
0LispWorks® for the Windows® Operating System

CAPI User Guide
Version 4.1

Copyright and Trademarks
LispWorks for the Windows Operating System CAPI User Guide

Version 4.1

November 1998

Part number: 3LBDT2A15NF

Copyright © 1994–1998 by Harlequin Group plc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Harlequin Group plc.

The information in this publication is provided for information only and is subject to change without notice. Harlequin Group plc and its
affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The
software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license.

LispWorks is a registered trademark of Harlequin Group plc. Harlequin, Delivery, Transducer/PC, The Authoring Book, ClassWorks, and
KnowledgeWorks are all trademarks of Harlequin Group plc.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

CLX and CLUE bear the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Texas Instruments Incorporated, P.O. Box 149149, MS 2151, Austin, Texas 78714-9149
Copyright © 1987, 1988, 1989, 1990, 1991 Texas Instruments Incorporated.
Permission is granted to any individual or institution to use, modify and distribute this software, provided that this complete copyright and
permission notice is maintained, intact, in all copies and documentation. Texas Instruments Incorporated provides this software “as is” with-
out express or implied warranty.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all
warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

US Government Use

The LispWorks Software is a computer software program developed at private expense and is subject to the following Restricted Rights Leg-
end: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in (i) FAR 52.227-14 Alt III or (ii)
FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is subject to Harlequin’s customary commercial license
as contained in the accompanying license agreement, in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be
deemed to be `unpublished’ and licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States.
Harlequin Incorporated, One Cambridge Center, Cambridge, Massachusetts 02142.”

http://www.harlequin.com/

Europe:

Harlequin Limited
Barrington Hall
Barrington
Cambridge CB2 5RG
UK

telephone +44 1223 873 800
fax +44 1223 873 873

North America:

Harlequin Incorporated
One Cambridge Center
Cambridge, MA 02142
USA

telephone +1 617 374 2400
fax +1 617 252 6505

Asia Pacific:

Harlequin Australia Pty. Ltd.
Level 12
12 Moore Street
Canberra, ACT 2601
Australia

telephone +61 2 6206 5522
fax +61 2 6206 5525

Contents
Preface vii

1 Introduction to the CAPI 1

What is the CAPI? 1
The history of the CAPI 2
The CAPI model 2

2 Getting Started 5

Loading the CAPI 6
Creating a window 6
Linking code into CAPI elements 8

3 Creating Common Windows 11

Generic properties 11
Specifying titles 13
Displaying and entering text 15
Stream panes 16
Miscellaneous button elements 17

4 Choices 21

Choice classes 22
List panels 24
Graph panes 28
Option panes and drop-down list boxes 30
iii

iv
Menu components 31
General properties of choices 31

5 Laying Out CAPI Panes 35

Organizing panes in columns and rows 36
Other types of layout 38
Combining different layouts 39
Constraining the size of layouts 40
Advanced pane layouts 42

6 Creating Menus 45

Creating a menu 45
Grouping menu items together 46
Creating individual menu items 49
The CAPI menu hierarchy 50
Disabling menu items 51

7 Defining Interface Classes 53

The define-interface macro 53
An example interface 54
Adapting the example 56
Connecting an interface to an application 61

8 Prompting for Input 65

Some simple dialogs 65
Prompting for values 67
Creating your own dialogs 73

9 Creating Your Own Panes 79

Displaying graphics 79
Receiving input from the user 82
Creating graphical objects 83

10 Graphics Ports 89

Introduction 89
Features 90
Graphics state 90

Graphics state transforms 93
Pixmap graphics ports 95
Portable font descriptions 96

11 The Color System 99

Introduction 99
Reading the color database 100
Color specs 101
Color aliases 102
Color models 103
Loading the color database 105
Defining new color models 106

12 Printing from the CAPI—the Hardcopy API 109

Printers 109
Print jobs 109
Handling pages—page on demand printing 110
Handling pages—page sequential printing 110
Printing a page 110
Other printing functions 111

Index 113
v

vi

Preface
This preface contains information you need when using the rest of the CAPI
documentation. It discusses the purpose of this manual, the typographical
conventions used, and gives a brief description of the rest of the contents.

Assumptions

The CAPI documentation assumes that you are familiar with:

• LispWorks

• Common Lisp and CLOS, the Common Lisp Object System

• The Windows environment

Conventions used in the manual

Throughout this manual, certain typographical conventions have been
adopted to aid readability.

1. Whenever an instruction is given, is numbered and printed like this.

Text which you should type explicitly is printed like this .

A Description of the Contents

This guide forms an introductory course in developing applications using the
CAPI. Please note that, like the rest of the LispWorks documentation, it does
assume knowledge of Common Lisp.
vii

viii
Chapter 1, Introduction to the CAPI, introduces the principles behind the CAPI,
some of its fundamental concepts, and what it sets out to achieve.

Chapter 2, Getting Started, presents a series of simple examples whose aim is
to familiarize you with some of the most important elements and functions.

Chapter 3, Creating Common Windows, introduces more of the fundamental
CAPI elements. These elements are explained in greater detail in the remain-
der of the manual.

Chapter 4, Choices, explains the key CAPI concept of the choice. A choice
groups CLOS objects together and provides the notion of there being a
selected object amongst that group of objects. Button panels and list panels are
examples of choices.

Chapter 5, Laying Out CAPI Panes introduces the idea of layouts. These let you
combine different CAPI elements inside a single window.

Chapter 6, Creating Menus, shows you how to add menus to a window.

Chapter 7, Defining Interface Classes, introduces the macro define-interface .
This macro can be used to define interface classes composed of CAPI elements
— either the predefined elements explained elsewhere in this manual or your
own.

Chapter 8, Prompting for Input, discusses the ways in which dialog boxes may
be used to prompt a user for input.

Chapter 9, Creating Your Own Panes, shows you how you can define your own
classes when those provided by the CAPI are not sufficient for your needs.

Chapter 10, Graphics Ports, provides information on the Graphics Ports pack-
age, which provides a selection of drawing and image tranformation func-
tions. Although not part of the CAPI package, and therefore not strictly part of
the CAPI, the Graphics Ports functions are used in conjunction with CAPI
panes, and are therefore documented in this manual and the CAPI Reference
Manual.

Chapter 11, The Color System, allows applications to use keyword symbols as
aliases for colors in Graphics Ports drawing functions. They can also be used
for backgrounds and foregrounds of windows and CAPI objects.

The Reference Manual

The second part of the CAPI documentation is the CAPI Reference Manual. This
provides a complete description of every CAPI class and function, and also
provides a reference chapter on the Graphics Port functions. Entries are listed
alphabetically, and the typographical conventions used are similar to those
used in Common Lisp: the Language (2nd Edition) (Steele, 1990).
ix

x

1

1Introduction to the CAPI
1.1 What is the CAPI?
The CAPI (Common Application Programmer’s Interface) is a library for
implementing portable window-based application interfaces. It is a conceptu-
ally simple, CLOS-based model of interface elements and their interaction. It
provides a standard set of these elements and their behaviors, as well as giv-
ing you the opportunity to define elements of your own.

The CAPI’s model of window-based user interfaces is an abstraction of the
concepts that are shared between all contemporary window systems, such
that you do not need to consider the details of a particular system. These hid-
den details are taken care of by a back end library written for that system
alone.

An advantage of making this abstraction is that each of the system-specific
libraries can be highly specialized, concentrating on getting things right for
that particular window system. Furthermore, because the implementation
libraries and the CAPI model are completely separate, libraries can be written
for new window systems without affecting either the CAPI model or the
applications you have written with it.

The CAPI currently runs under X Window System with Motif, and Microsoft
Windows.
1

Introduction to the CAPI

2

1.2 The history of the CAPI
Until recently, window-based applications written with LispWorks used CLX,
CLUE, and the LispWorks Toolkit. Such applications are restricted to running
under X Windows. Because we and our customers wanted a way to write por-
table window code, we decided to develop a new system for this purpose: the
CAPI.

Part of this portability exercise was undertaken before the development of the
CAPI, for graphics ports, the generic graphics library. This includes the porta-
ble color, font, and image systems in LispWorks. The CAPI is built on top of
this technology.

All Lisp-based environment and application development in Harlequin now
uses the CAPI. We recommend that you use the CAPI for window-based
application development in preference to the systems mentioned earlier.

1.3 The CAPI model
The CAPI provides an abstract hierarchy of classes which represent different
sorts of window interface elements, along with functions for interacting with
them. Instances of these classes represent window objects in an application,
with their slots representing different aspects of the object, such as the text on
a button, or the items on a menu. These instances are not actual window
objects but provide a convenient representation of them for you. When you
ask the CAPI to display your object, it creates a real window system object to
represent it. This means that if you display a CAPI button, a real Windows
button is created for it when running on Windows, and a real Motif button
when running on Motif.

A different approach would have been to simulate the window objects and
their look and feel. This approach is problematic. Because the library makes
itself entirely responsible for the application’s look and feel, it may not simu-
late it correctly in obscure cases. Also, manufacturers occasionally change the
look and feel of their window systems. Applications written with a library
that simulates window objects will continue to have the old look and feel until
the application is recompiled with an updated library.

The CAPI’s approach makes the production of the screen objects the responsi-
bility of the native window system, so it always produces the correct look and

1.3 The CAPI model
feel. Furthermore, the CAPI’s use of the real interface to the window system
means that it does not need to be upgraded to account for look and feel
changes, and anything written with it is upwardly compatible, just like any
well-written application.

1.3.1 CAPI Classes

There are four basic objects in the CAPI model: interfaces, menus, panes and lay-
outs.

Everything that the CAPI displays is contained within an interface (an
instance of the class interface). When an interface is displayed a window
appears containing all the menus and panes you have specified for it.

An interface can contain a number of menus which are collected together on a
menu bar. Each menu on the menu bar can contain menu items or other
menus. Items can be grouped together visually and functionally inside menu
components. Menus, menu items, and menu components are, respectively,
instances of the classes menu, menu-item , and menu-component .

Panes are window objects such as buttons and lists. They can be positioned
anywhere in an interface. The CAPI provides many different kinds of pane
class, among them push-button , list-panel , editor-pane , and graph-pane .

The positions of panes are controlled by a layout, which allows objects to be
collected together and positioned either regularly (with instances of the
classes column-layout or row-layout) or arbitrarily using a pinboard-lay-

out . Layouts themselves can be laid out by other layouts — for example, a
row of buttons can be laid out above a list by placing both the row-layout and
the list in a column-layout .
3

Introduction to the CAPI

4

2

2Getting Started
This chapter introduces some of the most basic CAPI elements and functions.
The intention is simply that you should become familiar with the most useful
elements available, before learning how you can use them constructively. You
should work through the examples in this chapter.

A CAPI application consists of a hierarchy of CAPI objects, in much the same
way as an application written using the LispWorks Toolkit consists of Toolkit
objects. CAPI objects are created using make-instance , and although they are
standard CLOS objects, CAPI features should generally be accessed in the
ways described in this manual, and not using the CLOS slot-value function.
You should not rely on slot-value because the implementation of the CAPI
classes may evolve.

Once an instance of a CAPI object has been created in an interface, it can be
displayed on your screen using the function display .
5

Getting Started

6

2.1 Loading the CAPI
All symbols in this manual are exported from either the CAPI or COMMON-
LISP packages unless explicitly stated otherwise. You should use the CAPI
package in your code to access them:

(defpackage "MY-PACKAGE"
(:add-use-defaults t)
(:use "CAPI")

)

This creates and loads a package containing all the CAPI commands
required to try out the examples in this guide.

2.2 Creating a window
This section shows how easy it is to create a simple window, and how to
include CAPI elements, such as panes, in your window.

1. Type the following in a listener

(make-instance ’interface
 :title "My Interface")

(display *)

Figure 2.1 Creating a simple window

A small window appears on your screen, called "My interface".

The usual way to displaying an instance of a CAPI window is display ; how-
ever, another function, contain , is provided to help you during the course of
development.

Only a top level CAPI element is shown by display — that is, an instance of
an interface . To display other CAPI elements (for example, buttons, editor

2.2 Creating a window
panes, and so on), you must provide information about how they are to be
arranged in the window. Such an arrangement is called a layout — you will
learn more about layouts in Chapter 5.

On the other hand, contain automatically provides a default layout for any
CAPI element you specify, and subsequently displays it. During develop-
ment, it can be useful for displaying individual elements of interest on your
screen, without having to create an interface for them explicitly. However,
contain is only provided as a development tool, and should not be used for
the final implementation of a CAPI element. See Chapter 7, “Defining Inter-
face Classes” on how to display CAPI elements in an interface.

This is how you can create and display a button using contain .

1. Type the following into a listener:

(make-instance ’push-button
 :data "Button")

(contain *)

Figure 2.2 Creating a push-button interface

This creates an interface which contains a single push-button, with a label
specified by the :data keyword. Notice that you could have performed the
same example using display , but you would also have had to create a layout
so that the button could have been placed in an interface and displayed.

You can click on the button, and it will respond in the way you would expect
(it will depress). However, no code will be run which performs an action asso-
ciated with the button. How to link code to window items is the topic of the
next section.
7

Getting Started

8

2.3 Linking code into CAPI elements
Getting a CAPI element to perform an action is done by specifying a callback.
This is a function which is performed whenever you change the state of a
CAPI element. It calls a piece of code whenever a choice is made in a window.

Note that the result of the callback function is ignored, and that its usefulness
is in its side-effects.

1. Try the following:

(make-instance ’push-button
 :data "Hello"
 :callback
 #’(lambda (&rest args)
 (display-message
 "Hello World")))

(contain *)

Figure 2.3 Specifying a callback

2. Click on the Hello button.

A dialog appears containing the message “Hello World”. The CAPI provides
the function display-message to allow you to pop up a dialog box containing
a message and a Confirm button. This is one of many pre-defined facilities
that the CAPI offers.

Note: When developing applications in the CAPI, note that your CAPI appli-
cation windows are run in the same Windows system event loop as the Com-
mon LispWorks environment itself. This - and the fact that in Common Lisp,
user code exists in the same global namespace as the Common Lisp imple-
mentation itself - means that a CAPI application running under the Common

2.3 Linking code into CAPI elements
LispWorks environment can modify the same values as you can concurrently
modify from one of the environment's programming tools.

For example, your CAPI application might have a button that, when pressed,
sets a slot in a particular object that you could also set by hand in the listener.
This situation can lead to unexpected values and behavior in your CAPI
application, which may seem to reveal bugs in the application or the Common
Lisp product that do not in fact exist.
9

Getting Started

10

3

3Creating Common Windows
So far you have only seen two types of CAPI element: the interface (which is
the top level CAPI element, and is present in any CAPI window) and the
push-button. This section shows how you can use the CAPI to create other
common windowing elements you are likely to need.

Before trying out the examples in this chapter, define the functions test-

callback and hello in your Listener. The first displays the list of arguments it
is given, and returns nil . The second just displays a message.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

We will use these callbacks in future examples.

3.1 Generic properties
Because CAPI elements are just like CLOS classes, many elements share a
common set of properties. This section describes the properties that all the
classes described in this chapter inherit.
11

Creating Common Windows

12
3.1.1 Scroll bars

The CAPI lets you specify horizontal or vertical scroll bars for any subclass of
the simple pane element (including all of the classes described in this chapter).

Horizontal and vertical scroll bars can be specified using the keywords
:horizontal-scroll and :vertical-scroll . By default, :vertical-scroll

is set to t , and :horizontal-scroll is set to nil .

3.1.2 Background and foreground colors

All subclasses of the simple pane element can have different foreground and
background colors, using the :background and :foreground keywords. For
example, including

:background :blue
:foreground :yellow

in the make-instance of a text pane would result in a pane with a blue back-
ground and yellow text.

3.1.3 Fonts

The CAPI interface supports the use of other fonts for text in title panes and
other CAPI objects, such as buttons, through the use of the :font keyword. If
the CAPI cannot find the specified font it reverts to the default font. The :font

keyword applies to data following the :text keyword, and uses the graphics
port package command gf . The weight of the lettering can be one of :bold ,
:medium , :demibold , and :light . The slant of the lettering can be :roman ,
:italic , :oblique , :reverse-oblique and :reverse-italic .

Here is an example of a title pane with an explicit font:

(contain (make-instance ’title-pane
 :text "A title pane"
 :font (gp:make-font-description

:family "times" :size 12 :weight :medium
:slant :roman)))

Here is an example of using :font to produce a title pane with larger lettering.
Note that the CAPI automatically resized the pane to fit around the text.

3.2 Specifying titles
(contain (make-instance ’title-pane
 :text "A large piece of text"
 :font (gp:make-font-description

:family "times" :size 34 :weight :medium
:slant :roman)))

Figure 3.1 An example of a generic font

3.2 Specifying titles
It is possible to specify a title for a window, or part of a window. Several of the
examples that you have already seen have used titles. There are two ways that
you can create titles: by using the title-pane class, or by specifying a title
directly to any subclass of titled-pane .

3.2.1 Title panes

A title pane is a blank pane into which text can be placed in order to form a
title.

(setq title (make-instance ’title-pane
 :text "Title"))

(contain title)

Figure 3.2 A title pane
13

Creating Common Windows

14
3.2.2 Specifying titles directly

You can specify a title directly to all CAPI panes, using the :title keyword.
This is much easier than using title-panes, since it does not necessitate using a
layout to group two elements together.

Any class that is a subclass of titled-pane supports the :title keyword. All
of the standard CAPI panes inherit from this class. You can find out all the
subclasses of titled-pane by graphing them using the class browser.

The position of any title can be specified by using the :title-position key-
word. Most panes default the title-position to :top , although some use :left .

The title of a CAPI element may be changed interactively with the use of setf ,
if you wish.

1. Create a push button by evaluating the code below:

(setq button (make-instance ’push-button
 :text "Hello"
 :title "Press: "
 :title-position :left
 :callback ’hello))

(contain button)

2. Now evaluate the following:

(setf (titled-pane-title button) "Press here: ")

As soon as the form is evaluated, the title of the pane you just created changes.
Notice how the window automatically resizes to make allowance for the size
of the new title.

3.2.3 Display panes

Display panes can be used to display text messages on the screen. The text in
these messages cannot be edited, so they can be used as by the application to
present a message to the user. The :text keyword can be used to specify the
message that is to appear in the pane.

1. Create a display pane by evaluating the code below:

3.3 Displaying and entering text
(setq display (make-instance ’display-pane
 :text "This is a message"))

(contain display)

Figure 3.3 A display pane

3.3 Displaying and entering text
There are a variety of ways in which a user can type text into an application.
Editor panes are commonly used for dealing with large amounts of text, such
as files, and text input panes are used for entering short pieces of text which
are to be acted upon immediately.

3.3.1 Text input panes

When you want to enter a line of text — for instance a search string — a text
input pane can be used.

(setq text (make-instance ’text-input-pane
 :title "Search: "
 :callback ’test-callback))

(contain text)

Figure 3.4 A text input pane

Notice that the default title position for text input panes is :left .
15

Creating Common Windows

16
Text may be placed in the text input pane itself by giving the :text keyword a
string argument.

3.3.2 Editor panes

Editor panes can be created using the editor-pane element.

(setq editor (make-instance ’editor-pane))

(contain editor)

This creates an editor as described in the manual LispWorks Editor User Guide.

Figure 3.5 An editor pane

3.4 Stream panes
There are three subclasses of editor-pane which handle Common Lisp
streams.

3.4.1 Collector panes

A collector pane displays anything printed to the stream associated with it.
Background output windows, for instance, are examples of collector panes.

(contain (make-instance ’collector-pane
 :title "Example collector pane:"))

3.5 Miscellaneous button elements
3.4.2 Interactive streams

An interactive stream is the building block on which a listener pane is built.

(contain (make-instance ’interactive-stream
 :title "Stream:"))

3.4.3 Listener panes

The listener-pane class is a subclass of interactive-stream , and allows you
to create interactive Common Lisp sessions. You may occasionally want to
include a listener pane in a tool (as, for instance, Common LispWorks does
with the Debugger).

(contain (make-instance ’listener-pane
 :title "Listener:"))

3.5 Miscellaneous button elements
A variety of different buttons can be created for use in an application. These
include push buttons, which you have already seen, and check buttons. But-
ton panels can also be created, and are described in Chapter 4, “Choices”.

3.5.1 Push buttons

You have already seen push buttons in earlier examples. The :enabled key-
word can be used to specify whether or not the button should be selectable
when it is displayed. This can be useful for disabling a button in certain situa-
tions.

The following code creates a push button which cannot be selected.

(setq offbutton (make-instance ’push-button
 :data "Button"
 :enabled nil))

(contain offbutton)

These setf expansions enable and disable the button:

(setf (button-enabled offbutton) t)

(setf (button-enabled offbutton) nil)
17

Creating Common Windows

18
All subclasses of the button class can be disabled in this way.

3.5.2 Check buttons

Check buttons can be produced with the check-button element.

1. Type the following in a Listener:

(setq check (make-instance ’check-button
 :selection-callback ’hello
 :retract-callback ’test-callback
 :text "Button"))

(contain check)

Figure 3.6 A check button

Notice the use of :retract-callback in the example above, to specify a call-
back when the element is deselected.

Like push buttons, check buttons can be disabled by specifying :enabled nil .

3.5.3 Radio buttons

Radio buttons can be created explicitly although they are usually part of a but-
ton panel as described in Chapter 4, Choices. The :selected keyword is used
to specify whether or not the button is selected, and the :text keyword can be
used to label the button.

(contain (make-instance ’radio-button
 :text "Radio Button"
 :selected t))

3.5 Miscellaneous button elements
Figure 3.7 An explicitly created radio button

Although a single radio button is of limited use, having an explicit radio but-
ton class gives you greater flexibility, since associated radio buttons need not
be physically grouped together. Generally, the easiest way of creating a group
of radio buttons is by using a button panel, but doing so means that they will
be geometrically, as well as semantically, connected.
19

Creating Common Windows

20

4

4Choices
Some elements of a window interface contain collections of items, for example
rows of buttons, lists of filenames, and groups of menu items. Such elements
are known in the CAPI as collections.

In most collections, items may be selected by the user — for example, a row of
buttons. Collections whose items can be selected are known as choices. Each
button in a row of buttons is either checked or unchecked, showing something
about the application’s state — perhaps that color graphics are switched on
and sound is switched off. This selection state came about as the result of a
choice the user made when running the application, or default choices made
by the application itself.

The CAPI provides a convenient way of producing groups of items from
which collections and choices can be made. The abstract class collection pro-
vides a means of specifying a group of items. The subclass choice provides
groups of selectable items, where you may specify what initial state they are
in, and what happens when the selection is changed. Subclasses of collec-

tion and choice used for producing particular kinds of grouped elements are
described in the sections that follow.

All the choices described in this chapter can be given a print function via the
:print-function keyword. This allows you to control the way in which items
in the element are displayed. For example, passing the argument ’string-
21

Choices

22
capitalize to :print-function would capitalize the initial letters of all the
words of text that an instance of a choice displays.

Some of the examples in this chapter require the functions test-callback and
hello which were introduced in Chapter 3, “Creating Common Windows”.

4.1 Choice classes
This section discusses the immediate subclasses of choice which can be used
to build button panels. If you have a group of several buttons, you can use the
appropriate button-panel element to specify them all as a group, rather than
using push-button or check-button to specify each one separately. There are
three such elements altogether: push-button-panel , check-button-panel

and radio-button-panel . The specifics of each are discussed below.

4.1.1 Push button panels

The arrangement of a number of push buttons into one group can be done
with a push-button-panel . Since this provides a panel of buttons which do
not maintain a selection when you click on them, push-button-panel is a
choice that does not allow a selection. When a button is activated it causes a
:selection-callback , but the button does not maintain the selected state.

Here is an example of a push button panel:

(make-instance ’push-button-panel
 :items ’(one two three four five)
 :selection-callback ’test-callback
 :print-function ’string-capitalize)

(contain *)

Figure 4.1 A group of push-buttons

4.1 Choice classes
The layout of a button panel (for instance, whether items are listed vertically
or horizontally) can be specified using the :layout-class keyword. This can
take two values: ’column-layout if you wish buttons to be listed vertically,
and ’row-layout if you wish them to be listed horizontally. The default value
is ’row-layout . If you define your own layout classes, you can also use these
as values to :layout-class . Layouts, which apply to many other CAPI
objects, are discussed in detail in Chapter 5, “Laying Out CAPI Panes”.

4.1.2 Radio button panels

A group of radio buttons (a group of buttons of which only one at a time can
be selected) is created with the radio-button-panel class. Here is an example
of a radio button panel:

(setq radio (make-instance ’radio-button-panel
 :items (list 1 2 3 4 5)
 :selection-callback ’test-callback))

(contain radio)

Figure 4.2 A group of radio-buttons

4.1.3 Check button panels

A group of check buttons can be created with the check-button-panel class.
Any number of check buttons can be selected.

Here is an example of a check button panel:

(contain
 (make-instance
 ’check-button-panel
 :items ’("Red" "Green" "Blue")))
23

Choices

24
Figure 4.3 A check button panel

4.2 List panels
Lists of selectable items can be created with the list-panel class. Here is a
simple example of a list panel:

(setq list (make-instance ’list-panel
 :items ’(one two three four)
 :print-function ’string-capitalize))

(contain list)

Figure 4.4 A list panel

Notice how the items in the list panel are passed as symbols, and a print-func-
tion is specified which controls how those items are displayed on the screen.

Any item on the list can be selected by clicking on it with the mouse.

By default, list panels are single selection — that is, only one item in the list
may be selected at once. You can use the :interaction keyword to change
this:

(make-instance ’list-panel
 :items (list "One" "Two" "Three" "Four")
 :interaction :multiple-selection)

(contain *)

4.2 List panels
You can add callbacks to any items in the list using the :selection-callback

keyword.

(make-instance ’list-panel
 :items (list "One" "Two" "Three" "Four")
 :selection-callback ’test-callback)

(contain *)

4.2.1 List interaction

If you select different items in the list, only the last item you select remains
highlighted. The way in which the items in a list panel interact upon selection
can be controlled with the :interaction keyword.

The list produced in the example above is known as a single-selection list
because only one item at a time may be selected. List panels are :single-

selection by default.

There are also multiple-selection and extended-selection lists available. The
possible interactions for list panels are:

• :single-selection — only one item may be selected

• :multiple-selection — more than one item may be selected

• :extended-selection — see Section 4.2.2

To get a particular interaction, supply one of the values above to the :inter-

action keyword, like this:

(contain
 (make-instance
 ’list-panel
 :items ’("Red" "Green" "Blue")
 :interaction :multiple-selection))

Note that :no-selection is not a supported choice for list panels. To display a
list of items with no selection possible you should use a display pane.

4.2.2 Extended selection

Application users often want to make single and multiple selections from a
list. Some of the time they want a new selection to deselect the previous one,
so that only one selection remains — just like a :single-selection panel. On
25

Choices

26
other occasions, they want new selections to be added to the previous ones —
just like a :multiple-selection panel.

The :extended-selection interaction combines these two interactions. Here
is an extended-selection list panel:

(contain
 (make-instance
 ’list-panel
 :items ’("Item" "Thing" "Object")
 :interaction :extended-selection))

Before continuing, here are the definitions of a few terms. The action you per-
form to select a single item is called the selection gesture. The action performed
to select additional items is called the extension gesture. There are two exten-
sion gestures. To add a single item to the selection, the extension gesture is a
click of the left button while holding down the Control key. For selecting a
range of items, it is a click of the left button whilst holding down the Shift key.

4.2.3 Deselection, retraction, and actions

As well as selecting items, users often want to deselect them. Items in
multiple-selection and extended-selection lists may be deselected.

In a multiple-selection list, deselection is done by clicking on the selected item
again with either of the selection or extension gestures.

In an extended-selection list, deselection is done by performing the extension
gesture upon the selected item. (If this was done using the selection gesture,
the list would behave as a single-selection list and all other selections would
be lost.)

Just like a selection, a deselection — or retraction — can have a callback associ-
ated with it.

For a multiple-selection list pane, there may be the following callbacks:

• :selection-callback — called when a selection is made

• :retract-callback — called when a selection is retracted

Consider the following example. The function set-title changes the title of
the interface to the value of the argument passed to it. By using this as the call-
back to the check-button-panel , the title of the interface is set to the current

4.2 List panels
selection. The function retract-callback returns a message dialog with the
name of the button retracted.

(defun set-title (data interface)
 (setf (interface-title interface)
 (format nil "~S" data)))

(make-instance ’check-button-panel
 :items ’(one two three four five)
 :print-function ’string-capitalize
 :selection-callback ’set-title
 :retract-callback ’test-callback)

(contain *)

Figure 4.5 An example of a callback to a check-button panel

For an extended-selection list pane, there may be the following callbacks:

• :selection-callback — called when a selection is made

• :retract-callback — called when a selection is retracted

• :extend-callback — called when a selection is extended

Also available in extended-selection and single-selection lists is the action call-
back. This is called when you double-click on an item.

• :action-callback — called when a double-click occurs

4.2.4 Selections

List panels — all choices, in fact — can have selections, and you can set them
from within Lisp. This is useful for providing default settings in a choice, or
when a user selection has an effect on other settings than just the one they
made.
27

Choices

28
The selection is represented as a vector of offsets into the list of the choice’s
items, unless it is a single-selection choice, in which case it is just represented
as an offset.

The initial selection is controlled with the initarg :selection . The accessor
choice-selection is provided.

4.3 Graph panes
Another kind of choice is the graph-pane . This is a special pane that can draw
graphs, whose nodes and edges can be selected, and for which callbacks can
be specified, as usual.

Here is a simple example of a graph pane. It draws a small rooted tree:

(contain
 (make-instance
 ’graph-pane
 :roots ’(1)
 :children-function
 #’(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))))

4.3 Graph panes
Figure 4.6 A graph pane

The graph pane is supplied with a :children-function which it uses to cal-
culate the children of the root node, and from those children it continues to
calculate more children until the termination condition is reached. For more
details of this, see the CAPI Reference Manual.

You can associate selection, retraction, extension, and action callbacks with
any or all elements of a graph. Here is a simple graph pane that has an action
callback on its nodes.

First we need a pane for displaying the callback messages in. This is done by
executing the following code:

(defvar *the-collector*
 (capi:contain (make-instance ’capi:collector-pane)))

Then, define the following four callback functions:

(defun test-action-callback (&rest args)
 (format (capi:collector-pane-stream
 the-collector) "Action"))
29

Choices

30
(defun test-selection-callback (&rest args)
 (format (capi:collector-pane-stream *the-collector*)
 "Selection"))

(defun test-extend-callback (&rest args)
 (format (capi:collector-pane-stream *the-collector*)
 "Extend"))

(defun test-retract-callback (&rest args)
 (format (capi:collector-pane-stream *the-collector*)
 "Retract"))

Now create an extended selection graph pane which uses each of these call-
backs, the callback used depending on the action taken:

(contain
 (make-instance
 ’graph-pane
 :interaction :extended-selection
 :roots ’(1)
 :children-function
 #’(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))
 :action-callback ’test-action-callback
 :selection-callback ’test-selection-callback
 :extend-callback ’test-extend-callback
 :retract-callback ’test-retract-callback))

The selection callback function is called whenever any node in the graph is
selected.

The extension callback function is called when the selection is extended by
middle clicking on another node (thus selecting it too).

The retract callback function is called whenever an already selected node is
deselected.

The action callback function is called whenever an action is performed on a
node (that is, whenever it is double clicked on).

4.4 Option panes and drop-down list boxes
Option panes, created with the option-pane class, display the current selec-
tion from a single-selection list. When you click on the option pane, the list

4.5 Menu components
appears and you can make another selection from it. Once the selection is
made, it is displayed in the option pane.

In Windows, an option-pane produces a drop-down list box.

Here is an example option pane, which shows the choice of one of five num-
bers. The initial selection is controlled with :selected-item .

(contain
 (make-instance
 ’option-pane
 :items ’(1 2 3 4 5)
 :selected-item 3
 :title "One of Five:"))

Figure 4.7 An option pane

4.5 Menu components
Menus (covered in Chapter 6) can have components that are also choices.
These components are groups of items that have an interaction upon selection
just like other choices. The :interaction keyword is used to associate radio
or check buttons with the group — with the values :single-selection and
:multiple-selection respectively. By default, a menu component has an
interaction of :no-selection .

See “Grouping menu items together” on page 46 for more details.

4.6 General properties of choices
The behaviors you have seen so far are mostly general properties of choices
rather than being specific to a particular choice. These general properties are
summarized below.
31

Choices

32
4.6.1 Interaction

All choices have a selection interaction, controlled by the :interaction ini-
targ. The radio-button-panel and check-button-panel are simply button-

panels with their interactions set appropriately. The interaction possibilities
are listed below.

Set :interaction to :single-selection to force single selection. Only
one item may be selected at a time: selecting an item deselects any other
selected item.

Set :interaction to the value :multiple-selection to create a multiple
selection choice element. This lets you select as many items as you want.
A selected item may be deselected by clicking on it again.

Set :interaction to the value :extended-selection to create an
extended selection element. This is a combination of the other two: Only
one item may be selected, but the selection may be extended to more
than one item.

Set :interaction to the value :no-selection to force no interaction.
Note that this option is not available for list panels. To display a list of
items with no selection you should use a display pane instead.

Specifying an interaction that is invalid for a particular choice causes a compi-
lation error.

The accessor choice-interaction is provided for inspecting a choice’s inter-
action.

4.6.2 Selections

All choices have a selection. This is a state representing the items currently
selected. The selection is represented as a vector of offsets into the list of the
choice’s items, unless it is a single-selection choice, in which case it is just rep-
resented as an offset.

The initial selection is controlled with the initarg :selection . The accessor
choice-selection is provided.

Generally, it is easier to refer to the selection in terms of the items selected,
rather than by offsets, so the CAPI provides the notion of a selected item and

4.6 General properties of choices
the selected items. The first of these is the selected item in a single-selection
choice. The second is a list of the selected items in any choice.

The accessors choice-selected-item and choice-selected-items and the
initargs :selected-item and :selected-items provide access to these con-
ceptual slots.

4.6.3 Callbacks

All choices can have callbacks associated with them. These callbacks are acti-
vated when the application user makes a selection, and different sorts of ges-
ture can have different sorts of callback associated with them.

The following callbacks are available: :selection-callback , :retract-call-

back (called when a deselection is made), :extend-callback , and :action-

callback (called when a double-click occurs). What makes one choice differ-
ent from another is that they permit different combinations of these callbacks.
This is a consequence of the differing interactions. For example, you cannot
have an :extend-callback in a radio button panel, because you cannot
extend selection in one.

Callbacks pass data to the function they call. There are default arguments for
each type of callback. Using the :callback-type keyword allows you to
change these defaults. It can take any of the following arguments.

:interface causes the interface to be passed as an argument to the
callback function.

:data causes the value of the selected data to be passed to the
callback function.

:item causes the selected item to be passed as an argument to
the callback function.

The following combinations of two of the above are also allowed –
:interface-data , :interface-item , :data-interface and :item-

interface . In each of these cases two arguments are passed to the callback
function.

A final option is to pass no arguments, using the :none keyword The follow-
ing example uses a push button and a callback function to display the argu-
ments it receives.
33

Choices

34
(defun show-callback-args (arg1 arg2)
 (display-message "The arguments were ~S and ~S" arg1 arg2))

(setq example-button (make-instance ’push-button
 :text "Push Me"
 :callback ’show-callback-args
 :data "Here is some data"
 :callback-type :data-interface))

(contain example-button)

Try changing the :callback-type to other types.

If you do not use the :callback-type argument and you do not know what
the default is, you can include a &rest args statement in your callback func-
tion to account for all the arguments that might be passed.

Specifying a callback that is invalid for a particular choice causes a compila-
tion error.

5

5Laying Out CAPI Panes
So far, you have seen how you can create a variety of different window ele-
ments using the CAPI. Up to now, though, you have only created interfaces
which contain one of these elements. The CAPI provides a series of layout ele-
ments which allow you to combine several elements in a single window. This
chapter provides an introduction to the different types of layout available and
the ways in which each can be used.

Layouts are created just like any other CAPI element, by using make-

instance . Each layout must contain a description of the CAPI elements it con-
tains, given as a list to the :description keyword.

A layout is used to group any instances of simple-pane and its subclasses (for
instance all the elements you met in the last chapter), and pinboard object and
its subclasses (discussed in Chapter 9, “Creating Your Own Panes”). Once
again, you should make sure you have defined the test-callback function
before attempting any of the examples in this chapter. Its definition is
repeated here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))
35

Laying Out CAPI Panes

36
5.1 Organizing panes in columns and rows
You will frequently need to organize a number of different elements in rows
and columns. The column-layout and row-layout elements are provided to
make this easy.

The following is a simple example showing the use of column-layout .

(contain (make-instance ’column-layout
 :description (list
 (make-instance ’text-input-pane)
 (make-instance ’list-panel
 :items ’(1 2 3 4 5)))))

Figure 5.1 An example of using column-layout

1. Define the following elements:

(setq button1 (make-instance ’push-button
 :data "Button 1"
 :callback ’test-callback))

(setq button2 (make-instance ’push-button
 :data "Button 2"
 :callback ’test-callback))

(setq editor (make-instance ’editor-pane))

(setq message (make-instance ’display-pane
 :text "A display pane"))

5.1 Organizing panes in columns and rows
(setq text (make-instance ’text-input-pane
 :title "Text: "
 :title-position :left
 :callback ’test-callback))

These will be used in the examples throughout the rest of this chapter.

To arrange any number of elements in a column, create a layout using column-

layout , listing the elements you wish to use. For instance, to display title ,
followed by text and button1 , type the following into a Listener:

(contain (make-instance ’column-layout
 :description
 (list text button1)))

Figure 5.2 A number of elements displayed in a column

To arrange the same elements in a row, simply replace column-layout in the
example above with row-layout . If you run this example, note that the ele-
ments in the original column layout disappear as soon as the row layout is
created: each CAPI element can only be on the screen once at any time. Put-
ting it into a new layout will remove it from its previous parent.

Layouts can be given horizontal and vertical scroll bars, if desired; the key-
words :horizontal-scroll and :vertical-scroll can be set to t or nil , as
necessary.

When creating panes which can be resized (for instance, list panels, editor
panes and so on) you can specify the size of each pane relative to the others by
listing the proportions of each. This can be done via either the :y-ratios key-
word (for column layouts) or the :x-ratios keyword (for row layouts).
37

Laying Out CAPI Panes

38
 (contain (make-instance ’column-layout
 :description (list
 (make-instance ’display-pane)
 (make-instance ’editor-pane)
 (make-instance ’listener-pane))
 :y-ratios ’(1 5 3)))

You may need to resize this window in order to see the size of each pane.

Note that the heights of the three panes are in the proportions specified. The
:x-ratios keyword will adjust the width of panes in a row-layout in a similar
way.

5.2 Other types of layout
Row and column layouts are the most basic type of layout class available in
the CAPI, and will be sufficient for many things you want to do. A variety of
other layouts are available as well, as described in this section.

5.2.1 Grid layouts

Whereas row and column layouts only allow you to position a pane horizon-
tally or vertically (depending on which class you use), grid layouts let you
specify both, thus allowing you to create a complete grid of different CAPI
panes.

5.2.2 Simple layouts

Simple layouts control the layout of only one pane. Where possible, the pane
is resized to fit the layout. Simple layouts are sometimes useful when you
need to encapsulate a pane.

5.2.3 Pinboard layouts

Pinboard layouts allow you to position a pane anywhere within a window, by
specifying the x and y coordinates of the pane precisely. They are a means of
letting you achieve any effect which you cannot create using the other avail-
able layouts, although their use can be correspondingly more complex. They
are discussed in more detail in Chapter 9, “Creating Your Own Panes”.

5.3 Combining different layouts
5.3 Combining different layouts
You will not always want to arrange all your elements in a single row or col-
umn. You can include other layouts in the list of elements used in any layout,
thus enabling you to specify precisely how panes in a window should be
arranged.

For instance, suppose you want to arrange the elements in your window as
shown in Figure 5.3. The two buttons are shown on the right, with the text
input pane and a message on the left. Immediately below this is the editor
pane.

Figure 5.3 A sample layout

The layout in Figure 5.3 can be achieved by creating two row layouts: one con-
taining the display pane and a button, and one containing the text input pane
and the other button, and then creating a column layout which uses these two
row layouts and the editor.

(setq row1 (make-instance ’row-layout
 :description (list message button1)))

(setq row2 (make-instance ’row-layout
 :description (list text button2)))

(contain (make-instance ’column-layout
 :description
 (list row1 row2 editor)))

Message

Text

Button1

Button2

Editor
39

Laying Out CAPI Panes

40
Figure 5.4 An instantiation of the sample layout

As you can see, creating a variety of different layouts is simple. This means
that it is easy to experiment with different layouts, allowing you to concen-
trate on the interface design, rather than its code.

5.4 Constraining the size of layouts
The size of a layout (often referred to as its geometry) is calculated automati-
cally on the basis of the size of each of its children. The algorithm used takes
account of hints provided by the children, and from the description of the lay-
out itself. Hints are specified with keyword arguments given to the panes
when they are created.

The following four hints are recognized by all layouts:

:visible-min-width — the minimum width of the child

:visible-max-width — the maximum width of the child

:visible-min-height — the minimum height of the child

:visible-max-height — the maximum height of the child

Hints can take arguments in a number of formats, which are described in full
in the CAPI Reference Manual. When given a number, the layout is constrained

5.4 Constraining the size of layouts
to that number of pixels. A number of characters can also be specified, as
shown in the next example.

In the last section, you created a window with five panes, by combining row
and column layouts. Now consider changing the definition of the editor pane
so that it required to have a minimum size. This would be a sensible change to
make, because editor panes need to be large enough to work with comfort-
ably.

(setq editor2 (make-instance ’editor-pane
 :visible-min-width ’(:character 30)
 :visible-min-height ’(:character 10)))

You will now have to place this new editor into the layouts that contained the
old one. Only one layout is affected: the overall column layout which brings
all the panes together.

Before typing the following into the listener, you should close down all the
windows created in this chapter in order to free up the instances of Button1 ,
Button2 and so forth.

(contain (make-instance ’column-layout
 :description
 (list row1 row2 editor2)))
41

Laying Out CAPI Panes

42
Figure 5.5 The result of resizing the sample layout

5.5 Advanced pane layouts
Until now you have used layouts for CAPI elements in which the constituents
were displayed in fixed positions set out by the CAPI. In this chapter we will
be looking at a number of ways in which users can select the layout and dis-
play of CAPI elements in an interface once an instance of the interface has
been displayed, through the use of dividers, switchable layouts and tab lay-
outs. Throughout this section we will be using three predefined panes, which
you should define before proceeding.

(setq red-pane (make-instance ’output-pane
 :background :red))

(setq green-pane (make-instance ’output-pane
 :background :green))

(setq blue-pane (make-instance ’output-pane
 :background :blue))

5.5 Advanced pane layouts
5.5.1 Switchable layouts

A switchable layout allows you to place CAPI objects on top of one another
and determine which object is displayed on top through Lisp code, possibly
linked to a button or menu option through a callback. Switchable layouts are
set up using a switchable-layout element in a make-instance . As with the
other layouts, such as column-layout and row-layout , the elements to be
organized are given as a list to the :description keyword. Here is an exam-
ple:

(setq switching-panes (make-instance
 ’switchable-layout
 :description (list red-pane green-pane)))

(contain switching-panes)

Note that the default pane to be displayed is the red pane, which was the first
pane in the description list. The two panes can now be switched between
using switchable-layout-visible-child :

(setf (switchable-layout-visible-child switching-panes)
 green-pane)

(setf (switchable-layout-visible-child switching-panes)
 red-pane)

5.5.2 Tab layouts

In its simplest mode, a tab layout is similar to a switchable layout, except that
each pane is provided with a labelled tab, like the tabs on filing cabinet folders
or address books. If the tab is clicked on by the user, the pane it is attached to
is pulled to the front.

(make-instance ’tab-layout
 :items (list (list "one" red-pane)
 (list "two" green-pane)
 (list "three" blue-pane))
 :print-function ’car
 :visible-child-function ’second)

(contain *)
43

Laying Out CAPI Panes

44
The example needs the :print-function to be car , or else the tabs will be
labelled with the object numbers of the panes as well as the title provided in
the list.

However, a tab layout can also be used in a non-switchable manner, with each
tab responding with a callback to alter the appearance of only one pane. In
this mode the :description keyword is used to describe the main layout of
the tab pane. In the following example the tabs alter the choice of starting
node for one graph pane, by using a callback to the graph-pane-roots acces-
sor:

(defun tab-graph (items)
 (let* ((gp (make-instance ’graph-pane))
 (tl (make-instance ’tab-layout
 :description (list gp)
 :items items
 :visible-child-function nil
 :key-function nil
 :print-function (lambda (x) (format nil "~R" x))
 :callback-type :data
 :selection-callback #’(lambda (data)
 (setf (graph-pane-roots gp)
 (list data))))))
 (contain tl)))

(tab-graph ’(1 2 4 5 7))

5.5.3 Dividers

Sometimes you may wish to have two or more panes presented in a column
layout, with a horizontal divider between them. This is to allow the user the
option of resizing one pane into the space of the other. By clicking on the bar
between the two panes produced in the layout below, and then dragging it up
or down the panes are resized.

(contain (make-instance ’column-layout
 :description (list green-pane
 :divider red-pane)))

Dividers can also be placed between panes in a row-layout or even combina-
tions of row and column layouts.

6

6Creating Menus
You can create menus for an application using the menu class.

You should make sure you have defined the test-callback and hello func-
tions before attempting any of the examples in this chapter. Their definitions
are repeated here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

6.1 Creating a menu
A menu can be created in much the same way as any of the CAPI classes you
have already met.

1. Type the following into a Listener:

(make-instance ’menu
 :title "Foo"
 :items ’("One" "Two" "Three" "Four")
 :callback ’test-callback)
45

Creating Menus

46
(make-instance ’interface
 :menu-bar-items (list *))

(display *)

This creates a CAPI interface with a menu, Foo , which contains four items.
Choosing any of these items displays its arguments. Each item has the call-
back specified by the :callback keyword.

A submenu can be created simply by specifying a menu as one of the items of
the top-level menu.

2. Type the following into a Listener:

(make-instance ’menu
 :title "Bar"
 :items ’("One" "Two" "Three" "Four")
 :callback ’test-callback)

(make-instance ’menu
 :title "Baz"
 :items (list 1 2 * 4 5)
 :callback ’test-callback)

(contain *)

This creates an interface which has a menu, called Baz, which itself contains
five items. The third item is another menu, Bar, which contains four items.
Once again, selecting any item returns its arguments.

Menus can be nested as deeply as required using this method.

6.2 Grouping menu items together
The menu-component class lets you group related items together in a menu.
This allows similar menu items to share properties, such as callbacks, and to
be visually separated from other items in the menus. Menu components are
actually choices.

Here is a simple example of a menu component. This creates a menu called
Items , which has four items. Menu 1 and Menu 2 are ordinary menu items, but
Item 1 and Item 2 are created from a menu component, and are therefore
grouped together on the menu bar.

6.2 Grouping menu items together
 (setq component (make-instance ’menu-component
 :items ’("item 1" "item2")
 :print-function ’string-capitalize
 :callback ’test-callback))

(contain (make-instance ’menu
 :title "Items"
 :items
 (list "menu 1" component "menu 2")
 :print-function ’string-capitalize
 :callback ’hello))

Figure 6.1 A menu

Menu components allow you to specify, via the :interaction keyword,
selectable menu items — either as multiple-selection or single-selection items.
This is like having radio buttons or check boxes as items in a menu, and is a
popular technique among many GUI-based applications.

The following example shows you how to include a panel of radio buttons in
a menu.

(setq radio (make-instance ’menu-component
 :interaction :single-selection
 :items ’("This" "That")
 :callback ’hello))
47

Creating Menus

48
(setq commands (make-instance ’menu
 :title "Commands"
 :items
 (list "Command 1" radio "Command 2")
 :callback ’test-callback))

(contain commands)

Figure 6.2 Radio buttons included in a menu

The menu items This and That are radio buttons, only one of which may be
selected at a time. The other menu items are just ordinary commands, as you
saw in the previous examples. Note that the CAPI automatically groups the
items which are parts of a menu component so that they are separated from
other items in the menu.

This example also illustrates the use of more than one callback in a menu,
which of course is the usual case when you are developing real applications.
Choosing either of the radio buttons displays one message on the screen, and
choosing either Command1 or Command2 returns the arguments of the call-
back.

Checked menu items can be created by specifying :multiple-selection to
the :interaction keyword, as illustrated below.

(setq letters (make-instance ’menu-component
 :interaction :multiple-selection
 :items (list "Alpha" "Beta")))

6.3 Creating individual menu items
(contain (make-instance ’menu
 :title "Greek"
 :items (list letters)
 :callback ’test-callback))

Figure 6.3 An example of checked menu items

Note how the items in the menu component inherit the callback given to the
parent, eliminating the need to specify a separate callback for each item or
component in the menu.

6.3 Creating individual menu items
The menu-item class lets you create individual menu items. These items can be
passed to menu-components or menus via the :items keyword. Using this
class, you can assign different callbacks to different menu items.

(setq test (make-instance ’menu-item
 :title "Test"
 :callback ’test-callback))

(setq hello (make-instance ’menu-item
 :title "Hello"
 :callback ’hello))

(setq group (make-instance ’menu-component
 :items (list test hello)))

(contain group)
49

Creating Menus

50
Figure 6.4 Individual menu items

6.4 The CAPI menu hierarchy
The combination of menu items, menu components and menus creates a hier-
archical structure as shown in Figure 6.5. Items in a menu inherit values from
their parent, allowing similar elements to share relevant properties whenever
possible.

The menu below was created using 5 menu items, 4 of which were grouped
together in 2 menu-components. These menu-components were then com-
bined with the fifth item in the menu itself. Note that the :interaction key-
word was used with the second menu component to make menu item number
three a radio button.

6.5 Disabling menu items
Figure 6.5 An example of a menu hierarchy

6.5 Disabling menu items
Like buttons, individual menu items, menus, and menu-components can be
disabled by setting the :enabled keyword to nil .

In addition, a function can be specified via the :enabled-function keyword,
that determines whether or not the menu, menu item, or menu component is
enabled. Consider the following example:

(defvar *on* t)

(setq menu
 (make-instance
 ’menu-item
 :title "Foo"
 :enabled-function #’(lambda (menu) *on*)))

(contain menu)

Toggling the value of *on* between t and nil in the listener, using setq ,
results in the menu item toggling between an enabled and disabled state.

menu-item1

menu-component1

menu
menu-component2

menu-item2

menu-item3

menu-item4menu-item5
51

Creating Menus

52

7

7Defining Interface Classes
So far we have looked at various components for building interfaces. The
CAPI provides all these and more, but instead of continuing with our explora-
tion of the various classes provided, let us see how what we have learned so
far can be combined into a single, non-trivial interface class.

7.1 The define-interface macro
The macro define-interface is used to define subclasses of interface , the
superclass of all CAPI interface classes.

It is an extension to defclass , which provides the functionality of that macro
as well as the specification of the panes, layouts, and menus from which an
interface is composed. It takes the same arguments as defclass , and supports
the additional options :panes , :layouts , :menus , and :menu-bar .

Each component of the interface is named in the code, and a slot of that name
is added to the class created. When an instance of the class is made, each com-
ponent is created automatically and placed in its slot.

When defining a component, you can use other components within the defini-
tion simply by giving its name. You can refer to the interface itself by the spe-
cial name interface .
53

Defining Interface Classes

54
7.2 An example interface
Here is a simple example of interface definition done with define-interface :

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))
 (:layouts
 (row-of-buttons row-layout
 ’(page-up page-down open-file)))
 (:default-initargs :title "Demo"))

An instance of this interface can be displayed as follows:

(make-instance ’demo)

(display *)

At the moment the buttons do nothing, but they will eventually do the follow-
ing:

• Open File will bring up a file prompter and allow you to select a file-
name from a directory. Later on, we will add an editor pane to display
the chosen file’s contents.

• Page Down will scroll downwards so that you can view the lower parts
of the file that cannot be seen initially.

• Page Up will scroll upwards so that you can return to parts of the file
seen before.

Figure 7.1 A demonstration of a CAPI interface

7.2 An example interface
Later on, we will specify callbacks for these buttons to provide this functional-
ity.

The (:default-initargs :title "Demo") part at the end is necessary to
give the interface a title. If no title is given, the default name is “Untitled CAPI
Interface”.

7.2.1 How the example works

Examine the define-interface call to see how this interface was built. The
first part of the call to define interface is shown below:

(define-interface demo ()
 ()

This part of the macro is identical to defclass — you provide:

• The name of the interface class being defined

• The superclasses of the interface (defaulting to interface)

• The slot descriptions

The interesting part of the define-interface call occurs after these defclass -
like preliminaries. The remainder of a define-interface call lists all elements
that define the interface’s appearance. Here is the :panes part of the defini-
tion:

 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

Two arguments — the name and the class — are required to produce a pane.
You can supply slot values as you would for any pane.

Here is the :layouts part of the definition:

 (:layouts
 (row-of-buttons row-layout
 ’(page-up page-down open-file)))
55

Defining Interface Classes

56
Three arguments — the name, the class, and any child layouts — are required
to produce a layout. Notice how the children of the layout are specified by
using their component names.

The interface information given so far is a series of specifications for panes
and layouts. It could also specify menus and a menu bar. In this case, three
buttons are defined. The layout chosen is a row layout, which displays the
three buttons side by side at the top of the pane.

7.3 Adapting the example
The :panes and :layouts keywords can take a number of panes and layouts,
each specified one after the other. By listing several panes, menus, and so on,
complicated interfaces can be constructed quickly.

To see how simply this is done, let us add an editor pane to our interface. We
need this to display the text contained in the file chosen with the Open File but-
ton.

The editor pane needs a layout. It could be added to the row-layout already
built, or another layout could be made for it. Then, the two layouts would
have to be put inside a third to contain them (see Chapter 5, Laying Out CAPI
Panes).

The first thing to do is add the editor pane to the panes description. The old
panes description read:

 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

The new one includes an editor pane named viewer .

7.3 Adapting the example
(:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height ’(:character 8)
 :reader viewer-pane))

This specifies the editor pane, with a stipulation that it must be at least 8 char-
acters high. This allows you to see a worthwhile amount of the file being
viewed in the pane.

Note the use of :reader , which defines a reader method for the interface
which returns the editor pane. You can also specify writers or accessors in this
way.

The interface also needs a layout for the editor pane in the layouts section. The
old layouts description read:

 (:layouts
 (row-of-buttons row-layout
 ’(page-up page-down open-file)))

The new one reads:

 (:layouts
 (main-layout column-layout
 ’(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 ’(page-up page-down open-file))
 (row-with-editor-pane row-layout
 ’(viewer)))

This creates another row-layout for the new pane and then encapsulates the
two row layouts into a third column-layout called main-layout . This is used
as the default layout, specified by setting the :layout initarg to main-layout

in the :default-initargs section. If there is no default layout specified,
define-interface uses the first one listed.
57

Defining Interface Classes

58
By putting the layout of buttons and the layout with the editor pane in a col-
umn layout, their relative position has been controlled: the buttons appear in
a row above the editor pane.

The code for the new interface is now as follows:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height ’(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 ’(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 ’(page-up page-down open-file))
 (row-with-editor-pane row-layout
 ’(viewer)))
 (:default-initargs :title "Demo"))

Displaying an instance of the interface by entering the line of code below pro-
duces the window in Figure 7.2:

(display (make-instance ’demo))

7.3 Adapting the example
Figure 7.2 A CAPI interface with editor pane

7.3.1 Adding menus

To add menus to your interface you must first specify the menus themselves,
and then a menu bar of which they will be a part.

Let us add some menus that duplicate the proposed functionality for the but-
tons. We will add:

• A File menu with a Open option, to do the same thing as Open File

• A Page menu with Page Up and Page Down options, to do the same
things as the buttons with those names

The extra code needed in the define-interface call is this:

 (:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
 (:menu-bar file-menu page-menu)
59

Defining Interface Classes

60
Menu definitions give a slot name for the menu, followed by the title of the
menu, a list of menu item descriptions, and then, optionally, a list of keyword
arguments for the menu.

In this instance the menu item descriptions are just strings naming each item,
but you may wish to supply initialization arguments for an item — in which
case you would enclose the name and those arguments in a list.

The menu bar definition simply names all the menus that will be on the bar, in
the order that they will appear. By default, of course, the environment may
add menus of its own to an interface — for example the File menu in the Com-
mon LispWorks environment.

The code for the new interface is:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height ’(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 ’(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 ’(page-up page-down open-file))
 (row-with-editor-pane row-layout
 ’(viewer)))
 (:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))

7.4 Connecting an interface to an application
Figure 7.3 A CAPI interface with menu items

The menus contain the items specified — try it out to be sure.

7.4 Connecting an interface to an application
Having defined an interface in this way, you can connect it up to your pro-
gram using callbacks, as described in earlier chapters. Here we define some
functions to perform the operations we required for the buttons and menus,
and then hook them up to the buttons and menus as callbacks.

The functions to perform the page scrolling operations are given below:

(defun scroll-up (data interface)
 (call-editor (viewer-pane interface)
 "Scroll Window Up"))

(defun scroll-down (data interface)
 (call-editor (viewer-pane interface)
 "Scroll Window Down"))
61

Defining Interface Classes

62
The functions use the CAPI function call-editor which calls an editor com-
mand (given as a string) on an instance of an editor-pane . The editor com-
mands Scroll Window Up and Scroll Window Down perform the necessary
operations for Page Up and Page Down respectively.

The function to perform the file-opening operation is given below:

(defun file-choice (data interface)
 (let ((file (prompt-for-file "Select A File:")))
 (when file

 (setf (titled-pane-title (viewer-pane interface))
(format nil "File: ~S" file))

 (setf (editor-pane-text (viewer-pane interface))
(with-open-file (stream file)
 (let ((buffer (make-array 1024 :element-type (stream-

element-type stream)
 :adjustable t
 :fill-pointer 0)))

 (do ((char (read-char stream nil nil) (read-char stream
nil nil)))

 ((null char))
 (vector-push-extend char buffer))

 (subseq buffer 0)))))))

This function prompts for a filename and then displays the file in the editor
pane.

The function first produces a file prompter through which a file may be
selected. Then, the selected file name is shown in the title of the editor pane
(using titled-pane-title). Finally, the file name is used to get the contents of
the file and display them in the editor pane (using editor-pane-text).

The correct callback information for the buttons is specified as shown below:

7.4 Connecting an interface to an application
 (:panes
 (page-up push-button
 :text "Page Up"
 :selection-callback ’scroll-up)
 (page-down push-button
 :text "Page Down"
 :selection-callback ’scroll-down)
 (open-file push-button
 :text "Open File"
 :selection-callback ’file-choice)
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height ’(:character 8)
 :reader viewer-pane))

All the buttons and menu items operate on the editor pane viewer . A reader is
set up to allow access to it.

The correct callback information for the menus is specified as shown below:

 (:menus
 (file-menu "File"
 (("Open"))
 :selection-callback ’file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback ’scroll-up)
 ("Page Down"
 :selection-callback ’scroll-down)))

In this case, each item in the menu has a different callback. The complete code
for the interface is listed below — try it out.
63

Defining Interface Classes

64
(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up"
 :selection-callback ’scroll-up)
 (page-down push-button
 :text "Page Down"
 :selection-callback ’scroll-down)
 (open-file push-button
 :text "Open File"
 :selection-callback ’file-choice)
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height ’(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 ’(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 ’(page-up page-down open-file))
 (row-with-editor-pane row-layout
 ’(viewer)))
 (:menus
 (file-menu "File"
 (("Open"))
 :selection-callback ’file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback ’scroll-up)
 ("Page Down"
 :selection-callback ’scroll-down))))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))

8

8Prompting for Input
A dialog is a window that receives some input from the user and returns it to
the application. For instance, if the application wants to know where to save a
file, it could prompt the user with a file dialog. Dialogs can also be cancelled,
meaning that the application should cancel the current operation.

In order to let you know whether or not the dialog was cancelled, CAPI dia-
logs always return two values. The first value is the return value itself, and the
second value is t if the dialog returned normally and nil if the dialog was
cancelled.

The CAPI provides both a large set of predefined dialogs and the means to
create your own. This chapter takes you through some example uses of the
predefined dialogs, and then shows you how to create custom built dialogs.

8.1 Some simple dialogs
The simplest form of dialog is a message dialog. The function display-

message behaves very much like format .

(display-message "Hello world")
65

Prompting for Input

66
Figure 8.1 A message dialog

(display-message
 "This function is ~S"
 ’display-message)

Figure 8.2 A second message dialog

Another simple dialog asks the user a question and returns t or nil depend-
ing on whether the user has chosen yes or no. This function is confirm-yes-

or-no .

(confirm-yes-or-no
 "Do you own a pet?")

8.2 Prompting for values
Figure 8.3 A message dialog prompting for confirmation

8.2 Prompting for values
The CAPI provides a number of different dialogs for accepting values from
the user, ranging from accepting strings to accepting whole Lisp forms to be
evaluated.

8.2.1 Prompting for strings

The simplest of the CAPI prompting dialogs is prompt-for-string which
returns the string you enter into the dialog.

(prompt-for-string
 "Enter a string:")

Figure 8.4 A dialog prompting for a string
67

Prompting for Input

68
An initial value can be placed in the dialog by specifying the keyword argu-
ment :initial-value .

8.2.2 Prompting for integers

The CAPI also provides a number of more specific dialogs that allow you to
enter other types of data. For example, to enter an integer, use the function
prompt-for-integer . Only integers are accepted as valid input for this func-
tion.

(prompt-for-integer
 "Enter an integer:")

There are a number of extra options which allow you to specify more strictly
which integers are acceptable. Firstly, there are two arguments :min and :max

which specify the minimum and maximum acceptable integers.

(prompt-for-integer
 "Enter an integer:"
 :min 10 :max 20)

If this does not provide enough flexibility you can specify a function that vali-
dates the result with the keyword argument :ok-check . This function is
passed the current value and must return non-nil if it is a valid result.

(prompt-for-integer
 "Enter an integer:"
 :ok-check ’oddp)

8.2.3 Prompting for an item in a list

If you would like the user to select an item from a list of items, the function
prompt-with-list should handle the majority of cases. The simplest form just
passes a list to the function and expects a single item to be returned.

8.2 Prompting for values
(prompt-with-list
 ’(:red :yellow :blue)
 "Select a color:")

Figure 8.5 A dialog prompting for a selection from a list

You can also specify the interaction style that you would like for your dialog,
which can be any of the interactions accepted by a choice. The specification of
the interaction style to this choice is made using the keyword argument
:interaction :

(prompt-with-list
 ’(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection)

By default, the dialog is created using a list-panel to display the items, but the
keyword argument :choice-class can be specified with any choice pane.
Thus, for instance, you can present a list of buttons.
69

Prompting for Input

70
(prompt-with-list
 ’(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class ’button-panel)

Figure 8.6 Selection from a button panel

Finally, as with any of the prompting functions, you can specify additional
arguments to the pane that has been created in the dialog. Thus to create a col-
umn of buttons instead of the default row, use:

(prompt-with-list
 ’(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class ’button-panel
 :pane-args
 ’(:layout-class column-layout))

8.2 Prompting for values
Figure 8.7 Selection from a column of buttons

8.2.4 Prompting for files

To prompt for a file, use the function prompt-for-file :

(prompt-for-file
 "Enter a file:")

You can also specify a starting pathname:

(prompt-for-file
 "Enter a filename:"
 :pathname "c:\\windows\\")
71

Prompting for Input

72
Figure 8.8 Selection of a file

8.2.5 Prompting for Lisp objects

The CAPI provides a number of dialogs specifically designed for creating Lisp
aware applications. The simplest is the function prompt-for-form which
accepts an arbitrary Lisp form and optionally evaluates it.

(prompt-for-form
 "Enter a form to evaluate:"
 :evaluate t)

(prompt-for-form
 "Enter a form to evaluate:"
 :evaluate nil)

Another useful function is prompt-for-symbol which prompts the user for an
existing symbol. The simplest usage accepts any symbol, as follows:

(prompt-for-symbol
 "Enter a symbol:")

If you have a list of symbols from which to choose, then you can pass prompt-

for-symbol this list with the keyword argument :symbols .

8.3 Creating your own dialogs
Finally, using :ok-check you can accept only certain symbols. For example, to
only accept a symbol which names a class, use:

(prompt-for-symbol
 "Enter a symbol:"
 :ok-check #’(lambda (symbol)
 (find-class symbol nil)))

8.3 Creating your own dialogs
The CAPI provides a number of built-in dialogs which should cover the
majority of most peoples needs. However, there is always the occasional need
to create custom built dialogs, and the CAPI makes this very simple, using the
function display-dialog which displays any CAPI interface as a dialog, and
the functions exit-dialog and abort-dialog as the means to return from
such a dialog.

8.3.1 Using display-dialog

Here is a very simple example that displays a Cancel button in a dialog, and
when that button is pressed the dialog is cancelled. Note that display-dialog

must receive an interface, so an interface is created for the button by using the
function make-container .

(display-dialog
 (make-container
 (make-instance
 ’push-button
 :text "Press this button to cancel"
 :callback ’abort-dialog)
 :title "My Dialog"))

Figure 8.9 A cancel button
73

Prompting for Input

74
The function abort-dialog cancels the dialog returning the values nil and
nil , which represent a return result of nil and the fact that the dialog was
cancelled, respectively. Note also that abort-dialog accepts any values and
just ignores them.

The next problem is to create a dialog that can return a result. Use the function
exit-dialog which returns the value passed to it from the dialog. The exam-
ple below shows a simple string prompter.

(display-dialog
 (make-container
 (make-instance
 ’text-input-pane
 :callback-type :data
 :callback ’exit-dialog)
 :title "Enter a string:"))

Both of these examples are very simple, so here is a slightly more complicated
one which creates a column containing both a text-input-pane and a Cancel
button.

(display-dialog
 (make-container
 (list
 (make-instance
 ’text-input-pane
 :callback-type :data
 :callback ’exit-dialog)
 (make-instance
 ’push-button
 :text "Cancel"
 :callback ’abort-dialog))
 :title "Enter a string:"))

Note that this looks very similar to the dialog created by prompt-for-string

except for the fact that it does not provide the standard OK button. It would be
simple enough to add the OK button, but since almost every dialog needs
these standard buttons, the CAPI provides a higher level function called
popup-confirmer that adds all of the standard buttons for you. This function
is discussed in the next section.

8.3 Creating your own dialogs
8.3.2 Using popup-confirmer

The function popup-confirmer is a higher level function provided to add the
standard buttons to user dialogs, and it is nearly always used in preference to
display-dialog . In order to create a dialog using popup-confirmer , all you
need to do is to supply a pane to be placed inside the dialog along with the
buttons and the title. The function also expects a title, like all of the prompter
functions described earlier.

(popup-confirmer
 (make-instance
 ’text-input-pane
 :callback-type :data
 :callback ’exit-dialog)
 "Enter a string")

A common thing to want to do with a dialog is to get the return value from
some state in the pane specified. For instance, in order to create a dialog that
prompts for an integer the string entered into the text-input-pane would need
to be converted into an integer. It is possible to do this once the dialog has
returned, but popup-confirmer has a more convenient mechanism. The func-
tion provides a keyword argument, :value-function , which gets passed the
pane, and this function should return the value to return from the dialog. It
can also indicate that the dialog cannot return by returning a second value
which is non-nil .

In order to do this conversion, popup-confirmer provides an alternative exit
function to the usual exit-dialog . This is called exit-confirmer , and it does
all of the necessary work on exiting.

You now have enough information to write a primitive version of prompt-

for-integer .

(defun text-input-pane-integer (pane)
 (let* ((text
 (text-input-pane-text pane))
 (integer
 (parse-integer
 text
 :junk-allowed t)))
 (or (and (integerp integer) integer)
 (values nil t))))
75

Prompting for Input

76
(popup-confirmer
 (make-instance
 ’text-input-pane
 :callback ’exit-confirmer)
 "Enter an integer:"
 :value-function ’text-input-pane-integer)

Note that the dialog’s OK button never becomes activated, yet pressing Return

once you have entered a valid integer will return the correct value. This is
because the OK button is not being dynamically updated on each keystroke in
the text-input-pane so that it activates when the text-input-pane contains a
valid integer. The activation of the OK button is recalculated by the function
redisplay-interface , and the CAPI provides a standard callback, :redis-

play-interface , which calls this as appropriate.

Thus, to have an OK button that becomes activated and deactivated dynami-
cally, you need to specify the change-callback for the text-input-pane to be
:redisplay-interface .

(popup-confirmer
 (make-instance
 ’text-input-pane
 :change-callback :redisplay-interface
 :callback ’exit-confirmer)
 "Enter an integer:"
 :value-function ’text-input-pane-integer)

Note that the OK button now changes dynamically so that it is only ever active
when the text in the text-input-pane is a valid integer.

The next thing that you might want to do with your integer prompter is to
make it accept only certain values. For instance, you may only want to accept
negative numbers. This can be specified to popup-confirmer by providing a
validation function with the keyword argument :ok-check . This function
receives the potential return value (the value returned by the value function)
and it must return non-nil if that value is valid. Thus to accept only negative
numbers we could pass minusp as the :ok-check .

8.3 Creating your own dialogs
(popup-confirmer
 (make-instance
 ’text-input-pane
 :change-callback :redisplay-interface
 :callback ’exit-confirmer)
 "Enter an integer:"
 :value-function ’text-input-pane-integer
 :ok-check ’minusp)
77

Prompting for Input

78

9

9Creating Your Own Panes
The CAPI provides a wide range of built-in panes, but it is still fairly common
to need to create panes of your own. In order to do this, you need to specify
both the input behavior of the pane (how it reacts to keyboard and mouse
events) and its output behavior (how it displays itself). The class output-pane

is provided for this purpose.

An output-pane is a fully functional graphics port. This allows it to use all of
the graphics ports functionality to create graphics, and it also has a powerful
input model which allows it to receive mouse and keyboard input.

9.1 Displaying graphics
The following is a simple example demonstrating how to create an output-
pane and then how to draw a circle on it.

(setq output-pane
 (contain
 (make-instance ’output-pane)
 :best-width 300
 :best-height 300)))
79

Creating Your Own Panes

80
Figure 9.1 An empty output pane

Now you can draw a circle in the empty output pane by using the draw-

circle function from the graphics package.

(gp:draw-circle output-pane 100 100 50)

9.1 Displaying graphics
Figure 9.2 An output pane containing a circle

Notice that this circle is not permanently drawn on the output-pane, and
when the window is next redisplayed it vanishes. To prove this to yourself,
force the window to be redisplayed (for example by iconizing or resizing it).
At this point, you can draw the circle again yourself but it will not happen
automatically.

(gp:draw-circle output-pane 100 100 50)

In order to create a permanent display, you need to provide a function to the
output-pane that is called to redraw sections of the output-pane when they
are exposed. This function is called the display callback. When the CAPI needs
to redisplay a region of an output-pane, it calls that output-pane’s display-
callback function, passing it the output-pane and the region in question.

For example, to create a pane that has a permanent circle drawn inside it, do
the following:
81

Creating Your Own Panes

82
(defun draw-a-circle (pane x y
 width height)
 (gp:draw-circle pane 100 100 50))

(contain
(make-instance
 ’output-pane
 :display-callback ’draw-a-circle)
 :best-width 300
 :best-height 300)

Notice that the callback in this example ignores the region that needs redraw-
ing and just redraws everything. This is possible because the CAPI clips the
drawing to the region that needs redisplaying, and hence only the needed part
of the drawing gets done. For maximum efficiency, it would be better to only
draw the minimum area necessary.

The keywords :best-width and :best-height keywords specify the initial
width and height of the circle pinboard object. More detail can be found in the
CAPI Reference Manual.

Now that we can create output-panes with our own display functions, we can
create a new class of window by using defclass as follows.

(defclass circle-pane (output-pane)
 ()
 (:default-initargs
 :display-callback ’draw-a-circle))

(contain
 (make-instance ’circle-pane))

9.2 Receiving input from the user
You now know enough to be able to create new classes of window which can
display arbitrary graphics, but to be able to create interactive windows you
need to be able to receive events. The CAPI supports this through the use of
an input model, which is a mapping of events to the callbacks that should be
run when they occur.

When the event callback is called, it gets passed the output-pane and the x
and y coordinates of the mouse pointer at the time of the event. A few events
also pass additional information as necessary; for example, keyboard events
also pass the key that was pressed.

9.3 Creating graphical objects
For example, we can create a very simple drawing pane by adding a callback
to draw a point whenever the left button is dragged across the pane. This is
done as follows:

(contain
 (make-instance
 ’output-pane
 :input-model ’(((:motion :button-1)
 gp:draw-point))))

Figure 9.3 An interactive output pane

The input model above seems quite complicated, but it is just a list of event to
callback mappings, where each one of these mappings is a list containing an
event specification and a callback. An event specification is also a list contain-
ing keywords specifying the type of event required.

9.3 Creating graphical objects
A common feature needed by an application is to have a number of objects
displayed in a window and to make events affect the object underneath the
cursor. The CAPI provides the ability to create graphical objects, to place them
into a window at a specified size and position, and to display them as neces-
sary. Also a function is provided to determine which object is under any given
point so that events can be dispatched correctly.
83

Creating Your Own Panes

84
These graphical objects are called pinboard objects, as they can only be dis-
played if they are contained within a pinboard-layout . To define a pinboard-
object, you define a subclass of drawn-pinboard-object and specify a draw-
ing routine for it (and you can also specify constraints on the size of your
object). You can then make instances of these objects and place them into lay-
outs just as if they were ordinary panes. You can also place these objects inside
layouts as long as there is a pinboard-layout higher up the layout hierarchy
that contains the panes.

Here is an example of the built-in pinboard object class item-pinboard-

object which displays its text like a title-pane. Note that the function contain

always creates a pinboard-layout as part of the wrapper for the object to be
contained, and so it is possible to contain pinboard-objects in just the same
way as you can contain other classes of CAPI object.

(contain
 (make-instance
 ’item-pinboard-object
 :text "Hello world"))

Figure 9.4 A pinboard object

9.3.1 The implementation of graph panes

One of the major uses the CAPI itself makes of pinboard-objects is to imple-
ment graph-panes. The graph-pane itself is a pinboard-layout and it is built
using pinboard-objects for the nodes and edges. This is because each node
(and sometimes each edge) of the graph needs to react individually to the
user. For instance, when an event is received by the graph-pane, it is told
which pinboard object was under the pointer at the time, and it can then use
this information to change the selection.

9.3 Creating graphical objects
Create the following graph-pane and notice that every node in the graph is
made from an item-pinboard-object as described in the previous section
and that each edge is made from a line-pinboard-object .

(defun node-children (node)
 (when (< node 16)
 (list (* node 2)
 (1+ (* node 2)))))

(contain
 (make-instance
 ’graph-pane
 :roots ’(1)
 :children-function ’node-children)
 :best-width 300 :best-height 400)

Figure 9.5 A graph pane with pinboard object nodes

As mentioned before, pinboard-layouts can just as easily display ordinary
panes inside themselves, and so the graph-pane provides the ability to specify
85

Creating Your Own Panes

86
the class used to represent the nodes. As an example, here is a graph-pane
with the nodes made from push-buttons.

(contain
 (make-instance
 ’graph-pane
 :roots ’(1)
 :children-function ’node-children
 :node-pinboard-class ’push-button)
 :best-width 300 :best-height 400)

Figure 9.6 A graph pane with push-button nodes

9.3 Creating graphical objects
9.3.2 An example pinboard object

To create your own pinboard objects, the class drawn-pinboard-object is pro-
vided, which is a pinboard-object that accepts a display-callback to display
itself. The following example uses this class to create a new class of pinboard-
object that displays an ellipse.

(defun draw-ellipse-pane (gp pane
 x y
 width height)
 (with-geometry pane
 (let ((x-radius
 (floor %width% 2))
 (y-radius
 (floor %height% 2)))
 (gp:draw-ellipse
 gp
 (+ %x% x-radius)
 (+ %y% y-radius)
 x-radius y-radius))))

(defclass ellipse-pane
 (drawn-pinboard-object)
 ()
 (:default-initargs
 :display-callback ’draw-ellipse-pane
 :min-width 50
 :min-height 50))

(contain
 (make-instance ’ellipse-pane))

Figure 9.7 An ellipse-pane class
87

Creating Your Own Panes

88
The with-geometry macro is used to set the size and position, or geometry, of
the ellipse drawn by the draw-ellipse-pane function. See the CAPI Reference
Manual for more details.

Now that you have a new ellipse-pane class, you can create instances of them
and place them inside layouts. For instance, the example below creates nine
ellipse panes and place them in a three by three grid.

(contain
 (make-instance
 ’grid-layout
 :description
 (loop for i below 9
 collect
 (make-instance ’ellipse-pane))
 :columns 3))

Figure 9.8 Nine ellipse-pane classes in a layout

10

10Graphics Ports
10.1 Introduction
Graphics Ports allow users to write source-compatible applications for differ-
ent host window systems. Graphics Ports are the destinations for drawing
primitives. They are implemented with a generic host-independent part and a
small host-specific part.

Graphics Ports implement a set of drawing functions and a mechanism for
specifying the graphics state to be used in each drawing function call. There
are two types of Graphics Port: on-screen ports and off-screen ports. On-
screen graphics ports correspond to visible windows, while off-screen graph-
ics ports can be used for building up graphical images for subsequent copying
to the screen.

See the CAPI Reference Manual for full reference entries on all the Graphics
Port functions, macros, classes and types.

10.1.1 The package

All graphics port symbols are interned in and exported from the graphics-

ports package, nicknamed gp .
89

Graphics Ports

90
10.1.2 The system

The graphics ports system is available in the default LispWorks image. All
symbols in the gp package are available to you as soon as you start LispWorks.

10.1.3 Creating instances

Pixmap graphics ports are usually required only temporarily and the macro
with-pixmap-graphics-port allocates one for you from a cache of such
objects.

10.2 Features
The main features of graphics-ports are:

1. Each port has a “graphics state” which holds all the information about
drawing parameters such as line thickness, fill pattern, line-end-style
etc. A graphics state object can also be created independently of any par-
ticular graphics port.

2. The graphics state contents can either be enumerated in each drawing
function call, bound to values for the entirety of a set of calls, or perma-
nently changed.

3. The graphics state includes a transform which implements generalized
coordinate transformations on the port’s coordinates.

4. Off-screen ports can compute the horizontal and vertical bounds of the
results of a set of drawing function calls, thus facilitating image or pix-
map generation.

10.3 Graphics state
The graphics-state object associated with each port holds values for the fol-
lowing parameters:

10.3 Graphics state
transform An object which determines the coordinate transforma-
tion applying to the graphics port. The default value
leaves the port coordinates unchanged from those used
by the host window system — origin at top left, X
increasing to the right and Y increasing down the
screen. Section 10.4 on page 93 describes these objects.

Table 10.1 Parameters held in a graphics-state object

Parameter Name Default Value Allowed Values

transform the unit trans-
form

Anything returned by the transform
functions. (See below)

foreground :black A color spec, pixel, or symbol

background :white A color spec, pixel, or symbol

operation boole-1 Boole constants (Chapter 12 of the ANSI
standard)

thickness 1 number

scale-thickness t (member nil t)

dashed nil (member nil t)

dash ’(4 4) (sequence integer integer)

line-end-style :butt (member :butt :round :projecting)

line-joint-style :miter (member :bevel :miter :round)

mask nil nil or a list of the form
(x y width height)

font nil nil or a valid font
91

Graphics Ports

92
foreground Determines the foreground color used in drawing func-
tions. A color can be a pixel value, a color name symbol,
a color name string or a color object. Using pixel values
results in better performance.

background Determines the background color used in drawing
functions which use a stipple. Valid values are the same
as for foreground .

operation The combination function used in the drawing primi-
tives. Valid values are 0 to 15, being the same logical
values as the op arg to the Common Lisp function
boole (CLtL2).

thickness The thickness of lines drawn. If scale-thickness is
non-nil , the value is in port (transformed) coordinates,
otherwise it is in pixels.

scale-thickness If non-nil means interpret the thickness parameter in
transformed port coordinates, otherwise interpret it in
pixels.

dashed If non-nil draws a dashed line using dash as the mark-
space specifier.

dash If non-nil should be a two element list specifying the
mark and space for dashed lines. The mark and space
values are interpreted in pixels only.

line-end-style One of :butt :round or :projecting and specifies how
to draw the ends of lines.

line-joint-style One of :bevel :miter :round and specifies how to
draw the areas where the edges of polygons meet.

mask Either nil or a list of the form (x y width height) , defin-
ing a rectangle inside which the drawing is done. The
mask is not tiled. A mask is not transformed by the
transform parameter.

mask-x An integer specifying where in the port the X coordi-
nate of the mask origin is to be considered to be. The
value is in window coordinates.

10.4 Graphics state transforms
font Either nil or a valid font name or font object to be used
by the draw-character and draw-string functions. A
valid font is a portable font description. See Section 10.6
on page 96.

10.3.1 Setting the graphics state

The graphics state values associated with a drawing function call to a graphics
port are set by one of three mechanisms.

1. Enumeration in the drawing function call. For example:

 (draw-line port 1 1 100 100
 :thickness 10
 :scale-thickness nil
 :foreground :red)

2. Bound using the with-graphics-state macro. For example:

(with-graphics-state (port :thickness 10
 :scale-thickness nil
 :foreground :red)
 (draw-line port 1 1 100 100)
 (draw-rectangle port 2 2 40 50 :filled t))

3. Set by the set-graphics-state function. For example:

(set-graphics-state port :thickness 10
 :scale-thickness nil
 :foreground :red)

The first two mechanisms change the graphics state temporarily. The last one
changes it permanently, effectively altering the “default” state.

10.4 Graphics state transforms
Coordinate systems for windows generally have the origin (0,0) positioned at
the upper left corner of the window with X positive to the right and Y positive
downwards. This is the “window coordinates” system. Generalized coordi-
nates are implemented using scaling, rotation and translation operations such
that any Cartesian coordinates can be used within a window. The Graphics
Ports system uses a transform object to achieve this.
93

Graphics Ports

94
10.4.1 Generalized points

An (x, y) coordinate pair can be transformed to another pair in another coordi-
nate system by scaling, rotation and transformation. The first two can be
implemented using 2 x 2 matrices to hold the coefficients:

If the point P is (a, b) and it is transformed to the point Q (a’, b’)

P ⇒ Q or (a, b) fi (a’, b’)

a’ = pa + rb, b’ = qa + sb.

Translation can be included in this if the points P and Q are regarded as 3-vec-
tors instead of 2-vectors, with the 3rd element being unity:

The coefficients u and v specify the translation.

So, the six elements (p, q, r, s, u, and v) of the 3 x 3 matrix contain all the trans-
formation information. These elements are stored in a list in the graphics state
slot transform .

Transforms can be combined by matrix multiplication to effect successions of
translation, scaling and rotation operations.

Functions are provided in Graphics Ports which apply translation, scaling and
rotation to a transform, combine transforms by pre- or post-multiplication,
invert a transform, and so on.

Q = PM,
r s
p qwhere M =

Q = PM
 = (a b 1)

r s 0

u v 1

p q 0

10.5 Pixmap graphics ports
10.4.2 Drawing functions

The scan-line conversions of the drawing functions are very much host-
dependent. In other words, you cannot assume that, for example (draw-point

port x y) has exactly the same effect on all machines. Some machines might
put pixels down and to the right of integer coordinates (x y) while others may
center the pixel at (x y).

See also the LispWorks Reference Manual entries for draw-circle (which draws
a circle) and draw-ellipse (which draws an ellipse), and the CAPI Reference
Manual for full reference entries of all the drawing functions.

10.5 Pixmap graphics ports
Pixmap graphics ports are drawing destinations which exist only as pixel
arrays whose contents are not directly accessible. They can be drawn to using
the draw- thing functions, and their contents can be copied onto other graphics
ports. However this copying can be meaningless unless the conversion of col-
ors uses the same color device on both ports. Because color devices are associ-
ated with regular graphics ports (Windows) rather than pixmap graphics
ports, you have to connect a pixmap graphics port to a regular graphics port
for color conversion. This is the purpose of the owner slot in pixmap-

graphics-port-mixin . The conversion of colors to pixel values is done in the
same way as for regular graphics ports, but the pixmap graphics port’s owner
is used to find a color device. You can draw to pixmap graphics ports using
pre-converted colors to avoid color conversion altogether, in which case a null
color owner is OK for a pixmap graphics port.

10.5.1 Relative drawing in pixmap graphics ports

Many of the drawing functions have a relative argument. If non-nil , it speci-
fies that when drawing functions draw to the pixmap, the extremes of the
pixel coordinates reached are accumulated. If the drawing strays beyond any
edge of the pixmap port (into negative coordinates or beyond its width or
height), then the drawing origin is shifted so that it all fits on the port. If the
drawing extremes exceed the total size available, some are inevitably lost. If
relative is nil , any part of the drawing which extends beyond the edges of the
pixmap is lost. If relative is nil and collect non-nil , the drawing bounds are
95

Graphics Ports

96
collected for later reading, but no relative shifting of the drawing is per-
formed. The collected bounds are useful when you need to know the graphics
motion a series of drawing calls causes. The rest args are host-dependent.
They usually include a :width and :height pair.

10.6 Portable font descriptions
Portable font descriptions are designed to solve the following problems:

• Specify enough information to uniquely determine a real font.

• Query which real fonts match a partial specification.

• Allow font specification to be recorded and reused in a later run.

All the symbols described below are exported from the gp package. Font
objects returned by find-matching-fonts and find-best-font can be used in
calls to the Graphics Ports drawing functions and as the :font argument for
CAPI panes.

10.6.1 Font attributes and font descriptions

Font attributes are properties of a font, which can be combined to uniquely
specify a font on a given platform. There are some portable attributes which
can be used on all platforms; other attributes are platform specific and will be
ignored or signal errors when used on the wrong platform.

Font descriptions are externalizable objects which contain a set of font
attributes. When using a font description in a font lookup operation, missing
attributes are treated as wildcards (as are those with value :wild) and invalid
attributes signal errors. The result of a font lookup contains all the attributes
needed to uniquely specify a font on that platform.

Fonts are the objects used in drawing operations. They are made by a font
lookup operation on a pane, using a font description as a pattern.

These are the current set of portable font attributes and their portable types:

10.6 Portable font descriptions
Table 10.2 Set of portable font attributes

Attribute Possible values Comments

:family string Values are not portable.

:weight (member :normal :bold)

:slant (member :roman :italic)

:size (or (eql :any) (integer 0 *)) :any means a scalable font

:charset keyword
97

Graphics Ports

98

11

11The Color System
11.1 Introduction
The LispWorks Color System allows applications to use keyword symbols as
aliases for colors in Graphics Ports drawing functions. They can also be used
for backgrounds and foregrounds of windows and CAPI objects.

For example, the call

(gp:draw-line my-port x1 y1 x2 y2
 :foreground :navyblue)

uses the keyword symbol :navyblue for the color of the line.

Colors are looked up in a color database. The LispWorks image is delivered
with a large color database already loaded (approximately 650 entries.) The
color database contains color-specs which define the colors in terms of a stan-
dard color model. When the drawing function is executed, the color-spec is
converted into a colormap index (or “pixel” value).

The LispWorks Color System has facilities for:

• Defining new color aliases in one of several color models

• Loading the color database from a file of color descriptions

• Converting color specifications between color models
99

The Color System

100
• Defining new color models

It is accessible from the COLOR package, and all symbols described in this chap-
ter are assumed to be external to this package unless otherwise stated.

The color-models available by default are RGB, HSV and GRAY.

11.2 Reading the color database
To find out what colors are defined in the color database, use the following
functions:

apropos-color-names Function

apropos-color-names substring

This returns a list of symbols whose symbol-names contain substring and
which are present in the color-database defining color aliases. By con-
vention these are in the keyword package.

TEST-4> (color:apropos-color-names "RED")
 (:ORANGERED3 :ORANGERED1 :INDIANRED3 :INDIANRED1
 :PALEVIOLETRED :RED :INDIANRED :INDIANRED2
 :INDIANRED4 :ORANGERED :MEDIUMVIOLETRED
 :VIOLETRED :ORANGERED2 :ORANGERED4 :RED1 :RED2 :RED3
 :RED4 :PALEVIOLETRED1 :PALEVIOLETRED2 :PALEVIOLETRED3
 :PALEVIOLETRED4 :VIOLETRED3 :VIOLETRED1 :VIOLETRED2
 :VIOLETRED4)

apropos-color-alias-names Function

apropos-color-alias-names substring

This functions like apropos-color-names but returns only those sym-
bols that have been defined as color aliases.

apropos-color-spec-names Function

apropos-color-spec-names substring

This functions like apropos-color-names but returns only those sym-
bols that were defined as original entries in the color database.

11.3 Color specs
get-all-color-names Function

get-all-color-names &optional sort

This returns a list of all color-names in the color database. By convention
these are symbols in the keyword package. The returned list is alphanu-
merically sorted on the symbol-names if the optional argument is non-
nil .

11.3 Color specs
A color spec is an object which numerically defines a color in some color-
model. For example the object returned by the call:

(color:make-rgb 0.0s0 1.0s0 0.0s0) =>
 #(:RGB 0.0s0 1.0s0 0.0s0)

defines the color green in the RGB color model. (Note that short-floats are
used; this results in the most efficient color conversion process. However, any
floating-point number type can be used.)

To find out what color-spec is associated with a color name, use the following
function.

get-color-spec Function

get-color-spec color-name

Returns the color-spec associated with the symbol color-name. If there is
no color-spec associated with color-name, this function returns nil . If
color-name is the name of a color alias, the color alias is dereferenced
until a color-spec is found.

Color-specs are made using standard functions make-rgb , make-hsv and
make-gray . For Example:

(color:make-rgb 0.0s0 1.0s0 0.0s0)
(color:make-hsv 1.2s0 0.5s0 0.9s0)
(color:make-gray 0.66667s0)

The predicate color-spec-p can be used to test for color-spec objects. The
function color-spec-model returns the model in which a color-spec object has
been defined.
101

The Color System

102
11.4 Color aliases
You can enter a color alias in the color database using the function define-

color-alias . You can remove an entry in the color database using delete-

color-translation .

define-color-alias Function

define-color-alias name alias-for &optional
 (if-exists (first ’(:replace :error :ignore)))

This makes an entry in the color database under name, which should be a
symbol. LispWorks by convention uses keyword symbols. alias-for is
either a color-spec or another color name (symbol). Attempting to make
an alias for an original entry in the color database results in an error. An
original entry means one present in a new LispWorks image or one
entered via the color database loading functions described below. If the
entry is already present and is a color alias, then the value of the if-exists
argument is used to determine how to continue.

(color:define-color-alias :wire-color :darkslategray)

delete-color-translation Function

delete-color-translation color-name

This removes an entry from the color-database. Both original entries and
aliases can be removed.

As described in Section 11.3 on page 101, the function get-color-spec returns
the color-spec associated with a color alias. The function get-color-alias-

translation returns the ultimate color name for an alias.

get-color-alias-translation Function

get-color-alias-translation color-alias

This returns the ultimate color name associated with color-alias.

11.5 Color models
(define-color-alias :lispworks-blue
 (make-rgb 0.70s0 0.90s0 0.99s0))
(define-color-alias :color-background
 :lispworks-blue)
(define-color-alias :listener-background
 :color-background)

(get-color-alias-translation :listener-background)
 => :lispworks-blue
(get-color-alias-translation :color-background)
 => :lispworks-blue

11.5 Color models
Three color models are defined by default: RGB, HSV and GRAY. RGB and
HSV allow specification of any color within conventional color space using
three orthogonal coordinate axes, while gray restricts colors to one hue
between white and black.

The Hue value in HSV is mathematically in the open interval [0.0 6.0). All val-
ues must be specified in floating point values.

You can convert color-specs between models using the available ensure-

functions . For example:

Table 11.1 Color models defined by default

Model Name Component: Range

RGB Red Green Blue RED (0.0 to 1.0)
GREEN (0.0 to 1.0)
BLUE (0.0 to 1.0)

HSV Hue Saturation Value HUE (0.0 to 5.99999)
SATURATION (0.0 to 1.0)
VALUE (0.0 to 1.0)

GRAY Gray GRAY (0.0 to 1.0)
103

The Color System

104
(setf green (make-rgb 0.0 1.0 0.0)
 => #(:RGB 0.0 1.0 0.0))
(eq green (ensure-rgb green)) => T

(ensure-hsv green) => #(:HSV 3.0 0.0 1.0)
(eq green (ensure-hsv green) => NIL

(ensure-rgb (ensure-hsv green)) => #(:RGB 0.0 1.0 0.0)
(eq green (ensure-rgb (ensure-hsv green))) => NIL

Of course, information can be lost when converting to GRAY:

(make-rgb 0.3 0.4 0.5) => #(:RGB 0.3 0.4 0.5)
(ensure-gray (make-rgb 0.3 0.4 0.5))
 => #(:GRAY 0.39999965)
(ensure-rgb (ensure-gray
 (make-rgb 0.3 0.4 0.5)))
 => #(:RGB 0.39999965 0.39999965 0.39999965)

There is also ensure-color which takes two color-spec arguments. It converts
if necessary the first argument to the same model as the second. For example:

(ensure-color (make-gray 0.3) green)
 => #(:RGB 0.3 0.3 0.3)

ensure-model-color takes a model as the second argument. For example:

(ensure-model-color (make-gray 0.3) :hsv)
 => #(:HSV 0 1.0 0.3)

The following function compares two color-spec objects for color equality.

colors= Function

colors= color1 color2 &optional (tolerance 0.001s0)

colors= returns t if the two colors are equal to the given tolerance.

Conversion to pixel values used by CLX is done by convert-color .

convert-color Function

convert-color port color &key (errorp t)

This returns the representation of color on the given Graphics Port port.
In CLX, this is the “pixel” value, which corresponds to an index into the
default colormap. It is more efficient to use the result of convert-color

11.6 Loading the color database
in place of its argument in drawing function calls, but the penalty is the
risk of erroneous colors being displayed should the colormap or the
colormap entry be changed.

11.6 Loading the color database
You can load new color definitions into the color database.

read-color-db Function

read-color-db &optional file

This reads color definitions from the given file (a filename or pathname).
If no file is given, it uses the default color definitions file in the Lisp-
Works library. The returned data structure can be passed to load-color-

database . The format of the file is:

#(:RGB 1.0s0 0.980391s0 0.980391s0) snow
#(:RGB 0.972548s0 0.972548s0 1.0s0) GhostWhite
etc

Each line contains a color definition which consists of a color-spec and a
name. The names are converted to uppercase and interned in the key-
word package. Whitespace in names is preserved.

load-color-database Function

load-color-database data

This loads the color database with color definitions contained in data,
which should have been obtained via the function read-color-db . The
colors thus defined may not be replaced by color aliases.

To clear the color database use the form:

(setf *color-database* (make-color-db))

Warning: You should do this before starting Common LispWorks (that is,
before env:start-environment is called) and be sure to load new color defini-
tions for all the colors used in the environment when you do start it. Those
colors are determined from the config\colors.db file.
105

The Color System

106
You can remove a color database entry with delete-color-translation .

11.7 Defining new color models
Before using the definition described here, you should evaluate the form:

(require "color-defmodel")

The macro define-color-models can be used to define new color models for
use in the color system.

define-color-models Macro

define-color-models model-descriptors

This defines all the color models. model-descriptors is a list, each element
being a model-descriptor. A model descriptor has the syntax:

(model-name component-descr*)

A component-descr is a list:

(component-name lowest-value highest-value)

The default color models are defined by the following form:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))))

11.7 Defining new color models
For example, to define a new color model YMC and keep the existing RGB,
HSV and GRAY models:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))
 (:ymc (yellow 0.0 1.0)
 (magenta 0.0 1.0)
 (cyan 0.0 1.0))))

You must then define some functions to convert YMC color-specs to other
color-specs. In this example, those functions are named

make-ymc-from-rgb
make-ymc-from-hsv
make-ymc-from-gray

 and

make-rgb-from-ymc
make-hsv-from-ymc
make-gray-from-ymc

You can make this easier, of course, by defining the functions

make-ymc-from-hsv
make-ymc-from-gray
make-hsv-from-ymc
make-gray-from-ymc

in terms of make-ymc-from-rgb and make-rgb-from-ymc .

If you never convert between YMC and any other model, you need only
define the function make-rgb-from-ymc .
107

The Color System

108

12

12Printing from the CAPI—the
Hardcopy API
The CAPI hardcopy API is a mechanism for printing a Graphics Port (and
hence a CAPI output-pane) to a printer. It is arranged in a hierarchy of con-
cepts: printers, print jobs, pagination and outputting.

Printers correspond to the hardware accessible to the OS. Print jobs control
connection to a printer and any printer-specific initialization. Pagination con-
trols the number of pages and which output appears on which page. Output-
ting is the operation of drawing to a page. This is accomplished using the
standard Graphics Ports drawing functions and is not discussed here.

12.1 Printers
You can obtain the current printer, or ask the user to select one, by using cur-

rent-printer . You can ask the user about configuration by using the func-
tions page-setup-dialog and print-dialog which display the standard Page
Setup and Print dialogs.

12.2 Print jobs
A Print job is contained within a use of the macro with-print-job , which
handles connection to the printer and sets up a graphics port for drawing to
the printer.
109

Printing from the CAPI—the Hardcopy API

110
12.3 Handling pages—page on demand printing
In Page on Demand Printing, the application provides code to print an arbitrary
page. The application should be prepared to print pages in any order. This is
the preferred means of implementing printing. Page on Demand printing uses
the with-document-pages macro, which iterates novel all pages in the docu-
ment.

12.4 Handling pages—page sequential printing
Page Sequential Printing may be used when it is inconvenient for the applica-
tion to implement Page on Demand printing. In Page Sequential Printing, the
application prints each page of the document in order. Page on Demand print-
ing uses the with-page macro, with each invocation of the with-page macro
contributing a new page to the document.

12.5 Printing a page
In either mode of printing, the way in which a page is printed is the same. A
suitable transformation must be established between the coordinate system of
the output-pane or printer-port object and the physical page being printed.
The page is then drawn using normal Graphics Ports operations.

12.5.1 Establishing a page transform

The with-page-transform macro can be used to establish a page transform
that maps a rectangular region of the document to the whole page being
printed. Any number of invocations of with-page-transform may occur dur-
ing the printing of a page. For instance, it may be convenient to use a different
page transform when printing headers and footers to the page from that used
when printing the main body of the page.

A helper function, get-page-area , is provided to simplify the calculation of
suitable rectangles for use with with-page-transform . It calculates the width
and height of the rectangle in the user’s coordinate space that correspond to
one printable page, based on the logical resolution of the user’s coordinate
space in dpi.

12.6 Other printing functions
For more specific control over the page transform, the printer metrics can be
queried using get-printer-metrics and the various printer-metrics acces-
sors.

12.6 Other printing functions
A simple printing API is available via simple-print-port , which prints the
contents of an output-pane to a printer.

The Hardcopy API also provides a means of printing plain text to a printer.
The functions printer-text, print-file and print-editor-buffer can be
used for this.
111

Printing from the CAPI—the Hardcopy API

112

Index
A
abort-dialog function 73, 74
action-callback keyword 27, 30, 33
apropos-color-alias-names

function 100
apropos-color-names function 100
apropos-color-spec-names function 100

B
:background keyword 92
best-height keyword 82
best-width keyword 82
bold keyword 12
button panels

orientation 23
prompting with 69–71

button-1 keyword 83
button-enabled accessor 17
button-panel class 22
buttons

check 18
push 17
radio 18

C
callback keyword 15
callbacks

description of 8
general properties 33
graph panes 29
in interfaces 61–64
used for choices 26–27
using callback functions 11

callback-type keyword 33, 74
call-editor function 62

CAPI
basic objects 3
description of 1–3
linking code into 8
loading the ??–6
menu hierarchy 50

changing titles interactively 14
character keyword 41
check button panels 23
check buttons 18
check-button class 18, 22
check-button-panel class 22, 23, 27, 32
children-function keyword 28, 29
choice class 21
choice-class keyword 69
choice-interaction accessor 32
choices 21–34

callbacks available 33
description of 21–34
general properties 31–34
relationship to menus 31

choice-selected-item accessor 33
choice-selected-items accessor 33
choice-selection accessor 28, 32
classes

collections 22
creating your own 79–88

CLUE 2
CLX 2
collection class 21
collections

description of 21
collector panes 16
collector-pane class 16
colors= function 104
column-layout class 23, 36, 57
113

114
column-layout function 37
combo boxes 30
confirm-yes-or-no function 66
contain function 6, 7, 84
convert-color function 104
creating menus 45
creating submenus 46

D
:dash keyword 92
:dashed keyword 92
data keyword 7, 17, 33
data-interface keyword 33
default settings

selections 27
default-initargs keyword 55, 57, 82
defclass macro 53, 55, 82
define-color-alias function 102
define-color-models function 106
define-interface macro 53

arguments supplied to 55
defpackage function 6
delete-color-translation

function 102
demibold keyword 12
description keyword 36
description of the CAPI 1–3
dialogs

creating your own 73–77
description of 65–77

display callback 81
display function 6, 7
display panes 14
display-callback keyword 82
display-dialog function 73, 75
displaying text on screen 14
display-message function 8, 65
display-pane class 15, 38
draw-circle function 80
drawn-pinboard-object class 84, 87
draw-point function 83
drop-down list box 31

E
editor panes 16
editor-pane class 16, 38, 62

subclasses 16
editor-pane-text accessor 62
elements

creating your own 79–88
generic properties of 11–12
enabled keyword 17, 51
enabled-function keyword 51
evaluate keyword 72
exit-confirmer function 75
exit-dialog function 73, 74, 75
extend-callback keyword 27, 30, 33
extended selection

specifying 32
using on diferent platforms 32

extended-selection keyword 25–26, 32
extension gesture 26

F
files

prompting for 71–72
:font keyword 93
font keyword 12
fonts 12
:foreground keyword 92
functions

apropos-color-alias-names 100
apropos-color-names 100
apropos-color-spec-names 100
colors= 104
convert-color 104
define-color-alias 102
define-color-models 106
delete-color-translation 102
get-all-color-names 101
get-color-alias-translation 102
get-color-spec 101
load-color-database 105
read-color-db 105
sample 11

G
generic properties of elements 11–12
geometry of layouts, specifying 40–42
get-all-color-names function 101
get-color-alias-translation

function 102
get-color-spec function 101
graph panes

callbacks 29
graphics

changing interactively 82–83
creating permanent displays 81
displaying 79–82

graphics ports 89
drawing functions 95
pixmap 95

graph-pane class 28
implementation of 84

grid-layout class 38

H
hardcopy API 109–111
hierarchy of menus 50
hints 40
horizontal-scroll keyword 12, 37

I
initial-value keyword 68
input-model keyword 83
integers

prompting for 68
interaction

general properties 32
in lists 25

interaction keyword 25, 31, 32, 47, 69
interactive streams 17
interactive-stream class 17
interface class 3, 6, 53
interface keyword 33
interface-data keyword 33
interface-item keyword 33
interfaces

defining 53–64
description of 53
layouts, specifying 55
menus, specifying 59–61
panes, specifying 55
title, specifying 55

interface-title accessor 27
italic keyword 12
item keyword 33
item-interface keyword 33
item-pinboard-object class 84
items keyword 24, 45, 49

K
keywords

:background 92
:dash 92
:dashed 92
:font 93
:foreground 92
:line-end-style 92
:line-joint-style 92
:mask 92
:mask-x 92
:operation 92

:scale-thickness 92
:thickness 92
:transform 91

L
layout-class keyword 23
layouts

combining different 39–40
description of 35–42
introduction to 7
specifying geometry 40–42
specifying size of panes in 37

layouts keyword 53
left keyword 15
light keyword 12
:line-end-style keyword 92
:line-joint-style keyword 92
Lisp forms

prompting for 72
list function 36
list items, specifying 24
list panels 24
listener panes 17
listener-pane class 17, 38
list-panel class 24
lists

actions in 26
deselection in 26
extended selection in 25
extended selections 25
interaction in 25
multiple selection in 25
prompting with 68–71
retraction in 26
single selection in 25

load-color-database function 105
loading the CAPI 6

M
make-container function 73
make-instance function 5
:mask keyword 92
:mask-x keyword 92
max keyword 68
medium keyword 12
menu class 3, 45
menu-bar keyword 53, 59, 60
menu-bar-items keyword 46
menu-component class 46
menu-component class 3
menu-item class 3, 49
115

116
menus
components 31
creating 45
creating submenus 46
description of 45–51
disabling items in 51
grouping items together 46–49
individual items in 49
menu hierarchy 50
nesting 46

menus keyword 53, 59, 60
min keyword 68
motion keyword 83
multiple-selection keyword 25, 31,

32, 48

N
none keyword 33
no-selection keyword 31, 32

O
oblique keyword 12
ok-check keyword 68, 73, 76
:operation keyword 92
option panes 30
option-pane class 30
organizing panes 36
output-pane class 79

P
pane-args keyword 70
panel

button layout 23
panels

check button 23
list 24
push button 22
radio button 23

panes
collector 16
creating your own 79–88
default title position 14
display 14
editor 16
graphs 28
listener 17
option 30
organizing 36
sizing 37
text input 15
title 13
panes keyword 53
pathname keyword 71
pinboard objects 84

creating your own 87–88
pinboard-layout class 38, 84
pinboard-object class 84
popup-confirmer function 74, 75
portable font descriptions 96
print function 21
print-function keyword 21, 24
prompt-for-file function 62, 71
prompt-for-form function 72
prompt-for-integer function 68, 75
prompt-for-string function 67, 74
prompt-for-symbol function 72
prompt-with-list function 68
push button panels

creating 22
push buttons 17
push-button class 7, 17, 22
push-button-panel class 22

R
radio button panels

creating 23
radio buttons 18
radio-button class 18
radio-button-panel class 22, 23, 32
read-color-db function 105
reader keyword 57
redisplay-interface function 76
redisplay-interface keyword 76
retract-callback keyword 18, 26, 30, 33
reverse-italic keyword 12
reverse-oblique keyword 12
roman keyword 12
row-layout class 23, 36, 57
row-layout function 37

S
:scale-thickness keyword 92
scroll bars

specifying 12
scroll bars, specifying 12
selected keyword 18
selected-item keyword 31, 33
selected-items keyword 33
selection gesture 26
selection keyword 28, 32
selection-callback keyword 22, 26, 30,

33, 63

selection-callback , keyword 25
selections 25–28

default settings 27
extending 25
general properties 32
specifying multiple 32

setf function 14, 17
single selection

specifying 32
single-selection keyword 25, 31, 32, 47
slot 5
slot-value function 5
specifying window titles 13–15
streams

interactive 17
strings

prompting for 67
subclasses

finding 14
subclasses, finding 14
symbols

prompting for 72–73

T
text

displaying 15
displaying on screen 14
entering 15

text input panes 15
text keyword 12, 13, 14
text-input-pane class 15
:thickness keyword 92
title keyword 14, 55
title panes 13
titled-pane class 13
titled-pane-title accessor 62
title-pane class 13
title-position keyword 14, 37
titles

changing interactively 14
specifying 13, 13–15

top keyword 14
:transform keyword 91

U
user input 65–77
using callback functions 11

V
value-function keyword 75
values

prompting for 67–73
vertical-scroll keyword 12, 37
visible-max-height keyword 40
visible-max-width keyword 40
visible-min-height keyword 40
visible-min-width keyword 40

W
window titles

specifying 13–15

X
x-ratios keyword 37

Y
y-ratios keyword 37
117

118

	LispWorks® for the Windows® Operating System CAPI ...
	Preface
	Introduction to the CAPI
	1.1 What is the CAPI?
	1.2 The history of the CAPI
	1.3 The CAPI model
	1.3.1 CAPI Classes

	Getting Started
	2.1 Loading the CAPI
	2.2 Creating a window
	2.3 Linking code into CAPI elements

	Creating Common Windows
	3.1 Generic properties
	3.1.1 Scroll bars
	3.1.2 Background and foreground colors
	3.1.3 Fonts

	3.2 Specifying titles
	3.2.1 Title panes
	3.2.2 Specifying titles directly
	3.2.3 Display panes

	3.3 Displaying and entering text
	3.3.1 Text input panes
	3.3.2 Editor panes

	3.4 Stream panes
	3.4.1 Collector panes
	3.4.2 Interactive streams
	3.4.3 Listener panes

	3.5 Miscellaneous button elements
	3.5.1 Push buttons
	3.5.2 Check buttons
	3.5.3 Radio buttons

	Choices
	4.1 Choice classes
	4.1.1 Push button panels
	4.1.2 Radio button panels
	4.1.3 Check button panels

	4.2 List panels
	4.2.1 List interaction
	4.2.2 Extended selection
	4.2.3 Deselection, retraction, and actions
	4.2.4 Selections

	4.3 Graph panes
	4.4 Option panes and drop-down list boxes
	4.5 Menu components
	4.6 General properties of choices
	4.6.1 Interaction
	4.6.2 Selections
	4.6.3 Callbacks

	Laying Out CAPI Panes
	5.1 Organizing panes in columns and rows
	5.2 Other types of layout
	5.2.1 Grid layouts
	5.2.2 Simple layouts
	5.2.3 Pinboard layouts

	5.3 Combining different layouts
	5.4 Constraining the size of layouts
	5.5 Advanced pane layouts
	5.5.1 Switchable layouts
	5.5.2 Tab layouts
	5.5.3 Dividers

	Creating Menus
	6.1 Creating a menu
	6.2 Grouping menu items together
	6.3 Creating individual menu items
	6.4 The CAPI menu hierarchy
	6.5 Disabling menu items

	Defining Interface Classes
	7.1 The define-interface macro
	7.2 An example interface
	7.2.1 How the example works

	7.3 Adapting the example
	7.3.1 Adding menus

	7.4 Connecting an interface to an application

	Prompting for Input
	8.1 Some simple dialogs
	8.2 Prompting for values
	8.2.1 Prompting for strings
	8.2.2 Prompting for integers
	8.2.3 Prompting for an item in a list
	8.2.4 Prompting for files
	8.2.5 Prompting for Lisp objects

	8.3 Creating your own dialogs
	8.3.1 Using display-dialog
	8.3.2 Using popup-confirmer

	Creating Your Own Panes
	9.1 Displaying graphics
	9.2 Receiving input from the user
	9.3 Creating graphical objects
	9.3.1 The implementation of graph panes
	9.3.2 An example pinboard object

	Graphics Ports
	10.1 Introduction
	10.1.1 The package
	10.1.2 The system
	10.1.3 Creating instances

	10.2 Features
	10.3 Graphics state
	10.3.1 Setting the graphics state

	10.4 Graphics state transforms
	10.4.1 Generalized points
	10.4.2 Drawing functions

	10.5 Pixmap graphics ports
	10.5.1 Relative drawing in pixmap graphics ports

	10.6 Portable font descriptions
	10.6.1 Font attributes and font descriptions

	The Color System
	11.1 Introduction
	11.2 Reading the color database
	11.3 Color specs
	11.4 Color aliases
	11.5 Color models
	11.6 Loading the color database
	11.7 Defining new color models

	Printing from the CAPI—the Hardcopy API
	12.1 Printers
	12.2 Print jobs
	12.3 Handling pages—page on demand printing
	12.4 Handling pages—page sequential printing
	12.5 Printing a page
	12.5.1 Establishing a page transform

	12.6 Other printing functions

	Index

