjun
with with-slots or slot-value.

with-application-frame [Macro]

Arguments:(frame)&body body
Summary: This macro provides lexical access to the “current” frame for use with the:pane,

:panes, and:layouts options.frame is bound to the current frame within the con
text of one of those options.

frame is a symbol; it is not evaluated.body may have zero or more declaration
as its first forms.

9.2.1 The Application Frame Protocol

application-frame [Protocol Class]

Summary: The protocol class that corresponds to an application frame. If you want to c
a new class that behaves like an application frame, it should be a subclass
application-frame. Subclasses ofapplication-frame must obey the application
frame protocol.

 All application frame classes are mutable.

application-frame-p [Function]

Arguments:object
Summary: Returnst if object is an application frame; otherwise, it returnsnil .

:name [Initarg]

:pretty-name [Initarg]

:command-table [Initarg]

:disabled-commands [Initarg]
Defining Application Frames 9.2 195

,
com-
ame.

plica-

 single
d

 and

om-
:panes [Initarg]

:menu-bar [Initarg]

:calling-frame [Initarg]

:state [Initarg]

:properties [Initarg]

Summary: All subclasses ofapplication-frame must handle these initargs, which specify
respectively, the name, pretty name, command table, initial set of disabled
mands, panes, menu bar, calling frame, state, and initial properties for the fr

standard-application-frame [Class]

Summary: The standard class that implements application frames. By default, most ap
tion frame classes will inherit from this class, unless a non-nil value forsuper-
classes is supplied todefine-application-frame.

9.2.2 Using the :pane Option

The panes of a frame can be specified in one of two different ways. If the frame has a
layout and no need of named panes, then the:pane option can be used. Otherwise, if name
panes or multiple layouts are required, the:panes and:layouts options can be used. Note
that the:pane option cannot be used with:panes and:layouts. It is meaningful to define
frames that have no panes at all; the frame will simply serve as a repository for state
commands.

The value of the:pane option is a form that is used to create a single (albeit arbitrarily c
plex) pane. For example:
196 CLIM User’s Guide 9.2

nes.

bol

ne op-
le,
 de-

he

sys-
 by
(vertically ()
 (tabling ()
 ((horizontally ()
 (make-pane ’toggle-button)
 (make-pane ’toggle-button)
 (make-pane ’toggle-button))
 (make-pane ’text-field))
 ((make-pane ’push-button :label "a button")
 (make-pane ’slider)))
 (scrolling ()
 (make-pane ’application-pane
 :display-function
 ’a-display-function))
 (scrolling ()
 (make-pane ’interactor-pane)))

9.2.3 Using the :panes and :layouts Options

If the :pane option is not used, a set of named panes can be specified with the:panes op-
tion. Optionally,:layouts can also be used to describe different layouts of the set of pa

The value of the:panes option is an alist, each entry of which is of the form(name . body).
name is a symbol that names the pane, andbody specifies how to create the pane.body is
either a list containing a single element that is itself a list, or a list consisting of a sym
followed by zero or more keyword-value pairs. In the first case, thebody is a form exactly
like the form used in the:pane option. In the second case,body is apane abbreviation,
where the initial symbol names the type of pane, and the keyword-value pairs are pa
tions. For gadgets, the pane type is the class name of the abstract gadget (for exampslid-
er or push-button). For CLIM extended stream panes, the following abbreviations are
fined:

■ :interactor —a pane of typeinteractor-pane

■ :application—a pane of typeapplication-pane

■ :command-menu—a pane of typecommand-menu-pane

■ :pointer-documentation—a pane suitable for displaying pointer documentation, if t
host window system does not provide this

■ :title —a pane suitable for displaying the title of the application. If the host window
tem provides this, the title will be displayed with the window decorations supplied
the window manager, and the CLIM title pane will be omitted.
Defining Application Frames 9.2 197

d gad-

he
uming a
■ :accept-values—a pane that can hold a “modeless”accepting-values dialog

See Chapter 10, “Panes and Gadgets,” for more information on the individual pane an
get classes and the options they support.

An example of the use of:panes is:

(:panes
 (buttons
 (horizontally ()
 (make-pane ’push-button :label "Press me")
 (make-pane ’push-button :label "Squeeze me")))
 (toggle toggle-button
 :label "Toggle me")
 (interactor :interactor
 :width 300 :height 300)
 (application :application
 :display-function ’another-display-function
 :incremental-redisplay t))

The value of the:layouts option is an alist, each entry of which is of the form(name . lay-
out). name is a symbol that names the layout, andlayout specifies the layout.layout is a
form like the form used in the:pane option, with the extension to the syntax such that t
name of a named pane can be used wherever a pane may appear. For example, ass
frame that uses the:panes example, the following layouts could be specified:

(:layouts
 (default
 (vertically ()
 button toggle
 (scrolling () application)
 interactor))
 (alternate
 (vertically ()
 (scrolling () application)
 (scrolling () interactor)
 (horizontally ()
 button toggle))))
198 CLIM User’s Guide 9.2

hen
col-

e re-
9.2.4 Example of the :pane Option to
define-application-frame

Here is an example of how to use the:pane option ofdefine-application-frame:

(define-application-frame test-frame ()
 ()
 (:pane
 (vertically ()
 (make-clim-interactor-pane
 :foreground +green+
 :background +red+)
 (make-pane ’push-button
 :label "press me"
 :background +black+
 :foreground +purple+
 :activate-callback
 #’(lambda (button)
 (frame-exit *application-frame*))
 :text-style
 (make-text-style :serif :roman 20)))))

9.2.5 Examples of the :panes and :layout Options to
define-application-frame

Here are some examples of how to use the:panes and:layouts options ofdefine-applica-
tion-frame to describe the appearance of your application.

We begin by showing Figure 18, an example of how CLIM supplies a default layout w
you don’t explicitly specify one in your frame definition. The default layout is a single
umn of panes, in the order (top to bottom) that you specified them in the:panes option.
Command menus are allocated only enough space to display their contents, while th
maining space is divided among the other types of panes equally.
Defining Application Frames 9.2 199

 wide
(define-application-frame test () ()
 (:panes
 (main :application
 :incremental-redisplay NIL
 :display-function ’display-main)
 (test-menu :command-menu)
 (listener :interactor))
 (:layouts
 (:default
 (vertically () main test-menu listener)))
 (:command-table
 (test-menu
 :inherit-from (user-command-table)
 :menu
 (("EXIT" :command cmd-exit)))))

Figure 18. The Default Layout for the Graphic-Demo Example
When No Explicit :layout Is Specified

Now we take the same example as before and in Figure 19 add an explicit:layout option
to the frame definition. The pane namedexplanation occupies the bottom sixth of the
screen. The remaining five-sixths are occupied by thedemo andcommands panes, which
lie side by side, with the command pane to the right. The commands pane is only as
as is needed to display the command menu.

_ _ _
main

 test-menu

listener
200 CLIM User’s Guide 9.2

D

med
(define-application-frame graphics-demo () ()
 (:menu-bar nil)
 (:panes
 (commands :command-menu)
 (demo :application)
 (explanation :application :scroll-bars nil))
 (:layouts
 (:default (vertically ()
 (:fill
 (horizontally ()
 (:fill demo)
 (1/5 commands)))
 (1/6 explanation)))))

Figure 19. The Layout for the Graphic-Demo Example With an Explicit :layout

Finally, here is a stripped-down version of the application frame definition for the CA
demo (in the file<release-directory>/demo/new-cad-demo.lisp) which implements an ex-
tremely simplistic computer-aided logic circuit design tool.

There are four panes defined for the application. The pane namedtitle displays the string
“Mini-CAD” and serves to remind the user which application is running. The pane na
menu provides a menu of commands for the application. The pane nameddesign-area is
the actual “work surface” of the application on which various objects (logic gates and
wires) can be manipulated. A pane nameddocumentation is provided to inform the user

demo

explanation commands
Defining Application Frames 9.2 201

and is

ave

f
he

 the

what
more
e

h

about what actions can be performed using the pointing device (typically the mouse)
updated based on what object is currently being pointed to.

The application has two layouts, one namedmain and one namedother. Both layouts have
their panes arranged in vertical columns. At the top of both layouts is thetitle pane, which
is of the smallest height necessary to display the title string “Mini-CAD.” Both layouts h
thedocumentation pane at the bottom.

The two layouts differ in the arrangement of themenu anddesign-area panes. In the layout
namedmain, themenu pane appears just below thetitle pane and extends for the width o
the screen. Its height will be computed so as to be sufficient to hold all the items in t
menu. Thedesign-area pane occupies the remaining screen real estate, extending from
bottom of themenu pane to the top of thedocumentation pane, and is as wide as the
screen.

To see the layout namedother, enter(setf (frame-current-layout *appli-
cation-frame*) :other) . This differs from themain layout in the shape of thede-
sign-area pane. Here the implementor of the CAD demo realized that, depending on
was being designed, either a short, wide area or a narrower but taller area might be
appropriate. Theother layout provides the narrower, taller alternative by rearranging th
menu anddesign-area panes to be side by side (forming a row of the two panes). The
menu anddesign-area panes occupy the space between the bottom of thetitle pane and
the top of thedocumentation pane, with themenu pane to the left and occupying as muc
width as is necessary to display all the items of the menu and thedesign-area occupying
the remaining width.
202 CLIM User’s Guide 9.2

(define-application-frame cad-demo () ()
 (:menu-bar nil)
 (:panes
 (title :title :display-string "Mini-CAD")
 (menu :command-menu)
 (design-area :application)
 (documentation :pointer-documentation))
 (:layouts
 (:main (vertically ()
 (1/8 title)
 (1/8 menu)
 (:fill design-area)
 (1/8 documentation)))
 (:other (vertically ()
 (1/8 title)
 (:fill
 (horizontally ()
 (1/4 menu)
 (:fill design-area)))
 (1/8 documentation)))))

Figure 20. The Two Layouts of the Mini-CAD Demo

Mini-CAD Mini-CAD
- -
- -
- -
- -
- -
- -

- - - - - - - -

design area

 documentation

menu

 title
Defining Application Frames 9.2 203

tion

he

s

y

that
9.2.6 Using an :accept-values Pane in a CLIM
Application Frame

Frame:accept-values panes are used when you want one of the panes of your applica
to be in the form of anaccepting-values dialog.

There are several things to remember when using an:accept-values pane in your applica-
tion frame:

■ For an:accept-values pane to work, your frame’s command table must inherit from t
accept-values-pane command table.

■ The:display-function option for an:accepting-values pane will typically be some-
thing like:

 (clim:accept-values-pane-displayer
 :displayer my-acceptor-function)

wheremy-acceptor-function is a function that you write. It contains calls to
accept just as they would appear inside aaccepting-values for a dialog. It takes two
arguments, the frame and a stream.my-acceptor-function doesn’t need to call
accepting-values itself, since that is done automatically.

See Chapter 12, “Menus and Dialogs,” especially the function
accept-values-pane-displayer.

■ While inside the display function for an:accept-values pane,*application-frame* is
not bound to your application. Instead, it is bound to an application that implementac-
cepting-values. Therefore, you cannot usewith-frame-state-variables in the display
function for an:accept-values pane. Usewith-slots on the frame argument instead.

■ Don’t use :display-after-commands with :accept-values panes, because the redispla
for those panes is managed at a slightly lower level for efficiency.

9.3 Initializing CLIM Application Frames

There are several ways to initialize an application frame:

1. The value of an application frame’s slot can be initialized using the:initform slot
option in the slot’s specifier in thedefine-application-frame form. This technique is
suitable if the slot’s initial value does not depend on the values of other slots,
calculations based on the values of initialization arguments, or other information
204 CLIM User’s Guide 9.3

e

ble
et
r.
at

ot

y
s.

t be

erit-
ds that
stry,
ality
 spe-
erclass

.
le
cannot be determined until after the application frame is created. See the macro
clos:defclass to learn about slot-specifiers.

2. For initializations that depend on information which may not be available until th
application frame has been created, an:after method can be defined for
clos:initialize-instance on the application frame’s class. Note that the special varia
application-frame is not bound to the application, since the application is not y
running. The macrowith-frame-state-variables cannot be used in this context, eithe
You may useclos:with-slots, clos:with-accessors, or any slot readers or accessors th
have been defined.

3. A :before method forrun-frame-top-level on the application’s frame is probably the
most versatile place to perform application frame initialization. This method will n
be executed until the application starts running.*application-frame* will be bound to
the application frame, and you can usewith-frame-state-variables in this context.

4. If the application frame employs its own top-level function, then this function can
perform initialization tasks at the beginning of its body. This top-level function ma
call default-frame-top-level to achieve the standard behavior for application frame

Of course, these are only suggestions. There might be other techniques which migh
more appropriate for your application. Of those listed, the:before method on
run-frame-top-level is probably the best for most circumstances.

Although application frames are CLOS classes, do not useclos:make-instance to create
them. To instantiate an application frame, always usemake-application-frame. This func-
tion provides important initialization arguments specific to application frames that
clos:make-instance does not.make-application-frame passes any keyword value pairs
which it does not handle itself on toclos:make-instance, so it will respect any initialization
options which you give it, just asclos:make-instance would.

Here is an example of how an application frame’s behavior might be modified by inh
ance from a superclass. Suppose we wanted our application to record all the comman
were performed while it was executing, because the program is for the financial indu
where it is important to keep audit trails for all transactions. As this is a useful function
that might be added to any of a number of different applications, we will make it into a
cial class that implements the desired behavior. This class can then be used as a sup
for any application that needs to keep a log of its actions.

The class has an initialization option,:pathname, which specifies the name of the log file
It also has a slot named transaction-stream whose value is a stream opened to the log fi
when the application is running.
Defining Application Frames 9.3 205

gging
uite

 to

pty.
(defclass transaction-recording-mixin ()
 ((transaction-pathname :type pathname
 :initarg :pathname
 :reader transaction-pathname)
 (transaction-stream :accessor transaction-stream)))

We use an:around method onrun-frame-top-level, which opens a stream to the log file
and stores it in thetransaction-stream slot.unwind-protect is used to clear the value of
the slot when the stream is closed.

(defmethod clim:run-frame-top-level :around
 ((frame transaction-recording-mixin))
 (with-slots (transaction-pathname transaction-stream)
 frame (with-open-file (stream transaction-pathname
 :direction :output)
 (unwind-protect
 (progn (setq transaction-stream stream)
 (call-next-method))
 (setq transaction-stream nil)))))

This is where the actual logging takes place. The command loop indefault-frame-top-lev-
el callsexecute-frame-command to execute a command. Here we add a:before method
that will log the command.

(defmethod clim:execute-frame-command :before
 ((frame transaction-recording-mixin) command)
 (format (transaction-stream frame) "~&Command: ~a" command))

It is now an easy matter to alter the definition of an application to add the command lo
behavior. Here is the definition of the puzzle application frame from the CLIM demos s
(from the file <release-directory>/demo/puzzle.lisp). We use the superclasses argument
specify that thepuzzle application frame should inherit fromtransaction-recording-mix-
in. Because we are using the superclass argument, we must also explicitly includeapplica-
tion-frame, which was included by default when the superclasses argument was em

(define-application-frame puzzle
 (transaction-recording-mixin application-frame)
 ((puzzle :initform (make-array ’(4 4))
 :accessor puzzle-puzzle))
 (:default-initargs :pathname "puzzle-log.text")
 (:panes (title :title)
 (menu :command-menu)
 (display :application
 :default-text-style ’(:fix :bold :very-large)
 :incremental-redisplay t
 :display-function draw-puzzle)))
206 CLIM User’s Guide 9.3

log
n

ses.
-
tance.

and-ta-
Also note the use of(:default-initargs :pathname "puzzle-log.text")
to provide a default value for the log file name if the user doesn’t specify one.

The user might run the application by executing the following:

(run-frame-top-level
 (make-application-frame ’puzzle
 :width 400
 :height 500
 :pathname "my-puzzle-log.text"))

Here the:pathname initialization argument is used to override the default name for the
file (as was specified by the:default-initargs clause in the previously defined applicatio
frame) and to use the namemy-puzzle-log.text instead.

9.4 Accessing Slots and Components of CLIM
Application Frames

A call to thedefine-application-frame macro creates a subclass of thestandard-applica-
tion-frame class. CLIM application frames are instances of these generated subclas
You explicitly specify accessors for the slots you have designated for storing applica
tion-specific state information. The use of the accessors is as for any other CLOS ins
Other CLIM defined components ofstandard-application-frame subclass instances are
accessed via documented functions. Such components include frame-panes, comm
bles, the top-level window, and layouts.

9.5 Running a CLIM Application

You can run a CLIM application using the functionsmake-application-frame and
run-frame-top-level. Here is a code fragment that illustrates this technique:

(clim:run-frame-top-level
 (clim:make-application-frame
 ’frame-name))

run-frame-top-level will not return until the application exits.
Defining Application Frames 9.4 207

ly.”
Note that*application-frame* is not bound untilrun-frame-top-level is invoked.

For more information, see Section G.2, “Functions for Operating on Windows Direct

9.6 Exiting a CLIM Application

You can exit an application and make the window disappear by usingframe-exit or dis-
able-frame.

In Liquid CLIM, you can also left-click on theExit menu item to exit an application and
return to the Lisp top level. To quit Lisp, type(LCL:QUIT) .

9.7 Examples of CLIM Application Frames

This section contains examples of how to use CLIM application frames.

9.7.1 Defining a CLIM Application Frame

Here is an example of an application frame. This frame has three slots:pathname, integer,
andmember. It has two panes, an:accept-values pane namedavv and an:application
pane nameddisplay. It uses a command table nameddingus, which will automatically be
defined for it (seedefine-command-table) and which inherits from theaccept-val-
ues-pane command table so that the accept-values pane will function properly.

(clim:define-application-frame
 dingus ()
 ((pathname :initform #p"foo") (integer :initform 10)
 (member :initform :one))
 (:panes ((avv:accept-values
 :display-function ’(clim:accept-values-pane-displayer
 :displayer display-avv))
 (display :application :display-function 'draw-display
 :display-after-commands :no-clear)))
 (:command-table (dingus :inherit-from (clim:accept-values-pane))))

The following is the display function for thedisplay pane of the “dingus” application. It
just prints out the values of the three slots defined for the application.
208 CLIM User’s Guide 9.6

lots,
(defmethod draw-display ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (clim:present pathname ’pathname :stream stream)
 (write-string ", " stream)
 (clim:present integer ’integer :stream stream)
 (write-string ", " stream)
 (clim:present member ’(member :one :two :three)
 :stream stream)
 (write-string "." stream)))

The following is the display function for theavv pane. It invokesaccept for each of the ap-
plication’s slots so that the user can alter their values in theavv pane.

(defmethod display-avv ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (setq pathname
 (clim:accept ’pathname :prompt "A pathname"
 :default pathname :stream stream))
 (fresh-line stream)
 (setq integer
 (clim:accept ’integer :prompt "An integer"
 :default integer :stream stream))
 (fresh-line stream)
 (setq member
 (clim:accept ’(member :one :two :three)
 :prompt "One, Two, or Three"
 :default member :stream stream))
 (fresh-line stream)
 (clim:accept-values-command-button
 (stream :documentation "You wolf")
 (write-string "Wolf whistle" stream)
 (beep))))

The following function will start up a new “dingus” application.

(defun run-dingus (root)
 (let ((dingus (clim:make-application-frame
 ’dingus :width 400 :height 400)))
 (clim:run-frame-top-level dingus)))

All this application does is allow the user to alter the values of the three application s
pathname, integer, andmember, using theavv pane. The new values will automatically
be reflected in thedisplay pane.
Defining Application Frames 9.7 209

e reg-
 you

 might

re dis-

ft
9.7.2 Constructing a Function as Part of Running an
Application

You can supply an alternate top level (which initializes some things and then calls th
ular top level) to construct a function as part of running the application. Note that when
use this technique, you can close the function over other pieces of the Lisp state that
not exist until application runtime.

(clim:define-application-frame
 different-prompts ()
 ((prompt-state ...) ...)
 (:top-level (different-prompts-top-level)) ...)

(defmethod different-prompts-top-level
 ((frame different-prompts) &rest options)
 (flet ((prompt (stream frame)
 (with-slots (prompt-state) frame
 (apply
 #’clim:default-frame-top-level frame
 :prompt #’prompt options)))
 ...)))

9.8 Application Frame Operators and Accessors

The following operators are used to define and instantiate application frames. They a
cussed in detail in Section 9.2, “Defining CLIM Application Frames.”

define-application-frame [Macro]

Arguments: name superclasses slots&rest options
Summary: Defines an application frame. You can specify aname for the application class,

the superclasses (if any), theslots of the application class, andoptions.

make-application-frame [Function]

Arguments:frame-name&rest options&key pretty-name frame-manager enable state le
top right bottom width height save-under frame-class
&allow-other-keys

Summary: Makes an instance of the application frame of typeframe-class. If frame-class is
not supplied, it defaults toframe-name.
210 CLIM User’s Guide 9.8

n
, what

s

9.8.1 CLIM Application Frame Accessors

The following functions may be used to access and modify the state of the applicatio
frame itself, such as what the currently exposed panes are, what the current layout is
command table is being used, and so forth.

application-frame [Variable]

Summary: The current application frame. The value is CLIM’s default application. This
variable is typically used in the bodies of commands and translators to gain
access to the state variables of the application, usually in conjunction with
clos:with-slots or clos:slot-value.

frame-name [Generic Function]

Arguments:frame
Summary: Returns the name of the frameframe, which is a symbol.

frame-pretty-name [Generic Function]

Arguments:frame
Summary: Returns the “pretty name” of the frameframe, which is a string.

(setf frame-pretty-name) [Generic Function]

Arguments:name frame
Summary: Sets the pretty name of the frameframe to name, which must be a string.

frame-command-table [Generic Function]

Arguments:frame
Summary: Returns the command table for the frameframe.

(setf frame-command-table) [Generic Function]

Arguments:command-table frame
Summary: Sets the command table for the frameframe to command-table. Changing the

frame’s command table will redisplay the command menus (or menu bar) a
needed.command-table is a command table designator.

frame-standard-input [Generic Function]

Arguments:frame
Defining Application Frames 9.8 211

o

o

e

n

Summary: Returns the stream that will be used for*standard-input* for the frameframe.
The default method (onstandard-application-frame) returns the first named
pane of typeinteractor-pane that is exposed in the current layout; if there is n
such pane, the value returned byframe-standard-output is used.

frame-standard-output [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for*standard-output* for the frameframe.

The default method (onstandard-application-frame) returns the first named
pane of typeapplication-pane that is exposed in the current layout; if there is n
such pane, it returns the first pane of typeinteractor-pane that is exposed in the
current layout.

 To redirect standard input or output, simply redefine the corresponding fram
generic function. For example, the following form specifies the pane in
my-frame namedoutput-pane as the destination for standard output.

(defmethod frame-standard-output ((frame my-frame))
 (get-frame-pane frame ’output-pane))

frame-query-io [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for*query-io* for the frameframe. The

default method (onstandard-application-frame) returns the value returned by
frame-standard-input; if that isnil , it returns the value returned byframe-stan-
dard-output .

frame-error-output [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for*error-output* for the frameframe. The

default method (onstandard-application-frame) returns the same value as
frame-standard-output.

pointer-documentation-output [Variable]

Summary: This will be bound either tonil or to a stream on which pointer documentatio
will be displayed.

frame-pointer-documentation-output [Generic Function]

Arguments:frame
212 CLIM User’s Guide 9.8

e
nes
d.

y

l
ate;
Summary: Returns the stream that will be used for*pointer-documentation-output* for
the frameframe. The default method (onstandard-application-frame) returns
the first pane of typepointer-documentation-pane. If this returnsnil , no pointer
documentation will be generated for this frame.

frame-calling-frame [Generic Function]

Arguments:frame
Summary: Returns the application frame that invoked the frameframe.

frame-parent [Generic Function]

Arguments:frame
Summary: Returns the object that acts as the parent for the frameframe. This often, but not

always, returns the same value asframe-manager.

frame-panes [Generic Function]

Arguments:frame
Summary: Returns a list of all of the frameframe’s named panes. This includes panes in th

current layout, and panes in other layouts as well. If there are no named pa
(that is, the:pane option was used), only the single, top-level pane is returne
This function returns objects that reveal CLIM’s internal state; do not modif
those objects.

frame-current-panes [Generic Function]

Arguments:frame
Summary: Returns a list of those named panes in the frameframe’s current layout. If there

are no named panes (that is, the:pane option was used), only the single, top-leve
pane is returned. This function returns objects that reveal CLIM’s internal st
do not modify those objects.

get-frame-pane [Generic Function]

Arguments:frame pane-name
Summary: Returns the CLIM stream pane in the frameframe whose name ispane-name.

find-pane-named [Generic Function]

Arguments:frame pane-name
Summary: Returns the pane in the frameframe whose name ispane-name. This can return

any type of pane, not just CLIM stream panes.
Defining Application Frames 9.8 213

e.

.

r the

ry to en-

 spec-

ec-

ane

yout
frame-top-level-sheet [Generic Function]

Arguments:frame
Summary: Returns the sheet that is the top-level sheet for the frameframe. This is the sheet

that has as its descendants all of the panes offrame.

frame-pane [Generic Function]

Arguments:frame
Summary: Returns the pane that is the top-level pane of the current layout of the fram

frame-current-layout [Generic Function]

Arguments:frame
Summary: Returns the current layout for the frameframe. The layout is named by a symbol

(setf frame-current-layout) [Generic Function]

Arguments:layout frame
Summary: Sets the layout of the frameframe to be the new layout specified bynew-layout.

layout must be a symbol that names one of the possible layouts.

Changing the layout of the frame causes a recomputation of what panes are used fo
bindings of the standard stream variables (such as*standard-input*). After the new layout
has been computed, the contents of each pane are displayed to the degree necessa
sure that all output is visible.

layout-frame [Generic Function]

Arguments:frame&optional width height
Summary: Resizes the frame and lays out the current pane hierarchy using the layout

ified by frame-current-layout , according to the layout protocol described in
Section 10.2.4. This function is automatically invoked on a frame when it is
adopted, after its pane hierarchy has been generated.

 If width andheight are provided, then this function resizes the frame to the sp
ified size. It is an error to provide justwidth. If no optional arguments are pro-
vided, this function resizes the frame to the preferred size of the top-level p
as determined by the space composition pass of the layout protocol.

 In either case, after the frame is resized, the space allocation pass of the la
protocol is invoked on the top-level pane.
214 CLIM User’s Guide 9.8

ntrol
, and

ts

t

it.
9.8.2 Operators for Running CLIM Applications

The following functions are used to start up an application frame, exit from it, and co
the “read-eval-print” loop of the frame (for example, redisplay the panes of the frame
read, execute, enable, and disable commands).

run-frame-top-level [Generic Function]

Arguments:frame
Summary: Runs the top-level function for the frameframe. The default method onapplica-

tion-frame simply invokes the top-level function for the frame (which defaul
to default-frame-top-level).

run-frame-top-level [:Around Method]

Arguments: (frameapplication-frame)
Summary: The:around method ofrun-frame-top-level on theapplication-frame class

establishes the initial dynamic bindings for the application, including (but no
limited to) binding*application-frame* to frame, binding*input-context* to
nil , resetting the delimiter and activation gestures, and binding
input-wait-test , *input-wait-handler* , and*pointer-button-press-han-
dler* to nil .

default-frame-top-level [Generic Function]

Arguments:frame&key command-parser command-unparser partial-command-parser
prompt

Summary: The default top-level function for application frames, this runs a
“read-eval-print” loop that displays a prompt, callsread-frame-command and
thenexecute-frame-command, and finally redisplays all the panes that need
See Section 11.9, “The CLIM Command Processor,” for further details.

default-frame-top-level also establishes a simple restart forabort and binds the
standard stream variables as follows.*standard-input* will be bound to the
value returned byframe-standard-input. *standard-output* will be bound to
the value returned byframe-standard-output. *query-io* will be bound to the
value returned byframe-query-io. *error-output* will be bound to the value
returned byframe-error-output . It is unspecified what*terminal-io* ,
debug-io, and*trace-output* will be bound to.

prompt is either a string to use as the prompt (defaulting to Command:) or a
function of two arguments, a stream and the frame.
Defining Application Frames 9.8 215

and’s

ently
es
command-parser, command-unparser, andpartial-command-parser are the same
as forread-command. command-parser defaults tocommand-line-com-
mand-parser if there is an interactor; otherwise, it defaults tomenu-only-com-
mand-parser. command-unparser defaults to
command-line-command-unparser. partial-command-parser defaults tocom-
mand-line-read-remaining-arguments-for-partial-command if there is an
interactor; otherwise, it defaults tomenu-only-read-remaining-argu-
ments-for-partial-command. default-frame-top-level binds*com-
mand-parser*, *command-unparser*, and*partial-command-parser* to
the values ofcommand-parser, command-unparser, andpartial-com-
mand-parser.

read-frame-command [Generic Function]

Arguments:frame stream
Summary: Reads a command from the streamstream on behalf of the frameframe. The

returned value is a command object.

 The default method (onstandard-application-frame) for read-frame-com-
mand simply callsread-command, supplyingframe’s current command table
as the command table.

execute-frame-command [Generic Function]

Arguments:frame command
Summary: Executes the commandcommand on behalf of the frameframe. command is a

command object, that is, a cons of a command name and a list of the comm
arguments.

 The default method (onstandard-application-frame) for execute-frame-com-
mand simply applies thecommand-name of command to command-argu-
ments of command.

command-enabled [Generic Function]

Arguments:command-name frame
Summary: Returnst if the command named bycommand-name is presently enabled in the

frameframe; otherwise, it returnsnil . If command-name is not accessible to the
command table being used byframe, command-enabled returnsnil .

 Whether or not a particular command is currently enabled is stored independ
for each instance of an application frame; this status can vary between fram
that share a single command table.
216 CLIM User’s Guide 9.8

r

e

(setf command-enabled) [Generic Function]

Arguments:enabled command-name frame
Summary: If enabled isnil , this disables the use of the command named bycommand-name

while in the frameframe. If enabled is t, the use of the command is enabled. Afte
the command has been enabled (or disabled),note-command-enabled (or
note-command-disabled) is invoked on the frame manager in order to updat
the appearance of the interface.

 If command-name is not accessible to the command table being used byframe,
usingsetf oncommand-enabled does nothing.

display-command-menu [Generic Function]

Arguments:frame stream&key command-table initial-spacing max-width max-height
n-rows n-columns (cell-align-x:left) (cell-align-y:top)

Summary: Displays the menu associated with the specified command table onstream by
callingdisplay-command-table-menu. If command-table is not supplied, it
defaults to(frame-command-tablestream). This function is generally used as
the display function for panes that contain command menus.

initial-spacing, max-width, max-height, n-rows, n-columns, cell-align-x, and
cell-align-y are as forformatting-item-list .

frame-exit [Restart]

Summary: The restart that is invoked whenframe-exit is called.

frame-exit [Generic Function]

Arguments:frame
Summary: Exits from the frameframe. The default method (onstandard-applica-

tion-frame) invokes theframe-exit restart.

panes-need-redisplay [Generic Function]

Arguments:frame

pane-needs-redisplay [Generic Function]

Arguments:frame pane
Summary: panes-need-redisplay indicates that all the panes in the frameframe should be

redisplayed the next time around the command loop.pane-needs-redisplay
causes only the panepane within frame to be redisplayed; in this case,pane is
either a pane or the name of a named pane.
Defining Application Frames 9.8 217

ch.”

om-
ide a

ar
redisplay-frame-pane [Generic Function]

Arguments:frame pane&key force-p
Summary: Causes the panepane within the frameframe to be redisplayed immediately.

pane is either a pane or the name of a named pane. When the booleanforce-p is
t, the maximum level of redisplay is forced and the pane is displayed “from
scratch."

redisplay-frame-panes [Generic Function]

Arguments:frame&key force-p
Summary: redisplay-frame-panes causes all of the panes in the frameframe to be redis-

played immediately by callingredisplay-frame-pane on each of the panes in
frame that are visible in the current layout. When the booleanforce-p is t, the
maximum level of redisplay is forced and the pane is displayed “from scrat

frame-replay [Generic Function]

Arguments:frame stream&optional region
Summary: Replays the contents ofstream in the frameframe within the region specified by

the regionregion, which defaults to the viewport ofstream.

notify-user [Generic Function]

Arguments:frame message&key associated-window title documentation exit-boxes style
text-style

Summary: Notifies the user of some event on behalf of the frameframe.

 This function provides a look-and-feel independent way for applications to c
municate messages to the user. For example, a frame manager might prov
top-level message window for each frame, or it might pop up an alert box.

frame is a CLIM application frame,message is a message string, associated-win-
dow is the window with which the notification will be associated,title is a title
string to include in the notification,documentation is not implemented in the cur-
rent version of CLIM,exit-boxes indicates what sort of exit boxes should appe
in the notification, style is the style in which to display the notification, and
text-style is the text style in which to display the notification.

frame-manager-notify-user [Generic Function]

Arguments:frame message&key associated-window title documentation exit-boxes style
text-style
218 CLIM User’s Guide 9.8

s-

ar

 with-
rties

n-
es for
er. That
nager
 man-

 is
s. A
e en-

frame
nor is
Summary: The generic function used bynotify-user. The default method onstan-
dard-frame-manager will display a dialog or an alert box that contains the me
sage and has exit boxes that will allow the user to dismiss the notification.

frame is a CLIM application frame,message is a message string, associated-win-
dow is the window with which the notification will be associated,title is a title
string to include in the notification,documentation is not implemented in the cur-
rent version of CLIM,exit-boxes indicates what sort of exit boxes should appe
in the notification, style is the style in which to display the notification, and
text-style is the text style in which to display the notification.

frame-properties [Generic Function]

Arguments:frame property

(setf frame-properties) [Generic Function]

Arguments:value frame property
Summary: Frame properties can be used to associate frame specific data with frames

out adding additional slots to the frame’s class. CLIM may use frame prope
internally to store information for its own purposes.

9.9 Frame Managers

Frames may beadopted by a frame manager, which involves invoking a protocol for ge
erating the pane hierarchy of the frame. This protocol provides for selecting pane typ
abstract gadget panes based on the style requirements imposed by the frame manag
is, the frame manager is responsible for the look and feel of a frame. Each frame ma
is associated with one specific port. However, a single port may have multiple frame
agers managing various frames associated with the port.

After a frame is adopted it can be in any of the three following states:enabled, disabled, or
shrunk. An enabled frame is visible unless it is occluded by other frames or the user
browsing outside of the portion of the frame manager’s space that the frame occupie
shrunken frame provides a cue or handle for the frame, but generally will not show th
tire contents of the frame. For example, the frame may be iconified, or an item for the
may be placed in a special suspended frame menu. A disabled frame is not visible,
there any user-accessible handle for enabling the frame.
Defining Application Frames 9.9 219

 as-

ate a

ments
ort.

ed to
lly be
riate

ames
mes are
 con-

ger
cation

’s
Frames may also bedisowned, which involves releasing the frame’s panes as well as all
sociated foreign resources.

frame-manager [Protocol Class]

Summary: The protocol class that corresponds to a frame manager. If you want to cre
new class that behaves like a frame manager, it should be a subclass of
frame-manager. Subclasses offrame-manager must obey the frame manager
protocol.

 There are no advertised standard frame manager classes. Each port imple
one or more frame managers that correspond to the look and feel for the p

frame-manager-p [Function]

Arguments:object
Summary: Returnst if object is a frame manager; otherwise, it returnsnil .

9.9.1 Finding Frame Managers

Most frames need to deal directly with frame managers only to the extent that they ne
find a frame manager into which they can insert themselves. Since frames will usua
invoked by some user action that is handled by a frame manager, finding an approp
frame manager is usually straightforward.

Some frames will support the embedding of other frames within themselves. Such fr
not only use frames but also act as frame managers. In this case, the embedded fra
mostly unaware that they are nested within other frames, but only know that they are
trolled by a particular frame manager.

Thefind-frame-manager function provides a flexible means for locating a frame mana
to adopt an application’s frames. There are a variety of ways that the user or the appli
can influence where an application’s frame is adopted:

■ An application can establish an application default frame manager using
with-frame-manager. A frame’s top-level loop automatically establishes the frame
frame manager.

■ The programmer or user can influence what frame manager is found by setting*de-
fault-frame-manager* or *default-server-path* .
220 CLIM User’s Guide 9.9

g the
ts

e
con-

ies,
rm.

nd

cted

r to
ers

r
ay
ple,
e

find-frame-manager [Function]

Arguments:&rest options&key port &allow-other-keys
Summary: Finds an appropriate frame manager that conforms to the options, includin

port argument. Furthermore, CLIM applications may set up dynamic contex
that affect whatfind-frame-manager will return.

port defaults to the value returned byfind-port applied to the remaining options.

 A frame manager is found using the following rules in the order listed:

1. If a current frame manager has been established via an invocation of
with-frame-manager, as is the case within a frame’s top-level, and that fram
manager conforms to the options, it is returned. The exact definition of “
forming to the options” varies from one port to another, but it may include
such things as matching the console number, color or resolution propert
and so forth. If the options are empty, then any frame manager will confo

1. If *default-frame-manager* is bound to a currently active frame manager a
it conforms to the options, it is returned.

2. If port is nil , a port is found and an appropriate frame manager is constru
using*default-server-path* .

default-frame-manager [Variable]

Summary: This variable provides a convenient point for allowing a programmer or use
override the frame manager type that would normally be selected. Most us
will not set this variable, since they can set*default-server-path* to indicate
which host window system they want to use and are willing to use whateve
frame manager is the default for the particular port. However, some users m
want to use a frame manager that isn’t the typical frame manager. For exam
a user may want to use both an OpenLook frame manager and a Motif fram
manager on a single port.

with-frame-manager [Macro]

Arguments:(frame-manager)&body body
Summary: Generates a dynamic context that causes all calls tofind-frame-manager to

returnframe-manager if thewhere argument passed to it conforms toframe-man-
ager. Nested calls towith-frame-manager shadow outer contexts.body may
have zero or more declarations as its first forms.
Defining Application Frames 9.9 221

ager.

ts.

hese
ciated
 talk-
rame.
9.9.2 Frame Manager Operators

frame-manager [Generic Function]

Arguments:frame
Summary: Returnsframe’s current frame manager if it is adopted; otherwise, it returnsnil .

(setf frame-manager) [Generic Function]

Arguments:frame-manager frame
Summary: Changes the frame manager offrame to frame-manager. In effect, the frame is

disowned from its old frame manager and is adopted into the new frame man
Transferring a frame preserves itsframe-state; for example, if the frame was
previously enabled, it will be enabled in the new frame manager.

frame-manager-frames [Generic Function]

Arguments:frame-manager
Summary: Returns a list of all the frames being managed byframe-manager. This function

returns objects that reveal CLIM’s internal state; do not modify those objec

adopt-frame [Generic Function]

Arguments:frame-manager frame

disown-frame [Generic Function]

Arguments:frame-manager frame
Summary: These functions insert or remove a frame from a frame manager’s control. T

functions allow a frame manager to allocate and deallocate resources asso
with a frame. For example, removing a frame from a frame manager that is
ing to a remote server allows it to release all remote resources used by the f

frame-state [Generic Function]

Arguments:frame
Summary: Returns one of:disowned, :enabled, :disabled, or :shrunk , indicating the cur-

rent state offrame.

enable-frame [Generic Function]

Arguments:frame
222 CLIM User’s Guide 9.9

s. A
f the
is
revi-

t

tor
disable-frame [Generic Function]

Arguments:frame

shrink-frame [Generic Function]

Arguments:frame
Summary: These functions force a frame into the enabled, disabled, or shrunken state

frame in the enabled state may be visible if it is not occluded or placed out o
user’s focus of attention. A disabled frame is never visible. A shrunk frame
accessible to the user for re-enabling, but may be represented in some abb
ated form, such as an icon or a menu item.

 These functions callnote-frame-state-changed to notify the frame manager tha
the state of the frame changed.

note-frame-state-changed [Generic Function]

Arguments:frame-manager frame new-state
Summary: Notifies the frame managerframe-manager that the frameframe has changed its

state tostate.

generate-panes [Generic Function]

Arguments:frame-manager frame
Summary: This function is invoked by a standard method ofadopt-frame. It is the respon-

sibility of the frame implementor to provide a method that invokessetf on
frame-pane on the frame with a value of typepane. define-application-frame
automatically supplies agenerate-panes method if either the:pane or :panes
option is used in thedefine-application-frame.

find-pane-for-frame [Generic Function]

Arguments:frame-manager frame
Summary: This function is invoked by a standard method ofadopt-frame. It must return the

root pane of the frame’s layout. It is the responsibility of the frame implemen
to provide a method that constructs the frame’s top-level pane.define-applica-
tion-frame automatically supplies a a method for this function if either the:pane
or :panes option is used.

note-command-enabled [Generic Function]

Arguments:frame-manager frame command-name
Defining Application Frames 9.9 223

ate, for
u or

t sec-
e sys-

 9.8.

e,
note-command-disabled [Generic Function]

Arguments:frame-manager frame command-name
Summary: Notifies the frame managerframe-manager that the command named bycom-

mand-name has been enabled or disabled (respectively) in the frameframe. The
frame manager can update the appearance of the user interface as appropri
instance, by “graying out” a newly disabled command from a command men
menu bar.

9.10 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the nex
tion. It describes the functions that interface application frames to the presentation typ
tem. All classes that inherit fromapplication-frame must inherit or implement methods
for all of these functions. See “Application Frame Operators and Accessors,” Section

frame-maintain-presentation-histories [Generic Function]

Arguments:frame
Summary: Returnst if the frameframe maintains histories for its presentations; otherwis

it returnsnil . The default method (onstandard-application-frame) returnst if
and only if the frame has at least one interactor pane.

frame-find-innermost-applicable-presentation [Generic Function]

Arguments:frame input-context stream x y&key event
Summary: Locates and returns the innermost applicable presentation on the windowstream

whose sensitivity region contains the point(x, y), on behalf of the frameframe in
the input contextinput-context. event defaults tonil , and is as forfind-inner-
most-applicable-presentation.

 The default method (onstandard-application-frame) simply callsfind-inner-
most-applicable-presentation.

frame-input-context-button-press-handler [Generic Function]

Arguments:frame stream button-press-event
Summary: This function handles user pointer events on behalf of the frameframe in the

input context*input-context* . stream is the window on whichbut-
ton-press-event took place.
224 CLIM User’s Guide 9.10

n

ator
t,
oc-

res-

d

 The default implementation (onstandard-application-frame) unhighlights any
highlighted presentations, finds the applicable presentation by calling
frame-find-innermost-applicable-presentation-at-position, and then calls
throw-highlighted-presentation to execute the translator on that presentatio
that corresponds to the user’s gesture.

 If frame-input-context-button-press-handler is called when the pointer is not
over any applicable presentation,throw-highlighted-presentation must be
called with a presentation of*null-presentation* .

frame-document-highlighted-presentation [Generic Function]

Arguments:frame presentation input-context window x y stream
Summary: This function produces pointer documentation on behalf of the frameframe in

the input contextinput-context on the windowwindow at the point(x, y). The
documentation is displayed on the streamstream.

 The default method (onstandard-application-frame) produces documentation
that corresponds to callingdocument-presentation-translator on all of the
applicable translators in the input contextinput-context. presentation, window, x,
y, andstream are as fordocument-presentation-translator.

 Typical pointer documentation consists of a brief description of each transl
that is applicable to the specified presentation in the specified input contex
given the current modifier state for the window. For example, the following d
umentation might be produced when the pointer is pointing to the Lisp exp
sion ’(1 2 3) when the input context isform :

Left: ’(1 2 3); Middle: (DESCRIBE ’(1 2 3)); Right: Menu

frame-drag-and-drop-feedback [Generic Function]

Arguments:frame presentation stream initial-x initial-y new-x new-y state
Summary: The default feedback function for translators defined by

define-drag-and-drop-translator, which provides visual feedback during the
dragging phase of such translators on behalf of the frameframe. presentation is
the presentation being dragged on the streamstream. The pointing device was
initially at the position specified byinitial-x andinitial-y, and is at the position
specified bynew-x andnew-y whenframe-drag-and-drop-feedback is invoked.
(Both positions are supplied for “rubber-banding,” if that is the sort of desire
feedback.)state will be either:highlight , meaning that the feedback should be
drawn, or:unhighlight , meaning that the feedback should be erased.
Defining Application Frames 9.10 225

e
s

frame-drag-and-drop-highlighting [Generic Function]

Arguments:frame presentation stream state
Summary: The default highlighting function for translators defined by

define-drag-and-drop-translator, which is invoked when a “to object” should
be highlighted during the dragging phase of such translators on behalf of th
frameframe. presentation is the presentation over which the pointing device i
located on the streamstream. state will be either:highlight , meaning that the
highlighting for the presentation should be drawn, or:unhighlight , meaning that
the highlighting should be erased.
Defining Application Frames 226

Chapter 10 Panes and Gadgets
Panes and Gadgets 9.10 227

... 229
.. 230
. 231
... 232

... 233

.. 233

... 235
.. 238
. 239

.... 243

... 244

.... 246

. 247

.. 248

... 249

.. 250
. 250
. 252
... 254
.. 261
. 261
.. 262
 264
. 264
. 265
. 267
. 270
 271
 273
.. 274
Chapter 10 Panes and Gadgets

10.1 Panes ...
10.1.1 Basic Pane Construction ...
10.1.2 Pane Initialization Options...
10.1.3 Pane Properties...

10.2 Layout Panes...
10.2.1 Layout Pane Options...
10.2.2 Layout Pane Classes ..
10.2.3 Composite Pane Generic Functions..
10.2.4 The Layout Protocol ..

10.3 Extended Stream Panes..
10.3.1 Extended Stream Pane Options..
10.3.2 Extended Stream Pane Classes ...
10.3.3 Making CLIM Extended Stream Panes

10.4 Defining A New Pane Type: Leaf Panes..

10.5 Gadgets ...
10.5.1 Abstract Gadgets...

10.5.1.1 Using Gadgets...
10.5.1.2 Implementing Gadgets ..

10.5.2 Basic Gadget Classes ...
10.5.3 Abstract Gadget Classes ...

10.5.3.1 The Label Gadget..
10.5.3.2 The List-Pane and Option-Pane Gadgets.........................
10.5.3.3 The Menu-Button Gadget ..
10.5.3.4 The Push-Button Gadget...
10.5.3.5 The Radio-Box and Check-Box Gadgets..........................
10.5.3.6 The Scroll-Bar Gadget ..
10.5.3.7 The Slider Gadget ...
10.5.3.8 The Text-Field and Text-Editor Gadgets...........................
10.5.3.9 The Toggle-Button Gadget ..

10.5.4 Integrating Gadgets and Output Records..................................
Panes and Gadgets 228

 to
 such
 of the

ors to
pli-

ion

lication
ce.
anes

ying
nd react

tation

, or
op-
ll pur-
This
 own
en-
or the
aptive

en-
nager.
e of a
 appli-
of an
t

10.1 Panes

CLIM panes are similar to the gadgets or widgets of other toolkits. They can be used
compose the top-level user interface of applications as well as auxiliary components
as menus and dialogs. The application programmer provides an abstract specification
pane hierarchy, which CLIM uses in conjunction with user preferences and other fact
select a specific “look and feel” for the application. In many environments, a CLIM ap
cation can use the facilities of the host window system toolkit via a set ofadaptive panes,
allowing a portable CLIM application to take on the look and feel of a native applicat
user interface.

Panes are rectangular objects that are implemented as special sheet classes. An app
will typically create a tree of panes that divide up the application frame’s screen spa
Panes can be structurally classified according to their location in pane hierarchies. P
that can have child panes are calledcomposite panes; those that cannot are calledleaf
panes. Composite panes are used to provide a mechanism for spatially organizing (“la
out”) other panes. Some leaf panes implement gadgets that have some appearance a
to user input by invoking application code. Another kind of leaf pane, known as anextend-
ed stream pane, provides an area of the application’s screen real estate for the presen
of text and graphics.

Abstract panes are panes that are defined only in terms of their programmer interface
behavior. The protocol for an abstract pane (that is, the specified set of initialization
tions, accessors, and callbacks) is designed to specify the pane in terms of its overa
pose, rather then in terms of its specific appearance or particular interactive details.
abstract definition allows multiple implementations of the abstract pane to define their
specific look and feel individually. CLIM can then select the appropriate pane implem
tation based on factors outside of the application domain, such as user preferences
look and feel of the host operating environment. A subset of the abstract panes, the ad
panes, have been defined to integrate well across all CLIM operating platforms.

CLIM provides a general mechanism for automatically selecting the particular implem
tation of an abstract pane selected by an application based on the current frame ma
The application programmer can override the selection mechanism by using the nam
specific pane implementation in place of the abstract pane name when specifying the
cation frame’s layout. By convention, the name of the basic, portable implementation
abstract pane class can be determined by adding the suffix-pane to the name of the abstrac
class.
229 CLIM User’s Guide

ds
 man-
anes.

ref-
er may

.
e
ss por-
emen-

me

ol in

lement

ut
ld be
10.1.1 Basic Pane Construction

Applications typically define the hierarchy of panes used in their frames with the:pane or
:panes options ofdefine-application-frame. These options generate the body of metho
on functions that are invoked when the frame is being adopted into a particular frame
ager, so the frame manager can select the specific implementations of the abstract p

There are two basic interfaces for constructing a pane:make-pane of an abstract pane class
name, ormake-instance of a “concrete” pane class. The former approach is generally p
erable, since it results in more portable code. However, in some cases the programm
wish to instantiate panes of a specific class (such as anhbox-pane or avbox-pane). In this
case, usingmake-instance directly circumvents the abstract pane selection mechanism
However, themake-instance approach requires the application programmer to know th
name of the specific pane implementation class that is desired, and so is inherently le
table. By convention, all of the concrete pane class names, including those of the impl
tations of abstract pane protocol specifications, end in-pane.

Usingmake-pane instead ofmake-instance invokes the “look and feel” realization pro-
cess to select and construct a pane. Normally this process is implemented by the fra
manager, but it is possible for other “realizers” to implement this process.make-pane is
typically invoked using an abstract pane class name, which by convention is a symb
the CLIM package that doesn’t include the-pane suffix. (This naming convention distin-
guishes the names of the abstract pane protocols from the names of classes that imp
them.) Programmers, however, are allowed to pass any pane class name tomake-pane, in
which case the frame manager will generally instantiate that specific class.

pane [Protocol Class]

Summary: The protocol class that corresponds to a pane, a subclass ofsheet. A pane is a
special kind of sheet that implements the pane protocols, including the layo
protocols. If you want to create a new class that behaves like a pane, it shou
a subclass ofpane. Subclasses ofpane must obey the pane protocol.

 All of the subclasses ofpane are mutable.

panep [Function]

Arguments:object
Summary: Returnst if object is a pane; otherwise, it returnsnil .

basic-pane [Class]
230 CLIM User’s Guide 10.1

the
,

 sub-
Summary: The basic class on which all CLIM panes are built, a subclass ofpane. This class
is an abstract class, intended only to be subclassed, not instantiated.

make-pane [Function]

Arguments:abstract-class-name&rest initargs
Summary: Selects a class that implements the behavior of the abstract pane

abstract-class-name and constructs a pane of that class.make-pane must be
used either within the dynamic scope of a call towith-look-and-feel-realiza-
tion, or within the:pane or :panes options of adefine-application-frame
(which implicitly invokeswith-look-and-feel-realization).

make-pane-1 [Generic Function]

Arguments:realizer frame abstract-class-name&rest initargs
Summary: The generic function that is invoked by a call tomake-pane. The object that real-

izes the pane,realizer, is established bywith-look-and-feel-realization. Usually
realizer is a frame manager, but it could be another object that implements
pane realization protocol.frame is the frame for which the pane will be created
andabstract-class-name is the type of pane to create.

with-look-and-feel-realization [Macro]

Arguments:(realizer frame)&body forms
Summary: Establishes a dynamic context that installsrealizer as the object responsible for

realizing panes. All calls tomake-pane within the context of
with-look-and-feel-realization result inmake-pane-1 being invoked onreal-
izer. This macro can be nested dynamically; inner uses shadow outer uses.body
may have zero or more declarations as its first forms.

realizer is usually a frame manager, but in some casesrealizer may be some other
object. For example, within the implementation of a pane that uses its own
panes to achieve its functionality, this form might be used withrealizer being the
pane itself.

10.1.2 Pane Initialization Options

The following options must be accepted by all pane classes.
Panes and Gadgets 10.1 231

ne.
 since
ine

pane
tion.
he
 this

t is,
:foreground [Option]

:background [Option]

Summary: These options specify the default foreground and background inks for a pa
Client code should be cautious about passing values for these two options,
the desktop’s look and feel or the user’s preferences should usually determ
these values.

:text-style [Option]

Summary: This option specifies the default text style that should be used for any sort of
that supports text output. Panes that do not support text output ignore this op
Client code should be cautious about passing values for this option, since t
desktop’s look and feel or the user’s preferences should usually determine
value.

:name [Option]

Summary: This option specifies the name of the pane. It defaults tonil .

10.1.3 Pane Properties

pane-frame [Generic Function]

Arguments:pane
Summary: Returns the frame that “owns” the pane.pane-frame can be invoked on any pane

in a frame’s pane hierarchy, but it can only be invoked on “active” panes, tha
those panes that are currently adopted into the frame’s pane hierarchy.

pane-name [Generic Function]

Arguments:pane
Summary: Returns the name of the pane.

pane-foreground [Generic Function]

Arguments:pane
Summary: Returns the foreground ink of the pane.

pane-background [Generic Function]

Arguments:pane
232 CLIM User’s Guide 10.1

hat

ible for
cted

ds into

bel
Summary: Returns the background ink of the pane.

10.2 Layout Panes

This section describes the various layout panes provided by CLIM and the protocol t
these panes obey.

The layout panes described in this section are all composite panes that are respons
positioning their children according to various layout rules. Layout panes can be sele
in the same way as other panes by usingmake-pane or make-instance. For convenience
and readability of pane layouts, many of these panes also provide a macro that expan
amake-pane form, passing a list of the panes created in the body of the macro as the:con-
tents argument. For example, you can express a layout of a vertical column of two la
panes either as:

(make-instance ’vbox-pane
 :contents (list
 (make-instance ’label-pane :text "One")
 (make-instance ’label-pane :text "Two")))

or as:

(vertically ()
 (make-instance ’label-pane :text "One")
 (make-instance ’label-pane :text "Two"))

10.2.1 Layout Pane Options

:contents [Option]

Summary: All layout pane classes accept the:contents options, which specifies the child
panes to be laid out.
Panes and Gadgets 10.2 233

pane.

t
ngine

-
k the

retch

that
:width [Option]

:max-width [Option]

:min-width [Option]

:height [Option]

:max-height [Option]

:min-height [Option]

Summary: These options control the space requirement parameters for laying out the
The:width and:height options specify the preferred horizontal and vertical
sizes. The:max-width and:max-height options specify the maximum amoun
of space that may be consumed by the pane, and give CLIM’s pane layout e
permission to grow the pane beyond the preferred size. The:min-width and
:min-height options specify the minimum amount of space that may be con
sumed by the pane, and give CLIM’s pane layout engine permission to shrin
pane below the preferred size.

 If either the:max-width or the:min-width option is not supplied, it defaults to
the value of the:width option. If either the:max-height or the:min-height
option is not supplied, it defaults to the value of the:height option.

:max-width , :min-width , :max-height, and:min-height can also be specified
as a relative size by supplying a list of the form(number:relative). In this case,
the number indicates the number of device units that the pane is willing to st
or shrink.

 The values of these options are specified in the same way as the:x-spacing and
:y-spacing options toformatting-table . (Note that:character and:line may
only be used on those panes that display text, such as aclim-stream-pane or a
label-pane.)

+fill+ [Constant]

Summary: Use this constant as a value to any of the relative size options. It indicates
pane’s willingness to adjust an arbitrary amount in the specified direction.
234 CLIM User’s Guide 10.2

n

ec-
e val-

t.

 used

is
:align-x [Option]

:align-y [Option]

Summary: The:align-x option is one of:right , :center, or :left . The:align-y option is one
of :top, :center, or :bottom. These specify how child panes are aligned withi
the parent pane. These have the same semantics as forformatting-cell .

:x-spacing [Option]

:y-spacing [Option]

:spacing [Option]

Summary: These spacing options apply tohbox-pane, vbox-pane, table-pane, and
grid-pane, and indicate the amount of horizontal and vertical spacing (resp
tively) to leave between the items in boxes or rows and columns in table. Th
ues of these options are specified in the same way as the:x-spacing and
:y-spacing options toformatting-table . :spacing specifies both thex andy
spacing at once.

10.2.2 Layout Pane Classes

hbox-pane [Composite Pane]

horizontally [Macro]

Arguments:(&rest options&key spacing&allow-other-keys) &body contents
Summary: Thehbox-pane class lays out all its child panes horizontally from left to righ

Thehorizontally macro is a convenient interface for creating anhbox-pane.

contents is one or more forms that are the child panes. Each form incontents is
of the form:

• A pane—the pane is inserted at this point and its space requirements are
to compute the size.

• A number—the specified number of device units should be allocated at th
point.
Panes and Gadgets 10.2 235

oint

tes to
cess
an or
mple:

s

m.

Each
• The symbol+fill+ —an arbitrary amount of space can be absorbed at this p
in the layout.

• A list whose first element is a number and whose second element evalua
a pane—if the number is less than 1, then it means that percentage of ex
space or deficit should be allocated to the pane. If the number is greater th
equal to 1, then that many device units are allocated to the pane. For exa

 (horizontally ()
 (1/3 (make-pane ’label-button-pane))
 (2/3 (make-pane ’label-button-pane)))

would create a horizontal stack of two button panes. The first button take
one-third of the space, and the second takes two-thirds of the space.

vbox-pane [Composite Pane]

vertically [Macro]

Arguments:(&rest options&key spacing&allow-other-keys) &body contents
Summary: Thevbox-pane class lays out all of its child panes vertically, from top to botto

Thevertically macro serves as a convenient interface for creating anvbox-pane.

contents is as forhorizontally.

table-pane [Composite Pane]

tabling [Macro]

Arguments:(&rest options)&body contents
Summary: This pane lays out its child panes in a two-dimensional table arrangement.

column of the table is specified by an extra level of list incontents. For example:

(tabling ()
 (list (make-pane ’label :text "Red")
 (make-pane ’label :text "Green")
 (make-pane ’label :text "Blue"))
 (list (make-pane ’label :text "Intensity")
 (make-pane ’label :text "Hue")
 (make-pane ’label :text "Saturation")))
236 CLIM User’s Guide 10.2

ace
nding

ey

s
ld

’s
hild
spacing-pane [Composite Pane]

spacing [Macro]

Arguments:(&rest options&key thickness&allow-other-keys) &body contents
Summary: This pane reserves some margin space around a single child pane. The sp

requirement keys that are passed in indicate the requirements for the surrou
space, not including the requirements of the child.

outlined-pane [Composite Pane]

outlining [Macro]

Arguments:(&rest options&key thickness&allow-other-keys) &body contents
Summary: This layout pane puts an outline of thicknessthickness around its contents.

 Use the:background option to control the ink used to draw the background.

bboard-pane [Composite Pane]

Summary: A pane that allows its children to be any size and lays them out wherever th
want to be (for example, a desktop manager).

scroller-pane [Composite Pane]

scrolling [Macro]

Arguments:(&rest options)&body contents
Summary: Creates a composite pane that allows the single child specified bycontents to be

scrolled.options may include a:scroll-bar option. The value of this option may
bet (the default), which indicates that both horizontal and vertical scroll bar
should be created;:vertical , which indicates that only a vertical scroll bar shou
be created; or:horizontal , which indicates that only a horizontal scroll bar
should be created.

 The pane created by thescrolling includes ascroller-pane that has as children
the scroll bars and aviewport. The viewport of a pane is the area of the window
drawing plane that is currently visible to the user. The viewport has as its c
the specified contents.
Panes and Gadgets 10.2 237

at
anes

ments
his
oint.
hrack-pane [Composite Pane]

vrack-pane [Composite Pane]

Summary: Similar to thehbox-pane andvbox-pane classes, except that these ensure th
all children are the same size in the minor dimension. In other words, these p
are used to create stacks of same-sized items, such as menu items.

 An hrack-pane is created when the:equalize-height option tohorizontally is
t. A vrack-pane is created when the:equalize-width option tovertically is t.

Note: hrack-pane andvrack-pane are available only in Liquid CLIM.

grid-pane [Composite Pane]

Summary: A grid-pane is like atable-pane, except that each cell is a square.

Note: grid-pane is available only in Liquid CLIM.

restraining-pane [Composite Pane]

restraining [Macro]

Arguments:(&rest options)&body contents
Summary: Wraps the contents with a pane that prevents changes to the space require

for contents from causing re-layout of panes outside the restraining context. T
prevents the size constraints of the child from propagating up beyond this p

Note: restraining-pane andrestraining are available only in Liquid CLIM.

10.2.3 Composite Pane Generic Functions

pane-viewport [Generic Function]

Arguments:pane
Summary: Returns the pane’s viewport, if one exists.

pane-viewport-region [Generic Function]

Arguments:pane
Summary: If a viewport for the pane exists, the viewport’s region is returned.
238 CLIM User’s Guide 10.2

s it if it

play

d

 lead
he an-
e query

idth

e-
d the
h of its

ments
alling
c
en to

n they
he text
pane-scroller [Generic Function]

Arguments:pane
Summary: Checks to see whether a pane has an associated scroller pane, and return

does.

scroll-extent [Generic Function]

Arguments:pane x y
Summary: If thepane argument has an associated viewport, it resets the viewport to dis

the portion of the underlying stream starting at (x, y).

10.2.4 The Layout Protocol

The layout protocol is triggered bylayout-frame, which is called when a frame is adopte
by a frame manager.

CLIM uses a two-pass algorithm to lay out a pane hierarchy. In the first pass (calledspace
composition), the top-level pane is asked how much space it requires. This may in turn
to the same question being asked recursively of all the panes in the hierarchy, with t
swers being composed to produce the top-level pane’s answer. Each pane answers th
by returning aspace requirement (or space-requirement) object, which specifies the
pane’s desired width and height, as well as its willingness to shrink or grow along its w
and height.

In the second pass (calledspace allocation), the frame manager attempts to obtain the r
quired amount of space from the host window system. The top-level pane is allocate
space that is actually available. Each pane, in turn, allocates space recursively to eac
descendants in the hierarchy according to the pane’s rules of composition.

For many types of panes, the application programmer can indicate the space require
of the pane at creation time by using the space requirement options, as well as by c
thechange-space-requirements function. Panes are used to display application-specifi
information, so the application can determine how much space should normally be giv
them.

Other pane types automatically calculate their space needs based on the informatio
have to present. For example, the space requirement for a label pane is a function of t
to be displayed.
Panes and Gadgets 10.2 239

hildren
ildren

dren.
ct the
ir chil-

, a min-
h the

elative
nits

 sub-

itly
quire-

able.
A composite pane calculates its space requirement based on the requirements of its c
and its own particular rule for arranging them. For example, a pane that arranges its ch
in a vertical stack would return as its desired height the sum of the heights of its chil
Note, however, that a composite pane is not required by the layout protocol to respe
space requests of its children; in fact, composite panes aren’t even required to ask the
dren.

Space requirements are expressed for each of the two dimensions as a preferred size
imum size below which the pane cannot be shrunk, and a maximum size above whic
pane cannot be grown. (The minimum and maximum sizes can also be specified as r
amounts.) All sizes are specified as a real number indicating the number of device u
(such as pixels).

space-requirement [Protocol Class]

Summary: The protocol class of all space requirement objects. There are one or more
classes ofspace-requirement with implementation-dependent names that
implement space requirements. The exact names of these classes is explic
unspecified. If you want to create a new class that behaves like a space re
ment, it should be a subclass ofspace-requirement. Subclasses of
space-requirement must obey the space requirement protocol.

 All the instantiable space requirement classes provided by CLIM are immut

make-space-requirement [Function]

Arguments:&key (width0) (max-width0) (min-width0) (height0) (max-height0)
(min-height0)

Summary: Constructs a space requirement object with the given characteristics:width ,
:height, and so on.

space-requirement-width [Function]

Arguments:space-req

(setf space-requirement-width) [Function]

Arguments:size space-req

space-requirement-max-width [Function]

Arguments:space-req
240 CLIM User’s Guide 10.2

(setf space-requirement-max-width) [Function]

Arguments:size space-req

space-requirement-min-width [Function]

Arguments:space-req

(setf space-requirement-min-width) [Function]

Arguments:size space-req

space-requirement-height [Function]

Arguments:space-req

(setf space-requirement-height) [Function]

Arguments:size space-req

space-requirement-max-height [Function]

Arguments:space-req

(setf space-requirement-max-height) [Function]

Arguments:size space-req

space-requirement-min-height [Function]

Arguments:space-req

(setf space-requirement-min-height) [Function]

Arguments:size space-req
Summary: These read or modify the components of the space requirementspace-req.

space-requirement-components [Generic Function]

Arguments:space-req
Summary: Returns the components of the space requirementspace-req as six values: the

width, minimum width, maximum width, height, minimum height, and maxi-
mum height.

space-requirement-combine [Function]

Arguments:function sr1 sr2
Panes and Gadgets 10.2 241

f

as

 of the

 of the
m-

an be

e the

-

Summary: Returns a new space requirement, each component of which is the result o
applying the functionfunction to each of the components of the two space
requirementssr1 andsr2.

function is a function of two arguments, both of which are real numbers. It h
dynamic extent.

space-requirement+ [Function]

Arguments:sr1 sr2
Summary: Returns a new space requirement whose components are the sum of each

components of the two space requirementssr1 andsr2.

space-requirement+* [Function]

Arguments:space-req&key width max-width min-width height max-height min-height
Summary: Returns a new space requirement whose components are the sum of each

components ofspace-req added to the appropriate keyword argument (for exa
ple, the width component ofspace-req is added towidth). This is intended to be
a more efficient, spread version ofspace-requirement+.

change-space-requirements [Generic Function]

Arguments:pane&key resize-frame&rest space-req-keys
Summary: This function can be invoked to indicate that the space requirements forpane

have changed. Any of the options that applied to the pane at creation time c
passed into this function as well.

resize-frame determines whether the frame should be resized to accommodat
new space requirement of the hierarchy. Ifresize-frame is t, thenlayout-frame
will be invoked on the frame. Ifresize-frame is nil , then the frame may or may
not get resized depending on the pane hierarchy and the:resize-frame option
that was supplied todefine-application-frame.

note-space-requirements-changed [Generic Function]

Arguments:sheet pane
Summary: This function is invoked wheneverpane’s space requirements have changed.

sheet must be the parent ofpane. Invoking this function essentially means that
compose-space will be reinvoked onpane, and it will reply with a space require
ment that is not equal to the reply that was given on the last call tocom-
pose-space.
242 CLIM User’s Guide 10.2

to

re
tely.

h of

cord-

n
ace

me
 input
e pic-
se of
 This function is automatically invoked bychange-space-requirements in the
cases thatlayout-frame isn’t invoked. In the case thatlayout-frame is invoked,
it isn’t necessary to callnote-space-requirements-changed, since a complete
re-layout of the frame will be executed.

changing-space-requirements [Macro]

Arguments:(&key resize-frame layout)&body body
Summary: This macro supports batching the invocation of the layout protocol by calls

change-space-requirements. Within the body, all calls to
change-space-requirements change the internal structures of the pane and a
recorded. When the body is exited, the layout protocol is invoked appropria
body may have zero or more declarations as its first forms.

compose-space [Generic Function]

Arguments:pane
Summary: During the space composition pass, a composite pane will typically ask eac

its children how much space it requires by callingcompose-space. They answer
by returningspace-requirement objects. The composite will then form its own
space requirement by composing the space requirements of its children ac
ing to its own rules for laying out its children.

allocate-space [Generic Function]

Arguments:pane width height
Summary: During the space allocation pass, a composite pane will arrange its childre

within the available space and allocate space to them according to their sp
requirements and its own composition rules by callingallocate-space on each of
the child panes.width andheight are the width and height ofpane in device units.

10.3 Extended Stream Panes

In addition to the various layout panes and gadgets, an application usually needs so
space to display textual and graphic output as well as to receive application-specific
from the user. For example, a paint program needs a “canvas” pane for displaying th
ture and handling “mouse strokes.” This can be accomplished in CLIM through the u
extended stream panes.
Panes and Gadgets 10.3 243

re free
ethods

tions

ld the

ing

ne
ds.

e

This section describes the basic CLIM extended stream pane types. Programmers a
to customize pane behavior by defining subclasses of these pane classes. Writing m
to change the repaint or event-handling behavior is a possible starting place.

10.3.1 Extended Stream Pane Options

CLIM extended stream panes accept the:foreground, :background, and:text-style op-
tions as well as those options applicable to layout panes. The space requirement op
(:width , :height, and so forth) can also take a size specification of:compute, which causes
CLIM to run the display function for the pane and make the pane large enough to ho
output of the display function.

In addition to those listed previously, CLIM extended stream frames accept the follow
options:

:display-after-commands [Option]

Summary: This specifies how the display function will be run. Ift, the “print” part of the
read-eval-print loop runs the display function; this is the default for most pa
types. Ifnil , you are responsible for implementing the display after comman

 Do not use:display-after-commands with accept-values panes, as the redisplay
for those panes is managed at a slightly lower level for efficiency. Avoid cod
such as the following:

 (in-package :clim-user)

 (define-application-frame test-frame () ()
 (:command-table (test-frame :inherit-from
 (clim:accept-values-pane)))
 (:command-definer t)
 (:panes
 (test-input-pane :accept-values :display-function
 ’(clim:accept-values-pane-displayer
 :displayer test-input)
 ;; THIS WILL NOT WORK
 :display-after-commands t)
 (dummy :application)
 (menu :command-menu
 :display-function ’(display-command-menu :n-rows 1))
 (mouse :pointer-documentation))
244 CLIM User’s Guide 10.3

LIM

r a
ents
ddi-

fter
t

n
nt
 (:layouts (:default
 (vertically ()
 menu test-input-pane DUMMY mouse))))
 (defmethod test-input ((frame test-frame) stream)
 (accept ’integer :stream stream :prompt "prompt" :default 1)
 (terpri stream)
 (accept ’integer :stream stream :prompt "foo" :default 1)
 (terpri stream))

 (defun test-it (&key (port (find-port)))
 (run-frame-top-level
 (make-application-frame ’test-frame
 :frame-manager
 (find-frame-manager :port port))))

:display-function [Option]

Summary: This specifies a function to be called in order to display the contents of a C
stream pane. CLIM’s default top-level function,default-frame-top-level, will
invoke the pane’s display function at the appropriate time (see the:display-time
option). The value of this option is either the name of a function to invoke, o
cons whose car is the name of a function and whose cdr is additional argum
to the function. The function will be invoked on the frame, the pane, and the a
tional function arguments, if any. The default for this option isnil .

:display-time [Option]

Summary: This tells CLIM when the pane’s display function should be run. If it is:com-
mand-loop, CLIM erases the pane’s contents and runs the display function a
each time a frame command is executed. If it ist, the pane is displayed once bu
not again untilpane-needs-redisplay is called on the pane. If it isnil , CLIM
waits until it is explicitly requested, either viapane-needs-redisplay or redis-
play-frame-pane. The default value varies according to the pane type.

:incremental-redisplay [Option]

Summary: Whent, the redisplay function will initially be executed inside of an invocatio
to updating-output and the resulting output record will be saved. Subseque
calls toredisplay-frame-pane will simply useredisplay to redisplay the pane.
The default for this option isnil .
Panes and Gadgets 10.3 245

d the

pace

pane.

tput

nput
d will

classes
:text-margin [Option]

Summary: This specifies the default text margin, that is, how much space is left aroun
inside edge of the pane. The default for:text-margin is the width of the window.

:vertical-spacing [Option]

Summary: This specifies the default vertical spacing for the pane, that is, how much s
there is between each text line. The default for:vertical-spacing is 2.

:end-of-line-action [Option]

Summary: This specifies the end-of-line action to be used. The default is:wrap . (The other
possible value is:allow.)

:end-of-page-action [Option]

Summary: This specifies the end-of-page action to be used. The default is:scroll. (The other
possible value is:allow.)

:output-record [Option]

Summary: This names the output record class to be used for the output history of the
The default isstandard-tree-output-history.

:draw [Option]

:record [Option]

Summary: These options specify whether the pane should initially allow drawing and ou
recording, respectively. The default for both options ist.

10.3.2 Extended Stream Pane Classes

clim-stream-pane [Leaf Pane]

Summary: This class implements a pane that supports the CLIM graphics, extended i
and output, and output recording protocols. Any extended stream panes use
most commonly be subclasses of this class.

The five following panes classes are subclasses ofclim-stream-pane. Fundamentally,
these panes have the same capabilities; however, by convention, the different pane
246 CLIM User’s Guide 10.3

as ap-

r

bars.

r

ed in
re pro-
ne,
,

have distinct roles. For instance, interactor panes are used for standard input, where
plication panes, by default, specify the destination for standard output.

interactor-pane [Leaf Pane]

Summary: The pane class that implements “interactor” panes. The default method for
frame-standard-input will return the first pane of this type.

 The default for:display-time is nil and for:scroll-bars is :vertical .

application-pane [Leaf Pane]

Summary: The pane class that implements “application” panes. The default method fo
frame-standard-output will return the first pane of this type.

 The default for:display-time is :command-loop and for:scroll-bars is t.

command-menu-pane [Leaf Pane]

Summary: The pane class that implements command menu panes that are not menu
The default display function for panes of this type isdisplay-command-menu.

 Forcommand-menu-pane, the default for:display-time is :command-loop,
the default for:incremental-redisplay is t, and the default for:scroll-bars is t.

title-pane [Leaf Pane]

Summary: The pane class that implements a title pane. The default display function fo
panes of this type isdisplay-title. The default for:display-time is t and for
:scroll-bars is nil .

pointer-documentation-pane [Leaf Pane]

Summary: The pane class that implements the pointer documentation pane.

 The default for:display-time is nil and for:scroll-bars is nil .

10.3.3 Making CLIM Extended Stream Panes

Most CLIM extended stream panes will contain more information than can be display
the allocated screen space, so scroll bars are nearly always desirable. CLIM therefo
vides a convenient form for creating composite panes that include a CLIM stream pa
scroll bars, labels, and so forth. For window stream pane functions, see Section 13.7
“CLIM Window Stream Pane Functions.”
Panes and Gadgets 10.3 247

ons.

vior of
at trig-

s acti-
make-clim-stream-pane [Function]

Arguments:&rest options&key type label scroll-bars&allow-other-keys
Summary: Creates a pane of typetype, which defaults toclim-stream-pane. If label is sup-

plied, it is a string used to label the pane.scroll-bars may bet to indicate that both
vertical and horizontal scroll bars should be included,:vertical (the default) to
indicate that vertical scroll bars should be included, or:horizontal to indicate
that horizontal scroll bars should be included.

 The other options may include all the valid CLIM extended stream pane opti

make-clim-interactor-pane [Function]

Arguments:&rest options
Summary: Like make-clim-stream-pane, but the type is forced to beinteractor-pane.

make-clim-application-pane [Function]

Arguments:&rest options
Summary: Like make-clim-stream-pane, but the type is forced to beapplication-pane.

10.4 Defining A New Pane Type: Leaf Panes

To define a gadget pane implementation, first define the appearance and layout beha
the gadget, next define the callbacks, and last define the specific user interactions th
ger the callbacks.

For example, to define an odd new kind of button that displays itself as a circle and i
vated whenever the mouse is moved over it, proceed as follows:

;; A new kind of button
(defclass sample-button-pane (gadget-pane) ())

;; An arbitrary size parameter
(defparameter *sample-button-radius* 10)
248 CLIM User’s Guide 10.4

ation

ction

s or
e same
 ap-

 “acti-
;; Define the sheet's repaint method to draw the button.
(defmethod handle-repaint ((button sample-button-pane) region
 &key medium &allow-other-keys)
 (let ((radius *sample-button-radius*)
 (half (round *sample-button-radius* 2)))
 ;; Larger circle with small one in the center.
 (draw-circle* medium radius radius radius :filled nil)
 (draw-circle* medium radius radius half :filled t)))

;;; Define the pane's compose-space method to always request the
;;; fixed size of the pane.
(defmethod compose-space ((pane sample-button-pane))
 (make-space-requirement :width (* 2 *sample-button-radius*)
 :height (* 2 *sample-button-radius*)))

The previous code is enough to allow you to instantiate the button pane in an applic
frame. It will fit in with the space composition protocol of, for example, anhbox-pane. It
will display itself as two nested circles.

The next step is to define the callbacks supported by this gadget, and the user intera
that triggers them. The resulting pane is aleaf pane.

;; This default method is defined so that the callback can be invoked
;; on an arbitrary client value without error.
(defmethod value-change-callback
 ((button sample-button-pane) client id value)
 (declare (ignore client id value)))

;; This event processing method defines the rather odd interaction
;; style of this button, to wit: it triggers the activate callback
;; whenever the mouse moves into it.
(defmethod enter-region
 ((pane sample-button-pane) &key &allow-other-keys)
 (value-change-callback pane
 (gadget-client pane) (gadget-id pane) nil))

10.5 Gadgets

Gadgets are panes that implement such common toolkit components as push button
scroll bars. Each gadget class has a set of associated generic functions that serve th
role that callbacks serve in traditional toolkits. (A callback is a function that informs an
plication that one of its gadgets has been used.) For example, a push button has an
Panes and Gadgets 10.5 249

alue

oes
at the

sh but-
 on the
e
 the

ritten
ieved
rms
s are
in-

fixed”
nvi-

 class.
e

ss
 look
ets to
r the

ed by
stract
vate” callback function that is invoked when its button is “pressed;” a scroll bar has a “v
changed” callback that is invoked after its indicator has been moved.

The gadget definitions specified by CLIM are abstract; that is, the gadget definition d
not specify the exact user interface of the gadget, but only specifies the semantics th
gadget should provide. For instance, it is not defined whether the user clicks on a pu
ton with the mouse, or moves the mouse over the button and then presses some key
keyboard to invoke the “activate” callback. Each toolkit implementation will specify th
look and feel of their gadgets. Typically, the look and feel will be derived directly from
underlying toolkit.

Each of CLIM’s abstract gadgets has at least one standard implementation that is w
using the facilities provided solely by CLIM itself. The gadgets’ appearances are ach
via calls to the CLIM graphics functions, and their interactive behavior is defined in te
of the CLIM input event processing mechanism. Since these gadget implementation
written entirely in terms of CLIM, they are portable across all supported CLIM host w
dow systems. Furthermore, since the specific look and feel of each such gadget is “
in CLIM Lisp code, the gadget implementation will look and behave the same in all e
ronments.

10.5.1 Abstract Gadgets

The push button and slider gadgets alluded to previously areabstract gadgets. The callback
interface to all of the various implementations of the gadget is defined by the abstract
In the:panes clause ofdefine-application-frame, the abbreviation for a gadget is the nam
of the abstract gadget class.

At pane creation time (that is,make-pane), the frame manager resolves the abstract cla
into a specific implementation class; the implementation classes specify the detailed
and feel of the gadget. Each frame manager will keep a mapping from abstract gadg
an implementation class; if the frame manager does not implement its own gadget fo
abstract gadget classes in the following sections, it will use the portable class provid
CLIM. Since every implementation of an abstract gadget class is a subclass of the ab
class, they all share the same programmer interface.
250 CLIM User’s Guide 10.5

fied
lly, a
ric
vary

n the
at has

ument
10.5.1.1 Using Gadgets

Every gadget has aclient that is specified when the gadget is created. The client is noti
via the callback mechanism when any important user interaction takes place. Typica
gadget’s client will be an application frame or a composite pane. Each callback gene
function is invoked on the gadget, its client, the gadget id, and other arguments that
depending on the callback.

For example, the argument list foractivate-callback looks like(gadget client gadget-id).
Assuming the programmer has defined an application frame calledbutton-test that has a
CLIM stream pane in the slotoutput-pane, she could write the following method:

(defmethod activate-callback
 ((button push-button) (client button-test) gadget-id)
 (with-slots (output-pane) client
 (format output-pane
 "The button ~S was pressed, client ~S, id ~S."
 button client gadget-id)))

One problem with this example is that it differentiates on the class of the gadget, not o
particular gadget instance. That is, the same method will run for every push button th
thebutton-test frame as its client.

One way to distinguish between the various gadgets is via thegadget id, which is also spec-
ified when the gadget is created. The value of the gadget id is passed as the third arg
to each callback generic function. In this case, if we have two buttons, we might installstart
andstop as the respective gadget ids and then useeql specializers on the gadget ids. We
could then refine the previous method as:

(defmethod activate-callback
 ((button push-button) (client button-test)
 (gadget-id (eql ’start)))
 (start-test client))

(defmethod activate-callback
 ((button push-button) (client button-test)
 (gadget-id (eql ’stop)))
 (stop-test client))
Panes and Gadgets 10.5 251

uld
arg
;; Create the start and stop push buttons
(make-pane ’push-button
 :label "Start"
 :client frame :id ’start)
(make-pane ’push-button
 :label "Stop"
 :client frame :id ’stop)

Another way to distinguish between gadgets is to specify explicitly what function sho
be called when the callback is invoked. This is done by supplying an appropriate init
when the gadget is created. The previous example could then be written as follows:

;; No callback methods needed; just create the push buttons.
(make-pane ’push-button
 :label "Start"
 :client frame :id ’start
 :activate-callback
 #’(lambda (gadget)
 (start-test (gadget-client gadget))))

(make-pane ’push-button
 :label "Stop"
 :client frame :id ’stop
 :activate-callback
 #’(lambda (gadget)
 (stop-test (gadget-client gadget))))

10.5.1.2 Implementing Gadgets

The following shows how a push button gadget might be implemented.

;; A PUSH-BUTTON uses the ACTIVATE-CALLBACK, and has a label.
;; This is the abstract class
(defclass push-button (action-gadget labelled-gadget) ())

;; Here is a concrete implementation of a PUSH-BUTTON.
;; The "null" frame manager create a pane of type PUSH-BUTTON-PANE when
;; asked to create a PUSH-BUTTON.
(defclass push-button-pane
 (push-button leaf-pane space-requirement-mixin)
 ((show-as-default :initarg :show-as-default
 :accessor push-button-show-as-default)
 (armed :initform nil)))
252 CLIM User’s Guide 10.5

;; General highlight-by-inverting method
(defmethod highlight-button ((pane push-button-pane) medium)
 (with-bounding-rectangle* (left top right bottom) (sheet-region pane)
 (draw-rectangle*
 medium left top right bottom
 :ink +flipping-ink+ :filled t)))

;; Compute the amount of space required by a PUSH-BUTTON-PANE
(defmethod compose-space ((pane push-button-pane) &key width height)
 (multiple-value-bind (width height)
 (compute-gadget-label-size pane)
 (make-space-requirement :width width :height height)))

;; This gets invoked to draw the push button.
(defmethod repaint-sheet ((pane push-button-pane) region)
 (declare (ignore region))
 (with-sheet-medium (medium pane)
 (let ((text (gadget-label pane))
 (text-style (slot-value pane ’text-style))
 (armed (slot-value pane ’armed))
 (region (sheet-region pane)))
 (multiple-value-call #’draw-rectangle*
 medium (bounding-rectangle*
 (sheet-region pane))
 :filled nil)
 (draw-textmedium
 text
 (clim-utils::bounding-rectangle-center region)
 :text-style text-style
 :align-x ’:center
 :align-y ’:top)
 (when (eql armed ’:button-press)
 (highlight-button pane medium)))))

;; When we enter the push button’s region, arm it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-enter-event))
 (with-slots (armed) pane
 (unless armed
 (setf armed t)
 (armed-callback
 pane (gadget-client pane) (gadget-id pane)))))
Panes and Gadgets 10.5 253

.

;; When we leave the push button’s region, disarm it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-exit-event))
 (with-slots (armed) pane
 (when armed
 (when (eql armed ’:button-press)
 (highlight-button pane medium))
 (setf armed nil)
 (disarmed-callback
 pane (gadget-client pane) (gadget-id pane)))))

;; When the user presses a pointer button, ensure that the button
;; is armed, and highlight it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-button-press-event))
 (with-slots (armed) pane
 (unless armed
 (setf armed ’:button-press)
 (armed-callback
 pane (gadget-client pane) (gadget-id pane))
 (with-sheet-medium (medium pane)
 (highlight-button pane medium)))))

;; When the user releases the button and the button is still armed,
;; call the activate callback.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-button-release-event))
 (with-slots (armed) pane
 (when (eql armed ’:button-press)
 (activate-callback
 pane (gadget-client pane) (gadget-id pane))
 (setf armed t)
 (with-sheet-medium (medium pane)
 (highlight-button pane medium)))))

10.5.2 Basic Gadget Classes

The following are the basic gadget classes upon which all abstract gadgets are built

gadget [Protocol Class]

Summary: The protocol class that corresponds to a gadget, a subclass ofpane. If you want
to create a new class that behaves like a gadget, it should be a subclass of gadget.
Subclasses ofgadget must obey the gadget protocol.
254 CLIM User’s Guide 10.5

ec-
k of

 in a
 All of the subclasses ofgadget are mutable.

gadgetp [Function]

Arguments:object
Summary: Returnst if object is a gadget; otherwise. it returnsnil .

basic-gadget [Class]

Summary: The base class on which all CLIM gadget classes are built.

:id [Initarg]

:client [Initarg]

:armed-callback [Initarg]

:disarmed-callback [Initarg]

Summary: All subclasses ofgadget must handle these four initargs, which are used to sp
ify, respectively, the gadget id, client, armed callback, and disarmed callbac
the gadget.

gadget-id [Generic Function]

Arguments:gadget

(setf gadget-id) [Generic Function]

Arguments:id gadget
Summary: Returns (or sets) the gadget id of the gadgetgadget. The id is typically a simple

Lisp object that uniquely identifies the gadget.

gadget-client [Generic Function]

Arguments:gadget

(setf gadget-client) [Generic Function]

Arguments:client gadget
Summary: Returns the client of the gadgetgadget. The client is usually an application

frame, but it could be another gadget (for example, a push button contained
radio box).
Panes and Gadgets 10.5 255

ck,
-

e

 to
to its

-

some
, no
gadget-armed-callback [Generic Function]

Arguments:gadget

gadget-disarmed-callback [Generic Function]

Arguments:gadget
Summary: Returns the functions that will be called when the armed or disarmed callba

respectively, are invoked. These functions will be invoked with a single argu
ment, the gadget.

 When these functions returnnil , there is no armed (or disarmed) callback for th
gadget.

armed-callback [Callback]

Arguments:gadget client gadget-id

disarmed-callback [Callback]

Arguments:gadget client gadget-id
Summary: These callbacks are invoked when the gadgetgadget is, respectively, armed or

disarmed. The exact definition of arming and disarming varies from gadget
gadget, but typically a gadget becomes armed when the pointer is moved in
region, and disarmed when the pointer moves out of its region.

 The default methods (onbasic-gadget) call the function stored ingad-
get-armed-callback orgadget-disarmed-callback with one argument, the gad
get.

activate-gadget [Generic Function]

Arguments:gadget
Summary: Causes the host gadget to become active, that is, available for input.

deactivate-gadget [Generic Function]

Arguments:gadget
Summary: Causes the host gadget to become inactive, that is, unavailable for input. In

environments this may cause the gadget to become grayed over; in others
visual effect may be detected.

gadget-active-p [Generic Function]

Arguments:gadget
Summary: Returnst if gadget is active, that is, has been activated withactivate-gadget.
256 CLIM User’s Guide 10.5

-
ber

yn-

he
note-gadget-activated [Generic Function]

Arguments:client gadget
Summary: This function is invoked after a gadget is made active.

note-gadget-deactivated [Generic Function]

Arguments:client gadget
Summary: This function is invoked after a gadget is made inactive.

value-gadget [Class]

Summary: The class used by gadgets that have a value; a subclass ofbasic-gadget.

:value [Initarg]

:value-changed-callback [Initarg]

Summary: All subclasses ofvalue-gadget must handle these two initargs, which specify,
respectively, the initial value and the value changed callback of the gadget.

gadget-value [Generic Function]

Arguments:value-gadget
Summary: Returns the value of the gadgetvalue-gadget. The interpretation of the value var

ies from gadget to gadget. For example, a scroll bar’s value might be a num
between 0 and 1, while a toggle button’s value is eithert or nil . (The documen-
tation of each individual gadget specifies how to interpret the value.)

(setf gadget-value) [Generic Function]

Arguments:value value-gadget&key invoke-callback
Summary: Sets the gadget’s value to the specified value. In addition, ifinvoke-callback is t

(the default isnil), the value-changed callback for the gadget is invoked. The s
tax for using(setf gadget-value) is:

(setf (gadget-value gadget :invoke-callback t) new-value)

gadget-value-changed-callback [Generic Function]

Arguments:value-gadget
Summary: Returns the function that will be called when the value changed callback is

invoked. This function will be invoked with two arguments, the gadget and t
new value.
Panes and Gadgets 10.5 257

et.

e.

h but-

ti-

unc-

t.

 it, for
 When this function returnsnil , there is no value-changed callback for the gadg

value-changed-callback [Callback]

Arguments:value-gadget client gadget-id value
Summary: This callback is invoked whenever the value of a gadget is changed.

 The default method (onvalue-gadget) calls the function stored ingad-
get-value-changed-callback with two arguments, the gadget and the new valu

 CLIM implements or inherits a method forvalue-changed-callback for every
gadget that is a subclass ofvalue-gadget.

action-gadget [Class]

Summary: The class used by gadgets that perform some kind of action, such as a pus
ton; a subclass ofbasic-gadget.

:activate-callback [Initarg]

Summary: All subclasses ofaction-gadget must handle this initarg, which specifies the ac
vate callback of the gadget.

gadget-activate-callback [Generic Function]

Arguments:action-gadget
Summary: Returns the function that will be called when the gadget is activated. This f

tion will be invoked with one argument, the gadget.

 When this function returnsnil , there is no value-activate callback for the gadge

activate-callback [Callback]

Arguments:action-gadget client gadget-id
Summary: This callback is invoked when the gadget is activated.

 The default method (onaction-gadget) calls the function stored ingadget-acti-
vate-callback with one argument, the gadget.

 CLIM implements or inherits a method foractivate-callback for every gadget
that is a subclass ofaction-gadget.

oriented-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has an orientation associated with
example, a slider. This class is not intended to be instantiated.
258 CLIM User’s Guide 10.5

utton.

echa-

col
:orientation [Initarg]

Summary: All subclasses oforiented-gadget-mixin must handle this initarg, which is used
to specify the orientation of the gadget. The value is either:horizontal or :ver-
tical.

gadget-orientation [Generic Function]

Arguments:oriented-gadget
Summary: Returns the orientation of the gadgetoriented-gadget. Typically, this will be a

keyword such as:horizontal or :vertical .

labelled-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has a label, for example, a push b
This class is not intended to be instantiated.

:label [Initarg]

:align-x [Initarg]

:align-y [Initarg]

Summary: All subclasses oflabelled-gadget-mixin must handle these initargs, which are
used to specify the label and itsx andy alignment. Labelled gadgets will also
have a text style for the label, but this is managed by the usual text-style m
nism for panes.

gadget-label [Generic Function]

Arguments:labelled-gadget

(setf gadget-label) [Generic Function]

Arguments:label labelled-gadget
Summary: Returns (or sets) the label of the gadgetlabelled-gadget. The label must be a

string. Changing the label of a gadget may result in invoking the layout proto
on the gadget and its ancestor sheets.

gadget-label-align-x [Generic Function]

Arguments:labelled-gadget
Panes and Gadgets 10.5 259

gad-

may
.

r.

e

(setf gadget-label-align-x) [Generic Function]

Arguments:alignment labelled-gadget

gadget-label-align-y [Generic Function]

Arguments:labelled-gadget

(setf gadget-label-align-y) [Generic Function]

Arguments:alignment labelled-gadget
Summary: Returns (or sets) the alignment of the label of the gadgetlabelled-gadget. Chang-

ing the alignment a gadget may result in invoking the layout protocol on the
get and its ancestor sheets.

gadget-label-text-style [Generic Function]

Arguments:labelled-gadget

(setf gadget-label-text-style) [Generic Function]

Arguments:text-style labelled-gadget
Summary: Returns (or sets) the text style of the label of the gadgetlabelled-gadget. This

must be a CLIM text style object. Changing the label text style of a gadget
result in invoking the layout protocol on the gadget and its ancestor sheets

range-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has a range, for example, a slide

:min-value [Initarg]

:max-value [Initarg]

Summary: All subclasses ofrange-gadget-mixin must handle these two initargs, which ar
used to specify the minimum and maximum value of the gadget.

gadget-min-value [Generic Function]

Arguments:range-gadget

(setf gadget-min-value) [Generic Function]

Arguments:min-value range-gadget
Summary: Returns (or sets) the minimum value of the gadgetrange-gadget, a real number.
260 CLIM User’s Guide 10.5

e

iety of
and

rlying

enta-
y gen-
gadget-max-value [Generic Function]

Arguments:range-gadget

(setf gadget-max-value) [Generic Function]

Arguments:max-value range-gadget
Summary: Returns (or sets) the maximum value of the gadgetrange-gadget, a real number.

gadget-range [Generic Function]

Arguments:range-gadget
Summary: Returns the range ofrange-gadget, that is, the difference of the maximum valu

and the minimum value.

gadget-range* [Generic Function]

Arguments:range-gadget
Summary: Returns the the minimum value and the maximum value ofrange-gadget as two

values.

10.5.3 Abstract Gadget Classes

CLIM supplies a set of gadgets that have been designed to be compatible with a var
user interface toolkits, including Xt widget-based toolkits (such as Motif), OpenLook,
the MacToolbox.

Each gadget maps to an implementation-specific object that is managed by the unde
toolkit. For example, while a CLIM program manipulates an object of classscroll-bar, the
underlying implementation-specific object might be a CAPI widget of type
capi:scroll-bar. As events are processed on the underlying object, the corresponding
generic operations are applied to the Lisp gadget.

Note that not all operations will necessarily be generated by particular toolkit implem
tions. For example, a user interface toolkit that is designed for a 3-button mouse ma
erate significantly more gadget events than one designed for a 1-button mouse.

10.5.3.1 The Label Gadget

label-pane [Leaf Pane]
Panes and Gadgets 10.5 261

pops

;

ist
 the

is
labelling [Macro]

Arguments:(&rest options&key label label-alignment&allow-other-keys) &body
contents

Summary: Creates a pane that consists of the specified label, which is a string.

 Valid options are:align-x (one of:left , :right , or :center) and:text-style.

label-alignment may be one of:top or :bottom),

contents must be a single (but possibly compound) pane.

10.5.3.2 The List-Pane and Option-Pane Gadgets

A list pane is a list of buttons. An option pane is a single button that, when pressed,
up a menu of selections.

list-pane [Class]

Summary: The class that implements an abstract list pane. It is a subclass ofvalue-gadget.

:mode [Initarg]

Summary: Either:one-of or :some-of. When it is:one-of, the list pane acts like a radio box
that is, only one item can be selected. When it is:some-of (the default), zero or
more items can be selected at a time.

:items [Initarg]

:name-key [Initarg]

:value-key [Initarg]

:test [Initarg]

Summary: The:items initarg specifies a sequence of items to use as the items of the l
pane. The name of the item is extracted by the function that is the value of
:name-key initarg, which defaults toprinc-to-string . The value of the item is
extracted by the function that is the value of the:value-key initarg, which
defaults toidentity. The:test initarg specifies a function of two argument that
used to compare items; it defaults toeql. For example:
262 CLIM User’s Guide 10.5

ption
 the

is
(make-pane ’list-pane
:value ’("Lisp" "C++")
:mode :some-of
:items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada")
:test ’string=)

gadget-value [Generic Function]

Arguments:(buttonlist-pane)
Summary: Returns the single selected item when the mode is:one-of, or a sequence of

selected items when the mode is:some-of.

generic-list-pane [Class]

Summary: The class that implements a portable list pane; a subclass oflist-pane.

option-pane [Class]

Summary: The class that implements an abstract option pane. It is a subclass ofvalue-gad-
get.

:mode [Initarg]

Summary: Either:one-of or :some-of. When it is:one-of, the option pane acts like a radio
box; that is, only one item can be selected. When it is:some-of (the default), zero
or more items can be selected at a time.

:items [Initarg]

:name-key [Initarg]

:value-key [Initarg]

:test [Initarg]

Summary: The:items initarg specifies a sequence of items to use as the items of the o
pane. The name of the item is extracted by the function that is the value of
:name-key initarg, which defaults toprinc-to-string . The value of the item is
extracted by the function that is the value of the:value-key initarg, which
defaults toidentity. The:test initarg specifies a function of two argument that
used to compare items; it defaults toeql.
Panes and Gadgets 10.5 263

 from

the
 actu-

he
lly ac-
gadget-value [Generic Function]

Arguments:(buttonoption-pane)
Summary: Returns the single selected item when the mode is:one-of, or a sequence of

selected items when the mode is:some-of.

generic-option-pane [Class]

Summary: The class that implements a portable option pane; a subclass ofoption-pane.

10.5.3.3 The Menu-Button Gadget

Note: The Menu-Button gadget is available only in Liquid CLIM.

Themenu-button gadget provides similar behavior to thetoggle-button gadget, except
that it is intended for items in menus. The returned value is generally the item chosen
the menu.

arm-callback will be invoked when the menu button becomes armed (such as when
pointer moves into it, or a pointer button is pressed over it). When the menu button is
ally activated (by releasing the pointer button over it),value-changed-callback will be in-
voked. Finally,disarm-callback will be invoked aftervalue-changed-callback, or when
the pointer is moved outside of the menu button.

menu-button [Class]

Summary: The class that implements an abstract menu button. It is a subclass ofvalue-
gadget andlabelled-gadget-mixin.

menu-button-pane [Class]

Summary: The class that implements a portable menu button; a subclass ofmenu-button.

10.5.3.4 The Push-Button Gadget

Thepush-button gadget provides press-to-activate switch behavior.

arm-callback will be invoked when the push button becomes armed (such as when t
pointer moves into it, or a pointer button is pressed over it). When the button is actua
tivated (by releasing the pointer button over it),activate-callback will be invoked. Finally,
264 CLIM User’s Guide 10.5

ton

t any
x is
of the
nt se-
ave

, but
me.
disarm-callback will be invoked afteractivate-callback, or when the pointer is moved
outside of the button.

push-button [Class]

Summary: The class that implements an abstract push button. It is a subclass ofactive-gad-
get and labelled-gadget-mixin.

:show-as-default [Initarg]

Summary: This initializes the “show as default” property for the gadget.

push-button-show-as-default [Generic Function]

Arguments:push-button
Summary: Returns the “show as default” property for the push button gadget. Whent, the

push button will be drawn with a heavy border, which indicates that this but
is the “default operation.”

push-button-pane [Class]

Summary: The class that implements a portable push button; a subclass ofpush-button.

10.5.3.5 The Radio-Box and Check-Box Gadgets

A radio box is a special kind of gadget that constrains one or more toggle buttons. A
one time, only one of the buttons managed by the radio box may be “on.” A radio bo
responsible for laying out its contents (the buttons that it contains). So that the value
radio box can be properly computed, it is a client of each of its buttons. As the curre
lection changes, the previously selected button and the newly selected button both h
theirvalue-changed-callback handlers invoked.

Like a radio box, a check box is a gadget that constrains a number of toggle buttons
unlike a radio box, a check box may have zero or more of its buttons selected at a ti

radio-box [Class]

Summary: The class that implements a radio box. It is a subclass ofvalue-gadget andori-
ented-gadget-mixin.
Panes and Gadgets 10.5 265

 will

the
:current-selection [Initarg]

Summary: This is used to specify which button, if any, should be initially selected.

radio-box-current-selection [Generic Function]

Arguments:radio-box

(setf radio-box-current-selection) [Generic Function]

Arguments:button radio-box
Summary: Returns (or sets) the current selection for the radio box. The current selection

be one of the toggle buttons in the box.

radio-box-selections [Generic Function]

Arguments:radio-box
Summary: Returns a sequence of all the selections in the radio box. The elements of

sequence will be toggle buttons.

gadget-value [Generic Function]

Arguments:(buttonradio-box)
Summary: Returns the selected button (i.e., returns the same value asradio-box-cur-

rent-selection).

radio-box-pane [Class]

Summary: The class that implements a portable radio box; it is a subclass ofradio-box.

check-box [Class]

Summary: The class that implements a check box.check-box is a subclass ofvalue-gadget
andoriented-gadget-mixin.

:current-selection [Initarg]

Summary: This is used to specify which button, if any, should be initially selected.

check-box-current-selection [Generic Function]

Arguments:check-box

(setf check-box-current-selection) [Generic Function]

Arguments:button check-box
266 CLIM User’s Guide 10.5

tion

 the

cond

e

Summary: Returns (or sets) the current selection for the check box. The current selec
will be a list of zero or more of the toggle buttons in the box.

check-box-selections [Generic Function]

Arguments:check-box
Summary: Returns a sequence of all the selections in the check box. The elements of

sequence will be toggle buttons.

gadget-value [Generic Function]

Arguments:(buttoncheck-box)
Summary: Returns the selected buttons as a list (i.e., returns the same value as

check-box-current-selection).

check-box-pane [Class]

Summary: The class that implements a portable check box; it is a subclass ofcheck-box.

with-radio-box [Macro]

Arguments:(&rest options&key (typeone-of) &allow-other-keys) &body body
Summary: Creates a radio box whose buttons are created by the forms inbody. The macro

radio-box-current-selection can be wrapped around one of forms inbody in
order to indicate that that button is the current selection.

 A radio box will be created iftype is :one-of, a check box if:some-of.

 For example, the following creates a radio box with three buttons in it, the se
of which is initially selected.

 (with-radio-box ()
 (make-pane ’toggle-button :label "Mono")
 (radio-box-current-selection
 (make-pane ’toggle-button :label "Stereo"))
 (make-pane ’toggle-button :label "Quad"))

 The following simpler form can be used when you do not need to control th
appearance of each button closely.

 (with-radio-box () "Mono" "Stereo" "Quad")

10.5.3.6 The Scroll-Bar Gadget

Thescroll-bar gadget corresponds to a scroll bar.
Panes and Gadgets 10.5 267

s
and
scroll-bar [Class]

Summary: The class that implements a scroll bar. This is a subclass ofvalue-gadget, ori-
ented-gadget-mixin, andrange-gadget-mixin.

:drag-callback [Initarg]

:scroll-to-bottom-callback [Initarg]

:scroll-to-top-callback [Initarg]

:scroll-down-line-callback [Initarg]

:scroll-up-line-callback [Initarg]

:scroll-down-page-callback [Initarg]

:scroll-up-page-callback [Initarg]

Summary: Specifies the various callbacks for the scroll bar.

scroll-bar-drag-callback [Generic Function]

Arguments:scroll-bar
Summary: Returns the function that will be called when the indicator of the scroll bar i

dragged. This function will be invoked with a two arguments, the scroll bar
the new value.

scroll-bar-scroll-to-bottom-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-to-top-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-down-line-callback [Generic Function]

Arguments:scroll-bar
268 CLIM User’s Guide 10.5

he
l bar.

he

er
scroll-bar-scroll-up-line-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-down-page-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-up-page-callback [Generic Function]

Arguments:scroll-bar
Summary: Returns the functions that will be used as callbacks when various parts of t

scroll bar are clicked on. These are all functions of one argument, the scrol

 When any of these functions returnsnil , there is no callback of that type for the
gadget.

drag-callback [Callback]

Arguments:scroll-bar client gadget-id value
Summary: This callback is invoked when the value of the scroll bar is changed while t

indicator is being dragged. The function stored inscroll-bar-drag-callback is
called with two arguments, the scroll bar and the new value.

 Thevalue-changed-callback is invoked only after the indicator is released aft
dragging it.

scroll-to-top-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-to-bottom-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-up-line-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-up-page-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-down-line-callback [Callback]

Arguments:scroll-bar client gadget-id
Panes and Gadgets 10.5 269

r are
ond-

 cur-
ould

d.
ue.
scroll-down-page-callback [Callback]

Arguments:scroll-bar client gadget-id
Summary: All the callbacks above are invoked when appropriate parts of the scroll ba

clicked on. Note that each implementation may not have “hot spots” corresp
ing to each of these callbacks.

gadget-value [Generic Function]

Arguments:(buttonscroll-bar)
Summary: Returns a real number within the specified range.

scroll-bar-pane [Class]

Summary: The class that implements a portable scroll bar; it is a subclass ofscroll-bar.

10.5.3.7 The Slider Gadget

Theslider gadget corresponds to a slider.

slider [Class]

Summary: The class that implements a slider. This is a subclass ofvalue-gadget, ori-
ented-gadget-mixin, range-gadget-mixin, andlabelled-gadget-mixin.

:drag-callback [Initarg]

:show-value-p [Initarg]

:decimal-places [Initarg]

Summary: Specifies the drag callback for the slider, whether the slider should show its
rent value, and how many decimal places to the right of the decimal point sh
be displayed when the slider is showing its current value.

slider-drag-callback [Generic Function]

Arguments:slider
Summary: Returns the function that will be called when the slider’s indicator is dragge

This function will be invoked with two arguments, the slider and the new val

 When this function returnsnil , there is no drag callback for the gadget.
270 CLIM User’s Guide 10.5

di-

er

d the
t of
drag-callback [Callback]

Arguments:slider client gadget-id value
Summary: This callback is invoked when the value of the slider is changed while the in

cator is being dragged. The function stored inslider-drag-callback is called
with two arguments, the slider and the new value.

 Thevalue-changed-callback is invoked only after the indicator is released aft
dragging it.

gadget-value [Generic Function]

Arguments:(buttonslider)
Summary: Returns a real number that is the value ofbutton.

slider-pane [Class]

Summary: The class that implements a portable slider; a subclass ofslider.

:number-of-tick-marks [Initarg]

:number-of-quanta [Initarg]

Summary: Specifies the number of tick marks that should be drawn on the scroll bar, an
number of quanta in the scroll bar. If the scroll bar is quantized, it will consis
discrete (rather than continuous) values.

Note: :number-of-tick-marks and:number-of-quanta are available only in Liquid
CLIM.

gadget-show-value-p [Generic Function]

Arguments:slider
Summary: Returnst if the slider shows its value; otherwise, it returnsnil .

Note: gadget-show-value-p is available only in Liquid CLIM.

10.5.3.8 The Text-Field and Text-Editor Gadgets

Thetext-field gadget corresponds to a small field containing text. Thetext-editor gadget
corresponds to a large field containing multiple lines of text.
Panes and Gadgets 10.5 271

of

 sub-

ines.

s of
text-field [Class]

Summary: The class that implements a text field. This is a subclass ofvalue-gadget and
action-gadget. The value of a text field is the text string.

:editable-p [Initarg]

Summary: Specifies whether or not the text field can be edited.

gadget-value [Generic Function]

Arguments:(value-gadgettext-field)
Summary: Returns the resulting string.

text-field-pane [Class]

Summary: The instantiable class that implements a portable text field; it is a subclass
text-field.

text-editor [Class]

Summary: The instantiable class that implements an abstract large text field. This is a
class oftext-field.

 The value of a text editor is the text string.

:ncolumns [Initarg]

:nlines [Initarg]

Summary: Specifies the width and height of the text editor in columns and number of l

gadget-value [Generic Function]

Arguments:(value-gadgettext-editor)
Summary: Returns the resulting string.

text-editor-pane [Class]

Summary: The instantiable class that implements a portable text editor; it is a subclas
text-editor.
272 CLIM User’s Guide 10.5

ars

 the
is ac-

or
10.5.3.9 The Toggle-Button Gadget

Thetoggle-button gadget provides “on/off” switch behavior. This gadget typically appe
as a recessed or prominent box. If the box is recessed, the gadget’s value ist; if it is prom-
inent, the value isnil .

arm-callback will be invoked when the toggle button becomes armed (such as when
pointer moves into it, or a pointer button is pressed over it). When the toggle button
tually activated (by releasing the pointer button over it),value-changed-callback will be
invoked. Finally,disarm-callback will be invoked aftervalue-changed-callback, or when
the pointer is moved outside of the toggle button.

toggle-button [Class]

Summary: The class that implements an abstract toggle button. It is a subclass ofvalue-gad-
get andlabelled-gadget-mixin.

:indicator-type [Initarg]

Summary: This initializes the indicator type property for the gadget.

toggle-button-indicator-type [Generic Function]

Arguments:toggle-button
Summary: Returns the indicator type for the toggle button. This will be either:one-of or

:some-of. The indicator type controls the appearance of the toggle button. F
example, many toolkits present a one-of-many choice differently from a
some-of-many choice.

gadget-value [Generic Function]

Arguments:(value-gadgettoggle-button)
Summary: Returnst if the button is selected; otherwise, it returnsnil .

toggle-button-pane [Class]

Summary: The class that implements a portable toggle button; a subclass oftoggle-button.
Panes and Gadgets 10.5 273

anes.
 an

 the

adget

a gad-

t con-
g

o an

ing a
10.5.4 Integrating Gadgets and Output Records

In addition to gadget panes, CLIM allows gadgets to be used inside of CLIM stream p
For instance, anaccepting-values pane whose fields consist of gadgets may appear in
ordinary CLIM stream pane.

Note that many of the functions in the output record protocol must correctly manage
case where output records contain gadgets. For example,(setf output-record-position)
may need to notify the host window system that the toolkit object representing the g
has moved,window-clear needs to deactive any gadgets, and so forth.

gadget-output-record [Class]

Summary: The instantiable class that represents an output record class that contains
get. This is a subclass ofoutput-record.

with-output-as-gadget [Macro]

Arguments:(stream&rest options)&body body
Summary: Invokesbody to create a gadget, and then creates a gadget output record tha

tains the gadget and installs it into the output history of the output recordin
streamstream. The returned value ofbody must be the gadget.

 The options inoptions are passed as initargs to the call toinvoke-with-new-out-
put-record that is used to create the gadget output record.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used.body may
have zero or more declarations as its first forms.

 For example, the following could be used to create an output record contain
radio box that contains several toggle buttons:

 (with-output-as-gadget
 (stream)
 (let* ((radio-box
 (make-pane ’radio-box
 :client stream :id ’radio-box)))
 (dolist (item sequence)
 (make-pane ’toggle-button
 :label (princ-to-string (item-name item))
 :value (item-value item)
 :id item :parent radio-box))
 radio-box))
Panes and Gadgets 274

m to
 An example of a push button that calls back into the presentation type syste
execute a command might be as follows:

 (with-output-as-gadget
 (stream)
 (make-pane ’push-button
 :label "Click here to exit"
 :activate-callback
 #’(lambda (button)
 (frame-exit (pane-frame button)))))
275 CLIM User’s Guide

276 CLIM User’s Guide 10.5

Chapter 11 Commands
Commands 10.5 277

 279

.. 280

.. 281
 281

.. 283

. 286

. 289

 290

 291

... 291

.. 293

.. 296
 296
298
. 302
303
304
. 307
Chapter 11 Commands

11.1 Introduction to CLIM Commands ...

11.2 Defining Commands the Easy Way ...
11.2.1 Command Names and Command Line Names.........................
11.2.2 The Command-Defining Macro..

11.3 Command Objects..

11.4 CLIM Command Tables ...

11.5 CLIM Predefined Command Tables ...

11.6 Conditions Relating to CLIM Command Tables

11.7 Styles of Interaction Supported by CLIM..

11.8 Command-Related Presentation Types ...

11.9 The CLIM Command Processor ..

11.10 Advanced Topics..
11.10.1 CLIM Command Tables ...
11.10.2 CLIM Command Menu Interaction Style
11.10.3 Mouse Interaction Via Presentation Translators......................
11.10.4 CLIM Command Line Interaction Style
11.10.5 CLIM Keystroke Interaction Style..
11.10.6 The CLIM Command Processor ..
278 CLIM User’s Guide 10.5

n type
cts,”

re
 the
ro-

 The

s a

ents.
l
t is

m-
uted is

m-
and
11.1 Introduction to CLIM Commands

In CLIM, users interact with applications through the use ofcommands. Commands are a
way of representing an operation in an application.

Commands are performed by the command loop, which accepts input of presentatio
command and then executes the accepted command. Section 11.3, “Command Obje
discusses how commands are represented.

CLIM also supportsactions, which are performed directly by the user interface. Actions a
seldom necessary, as it is usually the functionality of commands that is desired. See
macrodefine-presentation-action for a discussion of when presentation actions are app
priate.

CLIM supports four main styles of interaction:

■ Mouse interaction via command menus

A command is invoked by clicking on an item in a menu.

■ Mouse interaction via command translators

A command can be invoked by clicking on any object displayed by the interface.
particular combination of mouse-buttons and modifier keys (e.g.,SHIFT, CONTROL)
is called agesture. As part of the presentation system, a command translator turn
gesture on an object into a command.

■ Keyboard interaction using a command-line processor

The user types a complete textual representation of command names and argum
The text is parsed by the command-line processor to form a command. A specia
character (usuallyNEWLINE) indicates to the command-line processor that the tex
ready to be parsed.

■ Keyboard interaction using keystroke accelerators

A single keystroke invokes the associated command.

The choice of interaction styles is independent of the command loop or the set of co
mands. The relationship between a user’s interactions and the commands to be exec
governed by command tables. Acommand table is an object that mediates between a co
mand input context (e.g., the top level of an application frame), a set of commands,
these interaction styles.
Commands 11.1 279

macro

es and
hose
ome

ltiple

mong
elp or-

erful

 the

e
fine
For simple CLIM applications,define-application-frame will automatically create a com-
mand table and a top-level command input context, and define a command-defining
for you.

Following a discussion of the simple approach, this chapter discusses command tabl
the command processor in detail. This information is provided for the curious and for t
who feel they require further control over their application’s interactions. These are s
circumstances that might suggest something beyond the simple approach:

■ Your application requires more than one command table if, for example, it has mu
modes with different sets of commands available in each mode.

■ If you have sets of commands that are common among several modes or even a
several applications, you could use several command tables and inheritance to h
ganize your command sets.

■ Your application may be complex enough that you may want to develop more pow
tools for examining and manipulating command tables.

If you do not require this level of detail, only read Section 11.2, “Defining Commands
Easy Way.”

11.2 Defining Commands the Easy Way

The easiest way to define commands is to usedefine-application-frame, which automati-
cally creates a command table for your application. This behavior is controlled by th
:command-table option. It also defines the command-defining macro you will use to de
the commands for your application. This is controlled by the:command-definer option.

This command-definer macro behaves similarly todefine-command, but automatically
uses your application’s command table, so you needn’t specify one.

Here is a code fragment illustrating the use ofdefine-application-frame, which defines an
application namededitor. A command table namededitor-command-table is defined to
mediate the user’s interactions with theeditor application.define-application-frame also
defines a macro nameddefine-editor-command, which you will use to define commands
for theeditor application and install them in the command tableeditor-command-table.

(clim:define-application-frame editor () ()
 (:command-table editor-command-table)
 (:command-definer define-editor-command) ...)
Commands 280

ated by
nes,

e ap-

n
f that

ack-

nd
he com-

),
his ex-
 name
Note that for this particular example, the:command-table and:command-definer options
are not specified, since the names that they specify are the ones that would be gener
default. Provide these options only when you want different names than the default o
you don’t want a command definer, or you want to specify which command tables th
plication’s command table inherits from. See the macrodefine-application-frame, in Sec-
tion 9.2, “Defining CLIM Application Frames,” for a description of these options.

11.2.1 Command Names and Command Line Names

Every command has acommand name, which is a symbol. The symbol names the functio
that implements the command. The body of the command is the function definition o
symbol.

By convention, commands are named with acom- prefix, although CLIM does not enforce
this convention.

To avoid collisions among command names, each application should live in its own p
age; for example, there might be several commands namedcom-show-chart defined
for each of a spreadsheet, a navigation program, and a medical application.

CLIM supports acommand line namewhich is the "command" that the end user sees a
uses, as opposed to the construct that is the command’s actual name. For example, t
mandcom-show-chart would have a command-line name ofShow Chart . When de-
fining a command usingdefine-command (or the application’s command defining macro
you can have a command line name generated automatically. As you can see from t
ample, the automatically generated command line name consists of the command’s
with the hyphens replaced by spaces and the words capitalized. Anycom- prefix is re-
moved.

11.2.2 The Command-Defining Macro

Thedefine-editor-command macro, automatically generated by thedefine-applica-
tion-frame code previously, is used to define a command for theeditor application. It is
just likedefine-command, except that you don’t need to specifyeditor-command-table
as the command table in which to define the command.define-editor-command will au-
tomatically useeditor-command-table.
281 CLIM User’s Guide

en-

ter for

same

-

n type
 com-
ype of
-
pter 8,

to a
Through the appropriate use of the options todefine-editor-command (seedefine-com-
mand for details), you can provide the command via any number of the previously m
tioned interaction styles. For example, you could install the command in theeditor appli-
cation’s menu, as well as specifying a single keystroke command accelerator charac
it.

The following example defines a command whose command name iscom-save-file .
The com-save-file command will appear in the application’s command menu as
Save File . (The command-menu name is derived from the command name in the
way as the command-line name.) The single keystrokeCONTROL-s is also defined to in-
voke the command.

(define-editor-command
 (com-save-file :menu t
 :keystroke #\c-\s) () ...)

Here, a command line name ofSave File is associated with the com-save-file
command. The user can then typeSave File to the application’s interaction pane to in
voke the command.

(define-editor-command
 (com-save-file :name "Save File") () ...)

Since the command processor works by establishing an input context of presentatio
command and executing the resulting input, any displayed presentation can invoke a
mand, so long as there is a translator defined that translates from the presentation t
the presentation to the presentation typecommand. In this way, you can associate a com
mand with a pointer gesture when it is applied to a displayed presentation. (See Cha
“Presentation Translators in CLIM,” for details.)

define-presentation-to-command-translator [Macro]

Arguments: name (from-type command-name command-table&key (:gesture’:select)
:tester :documentation :pointer-documentation (:menut) :priority (:echo
t)) arglist &body body

Summary: Defines a presentation translator that translates a displayed presentation in
command.
282 CLIM User’s Guide 11.2

s a
yword

 and is
om-

 been

of

es
onding

se
11.3 Command Objects

A command is an object that represents a single user interaction. Each command ha
command name, which is a symbol. A command can also have both positional and ke
arguments.

CLIM represents commands ascommand objects. The internal representation of a com-
mand object is a cons of the command name and a list of the command’s arguments,
therefore analogous to a Lisp expression. Functions are provided for extracting the c
mand name and the arguments list from a command object:

command-name [Function]

Arguments: command
Summary: Given a command objectcommand, returns the command name.

command-arguments [Function]

Arguments: command
Summary: Given a command objectcommand, returns the command’s arguments.

It is possible to represent a command for which some of the arguments have not yet
specified. The value of the symbol*unsupplied-argument* is used in place of any argu-
ment that has not yet been specified.

partial-command-p [Function]

Arguments:command
Summary: Returnst if thecommand is a partial command, that is, has any occurrences

unsupplied-argument-marker in it. Otherwise, this function returnsnil .

One can think ofdefine-command as defining templates for command objects. It defin
a symbol as a command name and associates with it the presentation types corresp
to each of the command’s arguments.

define-command [Macro]

Arguments:name-and-options arguments&body body

 The most basic command-defining form. Usually the programmer will not u
define-command directly, but will instead use adefine-frame -command form
automatically generated bydefine-application-frame. define-frame -com-
Commands 11.3 283

ault,

 as

ed by

rsing

 and

able.

peci-

-

e
e
e will

 a
ified
mand adds the command to the application frame’s command table. By def
define-command does not add the command to any command table.

define-command defines two functions. The first function has the same name
the command name and implements the body of the command. It takes as
required and keyword arguments the arguments to the command as specifi
thedefine-command form .The name of the other function defined by Lisp is
unspecified. It implements the code used by the command processor for pa
and returning the command’s arguments.

name-and-options is either a command name or a cons of the command name
a list of keyword-value pairs.

• :command-tablecommand-table-name, wherecommand-table-name either
names a command table to which the command will be added, or isnil (the de-
fault), indicating that the command should not be added to any command t
If the command table does not exist, thecommand-table-not-found error will
be signaled. This keyword is only accepted bydefine-command, not byde-
fine-frame -command.

• :namestring, wherestring is a string that will be used as the command-line
name for the command for keyboard interactions in the command table s
fied by the:command-table option. The default isnil , meaning that the com-
mand will not be available via command-line interactions. Ifstring is t, then
the command-line name will be generated automatically, as described in
add-command-to-command-table.

• :menumenu-spec, wheremenu-spec describes an item in the menu of the com
mand table specified by the:command-table option. The default isnil , mean-
ing that the command will not be available via menu interactions. Ifmenu-spec
is a string, then that string will be used as the name of the command in th
menu. Ifmenu-spec is t, and if a command-line name was supplied, it will b
used as the name of the command in the menu; otherwise the menu nam
be generated automatically, as described inadd-command-to-command-ta-
ble. Otherwise,menu-spec must be a cons of the form(string . menu-options),
wherestring is the menu name andmenu-options consists of keyword-value
pairs. The valid keywords are:after, :documentation, and:text-style, which
are as foradd-menu-item-to-command-table.

• :keystroke gesture, wheregesture is a keyboard gesture name that specifies
keystroke accelerator to use for this command in the command table spec
by the:command-table option. The default isnil , meaning that there is no
keystroke accelerator.
284 CLIM User’s Guide 11.3

 of
u-
aram-

nt,

r
pro-

s

 the

a
 sup-
u-

d ob-
 val-
 The:name, :menu, and:keystroke options are only allowed if the:com-
mand-table option is supplied explicitly or implicitly, as indefine-frame -com-
mand.

arguments is a list consisting of argument descriptions. A single occurrence
the symbol&key may appear inarguments to separate required command arg
ments from keyword arguments. Each argument description consists of a p
eter variable, followed by a presentation type specifier, followed by
keyword-value pairs. The keywords can be:

• :default value, wherevalue is the default that should be used for the argume
as foraccept.

• :default-type is the same as foraccept.

• :display-default is the same as foraccept.

• :mentioned-defaultvalue, wherevalue is the default that should be used fo
the argument when a keyword is explicitly supplied via the command-line
cessor, but no value is supplied for it.:mentioned-default is only allowed on
keyword arguments.

• :prompt string, wherestring is a prompt to print out during command-line
parsing, as foraccept.

• :documentationstring, wherestring is a documentation string that describe
what the argument is.

• :when form. form is evaluated in a scope where the parameter variables for
required parameters are bound, and if the result isnil , the keyword argument
is not available.:when is only allowed on keyword arguments, andform cannot
use the values of other keyword arguments.

• :gesturegesture, wheregesture is either a pointer gesture name or a list of
pointer gesture name followed by keyword-value pairs. When a gesture is
plied, a presentation translator will be defined that translates from this arg
ment’s presentation type to an instance of this command with the selecte
ject as the argument; the other arguments will be filled in with their default
ues. The keyword-value pairs are used as options for the translator. Valid
keywords are:tester, :menu, :priority , :echo, :documentation, and:point-
er-documentation. The default forgesture is nil , meaning no translator will
be written.:gesture is only allowed when the:command-table option was
supplied to the command-defining form.
Commands 11.3 285

com-
tion

the

he
-time

ands,
infor-

rt com-

 key-
 any

rt inter-
r sub-

perior

om-
nd is
body implements the body of the command. It has lexical access to all of the
mands arguments. If the body of the command needs access to the applica
frame itself, it should use*application-frame* . The returned values of body are
ignored.body may have zero or more declarations as its first forms.

define-command must arrange for the function that implements the body of
command to get the proper values for unsupplied keyword arguments.

name-and-options andbody are not evaluated. In the argument descriptions, t
parameter variable name is not evaluated. The others are evaluated at run
when argument parsing reaches them, except that the value for:when is evalu-
ated when parsing reaches the keyword arguments.:gesture is not evaluated.

11.4 CLIM Command Tables

CLIM command tables are represented by instances of the CLOS classcommand-table. A
command table serves to mediate between a command input context, a set of comm
and the interactions of the application’s user. Command tables contain the following
mation:

■ The name of the command table, which is a symbol

■ An ordered list of command tables to inherit from

■ The set of commands that are present in this command table

■ A table that associates command-line names to command names (used to suppo
mand-line processor interactions)

■ A set of presentation translators, defined viadefine-presentation-translator andde-
fine-presentation-to-command-translator

■ A table that associates keyboard gesture names to menu items (used to support
stroke accelerator interactions). The keystroke accelerator table does not contain
items inherited from superior command tables.

■ A menu that associates menu names with command menu items (used to suppo
action via command menus). The command menu items can invoke commands o
menus. The menu does not contain any command menu items inherited from su
command tables.

We say that a command ispresent in a command table when it has been added to that c
mand table by being associated with some form of interaction. We say that a comma
286 CLIM User’s Guide 11.4

n any

ate a

-

ol
wing.
m
 the
accessible in a command table when it is present in that command table or is present i
of the command tables from which that command table inherits.

command-table [Protocol Class]

Summary: The protocol class that corresponds to command tables. If you want to cre
new class that behaves like a command table, it should be a subclass ofcom-
mand-table. Subclasses ofcommand-table must obey the command table pro
tocol. Members of this class are mutable.

command-table-p [Function]

Arguments:object
Summary: Returnst if object is a command table; otherwise, it returnsnil .

standard-command-table [Class]

Summary: The instantiable class that implements command tables, a subclass ofcom-
mand-table. make-command-table returns objects that are members of this
class.

command-table-name [Generic Function]

Arguments:command-table
Summary: Returns the name of the command tablecommand-table.

command-table-inherit-from [Generic Function]

Arguments:command-table
Summary: Returns a list of the command tables from which the command tablecom-

mand-table inherits. This function returns objects that reveal CLIM’s internal
state; do not modify those objects.

define-command-table [Macro]

Arguments:name&key inherit-from menu
Summary: Defines a command table whose name is the symbolname. The new command

table inherits from all of the command tables specified byinherit-from, which is
a list ofcommand table designators (that is, either a command table or a symb
that names a command table). The inheritance is done by union with shado
If no inheritance is specified, the command table will be made to inherit fro
CLIM’s global command table. (This command table contains such things as
“menu” translator that is associated with the right-hand button on pointers.)
Commands 11.4 287

one.

ble.

y

y

ns.
hen

lly
ed by
menu can be used to specify a menu for the command table. The value ofmenu
is a list of clauses. Each clause is a list with the syntax(string type value&key
keystroke documentation text-style), wherestring, type, value, keystroke, docu-
mentation, andtext-style are as foradd-menu-item-to-command-table.

 If the command table named byname already exists,define-command-table
will modify the existing command table to have the new value forinherit-from
andmenu, and leaves the other attributes for the existing command table al

 None ofdefine-command-table’s arguments are evaluated.

make-command-table [Function]

Arguments:name&key inherit-from menu (errorpt)
Summary: Creates a command table namedname. inherit-from andmenu are the same as for

define-command-table. make-command-table does not implicitly include
CLIM’s global command table in the inheritance list for the new command ta
If the command table already exists anderrorp is t, thecom-
mand-table-already-exists error will be signaled. If the command table alread
exists anderrorp is nil , then the old command table will be discarded. The
returned value is the command table.

find-command-table [Function]

Arguments:name&key (errorp t)
Summary: Returns the command table named byname. If name is itself a command table,

it is returned. If the command table is not found anderrorp is t, thecom-
mand-table-not-found error will be signaled.

add-command-to-command-table [Function]

Arguments:command-name command-table&key name menu keystroke (errorpt)
Summary: Adds the command named bycommand-name to the command table specified b

the command table designatorcommand-table.

name is the command-line name for the command, and can benil , t, or a string.
When it isnil , the command will not be available via command-line interactio
When it is a string, that string is the command-line name for the command. W
it is t, the command-line name is generated automatically. (The automatica
generated name consists of the command’s name with the hyphens replac
spaces, and the words capitalized; anycom- prefix is removed. For example, if
the command name iscom-show-file, the command-line name will beShow
288 CLIM User’s Guide 11.4

e of

e

 the
File .) For the purposes of command-line-name lookup, the character cas
name is ignored.

menu is a menu item for the command, and can benil , t, a string, or a cons. When
it is nil , the command will not be available via menus. When it is a string, th
string will be used as the menu name. Whenmenu is t andname is a string, then
name will be used as the menu name. Whenmenu is t andname is not a string,
an automatically generated menu name will be used. Whenmenu is a cons of the
form (string . menu-options), string is the menu name andmenu-options consists
of keyword-value pairs. The valid keywords are:after, :documentation, and
:text-style, which are interpreted as foradd-menu-item-to-command-table.

 The value forkeystroke is either a keyboard gesture name ornil . When it is a ges-
ture name, it is the keystroke accelerator for the command; if it isnil , the com-
mand will not be available via keystroke accelerators.

 If the command is already present in the command table anderrorp is t, thecom-
mand-already-present error will be signaled. Whenerrorp is nil , the old com-
mand-line name, menu, and keystroke accelerator will first be removed from
command table.

remove-command-from-command-table [Function]

Arguments:command-name command-table&key (errorp t)
Summary: Removes the command named bycommand-name from the command table

specified by the command table designatorcommand-table.

 If the command is not present in the command table anderrorp is t, thecom-
mand-not-present error will be signaled.

11.5 CLIM Predefined Command Tables

CLIM provides these command tables:

global-command-table [Command Table]

Summary: The “global” command table from which all command tables inherit.

user-command-table [Command Table]

Summary: A command table reserved for user-defined commands.

accept-values-pane [Command Table]
Commands 11.5 289

eady

sent

ces-
Summary: When you use anaccept-values pane in adefine-application-frame, you must
inherit from this command table.

It is recommended that an application’s command table inherit fromuser-command-table.
user-command-table inherits fromglobal-command-table. If your application uses an
:accept-values pane, then its command table must inherit from theaccept-values-pane
command table in order for it to work properly.

11.6 Conditions Relating to CLIM Command
Tables

 Command table operations can signal these conditions:

command-table-already-exists [Error Condition]

Summary: This condition is signaled by make-command-table when you try to create a
command table that already exists.

command-table-not-found [Error Condition]

Summary: This condition is signaled by functions such asfind-command-table when the
named command table cannot be found.

command-already-present [Error Condition]

Summary: The error that is signaled when a function tries to add a command that is alr
present in a command table to that command table.

command-not-present [Error Condition]

Summary: A condition that is signaled when the command you are looking for is not pre
in the command table.

command-not-accessible [Error Condition]

Summary: A condition that is signaled when the command you are looking for is not ac
sible in the command table.

command-table-error [Error Condition]
290 CLIM User’s Guide 11.6

is a

w to
 Sec-

e com-

ame.

om-

-

Summary: The class that is the superclass of the previous four conditions. This class
subclass oferror .

11.7 Styles of Interaction Supported by CLIM

CLIM supports four main styles of interaction:

■ Mouse interaction via command menus

■ Mouse interaction via translators

■ Keyboard interaction using a command-line processor

■ Keyboard interaction using keystroke accelerators

See Section 11.2, “Defining Commands the Easy Way,” for a simple description of ho
usedefine-command to associate a command with any of these interaction styles. See
tion 11.10, “Advanced Topics,” for an in-depth discussion of CLIM interaction styles.

11.8 Command-Related Presentation Types

CLIM provides several presentation types pertaining to commands:

command [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent a command and its arguments; th

mand must be accessible incommand-table and enabled in*applica-
tion-frame* . command-table is a command table designator. Ifcommand-table
is not supplied, it defaults to the command table for the current application fr

 The object returned by theaccept presentation method forcommand must be a
command object, that is, a cons of the command name and the list of the c
mand’s arguments.

 Theaccept presentation method for thecommand type must call the command
parser stored in*command-parser* to read the command. The parser will
recursively callaccept to read acommand-name and all of the command’s argu
Commands 11.7 291

whose

n

th

me,

ame.

 or a

 the

cifier
ments. The parsers themselves must be implemented by accepting objects
presentation type iscommand.

 If the command parser returns a partial command, theaccept presentation
method for thecommand type must call the partial command parser stored i
partial-command-parser .

 Thepresent presentation method for thecommand type must call the command
unparser stored in*command-unparser*.

 If a presentation history is maintained for thecommand presentation type, it
should be maintained separately for each instance of an application frame.

command-name [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent the name of a command that is bo

accessible in the command tablecommand-table and enabled in*applica-
tion-frame* . command-table is a command table designator. Ifcommand-table
is not supplied, it defaults to the command table for the current application fra
(frame-command-table *application-frame*).

 The textual representation of acommand-name object is the command-line
name of the command, while the internal representation is the command n

command-or-form [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent an object that is either a Lisp form

command and its arguments. The command must be accessible incom-
mand-table and enabled in*application-frame* . command-table is a command
table designator. Ifcommand-table is not supplied, it defaults to the command
table for the current application frame,(frame-command-table *applica-
tion-frame*) .

 Theaccept presentation method for this type reads a Lisp form, except that if
first character in the user’s input is one of the characters in*command-dispatch-
ers*, it will read a command. The two returned values from theaccept presenta-
tion method will be the command or form object and a presentation type spe
that is eithercommand or form .

 A presentation history is maintained separately for thecommand-or-form pre-
sentation type for each instance of an application frame.
292 CLIM User’s Guide 11.8

en it

 a com-

c-

n

he
uld

of
 the
 of the
 trans-
s and

am.
ault

am,
 and
command-dispatchers [Variable]

Summary: This is a list of the characters that indicates that CLIM reads a command wh
is accepting acommand-or-form. The standard set of command argument
delimiters includes the colon character,#\: .

11.9 The CLIM Command Processor

Once a set of commands has been defined, CLIM provides a variety of means to read
mand. These are all mediated by the command processor.

Thecommand loop of a CLIM application is performed by the application’s top-level fun
tion (see Chapter 9, “Defining Application Frames”). By default, this isde-
fault-frame-top-level. After performing some initializations,default-frame-top-level en-
ters an infinite loop, reading and executing commands. It invokes the generic functio
read-frame-command to read a command that is then passed to the generic functionexe-
cute-frame-command for execution. The specialization of these generic functions is t
simplest way to modify the command loop for your application. Other techniques wo
involve replacingdefault-frame-top-level with your own top-level function.

read-frame-command invokes the command parser by establishing an input context
command. Theinput editor keeps track of the user’s input, both from the keyboard and
pointer. Each of the command’s arguments is parsed by establishing an input context
arguments presentation type as described in the command’s definition. Presentation
lators provide the means by which the pointer can be used to enter command name
arguments.

read-command [Function]

Arguments:command-table&key (stream*query-io*) command-parser
command-unparser partial-command-parser use-keystrokes

Summary: read-command is the standard interface used to read a command line.stream is
an extended input stream, andcommand-table is a command table designator.

command-parser is a function of two arguments, a command table and a stre
It reads a command from the user and returns a command object. The def
value forcommand-parser is the value of*command-parser*.

command-unparser is a function of three arguments, a command table, a stre
and a command to “unparse.” It prints a textual description of the command
Commands 11.9 293

com-

plied

scan
value

cel-

nd

tors

-

its supplied arguments onto the stream. The default value forcommand-unparser
is the value of*command-unparser*.

partial-command-parser is a function of four arguments, a command table, a
stream, a partial command, and a start position. The partial command is a
mand object with the value of*unsupplied-argument-marker* in place of any
argument that needs to be filled in. The function reads the remaining unsup
arguments in any way it sees fit (for example, via anaccepting-values dialog),
and returns a command object. The start position is the original input-editor
position of the stream, when the stream is an interactive stream. The default
for partial-command-parser is the value of*partial-command-parser* .

command-parser, command-unparser, andpartial-command-parser have
dynamic extent.

 Whenuse-keystrokes is t, the command reader will also process keystroke ac
erators.

 Input editing, while conceptually an independent facility, fits into the comma
processor via its use ofaccept. That is,read-command callsaccept to read
command objects, andaccept itself makes use of the input editing facilities.

read-frame-command [Generic Function]

Arguments: frame&key stream
Summary: read-frame-command reads a command from the user on the streamstream,

and returns the command object.frame is an application frame.

 The default method forread-frame-command callsread-command onframe’s
current command table.

execute-frame-command [Generic Function]

Arguments: frame command
Summary: execute-frame-command executes the commandcommand on behalf of the

application frameframe.

with-command-table-keystrokes [Macro]

Arguments:(keystroke-var command-table)&body body
Summary: Bindskeystroke-var to a sequence that contains all of the keystroke accelera

in command-table’s menu, and then executesbody in that context.com-
mand-table is a command table designator.body may have zero or more declara
tions as its first forms.
294 CLIM User’s Guide 11.9

e key-
 (The

accel-

 an in-

en it
read-command-using-keystrokes [Function]

Arguments:command-table keystrokes&key (stream*query-io*) command-parser
command-unparser partial-command-parser

Summary: Reads a command from the user via command lines, the pointer, or a singl
stroke, and returns either a command object or a keyboard gesture object.
latter only occurs when the user types a keystroke that is inkeystrokes but does
not have a command associated with it incommand-table.)

keystrokes is a sequence of keyboard gesture names that are the keystroke
erators.

command-table, stream, command-parser, command-unparser, andpartial-com-
mand-parser are as forread-command.

An application can control which commands are enabled and which are disabled on
dividual basis by usingenable-command anddisable-command. The user is not allowed
to enter a disabled command via any interaction style.

enable-command [Function]

Arguments: command-name frame
Summary: Enables the use of the command named bycommand-name while in the applica-

tion frame.

disable-command [Function]

Arguments: command-name frame
Summary: Disables the use of the command named bycommand-namewhile in the appli-

cationframe.

The special variable*command-dispatchers* controls the behavior of thecom-
mand-or-form presentation type.

command-dispatchers [Variable]

Summary: This is a list of the characters that indicates that CLIM reads a command wh
is accepting acommand-or-form. The standard set of command argument
delimiters includes the colon character,#\: .
Commands 11.9 295

xt

eci-

nt.

as for

d

nt
. If
11.10 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the ne
chapter.

11.10.1 CLIM Command Tables

For more information on CLIM command tables, see Section 11.4.

do-command-table-inheritance [Macro]

Arguments:(command-table-var command-table)&body body
Summary: Successively executesbody with command-table-var bound first to the command

table specified by the command table designatorcommand-table, and then
(recursively) to all of the command tables from whichcommand-table inherits.

 Thecommand-table-var argument is not evaluated.body may have zero or more
declarations as its first forms.

map-over-command-table-commands [Function]

Arguments:function command-table&key (inheritedt)
Summary: Appliesfunction to all of the commands accessible in the command table sp

fied by the command table designatorcommand-table. function must be a func-
tion that takes a single argument, the command name; it has dynamic exte

 If inherited is nil , this appliesfunction only to those commands present incom-
mand-table, that is, it does not map over any inherited command tables. Ifinher-
ited is t, then the inherited command tables are traversed in the same order
do-command-table-inheritance.

map-over-command-table-names [Function]

Arguments:function command-table&key (inheritedt)
Summary: Appliesfunction to all of the command-line name accessible in the comman

table specified by the command table designatorcommand-table. function must
be a function of two arguments, the command-line name and the command
name; it has dynamic extent.

 If inherited isnil , this appliesfunction only to those command-line names prese
in command-table, that is, it does not map over any inherited command tables
296 CLIM User’s Guide 11.10

rder

nd

he
If the

as

e

inherited is t, then the inherited command tables are traversed in the same o
as fordo-command-table-inheritance.

command-present-in-command-table-p [Function]

Arguments:command-name command-table
Summary: Returnst if the command named bycommand-name is present in the command

table specified by the command table designatorcommand-table; otherwise, it
returnsnil .

command-accessible-in-command-table-p [Function]

Arguments:command-name command-table
Summary: If the command named bycommand-name is not accessible in the command

table specified by the command table designatorcommand-table, then this func-
tion returnsnil . Otherwise, it returns the command table in which the comma
was found.

find-command-from-command-line-name [Function]

Arguments:name command-table&key (errorp t)
Summary: Given a command-line namename and a command table, returns two values, t

command name and the command table in which the command was found.
command is not accessible incommand-table anderrorp is t, thecom-
mand-not-accessible error will be signaled.command-table is a command table
designator.

find-command-from-command-line-name ignores character case.

command-line-name-for-command [Function]

Arguments:command-name command-table&key (errorp t)
Summary: Returns the command-line name forcommand-name as it is installed incom-

mand-table. command-table is a command table designator.

 If the command is not accessible incommand-table or has no command-line
name, then there are three possible results. Iferrorp isnil , then the returned value
will be nil . If errorp is :create, then a command-line name will be generated,
described inadd-command-to-command-table. Otherwise, iferrorp is t, then
thecommand-not-accessible error will be signaled. The returned command-lin
name should not be modified.
Commands 11.10 297

 table

-

mmand
 in the

level
 menu

-

 com-

 of an

mand

as
command-table-complete-input [Function]

Arguments:command-table string action&key frame
Summary: A function that can be used as in conjunction withcomplete-input in order to

complete over all of the command lines names accessible in the command
command-table. string is the input string to complete over, andaction is as for
complete-from-possibilities.

frame is either an application frame, ornil . If frame is supplied, no disabled com
mands should be offered as valid completions.

11.10.2 CLIM Command Menu Interaction Style

Each command table may describe a menu consisting of an ordered sequence of co
menu items. The menu specifies a mapping from a menu name (the name displayed
menu) to either a command object or a submenu. The menu of an application’s top-
command table may be presented in a window-system specific way, for example, as a
bar or in a:menu application frame pane.

Command menu items are stored as a list of the form(type value . options), wheretype and
value are as foradd-menu-item-to-command-table, andoptions is a list of keyword-value
pairs. The allowable keywords are:documentation, which is used to supply optional point
er documentation for the command menu item, and:text-style, which is used to indicate
what text style should be used for this command menu item when it is displayed in a
mand menu.

The following functions can be used to display a command menu in one of the panes
application frame or to choose a command from a menu.add-menu-item-to-com-
mand-table, remove-menu-item-from-command-table, andfind-menu-item ignore the
character case of the command menu item’s name when searching through the com
table’s menu.

display-command-table-menu [Generic Function]

Arguments:command-table stream&key max-width max-height n-rows n-columns
x-spacing y-spacing initial-spacing (cell-align-x:left) (cell-align-y:top)
(move-cursort)

Summary: Displayscommand-table’s menu onstream. It may useformatting-item-list or
display the command table’s menu in a platform-dependent manner, such
using the menu bar on a Macintosh.command-table is a command table desig-
nator.
298 CLIM User’s Guide 11.10

t

plica-

ds

 a
us.

ed:

me
en
ents

 are
ly.
.

,
e the
max-width, max-height, n-rows, n-columns, x-spacing, y-spacing, initial-spac-
ing, cell-align-x, cell-align-y, andmove-cursor are as forformatting-item-list .

display-command-menu [Generic Function]

Arguments: frame stream&key :command-table :initial-spacing :max-width :max-heigh
:n-rows :n-columns (:cell-align-x’:left) (:cell-align-y ’:top)

Summary: Displays the menu described by the command table associated with the ap
tion frameframe onstream. This is generally used as the display function for
extended stream panes of type:command-menu.

menu-choose-command-from-command-table [Function]

Arguments:command-table&key associated-window default-style label cache unique-id
id-test cache-value cache-test

Summary: Invokes a window-system-specific routine that displays a menu of comman
from command-table’s menu, and allows the user to choose one of the com-
mands.command-table is a command table designator. The returned value is
command object. This may invoke itself recursively when there are submen

associated-window, default-style, label, cache, unique-id, id-test, cache-value,
andcache-test are as formenu-choose.

A number of lower level functions for manipulating command menus are also provid

add-menu-item-to-command-table [Function]

Arguments:command-table string type value&key documentation (after’:end) keystroke
text-style (errorpt)

Summary: Adds a command menu item tocommand-table’s menu.string is the name of the
command menu item; its character case is ignored.type is either:command,
:function , :menu, or :divider . command-table is a command table designator.

 Whentype is :command, value must be a command (a cons of a command na
followed by a list of the command’s arguments), or a command name. (Wh
value is a command name, it behaves as though a command with no argum
was supplied.) In the case where all of the command’s required arguments
supplied, clicking on an item in the menu invokes the command immediate
Otherwise, the user will be prompted for the remaining required arguments

 Whentype is :function , value must be a function having indefinite extent that
when called, returns a command. It is called with two arguments, the gestur
user used to select the item (either a keyboard or button press event) and a
“numeric argument.”
Commands 11.10 299

so
ble.

t
 If
ond-

men-

d
.

e
 a
y). If
u in

oke
is

s

u

nd

f

 Whentype is :menu, this item indicates that a submenu will be invoked, and
value must be another command table or the name of another command ta

 Whentype is :divider , some sort of a dividing line is displayed in the menu a
that point. Ifstring is supplied, it will be drawn as the divider instead of a line.
the look and feel provided by the underlying window system has no corresp
ing concept,:divider items may be ignored.value is ignored.

documentation is a documentation string, which can be used as mouse docu
tation for the command menu item.

text-style is either a text style spec ornil . It is used to indicate that the comman
menu item should be drawn with the supplied text style in command menus

after must be either:start (meaning to add the new item to the beginning of th
menu),:end or nil (meaning to add the new item to the end of the menu), or
string naming an existing entry (meaning to add the new item after that entr
after is :sort, then the item is inserted in such as way as to maintain the men
alphabetical order.

 If keystroke is supplied, the item will be added to the command table’s keystr
accelerator table. The value ofkeystroke must be a keyboard gesture name. Th
is exactly equivalent to callingadd-keystroke-to-command-table with the
argumentscommand-table, keystroke, type andvalue. Whenkeystroke is supplied
andtype is :command or :function , typing a key on the keyboard that matche
to the keystroke accelerator gesture will invoke the command specified byvalue.
Whentype is :menu, the command will continue to be read from the submen
indicated byvalue in a window-system-specific manner.

 If the item named bystring is already present in the command table’s menu a
errorp is t, then thecommand-already-present error will be signaled. When the
item is already present in the command table’s menu anderrorp is nil , the old
item will first be removed from the menu. Note that the character case ofstring
is ignored when searching the command table’s menu.

remove-menu-item-from-command-table [Function]

Arguments:command-table string&key (errorp t)
Summary: Removes the item named bystring fromcommand-table’s menu.command-table

is a command table designator.

 If the item is not present in the command table’s menu anderrorp is t, then the
command-not-present error will be signaled. Note that the character case o
string is ignored when searching the command table’s menu.
300 CLIM User’s Guide 11.10

esture
mic
by
-

nd
e not

t

ed.
map-over-command-table-menu-items [Function]

Arguments:function command-table
Summary: Appliesfunction to all of the items incommand-table’s menu.function must be

a function of three arguments, the menu name, the keystroke accelerator g
(which will benil if there is none), and the command menu item; it has dyna
extent. The command menu items are mapped over in the order specified
add-menu-item-to-command-table. command-table is a command table desig
nator.

find-menu-item [Function]

Arguments:menu-name command-table&key (errorp t)
Summary: Given a menu name and a command table, returns two values, the comma

menu item and the command table in which it was found. (Since menus ar
inherited, the second returned value will always becommand-table.) com-
mand-table is a command table designator. This function returns objects tha
reveal CLIM’s internal state; do not modify those objects.

 If there is no command menu item corresponding tomenu-name present incom-
mand-table anderrorp is t, then thecommand-not-accessible error will be sig-
naled. Note that the character case ofstring is ignored when searching the
command table’s menu.

command-menu-item-type [Function]

Arguments:menu-item
Summary: Returns the type of the command menu itemmenu-item, for example,:menu or

:command. If menu-item is not a command menu item, the result is unspecifi

command-menu-item-value [Function]

Arguments:menu-item
Summary: Returns the value of the command menu itemmenu-item. For example, if the

type ofmenu-item is :command, this will return a command or a command
name. Ifmenu-item is not a command menu item, the result is unspecified.

command-menu-item-options [Function]

Arguments:menu-item
Summary: Returns a list of the options for the command menu itemmenu-item. If menu-item

is not a command menu item, the result is unspecified.
Commands 11.10 301

when

pplica-

nd
sents.

nother
ctrical
ic val-
d or for

ee
 the
11.10.3 Mouse Interaction Via Presentation Translators

A command table maintains a database of presentation translators. Apresentation transla-
tor translates from itsfrom-presentation-type to itsto-presentation-type when its associated
gesture (e.g., clicking a mouse button) is input. A presentation translator is triggered
its to-presentation-type matches the input context and itsfrom-presentation-type matches
the presentation type of the displayed presentation (the appearance of one of your a
tion’s objects on the display) on which the gesture is performed.

define-presentation-to-command-translator can be used to associate a presentation a
a gesture with a command to be performed on the object which the presentation repre

Translators can also be used to translate from an object of one type to an object of a
type based on context. For example, consider a computer-aided design system for ele
circuits. You might have a translator that translates from a resistor object to the numer
ue of its resistance. When asked to enter a resistance (as an argument to a comman
some other query), the user could click on the presentation of a resistor.

Here are some utilities for maintaining presentation translators in command tables. S
Section 6.1, “Conceptual Overview of CLIM Presentation Types,” for a discussion of
facilities supporting the mouse translator interaction style.

add-presentation-translator-to-command-table [Function]

Arguments:command-table translator-name&key (errorp t)
Summary: Adds the translator named bytranslator-name tocommand-table. The translator

must have been previously defined withdefine-presentation-translator or
define-presentation-to-command-translator. command-table is a command
table designator.

 If translator-name is already present incommand-table anderrorp is t, then the
command-already-present error will be signaled. When the translator is
already present anderrorp is nil , the old translator will first be removed.

remove-presentation-translator-from-command-table [Function]

Arguments:command-table translator-name&key (errorp t)
Summary: Removes the translator named bytranslator-name from command-table. com-

mand-table is a command table designator.

 If the translator is not present in the command table anderrorp is t, then thecom-
mand-not-present error will be signaled.
302 CLIM User’s Guide 11.10

as for

senta-
r is

lica-
e fol-
the in-

de a
iting
b-
d

nd
map-over-command-table-translators [Function]

Arguments:function command-table&key (inheritedt)
Summary: Appliesfunction to all of the translators accessible incommand-table. function

must be a function of one argument, the translator; it has dynamic extent.com-
mand-table is a command table designator.

 If inherited is nil , this appliesfunction only to those translators present incom-
mand-table, that is, it does not map over any inherited command tables. Ifinher-
ited is t, then the inherited command tables are traversed in the same order
do-command-table-inheritance.

find-presentation-translator [Function]

Arguments:translator-name command-table&key (errorp t)
Summary: Given a translator name and a command table, returns two values, the pre

tion translator and the command table in which it was found. If the translato
not present incommand-table anderrorp is t, then thecommand-not-accessible
error will be signaled.command-table is a command table designator.

11.10.4 CLIM Command Line Interaction Style

One interaction style supported by CLIM is thecommand line style of interaction provided
on most conventional operating systems. A command prompt is displayed in the app
tion’s :interactor pane. The user enters a command by typing its command line nam
lowed by its arguments. What the user types (or enters via the pointer) is echoed to
teractor window. When the user has finished typing the command, it is executed.

In CLIM, this interaction style is augmented by theinput editing facility, which allows the
user to correct typing mistakes, and by the prompting and help facilities, which provi
description of the command and the expected arguments (see Chapter 16, “Input Ed
and Completion Facilities”). Command entry is also facilitated by the presentation su
strate, which allows the input of objects matching the input context, both for comman
names and command arguments.

See Section 11.4, “CLIM Command Tables,” and Subsection 11.10.1, “CLIM Comma
Tables,” for complete descriptions of these functions.

find-command-from-command-line-name [Function]

Arguments: name command-table&key (errorp t)
Commands 11.10 303

and

s to
for key-
nd
. This

esture
 one
e ac-

f the

.

tion
Summary: Given a command-line namename and acommand-table, this function returns
two values, the command name and the command table in which the comm
was found.

command-line-name-for-command [Function]

Arguments: command-name command-table&key (errorp t)
Summary: Returns the command-line name forcommand-name as it is installed incom-

mand-table.

map-over-command-table-names [Function]

Arguments: function command-table&key (inheritedt)
Summary: Appliesfunction to all the command-line names accessible incommand-table.

11.10.5 CLIM Keystroke Interaction Style

Each command table may have a mapping from keystroke accelerator gesture name
command menu items. When a user presses a key that corresponds to the gesture
stroke accelerator, the corresponding command menu item will be invoked. Comma
menu items are shared among the command table’s menu and the accelerator table
lets the menu display the keystroke associated with a particular item, if there is one.

Note that, despite the fact the keystroke accelerators are specified using keyboard g
names rather than characters, the conventions for typed characters vary widely from
platform to another. Therefore the programmer must be careful in choosing keystrok
celerators. Some sort of per-platform conditionalization is to be expected.

Keystroke accelerators will typically be associated with commands through the use o
:keystroke option todefine-command (or the application’s command defining macro).

add-keystroke-to-command-table [Function]

Arguments:command-table gesture type value&key documentation (errorpt)
Summary: Adds a command menu item tocommand-table’s keystroke accelerator table.

gesture is a keyboard gesture name to be used as the accelerator.type andvalue
are as foradd-menu-item-to-command-table, except thattype must be either
:command, :function or :menu. command-table is a command table designator

documentation is a documentation string, which can be used as documenta
for the keystroke accelerator.
304 CLIM User’s Guide 11.10

-

nt

will
item;

e
in
ond

y

t.
o
re
 If the command menu item associated withgesture is already present in the com
mand table’s accelerator table anderrorp is t, then thecom-
mand-already-present error will be signaled. When the item is already prese
in the command table’s accelerator table anderrorp is nil , the old item will first
be removed.

remove-keystroke-from-command-table [Function]

Arguments:command-table gesture&key (errorp t)
Summary: Removes the command menu item named by keyboard gesture namegesture

from command-table’s accelerator table.command-table is a command table
designator.

 Thecommand-not-present error will be signaled if the command menu item
associated withgesture is not in the command table’s menu anderrorp is t.

map-over-command-table-keystrokes [Function]

Arguments:function command-table
Summary: Appliesfunction to all the keystroke accelerators incommand-table’s accelerator

table.function must be a function of three arguments, the menu name (which
benil if there is none), the keystroke accelerator, and the command menu
it has dynamic extent.command-table is a command table designator.

map-over-command-table-keystrokes is not recursive. If you want it to
descend into submenus, check that the type of the command menu item iseql to
:menu before usingmap-over-command-table-keystrokes recursively.

find-keystroke-item [Function]

Arguments:gesture command-table&key (errorp t)
Summary: Given a keyboard gesturegesture and a command table, returns two values, th

command menu item associated with the gesture and the command table
which it was found. (Since keystroke accelerators are not inherited, the sec
returned value will always becommand-table.)

 This function returns objects that reveal CLIM’s internal state; do not modif
those objects.

 Note thatgesture may be either a keyboard gesture name of a gesture objec
When it is a gesture name,eql will be used to compare the supplied gesture t
the gesture names stored in the command table’s menu. When it is a gestu
object,event-matches-gesture-name-p will be used to do the comparison.
Commands 11.10 305

e
in
ure

ts.

ted
e
rits,
-

led in

for

mple
 If the keystroke accelerator is not present incommand-table anderrorp is t, then
thecommand-not-present error will be signaled.command-table is a command
table designator.

lookup-keystroke-item [Function]

Arguments:gesture command-table
Summary: Given a keyboard gesturegesture and a command table, returns two values, th

command menu item associated with the gesture and the command table
which it was found.gesture may be either a keyboard gesture name or a gest
object, and is handled in the same way as infind-keystroke-item. This function
returns objects that reveal CLIM’s internal state; do not modify those objec

 Unlikefind-keystroke-item, this follows the submenu chains that can be crea
with add-menu-item-to-command-table. If the keystroke accelerator cannot b
found in the command table or any of the command tables from which it inhe
lookup-keystroke-item will returnnil . command-table is a command table des
ignator.

lookup-keystroke-command-item [Function]

Arguments:gesture command-table&key numeric-arg
Summary: Given a keyboard gesturegesture and a command table, returns the command

associated with the keystroke, orgesture if no command is found. Note thatges-
ture may be either a keyboard gesture name of a gesture object, and is hand
the same way as infind-keystroke-item. This function returns objects that
reveal CLIM’s internal state; do not modify those objects.

 This is likefind-keystroke-item, except that only keystrokes that map to an
enabled application command will be matched.command-table is a command
table designator.

numeric-arg (which defaults to 1) is substituted into the resulting command
any occurrence of*numeric-argument-marker* in the command. This is
intended to allow programmers to define keystroke accelerators that take si
numeric arguments, which will be passed on by the input editor.

substitute-numeric-argument-marker [Function]

Arguments:command numeric-arg
Summary: Given a command objectcommand, this substitutes the value ofnumeric-arg for

all occurrences of the value of*numeric-argument-marker* in the command,
and returns a command object with those substitutions.
306 CLIM User’s Guide 11.10

and’s
-
-
 the

m-

 the
n-

m

truct

parse
For a description of the CLIM command processor, see Section 11.9.

11.10.6 The CLIM Command Processor

command-line-command-parser [Function]

Arguments:command-table stream
Summary: The default command-line parser. It reads a command name and the comm

arguments as a command line fromstream (with completion as much as is pos
sible), and returns a command object.command-table is a command table desig
nator that specifies the command table to use; the commands are read via
textual command-line name.

command-line-command-unparser [Function]

Arguments:command-table stream command
Summary: The default command-line unparser. It prints the commandcommand as a com-

mand name and its arguments as a command line onstream. command-table is a
command table designator that specifies the command table to use; the co
mands are displayed using the textual command-line name.

command-line-read-remaining-arguments-for-partial-command [Function]

Arguments:command-table stream partial-command start-position
Summary: The default partial command-line parser. If the remaining arguments are at

end of the command line, it reads them as a command line; otherwise, it co
structs a dialog usingaccepting-values and reads the remaining arguments fro
the dialog.command-table is a command table designator.

menu-command-parser [Function]

Arguments:command-table stream
Summary: The default menu-driven command parser. It uses only pointer clicks to cons

a command. It relies on presentations of all arguments being visible.com-
mand-table andstream are as forcommand-line-parser.

 There is no menu-driven command unparser, since it makes no sense to un
a completely menu-driven command.

menu-read-remaining-arguments-for-partial-command [Function]

Arguments:command-table stream partial-command start-position
Commands 11.10 307

 to
 vis-

s the

e is

t

om-
delim-

each
s

Summary: The default menu-driven partial command parser. It uses only pointer clicks
fill in the command. Again, it relies on presentations of all arguments being
ible. command-table is a command table designator.

command-parser [Variable]

Summary: Contains the currently active command parsing function. The default value i
functioncommand-line-command-parser, which is the default command-line
parser.

command-unparser [Variable]

Summary: Contains the currently active command unparsing function. The default valu
the functioncommand-line-command-unparser, which is the default com-
mand-line unparser.

partial-command-parser [Variable]

Summary: Contains the currently active partial command parsing function. The defaul
value is the functioncommand-line-read-remaining-arguments-for-par-
tial-command.

unsupplied-argument-marker [Variable]

Summary: The value of*unsupplied-argument-marker* is an object that can be uniquely
identified as standing for an unsupplied argument in a command object.

numeric-argument-marker [Variable]

Summary: The value of*numeric-argument-marker* is an object that can be uniquely
identified as standing for a numeric argument in a command object.

command-name-delimiters [Variable]

Summary: This is a list of the characters that separate the command name from the c
mand arguments in a command line. The standard set of command name
iters includes#\Space .

command-argument-delimiters [Variable]

Summary: This is a list of the characters that separate the command arguments from
other in a command line. The standard set of command argument delimiter
includes#\Space .
308 CLIM User’s Guide 11.10

Chapter 12 Menus and Dialogs
Menus and Dialogs 309

. 311

. 311

. 317

 321
.. 321
. 322
 323
. 324
.. 325
. 327
Chapter 12 Menus and Dialogs

12.1 Conceptual Overview of Menus and Dialogs

12.2 CLIM Menu Operators ...

12.3 CLIM Dialog Operators..

12.4 Examples of Menus and Dialogs in CLIM ..
12.4.1 Using accepting-values ...
12.4.2 Using accept-values-command-button.......................................
12.4.3 Using:resynchronize-every-pass in accepting-values................
12.4.4 Using the third value from accept in accepting-values..............
12.4.5 Using menu-choose...
12.4.6 Using menu-choose-from-drawer ..
310 CLIM User’s Guide

lica-

n-
of

win-
nus.

eral
sing

yle

-x

ect it.
12.1 Conceptual Overview of Menus and Dialogs

CLIM provides three powerful menu routines for allowing user to interact with an app
tion through various kinds of menus and dialogs:

■ menu-choose is a straightforward menu generator that provides a quick way to co
struct menus. You can call it with a list of menu items. (For a complete definition
menu items, see the functionmenu-choose.)

■ menu-choose-from-drawer is a lower-level routine that allows the user much more
control in specifying the appearance and layout of a menu. You can call it with a
dow and a drawing function. Use this function for more advanced, customized me

■ accepting-values enables you to build a dialog. Unlike menus, you can specify sev
items that can be individually selected or modified within the dialog before dismis
it. In Liquid CLIM, theaccepting-values dialog supports keystroke accelerators for
commands defined in theaccept-values command table. To abort the dialog, press
control-z . To exit the dialog, unless you are editing the field, presscontrol-] .
These key bindings can be changed by usingadd-keystroke-to-command-table and
remove-keystroke-from-command-table.

12.2 CLIM Menu Operators

menu-choose [Generic Function]

Arguments: items&key associated-window printer presentation-type default-item text-st
label cache unique-id id-test cache-value cache-test max-width
max-height n-rows n-columns x-spacing y-spacing row-wise cell-align
cell-align-y pointer-documentation scroll-bars

Summary: Displays a menu whose choices are given by the elements of the sequenceitems.
It returns three values: the value of the chosen item, the item itself, and the
pointer button event corresponding to the gesture that the user used to sel
If the user aborts out of the menu, a single value is returned,nil .

menu-choose callsframe-manager-menu-choose on the frame manager being
used byassociated-window (or the frame manager of the current application
frame). All the arguments tomenu-choose will be passed on toframe-man-
ager-menu-choose.
Menus and Dialogs 12.1 311

ation
ct,

ing:

alue

n

his

m.
-

ica-

e

y be

s
, if

, but
items is a sequence of menu items. Each menu item has a visual represent
derived from a display object, an internal representation that is a value obje
and a set of menu item options. The form of a menu item is one of the follow

• An atom—the item is both the display object and the value object.

• A cons—the car is the display object and the cdr is the value object. The v
object must be an atom. If you need to return a list as the value, use the:value
option in the list menu item format.

• A list—the car is the display object and the cdr is a list of alternating optio
keywords and values. The value object is specified with the keyword:value
and defaults to the display object if:value is not present.

 The menu item options are:

• :value—This specifies the value object.

• :text-style—This specifies the text style used toprinc the display object when
neitherpresentation-type norprinter is supplied.

• :items—This specifies a sequence of menu items for a submenu used if t
item is selected.

• :documentation—This associates some documentation with the menu ite
Whenpointer-documentation is notnil , this will be used as pointer documen
tation for the item.

• :active—Whent (the default), this item is active. Whennil , the item is inac-
tive, and cannot be selected. CLIM will generally provide some visual ind
tion that an item is inactive, such as by “graying over” the item.

• :type—This specifies the type of the item.:item (the default) indicates that the
item is a normal menu item.:label indicates that the item is simply an inactiv
label; labels will not be “grayed over.”:divider indicates that the item serves
as a separator between groups of other items; separator items will usuall
drawn as a horizontal line.

 The visual representation of an item depends on theprinter andpresentation-type
keyword arguments. Ifpresentation-type is supplied, the visual representation i
produced bypresent of the menu item with that presentation type. Otherwise
printer is supplied, the visual representation is produced by theprinter function,
which receives two arguments, theitem and astream to do output on. Theprinter
function should output some text or graphics at the stream’s cursor position
need not callpresent. If neitherpresentation-type norprinter is supplied, the
visual representation is produced byprinc of the display object. Note that ifpre-
312 CLIM User’s Guide 12.2

m

is

orm

nu.

ater

-

u,

 the
ay as

able;
is

uc-
sentation-type or printer is supplied, the visual representation is produced fro
the entire menu item, not just from the display object.

associated-window is the CLIM window with which the menu is associated. Th
defaults to the top-level window of the current application frame.

default-item is the menu item that is indicated as the default either by some f
of highlighting or by warping the mouse to appear over it.

default-style is a text style that defines how the menu items are presented.

label is a string to which the menu title will be set.

printer is a function of two arguments used to print the menu items in the me
The two arguments are the menu item and the stream to output it on. It has
dynamic extent.

presentation-type specifies the presentation type of the menu items.

cache is a boolean that indicates whether CLIM should cache this menu for l
use. (Caching menus might speed up later uses of the same menu.) Ifcache is t,
thenunique-id andid-test serve to identify this menu uniquely. When cache ist,
unique-id defaults toitems, but programmers will generally wish to specify a
more efficient tag.id-test is a function of two arguments used to compare
unique-ids, which defaults toequal. cache-value is the value that is used to indi
cate that a cached menu is still valid. It defaults toitems, but programmers may
wish to supply a more efficient cache value than that.cache-test is a function of
two arguments that is used to compare cache values, which defaults toequal.
Bothcache-value andunique-id have dynamic extent.

max-width andmax-height specify the maximum width and height of the men
in device units. They can be overridden byn-rows andn-columns.

n-rows andn-columns specify the number of rows and columns in the menu.

x-spacing specifies the amount of space to be inserted between columns of
table; the default is the width of a space character. It is specified the same w
the:x-spacing option toformatting-table .

y-spacing specifies the amount of blank space inserted between rows of the t
the default is the vertical spacing for the stream. The possible values for th
option are the same as for the:y-spacing option toformatting-table .

 If row-wise is t (the default) and the item list requires multiple columns, each s
cessive element in the item list is laid out from left to right. Ifrow-wise isnil and
Menus and Dialogs 12.2 313

 list

e

 be
e

-
n

-test
e

ect it.

r

the item list requires multiple columns, each successive element in the item
is laid out below its predecessor, as in a telephone book.

cell-align-x specifies the horizontal placement of the cell’s contents. Like th
:align-x option toformatting-cell , it is one of:left (the default),:right , or :cen-
ter. See Subsection 17.1.2, "CLIM Operators for Formatting Tables."

cell-align-y specifies the vertical placement of the contents of the cell. It can
one of:top, :bottom, or :center. The default is:top. The semantics are the sam
as for the:align-y option toformatting-cell .

pointer-documentation is eithernil (the default), meaning that no pointer docu
mentation should be computed, or a stream on which pointer documentatio
should be displayed.

 Liquid CLIM provides an additional final keyword argument,toolkit-p. When
toolkit-p isnil , all menu-choose functionality is available, but (due to Motif lim-
itations) the menu will not be a Motif widget. Whentoolkit-p is t (the default),
Motif widgets are used. The following keywords tomenu-choose cannot be used
in that case:printer, presentation-type, max-width, max-height, scroll-bars,
pointer-documentation, andcell-align-y. If you specify any of these andtoolkit-p
is t, Liquid CLIM will use the non-widget menu and issue a warning.

frame-manager-menu-choose [Generic Function]

Arguments: frame-manager items&key associated-window printer presentation-type
default-item text-style label cache unique-id id-test cache-value cache
max-width max-height n-rows n-columns x-spacing y-spacing row-wis
cell-align-x cell-align-y pointer-documentation scroll-bars toolkit-p

Summary: Displays a menu whose choices are given by the elements of the sequenceitems.
It returns three values: the value of the chosen item, the item itself, and the
pointer button event corresponding to the gesture that the user used to sel
If the user aborts out of the menu, a single value is returned,nil .

 For the values of the arguments, seemenu-choose.

menu-choose-from-drawer [Generic Function]

Arguments: menu type drawer&key x-position y-position cache unique-id id-test
cache-value cache-test default-presentation pointer-documentation
leave-menu-visible

Summary: This is a lower-level routine for displaying menus. It allows the programme
much more flexibility in the menu layout. Unlikemenu-choose, which automat-
ically creates and lays out the menu,menu-choose-from-drawer takes a pro-
grammer-provided window and drawing function. The drawing function is
314 CLIM User’s Guide 12.2

al

ent

n,

zed

n the
s-
l pre-

s
e

ing

a
kit

s

responsible for drawing the contents of the menu; generally it will be a lexic
closure over the menu items.

menu-choose-from-drawer draws the menu items into that window using the
drawing function. The drawing function gets called with two arguments,stream
andtype. It can usetype for its own purposes, for example, as the type argum
in a call topresent.

menu-choose-from-drawer returns two values: the object the user clicked o
and the pointer button event. If the user aborts out of the menu,nil is returned.

menu is a CLIM window to use for the menu. This argument may be speciali
to provide a different look-and-feel for different host window systems.

type is a presentation type specifier for each of the mouse-sensitive items i
menu. This is the input context that will be established once the menu is di
played. For programmers who don’t need to define their own types, a usefu
sentation type ismenu-item.

drawer is a function that takes two arguments,stream andtype, and draws the
contents of the menu. It has dynamic extent.

x-position andy-position are the requestedx andy positions of the menu. They
may benil , meaning that the position is unspecified.

 If leave-menu-visible is t, the window will not disappear once the selection ha
been made. The default isnil , meaning that the window will disappear once th
selection has been made.

default-presentation is used to identify the presentation that the mouse is point
to when the menu comes up.

cache, unique-id, id-test, cache-value, andcache-test are as formenu-choose.

draw-standard-menu [Function]

Arguments: stream presentation-type items default-item&key item-printer max-width
max-height n-rows n-columns inter-column-spacing inter-row-spacing
cell-align-x cell-align-y

Summary: draw-standard-menu is the function used by CLIM to draw the contents of
menu, unless the current frame manager determines that host window tool
should be used to draw the menu instead.stream is the stream onto which to draw
the menu,presentation-type is the presentation type to use for the menu item
(usuallymenu-item), anditem-printer is a function used to draw each item.
item-printer defaults toprint-menu-item .
Menus and Dialogs 12.2 315

d

een
e

items, default-item, max-width, max-height, n-rows, n-columns, inter-col-
umn-spacing, inter-row-spacing, cell-align-x, andcell-align-y are as for
menu-choose

print-menu-item [Function]

Arguments: menu-item&optional stream
Summary: Given a menu itemmenu-item, displays it on the streamstream. This is the func-

tion thatmenu-choose uses to display menu items if no printer is supplied.

menu-item-value [Function]

Arguments: menu-item
Summary: Returns the value ofmenu-item, where the format of a menu item is describe

undermenu-choose.

menu-item-display [Function]

Arguments: menu-item
Summary: Returns the display object of the menu itemmenu-item, where the format of a

menu item is described undermenu-choose.

menu-item-options [Function]

Arguments: menu-item
Summary: Returns the options of the menu itemmenu-item, where the format of a menu

item is described undermenu-choose.

with-menu [Macro]

Arguments: (menu&optional associated-window&key (deexposet)) &body body
Summary: Bindsmenu to a “temporary” window, exposes the window on the same scr

as theassociated-window and runs the body. After the body has been run, th
window disappears only if the booleandeexpose is t (the default).

 The values returned bywith-menu are the values returned bybody. body may
have zero or more declarations as its first forms.

menu must be a variable name.associated-window is as formenu-choose.

 None of the arguments is evaluated.
316 CLIM User’s Guide 12.2

rs

plied.
 is

nd

ted

-
 free

all to
12.3 CLIM Dialog Operators

accepting-values [Macro]

Arguments: (&optional stream&key own-window exit-boxes
initially-select-query-identifier resynchronize-every-pass label scroll-ba
x-position y-position frame-class)&body body

Summary: Builds a dialog for user interaction based on calls toaccept within body. The
user can select the values and change them, or use defaults if they are sup
The dialog will also contain some sort of “end” and “abort” choices. If “end”
selected, thenaccepting-values returns whatever values the body returns. If
“abort” is selected,accepting-values will invoke theabort restart.

stream is an interactive stream thataccepting-values will use to build up the dia-
log. Thestream argument is not evaluated, and must be a symbol that is bou
to a stream. Ifstream is t (the default),*query-io* is used.

body is the body of the dialog, which contains calls toaccept that will be inter-
cepted byaccepting-values and used to build up the dialog.body may have zero
or more declarations as its first forms.

 An accepting-values dialog is a looping structure. First,body is evaluated in
order to collect the output. During the evaluation, all calls toaccept call the
accept-present-default presentation methods instead of calling theaccept pre-
sentation methods. The output is displayed with incremental redisplay.accept-
ing-values awaits a user gesture, such as clicking on one of the fields of the
dialog. When that happens,accepting-values reads a new value for that field
usingaccept and replaces the old value with the new value. The loop is star
again, until the user either exits or aborts from the dialog.

 Because of this looping structure,accepting-values uses thequery identifier to
uniquely identify each call toaccept in the body of the dialog. The query iden
tifier is computed on each loop through the dialog, and should therefore be
of side-effects. Query identifiers are compared usingequal. Inside ofaccept-
ing-values, the:query-identifier argument should be supplied to each call to
accept. If it is not explicitly supplied, the prompt for that call toaccept is used
as the query identifier. Thus, if:query-identifier is not supplied, programmers
must ensure that all of the prompts are different. If there is more than one c
accept with the same query identifier, the behavior ofaccepting-values is
unspecified.
Menus and Dialogs 12.3 317

ser,

-

l-

ul if
layed

r is

lected

mpt
 The

es
 While insideaccepting-values, calls toaccept return a third value, the boolean
changed-p that indicates whether the object is the result of new input by the u
or is just the previously supplied default. The third value will bet in the former
case,nil in the latter.

 Whenown-window is non-nil , the dialog will appear in its own “popped-up” win
dow. In this case the initial value ofstream is a window with which the dialog is
associated. (This is similar to theassociated-window argument to
menu-choose.) Within thebody, the value ofstream will be the “popped-up”
window.own-window is eithert or a list of alternating keyword options and va
ues. The accepted options are:right-margin and:bottom-margin ; their values
control the amount of extra space to the right of and below the dialog (usef
the user’s responses to the dialog take up more space than the initially disp
defaults). The allowed values for:right-margin are the same as for the:x-spac-
ing option toformatting-table ; the allowed values for:bottom-margin are the
same as for the:y-spacing option.

exit-boxes specifies what the exit boxes should look like. The default behavio
though the following were supplied:

 ’((:exit "Control-] uses these values")
 (:abort "Control-z aborts"))

initially-select-query-identifier specifies that a particular field in the dialog
should be pre-selected when the user interaction begins. The field to be se
is tagged by the:query-identifier option toaccept; use this tag as the value for
the:initially-select-query-identifier keyword, as in this example:

 (defun avv ()
 (let (a b c)
 (accepting-values
 (*query-io* :initially-select-query-identifier ’the-tag)
 (setq a (accept ’pathname :prompt "A pathname"))
 (terpri *query-io*)
 (setq b (accept ’integer :prompt "A number"
 :query-indentifier ’the-tag))
 (terpri *query-io*)
 (setq c (accept ’string :prompt "A string")))
 (values a b c)))

 When the initial display is output, the input editor cursor appears after the pro
of the tagged field, just as if the user had selected that field by clicking on it.
default value, if any, for the selected field is not displayed.

resynchronize-every-pass is a boolean option specifying whether earlier queri
depend on later values; the default isnil . When it ist, the contents of the dialog
318 CLIM User’s Guide 12.3

effect
alue

ple
red;

e

,

are redisplayed an additional time after each user interaction. This has the
of ensuring that, when the value of some field of a dialog depends on the v
of another field, all of the displayed fields will be up to date.

 You can use this option to alter the dialog dynamically. The following exam
initially displays an integer field that disappears if a value other than 1 is ente
a two-field display appears in its place.

 (defun alter-multiple-accept ()
 (let ((flag 2))
 (accepting-values
 (*query-io* :resynchronize-every-pass t)
 (setq flag (accept 'integer :default flag :prompt "Number"))
 (when (= flag 1)
 (terpri *query-io*)
 (accept ’string :prompt "String"
 (terpri *query-io*)
 (accept ’pathname :prompt "Pathname"))))))

label is as formenu-choose. scroll-bars controls what and whether scroll-bars
appear on the dialog. The value is one of::vertical , :horizontal , :both, andnil
(the default).x-position andy-position are as formenu-choose-from-drawer.

accept-values [Application Frame]

Summary: accepting-values is a CLIM application frame that usesaccept-values as the
name of the frame class.

accept-values-pane-displayer [Function]

Arguments: frame pane&key displayer resynchronize-every-pass
Summary: When you use an:accept-values pane, the display function must use

accept-values-pane-displayer. displayer is a function that is the body of an
accepting-values dialog. It takes two arguments, the frame and a stream. Th
display function does not need to callaccepting-values itself, since that is done
by accept-values-pane-displayer. resynchronize-every-pass is as foraccept-
ing-values.

display-exit-boxes [Generic Function]

Arguments: frame stream view
Summary: Displays the exits boxes for theaccepting-values frameframe on the stream

stream, in the viewview. The exit boxes specification is not passed in directly
but is a slot in the frame. The default method (onaccept-values) simply writes
Menus and Dialogs 12.3 319

ither

nt

val-

to a

.
l be

on

ent,
a line of text associating the Exit and Abort strings with presentations that e
exit or abort from the dialog.

 Theframe, stream, andview arguments may be specialized to provide a differe
look-and-feel for different host window systems.

accept-values-resynchronize [Generic Function]

Arguments: stream
Summary: Causesaccepting-values to resynchronizes the dialog once on the accepting

ues streamstream before it restarts the dialog loop.

accept-values-command-button [Macro]

Arguments: (&optional stream&key documentation query-identifier cache-value
cache-test resynchronize) prompt&body body

Summary: The promptprompt creates the button area by writing to the appropriateaccept-
ing-values streamstream. prompt should not produce a string itself. When a
pointer button is clicked in this area at runtime,body will be evaluated.

accept-values-command-button expands into a call toinvoke-accept-val-
ues-command-button, supplying a function that executesbody as thecontinua-
tion argument toinvoke-accept-values-command-button.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t (the default),*query-io* is used.body may have zero or
more declarations as its first forms.

invoke-accept-values-command-button [Generic Function]

Arguments: stream continuation view prompt&key documentation query-identifier
cache-value cache-test resynchronize

Summary: Displays the promptprompt on the streamstream and creates the button areas
When a pointer button is clicked in this area at runtime, the continuation wil
called. continuation is a function that takes no arguments.view is a view.

prompt may be either a string (which will be displayed viawrite-string), or a
form that will be evaluated to draw the button.

documentation is an object that will be used to produce pointer documentati
for the button. It defaults toprompt. If it is a string, the string itself will be used
as the pointer documentation. Otherwise it must be a function of one argum
the stream to which the documentation should be written.
320 CLIM User’s Guide 12.3

n-

,

lect val-
 Whenresynchronize is t, the dialog will be redisplayed an additional time whe
ever the command button is clicked on. See theresynchronize-every-pass argu-
ment toaccepting-values.

cache-value andcache-test are as forupdating-output. That is,cache-value
should evaluate to the same value if and only if the output produced byprompt
does not ever change.cache-test is a function of two arguments that is used to
compare cache values.cache-value defaults tot andcache-test defaults toeql.

 This function may only be used inside the dynamic context of anaccepting-val-
ues.

12.4 Examples of Menus and Dialogs in CLIM

12.4.1 Using accepting-values

This example sets up a dialog in the CLIM windowstream that displays the current month
date, hour, and minute (as obtained by a call toget-universal-time) and allows the user to
modify those values. The user can select values to change by using the mouse to se
ues, typing in new values, and pressingRETURN. When done, the user selects<END> to
accept the new values, or<ABORT> to terminate without changes.

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time
 (get-universal-time))
 (declare (ignore second))
 (format stream "Enter the time~%")
 (restart-case
 (progn
 (clim:accepting-values (stream)
 (setq month
 (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day
 (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour
 (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
Menus and Dialogs 12.4 321

t

he
 (terpri stream)
 (setq minute
 (clim:accept ’integer :stream stream
 :default minute :prompt "Minute")))
 ;; This could be code to reset the time, but instead
 ;; we’re just printing it out
 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D."
 month day hour minute))
 (abort () (format t "~&Time not set")))))

Note that in CLIM, calls toaccept do not automatically insert newlines. If you want to pu
each query on its own line of the dialog, useterpri between the calls toaccept.

12.4.2 Using accept-values-command-button

Here is the reset-clock example with the addition of a command button that will set t
number of seconds to zero.

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time (get-universal-time))
 (declare (ignore second))
 (format stream "Enter the time~%")
 (restart-case
 (progn
 (clim:accepting-values
 (stream)
 (setq month
 (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day
 (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour
 (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
 (terpri stream)
 (setq minute
 (clim:accept ’integer :stream stream
 :default minute :prompt "Minute")))
 (terpri stream)
322 CLIM User’s Guide 12.4

 fields
en col-
 If the
ngle

e

e

er
plied

al on

r

 ;; Print the current time to the terminal.
 (accept-values-command-button
 (stream) "Print-Clock"
 (format t
 "~%Current values: Month: ~D, Day: ~D, Time: ~D:~2,'0D."
 month day hour minute))))
 (abort () (format t "~&Time not set")))))

12.4.3 Using:resynchronize-every-pass in
accepting-values

It often happens that the programmer wants to present a dialog where the individual
of the dialog depend on one another. For example, consider a spreadsheet with sev
umns representing the days of a week. Each column is headed with that day’s date.
user inputs the date of any single day, the other dates can be computed from that si
piece of input.

If you build CLIM dialogs usingaccepting-values, you can achieve this effect by using th
:resynchronize-every-pass argument toaccepting-values in conjunction with the:de-
fault argument toaccept. There are three points to remember:

■ The entire body of theaccepting-values runs each time the user modifies any field. Th
body can be made to run an extra time by specifying:resynchronize-every-pass t.
Code in the body may be used to enforce constraints among values.

■ If the :default argument toaccept is used, then every time that call toaccept is run, it
will pick up the new value of the default.

■ Insideaccepting-values, accept returns a third value, a boolean that indicates wheth
the returned value is the result of new input by the user or is just the previously sup
default.

In this example we show a dialog that accepts two real numbers, delimiting an interv
the real line. The two values are labelledMin andMax, but we wish to allow the user to
supply aMin that is greater than theMax, and automatically exchange the values rathe
than signalling an error.
Menus and Dialogs 12.4 323

a rect-
quare.

re the
d to
e the
(defun accepting-interval (&key (min -1.0) (max 1.0)
 (stream *query-io*))
 (clim:accepting-values (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (setq min
 (clim:accept
 ’clim:real :default min
 :prompt "Min" :stream stream))
 (fresh-line stream)
 (setq max
 (clim:accept
 ’clim:real :default max
 :prompt "Max" :stream stream))
 (when (< max min)
 (rotatef min max)))
 (values min max))

(You may want to try this example after dropping the:resynchronize-every-pass and see
the behavior. Without:resynchronize-every-pass, the constraint is still enforced, but the
display lags behind the values and doesn’t reflect the updated values immediately.)

12.4.4 Using the third value from accept in
accepting-values

As a second example, consider a dialog that accepts four real numbers that delimit
angular region in the plane, but we wish to enforce a constraint that the region be a s
We allow the user to input any ofXmin , Xmax, Ymin , orYmax, but enforce the constraint
that:

 Xmax - Xmin = Ymax - Ymin

We want to avoid changing the value that a user inputs, so we decide (in cases whe
constraint has to be enforced) to change the X value if the user inputs a Y value, an
change the Y value if the user inputs an X value. When changing values, we preserv
center of the interval. We use the third returned value fromaccept to control the constraint
enforcement.

(defun accepting-square
 (&key (xmin -1.0) (xmax 1.0)
 (ymin -1.0) (ymax 1.0)
 (stream *query-io*))
324 CLIM User’s Guide 12.4

e

 (let (xmin-changed xmax-changed ymin-changed ymax-changed ptype)
 (clim:accepting-values
 (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (multiple-value-setq
 (xmin ptype xmin-changed)
 (clim:accept ’clim:real :default xmin
 :prompt "Xmin" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (xmax ptype xmax-changed)
 (clim:accept ’clim:real :default xmax
 :prompt "Xmax" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (ymin ptype ymin-changed)
 (clim:accept ’clim:real :default ymin
 :prompt "Ymin" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (ymax ptype ymax-changed)
 (clim:accept ’clim:real :default ymax
 :prompt "Ymax" :stream stream))
 (cond ((or xmin-changed xmax-changed)
 (let ((y-center (/ (+ ymax ymin) 2.0))
 (x-half-width (/ (- xmax xmin) 2.0)))
 (setq ymin (- y-center x-half-width)
 ymax (+ y-center x-half-width)))
 (setq xmin-changed nil
 xmax-changed nil))
 ((or ymin-changed ymax-changed)
 (let ((x-center (/ (+ xmax xmin) 2.0))
 (y-half-width (/ (- ymax ymin) 2.0)))
 (setq xmin (- x-center y-half-width)
 xmax (+ x-center y-half-width)))
 (setq ymin-changed nil
 ymax-changed nil)))))
 (values xmin xmax ymin ymax))

12.4.5 Using menu-choose

The simplest use ofmenu-choose is when each item is not a list. In that case, the entir
item will be printed and is also the value to be returned.
Menus and Dialogs 12.4 325

od is
f the

so
y a

rar-
(clim:menu-choose ’("One" "Two" "Seventeen"))

If you want to return a value that is different from what was printed, the simplest meth
as follows. Each item is a list; the first element is what will be printed, the remainder o
list is treated as aplist—the:value property will be returned. (Notenil is returned if you
click onSeventeen since it has no:value.)

(clim:menu-choose
 ’(("One" :value 1 :documentation "the loneliest number")
 ("Two" :value 2 :documentation "for tea")
 ("Seventeen"
 :documentation "teen magazine")))

The list of items you pass tomenu-choose can serve other purposes in your application,
you might not want to put the printed appearance in the first element. You can suppl
:printer function that will be called on the item to produce its printed appearance.

(clim:menu-choose ’(1 2 17)
 :printer #’(lambda (item stream)
 (format stream "~R" item)))

The items in the menu needn’t be printed textually:

(clim:menu-choose
 ’(circle square triangle)
 :printer
 #’(lambda (item stream)
 (case item
 (circle (clim:draw-circle* stream 0 0 10))
 (square (clim:draw-polygon* stream ’(-8 -8 -8 8 8 8 8 -8)))
 (triangle (clim:draw-polygon* stream ’(10 8 0 -10 -10 8))))))

The:item-list option of the list form of menu item can be used to describe a set of hie
chical menus.
326 CLIM User’s Guide 12.4

at se-
(clim:menu-choose
 ’(("Class: Osteichthyes" :documentation "Bony fishes"
 :style (nil :italic nil))
 ("Class: Chondrichthyes"
 :documentation "Cartilaginous fishes"
 :style (nil :italic nil)
 :item-list (("Order: Squaliformes" :documentation "Sharks")
 ("Order: Rajiformes" :documentation "Rays")))
 ("Class: Mammalia" :documentation "Mammals" :style (nil :italic nil)
 :item-list
 (("Order Rodentia" :item-list ("Family Sciuridae"
 "Family Muridae"
 "Family Cricetidae"
 ("..." :value nil)))
 ("Order Carnivora" :item-list ("Family: Felidae"
 "Family: Canidae"
 "Family: Ursidae"
 ("..." :value nil)))
 ("..." :value nil)))
 ("..." :value nil)))

12.4.6 Using menu-choose-from-drawer

This example displays in the window*page-stream* the choicesOne throughTen in bold-
face type. When the user selects one, the string is returned along with the gesture th
lected it.

(clim:menu-choose-from-drawer
 page-stream 'string
 #’(lambda (stream type)
 (clim:with-text-face (:bold stream)
 (dotimes (count 10)
 (clim:present (string-capitalize
 (format nil "~R" (1+ count)))
 type :stream stream)
 (terpri stream)))))

This example shows how you can usemenu-choose-from-drawer with with-menu to cre-
ate a temporary menu:
Menus and Dialogs 327

(defun choose-compass-direction (parent-window)
 (labels
 ((draw-compass-point
 (stream ptype symbol x y)
 (clim:with-output-as-presentation
 (:stream stream :object symbol :type ptype)
 (clim:draw-string* stream
 (symbol-name symbol) x y
 :align-x :center
 :align-y :center
 :text-style
 ’(:sans-serif :roman :large))))
 (draw-compass
 (stream ptype)
 (clim:draw-line* stream 0 25 0 -25 :line-thickness 2)
 (clim:draw-line* stream 25 0 -25 0 :line-thickness 2)
 (loop for point in ’((n 0 -30) (s 0 30) (e 30 0)(w -30 0))
 do (apply #’draw-compass-point
 stream ptype point))))
 (clim:with-menu (menu parent-window)
 (clim:menu-choose-from-drawer menu ’clim:menu-item
 #’draw-compass))))
328 CLIM User’s Guide

Chapter 13 Extended Stream Output
Facilities
Extended Stream Output Facilities 329

... 331

... 332

.. 334

. 336

. 337

.. 338

. 338
 340
. 340

 342

. 342

. 343
Chapter 13 Extended Stream Output Facilities

13.1 Basic Output Streams..

13.2 Extended Output Streams ...

13.3 The Text Cursor ...
13.3.1 The Text Cursor Protocol...
13.3.2 The Stream Text Cursor Protocol ..

13.4 Text...
13.4.1 The Text Protocol ..
13.4.2 Mixing Text and Graphics ..
13.4.3 Wrapping Text Lines ...

13.5 Attracting the User’s Attention ..

13.6 Buffering Output ...

13.7 CLIM Window Stream Pane Functions ..
330 CLIM User’s Guide

d
output
t
ray.

ation
mon

oto-

writ-

t

13.1 Basic Output Streams

CLIM performs all of its input and output operations on objects calledstreams. Stream
functionality is partitioned into two layers: the basic stream protocol and the extende
stream protocol. The stream-oriented output layer is implemented on top of the sheet
architecture. The basic CLIM output stream protocol is based on the character outpu
stream protocol proposal submitted to the ANSI Common Lisp committee by David G
This proposal was not approved by the committee, but CLIM provides an implement
of the basic output stream facilities. This protocol is documented in Appendix F, “Com
Lisp Streams.”

standard-output-stream [Class]

Summary: This class provides an implementation of the CLIM basic output stream pr
col, based on the CLIM output kernel. Members of this class are mutable.

stream-write-char [Generic Function]

Arguments: stream character
Summary: Writes the charactercharacter to the output streamstream, and returnscharacter

as its value.

stream-line-column [Generic Function]

Arguments: stream
Summary: This function returns the column number where the next character will be

ten on the output streamstream. The first column on a line is numbered 0.

stream-start-line-p [Generic Function]

Arguments: stream
Summary: Returnst if the output streamstream is positioned at the beginning of a line (tha

is, column 0); otherwise, it returnsnil .

stream-write-string [Generic Function]

Arguments: stream string&optiona l (start 0) end
Summary: Writes the stringstring to the output streamstream. If start andend are supplied,

they are integers that specify what part ofstring to output.string is returned as
the value.
Extended Stream Output Facilities 13.1 331

-

eam
r, mar-
stream-terpri [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on the output streamstream, and returnsnil .

stream-fresh-line [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on the output streamstream only if the stream is

not at the beginning of the line.

stream-finish-output [Generic Function]

Arguments: stream
Summary: Ensures that all the output sent to the output streamstream has reached its des

tination, and only then does it returnnil .

stream-force-output [Generic Function]

Arguments: stream
Summary: Like stream-finish-output, except that it may immediately returnnil without

waiting for the output to complete.

stream-clear-output [Generic Function]

Arguments: stream
Summary: Aborts any outstanding output operation in progress on the output streamstream,

and returnsnil .

stream-advance-to-column [Generic Function]

Arguments: stream column
Summary: Writes enough blank space on the output streamstream so that the next character

will be written at the position specified bycolumn, which is an integer.

13.2 Extended Output Streams

In addition to the basic output stream protocol, CLIM defines an extended output str
protocol. This protocol extends the stream model to maintain the state of a text curso
gins, text styles, inter-line spacing, and so forth.
332 CLIM User’s Guide 13.2

 Text

f
 out-

inks,
of

 pro-
The extended output stream protocol is discussed in the following two sections, “The
Cursor” and “Text.”

extended-output-stream [Protocol Class]

Summary: The protocol class for CLIM extended output streams. This is a subclass oout-
put-stream. If you want to create a new class that behaves like an extended
put stream, it should be a subclass ofextended-output-stream. Subclasses of
extended-output-stream must obey the extended output stream protocol.

extended-output-stream-p [Function]

Arguments: object
Summary: Returnst if object is a CLIM extended output stream; otherwise, it returnsnil .

:foreground [Initarg]

:background [Initarg]

:default-text-style [Initarg]

:vertical-spacing [Initarg]

:text-margin [Initarg]

:end-of-line-action [Initarg]

:end-of-page-action [Initarg]

:default-view [Initarg]

Summary: All subclasses ofextended-output-stream must handle these initargs, which
are used to specify, respectively, the medium foreground and background
default text style, vertical spacing, default text margin, end of line and end
page actions, and the default view for the stream.

standard-extended-output-stream [Class]

Summary: This class provides an implementation of the CLIM extended output stream
tocol, based on the CLIM output kernel.

 Members of this class are mutable.
Extended Stream Output Facilities 13.2 333

th
teger
-width
. How-
et this
ting.
dded
s line.

 when
 prop-

 upper
t ex-

rsor
he

t us-
t a
t the
and a
base-
vious

urrent
 down
n the

n all
ne.
13.3 The Text Cursor

In the days when display devices displayed only two-dimensional arrays of fixed-wid
characters, the text cursor was a simple thing. A discrete position was selected in in
character units, and a character could go there and nowhere else. Even for variable
fonts, it was enough to address a character by the pixel position of one of its corners
ever, variable-height fonts with variable baselines on pixel-addressable displays ups
simple model. The “logical” vertical reference point is the baseline, as it is in typeset
In typesetting, however, an entire line of text is created with baselines aligned and pa
to the maximum ascent and descent, and then the entire line is put below the previou

It is clearly desirable to have the characters on a line aligned with their baselines, but
the line on the display is formed piece by piece, it is impossible to pick in advance the
er baseline. The solution CLIM adopts is to choose aprovisional baseline.

We assume that text has at least six properties. With a reference point of (0, 0) at the
left of the text, it has a bounding box consisting of ascent, descent, left kerning, righ
tension, and a displacement to the next reference point in bothx andy. CLIM determines
the position of the reference point and draws the text relative to that, and then the cu
position is adjusted by the displacement. In this way, text has width and height, but tx
andy displacements need not equal the width and height.

CLIM adopts the following approach to the actual rendering of a glyph. Textual outpu
ing the stream functions (not the graphics functions) maintains text on a “line.” Note tha
line is not an output record, but is rather a collection of “text so far,” a top (positioned a
bottom of the previous line plus the stream’s vertical spacing), a baseline, a bottom,
“cursor position.” The cursor position is defined to be at the top of the line, not at the
line. The reason for this is that the baseline can move, but the top is relative to the pre
line, which has been completed and therefore doesn’t move. If text is drawn on the c
line whose ascent is greater than the current ascent of the line, then the line is moved
to make room. This can be done easily using the output records for the existing text o
line. When there is enough room, the reference point for the text is thex position of the cur-
sor at the baseline, and the cursor position is adjusted by the displacement.

Figure 21 shows this in action before and after each of three characters are drawn. I
three cases, the small circle is the “cursor position.” At first, there is nothing on the li
334 CLIM User’s Guide 13.3

Figure 21. Determining the Position of the Text Cursor

(0, y)
(w1, y)

(w1+w2, y)

(w1+w2+w3, y)

(0, y)
(w1, y) (0, y)

(w1, y)
(w1+w2, y)

(0, y)

bl-small bl-BIG

bl-BIG

small
small BIG

small BIG small
Extended Stream Output Facilities 13.3 335

orner
main

ng the
 the
or was,
 char-
ver, the

for the

e ob-

 class

ted.

her
The first character establishes the initial baseline and is then drawn. The upper left c
of the character is where the cursor was (as in the traditional model), but this will not re
the case. Drawing the second character, which is larger than the first, requires movi
first character down in order to get the baselines to align; during this time, the top of
line remains the same. Again, the upper left of the second character is where the curs
but that is no longer the case for the first character (which has moved down). The third
acter is smaller than the second, so no moving of characters needs to be done. Howe
character is drawn to align the baselines, which in this case means the upper left isnot
where the cursor was. Nor is the cursor at the upper right of the character as it was
previous two characters. It is, however, at the upper right of the collective line.

13.3.1 The Text Cursor Protocol

Many streams that maintain a text cursor also display some visible indication of it. Th
ject that represents this display is (somewhat confusingly) also called a cursor.

cursor [Protocol Class]

Summary: The protocol class that corresponds to cursors. If you want to create a new
that behaves like cursor, it should be a subclass ofcursor. Subclasses ofcursor
must obey the cursor protocol. Members of this class are mutable.

cursorp [Function]

Arguments: object
Summary: Returnst if object is a cursor; otherwise, it returnsnil .

:sheet [Initarg]

Summary: The:sheet initarg is used to specify the sheet with which the cursor is associa

standard-text-cursor [Class]

Summary: The instantiable class that implements a text cursor. Typically, ports will furt
specialize this class.

cursor-sheet [Generic Function]

Arguments: cursor
Summary: Returns the sheet with which the cursorcursor is associated.
336 CLIM User’s Guide 13.3

ed
cursor-position [Generic Function]

Arguments: cursor
Summary: Returns thex andy position of the cursorcursor as two values.

(setf* cursor-position) [Generic Function]

Arguments: x y cursor
Summary: Sets thex andy position of the cursorcursor to the specified position. For the

details ofsetf*, see Appendix C.4, “Multiple-Value Setf.”

cursor-visibility [Generic Function]

Arguments: cursor

(setf cursor-visibility) [Generic Function]

Arguments: visibility cursor
Summary: Returns (or sets) the visibility of the cursorcursor. The visibility is one of:on

(the cursor will be visible at its current position),:off (the cursor is active, but
not visible at its current position), ornil (the cursor is to be deactivated).

display-cursor [Generic Function]

Arguments: cursor state
Summary: This draws or erases the cursorcursor. If state is :draw, the cursor will be drawn.

If the state is :erase, the cursor will be erased.

13.3.2 The Stream Text Cursor Protocol

The following generic functions comprise the stream text cursor protocol. Any extend
output stream class must implement methods for these generic functions.

stream-text-cursor [Generic Function]

Arguments: stream

(setf stream-text-cursor) [Generic Function]

Arguments: cursor stream
Summary: Returns (or sets) the text cursor object for the streamstream.
Extended Stream Output Facilities 13.3 337

am

n of
stream-cursor-position [Generic Function]

Arguments: stream
Summary: Returns the current text cursor position for the extended output streamstream as

two integer values, thex andy positions.

(setf* stream-cursor-position) [Generic Function]

Arguments: x y stream
Summary: Sets the text cursor position of the extended output streamstream to x andy. x

andy are in device units, and must be integers. For the details ofsetf*, see
Appendix C.4, “Multiple-Value Setf.”

stream-increment-cursor-position [Generic Function]

Arguments: stream dx dy
Summary: Moves the text cursor position of the extended output streamstream relatively,

addingdx to thex coordinate anddy to they coordinate. Either ofdx or dy may
benil , meaning the thex or y cursor position will be unaffected. Otherwise,dx
anddy must be integers.

13.4 Text

This section addresses text as it relates to output streams.

13.4.1 The Text Protocol

The following generic functions comprise the text protocol. Any extended output stre
class must implement methods for these generic functions.

stream-character-width [Generic Function]

Arguments: stream character&key text-style
Summary: Returns a rational number corresponding to the amount of horizontal motio

the cursor position that would occur if the charactercharacter were output to the
extended output streamstream in the text styletext-style (which defaults to the
current text style for the stream). This ignores the stream’s text margin.
338 CLIM User’s Guide 13.4

rgin.

e

ins a

.

t

on-

rt

ed
stream-string-width [Generic Function]

Arguments: stream string&key start end text-style
Summary: Computes how the cursor position would move horizontally if the stringstring

were output to the extended output streamstream in the text styletext-style
(which defaults to the current text style for the stream) starting at the left ma
This ignores the stream’s text margin.

 The first returned value is thex coordinate that the cursor position would mov
to. The second returned value is the maximumx coordinate the cursor would visit
during the output. (This is the same as the first value unless the string conta
#\Newline character.)

start andend are integers that default to 0 and the string length, respectively

stream-text-margin [Generic Function]

Arguments: stream

(setf stream-text-margin) [Generic Function]

Arguments: margin stream
Summary: Returns thex coordinate at which text wraps around on the extended outpu

streamstream (seestream-end-of-line-action). The default setting is the width
of the viewport, which is the right-hand edge of the viewport when it is horiz
tally scrolled to the “initial position.”

 You can usesetf with stream-text-margin to establish a new text margin. Ifmar-
gin isnil , then the width of the viewport will be used. If the width of the viewpo
is later changed, the text margin will change, too.

stream-line-height [Generic Function]

Arguments: stream&key text-style
Summary: Returns what the line height of a line on the extended output streamstream con-

taining text in the text styletext-style would be, as a rational number.text-style
defaults to the current text style for the stream.

stream-vertical-spacing [Generic Function]

Arguments: stream
Summary: Returns the current inter-line spacing (as a rational number) for the extend

output streamstream.
Extended Stream Output Facilities 13.4 339

utput

e out-

stem

or

cur-
ical
rily

to a

 of
 the

l out-
stream-baseline [Generic Function]

Arguments: stream
Summary: Returns the current text baseline (as a rational number) for the extended o

streamstream.

13.4.2 Mixing Text and Graphics

The following macro provides a convenient way to mix text and graphics on the sam
put stream.

with-room-for-graphics [Macro]

Arguments: (&optional stream&key (move-cursort) height record-type)&body body
Summary: Binds the dynamic environment to establish a local Cartesian coordinate sy

for doing graphics output onto the extended output stream designated bystream.
The origin (0, 0) of the local coordinate system is placed at the current curs
position, and is in the lower left corner of the area created. If the boolean
move-cursor is t (the default), then after the graphic output is completed, the
sor is positioned past (immediately below) this origin. The bottom of the vert
block allocated is at this location (that is, just below point (0, 0), not necessa
at the bottom of the output done).

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t (the default),*standard-output* is used.body may have
zero or more declarations as its first forms.

 If height is supplied, it must be a rational number that specifies the amount
vertical space to allocate for the output, in device units. If it is not supplied,
height is computed from the output.

record-type specifies the class of output record to create to hold the graphica
put. The default isstandard-sequence-output-record.

13.4.3 Wrapping Text Lines

stream-end-of-line-action [Generic Function]

Arguments: stream
340 CLIM User’s Guide 13.4

ves

.)

ut

xt
dow
ult.

he

ond

to a

oves

ut-
(setf stream-end-of-line-action) [Generic Function]

Arguments: action stream
Summary: The end-of-line action controls what happens if the text cursor position mo

horizontally out of the viewport or if text output reaches the text margin. (By
default the text margin is the width of the viewport, so these often coincide

stream-end-of-line-action returns the end-of-line action for the extended outp
streamstream. It can be changed by usingsetf onstream-end-of-line-action.

 The end-of-line action is one of:

• :wrap—when doing text output, wrap the text around (that is, break the te
line and start another line). When setting the cursor position, scroll the win
horizontally to keep the cursor position inside the viewport. This is the defa

• :scroll—scroll the window horizontally to keep the cursor position inside t
viewport, then keep doing the output.

• :allow—ignore the text margin and do the output on the drawing plane bey
the visible part of the viewport.

with-end-of-line-action [Macro]

Arguments: (stream action)&body body
Summary: Temporarily changesstream’s end-of-line action for the duration of execution

of body.action must be one of the actions described in
stream-end-of-line-action.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t, *standard-output* is used.body may have zero or more
declarations as its first forms.

stream-end-of-page-action [Generic Function]

Arguments: stream

(setf stream-end-of-page-action) [Generic Function]

Arguments: action stream
Summary: The end-of-page action controls what happens if the text cursor position m

vertically out of the viewport.

stream-end-of-page-action returns the end-of-page action for the extended o
put streamstream. Change it by usingsetf onstream-end-of-page-action.

 The end-of-page action is one of:
Extended Stream Output Facilities 13.4 341

the

nd

n

to a

s en-
edict-
om-

m.
sup-
• :wrap—when doing text output, wrap the text around (that is, go back to
top of the viewport).

• :scroll—scroll the window vertically to keep the cursor position inside the
viewport, then keep doing output. This is the default.

• :allow—ignore the viewport and do the output on the drawing plane beyo
the visible part of the viewport.

with-end-of-page-action [Macro]

Arguments: (stream action)&body body
Summary: Temporarily changesstream’s end-of-page action for the duration of executio

of body.action must be one of the actions described in
stream-end-of-page-action.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t, *standard-output* is used.body may have zero or more
declarations as its first forms.

13.5 Attracting the User’s Attention

beep [Generic Function]

Arguments: &optional sheet
Summary: Attracts the user’s attention, usually with an audible sound.

13.6 Buffering Output

Some mediums that support the output protocol may buffer output. When buffering i
abled on a medium, the time at which output is actually done on the medium is unpr
able.force-output or finish-output can be used to ensure that all pending output gets c
pleted. If the medium is a bidirectional stream, aforce-output is performed whenever any
sort of input is requested on the stream.

with-buffered-output provides a way to control when buffering is enabled on a mediu
By default, CLIM’s interactive streams are buffered if the underlying window system
ports buffering.
342 CLIM User’s Guide 13.5

 to a

e

he
ll.
r.
medium-buffering-output-p [Generic Function]

Arguments: medium
Summary: Returnst if the mediummedium is currently buffering output; otherwise, it

returnsnil .

(setf medium-buffering-output-p) [Generic Function]

Arguments: buffer-p medium
Summary: Setsmedium-buffering-output-p of the mediummedium to buffer-p.

with-output-buffered [Macro]

Arguments: (medium&optional (buffer-pt)) &body body
Summary: If buffer-p is t (the default), this causes the medium designated bymedium to

start buffering output, and evaluatesbody in that context. Ifbuffer-p is nil ,
force-output will be called beforebody is evaluated. Whenbody is exited (or
aborted from),force-output will be called if output buffering will be disabled
afterwith-output-buffered is exited.

 Themedium argument is not evaluated, and must be a symbol that is bound
medium. Ifmedium is t, *standard-output* is used.body may have zero or
more declarations as its first forms.

13.7 CLIM Window Stream Pane Functions

The following functions can be called on any pane that is a subclass ofclim-stream-pane.
(Such a pane is often simply referred to as awindow.) These are provided as a convenienc
for programmers and for compatibility with CLIM 1.1.

window-clear [Generic Function]

Arguments: window
Summary: Clears the entire drawing plane by filling it with the background design of t

CLIM stream panewindow. If window has an output history, it is cleared as we
The text cursor position ofwindow, if there is one, is reset to the upper left corne

window-refresh [Generic Function]

Arguments: window
Extended Stream Output Facilities 13.7 343

ords

Summary: Clears the visible part of the drawing plane of the CLIM stream panewindow,

and then if the window stream is an output recording stream, the output rec
in the visible part of the window are replayed.

window-viewport [Generic Function]

Arguments: window
Summary: Returns the viewport region of the CLIM stream panewindow. The returned

region will usually be astandard-bounding-rectangle.

window-erase-viewport [Generic Function]

Arguments: window
Summary: Clears the visible part of the drawing plane of the CLIM stream panewindow by

filling it with the background design.

window-viewport-position [Generic Function]

Arguments: window
Summary: Returns two values, thex andy position of the upper left corner of the CLIM

stream panewindow’s viewport.

(setf window-viewport-position) [Generic Function]

Arguments: x y window
Summary: Sets the position of the upper left corner of the CLIM stream panewindow’s

viewport tox andy.
344 CLIM User’s Guide 13.7

Chapter 14 Output Recording and
Redisplay
Output Recording and Redisplay 345

. 347

 348
. 350
. 353
. 354
.. 354
. 355
 356
 357
.. 358
. 358
. 360
 360
361

. 365

 366

. 368

 370
Chapter 14 Output Recording and Redisplay

14.1Conceptual Overview of Output Recording..

14.2 CLIM Operators for Output Recording ...
14.2.1 The Basic Output Record Protocol ..
14.2.2 The Output Record “Database” Protocol...................................
14.2.3 Types of Output Records ...

14.2.3.1 Standard Output Record Classes......................................
14.2.3.2 Graphics Displayed Output Records.................................
14.2.3.3 Text Displayed Output Records...
14.2.3.4 Top-Level Output Records ..

14.2.4 Output Recording Streams..
14.2.4.1 The Output Recording Stream Protocol............................
14.2.4.2 Graphics Output Recording ..
14.2.4.3 Text Output Recording ..
14.2.4.4 Output Recording Utilities...

14.3 Conceptual Overview of Incremental Redisplay

14.4 CLIM Operators for Incremental Redisplay ..

14.5 Using updating-output ..

14.6 Example of Incremental Redisplay in CLIM.......................................
346 CLIM User’s Guide

ws,
ir se-

put
he out-

of out-
tput

ord
put
record

ic
w out-
ecord
14.1 Conceptual Overview of Output Recording

Output recording is an important part of CLIM. It provides the basis for scrolling windo
for formatted output of tables and graphs, for the ability of presentations to retain the
mantics, and for incremental redisplay.

The output recording mechanism is enabled by default. Unless you turn it off, all out
that occurs on a window is captured and saved by the output recording mechanism. T
put is captured in output records. Anoutput record is an object that contains either other
output records or an output record element.

Since output records can contain other output records, we can view the organization
put records as a tree structure. The top-level output record, which contains all the ou
done on that window, is called the history of the window.

Figure 22. The Tree Structure of an Output Record

Each rectangle in Figure 22 is an output record. The top-level record is an output rec
called a history. Each output record is a leaf of the tree and is called a displayed out
record element. The intermediate output records are both output records and output
elements of their immediate superior.

CLIM automatically segments the output into output records. The result of each atom
drawing operation is put into a new output record. Each presentation is put into a ne
put record. Strings are treated differently; CLIM concatenates strings into one output r
until a newline is encountered, which begins a new output record.

 History
Output Recording and Redisplay 14.1 347

is
 of in-
ed,
put

am.
ns a
et of

hese

pe of

y the
utput

 a
ord ele-
ut re-
One use of an output record is toreplay it; that is, to produce the output again. Scrolling
implemented by replaying the appropriate output records. When using the techniques
cremental redisplay, your code determines which portions of the display have chang
whereupon the appropriate output records are updated to the new state and the out
records are replayed.

CLIM’s table and graph formatters use output records. For example, your code usesfor-
matting-table to format output into rows and cells; this output is sent to a particular stre
Invisibly to you, CLIM temporarily binds this stream to an intermediate stream and ru
constraint engine over the code to determine the layout of the table. The result is a s
output records which contain the table, its rows, and its cells. Finally, CLIM replays t
output records to your original stream.

Presentations are a special case of output records that remember the object and the ty
object associated with the output.

The concept of the tree structure organization of output records is further illustrated b
organization of the output records of a formatted table. The table itself is stored in an o
record; each row has its own output record and each cell has its own output record.

Figure 23. The Output Records of a Formatted Table

14.2 CLIM Operators for Output Recording

The purpose of output recording is to capture the output done by an application onto
stream. The objects used to capture output are called output records and output rec
ments. The following classes and predicates correspond to the objects used in outp
cording.

 Table

Row Row

Cell Cell Cell Cell Cell Cell
348 CLIM User’s Guide 14.2

class
. If
 be a

put
utput

f

hil-
output-record [Protocol Class]

Summary: The protocol class used to indicate that an object is an output record. A sub
of bounding-rectangle, output records obey the bounding rectangle protocol
you want to create a new class that behaves like an output record, it should
subclass ofoutput-record. Subclasses ofoutput-record must obey the out-
put-record protocol.

 All output records are mutable.

output-record-p [Function]

Arguments: object
Summary: Returnst if object is an output record; otherwise, it returnsnil .

displayed-output-record [Protocol Class]

Summary: The protocol class that is used to indicate that an object is a displayed out
record, that is, an object that represents a visible piece of output on some o
stream. This is a subclass ofbounding-rectangle. If you want to create a new
class that behaves like a displayed output record, it should be a subclass odis-
played-output-record. Subclasses ofdisplayed-output-record must obey the
displayed output record protocol.

 All displayed output records are mutable.

displayed-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a displayed output record; otherwise, it returnsnil .

:x-position [Initarg]

:y-position [Initarg]

:parent [Initarg]

Summary: All subclasses of eitheroutput-record or displayed-output-record must han-
dle these three initargs, which are used to specify, respectively, thex andy posi-
tion of the output record, and the parent of the output record.

:size [Initarg]

Summary: All subclasses ofoutput-record must handle the:size initarg, which specifies
how much room should be left for child output records (if, for example, the c
Output Recording and Redisplay 14.2 349

t-

s
ni-

sition

e

ill

ally)

n.
fect
dren are stored in a vector).:size may be ignored, provided that the resulting ou
put record is able to store the specified number of child output records.

14.2.1 The Basic Output Record Protocol

All subclasses ofoutput-record anddisplayed-output-record must inherit or implement
methods for the following generic functions. For details ofsetf*, see Appendix C.4, “Mul-
tiple-Value Setf.”

output-record-position [Generic Function]

Arguments: record
Summary: Returns thex andy position of the output recordrecord as two rational numbers.

The position of an output record is the position of the upper-left corner of it
bounding rectangle. The position is relative to the stream, where (0, 0) is (i
tially) the upper-left corner of the stream.

(setf* output-record-position) [Generic Function]

Arguments: x y record
Summary: Changes thex andy position of the output recordrecord to bex andy (which are

rational numbers), and updates the bounding rectangle to reflect the new po
(and saved cursor positions, if the output record stores it). Ifrecord has any chil-
dren, all of the children (and their descendants as well) will be moved by th
same amount asrecord was moved. The bounding rectangles of all ofrecord’s
ancestors will also be updated to be large enough to containrecord. This does not
replay the output record, but the next time the output record is replayed it w
appear at the new position.

output-record-start-cursor-position [Generic Function]

Arguments: record
Summary: Returns thex andy starting cursor position of the output recordrecord as two

integer values. The positions are relative to the stream, where (0, 0) is (initi
the upper-left corner of the stream.

 Text output records and updating output records maintain the cursor positio
Graphical output records and other output records that do not require or af
the cursor position will returnnil as both of the values.
350 CLIM User’s Guide 14.2

quire

lly
tion,
this.

n.
fect

quire
(setf* output-record-start-cursor-position) [Generic Function]

Arguments: x y record
Summary: Changes thex andy starting cursor position of the output recordrecord to bex

andy (which are integers). This does not affect the bounding rectangle ofrecord,
nor does it replay the output record. For those output records that do not re
or affect the cursor position, the method for this function does nothing.

output-record-end-cursor-position [Generic Function]

Arguments: record
Summary: Returns thex andy ending cursor position of the output recordrecord as two

integer values. The positions are relative to the stream, where (0, 0) is initia
the upper-left corner. Graphical output records do not track the cursor posi
so only text output record and some others will return meaningful values for

 Text output records and updating output records maintain the cursor positio
Graphical output records and other output records that do not require or af
the cursor position will returnnil as both of the values.

(setf* output-record-end-cursor-position) [Generic Function]

Arguments: x y record
Summary: Changes thex andy ending cursor position of the output recordrecord to bex

andy (which are integers). This does not affect the bounding rectangle ofrecord,
nor does it replay the output record. For those output records that do not re
or affect the cursor position, the method for this function does nothing.

output-record-parent [Generic Function]

Arguments: record
Summary: Returns the output record that is the parent of the output recordrecord, ornil if

the record has no parent.

replay [Function]

Arguments: record stream&optional region
Summary: This function bindsstream-recording-p of stream to nil , and then calls

replay-output-record on the argumentsrecord, stream, andregion. If
stream-drawing-p of stream is nil , replay does nothing.replay is typically
called during scrolling, by repaint handlers, and so on.

region defaults tonil .
Output Recording and Redisplay 14.2 351

od-
ip-
se

 all
s

 that

ly

t
d

 that

t

t

replay-output-record [Generic Function]

Arguments: record stream&optional region x-offset y-offset
Summary: Displays the output captured by the output recordrecord on the output recording

streamstream, exactly as it was originally captured (subject to subsequent m
ifications). The current user transformation, line style, text style, ink, and cl
ping region ofstream are all ignored during the replay operation. Instead, the
are gotten from the output record.

 If record is not a displayed output record, then replaying it involves replaying
of its children. Ifrecord is a displayed output record, then replaying it involve
redoing the graphics operation captured in the record.

region is a region that limits what records are displayed. Only those records
overlapregion are replayed. The default forregion is +everywhere+.

stream must be the same stream on which the output records were original
recorded.

erase-output-record [Generic Function]

Arguments: record stream
Summary: Erases the output recordrecord from the output recording streamstream,

removesrecord from stream’s output history, and ensures that all other outpu
records that were covered byrecord are visible. In effect, this draws backgroun
ink over the record, and then redraws all the records that overlaprecord.

output-record-refined-sensitivity-test [Generic Function]

Arguments: record x y
Summary: This is used to definitively answer hit detection queries, that is, determining

the point (x, y) is contained within the output recordrecord. Once the position (x,
y) has been determined to lie withinoutput-record-hit-detection-rectangle*,
output-record-refined-sensitivity-test is invoked. Output record subclasses
can provide a method that defines a hit more precisely; for example, outpu
records for elliptical rings will implement a method that detects whether the
pointing device is on the elliptical ring.

highlight-output-record [Generic Function]

Arguments: record stream state
Summary: This method is called in order to draw a highlighting box around the outpu

recordrecord on the output recording streamstream. state will be either:high-
light (meaning to draw the highlighting) or:unhighlight (meaning to erase the
352 CLIM User’s Guide 14.2

im-

av-

-

highlighting). The default method (on CLIM’s standard output record class) s
ply draws a rectangle that corresponds to the bounding rectangle ofrecord.

14.2.2 The Output Record “Database” Protocol

All classes that are subclasses ofoutput-record must implement methods for the following
generic functions.

output-record-children [Generic Function]

Arguments: record
Summary: Returns a fresh list of all the children of the output recordrecord.

add-output-record [Generic Function]

Arguments: child record
Summary: Adds the new output recordchild to the output recordrecord. The bounding rect-

angle forrecord and all its ancestors is updated accordingly.

 The methods for theadd-output-record will typically specialize only therecord
argument.

delete-output-record [Generic Function]

Arguments: child record&optional (errorp t)
Summary: Removes the output recordchild from the output recordrecord. The bounding

rectangle forrecord (and all its ancestors) is updated to account for the child h
ing been removed.

 If errorp is t (the default) andchild is not contained withinrecord, then an error
is signaled.

 The methods for thedelete-output-record will typically specialize only the
record argument.

clear-output-record [Generic Function]

Arguments: record
Summary: Removes all of the children from the output recordrecord, and resets the bound

ing rectangle ofrecord to its initial state.
Output Recording and Redisplay 14.2 353

her,

ther,

es of

f out-
output-record-count [Generic Function]

Arguments: record
Summary: Returns the number of children contained within the output recordrecord.

map-over-output-records-containing-position [Generic Function]

Arguments: function record x y&optional x-offset y-offset
Summary: Maps over all of the children of the output recordrecord that contain the point

at (x, y), callingfunction on each one.function is a function of one argument, the
record containing the point; it has dynamic extent.

 If there are multiple records that contain the point and that overlap each ot
map-over-output-records-containing-position hits the most recently inserted
record first and the least recently inserted record last.

map-over-output-records-overlapping-region [Generic Function]

Arguments: function record region&optional x-offset y-offset
Summary: Maps over all of the children of the output recordrecord that overlap the region

region, callingfunction on each one.function is a function of one argument, the
record overlapping the region; it has dynamic extent.

 If there are multiple records that overlap the region and that overlap each o
map-over-output-records-overlapping-region hits the least recently inserted
record first and the most recently inserted record last.

14.2.3 Types of Output Records

This section discusses several types of output records, including two standard class
output records and the displayed output record protocol.

14.2.3.1 Standard Output Record Classes

standard-sequence-output-record [Class]

Summary: The standard class provided by CLIM to store a relatively short sequence o
put records; a subclass ofoutput-record. The retrieval complexity of this class
is 0(n). Most of the formatted output facilities (such asformatting-table) create
output records that are a subclass ofstandard-sequence-output-record.
354 CLIM User’s Guide 14.2

ome
l

aphics
tput

e

 or

 inks
 ink of
ng re-

as

lled

ions,

, it
standard-tree-output-record [Class]

Summary: The standard class provided by CLIM to store longer sequences of output
records. Typically, the child records of a tree output record will be sorted in s
way, such as an ordering on thex andy coordinates of the children. The retrieva
complexity of this class is 0(log n).

14.2.3.2 Graphics Displayed Output Records

Graphics displayed output records are used to record the output produced by the gr
functions, such asdraw-line* . Each graphics displayed output record describes the ou
produced by a call to one of the graphics functions.

CLIM graphics displayed output records capture the following information, so that th
original output can be redrawn exactly at replay time:

■ The description of the graphical object itself, for example, the end points of a line
the center point and radius of a circle

■ The programmer-supplied ink at the time the drawing function was called (indirect
are not resolved, so you can later change the default foreground and background
the medium and have that change affect the already-created output records duri
play)

■ For paths, the programmer-supplied line-style at the time the drawing function w
called

■ The programmer-supplied clipping region at the time the drawing function was ca

■ The user transformation

graphics-displayed-output-record [Protocol Class]

Summary: The protocol class that corresponds to output records for the graphics funct
such asdraw-line* . This is a subclass ofdisplayed-output-record. If you want
to create a new class that behaves like a graphics displayed output record
should be a subclass of graphics-displayed-output-record. Subclasses of
graphics-displayed-output-record must obey the graphics displayed output
record protocol.

graphics-displayed-output-record-p [Function]

Arguments: object
Output Recording and Redisplay 14.2 355

h func-

).

 inks
ound
during

lled

 is a

col.
Summary: Returnst if object is a graphics displayed output record; otherwise, it returnsnil .

14.2.3.3 Text Displayed Output Records

Text displayed output records are used to record the textual output produced by suc
tions asstream-write-char andstream-write-string. Each text displayed output record
corresponds to no more than one line of textual output (that is, line breaks caused byterpri
andfresh-line create a new text output record, as do certain other stream operations

Text displayed output records store the following information:

■ The displayed text strings

■ The starting and ending cursor positions

■ The text style in which the text string was written

■ The programmer-supplied ink at the time the drawing function was called (indirect
are not resolved, so that you can later change the default foreground and backgr
ink of the medium and have that change affect the already-created output records
replay)

■ The programmer-supplied clipping region at the time the drawing function was ca

text-displayed-output-record [Protocol Class]

Summary: The protocol class that corresponds to text displayed output records. This
subclass ofdisplayed-output-record. If you want to create a new class that
behaves like a text displayed output record, it should be a subclass oftext-dis-
played-output-record. Subclasses oftext-displayed-output-record must obey
the text displayed output record protocol.

text-displayed-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a text displayed output record; otherwise, it returnsnil .

The following three generic functions comprise the text displayed output record proto

add-character-output-to-text-record [Generic Function]

Arguments: text-record character text-style width height baseline
356 CLIM User’s Guide 14.2

r
t

or the

se

tain

class

dow
 out-

This
Summary: Adds the charactercharacter to the text displayed output recordtext-record in
the text styletext-style. width andheight are the width and height of the characte
in device units, and are used to compute the bounding rectangle for the tex
record.baseline is the new baseline for characters in the output record.

add-string-output-to-text-record [Generic Function]

Arguments: text-record string start end text-style width height baseline
Summary: Adds the stringstring to the text displayed output recordtext-record in the text

styletext-style. start andend are integers that specify the substring withinstring
to add to the text output record.width andheight are the width and height of the
character in device units, and are used to compute the bounding rectangle f
text record.baseline is the new baseline for characters in the output record.

text-displayed-output-record-string [Generic Function]

Arguments: text-record
Summary: Returns the string contained by the text displayed output recordtext-record. This

function returns objects that reveal CLIM’s internal state; do not modify tho
objects.

14.2.3.4 Top-Level Output Records

Top-level output records are similar to ordinary output records, except that they main
additional state, such as the information required to display scroll bars.

stream-output-history-mixin [Class]

Summary: This class is mixed into some other output record class to produce a new
that is suitable for use as a a top-level output history.

 When the bounding rectangle of a member of this class is updated, any win
decorations (such as scroll bars) associated with the stream with which the
put recordhistory is associated are updated, too.

standard-tree-output-history [Class]

Summary: The standard class provided by CLIM to use as the top-level output history.
will typically be a subclass of bothstandard-tree-output-record and
stream-output-history-mixin .
Output Recording and Redisplay 14.2 357

e
disable

m. If
m, it

class

ub-
14.2.4 Output Recording Streams

CLIM defines an extension to the stream protocol that supports output recording. Th
stream has an associated output history record and provides controls to enable and
output recording.

output-recording-stream [Protocol Class]

Summary: The protocol class that indicates that a stream is an output recording strea
you want to create a new class that behaves like an output recording strea
should be a subclass ofoutput-recording-stream. Subclasses ofout-
put-recording-stream must obey the output recording stream protocol.

output-recording-stream-p [Function]

Arguments: object
Summary: Returnst if object is an output recording stream; otherwise, it returnsnil .

standard-output-recording-stream [Class]

Summary: The class used by CLIM to implement output record streams. This is a sub
of output-recording-stream. Members of this class are mutable.

14.2.4.1 The Output Recording Stream Protocol

The following generic functions comprise the output recording stream protocol. All s
classes ofoutput-recording-stream implement methods for these generic functions.

stream-recording-p [Generic Function]

Arguments: stream
Summary: Returnst when the output recording streamstream is recording all output per-

formed to it; otherwise, it returnsnil .

(setf stream-recording-p) [Generic Function]

Arguments: recording-p stream
Summary: Changes the state ofstream-recording-p to berecording-p, which must be

eithert or nil .
358 CLIM User’s Guide 14.2

am

s

rd-
y

stream-drawing-p [Generic Function]

Arguments: stream
Summary: Returnst when the output recording streamstream will actually draw on the

viewport when output is being performed to it; otherwise, it returnsnil .

(setf stream-drawing-p) [Generic Function]

Arguments: drawing-p stream
Summary: Changes the state ofstream-recording-p to bedrawing-p, which must be either

t or nil .

stream-output-history [Generic Function]

Arguments: stream
Summary: Returns the history (or top-level output record) for the output recording stre

stream.

stream-current-output-record [Generic Function]

Arguments: stream
Summary: The current “open” output record for the output recording streamstream, to

whichstream-add-output-record will add a new child record. Initially, this is
the same asstream-output-history. As nested output records are created, thi
acts as a “stack.”

(setf stream-current-output-record) [Generic Function]

Arguments: record stream
Summary: Sets the current “open” output record for the output recording streamstream to

the output recordrecord.

stream-add-output-record [Generic Function]

Arguments: stream record
Summary: Adds the output recordrecord to the current output record on the output reco

ing streamstream. (The current output record is the output record returned b
stream-current-output-record.)

stream-replay [Generic Function]

Arguments: stream&optional region
Summary: Directs the output recording streamstream to invokereplay on its output history.

Only those records that overlap the regionregion (which defaults to the viewport
of the stream) are replayed.
Output Recording and Redisplay 14.2 359

fied
ults

-

en

.
utput

a-

e

ed.
t text
14.2.4.2 Graphics Output Recording

We usedraw-line* as an example here, but calling any of the drawing functions speci
in Section 2.3, “CLIM Drawing Functions,” and Section 2.4, “Graphics Protocols,” res
in the following series of function calls on an output recording stream:

■ A program callsdraw-line* on argumentssheet, x1, y1, x2, y2, and perhaps some draw
ing options.

■ draw-line* merges the supplied drawing options into the sheet’s medium, and th
callsmedium-draw-line* on the sheet.

■ The:around method formedium-draw-line* on the output recording stream is called
This creates an output record with all of the information necessary to replay the o
record, ifstream-recording-p is t. If stream-drawing-p is t, this then does a
call-next-method.

■ The primary method formedium-draw-line* performs the necessary user transform
tions by applying the medium transformation tox1, y1, x2, y2, and the clipping region.
Then it draws on the underlying window.

replay-output-record for a graphics displayed output record simply calls the medium
drawing function (such asmedium-draw-line*) directly on the sheet (noton the medium)
with stream-recording-p set tonil andstream-drawing-p set tot.

14.2.4.3 Text Output Recording

This is the place wherewrite-string and similar functions are captured in order to creat
an output record. The generic functions include protocol likestream-write-string that are
specialized by output recording streams to do the output recording.

stream-text-output-record [Generic Function]

Arguments: stream text-style
Summary: Returns a text output record for the output recording streamstream suitable for

holding characters in the text styletext-style. If there is a currently “open” text
output record that can hold characters in the specified text style, it is return
Otherwise a new text output record is created that can hold characters in tha
style, and its starting cursor position is set to the cursor position ofstream.
360 CLIM User’s Guide 14.2

on of

.

.

stream-close-text-output-record [Generic Function]

Arguments: stream
Summary: Closes the output recording streamstream’s currently “open” text output record

by recording the stream’s current cursor position as the ending cursor positi
the record and adding the text output record tostream’s current output record by
callingstream-add-output-record.

 If there is no “open” text output record,stream-close-text-output-record does
nothing.

 Callingstream-finish-output, stream-force-output, callingredisplay, setting
the text cursor position (viastream-set-cursor-position, terpri , or fresh-line),
creating a new output record (for example, viawith-new-output-record), or
changing the state ofstream-recording-p closes the current text output record

stream-add-character-output [Generic Function]

Arguments: stream character text-style width height baseline
Summary: Adds the charactercharacter to the output recording streamstream’s text output

record in the text styletext-style. width andheight are the width and height of the
character in device units.baseline is the new baseline for the stream.
stream-add-character-output callsadd-character-output-to-text-record.

stream-write-char on an output recording stream will callstream-add-charac-
ter-output whenstream-recording-p is t.

stream-add-string-output [Generic Function]

Arguments: stream string start end text-style width height baseline
Summary: Adds the stringstring to the output recording streamstream’s text output record

in the text styletext-style. start andend are integers that specify the substring
within string to add to the text output record.width andheight are the width and
height of the string in device units.baseline is the new baseline for the stream
stream-add-string-output callsadd-string-output-to-text-record.

stream-write-string on an output recording stream will call
stream-add-string-output whenstream-recording-p is t.

14.2.4.4 Output Recording Utilities

CLIM provides several helper macros to control the output recording facility.
Output Recording and Redisplay 14.2 361

ng

o an

ng

s

g

soci-

to

.

with-output-recording-options [Macro]

Arguments: (stream&key record draw)&body body
Summary: Enables or disables output recording and/or drawing on the output recordi

stream designated bystream, within the extent ofbody.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used.body may
have zero or more declarations as its first forms.

with-output-recording-options expands into a call toinvoke-with-out-
put-recording-options, supplying a function that executesbody as thecontinu-
ation argument toinvoke-with-output-recording-options.

invoke-with-output-recording-options [Generic Function]

Arguments: stream continuation record draw
Summary: Enables or disables output recording and/or drawing on the output recordi

streamstream, and calls the functioncontinuation with the new output recording
options in effect.continuation is a function of one argument, the stream; it ha
dynamic extent.

 If draw is nil , output to the stream is not drawn on the viewport, but recordin
proceeds according torecord; if draw is t, the output is drawn. Ifrecord is nil ,
output recording is disabled, but output otherwise proceeds according todraw;
if draw is t, output recording is enabled.

 All output recording streams must implement a method forinvoke-with-out-
put-recording-options.

with-new-output-record [Macro]

Arguments: (stream&optional record-type record&rest init-args)&body body
Summary: Creates a new output record of typerecord-type (which defaults tostan-

dard-sequence-output-record), captures the output ofbody into the new output
record, and inserts the new record into the current “open” output record as
ated with the output recording streamstream. Whilebody is being evaluated, the
current output record forstream will be bound to the new output record.

 If record is supplied, it is the name of a variable that will be lexically bound
the new output record inside of body.init-args are CLOS initialization argu-
ments that are passed tomake-instance when the new output record is created

with-new-output-record returns the output record it creates.
362 CLIM User’s Guide 14.2

o an

ed

t

o an

t-
s.

rrent

-

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used.body may
have zero or more declarations as its first forms.

with-new-output-record expands into a call toinvoke-with-new-out-
put-record, supplying a function that executesbody as thecontinuation argu-
ment toinvoke-with-new-output-record.

with-output-to-output-record [Macro]

Arguments: (stream&optional record-type record&rest init-args)&body body
Summary: Like with-new-output-record, except that the new output record is not insert

into the output record hierarchy, and the text cursor position ofstream is initially
bound to (0, 0).

record-type is the type of output record to create, which defaults tostan-
dard-sequence-output-record. init-args are CLOS initialization arguments tha
are passed tomake-instance when the new output record is created.record, if
supplied, is a variable that will be bound to the new output record whilebody is
evaluated.

with-output-to-output-record returns the output record it creates.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used. Unlike facil-
ities such aswith-output-to-string , stream must be an actual stream, but no ou
put will be done to it.body may have zero or more declarations as its first form

with-output-to-output-record expands into a call toinvoke-with-out-
put-to-output-record , supplying a function that executesbody as thecontinua-
tion argument toinvoke-with-output-to-output-record .

invoke-with-new-output-record [Generic Function]

Arguments: stream continuation record-type&rest init-args&key
Summary: Creates a new output record of typerecord-type. The functioncontinuation is

then called, and any output it does to the output recording streamstream is cap-
tured in the new output record. The new record is then inserted into the cu
“open” output record associated withstream (or the top-level output record if
there is no currently “open” one). Whilecontinuation is being executed, the cur
rent output record forstream will be bound to the new output record.
Output Recording and Redisplay 14.2 363

d; it
ed

t

’s nor-

d; it

s are

fore

 cor-
eated
continuation is a function of two arguments, the stream and the output recor
has dynamic extent.init-args are CLOS initialization arguments that are pass
to make-instance when the new output record is created.

invoke-with-new-output-record returns the output record it creates.

 All output recording streams must implement a method for
invoke-with-new-output-record.

invoke-with-output-to-output-record [Generic Function]

Arguments: stream continuation record-type&rest init-args&key
Summary: Like invoke-with-new-output-record except that the new output record is no

inserted into the output record hierarchy, and the text cursor position ofstream
is initially bound to (0, 0). That is, wheninvoke-with-output-to-output-record
is used, no drawing on the stream occurs and nothing is put into the stream
mal output history. The functioncontinuation is called, and any output it does to
stream is captured in the output record.

continuation is a function of two arguments, the stream and the output recor
has dynamic extent.record-type is the type of output record to create.init-args
are CLOS initialization arguments that are passed tomake-instance when the
new output record is created.

invoke-with-output-to-output-record returns the output record it creates.

 All output recording streams must implement a method forinvoke-with-out-
put-to-output-record .

make-design-from-output-record [Generic Function]

Arguments: record
Summary: Makes a design that replays the output recordrecord when drawn via

draw-design. If record is changed after the design is made, the consequence
unspecified. Applying a transformation to the design and callingdraw-design
on the new design is equivalent to establishing the same transformation be
creating the output record.

 The current version of CLIM supports this only for those output records that
respond to the geometric object classes (for example, the output records cr
by draw-line* anddraw-ellipse*).
364 CLIM User’s Guide 14.2

n on

n on
f
ntinu-

ry
f the
dis-
 thus

om-

s of

 has

parent

s, or
rd of

hierar-
nd can
14.3 Conceptual Overview of Incremental
Redisplay

Some kinds of applications can benefit greatly from the ability to redisplay informatio
a window only when that information has changed. This feature, calledincremental redis-
play, can significantly improve the speed at which your application updates informatio
the screen. Incremental redisplay is very useful for programs that display a window o
changing information where some portions of the window are static and some are co
ally changing.

Incremental redisplay is a facility to allow you to change the output in an output histo
(and hence on the screen or other output device). It allows you to redisplay pieces o
existing output differently, under your control. “Incremental” here means that CLIM re
plays only the part of the output history visible in the viewport that has changed and
needs to be redisplayed.

There are two different ways to do incremental redisplay:

■ Call redisplay on an output record.

This essentially tells the system to start that output record over from scratch. It c
pares the results with the existing output and tries to do minimal redisplay. Theupdat-
ing-output form allows you to assist the system by informing it that entire branche
the output history are known not to have changed.updating-output also allows you to
communicate the fact that a piece of the output record hierarchy has moved.

■ Update the output history manually, and then notify the output record that its child
changed.

This causes CLIM to propagate the changes up the output record tree and allows
output records to readjust themselves to account for the changes.

Each way is appropriate under different circumstances.redisplay is often easier to code
and is more useful in cases where there might be large changes between two passe
where you have little idea as to what the changes might be. Notifying the output reco
changes can be more efficient for small changes at the bottom of the output-record
chy, or in cases where you are well informed as to the specific changes necessary a
describe these changes to the system.
Output Recording and Redisplay 14.3 365

tally

pe)

o an

ting

 no
lied

re
14.4 CLIM Operators for Incremental Redisplay

The following functions are used to create an output record that should be incremen
redisplayed, and then to redisplay that record.

updating-output [Macro]

Arguments: (stream&rest args&key unique-id (id-test #’eql) cache-value (cache-test
#’eql) copy-cache-value fixed-position all-new parent-cache record-ty
&body body

Summary: Introduces a caching point for incremental redisplay.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used.body may
have zero or more declarations as its first forms.

record-type specifies the class of output record to create. The default isstan-
dard-updating-output-record . This argument should only be supplied by a
programmer if there is a new class of output record that supports the upda
output record protocol.

updating-output expands into a call toinvoke-updating-output, supplying a
function that executesbody as thecontinuation argument toinvoke-updat-
ing-output.

invoke-updating-output [Generic Function]

Arguments: stream continuation record-type unique-id id-test cache-value cache-test
copy-cache-value&key all-new parent-cache

Summary: Introduces a caching point for incremental redisplay. Calls the functioncontin-
uation, which generates the output records to be redisplayed.continuation is a
function of one argument, the stream; it has dynamic extent.

 If this is used outside the dynamic scope of an incremental redisplay, it has
particular effect. However, when incremental redisplay is occurring, the supp
cache-value is compared with the value stored in the cache identified by
unique-id. If the values differ or the code inbody has not been run before, the
code inbody runs, andcache-value is saved for next time. If the cache values a
the same, the code inbody is not run, because the current output is still valid.

unique-id uniquely identifies the output done bybody. If unique-id is not sup-
plied, CLIM will generate one that is guaranteed to be unique.unique-id may be
any object as long as it is unique with respect to theid-test predicate among all
366 CLIM User’s Guide 14.4

 by
LIM

nt
tion,
l not
 care

 old

o-

los-

d has
dis-

t

such unique ids in the current incremental redisplay.id-test is a function of two
arguments that is used for comparing unique ids; it has indefinite extent.

cache-value is a value that remains constant if and only if the output produced
body does not need to be recomputed. If the cache value is not supplied, C
will not use a cache for this piece of output.cache-test is a function of two argu-
ments that is used for comparing cache values; it has indefinite extent. If
copy-cache-value is t, then the supplied cache value will be copied using
copy-seq before it is stored in the output record. The default for
copy-cache-value is nil .

 If fixed-position is t, then the location of this output is fixed relative to its pare
output record. When CLIM redisplays an output record that has a fixed posi
then if the contents have not changed, the position of the output record wil
change. If the contents have changed, CLIM assumes that the code will take
to preserve its position. The default forfixed-position is nil .

 If all-new is t, that indicates that all of the output done bybody is new, and will
never match output previously recorded. In this case, CLIM will discard the
output and do the redisplay from scratch. The default forall-new is nil .

 The output record tree created byupdating-output defines a caching structure
where mappings from aunique-id to an output record are maintained. If the pr
grammer specifies an output recordP via theparent-cache argument, then CLIM
will try to find a corresponding output record with the matchingunique-id in the
cache belonging toP. If neitherparent-cache is not provided, then CLIM looks
for theunique-id in the output record created by immediate dynamically enc
ing call toupdating-output. If that fails, CLIM use theunique-id to find an out-
put record that is a child of the output history ofstream. Once CLIM has found
an output record that matches theunique-id, it uses the cache value and cache
test to determine whether the output record has changed. If the output recor
not changed, it may have moved, in which case CLIM will simply move the
play of the output record on the display device.

redisplay [Function]

Arguments: record stream&key (check-overlappingt)
Summary: This function callsredisplay-output-record on the argumentsrecord and

stream. Whencheck-overlapping is t, redisplay checks overlapped outpu
records more carefully in order to display them correctly. The default isnil .
Output Recording and Redisplay 14.4 367

 is,

s

 any
f

e,

ar-
.

re-

utput,
 that
redisplay-output-record [Generic Function]

Arguments: record stream&optional (check-overlappingt) x y parent-x parent-y
Summary: (redisplay-output-record record stream) causes the output of

record to be recomputed. CLIM redisplays the changes “incrementally”; that
it only displays those parts that have been changed.record must already be part
of the output history of the output recording streamstream, although it can be
anywhere inside the hierarchy.

 Whencheck-overlapping is t, redisplay checks overlapped output record
more carefully in order to display them correctly. The default isnil . This means
that CLIM can assume that no sibling output records overlap each other at
level. Supplying a false value for this argument can improve performance o
redisplay.

 The other optional arguments can be used to specify where on thestream the out-
put record should be redisplayed.x andy represent where the cursor should b
relative to(output-record-parent record) , beforerecord is redis-
played.parent-x andparent-y can be supplied to say: do the output as if the p
ent started at positionsparent-x andparent-y (which are in absolute coordinates)
The default values forx andy are(output-record-start-position
record) . The default values forparent-x andparent-y are:

(convert-from-relative-to-absolute-coordinates stream
 (output-record-parent record))

record will usually be an output record created byupdating-output. If it is not,
thenredisplay-output-record will be equivalent toreplay-output-record.

14.5 Using updating-output

One technique of incremental redisplay is to useupdating-output to inform CLIM what
output has changed, and to useredisplay to recompute and redisplay that output.

The outermost call toupdating-output identifies a program fragment that produces inc
mentally redisplayable output. A nested call toupdating-output (that is, a call toupdat-
ing-output that occurs during the execution of the body of the outermostupdating-output
and that specifies the same stream) identifies an individually redisplayable piece of o
the program fragment that produces that output, and the circumstances under which
output needs to be redrawn.
368 CLIM User’s Guide 14.5

f

eeds

vious
and

n

ssary:

ache.

s-
in that

-

 cache
The outermost call toupdating-output executes its body, producing the initial version o
the output, and returns anupdating-output-record that captures the body in a closure.
Each nested call toupdating-output caches its:unique-id and:cache-value arguments
and the portion of the output produced by its body.

redisplay takes anupdating-output-record and executes the captured body ofupdat-
ing-output over again. When a nested call toupdating-output is executed during redis-
play,updating-output decides whether the cached output can be reused or the output n
to be redrawn. This is controlled by the:cache-value argument toupdating-output. If its
value matches its previous value, the body would produce output identical to the pre
output, which would thus be unnecessary. In this case, the cached output is reused up-
dating-output does not execute its body. If the:cache-value does not match, the output
needs to be redrawn, soupdating-output executes its body and the new output drawn o
the stream replaces the previous output. The:cache-value argument is only meaningful for
nested calls toupdating-output.

If the :incremental-redisplay pane option is used, CLIM supplies the outermost call toup-
dating-output, saves theupdating-output-record, and callsredisplay. The function
specified by the:display-function pane option performs only the nested calls toupdat-
ing-output.

If you use incremental redisplay without using the:incremental-redisplay pane option,
you must perform the outermost call toupdating-output, save theupdating-out-
put-record, and callredisplay yourself.

In order to compare the cache to the output record, two pieces of information are nece

1. An association between the output being done by the program and a particular c
This is supplied in the:unique-id option toupdating-output.

2. A means of determining whether this particular cache is valid. This is the:cache-value
option toupdating-output.

Normally you would supply both options. The:unique-id would be some data structure a
sociated with the corresponding part of output. The cache value would be something
data structure that changes whenever the output changes.

It is valid to give the:unique-id and not the:cache-value. This is done to identify a supe
rior in the hierarchy. By this means, the inferiors essentially get a more complex:unique-id
when they are matched for output. (It is rather like using a telephone area code.) The
without a cache value is never valid. Its inferiors always have to be checked.
Output Recording and Redisplay 14.5 369

 same
cially
. In
hange
their

 of a
ke of

s
ree,
ecurse
ves,
n up

work
It is also valid to give the:cache-value and not the:unique-id. In this case, unique ids are
just assigned sequentially. So, if output associated with the same thing is done in the
order each time, it isn’t necessary to invent new unique ids for each piece. This is espe
true in the case of inferiors of a cache with a unique id and no cache value of its own
this case, the superior marks the particular data structure, whose components can c
individually, and the inferiors are always in the same order and properly identified by
superior and the order in which they are output.

A :unique-id need not be unique across the entire redisplay, only among the inferiors
given output cache, that is, among all possible (current and additional) uses you ma
updating-output that are dynamically (not lexically) within another.

To make your incremental redisplay maximally efficient, you should attempt to give a
many caches with:cache-value as possible. For instance, if you have a deeply nested t
it is better to be able to know when whole branches have not changed than to have to r
to every single leaf and check it. So, if you are maintaining a modification tick in the lea
it is better to maintain one in their superiors as well and to propagate the modificatio
when things change. While the simpler approach works, it requires CLIM to do more
than is necessary.

14.6 Example of Incremental Redisplay in CLIM

The following function illustrates the standard use of incremental redisplay:

(defun test (stream)
 (let* ((list (list 1 2 3 4 5))
 (record
 (clim:updating-output
 (stream)
 (do* ((elements list (cdr elements))
 (count 0 (1+ count))
 (element (first elements) (first elements)))
 ((null elements))
 (clim:updating-output (stream :unique-id count
 :cache-value element)
 (format stream "Element ~D~%" element))))))
 (force-output stream)
 (sleep 10)
 (setf (nth 2 list) 17)
 (clim:redisplay record stream)))
370 CLIM User’s Guide 14.6

 redis-
that the
ss”
for
Whentest is run on a window, the initial display looks like:

 Element 1
 Element 2
 Element 3
 Element 4
 Element 5

After the sleep has terminated, the display looks like:

 Element 1
 Element 2
 Element 17
 Element 4
 Element 5

Incremental redisplay takes care of ensuring that only the third line gets erased and
played. In the case where items have moved around, Incremental Redisplay ensures
minimum amount of work is done in updating the display, thereby minimizing “flashine
while providing a powerful user interface. For example, try substituting the following
the form after the sleep:

(setf list (sort list #’(lambda (&rest args) (zerop (random 2)))))
Output Recording and Redisplay 371

372 CLIM User’s Guide

Chapter 15 Extended Stream Input
Facilities
Extended Stream Input Facilities 373

.. 375

... 376
. 377
. 381

.... 382

.. 385

.. 386
Chapter 15 Extended Stream Input Facilities

15.1Basic Input Streams ...

15.2 Extended Input Streams ..
15.2.1 The Extended Input Stream Protocol...
15.2.2 Extended Input Stream Conditions ..

15.3 Gestures and Gesture Names ...

15.4 The Pointer Protocol ..

15.5 Pointer Tracking...
374 CLIM User’s Guide

input
tream
is
f the

oto-

ffer.

til

r-

y a
15.1 Basic Input Streams

CLIM provides a stream-oriented input layer that is implemented on top of the sheet
architecture. The basic CLIM input stream protocol is based on the character input s
protocol proposal submitted to the ANSI Common Lisp committee by David Gray. Th
proposal was not approved by the committee, but CLIM provides an implementation o
basic input stream facilities.

standard-input-stream [Class]

Summary: This class provides an implementation of the CLIM’s basic input stream pr
col based on CLIM’s input kernel. It defines ahandle-event method for key-
stroke events and queues the resulting characters in a per-stream input bu
Members of this class are mutable.

stream-read-char [Generic Function]

Arguments: stream
Summary: Returns the next character available in the input streamstream, or :eof if the

stream is at end-of-file. If no character is available, this function will wait un
one becomes available.

stream-unread-char [Generic Function]

Arguments: stream character
Summary: Places the charactercharacter back into the input streamstream’s input buffer.

The next call toread-char onstream will return the unread character. The cha
acter supplied must be the most recent character read from the stream.

stream-read-char-no-hang [Generic Function]

Arguments: stream
Summary: Like stream-read-char, except that if no character is available, the function

returnsnil .

stream-peek-char [Generic Function]

Arguments: stream
Summary: Returns the next character available in the input streamstream. The character is

not removed from the input buffer, so the same character will be returned b
subsequent call tostream-read-char.
Extended Stream Input Facilities 15.1 375

 pro-
 user
rogram-
wait

ed
stream-listen [Generic Function]

Arguments: stream
Summary: Returnst if there is input available on the input streamstream, nil if not.

stream-read-line [Generic Function]

Arguments: stream
Summary: Reads and returns a string containing a line of text from the input streamstream,

delimited by the#\Newline character.

stream-clear-input [Generic Function]

Arguments: stream
Summary: Clears any buffered input associated with the input streamstream and returnsnil .

15.2 Extended Input Streams

In addition to the basic input stream protocol, CLIM defines an extended input stream
tocol. This protocol extends the stream model to allow manipulation of non-character
gestures, such as pointer button presses. The extended input protocol provides the p
mer with more control over input processing, including the options of specifying input
timeouts and auxiliary input test functions.

extended-input-stream [Protocol Class]

Summary: The protocol class for CLIM extended input streams. This is a subclass of
input-stream. If you want to create a new class that behaves like an extend
input stream, it should be a subclass ofextended-input-stream. Subclasses of
extended-input-stream must obey the extended input stream protocol.

extended-input-stream-p [Function]

Arguments: object
Summary: Returnst if object is a CLIM extended input stream; otherwise, it returnsnil .
376 CLIM User’s Guide 15.2

e
e

 pro-
he
 asso-

e and

nded

ams

es in
uffer
:input-buffer [Initarg]

:pointer [Initarg]

:text-cursor [Initarg]

Summary: All subclasses ofextended-input-stream must handle these initargs, which ar
used to specify, respectively, the input buffer, pointer, and text cursor for th
extended input stream.

standard-extended-input-stream [Class]

Summary: This class provides an implementation of the CLIM extended input stream
tocol based on CLIM’s input kernel. The extended input stream maintains t
state of the display’s pointing devices (such as a mouse) in pointer objects
ciated with the stream. It defines ahandle-event methods for keystroke and
pointer motion and button press events and updates the pointer object stat
queues the resulting events in a per-stream input buffer.

 Members of this class are mutable.

15.2.1 The Extended Input Stream Protocol

The following generic functions comprise the extended input stream protocol. All exte
input streams must implement methods for these generic functions.

stream-input-buffer [Generic Function]

Arguments: stream

(setf stream-input-buffer) [Generic Function]

Arguments: buffer stream
Summary: These functions provide access to the stream’s input buffer. Normally progr

do not need to manipulate the input buffer directly. It is sometimes useful to
cause several streams to share the same input buffer so that input that com
on one of them is available to an input call on any of the streams. The input b
must be a vector with a fill pointer capable of holding general input gesture
objects (such as characters and event objects).

stream-pointers [Generic Function]

Arguments: stream
Extended Stream Input Facilities 15.2 377

 the

vice

the

of

e

Summary: Returns the list of pointer objects corresponding to the pointing devices of
port associated withstream. This function returns objects that reveal CLIM’s
internal state; do not modify those objects.

stream-primary-pointer [Generic Function]

Arguments: stream

(setf stream-primary-pointer) [Generic Function]

Arguments: pointer stream
Summary: Returns (or sets) the pointer object corresponding to the primary pointing de

of the console.

 Note: CLIM currently supports only a single pointer for any port. Therefore,
length of the list returned bystream-pointers will always be one, and
stream-primary-pointer will always return an object that is the only element
that list.

stream-pointer-position [Generic Function]

Arguments: stream&key pointer
Summary: Returns the current position of the pointing devicepointer for the extended input

streamstream as two values, thex andy positions in the stream’s drawing surfac
coordinate system. Ifpointer is not supplied, it defaults to thestream-pri-
mary-pointer of the stream.

(setf* stream-pointer-position) [Generic Function]

Arguments: x y stream&key pointer
Summary: Sets the position of the pointing device for the extended input streamstream to

x andy, which are integers.pointer is as forstream-pointer-position. For the
details ofsetf*, see Appendix C.4, “Multiple-Value Setf.”

stream-set-input-focus [Generic Function]

Arguments: stream
Summary: Sets the “input focus” to the extended input streamstream and returns the old

input focus as its value.

stream-restore-input-focus [Generic Function]

Arguments: stream old-focus
Summary: Restores the “input focus” of the extended input streamstream to old-focus.
378 CLIM User’s Guide 15.2

ated

to a

put
e glo-

ed
ter

The
with-input-focus [Macro]

Arguments: (stream)&body body
Summary: Temporarily gives the keyboard input focus to the extended input streamstream.

By default, an application frame gives the input focus to the window associ
with frame-query-io.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t, *standard-input* is used.body may have zero or more
declarations as its first forms.

input-wait-test [Variable]

input-wait-handler [Variable]

pointer-button-press-handler [Variable]

Summary: These three variables are used to hold the default values for the current in
wait test, wait handler, and pointer button press handler. These variables ar
bally bound tonil .

read-gesture [Function]

Arguments: &key (stream*standard-input*) timeout peek-p (input-wait-test
input-wait-test) (input-wait-handler*input-wait-handler*)
(pointer-button-press-handler*pointer-button-press-handler*)

Summary: Callsstream-read-gesture on the extended input streamstream and all of the
other keyword arguments. Returns the next gesture available in the extend
input streamstream; the gesture will be a character, an event (such as a poin
button event), or(values nil :timeout) if no input is available. The
input is not echoed.

 These arguments are the same as forstream-read-gesture.

stream-read-gesture [Generic Function]

Arguments: stream&key timeout peek-p (input-wait-test*input-wait-test*)
(input-wait-handler*input-wait-handler*)
(pointer-button-press-handler*pointer-button-press-handler*)

Summary: Returns the next gesture available in the extended input streamstream; the ges-
ture will be either a character or an event (such as a pointer button event).
input is not echoed.
Extended Stream Input Facilities 15.2 379

esture

 of the

l-

ld

n
e

light-

.

 If the user types an abort gesture (that is, a gesture that matches any of the g
names in*abort-gestures*), then theabort-gesture condition will be signaled.

 If the user types an accelerator gesture (that is, a gesture that matches any
gesture names in*accelerator-gestures*), then theaccelerator-gesture condi-
tion will be signaled.

stream-read-gesture works by invokingstream-input-wait onstream,
input-wait-test, andtimeout, and then processing the input, if there is any.

timeout is eithernil or an integer that specifies the number of seconds that
stream-read-gesture will wait for input to become available. If no input is avai
able,stream-read-gesture will return two values,nil and:timeout.

 If peek-p is t, the returned gesture will be left in the stream’s input buffer.

input-wait-test is a function of one argument, the stream. The function shou
returnt when there is input to process, otherwise it should returnnil . This argu-
ment will be passed on tostream-input-wait. stream-read-gesture will bind
input-wait-test to input-wait-test.

input-wait-handler is a function of one argument, the stream. It is called whe
stream-input-wait returnsnil (that is, no input is available). This option can b
used in conjunction withinput-wait-test to handle conditions other than key-
board gestures, or to provide some sort of interactive behavior (such as high
ing applicable presentations).stream-read-gesture will bind
input-wait-handler to input-wait-handler.

pointer-button-press-handler is a function of two arguments, the stream and a
pointer button press event. It is called when the user clicks a pointer button
stream-read-gesture will bind *pointer-button-press-handler* to
pointer-button-press-handler.

input-wait-test, input-wait-handler, andpointer-button-press-handler have
dynamic extent.

stream-input-wait [Generic Function]

Arguments: stream&key timeout input-wait-test
Summary: Waits for input to become available on the extended input streamstream. timeout

andinput-wait-test are as forstream-read-gesture.

unread-gesture [Function]

Arguments: gesture&key (stream*standard-input*)
380 CLIM User’s Guide 15.2

obal

f

. The

r

Summary: Callsstream-unread-gesture ongesture andstream. These arguments are the
same as forstream-unread-gesture.

stream-unread-gesture [Generic Function]

Arguments: stream gesture
Summary: Placesgesture back into the extended input streamstream’s input buffer. The

next call tostream-read-gesture request will return the unread gesture.gesture
must be the most recent gesture read from the stream viaread-gesture.

15.2.2 Extended Input Stream Conditions

abort-gestures [Variable]

Summary: A list of all of the gesture names that correspond to abort gestures. The gl
set of standard abort gestures is unspecified; it includes the:abort gesture name.
The actual keystroke sequence isControl-z .

abort-gesture [Condition]

Summary: This condition is signaled byread-gesture whenever an abort gesture (one o
the gestures in*abort-gestures*) is read from the user.

abort-gesture-event [Generic Function]

Arguments: condition
Summary: Returns the event that cause the abort gesture condition to be signaled.condition

is an object of typeabort-gesture.

accelerator-gestures [Variable]

Summary: A list of all of the gesture names that correspond to keystroke accelerators
global value for this isnil .

accelerator-gesture [Condition]

Summary: This condition is signaled byread-gesture whenever an keystroke accelerato
gesture (one of the gestures in*accelerator-gestures*) is read from the user.

accelerator-gesture-event [Generic Function]

Arguments: condition
Extended Stream Input Facilities 15.2 381

aled.

r) at

ing a
e-

mes
ortabil-
uch

nd

ture

ts are
the
r keys
nt ob-
w the
e

Summary: Returns the event that causes the accelerator gesture condition to be sign
condition is an object of typeaccelerator-gesture.

accelerator-gesture-numeric-argument [Generic Function]

Arguments: condition
Summary: Returns the accumulated numeric argument (maintained by the input edito

the time the accelerator gesture condition was signaled.condition is an object of
typeaccelerator-gesture.

15.3 Gestures and Gesture Names

A gesture is some sort of input action by the user, such as typing a character or click
pointer button. Akeyboard gesture refers to those gestures that are input by typing som
thing on the keyboard. Apointer gesture refers to those gestures that are input by doing
something with the pointer, such as clicking a button.

A gesture name is a symbol that gives a name to a set of similar gestures. Gesture na
are used in order to provide a level of abstraction above raw device events; greater p
ity can be achieved by avoiding referring directly to platform-dependent constructs, s
as character objects that refer to a particular key on the keyboard. For example, the:com-
plete gesture is used to name the gesture that causes thecomplete-input complete the cur-
rent input string; on Genera, this may correspond to theCOMPLETE key on the keyboard
(which generates a#\Complete character), but on a Unix workstation, it may correspo
to TAB or some other key. Another example is:select, which is commonly used to indicate
a left button click on the pointer.

Note that gesture names participate in a one-to-many mapping, that is, a single ges
name can name a group of physical gestures. For example, an:edit might include both a
pointer button click and a key press.

CLIM usesevent objects to represent user gestures. Some of the more common even
those of the classpointer-button-event. Event objects store the sheet associated with
event, a timestamp, and the modifier key state (a quantity that indicates which modifie
were held down on the keyboard at the time the event occurred). Pointer button eve
jects also store the pointer object, the button that was clicked on the pointer, the windo
pointer was over, and thex andy position within that window. Keyboard gestures store th
key name.
382 CLIM User’s Guide 15.3

n less
ting

ed

.

ers

l plat-
ese
 the

ple,
In some contexts, the object used to represent a user gesture is referred to as angesture ob-
ject. An gesture object might be exactly the same as an event object, or might contai
information. For example, for a keyboard gesture that corresponds to a standard prin
character, it may be enough to represent the gesture object as a character.

define-gesture-name [Macro]

Arguments: name type gesture-spec&key (uniquet)
Summary: Defines a new gesture named by the symbolname. It expands into a call to

add-gesture-name.

type is the type of gesture being created, and is either:keyboard or :pointer-but-
ton. gesture-spec specifies the physical gesture that corresponds to the nam
gesture; its syntax depends on the value oftype.

• Whentype is :keyboard, gesture-spec is a list of the form(key-name . modifi-
er-key-names). key-name is the name of a non-modifier key on the keyboard
modifier-key-names is a (possibly empty) list of modifier key names (:shift ,
:control , :meta, :super, and:hyper).

For the standard Common Lisp characters (the 95 ASCII printing charact
including#\Space), key-name is the character object itself. For the other
“semi-standard” characters,key-name is a keyword symbol naming the char-
acter (:newline, :linefeed, :return , :tab, :backspace, :page, and:rubout).

The names of the modifier keys have been chosen to be uniform across al
forms, even though not all platforms will have keys on the keyboard with th
names. The per-port part of CLIM simply chooses a sensible mapping from
modifier key names to the names of the keys on the keyboard. For exam
CLIM on the Macintosh maps:meta to theCOMMAND SHIFT key, and:super
to theOPTION SHIFT key.

• Whentype is :pointer-button , gesture-spec is a list of the form(button-name
. modifier-key-names). button is the name of a pointer button (:left , :middle, or
:right), andmodifier-key-names is as for whentype is :keyboard.

 If unique is t (the default), all old gestures named byname are removed.

 None of the arguments todefine-gesture-name are evaluated.

add-gesture-name [Function]

Arguments: name type gesture-spec&key unique
Summary: Adds a gesture named by the symbolname to the set of gesture names.type and

gesture-spec are as fordefine-gesture-name.
Extended Stream Input Facilities 15.3 383

 ges-

e
ding

ared.

p-

 the

pond-

ay
 the

ed to
 If unique is t, all old gestures named byname are removed.unique defaults tonil .

 As an example, the:edit gesture name could be defined as follows using
define-gesture-name:

 (define-gesture-name :edit :pointer-button (:left :meta))

 (define-gesture-name :edit :keyboard (#\E :control))

delete-gesture-name [Function]

Arguments: name
Summary: Removes the gesture named by the symbolname.

CLIM provides a standard set of gesture names that correspond to a common set of
tures. Here are the required, standard keyboard gesture names:

■ :abort—corresponds to gestures that cause the currently running application to b
aborted back to top-level. In LispWorks CLIM, this may match the event correspon
to typingCONTROL-Z. In Liquid CLIM, this may match the event corresponding to
typingCONTROL-C.

■ :clear-input—corresponds to gestures that cause the current input buffer to be cle
In LispWorks CLIM, this may match the event corresponding to typingCON-
TROL-BACKSPACE. In Liquid CLIM, this may match the event corresponding to ty
ing CONTROL-U.

■ :complete—corresponds to the gestures that tell the completion facility to complete
current input. On most systems, this will typically match the#\Tab or #\Escape
character.

■ :help—corresponds to the gestures that tellaccept and the completion facility to dis-
play a help message. On most systems, this will typically match the event corres
ing to typingCONTROL-/.

■ :possibilities—corresponds to the gestures that tell the completion facility to displ
the current set of possible completions. On most systems, this will typically match
event corresponding to typingCONTROL-?.

Here are the required, standard pointer gesture names:

■ :select—corresponds to the gesture that is used to “select” the object being point
with the pointer. Typically, this will correspond to the left button on the pointer.
384 CLIM User’s Guide 15.3

 sort
ill

 oper-
d to

 with
e

ed to
ith

ate a

le.
■ :describe—corresponds to the gesture that is used to “describe” or display some
of documentation on the object being pointed to with the pointer. Typically, this w
correspond to the middle button on the pointer.

■ :menu—corresponds to the gesture that is used to display a menu of all possible
ations on the object being pointed to with the pointer. Typically, this will correspon
the right button on the pointer.

■ :edit—corresponds to the gesture that is used to “edit” the object being pointed to
the pointer. Typically, this will correspond to the left button on the pointer with som
modifier key held down (such as theMETA key).

■ :delete—corresponds to the gesture that is used to “delete” the object being point
with the pointer. Typically, this will correspond to the middle button on the pointer w
some modifier key held down (such as theSHIFT key).

15.4 The Pointer Protocol

pointer [Protocol Class]

Summary: The protocol class that corresponds to a pointing device. If you want to cre
new class that behaves like pointer, it should be a subclass ofpointer. Subclasses
of pointer must obey the pointer protocol. Members of this class are mutab

pointerp [Function]

Arguments: object
Summary: Returnst if object is a pointer; otherwise, it returnsnil .

:port [Initarg]

Summary: Specifies the port with which the pointer is associated.

standard-pointer [Class]

Summary: The instantiable class that implements a pointer.

pointer-port [Generic Function]

Arguments: pointer
Summary: Returns the port with which the pointerpointer is associated.
Extended Stream Input Facilities 15.4 385

ions

ile
ts.
pointer-sheet [Generic Function]

Arguments: pointer

(setf pointer-sheet) [Generic Function]

Arguments: sheet pointer
Summary: Returns (or sets) the sheet over which the pointerpointer is located.

pointer-button-state [Generic Function]

Arguments: pointer
Summary: Returns the state of the buttons of the pointerpointer. This is represented as the

logior of the values obtained frompointer-event-button.

pointer-position [Generic Function]

Arguments: pointer
Summary: Returns thex andy position of the pointerpointer as two values.

(setf* pointer-position) [Generic Function]

Arguments: x y pointer
Summary: Sets thex andy position of the pointerpointer to the specified position. For the

details ofsetf*, see Appendix C.4, “Multiple-Value Setf.”

pointer-cursor [Generic Function]

Arguments: pointer

(setf pointer-cursor) [Generic Function]

Arguments: cursor pointer
Summary: A pointer object usually has a visible cursor associated with it. These funct

return (or set) the cursor associated with the pointerpointer.

15.5 Pointer Tracking

tracking-pointer [Macro]

Arguments: (&optional stream&key pointer multiple-window transformp context-type
highlight)&body body

Summary: Thetracking-pointer macro provides a general means for running code wh
following the position of a pointing device and monitoring for other input even
386 CLIM User’s Guide 15.5

tion

o an

;

the

l be

.

he

-
rd
The programmer supplies code (the clauses inbody) to be run upon the occur-
rence of any of the following types of events:

• Motion of the pointer

• Motion of the pointer over a presentation

• Clicking or releasing a pointer button

• Clicking or releasing a pointer button while the pointer is over a presenta

• Keyboard event (typing a character)

 Thestreamargument is not evaluated, and must be a symbol that is bound t
input sheet or stream. Ifstreamis t, *standard-output* is used.body may have
zero or more declarations as its first forms.

 Thepointer argument specifies a pointer to track. It defaults to the primary
pointer for the sheet, (port-pointer stream).

 Whenmultiple-window is t, the pointer will be tracked across multiple windows
whennil , it will be tracked only in the window corresponding tostream.

 When the booleantransformp is t, then the coordinates supplied to the
:pointer-motion clause will be in the “user” coordinate system rather than in
stream coordinates; that is, the medium’s transformation will be applied to
coordinates.

context-type is used to specify the presentation type of presentations that wil
“visible” to the tracking code for purposes of highlighting and for the:presen-
tation, :presentation-button-press, and:presentation-button-release clauses.
Supplyingcontext-type is only useful whensheet is an output recording stream
context-type defaults tot, meaning that all presentations are visible.

 Whenhighlight is t, tracking-pointer will highlight applicable presentations as
the pointer is positioned over them.highlight defaults tot when any of the:pre-
sentation, :presentation-button-press, or :presentation-button-release
clauses is supplied; otherwise, it defaults tonil .

 The body oftracking-pointer consists of a list of clauses. Each clause is of t
form (clause-keyword arglist . clause-body) and defines a local function to be
run upon occurrence of each type of event. The possible values forclause-key-
word and the associatedarglist are:

• :pointer-motion (&key window x y)Defines a clause to run whenever the
pointer moves. In the clause,window is bound to the window in which the mo
tion occurred, andx andy to the coordinates of the pointer. (See the keywo
Extended Stream Input Facilities 15.5 387

-
key-

e

-

sen-

n;

a
-

-

argument:transformp for a description of the coordinate system in whichx
andy are expressed.)

• :presentation (&key presentation window x y) Defines a clause to run when
ever the pointer moves over a presentation of the desired type. (See the
word argument:context-type for a description of how to specify the desired
type.) In the clause,presentation is bound to the presentation,window to the
window in which the motion occurred, andx andy to the coordinates of the
pointer. (See the keyword argument:transformp for a description of the coor-
dinate system in whichx andy are expressed.)

 When both:presentation and:pointer-motion clauses are provided, the two ar
mutually exclusive. The:presentation clause will run only if the pointer is over
an applicable presentation; otherwise the:pointer-motion clause will run.

• :pointer-button-press (&key event x y) Defines a clause to run whenever a
pointer button is pressed. In the clause,event is bound to the pointer button
press event. (The window and the coordinates of the pointer are part ofevent.)

x andy are the transformedx andy positions of the pointer. These will be dif
ferent frompointer-event-x andpointer-event-y if the user transformation is
not the identity transformation.

• :presentation-button-press(&key presentation event x y) Defines a clause to
run whenever the pointer button is pressed while the pointer is over a pre
tation of the desired type. (See the keyword argument:context-type for a de-
scription of how to specify the desired type.) In the clause,presentation is
bound to the presentation, andevent to the pointer button press event. (The
window and the stream coordinates of the pointer are part ofevent.) x andy are
as for the:pointer-button-press clause.

 When both:presentation-button-press and:pointer-button-press clauses are
provided, the two clauses are mutually exclusive. The:presentation-but-
ton-press clause will run only if the pointer is over an applicable presentatio
otherwise, the:pointer-button-press clause will run.

• :pointer-button-release(&key event x y) Defines a clause to run whenever
pointer button is released. In the clause,event is bound to the pointer button re
lease event. (The window and the coordinates of the pointer are part ofevent.)

x andy are the transformedx andy positions of the pointer. These will be dif
ferent frompointer-event-x andpointer-event-y if the user transformation is
not the identity transformation.
388 CLIM User’s Guide 15.5

esen-

n;
• :presentation-button-release(&key presentation event x y) Defines a clause
to run whenever a pointer button is released while the pointer is over a pr
tation of the desired type. (See the keyword argument:context-type for a de-
scription of how to specify the desired type.) In the clause,presentation is
bound to the presentation, andevent to the pointer button release event. (The
window and the stream coordinates of the pointer are part ofevent.) x andy are
as for the:pointer-button-release clause.

 When both:presentation-button-release and:pointer-button-release clauses
are provided, the two clauses are mutually exclusive. The:presentation-but-
ton-release clause will run only if the pointer is over an applicable presentatio
otherwise, the:pointer-button-release clause will run.

• :keyboard (&key gesture) Defines a clause to run whenever a character is
typed on the keyboard. In the clause,gesture is bound to the keyboard gesture
corresponding to the character typed.

Here is an example oftracking-pointer :

(in-package ’clim-user)

(define-application-frame test ()
 ()
 (:panes
 (main :application)))

(define-test-command (rubberband :menu t) ()
 (let ((x1 0);; x1, y1 represents the fix point
 (y1 0)
 (x2 0);; x2,y2 represents the point that is changing
 (y2 0)
 (mouse-button-press nil);; set to T when mouse button has
 ;; press to select pivot
 (stream (get-frame-pane *application-frame* ’main)))
Extended Stream Input Facilities 15.5 389

ut

x
 the

s
is-
the
 (tracking-pointer
 (stream)
 (:pointer-button-press
 (event x y)
 (setf x1 x
 y1 y
 x2 x
 y2 y)
 (draw-rectangle* stream x1 y1 x2 y2
 :ink +flipping-ink+ :filled nil)
 (setf mouse-button-press t))
 (:pointer-motion
 (window x y)
 (when mouse-button-press
 ;;erase
 (draw-rectangle* stream x1 y1 x2 y2
 :ink +flipping-ink+ :filled nil)
 ;; draw
 (draw-rectangle* stream x1 y1 x y
 :ink +flipping-ink+ :filled nil)
 (setf x2 x y2 y)))
 (:pointer-button-release (event x y)
 (when mouse-button-press
 (return (list x1 y1 x2 y2)))))))

(define-test-command (com-exit :menu "EXEUNT" :keystroke #-) ()
 (frame-exit *application-frame*))

drag-output-record [Generic Function]

Arguments: stream output-record&key repaint multiple-window erase feedback
finish-on-release

Summary: Enters an interaction mode in which the user moves the pointer andout-
put-record “follows” the pointer by being dragged on the output recording
streamstream. By default, the dragging is accomplished by erasing the outp
record from its previous position and redrawing at the new position.out-
put-record remains in the output history ofstream at its final position.

 The returned values are the finalx andy positions of the pointer, and the delta-
and delta-y position of the mouse with respect to the origin of the object at
time it was originally selected by the pointer.

 The booleanrepaint controls the appearance of the windows as the pointer i
dragged. Ifrepaint is t (the default), displayed contents of windows are not d
turbed as the output record is dragged over them (that is, those regions of
390 CLIM User’s Guide 15.5

rd

 is
 and

gu-

ior,
hat if

.

erac-
de
in-

ns).

x
 the

o an
screen are repainted). If it isnil , then no repainting is done as the output reco
is dragged.

erase identifies a function that will be called to erase the output record as it
dragged. It must be a function of two arguments, the output record to erase
the stream; it has dynamic extent. The default iserase-output-record.

feedback allows the programmer to identify a “feedback” function of seven ar
ments: the output record, the stream, the initialx andy position of the pointer,
the currentx andy position of the pointer, and a drawing argument (either:erase
or :draw). It has dynamic extent. The default isnil , meaning that the feedback
behavior will be for the output record to track the pointer. (Thefeedback argu-
ment is used when the programmer desires more complex feedback behav
such as drawing a “rubber band” line as the user moves the mouse.) Note t
feedback is supplied,erase is ignored.

 If the booleanfinish-on-release isnil (the default),drag-output-record is exited
when the user presses a pointer button. When it ist, drag-output-record is
exited when the user releases the pointer button currently being held down

dragging-output [Macro]

Arguments: (&optional stream&key repaint multiple-window finish-on-release)&body
body

Summary: This macro is used by functions that want to move output records in an int
tive fashion in a CLIM window. The body of the macro invocation contains co
to draw a CLIM graphic. The resulting graphic tracks mouse motion in the w
dow until the mouse button is pressed (or released, depending on the optio

body is evaluated inside ofwith-output-to-output-record to produce an output
record for the streamstream, and then invokesdrag-output-record on the
record in order to drag the output. The output record is not inserted intostream’s
output history.

 The returned values are the finalx andy positions of the pointer, and the delta-
and delta-y position of the mouse with respect to the origin of the object at
time it was originally selected by the pointer.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream stream. Ifstream is t (the default),*standard-output*
is used.body may have zero or more declarations as its first forms.

repaint andfinish-on-release are as fordrag-output-record.
Extended Stream Input Facilities 15.5 391

ts of

 to

-
ore
er but-
ate
ndow.

.
s

wn.

ed
t-
pointer-place-rubber-band-line* [Function]

Arguments: &key start-x start-y stream pointer multiple-window finish-on-release
Summary: This function is used to place a rubber-band line. The input is the end poin

a rubber-band line on the streamstream (which defaults to*standard-input*)
via the pointerpointer.

 If start-x andstart-y are provided, the start point of the line is at (start-x,start-y).
Otherwise, the start point of the line is selected by pressing a button on the
pointer.

 Thepointer argument specifies a pointer from which to take input. It defaults
(port-pointer stream).

 When the booleanmultiple-window argument ist, input can be taken from a win
dow other than the default window. However, input cannot be taken from m
than one window at the same time. For instance, you cannot press the point
ton in one window to begin the line and release it in another window to indic
the end point of the line; the press and release must happen in the same wi

 When the booleanfinish-on-release is t, pointer-place-rubber-band-line* is
exited when the user releases the pointer button currently being held down
When it isnil , pointer-place-rubber-band-line* is exited when the user presse
a pointer button.

pointer-place-rubber-band-line* returns five values: the start X and Y of the
line, the end X and Y of the line, and the window on which the line was dra
The final value is useful only whenmultiple-window is t.

pointer-input-rectangle* [Function]

Arguments: &key left top right bottom stream pointer multiple-window finish-on-release
Summary: This function is used to input a rectangle via the pointerpointer. The input is the

corners of a rectangle on the streamstream, which defaults to*stan-
dard-input* .

 If left andtop are provided, the upper left corner of the rectangle will be plac
at (left,top). If right andbottom are provided, the lower right corner of the rec
angle will be placed at (right,bottom). Otherwise, the upper left corner of the
rectangle is selected by pressing a button on the pointer.

pointer, multiple-window, andfinish-on-release are as forpointer-place-rub-
ber-band-line*.
392 CLIM User’s Guide 15.5

r-
he
pointer-input-rectangle* returns five values: the left, top, right, and bottom co
ners of the rectangle, and the window on which the rectangle was drawn. T
final value is useful only whenmultiple-window is true.

pointer-input-rectangle [Function]

Arguments: &rest options&key rectangle stream pointer multiple-window
finish-on-release&allow-other-keys

pointer-input-rectangle is exactly likepointer-input-rectangle* except that it
takes as input and returns a rectangle object.
Extended Stream Input Facilities 15.5 393

394 CLIM User’s Guide 15.5

Chapter 16 Input Editing and Completion
Facilities
Input Editing and Completion Facilities 395

. 397
 399
. 400

. 402

. 403

.. 404

.. 406

.. 412

.. 412
Chapter 16 Input Editing and Completion Facilities

16.1 Input Editing ...
16.1.1 Operators for Input Editing...
16.1.2 Input Editor Commands...

16.2 Activation and Delimiter Gestures..

16.3 Signalling Errors Inside accept Methods ..

16.4 Reading and Writing Tokens..

16.5 Completion...

16.6 Using with-accept-help: some examples ...

16.7 Advanced Topics..
396 CLIM User’s Guide

s are
irectly
cus-

r

 a
er

ther

e key-
te of
can
must
 opera-

-

16.1 Input Editing

An input editing stream “encapsulates” an interactive stream. That is, most operation
handled by the encapsulated interactive stream, but some operations are handled d
by the input editing stream itself. (See Appendix F, “Common Lisp Streams,” for a dis
sion of encapsulating streams.)

An input editing stream has the following components:

■ The encapsulated interactive stream

■ A buffer with a fill pointer, which we shall refer to asFP. The buffer contains all of the
user’s input, andFP is the length of that input.

■ An insertion pointer, which we shall refer to asIP. The insertion pointer is the point in
the buffer at which the “editing cursor” is.

■ A scan pointer, which we shall refer to asSP. The scan pointer is the point in the buffe
from which CLIM will get the next input gesture object (in the sense ofread-gesture).

■ A “rescan queued” flag, indicating that the programmer (or CLIM) requested that
“rescan” operation should take place before the next gesture is read from the us

■ A “rescan in progress” flag, indicating that CLIM is rescanning the user’s input, ra
than reading freshly supplied gestures from the user

The input editor reads either “real” gestures from the user (such as characters from th
board or pointer button events) or input editing commands, which can modify the sta
the input buffer. When they do so, the input buffer must be “rescanned”; that is, the s
pointerSP must be reset to its original state, and the contents of the input editor buffer
be reparsed before any other gestures from the user are read. While this rescanning
tion is taking place, the “rescan in progress” flag is set tot. The relationshipSP≤ IP ≤ FP
always holds.

The overall control structure of the input editor is:

(catch ’rescan ;thrown to when a rescan is invoked
 (reset-scan-pointer stream) ;sets STREAM-RESCANNING-P to T
 (loop
 (funcall continuation stream)))

wherestream is the input editing stream andcontinuation is the code supplied by the pro
grammer, which typically contains calls to such functions asaccept andread-token (which
Input Editing and Completion Facilities 16.1 397

s
ges-

e scan
oint-
tures

 read by
e-

objects
er.
will eventually callstream-read-gesture). When a rescan operation is invoked, it throw
to therescan tag in the previous example. The loop is terminated when an activation
ture is seen, and at that point the values produced bycontinuation are returned as values
from the input editor.

The important point is that functions such asaccept, read-gesture, andunread-gesture
read (or restore) the next gesture object from the buffer at the position pointed to by th
pointerSP. However, insertion and input editing commands take place at the position p
ed to byIP. The purpose of the rescanning operation is to ensure that all the input ges
issued by the user (typed characters, pointer button presses, and so forth) have been
CLIM. During input editing, the input editor maintains some sort of visible cursor to r
mind the user of the position ofIP.

The overall structure ofstream-read-gesture on an input editing stream is:

(progn
 (rescan-if-necessary stream)
 (loop
 ;; If SP is less than FP
 ;; Then get the next gesture from the input editor buffer at SP
 ;; and increment SP
 ;; Else read the next gesture from the encapsulated stream
 ;; and insert it into the buffer at IP
 ;; Set the "rescan in progress" flag to false
 ;; Call STREAM-PROCESS-GESTURE on the gesture
 ;; If it was a "real" gesture
 ;; Then exit with the gesture as the result
 ;; Else it was an input editing command (which has already been
 ;; processed), so continue looping
))

A new gesture object is inserted into the input editor buffer at the insertion pointerIP. If IP
= FP, this is accomplished by avector-push-extend-like operation on the input buffer and
FP, and then incrementingIP. If IP < FP, CLIM must first “make room” for the new gesture
in the input buffer, then insert the gesture atIP, and finally increment bothIP andFP.

When the user requests an input editor motion command, only the insertion pointerIP is
affected. Motion commands do not need to request a rescan operation.

When the user requests an input editor deletion command, the sequence of gesture
atIP is removed, andIP andFP must be modified to reflect the new state of the input buff
Deletion commands (and other commands that modify the input buffer) must callimmedi-
ate-rescan when they are done modifying the buffer.
398 CLIM User’s Guide 16.1

nd
 nev-

e ob-
 read-

 are

ream

ded

t to
 sub-

ted

f

CLIM is free to put special objects in the input editor buffer, such as “noise strings” a
“accept results.” A “noise string” is used to represent some sort of in-line prompt and is
er seen as input; theprompt-for-accept method may insert a noise string into the input
buffer. An “accept result” is an object in the input buffer that is used to represent som
ject that was inserted into the input buffer (typically via a pointer gesture) that has no
able representation (in the Lisp sense);presentation-replace-input may create accept re-
sults. Noise strings are skipped over by input editing commands, and accept results
treated as a single gesture.

See Section 16.7, “Advanced Topics,” for an in-depth discussion of the input editing st
protocol.

16.1.1 Operators for Input Editing

interactive-stream-p [Generic Function]

Arguments: object
Summary: Returnst if object is an interactive stream, that is, a bidirectional stream inten

for user interactions. Otherwise it returnsnil . This is exactly the same function
as in X3J13 Common Lisp, except that in CLIM it is a generic function.

 The input editor is only fully implemented for interactive streams.

input-editing-stream [Protocol Class]

Summary: The protocol class that corresponds to an input editing stream. If you wan
create a new class that behaves like an input editing stream, it should be a
class ofinput-editing-stream. Subclasses ofinput-editing-stream must obey
the input editing stream protocol.

input-editing-stream-p [Function]

Arguments: object
Summary: Returnst if object is an input editing stream (that is, a stream of the sort crea

by a call towith-input-editing), otherwise returnsnil .

standard-input-editing-stream [Class]

Summary: The class that implements CLIM’s standard input editor. This is the class o
stream created by callingwith-input-editing .

 Members of this class are mutable.
Input Editing and Completion Facilities 16.1 399

nter-

o an

on-
lied
put

n

ts,
nput

ct

to a

te
ed and
“Input
with-input-editing [Macro]

Arguments: (&optional stream&key input-sensitizer initial-contents)&body body
Summary: Establishes a context in which the user can edit the input typed in on the i

active streamstream. body is then executed in this context, and the values
returned bybody are returned as the values ofwith-input-editing . body may
have zero or more declarations as its first forms.

 Thestream argument is not evaluated, and must be a symbol that is bound t
input stream. Ifstream is t (the default),*query-io* is used. Ifstream is a stream
that is not an interactive stream, thenwith-input-editing is equivalent toprogn.

input-sensitizer, if supplied, is a function of two arguments, a stream and a c
tinuation function; the function has dynamic extent. The continuation, supp
by CLIM, is responsible for displaying output corresponding to the user’s in
on the stream. Theinput-sensitizer function will typically callwith-out-
put-as-presentation in order to make the output produced by the continuatio
sensitive.

 If initial-contents is supplied, it must be either a string or a list of two elemen
an object and a presentation type. If it is a string, it will be inserted into the i

 buffer usingreplace-input. If it is a list, the printed representation of the obje
will be inserted into the input buffer usingpresentation-replace-input.

with-input-editor-typeout [Macro]

Arguments: (&optional stream)&body body
Summary: Establishes a context inside ofwith-input-editing in which output can be done

by body to the input editing streamstream. with-input-editor-typeout should
call fresh-line before and after evaluating the body.body may have zero or more
declarations as its first forms.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t (the default),*query-io* is used. Ifstream is a stream that
is not an input editing stream, thenwith-input-editor-typeout is equivalent to
calling fresh-line, evaluating the body, and then callingfresh-line again.

16.1.2 Input Editor Commands

Keyboard input toaccept can be edited until an activation character is typed to termina
it. If the input cannot be parsed after an activation character is entered, it must be edit
re-activated. The input editor has several keystroke commands, as listed in Table 4,
400 CLIM User’s Guide 16.1

an be

in-
tion

om-
rmore,
 a way
Editor Keystroke Commands”. Prefix numeric arguments to input editor commands c
entered using digits and the minus sign (-) withCONTROL andMETA (as in Emacs).

The function:add-input-editor-command can be used to bind one or more keys to an
put editor command. Any character can be an input editor command, but by conven
only non-graphic characters should be used.

The input also supports “numeric arguments” (such asC-0 , C-1 , M-0, etc.) that modify
the behavior of the input editing commands. For instance, the motion and deletion c
mands will be repeated as many times as specified by the numeric argument. Furthe
the accumulated numeric argument will be passed to the command processor in such

Command Character Command Character

Forward character C-f Delete previous
character

 Rubout

Forward word M-f Delete previous
word

 M-Rubout

Backward character C-b Kill to end of line C-k

Backward word M-b Clear input buffer LispWorks: C-backspace
Liquid: C-M-delete

Beginning of line C-a Insert new line C-o

End of line C-e Transpose adjacent
characters

 C-t

Next line C-n Transpose adjacent
words

 M-t

Previous line C-p Yank from kill ring C-y

Beginning of buffer M-< Yank from presenta-
tion history

 C-M-y

End of buffer M-> Yank next item M-y

Delete next charac-
ter

C-d Scroll output history
forward

 C-v

Delete next word M-d Scroll output history
backward

 M-v

Table 4. Input Editor Keystroke Commands
Input Editing and Completion Facilities 16.1 401

om-
thatsubstitute-numerical-marker can be used to insert the numeric argument into a c
mand that was read via a keystroke accelerator.
402 CLIM User’s Guide 16.1

lse be-
e

 is

-

16.2 Activation and Delimiter Gestures

Activation gestures terminate an input “sentence,” such as a command or anything e
ing read byaccept. When an activation gesture is entered by the user, CLIM will ceas
reading input and “execute” the input that has been entered.

Delimiter gestures terminate an input “word,” such as a recursive call toaccept.

activation-gestures [Variable]

Summary: The set of currently active activation gestures. The global value of this is nil . The
exact format of*activation-gestures* is unspecified.*activation-gestures*
and the elements in it may have dynamic extent.

standard-activation-gestures [Variable]

Summary: The default set of activation gestures. The exact set of standard activation
unspecified; it includes the gesture corresponding to the#\Newline character.

with-activation-gestures [Macro]

Arguments: (gestures&key override)&body body
Summary: Specifies a list of gestures that terminate input during the execution ofbody. body

may have zero or more declarations as its first forms.gestures must be either a
single gesture name or a form that evaluates to a list of gesture names.

 If the booleanoverride is t, thengestures will override the current activation ges
tures. If it isnil (the default), thengestures will be added to the existing set of
activation gestures.with-activation-gestures must bind*activation-gestures*
to the new set of activation gestures.

 See also the:activation-gestures and:additional-activation-gestures options
to accept.

activation-gesture-p [Function]

Arguments: gesture
Summary: Returns t if the gesture objectgesture is an activation gesture; otherwise, it

returnsnil .
Input Editing and Completion Facilities 16.2 403

ntire
s
val-

-

s

delimiter-gestures [Variable]

Summary: The set of currently active delimiter gestures. The global value of this isnil . The
exact format of*delimiter-gestures* is unspecified.*delimiter-gestures* and
the elements in it may have dynamic extent.

with-delimiter-gestures [Macro]

Arguments: (gestures&key override)&body body
Summary: Specifies a list of gestures that terminate an individual token, but not the e

input, during the execution ofbody. body may have zero or more declarations a
its first forms.gestures must be either a single gesture name or a form that e
uates to a list of gesture names.

 If the booleanoverride is t, thengestures will override the current delimiter ges
tures. If it isnil (the default), thengestures will be added to the existing set of
delimiter gestures.with-delimiter-gestures must bind*delimiter-gestures* to
the new set of delimiter gestures.

 See also the:delimiter-gestures and:additional-delimiter-gestures options to
accept.

delimiter-gesture-p [Function]

Arguments: gesture
Summary: Returnst if the gesture objectgesture is a delimiter gesture; otherwise, it return

nil .
404 CLIM User’s Guide 16.2

 in-
d

n

16.3 Signalling Errors Inside accept Methods

Sometimes anaccept method may wish to signal an error while it is parsing the user’s
put, or a nested call toaccept may signal such an error itself. The following functions an
conditions may be used:

parse-error [Condition]

Summary: The error that is signaled byparse-error. This is a subclass oferror.

parse-error [Function]

Arguments: format-string&rest format-arguments
Summary: Reports an error while parsing an input token. Does not return.format-string and

format-arguments are as for the Common Lisp functionformat .

simple-parse-error [Condition]

Summary: The error that is signaled bysimple-parse-error. This is a subclass of
parse-error.

simple-parse-error [Function]

Arguments: format-string&rest format-arguments
Summary: Signals asimple-parse-error when CLIM does not know how to parse some

sort of user input while insideaccept. Does not return.format-string andfor-
mat-arguments are as for the Common Lisp functionformat .

input-not-of-required-type [Condition]

Arguments: object type
Summary: This condition is signalled byinput-not-of-required-type . This is a subclass

of parse-error.

input-not-of-required-type [Function]

Arguments: object type
Summary: Reports that input does not satisfy the specified type by signalling an

input-not-of-required-type error.object is a parsed object or an unparsed toke
(a string).type is a presentation type specifier. Does not return.
Input Editing and Completion Facilities 16.3 405

sary
nc-

s

nd
lts”

.

16.4 Reading and Writing Tokens

Sometimes after anaccept method has read some input from the user, it may be neces
to insert a modified version of that input back into the input buffer. The following two fu
tions can be used to modify the input buffer:

replace-input [Generic Function]

Arguments: stream new-input&key start end buffer-start rescan
Summary: Replaces the part of the input editing streamstream’s input buffer that extends

from buffer-start to its scan pointer with the stringnew-input. buffer-start
defaults to the current input position of stream.start andend can be supplied to
specify a subsequence ofnew-input; start defaults to 0 andend defaults to the
length ofnew-input.

replace-input queues a rescan by calling queue-rescan if the new input does not
match the old output, or ifrescan is t.

 The returned value is the position in the input buffer.

presentation-replace-input [Generic Function]

Arguments: stream object type view&key buffer-start rescan query-identifier
for-context-type

Summary: Like replace-input, except that the new input to insert into the input buffer i
obtained by presenting the objectobject with the presentation typetype and view
view. buffer-startand rescanare as forreplace-input, query-identifieris as for
accept, andfor-context-typeis as forpresent.

 If the object does not have a readable representation (in the Lisp sense),presen-
tation-replace-input may create an “accept result” to represent the object a
insert it into the input buffer. For the purposes of input editing, “accept resu
must be treated as a single input gesture.

The following two functions are used to read or write a token (that is, a string):

read-token [Function]

Arguments: stream&key input-wait-handler pointer-button-press-handler click-only
Summary: Reads characters from the interactive steamstream until it encounters a delim-

iter, activation, or pointer gesture. Returns the accumulated string that was
delimited by the delimiter or activation gesture, leaving the delimiter unread
406 CLIM User’s Guide 16.4

e
y.

ro-
 If the first character of typed input is a quotation mark (#\"), then read-token
will ignore delimiter gestures until another quotation mark is seen. When th
closing quotation mark is seen,read-token will proceed as discussed previousl

 If the boolean click-only is t, then no keyboard input is allowed. In that case,
read-token will simply ignore any typed characters.

input-wait-handlerandpointer-button-press-handler are as for
stream-read-gesture. Refer to Section 15.2.1, “The Extended Input Stream P
tocol,” for details.

write-token [Function]

Arguments: token stream&key acceptably
Summary: write-token is the opposite ofread-token; given the stringtoken, it writes it to

the interactive streamstream. If acceptably is t and there are any characters in
the token that are delimiter gestures (seewith-delimiter-gestures), then
write-token will surround the token with quotation marks (#\").

 Typically, present methods will usewrite-token instead ofwrite-string .
Input Editing and Completion Facilities 16.4 407

s asso-
ser
ch to-

d; it

types
ed;

lobal

on
ram-
16.5 Completion

CLIM provides a completion facility that completes a string provided by a user against
some set of possible completions (which are themselves strings). Each completion i
ciated with some Lisp object. CLIM provides “chunkwise” completion; that is, if the u
input consists of several tokens separated by “partial delimiters,” CLIM completes ea
ken separately against the set of possibilities.

completion-gestures [Variable]

Summary: A list of the gesture names that causecomplete-input to complete the user’s
input as fully as possible. The exact global contents of this list is unspecifie
includes the:complete gesture name.*completion-gestures* is bound to
#\Control-Tab .

help-gestures [Variable]

Summary: A list of the gesture names that causeaccept andcomplete-input to display a
(possibly input context-sensitive) help message, and for some presentation
a list of possibilities as well. The exact global contents of this list is unspecifi
it includes the:help gesture name.*help-gestures* is bound to#\Control-l
in LispWorks CLIM and#\Meta-? in Liquid CLIM.

possibilities-gestures [Variable]

Summary: A list of the gesture names that causecomplete-input to display a (possibly
input context-sensitive) help message and a list of possibilities. The exact g
contents of this list is unspecified; it includes the:possibilities gesture name.
possibilities-gestures is bound to#\Control-? .

complete-input [Function]

Arguments: stream function&key partial-completers allow-any-input possibility-printer
(help-displays-possibilitiest)

Summary: Reads input from the user from the input editing streamstream, completing over
a set of possibilities.complete-input only works on input editing streams.

function is a function of two arguments. It is called to generate the completi
possibilities that match the user’s input; it has dynamic extent. Usually, prog
mers will pass a function which calls eithercomplete-from-possibilities or
complete-from-generator as the value offunction. Its first argument is a string
408 CLIM User’s Guide 16.5

ode,

e-

e.
of the

 that
sub-
lt.
e that

 its
ny of

ob-

an

lities.
containing the user’s input “so far.” Its second argument is the completion m
one of the following:

• :complete-limited—the function completes the input up to the next partial d
limiter. This is the mode used when the user types a partial completer.

• :complete-maximal—the function completes the input as much as possibl
This is the mode used when the user issues a gesture that matches any
gesture names in*completion-gestures*.

• :complete—the function completes the input as much as possible, except
if the user’s input exactly matches one of the possibilities, even if it is a left
string of another possibility, the shorter possibility is returned as the resu
This is the mode used when the user issues a delimiter or activation gestur
is not a partial completer.

• :possibilities—the function returns an alist of the possible completions as
fifth value. This is the mode used when the user a gesture that matches a
the gesture names in*possibilities-gestures* or *help-gestures* (if help-dis-
plays-possibilities is t).

function returns five values:

• string—the completed input string

• success—t if completion was successful, otherwisenil

• object—the object corresponding to the completion, otherwisenil

• nmatches—the number of possible completions of the input

• possibilities—a newly-created alist of completions (lists of a string and an
ject), returned only when the completion mode is:possibilities.

complete-input returns three values:object, success, andstring. In addition, the
printed representation of the completed input will be inserted into the input
buffer ofstream in place of the user-supplied string by callingreplace-input.

partial-completers is a list of characters that delimit portions of a name that c
be completed separately. The default is an empty list.

 If the booleanallow-any-input is t, thencomplete-input returns as soon as the
user issues an activation gesture, even if the input is not any of the possibi
If the input is not one of the possibilities, the three values returned bycom-
plete-input will be nil , t, and the string. The default forallow-any-input is nil .
Input Editing and Completion Facilities 16.5 409

os-
s the
rst

re that

 a
 If possibility-printer is supplied, it must be a function of three arguments, a p
sibility, a presentation type, and a stream; it has dynamic extent and display
possibility on the stream. The possibility will be a list of two elements, the fi
being a string and the second being the object corresponding to the string.

 If help-display-possibilities is t (the default), then when the user issues a help
gesture (a gesture that matches one of the gesture names in*help-gestures*),
CLIM will display all the matching possibilities. If it isnil , then CLIM will not
display the possibilities unless the user issues a possibility gesture (a gestu
matches one of the gesture names in*possibilities-gestures*).

 Here is an example:

(defvar *my-possibilities* ’((“Raspberry” :rasp)
 (“Strawberry” :straw)
 (“Blueberry” :blue)))

(flet ((possibilities-generator (string-so-far mode)
 (complete-from-possibilities string-so-far
 my-possibilities
 nil
 :action mode)))
 (complete-input stream #’possibilities-generator))

complete-from-generator [Function]

Arguments: string generator delimiters&key (action:complete) predicate
Summary: Given an input stringstring and a list of delimiter charactersdelimiters that act

as partial completion characters,complete-from-generator completes against
possibilities that are generated by the functiongenerator. generator is a function
of two arguments, the stringstring and another function that it calls in order to
process the possibility; it has dynamic extent.

action will be one of:complete, :complete-maximal, :complete-limited, or
:possibilities. These are described under the functioncomplete-input.

predicate is a function of one argument, an object. If the predicate returnst, the
possibility corresponding to the object is processed. It has dynamic extent.

complete-from-generator returns five values, the completed input string, the
success value (t if the completion was successful, otherwisenil), the object
matching the completion (ornil if unsuccessful), the number of matches, and
list of possible completions ifaction was:possibilities.

 A caller of this function will typically be passed as the second argument tocom-
plete-input.
410 CLIM User’s Guide 16.5

urns
t.

e

 a

-

to a
complete-from-possibilities [Function]

Arguments: string completions delimiters&key (action:complete) predicate name-key
value-key

Summary: Given an input stringstring and a list of delimiter charactersdelimiters that act
as partial completion characters,complete-from-possibilities completes against
the possibilities in the sequencecompletions. The completion string is extracted
from the possibilities by applyingname-key, which is a function of one argu-
ment. The object is extracted by applyingvalue-key, which is a function of one
argument.name-key defaults tofirst , andvalue-key defaults tosecond.

action will be one of:complete, :complete-maximal, :complete-limited, or
:possibilities. These are described under the functioncomplete-input.

predicate must be a function of one argument, an object. If the predicate ret
t, the possibility corresponding to the object is processed, otherwise it is no

predicate, name-key, andvalue-key have dynamic extent.

complete-from-possibilities returns five values, the completed input string, th
success value (t if the completion was successful,nil otherwise), the object
matching the completion (ornil if unsuccessful), the number of matches, and
list of possible completions ifaction was:possibilities.

 A caller of this function will typically be passed as the second argument tocom-
plete-input.

completing-from-suggestions [Macro]

Arguments: (stream&key partial-completers allow-any-input possibility-printer)&body
body

Summary: Reads input from input editing streamstream, completing over a set of possibil
ities generated by calls tosuggest in body. Returnsobject, success, andstring.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t (the default),*query-io* is used.

 Seecomplete-input for partial-completers, allow-any-input, andpossibil-
ity-printer.

 For example:
Input Editing and Completion Facilities 16.5 411

thin

etimes

help

e

p

us

pe;
 (completing-from-suggestions (stream)
 (map nil
 #’(lambda (x)
 (suggest
 (car x) (cdr x)))
 ’(("One" . 1)
 ("Two" . 2)
 ("Three" . 3))))

suggest [Function]

Arguments: completion object
Summary: Specifies one possibility forcompleting-from-suggestions. completion is a

string, the printed representation.object is the internal representation.

 It is permitted for this function to have lexical scope, and be defined only wi
the body ofcompleting-from-suggestions.

accept generates help messages based on the name of the presentation type, but som
this is not enough. Usewith-accept-help to create more complex help messages.

with-accept-help [Macro]

Arguments: options&body body
Summary: Binds the dynamic environment to control the documentation produced by

and possibilities gestures during user input in calls toaccept with the dynamic
scope ofbody. body may have zero or more declarations as its first forms.

options is a list of option specifications. Each specification is itself a list of th
form (help-option help-string). help-option is either a symbol that is ahelp-type
or a list of the form(help-type mode-flag). help-type must be one of:

• :top-level-help—specifies thathelp-string be used instead of the default hel
documentation provided byaccept.

• :subhelp—specifies thathelp-string be used in addition to the default help
documentation provided byaccept.

mode-flag must be one of:

• :append—specifies that the current help string be appended to any previo
help strings of the same help type. This is the default mode.

• :override—specifies that the current help string is the help for this help ty
no lower-level calls towith-accept-help can override this. (:override works
from the outside in.)
412 CLIM User’s Guide 16.5

• :establish-unless-overridden—specifies that the current help string be the
help for this help type unless a higher-level call towith-accept-help has al-
ready established a help string for this help type in the:override mode. This is
whataccept uses to establish the default help.

help-string is a string or a function that returns a string. If it is a function, it
receives three arguments, the stream, an action (either:help or :possibilities)
and the help string generated so far.

 None of the arguments are evaluated.
Input Editing and Completion Facilities 16.5 413

16.6 Using with-accept-help: some examples

(clim:with-accept-help
 ((:subhelp "This is a test."))
 (clim:accept ’pathname))

[ACCEPT does this] ==> You are being asked to enter a pathname.

[done via :SUBHELP] This is a test.

(clim:with-accept-help ((:top-level-help "This is a test."))
 (clim:accept ’pathname))

[done via :TOP-LEVEL-HELP] ==> This is a test.

(clim:with-accept-help (((:subhelp :override) "This is a test."))
 (clim:accept ’pathname))

[ACCEPT does this] ==> You are being asked to enter a pathname.

[done via :SUBHELP] This is a test.

(clim:define-presentation-type test ())

(clim:define-presentation-method clim:accept
 ((type test) stream view &key)
 (values (clim:with-accept-help
 ((:subhelp "A test is made up of three things:"))
 (clim:completing-from-suggestions (...) ...))))

(clim:accept ’test)
==> You are being asked to enter a test.
 A test is made up of three things:
414 CLIM User’s Guide 16.6

xt

tocols,
rt, this
.

 and

input
r.
This
fer

iting
ut
ual
16.7 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the ne
chapter. This section discusses the Input Editing Stream Protocol.

Input editing streams obey both the extended input and extended output stream pro
and must support the generic functions that comprise those protocols. For the most pa
simply entails “trampolining” those operations to the encapsulated interactive stream
However, such generic functions asstream-read-gesture andstream-unread-gesture
will need methods that observe the use of the input editor’s scan pointer.

Input editing streams implement methods forprompt-for-accept (in order to provide
in-line prompting that interacts correctly with input editing) andstream-accept (in order
to causeaccept to obey the scan pointer).

The following generic functions comprise the remainder of the input editing protocol,
must be implemented for all classes that inherit frominput-editing-stream.

stream-input-buffer [Generic Function]

Arguments: (streaminput-editing-stream)
Summary: Returns the input buffer (that is, the string being edited) associated with the

editing streamstream. This must be an unspecialized vector with a fill pointe
The fill pointer of the vector points past the last gesture object in the buffer.
buffer is affected during input editing. The effects of modifying the input buf
other than by the specified API (such asreplace-input) are unspecified.

stream-insertion-pointer [Generic Function]

Arguments: stream
Summary: Returns an integer corresponding to the current input position in the input ed

streamstream’s buffer, that is, the point in the buffer at which the next user inp
gesture will be inserted. The insertion pointer will always be less than or eq
to (fill-pointer (stream-input-buffer stream)) . The inser-
tion pointer can also be thought of as an editing cursor.

(setf stream-insertion-pointer) [Generic Function]

Arguments: pointer stream
Input Editing and Completion Facilities 415

iting

ual to

iting

nt
Summary: Changes the input position of the input editing streamstream topointer, an inte-
ger less than or equal to(fill-pointer (stream-input-buffer
stream)) .

stream-scan-pointer [Generic Function]

Arguments: stream
Summary: Returns an integer corresponding to the current scan pointer in the input ed

streamstream’s buffer, that is, the point in the buffer at which calls toaccept
have stopped parsing input. The scan pointer will always be less than or eq
(stream-insertion-pointer stream) .

(setf stream-scan-pointer) [Generic Function]

Arguments: pointer stream
Summary: Changes the scan pointer of the input editing streamstream topointer, an integer

less than or equal to(stream-insertion-pointer stream) .

stream-rescanning-p [Generic Function]

Arguments: stream
Summary: Returns the state of the input editing streamstream’s “rescan in progress” flag,

which ist if stream is performing a rescan operation, but otherwisenil . All
extended input streams must implement a method for this, but non-input ed
streams will always returnsnil .

reset-scan-pointer [Generic Function]

Arguments: stream&optional (scan-pointer0)
Summary: Sets the input editing streamstream’s scan pointer toscan-pointer, and sets the

state ofstream-rescanning-p to t.

immediate-rescan [Generic Function]

Arguments: stream
Summary: Invokes a rescan operation immediately by “throwing” out to the most rece

invocation ofwith-input-editing .

queue-rescan [Generic Function]

Arguments: stream
Summary: Sets the “rescan queued” flag tot, meaning that the input editing streamstream

should be rescanned after the next non-input editing gesture is read.
416 CLIM User’s Guide

ken

start-

 or a

; if
rescan-if-necessary [Generic Function]

Arguments: stream
Summary: Invokes a rescan operation on the input editing streamstream if queue-rescan

was called on the same stream and no intervening rescan operation has ta
place. Resets the state of the “rescan queued” flag tonil .

erase-input-buffer [Generic Function]

Arguments: stream&optional (start-position0)
Summary: Erases the part of the display that corresponds to the input editor’s buffer,

ing at the positionstart-position.

redraw-input-buffer [Generic Function]

Arguments: stream&optional (start-position0)
Summary: Displays the input editor’s buffer starting at the positionstart-position on the

interactive stream that is encapsulated by the input editing streamstream.

stream-process-gesture [Generic Function]

Arguments: stream gesture type
Summary: If gesture is an input editing command,stream-process-gesture performs the

input editing operation on the input editing streamstream and returnsnil . Other-
wise, it returns the two valuesgesture andtype.

stream-read-gesture [Generic Function]

Arguments: (streamstandard-input-editing-stream) &allow-other-keys
Summary: Reads and returns a gesture from the user on the input editing streamstream.

 Thestream-read-gesture method callsstream-process-gesture, which will
either return a “real” gesture (such as a typed character, a pointer gesture,
timeout) ornil (indicating that some sort of input editing operation was per-
formed).stream-read-gesture only returns when a real gesture has been read
an input editing operation was performed,stream-read-gesture will loop until
a “real” gesture is typed by the user.

stream-unread-gesture [Generic Function]

Arguments: (streamstandard-input-editing-stream) gesture
Summary: Inserts the gesturegesture back into the input editor’s buffer, maintaining the

scan pointer.
Input Editing and Completion Facilities 417

418 CLIM User’s Guide

Chapter 17 Formatted Output
Formatted Output 16.7 419

 419
 419
 420
. 426
 426
. 427
 430
430
. 432

 433
 433
 434
 437

 438

 440

.. 442

. 443
 445
 446
 447
. 449
Chapter 17 Formatted Output

17.1 Formatting Tables in CLIM ...
17.1.1 Conceptual Overview of Formatting Tables...............................
17.1.2 CLIM Operators for Formatting Tables......................................
17.1.3 Examples of Formatting Tables...

17.1.3.1 Formatting a Table From a List ...
17.1.3.2 Formatting a Table Representing a Calendar Month........
17.1.3.3 Formatting a Table With Regular Graphic Elements
17.1.3.4 Formatting a Table With Irregular Graphics in the Cells ..
17.1.3.5 Formatting a Table of a Sequence of Items

17.2 Formatting Graphs in CLIM ..
17.2.1 Conceptual Overview of Formatting Graphs..............................
17.2.2 CLIM Operators for Graph Formatting
17.2.3 Examples of CLIM Graph Formatting..

17.3 Formatting Text in CLIM...

17.4 Bordered Output in CLIM ...

17.5 Advanced Topics..
17.5.1 The Table Formatting Protocol..

17.5.1.1 The Row and Column Formatting Protocol.......................
17.5.1.2 The Cell Formatting Protocol ..

17.5.2 The Item List Formatting Protocol ...
17.5.3 The Graph Formatting Protocol ...
420 CLIM User’s Guide 16.7

y in-
the
f the

ing
oth.

ate”
ents

he
 con-
ells
ur-

 will
the
ch

idth.
ertical
 top,

e
ed
sthet-
 table
e: the
17.1 Formatting Tables in CLIM

17.1.1 Conceptual Overview of Formatting Tables

CLIM makes it easy to construct tabular output. The usual way of making tables is b
dicating what you want to put in the table and letting CLIM choose the placement of
row and column cells. CLIM also allows you to specify constraints on the placement o
table elements with some flexibility.

In the CLIM model of formatting tables, each cell of the table is handled separately:

■ The code for a cell draws to a stream that has a “private” (local to that cell) draw
plane. The code puts ink on the drawing plane, in the form of text, graphics, or b

■ After output for a cell has finished, the bounding rectangle of all output on the “priv
drawing plane is found. The region within that bounding rectangle forms the cont
of a cell.

■ Additional rectangular regions, containing only background ink, are attached to t
edges of the cell contents. These regions ensure that the cells satisfy the tabular
straints that within a row all cells have the same height, and within a column all c
have the same width. CLIM may also introduce additional background for other p
poses.

■ The cells are assembled into rows and columns.

You are responsible only for specifying the contents of the cell. CLIM’s table formatter
figure out how to lay out the table so that all the cells fit together properly. It derives
width of each column from the the widest cell within the column, and the height of ea
row from the the tallest cell within the row.

All the cells in a row have the same height. All the cells in a column have the same w
The contents of the cells can be of irregular shapes and sizes. You can impose both v
and horizontal constraints on the objects within the cell, aligning them vertically at the
bottom, or center of the cell, and horizontally at the left, right, or center of the cell.

 Some tables are “multiple column” tables, in which two or more rows of the table ar
placed side by side (usually with intervening spacing) rather than all rows being align
vertically. Multiple column tables are generally used to produce a table that is more e
ically pleasing, or to make more efficient use of space on the output device. When a
is a multiple column table, one additional step takes place in the formatting of the tabl
Formatted Output 17.1 421

d side

ws of

 width

 ap-
o-di-
ist of
tries
le.
rows of the table are rearranged into multiple columns in which some rows are place
by side.

The programmer can give CLIM the following advice about assembling the table:

■ How to place the contents of the cell within the cell (such as centered vertically,
flush-left, and so forth). The possibilities for this advice are described later.

■ Optionally, how much additional space to insert between columns and between ro
the table.

■ Optionally, whether to make all columns the same size.

You can specify other constraints that affect the appearance of the table, such as the
or length of the table.

Note that table formatting is inherently two-dimensional from the point of view of the
plication. Item list formatting is inherently one-dimensional output that is presented tw
mensionally. The canonical example is a menu, where the programmer specifies a l
items to be presented. If the list is small enough, a single column or row of menu en
suffices. In this case, formatting is done when viewport requirements make it desirab

These constraints affect the appearance of item lists:

■ The number of rows (that is, allowing CLIM to choose the number of columns)

■ The number of columns (that is, allowing CLIM to choose the number of rows)

■ The maximum height (or width) of the column (that is, letting CLIM determine the
number of rows and columns that satisfy that constraint)

See Section 17.5, “Advanced Topics,” for the table and item list formatting protocols.

17.1.2 CLIM Operators for Formatting Tables

This subsection covers the general-purpose table formatting operators.

formatting-table [Macro]

Arguments: (&optional stream&key x-spacing y-spacing multiple-columns
multiple-columns-x-spacing equalize-column-widths (move-cursort)
record-type)&body body
422 CLIM User’s Guide 17.1

ft

ws

. If

ol-
t text
een
sible

har-

unc-

ired

alue
Summary: Binds the local environment in such a way the output ofbody will be done in a
tabular format. This must be used in conjunction withformatting-row or for-
matting-column, andformatting-cell . The table is placed so that its upper le
corner is at the current text cursor position ofstream. If the booleanmove-cursor
is t (the default), then the text cursor will be moved so that it immediately follo
the last cell of the table.

 The returned value is the output record corresponding to the table.

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

x-spacing specifies the number of units of spacing to be inserted between c
umns of the table; the default is the width of a space character in the curren
style.y-spacing specifies the number of units of spacing to be inserted betw
rows in the table; the default is the default vertical spacing of the stream. Pos
values for these two options option are:

• An integer—a size in the current units to be used for spacing

• A string or character—the spacing is the width or height of the string or c
acter in the current text style

• A function—the spacing is the amount of horizontal or vertical space the f
tion would consume when called on the stream

• A list—the list is of the form(number unit), whereunit is one of:point , :pixel,
:mm, :character, or:line. Whenunit is :character, the width of an “M” in the
current text style is used as the width of one character.

multiple-columns is eithernil , t, or an integer. If it ist or an integer, the table rows
will be broken up into a multiple columns. If it ist, CLIM will determine the
optimal number of columns. If it is an integer, it will be interpreted as the des
number of columns.multiple-columns-x-spacing has the same format asx-spac-
ing. It controls the spacing between the multiple columns. It defaults to the v
of thex-spacing option.

 When the booleanequalize-column-widths is t, all the columns will have the
same width (the width of the widest cell in any column in the entire table).

record-type specifies the class of output record to create. The default isstan-
dard-table-output-record. This argument should only be supplied by a pro-
Formatted Output 17.1 423

tting

. If

m-

. If

is
grammer if there is a new class of output record that supports the table forma
protocol.

formatting-row [Macro]

Arguments: (&optional stream&key record-type)&body body
Summary: Binds the local environment in such a way the output ofbody will be grouped

into a table row. All of the output performed bybody becomes the contents of
one row. This must be used inside offormatting-table , and in conjunction with
formatting-cell .

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

 Once a table has had a row added to it viaformatting-row , no columns may be
added to it.

record-type specifies the class of output record to create. The default isstan-
dard-row-output-record . This argument should only be supplied by a progra
mer if there is a new class of output record that supports the row formatting
protocol.

formatting-column [Macro]

Arguments: (&optional stream&key record-type)&body body
Summary: Binds the local environment in such a way the output ofbody will be grouped

into a table column. All of the output performed bybody becomes the contents
of one column. This must be used inside offormatting-table , and in conjunction
with formatting-cell .

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

 Once a table has had a column added to it viaformatting-column , no rows may
be added to it.

record-type specifies the class of output record to create. The default isstan-
dard-column-output-record. This argument should only be supplied if there
a new class of output record that supports the column formatting protocol.
424 CLIM User’s Guide 17.1

gle

. If

 in

ay
 leg-

lt,
hical

ry to

m-

er
formatting-cell [Macro]

Arguments: (&optional stream&key (align-x ’:left) (align-y ’:baseline) min-width
min-height record-type)&body body

Summary: Controls the output of a single cell inside a table row or column, or of a sin
item insideformatting-item-list . All of the output performed bybody becomes
the contents of the cell.

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

align-x specifies how the output in a cell will be aligned relative to other cells
the same table column. The default,:left , causes the cells to be flush-left in the
column. The other possible values are:right (meaning flush-right in the column)
and:center (meaning centered in the column). Each cell within a column m
have a different alignment; thus it is possible, for example, to have centered
ends over flush-right numeric data.

align-y specifies how the output in a cell will be aligned vertically. The defau
:baseline, causes textual cells to be aligned along their baselines and grap
cells to be aligned at the bottom. The other possible values are:bottom (align at
the bottom of the output),:top (align at the top of the output), and:center (center
the output in the cell).

min-width andmin-height are used to specify minimum width or height of the
cell. The default,nil , causes the cell to be only as wide or high as is necessa
contain the cell’s contents. Otherwise,min-width andmin-height are specified in
the same way as the:x-spacing and:y-spacing arguments toformatting-table .

record-type specifies the class of output record to create. The default isstan-
dard-cell-output-record. This argument should only be supplied by a progra
mer if there is a new class of output record that supports the cell formatting
protocol.

formatting-item-list [Macro]

Arguments: (&optional stream&key x-spacing y-spacing n-columns n-rows
stream-width stream-height max-width max-height initial-spacing
(row-wiset) (move-cursort) record-type)&body body

Summary: Binds the local environment in such a way that the output ofbody will be done
in an item list (that is, menu) format. This must be used in conjunction withfor-
matting-cell, which delimits each item. The item list is placed so that its upp
left corner is at the current text cursor position ofstream. If the boolean
Formatted Output 17.1 425

e-

ll.
 bot-

list

. If

ol-

ed
am.

t).

e
y-

the

am.
ce

 list

eces-
move-cursor is t (the default), then the text cursor will be moved so that it imm
diately follows the last cell of the item list.

 “Item list output” means that each row of the item list consists of a single ce
The first row is on top, and each succeeding row has its top aligned with the
tom of the previous row (plus the specifiedy-spacing). Multiple rows and col-
umns are constructed after laying the item list out in a single column. Item
output takes place in a normalized +y-downward coordinate system.

 The returned value is the output record corresponding to the table.

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

x-spacing specifies the number of units of spacing to be inserted between c
umns of the item list; the default is the width of a#\Space character in the cur-
rent text style.y-spacing specifies the number of units of spacing to be insert
between rows in the item list; the default is default vertical spacing of the stre
The format of these arguments is as forformatting-table .

 When the booleanequalize-column-widths is t, all the columns will have the
same width (the width of the widest cell in any column in the entire item lis

n-columns andn-rows specify the number of columns or rows in the item list. Th
default for both isnil , which causes CLIM to pick an aesthetically pleasing la
out, possibly constrained by the other options. If bothn-columns andn-rows are
supplied and the item list contains more elements than will fit according to
specification, CLIM will format the item list as ifn-rows were supplied asnil .

max-width andmax-height constrain the layout of the item list.max-width can be
overridden byn-rows. max-height can be overridden byn-columns.

formatting-item-list normally spaces items across the entire width of the stre
Wheninitial-spacing is t, it inserts some whitespace (about half as much spa
as is between each item) before the first item on each line. When it isnil (the
default), the initial whitespace is not inserted. Ifrow-wise is t (the default) and
the item list requires multiple columns, each successive element in the item
is laid out from left to right. Ifrow-wise is nil and the item list requires multiple
columns, each successive element in the item list is laid out below its pred
sor, as in a telephone book.
426 CLIM User’s Guide 17.1

s

 to

a

type
record-type specifies the class of output record to create. The default isstan-
dard-item-list-output-record . Supply this argument s only if there is a new
class of output record that supports the item list formatting protocol.

format-items [Function]

Arguments: items&key stream printer presentation-type x-spacing y-spacing n-column
n-rows max-width max-height cell-align-x cell-align-y initial-spacing
(move-cursort) record-type

Summary: This is a function interface to the item list formatter. The elements of the
sequenceitems are formatted as separate cells within the item list.

stream is an output recording stream to which output will be done. It defaults
standard-output .

printer (default isprin1)is a function that takes two arguments, an item and
stream, and outputs the item on the stream.printer has dynamic extent.

presentation-type is a presentation-type. Whenprinter is not supplied, the items
will be printed as ifprinter were:

 #’(lambda (item stream)
 (present item presentation-type :stream stream))

 Whenprinter is supplied, each item will be enclosed in a presentation whose
is presentation-type.

x-spacing, y-spacing, n-columns, n-rows, max-width, max-height, initial-spac-
ing, andmove-cursor are as forformatting-item-list .

cell-align-x andcell-align-y are used to supply:align-x and:align-y to an implic-
itly usedformatting-cell .

record-type is as forformatting-item-list .

format-textual-list [Function]

Arguments: sequence printer&key (:stream*standard-output*) (:separator", ")
:conjunction

Summary: Outputs asequence of items as a textual list.

 Note thatformat-items is similar toformatting-item-list . Both operators do the
same thing, except they accept their input differently:

• formatting-item-list accepts its input as a body that callsformatting-cell for
each item.
Formatted Output 17.1 427

 to
• format-items accepts its input as a list of items with a specification of how
print them.

 Note that menus use the one-dimensional table formatting model.

17.1.3 Examples of Formatting Tables

17.1.3.1 Formatting a Table From a List

Theexample1 function formats a simple table whose contents come from a list.

(defvar *alphabet* ’(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(defun example1 (&optional (items *alphabet*)
 &key (stream *standard-output*) (n-columns 6)
 inter-row-spacing inter-column-spacing)
 (clim:formatting-table
 (stream :inter-row-spacing inter-row-spacing
 :inter-column-spacing inter-column-spacing)
 (do ()
 ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))))

Evaluating(example1 *alphabet* :stream *my-window*) shows this table:

 A B C D E F
 G H I J K L
 M N O P Q R
 S T U V W X
 Y Z

Figure 24. Example1 With No :inter-row-spacing

Figure 24 shows the result of evaluating theexample1 function call without providing the
:inter-row-spacing and:inter-column-spacing keywords. The defaults for
these keywords makes tables whose elements are characters look reasonable.
428 CLIM User’s Guide 17.1

en col-
ear-

 cal-
 of the

 (Sun,
 ... 31)
 the
You can easily vary the number of columns, and the spacing between rows or betwe
umns. In the following example, we provide keyword arguments that change the app
ance of the table.

Evaluating this form

(example1 *alphabet* :stream *my-window*
 :n-columns 10 :inter-column-spacing 10
 :inter-row-spacing 10)

shows this table:

 A B C D E F G H I J
 K L M N O P Q R S T
 U V W X Y Z

Figure 25. Example1 With :inter-row-spacing

(Note that this example can be done withformatting-item-list as shown inexample4.)

17.1.3.2 Formatting a Table Representing a Calendar Month

Thecalendar-month function shows how you can format a table that represents a
endar month. The first row in the table acts as column headings representing the days
week. The following rows are numbers representing the days of the month.

This example shows how you can align the contents of a cell. The column headings
Mon, Tue, etc.) are centered within the cells. However, the dates themselves (1, 2, 3,
are aligned to the right edge of the cells. The resulting calendar looks good because
dates are aligned in the natural way.

(in-package :clim-user)
(defvar *day-of-the-week-string* '((0 . "Mon")(1 . "Tue")
 (2 . "Wed")(3 . "Thu")
 (4 . "Fri")(5 . "Sat")
 (6 . "Sun")))
(defun day-of-the-week-string (day-of-week)
 (cdr (assoc day-of-week *day-of-the-week-string*)))
(defvar *days-in-month* '((1 . 31)(2 . 28) (3 . 31)(4 . 30)
 (5 . 31)(6 . 30) (7 . 31)(8 . 31)
 (9 . 30)(10 . 31)(11 . 30)(12 . 31))
 "alist whose first element is numeric value returned by
decode-universal-time and second is the number of days in that month")
Formatted Output 17.1 429

;; In a leap year, the month-length function increments the number of
;; days in February as required
(defun leap-year-p (year)
 (cond ((and (integerp (/ year 100))
 (integerp (/ year 400)))
 t)
 ((and (not (integerp (/ year 100)))
 (integerp (/ year 4)))
 t)
 (t nil)))
(defun month-length (month year)
 (let ((days (cdr (assoc month *days-in-month*))))
 (when (and (eql month 2)
 (leap-year-p year))
 (incf days))
 days))
(defun calendar-month (month year &key (stream *standard-output*))
 (let ((days-in-month (month-length month year)))
 (multiple-value-bind (sec min hour date month year start-day)
 (decode-universal-time (encode-universal-time
 0 0 0 1 month year))
 (setq start-day (mod (+ start-day 1) 7))
 (clim:formatting-table (stream)
 (clim:formatting-row (stream)
 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :center)
 (write-string (day-of-the-week-string
 (mod (- d 1) 7)) stream))))
 (do ((date 1)
 (first-week t nil))
 ((> date days-in-month))
 (clim:formatting-row (stream)
 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :right)
 (when (and (<= date days-in-month)
 (or (not first-week) (>= d start-day)))
 (format stream "~D" date)
 (incf date))))))))))
(define-application-frame calendar ()
 ()
 (:panes
 (main :application
 :width :compute :height :compute
 :display-function 'display-main)))

(define-calendar-command (com-exit-calendar :menu "Exit") ()
 (frame-exit *application-frame*))
430 CLIM User’s Guide 17.1

ach
(defmethod display-main ((frame calendar) stream &key)
 (multiple-value-bind (sec min hour date month year start-day)
 (decode-universal-time (get-universal-time))
 (calendar-month month year :stream stream)))

(defun run ()
 (find-application-frame 'calendar))

Evaluating(calendar-month 5 90 :stream *my-stream*) shows this table:

 Sun Mon Tue Wed Thu Fri Sat
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31

Figure 26. A Table Representing a Calendar Month

17.1.3.3 Formatting a Table With Regular Graphic Elements

Theexample2 function shows how you can draw graphics within the cells of a table. E
cell contains a rectangle of the same dimensions.

(defun example2 (&key (stream *standard-output*)
 inter-row-spacing
 inter-column-spacing)
 (clim:formatting-table
 (stream :inter-row-spacing inter-row-spacing
 :inter-column-spacing inter-column-
 spacing)
 (dotimes (i 3)
 (clim:formatting-row
 (stream)
 (dotimes (j 3)
 (clim:formatting-cell
 (stream)
 (clim:draw-rectangle* stream 10 10 50 50)))))))

Evaluating(example2 :stream *my-stream* :inter-row-spacing 5)
shows this table:
Formatted Output 17.1 431

Figure 27. Example2 Table

17.1.3.4 Formatting a Table With Irregular Graphics in the Cells

Theexample3 function shows how you can format a table in which each cell contains
graphics of different sizes.

(defun example3 (&optional (items *alphabet*)
 &key (stream *standard-output*) (n-columns 6)
 inter-row-spacing inter-column-spacing)
 (clim:formatting-table
 (stream :inter-row-spacing inter-row-spacing
 :inter-column-spacing inter-column-spacing)
 (do ()
 ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (clim:draw-polygon* stream
 (list 0 0 (* 10 (1+ (random 3)))
 5 5 (* 10 (1+ (random 3))))
 :filled nil)
 (pop items)))))))

Evaluating(example3 *alphabet* :stream *my-stream*) shows this table:

Figure 28. Example3 Table
432 CLIM User’s Guide 17.1

ortant.

ord
17.1.3.5 Formatting a Table of a Sequence of Items

Theexample4 function shows how you can useformatting-item-list to format a table of
a sequence of items when the exact arrangement of the items and the table is not imp
Note that you useformatting-cell inside the body offormatting-item-list to output each
item. You do not useformatting-column or formatting-row , because CLIM figures out
the number of columns and rows automatically (or obeys a constraint given in a keyw
argument).

(defun example4 (&optional (items *alphabet*)
 &key (stream *standard-output*) n-columns n-rows
 inter-row-spacing inter-column-spacing
 max-width max-height)
 (clim:formatting-item-list
 (stream :inter-row-spacing inter-row-spacing
 :inter-column-spacing inter-column-spacing
 :n-columns n-columns :n-rows n-rows
 :max-width max-width :max-height max-height)
 (do ()
 ((null items))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))

Evaluating(example4 :stream *my-window*) shows this table:
Formatted Output 17.1 433

 A B C D
 E F G H
 I J K L
 M N O P
 Q R S T
 U V W X
 Y Z

Figure 29. Example4 Table

You can easily add a constraint specifying the number of columns.

Evaluating(example4 :stream *my-stream* :n-columns 8) gives this:

 A B C D E F G H
 I J K L M N O P
 Q R S T U V W X
 Y Z

Figure 30. Example4 Table Reformatted
434 CLIM User’s Guide 17.1

cheme
 any

 di-
ion.

e fol-

ssed

 (the

er of
er you
17.2 Formatting Graphs in CLIM

17.2.1 Conceptual Overview of Formatting Graphs

When you need to format a graph, you specify the nodes to be in the graph and the s
for organizing them. The CLIM graph formatter does the layout automatically, obeying
constraints that you supply.

You can format any graph in CLIM. The CLIM graph formatter is most successful with
rected acyclic graphs (DAG). “Directed” means that the arcs on the graph have a direct
“Acyclic” means that there are no loops in the graph.

Here is an example of such a graph:

Figure 31. A Directed Acyclic Graph

To specify the elements and the organization of the graph, you provide CLIM with th
lowing information:

■ The root node

■ A “node printer,” that is, a function used to display each node. The function is pa
the object associated with a node and the stream on which to do output.

■ An “inferior producer,” a function that takes one node and returns its inferior nodes
nodes to which it points)

Based on that information, CLIM lays out the graph for you. You can specify a numb
options that control the appearance of the graph. For example, you can specify wheth
want the graph to grow vertically (downward) or horizontally (to the right). Note that

0

1A

1B

2A

2B

2B

2C
Formatted Output 17.2 435

 lay

rs (or

ound-

e-

 to

 no

e

CLIM’s algorithm does the best layout it can, but complicated graphs can be difficult to
out in a readable way.

See Section 17.5, “Advanced Topics,” for the graph formatting protocol.

17.2.2 CLIM Operators for Graph Formatting

format-graph-from-roots [Function]

Arguments: root-objects object-printer inferior-producer&key stream orientation
cutoff-depth merge-duplicates duplicate-key duplicate-test
generation-separation within-generation-separation center-nodes
arc-drawer arc-drawing-options graph-type (move-cursort)

Summary: Draws a graph whose roots are specified by the sequenceroot-objects. The nodes
of the graph are displayed by calling the functionobject-printer, which takes two
arguments, the node to display and a stream.inferior-producer is a function of
one argument that is called on each node to produce a sequence of inferio
nil if there are none). Bothobject-printer andinferior-producer have dynamic
extent.

 The output from graph formatting takes place in a normalized +y-downward
coordinate system. The graph is placed so that the upper left corner of its b
ing rectangle is at the current text cursor position ofstream. If the boolean
move-cursor is t (the default), then the text cursor will be moved so that it imm
diately follows the lower right corner of the graph.

 The returned value is the output record corresponding to the graph.

stream is an output recording stream to which output will be done. It defaults
standard-output .

orientation specifies the direction from root to leaves in the graph.orientation
may be either:horizontal (the default) or:vertical . In LispWorks, it may also
be:down or :up; :right is a synonym for:horizontal and:down is a synonym
for :vertical .

cutoff-depth specifies the maximum depth of the graph. It defaults tonil , meaning
that there is no cutoff depth. Otherwise it must be an integer, meaning that
nodes deeper thancutoff-depth will be formatted or displayed.

 If the booleanmerge-duplicates is t, then duplicate objects in the graph will shar
the same node in the display of the graph. That is, whenmerge-duplicates is t,
the resulting graph will be a tree. Ifmerge-duplicates is nil (the default), then
436 CLIM User’s Guide 17.2

 dupli-

efault

ner-

efault

e

rgu-
 has
 the

-

rts
duplicate objects will be displayed in separate nodes.duplicate-key is a function
of one argument that is used to extract the node object component used for
cate comparison; the default isidentity. duplicate-test is a function of two argu-
ments that is used to compare two objects to see if they are duplicates; the d
is eql. duplicate-key andduplicate-test have dynamic extent.

generation-separation is the amount of space to leave between successive ge
ations of the graph; the default is 20.within-generation-separation is the amount
of space to leave between nodes in the same generation of the graph; the d
is 10.generation-separation andwithin-generation-separation are specified in
the same way as theinter-row-spacing argument toformatting-table .

 Whencenter-nodes is t, each node of the graph is centered with respect to th
widest node in the same generation. The default isnil .

arc-drawer is a function of seven positional and some unspecified keyword a
ments that is responsible for drawing the arcs from one node to another; it
dynamic extent. The positional arguments are the stream, the “from” node,
“to” node, the “from”x andy position, and the “to”x andy position. The key-
word arguments gotten fromarc-drawing-options are typically line drawing
options, such as fordraw-line* . If arc-drawer is unsupplied, the default behav
ior is to draw a thin line from the “from” node to the “to” node usingdraw-line* .

graph-type is a keyword that specifies the type of graph to draw. CLIM suppo
graphs of type:tree, :directed-graph (and its synonym:digraph), and
:directed-acyclic-graph (and its synonym:dag). graph-type defaults to:tree
whenmerge-duplicates is t; otherwise, it defaults to:digraph .

 The following is an example demonstrating the use offormat-graph-from-roots
to draw an arrow. Note thatdraw-arrow* is available internally.

(define-application-frame graph-it ()
 ((root-node :initform (find-class ’clim:design)
 :initarg :root-node
 :accessor root-node)
 (app-stream :initform nil :accessor app-stream))
 (:panes (display :application
 :display-function ’draw-display
 :display-after-commands :no-clear))
 (:layouts
 (:defaults
 (horizontally () display))))
Formatted Output 17.2 437

(defmethod draw-display ((frame graph-it) stream)
 (format-graph-from-roots (root-node *application-frame*)
 #’draw-node
 #’clos:class-direct-subclasses
 :stream stream
 :arc-drawer
 #’(lambda (stream from-object
 to-object x1 y1
 x2 y2
 &rest
 drawing-options)
 (declare (dynamic-extent
 drawing-options))
 (declare (ignore from-object
 to-object))
 (apply #’draw-arrow* stream
 x1 y1 x2 y2 drawing-options))
 :merge-duplicates t)
 (setf (app-stream frame) stream))

(define-presentation-type node ())
(defun draw-node (object stream)
 (with-output-as-presentation (stream object ’node)
 (surrounding-output-with-border
 (stream :shape :rectangle)
 (format stream "~A"
 (class-name object)))))

(define-graph-it-command (exit :menu "Exit") ()
 (frame-exit *application-frame*))

(defun graph-it (&optional (root-node (find-class ’basic-sheet))
 (port (find-port)))
 (if (atom root-node) (setf root-node (list root-node)))
 (let ((graph-it (make-application-frame ’graph-it
 :frame-manager
 (find-frame-manager
 :port port)
 :width 800
 :height 600
 :root-node root-node)))
 (run-frame-top-level graph-it)))
438 CLIM User’s Guide 17.2

fault.
17.2.3 Examples of CLIM Graph Formatting

(defstruct node (name "") (children nil))

(defvar g1 (let* ((2a (make-node :name "2A"))
 (2b (make-node :name "2B"))
 (2c (make-node :name "2C"))
 (1a (make-node :name "1A" :children (list 2a 2b)))
 (1b (make-node :name "1B" :children (list 2b 2c))))
 (make-node :name "0" :children (list 1a 1b))))

(defun test-graph (root-node &rest keys)
 (apply #’clim:format-graph-from-root root-node
 #’(lambda (node s)
 (write-string (node-name node) s))
 #’node-children keys))

Evaluating(test-graph g1 :stream *my-window*) results in the following
graph:

Figure 32. A Horizontal Graph

In Figure 32, the graph has a horizontal orientation and grows toward the right by de
We can supply the:orientation keyword to control this. Evaluating(test-graph g1
:stream *my-window* :orientation :vertical) results in the following
graph:

0

1A

1B

2A

2B

2B

2C
Formatted Output 17.2 439

 it in-
 root
Figure 33. A Vertical Graph

 The following example usesformat-graph-from-roots to create a graph with multiple
parents, that is, a graph in which node D is a child of both nodes B and C. Note that
terprets its first argument as a list of top-level graph nodes, so we have wrapped the
node inside a list.

(defun test-graph (win)
 (window-clear win)
 (format-graph-from-roots ’((a (b (d)) (c (d))))
 #’(lambda (x s) (princ (car x) s))
 #’cdr
 :stream win
 :orientation :vertical
 :merge-duplicates t
 :duplicate-key #’car)
 (force-output win))

0

1A1B

2A 2B 2B 2C
440 CLIM User’s Guide 17.2

nd

eam;

ent

.

e of
hat

o an

ning

d

17.3 Formatting Text in CLIM

CLIM provides the following three forms for creating textual lists, indenting output, a
breaking up lengthy output into multiple lines.

format-textual-list [Function]

Arguments: sequence printer&key stream separator conjunction
Summary: Outputs the sequence of items insequence as a “textual list.” For example, the

list (1 2 3 4) might be printed as

1, 2, 3, and 4

printer is a function of two arguments: an element of the sequence and a str
it has dynamic extent. It is called to output each element of the sequence.

stream specifies the output stream. The default is*standard-output* .

 Theseparator andconjunction arguments control the appearance of each elem
of the sequence and the separators used between each pair of elements.separator
is a string that is output after every element but the last one; the default forsep-
arator is “,” (a comma followed by a space).conjunction is a string that is output
before the last element. The default isnil , meaning that there is no conjunction
Typical values forconjunction are the strings “and” and “or”.

indenting-output [Macro]

Arguments: (stream indentation&key (move-cursort)) &body body
Summary: Bindsstream to a stream that inserts whitespace at the beginning of each lin

output produced bybody, and then writes the indented output to the stream t
is the original value ofstream.

 Thestream argument is not evaluated, and must be a symbol that is bound t
output recording stream. Ifstream is t, *standard-output* is used.body may
have zero or more declarations as its first forms.

indentation specifies how much whitespace should be inserted at the begin
of each line. It is specified in the same way as the:x-spacing option toformat-
ting-table.

 If the booleanmove-cursor is t (the default), CLIM moves the cursor to the en
of the table.
Formatted Output 17.3 441

lly.

ten
-

to a

s

reak

an

.

 Programmers usingindenting-output should begin the body with a call to
fresh-line (or some equivalent) to position the stream to the indentation initia
There is a restriction on interactions betweenindenting-output andfilling-out-
put: a call toindenting-output should appear outside of a call tofilling-output .

filling-output [Macro]

Arguments: (stream&key fill-width break-characters after-line-break
after-line-break-initially)&body body

Summary: Bindsstream to a stream that inserts line breaks into the textual output writ
to it (by such functions aswrite-char andwrite-string) so that the output is usu
ally no wider thenfill-width. The filled output is then written on the original
stream.

 Thestream argument is not evaluated, and must be a symbol that is bound
stream. Ifstream is t, *standard-output* is used.body may have zero or more
declarations as its first forms.

fill-width specifies the width of filled lines, and defaults to 80 characters. It i
specified the same way as the:x-spacing option forformatting-table . See Sub-
section 17.1.2, "CLIM Operators for Formatting Tables."

 “Words” are separated by the characters specified in the listbreak-characters.
When a line is broken to prevent wrapping past the end of a line, the line b
is made at one of these separators. That is,filling-output does not split “words”
across lines, so it might produce output wider thanfill-width.

after-line-break specifies a string to be sent tostream after line breaks; the string
appears at the beginning of each new line. The string must not be wider th
fill-width.

 If the booleanafter-line-break-initially is t, then theafter-line-break text is to be
written tostream before executingbody, that is, at the beginning of the first line
The default isnil .
442 CLIM User’s Guide 17.3

der.
at de-
n in

a rect-

t-
17.4 Bordered Output in CLIM

CLIM provides a mechanism for surrounding arbitrary output with some kind of a bor
The programmer annotates some output-generating code with an advisory macro th
scribes the type of border to be drawn. The following code produces the output show
Figure 34.

For example, the following produces three pieces of output, which are surrounded by
angle, highlighted with a dropshadow, and underlined, respectively.

(defun border-test (stream)
 (fresh-line stream)
 (surrounding-output-with-border
 (stream :shape :rectangle)
 (format stream "This is some output with a rectangular border"))
 (terpri stream) (terpri stream)
 (surrounding-output-with-border
 (stream :shape :drop-shadow)
 (format stream "This has a drop-shadow under it"))
 (terpri stream) (terpri stream)
 (surrounding-output-with-border
 (stream :shape :underline)
 (format stream "And this output is underlined")))

Figure 34. Examples of Bordered Output

surrounding-output-with-border [Macro]

Arguments: (&optional stream&key shape (move-cursort)) &body body
Summary: Binds the local environment in such a way the output ofbody will be surrounded

by a border of the specified shape. Supported shapes are:rectangle (the default),
:oval, :drop-shadow, and:underline. :rectangle draws a rectangle around the
bounding rectangle of the output.:oval draws an oval around the bounding rec

This is some output with a rectangular border.

And this output is underlined.

This has a drop-shadow under it.
Formatted Output 17.4 443

g

d

. If

t

, and
ngle
angle of the output.:drop-shadow draws a “drop shadow” around the lower
right edge of the bounding rectangle of the output.:underline draws a thin line
along the baseline of all of the text in the output, but does not draw anythin
underneath non-textual output.

 If the booleanmove-cursor is t (the default), then the text cursor will be move
so that it immediately follows the lower right corner of the bordered output.

stream is an output recording stream to which output will be done. Thestream
argument is not evaluated, and must be a symbol that is bound to a stream
stream is t (the default),*standard-output* is used.body may have zero or
more declarations as its first forms.

define-border-type [Macro]

Arguments: shape arglist&body body
Summary: Defines a new kind of border namedshape. arglist must be a subset of the

“canonical” arglist (usingstring-equal to do the comparison)(&key stream
record left top right bottom). body is the code that actually draws the border. I
has lexical access tostream, record, left, top, right , andbottom, which are
respectively, the stream being drawn on, the output record being surrounded
the coordinates of the left, top, right, and bottom edges of the bounding recta
of the record.body may have zero or more declarations as its first forms.
444 CLIM User’s Guide 17.4

 next

 re-
t
ented.

t

er

 as
it

e
yed

a

e

i-
 at

ing
17.5 Advanced Topics

The material in this subsection is advanced; most CLIM programmers can skip to the
section. This section discusses Table, Item List, and Graph Formatting Protocols.

All of table, item list, and graph formatting is implemented on top of the basic output
cording protocol, usingwith-new-output-record to specify the appropriate type of outpu
record. The following examples show specifically how tables and graphs are implem

Example 1: Tables formatting-table first collects all the output that belongs in
the table into a collection of row, column, and cell outpu
records, all of which are children of a single table output
record. During this phase,stream-drawing-p is bound to
nil andstream-recording-p is bound tot. When all the out-
put has been generated, the table layout constraint solv
(adjust-table-cells or adjust-item-list-cells) is called to
compute the table layout, taking into account such factors
the widest cell in a given column. If the table is to be spl
into multiple columns,adjust-multiple-columns is now
called. Finally, the table output record is positioned on th
stream at the current text cursor position and then displa
by callingreplay on the table (or item list) output record.

Example 2: Graphs format-graph-from-roots first collects all the graph node
output records that belong in the graph by callinggener-
ate-graph-nodes. All these output records are children of
single graph output record. During this phase,
stream-drawing-p is bound tonil andstream-recording-p
is bound tot. When all the output has been generated, th
graph layout code (layout-graph-nodes andlay-
out-graph-edges) is called to compute the graph layout. F
nally, the graph output record is positioned on the stream
the current text cursor position and then displayed by call
replay on the graph output record.
Formatted Output 17.5 445

port

 any
LIM
 out-
ow and
ds).
with-

 of

ut

ldren
rds
17.5.1 The Table Formatting Protocol

Any output record class that implements the following generic functions is said to sup
the table formatting protocol.

In the following subsections, the term “non-table output records” will be used to mean
output record that is not a table, row, column, cell, or item list output record. When C
“skips over intervening non-table output records,” this means that it will bypass all the
put records between two such table output records (such as a table and a row, or a r
a cell) that are not records of those classes (most notably, presentation output recor
CLIM detects invalid nesting of table output records, such as a row within a row, a cell
in a cell, or a row within a cell. Note that this does not prohibit the nesting of calls tofor-
matting-table, it simply requires that programmers include the inner table within one
the cells of the outer table.

table-output-record [Protocol Class]

Summary: The protocol class that represents tabular output records; a subclass ofout-
put-record. If you want to create a new class that behaves like a table outp
record, it should be a subclass oftable-output-record. Subclasses oftable-out-
put-record must obey the table output record protocol.

table-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a table output record; otherwise, it returnsnil .

:x-spacing [Initarg]

:y-spacing [Initarg]

:multiple-columns-x-spacing [Initarg]

:equalize-column-widths [Initarg]

Summary: All subclasses oftable-output-record must handle these initargs, which are
used to specify, respectively, thex andy spacing, the multiple columnx spacing,
and equal-width columns attributes of the table.

standard-table-output-record [Class]

Summary: The instantiable class of output record that represents tabular output. Its chi
will be a sequence of either rows or columns, with presentation output reco
possibly intervening. This is a subclass oftable-output-record.
446 CLIM User’s Guide 17.5

rven-

re it

he

m-
 col-
ach
map-over-table-elements [Generic Function]

Arguments: function table-record type
Summary: Appliesfunction to all the rows or columns oftable-record that are of typetype.

type is either:row, :column, or :row-or-column . function is a function of one
argument, an output record; it has dynamic extent.map-over-table-elements
ensures that rows, columns, and cells are properly nested. It skips over inte
ing non-table output record structure, such as presentations.

adjust-table-cells [Generic Function]

Arguments: table-record stream
Summary: This function is called after the tabular output has been collected, but befo

has been replayed. The method onstandard-table-output-record implements
the usual table layout constraint solver by moving the rows or columns of t
table output recordtable-record and the cells within the rows or columns.stream
is the stream on which the table is displayed.

adjust-multiple-columns [Generic Function]

Arguments: table-record stream
Summary: This is called afteradjust-table-cells to account for the case where the progra

mer wants to break the entire table up into multiple columns. Each of those
umns will have some of the rows of the “original” table, and those rows may e
have several columns. For example:

 Original table:

a 1 alpha

b 2 beta

c 3 gamma

d 4 delta

 Multiple column version:

a 1 alpha c 3 gamma

b 2 beta d 4 delta

table-record andstream are as foradjust-table-cells.
Formatted Output 17.5 447

port

t

in a
ning
his is

t-
nt.

tput
17.5.1.1 The Row and Column Formatting Protocol

Any output record class that implements the following generic functions is said to sup
the row (or column) formatting protocol.

row-output-record [Protocol Class]

Summary: The protocol class that represents one row in a table; a subclass ofout-
put-record. If you want to create a new class that behaves like a row outpu
record, it should be a subclass ofrow-output-record . Subclasses ofrow-out-
put-record must obey the row output record protocol.

row-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a row output record; otherwise, it returnsnil .

standard-row-output-record [Class]

Summary: The instantiable class of output record that represents a row of output with
table. Its children will be a sequence of cells, and its parent (skipping interve
non-tabular records such as presentations) will be a table output record. T
a subclass ofrow-output-record .

map-over-row-cells [Generic Function]

Arguments: function row-record
Summary: Appliesfunction to all the cells in the rowrow-record, skipping intervening

non-table output record structure.function is a function of one argument, an ou
put record corresponding to a table cell within the row; it has dynamic exte

column-output-record [Protocol Class]

Summary: The protocol class that represents one column in a table; a subclass ofout-
put-record. If you want to create a new class that behaves like a column ou
record, it should be a subclass ofcolumn-output-record. Subclasses ofcol-
umn-output-record must obey the column output record protocol.

column-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a column output record; otherwise, it returnsnil .
448 CLIM User’s Guide 17.5

ithin
rven-
; pre-

ic

port

ss of
tput

d

standard-column-output-record [Class]

Summary: The instantiable class of output record that represents a column of output w
a table. Its children will be a sequence of cells, and its parent (skipping inte
ing non-tabular records such as presentations) will be a table output record
sentation output records may intervene. This is a subclass of
column-output-record.

map-over-column-cells [Generic Function]

Arguments: function column-record
Summary: Appliesfunction to all the cells in the columncolumn-record, skipping interven-

ing non-table output record structure.function is a function of one argument, an
output record corresponding to a table cell within the column; it has dynam
extent.

17.5.1.2 The Cell Formatting Protocol

Any output record class that implements the following generic functions is said to sup
the cell formatting protocol.

cell-output-record [Protocol Class]

Summary: The protocol class that represents one cell in a table or an item list; a subcla
output-record. If you want to create a new class that behaves like a cell ou
record, it should be a subclass ofcell-output-record. Subclasses ofcell-out-
put-record must obey the cell output record protocol.

cell-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a cell output record; otherwise. it returnsnil .

:align-x [Initarg]

:align-y [Initarg]

:min-width [Initarg]

:min-height [Initarg]

Summary: All subclasses ofcell-output-record must handle these initargs, which are use
to specify, respectively, thex andy alignment, and the minimum width and
height attributes of the cell.
Formatted Output 17.5 449

tput
nta-
of

 it
standard-cell-output-record [Class]

Summary: The instantiable class of output record that represents a single piece of ou
within a table row or column, or an item list. Its children will either be prese
tions or output records that represent displayed output. This is a subclass
cell-output-record.

cell-align-x [Generic Function]

Arguments: cell

cell-align-y [Generic Function]

Arguments: cell

cell-min-width [Generic Function]

Arguments: cell

cell-min-height [Generic Function]

Arguments: cell
Summary: These functions return, respectively, thex andy alignment and minimum width

and height of the cell output recordcell.

17.5.2 The Item List Formatting Protocol

item-list-output-record [Protocol Class]

Summary: The protocol class that represents an item list; a subclass ofoutput-record. If
you want to create a new class that behaves like an item list output record,
should be a subclass ofitem-list-output-record . Subclasses ofitem-list-out-
put-record must obey the item list output record protocol.

item-list-output-record-p [Function]

Arguments: object
Summary: Returnst if object is an item list output record; otherwise, it returnsnil .

:x-spacing [Initarg]

:y-spacing [Initarg]

:initial-spacing [Initarg]
450 CLIM User’s Guide 17.5

er
 list.

ence

ions.
 cell

ore

d be a
:n-rows [Initarg]

:n-columns [Initarg]

:max-width [Initarg]

:max-height [Initarg]

Summary: All subclasses ofitem-list-output-record must handle these initargs, which
specify, respectively, thex andy spacing, the initial spacing, the desired numb
of rows and columns, and maximum width and height attributes of the item

standard-item-list-output-record [Class]

Summary: The output record that represents item list output. Its children will be a sequ
of cells, with presentations possibly intervening. This is a subclass of
item-list-output-record .

map-over-item-list-cells [Generic Function]

Arguments: function item-list-record
Summary: Appliesfunction to all of the cells initem-list-record. map-over-item-list-cells

skips over intervening non-table output record structure, such as presentat
function is a function of one argument, an output record corresponding to a
in the item list; it has dynamic extent.

adjust-item-list-cells [Generic Function]

Arguments: item-list-record stream
Summary: This function is called after the item list output has been collected, but bef

the record has been replayed. The method onstandard-item-list-output-record
implements the usual item list layout constraint solver.item-list-record is the
item list output record, andstream is the stream on which the item list is dis-
played.

17.5.3 The Graph Formatting Protocol

graph-output-record [Protocol Class]

Summary: The protocol class that represents a graph; a subclass ofoutput-record. If you
want to create a new class that behaves like a graph output record, it shoul
subclass of graph-output-record. Subclasses ofgraph-output-record must
obey the graph output record protocol.
451 CLIM User’s Guide

ed to
upli-
of a

e root

s of

t

graph-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a graph output record, otherwise returnsnil .

:orientation [Initarg]

:center-nodes [Initarg]

:cutoff-depth [Initarg]

:merge-duplicates [Initarg]

:generation-separation [Initarg]

:within-generation-separation [Initarg]

:hash-table [Initarg]

Summary: All the graph output records must handle these seven initargs, which are us
specify, respectively, the orientation, node centering, cutoff depth, merge d
cates, generation and within-generation spacing, and the node hash table
graph output record.

define-graph-type [Macro]

Arguments: graph-type class
Summary: Defines a new graph typegraph-type that is implemented by the classclass (a

subclass ofgraph-output-record). Neither of the arguments is evaluated.

graph-root-nodes [Generic Function]

Arguments: graph-record
Summary: Returns a sequence of the graph node output records corresponding to th

objects for the graph output recordgraph-record.

(setf graph-root-nodes) [Generic Function]

Arguments: roots graph-record
Summary: Sets the root nodes ofgraph-record to roots.

generate-graph-nodes [Generic Function]

Arguments: graph-record stream root-objects object-printer inferior-producer&key
duplicate-key duplicate-test

Summary: This function is responsible for generating all the graph node output record
the graph.graph-record is the graph output record, andstream is the output
stream. The graph node output records are generating by calling the objec
Formatted Output 452

 the
ode

rds

 in
l-

after
 dis-

ord, it

l.

arent
printer on the root objects, then (recursively) calling the inferior producer on
root objects and calling the object printer on all inferiors. After all the graph n
output records have been generated, the value ofgraph-root-nodes of
graph-record must be set to be a sequence of those graph node output reco
that correspond to the root objects.

root-objects, object-printer, inferior-producer, duplicate-key, andduplicate-test
are as forformat-graph-from-roots .

layout-graph-nodes [Generic Function]

Arguments: graph-record stream
Summary: This function is responsible for laying out the nodes in the graph contained

the output recordgraph-record. It is called after the graph output has been co
lected, but before the graph record has been displayed. The method onstan-
dard-graph-output-record implements the usual graph layout constraint
solver.stream is the stream on which the graph is displayed.

layout-graph-edges [Generic Function]

Arguments: graph-record stream arc-drawer arc-drawing-options
Summary: This function is responsible for laying out the edges in the graph. It is called

the graph nodes have been laid out, but before the graph record has been
played. The method onstandard-graph-output-record simply causes thin lines
to be drawn from each node to all of its children.graph-record andstream are as
for layout-graph-nodes.

graph-node-output-record [Protocol Class]

Summary: The protocol class that represents a node in graph; a subclass ofoutput-record.
If you want to create a new class that behaves like a graph node output rec
should be a subclass ofgraph-node-output-record. Subclasses of
graph-node-output-recordmust obey the graph node output record protoco

graph-node-output-record-p [Function]

Arguments: object
Summary: Returnst if object is a graph node output record; otherwise, it returnsnil .

standard-graph-node-output-record [Class]

Summary: The instantiable class of output record that represents a graph node. Its p
will be a graph output record. This is a subclass ofgraph-node-output-record.
453 CLIM User’s Guide

rents”

chil-
graph-node-parents [Generic Function]

Arguments: graph-node-record
Summary: Returns a sequence of the graph node output records whose objects are “pa

of the object corresponding to the graph node output recordgraph-node-record.
This differs fromoutput-record-parent, asgraph-node-parents can return
output records that are not the parent records ofgraph-node-record.

(setf graph-node-parents) [Generic Function]

Arguments: parents graph-node-record
Summary: Sets the parents ofgraph-node-record to beparents. parents must be a list of

graph node records.

graph-node-children [Generic Function]

Arguments: graph-node-record
Summary: Returns a sequence of the graph node output records whose objects are “

dren” of the object corresponding to the graph node output record
graph-node-record. This differs fromoutput-record-children , as
graph-node-children can return output records that are not child records of
graph-node-record.

(setf graph-node-children) [Generic Function]

Arguments: children graph-node-record
Summary: Sets the children ofgraph-node-record to bechildren. children must be a list of

graph node records.

graph-node-object [Generic Function]

Arguments: graph-node-record
Summary: Returns the object that corresponds to the output recordgraph-node-record. This

function only works correctly while inside the call tofor-
mat-graph-from-roots. Unspecified results are returned outsidefor-
mat-graph-from-roots, as CLIM does not capture application objects that
might have dynamic extent.
454 CLIM User’s Guide 17.5

Chapter 18 Sheets
Sheets 17.5 455

 455
.. 456
.. 456

.... 457

... 458

.. 458
... 461

... 461

.. 462

... 464

.. 465
. 466
.. 467

... 468

.. 476

. 476
. 479
.. 480
. 480

.. 481

. 482

.. 482

. 483
 483
. 484
Chapter 18 Sheets

18.1 Overview of Window Facilities ...
18.1.1 Properties of Sheets...
18.1.2 Sheet Protocols..

18.2 Basic Sheet Classes..

18.3 Relationships Between Sheets ..
18.3.1 Sheet Relationship Functions..
18.3.2 Sheet Genealogy Classes ...

18.4 Sheet Geometry...
18.4.1 Sheet Geometry Functions..
18.4.2 Sheet Geometry Classes...

18.5 Sheet Protocols: Input ..
18.5.1 Input Protocol Functions..
18.5.2 Input Protocol Classes...

18.6 Standard Device Events ..

18.7 Sheet Protocols: Output ...
18.7.1 Mediums and Output Properties ..
18.7.2 Output Protocol Functions ...
18.7.3 Output Protocol Classes..
18.7.4 Associating a Medium With a Sheet..

18.8 Repaint Protocol...
18.8.1 Repaint Protocol Functions..
18.8.2 Repaint Protocol Classes...

18.9 Sheet Notification Protocol ...
18.9.1 Relationship to Window System Change Notifications..............
18.9.2 Sheet Geometry Notifications..
456 CLIM User’s Guide 17.5

 tasks
LIM

jects

t lan-

win-
 pro-

em

win-
rela-

tion to
play
-
ging
isplay

t win-
child
o be a
aking
tail in
18.1 Overview of Window Facilities

A central notion in organizing user interfaces is allocating screen regions to particular
and recursively subdividing these regions into subregions. The windowing layer of C
defines an extensible framework for constructing, using, and managing suchhierarchies of
interactive regions. This framework allows uniform treatment of the following things:

■ Window objects like those in X or NeWS

■ Lightweight gadgets typical of toolkit layers, such as Motif or OpenLook

■ Structured graphics such as output records and an application’s presentation ob

■ Objects that act as Lisp handles for windows or gadgets implemented in a differen
guage (such as OpenLook gadgets implemented in C)

From the perspective of most CLIM users, CLIM’s windowing layer plays the role of a
dow system. However, CLIM usually uses the services of a window system platform to
vide efficient windowing, input, and output facilities. We will refer to such window syst
platforms as host window systems or as display servers.

The fundamental window abstraction defined by CLIM is called asheet. A sheet can par-
ticipate in a relationship called awindowing relationship. This relationship is one in which
one sheet called theparent provides space to a number of other sheets calledchildren. Sup-
port for establishing and maintaining this kind of relationship is the essence of what
dow systems provide. At any point in time, CLIM allows a sheet to be a child in one
tionship and a parent in another relationship.

Programmers can manipulate unrooted hierarchies of sheets (those without a connec
any particular display server). However, a sheet hierarchy must be attached to a dis
server to make it visible.Ports andgrafts provide the functionality for managing this capa
bility. A port is an abstract connection to a display service that is responsible for mana
host display server resources and for processing input events received from the host d
server. A graft is a special kind of sheet that represents a host window, typically a roo
dow (that is, a screen-level window). A sheet is attached to a display by making it a
of a graft, which represents an appropriate host window. The sheet will then appear t
child of that host window. In other words, a sheet is put onto a particular screen by m
it a child of an appropriate graft and enabling it. Ports and grafts are described in de
Chapter 19, “Ports, Grafts, and Mirrored Sheets.”
Sheets 18.1 457

m, to

ct

rea of
lly

et is

ship
 order

 the

t to

or the

arent
As has been discussed previously, CLIM users will typically be dealing withpanes, rather
than with sheets, ports, grafts, or mediums, as a call tomake-application-frame automat-
ically results in a port specification, a graft instantiation, and the allocation of a mediu
which output directed to the pane will be forwarded.

18.1.1 Properties of Sheets

Sheets have the following properties:

■ A coordinate system—Provides the ability to refer to locations in a sheet’s abstra
plane.

■ A region—Defines an area within a sheet’s coordinate system that indicates the a
interest within the plane, that is, a clipping region for output and input. This typica
corresponds to the visible region of the sheet on the display.

■ A parent—A sheet that is the parent in a windowing relationship in which this she
a child.

■ Children—An ordered set of sheets that are each children in a windowing relation
in which this sheet is a parent. The ordering of the set corresponds to the stacking
of the sheets. Not all sheets have children.

■ A transformation—Determines how points in this sheet’s coordinate system are
mapped into points in its parents’ coordinate system.

■ An enabled flag—Indicates whether the sheet is currently actively participating in
windowing relationship with its parent and siblings.

■ An event handler—A procedure invoked when the display server wishes to inform
CLIM of external events.

■ Output state—A set of values used when CLIM causes graphical or textual outpu
appear on the display. This state is often represented by a medium.

18.1.2 Sheet Protocols

A sheet is a participant in a number of protocols. Every sheet must provide methods f
generic functions that make up these protocols. These protocols are:

■ The windowing protocol—Describes the relationships between the sheet and its p
and children (and, by extension, all of its ancestors and descendants).
458 CLIM User’s Guide 18.1

d syn-

iptive

ure
it to ap-

sure
lay

 some
■ The input protocol—Provides the event handler for a sheet. Events may be handle
chronously, asynchronously, or not at all.

■ The output protocol—Provides graphical and textual output, and manages descr
output state such as color, transformation, and clipping.

■ The repaint protocol—Invoked by the event handler and by user programs to ens
that the output appearing on the display device appears as the program expects
pear.

■ The notification protocol—Invoked by the event handler and user programs to en
that CLIM’s representation of window system information is equivalent to the disp
server’s.

These protocols may be handled directly by a sheet, queued for later processing by
other agent, or passed on to a delegate sheet for further processing.
Sheets 18.1 459

eets in

ly, but
ing the
s and

uld
18.2 Basic Sheet Classes

There are no standard sheet classes in CLIM, and no pre-packaged way to create sh
general. If a programmer needs to create an instance of some class of sheet,make-instance
must be used. In most cases, application programmers will not deal with sheets direct
instead will use a subclass of sheets known as panes. Panes can be created by call
make-pane function. For a more detailed discussion on panes, see Chapter 10, “Pane
Gadgets.”

sheet [Protocol Class]

Summary: The protocol class that corresponds to a sheet, a subclass ofbounding-
rectangle. If you want to create a new class that behaves like a sheet, it sho
be a subclass ofsheet. Subclasses ofsheet must obey the sheet protocol.

 All of the subclasses ofsheet are mutable.

sheetp [Function]

Arguments: object
Summary: Returnst if objectis a sheet; otherwise, it returnsnil .

basic-sheet [Class]

Summary: The basic class on which all CLIM sheets are built, a subclass ofsheet. This
class is an abstract class intended only to be subclassed, not instantiated.
460 CLIM User’s Guide 18.2

ral, a
ore sib-
nships

nt

es

st
erver.

n-

-
tors
pies
s.

st im-
18.3 Relationships Between Sheets

Sheets are arranged in a tree-structured, acyclic, top-down hierarchy. Thus, in gene
sheet has one or no parents and zero or more children. A sheet may have zero or m
lings (that is, other sheets that share the same parent). In order to describe the relatio
between sheets, we define the following terms.

■ Adopted—A sheet is said to beadopted if it has a parent. A sheet becomes the pare
of another sheet by adopting that sheet.

■ Disowned—A sheet is said to bedisowned if it does not have a parent. A sheet ceas
to be a child of another sheet by being disowned.

■ Grafted—A sheet is said to begrafted when it is part of a sheet hierarchy whose highe
ancestor is a graft. In this case, the sheet may be visible on a particular window s

■ Degrafted—A sheet is said to bedegrafted when it is part of a sheet hierarchy that ca
not be visible on a server, that is, the highest ancestor is not a graft.

■ Enabled—A sheet is said to beenabled when it is actively participating in the window
ing relationship with its parent. If a sheet is enabled and grafted, and all its ances
are enabled (they are grafted by definition), then the sheet will be visible if it occu
a portion of the graft region that isn’t clipped by its ancestors or ancestor’s sibling

■ Disabled—The opposite of enabled isdisabled.

18.3.1 Sheet Relationship Functions

The generic functions in this section comprise the sheet protocol. All sheet objects mu
plement or inherit methods for each of these generic functions.

sheet-parent [Generic Function]

Arguments: sheet
Summary: Returns the parent of the sheetsheet, ornil if the sheet has no parent.

sheet-children [Generic Function]

Arguments: sheet
Summary: Returns a list of sheets that are the children of the sheetsheet. Some sheet classes

support only a single child; in this case, the result ofsheet-children will be a list
Sheets 18.3 461

te;

g to
of one element. This function returns objects that reveal CLIM’s internal sta
do not modify those objects.

sheet-adopt-child [Generic Function]

Arguments: sheet child
Summary: Adds the child sheetchild to the set of children of the sheetsheet, and makes the

sheet the child’s parent. Ifchild already has a parent, thesheet-already-has-
parent error will be signaled.

 Some sheet classes support only a single child. For such sheets, attemptin
adopt more than a single child will cause thesheet-supports-only-one-child
error to be signaled.

sheet-disown-child [Generic Function]

Arguments: sheet child&key (errorp t)
Summary: Removes the child sheetchild from the set of children of the sheetsheet, and

makes the parent of the child benil . If child is not actually a child ofsheet and
errorp is t, then thesheet-is-not-child error will be signaled.

sheet-siblings [Generic Function]

Arguments: sheet
Summary: Returns a list of all of the siblings of the sheetsheet. The sibling are all of the

children ofsheet’s parent excludingsheet itself. This function returns fresh
objects that may be modified.

sheet-enabled-children [Generic Function]

Arguments: sheet
Summary: Returns a list of those children of the sheetsheet that are enabled. This function

returns fresh objects that may be modified.

sheet-ancestor-p [Generic Function]

Arguments: sheet putative-ancestor
Summary: Returnst if the the sheetputative-ancestor is in fact an ancestor of the sheet

sheet; otherwise, it returnsnil .

raise-sheet [Generic Function]

Arguments: sheet
462 CLIM User’s Guide 18.3

e
s “on
h.

vice.

the

able.

.

r fur-
bury-sheet [Generic Function]

Arguments: sheet
Summary: These functions reorder the children of a sheet by raising the sheetsheet to the

top or burying it at the bottom. Raising a sheet puts it at the beginning of th
ordering; burying it puts it at the end. If sheets overlap, the one that appear
top” on the display device is earlier in the ordering than the one underneat

 This may change which parts of which sheets are visible on the display de

reorder-sheets [Generic Function]

Arguments: sheet new-ordering
Summary: Reorders the children of the sheetsheet to have the new ordering specified by

new-ordering. new-ordering is an ordered list of the child sheets; elements at
front of new-ordering are “on top” of elements at the rear.

 If new-ordering does not contain all of the children ofsheet, thesheet-order-
ing-underspecified error will be signaled. Ifnew-ordering contains a sheet that
is not a child ofsheet, thesheet-is-not-child error will be signaled.

sheet-enabled-p [Generic Function]

Arguments: sheet
Summary: Returnst if the the sheetsheet is enabled by its parent; otherwise, it returnsnil .

Note that all of a sheet’s ancestors must be enabled before the sheet is view

(setf sheet-enabled-p) [Generic Function]

Arguments: enabled-p sheet
Summary: Whenenabled-p is t, this enables the the sheetsheet. Whenenabled-p isnil , this

disables the sheet.

 Note that a sheet is not visible unless it and all of its ancestors are enabled

sheet-viewable-p [Generic Function]

Arguments: sheet
Summary: Returnst if the sheetsheet and all its ancestors are enabled, and if one of its

ancestors is a graft. See Chapter 19, “Ports, Grafts, and Mirrored Sheets,” fo
ther information on grafts.

sheet-occluding-sheets [Generic Function]

Arguments: sheet child
Sheets 18.3 463

f
lier in

.

Summary: Returns a list of the sheetchild’s siblings that occlude part or all of the region o
thechild. In general, these are the siblings that are enabled and appear ear
the sheetsheet’s children. Ifsheet does not permit overlapping among its chil-
dren,sheet-occluding-sheets will returnnil .

 This function returns fresh objects that may be modified.

18.3.2 Sheet Genealogy Classes

Different “mix-in” classes are provided that implement the relationship protocol.

sheet-parent-mixin [Class]

Summary: This class is mixed into sheet classes that have a parent.

sheet-leaf-mixin [Class]

Summary: This class is mixed into sheet classes that will never have children.

sheet-single-child-mixin [Class]

Summary: This class is mixed into sheet classes that have at most a single child.

sheet-multiple-child-mixin [Class]

Summary: This class is mixed into sheet classes that may have zero or more children
464 CLIM User’s Guide 18.3

nd ex-
.
rts co-

ion
18.4 Sheet Geometry

Every sheet has a region and a coordinate system. The region refers to its position a
tent on the display device. It is represented by a region object, frequently a rectangle
A sheet’s coordinate system is represented by a coordinate transformation that conve
ordinates in its coordinate system to coordinates in its parent’s coordinate system.

18.4.1 Sheet Geometry Functions

sheet-transformation [Generic Function]

Arguments: sheet

(setf sheet-transformation) [Generic Function]

Arguments: transformation sheet
Summary: Returns a transformation that converts coordinates in the sheetsheet’s coordinate

system into coordinates in its parent’s coordinate system. Usingsetf on this
accessor will modify the sheet’s coordinate system, including moving its reg
in its parent’s coordinate system. When the the transformation is changed,
note-sheet-region-changed is called to notify the sheet of the change.

sheet-region [Generic Function]

Arguments: sheet

(setf sheet-region) [Generic Function]

Arguments: region sheet
Summary: Returns a region object that represents the set of points to which the sheetsheet

refers. The region is in the sheet’s coordinate system. Usingsetf on this accessor
modifies the sheet’s region. When the region is changed,
note-sheet-region-region is called to notify the sheet of the change.

move-sheet [Generic Function]

Arguments: sheet x y
Summary: Moves the sheetsheet to the new position (x, y). x andy are expressed in the

coordinate system ofsheet’s parent.
Sheets 18.4 465

of

ner
d

e

ed
resize-sheet [Generic Function]

Arguments: sheet width height
Summary: Resizes the sheetsheet to have a new widthwidth and heightheight. width and

height are real numbers.

move-and-resize-sheet [Generic Function]

Arguments: sheet x y width height
Summary: Moves the sheetsheet to the new position (x, y.) and changes its size to the new

width width and heightheight. x andy are expressed in the coordinate system
sheet’s parent. width andheight are real numbers.

map-sheet-position-to-parent [Generic Function]

Arguments: sheet x y
Summary: Applies the sheetsheet’s transformation to the point (x, y), returning the coor-

dinates of that point insheet’s parent’s coordinate system.

map-sheet-position-to-child [Generic Function]

Arguments: sheet x y
Summary: Invertssheet’s transformation of the point (x, y) in sheet’s parent’s coordinate

system. It returns the coordinates of the point insheet’s coordinate system.

map-sheet-rectangle*-to-parent [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Appliessheet’s transformation to the bounding rectangle specified by the cor

points (x1, y1) and (x2, y2), returning the bounding rectangle of the transforme
region as four values,min-x, min-y, max-x, andmax-y. The argumentsx1, y1, x2,
andy2 are canonicalized in the same way as formake-bounding-rectangle.

map-sheet-rectangle*-to-child [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Applies the inverse of the sheetsheet’s transformation to the bounding rectangl

delimited by the corner points (x1, y1) and (x2, y2) (represented insheet’s par-
ent’s coordinate system), returning the bounding rectangle of the transform
region as four values,min-x, min-y, max-x, andmax-y. The argumentsx1, y1, x2,
andy2 are canonicalized in the same way as formake-bounding-rectangle.
466 CLIM User’s Guide 18.4

e

tions

,

b-

 ac-
child-containing-position [Generic Function]

Arguments: sheet x y
Summary: Returns the topmost enabled direct child of the sheetsheet whose region con-

tains the position (x, y). The position is expressed insheet’s coordinate system.

children-overlapping-region [Generic Function]

Arguments: sheet region

children-overlapping-rectangle* [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Returns the list of enabled direct children of the sheetsheet whose region over-

laps the regionregion. children-overlapping-rectangle* is a special case of
children-overlapping-region in which the region is a bounding rectangle whos
corner points are (x1, y1) and (x2, y2). The region is expressed insheet’s coordi-
nate system. This function returns fresh objects that may be modified.

sheet-delta-transformation [Generic Function]

Arguments: sheet ancestor
Summary: Returns a transformation that is the composition of all the sheet transforma

between the sheetssheet andancestor. If ancestor isnil , this returns the transfor-
mation to the root of the sheet hierarchy. Ifancestor is not an ancestor of sheet
thesheet-is-not-ancestor error will be signaled.

 The computation of the delta transformation is likely to be cached.

sheet-allocated-region [Generic Function]

Arguments: sheet child
Summary: Returns the visible region of the sheetchild in the sheetsheet’s coordinate sys-

tem. Ifchild is occluded by any of its siblings, those siblings’ regions are su
tracted (usingregion-difference) from child’s actual region.

18.4.2 Sheet Geometry Classes

Each of the following implements the sheet geometry protocol in a different manner,
cording to the sheet’s requirements.

sheet-identity-transformation-mixin [Class]
Sheets 18.4 467

ical to

ed to

ed to
t-

ed to
Summary: This class is mixed into sheet classes whose coordinate systems are ident
that of their parent.

sheet-translation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are relat
that of their parent by a simple translation.

sheet-y-inverting-transformation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are relat
that of their parent by inverting they coordinate system, and optionally transla
ing by some amount inx andy.

sheet-transformation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are relat
that of their parent by an arbitrary affine transformation.
468 CLIM User’s Guide 18.4

 for
s the
erfor-
sent-

s in

t ser-
d key-

irst, it

vents
 it
ly, or

n con-
 input
e

r

18.5 Sheet Protocols: Input

CLIM’s windowing substrate provides an input architecture and standard functionality
notifying clients of input that is distributed to their sheets. Input includes such events a
pointer entering and exiting sheets, pointer motion (whose granularity is defined by p
mance limitations), and pointer button and keyboard events. At this level, input is repre
ed as event objects.

Sheets either participate fully in the input protocol or are mute for input. If any function
the input protocol are called on a sheet that is mute for input, thesheet-is-mute-for-input
error will be signaled.

In addition to handling input event, a sheet is also responsible for providing other inpu
vices, such as controlling the pointer’s appearance, and polling for current pointer an
board state.

Input is processed on a per-port basis.

The event-processing mechanism has three main tasks when it receives an event. F
must determine to whichclient the event is addressed; this process is calleddistributing.
Typically, the client is a sheet, but there are other special-purpose clients to which e
can also be dispatched. Next, it formats the event into a standard format, and finallydis-
patches the event to the client. A client may then either handle the event synchronous
it may queue it for later handling by another process.

Input events can be broadly categorized intopointer events andkeyboard events. By de-
fault, pointer events are dispatched to the lowest sheet in the hierarchy whose regio
tains the location of the pointer. Keyboard events are dispatched to the port’s keyboard
focus; the accessorport-keyboard-input-focus contains the event client that receives th
port’s keyboard events.

18.5.1 Input Protocol Functions

In the functions listed here, theclient argument is typically a sheet, but it may be anothe
object that supports event distribution, dispatching, and handling.
Sheets 18.5 469

ointer

ed

pro-
 that
e pol-

nc-
port-keyboard-input-focus [Generic Function]

Arguments: port

(setf port-keyboard-input-focus) [Generic Function]

Arguments: focus port
Summary: Returns the client to which keyboard events are to be dispatched.

distribute-event [Generic Function]

Arguments: port event
Summary: Theevent is distributed to theport’s proper client. In general, this will be the

keyboard input focus for keyboard events, and the lowest sheet under the p
for pointer events.

dispatch-event [Generic Function]

Arguments: client event
Summary: This function is called to inform a client about an event of interest. It is invok

synchronously by whatever process calledprocess-next-event, so many meth-
ods for this function will simply queue the event for later handling. Certain
classes of clients and events may cause this function to call eitherqueue-event
or handle-event immediately, or else to ignore the event entirely.

queue-event [Generic Function]

Arguments: client event
Summary: Places the eventevent into the queue of events for the clientclient.

handle-event [Generic Function]

Arguments: client event
Summary: Implements the client’s policy with respect to the event. For example, if the

grammer wishes to highlight a sheet in response to an event that informs it
the pointer has entered its territory, there would be a method to carry out th
icy that specializes the appropriate sheet and event classes.

In addition toqueue-event, the queued input protocol handles the following generic fu
tions:

event-read [Generic Function]

Arguments: client
Summary: Takes the next event out of the queue of events for this client.
470 CLIM User’s Guide 18.5

 dis-

t.

. Of
hat will
s dis-
 sheet

hod
event-read-no-hang [Generic Function]

Arguments: client
Summary: Takes the next event out of the queue of events for this client. It returnsnil if

there are no events in the queue.

event-peek [Generic Function]

Arguments: client&optional event-type
Summary: Returns the next event in the queue without removing it from the queue. If

event-type is supplied, events that are not of that type are first removed and
carded.

event-unread [Generic Function]

Arguments: client event
Summary: Places theevent at the head of theclient’s event queue, to be the event read nex

event-listen [Generic Function]

Arguments: client
Summary: Returnst if there are any events queued forclient; otherwise, it returnsnil .

18.5.2 Input Protocol Classes

Most classes of sheets will have one of the following input protocol classes mixed in
course, a sheet can always have a specialized method for a specific class of event t
override the default. For example, a sheet may need to have only pointer click event
patched to itself, and may delegate all other events to some other input client. Such a
should havedelegate-sheet-input-mixin as a superclass, and have a more specific met
for dispatch-event on its class andpointer-button-click-event.

standard-sheet-input-mixin [Class]

Summary: This class of sheet provides a method fordispatch-event that callsqueue-event
on each device event. Configuration events invokehandle-event immediately.

immediate-sheet-input-mixin [Class]

Summary: This class of sheet provides a method fordispatch-event that callshan-
dle-event immediately for all events.
Sheets 18.5 471

ument
-
d.

ss
mute-sheet-input-mixin [Class]

Summary: This is mixed into any sheet class that does not handle any input events.

delegate-sheet-input-mixin [Class]

Summary: This class of sheet provides a method fordispatch-event that callsdis-
patch-event on a designated substitute and the event. The initialization arg
:delegate or the accessordelegate-sheet-delegate may be used to set the recip
ient of dispatched events. A value ofnil will cause input events to be discarde

delegate-sheet-delegate [Generic Function]

Arguments: sheet

(setf delegate-sheet-delegate) [Generic Function]

Arguments: delegate sheet
Summary: This may be set to another recipient of events dispatched to a sheet of cla

delegate-sheet-input-mixin. If the delegate isnil , events are discarded.
472 CLIM User’s Guide 18.5

 the
ation
 the

orre-

per-

ate a
18.6 Standard Device Events

An event is a CLIM object that represents some sort of user gesture (such as moving
pointer or pressing a key on the keyboard) or that corresponds to some sort of notific
from the display server. Event objects store such things as the sheet associated with
event, thex andy position of the pointer within that sheet, the key name or character c
sponding to a key on the keyboard, and so forth.

Figure 35 shows all the event classes. All classes are indented to the right of their su
classes.

Figure 35. CLIM Event Classes

event [Protocol Class]

Summary: The protocol class that corresponds to any sort of event. If you want to cre
new class that behaves like an event, it should be a subclass ofevent. Subclasses
of event must obey the event protocol.

event
device-event

keyboard-event
key-press-event
key-release-event

pointer-event
pointer-button-event

pointer-button-press-event
pointer-button-release-event
pointer-button-hold-event

pointer-motion-event
pointer-enter-event
pointer-exit-event

window-event
window-configuration-event
window-repaint-event

timer-event
Sheets 18.6 473

ent
um.

e,

vent.
 All of the event classes are immutable.

eventp [Function]

Arguments: object
Summary: Returnst if object is an event; otherwise, it returnsnil .

:timestamp [Initarg]

Summary: All subclasses ofevent must take a:timestamp initarg, which is used to specify
the timestamp for the event.

event-timestamp [Generic Function]

Arguments: event
Summary: Returns an integer that is a monotonically increasing timestamp for the ev

event. The timestamp must have at least as many bits of precision as a fixn

event-type [Generic Function]

Arguments: event
Summary: For the eventevent, returns a keyword with the same name as the class nam

except stripped of the “-event” ending. For example, the keyword:key-press is
returned byevent-type for an event whose class iskey-press-event.

 All event classes must implement methods forevent-type andevent-timestamp.

device-event [Class]

:sheet [Initarg]

:modifier-state [Initarg]

Summary: The class that corresponds to any sort of device event. This is a subclass ofevent.

 All subclasses ofdevice-event must take the:sheet and:modifier-state initargs,
which are used to specify the sheet and modifier state components for the e

event-sheet [Generic Function]

Arguments: device-event
Summary: Returns the sheet associated with the eventdevice-event.

event-window [Generic Function]

Arguments: event
474 CLIM User’s Guide 18.6

oard.

s will
dard
age.

sses of
Summary: Returns the window on which the device eventevent occurred.

event-modifier-state [Generic Function]

Arguments: device-event
Summary: Returns a value that encodes the state of all the modifier keys on the keyb

This will be a mask consisting of thelogical-or of +shift-key+, +control-key+,
+meta-key+, +super-key+, and+hyper-key+.

 All device event classes must implement methods forevent-sheet and
event-modifier-state.

keyboard-event [Class]

:key-name [Initarg]

Summary: The class corresponding to any keyboard event; a subclass ofdevice-event.

 All subclasses ofkeyboard-event must take the:key-name initarg, which is
used to specify the key name component for the event.

keyboard-event-key-name [Generic Function]

Arguments: keyboard-event
Summary: Returns the name of the key pressed or released in a keyboard event. Thi

be a symbol whose value is port-specific. Key names corresponding to stan
characters such as the alphanumerics will be symbols in the keyword pack

keyboard-event-character [Generic Function]

Arguments: keyboard-event
Summary: Returns the character associated with the eventkeyboard-event, if there is any.

 All keyboard event classes must implement methods forkey-
board-event-key-name andkeyboard-event-character.

key-press-event [Class]

key-release-event [Class]

Summary: The classes corresponding to key press or release events. They are subcla
keyboard-event.

pointer-event [Class]
Sheets 18.6 475

ve

he
ust

he
thod

rams
:pointer [Initarg]

:button [Initarg]

:x [Initarg]

:y [Initarg]

Summary: The class corresponding to any pointer event. This is a subclass ofdevice-event.

 All subclasses ofpointer-event must take the:pointer, :button , :x, and:y ini-
targs, which are used to specify the pointer object, pointer button, and natix
andy position of the pointer at the time of the event. The sheet’sx andy positions
are derived from the supplied nativex andy positions and the sheet itself.

pointer-event-x [Generic Function]

Arguments: pointer-event

pointer-event-y [Generic Function]

Arguments: pointer-event
Summary: Returns thex andy position of the pointer at the time the event occurred, in t

coordinate system of the sheet that received the event. All pointer events m
implement a method for these generic functions.

pointer-event-native-x [Generic Function]

Arguments: pointer-event

pointer-event-native-y [Generic Function]

Arguments: pointer-event
Summary: Returns thex andy position of the pointer at the time the event occurred, in t

pointer’s native coordinate system. All pointer events must implement a me
for these generic functions.

pointer-event-pointer [Generic Function]

Arguments: pointer-event
Summary: Returns the pointer object to which this event refers.

pointer-event-button [Generic Function]

Arguments: pointer-event
Summary: Returns an integer, the number of the pointer button that was pressed. Prog

should compare this against the constants+pointer-left-button+ ,
476 CLIM User’s Guide 18.6

s of

ively)
ses of

class
+pointer-middle-button+, and+pointer-right-button+ to see what value was
returned.

 All pointer event classes must implement methods forpointer-event-x,
pointer-event-y, pointer-event-native-x, pointer-event-native-y,
pointer-event-pointer, andpointer-event-button.

pointer-event-shift-mask [Generic Function]

Arguments: pointer-button-event
Summary: Returns the state of the keyboard’s shift keys whenpointer-button-event

occurred.

pointer-button-event [Class]

Summary: The class corresponding to any sort of pointer button event. It is a subclas
pointer-event.

pointer-button-press-event [Class]

pointer-button-release-event [Class]

pointer-button-hold-event [Class]

Summary: The classes that correspond to a pointer button press, button release, and
click-and-hold events. These are subclasses ofpointer-button-event.

pointer-button-click-event [Class]

pointer-button-double-click-event [Class]

pointer-button-click-and-hold-event [Class]

Summary: The classes that correspond to a pointer button press followed by (respect
a button release, another button press, or pointer motion. These are subclas
pointer-button-event. Ports are not required to generate these events.

pointer-motion-event [Class]

Summary: The class that corresponds to any sort of pointer motion event. This is a sub
of pointer-event.
Sheets 18.6 477

ass of

ss of

t

 is a

class
pointer-enter-event [Class]

pointer-exit-event [Class]

Summary: The classes that correspond to a pointer enter or exit event. This is a subcl
pointer-motion-event.

window-event [Class]

:region [Initarg]

Summary: The class that corresponds to any sort of windowing event. This is a subcla
device-event.

 All subclasses ofwindow-event must take a:region initarg, which is used to
specify the damage region associated with the event.

window-event-region [Generic Function]

Arguments: window-event
Summary: Returns the region of the sheet that is affected by a window event.

window-event-native-region [Generic Function]

Arguments: window-event
Summary: Returns the region of the sheet in native coordinates.

window-event-mirrored-sheet [Generic Function]

Arguments: window-event
Summary: Returns the mirrored sheet that is attached to the mirror on which the even

occurred.

 All window event classes must implement methods forwindow-event-region,
window-event-native-region, andwindow-event-mirrored-sheet.

window-configuration-event [Class]

Summary: The class that corresponds to a window changing its size or position. This
subclass ofwindow-event.

window-repaint-event [Class]

Summary: The class that corresponds to a request to repaint the window. This is a sub
of window-event.
478 CLIM User’s Guide 18.6

g

owers

d-
timer-event [Class]

Summary: The class that corresponds to a timeout event. This is a subclass ofevent.

+pointer-left-button+ [Constant]

+pointer-middle-button+ [Constant]

+pointer-right-button+ [Constant]

Summary: Constants that correspond to the left, middle, and right button on a pointin
device.pointer-event-button will returns one of these three values.

+shift-key+ [Constant]

+control-key+ [Constant]

+meta-key+ [Constant]

+super-key+ [Constant]

+hyper-key+ [Constant]

Summary: Constants that correspond to theSHIFT, CONTROL, META, SUPER, andHYPER
modifier keys being held down on the keyboard. These constants must be p
of 2 so that they can be combined withlogical-or and tested withlogtest.
event-modifier-state will return some combination of these values.

 CLIM does not provide default key mappings forMETA, HYPER, orSUPER mod-
ifier keys, as they are keyboard/X-server specific.

key-modifier-state-match-p [Macro]

Arguments: button modifier-state&body clauses
Summary: This macro generates code that will check whether the modifier statemodi-

fier-state and the pointer buttonbutton match all of the clauses.clauses are
implicitly grouped byand. Matching a button or a modifier means that the mo
ifier state indicates that the button or modifier is pressed.

 A clause may be one of:

• A pointer button (one of:left , :middle, or :right)
Sheets 18.6 479

• A modifier key (one of:shift , :control , :meta, :super, or :hyper)

• (and [clause]+)

• (or [clause]+)

• (not clause)
480 CLIM User’s Guide 18.6

dow
ans of

tions

dered
, and
be
may

eet.
 new

ted.

ust
 output
18.7 Sheet Protocols: Output

The output protocol is concerned with the appearance of displayed output on the win
associated with a sheet. The sheet output protocol is responsible for providing a me
doing output to a sheet, and for delivering repaint requests to the sheet’s client.

Sheets either participate fully in the output protocol or are mute for output. If any func
in the output protocol are called on a sheet that is mute for output, the
sheet-is-mute-for-output error will be signaled.

18.7.1 Mediums and Output Properties

Each sheet retains some output state that logically describes how output is to be ren
on its window. Such information as the foreground and background ink, line thickness
transformation to be used during drawing are provided by this state. This state may
stored in amedium associated with the sheet itself, may be derived from a parent, or
have some global default, depending on the sheet itself.

If a sheet is mute for output, it is an error to set any of these values.

medium [Protocol Class]

Summary: The protocol class that corresponds to the output state for some kind of sh
There is no single advertised standard medium class. If you want to create a
class that behaves like a medium, it should be a subclass ofmedium. Subclasses
of medium must obey the medium protocol.

mediump [Function]

Arguments: object
Summary: Returnst if object is a medium; otherwise, it returnsnil .

basic-medium [Class]

Summary: The basic class on which all CLIM mediums are built, a subclass ofmedium.
This class is an abstract class intended only to be subclassed, not instantia

The following generic functions comprise the basic medium protocol. All mediums m
implement methods for these generic functions. Often, a sheet class that supports the
Sheets 18.7 481

ented

il in
protocol will implement a “trampoline” method that passes the operation on tosheet-me-
dium of the sheet.

medium-foreground [Generic Function]

Arguments: medium

(setf medium-foreground) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current foreground ink for the mediummedium. For details,

see Subsection 3.1, “CLIM Mediums.”

medium-background [Generic Function]

Arguments: medium

(setf medium-background) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current background ink for the mediummedium. This is

described in detail in Subsection 3.1, “CLIM Mediums.”

medium-ink [Generic Function]

Arguments: medium

(setf medium-ink) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current drawing ink for the mediummedium. This is

described in detail in Subsection 3.1, “CLIM Mediums.”

medium-transformation [Generic Function]

Arguments: medium

(setf medium-transformation) [Generic Function]

Arguments: transformation medium
Summary: Returns (or sets) the user transformation that converts the coordinates pres

to the drawing functions by the programmer to the mediummedium’s coordinate
system. By default, it is the identity transformation. This is described in deta
Subsection 3.1, “CLIM Mediums.”
Sheets 482

 the
 the
alue

 one
medium-clipping-region [Generic Function]

Arguments: medium

(setf medium-clipping-region) [Generic Function]

Arguments: region medium
Summary: Returns (or sets) the clipping region that encloses all output performed on

mediummedium. It is returned and set in user coordinates. That is, to convert
user clipping region to medium coordinates, it must be transformed by the v
of medium-transformation. For example, the values returned by:

 (let (cr1 cr2)
 ;; Ensure that the sheet’s clipping region
 ;; and transformation will be reset:
 (with-drawing-options
 (sheet :transformation +identity-transformation+
 :clipping-region +everywhere+)
 (setf (medium-clipping-region sheet)
 (make-rectangle* 0 0 10 10))
 (setf (medium-transformation sheet)
 (clim:make-scaling-transformation 2 2))
 (setf cr1 (medium-clipping-region sheet))
 (setf (medium-clipping-region sheet)
 (make-rectangle* 0 0 10 10))
 (setf (medium-transformation sheet) +identity-transformation+)
 (setf cr2 (medium-clipping-region sheet)))
 (values cr1 cr2))

 are two rectangles. The first one has edges of (0, 0, 5, 5), while the second
has edges of (0, 0, 20, 20).

 By default, the user clipping region is the value of+everywhere+.

medium-line-style [Generic Function]

Arguments: medium

(setf medium-line-style) [Generic Function]

Arguments: line-style medium
Summary: Returns (or sets) the current line style for the mediummedium. This is described

in detail in Subsection 3.1, “CLIM Mediums.”

medium-text-style [Generic Function]

Arguments: medium
483 CLIM User’s Guide

sec-

nc-

ut pro-
(setf medium-text-style) [Generic Function]

Arguments: text-style medium
Summary: Returns (or sets) the current text style for the mediummedium of any textual out-

put that may be displayed on the window. This is described in detail in Sub
tion 3.1, “CLIM Mediums.”

medium-default-text-style [Generic Function]

Arguments: medium

(setf medium-default-text-style) [Generic Function]

Arguments: text-style medium
Summary: Returns (or sets) the default text style for output on the mediummedium. This

is described in detail in Section 3.2, “Using CLIM Drawing Options.”

medium-merged-text-style [Generic Function]

Arguments: medium
Summary: Returns the actual text style used in rendering text on the mediummedium. It

returns the result of:

 (merge-text-styles (medium-text-style medium)
 (medium-default-text-style medium))

 Those components of the current text style that are notnil will replace the
defaults from medium’s default text style. Unlike the preceding text style fu
tion, medium-merged-text-style is read-only.

18.7.2 Output Protocol Functions

The output protocol functions on mediums (and sheets that support the standard outp
tocol) include those functions described in Section 2.4, “Graphics Protocols.”

18.7.3 Output Protocol Classes

The following classes implement the standard output protocols.

standard-sheet-output-mixin [Class]
Sheets 484

ol,

l.

ith it.

h it,

 sheets
in-

 need
out a

would
der for
anged.

es,
dium
ium is

et
iated

 has
Summary: This class is mixed into any sheet that provides the standard output protoc
such as repainting and graphics.

mute-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that provides none of the output protoco

permanent-medium-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that always has a medium associated w

temporary-medium-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that may have a medium associated wit
but does not necessarily have a medium at any given instant.

18.7.4 Associating a Medium With a Sheet

Before a sheet may be used for output, it must be associated with a medium. Some
are permanently associated with mediums for output efficiency; for example, CLIM w
dow stream sheets have mediums that are permanently allocated to windows.

However, many kinds of sheets only perform output infrequently, and therefore do not
to be associated with a medium except when output is actually required. Sheets with
permanently associated medium can be much more lightweight than they otherwise
be. For example, in a program that creates a sheet for the purpose of displaying a bor
another sheet, the border sheet receives output only when the window’s shape is ch

To associate a sheet with a medium, use the macrowith-sheet-medium.

Usually CLIM application programmers will not deal with mediums directly. In most cas
panes will automatically be associated with a medium upon creation. The specific me
object is chosen based on the port being used. An exception is when a “special” med
created and used with sheets that normally default to a different medium.

with-sheet-medium [Macro]

Arguments: (medium sheet)&body body
Summary: Within the body, the variablemedium is bound to the sheet’s medium. If the she

does not have a medium permanently allocated, one will be allocated, assoc
with the sheet for the duration of the body, and deallocated when the body
485 CLIM User’s Guide

es of

 to a

me

be
been exited. The values of the last form of the body are returned as the valu
with-sheet-medium.

 Themedium argument is not evaluated, and must be a symbol that is bound
medium.body may have zero or more declarations as its first forms.

with-sheet-medium-bound [Macro]

Arguments: (sheet medium)&body body
Summary: with-sheet-medium-bound is used to associate the specific mediummedium

with the sheetsheet for the duration of the bodybody. Typically, a single medium
will be allocated and passed to several different sheets that can use the sa
medium.

 If the sheet already has a medium allocated to it, the new medium will not
given to the sheet. If the value ofmedium is nil , with-sheet-medium-bound is
exactly equivalent towith-sheet-medium. The values of the last form of the
body are returned as the values ofwith-sheet-medium-bound.

body may have zero or more declarations as its first forms.

sheet-medium [Generic Function]

Arguments: sheet
Summary: Returns the medium associated with the sheetsheet. If sheet does not have a

medium allocated to it,sheet-medium returnsnil .
486 CLIM User’s Guide 18.7

ate, re-
anism

t may
erver
the
LIM

ted
n

heet

-

18.8 Repaint Protocol

The repaint protocol is the mechanism whereby a program keeps the display up-to-d
flecting the results of both synchronous and asynchronous events. The repaint mech
may be invoked by user programs each time through their top-level command loop. I
also be invoked directly or indirectly as a result of events received from the display s
host. For example, if a window is on display with another window overlapping it and
second window is buried, a “damage notification” event may be sent by the server. C
would then cause a repaint to be executed for the newly-exposed region.

18.8.1 Repaint Protocol Functions

queue-repaint [Generic Function]

Arguments: sheet region
Summary: Requests that a repaint event for the regionregion be placed in the input queue

of the sheetsheet. A program that reads events out of the queue will be expec
to callhandle-event for the repaint region; the method for that generic functio
on repaint events will generally callrepaint-sheet.

handle-repaint [Generic Function]

Arguments: sheet region
Summary: Implements repainting for a given sheet class. It may only be called on a s

that has an associated medium.sheet andregion are as fordispatch-repaint.

repaint-sheet [Generic Function]

Arguments: sheet medium region
Summary: Recursively causes repainting of the sheetsheet and any of its children that over

lap the regionregion. medium is the medium to use for the repainting; if it isnil ,
handle-repaint will allocate a medium and associate it with the sheet.han-
dle-repaint will call repaint-sheet onsheet, and then callhandle-repaint on all
of the children ofsheet.
Sheets 18.8 487

ely
18.8.2 Repaint Protocol Classes

standard-repainting-mixin [Class]

Summary: Defines adispatch-repaint method that callsqueue-repaint.

immediate-repainting-mixin [Class]

Summary: Defines adispatch-repaint method that callshandle-repaint.

mute-repainting-mixin [Class]

Summary: Defines adispatch-repaint method that callsqueue-repaint, and a method on
repaint-sheet that does nothing. This means that its children will be recursiv
repainted when the repaint event is handled.
488 CLIM User’s Guide 18.8

de to
18.9 Sheet Notification Protocol

The notification protocol allows sheet clients to be notified when a sheet hierarchy is
changed. Sheet clients can observe modification events by providing:after methods for
functions defined by this protocol.

18.9.1 Relationship to Window System Change
Notifications

note-sheet-grafted [Generic Function]

Arguments: sheet

note-sheet-degrafted [Generic Function]

Arguments: sheet

note-sheet-adopted [Generic Function]

Arguments: sheet

note-sheet-disowned [Generic Function]

Arguments: sheet

note-sheet-enabled [Generic Function]

Arguments: sheet

note-sheet-disabled [Generic Function]

Arguments: sheet
Summary: These notification functions are invoked when a state change has been ma

the sheetsheet.

18.9.2 Sheet Geometry Notifications

note-sheet-region-changed [Generic Function]

Arguments: sheet
Sheets 18.9 489

 of
f a
note-sheet-transformation-changed [Generic Function]

Arguments: sheet
Summary: These notification functions are invoked when the region or transformation

the sheet sheet has been changed. When the regions and transformations o
sheet are changed directly, the client is required to call
note-sheet-region-changed or note-sheet-transformation-changed.
490 CLIM User’s Guide 18.9

Chapter 19 Ports, Grafts, and Mirrored
Sheets
Ports, Grafts, and Mirrored Sheets 18.9 491

. 481

... 481

.. 483

. 486
 486
. 487
Chapter 19 Ports, Grafts, and Mirrored Sheets

19.1 Introduction...

19.2 Ports ..

19.3 Grafts..

19.4 Mirrors and Mirrored Sheets...
19.4.1 Mirror Functions ...
19.4.2 Internal Interfaces for Native Coordinates.................................
492 CLIM User’s Guide 18.9

t. This
19.1 Introduction

A sheet hierarchy must be attached to a display server so as to permit input and outpu
is managed by the use of objects known asports andgrafts.
Ports, Grafts, and Mirrored Sheets 19.1 493

 out-
mmer

rd
ey-

class

y
ted
19.2 Ports

A port is a logical connection to a display server. It is responsible for managing display
put and server resources and for handling incoming input events. Typically, the progra
will create a single port that will manage all of the windows on the display.

A port is described by aserver path. A server path is a list whose first element is a keywo
that selects the kind of port. The remainder of the server path is a list of alternating k
words and values whose interpretation is specific to the port type.

port [Protocol Class]

Summary: The protocol class that corresponds to a port. If you want to create a new
that behaves like a port, it should be a subclass ofport . Subclasses ofport must
obey the medium protocol.

portp [Function]

Arguments: object
Summary: Returnst if object is a port; otherwise, it returnsnil .

basic-port [Class]

Summary: The basic class on which all CLIM ports are built, a subclass ofport . This class
is an abstract class intended only to be subclassed, not instantiated.

find-port [Function]

Arguments: &key (server-path*default-server-path*)
Summary: Finds a port that provides a connection to the window server addressed b

server-path. If no such connection exists, a new connection will be construc
and returned.find-port is called automatically by make-application-frame.

The following server paths are currently supported:

:gpcapi [LispWorks] [Server Path]

:motif [Liquid] [Server Path]

Arguments: &key host display-number screen-id
494 CLIM User’s Guide 19.2

om the

f
ect
lted
ies

di-
’t cur-

ded
ith
Summary: Given this server path,find-port finds a port for the X server on the givenhost,
using thedisplay-id andscreen-id.

 On a Unix host, if these values are not supplied, the defaults are derived fr
DISPLAY environment variable.

default-server-path [Variable]

Summary: This special variable is used byfind-port and its callers to default the choice o
a display service to locate. Binding this variable in a dynamic context will aff
the defaulting of this argument to these functions. This variable will be defau
according to the environment. In the Unix environment, for example, CLIM tr
to set this variable based on the value of theDISPLAY environment variable.

port [Generic Function]

Arguments: object
Summary: Returns the port associated withobject. port is defined for all sheet classes

(including grafts and streams that support the CLIM graphics protocol), me
ums, and application frames. For degrafted sheets or other objects that aren
rently associated with particular ports,port will returnnil .

with-port-locked [Macro]

Arguments: port &body body
Summary: Executesbody after grabbing a lock associated with the portport, which may be

a port or any object on which the functionport works. Ifobject currently has no
port,body will be executed without locking.

body may have zero or more declarations as its first forms.

port-server-path [Generic Function]

Arguments: port
Summary: Returns the server path associated with the portport.

port-properties [Generic Function]

Arguments: port indicator

(setf port-properties) [Generic Function]

Arguments: property port indicator
Summary: These functions provide a port-based property list. They are primarily inten

to support users of CLIM who may need to associate certain information w
Ports, Grafts, and Mirrored Sheets 19.2 495

ed to

ction.
ports. For example, the implementor of a special graphics package may ne
maintain resource tables for each port on which it is used.

map-over-ports [Function]

Arguments: function
Summary: Invokesfunction on each existing port.function is a function of one argument,

the port; it has dynamic extent.

restart-port [Generic Function]

Arguments: port
Summary: In a multi-process Lisp,restart-port restarts the global input processing loop

associated with the portport. All pending input events are discarded. Server
resources may or may not be released and reallocated during or after this a

destroy-port [Generic Function]

Arguments: port
Summary: Destroys the connection with the window server represented by the portport.

All sheet hierarchies that are associated withport are forcibly degrafted by dis-
owning the children of grafts onport usingsheet-disown-child. All server
resources utilized by such hierarchies or by any graphics objects onport are
released as part of the connection shutdown.
496 CLIM User’s Guide 19.2

aft is
grafts
ms.

eet and
grafted

cted

c-

 of:

er

 of

sup-
19.3 Grafts

A graft is a special sheet that is directly connected to a display server. Typically, a gr
the CLIM sheet that represents the root window of the display. There may be several
that are all attached to the same root window but that have differing coordinate syste

To display a sheet on a display, it must have a graft as an ancestor. In addition, the sh
all of its ancestors must be enabled, including the graft. In general, a sheet becomes
when it (or one of its ancestors) is adopted by a graft.

sheet-grafted-p [Generic Function]

Arguments: sheet
Summary: Returnst if any of the sheet’s ancestors is a graft; otherwise, it returnsnil .

find-graft [Function]

Arguments: &key (port (find-port)) (server-path*default-server-path*) (orientation
:default) (units:device)

Summary: Finds a graft that represents the display device on the portport that also matches
the other supplied parameters. If no such graft exists, a new graft is constru
and returned.find-graft is called automatically by make-application-frame.

 If server-path is supplied,find-graft finds a graft whose port provides a conne
tion to the window server addressed byserver-path.

 It is an error to provide bothport andserver-path in a call tofind-graft .

orientation specifies the orientation of the graft’s coordinate system. It is one

• :default—a coordinate system with its origin is in the upper left hand corn
of the display device withy increasing from top to bottom andx increasing
from left to right.

• :graphics—a coordinate system with its origin in the lower left hand corner
the display device withy increasing from bottom to top andx increasing from
left to right.

units specifies the units of the coordinate system and defaults to:device, which
means the device units of the host window system (such as pixels). Other
ported values include:inches, :millimeters , and:screen-sized, which means
that one unit in each direction is the width and height of the display device.
Ports, Grafts, and Mirrored Sheets 19.3 497

ms,
rently

e

in-
graft [Generic Function]

Arguments: object
Summary: Returns the graft currently associated withobject. graft is defined for all sheet

classes (including streams that support the CLIM graphics protocol), mediu
and application frames. For degrafted sheets or other objects that aren’t cur
associated with a particular graft,graft will returnnil .

map-over-grafts [Function]

Arguments: function port
Summary: Invokesfunction on each existing graft associated with the portport. function is

a function of one argument, the graft; it has dynamic extent.

with-graft-locked [Macro]

Arguments: graft &body body
Summary: Executesbody after grabbing a lock associated with the graftgraft, which may

be a graft or any object on which the functiongraft works. Ifobject currently has
no graft,body will be executed without locking.

body may have zero or more declarations as its first forms.

graft-orientation [Generic Function]

Arguments: graft
Summary: Returns the orientation of the graftgraft’s coordinate system. The returned valu

is either:default or :graphics; see theorientation argument tofind-graft .

graft-units [Generic Function]

Arguments: graft
Summary: Returns the units ofgraft’s coordinate system, which will be one of:device,

:inches, :millimeters , or :screen-sized; see theunits argument tofind-graft .

graft-width [Generic Function]

Arguments: graft &key (units:device)

graft-height [Generic Function]

Arguments: graft &key (units:device)
Summary: Returns the width and height ofgraft (and by extension the associated host w

dow) in the units indicated.units may be any of:device, :inches, :millimeters ,
498 CLIM User’s Guide 19.3

or :screen-sized; see theunits argument tofind-graft . Note that if aunit of
:screen-sized is specified, both of these functions will return a value of1.

graft-pixels-per-millimeter [Function]

Arguments: graft

graft-pixels-per-inch [Function]

Arguments: graft
Summary: Returns the number of pixels per millimeter or inch ofgraft. These are only for

convenience; you can write similar functions withgraft-width or graft-height.
Ports, Grafts, and Mirrored Sheets 19.3 499

play
re in a
rence
 a Mo-
ir-

etween
upport
tor of
scen-

, the
mirror
 of
 coor-
rs to

based

inates
ersa.
19.4 Mirrors and Mirrored Sheets

A mirrored sheet is a special class of sheet that is attached directly to a window on a dis
server. Grafts, for example, are always mirrored sheets. However, any sheet anywhe
sheet hierarchy may be a mirrored sheet. A mirrored sheet will usually contain a refe
to a window system object, called a mirror. For example, a mirrored sheet attached to
tif server might have an X window system object stored in one of its slots. Allowing m
rored sheets at any point in the hierarchy enables the adaptive toolkit facilities.

Since not all sheets in the hierarchy have mirrors, there is no direct correspondence b
the sheet hierarchy and the mirror hierarchy. However, on those display servers that s
hierarchical windows, the hierarchies must be parallel. If a mirrored sheet is an ances
another mirrored sheet, their corresponding mirrors must have a similar ancestor/de
dant relationship.

CLIM interacts with mirrors when it must display output or process events. On output
mirrored sheet closest in ancestry to the sheet on which we wish to draw provides the
on which to draw. The mirror’s drawing clipping region is set up to be the intersection
the user’s clipping region and the sheet’s region (both transformed to the appropriate
dinate system) for the duration of the output. On input, events are delivered from mirro
the sheet hierarchy. The CLIM port must determine which sheet shall receive events
on information such as the location of the pointer.

In both of these cases, we must have a coordinate transformation that converts coord
in the mirror (so-called “native” coordinates) into coordinates in the sheet and vice-v

19.4.1 Mirror Functions

A mirror is the Lisp object that is the handle to the actual toolkit window or gadget.

sheet-direct-mirror [Generic Function]

Arguments: sheet
Summary: Returns the mirror of the sheetsheet. If the sheet is not mirrored (or does not

currently have a mirror),sheet-mirror returnsnil .

sheet-mirrored-ancestor [Generic Function]

Arguments: sheet
500 CLIM User’s Guide 19.4

ro-
stant.

d
ents

wing
 the

ram-
t.
Summary: Returns the nearest mirrored ancestor of the sheetsheet.

sheet-mirror [Generic Function]

Arguments: sheet
Summary: Returns the mirror of the sheetsheet. If the sheet is not itself mirrored,

sheet-mirror returns the direct mirror of its nearest mirrored ancestor.
sheet-mirror could be implemented as:

 (defun sheet-mirror (sheet)
 (sheet-direct-mirror (sheet-mirrored-ancestor sheet)))

realize-mirror [Generic Function]

Arguments: port mirrored-sheet
Summary: Creates a mirror for the sheetmirrored-sheet on the portport, if it does not

already have one. The returned value is the sheet’s mirror.

19.4.2 Internal Interfaces for Native Coordinates

sheet-native-transformation [Generic Function]

Arguments: sheet
Summary: Returns the transformation for the sheetsheet that converts sheet coordinates

into native coordinates. The object returned by this function is volatile, so p
grammers must not depend on the components of the object remaining con

sheet-native-region [Generic Function]

Arguments: sheet
Summary: Returns the region for the sheetsheet in native coordinates. The object returne

by this function is volatile, so programmers must not depend on the compon
of the object remaining constant.

sheet-device-transformation [Generic Function]

Arguments: sheet
Summary: Returns the transformation used by the graphics output routines when dra

on the mirror. This is the composition of the sheet’s native transformation and
user transformation. The object returned by this function is volatile, so prog
mers must not depend on the components of the object remaining constan
Ports, Grafts, and Mirrored Sheets 19.4 501

This
ans-
n is
t

for-
 or

gion
sheet-device-region [Generic Function]

Arguments: sheet
Summary: Returns the actual clipping region to be used when drawing on the mirror.

is the intersection of the user’s clipping region (transformed by the device tr
formation) with the sheet’s native region. The object returned by this functio
volatile, so programmers must not depend on the components of the objec
remaining constant.

invalidate-cached-transformations [Generic Function]

Arguments: sheet
Summary: sheet-native-transformation andsheet-device-transformation typically

cache the transformations for performance reasons.invalidate-cached-
transformations clears the cached native and device values for the sheetsheet’s
transformation and clipping region. It is invoked when a sheet’s native trans
mation changes, which happens when a sheet’s transformation is changed
wheninvalidate-cached-transformations is called on any of its ancestors.

invalidate-cached-regions [Generic Function]

Arguments: sheet
Summary: sheet-native-region andsheet-device-region typically cache the regions for

performance reasons.invalidate-cached-regions clears the cached native and
device values for the sheetsheet’s native clipping region. It is invoked when a
sheet’s native clipping region changes, which happens when the clipping re
changes or wheninvalidate-cached-regions is called on any of its ancestors.

•

502 CLIM User’s Guide 19.4

503

Appendices

 491

507

. 507

.. 507

508

 509

... 509

. 511

.. 513

 514

15

17

 519

... 519

.. 521

.. 522

.. 524

.. 526

. 526

 529

 529
 529
530
 530

 531
Appendix A Glossary ..

Appendix B Implementation Specifics ..

B.1 Setting Up Your Packages to Use CLIM ..

B.2 CLIM Packages ..

B.3 Liquid CLIM Specifics ...

Appendix C The CLIM-SYS Package ...

C.1 Resources ..

C.2 Multi-Processing ...

C.3 Locks ..

C.4 Multiple-Value Setf ..

Appendix D LispWorks CLIM and CAPI 5

Appendix E Liquid CLIM and Motif ... 5

Appendix F Common Lisp Streams ..

F.1 Stream Classes ...

F.2 Basic Stream Functions ..

F.3 Character Input ...

F.4 Character Output ...

F.5 Binary Streams ..

F.6 Hardcopy Streams in CLIM ...

Appendix G Windows ...

G.1 Window Stream Operations in CLIM ..
G.1.1 Clearing and Refreshing the Drawing Plane..........................
G.1.2 The Viewport and Scrolling...
G.1.3 Viewport and Scrolling Operators ...

G.2 Functions for Operating on Windows Directly
504 CLIM User’s Guide

 in-
ci-

e-
si-

e

-
.

kit
k

 A

ces-
Appendix A Glossary

abstract panes Panes that are defined only in terms of their programmer
terface or behavior. The protocol for an abstract pane spe
fies the pane in terms of its overall purpose, rather than in
terms of its specific appearance or particular interactive d
tails, so that multiple implementations of the pane are pos
ble, each defining its own look and feel. CLIM selects the
appropriate pane implementation, based on factors outsid
the control of the application. Seeadaptive pane.

adaptive panes A subset of theabstract panes (q.v.), adaptive panes are de
fined to integrate well across all CLIM operating platforms

adaptive toolkit A uniform interface to the standard “widget” or “gadget”
toolkits available in many environments. The adaptive tool
enables a single user interface to adopt the individual loo
and feel of a variety of host systems.

adopted A sheet is said to be adopted when it has a parent sheet.
sheet becomes the child of another sheet by adoption.

affine transformation Seetransformation .

ancestors The parent of a sheet or an output record, and all of its an
tors, recursively.
Glossary 505

e
pe

or

and

raw-

 dis-
 no

re
f

n
ain
le
applicable A presentation translator is said to be applicable when th
pointer is pointing to a presentation whose presentation ty
matches the current input context, and the other criteria f
translator matching have been met.

application frame 1. A program that interacts directly with a user to perform
some specific task.
2. A Lisp object that holds the information associated with
such a program, including the panes of the user interface
application state variables.

area A region that has two dimensions, length and width.

background ink Ink that has the same design as the background, so that d
ing with it results in erasure.

bounded design A design that is transparent everywhere beyond a certain
tance from a certain point. Drawing a bounded design has
effect on the drawing plane outside that distance.

bounded region A region that contains at least one point and for which the
exists a number,d, called the region’s diameter, such that i
p1 andp2 are points in the region, the distance betweenp1
andp2 is always less than or equal tod.

bounding rectangle 1. The smallest rectangle that surrounds a bounded regio
and contains every point in the region, and that may cont
additional points as well. The sides of a bounding rectang
are parallel to the coordinate axes.
2. A Lisp object that represents a bounding rectangle.

cache value A value used during incremental redisplay to determine
whether or not a piece of output has changed.
506 CLIM User’s Guide

ts

f
ip-
 a

,

 de-
-

m-
d to

at
callback A function that informs an application that one of its gadge
has been used.

children The direct descendants of a sheet or an output record.

clip, clipping region A parent window is said to clip its child when only the part o
the child window that overlaps the parent is viewable. A cl
ping region is that part of a window to which the output of
bitmap or a list of rectangles has been restricted.

color 1. An object representing the intuitive definition of a color
such as black or red.
2. A Lisp object that represents a color.

colored design A design whose points have color.

colorless design A design whose points have no color. Drawing a colorless
sign uses the default color specified by the medium’s fore
ground design.

command 1. The way CLIM represents a user interaction.
2. A Lisp object that represents a command.

command name A symbol that designates a particular command.

command table 1. A way of collecting and organizing a group of related co
mands and defining the interaction styles that can be use
invoke those commands.
2. A Lisp object that represents a command table.

command table designatorA Lisp object that is either a command table or a symbol th
names a command table.
Glossary 507

 is a
t
g

r,
ngle
nt

osi-
-
ler

-
e re-

f

ac-
completion A facility provided by CLIM for completing user input over
a set of possibilities.

composite pane A pane that can have a child pane (cf.leaf pane).

compositing The creation of a design whose appearance at each point
composite of the appearances of two other designs at tha
point. There are three varieties of compositing: composin
over, composing in, and composing out.

composition The transformation from one coordinate system to anothe
then from the second to a third, can be represented by a si
transformation that is the composition of the two compone
transformations. Transformations are closed under comp
tion. Composition is not commutative. Any arbitrary trans
formation can be built up by composing a number of simp
transformations, but that composition is not unique.

context-dependent input In the presentation-type system, presentation input is con
text-dependent because only presentations that match th
quirements of the application are accepted as input.

DAG Seedirected acyclic graph.

degrafted Not grafted; seegrafted.

descendants All of the children of a sheet or an output record, and all o
their descendants, recursively.

design An object that represents a way of arranging colors and op
ities in the drawing plane. A mapping from an (x, y) pair into
color and opacity values.
508 CLIM User’s Guide

.

her

ch

r

ut-

t
rs
er-

d

device transformation The transformation used by the graphics output routines
when drawing on the mirror. It is the composition of the
sheet’s native transformation and the user transformation

directed acyclic graph A graph with no closed paths whose arcs have direction.

disowned Having no parent. An object ceases being the child of anot
object by being disowned. See alsoadopted.

disabled Not enabled; Seeenabled.

dispatching The process of sending an input event to the client to whi
it is addressed.

display server A window system; a screen and its input devices, togethe
with the combination of graphics display, hardware, and X
server software that drives them.

displayed output record 1. An output record that corresponds to a visible piece of o
put, such as text or graphics.
2. The leaves of the output record tree.

distributing The process of determining to which client an inputevent
(q.v.) is addressed.

drawing plane An infinite two-dimensional plane on which graphical outpu
occurs. A drawing plane contains an arrangement of colo
and opacities that is modified by each graphical output op
ation.

enabled A sheet is said to be enabled when its parent has provide
space for it. If a sheet and its ancestors are enabled andgraft-
Glossary 509

n

ng
e)
).

m

m
-

uch

-
usti-
ed (q.v.), then the sheet will be visible if it occupies a portio
of the graft region that is notclipped (q.v.) by its ancestors or
their siblings.

event 1. A significant action, such as a user gesture (e.g., movi
the pointer, pressing a pointer button, or typing a keystrok
or a window configuration change (e.g., resizing a window
2. A Lisp object that represents an event.

extended input stream A kind of sheet that supports CLIM’s extended input strea
protocol, e.g., by supporting a pointing device.

extended output stream A kind of sheet that supports CLIM’s extended output strea
protocol, e.g., by supporting a variable line-height text ren
dering.

false 1. The boolean value false.
2. The Lisp objectnil .

flipping ink 1. An ink that interchanges occurrences of two designs, s
as might be done by(xor) on a monochrome display.
2. A Lisp object that represents a flipping ink.

foreground The design used when drawing with+foreground-ink+.

formatted output 1. Output that obeys some high-level constraints on its ap
pearance, such as being arranged in a tabular format or j
fied within some margins.
2. The CLIM facility that provides a programmer with the
tools to produce such output.

frame Seeapplication frame.
510 CLIM User’s Guide

of

m-
-

cter

w,

e
pix-

 that

ate

ed
 and

ob-
frame manager An object that controls the realization of the look and feel
an application frame.

fully specified A text style is said to be fully specified when none of its co
ponents arenil and when its size is not relative (that is, nei
ther:smaller nor :larger).

gesture Some sort of input action by a user, such as typing a chara
or clicking a pointer button.

gesture name A symbol that designates a particular gesture, e.g.,:select is
commonly used to indicate a left pointer button click.

graft A kind of mirrored sheet (q.v.) that represents a host windo
typically a root window. The graft is where the CLIM win-
dow hierarchy is “spliced” onto that of the host system. Th
graft maintains screen invariants, such as the number of
els per inch.

grafted A sheet is said to be grafted when it has an ancestor sheet
is a graft.

highlighting Making some piece of output stand out, for example by
changing its color or drawing a colored line around it. CLIM
often highlights the presentation under the pointer to indic
that it is sensitive.

immutable 1. (of an object) Having components that cannot be modifi
once the object has been created, such as regions, colors
opacities, text styles, and line styles.
2. (of a class) An immutable class is a class all of whose
jects are immutable.
Glossary 511

at

t to

 its
implementor A programmer who implements CLIM.

incremental redisplay 1. Redrawing part of some output (typically the portion th
has been changed) while leaving other output as is.
2. The CLIM facility that implements this behavior.

indirect ink An ink such as+foreground+ or+background+, whose val-
ue is some other ink.

ink Any member of the classdesign supplied as the:ink argu-
ment to a CLIM drawing function.

input context The input requirements of a particular application. Also an
object used to implementcontext-dependent input (q.v.).

input editor The CLIM facility allowing a user to modify typed-in input.

input editing stream A CLIM stream that supports input editing.

input stream designator A Lisp object that is either an input stream or the symbolt,
which is taken to mean*query-io* .

interactive stream A stream that both accepts input from and supports outpu
the user.

layout 1. The arrangement of panes within an application frame.
2. A kind of pane that is responsible for allocating space to
children, taking their preferred sizes into account.

leaf pane A pane that cannot have a child pane (cf.composite pane).
512 CLIM User’s Guide

 a

e-

tyle.

d
.

a
.

via
s

ble.

-

line style 1. Advice to CLIM’s rendering substrate on how to render
path, such as a line or an unfilled ellipse or polygon.
2. A Lisp object that represents a line style.

medium 1. A destination for output, having a drawing plane, two d
signs called the medium’s foreground and background, a
transformation, a clipping region, a line style, and a text s
2. A Lisp object that represents a medium.

mirror The host window system object associated with a mirrore
sheet, such as a window object on an X11 display server

mirrored sheet A special class of sheet attached directly to a window on
display server. Agraft (q.v.) is one kind of a mirrored sheet

mutable 1. A mutable object has components that can be modified (
setf accessors) once the object has been created, such a
streams and output records.
2. A mutable class is a class all of whose objects are muta

non-uniform design Seeuniform design.

opacity 1. An object that controls how graphical output appears to
cover previous output. Opacity ranges from fully opaque
through various levels of translucency to completely trans
parent.
2. A Lisp object that represents an opacity.

output history The highest level output record for an output recording
stream.
Glossary 513

am

l

e or
 leaf

ent
 cre-

for
e.

on.
output record 1. An object that remembers the output performed to a stre
or medium; the result of an output recording.
2. A Lisp object that represents an output record.

output recording The process of documenting the output performed to a
stream.

output recording stream A CLIM stream that supports output recording.

output stream designator A Lisp object that is either an output stream or the symbot,
which is taken to mean*standard-output* .

pane A specialized sheet that understands issues pertaining to
space requirements. A pane appears as the child of a fram
of another pane. Composite panes can hold other panes;
panes cannot.

parent The direct ancestor of a sheet or an output record.

path A region that has one dimension, length.

patterning The process of creating a bounded rectangular arrangem
of designs, such as a checkerboard. A pattern is a design
ated by this process.

pixmap An “off-screen window,” that is, a sheet that can be used
graphical output but that is not visible on any display devic

point 1. A region that has dimensionality 0; i.e., has only a positi
2. A Lisp object that represents a point.
514 CLIM User’s Guide

the
n.

ver;
a

ible
ss-

ne.

ype

n

pe.
pointer A physical device used for pointing, such as a mouse, or
cursor that shows the position of the mouse on the scree

pointer documentation Text that describes something about what the mouse is o
the mechanism for displaying that text, which appears in
pointer-documentation-pane.

port An abstract connection to a display server that is respons
for managing host display server resources and for proce
ing input events received from the host display server.

position 1. A location on a plane such as the abstract drawing pla
2. Two real number valuesx andy that represent a location.

presentation 1. An association between an object and a presentation t
with some output on a output recording stream.
2. A Lisp object that represents a presentation.

presentation tester A predicate that restricts the applicability of a presentatio
translator.

presentation translator A mapping from an object of one presentation type, input
context, and gesture to an object of another presentation ty

presentation type 1. A description of a class of presentations.
2. An extension to CLOS that implements this.

presentation type specifierA Lisp object used to specify a presentation type.

programmer A person who writes application programs using CLIM.
Glossary 515

 to
, all

or-

et-
nd

 an
-
e
tion.

v-
 in-

) on
 ab-

ving
ily
protocol class An “abstract” class having no methods or slots that is used
indicate that a class obeys a certain protocol. For example
classes that inherit from thebounding-rectangle class obey
the bounding rectangle protocol.

rectangle 1. A four-sided polygon whose sides are parallel to the co
dinate axes.
2. A Lisp object that represents a rectangle.

redisplay Seeincremental redisplay.

reflection A transformation in which each point is mapped to a symm
ric point with respect to a line; reflections preserve length a
magnitude of angles.

region 1. A set of mathematical points in a plane; a mapping from
(x, y) pair into eithert ornil (meaning member or not a mem
ber, respectively, of the region). In CLIM, all regions includ
their boundaries (i.e., are closed) and have infinite resolu
2. A Lisp object that represents a region.

region set 1. A “compound” region, that is, a region consisting of se
eral other regions related by one of the operations union,
tersection, or difference.
2. A Lisp object that represents a region set.

rendering The process of drawing a shape (such as a line or a circle
a display device. Rendering is an approximate process, as
stract shapes exists in a continuous coordinate system ha
infinite precision, whereas display devices must necessar
draw discrete points having some measurable size.

replaying The process of redrawing a set of output records.
516 CLIM User’s Guide

d.

of

en-

ent
of
s

or
i-
 an
d

s
is
he
repainting Redrawing a window that has been exposed or uncovere

rotation A transformation that moves all points around the center
rotation. A rotation maintains each point’s distance to the
center of rotation and to each other.

sensitive A presentation is sensitive if some action will take place
when the user clicks on it with the pointer. Sensitive pres
tations are usually highlighted.

server path A server path is a list used to specify a port. The first elem
is a keyword that selects the kind of port. The remainder
the server path is a list of alternating keywords and value
whose interpretation is port-type-specific.

sheet 1. A visible interface object that specifies the destination f
graphical output. A sheet has properties including a coord
nate system, a region, an enabled flag, an event handler,
output state, and optionally a parent, a transformation, an
children.
2. A Lisp class, a subclass ofbounding-rectangle, that rep-
resents a sheet.

sheet region The area within a sheet’s coordinate system where action
take place, that is, a clipping region for output and input. Th
typically corresponds to the visible region of the sheet on t
display.

sheet transformation Describes how points in a sheet’s coordinate system are
mapped onto points in its parents’ coordinate system.
Glossary 517

ely

 ar-

g

d
 an

 as

rgu-

put

re-
solid design A design comprised of completely opaque and/or complet
transparent points. A solid design can be opaque at some
points and transparent at others.

spread point argument Functions that take spread point arguments take a pair of
guments that correspond to thex andy coordinates of the
point. Such functions have an asterisk in their name:
draw-line* . Cf. structured point argument.

stencil A kind of pattern that contains only opacities.

stencil opacity The opacity at one point in a design that would result from
drawing the design onto a fictitious medium whose drawin
plane is initially completely transparent black (opacity and
all color components are zero), and whose foreground an
background are both opaque black. The stencil opacity of
opacity is simply its value.

stream A kind of sheet that implements the stream protocol (such
maintaining a text cursor).

structured point argument Functions that take structured point arguments take the a
ment as a single point object. Cf. spread point argument.

text cursor The visible underscore or block that shows where user in
will appear on the command line or in a text editor. Cf.point-
er, the cursor that tracks the movement of the mouse.

text style 1. A description of how textual output should appear with
spect to its font family, face code, and size.
2. A Lisp object that represents a text style.
518 CLIM User’s Guide

n
d.

s
s.

at
ta-

ral-
le,

nt
nd

rbi-
f-

ar-

t in
d,
tiling The process of repeating a rectangular portion of a desig
throughout the drawing plane. A tile is a design so create

trampoline A function is said to trampoline when the only thing it doe
is call the corresponding function in the object’s superclas

transformation 1. A mapping from one coordinate system onto another th
preserves straight lines, such as a translation, scaling, ro
tion, or reflection.
2. A Lisp object that represents a transformation.

translation A transformation in which the new coordinate axes are pa
lel to the original ones. A translation preserves length, ang
and orientation of all geometric entities.

translucent design A design that is not solid, that is, that has at least one poi
with an opacity somewhere between completely opaque a
transparent.

true, t 1. The boolean value true; not false.
2. Any Lisp object that is notnil .

unbounded design A design that has at least one point of non-zero opacity a
trarily far from the origin. Drawing an unbounded design a
fects the entire drawing plane.

unbounded region A region that either contains no points or contains points
bitrarily far apart.

uniform design A design that has the same color and opacity at every poin
the drawing plane. Uniform designs are always unbounde
unless they are completely transparent.
Glossary 519

ed

.

 to
dis-
 by

ar

t is

ro-
.

rts
unique id During incremental redisplay, the unique id is an object us
to identify each piece of output. The output named by the
unique id will often have a cache value associated with it.

user A person using an application program written with CLIM

user transformation A transformation that is apparent to the user (as opposed
an internal transformation, such as that used to deal with
parate display devices). A user transformation may be set
the user and is associated with a medium.

view 1. A way of displaying data (e.g., as numbers, bars in a b
graph, etc.).
2. A Lisp object that represents a view.

viewport The portion of the drawing plane of a sheet’s medium tha
visible on a display device.

volatile An immutable object is said to be volatile if it has compo-
nents that cannot be modified by the programmer at the p
tocol level, but which may be modified internally by CLIM
Volatile objects reflect the internal state of CLIM.

window A pane that is a subclass ofclim-stream-pane. A window is
another name for a stream pane or other pane that suppo
the stream protocol.
520 CLIM User’s Guide

on

h

Appendix B Implementation Specifics

B.1 Setting Up Your Packages to Use CLIM

You can set up your user packages to use CLIM as follows:

(in-package :user)

(defpackage "FOO"
 (:use :clim-lisp :clim))

The package:clim-lisp is a version of the:lisp package that shadows some of the Comm
Lisp symbols. The:clim package is the exported CLIM interface.

B.2 CLIM Packages

LispWorks and Liquid CLIM both make use of the following packages:

■ CLIM-USER—This is analogous to the USER package. It uses CLIM and
CLIM-LISP.

■ COMMON-LISP-USER—The USER package has been renamed.

■ COMMON-LISP—The LISP package has been renamed.

■ CLIM-INTERNALS—For internal use only.

■ CLIM-SILICA—For internal use only.

■ CLIM-SYS—Exported, portable Lisp system utilities not officially part of CLIM, suc
as multitasking, resources, etc.

■ CLIM—The official, exported CLIM functionality.
Implementation Specifics 521

nd

M

een

t
-
ant it
■ CLIM-LISP—CLIM’s carefully constructed LISP package. It imports, shadows, a
adds symbols to create a portable namespace for CLIM.

■ CLIM-DEMO—An example of a newly-defined, user-level package that uses CLI
and CLIM-LISP.

■ CLIM-UTILS—Contains unexported Lisp utilities used by the Lisp system.

The official way to make a package for CLIM is as follows:

(defpackage "MY-CLIM-PACKAGE" (:use :CLIM-LISP :CLIM :CLIM-SYS))

B.3 Liquid CLIM Specifics

If you want to add Liquid Common Lisp functions such ascd, pwd, andquit , you must
import symbols individually, as the system was designed with intentional conflicts betw
the LCL and CLIM-LISP / CLIM-SYS packages.

Note that in Liquid Lisp,CONTROL-G andCONTROL-g both refer to the character you ge
by typing G with both theCONTROL andSHIFT keys held down. If you are writing a key
board accelerator (a brief combination of keystrokes that invokes a command) and w
to refer to the character obtained by typingCONTROL and unshiftedg, then refer to the
character in your code as#\control-\g . If you don’t, the Liquid Lisp reader will up-
percase theg.
522 CLIM User’s Guide

d
eptu-

in the

e-
ject

me-

 to
 con-
uired.

an
d

Appendix C The CLIM-SYS Package

The CLIM-SYS package contains useful, “system-like” utilities such as resources an
multi-processing primitives. These utilities are neither part of Common Lisp nor conc
ally within the province of CLIM itself.

All of the symbols documented in this appendix are accessible as external symbols
CLIM-SYS package.

C.1 Resources

CLIM provides a facility calledresources that allows you to reuse objects. A resource d
scribes how to construct an object, how to initialize and deinitialize it, and how an ob
should be selected from the resource of objects based on a set of parameters.

defresource [Macro]

Arguments: name parameters&key constructor initializer deinitializer matcher
initial-copies

Summary: Defines a resource namedname, which must be a symbol.parameters is a
lambda-list giving names and default values (for optional and keyword para
ters) of parameters to an object of this type.

constructor is a form that creates an object; it is called when someone tries
allocate an object from the resource and no suitable free objects exist. The
structor form can access the parameters as variables. This argument is req

initializer is a form used to initialize an object gotten from the resource. It c
access the parameters as variables, and also has access to a variable callename,
The CLIM-SYS Package 523

e-

ned
cess to

spec-
cess to
nst.
ters
ect,
rison

ce.
e

s must
ters.

ted
which is the object to be initialized. The initializer is called both on newly cr
ated objects and objects that are being reused.

deinitializer is a form used to deinitialize an object when it is about to be retur
to the resource. It can access the parameters as variables, and also has ac
a variable calledname, the object to be deinitialized. It is called whenever an
object is deallocated back to the resource, but is not called byclear-resource.
Deinitializers are typically used to clear references to other objects.

matcher is a form that ensures that an object in the resource “matches” the
ified parameters, which it can access as variables. The matcher also has ac
a variable calledname, which is the object in the resource being matched agai
If no matcher is supplied, the system remembers the values of the parame
(including optional ones that defaulted) that were used to construct the obj
and assumes that it matches those particular values for all time. This compa
is done withequal. The matcher returnst if there is a match, and otherwisenil .

initial-copies specifies the number of objects to be initially put into the resour
It must be an integer ornil (the default), meaning that no initial copies should b
made. If initial copies are made and there are parameters, all the parameter
be optional; the initial copies will then have the default values of the parame

using-resource [Macro]

Arguments: (variable name&rest parameters)&body body
Summary: The forms inbody are evaluated withvariable bound to an object allocated from

the resource namedname, using the parameters given byparameters. The
parameters (if any) are evaluated, butname is not.

 After body has been evaluated,using-resource returns the object invariable to
the resource. If a form in the body setsvariable to nil , the object is not returned
to the resource. Otherwise, the body should not change the value ofvariable.

allocate-resource [Function]

Arguments: name&rest parameters
Summary: Allocates an object from the resourcename, using the parameters given by

para-meters. name must be a symbol naming a resource. It returns the alloca
object.

deallocate-resource [Function]

Arguments: name object
524 CLIM User’s Guide

ce.

 set

t as
Summary: Returns the objectobject to the resourcename. name must be a symbol naming
a resource.object must be an object originally allocated from the same resour

clear-resource [Function]

Arguments: name
Summary: Clears the resource namedname, that is, removes all of the resourced object

from the resource.name must be a symbol that names a resource.

map-resource [Function]

Arguments: function name
Summary: Calls function once on each object in the resource namedname. function is a

function of three arguments, the object, a boolean value that ist if the object is
in use ornil if it is free, andname. function has dynamic extent.

C.2 Multi-Processing

Most Lisp implementations provide some form of multi-processing. CLIM provides a
of functions that implement a uniform interface to the multi-processing functionality.

make-process [Function]

Arguments: function&key name
Summary: Creates a process namedname. The new process will evaluate the functionfunc-

tion. On systems that do not support multi-processing,make-process will signal
an error.

destroy-process [Function]

Arguments: process
Summary: Terminates the processprocess. process is an object returned bymake-process.

current-process [Function]

Summary: Returns the currently running process, which will be the same kind of objec
would be returned bymake-process.
The CLIM-SYS Package 525

ort

sing,

y

all-processes [Function]

Summary: Returns a sequence of all of the processes.

process-wait [Function]

Arguments: reason predicate
Summary: Causes the current process to wait untilpredicate returnst. reason is a string or

symbol that gives an explanation for the wait. On systems that do not supp
multi-processing,process-wait will loop until predicate returnst.

process-wait-with-timeout [Function]

Arguments: reason timeout predicate
Summary: Causes the current process to wait untilpredicate returnst or the number of sec-

onds specified bytimeout has elapsed.reason is a string or symbol that gives an
explanation for the wait. On systems that do not support multi-processing,pro-
cess-wait-with-timeout loops untilpredicate returnst or the timeout elapses.

process-yield [Function]

Summary: Allows other processes to run. On systems that do not support multi-proces
this does nothing.

process-interrupt [Function]

Arguments: process function
Summary: Interrupts the processprocess and causes it to evaluate the functionfunction. On

systems that do not support multi-processing, this is equivalent tofuncall’ing
function.

without-scheduling [Macro]

Arguments: &body body
Summary: Evaluatesbody in a context that is guaranteed to be free from interruption b

other processes. On systems that do not support multi-processing,with-
out-scheduling is equivalent toprogn.
526 CLIM User’s Guide

odify
mory
 in use.

-

is

 call
C.3 Locks

In the course of multi-processing, it is important to ensure that two processes do not m
the same data simultaneously. This is done by creating a lock, which is an extra me
location in a data structure that can be checked to determine whether that structure is
If the value of a lock isnil , no process is using the data structure; otherwise, the value
should be a process that is currently using the structure.

The following symbols for creating locks will work with all CLIM ports.

with-lock-held [Macro]

Arguments: (place&optional state)&body body
Summary: Evaluatesbody with the lock named byplace. place is a reference to a lock cre

ated bymake-lock. state specifies the process to store in theplace location; the
default value is the value of the variable*current-process*.

 On systems that do not support locking,with-lock-held is equivalent toprogn.

make-lock [Function]

Arguments: &optional name
Summary: Creates a lock whose name isname. On systems that do not support locking, th

will return a new list of one element,nil .

with-recursive-lock-held [Macro]

Arguments: (place&optional state)&body body
Summary: Evaluatesbody with the recursive lock named byplace. place is a reference to

a recursive lock created bymake-recursive-lock. A recursive lock differs from
an ordinary lock in that a process that already holds the recursive lock can
with-recursive-lock-held on the same lock without blocking.

 On systems that do not support locking,with-recursive-lock-held is equivalent
to progn.

make-recursive-lock [Function]

Arguments: &optional name
Summary: Creates a recursive lock whose name isname. On systems that do not support

locking, this will return a new list of one element,nil .
The CLIM-SYS Package 527

C.4 Multiple-Value Setf

CLIM provides a facility, sometimes referred to assetf*, that allowssetf to be used on
“places” that name multiple values. For example,output-record-position returns the po-
sition of an output record as two values that correspond to thex andy coordinates. In order
to change the position of an output record, the programmer would like to invoke(setf out-
put-record-position). However,setf only takes a single value with which to modify the
specified place. Thesetf* facility provides a “multiple-value” version ofsetf that allows
an expression that returns multiple values to be used to update the specified place.

defgeneric* [Macro]

Arguments: name lambda-list&body options
Summary: Defines asetf* generic function namedname.The last argument inlambda-list

is intended to be class specialized, just as normalsetf generic functions are.
options are as fordefgeneric.

defmethod* [Macro]

Arguments: name (method-qualifier* specialized-lambda-list&body body)
Summary: Defines asetf* method for the generic functionname. The last argument inspe-

cialized-lambda-list is intended to be class specialized, just as normalsetf meth-
ods are. (method-qualifier)* andbody are as fordefgeneric. For example,
output-record-position and itssetf* method for a class calledsample-out-
put-record might be defined as follows:

(defgeneric output-record-position (record)
 (declare (values x y)))
(defgeneric* (setf output-record-position) (x y record))
(defmethod output-record-position ((record sample-output-record))
 (with-slots (x y)
 (values x y)))
(defmethod* (setf output-record-position)
 (nx ny (record sample-output-record))
 (with-slots (x y)
 (setf x nx
 y ny)))

 The position of such an output record could then be changed as follows:

(setf (output-record-position record) (values nx ny))
(setf (output-record-position record1)
 (output-record-position record2))
528 CLIM User’s Guide

om-

ets
gets
Appendix D LispWorks CLIM and CAPI

This appendix describes how the current version of LispWorks CLIM uses the CAPI (C
mon Application Programmer’s Interface).

Native gadgets in CLIM are implemented using CAPI gadgets. Table 5. "CLIM Gadg
and the Equivalent CAPI Gadgets" sets out the equivalences between the CLIM gad
and CAPI gadgets.

CLIM Gadgets CAPI Gadgets

push-button push-button

toggle-button check-button

radio-box radio-button-panel

check-box check-button-panel

option-pane option-pane

list-pane list-panel

text-field text-input-pane

text-editor editor-pane

scroll-bar scroll-bar

slider slider
(not supported in
CAPI)

Table 5. CLIM Gadgets and the Equivalent CAPI Gadgets
LispWorks CLIM and CAPI 529

ing
 the
Some higher-level functionality in CLIM is also implemented by calling the correspond
CAPI function. See Table 6. "CLIM Functions and the Equivalent CAPI Functions" for
corresponding functions.

CLIM Functions CAPI Functions

select-file prompt-for-file

notify-user display-message-on-screen
popup-confirmer

menu-choose prompt-with-list (depending on the
menu-view and argument list).

Table 6. CLIM Functions and the Equivalent CAPI Functions
530 CLIM User’s Guide

it.

e that
ndix
 those

een
Appendix E Liquid CLIM and Motif

This appendix describes how the current version of Liquid CLIM uses the Motif toolk

CLIM versions of resource names have been added to the normal Motif widgets. (Not
Motif resources are completely unrelated to the Lisp resource utility described in Appe
C.1.) You should be able to set all their standard, documented Motif resources unless
resources are overridden by a conflicting CLIM initarg (for example,:text-style). Ta-
ble 7. "CLIM Gadgets and the Equivalent Motif Widgets" shows the equivalences betw
the CLIM gadgets and Motif widgets.

A few general restrictions affect the Motif resource specification:

■ Liquid CLIM 2.0 does not implement any “container” widgets.

CLIM gadgets Motif widgets Other equivalent

N/A climCascadeButton

push-button climPushButton

toggle-button climToggleButton

N/A climMenuBar :menu-bar option to
define-application-frame

slider climScale

scrollbar climScrollBar

text-editor climText

text-field climTextField

N/A climPopupMenu

Table 7. CLIM Gadgets and the Equivalent Motif Widgets
Liquid CLIM and Motif 531

 in
■ Liquid CLIM 2.0 only supports the widgets that correspond to the “gadgets” listed
the CLIM specification.

■ Liquid CLIM 2.0 only supports themake-pane initargs that correspond to resources
listed in the CLIM specification.

Here is a sample widget frame:

(define-application-frame resource-test () ()
 (:menu-bar nil)
 (:pane
 (vertically
 ()
 (make-pane ’text-editor
 :height 100
 :value "Edit moi!")
 (bordering (:thickness 10)
 (make-clim-interactor-pane
 :scroll-bars :vertical))
 (bordering (:thickness 6))
 (horizontally
 ()
 (make-pane ’push-button
 :label "Press me"
 :show-as-default-p t
 :activate-callback
 #’(lambda (gadget) (print gadget))
 :text-style
 (make-text-style :serif :roman 16))
 (make-pane ’toggle-button
 :label "Choose me"
 :indicator-type :one-of
 :value t
 :value-changed-callback
 #’(lambda (gadget val) (print val))
 :text-style
 (make-text-style :sans-serif :bold :small))))
 (make-pane ’slider :label "Sliiide" :show-value-p t)))

(setq rt (make-application-frame ’resource-test :width 400 :height 400))

(enable-frame rt)
532 CLIM User’s Guide

d

ous

LIM.

 of the
 ba-
ol,

are

y are not
.

Appendix F Common Lisp Streams

CLIM performs all of its character-based input and output operations on objects calle
streams. Streams are divided into two layers, thebasic stream protocol, which is charac-
ter-based and compatible with existing Common Lisp programs, and theextended stream
protocol, which introduces extended gestures such as pointer gestures and synchron
window-manager communication.

This appendix describes the basic stream-based input and output protocol used by C
The protocol is taken from theSTREAM-DEFINITION-BY-USER proposal to the
X3J13 committee, made by David Gray of TI. This proposal was not accepted as part
ANSI Common Lisp language definition, but CLIM provides an implementation of the
sic output stream facilities. For a description of the CLIM specialization of this protoc
see Chapter 15 "Extended Stream Input Facilities"

Note that in CLIM, many of the generic functions described in the following sections
called by Common Lisp stream functions. For example,force-output calls
stream-force-output.

F.1 Stream Classes

The following classes are used as superclasses of user-defined stream classes. The
intended to be directly instantiated; they just provide places to hang default methods

The predicate functions may returnt for other objects that are not members of thefunda-
mental-stream class (or its subclasses) but that claim to serve as streams.

fundamental-stream [Class]
Common Lisp Streams 533

ut.
Summary: This class is the base class for all CLIM streams. It is a subclass ofstreamand
of standard-object.

streamp [Generic Function]

Arguments: object
Summary: Returnst if object is a member of the classfundamental-stream.

fundamental-input-stream [Class]

Summary: A subclass offundamental-stream that implements input streams.

input-stream-p [Generic Function]

Arguments: object
Summary: Returnst when called on any object that is a member of the classfundamen-

tal-input-stream.

fundamental-output-stream [Class]

Summary: A subclass offundamental-stream that implements output streams.

output-stream-p [Generic Function]

Arguments: object
Summary: Returnst when called on any object that is a member of the classfundamen-

tal-output-stream.

 Bidirectional streams can be formed by including bothfundamen-
tal-input-stream andfundamental-output-stream.

fundamental-character-stream [Class]

Summary: A subclass offundamental-stream. It provides a method forstream-ele-
ment-type, which returnscharacter.

fundamental-binary-stream [Class]

Summary: A subclass offundamental-stream. Any instantiable class that includes this
needs to define a method forstream-element-type.

fundamental-character-input-stream [Class]

Summary: A subclass offundamental-input-stream andfundamental-charac-
ter-stream, providing default methods for generic functions for character inp
534 CLIM User’s Guide

ut-

s the

,
s

fundamental-character-output-stream [Class]

Summary: A subclass offundamental-output-stream andfundamental-charac-
ter-stream, providing default methods for generic functions for character o
put.

fundamental-binary-input-stream [Class]

Summary: A subclass offundamental-input-stream andfundamental-binary-stream.

fundamental-binary-output-stream [Class]

Summary: A subclass offundamental-output-stream andfundamental-binary-stream.

F.2 Basic Stream Functions

These generic functions must be defined for all stream classes.

stream-element-type [Generic Function]

Arguments: stream
Summary: This existing Common Lisp function is made generic, but otherwise behave

same. Classfundamental-character-stream provides a default method that
returnscharacter.

open-stream-p [Generic Function]

Arguments: stream
Summary: This function is made generic. A default method is provided by classfundamen-

tal-stream that returnst if close has not been called on the stream.

close [Generic Function]

Arguments: stream&key abort
Summary: The existing Common Lisp functionclose is redefined to be a generic function

but otherwise it behaves the same. The default method provided by the clasfun-
damental-stream sets a flag used byopen-stream-p. The value returned by
close will be as specified by the X3J13 issueclosed-stream-operations.
Common Lisp Streams 535

stream-pathname [Generic Function]

Arguments: stream

stream-truename [Generic Function]

Arguments: stream
Summary: These are used to implementpathname andtruename. There is no default

method because these are not valid for all streams.

F.3 Character Input

A character input stream can be created by defining a class that includesfundamen-
tal-character-input-stream and defining methods for the following generic functions.

stream-read-char [Generic Function]

Arguments: stream
Summary: Reads one character fromstream, and returns either a character object or the

symbol:eof if the stream is at end-of-file. There is no default method for this
generic function, so every subclass offundamental-character-input-stream
must define a method.

stream-unread-char [Generic Function]

Arguments: stream character
Summary: Undoes the last call tostream-read-char, as inunread-char, and returnsnil .

There is no default method for this, so every subclass offundamental- charac-
ter-input-stream must define a method.

stream-read-char-no-hang [Generic Function]

Arguments: stream
Summary: Returns either a character, ornil if no input is currently available, or:eof if

end-of-file is reached. This is used to implementread-char-no-hang. The
default method provided byfundamental-character-input-stream simply calls
stream-read-char; this is sufficient for file streams, but interactive streams
should define their own method.
536 CLIM User’s Guide

ll
d.

r-

.

stream-peek-char [Generic Function]

Arguments: stream
Summary: Returns either a character or:eof without removing the character from the

stream’s input buffer. This is used to implementpeek-char; this corresponds to
peek-type ofnil . The default method callsstream-read-char and
stream-unread-char.

stream-listen [Generic Function]

Arguments: stream
Summary: Returnst if there is any input pending onstream; otherwise, it returnsnil . This

is used bylisten. The default method usesstream-read-char-no-hang and
stream-unread-char. Most streams should define their own method, as it wi
usually be trivial and will generally be more efficient than the default metho

stream-read-line [Generic Function]

Arguments: stream
Summary: Returns a string as the first value, andt as the second value if the string was te

minated by end-of-file instead of the end of a line. This is used byread-line. The
default method uses repeated calls tostream-read-char.

stream-clear-input [Generic Function]

Arguments: stream
Summary: Clears any buffered input associated withstream, and returnsnil . This is used to

implementclear-input. The default method does nothing.

F.4 Character Output

A character output stream can be created by defining a class that includesfundamen-
tal-character-output-stream and defining methods for the following generic functions

stream-write-char [Generic Function]

Arguments: stream character
Common Lisp Streams 537

f

writ-
-

 this,

ns

but
r

t

Summary: Writescharacter tostream, and returnscharacter as its value. Every subclass o
fundamental-character-output-stream must have a method defined for this
function.

stream-line-column [Generic Function]

Arguments: stream
Summary: This function returns the column number where the next character will be

ten onstream, ornil if that is not meaningful. The first column on a line is num
bered 0. This function is used in the implementation ofpprint and theformat
~T directive. Every character output stream class must define a method for
although it is permissible for it to always returnnil .

stream-start-line-p [Generic Function]

Arguments: stream
Summary: Returnst if stream is positioned at the beginning of a line; otherwise, it retur

nil . It is permissible to always returnnil . This is used in the implementation of
fresh-line.

 Note that while a value of 0 fromstream-line-column also indicates the begin-
ning of a line, there are cases wherestream-start-line-p can be meaningfully
implemented whenstream-line-column cannot. For example, for a window
using variable-width characters, the column number isn’t very meaningful,
the beginning of the line does have a clear meaning. The default method fo
stream-start-line-p on classfundamental-character-output-stream uses
stream-line-column, so if that is defined to returnnil , a method should be pro-
vided for eitherstream-start-line-p or stream-fresh-line.

stream-write-string [Generic Function]

Arguments: stream string&optional (start0) end
Summary: Writes the stringstring tostream. If start andend are supplied, they specify wha

part ofstring to output.string is returned as the value. This is used by
write-string . The default method provided byfundamental-character-out-
put-stream uses repeated calls tostream-write-char.

stream-terpri [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character onstream and returnsnil . This is used byterpri .

The default method doesstream-write-char of #\Newline .
538 CLIM User’s Guide

-

.

-

stream-fresh-line [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character onstream only if the stream is not at the begin

ning of the line. This is used byfresh-line. The default method uses
stream-start-line-p andstream-terpri .

stream-finish-output [Generic Function]

Arguments: stream
Summary: Ensures that all the output sent tostream has reached its destination, and only

then returnnil . This is used byfinish-output . The default method does nothing

stream-force-output [Generic Function]

Arguments: stream
Summary: Like stream-finish-output, except that it may returnnil without waiting for the

output to complete. This is used byforce-output. The default method does noth
ing.

stream-clear-output [Generic Function]

Arguments: stream
Summary: Aborts any outstanding output operation in progress and returnsnil . This is used

by clear-output. The default method does nothing.

stream-advance-to-column [Generic Function]

Arguments: stream column
Summary: Writes enough blank space onstream so that the next character will be written

at the position specified bycolumn. Returnst if the operation is successful, ornil
if it is not supported for this stream. This is intended for use bypprint andfor-
mat ~T. The default method usesstream-line-column and repeated calls to
stream-write-char with a#\Space character; it returnsnil if stream-line-col-
umn returnsnil .
Common Lisp Streams 539

.

 a tri-
F.5 Binary Streams

Binary streams can be created by defining a class that includes eitherfundamental-bina-
ry-input-stream or fundamental-binary-output-stream (or both) and defining a method
for stream-element-type and for one or both of the following generic functions.

stream-read-byte [Generic Function]

Arguments: stream
Summary: Returns either an integer or the symbol:eof if stream is at end-of-file. This is

used byread-byte.

stream-write-byte [Generic Function]

Arguments: stream integer
Summary: Writes integer to stream and returnsinteger as the result. This is used by

write-byte.

F.6 Hardcopy Streams in CLIM

CLIM supports hardcopy output through the macrowith-output-to-postscript-stream.

with-output-to-postscript-stream [Macro]

Arguments: (stream-var file-stream&key (:display-deviceclim::*postscript-device*)
:header-comments :multi-page)&body body

Summary: Within body, stream-var is bound to a stream that produces PostScript code

The following example writes a PostScript program that draws a square, a circle, and
angle to a file namedicons-of-high-tech.ps .
540 CLIM User’s Guide

e class
(defun print-icons-of-high-tech-to-file ()
 (with-open-file
 (file-stream "icons-of-high-tech.ps" :direction :output)
 (clim:with-output-to-postscript-stream
 (stream file-stream)
 (let* ((x1 150) (y 250) (size 100)
 (x2 (+ x1 size))
 (radius (/ size2))
 (base-y (+ y (/ (* size (sqrt 3)) 2))))
 (clim:draw-rectangle* stream
 (- x1 size) (- y size)
 x1 y)
 (clim:draw-circle* stream
 (+ x2 radius) (- y radius)
 radius)
 (clim:draw-triangle* stream
 (+ x1 radius) y
 x1 base-y
 x2 base-y)))))

The second example uses multi-page mode to draw a graph of the superclasses of th
window-stream by writing a PostScript program to the filesome-pathname.

(with-open-file (file some-pathname :direction :output)
 (clim:with-output-to-postscript-stream
 (stream file :multi-page t)
 (clim:format-graph-from-root
 (clos:find-class ’clim::window-stream)
 #’(lambda (object s)
 (write-string (string (clos:class-name object)) s))
 #’clos:class-direct-superclasses
 :stream stream)))
Common Lisp Streams 541

542 CLIM User’s Guide

in-
se-

:

.

Appendix G Windows

G.1 Window Stream Operations in CLIM

A window is a CLIM stream pane that supports all window and stream operations. W
dows are primarily included for compatibility with CLIM 1.1, although it is sometimes u
ful to be able to perform operations directly on a window.

G.1.1 Clearing and Refreshing the Drawing Plane

CLIM supports the following operators for clearing and refreshing the drawing plane

window-clear [Generic Function]

Arguments: window
Summary: Clears the entire drawing plane ofwindow, filling it with the background ink.

window-erase-viewport [Generic Function]

Arguments: window
Summary: Clears the visible part ofwindow’s drawing plane, filling it with background ink

window-refresh [Generic Function]

Arguments: window
Summary: Clears the visible part of the drawing plane ofwindow, and then replays all of

the output records in the visible part of the drawing plane.
Windows 543

in-
port
 the

ric

.

G.1.2 The Viewport and Scrolling

A window streamviewport is the region of the drawing plane that is visible through the w
dow. You can change the viewport by scrolling or by reshaping the window. The view
does not change if the window is covered by another window (that is, the viewport is
region of the drawing plane that would be visible if the window were on top).

A window stream has anend-of-line action and anend-of-page action, which control what
happens when the cursor position moves out of the viewport (with-end-of-line-action and
with-end-of-page-action, respectively).

G.1.3 Viewport and Scrolling Operators

window-viewport [Generic Function]

Arguments: window
Summary: Returns a region that is thewindow’s current viewport, an object of typearea.

(See Subsection 10.2.3, “Composite Pane Generic Functions,” for the gene
functionpane-viewport, which returns a viewport.)

window-viewport-position* [Generic Function]

Arguments: window
Summary: Returns thex andy coordinates of the top-left corner of thewindow’s viewport.

window-set-viewport-position* [Generic Function]

Arguments: window x y
Summary: Moves the top-left corner of thewindow’s viewport. Use this to scroll a window
544 CLIM User’s Guide

in-

r

rt

st
log
G.2 Functions for Operating on Windows
Directly

You can useopen-window-stream to give you a CLIM window without incorporating it
into a frame. After callingopen-window-stream, callwindow-expose to make the result-
ing window stream visible.

The following operators are available for manipulating the CLIM primitive layer for w
dow streams.

open-window-stream [Function]

Arguments: &key port left top right bottom width height borders console
default-text-margin default-text-style depth display-device-type draw-p
end-of-line-action end-of-page-action initial-cursor-visibility input-buffe
label name output-record record-p save-under scroll-bars
stream-background stream-foreground text-cursor text-margin viewpo
vsp window-class

Summary: A handy function for creating a CLIM window, but one not normally used. Mo
often windows are created by an application frame or by the menu and dia
functions.

window-parent [Generic Function]

Arguments: window
Summary: Returns the window that is the parent (superior) ofwindow.

window-children [Generic Function]

Arguments: window
Summary: Returns a list of all of the windows that are children (inferiors) ofwindow.

window-label [Generic Function]

Arguments: window
Summary: Returns the label (a string) associated withwindow, ornil if there is none.

with-input-focus [Macro]

Arguments: (stream)&body body
Windows 545

 an

r ex-

f it.

e.

e

Summary: Temporarily gives the keyboard input focus to the given window, most often
interactor pane. By default, a frame will give the input focus to the
frame-query-io pane.

The following functions are most usefully applied to the top level sheet of a frame. Fo
ample:(clim:frame-top-level-sheet clim:*application-frame*) .

window-expose [Generic Function]

Arguments: window
Summary: Makes thewindow visible on the screen.

window-stack-on-bottom [Generic Function]

Arguments: window
Summary: Puts thewindow underneath all other windows that it overlaps.

window-stack-on-top [Generic Function]

Arguments: window
Summary: Puts thewindow on top of all the others it overlaps so that you can see all o

window-visibility [Generic Function]

Arguments: stream
Summary: A predicate that returnst if the window is visible. You can usesetf onwin-

dow-visibility to expose or deexpose the window.

The following operators can be applied to a window to determine its position and siz

window-inside-edges [Generic Function]

Arguments: window
Summary: Returns four values, the coordinates of the left, top, right, and bottom insid

edges of the windowwindow.

window-inside-left [Function]

Arguments: window
Summary: Returns the coordinate of the left edge of the windowwindow.

window-inside-top [Function]

Arguments: window
546 CLIM User’s Guide

Summary: Returns the coordinate of the top edge of the windowwindow.

window-inside-right [Function]

Arguments: window
Summary: Returns the coordinate of the right edge of the windowwindow.

window-inside-bottom [Function]

Arguments: window
Summary: Returns the coordinate of the bottom edge of the windowwindow.

window-inside-size [Generic Function]

Arguments: window
Summary: Returns the inside width and height ofwindow as two values.

window-inside-width [Function]

Arguments: window
Summary: Returns the inside width ofwindow.

window-inside-height [Function]

Arguments: window
Summary: Returns the inside height ofwindow.
Windows 547

548 CLIM User’s Guide

Index

Symbols
(setf command-enabled)(generic function) 217
(setf cursor-visibility) (generic function) 337
(setf delegate-sheet-delegate)(generic function)

472
(setf frame-command-table)(generic function) 211
(setf frame-current-layout) (generic function) 214
(setf frame-manager)(generic function) 222
(setf frame-pretty-name)(generic function) 211
(setf frame-properties)(generic function) 219
(setf gadget-client)(generic function) 255
(setf gadget-id)(generic function) 255
(setf gadget-label)(generic function) 259
(setf gadget-label-align-x)(generic function) 260
(setf gadget-label-align-y)(generic function) 260
(setf gadget-label-text-style)(generic function) 260
(setf gadget-max-value)(generic function) 261
(setf gadget-min-value)(generic function) 260
(setf gadget-value)(generic function) 257
(setf graph-node-children)(generic function) 454
(setf graph-node-parents)(generic function) 454
(setf graph-root-nodes)(generic function) 452
(setf medium-background)(generic function) 68,

482
(setf medium-buffering-output-p) (generic func-

tion) 343
(setf medium-clipping-region)(generic function)

69, 483
(setf medium-default-text-style)(generic function)

70, 484
(setf medium-foreground)(generic function) 68,

482
(setf medium-ink) (generic function) 68, 482
(setf medium-line-style)(generic function) 69, 483
(setf medium-text-style)(generic function) 484
(setf medium-transformation) (generic function)

69, 482
(setf pointer-cursor) (generic function) 386
(setf pointer-sheet)(generic function) 386
(setf port-keyboard-input-focus) (generic func-

tion) 470
(setf port-properties) (generic function) 495
(setf presentation-object)(generic function) 128
(setf presentation-single-box)(generic function)

129
(setf presentation-type)(generic function) 128

(setf radio-box-current-selection)(generic func-
tion) 266, 267

(setf sheet-enabled-p)(generic function) 463
(setf sheet-region)(generic function) 465
(setf sheet-transformation)(generic function) 465
(setf space-requirement-height)(function) 241
(setf space-requirement-max-height)(function)

241
(setf space-requirement-max-width)(function)

241
(setf space-requirement-min-height)(function)

241
(setf space-requirement-min-width)(function)

241
(setf space-requirement-width)(function) 240
(setf stream-current-output-record) (generic func-

tion) 359
(setf stream-default-view)(generic function) 164
(setf stream-drawing-p)(generic function) 359
(setf stream-end-of-line-action)(generic function)

341
(setf stream-end-of-page-action)(generic function)

341
(setf stream-input-buffer) (generic function) 377
(setf stream-insertion-pointer)(generic function)

415
(setf stream-primary-pointer) (generic function)

378
(setf stream-recording-p)(generic function) 358
(setf stream-scan-pointer)(generic function) 416
(setf stream-text-cursor)(generic function) 337
(setf stream-text-margin)(generic function) 339
(setf text-style-mapping)(generic function) 102
(setf window-viewport-position)(generic function)

344
(setf* cursor-position) (generic function) 337
(setf* output-record-end-cursor-position) (gener-

ic function) 351
(setf* output-record-position) (generic function)

350
(setf* output-start-cursor-position) (generic func-

tion) 351
(setf* pointer-position) (generic function) 386
(setf* stream-cursor-position)(generic function)

338
(setf* stream-pointer-position) (generic function)

378
 Index 549

abort-gestures (variable) 381
accelerator-gestures(variable) 381
activation-gestures (variable) 403
application-frame (variable) 195, 211
command-argument-delimiters (variable) 308
command-dispatchers(variable) 293, 295
command-name-delimiters (variable) 308
command-parser (variable) 308
command-unparser (variable) 308
completion-gestures(variable) 408
default-frame-manager (variable) 221
default-server-path (variable) 495
default-text-style (variable) 95
delimiter-gestures (variable) 404
help-gestures(variable) 408
input-context (variable) 131
input-wait-handler (variable) 379
input-wait-test (variable) 379
null-presentation (variable) 137
numeric-argument-marker (variable) 308
partial-command-parser (variable) 308
pointer-button-press-handler (variable) 379
pointer-documentation-output (variable) 212
possibilities-gestures(variable) 408
standard-activation-gestures(variable) 403
undefined-text-style (variable) 96
unsupplied-argument-marker (variable) 308
+background-ink+ (constant) 112
+control-key+ (constant) 479
+everywhere+(constant) 40
+fill+ (constant) 234
+flipping-ink+ (constant) 112
+foreground-ink+ (constant) 112
+gadget-dialog-view+(constant) 166
+gadget-menu-view+(constant) 166
+gadget-view+(constant) 166
+hyper-key+ (constant) 479
+identity-transformation+ (constant) 84
+meta-key+(constant) 479
+nowhere+(constant) 40
+pointer-documentation-view+(constant) 166
+pointer-left-button+ (constant) 479
+pointer-middle-button+ (constant) 479
+pointer-right-button+ (constant) 479
+shift-key+ (constant) 479
+super-key+(constant) 479
+textual-dialog-view+ (constant) 166

+textual-menu-view+(constant) 166
+textual-view+ (constant) 166
:activate-callback (initarg) 258
:align-x (initarg) 259, 449
:align-x (option) 235
:align-y (initarg) 259, 449
:align-y (option) 235
:armed-callback (initarg) 255
:background (initarg) 333
:background (option) 232
:button (initarg) 476
:calling-frame (initarg) 196
:center-nodes(initarg) 452
:client (initarg) 255
:clipping-region (option) 73
:command-table(initarg) 195
:contents(option) 233
:current-selection (initarg) 266
:cutoff-depth (initarg) 452
:decimal-places(initarg) 270
:default-text-style (initarg) 333
:default-view (initarg) 333
:disabled-commands(initarg) 195
:disarmed-callback (initarg) 255
:display-after-commands(option) 244
:display-function (option) 245
:display-time (option) 245
:drag-callback (initarg) 268, 270
:draw (option) 246
:editable-p (initarg) 272
:end-of-line-action (initarg) 333
:end-of-line-action (option) 246
:end-of-page-action(initarg) 333
:end-of-page-action(option) 246
:equalize-column-widths(initarg) 446
:foreground (initarg) 333
:foreground (option) 232
:generation-separation(initarg) 452
:gpcapi (server-path) 494
:hash-table(initarg) 452
:height (option) 234
:id (initarg) 255
:incremental-redisplay (option) 245
:indicator-type (initarg) 273
:initial-spacing (initarg) 450
:ink (option) 72
:input-buffer (initarg) 377
550 CLIM User’s Guide

:items (initarg) 262, 263
:key-name(initarg) 475
:label (initarg) 259
:line-cap-shape(option) 77
:line-dashes(option) 77
:line-joint-shape (option) 76
:line-style (option) 73
:line-thickness(option) 76
:line-unit (option) 76
:max-height (initarg) 451
:max-height (option) 234
:max-value (initarg) 260
:max-width (initarg) 451
:max-width (option) 234
:menu-bar (initarg) 196
:merge-duplicates(initarg) 452
:min-height (initarg) 449
:min-height (option) 234
:min-value (initarg) 260
:min-width (initarg) 449
:min-width (option) 234
:mode (initarg) 262, 263
:modifier (initarg) 129
:modifier-state (initarg) 474
:motif (server-path) 494
:multiple-columns-x-spacing(initarg) 446
:name (initarg) 195
:name (option) 232
:name-key(initarg) 262, 263
:n-columns (initarg) 451
:ncolumns (initarg) 272
:nlines (initarg) 272
:n-rows (initarg) 451
:number-of-quanta (initarg) 271
:number-of-tick-marks (initarg) 271
:object (initarg) 129
:orientation (initarg) 259, 452
:output-record (option) 246
:panes(initarg) 196
:parent (initarg) 349
:pointer (initarg) 377, 476
:port (initarg) 385
:pretty-name (initarg) 195
:properties (initarg) 196
:record (option) 246
:region (initarg) 478
:scroll-down-line-callback (initarg) 268

:scroll-down-page-callback(initarg) 268
:scroll-to-bottom-callback (initarg) 268
:scroll-to-top-callback (initarg) 268
:scroll-up-line-callback (initarg) 268
:scroll-up-page-callback(initarg) 268
:sheet(initarg) 336, 474
:show-as-default(initarg) 265
:show-value-p(initarg) 270
:single-box(initarg) 129
:size(initarg) 349
:spacing(option) 235
:state (initarg) 196
:test (initarg) 262, 263
:text-cursor (initarg) 377
:text-face (option) 98
:text-family (option) 97
:text-margin (initarg) 333
:text-margin (option) 246
:text-size(option) 98
:text-style (option) 74, 232
:timestamp (initarg) 474
:transformation (option) 73
:type (initarg) 129
:value (initarg) 257
:value-changed-callback(initarg) 257
:value-key (initarg) 262, 263
:vertical-spacing (initarg) 333
:vertical-spacing (option) 246
:view (initarg) 129
:width (option) 234
:within-generation-separation (initarg) 452
:x (initarg) 476
:x-position (initarg) 349
:x-spacing(initarg) 446, 450
:x-spacing(option) 235
:y (initarg) 476
:y-position (initarg) 349
:y-spacing(initarg) 446, 450
:y-spacing(option) 235

A
abbreviations

pane 197
presentation type

operators for 162
abort-gesture(condition) 381
 Index 551

abort-gesture-event(generic function) 381
abort-gestures (variable) 381
abstract gadget classes 261
abstract gadgets 250
abstract panes 229
accelerator-gesture(condition) 381
accelerator-gesture-event(generic function) 381
accelerator-gesture-numeric-argument(generic

function) 382
accelerator-gestures(variable) 381
accelerators, keystroke 304
accept(function) 132
accept(presentation method) 158
accept methods, errors and conditions in 405
accept-1(function) 133
accept-from-string (function) 134
accepting-values(macro) 317
accept-present-default(presentation method) 160
accept-values(application frame) 319
accept-values-command-button(macro) 320
accept-values-pane(command table) 289
accept-values-pane-displayer(function) 319
accept-values-resynchronize(generic function)

320
accessible (of commands) 287
accessing slots and components of application

frames 207
accessors for

application frames 210, 211
ellipses 57
polygons, polylines 49

action-gadget(class) 258
actions 279
:activate-callback (initarg) 258
activate-callback(callback) 258
activate-gadget(generic function) 256
activation gestures 403
activation-gesture-p(function) 403
activation-gestures (variable) 403
adaptive panes 229
adaptive toolkit 11
add-character-output-to-text-record (generic

function) 356
add-command-to-command-table(function) 288
add-gesture-name(function) 383
add-keystroke-to-command-table(function) 304
add-menu-item-to-command-table(function) 299

add-output-record (generic function) 353
add-pointer-gesture-name(function) 176
add-presentation-translator-to-command-table

(function) 302
add-string-output-to-text-record (generic func-

tion) 357
adjust-item-list-cells (generic function) 451
adjust-multiple-columns (generic function) 447
adjust-table-cells(generic function) 447
adopted frames 219
adopted sheets 461
adopt-frame (generic function) 222
affine transformations 80
:align-x (initarg) 259, 449
:align-x (option) 235
:align-y (initarg) 259, 449
:align-y (option) 235
allocate-pixmap(generic function) 33
allocate-resource(function) 524
allocate-space(generic function) 243
all-processes(function) 526
and (presentation type) 142
application frames 7, 191

accessing slots and components 207
accessors for 210, 211
defining 193
examples 208
initializing 204
interfacing with presentation types 224
operators for 210
panes within, figure of 8
protocol 195
template for 15
using :accept-values pane in 204

application objects, user interaction with 119
figure of 119

application-frame (variable) 195, 211
application-frame (protocol class) 195
application-frame-p (function) 195
application-pane(leaf pane) 247
applications

exiting 208
quitting 208
running 207

operators 215
applications, building portable, figure of 6
apply-presentation-generic-function(macro) 168
552 CLIM User’s Guide

arcs
circular 53
elliptical 53

constructors for 56
area (protocol class) 39
areap (function) 39
:armed-callback (initarg) 255
armed-callback (callback) 256
arrow 437
axes, x and y

figure of 20

B
:background (initarg) 333
:background (option) 232
background 107

ink 112
+background-ink+ (constant) 112
basic gadget classes 254
basic input streams 375
basic stream protocol 533
basic-gadget(class) 255
basic-medium(class) 481
basic-pane(class) 230
basic-port (class) 494
basic-sheet(class) 460
bboard-pane(composite pane) 237
beep(generic function) 342
binary streams 540
binding forms, text style 101
blank-area (presentation type) 136
boolean(presentation type) 136
bordered output 443

examples of 443
bounded regions 37
bounding rectangle protocol 61
bounding rectangles 58

figure of 59
bounding-rectangle(generic function) 61
bounding-rectangle(protocol class) 59
bounding-rectangle* (generic function) 61
bounding-rectangle-height(generic function) 63
bounding-rectangle-max-x(generic function) 62
bounding-rectangle-max-y(generic function) 63
bounding-rectangle-min-x(generic function) 62
bounding-rectangle-min-y(generic function) 62

bounding-rectangle-p(function) 60
bounding-rectangle-position(generic function) 62
bounding-rectangle-size(generic function) 63
bounding-rectangle-width (generic function) 63
buffered output 342
bury-sheet(generic function) 462
:button (initarg) 476

C
callbacks 249
:calling-frame (initarg) 196
call-presentation-menu(function) 186
call-presentation-translator (function) 186
CAPI gadgets 529
cell formatting protocol 449
cell-align-x (generic function) 450
cell-align-y (generic function) 450
cell-min-height (generic function) 450
cell-min-width (generic function) 450
cell-output-record (protocol class) 449
cell-output-record-p (function) 449
:center-nodes(initarg) 452
change-space-requirements(generic function) 242
changing-space-requirements(macro) 243
character (presentation type) 138
characters

input streams 536
output streams 537

check-box(class) 266
check-box gadget 265
check-box-current-selection(generic function) 266
check-box-pane(class) 267
check-box-selections(generic function) 267
child sheets 457
child-containing-position (generic function) 467
children-overlapping-rectangle* (generic func-

tion) 467
children-overlapping-region (generic function)

467
circular arcs 53
classes

basic sheet 460
CLIM events, figure of 473
extended stream pane 246
gadgets

abstract 261
 Index 553

basic 254
output records 354
panes

layout 235
repaint protocol 488
sheet genealogy 464
sheet geometry 467
sheet input protocol 471
sheet output protocol 484
stream 533
structure of regions, figure of 38

class-presentation-type-name(function) 147
clear-output-record (generic function) 353
clear-resource(function) 525
:client (initarg) 255
clients 251
clim-stream-pane(leaf pane) 246
:clipping-region (option) 73
close(generic function) 535
color (protocol class) 108
color-ihs (generic function) 110
colorp (function) 108
color-rgb (generic function) 110
colors 108

background
ink 112

concepts 107
examples of drawing in 113
foreground

ink 112
objects 108
operators 109
predefined names 111

table of 111
rendering 108

column-output-record (protocol class) 448
column-output-record-p (function) 448
command

objects 283
command(presentation type) 144, 291
command line names 281
command line processors 303

input editing 303
command loops 13, 191, 293
command menus 298
command names 281
command processors 293, 307

input editor 293
command tables 279, 286, 296

conditions 290
predefined 289

command translators 13
command-accessible-in-command-table-p(func-

tion) 297
command-already-present(error condition) 290
command-argument-delimiters (variable) 308
command-arguments(function) 283
command-dispatchers(variable) 293, 295
command-enabled(generic function) 216

(setf command-enabled) (generic function)
217

command-line-command-parser(function) 307
command-line-command-unparser(function) 307
command-line-name-for-command(function)

297, 304
command-line-read-remaining-arguments-for-

partial-command (function) 307
command-menu-item-options(function) 301
command-menu-item-type(function) 301
command-menu-item-value(function) 301
command-menu-pane(leaf pane) 247
command-name(function) 283
command-name(presentation type) 144, 292
command-name-delimiters (variable) 308
command-not-accessible(error condition) 290
command-not-present(error condition) 290
command-or-form (presentation type) 144, 292
command-parser (variable) 308
command-present-in-command-table-p(function)

297
commands 279

accessible 287
defined 283
defining 280
input editor 400
present 286
presentation types for 291
processor 293, 307

:command-table(initarg) 195
command-table(protocol class) 287
command-table-already-exists(error condition)

290
command-table-complete-input(function) 298
command-table-error (error condition) 290
554 CLIM User’s Guide

command-table-inherit-from (generic function)
287

command-table-name(generic function) 287
command-table-not-found(error condition) 290
command-table-p(function) 287
command-unparser (variable) 308
complete-from-generator(function) 410
complete-from-possibilities(function) 411
complete-input (function) 408
completing-from-suggestions(macro) 411
completion (presentation type) 139
completion, string 408
completion-gestures(variable) 408
complex(presentation type) 137
compose-rotation-with-transformation (function)

87
compose-scaling-with-transformation(function)

87
compose-space(generic function) 243
compose-transformations(generic function) 86
compose-transformation-with-rotation (function)

87
compose-transformation-with-scaling(function)

87
compose-transformation-with-translation (func-

tion) 87
compose-translation-with-transformation (func-

tion) 87
composite panes 229
composition, region 41
compound drawing functions 29
constructors for

ellipses and elliptical arcs 56
polygons and polylines 48
transformations 81

:contents(option) 233
contrasting-dash-pattern-limit (generic function)

78
contrasting-inks-limit (generic function) 110
+control-key+ (constant) 479
coordinate (type) 39
coordinate system, local 21

figure of 21
coordinates 20
copy-area(generic function) 34
copy-from-pixmap (generic function) 34
copy-to-pixmap (generic function) 33

current-process(function) 525
:current-selection (initarg) 266
cursor (protocol class) 336
cursorp (function) 336
cursor-position (generic function) 337

(setf* cursor-position) (generic function) 337
cursors

stream text
protocol 337

text
protocol 336

cursors, text 334
cursor-sheet(generic function) 336
cursor-visibility (generic function) 337

(setf cursor-visibility) (generic function) 337
:cutoff-depth (initarg) 452

D
DAG (directed acyclic graph) 435
deactivate-gadget(generic function) 256
deallocate-pixmap(generic function) 33
deallocate-resource(function) 524
:decimal-places(initarg) 270
default-describe-presentation-type(function) 147
default-frame-manager (variable) 221
default-frame-top-level (generic function) 215
default-server-path (variable) 495
default-text-style (variable) 95
:default-text-style (initarg) 333
:default-view (initarg) 333
defgeneric* (macro) 528
define-application-frame (macro) 193, 210
define-border-type (macro) 444
define-command(macro) 283
define-command-table(macro) 287
define-default-presentation-method(macro) 167
define-drag-and-drop-translator (macro) 180
define-gesture-name(macro) 383
define-graph-type(macro) 452
define-presentation-action(macro) 179
define-presentation-generic-function(macro) 166
define-presentation-method(macro) 157
define-presentation-to-command-translator

(macro) 179, 282
define-presentation-translator(macro) 177
define-presentation-type(macro) 155
 Index 555

define-presentation-type-abbreviation(macro)
162

defining
application frames 193
commands 280
pane types 248
presentation methods 157
presentation translators 182

examples 182
operators for 177

presentation types
abbreviations, operators for 162
concepts 151
examples 153
operators for 155

defmethod* (macro) 528
defresource(macro) 523
degrafted sheets 461
delegate-sheet-delegate(generic function) 472

(setf delegate-sheet-delegate)(generic func-
tion) 472

delegate-sheet-input-mixin(class) 472
delete-gesture-name(function) 384
delete-output-record(generic function) 353
delimiter gestures 403
delimiter-gesture-p (function) 404
delimiter-gestures (variable) 404
derived bounding rectangles 58
describe-presentation-type(function) 144
describe-presentation-type(presentation method)

159
destroy-port (generic function) 496
destroy-process(function) 525
device events 473
device events, standard 473
device-event(class) 474
dialogs

concepts 311
examples 321
operators for 317

directed acyclic graphs 435
figure of 435

disable-command(function) 295
disabled frames 219
disabled sheets 461
:disabled-commands(initarg) 195
disable-frame(generic function) 222

:disarmed-callback (initarg) 255
disarmed-callback(callback) 256
disowned frames 220
disowned sheets 461
disown-frame (generic function) 222
dispatch-event(generic function) 470
:display-after-commands(option) 244
display-command-menu(generic function) 217,

299
display-command-table-menu(generic function)

298
display-cursor (generic function) 337
displayed-output-record (protocol class) 349
displayed-output-record-p (function) 349
display-exit-boxes(generic function) 319
:display-function (option) 245
:display-time (option) 245
distribute-event (generic function) 470
do-command-table-inheritance(macro) 296
document-presentation-translator(function) 186
:drag-callback (initarg) 268, 270
drag-callback (callback) 269, 271
dragging-output (macro) 391
drag-output-record (generic function) 390
:draw (option) 246
draw-arrow (function) 29
draw-arrow* (function) 29
draw-circle (function) 28
draw-circle* (function) 28
draw-ellipse (function) 27
draw-ellipse* (function) 27
drawing functions 23

compound 29
examples 22
figure of 22
general behavior of 35
medium-specific 36
spread version 45

drawing options, using 71
drawing plane 19

figure of 19
draw-line (function) 24
draw-line* (function) 24
draw-lines (function) 25
draw-lines* (function) 25
draw-oval (function) 30
draw-oval* (function) 30
556 CLIM User’s Guide

draw-pattern* (function) 31
draw-point (function) 23
draw-point* (function) 24
draw-points (function) 24
draw-points* (function) 24
draw-polygon (function) 25
draw-polygon* (function) 25
draw-rectangle (function) 26
draw-rectangle* (function) 26
draw-rectangles(function) 26
draw-rectangles* (function) 26
draw-standard-menu (function) 315
draw-text (function) 28
draw-text* (function) 28

E
:editable-p (initarg) 272
editing, input 397
ellipse

bounding parallelogram, table of 54
ellipse(protocol class) 55
ellipse-center-point(generic function) 57
ellipse-center-point* (generic function) 57
ellipse-end-angle(generic function) 58
ellipsep(function) 55
ellipse-radii (generic function) 57
ellipses 53

accessors for 57
as specified by parallelograms, figure of 54
constructors for 56

ellipse-start-angle(generic function) 58
elliptical arcs 53

constructors for 56
elliptical-arc (protocol class) 55
elliptical-arc-p (function) 55
enable-command(function) 295
enabled frames 219
enabled sheets 461
enable-frame(generic function) 222
:end-of-line-action (initarg) 333
:end-of-line-action (option) 246
:end-of-page-action(initarg) 333
:end-of-page-action(option) 246
:equalize-column-widths(initarg) 446
erase-input-buffer (generic function) 417
erase-output-record(generic function) 352

even-scaling-transformation-p(generic function)
86

event(protocol class) 473
event classes, figure of 473
event-listen(generic function) 471
event-modifier-state(generic function) 475
eventp(function) 474
event-peek(generic function) 471
event-read(generic function) 470
event-read-no-hang(generic function) 471
events 10, 473

client 469
defined 175
dispatching 469
distributing 469
keyboard 469
pointer 469
standard device 473

event-sheet(generic function) 474
event-timestamp(generic function) 474
event-type(generic function) 474
event-unread(generic function) 471
event-window(generic function) 474
+everywhere+(constant) 40
execute-frame-command(generic function) 216,

294
exiting an application 208
expand-presentation-type-abbreviation(function)

163
expand-presentation-type-abbreviation-1(func-

tion) 163
expression(presentation type) 143
extended input streams 376

conditions 381
protocol 377

extended output streams 332
extended stream panes 191, 229, 243

classes 246
making 247
options 244

extended stream protocol 533
extended-input-stream(protocol class) 376
extended-input-stream-p(function) 376
extended-output-stream(protocol class) 333
extended-output-stream-p(function) 333
 Index 557

F
+fill+ (constant) 234
filled-in areas 74
filling-output (macro) 442
find-applicable-translators (function) 185
find-command-from-command-line-name(func-

tion) 297, 303
find-command-table (function) 288
find-frame-manager (function) 221
find-graft (function) 497
find-innermost-applicable-presentation(function)

187
find-keystroke-item (function) 305
find-menu-item (function) 301
find-pane-for-frame (generic function) 223
find-pane-named(generic function) 213
find-port (function) 494
find-presentation-translator (function) 303
find-presentation-translators (function) 184
find-presentation-type-class(function) 147
flipping ink 112

example 115
+flipping-ink+ (constant) 112
float (presentation type) 137
:foreground (initarg) 333
:foreground (option) 232
foreground 107

ink 112
+foreground-ink+ (constant) 112
form (presentation type) 143
format-graph-from-roots (function) 436
format-items (function) 427
format-textual-list (function) 427, 441
formatting

cells
protocol 449

graphs 435
concepts 435
examples 439
operators for 436
protocol 451

item lists 422
protocol 450

protocols for tables, item lists, and graphs 445
rows and columns

protocol 448

tables 421
calendar month example, figure of 431
examples 428
figure of 432, 434
from a list, figure of 429
operators for 422
output records of, figure of 348
protocol 446

text 441
formatting-cell (macro) 425
formatting-column (macro) 424
formatting-item-list (macro) 425
formatting-row (macro) 424
formatting-table (macro) 422
frame managers 11, 191, 219

finding 220
layout protocol 239
operators 222

frame-calling-frame (generic function) 213
frame-command-table(generic function) 211

(setf frame-command-table)(generic func-
tion) 211

frame-current-layout (generic function) 214
(setf frame-current-layout) (generic function)

214
frame-current-panes(generic function) 213
frame-document-highlighted-presentation(ge-

neric function) 225
frame-drag-and-drop-feedback(generic function)

225
frame-drag-and-drop-highlighting (generic func-

tion) 226
frame-error-output (generic function) 212
frame-exit (generic function) 217
frame-exit (restart) 217
frame-find-innermost-applicable-presentation

(generic function) 224
frame-input-context-button-press-handler(ge-

neric function) 224
frame-maintain-presentation-histories(generic

function) 224
frame-manager(generic function) 222

(setf frame-manager)(generic function) 222
frame-manager(protocol class) 220
frame-manager-frames(generic function) 222
frame-manager-menu-choose(generic function)

314
558 CLIM User’s Guide

frame-manager-notify-user(generic function) 218
frame-manager-p(function) 220
frame-name(generic function) 211
frame-pane(generic function) 214
frame-panes(generic function) 213
frame-parent (generic function) 213
frame-pointer-documentation-output (generic

function) 212
frame-pretty-name (generic function) 211

(setf frame-pretty-name)(generic function)
211

frame-properties (generic function) 219
(setf frame-properties)(generic function) 219

frame-query-io (generic function) 212
frame-replay (generic function) 218
frames 7, 191

adopted 219
application 7, 191

accessing slots and components 207
accessors for 210, 211
defining 193
examples 208
initializing 204
operators for 210
protocol 195

disabled 219
disowned 220
enabled 219
shrunk 219

frame-standard-input (generic function) 211
frame-standard-output (generic function) 212
frame-state(generic function) 222
frame-top-level-sheet(generic function) 214
funcall-presentation-generic-function(macro)

167
functions

composite pane 238
drawing 23

compound 29
examples 22
figure of 22
general behavior of 35
medium-specific 36
spread versions of 45

low-level, for presentation translators 184
mirrored sheet 500
mirrors 500

presentation type 144
repaint protocol 487
sheet geometry 465
sheet input protocol 469
sheet output protocol 484
stream 535
table of CLIM and CAPI 530
text style 98
transformation 86
window stream pane 343

fundamental-binary-input-stream (class) 535
fundamental-binary-output-stream (class) 535
fundamental-binary-stream (class) 534
fundamental-character-input-stream (class) 534
fundamental-character-output-stream(class) 535
fundamental-character-stream(class) 534
fundamental-input-stream (class) 534
fundamental-output-stream (class) 534
fundamental-stream(class) 533

G
gadget(protocol class) 254
gadget id 251
gadget-activate-callback(generic function) 258
gadget-active-p(generic function) 256
gadget-armed-callback(generic function) 256
gadget-client(generic function) 255

(setf gadget-client)(generic function) 255
+gadget-dialog-view+(constant) 166
gadget-dialog-view(class) 165
gadget-disarmed-callback(generic function) 256
gadget-id(generic function) 255

(setf gadget-id)(generic function) 255
gadget-label(generic function) 259

(setf gadget-label)(generic function) 259
gadget-label-align-x(generic function) 259

(setf gadget-label-align-x)(generic function)
260

gadget-label-align-y(generic function) 260
(setf gadget-label-align-y)(generic function)

260
gadget-label-text-style(generic function) 260

(setf gadget-label-text-style)(generic func-
tion) 260

gadget-max-value(generic function) 261
(setf gadget-max-value)(generic function)
 Index 559

261
+gadget-menu-view+(constant) 166
gadget-menu-view(class) 165
gadget-min-value(generic function) 260

(setf gadget-min-value)(generic function) 260
gadget-orientation(generic function) 259
gadget-output-record(class) 274
gadgetp(function) 255
gadget-range(generic function) 261
gadget-range*(generic function) 261
gadgets 249

abstract 250
abstract classes 261
basic classes 254
CAPI 529
check-box 265
client 251
id 251
implementing 252
integrating with output records 274
label 261
list-pane 262
menu-button 264
option-pane 262
panes 191
push-button 264
radio-box 265
scroll-bar 267
slider 270
table of CLIM and CAPI 529
table of CLIM and Motif widgets 531
text-editor 271
text-field 271
toggle-button 273
using 251

gadget-show-value-p(generic function) 271
gadget-value(generic function) 257, 263, 264,

266, 267, 270, 271, 272, 273
(setf gadget-value)(generic function) 257

gadget-value (generic function)272
gadget-value-changed-callback(generic function)

257
+gadget-view+(constant) 166
gadget-view(class) 165
generate-graph-nodes(generic function) 452
generate-panes(generic function) 223
:generation-separation(initarg) 452

generic-list-pane(class) 263
generic-option-pane(class) 264
geometric objects 37
geometry, sheet 465

functions 465
notifications 489

geometry, sheet classes 467
gesture names 175, 382

standard 384
gestures 382

activation 403
defined 175
delimiter 403
keyboard 382
pointer 175, 382

get-frame-pane(generic function) 213
global-command-table(command table) 289
:gpcapi (server-path) 494
graft (generic function) 498
grafted sheets 461
graft-height (generic function) 498
graft-orientation (generic function) 498
graft-pixels-per-inch (function) 499
graft-pixels-per-millimeter (function) 499
grafts 9, 457, 497
graft-units (generic function) 498
graft-width (generic function) 498
graphics

mixing with text 340
output recording 360
output records 355
protocols 35

graphics-displayed-output-record(protocol class)
355

graphics-displayed-output-record-p(function)
355

graph-node-children (generic function) 454
(setf graph-node-children)(generic function)

454
graph-node-object(generic function) 454
graph-node-output-record (protocol class) 453
graph-node-output-record-p (function) 453
graph-node-parents(generic function) 454

(setf graph-node-parents)(generic function)
454

graph-output-record (protocol class) 451
graph-output-record-p (function) 452
560 CLIM User’s Guide

graph-root-nodes(generic function) 452
(setf graph-root-nodes)(generic function) 452

graphs
acyclic 435
directed 435
directed acyclic 435

figure of 435
formatting 435

concepts 435
examples 439
operators for 436
protocol 451

horizontal
figure of 439

vertical
figure of 440

grid-pane (composite pane) 238

H
handle-event(generic function) 470
handle-repaint (generic function) 487
hardcopy streams 540
:hash-table(initarg) 452
hbox-pane(composite pane) 235
:height (option) 234
help-gestures(variable) 408
hierarchies of interactive regions 457
highlight-applicable-presentation(function) 188
highlight-output-record (generic function) 352
highlight-presentation (presentation method) 161
horizontally (macro) 235
hrack-pane (composite pane) 238
+hyper-key+ (constant) 479

I
:id (initarg) 255
+identity-transformation+ (constant) 84
identity-transformation-p (generic function) 85
immediate-repainting-mixin (class) 488
immediate-rescan(generic function) 416
immediate-sheet-input-mixin(class) 471
implementing gadgets 252
incremental redisplay

concepts 365

defined 365
example 370
operators for 366
usingupdating-output 368

:incremental-redisplay (option) 245
indenting-output (macro) 441
:indicator-type (initarg) 273
indirect inks 112
inheritance (in presentation types) 121, 152
initializing application frames 204
:initial-spacing (initarg) 450
:ink (option) 72
inks

background 112
flipping 112

example 115
foreground 112
indirect 112

input
accepting, operators for 131
by means of gadgets 130
contexts 174

nested 174
from users 130
operators 131
sheet protocol classes 471
sheet protocol functions 469
sheet protocols 469
standard 211, 247

input buffers, reading and writing tokens in 406
input contexts 12, 121, 130
input editing 303, 397
input editing stream protocol 415
input editor commands 400

table of 401
input editors 293
input of presentation types 130
input streams

basic 375
character 536
editing 397
extended 376

conditions 381
protocol 377

:input-buffer (initarg) 377
input-context (variable) 131
input-editing-stream (protocol class) 399
 Index 561

input-editing-stream-p (function) 399
input-not-of-required-type (condition) 405
input-not-of-required-type (function) 405
input-stream-p (generic function) 534
input-wait-handler (variable) 379
input-wait-test (variable) 379
integer (presentation type) 137
integrating gadgets and output records 274
interacting via

command line 303
command menus 298
keystroke accelerators 304
translators 302

interaction styles 291
command line 303
command menus 298
keystroke accelerators 304
mouse 302

interactive regions, hierarchies of 457
interactive-stream-p (generic function) 399
interactor-pane (leaf pane) 247
invalidate-cached-regions(generic function) 502
invalidate-cached-transformations(generic func-

tion) 502
invertible-transformation-p (generic function) 85
invert-transformation (generic function) 86
invoke-accept-values-command-button(generic

function) 320
invoke-updating-output (generic function) 366
invoke-with-drawing-options (generic function) 72
invoke-with-new-output-record (generic function)

363
invoke-with-output-recording-options (generic

function) 362
invoke-with-output-to-output-record (generic

function) 364
invoke-with-text-style (generic function) 101
item lists

formatting protocol 450
item-list-output-record (protocol class) 450
item-list-output-record-p (function) 450
:items (initarg) 262, 263

K
keyboard events 469
keyboard gestures 382

keyboard-event(class) 475
keyboard-event-character(generic function) 475
keyboard-event-key-name(generic function) 475
key-modifier-state-match-p(macro) 479
:key-name(initarg) 475
key-press-event(class) 475
key-release-event(class) 475
keystroke accelerators 304

table of 401
keyword (presentation type) 136

L
:label (initarg) 259
label gadgets 261
labelled-gadget-mixin(class) 259
labelling (macro) 261
label-pane(leaf pane) 261
layering CLIM over the host system, figure of 6
layout panes 191, 233

classes 235
options 233

layout, protocol 239
layout-frame (generic function) 214
layout-graph-edges(generic function) 453
layout-graph-nodes(generic function) 453
leaf panes 229

defining 248
line (protocol class) 49
line protocol 50
line styles 75

options 75
line wrapping (text) 340
:line-cap-shape(option) 77
:line-dashes(option) 77
line-end-point (generic function) 51
line-end-point* (generic function) 50
:line-joint-shape (option) 76
linep (function) 50
lines 46, 49

cap shapes, figure of 77
joint shapes, figure of 77

line-start-point (generic function) 51
line-start-point* (generic function) 50
:line-style (option) 73
line-style (protocol class) 75
line-style-cap-shape(generic function) 77
562 CLIM User’s Guide

line-style-dashes(generic function) 77
line-style-joint-shape(generic function) 76
line-style-p (function) 75
line-style-thickness(generic function) 76
line-style-unit (generic function) 76
:line-thickness(option) 76
:line-unit (option) 76
list-pane (class) 262
list-pane gadgets 262
local coordinate system 21

figure of 21
lookup-keystroke-command-item(function) 306
lookup-keystroke-item (function) 306

M
make-3-point-transformation (function) 83
make-3-point-transformation* (function) 83
make-application-frame (function) 194, 210
make-bounding-rectangle(function) 60
make-clim-application-pane(function) 248
make-clim-interactor-pane (function) 248
make-clim-stream-pane(function) 248
make-command-table(function) 288
make-contrasting-dash-patterns(function) 78
make-contrasting-inks(function) 109
make-design-from-output-record(generic func-

tion) 364
make-device-font-text-style(function) 103
make-ellipse(function) 56
make-ellipse*(function) 56
make-elliptical-arc (function) 56
make-elliptical-arc* (function) 56
make-flipping-ink (function) 113
make-gray-color (function) 109
make-ihs-color(function) 109
make-line (function) 50
make-line* (function) 50
make-line-style(function) 75
make-lock (function) 527
make-pane(function) 231
make-pane-1(generic function) 231
make-pattern (function) 30
make-point (function) 46
make-polygon(function) 48
make-polygon* (function) 48
make-polyline (function) 48

make-polyline* (function) 48
make-presentation-type-specifier(function) 148,

163
make-process(function) 525
make-rectangle(function) 52
make-rectangle*(function) 52
make-rectangular-tile (function) 31
make-recursive-lock(function) 527
make-reflection-transformation (function) 82
make-reflection-transformation* (function) 82
make-rgb-color (function) 109
make-rotation-transformation (function) 81
make-rotation-transformation* (function) 81
make-scaling-transformation(function) 82
make-scaling-transformation* (function) 82
make-space-requirement(function) 240
make-text-style(function) 97
make-transformation (function) 83
make-translation-transformation (function) 81
managers, frame 11, 191, 219

finding 220
layout protocol 239
operators for 222

map-over-column-cells(generic function) 449
map-over-command-table-commands(function)

296
map-over-command-table-keystrokes(function)

305
map-over-command-table-menu-items(function)

301
map-over-command-table-names(function) 296,

304
map-over-command-table-translators(function)

303
map-over-grafts (function) 498
map-over-item-list-cells(generic function) 451
map-over-output-records-containing-position

(generic function) 354
map-over-output-records-overlapping-region

(generic function) 354
map-over-polygon-coordinates(generic function)

49
map-over-polygon-segments(generic function) 49
map-over-ports (function) 496
map-over-presentation-type-supertypes(func-

tion) 147
 Index 563

map-over-presentation-type-supertypes(presen-
tation method) 160

map-over-region-set-regions(generic function) 43
map-over-row-cells(generic function) 448
map-over-table-elements(generic function) 447
mappings

text style 102
map-resource(function) 525
map-sheet-position-to-child(generic function) 466
map-sheet-position-to-parent(generic function)

466
map-sheet-rectangle*-to-child(generic function)

466
map-sheet-rectangle*-to-parent(generic function)

466
matching (presentation translators) 173
:max-height (initarg) 451
:max-height (option) 234
:max-value (initarg) 260
:max-width (initarg) 451
:max-width (option) 234
medium (protocol class) 481
medium-background (generic function) 68, 482

(setf medium-background)(generic function)
68, 482

medium-buffering-output-p (generic function) 343
(setf medium-buffering-output-p) (generic

function) 343
medium-clipping-region (generic function) 69, 483

(setf medium-clipping-region)(generic func-
tion) 69, 483

medium-current-text-style (generic function) 70
medium-default-text-style(generic function) 70,

484
(setf medium-default-text-style)(generic

function) 70, 484
medium-draw-ellipse* (generic function) 37
medium-draw-line* (generic function) 36
medium-draw-lines* (generic function) 36
medium-draw-point* (generic function) 36
medium-draw-points* (generic function) 36
medium-draw-polygon* (generic function) 36
medium-draw-rectangle* (generic function) 36
medium-draw-text* (generic function) 37
medium-foreground (generic function) 68, 482

(setf medium-foreground)(generic function)
68, 482

medium-ink (generic function) 68, 482
(setf medium-ink) (generic function) 68, 482

medium-line-style(generic function) 69, 483
(setf medium-line-style)(generic function) 69,

483
medium-merged-text-style(generic function) 484
mediump (function) 481
mediums 10, 21, 95, 481

associating with a sheet 485
components 67
defined 67

medium-text-style(generic function) 70, 483
(setf medium-text-style)(generic function) 70,

484
medium-transformation (generic function) 69, 482

(setf medium-transformation) (generic func-
tion) 69, 482

member (presentation type abbreviation) 140
member-alist (presentation type abbreviation) 140
member-sequence(presentation type abbreviation)

140
:menu-bar (initarg) 196
menu-button (class) 264
menu-button gadgets 264
menu-button-pane(class) 264
menu-choose(generic function) 311
menu-choose-command-from-command-table

(function) 299
menu-choose-from-drawer(generic function) 314
menu-command-parser(function) 307
menu-item-display(function) 316
menu-item-options(function) 316
menu-item-value(function) 316
menu-read-remaining-arguments-for-partial-

command(function) 307
menus

concepts 311
examples 321

:merge-duplicates(initarg) 452
merge-text-styles(generic function) 98
+meta-key+(constant) 479
methods

presentation 157
:min-height (initarg) 449
:min-height (option) 234
:min-value (initarg) 260
:min-width (initarg) 449
564 CLIM User’s Guide

:min-width (option) 234
mirrored sheets 500
mirrors 500

functions 500
:mode (initarg) 262, 263
:modifier (initarg) 129
:modifier-state (initarg) 474
:motif (server-path) 494
Motif widgets 531
move-and-resize-sheet(generic function) 466
move-sheet(generic function) 465
:multiple-columns-x-spacing(initarg) 446
multiple-value setf 528
multi-processing 525
mute-repainting-mixin (class) 488
mute-sheet-input-mixin (class) 472
mute-sheet-output-mixin(class) 485

N
:name (initarg) 195
:name (option) 232
:name-key(initarg) 262, 263
:n-columns (initarg) 451
:ncolumns (initarg) 272
nested input context 174
nested presentations 175
nil (presentation type) 136
:nlines (initarg) 272
note-command-disabled(generic function) 223
note-command-enabled(generic function) 223
note-frame-state-changed(generic function) 223
note-gadget-activated(generic function) 257
note-gadget-deactivated(generic function) 257
note-sheet-adopted(generic function) 489
note-sheet-degrafted(generic function) 489
note-sheet-disabled(generic function) 489
note-sheet-disowned(generic function) 489
note-sheet-enabled(generic function) 489
note-sheet-grafted(generic function) 489
note-sheet-region-changed(generic function) 489
note-sheet-transformation-changed(generic func-

tion) 489
note-space-requirements-changed(generic func-

tion) 242
notify-user (generic function) 218
+nowhere+(constant) 40

:n-rows (initarg) 451
null (presentation type) 136
null-or-type (presentation type abbreviation) 143
null-presentation (variable) 137
number (presentation type) 137
:number-of-quanta (initarg) 271
:number-of-tick-marks (initarg) 271
numeric-argument-marker (variable) 308

O
:object (initarg) 129
objects

application 119
figure of 119

color 108
command 283
controlling sensitivity 171
geometric 37
inheritance in presentation types 121, 152
line style 75
point 45
text style 96

open-stream-p(generic function) 535
open-window-stream(function) 545
operators for

application frames 210
defining presentation translators 177
defining presentation types 155
dialogs 317
drawing in color 109
formatting graphs 436
formatting tables 422
frame managers 222
incremental redisplay 366
input 131
output 125
output recording 348
pointer gestures 176
presentation type abbreviations 162
presentation types 144
primitive window layer 545
running applications 215
viewport and scrolling in windows 544
views of presentation types 164

option-pane(class) 263
option-pane gadgets 262
 Index 565

options
application frames

:layouts 197

example 199

figure of 200, 201, 203
:pane 196

example 199
:panes 197

example 199
drawing

using 71
extended stream pane 244
layout panes 233
line style 75
pane initialization 231
text style 97

or (presentation type) 142
:orientation (initarg) 259, 452
oriented-gadget-mixin(class) 258
origin 20
outlined-pane(composite pane) 237
outlining (macro) 237
output

bordered 443
examples of 443

buffered 342
character streams 537
flushing 342
sheet properrties 481
sheet protocol classes 484
sheet protocol functions 484
sheet protocols 481
standard 212, 247
with attached semantics 120

output operators 125
output recording

concepts 347
graphics 360
operators for 348
protocol 350
text 360
utilities 361

output recording streams 358
protocol 358

output records 112, 347
bounding rectangle of, figure of 59

classes 354
graphics-displayed 355
history 347
integrating with gadgets 274
presentations 348
protocol

database 353
replaying 112
text-displayed 356
top-level 357
tree structure of, figure of 347

output streams
basic 331
extended 332

:output-record (option) 246
output-record (protocol class) 349
output-record-children (generic function) 353
output-record-count (generic function) 354
output-record-end-cursor-position (generic func-

tion) 351
(setf* output-record-end-cursor-position)

(generic function) 351
output-recording-stream (protocol class) 358
output-recording-stream-p (function) 358
output-record-p (function) 349
output-record-parent (generic function) 351
output-record-position (generic function) 350

(setf* output-record-position) (generic func-
tion) 350

output-record-refined-sensitivity-test (generic
function) 352

output-record-start-cursor-position (generic func-
tion) 350

(setf* output-start-cursor-position) (generic
function) 351

output-stream-p (generic function) 534

P
packages, user 521
pane(protocol class) 230
pane hierarchy 239
pane-background(generic function) 232
pane-foreground(generic function) 232
pane-frame(generic function) 232
pane-name(generic function) 232
pane-needs-redisplay(generic function) 217
566 CLIM User’s Guide

panep(function) 230
:panes(initarg) 196
panes 7, 191, 229

abbreviation 197
abstract 229
adaptive 229
composite 229

functions 238
constructing 230
defining 248

example 248
extended stream 191, 229, 243

classes 246
making 247
options 244

gadget 191
hierarchy 239
initialization options 231
layout 191, 233, 235
leaf 229
properties of 232
space allocation 239
space composition 239
space requirement 239
using :accept-values in application frames 204
window 343

stream, functions 343
pane-scroller(generic function) 239
panes-need-redisplay(generic function) 217
pane-viewport (generic function) 238
pane-viewport-region(generic function) 238
:parent (initarg) 349
parent sheets 457
parse-error (condition) 405
parse-error (function) 405
parse-text-style(generic function) 98
partial-command-p (function) 283
partial-command-parser (variable) 308
path (protocol class) 38
pathname(presentation type) 138
pathp (function) 39
patterns 30
permanent-medium-sheet-output-mixin(class)

485
pixmap-depth (generic function) 33
pixmap-height (generic function) 33
pixmaps 32

pixmap-width (generic function) 33
plane, drawing 19
plist 326
point

coordinates 20
point (protocol class) 45
:pointer (initarg) 377, 476
pointer

documentation 177, 197
events 469
gestures 175, 382

operators for 176
protocol 385
tracking 386

pointer (protocol class) 385
pointer-button-click-and-hold-event (class) 477
pointer-button-click-event (class) 477
pointer-button-double-click-event (class) 477
pointer-button-event (class) 477
pointer-button-hold-event (class) 477
pointer-button-press-event(class) 477
pointer-button-press-handler (variable) 379
pointer-button-release-event(class) 477
pointer-button-state (generic function) 386
pointer-cursor (generic function) 386

(setf pointer-cursor) (generic function) 386
pointer-documentation-output (variable) 212
pointer-documentation-pane(leaf-pane) 247
+pointer-documentation-view+(constant) 166
pointer-documentation-view(class) 165
pointer-enter-event(class) 478
pointer-event (class) 475
pointer-event-button (generic function) 476
pointer-event-native-x(generic function) 476
pointer-event-native-y(generic function) 476
pointer-event-pointer (generic function) 476
pointer-event-shift-mask(generic function) 477
pointer-event-x (generic function) 476
pointer-event-y (generic function) 476
pointer-exit-event (class) 478
pointer-input-rectangle (function) 393
pointer-input-rectangle* (function) 392
+pointer-left-button+ (constant) 479
+pointer-middle-button+ (constant) 479
pointer-motion-event (class) 477
pointerp (function) 385
pointer-place-rubber-band-line* (function) 392
 Index 567

pointer-port (generic function) 385
pointer-position (generic function) 386

(setf* pointer-position) (generic function) 386
+pointer-right-button+ (constant) 479
pointer-sheet(generic function) 386

(setf pointer-sheet)(generic function) 386
pointp (function) 46
point-position (generic function) 46
points 45

objects 45
protocol 46

point-x (generic function) 46
point-y (generic function) 46
polygon (class) 47
polygonp (function) 47
polygon-points(generic function) 49
polygons 47

accessors for 49
constructors for 48

polyline (protocol class) 47
polyline-closed(generic function) 49
polylinep (function) 47
polylines 46

accessors for 49
closed 47
constructors for 48

:port (initarg) 385
port (generic function) 495
port (protocol class) 494
port-keyboard-input-focus (generic function) 470

(setf port-keyboard-input-focus) (generic
function) 470

portp (function) 494
port-properties (generic function) 495

(setf port-properties) (generic function) 495
ports 9, 457, 494
port-server-path (generic function) 495
possibilities-gestures(variable) 408
predicates

region 40
transformation 85

present(function) 126
present (of commands) 286
present(presentation method) 159
presentation(protocol class) 127
presentation methods 157
presentation translators 13, 121, 130, 183, 302

applicability 173
concepts 171
defining

examples 182
operators for 177

low-level functions 184
matching 173
using, figure of 14

presentation type specifiers 122
presentation types 12, 120

abbreviations, operators for defining 162
basic 136
character 138
command 143, 291
compound 142
concepts 119
constructor 142
defining 151

examples 153
operators for 155

form 143
functions 144
inheritance 121, 124, 152
input 130
interfacing application frames with 224
numeric 137
one-of 138

table of 139
operators for 144
output 124
pathname 138
predefined 135
sequence 141
some-of 138

table of 139
specifying 122
string 138
views for 164
views, operators for 164

presentation-default-preprocessor(presentation
method) 166

presentation-matches-context-type(function) 186
presentation-modifier (generic function) 129
presentation-object(generic function) 128

(setf presentation-object)(generic function)
128

presentationp(function) 128
568 CLIM User’s Guide

presentation-refined-position-test(presentation
method) 161

presentation-replace-input(generic function) 406
presentations 12, 120, 348

finding applicable 187
nested 175
sensitive 171

presentation-single-box(generic function) 128
presentation-subtypep(function) 146
presentation-subtypep(presentation method) 160
presentation-type(generic function) 128

(setf presentation-type)(generic function) 128
presentation-type-direct-supertypes(function)

147
presentation-type-history(presentation method)

161
presentation-type-name(function) 145
presentation-type-of(function) 146
presentation-type-options(function) 145
presentation-typep(function) 145
presentation-typep(presentation method) 159
presentation-type-parameters(function) 145
presentation-type-specifier-p(function) 146
presentation-type-specifier-p(presentation meth-

od) 159
present-to-string (function) 127
:pretty-name (initarg) 195
print-menu-item (function) 316
process-interrupt (function) 526
process-wait(function) 526
process-wait-with-timeout(function) 526
process-yield(function) 526
prompt-for-accept (generic function) 135
prompt-for-accept-1 (function) 135
:properties (initarg) 196
properties of panes 232
protocols

application frame 195
basic stream 533
bounding rectangle 61
cell formatting 449
extended input stream 377
extended stream 533
formatting

for tables, item lists, and graphs 445
item lists 450

graph formatting 451

graphics 35
input editing stream 415
layout 239
line 50
output record 350
output record database 353
output recording stream 358
point 46
pointer 385
rectangle 52
repaint 487
repaint classes 488
repaint functions 487
row and column formatting 448
sheet 458, 461
sheet input 469
sheet input classes 471
sheet input functions 469
sheet notification 489
sheet output 481
sheet output classes 484
sheet output functions 484
stream text cursor 337
table formatting 446
text 338
text cursor 336
transformation 84

push-button (class) 265
push-button gadgets 264
push-button-pane(class) 265
push-button-show-as-default(generic function)

265

Q
query identifier 317
queue-event(generic function) 470
queue-repaint(generic function) 487
queue-rescan(generic function) 416
quitting an application 208

R
radio-box (class) 265
radio-box gadgets 265
radio-box-current-selection(generic function) 266
 Index 569

(setf radio-box-current-selection)(generic
function) 266

radio-box-pane(class) 266
radio-box-selections(generic function) 266
raise-sheet(generic function) 462
range-gadget-mixin(class) 260
ratio (presentation type) 137
rational (presentation type) 137
read-command(function) 293
read-command-using-keystrokes(function) 295
read-frame-command(generic function) 216, 294
read-gesture(function) 379
reading tokens 406
read-token (function) 406
realize-mirror (generic function) 501
:record (option) 246
rectangle(protocol class) 51
rectangle-edges*(generic function) 52
rectangle-height(generic function) 53
rectangle-max-point(generic function) 52
rectangle-max-x(generic function) 52
rectangle-max-y(generic function) 53
rectangle-min-point (generic function) 52
rectangle-min-x (generic function) 52
rectangle-min-y (generic function) 52
rectanglep(function) 51
rectangles 51

bounding 58
derived bounding 58
protocol 52

rectangle-size(generic function) 53
rectangle-width (generic function) 53
rectilinear-transformation-p (generic function) 86
redisplay (function) 367
redisplay, incremental

defined 365
example 370
operators for 366
usingupdating-output 368

redisplay-frame-pane(generic function) 218
redisplay-frame-panes(generic function) 218
redisplay-output-record (generic function) 368
redraw-input-buffer (generic function) 417
reflection 80
reflection-transformation-p (generic function) 85
reflection-underspecified(error condition) 84
:region (initarg) 478

region (protocol class) 38
region composition 41
region set 41

examples, figure of 45
normalization of rectangular, figure of 43

region-contains-position-p(generic function) 40
region-contains-region-p(generic function) 40
region-difference(generic function) 44
region-equal(generic function) 40
region-intersection(generic function) 44
region-intersects-region-p(generic function) 40
regionp (function) 38
regions 37

bounded 37
class structure of, figure of 38
examples, figure of 45
normalization 42

figure of 43
predicates 40
unbounded 37

region-set(protocol class) 41
region-set-p(function) 41
region-set-regions(generic function) 42
region-union (generic function) 43
remove-command-from-command-table(func-

tion) 289
remove-keystroke-from-command-table(func-

tion) 305
remove-menu-item-from-command-table(func-

tion) 300
remove-pointer-gesture-name(function) 176
remove-presentation-translator-from-command-

table (function) 302
rendering 19, 108

figure of 19
reorder-sheets(generic function) 463
repaint protocol 487

classes 488
functions 487

repaint-sheet(generic function) 487
replace-input (generic function) 406
replay (function) 351
replay-output-record (generic function) 352
rescan-if-necessary(generic function) 417
reset-scan-pointer(generic function) 416
resize-sheet(generic function) 466
resources 523
570 CLIM User’s Guide

restart 217
restart-port (generic function) 496
restraining (macro) 238
restraining-pane (composite pane) 238
rigid-transformation-p (generic function) 85
rotation 80
row-output-record (protocol class) 448
row-output-record-p (function) 448
rows and columns, formatting protocol 448
run-frame-top-level (:around method) 215
run-frame-top-level (generic function) 215
running applications 207

operators for 215

S
scaling transformations 80
scaling-transformation-p (generic function) 86
scroll-bar (class) 268
scroll-bar gadgets 267
scroll-bar-drag-callback (generic function) 268
scroll-bar-pane (class) 270
scroll-bar-scroll-down-line-callback (generic

function) 268
scroll-bar-scroll-down-page-callback(generic

function) 269
scroll-bar-scroll-to-bottom-callback (generic

function) 268
scroll-bar-scroll-to-top-callback (generic function)

268
scroll-bar-scroll-up-line-callback (generic func-

tion) 269
scroll-bar-scroll-up-page-callback(generic func-

tion) 269
:scroll-down-line-callback (initarg) 268
scroll-down-line-callback (callback) 269
:scroll-down-page-callback(initarg) 268
scroll-down-page-callback(callback) 270
scroller-pane(composite pane) 237
scroll-extent (generic function) 239
scrolling 544
scrolling (macro) 237
:scroll-to-bottom-callback (initarg) 268
scroll-to-bottom-callback (callback) 269
:scroll-to-top-callback (initarg) 268
scroll-to-top-callback (callback) 269
:scroll-up-line-callback (initarg) 268

scroll-up-line-callback (callback) 269
:scroll-up-page-callback(initarg) 268
scroll-up-page-callback(callback) 269
sensitive 171
sensitivity, controlling 171
sequence(presentation type) 141
sequence-enumerated(presentation type) 142
server paths 494
set, region 41
(setf command-enabled)(generic function) 217
(setf cursor-visibility) (generic function) 337
(setf delegate-sheet-delegate)(generic function)

472
(setf frame-command-table)(generic function) 211
(setf frame-current-layout) (generic function) 214
(setf frame-manager)(generic function) 222
(setf frame-pretty-name)(generic function) 211
(setf frame-properties)(generic function) 219
(setf gadget-client)(generic function) 255
(setf gadget-id)(generic function) 255
(setf gadget-label)(generic function) 259
(setf gadget-label-align-x)(generic function) 260
(setf gadget-label-align-y)(generic function) 260
(setf gadget-label-text-style)(generic function) 260
(setf gadget-max-value)(generic function) 261
(setf gadget-min-value)(generic function) 260
(setf gadget-value)(generic function) 257
(setf graph-node-children)(generic function) 454
(setf graph-node-parents)(generic function) 454
(setf graph-root-nodes)(generic function) 452
(setf medium-background)(generic function) 68,

482
(setf medium-buffering-output-p) (generic func-

tion) 343
(setf medium-clipping-region)(generic function)

69, 483
(setf medium-default-text-style)(generic function)

70, 484
(setf medium-foreground)(generic function) 68,

482
(setf medium-ink) (generic function) 68, 482
(setf medium-line-style)(generic function) 69, 483
(setf medium-text-style)(generic function) 484
(setf medium-transformation) (generic function)

69, 482
(setf pointer-cursor) (generic function) 386
(setf pointer-sheet)(generic function) 386
 Index 571

(setf port-keyboard-input-focus) (generic func-
tion) 470

(setf port-properties) (generic function) 495
(setf presentation-object)(generic function) 128
(setf presentation-type)(generic function) 128
(setf radio-box-current-selection)(generic func-

tion) 266
(setf sheet-enabled-p)(generic function) 463
(setf sheet-region)(generic function) 465
(setf sheet-transformation)(generic function) 465
(setf space-requirement-height)(function) 241
(setf space-requirement-max-height)(function)

241
(setf space-requirement-max-width)(function)

241
(setf space-requirement-min-height)(function)

241
(setf space-requirement-min-width)(function)

241
(setf space-requirement-width)(function) 240
(setf stream-current-output-record) (generic func-

tion) 359
(setf stream-default-view)(generic function) 164
(setf stream-drawing-p)(generic function) 359
(setf stream-end-of-line-action)(generic function)

341
(setf stream-end-of-page-action)(generic function)

341
(setf stream-input-buffer) (generic function) 377
(setf stream-insertion-pointer)(generic function)

415
(setf stream-primary-pointer) (generic function)

378
(setf stream-recording-p)(generic function) 358
(setf stream-scan-pointer)(generic function) 416
(setf stream-text-cursor)(generic function) 337
(setf stream-text-margin)(generic function) 339
(setf text-style-mapping)(generic function) 102
(setf window-viewport-position)(generic function)

344
(setf* cursor-position) (generic function) 337
(setf* output-record-end-cursor-position) (gener-

ic function) 351
(setf* output-record-position) (generic function)

350
(setf* output-start-cursor-position) (generic func-

tion) 351

(setf* pointer-position) (generic function) 386
(setf* stream-cursor-position)(generic function)

338
(setf* stream-pointer-position) (generic function)

378
setf* defined 528
set-highlighted-presentation(function) 188
:sheet(initarg) 336, 474
sheet(protocol class) 460
sheet-adopt-child(generic function) 462
sheet-allocated-region(generic function) 467
sheet-ancestor-p(generic function) 462
sheet-children(generic function) 461
sheet-delta-transformation(generic function) 467
sheet-device-region(generic function) 502
sheet-device-transformation(generic function)

501
sheet-direct-mirror (generic function) 500
sheet-disown-child(generic function) 462
sheet-enabled-children(generic function) 462
sheet-enabled-p(generic function) 463

(setf sheet-enabled-p)(generic function) 463
sheet-grafted-p(generic function) 497
sheet-identity-transformation-mixin (class) 467
sheet-leaf-mixin(class) 464
sheet-medium(generic function) 486
sheet-mirror (generic function) 501
sheet-mirrored-ancestor(generic function) 500
sheet-multiple-child-mixin (class) 464
sheet-native-region(generic function) 501
sheet-native-transformation(generic function)

501
sheet-occluding-sheets(generic function) 463
sheetp(function) 460
sheet-parent(generic function) 461
sheet-parent-mixin(class) 464
sheet-region(generic function) 465
sheets 9, 22, 457

adopted 461
associating with a medium 485
basic classes 460
child 457
degrafted 461
disabled 461
disowned 461
enabled 461
genealogy classes 464
572 CLIM User’s Guide

geometry 465
geometry classes 467
geometry functions 465
geometry notifications 489
grafted 461
input protocol 469
input protocol classes 471
input protocol functions 469
mediums and output properties 481
mirrored 500

functions 500
mirrors

functions 500
notification protocol 489
output protocol 481
output protocol classes 484
output protocol functions 484
parent 457
properties of 458
protocol 458, 461
relationships between 461

sheet-siblings(generic function) 462
sheet-single-child-mixin(class) 464
sheet-transformation(generic function) 465

(setf sheet-transformation)(generic function)
465

sheet-transformation-mixin (class) 468
sheet-translation-mixin (class) 468
sheet-viewable-p(generic function) 463
sheet-y-inverting-transformation-mixin (class)

468
+shift-key+ (constant) 479
:show-as-default(initarg) 265
:show-value-p(initarg) 270
shrink-frame (generic function) 222
shrunk frames 219
simple-parse-error (condition) 405
simple-parse-error (function) 405
:single-box(initarg) 129
singular-transformation (error condition) 84
:size(initarg) 349
slider (class) 270
slider gadgets 270
slider-drag-callback (generic function) 270
slider-pane(class) 271
solid shapes 74
space

allocation 239
composition 239
requirement 239

space-requirement(protocol class) 240
space-requirement+(function) 242
space-requirement+*(function) 242
space-requirement-combine(function) 241
space-requirement-components(generic function)

241
space-requirement-height(function) 241

(setf space-requirement-height)(function)
241

space-requirement-max-height(function) 241
(setf space-requirement-max-height)(func-

tion) 241
space-requirement-max-width(function) 240

(setf space-requirement-max-width)(func-
tion) 241

space-requirement-min-height(function) 241
(setf space-requirement-min-height)(func-

tion) 241
space-requirement-min-width(function) 241

(setf space-requirement-min-width)(func-
tion) 241

space-requirement-width(function) 240
(setf space-requirement-width)(function)

240
:spacing(option) 235
spacing(macro) 237
spacing-pane(composite pane) 237
specifiers, presentation type 122
spread versions of drawing functions 45
standard input 211, 247
standard output 212, 247
standard-activation-gestures(variable) 403
standard-application-frame (class) 196
standard-bounding-rectangle(class) 60
standard-cell-output-record (class) 450
standard-column-output-record (class) 449
standard-command-table(class) 287
standard-ellipse(class) 55
standard-elliptical-arc (class) 55
standard-extended-input-stream(class) 377
standard-extended-output-stream(class) 333
standard-graph-node-output-record(class) 453
standard-input-editing-stream (class) 399
standard-input-stream (class) 375
 Index 573

standard-item-list-output-record (class) 451
standard-line (class) 50
standard-line-style(class) 75
standard-output-recording-stream (class) 358
standard-output-stream (class) 331
standard-point (class) 46
standard-pointer (class) 385
standard-polygon(class) 47
standard-polyline (class) 47
standard-presentation(class) 129
standard-rectangle(class) 51
standard-rectangle-set(class) 41
standard-region-difference(class) 41
standard-region-intersection(class) 41
standard-region-union (class) 41
standard-repainting-mixin (class) 488
standard-row-output-record (class) 448
standard-sequence-output-record(class) 354
standard-sheet-input-mixin (class) 471
standard-sheet-output-mixin(class) 484
standard-table-output-record (class) 446
standard-text-cursor (class) 336
standard-text-style(class) 97
standard-tree-output-history (class) 357
standard-tree-output-record (class) 355
:state (initarg) 196
stencils 30
stream-accept(generic function) 133
stream-add-character-output(generic function)

361
stream-add-output-record (generic function) 359
stream-add-string-output (generic function) 361
stream-advance-to-column(generic function) 332,

539
stream-baseline(generic function) 340
stream-character-width (generic function) 338
stream-clear-input (generic function) 376, 537
stream-clear-output (generic function) 332, 539
stream-close-text-output-record(generic function)

361
stream-current-output-record (generic function)

359
(setf stream-current-output-record) (generic

function) 359
stream-cursor-position(generic function) 338

(setf* stream-cursor-position)(generic func-
tion) 338

stream-default-view(generic function) 164
(setf stream-default-view)(generic function)

164
stream-drawing-p (generic function) 359

(setf stream-drawing-p)(generic function)
359

stream-element-type(generic function) 535
stream-end-of-line-action(generic function) 340

(setf stream-end-of-line-action)(generic func-
tion) 341

stream-end-of-page-action(generic function) 341
(setf stream-end-of-page-action)(generic

function) 341
stream-finish-output (generic function) 332, 539
stream-force-output (generic function) 332, 539
stream-fresh-line(generic function) 332, 539
stream-increment-cursor-position(generic func-

tion) 338
stream-input-buffer (generic function) 377, 415

(setf stream-input-buffer) (generic function)
377

stream-input-wait (generic function) 380
stream-insertion-pointer (generic function) 415

(setf stream-insertion-pointer)(generic func-
tion) 415

stream-line-column(generic function) 331, 538
stream-line-height(generic function) 339
stream-listen(generic function) 376, 537
stream-output-history (generic function) 359
stream-output-history-mixin (class) 357
streamp (generic function) 534
stream-pathname(generic function) 536
stream-peek-char(generic function) 375, 537
stream-pointer-position (generic function) 378

(setf* stream-pointer-position) (generic func-
tion) 378

stream-pointers(generic function) 377
stream-present(generic function) 126
stream-primary-pointer (generic function) 378

(setf stream-primary-pointer) (generic func-
tion) 378

stream-process-gesture(generic function) 417
stream-read-byte(generic function) 540
stream-read-char(generic function) 375, 536
stream-read-char-no-hang(generic function) 375,

536
stream-read-gesture(generic function) 379, 417
574 CLIM User’s Guide

stream-read-line(generic function) 376, 537
stream-recording-p (generic function) 358

(setf stream-recording-p)(generic function)
358

stream-replay (generic function) 359
stream-rescanning-p(generic function) 416
stream-restore-input-focus(generic function) 378
streams 12, 22, 533

basic
protocol 533

basic input 375
basic output 331
binary 540
character input 536
character output 537
classes 533
extended

panes 191
protocol 533

extended input 376
conditions 381
protocol 377

extended output 332
functions 535
hardcopy 540
input editing 397

protocol 415
output recording 358

protocol 358
window 543
window operations 543
window, pane functions 343

stream-scan-pointer(generic function) 416
(setf stream-scan-pointer)(generic function)

416
stream-set-input-focus(generic function) 378
stream-start-line-p (generic function) 331, 538
stream-string-width (generic function) 339
stream-terpri (generic function) 332, 538
stream-text-cursor (generic function) 337

(setf stream-text-cursor)(generic function)
337

stream-text-margin (generic function) 339
(setf stream-text-margin)(generic function)

339
stream-text-output-record (generic function) 360
stream-truename(generic function) 536

stream-unread-char(generic function) 375, 536
stream-unread-gesture(generic function) 381, 417
stream-vertical-spacing(generic function) 339
stream-write-byte (generic function) 540
stream-write-char (generic function) 331, 537
stream-write-string (generic function) 331, 538
string (presentation type) 138
string completion 408
styles

interaction 291
command line 303
command menus 298
keystroke accelerators 304
mouse 302

line 75
subset(presentation type abbreviation) 141
subset-alist(presentation type abbreviation) 141
subset-completion(presentation type) 140
subset-sequence(presentation type abbreviation)

141
substitute-numeric-argument-marker (function)

306
suggest(function) 412
+super-key+(constant) 479
surrounding-output-with-border (macro) 443
symbol (presentation type) 136

T
t (presentation type) 136
table-output-record (protocol class) 446
table-output-record-p (function) 446
table-pane(composite pane) 236
tables

command 286, 296
conditions 290
predefined 289

formatting 421
calendar month example, figure of 431
examples 428
figure of 432, 434
from a list, figure of 429
operators for 422
output records of, figure of 348
protocol 446

tabling (macro) 236
template for application frame 15
 Index 575

temporary-medium-sheet-output-mixin (class)
485

:test (initarg) 262, 263
test-presentation-translator(function) 184
:text-style (option) 232
text 338

cursors 334
protocol 336
stream, protocol 337

formatting 441
line wrapping 340
mixing with graphics 340
output recording 360
output records 356
protocol 338

text styles 95
ascent 99
binding forms 101
descent 99
face 95, 97, 102
family 95, 97
functions 98
height 100
mapping 102
objects 96
options 97
size 95, 97

:text-cursor (initarg) 377
text-displayed-output-record (protocol class) 356
text-displayed-output-record-p (function) 356
text-displayed-output-record-string (generic func-

tion) 357
text-editor (class) 272
text-editor gadgets 271
text-editor-pane (class) 272
:text-face (option) 98
:text-family (option) 97
text-field (class) 272
text-field gadgets 271
text-field-pane (class) 272
:text-margin (initarg) 333
:text-margin (option) 246
:text-size(option) 98
text-size(generic function) 100
:text-style (option) 74
text-style (protocol class) 97
text-style-ascent(generic function) 99

text-style-components(generic function) 99
text-style-descent(generic function) 99
text-style-face(generic function) 98, 99
text-style-family (generic function) 97, 99
text-style-fixed-width-p (generic function) 100
text-style-height(generic function) 100
text-style-mapping(generic function) 102

(setf text-style-mapping)(generic function)
102

text-style-p (function) 97
text-style-size(generic function) 98, 99
text-style-width (generic function) 100
+textual-dialog-view+ (constant) 166
textual-dialog-view (class) 165
+textual-menu-view+(constant) 166
textual-menu-view(class) 165
+textual-view+ (constant) 166
textual-view (class) 165
throw-highlighted-presentation (function) 187
timer-event (class) 479
:timestamp (initarg) 474
title-pane (leaf pane) 247
toggle-button (class) 273
toggle-button gadgets 273
toggle-button-indicator-type (generic function)

273
toggle-button-pane(class) 273
token-or-type (presentation type abbreviation) 143
tokens, reading and writing 406
toolkit, adaptive 11
top-level output records 357
tracking-pointer (macro) 386
:transformation (option) 73
transformation (protocol class) 84
transformation-equal (generic function) 85
transformation-error (error condition) 84
transformationp (function) 84
transformations 79

affine 80
applying 90
composition 81
constructors 81
functions 86
graphic, example, figure of 79
predicates 85
protocol 84
reflection 80
576 CLIM User’s Guide

rotation 80
scaling 80
translation 80

transformation-underspecified (error condition)
84

transform-distance (generic function) 91
transform-position (generic function) 91
transform-rectangle* (generic function) 91
transform-region (generic function) 90
translate 130
translation 80
translation-transformation-p (generic function) 85
translators, presentation 121, 130, 183, 302

applicability 173
concepts 171
defining

examples 182
operators for 177

low-level functions 184
matching 173
using, figure of 14

:type (initarg) 129
type-or-string (presentation type abbreviation) 143
types of output records 354

U
unbounded regions 37
undefined-text-style (variable) 96
unhighlight-highlighted-presentation (function)

188
unread-gesture(function) 380
unsupplied-argument-marker (variable) 308
untransform-distance (generic function) 91
untransform-position (generic function) 91
untransform-rectangle* (generic function) 92
untransform-region (generic function) 90
updating-output (macro) 366
user packages 521
user-command-table(command table) 289
using drawing options 71
using gadgets 251
using-resource(macro) 524

V
:value (initarg) 257
:value-changed-callback(initarg) 257
value-changed-callback(callback) 258
value-gadget(class) 257
:value-key (initarg) 262, 263
vbox-pane(composite pane) 236
vertically (macro) 236
:vertical-spacing (initarg) 333
:vertical-spacing (option) 246
:view (initarg) 129
view (protocol class) 164
viewp (function) 164
viewports 237

defined 544
views

of presentation types
operators for 164

with presentation types 164
vrack-pane (composite pane) 238

W
widgets, Motif 531
:width (option) 234
window-children (generic function) 545
window-clear (generic function) 343, 543
window-configuration-event (class) 478
window-erase-viewport(generic function) 344,

543
window-event(class) 478
window-event-mirrored-sheet(generic function)

478
window-event-native-region(generic function)

478
window-event-region(generic function) 478
window-expose(generic function) 546
windowing relationships 457
window-inside-bottom (function) 547
window-inside-edges(generic function) 546
window-inside-height(function) 547
window-inside-left (function) 546
window-inside-right (function) 547
window-inside-size(generic function) 547
window-inside-top (function) 546
 Index 577

window-inside-width (function) 547
window-label (generic function) 545
window-parent (generic function) 545
window-refresh (generic function) 343, 543
window-repaint-event (class) 478
windows 343, 543

concepts 457
functions for direct operation 545
operators for

viewport and scrolling 544
origin 20
primitive layer operators 545
stream operations 543
stream pane functions 343
streams 543

window-set-viewport-position* (generic function)
544

window-stack-on-bottom(generic function) 546
window-stack-on-top(generic function) 546
window-viewport (generic function) 344, 544
window-viewport-position (generic function) 344

(setf window-viewport-position) (generic
function) 344

window-viewport-position* (generic function) 544
window-visibility (generic function) 546
with-accept-help(macro) 412
with-activation-gestures(macro) 403
with-application-frame (macro) 195
with-bounding-rectangle* (macro) 62
with-command-table-keystrokes(macro) 294
with-delimiter-gestures (macro) 404
with-drawing-options (macro) 71
with-end-of-line-action (macro) 341
with-end-of-page-action(macro) 342
with-first-quadrant-coordinates (macro) 90
with-frame-manager (macro) 221
with-graft-locked (macro) 498
:within-generation-separation (initarg) 452
with-input-context (macro) 131
with-input-editing (macro) 400
with-input-editor-typeout (macro) 400
with-input-focus (macro) 379, 545
with-local-coordinates(macro) 89
with-lock-held (macro) 527
with-look-and-feel-realization (macro) 231
with-menu (macro) 316
with-new-output-record (macro) 362

with-ouput-as-gadget(macro) 274
with-output-as-presentation(macro) 125
with-output-buffered (macro) 343
with-output-recording-options (macro) 362
with-output-to-output-record (macro) 363
with-output-to-pixmap (macro) 34
with-output-to-postscript-stream (macro) 540
without-scheduling (macro) 526
with-port-locked (macro) 495
with-presentation-type-decoded(macro) 145
with-presentation-type-options(macro) 146
with-presentation-type-parameters(macro) 146
with-radio-box (macro) 267
with-recursive-lock-held (macro) 527
with-room-for-graphics (macro) 340
with-rotation (macro) 89
with-scaling (macro) 89
with-sheet-medium(macro) 485
with-sheet-medium-bound(macro) 486
with-text-face (macro) 102
with-text-family (macro) 102
with-text-size (macro) 102
with-text-style (macro) 101
with-translation (macro) 88
wrapping text lines 340
write-token (function) 407
writing tokens 406

X
:x (initarg) 476
:x-position (initarg) 349
:x-spacing(initarg) 446, 450
:x-spacing(option) 235

Y
:y (initarg) 476
:y-position (initarg) 349
:y-spacing(initarg) 446, 450
:y-spacing(option) 235
578 CLIM User’s Guide

	LispWorks® Common Lisp Interface Manager 2.0 User’...
	Version 2.0
	Copyright and Trademarks
	LispWorks Common Lisp Interface Manager 2.0 User’s...
	Version 2.0
	October 1998
	Part number: 3LADT3A15LG
	Copyright © 1994–1998 by Harlequin Group plc.
	All Rights Reserved. No part of this publication m...
	The information in this publication is provided fo...
	LispWorks is a registered trademark of Harlequin G...
	Adobe and PostScript are registered trademarks of ...
	The code for walker.lisp and compute-combination-p...
	CLX and CLUE bear the following copyright notice, ...
	The XP Pretty Printer bears the following copyrigh...
	US Government Use
	The LispWorks Software is a computer software prog...

	http://www.harlequin.com/
	Europe:
	Harlequin Limited Barrington Hall Barrington Cambr...
	telephone +44 1223 873 800 fax +44 1223 873 873 su...
	North America:
	Harlequin Incorporated One Cambridge Center Cambri...
	telephone +1 617 374 2400 fax +1 617 252 6505 supp...
	Asia Pacific:
	Harlequin Australia Pty. Ltd. Level 12 12 Moore St...
	telephone +61 2 6206 5522 fax +61 2 6206 5525 supp...

	Preface
	About the User’s Guide
	Notational Conventions
	Contents
	Chapter 1 Using CLIM 1
	1.1 Conceptual Overview 3
	1.2 Highlights of Tools and Techniques 4
	1.3 How CLIM Helps You Achieve a Portable User Int...
	1.4 What Is CLIM? 7
	1.4.1 The Core of CLIM 7
	1.4.2 CLIM Facilities 11
	1.4.3 Summary 14

	1.5 Testing Code Examples in Liquid CLIM 15

	Chapter 2 Drawing Graphics 17
	2.1 Conceptual Overview of Drawing Graphics 19
	2.1.1 Drawing Functions and Options 19
	2.1.2 The Drawing Plane 19
	2.1.3 Coordinates 20
	2.1.4 Mediums, Sheets, and Streams 21

	2.2 Examples of Using CLIM Drawing Functions 22
	2.3 CLIM Drawing Functions 23
	2.3.1 Arguments 23
	2.3.2 Compound Drawing Functions 29
	2.3.3 Patterns and Stencils 30
	2.3.4 Pixmaps 32

	2.4 Graphics Protocols 35
	2.4.1 Arguments 35
	2.4.2 General Behavior of Drawing Functions 35
	2.4.3 Medium-Specific Drawing Functions 36

	2.5 General Geometric Objects in CLIM 37
	2.5.1 Regions in CLIM 37
	2.5.2 CLIM Point Objects 45
	2.5.3 Polygons and Polylines in CLIM 46
	2.5.4 Lines in CLIM 49
	2.5.5 Rectangles in CLIM 51
	2.5.6 Ellipses and Elliptical Arcs in CLIM 53
	2.5.7 Bounding Rectangles 58

	Chapter 3 The CLIM Drawing Environment 65
	3.1 CLIM Mediums 67
	3.2 Using CLIM Drawing Options 71
	3.2.1 Set of CLIM Drawing Options 72
	3.2.2 Using the :filled Option 74

	3.3 CLIM Line Styles 75
	3.4 Transformations in CLIM 79
	3.5 The Transformations Used by CLIM 80
	3.5.1 CLIM Transformation Constructors 81
	3.5.2 CLIM Transformation Protocol 84
	3.5.3 CLIM Transformation Predicates 85
	3.5.4 CLIM Transformation Functions 86
	3.5.5 Applying CLIM Transformations 90

	Chapter 4 Text Styles 93
	4.1 Conceptual Overview of Text Styles 95
	4.2 CLIM Text Style Objects 96
	4.3 CLIM Text Style Functions 98
	4.4 Text Style Binding Forms 101
	4.5 Controlling Text Style Mappings 102

	Chapter 5 Drawing in Color 105
	5.1 Conceptual Overview of Drawing With Color 107
	5.1.1 Color Objects 108
	5.1.2 Rendering 108

	5.2 CLIM Operators for Drawing in Color 109
	5.3 Predefined Color Names in LispWorks CLIM 111
	5.4 Predefined Color Names in Liquid CLIM 111
	5.5 Indirect Inks 112
	5.6 Flipping Ink 112
	5.7 Examples of Simple Drawing Effects 113
	5.7.1 Using Flipping Ink 115

	Chapter 6 Presentation Types 117
	6.1 Conceptual Overview of CLIM Presentation Types...
	6.1.1 User Interaction With Application Objects 11...
	6.1.2 Presentations and Presentation Types 120
	6.1.3 Output With Its Semantics Attached 120
	6.1.4 Input Context 121
	6.1.5 Inheritance 121
	6.1.6 Presentation Translators 121
	6.1.7 What the Application Programmer Does 122

	6.2 How to Specify a CLIM Presentation Type 122
	6.3 Using CLIM Presentation Types for Output 124
	6.3.1 CLOS Operators 125
	6.3.2 Additional Functions for Operating on Presen...

	6.4 Using CLIM Presentation Types for Input 130
	6.5 Predefined Presentation Types 135
	6.5.1 Basic Presentation Types 136
	6.5.2 Numeric Presentation Types 137
	6.5.3 Character and String Presentation Types 138
	6.5.4 Pathname Presentation Types 138
	6.5.5 One-Of and Some-Of Presentation Types 138
	6.5.6 Sequence Presentation Types 141
	6.5.7 Constructor Presentation Types 142
	6.5.8 Compound Presentation Types 142
	6.5.9 Command and Form Presentation Types 143

	6.6 Functions That Operate on CLIM Presentation Ty...

	Chapter 7 Defining a New Presentation Type 149
	7.1 Conceptual Overview of Defining a New Presenta...
	7.1.1 CLIM Presentation Type Inheritance 152
	7.1.2 Defining an Accept for a Structure With Seve...

	7.2 CLIM Operators for Defining New Presentation T...
	7.2.1 Presentation Methods in CLIM 157
	7.2.2 CLIM Operators for Defining Presentation Typ...

	7.3 Using Views With CLIM Presentation Types 164
	7.4 Advanced Topics 166

	Chapter 8 Presentation Translators in CLIM 169
	8.1 Conceptual Overview of Presentation Translator...
	8.2 Applicability of CLIM Presentation Translators...
	8.2.1 Input Contexts in CLIM 174
	8.2.2 Nested Presentations in CLIM 175

	8.3 Pointer Gestures in CLIM 175
	8.4 CLIM Operators for Defining Presentation Trans...
	8.5 Examples of Defining Presentation Translators ...
	8.5.1 Defining a Translation from Floating Point N...
	8.5.2 Defining a Presentation-to-Command Translato...
	8.5.3 Defining Presentation Translators for the Bl...
	8.5.4 Defining a Presentation Action 183

	8.6 Advanced Topics 184

	Chapter 9 Defining Application Frames 189
	9.1 Conceptual Overview of CLIM Application Frames...
	9.2 Defining CLIM Application Frames 193
	9.2.1 The Application Frame Protocol 195
	9.2.2 Using the :pane Option 196
	9.2.3 Using the :panes and :layouts Options 197
	9.2.4 Example of the :pane Option to define-applic...
	9.2.5 Examples of the :panes and :layout Options t...
	9.2.6 Using an :accept-values Pane in a CLIM Appli...

	9.3 Initializing CLIM Application Frames 204
	9.4 Accessing Slots and Components of CLIM Applica...
	9.5 Running a CLIM Application 207
	9.6 Exiting a CLIM Application 208
	9.7 Examples of CLIM Application Frames 208
	9.7.1 Defining a CLIM Application Frame 208
	9.7.2 Constructing a Function as Part of Running a...

	9.8 Application Frame Operators and Accessors 210
	9.8.1 CLIM Application Frame Accessors 211
	9.8.2 Operators for Running CLIM Applications 215

	9.9 Frame Managers 219
	9.9.1 Finding Frame Managers 220
	9.9.2 Frame Manager Operators 222

	9.10 Advanced Topics 224

	Chapter 10 Panes and Gadgets 227
	10.1 Panes 229
	10.1.1 Basic Pane Construction 230
	10.1.2 Pane Initialization Options 231
	10.1.3 Pane Properties 232

	10.2 Layout Panes 233
	10.2.1 Layout Pane Options 233
	10.2.2 Layout Pane Classes 235
	10.2.3 Composite Pane Generic Functions 238
	10.2.4 The Layout Protocol 239

	10.3 Extended Stream Panes 243
	10.3.1 Extended Stream Pane Options 244
	10.3.2 Extended Stream Pane Classes 246
	10.3.3 Making CLIM Extended Stream Panes 247

	10.4 Defining A New Pane Type: Leaf Panes 248
	10.5 Gadgets 249
	10.5.1 Abstract Gadgets 250
	10.5.2 Basic Gadget Classes 254
	10.5.3 Abstract Gadget Classes 261
	10.5.4 Integrating Gadgets and Output Records 274

	Chapter 11 Commands 277
	11.1 Introduction to CLIM Commands 279
	11.2 Defining Commands the Easy Way 280
	11.2.1 Command Names and Command Line Names 281
	11.2.2 The Command-Defining Macro 281

	11.3 Command Objects 283
	11.4 CLIM Command Tables 286
	11.5 CLIM Predefined Command Tables 289
	11.6 Conditions Relating to CLIM Command Tables 29...
	11.7 Styles of Interaction Supported by CLIM 291
	11.8 Command-Related Presentation Types 291
	11.9 The CLIM Command Processor 293
	11.10 Advanced Topics 296
	11.10.1 CLIM Command Tables 296
	11.10.2 CLIM Command Menu Interaction Style 298
	11.10.3 Mouse Interaction Via Presentation Transla...
	11.10.4 CLIM Command Line Interaction Style 303
	11.10.5 CLIM Keystroke Interaction Style 304
	11.10.6 The CLIM Command Processor 307

	Chapter 12 Menus and Dialogs 309
	12.1 Conceptual Overview of Menus and Dialogs 311
	12.2 CLIM Menu Operators 311
	12.3 CLIM Dialog Operators 317
	12.4 Examples of Menus and Dialogs in CLIM 321
	12.4.1 Using accepting-values 321
	12.4.2 Using accept-values-command-button 322
	12.4.3 Using :resynchronize-every-pass in acceptin...
	12.4.4 Using the third value from accept in accept...
	12.4.5 Using menu-choose 325
	12.4.6 Using menu-choose-from-drawer 327

	Chapter 13 Extended Stream Output Facilities 329
	13.1 Basic Output Streams 331
	13.2 Extended Output Streams 332
	13.3 The Text Cursor 334
	13.3.1 The Text Cursor Protocol 336
	13.3.2 The Stream Text Cursor Protocol 337

	13.4 Text 338
	13.4.1 The Text Protocol 338
	13.4.2 Mixing Text and Graphics 340
	13.4.3 Wrapping Text Lines 340

	13.5 Attracting the User’s Attention 342
	13.6 Buffering Output 342
	13.7 CLIM Window Stream Pane Functions 343

	Chapter 14 Output Recording and Redisplay 345
	14.1 Conceptual Overview of Output Recording 347
	14.2 CLIM Operators for Output Recording 348
	14.2.1 The Basic Output Record Protocol 350
	14.2.2 The Output Record “Database” Protocol 353
	14.2.3 Types of Output Records 354
	14.2.4 Output Recording Streams 358

	14.3 Conceptual Overview of Incremental Redisplay ...
	14.4 CLIM Operators for Incremental Redisplay 366
	14.5 Using updating-output 368
	14.6 Example of Incremental Redisplay in CLIM 370

	Chapter 15 Extended Stream Input Facilities 373
	15.1 Basic Input Streams 375
	15.2 Extended Input Streams 376
	15.2.1 The Extended Input Stream Protocol 377
	15.2.2 Extended Input Stream Conditions 381

	15.3 Gestures and Gesture Names 382
	15.4 The Pointer Protocol 385
	15.5 Pointer Tracking 386

	Chapter 16 Input Editing and Completion Facilities...
	16.1 Input Editing 397
	16.1.1 Operators for Input Editing 399
	16.1.2 Input Editor Commands 400

	16.2 Activation and Delimiter Gestures 403
	16.3 Signalling Errors Inside accept Methods 405
	16.4 Reading and Writing Tokens 406
	16.5 Completion 408
	16.6 Using with-accept-help: some examples 414
	16.7 Advanced Topics 415

	Chapter 17 Formatted Output 419
	17.1 Formatting Tables in CLIM 421
	17.1.1 Conceptual Overview of Formatting Tables 42...
	17.1.2 CLIM Operators for Formatting Tables 422
	17.1.3 Examples of Formatting Tables 428

	17.2 Formatting Graphs in CLIM 435
	17.2.1 Conceptual Overview of Formatting Graphs 43...
	17.2.2 CLIM Operators for Graph Formatting 436
	17.2.3 Examples of CLIM Graph Formatting 439

	17.3 Formatting Text in CLIM 441
	17.4 Bordered Output in CLIM 443
	17.5 Advanced Topics 445
	17.5.1 The Table Formatting Protocol 446
	17.5.2 The Item List Formatting Protocol 450
	17.5.3 The Graph Formatting Protocol 451

	Chapter 18 Sheets 455
	18.1 Overview of Window Facilities 457
	18.1.1 Properties of Sheets 458
	18.1.2 Sheet Protocols 458

	18.2 Basic Sheet Classes 460
	18.3 Relationships Between Sheets 461
	18.3.1 Sheet Relationship Functions 461
	18.3.2 Sheet Genealogy Classes 464

	18.4 Sheet Geometry 465
	18.4.1 Sheet Geometry Functions 465
	18.4.2 Sheet Geometry Classes 467

	18.5 Sheet Protocols: Input 469
	18.5.1 Input Protocol Functions 469
	18.5.2 Input Protocol Classes 471

	18.6 Standard Device Events 473
	18.7 Sheet Protocols: Output 481
	18.7.1 Mediums and Output Properties 481
	18.7.2 Output Protocol Functions 484
	18.7.3 Output Protocol Classes 484
	18.7.4 Associating a Medium With a Sheet 485

	18.8 Repaint Protocol 487
	18.8.1 Repaint Protocol Functions 487
	18.8.2 Repaint Protocol Classes 488

	18.9 Sheet Notification Protocol 489
	18.9.1 Relationship to Window System Change Notifi...
	18.9.2 Sheet Geometry Notifications 489

	Chapter 19 Ports, Grafts, and Mirrored Sheets 491
	19.1 Introduction 493
	19.2 Ports 494
	19.3 Grafts 497
	19.4 Mirrors and Mirrored Sheets 500
	19.4.1 Mirror Functions 500
	19.4.2 Internal Interfaces for Native Coordinates ...

	Appendix A Glossary 505
	Appendix B Implementation Specifics 521
	B.1 Setting Up Your Packages to Use CLIM 521
	B.2 CLIM Packages 521
	B.3 Liquid CLIM Specifics 522

	Appendix C The CLIM-SYS Package 523
	C.1 Resources 523
	C.2 Multi-Processing 525
	C.3 Locks 527
	C.4 Multiple-Value Setf 528

	Appendix D LispWorks CLIM and CAPI 529
	Appendix E Liquid CLIM and Motif 531
	Appendix F Common Lisp Streams 533
	F.1 Stream Classes 533
	F.2 Basic Stream Functions 535
	F.3 Character Input 536
	F.4 Character Output 537
	F.5 Binary Streams 540
	F.6 Hardcopy Streams in CLIM 540

	Appendix G Windows 543
	G.1 Window Stream Operations in CLIM 543
	G.2 Functions for Operating on Windows Directly 54...
	Index 549

	Chapter 1 Using CLIM
	Chapter 1 Using CLIM
	1.1 Conceptual Overview 3
	1.2 Highlights of Tools and Techniques 4
	1.3 How CLIM Helps You Achieve a Portable User Int...
	1.4 What Is CLIM? 7
	1.4.1 The Core of CLIM 7
	1.4.1.1 Application Frames 7
	1.4.1.2 Panes 7
	1.4.1.3 Sheets 9
	1.4.1.4 Enabling Input and Output 9
	1.4.1.5 Graphics 10
	1.4.1.6 Text 10
	1.4.1.7 Events 10
	1.4.1.8 Mediums 10

	1.4.2 CLIM Facilities 11
	1.4.2.1 Look and Feel 11
	1.4.2.2 Controlling Look and Feel 11
	1.4.2.3 Streams 12
	1.4.2.4 Extended Input and Output 12
	1.4.2.5 Presentations 12
	1.4.2.6 Command Loop 13

	1.4.3 Summary 14

	1.5 Testing Code Examples in Liquid CLIM 15
	1.1 Conceptual Overview
	1.2 Highlights of Tools and Techniques
	1.3 How CLIM Helps You Achieve a Portable User Int...
	Figure 1. The Foundation of a Portable Application...
	Figure 2. How CLIM Is Layered Over the Host System...

	1.4 What Is CLIM?
	1.4.1 The Core of CLIM
	1.4.1.1 Application Frames
	1.4.1.2 Panes
	Figure 3. An Example of Panes Within an Applicatio...

	1.4.1.3 Sheets
	1.4.1.4 Enabling Input and Output
	1.4.1.5 Graphics
	1.4.1.6 Text
	1.4.1.7 Events
	1.4.1.8 Mediums

	1.4.2 CLIM Facilities
	1.4.2.1 Look and Feel
	1.4.2.2 Controlling Look and Feel
	1.4.2.3 Streams
	1.4.2.4 Extended Input and Output
	1.4.2.5 Presentations
	1.4.2.6 Command Loop
	Figure 4. Using Presentation-to-Command Translator...

	1.4.3 Summary

	1.5 Testing Code Examples in Liquid CLIM
	> (load "<release directory>/template.lisp")
	> (run-frame-top-level
	(define-application-frame test
	()
	((height :initform 55 :accessor height))
	(:panes
	(main :application :display-function ’display-main...
	(prompter :interactor))
	(:layouts
	(:default (vertically ()
	(2/3 (bordering () main))
	(defmethod display-main ((frame test) stream)
	(let ((x 55)
	(y 55)
	(width 55))
	(draw-rectangle* stream x y (+ x width) (+ y (heig...
	(define-test-command (com-exit :menu "Exit" :name ...
	(define-test-command (com-test :menu "Test" :name ...
	((new-height ’integer :default (height *applicatio...
	"Changes the default value of the height slot."

	Chapter 2 Drawing Graphics
	Chapter 2 Drawing Graphics
	2.1 Conceptual Overview of Drawing Graphics 19
	2.1.1 Drawing Functions and Options 19
	2.1.2 The Drawing Plane 19
	2.1.3 Coordinates 20
	2.1.4 Mediums, Sheets, and Streams 21

	2.2 Examples of Using CLIM Drawing Functions 22
	2.3 CLIM Drawing Functions 23
	2.3.1 Arguments 23
	2.3.2 Compound Drawing Functions 29
	2.3.3 Patterns and Stencils 30
	2.3.4 Pixmaps 32

	2.4 Graphics Protocols 35
	2.4.1 Arguments 35
	2.4.2 General Behavior of Drawing Functions 35
	2.4.3 Medium-Specific Drawing Functions 36

	2.5 General Geometric Objects in CLIM 37
	2.5.1 Regions in CLIM 37
	2.5.1.1 Region Predicates in CLIM 40
	2.5.1.2 Composition of CLIM Regions 41

	2.5.2 CLIM Point Objects 45
	2.5.3 Polygons and Polylines in CLIM 46
	2.5.3.1 Constructors for CLIM Polygons and Polylin...
	2.5.3.2 Accessors for CLIM Polygons and Polylines ...

	2.5.4 Lines in CLIM 49
	2.5.5 Rectangles in CLIM 51
	2.5.6 Ellipses and Elliptical Arcs in CLIM 53
	2.5.6.1 Constructor Functions for Ellipses and Ell...
	2.5.6.2 Accessors for CLIM Elliptical Objects 57

	2.5.7 Bounding Rectangles 58
	2.5.7.1 The Bounding Rectangle Protocol 61
	2.5.7.2 Bounding Rectangle Convenience Functions 6...

	2.1 Conceptual Overview of Drawing Graphics
	2.1.1 Drawing Functions and Options
	2.1.2 The Drawing Plane
	Figure 5. Rendering from Drawing Plane to Window

	2.1.3 Coordinates
	Figure 6. X and Y Axes of the Drawing Plane
	Figure 7. Using a Local Coordinate System

	2.1.4 Mediums, Sheets, and Streams

	2.2 Examples of Using CLIM Drawing Functions
	(clim:draw-rectangle* *my-sheet* 10 10 200 150 :fi...
	(clim:draw-line* *my-sheet* 200 10 10 150)
	(clim:draw-point* *my-sheet* 180 25)
	(clim:draw-circle* *my-sheet* 100 75 40 :filled ni...
	(clim:draw-ellipse* *my-sheet* 160 110 30 0 0 10 :...
	(clim:draw-ellipse* *my-sheet* 160 110 10 0 0 30)
	(clim:draw-polygon* *my-sheet* ’(20 20 50 80 40 20...
	(clim:draw-polygon* *my-sheet* ’(30 90 40 110 20 1...
	Figure 8. Simple Use of the Drawing Functions

	2.3 CLIM Drawing Functions
	2.3.1 Arguments
	draw-point [Function]
	draw-point* [Function]
	draw-points [Function]
	draw-points* [Function]
	(do ((i 0 (+ i 2)))
	((= i (length coord-seq)))

	draw-line [Function]
	draw-line* [Function]
	draw-lines [Function]
	draw-lines* [Function]
	(do ((i 0 (+ i 2)))
	((= i (length point-seq)))
	(do ((i 0 (+ i 4)))
	((= i (length coord-seq)))
	(draw-line* sheet
	(elt coord-seq i) (elt coord-seq (+ i 1))
	(elt coord-seq (+ i 2))

	draw-polygon [Function]
	draw-polygon* [Function]
	draw-rectangle [Function]
	draw-rectangle* [Function]
	draw-rectangles [Function]
	draw-rectangles* [Function]
	(do ((i 0 (+ i 2)))
	((= i (length points)))
	(do ((i 0 (+ i 4)))
	((= i (length position-seq)))
	(draw-rectangle* sheet
	(elt position-seq i)
	(elt position-seq (+ i 1))
	(elt position-seq (+ i 2))

	draw-ellipse [Function]
	draw-ellipse* [Function]
	draw-circle [Function]
	draw-circle* [Function]
	draw-text [Function]
	draw-text* [Function]

	2.3.2 Compound Drawing Functions
	draw-arrow [Function]
	draw-arrow* [Function]
	draw-oval [Function]
	draw-oval* [Function]

	2.3.3 Patterns and Stencils
	make-pattern [Function]
	make-rectangular-tile [Function]
	draw-pattern* [Function]
	(defun draw-pattern* (sheet pattern x y &key clipp...
	transformation)
	(check-type pattern pattern)
	(let ((width (pattern-width pattern))
	(height (pattern-height pattern)))
	(if (or clipping-region transformation)
	(with-drawing-options
	(sheet
	:clipping-region clipping-region
	:transformation transformation)
	(draw-rectangle* sheet x y
	(+ x width) (+ y height)
	:filled t :ink pattern))
	(draw-rectangle* sheet x y (+ x width) (+ y height...

	2.3.4 Pixmaps
	allocate-pixmap [Generic Function]
	deallocate-pixmap [Generic Function]
	pixmap-width [Generic Function]
	pixmap-height [Generic Function]
	pixmap-depth [Generic Function]
	copy-to-pixmap [Generic Function]
	copy-from-pixmap [Generic Function]
	copy-area [Generic Function]
	with-output-to-pixmap [Macro]

	2.4 Graphics Protocols
	2.4.1 Arguments
	2.4.2 General Behavior of Drawing Functions
	2.4.3 Medium-Specific Drawing Functions
	medium-draw-point* [Generic Function]
	medium-draw-points* [Generic Function]
	medium-draw-line* [Generic Function]
	medium-draw-lines* [Generic Function]
	medium-draw-polygon* [Generic Function]
	medium-draw-rectangle* [Generic Function]
	medium-draw-ellipse* [Generic Function]
	medium-draw-text* [Generic Function]

	2.5 General Geometric Objects in CLIM
	2.5.1 Regions in CLIM
	Figure 9. The Class Structure for All Regions
	regionp [Function]
	pathp [Function]
	areap [Function]
	2.5.1.1 Region Predicates in CLIM
	region-equal [Generic Function]
	region-contains-region-p [Generic Function]
	region-contains-position-p [Generic Function]
	region-intersects-region-p [Generic Function]

	2.5.1.2 Composition of CLIM Regions
	region-set-p [Function]
	region-set-regions [Generic Function]
	Figure 10. Normalization of Rectangular Region Set...

	map-over-region-set-regions [Generic Function]
	region-union [Generic Function]
	region-intersection [Generic Function]
	region-difference [Generic Function]
	Figure 11. Examples of Region Union, Intersection,...

	2.5.2 CLIM Point Objects
	pointp [Function]
	make-point [Function]
	point-position [Generic Function]
	point-x [Generic Function]
	point-y [Generic Function]

	2.5.3 Polygons and Polylines in CLIM
	polylinep [Function]
	polygonp [Function]
	2.5.3.1 Constructors for CLIM Polygons and Polylin...
	make-polyline [Function]
	make-polyline* [Function]
	make-polygon [Function]
	make-polygon* [Function]

	2.5.3.2 Accessors for CLIM Polygons and Polylines
	polygon-points [Generic Function]
	map-over-polygon-coordinates [Generic Function]
	map-over-polygon-segments [Generic Function]
	polyline-closed [Generic Function]

	2.5.4 Lines in CLIM
	linep [Function]
	make-line [Function]
	make-line* [Function]
	line-start-point* [Generic Function]
	line-end-point* [Generic Function]
	line-start-point [Generic Function]
	line-end-point [Generic Function]

	2.5.5 Rectangles in CLIM
	rectanglep [Function]
	make-rectangle [Function]
	make-rectangle* [Function]
	rectangle-edges* [Generic Function]
	rectangle-min-point [Generic Function]
	rectangle-max-point [Generic Function]
	rectangle-min-x [Generic Function]
	rectangle-min-y [Generic Function]
	rectangle-max-x [Generic Function]
	rectangle-max-y [Generic Function]
	rectangle-width [Generic Function]
	rectangle-height [Generic Function]
	rectangle-size [Generic Function]

	2.5.6 Ellipses and Elliptical Arcs in CLIM
	Table 1. Bounding Parallelogram of an Ellipse
	Figure 12. Ellipses Specified by Parallelograms
	ellipsep [Function]
	elliptical-arc-p [Function]
	2.5.6.1 Constructor Functions for Ellipses and Ell...
	make-ellipse [Function]
	make-ellipse* [Function]
	make-elliptical-arc [Function]
	make-elliptical-arc* [Function]

	2.5.6.2 Accessors for CLIM Elliptical Objects
	ellipse-center-point* [Generic Function]
	ellipse-center-point [Generic Function]
	ellipse-radii [Generic Function]
	ellipse-start-angle [Generic Function]
	ellipse-end-angle [Generic Function]

	2.5.7 Bounding Rectangles
	(region-equal
	(transform-region transformation
	(bounding-rectangle region))
	(bounding-rectangle (transform-region
	Figure 13. The Bounding Rectangle of an Output Rec...

	bounding-rectangle-p [Function]
	make-bounding-rectangle [Function]
	2.5.7.1 The Bounding Rectangle Protocol
	bounding-rectangle* [Generic Function]
	bounding-rectangle [Generic Function]

	2.5.7.2 Bounding Rectangle Convenience Functions
	with-bounding-rectangle* [Macro]
	bounding-rectangle-position [Generic Function]
	bounding-rectangle-min-x [Generic Function]
	bounding-rectangle-min-y [Generic Function]
	bounding-rectangle-max-x [Generic Function]
	bounding-rectangle-max-y [Generic Function]
	bounding-rectangle-width [Generic Function]
	bounding-rectangle-height [Generic Function]
	bounding-rectangle-size [Generic Function]

	Chapter 3 The CLIM Drawing Environment
	Chapter 3 The CLIM Drawing Environment
	3.1 CLIM Mediums 67
	3.2 Using CLIM Drawing Options 71
	3.2.1 Set of CLIM Drawing Options 72
	3.2.2 Using the :filled Option 74

	3.3 CLIM Line Styles 75
	3.4 Transformations in CLIM 79
	3.5 The Transformations Used by CLIM 80
	3.5.1 CLIM Transformation Constructors 81
	3.5.2 CLIM Transformation Protocol 84
	3.5.3 CLIM Transformation Predicates 85
	3.5.4 CLIM Transformation Functions 86
	3.5.5 Applying CLIM Transformations 90

	3.1 CLIM Mediums
	(clim:with-scaling (medium 2 1) (draw-stuff medium...
	medium-foreground [Generic Function]
	medium-background [Generic Function]
	(setf medium-foreground) [Generic Function]
	(setf medium-background) [Generic Function]
	medium-ink [Generic Function]
	(setf medium-ink) [Generic Function]
	medium-transformation [Generic Function]
	(setf medium-transformation) [Generic Function]
	medium-clipping-region [Generic Function]
	(setf medium-clipping-region) [Generic Function]
	medium-line-style [Generic Function]
	(setf medium-line-style) [Generic Function]
	medium-default-text-style [Generic Function]
	(setf medium-default-text-style) [Generic Function...
	medium-text-style [Generic Function]
	(setf medium-text-style) [Generic Function]
	medium-current-text-style [Generic Function]

	3.2 Using CLIM Drawing Options
	with-drawing-options [Macro]
	invoke-with-drawing-options [Generic Function]
	3.2.1 Set of CLIM Drawing Options
	:ink [Option]
	:transformation [Option]
	:clipping-region [Option]
	(region-intersection
	(transform-region
	(medium-transformation medium) region)

	:line-style [Option]
	:text-style [Option]

	3.2.2 Using the :filled Option

	3.3 CLIM Line Styles
	line-style-p [Function]
	make-line-style [Function]
	:line-unit [Option]
	line-style-unit [Generic Function]
	:line-thickness [Option]
	line-style-thickness [Generic Function]
	:line-joint-shape [Option]
	line-style-joint-shape [Generic Function]
	Figure 14. Line Joint Shapes

	:line-cap-shape [Option]
	line-style-cap-shape [Generic Function]
	Figure 15. Line Cap Shapes

	:line-dashes [Option]
	line-style-dashes [Generic Function]
	make-contrasting-dash-patterns [Function]

	contrasting-dash-pattern-limit [Generic Function]

	3.4 Transformations in CLIM
	Figure 16. Graphic Transformation
	(defvar *star* '(0 3 2 -3 -3 1/2 3 1/2 -2 -3))
	(defun draw-star (stream)
	(clim:with-room-for-graphics (stream)
	(clim:with-translation (stream 100 100)
	(clim:with-scaling (stream 10)
	(draw-star stream)))
	(clim:with-translation (stream 240 110)
	(clim:with-rotation (stream -0.5)
	(clim:with-scaling (stream 12 8)

	3.5 The Transformations Used by CLIM
	3.5.1 CLIM Transformation Constructors
	make-translation-transformation [Function]
	make-rotation-transformation [Function]
	make-rotation-transformation* [Function]
	make-scaling-transformation [Function]
	make-scaling-transformation* [Function]
	make-reflection-transformation [Function]
	make-reflection-transformation* [Function]
	make-transformation [Function]
	make-3-point-transformation [Function]
	make-3-point-transformation* [Function]

	3.5.2 CLIM Transformation Protocol
	transformationp [Function]

	3.5.3 CLIM Transformation Predicates
	transformation-equal [Generic Function]
	identity-transformation-p [Generic Function]
	translation-transformation-p [Generic Function]
	invertible-transformation-p [Generic Function]
	reflection-transformation-p [Generic Function]
	rigid-transformation-p [Generic Function]
	even-scaling-transformation-p [Generic Function]
	scaling-transformation-p [Generic Function]
	rectilinear-transformation-p [Generic Function]

	3.5.4 CLIM Transformation Functions
	compose-transformations [Generic Function]
	invert-transformation [Generic Function]
	compose-translation-with-transformation [Function]...
	compose-scaling-with-transformation [Function]
	compose-rotation-with-transformation [Function]
	compose-transformation-with-translation [Function]...
	compose-transformation-with-scaling [Function]
	compose-transformation-with-rotation [Function]
	(compose-transformations
	(make-translation-transformation dx dy)
	(make-rotation-transformation angle))
	(with-translation (medium dx dy)
	(with-rotation (medium angle)

	with-translation [Macro]
	with-scaling [Macro]
	with-rotation [Macro]
	with-local-coordinates [Macro]
	with-first-quadrant-coordinates [Macro]

	3.5.5 Applying CLIM Transformations
	transform-region [Generic Function]
	untransform-region [Generic Function]
	transform-position [Generic Function]
	untransform-position [Generic Function]
	transform-distance [Generic Function]
	untransform-distance [Generic Function]
	transform-rectangle* [Generic Function]
	untransform-rectangle* [Generic Function]

	Chapter 4 Text Styles
	Chapter 4 Text Styles
	4.1 Conceptual Overview of Text Styles 95
	4.2 CLIM Text Style Objects 96
	4.3 CLIM Text Style Functions 98
	4.4 Text Style Binding Forms 101
	4.5 Controlling Text Style Mappings 102
	4.1 Conceptual Overview of Text Styles
	4.2 CLIM Text Style Objects
	(clim:with-text-style
	((clim:make-text-style :fix :bold :large) my-strea...
	text-style-p [Function]
	make-text-style [Function]
	:text-family [Option]
	text-style-family [Generic Function]
	:text-face [Option]
	text-style-face [Generic Function]
	:text-size [Option]
	text-style-size [Generic Function]

	4.3 CLIM Text Style Functions
	parse-text-style [Generic Function]
	merge-text-styles [Generic Function]
	text-style-components [Generic Function]
	text-style-family [Generic Function]
	text-style-face [Generic Function]
	text-style-size [Generic Function]
	text-style-ascent [Generic Function]
	text-style-descent [Generic Function]
	text-style-height [Generic Function]
	text-style-width [Generic Function]
	text-style-fixed-width-p [Generic Function]
	text-size [Generic Function]

	4.4 Text Style Binding Forms
	with-text-style [Macro]
	invoke-with-text-style [Generic Function]
	with-text-face [Macro]
	with-text-family [Macro]
	with-text-size [Macro]

	4.5 Controlling Text Style Mappings
	text-style-mapping [Generic Function]
	(setf text-style-mapping) [Generic Function]
	make-device-font-text-style [Function]
	(let
	((my-device-font
	(clim:make-device-font-text-style
	(port my-sheet)
	"-adobe-courier-bold-o-normal--10-100-75-75-m-60-i...
	(draw-text* my-sheet "This appears in the specifie...

	Chapter 5 Drawing in Color
	Chapter 5 Drawing in Color
	5.1 Conceptual Overview of Drawing With Color 107
	5.1.1 Color Objects 108
	5.1.2 Rendering 108

	5.2 CLIM Operators for Drawing in Color 109
	5.3 Predefined Color Names in LispWorks CLIM 111
	5.4 Predefined Color Names in Liquid CLIM 111
	5.5 Indirect Inks 112
	5.6 Flipping Ink 112
	5.7 Examples of Simple Drawing Effects 113
	5.7.1 Drawing in the Foreground Color 113
	5.7.2 Erasing 113
	5.7.3 Drawing in Color 113
	5.7.4 Drawing an Opaque Gray 114
	5.7.5 Drawing a Stipple of Little Bricks 114
	5.7.6 Drawing a Tiled Pattern 114
	5.7.7 Drawing a Pixmap 114
	5.7.8 Using Flipping Ink 115

	5.1 Conceptual Overview of Drawing With Color
	5.1.1 Color Objects
	colorp [Function]

	5.1.2 Rendering

	5.2 CLIM Operators for Drawing in Color
	make-rgb-color [Function]
	make-ihs-color [Function]
	make-gray-color [Function]
	make-contrasting-inks [Function]
	contrasting-inks-limit [Generic Function]
	color-rgb [Generic Function]
	color-ihs [Generic Function]

	5.3 Predefined Color Names in LispWorks CLIM
	5.4 Predefined Color Names in Liquid CLIM
	Table 2. Color Constants in Liquid CLIM

	5.5 Indirect Inks
	5.6 Flipping Ink
	make-flipping-ink [Function]

	5.7 Examples of Simple Drawing Effects
	(make-rectangular-tile
	(make-pattern #2a(0 0 0 0 1 0 0 0 0)
	(0 0 0 1 0 0 0 0)
	(0 0 0 1 0 0 0 0)
	(1 1 1 1 1 1 1 1)
	(0 0 0 0 0 0 0 1)
	(0 0 0 0 0 0 0 1)
	(0 0 0 0 0 0 0 1)
	(1 1 1 1 1 1 1 1))
	5.7.1 Using Flipping Ink
	(defun cmd-rubberband ()
	(let ((x1 0) ; x1, y1 represents the fix point
	(y1 0)
	(x2 0) ; x2,y2 represents the point that is changi...
	(y2 0)
	(mouse-button-press nil)
	;; press to select pivot
	(stream (get-frame-pane *application-frame* ’main)...
	(tracking-pointer (stream)
	(:pointer-button-press
	(event x y)
	(setf x1 x y1 y x2 x y2 y)
	(draw-line* stream x1 y1 x2 y2
	:ink +flipping-ink+)
	(setf mouse-button-press t))
	(:pointer-motion
	(window x y)
	(when Mouse-button-press
	;;erase
	(draw-line* stream x1 y1 x2 y2
	:ink +flipping-ink+)
	;; draw
	(draw-line* stream x1 y1 x y
	:ink +flipping-ink+)
	(setf x2 x y2 y)))
	(:pointer-button-release
	(event x y)
	(cond
	((eq mouse-button-press t)
	(return

	Chapter 6 Presentation Types
	Chapter 6 Presentation Types
	6.1 Conceptual Overview of CLIM Presentation Types...
	6.1.1 User Interaction With Application Objects 11...
	6.1.2 Presentations and Presentation Types 120
	6.1.3 Output With Its Semantics Attached 120
	6.1.4 Input Context 121
	6.1.5 Inheritance 121
	6.1.6 Presentation Translators 121
	6.1.7 What the Application Programmer Does 122

	6.2 How to Specify a CLIM Presentation Type 122
	6.3 Using CLIM Presentation Types for Output 125
	6.3.1 CLOS Operators 125
	6.3.2 Additional Functions for Operating on Presen...

	6.4 Using CLIM Presentation Types for Input 130
	6.5 Predefined Presentation Types 136
	6.5.1 Basic Presentation Types 136
	6.5.2 Numeric Presentation Types 137
	6.5.3 Character and String Presentation Types 138
	6.5.4 Pathname Presentation Types 139
	6.5.5 One-Of and Some-Of Presentation Types 139
	6.5.6 Sequence Presentation Types 142
	6.5.7 Constructor Presentation Types 142
	6.5.8 Compound Presentation Types 143
	6.5.9 Command and Form Presentation Types 144

	6.6 Functions That Operate on CLIM Presentation Ty...
	6.1 Conceptual Overview of CLIM Presentation Types...
	6.1.1 User Interaction With Application Objects
	Figure 17. User Interaction With Application Objec...

	6.1.2 Presentations and Presentation Types
	6.1.3 Output With Its Semantics Attached
	6.1.4 Input Context
	6.1.5 Inheritance
	6.1.6 Presentation Translators
	6.1.7 What the Application Programmer Does
	1. Decide what types of application objects will b...
	2. For each type of application object that the us...
	3. Use the application-building tools to specify t...

	6.2 How to Specify a CLIM Presentation Type
	((integer 0 10) :base 8)

	6.3 Using CLIM Presentation Types for Output
	6.3.1 CLOS Operators
	with-output-as-presentation [Macro]
	(with-output-as-presentation (stream #p"foo" ’path...
	present [Function]

	stream-present [Generic Function]
	present-to-string [Function]

	6.3.2 Additional Functions for Operating on Presen...
	presentationp [Function]
	presentation-object [Generic Function]
	(setf presentation-object) [Generic Function]
	presentation-type [Generic Function]
	(setf presentation-type) [Generic Function]
	presentation-single-box [Generic Function]
	(setf presentation-single-box) [Generic Function]
	presentation-modifier [Generic Function]
	:object [Initarg]
	:type [Initarg]
	:view [Initarg]
	:single-box [Initarg]
	:modifier [Initarg]

	6.4 Using CLIM Presentation Types for Input
	=>(clim:accept ’string)
	Enter a string: abracadabra
	"abracadabra"
	=>(clim:accept ’string)
	Enter a string [default abracadabra]: abracadabra
	"abracadabra"
	with-input-context [Macro]
	(with-input-context (’pathname)
	(path)
	(read)
	(pathname
	accept [Function]

	stream-accept [Generic Function]
	accept-1 [Function]
	accept-from-string [Function]

	prompt-for-accept [Generic Function]
	prompt-for-accept-1 [Function]

	6.5 Predefined Presentation Types
	6.5.1 Basic Presentation Types
	6.5.2 Numeric Presentation Types
	6.5.3 Character and String Presentation Types
	6.5.4 Pathname Presentation Types
	6.5.5 One-Of and Some-Of Presentation Types
	Table 3. One-Of and Some-Of Selection Presentation...

	6.5.6 Sequence Presentation Types
	6.5.7 Constructor Presentation Types
	6.5.8 Compound Presentation Types
	6.5.9 Command and Form Presentation Types

	6.6 Functions That Operate on CLIM Presentation Ty...
	describe-presentation-type [Function]
	presentation-type-name [Function]
	presentation-type-parameters [Function]
	presentation-type-options [Function]
	presentation-typep [Function]
	with-presentation-type-decoded [Macro]
	with-presentation-type-options [Macro]
	with-presentation-type-parameters [Macro]
	presentation-type-specifier-p [Function]
	presentation-type-of [Function]
	presentation-subtypep [Function]
	map-over-presentation-type-supertypes [Function]
	presentation-type-direct-supertypes [Function]
	find-presentation-type-class [Function]
	class-presentation-type-name [Function]
	default-describe-presentation-type [Function]
	make-presentation-type-specifier [Function]

	Chapter 7 Defining a New Presentation Type
	Chapter 7 Defining a New Presentation Type
	7.1 Conceptual Overview of Defining a New Presenta...
	7.1.1 CLIM Presentation Type Inheritance 152
	7.1.2 Defining an Accept for a Structure With Seve...

	7.2 CLIM Operators for Defining New Presentation T...
	7.2.1 Presentation Methods in CLIM 157
	7.2.2 CLIM Operators for Defining Presentation Typ...

	7.3 Using Views With CLIM Presentation Types 164
	7.4 Advanced Topics 166
	7.1 Conceptual Overview of Defining a New Presenta...
	1. Use the define-presentation-type macro.
	a. Name the new presentation type.
	b. Supply parameters that further restrict the typ...
	c. Supply options that affect the appearance of th...
	d. State the supertypes of this type, to make use ...
	2. Define the CLIM presentation methods.

	a. Specify how objects are displayed with a presen...
	b. Specify how objects are parsed with an accept p...
	c. Specify the type/subtype relationships of this ...
	7.1.1 CLIM Presentation Type Inheritance
	7.1.2 Defining an Accept for a Structure With Seve...
	"Cl
	Go
	"
	"Clinton
	Gore"
	(setf (get ’bush ’party) ’republican)
	(setf (get ’quayle ’party) ’republican)
	(setf (get ’clinton ’party) ’democrat)
	;;; separated by comma version
	(define-presentation-method accept ((type ticket) ...
	(declare (ignore view))
	(let ((president (accept ’(member bush clinton) :s...
	;; add comma as a completing delimiter
	:blip-characters ’(#,))))
	;; Make sure that the names were separated by a co...
	(unless (eql (read-gesture :stream stream) #,)
	(simple-parse-error "Ticket members must be separa...
	(let ((veep (accept ’(member quayle gore) :stream ...
	;; Validate party affiliations
	(unless (eql (get president ’party) (get veep ’par...
	(simple-parse-error "Ticket members must be of the...
	;;; Separated by Return version
	(define-presentation-method accept ((type ticket) ...
	&allow-other-keys)
	(declare (ignore view))
	(let ((president (accept ’(member bush clinton) :s...
	;; Remove Newline from activation characters
	:activation-characters ‘()
	;; Add Newline as a delimiter, so that we get
	;; completion and move-to-next-field behavior
	;; when Return is typed.
	(unless (eql (read-gesture :stream stream) #\Newli...
	(simple-parse-error
	"Ticket members must be entered on separate lines"...
	(let ((veep (accept ’(member quayle gore) :stream ...
	;; Validate party affiliations
	(unless (eql (get president ’party) (get veep ’par...
	(simple-parse-error "Ticket members must be of the...

	7.2 CLIM Operators for Defining New Presentation T...
	define-presentation-type [Macro]
	7.2.1 Presentation Methods in CLIM
	define-presentation-method [Macro]
	(define-presentation-type int (low high)
	(define-presentation-method presentation-typep :ar...
	(and (call-next-method)
	(integerp object)
	(define-presentation-type rrat (high low)
	(define-presentation-method presentation-typep :ar...
	(type rrat))
	(and (call-next-method)
	(rationalp object)
	(define-presentation-type num ())
	(define-presentation-method presentation-typep (ob...

	7.2.2 CLIM Operators for Defining Presentation Typ...
	define-presentation-type-abbreviation [Macro]
	(define-presentation-type-abbreviation octal-integ...
	(&optional low high)
	‘((integer ,low ,high) :base 8
	expand-presentation-type-abbreviation-1 [Function]...
	expand-presentation-type-abbreviation [Function]
	make-presentation-type-specifier [Function]

	7.3 Using Views With CLIM Presentation Types
	viewp [Function]
	stream-default-view [Generic Function]
	(setf stream-default-view) [Generic Function]

	7.4 Advanced Topics
	define-presentation-generic-function [Macro]
	(define-presentation-generic-function present-meth...
	(type-key parameters options object type stream vi...

	define-default-presentation-method [Macro]
	funcall-presentation-generic-function [Macro]
	(funcall-presentation-generic-function

	apply-presentation-generic-function [Macro]

	Chapter 8 Presentation Translators in CLIM
	Chapter 8 Presentation Translators in CLIM
	8.1 Conceptual Overview of Presentation Translator...
	8.2 Applicability of CLIM Presentation Translators...
	8.2.1 Input Contexts in CLIM 174
	8.2.2 Nested Presentations in CLIM 175

	8.3 Pointer Gestures in CLIM 175
	8.4 CLIM Operators for Defining Presentation Trans...
	8.5 Examples of Defining Presentation Translators ...
	8.5.1 Defining a Translation from Floating Point N...
	8.5.2 Defining a Presentation-to-Command Translato...
	8.5.3 Defining Presentation Translators for the Bl...
	8.5.4 Defining a Presentation Action 183

	8.6 Advanced Topics 184
	8.1 Conceptual Overview of Presentation Translator...
	8.2 Applicability of CLIM Presentation Translators...
	8.2.1 Input Contexts in CLIM
	8.2.2 Nested Presentations in CLIM

	8.3 Pointer Gestures in CLIM
	add-pointer-gesture-name [Function]
	remove-pointer-gesture-name [Function]

	8.4 CLIM Operators for Defining Presentation Trans...
	define-presentation-translator [Macro]
	define-presentation-to-command-translator [Macro]
	define-presentation-action [Macro]
	define-drag-and-drop-translator [Macro]

	8.5 Examples of Defining Presentation Translators ...
	8.5.1 Defining a Translation from Floating Point N...
	(define-presentation-translator integer-to-float
	(integer float my-command-table
	:documentation "Integer as float"
	:gesture :select
	:tester ((object) (integerp object))
	:tester-definitive t)
	(object)

	8.5.2 Defining a Presentation-to-Command Translato...
	(clim:define-presentation-to-command-translator
	delete-file
	(pathname com-delete-file my-command-table
	:documentation "Delete this file"
	:gesture :delete)
	(object)

	8.5.3 Defining Presentation Translators for the Bl...
	(clim:define-presentation-to-command-translator
	add-circle-here
	(clim:blank-area com-add-circle my-command-table
	:documentation "Add a circle here.")
	(x y)

	8.5.4 Defining a Presentation Action
	(clim:define-presentation-action
	presentation-menu
	(t nil clim:global-command-table
	:tester-definitive t :documentation "Menu"
	:menu nil :gesture :menu)
	(presentation frame window x y)
	(clim:call-presentation-menu presentation clim:*in...

	8.6 Advanced Topics
	find-presentation-translators [Function]
	test-presentation-translator [Function]
	find-applicable-translators [Function]
	1. Translators with a higher “high order” priority...
	2. Translators with a more specific “from type” pr...
	3. Translators with a higher “low order” priority ...
	4. Translators from the current command table prec...

	presentation-matches-context-type [Function]
	call-presentation-translator [Function]
	document-presentation-translator [Function]
	call-presentation-menu [Function]
	find-innermost-applicable-presentation [Function]
	throw-highlighted-presentation [Function]
	highlight-applicable-presentation [Function]
	set-highlighted-presentation [Function]
	unhighlight-highlighted-presentation [Function]

	Chapter 9 Defining Application Frames
	Chapter 9 Defining Application Frames
	9.1 Conceptual Overview of CLIM Application Frames...
	9.2 Defining CLIM Application Frames 193
	9.2.1 The Application Frame Protocol 195
	9.2.2 Using the :pane Option 196
	9.2.3 Using the :panes and :layouts Options 197
	9.2.4 Example of the :pane Option to define-applic...
	9.2.5 Examples of the :panes and :layout Options t...
	9.2.6 Using an :accept-values Pane in a CLIM Appli...

	9.3 Initializing CLIM Application Frames 204
	9.4 Accessing Slots and Components of CLIM Applica...
	9.5 Running a CLIM Application 207
	9.6 Exiting a CLIM Application 208
	9.7 Examples of CLIM Application Frames 208
	9.7.1 Defining a CLIM Application Frame 208
	9.7.2 Constructing a Function as Part of Running a...

	9.8 Application Frame Operators and Accessors 210
	9.8.1 CLIM Application Frame Accessors 211
	9.8.2 Operators for Running CLIM Applications 215

	9.9 Frame Managers 219
	9.9.1 Finding Frame Managers 220
	9.9.2 Frame Manager Operators 222

	9.10 Advanced Topics 224
	9.1 Conceptual Overview of CLIM Application Frames...
	9.2 Defining CLIM Application Frames
	define-application-frame [Macro]
	make-application-frame [Function]

	with-application-frame [Macro]
	9.2.1 The Application Frame Protocol
	application-frame-p [Function]
	:name [Initarg]
	:pretty-name [Initarg]
	:command-table [Initarg]
	:disabled-commands [Initarg]
	:panes [Initarg]
	:menu-bar [Initarg]
	:calling-frame [Initarg]
	:state [Initarg]
	:properties [Initarg]

	9.2.2 Using the :pane Option
	(vertically ()
	(tabling ()
	((horizontally ()
	(make-pane ’toggle-button)
	(make-pane ’toggle-button)
	(make-pane ’toggle-button))
	(make-pane ’text-field))
	((make-pane ’push-button :label "a button")
	(make-pane ’slider)))
	(scrolling ()
	(make-pane ’application-pane
	:display-function
	’a-display-function))
	(scrolling ()

	9.2.3 Using the :panes and :layouts Options
	(:panes
	(buttons
	(horizontally ()
	(make-pane ’push-button :label "Press me")
	(make-pane ’push-button :label "Squeeze me")))
	(toggle toggle-button
	:label "Toggle me")
	(interactor :interactor
	:width 300 :height 300)
	(application :application
	:display-function ’another-display-function
	(:layouts
	(default
	(vertically ()
	button toggle
	(scrolling () application)
	interactor))
	(alternate
	(vertically ()
	(scrolling () application)
	(scrolling () interactor)
	(horizontally ()

	9.2.4 Example of the :pane Option to define-applic...
	(define-application-frame test-frame ()
	()
	(:pane
	(vertically ()
	(make-clim-interactor-pane
	:foreground +green+
	:background +red+)
	(make-pane ’push-button
	:label "press me"
	:background +black+
	:foreground +purple+
	:activate-callback
	#’(lambda (button)
	(frame-exit *application-frame*))
	:text-style

	9.2.5 Examples of the :panes and :layout Options t...
	(define-application-frame test () ()
	(:panes
	(main :application
	:incremental-redisplay NIL
	:display-function ’display-main)
	(test-menu :command-menu)
	(listener :interactor))
	(:layouts
	(:default
	(vertically () main test-menu listener)))
	(:command-table
	(test-menu
	:inherit-from (user-command-table)
	:menu
	Figure 18. The Default Layout for the Graphic-Demo...

	(define-application-frame graphics-demo () ()
	(:menu-bar nil)
	(:panes
	(commands :command-menu)
	(demo :application)
	(explanation :application :scroll-bars nil))
	(:layouts
	(:default (vertically ()
	(:fill
	(horizontally ()
	(:fill demo)
	(1/5 commands)))
	Figure 19. The Layout for the Graphic-Demo Example...

	(define-application-frame cad-demo () ()
	(:menu-bar nil)
	(:panes
	(title :title :display-string "Mini-CAD")
	(menu :command-menu)
	(design-area :application)
	(documentation :pointer-documentation))
	(:layouts
	(:main (vertically ()
	(1/8 title)
	(1/8 menu)
	(:fill design-area)
	(1/8 documentation)))
	(:other (vertically ()
	(1/8 title)
	(:fill
	(horizontally ()
	(1/4 menu)
	(:fill design-area)))
	Figure 20. The Two Layouts of the Mini-CAD Demo

	9.2.6 Using an :accept-values Pane in a CLIM Appli...
	(clim:accept-values-pane-displayer
	:displayer my-acceptor-function)

	9.3 Initializing CLIM Application Frames
	1. The value of an application frame’s slot can be...
	2. For initializations that depend on information ...
	3. A :before method for run-frame-top-level on the...
	4. If the application frame employs its own top-le...
	(defclass transaction-recording-mixin ()
	((transaction-pathname :type pathname
	:initarg :pathname
	:reader transaction-pathname)
	(defmethod clim:run-frame-top-level :around
	((frame transaction-recording-mixin))
	(with-slots (transaction-pathname transaction-stre...
	frame (with-open-file (stream transaction-pathname...
	:direction :output)
	(unwind-protect
	(progn (setq transaction-stream stream)
	(call-next-method))
	(defmethod clim:execute-frame-command :before
	((frame transaction-recording-mixin) command)
	(define-application-frame puzzle
	(transaction-recording-mixin application-frame)
	((puzzle :initform (make-array ’(4 4))
	:accessor puzzle-puzzle))
	(:default-initargs :pathname "puzzle-log.text")
	(:panes (title :title)
	(menu :command-menu)
	(display :application
	:default-text-style ’(:fix :bold :very-large)
	:incremental-redisplay t
	(run-frame-top-level
	(make-application-frame ’puzzle
	:width 400
	:height 500

	9.4 Accessing Slots and Components of CLIM Applica...
	9.5 Running a CLIM Application
	(clim:run-frame-top-level
	(clim:make-application-frame

	9.6 Exiting a CLIM Application
	9.7 Examples of CLIM Application Frames
	9.7.1 Defining a CLIM Application Frame
	(clim:define-application-frame
	dingus ()
	((pathname :initform #p"foo") (integer :initform 1...
	(member :initform :one))
	(:panes ((avv:accept-values
	:display-function ’(clim:accept-values-pane-displa...
	:displayer display-avv))
	(display :application :display-function 'draw-disp...
	:display-after-commands :no-clear)))
	(defmethod draw-display ((frame dingus) stream)
	(with-slots (pathname integer member) frame
	(fresh-line stream)
	(clim:present pathname ’pathname :stream stream)
	(write-string ", " stream)
	(clim:present integer ’integer :stream stream)
	(write-string ", " stream)
	(clim:present member ’(member :one :two :three)
	:stream stream)
	(defmethod display-avv ((frame dingus) stream)
	(with-slots (pathname integer member) frame
	(fresh-line stream)
	(setq pathname
	(clim:accept ’pathname :prompt "A pathname"
	:default pathname :stream stream))
	(fresh-line stream)
	(setq integer
	(clim:accept ’integer :prompt "An integer"
	:default integer :stream stream))
	(fresh-line stream)
	(setq member
	(clim:accept ’(member :one :two :three)
	:prompt "One, Two, or Three"
	:default member :stream stream))
	(fresh-line stream)
	(clim:accept-values-command-button
	(stream :documentation "You wolf")
	(write-string "Wolf whistle" stream)
	(defun run-dingus (root)
	(let ((dingus (clim:make-application-frame
	’dingus :width 400 :height 400)))

	9.7.2 Constructing a Function as Part of Running a...
	(clim:define-application-frame
	different-prompts ()
	((prompt-state ...) ...)
	(defmethod different-prompts-top-level
	((frame different-prompts) &rest options)
	(flet ((prompt (stream frame)
	(with-slots (prompt-state) frame
	(apply
	#’clim:default-frame-top-level frame
	:prompt #’prompt options)))

	9.8 Application Frame Operators and Accessors
	define-application-frame [Macro]
	make-application-frame [Function]

	9.8.1 CLIM Application Frame Accessors
	frame-name [Generic Function]
	frame-pretty-name [Generic Function]
	(setf frame-pretty-name) [Generic Function]
	frame-command-table [Generic Function]
	(setf frame-command-table) [Generic Function]
	frame-standard-input [Generic Function]
	frame-standard-output [Generic Function]
	frame-query-io [Generic Function]
	frame-error-output [Generic Function]
	frame-pointer-documentation-output [Generic Functi...
	frame-calling-frame [Generic Function]
	frame-parent [Generic Function]
	frame-panes [Generic Function]
	frame-current-panes [Generic Function]
	get-frame-pane [Generic Function]
	find-pane-named [Generic Function]
	frame-top-level-sheet [Generic Function]
	frame-pane [Generic Function]
	frame-current-layout [Generic Function]
	(setf frame-current-layout) [Generic Function]
	layout-frame [Generic Function]

	9.8.2 Operators for Running CLIM Applications
	run-frame-top-level [Generic Function]
	run-frame-top-level [:Around Method]
	default-frame-top-level [Generic Function]
	read-frame-command [Generic Function]
	execute-frame-command [Generic Function]
	command-enabled [Generic Function]
	(setf command-enabled) [Generic Function]
	display-command-menu [Generic Function]
	frame-exit [Generic Function]
	panes-need-redisplay [Generic Function]
	pane-needs-redisplay [Generic Function]
	redisplay-frame-pane [Generic Function]
	redisplay-frame-panes [Generic Function]
	frame-replay [Generic Function]
	notify-user [Generic Function]
	frame-manager-notify-user [Generic Function]
	frame-properties [Generic Function]
	(setf frame-properties) [Generic Function]

	9.9 Frame Managers
	frame-manager-p [Function]
	9.9.1 Finding Frame Managers
	find-frame-manager [Function]
	1. If a current frame manager has been established...
	1. If *default-frame-manager* is bound to a curren...
	2. If port is nil, a port is found and an appropri...

	with-frame-manager [Macro]

	9.9.2 Frame Manager Operators
	frame-manager [Generic Function]
	(setf frame-manager) [Generic Function]
	frame-manager-frames [Generic Function]
	adopt-frame [Generic Function]
	disown-frame [Generic Function]
	frame-state [Generic Function]
	enable-frame [Generic Function]
	disable-frame [Generic Function]
	shrink-frame [Generic Function]
	note-frame-state-changed [Generic Function]
	generate-panes [Generic Function]
	find-pane-for-frame [Generic Function]
	note-command-enabled [Generic Function]
	note-command-disabled [Generic Function]

	9.10 Advanced Topics
	frame-maintain-presentation-histories [Generic Fun...
	frame-find-innermost-applicable-presentation [Gene...
	frame-input-context-button-press-handler [Generic ...
	frame-document-highlighted-presentation [Generic F...
	frame-drag-and-drop-feedback [Generic Function]
	frame-drag-and-drop-highlighting [Generic Function...

	Chapter 10 Panes and Gadgets
	Chapter 10 Panes and Gadgets
	10.1 Panes 229
	10.1.1 Basic Pane Construction 230
	10.1.2 Pane Initialization Options 231
	10.1.3 Pane Properties 232

	10.2 Layout Panes 233
	10.2.1 Layout Pane Options 233
	10.2.2 Layout Pane Classes 235
	10.2.3 Composite Pane Generic Functions 238
	10.2.4 The Layout Protocol 239

	10.3 Extended Stream Panes 243
	10.3.1 Extended Stream Pane Options 244
	10.3.2 Extended Stream Pane Classes 246
	10.3.3 Making CLIM Extended Stream Panes 247

	10.4 Defining A New Pane Type: Leaf Panes 248
	10.5 Gadgets 249
	10.5.1 Abstract Gadgets 250
	10.5.1.1 Using Gadgets 250
	10.5.1.2 Implementing Gadgets 252

	10.5.2 Basic Gadget Classes 254
	10.5.3 Abstract Gadget Classes 261
	10.5.3.1 The Label Gadget 261
	10.5.3.2 The List-Pane and Option-Pane Gadgets 262...
	10.5.3.3 The Menu-Button Gadget 264
	10.5.3.4 The Push-Button Gadget 264
	10.5.3.5 The Radio-Box and Check-Box Gadgets 265
	10.5.3.6 The Scroll-Bar Gadget 267
	10.5.3.7 The Slider Gadget 270
	10.5.3.8 The Text-Field and Text-Editor Gadgets 27...
	10.5.3.9 The Toggle-Button Gadget 273

	10.5.4 Integrating Gadgets and Output Records 274

	10.1 Panes
	10.1.1 Basic Pane Construction
	panep [Function]
	make-pane [Function]
	make-pane-1 [Generic Function]
	with-look-and-feel-realization [Macro]

	10.1.2 Pane Initialization Options
	:foreground [Option]
	:background [Option]
	:text-style [Option]
	:name [Option]

	10.1.3 Pane Properties
	pane-frame [Generic Function]
	pane-name [Generic Function]
	pane-foreground [Generic Function]
	pane-background [Generic Function]

	10.2 Layout Panes
	(make-instance ’vbox-pane
	:contents (list
	(make-instance ’label-pane :text "One")
	(vertically ()
	(make-instance ’label-pane :text "One")
	10.2.1 Layout Pane Options
	:contents [Option]
	:width [Option]
	:max-width [Option]
	:min-width [Option]
	:height [Option]
	:max-height [Option]
	:min-height [Option]
	:align-x [Option]
	:align-y [Option]
	:x-spacing [Option]
	:y-spacing [Option]
	:spacing [Option]

	10.2.2 Layout Pane Classes
	hbox-pane [Composite Pane]
	horizontally [Macro]
	(horizontally ()
	(1/3 (make-pane ’label-button-pane))

	vbox-pane [Composite Pane]
	vertically [Macro]
	table-pane [Composite Pane]
	tabling [Macro]
	(list (make-pane ’label :text "Red")
	(make-pane ’label :text "Green")
	(make-pane ’label :text "Blue"))
	(list (make-pane ’label :text "Intensity")
	(make-pane ’label :text "Hue")

	spacing-pane [Composite Pane]
	spacing [Macro]
	outlined-pane [Composite Pane]
	outlining [Macro]
	bboard-pane [Composite Pane]
	scroller-pane [Composite Pane]
	scrolling [Macro]
	hrack-pane [Composite Pane]
	vrack-pane [Composite Pane]
	grid-pane [Composite Pane]
	restraining-pane [Composite Pane]
	restraining [Macro]

	10.2.3 Composite Pane Generic Functions
	pane-viewport [Generic Function]
	pane-viewport-region [Generic Function]
	pane-scroller [Generic Function]
	scroll-extent [Generic Function]

	10.2.4 The Layout Protocol
	make-space-requirement [Function]
	space-requirement-width [Function]
	(setf space-requirement-width) [Function]
	space-requirement-max-width [Function]
	(setf space-requirement-max-width) [Function]
	space-requirement-min-width [Function]
	(setf space-requirement-min-width) [Function]
	space-requirement-height [Function]
	(setf space-requirement-height) [Function]
	space-requirement-max-height [Function]
	(setf space-requirement-max-height) [Function]
	space-requirement-min-height [Function]
	(setf space-requirement-min-height) [Function]
	space-requirement-components [Generic Function]
	space-requirement-combine [Function]
	space-requirement+ [Function]
	space-requirement+* [Function]

	change-space-requirements [Generic Function]
	note-space-requirements-changed [Generic Function]...
	changing-space-requirements [Macro]
	compose-space [Generic Function]
	allocate-space [Generic Function]

	10.3 Extended Stream Panes
	10.3.1 Extended Stream Pane Options
	:display-after-commands [Option]
	(define-application-frame test-frame () ()
	(:command-table (test-frame :inherit-from
	(clim:accept-values-pane)))
	(:command-definer t)
	(:panes
	(test-input-pane :accept-values :display-function
	’(clim:accept-values-pane-displayer
	:displayer test-input)
	;; THIS WILL NOT WORK
	:display-after-commands t)
	(dummy :application)
	(menu :command-menu
	:display-function ’(display-command-menu :n-rows 1...
	(:layouts (:default
	(vertically ()
	(defmethod test-input ((frame test-frame) stream)
	(accept ’integer :stream stream :prompt "prompt" :...
	(terpri stream)
	(accept ’integer :stream stream :prompt "foo" :def...
	(defun test-it (&key (port (find-port)))
	(run-frame-top-level
	(make-application-frame ’test-frame
	:frame-manager

	:display-function [Option]
	:display-time [Option]
	:incremental-redisplay [Option]
	:text-margin [Option]
	:vertical-spacing [Option]
	:end-of-line-action [Option]
	:end-of-page-action [Option]
	:output-record [Option]
	:draw [Option]
	:record [Option]

	10.3.2 Extended Stream Pane Classes
	10.3.3 Making CLIM Extended Stream Panes
	make-clim-stream-pane [Function]
	make-clim-interactor-pane [Function]
	make-clim-application-pane [Function]

	10.4 Defining A New Pane Type: Leaf Panes
	;; A new kind of button
	;; An arbitrary size parameter
	;; Define the sheet's repaint method to draw the b...
	(defmethod handle-repaint ((button sample-button-p...
	&key medium &allow-other-keys)
	(let ((radius *sample-button-radius*)
	(half (round *sample-button-radius* 2)))
	;; Larger circle with small one in the center.
	(draw-circle* medium radius radius radius :filled ...
	;;; Define the pane's compose-space method to alwa...
	;;; fixed size of the pane.
	(defmethod compose-space ((pane sample-button-pane...
	(make-space-requirement :width (* 2 *sample-button...
	;; This default method is defined so that the call...
	;; on an arbitrary client value without error.
	(defmethod value-change-callback
	((button sample-button-pane) client id value)
	;; This event processing method defines the rather...
	;; style of this button, to wit: it triggers the a...
	;; whenever the mouse moves into it.
	(defmethod enter-region
	((pane sample-button-pane) &key &allow-other-keys)...
	(value-change-callback pane

	10.5 Gadgets
	10.5.1 Abstract Gadgets
	10.5.1.1 Using Gadgets
	(defmethod activate-callback
	((button push-button) (client button-test) gadget-...
	(with-slots (output-pane) client
	(format output-pane
	"The button ~S was pressed, client ~S, id ~S."
	(defmethod activate-callback
	((button push-button) (client button-test)
	(gadget-id (eql ’start)))
	(defmethod activate-callback
	((button push-button) (client button-test)
	(gadget-id (eql ’stop)))
	;; Create the start and stop push buttons
	(make-pane ’push-button
	:label "Start"
	:client frame :id ’start)
	(make-pane ’push-button
	:label "Stop"
	;; No callback methods needed; just create the pus...
	(make-pane ’push-button
	:label "Start"
	:client frame :id ’start
	:activate-callback
	#’(lambda (gadget)
	(make-pane ’push-button
	:label "Stop"
	:client frame :id ’stop
	:activate-callback
	#’(lambda (gadget)

	10.5.1.2 Implementing Gadgets
	;; A PUSH-BUTTON uses the ACTIVATE-CALLBACK, and h...
	;; This is the abstract class
	;; Here is a concrete implementation of a PUSH-BUT...
	;; The "null" frame manager create a pane of type ...
	;; asked to create a PUSH-BUTTON.
	(defclass push-button-pane
	(push-button leaf-pane space-requirement-mixin)
	((show-as-default :initarg :show-as-default
	:accessor push-button-show-as-default)
	;; General highlight-by-inverting method
	(defmethod highlight-button ((pane push-button-pan...
	(with-bounding-rectangle* (left top right bottom) ...
	(draw-rectangle*
	medium left top right bottom
	;; Compute the amount of space required by a PUSH-...
	(defmethod compose-space ((pane push-button-pane) ...
	(multiple-value-bind (width height)
	(compute-gadget-label-size pane)
	;; This gets invoked to draw the push button.
	(defmethod repaint-sheet ((pane push-button-pane) ...
	(declare (ignore region))
	(with-sheet-medium (medium pane)
	(let ((text (gadget-label pane))
	(text-style (slot-value pane ’text-style))
	(armed (slot-value pane ’armed))
	(region (sheet-region pane)))
	(multiple-value-call #’draw-rectangle*
	medium (bounding-rectangle*
	(sheet-region pane))
	:filled nil)
	(draw-textmedium
	text
	(clim-utils::bounding-rectangle-center region)
	:text-style text-style
	:align-x ’:center
	:align-y ’:top)
	(when (eql armed ’:button-press)
	;; When we enter the push button’s region, arm it....
	(defmethod handle-event ((pane push-button-pane)
	(event pointer-enter-event))
	(with-slots (armed) pane
	(unless armed
	(setf armed t)
	(armed-callback
	;; When we leave the push button’s region, disarm ...
	(defmethod handle-event ((pane push-button-pane)
	(event pointer-exit-event))
	(with-slots (armed) pane
	(when armed
	(when (eql armed ’:button-press)
	(highlight-button pane medium))
	(setf armed nil)
	(disarmed-callback
	;; When the user presses a pointer button, ensure ...
	;; is armed, and highlight it.
	(defmethod handle-event ((pane push-button-pane)
	(event pointer-button-press-event))
	(with-slots (armed) pane
	(unless armed
	(setf armed ’:button-press)
	(armed-callback
	pane (gadget-client pane) (gadget-id pane))
	(with-sheet-medium (medium pane)
	;; When the user releases the button and the butto...
	;; call the activate callback.
	(defmethod handle-event ((pane push-button-pane)
	(event pointer-button-release-event))
	(with-slots (armed) pane
	(when (eql armed ’:button-press)
	(activate-callback
	pane (gadget-client pane) (gadget-id pane))
	(setf armed t)
	(with-sheet-medium (medium pane)

	10.5.2 Basic Gadget Classes
	gadgetp [Function]
	:id [Initarg]
	:client [Initarg]
	:armed-callback [Initarg]
	:disarmed-callback [Initarg]
	gadget-id [Generic Function]
	(setf gadget-id) [Generic Function]
	gadget-client [Generic Function]
	(setf gadget-client) [Generic Function]
	gadget-armed-callback [Generic Function]
	gadget-disarmed-callback [Generic Function]
	armed-callback [Callback]
	disarmed-callback [Callback]
	activate-gadget [Generic Function]
	deactivate-gadget [Generic Function]
	gadget-active-p [Generic Function]
	note-gadget-activated [Generic Function]
	note-gadget-deactivated [Generic Function]
	:value [Initarg]
	:value-changed-callback [Initarg]
	gadget-value [Generic Function]
	(setf gadget-value) [Generic Function]
	gadget-value-changed-callback [Generic Function]
	value-changed-callback [Callback]
	:activate-callback [Initarg]
	gadget-activate-callback [Generic Function]
	activate-callback [Callback]
	:orientation [Initarg]
	gadget-orientation [Generic Function]
	:label [Initarg]
	:align-x [Initarg]
	:align-y [Initarg]
	gadget-label [Generic Function]
	(setf gadget-label) [Generic Function]
	gadget-label-align-x [Generic Function]
	(setf gadget-label-align-x) [Generic Function]
	gadget-label-align-y [Generic Function]
	(setf gadget-label-align-y) [Generic Function]
	gadget-label-text-style [Generic Function]
	(setf gadget-label-text-style) [Generic Function]
	:min-value [Initarg]
	:max-value [Initarg]
	gadget-min-value [Generic Function]
	(setf gadget-min-value) [Generic Function]
	gadget-max-value [Generic Function]
	(setf gadget-max-value) [Generic Function]
	gadget-range [Generic Function]
	gadget-range* [Generic Function]

	10.5.3 Abstract Gadget Classes
	10.5.3.1 The Label Gadget
	labelling [Macro]

	10.5.3.2 The List-Pane and Option-Pane Gadgets
	:mode [Initarg]
	:items [Initarg]
	:name-key [Initarg]
	:value-key [Initarg]
	:test [Initarg]
	gadget-value [Generic Function]
	:mode [Initarg]
	:items [Initarg]
	:name-key [Initarg]
	:value-key [Initarg]
	:test [Initarg]
	gadget-value [Generic Function]

	10.5.3.3 The Menu-Button Gadget
	10.5.3.4 The Push-Button Gadget
	:show-as-default [Initarg]
	push-button-show-as-default [Generic Function]

	10.5.3.5 The Radio-Box and Check-Box Gadgets
	:current-selection [Initarg]
	radio-box-current-selection [Generic Function]
	(setf radio-box-current-selection) [Generic Functi...
	radio-box-selections [Generic Function]
	gadget-value [Generic Function]
	:current-selection [Initarg]
	check-box-current-selection [Generic Function]
	(setf check-box-current-selection) [Generic Functi...
	check-box-selections [Generic Function]
	gadget-value [Generic Function]
	with-radio-box [Macro]
	(with-radio-box ()
	(make-pane ’toggle-button :label "Mono")
	(radio-box-current-selection
	(make-pane ’toggle-button :label "Stereo"))
	(with-radio-box () "Mono" "Stereo" "Quad")

	10.5.3.6 The Scroll-Bar Gadget
	:drag-callback [Initarg]
	:scroll-to-bottom-callback [Initarg]
	:scroll-to-top-callback [Initarg]
	:scroll-down-line-callback [Initarg]
	:scroll-up-line-callback [Initarg]
	:scroll-down-page-callback [Initarg]
	:scroll-up-page-callback [Initarg]
	scroll-bar-drag-callback [Generic Function]
	scroll-bar-scroll-to-bottom-callback [Generic Func...
	scroll-bar-scroll-to-top-callback [Generic Functio...
	scroll-bar-scroll-down-line-callback [Generic Func...
	scroll-bar-scroll-up-line-callback [Generic Functi...
	scroll-bar-scroll-down-page-callback [Generic Func...
	scroll-bar-scroll-up-page-callback [Generic Functi...
	drag-callback [Callback]
	scroll-to-top-callback [Callback]
	scroll-to-bottom-callback [Callback]
	scroll-up-line-callback [Callback]
	scroll-up-page-callback [Callback]
	scroll-down-line-callback [Callback]
	scroll-down-page-callback [Callback]
	gadget-value [Generic Function]

	10.5.3.7 The Slider Gadget
	:drag-callback [Initarg]
	:show-value-p [Initarg]
	:decimal-places [Initarg]
	slider-drag-callback [Generic Function]
	drag-callback [Callback]
	gadget-value [Generic Function]
	:number-of-tick-marks [Initarg]
	:number-of-quanta [Initarg]
	gadget-show-value-p [Generic Function]

	10.5.3.8 The Text-Field and Text-Editor Gadgets
	:editable-p [Initarg]
	gadget-value [Generic Function]
	:ncolumns [Initarg]
	:nlines [Initarg]
	gadget-value [Generic Function]

	10.5.3.9 The Toggle-Button Gadget
	:indicator-type [Initarg]
	toggle-button-indicator-type [Generic Function]
	gadget-value [Generic Function]

	10.5.4 Integrating Gadgets and Output Records
	with-output-as-gadget [Macro]
	(with-output-as-gadget
	(stream)
	(let* ((radio-box
	(make-pane ’radio-box
	:client stream :id ’radio-box)))
	(dolist (item sequence)
	(make-pane ’toggle-button
	:label (princ-to-string (item-name item))
	:value (item-value item)
	:id item :parent radio-box))
	(with-output-as-gadget
	(stream)
	(make-pane ’push-button
	:label "Click here to exit"
	:activate-callback
	#’(lambda (button)

	Chapter 11 Commands
	Chapter 11 Commands
	11.1 Introduction to CLIM Commands 279
	11.2 Defining Commands the Easy Way 280
	11.2.1 Command Names and Command Line Names 281
	11.2.2 The Command-Defining Macro 281

	11.3 Command Objects 283
	11.4 CLIM Command Tables 286
	11.5 CLIM Predefined Command Tables 289
	11.6 Conditions Relating to CLIM Command Tables 29...
	11.7 Styles of Interaction Supported by CLIM 291
	11.8 Command-Related Presentation Types 291
	11.9 The CLIM Command Processor 293
	11.10 Advanced Topics 296
	11.10.1 CLIM Command Tables 296
	11.10.2 CLIM Command Menu Interaction Style 298
	11.10.3 Mouse Interaction Via Presentation Transla...
	11.10.4 CLIM Command Line Interaction Style 303
	11.10.5 CLIM Keystroke Interaction Style 304
	11.10.6 The CLIM Command Processor 307

	11.1 Introduction to CLIM Commands
	11.2 Defining Commands the Easy Way
	(clim:define-application-frame editor () ()
	(:command-table editor-command-table)
	11.2.1 Command Names and Command Line Names
	11.2.2 The Command-Defining Macro
	(define-editor-command
	(com-save-file :menu t
	:keystroke #\c-\s) () ...)
	(define-editor-command
	(com-save-file :name "Save File") () ...)
	define-presentation-to-command-translator [Macro]

	11.3 Command Objects
	command-name [Function]
	command-arguments [Function]
	partial-command-p [Function]
	define-command [Macro]

	11.4 CLIM Command Tables
	command-table-p [Function]
	command-table-name [Generic Function]
	command-table-inherit-from [Generic Function]
	define-command-table [Macro]
	make-command-table [Function]
	find-command-table [Function]
	add-command-to-command-table [Function]
	remove-command-from-command-table [Function]

	11.5 CLIM Predefined Command Tables
	11.6 Conditions Relating to CLIM Command Tables
	11.7 Styles of Interaction Supported by CLIM
	11.8 Command-Related Presentation Types
	11.9 The CLIM Command Processor
	read-command [Function]
	read-frame-command [Generic Function]
	execute-frame-command [Generic Function]
	with-command-table-keystrokes [Macro]
	read-command-using-keystrokes [Function]
	enable-command [Function]
	disable-command [Function]

	11.10 Advanced Topics
	11.10.1 CLIM Command Tables
	do-command-table-inheritance [Macro]
	map-over-command-table-commands [Function]
	map-over-command-table-names [Function]
	command-present-in-command-table-p [Function]
	command-accessible-in-command-table-p [Function]
	find-command-from-command-line-name [Function]
	command-line-name-for-command [Function]
	command-table-complete-input [Function]

	11.10.2 CLIM Command Menu Interaction Style
	display-command-table-menu [Generic Function]
	display-command-menu [Generic Function]
	menu-choose-command-from-command-table [Function]
	add-menu-item-to-command-table [Function]
	remove-menu-item-from-command-table [Function]
	map-over-command-table-menu-items [Function]
	find-menu-item [Function]
	command-menu-item-type [Function]
	command-menu-item-value [Function]
	command-menu-item-options [Function]

	11.10.3 Mouse Interaction Via Presentation Transla...
	add-presentation-translator-to-command-table [Func...
	remove-presentation-translator-from-command-table ...
	map-over-command-table-translators [Function]
	find-presentation-translator [Function]

	11.10.4 CLIM Command Line Interaction Style
	find-command-from-command-line-name [Function]
	command-line-name-for-command [Function]
	map-over-command-table-names [Function]

	11.10.5 CLIM Keystroke Interaction Style
	add-keystroke-to-command-table [Function]
	remove-keystroke-from-command-table [Function]
	map-over-command-table-keystrokes [Function]
	find-keystroke-item [Function]
	lookup-keystroke-item [Function]
	lookup-keystroke-command-item [Function]
	substitute-numeric-argument-marker [Function]

	11.10.6 The CLIM Command Processor
	command-line-command-parser [Function]
	command-line-command-unparser [Function]
	command-line-read-remaining-arguments-for-partial-...
	menu-command-parser [Function]
	menu-read-remaining-arguments-for-partial-command ...

	Chapter 12 Menus and Dialogs
	Chapter 12 Menus and Dialogs
	12.1 Conceptual Overview of Menus and Dialogs 311
	12.2 CLIM Menu Operators 311
	12.3 CLIM Dialog Operators 317
	12.4 Examples of Menus and Dialogs in CLIM 321
	12.4.1 Using accepting-values 321
	12.4.2 Using accept-values-command-button 322
	12.4.3 Using :resynchronize-every-pass in acceptin...
	12.4.4 Using the third value from accept in accept...
	12.4.5 Using menu-choose 325
	12.4.6 Using menu-choose-from-drawer 327

	12.1 Conceptual Overview of Menus and Dialogs
	12.2 CLIM Menu Operators
	menu-choose [Generic Function]
	frame-manager-menu-choose [Generic Function]
	menu-choose-from-drawer [Generic Function]
	draw-standard-menu [Function]
	print-menu-item [Function]
	menu-item-value [Function]
	menu-item-display [Function]
	menu-item-options [Function]

	with-menu [Macro]

	12.3 CLIM Dialog Operators
	accepting-values [Macro]
	’((:exit "Control-] uses these values")
	(defun avv ()
	(let (a b c)
	(accepting-values
	(*query-io* :initially-select-query-identifier ’th...
	(setq a (accept ’pathname :prompt "A pathname"))
	(terpri *query-io*)
	(setq b (accept ’integer :prompt "A number"
	:query-indentifier ’the-tag))
	(terpri *query-io*)
	(setq c (accept ’string :prompt "A string")))
	(defun alter-multiple-accept ()
	(let ((flag 2))
	(accepting-values
	(*query-io* :resynchronize-every-pass t)
	(setq flag (accept 'integer :default flag :prompt ...
	(when (= flag 1)
	(terpri *query-io*)
	(accept ’string :prompt "String"
	(terpri *query-io*)

	accept-values [Application Frame]
	accept-values-pane-displayer [Function]

	display-exit-boxes [Generic Function]
	accept-values-resynchronize [Generic Function]
	accept-values-command-button [Macro]
	invoke-accept-values-command-button [Generic Funct...

	12.4 Examples of Menus and Dialogs in CLIM
	12.4.1 Using accepting-values
	(defun reset-clock (stream)
	(multiple-value-bind (second minute hour day month...
	(decode-universal-time
	(get-universal-time))
	(declare (ignore second))
	(format stream "Enter the time~%")
	(restart-case
	(progn
	(clim:accepting-values (stream)
	(setq month
	(clim:accept ’integer :stream stream
	:default month :prompt "Month"))
	(terpri stream)
	(setq day
	(clim:accept ’integer :stream stream
	:default day :prompt "Day"))
	(terpri stream)
	(setq hour
	(clim:accept ’integer :stream stream
	:default hour :prompt "Hour"))
	(terpri stream)
	(setq minute
	(clim:accept ’integer :stream stream
	:default minute :prompt "Minute")))
	;; This could be code to reset the time, but inste...
	;; we’re just printing it out
	(format t "~%New values: Month: ~D, Day: ~D, Time:...
	month day hour minute))

	12.4.2 Using accept-values-command-button
	(defun reset-clock (stream)
	(multiple-value-bind (second minute hour day month...
	(decode-universal-time (get-universal-time))
	(declare (ignore second))
	(format stream "Enter the time~%")
	(progn
	(clim:accepting-values
	(stream)
	(setq month
	(clim:accept ’integer :stream stream
	:default month :prompt "Month"))
	(terpri stream)
	(setq day
	(clim:accept ’integer :stream stream
	:default day :prompt "Day"))
	(terpri stream)
	(setq hour
	(clim:accept ’integer :stream stream
	:default hour :prompt "Hour"))
	(terpri stream)
	(setq minute
	(clim:accept ’integer :stream stream
	:default minute :prompt "Minute")))
	;; Print the current time to the terminal.
	(accept-values-command-button
	(stream) "Print-Clock"
	(format t
	"~%Current values: Month: ~D, Day: ~D, Time: ~D:~2...
	month day hour minute))))

	12.4.3 Using :resynchronize-every-pass in acceptin...
	(defun accepting-interval (&key (min -1.0) (max 1....
	(stream *query-io*))
	(clim:accepting-values (stream :resynchronize-ever...
	(fresh-line stream)
	(setq min
	(clim:accept
	’clim:real :default min
	:prompt "Min" :stream stream))
	(fresh-line stream)
	(setq max
	(clim:accept
	’clim:real :default max
	:prompt "Max" :stream stream))
	(when (< max min)
	(rotatef min max)))

	12.4.4 Using the third value from accept in accept...
	Xmax - Xmin = Ymax - Ymin
	(defun accepting-square
	(&key (xmin -1.0) (xmax 1.0)
	(ymin -1.0) (ymax 1.0)
	(let (xmin-changed xmax-changed ymin-changed ymax-...
	(clim:accepting-values
	(stream :resynchronize-every-pass t)
	(fresh-line stream)
	(multiple-value-setq
	(xmin ptype xmin-changed)
	(clim:accept ’clim:real :default xmin
	:prompt "Xmin" :stream stream))
	(fresh-line stream)
	(multiple-value-setq
	(xmax ptype xmax-changed)
	(clim:accept ’clim:real :default xmax
	:prompt "Xmax" :stream stream))
	(fresh-line stream)
	(multiple-value-setq
	(ymin ptype ymin-changed)
	(clim:accept ’clim:real :default ymin
	:prompt "Ymin" :stream stream))
	(fresh-line stream)
	(multiple-value-setq
	(ymax ptype ymax-changed)
	(clim:accept ’clim:real :default ymax
	:prompt "Ymax" :stream stream))
	(cond ((or xmin-changed xmax-changed)
	(let ((y-center (/ (+ ymax ymin) 2.0))
	(x-half-width (/ (- xmax xmin) 2.0)))
	(setq ymin (- y-center x-half-width)
	ymax (+ y-center x-half-width)))
	(setq xmin-changed nil
	xmax-changed nil))
	((or ymin-changed ymax-changed)
	(let ((x-center (/ (+ xmax xmin) 2.0))
	(y-half-width (/ (- ymax ymin) 2.0)))
	(setq xmin (- x-center y-half-width)
	xmax (+ x-center y-half-width)))
	(setq ymin-changed nil
	ymax-changed nil)))))

	12.4.5 Using menu-choose
	(clim:menu-choose ’("One" "Two" "Seventeen"))
	(clim:menu-choose
	’(("One" :value 1 :documentation "the loneliest nu...
	("Two" :value 2 :documentation "for tea")
	("Seventeen"
	(clim:menu-choose ’(1 2 17)
	:printer #’(lambda (item stream)
	(format stream "~R" item)))
	(clim:menu-choose
	’(circle square triangle)
	:printer
	#’(lambda (item stream)
	(case item
	(circle (clim:draw-circle* stream 0 0 10))
	(square (clim:draw-polygon* stream ’(-8 -8 -8 8 8 ...
	(triangle (clim:draw-polygon* stream ’(10 8 0 -10 ...
	(clim:menu-choose
	’(("Class: Osteichthyes" :documentation "Bony fish...
	:style (nil :italic nil))
	("Class: Chondrichthyes"
	:documentation "Cartilaginous fishes"
	:style (nil :italic nil)
	:item-list (("Order: Squaliformes" :documentation ...
	("Order: Rajiformes" :documentation "Rays")))
	("Class: Mammalia" :documentation "Mammals" :style...
	:item-list
	(("Order Rodentia" :item-list ("Family Sciuridae"
	"Family Muridae"
	"Family Cricetidae"
	("..." :value nil)))
	("Order Carnivora" :item-list ("Family: Felidae"
	"Family: Canidae"
	"Family: Ursidae"
	("..." :value nil)))
	("..." :value nil)))

	12.4.6 Using menu-choose-from-drawer
	(clim:menu-choose-from-drawer
	page-stream 'string
	#’(lambda (stream type)
	(clim:with-text-face (:bold stream)
	(dotimes (count 10)
	(clim:present (string-capitalize
	(format nil "~R" (1+ count)))
	type :stream stream)
	(defun choose-compass-direction (parent-window)
	(labels
	((draw-compass-point
	(stream ptype symbol x y)
	(clim:with-output-as-presentation
	(:stream stream :object symbol :type ptype)
	(clim:draw-string* stream
	(symbol-name symbol) x y
	:align-x :center
	:align-y :center
	:text-style
	’(:sans-serif :roman :large))))
	(draw-compass
	(stream ptype)
	(clim:draw-line* stream 0 25 0 -25 :line-thickness...
	(clim:draw-line* stream 25 0 -25 0 :line-thickness...
	(loop for point in ’((n 0 -30) (s 0 30) (e 30 0)(w...
	do (apply #’draw-compass-point
	stream ptype point))))
	(clim:with-menu (menu parent-window)
	(clim:menu-choose-from-drawer menu ’clim:menu-item...

	Chapter 13 Extended Stream Output Facilities
	Chapter 13 Extended Stream Output Facilities
	13.1 Basic Output Streams 331
	13.2 Extended Output Streams 332
	13.3 The Text Cursor 334
	13.3.1 The Text Cursor Protocol 336
	13.3.2 The Stream Text Cursor Protocol 337

	13.4 Text 338
	13.4.1 The Text Protocol 338
	13.4.2 Mixing Text and Graphics 340
	13.4.3 Wrapping Text Lines 340

	13.5 Attracting the User’s Attention 342
	13.6 Buffering Output 342
	13.7 CLIM Window Stream Pane Functions 343
	13.1 Basic Output Streams
	stream-write-char [Generic Function]
	stream-line-column [Generic Function]
	stream-start-line-p [Generic Function]
	stream-write-string [Generic Function]
	stream-terpri [Generic Function]
	stream-fresh-line [Generic Function]
	stream-finish-output [Generic Function]
	stream-force-output [Generic Function]
	stream-clear-output [Generic Function]
	stream-advance-to-column [Generic Function]

	13.2 Extended Output Streams
	extended-output-stream-p [Function]
	:foreground [Initarg]
	:background [Initarg]
	:default-text-style [Initarg]
	:vertical-spacing [Initarg]
	:text-margin [Initarg]
	:end-of-line-action [Initarg]
	:end-of-page-action [Initarg]
	:default-view [Initarg]

	13.3 The Text Cursor
	Figure 21. Determining the Position of the Text Cu...
	13.3.1 The Text Cursor Protocol
	cursorp [Function]
	:sheet [Initarg]
	cursor-sheet [Generic Function]
	cursor-position [Generic Function]
	(setf* cursor-position) [Generic Function]
	cursor-visibility [Generic Function]
	(setf cursor-visibility) [Generic Function]
	display-cursor [Generic Function]

	13.3.2 The Stream Text Cursor Protocol
	stream-text-cursor [Generic Function]
	(setf stream-text-cursor) [Generic Function]
	stream-cursor-position [Generic Function]
	(setf* stream-cursor-position) [Generic Function]
	stream-increment-cursor-position [Generic Function...

	13.4 Text
	13.4.1 The Text Protocol
	stream-character-width [Generic Function]
	stream-string-width [Generic Function]
	stream-text-margin [Generic Function]
	(setf stream-text-margin) [Generic Function]
	stream-line-height [Generic Function]
	stream-vertical-spacing [Generic Function]
	stream-baseline [Generic Function]

	13.4.2 Mixing Text and Graphics
	with-room-for-graphics [Macro]

	13.4.3 Wrapping Text Lines
	stream-end-of-line-action [Generic Function]
	(setf stream-end-of-line-action) [Generic Function...
	with-end-of-line-action [Macro]
	stream-end-of-page-action [Generic Function]
	(setf stream-end-of-page-action) [Generic Function...
	with-end-of-page-action [Macro]

	13.5 Attracting the User’s Attention
	beep [Generic Function]

	13.6 Buffering Output
	medium-buffering-output-p [Generic Function]
	(setf medium-buffering-output-p) [Generic Function...
	with-output-buffered [Macro]

	13.7 CLIM Window Stream Pane Functions
	window-clear [Generic Function]
	window-refresh [Generic Function]
	window-viewport [Generic Function]
	window-erase-viewport [Generic Function]
	window-viewport-position [Generic Function]
	(setf window-viewport-position) [Generic Function]...

	Chapter 14 Output Recording and Redisplay
	Chapter 14 Output Recording and Redisplay
	14.1 Conceptual Overview of Output Recording 347
	14.2 CLIM Operators for Output Recording 348
	14.2.1 The Basic Output Record Protocol 350
	14.2.2 The Output Record “Database” Protocol 353
	14.2.3 Types of Output Records 354
	14.2.3.1 Standard Output Record Classes 354
	14.2.3.2 Graphics Displayed Output Records 355
	14.2.3.3 Text Displayed Output Records 356
	14.2.3.4 Top-Level Output Records 357

	14.2.4 Output Recording Streams 358
	14.2.4.1 The Output Recording Stream Protocol 358
	14.2.4.2 Graphics Output Recording 360
	14.2.4.3 Text Output Recording 360
	14.2.4.4 Output Recording Utilities 361

	14.3 Conceptual Overview of Incremental Redisplay ...
	14.4 CLIM Operators for Incremental Redisplay 366
	14.5 Using updating-output 368
	14.6 Example of Incremental Redisplay in CLIM 370
	14.1 Conceptual Overview of Output Recording
	Figure 22. The Tree Structure of an Output Record
	Figure 23. The Output Records of a Formatted Table...

	14.2 CLIM Operators for Output Recording
	output-record-p [Function]
	displayed-output-record-p [Function]
	:x-position [Initarg]
	:y-position [Initarg]
	:parent [Initarg]
	:size [Initarg]
	14.2.1 The Basic Output Record Protocol
	output-record-position [Generic Function]
	(setf* output-record-position) [Generic Function]
	output-record-start-cursor-position [Generic Funct...
	(setf* output-record-start-cursor-position) [Gener...
	output-record-end-cursor-position [Generic Functio...
	(setf* output-record-end-cursor-position) [Generic...
	output-record-parent [Generic Function]
	replay [Function]

	replay-output-record [Generic Function]
	erase-output-record [Generic Function]
	output-record-refined-sensitivity-test [Generic Fu...
	highlight-output-record [Generic Function]

	14.2.2 The Output Record “Database” Protocol
	output-record-children [Generic Function]
	add-output-record [Generic Function]
	delete-output-record [Generic Function]
	clear-output-record [Generic Function]
	output-record-count [Generic Function]
	map-over-output-records-containing-position [Gener...
	map-over-output-records-overlapping-region [Generi...

	14.2.3 Types of Output Records
	14.2.3.1 Standard Output Record Classes
	14.2.3.2 Graphics Displayed Output Records
	graphics-displayed-output-record-p [Function]

	14.2.3.3 Text Displayed Output Records
	text-displayed-output-record-p [Function]
	add-character-output-to-text-record [Generic Funct...
	add-string-output-to-text-record [Generic Function...
	text-displayed-output-record-string [Generic Funct...

	14.2.3.4 Top-Level Output Records

	14.2.4 Output Recording Streams
	output-recording-stream-p [Function]
	14.2.4.1 The Output Recording Stream Protocol
	stream-recording-p [Generic Function]
	(setf stream-recording-p) [Generic Function]
	stream-drawing-p [Generic Function]
	(setf stream-drawing-p) [Generic Function]
	stream-output-history [Generic Function]
	stream-current-output-record [Generic Function]
	(setf stream-current-output-record) [Generic Funct...
	stream-add-output-record [Generic Function]
	stream-replay [Generic Function]

	14.2.4.2 Graphics Output Recording
	14.2.4.3 Text Output Recording
	stream-text-output-record [Generic Function]
	stream-close-text-output-record [Generic Function]...
	stream-add-character-output [Generic Function]
	stream-add-string-output [Generic Function]

	14.2.4.4 Output Recording Utilities
	with-output-recording-options [Macro]
	invoke-with-output-recording-options [Generic Func...
	with-new-output-record [Macro]
	with-output-to-output-record [Macro]
	invoke-with-new-output-record [Generic Function]
	invoke-with-output-to-output-record [Generic Funct...
	make-design-from-output-record [Generic Function]

	14.3 Conceptual Overview of Incremental Redisplay
	14.4 CLIM Operators for Incremental Redisplay
	updating-output [Macro]
	invoke-updating-output [Generic Function]
	redisplay [Function]

	redisplay-output-record [Generic Function]

	14.5 Using updating-output
	1. An association between the output being done by...
	2. A means of determining whether this particular ...

	14.6 Example of Incremental Redisplay in CLIM
	(defun test (stream)
	(let* ((list (list 1 2 3 4 5))
	(record
	(clim:updating-output
	(stream)
	(do* ((elements list (cdr elements))
	(count 0 (1+ count))
	(element (first elements) (first elements)))
	((null elements))
	(clim:updating-output (stream :unique-id count
	:cache-value element)
	(format stream "Element ~D~%" element))))))
	(force-output stream)
	(sleep 10)
	(setf (nth 2 list) 17)
	Element 1
	Element 2
	Element 3
	Element 4
	Element 5
	Element 1
	Element 2
	Element 17
	Element 4
	Element 5
	(setf list (sort list #’(lambda (&rest args) (zero...

	Chapter 15 Extended Stream Input Facilities
	Chapter 15 Extended Stream Input Facilities
	15.1 Basic Input Streams 375
	15.2 Extended Input Streams 376
	15.2.1 The Extended Input Stream Protocol 377
	15.2.2 Extended Input Stream Conditions 381

	15.3 Gestures and Gesture Names 382
	15.4 The Pointer Protocol 385
	15.5 Pointer Tracking 386
	15.1 Basic Input Streams
	stream-read-char [Generic Function]
	stream-unread-char [Generic Function]
	stream-read-char-no-hang [Generic Function]
	stream-peek-char [Generic Function]
	stream-listen [Generic Function]
	stream-read-line [Generic Function]
	stream-clear-input [Generic Function]

	15.2 Extended Input Streams
	extended-input-stream-p [Function]
	:input-buffer [Initarg]
	:pointer [Initarg]
	:text-cursor [Initarg]
	15.2.1 The Extended Input Stream Protocol
	stream-input-buffer [Generic Function]
	(setf stream-input-buffer) [Generic Function]
	stream-pointers [Generic Function]
	stream-primary-pointer [Generic Function]
	(setf stream-primary-pointer) [Generic Function]
	stream-pointer-position [Generic Function]
	(setf* stream-pointer-position) [Generic Function]...
	stream-set-input-focus [Generic Function]
	stream-restore-input-focus [Generic Function]
	with-input-focus [Macro]
	read-gesture [Function]

	stream-read-gesture [Generic Function]
	stream-input-wait [Generic Function]
	unread-gesture [Function]

	stream-unread-gesture [Generic Function]

	15.2.2 Extended Input Stream Conditions
	abort-gesture-event [Generic Function]
	accelerator-gesture-event [Generic Function]
	accelerator-gesture-numeric-argument [Generic Func...

	15.3 Gestures and Gesture Names
	define-gesture-name [Macro]
	add-gesture-name [Function]
	delete-gesture-name [Function]

	15.4 The Pointer Protocol
	pointerp [Function]
	:port [Initarg]
	pointer-port [Generic Function]
	pointer-sheet [Generic Function]
	(setf pointer-sheet) [Generic Function]
	pointer-button-state [Generic Function]
	pointer-position [Generic Function]
	(setf* pointer-position) [Generic Function]
	pointer-cursor [Generic Function]
	(setf pointer-cursor) [Generic Function]

	15.5 Pointer Tracking
	tracking-pointer [Macro]
	(define-application-frame test ()
	()
	(:panes
	(define-test-command (rubberband :menu t) ()
	(let ((x1 0);; x1, y1 represents the fix point
	(y1 0)
	(x2 0);; x2,y2 represents the point that is changi...
	(y2 0)
	(mouse-button-press nil);; set to T when mouse but...
	;; press to select pivot
	(tracking-pointer
	(stream)
	(:pointer-button-press
	(event x y)
	(setf x1 x
	y1 y
	x2 x
	y2 y)
	(draw-rectangle* stream x1 y1 x2 y2
	:ink +flipping-ink+ :filled nil)
	(setf mouse-button-press t))
	(:pointer-motion
	(window x y)
	(when mouse-button-press
	;;erase
	(draw-rectangle* stream x1 y1 x2 y2
	:ink +flipping-ink+ :filled nil)
	;; draw
	(draw-rectangle* stream x1 y1 x y
	:ink +flipping-ink+ :filled nil)
	(setf x2 x y2 y)))
	(:pointer-button-release (event x y)
	(when mouse-button-press
	(define-test-command (com-exit :menu "EXEUNT" :key...

	drag-output-record [Generic Function]
	dragging-output [Macro]
	pointer-place-rubber-band-line* [Function]
	pointer-input-rectangle* [Function]
	pointer-input-rectangle [Function]

	Chapter 16 Input Editing and Completion Facilities...
	Chapter 16 Input Editing and Completion Facilities...
	16.1 Input Editing 397
	16.1.1 Operators for Input Editing 399
	16.1.2 Input Editor Commands 400

	16.2 Activation and Delimiter Gestures 402
	16.3 Signalling Errors Inside accept Methods 403
	16.4 Reading and Writing Tokens 404
	16.5 Completion 406
	16.6 Using with-accept-help: some examples 412
	16.7 Advanced Topics 412
	16.1 Input Editing
	(catch ’rescan ;thrown to when a rescan is invoked...
	(reset-scan-pointer stream) ;sets STREAM-RESCANNIN...
	(loop
	(progn
	(rescan-if-necessary stream)
	(loop
	;; If SP is less than FP
	;; Then get the next gesture from the input editor...
	;; and increment SP
	;; Else read the next gesture from the encapsulate...
	;; and insert it into the buffer at IP
	;; Set the "rescan in progress" flag to false
	;; Call STREAM-PROCESS-GESTURE on the gesture
	;; If it was a "real" gesture
	;; Then exit with the gesture as the result
	;; Else it was an input editing command (which has...
	;; processed), so continue looping
	16.1.1 Operators for Input Editing
	interactive-stream-p [Generic Function]
	input-editing-stream-p [Function]

	with-input-editing [Macro]
	with-input-editor-typeout [Macro]

	16.1.2 Input Editor Commands
	Table 4. Input Editor Keystroke Commands

	16.2 Activation and Delimiter Gestures
	with-activation-gestures [Macro]
	activation-gesture-p [Function]

	with-delimiter-gestures [Macro]
	delimiter-gesture-p [Function]

	16.3 Signalling Errors Inside accept Methods
	parse-error [Function]
	simple-parse-error [Function]
	input-not-of-required-type [Function]

	16.4 Reading and Writing Tokens
	replace-input [Generic Function]
	presentation-replace-input [Generic Function]
	read-token [Function]
	write-token [Function]

	16.5 Completion
	complete-input [Function]
	complete-from-generator [Function]
	complete-from-possibilities [Function]
	completing-from-suggestions [Macro]
	(completing-from-suggestions (stream)
	(map nil
	#’(lambda (x)
	(suggest
	(car x) (cdr x)))
	’(("One" . 1)
	("Two" . 2)
	suggest [Function]

	with-accept-help [Macro]

	16.6 Using with-accept-help: some examples
	(clim:with-accept-help
	((:subhelp "This is a test."))
	(clim:accept ’pathname))
	[ACCEPT does this] ==> You are being asked to ente...
	[done via :SUBHELP] This is a test.
	(clim:with-accept-help ((:top-level-help "This is ...
	(clim:accept ’pathname))
	[done via :TOP-LEVEL-HELP] ==> This is a test.
	(clim:with-accept-help (((:subhelp :override) "Thi...
	(clim:accept ’pathname))
	[ACCEPT does this] ==> You are being asked to ente...
	[done via :SUBHELP] This is a test.
	(clim:define-presentation-type test ())
	(clim:define-presentation-method clim:accept
	((type test) stream view &key)
	(values (clim:with-accept-help
	((:subhelp "A test is made up of three things:"))
	(clim:completing-from-suggestions (...) ...))))
	(clim:accept ’test)
	==> You are being asked to enter a test.
	A test is made up of three things:

	16.7 Advanced Topics
	stream-input-buffer [Generic Function]
	stream-insertion-pointer [Generic Function]
	(setf stream-insertion-pointer) [Generic Function]...
	stream-scan-pointer [Generic Function]
	(setf stream-scan-pointer) [Generic Function]
	stream-rescanning-p [Generic Function]
	reset-scan-pointer [Generic Function]
	immediate-rescan [Generic Function]
	queue-rescan [Generic Function]
	rescan-if-necessary [Generic Function]
	erase-input-buffer [Generic Function]
	redraw-input-buffer [Generic Function]
	stream-process-gesture [Generic Function]
	stream-read-gesture [Generic Function]
	stream-unread-gesture [Generic Function]

	Chapter 17 Formatted Output
	Chapter 17 Formatted Output
	17.1 Formatting Tables in CLIM 419
	17.1.1 Conceptual Overview of Formatting Tables 41...
	17.1.2 CLIM Operators for Formatting Tables 420
	17.1.3 Examples of Formatting Tables 426
	17.1.3.1 Formatting a Table From a List 426
	17.1.3.2 Formatting a Table Representing a Calenda...
	17.1.3.3 Formatting a Table With Regular Graphic E...
	17.1.3.4 Formatting a Table With Irregular Graphic...
	17.1.3.5 Formatting a Table of a Sequence of Items...

	17.2 Formatting Graphs in CLIM 433
	17.2.1 Conceptual Overview of Formatting Graphs 43...
	17.2.2 CLIM Operators for Graph Formatting 434
	17.2.3 Examples of CLIM Graph Formatting 437

	17.3 Formatting Text in CLIM 438
	17.4 Bordered Output in CLIM 440
	17.5 Advanced Topics 442
	17.5.1 The Table Formatting Protocol 443
	17.5.1.1 The Row and Column Formatting Protocol 44...
	17.5.1.2 The Cell Formatting Protocol 446

	17.5.2 The Item List Formatting Protocol 447
	17.5.3 The Graph Formatting Protocol 449

	17.1 Formatting Tables in CLIM
	17.1.1 Conceptual Overview of Formatting Tables
	17.1.2 CLIM Operators for Formatting Tables
	formatting-table [Macro]
	formatting-row [Macro]
	formatting-column [Macro]
	formatting-cell [Macro]
	formatting-item-list [Macro]
	format-items [Function]
	format-textual-list [Function]

	17.1.3 Examples of Formatting Tables
	17.1.3.1 Formatting a Table From a List
	(defvar *alphabet* ’(a b c d e f g h i j k l m n o...
	(defun example1 (&optional (items *alphabet*)
	&key (stream *standard-output*) (n-columns 6)
	inter-row-spacing inter-column-spacing)
	(clim:formatting-table
	(stream :inter-row-spacing inter-row-spacing
	(do ()
	((null items))
	(clim:formatting-row (stream)
	(do ((i 0 (1+ i)))
	((or (null items) (= i n-columns)))
	(clim:formatting-cell (stream)
	(format stream "~A" (pop items))))))))
	A B C D E F
	G H I J K L
	M N O P Q R
	S T U V W X
	Y Z
	Figure 24. Example1 With No :inter-row-spacing

	(example1 *alphabet* :stream *my-window*
	:n-columns 10 :inter-column-spacing 10
	:inter-row-spacing 10)
	A B C D E F G H I J
	K L M N O P Q R S T
	U V W X Y Z
	Figure 25. Example1 With :inter-row-spacing

	17.1.3.2 Formatting a Table Representing a Calenda...
	(defvar *day-of-the-week-string* '((0 . "Mon")(1
	(2 . "Wed")(3 . "Thu")
	(4 . "Fri")(5 . "Sat")
	(defun day-of-the-week-string (day-of-week)
	(defvar *days-in-month* '((1 . 31)(2 . 28) (3 . 3...
	(5 . 31)(6 . 30) (7 . 31)(8 . 31)
	(9 . 30)(10 . 31)(11 . 30)(12 . 31))
	"alist whose first element is numeric value return...
	;; In a leap year, the month-length function incre...
	;; days in February as required
	(defun leap-year-p (year)
	(cond ((and (integerp (/ year 100))
	(integerp (/ year 400)))
	t)
	((and (not (integerp (/ year 100)))
	(integerp (/ year 4)))
	t)
	(defun month-length (month year)
	(let ((days (cdr (assoc month *days-in-month*))))
	(when (and (eql month 2)
	(leap-year-p year))
	(incf days))
	(defun calendar-month (month year &key (stream *st...
	(let ((days-in-month (month-length month year)))
	(multiple-value-bind (sec min hour date month year...
	(decode-universal-time (encode-universal-time
	0 0 0 1 month year))
	(setq start-day (mod (+ start-day 1) 7))
	(clim:formatting-table (stream)
	(clim:formatting-row (stream)
	(dotimes (d 7)
	(clim:formatting-cell (stream :align-x :center)
	(write-string (day-of-the-week-string
	(mod (- d 1) 7)) stream))))
	(do ((date 1)
	(first-week t nil))
	((> date days-in-month))
	(clim:formatting-row (stream)
	(dotimes (d 7)
	(clim:formatting-cell (stream :align-x :right)
	(when (and (<= date days-in-month)
	(or (not first-week) (>= d start-day)))
	(format stream "~D" date)
	(define-application-frame calendar ()
	()
	(:panes
	(main :application
	:width :compute :height :compute
	(define-calendar-command (com-exit-calendar :menu ...
	(defmethod display-main ((frame calendar) stream &...
	(multiple-value-bind (sec min hour date month year...
	(decode-universal-time (get-universal-time))
	(defun run ()
	Sun Mon Tue Wed Thu Fri Sat
	1 2 3 4 5
	6 7 8 9 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30 31
	Figure 26. A Table Representing a Calendar Month

	17.1.3.3 Formatting a Table With Regular Graphic E...
	(defun example2 (&key (stream *standard-output*)
	inter-row-spacing
	inter-column-spacing)
	(clim:formatting-table
	(stream :inter-row-spacing inter-row-spacing
	:inter-column-spacing inter-column-
	spacing)
	(dotimes (i 3)
	(clim:formatting-row
	(stream)
	(dotimes (j 3)
	(clim:formatting-cell
	(stream)
	Figure 27. Example2 Table

	17.1.3.4 Formatting a Table With Irregular Graphic...
	(defun example3 (&optional (items *alphabet*)
	&key (stream *standard-output*) (n-columns 6)
	inter-row-spacing inter-column-spacing)
	(clim:formatting-table
	(stream :inter-row-spacing inter-row-spacing
	:inter-column-spacing inter-column-spacing)
	(do ()
	((null items))
	(clim:formatting-row (stream)
	(do ((i 0 (1+ i)))
	((or (null items) (= i n-columns)))
	(clim:formatting-cell (stream)
	(clim:draw-polygon* stream
	(list 0 0 (* 10 (1+ (random 3)))
	5 5 (* 10 (1+ (random 3))))
	:filled nil)
	(pop items)))))))
	Figure 28. Example3 Table

	17.1.3.5 Formatting a Table of a Sequence of Items...
	(defun example4 (&optional (items *alphabet*)
	&key (stream *standard-output*) n-columns n-rows
	inter-row-spacing inter-column-spacing
	max-width max-height)
	(clim:formatting-item-list
	(stream :inter-row-spacing inter-row-spacing
	:inter-column-spacing inter-column-spacing
	:n-columns n-columns :n-rows n-rows
	:max-width max-width :max-height max-height)
	(do ()
	((null items))
	(clim:formatting-cell (stream)
	A B C D
	E F G H
	I J K L
	M N O P
	Q R S T
	U V W X
	Y Z
	Figure 29. Example4 Table

	A B C D E F G H
	I J K L M N O P
	Q R S T U V W X
	Y Z
	Figure 30. Example4 Table Reformatted

	17.2 Formatting Graphs in CLIM
	17.2.1 Conceptual Overview of Formatting Graphs
	Figure 31. A Directed Acyclic Graph

	17.2.2 CLIM Operators for Graph Formatting
	format-graph-from-roots [Function]
	(define-application-frame graph-it ()
	((root-node :initform (find-class ’clim:design)
	:initarg :root-node
	:accessor root-node)
	(app-stream :initform nil :accessor app-stream))
	(:panes (display :application
	:display-function ’draw-display
	:display-after-commands :no-clear))
	(:layouts
	(:defaults
	(defmethod draw-display ((frame graph-it) stream)
	(format-graph-from-roots (root-node *application-f...
	#’draw-node
	#’clos:class-direct-subclasses
	:stream stream
	:arc-drawer
	#’(lambda (stream from-object
	to-object x1 y1
	x2 y2
	&rest
	drawing-options)
	(declare (dynamic-extent
	drawing-options))
	(declare (ignore from-object
	to-object))
	(apply #’draw-arrow* stream
	x1 y1 x2 y2 drawing-options))
	:merge-duplicates t)
	(defun draw-node (object stream)
	(with-output-as-presentation (stream object ’node)...
	(surrounding-output-with-border
	(stream :shape :rectangle)
	(format stream "~A"
	(define-graph-it-command (exit :menu "Exit") ()
	(defun graph-it (&optional (root-node (find-class ...
	(port (find-port)))
	(if (atom root-node) (setf root-node (list root-no...
	(let ((graph-it (make-application-frame ’graph-it
	:frame-manager
	(find-frame-manager
	:port port)
	:width 800
	:height 600
	:root-node root-node)))

	17.2.3 Examples of CLIM Graph Formatting
	(defstruct node (name "") (children nil))
	(defvar g1 (let* ((2a (make-node :name "2A"))
	(2b (make-node :name "2B"))
	(2c (make-node :name "2C"))
	(1a (make-node :name "1A" :children (list 2a 2b)))...
	(1b (make-node :name "1B" :children (list 2b 2c)))...
	(make-node :name "0" :children (list 1a 1b))))
	(defun test-graph (root-node &rest keys)
	(apply #’clim:format-graph-from-root root-node
	#’(lambda (node s)
	(write-string (node-name node) s))
	#’node-children keys))
	Figure 32. A Horizontal Graph
	Figure 33. A Vertical Graph

	(defun test-graph (win)
	(window-clear win)
	(format-graph-from-roots ’((a (b (d)) (c (d))))
	#’(lambda (x s) (princ (car x) s))
	#’cdr
	:stream win
	:orientation :vertical
	:merge-duplicates t
	:duplicate-key #’car)

	17.3 Formatting Text in CLIM
	format-textual-list [Function]
	indenting-output [Macro]
	filling-output [Macro]

	17.4 Bordered Output in CLIM
	(defun border-test (stream)
	(fresh-line stream)
	(surrounding-output-with-border
	(stream :shape :rectangle)
	(format stream "This is some output with a rectang...
	(terpri stream) (terpri stream)
	(surrounding-output-with-border
	(stream :shape :drop-shadow)
	(format stream "This has a drop-shadow under it"))...
	(terpri stream) (terpri stream)
	(surrounding-output-with-border
	(stream :shape :underline)
	Figure 34. Examples of Bordered Output

	surrounding-output-with-border [Macro]
	define-border-type [Macro]

	17.5 Advanced Topics
	17.5.1 The Table Formatting Protocol
	table-output-record-p [Function]
	:x-spacing [Initarg]
	:y-spacing [Initarg]
	:multiple-columns-x-spacing [Initarg]
	:equalize-column-widths [Initarg]
	map-over-table-elements [Generic Function]
	adjust-table-cells [Generic Function]
	adjust-multiple-columns [Generic Function]
	17.5.1.1 The Row and Column Formatting Protocol
	row-output-record-p [Function]
	map-over-row-cells [Generic Function]
	column-output-record-p [Function]

	map-over-column-cells [Generic Function]

	17.5.1.2 The Cell Formatting Protocol
	cell-output-record-p [Function]
	:align-x [Initarg]
	:align-y [Initarg]
	:min-width [Initarg]
	:min-height [Initarg]
	cell-align-x [Generic Function]
	cell-align-y [Generic Function]
	cell-min-width [Generic Function]
	cell-min-height [Generic Function]

	17.5.2 The Item List Formatting Protocol
	item-list-output-record-p [Function]
	:x-spacing [Initarg]
	:y-spacing [Initarg]
	:initial-spacing [Initarg]
	:n-rows [Initarg]
	:n-columns [Initarg]
	:max-width [Initarg]
	:max-height [Initarg]
	map-over-item-list-cells [Generic Function]
	adjust-item-list-cells [Generic Function]

	17.5.3 The Graph Formatting Protocol
	graph-output-record-p [Function]
	:orientation [Initarg]
	:center-nodes [Initarg]
	:cutoff-depth [Initarg]
	:merge-duplicates [Initarg]
	:generation-separation [Initarg]
	:within-generation-separation [Initarg]
	:hash-table [Initarg]
	define-graph-type [Macro]
	graph-root-nodes [Generic Function]
	(setf graph-root-nodes) [Generic Function]
	generate-graph-nodes [Generic Function]
	layout-graph-nodes [Generic Function]
	layout-graph-edges [Generic Function]
	graph-node-output-record-p [Function]

	graph-node-parents [Generic Function]
	(setf graph-node-parents) [Generic Function]
	graph-node-children [Generic Function]
	(setf graph-node-children) [Generic Function]
	graph-node-object [Generic Function]

	Chapter 18 Sheets
	Chapter 18 Sheets
	18.1 Overview of Window Facilities 455
	18.1.1 Properties of Sheets 456
	18.1.2 Sheet Protocols 456

	18.2 Basic Sheet Classes 457
	18.3 Relationships Between Sheets 458
	18.3.1 Sheet Relationship Functions 458
	18.3.2 Sheet Genealogy Classes 461

	18.4 Sheet Geometry 461
	18.4.1 Sheet Geometry Functions 462
	18.4.2 Sheet Geometry Classes 464

	18.5 Sheet Protocols: Input 465
	18.5.1 Input Protocol Functions 466
	18.5.2 Input Protocol Classes 467

	18.6 Standard Device Events 468
	18.7 Sheet Protocols: Output 476
	18.7.1 Mediums and Output Properties 476
	18.7.2 Output Protocol Functions 479
	18.7.3 Output Protocol Classes 480
	18.7.4 Associating a Medium With a Sheet 480

	18.8 Repaint Protocol 481
	18.8.1 Repaint Protocol Functions 482
	18.8.2 Repaint Protocol Classes 482

	18.9 Sheet Notification Protocol 483
	18.9.1 Relationship to Window System Change Notifi...
	18.9.2 Sheet Geometry Notifications 484

	18.1 Overview of Window Facilities
	18.1.1 Properties of Sheets
	18.1.2 Sheet Protocols

	18.2 Basic Sheet Classes
	sheetp [Function]

	18.3 Relationships Between Sheets
	18.3.1 Sheet Relationship Functions
	sheet-parent [Generic Function]
	sheet-children [Generic Function]
	sheet-adopt-child [Generic Function]
	sheet-disown-child [Generic Function]
	sheet-siblings [Generic Function]
	sheet-enabled-children [Generic Function]
	sheet-ancestor-p [Generic Function]
	raise-sheet [Generic Function]
	bury-sheet [Generic Function]
	reorder-sheets [Generic Function]
	sheet-enabled-p [Generic Function]
	(setf sheet-enabled-p) [Generic Function]
	sheet-viewable-p [Generic Function]
	sheet-occluding-sheets [Generic Function]

	18.3.2 Sheet Genealogy Classes

	18.4 Sheet Geometry
	18.4.1 Sheet Geometry Functions
	sheet-transformation [Generic Function]
	(setf sheet-transformation) [Generic Function]
	sheet-region [Generic Function]
	(setf sheet-region) [Generic Function]
	move-sheet [Generic Function]
	resize-sheet [Generic Function]
	move-and-resize-sheet [Generic Function]
	map-sheet-position-to-parent [Generic Function]
	map-sheet-position-to-child [Generic Function]
	map-sheet-rectangle*-to-parent [Generic Function]
	map-sheet-rectangle*-to-child [Generic Function]
	child-containing-position [Generic Function]
	children-overlapping-region [Generic Function]
	children-overlapping-rectangle* [Generic Function]...
	sheet-delta-transformation [Generic Function]
	sheet-allocated-region [Generic Function]

	18.4.2 Sheet Geometry Classes

	18.5 Sheet Protocols: Input
	18.5.1 Input Protocol Functions
	port-keyboard-input-focus [Generic Function]
	(setf port-keyboard-input-focus) [Generic Function...
	distribute-event [Generic Function]
	dispatch-event [Generic Function]
	queue-event [Generic Function]
	handle-event [Generic Function]
	event-read [Generic Function]
	event-read-no-hang [Generic Function]
	event-peek [Generic Function]
	event-unread [Generic Function]
	event-listen [Generic Function]

	18.5.2 Input Protocol Classes
	delegate-sheet-delegate [Generic Function]
	(setf delegate-sheet-delegate) [Generic Function]

	18.6 Standard Device Events
	Figure 35. CLIM Event Classes
	eventp [Function]
	:timestamp [Initarg]
	event-timestamp [Generic Function]
	event-type [Generic Function]
	:sheet [Initarg]
	:modifier-state [Initarg]
	event-sheet [Generic Function]
	event-window [Generic Function]
	event-modifier-state [Generic Function]
	:key-name [Initarg]
	keyboard-event-key-name [Generic Function]
	keyboard-event-character [Generic Function]
	:pointer [Initarg]
	:button [Initarg]
	:x [Initarg]
	:y [Initarg]
	pointer-event-x [Generic Function]
	pointer-event-y [Generic Function]
	pointer-event-native-x [Generic Function]
	pointer-event-native-y [Generic Function]
	pointer-event-pointer [Generic Function]
	pointer-event-button [Generic Function]
	pointer-event-shift-mask [Generic Function]
	:region [Initarg]
	window-event-region [Generic Function]
	window-event-native-region [Generic Function]
	window-event-mirrored-sheet [Generic Function]
	key-modifier-state-match-p [Macro]

	18.7 Sheet Protocols: Output
	18.7.1 Mediums and Output Properties
	mediump [Function]
	medium-foreground [Generic Function]
	(setf medium-foreground) [Generic Function]
	medium-background [Generic Function]
	(setf medium-background) [Generic Function]
	medium-ink [Generic Function]
	(setf medium-ink) [Generic Function]
	medium-transformation [Generic Function]
	(setf medium-transformation) [Generic Function]
	medium-clipping-region [Generic Function]
	(setf medium-clipping-region) [Generic Function]
	(let (cr1 cr2)
	;; Ensure that the sheet’s clipping region
	;; and transformation will be reset:
	(with-drawing-options
	(sheet :transformation +identity-transformation+
	:clipping-region +everywhere+)
	(setf (medium-clipping-region sheet)
	(make-rectangle* 0 0 10 10))
	(setf (medium-transformation sheet)
	(clim:make-scaling-transformation 2 2))
	(setf cr1 (medium-clipping-region sheet))
	(setf (medium-clipping-region sheet)
	(make-rectangle* 0 0 10 10))
	(setf (medium-transformation sheet) +identity-tran...
	(setf cr2 (medium-clipping-region sheet)))

	medium-line-style [Generic Function]
	(setf medium-line-style) [Generic Function]
	medium-text-style [Generic Function]
	(setf medium-text-style) [Generic Function]
	medium-default-text-style [Generic Function]
	(setf medium-default-text-style) [Generic Function...
	medium-merged-text-style [Generic Function]

	18.7.2 Output Protocol Functions
	18.7.3 Output Protocol Classes
	18.7.4 Associating a Medium With a Sheet
	with-sheet-medium [Macro]
	with-sheet-medium-bound [Macro]
	sheet-medium [Generic Function]

	18.8 Repaint Protocol
	18.8.1 Repaint Protocol Functions
	queue-repaint [Generic Function]
	handle-repaint [Generic Function]
	repaint-sheet [Generic Function]

	18.8.2 Repaint Protocol Classes

	18.9 Sheet Notification Protocol
	18.9.1 Relationship to Window System Change Notifi...
	note-sheet-grafted [Generic Function]
	note-sheet-degrafted [Generic Function]
	note-sheet-adopted [Generic Function]
	note-sheet-disowned [Generic Function]
	note-sheet-enabled [Generic Function]
	note-sheet-disabled [Generic Function]

	18.9.2 Sheet Geometry Notifications
	note-sheet-region-changed [Generic Function]
	note-sheet-transformation-changed [Generic Functio...

	Chapter 19 Ports, Grafts, and Mirrored Sheets
	Chapter 19 Ports, Grafts, and Mirrored Sheets
	19.1 Introduction 481
	19.2 Ports 481
	19.3 Grafts 483
	19.4 Mirrors and Mirrored Sheets 486
	19.4.1 Mirror Functions 486
	19.4.2 Internal Interfaces for Native Coordinates ...

	19.1 Introduction
	19.2 Ports
	portp [Function]
	find-port [Function]
	port [Generic Function]
	with-port-locked [Macro]
	port-server-path [Generic Function]
	port-properties [Generic Function]
	(setf port-properties) [Generic Function]
	map-over-ports [Function]

	restart-port [Generic Function]
	destroy-port [Generic Function]

	19.3 Grafts
	sheet-grafted-p [Generic Function]
	find-graft [Function]

	graft [Generic Function]
	map-over-grafts [Function]

	with-graft-locked [Macro]
	graft-orientation [Generic Function]
	graft-units [Generic Function]
	graft-width [Generic Function]
	graft-height [Generic Function]
	graft-pixels-per-millimeter [Function]
	graft-pixels-per-inch [Function]

	19.4 Mirrors and Mirrored Sheets
	19.4.1 Mirror Functions
	sheet-direct-mirror [Generic Function]
	sheet-mirrored-ancestor [Generic Function]
	sheet-mirror [Generic Function]
	realize-mirror [Generic Function]

	19.4.2 Internal Interfaces for Native Coordinates
	sheet-native-transformation [Generic Function]
	sheet-native-region [Generic Function]
	sheet-device-transformation [Generic Function]
	sheet-device-region [Generic Function]
	invalidate-cached-transformations [Generic Functio...
	invalidate-cached-regions [Generic Function]

	Appendices
	Appendix A Glossary 491
	Appendix B Implementation Specifics 507
	B.1 Setting Up Your Packages to Use CLIM 507
	B.2 CLIM Packages 507
	B.3 Liquid CLIM Specifics 508

	Appendix C The CLIM-SYS Package 509
	C.1 Resources 509
	C.2 Multi-Processing 511
	C.3 Locks 513
	C.4 Multiple-Value Setf 514

	Appendix D LispWorks CLIM and CAPI 515
	Appendix E Liquid CLIM and Motif 517
	Appendix F Common Lisp Streams 519
	F.1 Stream Classes 519
	F.2 Basic Stream Functions 521
	F.3 Character Input 522
	F.4 Character Output 524
	F.5 Binary Streams 526
	F.6 Hardcopy Streams in CLIM 526

	Appendix G Windows 529
	G.1 Window Stream Operations in CLIM 529
	G.1.1 Clearing and Refreshing the Drawing Plane 52...
	G.1.2 The Viewport and Scrolling 530
	G.1.3 Viewport and Scrolling Operators 530

	G.2 Functions for Operating on Windows Directly 53...

	Appendix A Glossary
	Appendix B Implementation Specifics
	B.1 Setting Up Your Packages to Use CLIM
	(in-package :user)
	(defpackage "FOO"

	B.2 CLIM Packages
	(defpackage "MY-CLIM-PACKAGE" (:use :CLIM-LISP :CL...

	B.3 Liquid CLIM Specifics

	Appendix C The CLIM-SYS Package
	C.1 Resources
	defresource [Macro]
	using-resource [Macro]
	allocate-resource [Function]
	deallocate-resource [Function]
	clear-resource [Function]
	map-resource [Function]

	C.2 Multi-Processing
	make-process [Function]
	destroy-process [Function]
	current-process [Function]
	all-processes [Function]
	process-wait [Function]
	process-wait-with-timeout [Function]
	process-yield [Function]
	process-interrupt [Function]
	without-scheduling [Macro]

	C.3 Locks
	with-lock-held [Macro]
	make-lock [Function]

	with-recursive-lock-held [Macro]
	make-recursive-lock [Function]

	C.4 Multiple-Value Setf
	defgeneric* [Macro]
	defmethod* [Macro]

	Appendix D LispWorks CLIM and CAPI
	Table 5. CLIM Gadgets and the Equivalent CAPI Gadg...
	Table 6. CLIM Functions and the Equivalent CAPI Fu...

	Appendix E Liquid CLIM and Motif
	Table 7. CLIM Gadgets and the Equivalent Motif Wid...
	(define-application-frame resource-test () ()
	(:menu-bar nil)
	(:pane
	(vertically
	()
	(make-pane ’text-editor
	:height 100
	:value "Edit moi!")
	(bordering (:thickness 10)
	(make-clim-interactor-pane
	:scroll-bars :vertical))
	(bordering (:thickness 6))
	(horizontally
	()
	(make-pane ’push-button
	:label "Press me"
	:show-as-default-p t
	:activate-callback
	#’(lambda (gadget) (print gadget))
	:text-style
	(make-text-style :serif :roman 16))
	(make-pane ’toggle-button
	:label "Choose me"
	:indicator-type :one-of
	:value t
	:value-changed-callback
	#’(lambda (gadget val) (print val))
	:text-style
	(make-text-style :sans-serif :bold :small))))
	(make-pane ’slider :label "Sliiide" :show-value-p ...
	(setq rt (make-application-frame ’resource-test :w...

	Appendix F Common Lisp Streams
	F.1 Stream Classes
	streamp [Generic Function]
	input-stream-p [Generic Function]
	output-stream-p [Generic Function]

	F.2 Basic Stream Functions
	stream-element-type [Generic Function]
	open-stream-p [Generic Function]
	close [Generic Function]
	stream-pathname [Generic Function]
	stream-truename [Generic Function]

	F.3 Character Input
	stream-read-char [Generic Function]
	stream-unread-char [Generic Function]
	stream-read-char-no-hang [Generic Function]
	stream-peek-char [Generic Function]
	stream-listen [Generic Function]
	stream-read-line [Generic Function]
	stream-clear-input [Generic Function]

	F.4 Character Output
	stream-write-char [Generic Function]
	stream-line-column [Generic Function]
	stream-start-line-p [Generic Function]
	stream-write-string [Generic Function]
	stream-terpri [Generic Function]
	stream-fresh-line [Generic Function]
	stream-finish-output [Generic Function]
	stream-force-output [Generic Function]
	stream-clear-output [Generic Function]
	stream-advance-to-column [Generic Function]

	F.5 Binary Streams
	stream-read-byte [Generic Function]
	stream-write-byte [Generic Function]

	F.6 Hardcopy Streams in CLIM
	with-output-to-postscript-stream [Macro]
	(defun print-icons-of-high-tech-to-file ()
	(with-open-file
	(file-stream "icons-of-high-tech.ps" :direction :o...
	(clim:with-output-to-postscript-stream
	(stream file-stream)
	(let* ((x1 150) (y 250) (size 100)
	(x2 (+ x1 size))
	(radius (/ size2))
	(base-y (+ y (/ (* size (sqrt 3)) 2))))
	(clim:draw-rectangle* stream
	(- x1 size) (- y size)
	x1 y)
	(clim:draw-circle* stream
	(+ x2 radius) (- y radius)
	radius)
	(clim:draw-triangle* stream
	(+ x1 radius) y
	x1 base-y
	(with-open-file (file some-pathname :direction :ou...
	(clim:with-output-to-postscript-stream
	(stream file :multi-page t)
	(clim:format-graph-from-root
	(clos:find-class ’clim::window-stream)
	#’(lambda (object s)
	(write-string (string (clos:class-name object)) s)...
	#’clos:class-direct-superclasses

	Appendix G Windows
	G.1 Window Stream Operations in CLIM
	G.1.1 Clearing and Refreshing the Drawing Plane
	window-clear [Generic Function]
	window-erase-viewport [Generic Function]
	window-refresh [Generic Function]

	G.1.2 The Viewport and Scrolling
	G.1.3 Viewport and Scrolling Operators
	window-viewport [Generic Function]
	window-viewport-position* [Generic Function]
	window-set-viewport-position* [Generic Function]

	G.2 Functions for Operating on Windows Directly
	open-window-stream [Function]
	window-parent [Generic Function]
	window-children [Generic Function]
	window-label [Generic Function]
	with-input-focus [Macro]
	window-expose [Generic Function]
	window-stack-on-bottom [Generic Function]
	window-stack-on-top [Generic Function]
	window-visibility [Generic Function]
	window-inside-edges [Generic Function]
	window-inside-left [Function]
	window-inside-top [Function]
	window-inside-right [Function]
	window-inside-bottom [Function]

	window-inside-size [Generic Function]
	window-inside-width [Function]
	window-inside-height [Function]

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Index

