
0LispWorks®

CAPI Reference
Manual
Version 4.1

Copyright and Trademarks
LispWorks CAPI Reference Manual

Version 4.1

October 1998

Part number: 3LADT3A15LF

Copyright © 1994–1998 by Harlequin Group plc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Harlequin Group plc.

The information in this publication is provided for information only and is subject to change without notice. Harlequin Group plc and its
affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The
software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license.

LispWorks is a registered trademark of Harlequin Group plc. Harlequin, Delivery, Transducer/PC, The Authoring Book, ClassWorks, and
KnowledgeWorks are all trademarks of Harlequin Group plc.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

CLX and CLUE bear the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Texas Instruments Incorporated, P.O. Box 149149, MS 2151, Austin, Texas 78714-9149
Copyright © 1987, 1988, 1989, 1990, 1991 Texas Instruments Incorporated.
Permission is granted to any individual or institution to use, modify and distribute this software, provided that this complete copyright and
permission notice is maintained, intact, in all copies and documentation. Texas Instruments Incorporated provides this software “as is” with-
out express or implied warranty.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all
warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

US Government Use

The LispWorks Software is a computer software program developed at private expense and is subject to the following Restricted Rights Leg-
end: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in (i) FAR 52.227-14 Alt III or (ii)
FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is subject to Harlequin’s customary commercial license
as contained in the accompanying license agreement, in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be
deemed to be `unpublished’ and licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States. Harle-
quin Incorporated, One Cambridge Center, Cambridge, Massachusetts 02142.”

http://www.harlequin.com/

Europe:

Harlequin Limited
Barrington Hall
Barrington
Cambridge CB2 5RG
UK

telephone +44 1223 873 800
fax +44 1223 873 873
support +44 1625 58 8040

North America:

Harlequin Incorporated
One Cambridge Center
Cambridge, MA 02142
USA

telephone +1 617 374 2400
fax +1 617 252 6505
support +1 617 374 2433

Asia Pacific:

Harlequin Australia Pty. Ltd.
Level 12
12 Moore Street
Canberra, ACT 2601
Australia

telephone +61 2 6206 5522
fax +61 2 6206 5525
support +44 1625 58 8040

Contents
Preface xiii

1 CAPI Reference Entries 1

abort-dialog 1
activate-pane 2
attach-interface-for-callback 3
beep-pane 3
button 3
button-panel 6
calculate-constraints 9
calculate-layout 10
callbacks 11
call-editor 13
capi-object 13
capi-object-property 14
check-button 15
check-button-panel 16
choice 17
choice-selected-item 19
choice-selected-items 20
collection 21
collection-search 24
collector-pane 25
color-screen 26
iii

iv
column-layout 26
confirm-yes-or-no 28
contain 28
convert-to-screen 29
count-collection-items 30
current-printer 31
define-command 31
define-interface 33
define-layout 36
define-menu 37
destroy 38
display 39
display-dialog 39
display-message 40
display-message-for-pane 40
display-pane 41
drawn-pinboard-object 42
draw-pinboard-object 43
draw-pinboard-object-highlighted 44
draw-pinboard-object-unhighlighted 44
editor-pane 44
editor-pane-buffer 46
element 46
ensure-interface-screen 49
exit-confirmer 49
exit-dialog 50
find-string-in-collection 51
form-layout 51
get-collection-item 53
get-constraints 53
get-page-area 54
get-printer-metrics 55
graph-pane 55
grid-layout 58
hide-interface 61
highlight-pinboard-object 61
image-list 62

image-pinboard-object 63
image-set 64
interactive-pane 64
interface 65
interpret-description 69
invalidate-pane-constraints 70
invoke-command 70
invoke-untranslated-command 71
item 71
itemp 73
item-pinboard-object 73
layout 74
line-pinboard-object 75
listener-pane 76
list-panel 76
list-view 77
lower-interface 83
make-container 83
make-general-image-set 84
make-image-locator 85
make-resource-image-set 85
map-collection-items 86
map-pane-children 86
map-typeout 87
menu 88
menu-component 90
menu-item 91
menu-object 92
modify-editor-pane-buffer 94
mono-screen 94
multiple-line-text-input-pane 95
option-pane 95
output-pane 96
over-pinboard-object-p 99
page-setup-dialog 100
pane-adjusted-offset 100
pane-adjusted-position 101
v

vi
parse-layout-descriptor 102
password-pane 103
pinboard-layout 104
pinboard-object 106
pinboard-object-at-position 107
pinboard-object-overlap-p 108
popup-confirmer 109
print-collection-item 111
print-dialog 112
print-editor-buffer 113
print-file 113
print-text 114
printer-metrics-device-height 114
printer-metrics-device-width 115
printer-metrics-dpi-x 116
printer-metrics-dpi-y 116
printer-metrics-height 117
printer-metrics-width 117
progress-bar 118
prompt-for-confirmation 118
prompt-for-file 119
prompt-for-form 120
prompt-for-forms 122
prompt-for-integer 123
prompt-for-string 124
prompt-for-symbol 125
prompt-with-list 126
push-button 127
push-button-panel 128
quit-interface 129
radio-button 131
radio-button-panel 131
range-pane 132
raise-interface 133
redisplay-interface 133
redisplay-menu-bar 134
redraw-pinboard-layout 135

redraw-pinboard-object 135
remove-capi-object-property 135
right-angle-line-pinboard-object 136
row-layout 137
screen 139
search-for-item 140
set-button-panel-enabled-items 140
set-geometric-hint 141
set-hint-table 141
set-scroll-position 142
set-scroll-range 142
show-interface 142
simple-layout 143
simple-pane 143
simple-pinboard-layout 145
simple-print-port 146
slider 147
switchable-layout 147
tab-layout 148
text-input-choice 151
text-input-pane 151
titled-image-pinboard-object 154
titled-menu-object 155
titled-pane 156
title-pane 158
toolbar 159
toolbar-button 161
toolbar-component 162
toolbar-object 163
top-level-interface 164
top-level-interface-p 165
undefine-menu 165
unhighlight-pinboard-object 165
unmap-typeout 166
update-pinboard-object 166
update-toolbar 166
with-atomic-redisplay 167
vii

viii
with-document-pages 167
with-geometry 168
with-page 169
with-page-transform 169
with-print-job 170
with-random-typeout 170
x-y-adjustable-layout 171

2 GP Reference Entries 173

default-image-translation-table 173
unit-transform 174
analyze-external-image 174
apply-rotation 175
apply-scale 175
apply-translation 176
augment-font-description 176
clear-external-image-conversions 177
clear-graphics-port 177
clear-graphics-port-state 178
clear-rectangle 178
compress-external-image 178
compute-char-extents 179
convert-external-image 179
copy-external-image 180
copy-pixels 180
copy-transform 181
create-pixmap-port 182
define-font-alias 183
destroy-pixmap-port 183
dither-color-spec 184
draw-arc 184
draw-arcs 185
draw-character 186
draw-circle 186
draw-ellipse 187
draw-image 188
draw-line 189

draw-lines 189
draw-point 190
draw-points 190
draw-polygon 191
draw-polygons 192
draw-rectangle 193
draw-rectangles 193
draw-string 194
external-image 195
external-image-color-table 195
external-image-color-table 196
externalize-image 196
find-best-font 197
find-matching-fonts 198
font-description 198
font-description-attributes 198
font-description-attribute-value 199
font-fixed-width-p 199
free-image 200
get-bounds 200
get-character-extent 201
get-char-ascent 202
get-char-descent 202
get-char-width 203
get-enclosing-rectangle 203
get-font-ascent 204
get-font-average-width 204
get-font-descent 205
get-font-height 205
get-font-width 205
get-graphics-state 206
get-origin 206
get-string-extent 207
get-transform-scale 208
graphics-port-transform 208
image 208
image-freed-p 209
ix

x

image-loader 209
image-translation 210
initialize-dithers 210
inset-rectangle 211
inside-rectangle 211
invert-transform 212
load-image 212
make-dither 213
make-font-description 214
make-graphics-state 214
make-image-from-port 215
make-transform 216
merge-font-descriptions 217
offset-rectangle 217
ordered-rectangle-union 217
pixblt 218
pixmap-port 219
port-depth 220
port-height 220
port-string-height 220
port-string-width 221
port-width 221
postmultiply-transforms 222
premultiply-transforms 222
read-and-convert-external-image 223
read-external-image 223
rectangle-bind 223
rectangle-bottom 224
rectangle-height 224
rectangle-left 225
rectangle-right 225
rectangle-top 226
rectangle-union 226
rectangle-width 227
rect-bind 227
register-image-load-function 228
register-image-translation 229

reset-image-translation-table 229
separation 230
set-default-image-load-function 231
set-graphics-port-coordinates 231
set-graphics-state 232
transform 233
transform-area 233
transform-distance 234
transform-distances 234
transform-is-rotated 235
transform-point 235
transform-points 235
transform-rect 236
undefine-font-alias 237
union-rectangle 237
unit-transform-p 238
unless-empty-rect-bind 238
untransform-distance 239
untransform-distances 239
untransform-point 240
untransform-points 240
with-dither 241
with-graphics-mask 241
with-graphics-rotation 242
with-graphics-scale 243
with-graphics-state 243
with-graphics-transform 244
with-graphics-translation 245
with-inverse-graphics 246
without-relative-drawing 246
with-pixmap-graphics-port 247
with-transformed-area 248
with-transformed-point 248
with-transformed-points 249
with-transformed-rect 250
write-external-image 251
xi

xii
Index 253

Preface
This manual contains reference entries for the functions, classes, macros and
accessors in the CAPI package and its sub-packages, and the graphics port
package. Entries are listed alphabetically, and the typographical conventions
used are similar to those used in Common Lisp: the Language (2nd Edition)
(Steele, 1990). Further details on the conventions used are given below. For a
more tutorial approach to the CAPI with further examples see the CAPI User
Guide.

Note: Although the graphics port package is not stricktly part of the CAPI , its
reference entires are included in this manual because graphics port functions
and macros are usually called from CAPI elements such as output panes.
Please also see the relevant chapter in the CAPI User Guide for further infor-
mation on graphics ports.

Conventions used for reference entries

Each entry is headed by the symbol name and type, followed by a number of
fields providing further details. These fields consist of a subset of the follow-
ing: “Package”, “Summary”, “Syntax”, “Superclasses”, “Subclasses”, “Slots”,
“Accessors”, “Readers”, “Compatibility Note”, “Description”, “Examples”,
and “See Also”.

The default package containing each symbol is the CAPI package in the CAPI
reference chapter, and the gp package in the graphics ports reference chapter,
unless stated otherwise in the “Package” section of an entry.
xiii

xiv
Entries with a long “Description” section usually have as their first field a
short “Summary” providing a quick overview of the purpose of the symbol
being described.

The “Syntax” section provides details of the arguments taken by the functions
and macros. Variable arguments for the command are printed like this.

Only immediate sub- and superclasses are detailed in the “Subclasses” and
“Superclasses” sections of each CAPI class entry.

Examples of the use of commands are given under the “Examples” heading.
Some example files can also be found in your installation directory under
current-lib/examples/capi/ .

Finally, the “See also” section provides a reference to other related symbols.

1

1CAPI Reference Entries
The following chapter documents functions exported from the capi package.

abort-dialog Function

Summary The abort-dialog function aborts the current dia-
log.

Syntax abort-dialog &rest ignored-args

Description This function is used to abort the current dialog. For
example, it can made a selection callback from a
Cancel button so that pressing the button aborts the
dialog. In a similar manner the complementary
function exit-dialog can be used as a callback for
an OK.

Example (capi:display-dialog
 (capi:make-container
 (make-instance 'capi:push-button
 :text "Cancel"
 :callback 'capi:abort-dialog)
 :title "Test Dialog"))
1

CAPI Reference Entries

2

See also exit-dialog

display-dialog

popup-confirmer

interface

activate-pane Function

Summary The activate-pane function gives the focus to a pane and
brings the window containing it to the front.

Syntax activate-pane pane

Description This brings the window containing pane to the front, and
gives the focus to the pane (or a sensible alternative inside
the same interface if that pane cannot accept the focus).

Example This example demonstrates how to swap the focus from one
window to another.

(setq text-input-pane
 (capi:contain (make-instance
 'capi:text-input-pane)))

(setq button
 (capi:contain (make-instance
 'capi:push-button
 :text "Press Me")))

(capi:activate-pane text-input-pane)

(capi:activate-pane button)

See also hide-interface

show-interface

quit-interface

simple-pane

attach-interface-for-callback Function

Summary The attach-interface-for-callback function changes the
interface that is passed when a callback is made.

Syntax attach-interface-for-callback element interface

Description Callbacks for element get passed interface instead of element’s
parent interface.

See also callbacks

element

interface

beep-pane Function

Summary The beep-pane function sounds a beep on a screen.

Syntax beep-pane &optional pane

Description This sounds a beep on the screen associated with pane or on
the current screen if pane is nil .

Example (capi:beep-pane)

See also simple-pane

screen

button Class

Summary A button is a pane that displays either a piece of text or a
generic image, and that performs an action when pressed.
Certain types of buttons can also be selected and deselected.
3

CAPI Reference Entries

4

Superclasses simple-pane
item

Subclasses push-button
radio-button
check-button

Slots interaction The interaction style for the button.

selected For radio button and check button styles, if
selected is set to t , the button is initially
selected.

callback Specifies the callback to use when the button
is selected.

image A generic image for the button (or nil).

disabled-image

The image for the button when disabled (or
nil).

enabled If nil the button cannot be selected.

Accessors button-enabled
button-selected

Readers button-image
button-disabled-image

Description The abstract class button is the class that push-button ,
radio-button , and check-button are built on. It can be dis-
played either with text or a generic image, and a callback is
called when the button is clicked. It inherits all of its textual
behavior from item , including the slot text which is the text
that appears in the button. For more details, see item .

The subclasses of button are just buttons with different inter-
action styles. It can often be easier just to make an instance of
button with the correct interaction (for instance, when the

interaction is only known at run-time). The interaction styles
are as follows:

:no-selection A push button.

:single-selection

A radio button.

:multiple-selection

A check button.

Both radio buttons and check buttons can have a selection
which can be set using the initarg interaction and the acces-
sor button-selected .

The button’s callback gets called when the user clicks on the
button, and by default gets passed the data in the button and
the interface. This can be changed by specifying a callback
type as described in the description of callbacks. The follow-
ing callbacks are accepted by buttons:

:callback Called when the button is pressed.

:selection-callback

Called when the button is selected.

:retract-callback

Called when the button is deselected.

By default, image and disabled-image are nil , meaning that
the button is a text button, but if image is provided then the
button displays an image instead of the text. The image can
be the name of an image that can be found in the image
search path, or an instance of a generic image. The disabled
image is the image that is shown when the button is disabled
(or nil , meaning that it is left for the window system to
decide how to display the image as disabled). For more
details about generic images, see the LispWorks User Guide.
5

CAPI Reference Entries

6

The button's actions can be enabled and disabled with the
enabled slot, and its associated accessor button-enabled .
This means that when the button is disabled, pressing on it
does not call any callbacks or change its selection.

Note that the class button-panel provides functionality to
group buttons together, and should normally be used in pref-
erence to creating individual buttons yourself. For instance, a
radio-button-panel makes a number of radio buttons and
also controls them such that only one button is ever selected
at a time.

Example In the following example a button is created. Using the
button-enabled accessor the button is then enabled and dis-
abled.

(setq button
 (capi:contain (make-instance
 'capi:push-button
 :text "Press Me")))

(setf (capi:button-enabled button) nil)

(setf (capi:button-enabled button) t)

In the next example a button with an image instead of text is
created.

(setq button
 (capi:contain (make-instance
 'capi:push-button
 :image "new-lispworks-logo")))

See also button-panel

callbacks

button-panel Class

Summary The class button-panel is a pane containing a number of but-
tons that are laid out in a particular style, and that have
group behavior.

Superclasses choice
titled-pane

Subclasses push-button-panel
radio-button-panel
check-button-panel

Slots layout-class The type of layout for the buttons.

layout-args Initialization arguments for the layout.

callbacks The selection callbacks for each button.

Description The class button-panel inherits most of its behavior from
choice , which is an abstract class providing support for han-
dling items and selections. By default, a button panel is single
selection (meaning that only one of the buttons can be
selected at any one time), but this can be changed by specify-
ing an interaction.

The subclasses push-button-panel , radio-button-panel

and check-button-panel are provided as convenience
classes, but they are just button panels with different interac-
tions (:no-selection , :single-selection and
:multiple-selection respectively).

The layout of the buttons is controlled by a layout of class
layout-class (which defaults to row-layout) but this can be
changed to be any other CAPI layout. When the layout is cre-
ated, the list of keyword arguments layout-args is passed to
the make-instance .

Each button uses the callbacks specified for the button panel
itself, unless the argument callbacks is specified. This
should be a list of callbacks (one per button) which if non-nil

will be used for the selection-callback .

For button-panel and its subclasses, the items supplied to
the :items initarg and (setf collection-items) function
can contain button objects. In this case, the button is used
7

CAPI Reference Entries

8

directly in the button panel rather than a button being cre-
ated by the CAPI.

This allows button size and spacing to be controlled explic-
itly. Note that the button must be of the appropriate type for
the subclass of button-panel being used, as shown in the fol-
lowing table:

For example,

(let ((button1 (make-instance ‘capi:push-button
 :text “button1”
 :internal-border 20
 :min-width 200))
 (button2 (make-instance ‘capi:push-button
 :text “button2”
 :internal-border 20
 :min-width 200)))
 (capi:contain (make-instance ‘capi:push-button-panel
 :items (list button1 button2)
 :layout-args ‘(:x-gap 30))))

Compatibility
Note

Button panels now default to having a maximum size con-
strained to their minimum size as this is useful when
attempting to layout button panels into arbitrary spaces
without them changing size. To get the old behavior, specify
:max-width nil in the make-instance .

Table 1.1 Button and panel classes

Button panel class Button class

push-button-panel push-button

radio-button-panel radio-button

check-button-panel check-button

Example (capi:contain (make-instance
 'capi:button-panel
 :items '(:red :green :blue)
 :print-function 'string-capitalize))

(setq buttons (capi:contain
 (make-instance
 'capi:button-panel
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :multiple-selection)))

(setf (capi:choice-selected-items buttons)
 '(:red :green))

(capi:contain (make-instance
 'capi:button-panel
 :items '(1 2 3 4 5 6 7 8 9)
 :layout-class 'capi:grid-layout
 :layout-args '(:columns 3)))

See also radio-button

check-button

push-button

set-button-panel-enabled-items

calculate-constraints Generic Function

Summary The calculate-constraints generic function calculates the
minimum and maximum size of a pane.

Syntax calculate-constraints pane

Description This generic function calculates the minimum and maximum
size for pane according to the sizes of its children, and sets
these values into pane's geometry cache.

When creating your own layout, you should define a method
for calculate-constraints that sets the values of the fol-
lowing geometry slots based on the constraints of its chil-
dren.
9

CAPI Reference Entries

10
%min-width% The minimum width of pane.

%max-width% The maximum width of pane.

%min-height% The minimum height of pane.

%max-height% The maximum height of pane.

The constraints of any CAPI element can be found by calling
get-constraints .

See also calculate-layout

define-layout

get-constraints

element

layout

calculate-layout Generic Function

Summary The calculate-layout generic function is used to provide a
method for laying out the children of a new layout.

Syntax calculate-layout layout x y width height

Description The generic function calculate-layout is called by the CAPI
to layout the children of a layout. When defining a new class
of layout using define-layout , a calculate-layout method
must be provided that sets the x, y, width and height of each of
the layout’s children. This method must try to obey the con-
straints specified by its children (its minimum and maximum
size) and should only break them when it becomes impossi-
ble to fit the constraints of all of the children.

To set the x, y, width and height of the layout, use the macro
with-geometry which works in a similar way as with-slots .

Compatibility
Note

In LispWorks 3.1, this macro and all of its variable names
were in the capi-layouts package. They have been moved
into the CAPI package for simplicity.

See also get-constraints

with-geometry

interpret-description

callbacks Class

Summary The class callbacks is used as a mixin by classes that pro-
vide callbacks.

Superclasses capi-object

Subclasses collection
item
menu-object

Slots callback-type The type of arguments for the callbacks.

selection-callback

The callback for selecting an item.

extend-callback

The callback for extending the selection.

retract-callback

The callback for deselecting an item.

action-callback

The callback for an action.

Accessors callbacks-callback-type
callbacks-selection-callback
callbacks-extend-callback
callbacks-retract-callback
callbacks-action-callback

Description Each callback function can be one of the following:
11

CAPI Reference Entries

12
function Call the function.

list Apply the head of the list to the tail.

:redisplay-interface

Call redisplay-interface on the top-level
interface.

:redisplay-menu-bar

Call redisplay-menu-bar on the top-level
interface.

The callback-type specifies which arguments get passed to
each of the callbacks. It can take any of the following values,
and passes the corresponding data to the callback function:

:data (item-data)

:data-interface

(item-data interface)

:interface-data

(interface item-data)

:item (item)

:item-interface

(item interface)

:interface-item

(interface item)

:interface (interface)

:full (item-data item interface)

:none ()

nil ()

The item-data variable is the item’s data if the item is of type
item , otherwise it is the item itself, as for item. The item vari-

able means the item itself. The interface is the interface of the
element.

See also choice

attach-interface-for-callback

call-editor Generic Function

Summary The call-editor generic function executes an editor com-
mand in an editor pane.

Syntax call-editor editor-pane command

Description This executes the editor command command in the current
buffer in editor-pane.

Example (setq editor (capi:contain
 (make-instance 'capi:editor-pane
 :text "abc")))

(capi:call-editor editor "End Of Buffer")

See also editor-pane

capi-object Class

Summary The class capi-object is the superclass of all CAPI classes.

Superclasses standard-class

Subclasses item
callbacks
element
interface

Slots name The name of the object.
13

CAPI Reference Entries

14
plist A property list for storing miscellaneous
information.

Accessors capi-object-name
capi-object-plist

Description The class capi-object provides a name and a property list
for general purposes, along with the accessors
capi-object-name and capi-object-plist respectively. A
capi-object ’s name is defaulted by define-interface to be
the name of the slot into which the object is put.

Examples (setq object (make-instance 'capi:capi-object
 :name 'test))

(capi:capi-object-name object)

(setf (capi:capi-object-plist object)
 '(:red 1 :green 2 :blue 3))

(capi:capi-object-property object :green)

See also capi-object-property

capi-object-property Function

Summary The capi-object-property function is used to set properties
in a property list.

Syntax capi-object-property object property

Description All CAPI objects contain a property list, similar to the symbol
plist . The recommended ways of setting properties are
capi-object-property and (setf capi-object-property) .
To remove a property, use the function
remove-capi-object-property .

Example In this example a list panel is created, and a test property is
set and examined using capi-object-property .

(setq pane (make-instance 'capi:list-panel
 :items '(1 2 3)))

(capi:capi-object-property pane 'test-property)

(setf (capi:capi-object-property pane 'test-property)
 "Test")

(capi:capi-object-property pane 'test-property)

(capi:remove-capi-object-property pane 'test-property)

(capi:capi-object-property pane 'test-property)

See also capi-object

remove-capi-object-property

check-button Class

Summary A check button is a button that can be either selected or dese-
lected, and its selection is independent of the selections of
any other buttons.

Superclasses button
titled-pane

Description The class check-button inherits most of its behavior from the
class button . Note that it is normally best to use a check-

button-panel rather than make the individual buttons your-
self, as the button panel provides functionality for handling
groups of buttons. However, check-button can be used if
you need to have more control over the button’s behavior.

Example The following code creates a check button.

(setq button (capi:contain
 (make-instance 'capi:check-button
 :text "Press Me")))

The button can be selected and deselected using this code.

(setf (capi:button-selected button) t)
15

CAPI Reference Entries

16
(setf (capi:button-selected button) nil)

The following code disables and enables the button.

(setf (capi:button-enabled button) nil)

(setf (capi:button-enabled button) t)

See also push-button

radio-button

button-panel

check-button-panel Class

Summary A check-button-panel is a pane containing a group of but-
tons each of which can be selected or deselected.

Superclasses button-panel

Description The class check-button-panel inherits all of its behavior
from button-panel , which itself inherits most of its behavior
from choice . Thus, the check-button-panel can accept
items, callbacks, and so on.

Example (capi:contain (make-instance
 'capi:check-button-panel
 :title "Select some packages"
 :items '("CAPI" "LISPWORKS" "CL-USER")))

(setq buttons (capi:contain
 (make-instance
 'capi:check-button-panel
 :title "Select some packages"
 :items '("CAPI" "LISPWORKS" "CL-USER")
 :layout-class 'capi:column-layout)))

(capi:choice-selected-items buttons)

See also check-button

push-button-panel

radio-button-panel

choice Class

Summary A choice is an abstract class that collects together a group of
items, and provides functionality for displaying and select-
ing them.

Superclasses: collection

Subclasses list-panel
button-panel
option-pane
graph-pane
menu-component

Slots interaction The interaction style of the choice.

selection The indexes of the choice's selected items.

selected-item The selected item for a single selection
choice.

selected-items A list of the selected items.

keep-selection-p

It t , retains any selection when the items
change.

Accessors choice-selection
choice-selected-item
choice-selected-items

Readers choice-interaction

Description The class choice inherits most of its behavior from collec-

tion , and then provides the selection facilities itself. The
classes list-panel , button-panel , menu-component and
graph-pane inherit from it, and so it plays a key role in CAPI
applications.
17

CAPI Reference Entries

18
A choice can have one of four different interactions, and
these control how it behaves when an item is selected by the
user.

:no-selection The choice behaves just as a collection.

:single-selection

The choice can have only one selected item.

:multiple-selection

The choice can have multiple selected items.

:extended-selection

An alternative to multiple-selection .

In no-selection mode, the choice cannot have a selection,
and so behaves just as a collection would.

In single-selection mode, the choice can only have one
item selected at a time. When a new selection is made, the old
selection is cleared and the selection-callback is called.

In multiple-selection mode, the choice can have any num-
ber of items selected, and selecting an item toggles its selec-
tion status. The selection-callback is called when an item
becomes selected, and the retract-callback is called when
an item is deselected.

In extended-selection mode, the choice can have any num-
ber of items selected as with multiple-selection mode, but
the usual selection gesture removes the old selection. How-
ever, there is a window system specific means of extending
the selection. When an item is selected the selection call-
back is called, when the selection is extended the extend-

callback is called, and when an item is deselected the
retract-callback is called.

The choice’s selection stores the indices of the currently
selected item, and is a single number for single selection
choices and a list for all other interactions. The complemen-
tary accessors choice-selected-item and

choice-selected-items treat the selection in terms of the
items themselves as opposed to their indices.

Usually when a choice's items are changed using (setf

collection-items) the selection is lost.

However, if the choice was created with keep-selection-p

set to t , then the selection is preserved over the change.

Example The following example defines a choice with three possible
selections.

(setq choice (make-instance 'capi:choice
 :items '("One" "Two" "Three")
 :selection 0))

(capi:display-message "Selection: ~S"
 (capi:choice-selection choice))

(capi:choice-selected-item choice)

The selection is changed using the following code.

(setf (capi:choice-selection choice) 1)

(capi:choice-selected-item choice)

See also choice-selected-item

choice-selected-items

choice-selected-item Generic Function

Summary The function choice-selected-item returns the currently
selected item in a single selection choice.

Syntax choice-selected-item choice

Description The function choice-selected-item returns the currently
selected item in a single selection choice. A setf method is
provided as a means of setting the selection. It is an error to
19

CAPI Reference Entries

20
call this function on choices with different interactions — in
that case, you should use choice-selected-items .

Example First we set up a single selection choice — in this case, a list
panel.

(setq list (capi:contain
 (make-instance 'capi:list-panel
 :items '(a b c d e)
 :selection 2)))

The following code line returns the selection of the list panel.

(capi:choice-selected-item list)

The selection can be changed, and the change viewed, using
the following code.

(setf (capi:choice-selected-item list) 'e)

(capi:choice-selected-item list)

See also choice

choice-selected-items

choice-selected-items Generic Function

Summary The function choice-selected-items returns the currently
selected items in a choice as a list of the items.

Syntax choice-selected-items choice

Description The function choice-selected-items returns the currently
selected items in a choice as a list of the items. A setf method
is provided as a means of setting the currently selected items.
In the case of single-selection choices, it is usually easier
to use the complementary function choice-selected-item ,
which returns the selected item as its result.

Compatibility
Note

In LispWorks 3.1, choice-selected-items returned a single
item for single-selection list panels but this was consid-
ered to cause problems and so it was changed to always
return a list, and the alternative function
choice-selected-item was provided for single selection
panes.

Examples First we set up a multiple selection choice — in this case, a
list panel.

(setq list (capi:contain
 (make-instance
 capi:list-panel
 :items '(a b c d e)
 :interaction :multiple-selection
 :selection '(1 3))))

The following code line returns the selections of the list.

(capi:choice-selected-items list)

The selections of the list panel can be changed and redis-
played using the following code.

(setf (capi:choice-selected-items list) '(a c e))

(capi:choice-selected-items list)

See also choice

choice-selected-item

collection Class

Summary A collection collects together a set of items, and provides
functionality for accessing and displaying them.

Superclasses capi-object
callbacks

Subclasses choice
21

CAPI Reference Entries

22
Slots items The items in the collection.

print-function

A function that prints an item.

test-function A comparison function between two items.

items-count-function

A function which returns the length of
items.

items-get-function

A function that returns the nth item.

item-map-function

A function that maps a function over the
items.

Accessors collection-items
collection-print-function
collection-test-function

Readers collection-items-count-function
collection-items-get-function
collection-items-map-function

Description The main use of collection is as a part of the class choice ,
which provides selection capabilities on top of the collection
handling, and which is used by list panels, button panels and
menus amongst others.

The items in the collection can either be arbitrary Common
Lisp objects which can be printed with the print-function ,
or can be instances of the CAPI class item in which case they
are displayed with the text field of the item. The main differ-
ence is that non-CAPI items use the callbacks specified for
the collection, whilst the CAPI items will use their callbacks
in preference if they are specified.

By default, the items must be a sequence, but this can be
changed by specifying an items-get-function , an
items-count-function , and an item-map-function . The
items-get-function should expect the items and an index,
and should return the indexed item. The
items-count-function should expect the items and should
return the number of them. The item-map-function should
expect the items, a function and a flag collect-results-p ,
and should call the function on each of the items in return. If
collect-results-p is non-nil , then it should also collect the
results of these calls together in a list.

Examples The following code uses push-button-panel , a subclass of
collection .

(capi:contain (make-instance 'capi:push-button-panel
 :items '(one two three)))

(capi:contain (make-instance
 'capi:push-button-panel
 :items '(one two three)
 :print-function 'string-capitalize))

The following example provides a collection with all values
from 1 to items by providing a get-function and a
count-function .

(capi:contain (make-instance
 'capi:push-button-panel
 :items 6
 :items-get-function
 #'(lambda (items index) (1+ index))
 :items-count-function
 #'(lambda (items) items)))

Here is an example demonstrating the use of CAPI items in a
collections list of items to get more specific callbacks.
23

CAPI Reference Entries

24
(defun specific-callback (data interface)
 (capi:display-message "Specific callback for ~S"
 data))

(defun generic-callback (data intereface)
 (capi:display-message "Ordinary callback for ~S"
 data))

(capi:contain (make-instance
 'capi:list-panel
 :items (list (make-instance
 'capi:item
 :text "Special"
 :data 1000
 :selection-callback
 'specific-callback)
 2 3 4)
 :selection-callback 'generic-callback)
 :min-width 200 :min-height 200)

See also item

count-collection-items

get-collection-item

map-collection-items

search-for-item

collection-search Generic Function

Summary The generic function collection-search calls
find-string-in-collection with a string provided by the
user.

Syntax collection-search collection &optional set

Description Prompt the user for a string and call
find-string-in-collection with this string.

See also collection

find-string-in-collection

collector-pane Class

Summary A collector-pane is an editor-pane which displays the out-
put sent to a particular type of character stream called an edi-
tor stream, the contents of which are stored in an editor
buffer.

Superclasses editor-pane

Slots buffer-name The name of a buffer onto an editor stream.

stream The editor stream to be collected.

Readers collector-pane-stream

Description A new collector-pane can be created to view an existing
editor stream by passing the stream itself or by passing the
buffer name of that stream.

To create a new stream, either specify a buffer-name of a
non-existent stream or specify nothing, in which case the
CAPI will create a unique buffer name for you. To then get
hold of that stream, use the reader collector-pane-stream

on the collector-pane .

Note that the editor buffer “Background Output ” is a buffer
onto the output stream *standard-output* .

Examples Here is an example that creates two collector panes onto a
new stream (that is created by the first collector pane).

(setq collector (capi:contain
 (make-instance 'capi:collector-pane)))

(setq *test-stream*
 (capi:collector-pane-stream collector))

(capi:contain
 (make-instance 'capi:collector-pane
 :stream *test-stream*))

(format *test-stream* "Hello World~%")
25

CAPI Reference Entries

26
Finally, this example shows how to create a collector pane
onto the “Background Output ” stream.

(capi:contain (make-instance 'capi:collector-pane
 :buffer-name "Background Output"))

See also with-random-typeout

map-typeout

unmap-typeout

color-screen Class

Superclasses screen

Description This is a subclass of screen that gets created for color screens.
It is primarily available as a means of discriminating on
whether or not to use colors in an interface.

See also mono-screen

column-layout Class

Summary The column-layout lays its children out in a column.

Superclasses grid-layout

Slots ratios The size ratios between the layout’s chil-
dren.

adjust The horizontal adjustment for each child.

gap The gap between each child.

uniform-size-p

If t , each child in the column has the same
height.

Accessors layout-ratios

Description The column-layout lays its children out by inheriting the
behavior from grid-layout . The description is a list of the
layout’s children, and the layout also translates the initargs

ratios , adjust , gap and uniform-size-p into the
grid-layout ’s equivalent keywords y-ratios , x-adjust ,
y-gap and y-uniform-size-p .

Example (capi:contain (make-instance
 'capi:column-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 "Title"
 (make-instance 'capi:list-panel
 :items '(1 2 3)))))

(setq column (capi:contain
 (make-instance
 'capi:column-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 "Title:"
 (make-instance 'capi:list-panel
 :items '(1 2 3)))
 :adjust :center)))

(setf (capi:layout-x-adjust column) :right)

(setf (capi:layout-x-adjust column) :left)

(setf (capi:layout-x-adjust column) :center)

See also row-layout
27

CAPI Reference Entries

28
confirm-yes-or-no Function

Summary The function confirm-yes-or-no pops up a dialog button
containing a message and a Yes and No button.

Syntax confirm-yes-or-no format-string &rest format-args

Description This pops up a dialog box containing a message and the but-
tons Yes and No, returns t when the Yes button is clicked, and
nil when the No button is clicked. The message is obtained
by applying the format-string and the format-args to the Com-
mon Lisp function format .

This function is actually a convenient version of
prompt-for-confirmation , but has the disadvantage that
you cannot specify any customization arguments. For more
flexibility, use prompt-for-confirmation itself.

Example (setq pane (capi:contain
 (make-instance 'capi:text-input-pane)
 :title "Test Interface"))

(when (capi:confirm-yes-or-no "Close ~S?" pane)
 (capi:quit-interface pane))

See also prompt-for-confirmation

display-dialog

popup-confirmer

contain Function

Summary The contain function creates a container for a CAPI element
and is provided as a convenient way of testing CAPI func-
tionality.

Syntax contain element &key screen &allow-other-keys

Description This displays a window containing element and returns ele-
ment as its result. It is mainly used during interactive sessions
as a convenient way of testing CAPI functionality, and many
of the CAPI examples use it for this purpose. The container is
created using make-container , which can make containers
for any of the following classes:

simple-pane
layout
interface
pinboard-object
menu
menu-item
menu-component
list

In the case of a list , the CAPI tries to see what sort of objects
they are and makes an appropriate container. For instance, if
they were all simple-panes it would put them into a
column-layout .

Example (capi:contain (make-instance 'capi:text-input-pane))

(capi:contain (make-instance
 'capi:column-layout
 :description '("Title:"
 ,(make-instance
 'capi:text-input-pane))))

(capi:contain (make-instance 'capi:menu-item
 :title "Test"))

See also make-container

display

element

convert-to-screen Function

Summary The convert-to-screen function finds the appropriate
screen for a CAPI object.
29

CAPI Reference Entries

30
Syntax convert-to-screen &optional object

Description This finds the appropriate screen for the CAPI object object. If
object is nil it returns the default screen, and if it is a number
n it returns the nth screen.

Examples (capi:convert-to-screen)

Assuming you have a second screen, you can access it using:

(capi:convert-to-screen 1)

See also screen

count-collection-items Generic Function

Summary The count-collection-items generic function returns the
number of items in a collection.

Package CAPI-INTERNALS

Syntax count-collection-items collection &optional representation

Description Return the number of items in the collection by calling the
items-count-function . If representation is non-nil , it is
used in place of the items-representation in the choice.

Examples The following example uses count-collection-items to
return the number of items in a list panel.

(setq list (make-instance 'capi:list-panel
 :items '(1 2 3 4 5)))

(capi:count-collection-items list)

The following example shows how to count the number of
items in a specified list.

(capi:count-collection-items list '(1 2))

See also collection

get-collection-item

search-for-item

current-printer Function

Summary Returns the currently selected printer object for the specified
library.

Syntax current-printer &optional library interactive

Description The current-printer function returns the currently selected
printer object for the library specified by library. If library is
nil , the default library is used. If interactive is non-nil and
there is no current printer a confirmer is displayed warning
the user.

See also page-setup-dialog

define-command Macro

Summary The define-command macro defines an alias for a mouse or
keyboard gesture that can be used in the input model of an
output pane.

Syntax define-command name gesture &key translator host

Description The macro define-command defines an alias for a mouse or
keyboard gesture that can then be used in output-pane ’s
input models. The name is the name of the alias and the ges-
ture is one of the gestures accepted by output-pane . The
translator is a function that gets passed the arguments that
would be passed to the callback, and returns a list of argu-
ments to be passed to the callback along with the output-
pane (which will be the first argument). The host indicates
31

CAPI Reference Entries

32
which platforms this gesture should apply for (it defaults to
all platforms).

For a full description of the gesture syntax, see output-pane .

Examples Firstly, here is an example of defining a command which
maps onto a gesture.

(defun gesture-callback (output-pane x y)
 (capi:display-message
 "Pressed ~S at (~S,~S)"
 output-pane x y))

(capi:define-command :select (:button-1 :press))

(capi:contain (make-instance
 'capi:output-pane
 :input-model '((:select
 gesture-callback))))

Here is a more complicated example demonstrating the use
of the translator to affect the arguments passed to a callback.

(capi:define-command
 :select-object (:button-1 :press)
 :translator #'(lambda (output-pane x y)
 (let ((object
 (capi:pinboard-object-at-position
 output-pane x y)))
 (when object
 (list object)))))

(defun object-select-callback (output-pane
 &optional object)
 (when object (capi:display-message
 "Pressed on ~S in ~S"
 object output-pane)))

(setq pinboard
 (capi:contain (make-instance
 'capi:pinboard-layout
 :input-model '((:select-object
 object-select-callback)))))

(make-instance 'capi:item-pinboard-object
 :text "Press Me!"
 :parent pinboard
 :x 10 :y 20)

(make-instance 'capi:line-pinboard-object
 :parent pinboard
 :x 20 :y 50
 :width 100 :height 100)

See also output-pane

invoke-command

invoke-untranslated-command

define-interface Macro

Summary The define-interface macro defines subclasses of
interface .

Syntax define-interface name superclasses slots &rest options

Description The macro define-interface is used to define subclasses of
interface , which when created with make-instance has the
specified panes, layouts and menus created automatically.
The macro is essentially a version of defclass which accepts
the following extra options:

:panes Descriptions of the interface’s panes.

:layouts Descriptions of the interface’s layouts.

:menus Descriptions of the interface’s menus.

:menu-bar A list of menus for the interface’s menu bar.

:definition Options to alter define-interface .

The options :panes , :layouts and :menus add extra slots to
the class that will contain the CAPI object described in their
description. Within the scope of the extra options, the slots
themselves are available by referencing the name of the slot,
and the interface itself is available with the variable
capi:interface . Each of the slots can be made to have read-
ers, writers or accessors by passing the appropriate defclass

keyword as one of the optional arguments in the description.
33

CAPI Reference Entries

34
The :panes option is a list of pane descriptions of the follow-
ing form

(:panes
 (slot-name pane-class initargs)
 …
 (slot-name pane-class initargs)
)

where slot-name is a name for the slot, pane-class is the class of
the pane being included in the interface, and initargs are the
initialization arguments for the pane.

The :layouts option is a list of layout descriptions of the fol-
lowing form

(:layouts
 (slot-name layout-class children initargs)
 …
 (slot-name layout-class children initargs)
)

where slot-name is a name for the slot, layout-class specifies
the type of layout, children is a list of children for the layout,
and initargs are the initialization arguments for the layout.
The primary layout for the interface defaults to the first lay-
out described, but can be specified as the :layout initarg to
the interface. If no layouts are specified, then the CAPI will
place all of the defined panes into a column layout and make
that the primary layout.

The :menus option is a list of menu and menu component
descriptions of the following form

(:menus
 (slot-name title descriptions initargs)
 …
 (slot-name title descriptions initargs)
)

where slot-name is the slot name for each menu or menu com-
ponent, title is the menu’s title or the keyword :component ,
descriptions is a list of menu item descriptions, and initargs is a
list of the initialization arguments for the menu. Each item

description is either a title, or a list of items containing a title
and a list of initialization arguments for the item.

The :menu-bar option is a list of slot names, where each slot
referred to contains a menu that should appear on the menu
bar.

The :definition option is a property list of arguments
which define-interface uses to change the way that it
behaves. Currently there is only one definition option:

:interface-variable

The name of the variable containing the
interface.

Compatibility
Note

The variable that was bound to the interface itself was called
capi::self in LispWorks 3.1, and has been kept for compati-
bility. However, it is recommended that you use
capi:interface or specify your own name using
:interface-variable .

Examples Firstly, a couple of pane examples:

(capi:define-interface test1 ()
 ()
 (:panes
 (text capi:text-input-pane))
 (:default-initargs :title "Test1"))

(capi:display (make-instance 'test1))

(capi:define-interface test2 ()
 ()
 (:panes
 (text capi:text-input-pane)
 (buttons capi:button-panel :items '(1 2 3)))
 (:layouts
 (main-layout capi:column-layout '(text buttons)))
 (:default-initargs :title "Test2"))

(capi:display (make-instance 'test2))

Here are a couple of menu examples:
35

CAPI Reference Entries

36
(capi:define-interface test3 ()
 ()
 (:menus
 (color-menu "Colors" (:red :green :blue)
 :print-function 'string-capitalize))
 (:menu-bar color-menu)
 (:default-initargs :title "Test3"))

(capi:display (make-instance 'test3))

(capi:define-interface test4 ()
 ()
 (:menus
 (color-menu "Colors" ((:component
 (:red :green :blue)
 :interaction :single-selection
 :print-function
 'string-capitalize))))
 (:menu-bar color-menu)
 (:default-initargs :title "Test4"))

(capi:display (make-instance 'test4))

See also interface

layout

menu

define-layout Macro

Summary The macro define-layout creates new classes of layout .

Syntax define-layout name superclasses slots &rest options

Description The macro define-layout is used to create new classes of
layout . The macro is essentially the same as defclass except
that its default superclass is layout .

To implement a new class of layout , methods need to be pro-
vided for the following generic functions:

interpret-description

Translate the layout's child descriptions.

calculate-constraints

Calculate the constraints for the layout.

calculate-layout

Layout the children of the layout.

Compatibility
Note

In LispWorks 3.1, this macro and all of its variable names
were in the capi-layouts package. They have been moved
into the CAPI package for simplicity.

See also interpret-description

calculate-constraints

calculate-layout

layout

define-menu Macro

Summary The define-menu macro defines a menu function.

Syntax define-menu function-name (self) title menu-body &rest menu-
options

Description The macro define-menu defines a function called function-
name with a single argument self that will make a menu. The
parameters title, menu-body and menu-options take the same
form as the :menus section of define-interface .

Example (capi:define-menu make-test-menu (self)
 "Test"
 ("Item1"
 "Item2"
 "Item3"
 (:component
 ("Item4"
 "Item5")
 :interaction :single-selection)))

(setq interface (make-instance 'capi:interface))
37

CAPI Reference Entries

38
(setf (capi:interface-menu-bar-items interface)
 (list (make-test-menu interface)))

(capi:display interface)

See also define-interface

menu

destroy Generic Function

Summary The generic function destroy closes the window associated
with an interface and then calls the interface’s
destroy-callback .

Syntax destroy interface

Description This closes the window associated with interface, and then
calls the interface’s destroy-callback if it has one. There is a
complementary function quit-interface which calls the
interface’s confirm-destroy-function to confirm that the
destroy should be done, and it is advisable to always use this
unless you want to make sure that the interface’s confirm-

destroy-function is ignored.

Example (setq interface
 (capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S"
 interface)))))

(capi:destroy interface)

See also interface

quit-interface

display Function

Summary The display function displays a CAPI interface on a speci-
fied screen.

Syntax display interface &key screen

Description The function display displays the CAPI interface interface on
the specified screen (or the current one if not supplied). Use
the function contain to display objects other than interfaces.

Example (capi:display (make-instance 'capi:interface
 :title "Test"))

See also interface

contain

display-dialog

quit-interface

display-dialog Function

Summary The display-dialog function displays a CAPI interface as a
dialog box.

Syntax display-dialog interface &key screen focus (modal t)

Description This is a complementary function that displays the CAPI
interface interface as a dialog box.

The variable screen is the screen for the dialog to be displayed
on. The focus should be the pane within the interface that
should be given the focus initially. If a focus is not supplied,
then it lets the window system decide. The variable modal
indicates whether or not the dialog takes over all input to the
application.

The CAPI also provides popup-confirmer which gives you
the standard OK and Cancel button functionality.
39

CAPI Reference Entries

40
Example (capi:display-dialog (capi:make-container
 (make-instance
 'capi:push-button-panel
 :items '("OK" "Cancel")
 :callback-type :data
 :callbacks '(capi:exit-dialog
 capi:abort-dialog))
 :title "Empty Dialog"))

See also interface

popup-confirmer

exit-dialog

abort-dialog

display

display-message Function

Summary The function display-message displays a message on the
current CAPI screen.

Syntax display-message format-string &rest format-args

Description The function display-message creates a message from the
arguments using format , and then displays it on the current
CAPI screen.

Example (capi:display-message "Current screen = ~S"
 (capi:convert-to-screen))

See also display-message-for-pane

display-dialog

display-message-for-pane Function

Summary The function display-message-for-pane displays a message
on the same screen as a specified pane.

Syntax display-message-for-pane pane format-string &rest format-
args

Description The function display-message-for-pane creates a message
from the arguments using format, and then displays it on the
same screen as pane.

Example (setq pane (capi:contain (make-instance
 'capi:text-input-pane)))

(capi:display-message-for-pane pane
 "Just created ~S" pane)

See also display-message

display-pane Class

Summary The class display-pane is a pane that displays several lines
of text.

Superclasses titled-pane

Slots text A string or a list of strings to be displayed.

Accessors display-pane-text

Description The text passed to a display pane can be provided either as a
single string containing newlines, or else as a list of strings
where each string represents a line.

There are several classes which can display text, as follows:

title-pane Displays a single line of text.

display-pane Displays multiple lines of text.

text-input-pane

Inputs a single line of text.

editor-pane Inputs multiple lines of text.
41

CAPI Reference Entries

42
Examples (capi:contain (make-instance
 'capi:display-pane
 :text
 '("One" "Line" "At" "A" "Time...")))

(setq display-pane (capi:contain
 (make-instance
 'capi:display-pane
 :text
 '("One" "Line" "At" "A" "Time...")
 :min-height '(:character 5))))

(setf (capi:display-pane-text display-pane)
 '("Some" "New" "Text"))

See also title-pane

text-input-pane

editor-pane

drawn-pinboard-object Class

Summary The class drawn-pinboard-object is a subclass of pinboard-

object which is drawn by a supplied function, and is pro-
vided as a means of the user creating their own pinboard
objects.

Superclasses pinboard-object

Slots display-callback

Called to display the object.

Accessors drawn-pinboard-object-display-callback

Description The display-callback is called with the output pane to
draw on, the drawn-pinboard-object itself, and the x, y,
width and height of the object, and it is expected to redraw
that section.

An alternative way of doing this is to create a subclass of
pinboard-object and to provide a method for
draw-pinboard-object .

Example (defun draw-an-ellipse
 (output-pane self x y width height)
 (let ((x-radius (floor width 2))
 (y-radius (floor height 2)))
 (gp:draw-ellipse output-pane
 (+ x x-radius) (+ y y-radius)
 x-radius y-radius
 :foreground :red
 :filled t)))

(capi:contain (make-instance
 'capi:drawn-pinboard-object
 :min-width 200
 :min-height 100
 :display-callback 'draw-an-ellipse))

See also pinboard-layout

draw-pinboard-object Generic Function

Syntax draw-pinboard-object pinboard object
 &key x y width height &allow-other-keys

Description This generic function is called whenever a pinboard object
needs to be drawn. The x, y, width and height arguments indi-
cate the region that needs to be redrawn, but a method is free
to ignore these and just draw the complete object.

Compatibility
Note

Note that draw-pinboard-object now takes keyword argu-
ments, while in LispWorks 3.1 it did not.

See also pinboard-layout

pinboard-object
43

CAPI Reference Entries

44
draw-pinboard-object-highlighted Generic Function

Summary The generic function draw-pinboard-object-hilighted

draws highlighting on a pre-drawn pinboard object.

Syntax draw-pinboard-object-highlighted pinboard object
 &key &allow-other-keys

Description This generic function draws the highlighting onto a pinboard
object that has already been drawn. The default highlighting
method draws a box around the object, and should be suffi-
cient for most purposes.

See also draw-pinboard-object-unhighlighted

highlight-pinboard-object

draw-pinboard-object-unhighlighted Generic Function

Summary The generic function draw-pinboard-object-unhighlighted

removes the highlighting from a pinboard object.

Syntax draw-pinboard-object-unhighlighted pinboard object
 &key &allow-other-keys

Description This generic function removes the highlighting from a pin-
board object.

See also draw-pinboard-object-highlighted
highlight-pinboard-object

editor-pane Class

Summary An editor pane is an EMACS-style editor that has all of the
functionality described in the LispWorks Guide To The Editor.

Superclasses output-pane

Subclasses interactive-pane
collector-pane

Slots text The text in the editor pane.

enabled If t the editor pane will accept input from
the mouse and keyboard.

buffer-name The name of the editor buffer.

Accessors editor-pane-text
editor-pane-enabled

Description The accessor editor-pane-text is provided to read and
write the text in the editor buffer. The accessor
editor-pane-enabled is used to enable and disable the edi-
tor (when it is disabled, it ignores all input from the mouse
and keyboard).

The editor-pane stores text in buffers which are uniquely
named, and so to create an editor-pane using an existing
buffer you should pass the buffer-name. To create an editor-
pane with a new buffer, pass a buffer-name that does not
match any existing buffer. If buffer-name is not passed, then
the editor-pane uses some existing buffer.

Example (capi:contain (make-instance 'capi:editor-pane
 :text "Hello world"))

(setq editor (capi:contain
 (make-instance 'capi:editor-pane
 :text "Hello world"
 :enabled nil)))

(setf (capi:editor-pane-enabled editor) t)

(setf (capi:editor-pane-text editor)
 "New text")

See also call-editor

modify-editor-pane-buffer
45

CAPI Reference Entries

46
editor-pane-buffer Accessor Function

Summary The editor-pane-buffer function returns the editor buffer
associated with an editor pane.

Syntax editor-pane-buffer pane

Description This accessor function returns the editor buffer associated
with an editor pane, which can be manipulated in the stan-
dard ways with the routines in the editor package.

Example (setq editor-pane
 (capi:contain (make-instance 'capi:editor-pane
 :text "Hello world")))

(setq buffer
 (capi:editor-pane-buffer editor-pane))

(editor:buffer-insert-string buffer
 "Some more text...")

See also editor-pane

element Class

Summary The class element is the superclass of all CAPI objects that
appear in a window.

Superclasses capi-object

Subclasses simple-pane
pinboard-object
menu
collection

Slots parent The element containing this element.

interface The interface containing this element.

min-width The minimum width of the element.

min-height The minimum height of the element.

max-width The maximum width of the element.

max-height The maximum height of the element.

x The x position for the element in a pinboard.

y The y position for the element in a pinboard.

Accessors element-parent

Readers element-interface

Description The class element contains the slots parent and interface

which contain the element and the interface that the element
is contained in respectively. The writer method
element-parent can be used to re-parent an element into
another parent (or to remove it from a container entirely by
setting its parent to nil).

All elements accept hints as to the initial size and position of
the element in question. By default elements have a mini-
mum pixel size of one by one, and a maximum size of nil

(meaning no maximum), but any of the following hints can
be specified to change these values:

:x The x position of the element.

:y The y position of the element.

:min-width The width of the element.

:min-height The minimum height of the element.

:max-width The maximum width of the element.

:max-height The maximum height of the element.

:best-width The initial width of the element.

:best-height The initial height of the element.

The possible values for these hints are as follows:

integer The size in pixels.
47

CAPI Reference Entries

48
t For max-width and max-height , means use
the minimum.

:text-width The width of any text in the element.

:screen-width The width of the screen.

:screen-height The height of the screen.

Also, hints can be a list starting with any of the following
operators, followed by one or more hints.

max The maximum size of the hints.

min The minimum size of the hints.

+ The sum of the hints.

- The subtraction of hints from the first.

* The multiplication of the hints.

/ The division of hints from the first.

Finally, you can choose to apply or funcall an arbitrary
function, by passing a list starting with funcall or apply , fol-
lowed by the function and then the arguments.

Examples (capi:display (make-instance 'capi:interface
 :title "Test"
 :min-width 300))

(capi:display (make-instance 'capi:interface
 :title "Test"
 :min-width 300
 :max-height 200))

Here is a simple example that demonstrates the use of the
element-parent accessor to place elements.

(setq pinboard (capi:contain
 (make-instance
 'capi:pinboard-layout)
 :min-width 300 :min-height 300))

(setq object (make-instance
 'capi:image-pinboard-object
 :x 10 :y 10
 :image "new-lispworks-logo"
 :parent pinboard))

(setf (capi:element-parent object) nil)

(setf (capi:element-parent object) pinboard)

See also set-hint-table

ensure-interface-screen Function

Summary The ensure-interface-screen function ensures that a top
level interface is displayed on a given screen.

Syntax ensure-interface-screen self &key screen

Description This ensures that the top level interface is displayed on the
given screen (or the default) if display is called later without
a :screen argument. This allows the querying of font and
color information associated with a particular screen. It
returns the screen that is used.

See also screen

display

interface

exit-confirmer Function

Summary The exit-confirmer function is called by the OK button on a
dialog created with popup-confirmer .

Syntax exit-confirmer &rest dummy-args
49

CAPI Reference Entries

50
Description This is the function that is called by the OK button on a dialog
created using popup-confirmer , and it is provided as an
entry point so that other callbacks can behave in the same
way. There is a full description of the OK button in popup-con-

firmer .

Example This example demonstrates the use of exit-confirmer to
make the dialog exit when pressing return in the text input
pane. It also demonstrates the use of value-function as a
means of deciding the return value from popup-confirmer .

(capi:popup-confirmer (make-instance
 'capi:text-input-pane
 :callback 'capi:exit-confirmer)
 "Enter some text:"
 :value-function
 'capi:text-input-pane-text)

See also popup-confirmer

display-dialog

interface

exit-dialog Function

Summary The exit-dialog function exits the current dialog.

Syntax exit-dialog value

Description This function is the means to successfully return a value from
the current dialog. Hence, it might be called from an OK but-
ton so that pressing the button would cause the dialog to
return successfully, whilst the Cancel button would call the
counterpart function abort-dialog .

Example (capi:display-dialog
 (capi:make-container
 (make-instance 'capi:text-input-pane
 :callback-type :data
 :callback 'capi:exit-dialog)
 :title "Test Dialog"))

See also abort-dialog

display-dialog

popup-confirmer

interface

find-string-in-collection Generic Function

Summary The find-string-in-collection generic function returns
the next item whose printed representation matches a given
string.

Syntax find-string-in-collection self string &optional set

Description The find-string-in-collection generic function returns
the next item whose printed representation matches string. If
set is non-nil , the choice selection is set to this item. The
search is started from the previous search point. If the choice
selection is set, the next search will start from the first
selected item.

See also collection-search

collection

form-layout Class

Summary The class form-layout lays its children out in a form.

Superclasses layout
51

CAPI Reference Entries

52
Slots vertical-gap The gap between rows in the form.

vertical-adjust

The adjustment made to the rows.

title-gap The gap between the two columns.

title-adjust The adjustment made to the left column.

Accessors form-vertical-gap
form-vertical-adjust
form-title-gap
form-title-adjust

Description The form layout lays its children out in two columns, where
the children in the left column (which are usually titles) are
right adjusted whilst the children in the right column are left
adjusted.

Compatibility
Note

This class has been superseded by grid-layout , and will
probably be removed at some point in the future. The exam-
ples below demonstrate the use of grid layouts as an alterna-
tive to forms.

Examples (setq children (list
 "Button:"
 (make-instance 'capi:push-button
 :text "Press Me")
 "Enter Text:"
 (make-instance 'capi:text-input-pane)
 "List:"
 (make-instance 'capi:list-panel
 :items '(1 2 3))))

(capi:contain (make-instance
 'capi:grid-layout
 :description children
 :x-adjust '(:right :left)
 :y-adjust :center))

See also grid-layout

layout

get-collection-item Generic Function

Summary The generic function get-collection-item returns the item
at a specified position in a collection.

Syntax get-collection-item self index

Description The generic function get-collection-item returns the item
at position index from the collection. It achieves this by call-
ing the items-get-function of the collection. There is also a
complementary function, search-for-item which finds the
index for a given item in a collection.

See also collection

search-for-item

get-constraints Function

Summary The get-constraints function returns a list of the con-
straints for an element.

Package capi-internals

Syntax get-constraints element

Description The function get-constraints returns the constraints for ele-
ment as multiple values (the values are the minimum width,
the minimum height, the maximum width and the maximum
height).

This function calls the generic function calculate-

constraints to calculate these sizes initially, but then just
uses the values in the geometry cache for the element. To
force an element to take account of its new constraints, call
the function invalidate-pane-constraints .
53

CAPI Reference Entries

54
See also calculate-constraints

define-layout

element

invalidate-pane-constraints

get-page-area Function

Summary Calculates the dimensions of suitable rectangles for use with
with-page-transform .

Syntax get-page-area printer &key scale dpi screen

Description The get-page-area function is provided to simplify the cal-
culation of suitable rectangles for use with with-page-

transform . It calculates and returns the width and height of
the rectangle in the user’s coordinate space that corresponds
to one printable page, based on the logical resolution of the
user’s coordinate space in dpi.

For example, if a logical resolution of 72 dpi was specified,
this means that each unit in user space would map onto 1/72
of an inch on the printed page, assuming that no scale is spec-
ified.

If dpi is nil or unspecified, the logical resolution of the speci-
fied screen is used, or the logical resolution of the default
screen if no screen is specified. The dpi argument can be a
number, or a list of two elements representing the logical res-
olution of the coordinate spaces in the x and y directions
respectively.

If scale is specified the rectangle is calculated so that the
image is scaled by this factor when printed. It defaults to 1.0.

See also printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-height

with-page-transform

get-printer-metrics Function

Summary Returns a printer-metrics object for a printer.

Syntax get-printer-metrics printer

Description The get-printer-metrics functions takes a printer as its
argument and returns a printer-metrics object.

See also printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-height

with-page-transform

graph-pane Class

Summary A graph pane is a pane that displays a hierarchy of items in a
graph.

Superclasses simple-pinboard-layout
choice
x-y-adjustable-layout

Slots roots The roots of the graph.

children-function

Returns the children of a node.

layout-function

A function to layout the nodes.
55

CAPI Reference Entries

56
node-pinboard-class

The class of pane to represent nodes.

edge-pinboard-class

The class of pane to represent edges.

node-pane-function

A function to return a pane for each node.

Accessors graph-pane-roots

Description A graph pane calculates the graph by calling the
children-function on each of its roots, and then calling it
again on each of the children recursively until it runs out of
children. The children-function gets called with a node of
the graph and should return a list of the children of that
node.

The layout-function tells the graph pane how to lay out its
children. It can take two values:

:left-right Lay the graph out from the left to the right.

:top-down Lay the graph out from the top down.

When a graph pane wants to display nodes and edges, it cre-
ates instances of node-pinboard-class and
edge-pinboard-class which default to item-pinboard-

object and line-pinboard-object respectively. These
classes must be subclasses of simple-pane or pinboard-

object , and there are some examples of the use of these key-
words below.

The node-pane-function is called to create a node for each
pane, and by default it creates an instance of
node-pinboard-class . It gets passed the graph pane and the
node, and should return an instance of simple-pane or
pinboard-object .

Examples (defun node-children (node)
 (when (< node 16)
 (list (* node 2)
 (1+ (* node 2)))))

(setq graph (capi:contain
 (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children)
 :best-width 300
 :best-height 400))

(setf (capi:graph-pane-roots graph) '(2 6))

(capi:contain (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children
 :layout-function
 :top-down)
 :best-width 300
 :best-height 400)

(capi:contain (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children
 :layout-function :top-down
 :x-adjust :left)
 :best-width 300
 :best-height 400)

This example demonstrates a different style of graph output
with right-angle edges and parent nodes being adjusted to
the top instead of the center.

(capi:contain (make-instance
 'capi:graph-pane
 :roots '(1)
 :children-function 'node-children
 :y-adjust :top
 :edge-pinboard-class
 'capi:right-angle-line-pinboard-object)
 :best-width 300
 :best-height 400)
57

CAPI Reference Entries

58
This example demonstrates the use of
:node-pinboard-class to specify that the nodes are drawn
as push buttons.

(capi:contain (make-instance
 'capi:graph-pane
 :roots '(1)
 :children-function 'node-children
 :node-pinboard-class
 'capi:push-button)
 :best-width 300
 :best-height 400)

See also item-pinboard-object

line-pinboard-object

grid-layout Class

Summary The grid-layout is a layout which positions its children on a
two dimensional grid.

Superclasses x-y-adjustable-layout

Subclasses row-layout
column-layout

Slots orientation The orientation of the children.

rows The number of rows in the grid.

columns The number of columns in the grid.

x-ratios The ratios between the columns.

y-ratios The ratios between the rows.

x-gap The gap between each column.

y-gap The gap between each row.

x-uniform-size-p

If t , make each of the columns the same size.

y-uniform-size-p

If t , make each of the rows the same size.

Accessors layout-x-ratios

layout-y-ratios

layout-x-gap

layout-y-gap

Description The row and column sizes are controlled by the constraints
on their children. For example, the min-width of any column
is the maximum of the min-width s of the children in the col-
umn. The size of the layout is controlled by the constraints on
the rows and columns.

The description is either a two dimensional array or a list in
the order specified by the orientation (which defaults to
:row). In the latter case, one of :columns or :rows can be
given to specify the dimensions (the default is two columns).

The x-ratios and y-ratios slots control the sizes of the ele-
ments in a grid layout in the following manner:

The elements of x-ratios (or y-ratios) control the size of
each child relative to the others. If an element in x-ratios (or
y-ratios) is nil the child is fixed at its minimum size. Oth-
erwise the size is calculated as follows

(round (* total ratio) ratio-sum)

where ratio-sum is the sum of the non-nil elements of
x-ratios (or y-ratios) and ratio is the element of ratios cor-
responding to the child. If this ideal ratio size does not fit the
maximum or minimum constraints on the child size, and the
constraint means that changing the ratio size would not
assist the sum of the child sizes fitting the total space avail-
able, then the child is fixed at its constrained size, the child is
removed from the ratio calculation, and the calculation is
performed again. If x-ratios (or y-ratios) has fewer ele-
ments than the number of children, 1 is used for each of the
59

CAPI Reference Entries

60
missing ratios. Leaving x-ratios (or y-ratios) nil causes all
of the children to be the same size.

The positions of each pane in the layout can be specified
using x-adjust and y-adjust like every other
x-y-adjustable-layout , except that if there is one value
then it is used for all of the panes, whereas if it is a list then
each value in the list refers to one row or column. If the list
does not contain a value for every row or column then the
last value is taken to refer to all of the remaining panes.

Example (capi:contain (make-instance
 'capi:grid-layout
 :description '("1" "2" "3"
 "4" "5" "6"
 "7" "8" "9")
 :columns 3))

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))))

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))
 :x-adjust '(:right :left)
 :y-adjust '(:center :bottom)))

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))
 :orientation :column))

See also layout

hide-interface Function

Summary The function hide-interface hides the interface containing
a specified pane.

Syntax hide-interface pane &optional iconify

Description The function hide-interface hides the interface containing
pane from the screen. If iconify is non-nil then it will iconify
it, else it will just remove it from the screen. To show it again,
use show-interface .

See also interface

show-interface

quit-interface

highlight-pinboard-object Generic Function

Summary The highlight-pinboard-object generic function highlights
a specified pinboard object.

Syntax highlight-pinboard-object pinboard object &key (redisplay t)
61

CAPI Reference Entries

62
Description This function causes the pinboard object object to become
highlighted until unhighlight-pinboard-object is called on
it. If redisplay is non-nil , then the pinboard object highlight-
ing is drawn immediately using
draw-pinboard-object-highlighted .

Compatibility
Note

In LispWorks 3.1, this function only drew the highlight. That
functionality is performed by
draw-pinboard-object-highlighted .

See also unhighlight-pinboard-object

draw-pinboard-object-highlighted

pinboard-object

pinboard-layout

image-list Class

Summary An object used to manage the images displayed by tree views
and list views.

Superclasses None

Slots image-width The width of the images in this image list.

image-height The height of the images in this image list.

image-sets A list of images or image sets.

Description The :image-sets initarg specifies a list. Each item in the list
may be one of the following.

A pathname or string

This specifies the filename of a file suitable
for loading with gp:load-image . Currently
this must be a BMP file.

A symbol The symbol must have been previously reg-
istered by means of a call to gp:register-

image-translation .

An image object, as returned by gp:load-image .

An image-set object

See image-set for further details.

Note that image sets are added in their entirety; it is not pos-
sible to use image-locators to extract a single image from an
image set.

The images added to the image list are numbered in order,
starting from zero. An image-set containing n images contrib-
utes n images to the image list, and hence consumes n consec-
utive integer indices.

image-pinboard-object Class

Summary An image pinboard object is a pinboard object that displays
itself as a generic image.

Superclasses pinboard-object

Subclasses titled-image-pinboard-object

Slots image The generic image to be displayed.

Accessors image-pinboard-object-image

Description The image argument to image-pinboard-object should
either be a generic image itself, or the name of a file contain-
ing a generic image that is in a directory in your image search
path. The image displayed in the object can be changed
dynamically using the writer function

(setf image-pinboard-object-image)
63

CAPI Reference Entries

64
Compatibility
Note

The class image-pinboard-object was called
icon-pinboard-object in LispWorks 3.1. The class
icon-pinboard-object is provided for compatibility, but
may be removed in the future.

Example (setf image (capi:contain
 (make-instance
 'capi:image-pinboard-object
 :image "new-lispworks-logo")))

(setf (capi:image-pinboard-object-image image)
 "diamond1")

(setf (capi:image-pinboard-object-image image)
 "new-lispworks-logo")

See also pinboard-layout

image-set Class

Description An image set is an object that identifies the location of an
image. The image is typically a large image to be broken
down into sub-images. The sub-images must all have the
same size and be positioned side by side.

The following functions are available to create image set
objects:

See also make-general-image-set

make-resource-image-set

interactive-pane Class

Summary An interactive-pane is an editor with a process reading
and processing input, and that collects any output into itself.
The class listener-pane is built upon this, and adds func-
tionality for handling Lisp forms.

Superclasses editor-pane

Subclasses listener-pane

Slots stream The stream used for I/O.

top-level-function

The input processing function.

Readers interactive-pane-stream

interactive-pane-top-level-function

Description The top-level-function is called to process any input that
comes into the stream. The first argument is the interface con-
taining the interactive pane. The second argument is the
interactive pane itself. The third argument is the Common
Lisp I/O stream. The function should read from the stream to
activate the interactive-pane. The default runs a Lisp listener
top-loop.

Compatibility
Note

This class was named interactive-stream in LispWorks 3.2
but has been renamed to avoid confusion (this class is not a
stream but a pane that contains a stream). The class
interactive-stream and its accessors have been kept for
compatibility but may be dropped in future versions of Lisp-
Works.

See also collector-pane

interface Class

Summary The class interface is the top level window class, which
contains both menus and a hierarchy of panes and layouts.
Interfaces can also themselves be contained within a layout,
in which case they appear without their menu bar.
65

CAPI Reference Entries

66
Superclasses simple-pane
titled-pane

Slots title The title of the interface.

layout The layout of the interface.

menu-bar-items

The items on the menu bar.

destroy-callback

A callback done on closing the window.

confirm-destroy-function

A function to verify closing of the window.

best-x The best x position for the interface.

best-y The best y position for the interface.

best-width The best width of the interface.

best-height The best height of the interface.

Accessors interface-title
pane-layout
interface-menu-bar-items
interface-destroy-callback
interface-confirm-destroy-function

Description Every interface can have a title which when it is a top level
interface is shown as a title on its window, and when it is
contained within another layout is displayed as a decoration
(see the class titled-pane for more details).

The argument layout specifies a layout object that contains
the children of the interface. To change this layout you can
either use the writer pane-layout , or you can use the layout
switchable-layout which allows you to easily switch the
currently visible child.

The argument menu-bar-items specifies a list of menus to
appear on the interface’s menu bar. Note that an interface
may have some automatic menus created by the environment
in which it is running (for example the Works menu in the
LispWorks environment). To switch these automatic menus
off, specify the argument

:auto-menus nil

When you have an instance of an interface, you can display it
either as an ordinary window or as a dialog using respec-
tively display and display-dialog . Then to remove it from
the display again, you use quit-interface and either
exit-dialog or abort-dialog respectively. When the inter-
face is about to be closed, the CAPI calls the
confirm-destroy-function (if there is one) with the inter-
face, and if this function returns non-nil the interface is
closed. Once the interface is closed, the destroy-callback is
called with the interface.

The interface also accepts a number of hints as to the size and
position of the interface for when it is first displayed. The
arguments best-x and best-y must be the position as an
integer or nil (meaning anywhere), while the arguments
best-width and best-height can be any hints accepted by
max-width and max-height for elements.

Example (capi:display (make-instance 'capi:interface
 :title "Test Interface"))

(capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S"
 interface))))
67

CAPI Reference Entries

68
(capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :confirm-destroy-function
 #'(lambda (interface)
 (capi:confirm-yes-or-no
 "Really quit ~S"
 interface))))

(capi:display (make-instance
 'capi:interface
 :menu-bar-items
 (list
 (make-instance 'capi:menu
 :title "Menu"
 :items '(1 2 3)))
 :title "Menu Test"))

(setq interface (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :layout (make-instance
 'capi:simple-layout
 :description
 (make-instance
 'capi:text-input-pane)
))))

(setf (capi:pane-layout interface)
 (make-instance 'capi:simple-layout
 :description
 (make-instance 'capi:editor-pane)))

(capi:display (make-instance
 'capi:interface
 :title "Test"
 :best-x 200
 :best-y 200
 :best-width '(/ :screen-width 2)
 :best-height 300))

See also layout

switchable-layout

menu

display

display-dialog

quit-interface

define-interface

activate-pane

interpret-description Generic Function

Summary The generic function interpret-description converts an
abstract description of a layout’s children into a list of the
children’s geometry objects.

Syntax interpret-description layout description interface

Description The generic function interpret-description translates an
abstract description of the layout’s children into a list of those
children’s geometry objects.

For example, column-layout expects as its description a list
of items where each item in the list is either the slot-name of
the child or a string which should be turned into a title pane.
This is the default handling of a layout’s description, which is
done by calling the generic function
parse-layout-descriptor to do the translation for each
item.

Compatibility
Note

In LispWorks 3.1, this macro and all of its variable names
were in the capi-layouts package. They have been moved
into the CAPI package for simplicity.

See also parse-layout-descriptor

define-layout

layout

interface
69

CAPI Reference Entries

70
invalidate-pane-constraints Function

Summary The invalidate-pane-constraints function is used to cause
the resizing of a pane if its minimum and maximum size con-
straints have changed. It returns t if resizing was necessary.

Syntax invalidate-pane-constraints pane

Description This function informs the CAPI that pane’s constraints (its
minimum and maximum size) may have changed. The CAPI
then checks this, and if the pane is no longer within its con-
straints it resizes it so that it is and then makes the pane’s
parent layout lay its children out and display them again at
their new positions and sizes. If the pane is resized, then
invalidate-pane-constraints returns t .

See also get-constraints

layout

element

define-layout

invoke-command Function

Summary The invoke-command function invokes a command in the
input model for a specified output pane.

Syntax invoke-command command output-pane &rest event-args

Description This invokes the command in the input model for the given
output-pane, with the translator being called to process the
gesture information. To avoid the translation, use
invoke-untranslated-command .

See also invoke-untranslated-command

define-command

output-pane

invoke-untranslated-command Function

Summary The invoke-untranslated-command function invokes a com-
mand in the input model for a specified output pane, but
without the translator being called to process gesture infor-
mation.

Syntax invoke-untranslated-command command output-pane &rest
event-args

Description This invokes the command in the input model for the given
output-pane, without the translator being called to process the
gesture information. To perform the translation, use invoke-

command.

See also invoke-command

define-command

output-pane

item Class

Summary The class item groups together a title, some data and some
callbacks into a single object for use in collections and
choices.

Superclasses callbacks
capi-object

Subclasses menu-item
button
item-pinboard-object

Slots data The data associated with the item.

text The text to appear in the item (or nil).

print-function

If no text, this is called to print the data.
71

CAPI Reference Entries

72
selected If t the item is selected.

Accessors item-data
item-text
item-print-function
item-selected

Description An item can provide its own callbacks to override those spec-
ified in its enclosing collection, and can also provide some
data to get passed to those callbacks. An item is displayed as
a string using its text if specified, or else by calling a print
function on the item’s data. The print-function will either
be the one specified in the item, or else the print-function

for its parent collection.

The selected slot in an item is non-nil if the item is cur-
rently selected. The accessor item-selected is provided to
access and to set this value.

Example (defun main-callback (data interface)
 (capi:display-message "Main callback: ~S"
 data))

(defun item-callback (data interface)
 (capi:display-message "Item callback: ~S"
 data))

(capi:contain (make-instance
 'capi:list-panel
 :items (list
 (make-instance
 'capi:item
 :text "Item"
 :data '(some data)
 :selection-callback
 'item-callback)
 "Non-Item 1"
 "Non-Item 2")
 :selection-callback 'main-callback))

See also itemp

collection

choice

itemp Generic Function

Syntax itemp object

Description This is equivalent to

(typep object 'capi:item)

See also item

collection

item-pinboard-object Class

Summary An item-pinboard-object is a pinboard-object that dis-
plays a single piece of text.

Superclasses pinboard-object
item

Subclasses titled-image-pinboard-object

Slots font The font to draw the item in (or nil).

foreground The foreground color (or nil).

Accessors item-pinboard-object-font
item-pinboard-object-foreground

Description The item-pinboard-object displays an item on a pinboard
layout. It displays the text specified by the item in the usual
way (either by the text field, or through printing the data
with the print function).

Example (capi:contain (make-instance
 'capi:item-pinboard-object
 :text "Hello World"))
73

CAPI Reference Entries

74
(capi:contain (make-instance 'capi:item-pinboard-object
 :data :red
 :print-function
 'string-capitalize))

See also image-pinboard-object

pinboard-layout

layout Class

Summary A layout is a simple pane that positions one or more child
panes within itself according to a layout policy.

Superclasses titled-pane

Subclasses simple-layout
grid-layout
pinboard-layout
switchable-layout

Slots default A flag to mark the default layout for an
interface.

description The list of the layout’s children.

Accessors layout-description

Description The layout description is an abstract description of the chil-
dren of the layout, and each layout defines its format. Gener-
ally, the description is a list of either panes, slot names (where
the name refers to a slot in the layout’s interface containing a
pane) or strings (where the string gets converted to a title-
pane). Setting the layout description causes the layout to
translate it, and then to layout the new children, adjusting the
size of its parent if necessary.

A number of default layouts are provided which provide the
majority of layout functionality that is needed. They are as
follows:

simple-layout A layout for one child.

row-layout Lays its children out in a row.

column-layout Lays its children out in a column.

grid-layout Lays its children out in an n by m grid.

pinboard-layou t

Places its children where the user specifies.

switchable-layout

Keeps only one of its children visible.

See also define-layout

line-pinboard-object Class

Summary A subclass of pinboard-object which displays a line drawn
between two corners of the area enclosed by the pinboard
object.

Superclasses pinboard-object

Subclasses right-angle-line-pinboard-object

Slots direction The direction of the line (:up or :down).

Description If the direction is :down , then the line is drawn from top-left
to bottom-right, and if it is :up it is drawn from bottom-left to
top-right. A complementary class right-angle-line-

pinboard-object is provided which draws a line around the
edge of the pinboard object.

Example (capi:contain (make-instance
 'capi:line-pinboard-object
 :min-width 100
 :min-height 100))
75

CAPI Reference Entries

76
(capi:contain (make-instance
 'capi:line-pinboard-object
 :min-width 100
 :min-height 100
 :direction :up))

See also pinboard-layout

listener-pane Class

Superclasses interactive-pane

Description A listener pane is an editor pane that accepts Lisp forms,
entered by the user at a prompt, which it then evaluates. All
of the output that is sent to *standard-output* is sent to the
listener, and finally the results of the evaluation are dis-
played.

Example (capi:contain (make-instance 'capi:listener-pane)
 :best-width 300 :best-height 200)

See also collector-pane

interactive-pane

list-panel Class

Summary The class list-panel is a pane that can display a group of
items and provides support for selecting items and perform-
ing actions on them.

Superclasses choice
titled-pane

Subclasses list-view

Description The class list-panel gains most of its behavior from choice ,
which is an abstract class that handles items and their selec-

tion. By default, a list panel has both horizontal and vertical
scrollbars.

The list-panel class does not support the :no-selection

interaction style. For a non-interactive list use a display pane.

Example (setq list (capi:contain
 (make-instance 'capi:list-panel
 :items '(:red :blue :green)
 :print-function
 'string-capitalize)))

(setf (capi:choice-selected-item list) :red)

(setf (capi:choice-selected-item list) :green)

(capi:contain (make-instance
 'capi:list-panel
 :items '(:red :blue :green)
 :print-function 'string-capitalize
 :selection-callback
 #'(lambda (data interface)
 (capi:display-message
 "~S" data))))

See also button-panel

list-view Class

Summary The list view pane is a choice that displays its items as icons
and text in a number of formats.

Superclasses list-panel

Slots view Specifies which view the list view pane
shows. The default is :icon .

subitem-function

Returns additional information to be dis-
played in report view.
77

CAPI Reference Entries

78
subitem-print-functions

Used in report view to print the additional
information.

image-function Returns an image for an item

state-image-function

Returns a state image for an item.

columns Defines the columns used in report view

auto-reset-column-widths

Determines whether columns automatically
resize. Defaults to :all .

use-large-images

Indicates whether large icons will be used
(generally only if the icon view will be
used). Defaults to t .

use-small-images

Indicates whether small icons will be used.
Defaults to t .

use-state-images

Indicates whether state images will be used.
Defaults to nil .

large-image-width

Width of a large image. Defaults to 32.

large-image-height

Height of a large image. Defaults to 32.

small-image-width

Width of a small image. Defaults to 16.

small-image-height

Height of a small image. Defaults to 16.

state-image-width

Width of a state image. Defaults to small-

image-width.

state-image-height

Height of a state image. Defaults to small-

image-height.

Accessors list-view-view
list-view-subitem-function
list-view-subitem-print-functions
list-view-image-function
list-view-state-image-function
list-view-columns
list-view-auto-reset-column-widths

Description The list view inherits its functionality from choice . In many
ways it may be regarded as a kind of enhanced list panel,
although its behavior is not identical. It supports single selec-
tion and extended selection operation.

The list view displays its items in one of four ways, initially
determined by the :view initarg, and subsequently changed
by (setf list-view-view) . An application may use the list
view pane in just a single view, or may change the view
between all four available views.

See the notes below on using both large and small icon views.

In all views, the text associated with the item (the label) is
returned by the print-function, as with any other choice.

• The icon view — :icon

In this view, large icons are displayed, together with their
label, positioned in the space available.

• The small icon view — :small-icon
79

CAPI Reference Entries

80
In this view, small icons are displayed, together with their
label, positioned in the space available.

• The list view — :list

In this view, small icons are displayed, arranged in verti-
cal columns.

• The report view — :report

In this view, multiple columns are displayed. A small
icon and the item’s label is displayed in the first column.
Additional pieces of information, known as subitems, are
displayed in subsequent columns.

To use the report view, :columns must specify a list of col-
umn specifiers. Each column specifier is a plist , in which
the following keywords are valid:

:title The column heading

:width The width of the column in pixels. If this
keyword is omitted or has the value nil , the
width of the column is automatically calcu-
lated, based on the widest item to be dis-
played in that column.

:align May be :left , :right or :center to indicate
how items should be aligned in this column.
The default is :left . Only left alignment is
available for the first column.

The sub-item-function is called on the item to return sub-
item objects that represent the additional information to be
displayed in the subsequent columns. Hence, the subitem-

function should normally return a list, whose length is one
less than the number of columns specified. Each subitem is
then printed in its column using the appropriate subitem
print function. The subitem-print-function s may be either
a single print function, to be used for all subitems, or a list of
functions: one for each subitem column.

Note that the first column always contains the item label, as
determined by the choice-print-function .

The image-function is called on an item to return an image
associated with the item. It can return one of the following:

A pathname or string

This specifies the filename of a file suitable
for loading with gp:load-image . Currently
this must be a bitmap file.

A symbol The symbol must have been previously reg-
istered by means of a call to gp:register-

image-translation .

An image object

As returned by gp:load-image .

An image locator object

Allowing a single bitmap to be created
which contains several button images side
by side. See make-image-locator for more
information. On Windows, this also allows
access to bitmaps stored as resources in a
DLL.

An integer This is a zero-based index into the list view’s
image list. This is generally only useful if the
image list is created explicitly. See image-

list for more details.

The state-image-function is called on an item to determine
the state image, an additional optional image used to indicate
the state of an item. It can return one of the above, or nil to
indicate that there is no state image. State images may be
used in any view, but are typically used in the report and list
views.
81

CAPI Reference Entries

82
If :image-lists is specified, it should be a plist containing
the following keywords as keys. The corresponding values
should be image-list objects.

:normal Specifies an image-list object that contains
the large item images. The image-function

should return a numeric index into this
image-list.

:small Specifies an image-list object that contains
the small item images. The image-function
should return a numeric index into this
image-list.

:state Specifies an image-list object that contains
the state images. The state-image-

function should return a numeric index
into this image-list

If both the large icon view (icon view) and one or more of the
small icon views (small icon view, list view, report view) are
to be used, special considerations apply.

The image lists must be created explicitly, using the :image-

lists initarg, and the image-function must return an inte-
ger. Care must be taken to ensure that corresponding images
in the :normal and :small image lists have the same
numeric index. This restriction will be relaxed in a future
release.

Returning pathnames, strings or image-locators from the
image function cause the CAPI to create the image-lists auto-
matically; however, if large and small icon views are mixed,
this will lead to incorrect icons (or no icons) being displayed
in one or other view.

See also image-list

list-panel

make-image-locator

lower-interface Function

Summary The lower-interface function pushes the window contain-
ing a specified pane to the back of the screen.

Syntax lower-interface pane

Description This pushes the window containing pane to the back of the
screen. To bring it back use raise-interface , and to iconify
it use lower-interface .

See also interface

raise-interface

lower-interface

quit-interface

make-container Generic Function

Summary The generic function make-container creates a container for
a specified element.

Syntax make-container element &rest interface-args

Description This creates a container for element such that calling display

on it will produce a window containing element on the screen.
It will produce a container for any of the following classes of
object:

simple-pane
layout
interface
pinboard-object
menu
menu-item
menu-component
list

In the case of a list , the CAPI tries to see what sort of objects
they are and makes an appropriate container. For instance, if
83

CAPI Reference Entries

84
they were all simple panes it would put them into a column
layout.

The arguments interface-args will be passed through to the
make-instance of the top-level interface, assuming that pane
is not a top-level interface itself.

The complementary function contain uses make-container

to create a container for an element which it then displays.

Example (capi:display (capi:make-container
 (make-instance
 'capi:text-input-pane)))

See also contain

display

interface

element

make-general-image-set Function

Syntax make-general-image-set &key width height count id

Description The make-general-image-set function creates an image set
object that refers to an image or a file containing an image.

The id keyword is a pathname or string identifying an image
file, or a symbol previously registered with gp:register-

image-translation .

The width and height are the dimensions of a single sub-image
within the main image, and count specifies the number of
subimages in the image.

See also image-set

make-resource-image-set

make-image-locator Function

Summary Creates an image locator object to use with toolbars, list
views and tree views.

Syntax make-image-locator &key image-set index

Description The function make-image-locator creates an image locator
object for use with toolbars, list views, and tree views. It is
used to specify a single sub-image from a larger image that
contains many images side by side. It is also useful for access-
ing some images that can only be specified by means of
image sets.

See also image-set

make-resource-image-set Function

Syntax make-resource-image-set &key width height count library id

Description The make-resource-image-set function is only available on
the Windows implementation of LispWorks. It constructs an
image set object that identifies an image stored as a bitmap
resource in a DLL.

The library keyword specifies a string giving the name of a
DLL. The resource identifier of the bitmap is given by id.

The width and height are the dimensions of a single sub-image
within the main image, and count specifies the number of
sub-images in the image.

See also image-set

make-general-image-set
85

CAPI Reference Entries

86
map-collection-items Generic Function

Summary The generic function map-collection-items calls a specified
function on all the items in a collection.

Syntax map-collection-items collection function
 &optional collect-results-p

Description Calls function on each item in the collection by calling the col-
lection's items-map-function . If collect-results-p is non-nil ,
the results of each call will be returned in a list.

Example (setq collection (make-instance 'capi:collection
 :items '(1 2 3 4 5)))

(capi:map-collection-items collection
 'princ-to-string t)

See also collection

choice

map-pane-children Generic Function

Summary The map-pane-children generic function binds a variable to
each of the children of a layout.

Syntax map-pane-children (variable layout) &body body

Description This macro helps you to map over all of layout’s children, by
binding variable to each of the children across the body of
code body. Note that this only works after layout’s description
has been parsed, which generally happens just before a win-
dow is displayed on the screen, and the order in which the
children are mapped is not necessarily the order that they are
placed into the pane’s description.

Example (setq column (capi:contain
 (make-instance
 'capi:column-layout
 :children (list
 (make-instance
 'capi:title-pane
 :text "Title 1")
 (make-instance
 'capi:title-pane
 :text "Title 2")
 (make-instance
 'capi:title-pane
 :text "A third title")
))))

(capi:map-pane-children (pane column)
 (format t "~&~S: ~S"
 pane
 (capi:title-pane-text pane)))

See also layout

map-typeout Function

Syntax map-typeout pane &rest args

Description Makes a collector pane the visible child of a switchable lay-
out, and returns it as well. The switchable layout is found by
looking up the parent hierarchy starting from pane.

The switchable layout should have one or more children. If it
has one child, a new collector pane is made using args as the
initargs with buffer-name defaulting to
"Background Output" . If it has more than one, it searches
through the children to find the first collector pane.

See also unmap-typeout

with-random-typeout

collector-pane
87

CAPI Reference Entries

88
menu Class

Summary The class menu creates a menu for an interface when specified
as part of the menu bar (or as a submenu of a menu on the
menu bar).

Superclasses element
titled-menu-object

Slots items The items to appear in the menu.

items-function

A function to dynamically compute the
items.

Accessors menu-items

Description A menu has a title, and has items appearing in it, where an
item can be either a menu item, a menu component or
another menu.

The simplest way of providing items to a menu is to pass
them using the item slot, but if you need to compute the
items dynamically you should provide an items-function .
This function gets called with the menu, and it should return
a list of menu items for the new menu. This function is called
before the popup-callback and the enabled-function which
means that they can affect the new items.

When debugging a menu, it may be useful to pop up a win-
dow containing a menu with the minimum of fuss. The func-
tion contain will do just that for you.

Examples (capi:contain (make-instance 'capi:menu
 :title "Test"
 :items '(:red :green :blue)))

(capi:contain (make-instance 'capi:menu
 :title "Test"
 :items '(:red :green :blue)
 :print-function
 'string-capitalize))

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S" data))))

Here is an example of how to add submenus to a menu

(setq submenu (make-instance 'capi:menu
 :title "Submenu..."
 :items '(1 2 3)))

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items (list submenu)))

Finally, here is an example showing how to use the
items-function :

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items-function #'(lambda (menu)
 (loop for i below 8
 collect (random 10)
))))

See also menu-component

menu-item

menu-object

contain
89

CAPI Reference Entries

90
menu-component Class

Summary The class menu-component is a choice that is used to group
menu items and submenus both visually and functionally.
The items contained by the menu-component appear sepa-
rated from other items, menus, or menu components, by sep-
arators.

Superclasses choice
titled-menu-object

Slots items The items to appear in the menu.

items-function

A function to dynamically compute the
items.

Description Because menu-component is a choice, the component can be
no-selection , single-selection or multiple-selection

(extended selection does not apply here). This is represented
visually in the menu as appropriate to the window system
that the CAPI is running on (by ticks in Microsoft Windows,
and by radio buttons and check buttons in Motif). Note that it
is not appropriate to have menu components or submenus
inside single selection and multiple selection components,
but it is in no selection components.

Example (capi:contain (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :single-selection))

(capi:contain (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :multiple-selection))

(capi:contain (make-instance
 'capi:menu
 :items (list
 "An Item"
 (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function
 'string-capitalize
 :interaction :no-selection)
 "Another Item")))

See also menu

menu-item

menu-item Class

Summary A menu item is an individual item in a menu or menu com-
ponent, and instances of menu-item are created automatically
by define-interface .

Superclasses item
titled-menu-object

Description The text displayed in the menu item is the contents of the text
slot, or the contents of the title slot, otherwise it is the result
of applying the print function to the data.

Callbacks are made in response to a user gesture on a menu
item. The callback type, function and data function (see call-
backs) are found by looking for a non-nil value, first in the
menu item, then the menu component (if any) and finally the
menu. This allows a whole menu to have, for example,
callback-type :data without having to specify this in each
item. Some items could override this by having their call-

back-type slot non-nil if needed.

Example (capi:contain (make-instance 'capi:menu-item
 :text "Press Me"))
91

CAPI Reference Entries

92
(capi:contain (make-instance 'capi:menu-item
 :data :red
 :print-function
 'string-capitalize))

(capi:contain (make-instance
 'capi:menu-item
 :data :red
 :print-function 'string-capitalize
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S"
 data))))

See also menu

menu-component

choice

menu-object Class

Summary The class menu-object is the superclass of all menu objects,
and provides functionality for handling generic aspects of
menus, menu components and menu items.

Superclasses callbacks

Subclasses titled-menu-object

Slots enabled If nil , the menu object is disabled, and can-
not be selected.

popup-callback

Callback before the menu appears.

enabled-function

Returns non-nil if the menu is enabled.

enabled-slot The object is enabled if the slot is non-nil.

callback The selection callback for the object.

callback-data-function

A function to return data for the callback.

Accessors menu-object-enabled
menu-popup-callback

Description When the menu object is about to appear on the screen, the
CAPI does the following:

1. The popup-callback (if there is one) is called with the
menu object and it is allowed to make arbitrary changes
to that object.

2. The enabled function (if there is one) is called with the
interface, and it should return non-nil if the menu object
is enabled.

3. The menu containing the object appears with all of the
changes made.

Note that enabled-slot is a short-hand means of creating an
enabled-function which checks the value of a slot in the
menu object’s interface.

The callback initarg is placed in the selection-callback ,
extend-callback and retract-callback slots unless these
are given explicitly, and so will get called when the menu
object is selected or deselected. The
callback-data-function is a function that is called with no
arguments and the value it returns is used as the data to the
callbacks.

Example (capi:contain (make-instance
 'capi:menu-item
 :text "Press Me"
 :enabled-function #'(lambda (item)
 (eq (random 2)
 1))))
93

CAPI Reference Entries

94
See also menu

menu-item

menu-component

modify-editor-pane-buffer Function

Summary The modify-editor-pane-buffer function allows you to
modify the contents and fill mode of a specified buffer.

Syntax modify-editor-pane-buffer pane
 &key contents flag fill fixed-fill force

Description The modify-editor-pane-buffer function modifies the edi-
tor pane according to the keyword arguments. The argument
contents (if non-nil) supplies a new string to place in the
buffer. The flag, if given, sets the buffer-flag . If it is non-nil ,
fill causes the editor to fill each paragraph in the buffer. The
argument fixed-fill sets the value of the slot fixed-fill and if
non-nil causes the editor to fill each paragraph in the buffer.

See also editor-pane

mono-screen Class

Summary The mono-screen class is created for monochrome screen.

Superclasses screen

Description This is a subclass of screen that gets created for monochrome
screens. It is primarily available as a means of discriminating
on whether or not to use colors in an interface.

See also color-screen

multiple-line-text-input-pane Class

Summary A pane allowing several lines of text to be entered.

Superclasses text-input-pane

Description The multiple-line-text-input-pane class behaves like a
text-input-pane , except that the text entered by the user is
allowed to span several lines — that is, it is allowed to con-
tain newline characters.

See also text-input-pane

option-pane Class

Summary The class option-pane provides a pane which represents a
choice between a number of different items, and which only
displays the current one.

Superclasses choice
titled-pane

Slots enabled Non-nil if the option pane is enabled.

Accessors option-pane-enabled

Description The class option-pane inherits from choice , and so has all of
the standard choice behavior such as selection and callbacks.
It also has an extra enabled slot along with an accessor which
is used to enable and disable the option pane.

Example (setq option-pane (capi:contain
 (make-instance 'capi:option-pane
 :items '(1 2 3 4 5)
 :selected-item 3)))
95

CAPI Reference Entries

96
(setf (capi:choice-selected-item option-pane) 5)

(setf (capi:option-pane-enabled option-pane) nil)

(setf (capi:option-pane-enabled option-pane) t)

output-pane Class

Summary An output pane is a pane whose display and input behavior
can be controlled by the programmer.

Superclasses titled-pane
gp:graphics-port-mixin

Subclasses pinboard-layout
editor-pane

Slots display-callback

A function that knows how to redisplay the
pane.

input-model A list of input specifications.

scroll-callback

A function called when the user scrolls the
pane.

Accessors output-pane-display-callback

output-pane-scroll-callback

Readers output-pane-input-model

Description The class output-pane is a subclass of
gp:graphics-port-mixin which means that it supports
many of the graphics ports drawing operations. When the
CAPI needs to redisplay a region of the output pane, the dis-

play-callback gets called with the output-pane and the x, y,
width and height of the region that needs redrawing, and the

callback should then use graphics port operations to redis-
play that area. To force an area to be re-displayed, use the
function gp:invalidate-rectangle .

The input-model provides a means to get callbacks on mouse
and keyboard gestures. An input-model is a list of mappings
from gesture to callback, where each mapping is a list of a
gesture and a callback and optional arguments to be passed
to the callback. The gesture itself is a list specifying the type
of gesture, which can be a button, key, character or motion
gesture, along with optional arguments specifying keyboard
modifiers (:shift , :control and :meta) and actions associ-
ated with the gesture (:press , :release , :second-press and
:motion). These options can be specified in any order, and if
the list is only one item long then the gesture can be specified
as just the item itself.

A button gesture should contain the button in question
(either :button-1 , :button-2 or :button-3) along with an
optional action (one of :press , :release , :second-press or
:motion) and zero or more keyboard modifiers.

A key gesture should contain the key in question (or the key-
word :key meaning any key) along with an optional action
(one of :press or :release) and zero or more keyboard mod-
ifiers.

A character gesture is a simple gesture, and can be either the
character to be checked for, or the keyword :character

meaning any character.

Finally, a motion gesture can either be defined in terms of
dragging a button (in which case it is defined as a button ges-
ture with the action :motion), or it can be defined for motions
whilst no button is down by just specifying the keyword
:motion with no additional arguments.

An input-model also accepts a command instead of a ges-
ture, where a command is defined using define-command ,
and provides an alias for a gesture.
97

CAPI Reference Entries

98
Note that it is recommended you follow the style guidelines
and conventions of the platform you are developing for
when mapping gestures to results.

When the user scrolls the output pane, the CAPI calls the
scroll-callback with the output-pane and the new x and y
coordinates of the top-left hand corner of the visible part of
the output pane. This callback is for information only, as
scrolling and redrawing any exposed areas will be handled
by calls to the display-callback .

Examples Firstly, here is an example that draws a circle in an output
pane.

(defun display-circle (self x y width height)
 (declare (ignore x y width height))
 (gp:draw-circle self 200 200 200 :filled t))

(capi:contain (make-instance
 'capi:output-pane
 :display-callback 'display-circle)
 :best-width 200
 :best-height 200)

Here is an example that shows how to use a button gesture.

(defun test-callback (self x y)
 (capi:display-message
 "Pressed button 1 at (~S,~S) in ~S" x y self))

(capi:contain (make-instance
 'capi:output-pane
 :title "Press button 1:"
 :input-model `(((:button-1 :press)
 test-callback)))
 :best-width 200 :best-height 200)

Here is a simple example that draws the character typed at
the cursor point.

(defun draw-character (self x y character)
 (gp:draw-character self character x y))

(capi:contain (make-instance
 'capi:output-pane
 :title "Press keys in the pane..."
 :input-model
 '((:character draw-character)))
 :best-width 200 :best-height 200)

Finally, here is an example showing how to use the motion
gesture.

(capi:contain (make-instance
 'capi:output-pane
 :title "Drag button-1 across this pane:"
 :input-model '(((:motion :button-1)
 gp:draw-point)))
 :best-width 200 :best-height 200)

See also define-command

pinboard-object

over-pinboard-object-p Generic Function

Summary The over-pinboard-object-p generic function tests whether
a point lies within the boundary of a pinboard object.

Syntax over-pinboard-object-p pinboard-object x y

Description Returns non-nil if the x and y coordinates specify a point
within the boundary of a pinboard object. To find the actual
object at this position, use pinboard-object-at-position .

The default method returns t if x and y are within the bound-
ing area of the pinboard object.

See also pinboard-object-at-position

pinboard-object-overlap-p

pinboard-object

pinboard-layout
99

CAPI Reference Entries

100
page-setup-dialog Function

Summary Displays the page setup dialog for a given printer.

Syntax page-setup-dialog &key screen owner printer

Description The page-setup-dialog function displays the page setup
dialog for printer. If printer is not specified, the dialog for the
current printer is displayed.

The CAPI screen on which to display the dialog is given by
screen, which is the current screen by default.

The interface that owns the dialog is given by owner, and
defaults to the current top-level interface.

See also current-printer

pane-adjusted-offset Generic Function

Summary The pane-adjusted-offset generic function calculates the
offset required to place a pane correctly in a layout.

Syntax pane-adjusted-offset pane adjust available-size actual-size
 &key &allow-other-keys

Description This function calculates the offset required by the adjust key-
word so that the pane pane is placed correctly within the
available space in its parent layout. It is called by all of the
layouts that inherit from x-y-adjustable-layout to inter-
pret the values of x-adjust and y-adjust . Typically the
value of adjust will be one of:

:top Place the pane at the top of the region.

:bottom Place the pane at the bottom of the region.

:left Place the pane at the left of the region.

:right Place the pane at the right of the region.

:center Place the pane in the center of the region.

However, new methods can accept alternative values for
adjust where required and can also add extra keywords. For
example, the grid-layout allows adjust to be a list of adjust
values, and then passes the offset into this list as an addi-
tional keyword.

Example (setq button-panel (make-instance 'capi:button-panel
 :items '(1 2 3)))

(capi:pane-adjusted-offset button-panel
 :center 200 100)

(capi:pane-adjusted-offset button-panel
 :left 200 100)

(capi:pane-adjusted-offset button-panel
 :right 200 100)

100

See also layout

x-y-adjustable-layout

pane-adjusted-position Generic Function

Summary The pane-adjusted-position generic function calculates
how to place a pane correctly within a layout, given a mini-
mum and maximum position.

Syntax pane-adjusted-position pane adjust min-position max-position
 &key &allow-other-keys

Description This function calculates the position required by the adjust
keyword so that the pane pane is placed correctly within the
available space in its parent layout, given a minimum and
maximum position. It is a complementary function to
pane-adjusted-offset , and the default method actually
calls pane-adjusted-offset with the gap between the two
101

CAPI Reference Entries

102
positions, and then adds on the minimum position to get the
new position.

The default method accepts the following values for adjust.

:top Place the pane at the top of the region.

:bottom Place the pane at the bottom of the region.

:left Place the pane at the left of the region.

:right Place the pane at the right of the region.

:center Place the pane in the center of the region.

However, new methods can accept alternative values for
adjust where required and can also add extra keywords. For
example, the grid-layout allows adjust to be a list of adjust
values, and then passes the offset into this list as an addi-
tional keyword. It is preferable to add new methods to
pane-adjusted-offset as these changes will be seen by the
default method of pane-adjusted-position .

Example (setq button-panel (make-instance 'capi:button-panel
 :items '(1 2 3)))

(capi:pane-adjusted-position button-panel
 :center 100 200)

(capi:pane-adjusted-position button-panel
 :right 100 200)

(capi:pane-adjusted-position button-panel
 :left 100 200)

See also layout

x-y-adjustable-layout

parse-layout-descriptor Generic Function

Summary The generic function parse-layout-description returns the
geometry object associated with a layout’s child.

Syntax parse-layout-descriptor child-descriptor interface layout

Description This generic function takes a description of a layout’s child,
and returns the geometry object associated with that child. It
is called by interpret-description to parse individual chil-
dren in a layout.

See also interpret-description

define-layout

layout

password-pane Class

Summary The password pane is a pane designed for entering pass-
words, such that when the password is entered it is not visi-
ble on the screen.

Superclasses text-input-pane

Description The password pane inherits all of its functionality from
text-input-pane , and thus it starts with the initial text and
caret position specified by :text and :caret-position

respectively, and limits the number of characters entered
with the :max-characters keyword (which defaults to nil ,
meaning there is no maximum). It can be enabled and dis-
abled with the accessor text-input-pane-enabled .

Examples (setq password-pane (capi:contain
 (make-instance
 'capi:password-pane
 :callback
 #'(lambda (password interface)
 (capi:display-message
 "Password: ~A"
 password)))))

(capi:text-input-pane-text password-pane)
103

CAPI Reference Entries

104
(capi:contain (make-instance 'capi:password-pane
 :max-characters 5))

See also editor-pane

text-input-pane

pinboard-layout Class

Summary The class pinboard-layout provides two very useful pieces
of functionality for displaying CAPI windows. Firstly it is a
layout that allows its children to be positioned anywhere
within itself (like a pinboard). Secondly it supports
pinboard-objects which are rectangular areas within the
layout which have size and drawing functionality.

Superclasses output-pane
layout

Subclasses simple-pinboard-layout

Description When a pinboard-layout lays out its children, it positions
them at the x and y specified as hints (using :x and :y), and
sizes them to their minimum size (which can be specified
using :min-width and :max-width). The pinboard layout
itself has a minimum size of one pixel by one pixel which is
not affected by the size of its children. If you need the sizing
capabilities, then use the class simple-pinboard-layout

which surrounds a single child, and adopts the size con-
straints of that child.

The pinboard layout handles the display of pinboard objects
itself by calculating which objects are visible in the region
that needs redrawing, and then by calling the generic func-
tion draw-pinboard-object on these objects in the order that
they are specified in the layout description. This means that if
two pinboard objects overlap, the later one in the layout
description will be on top of the other one.

Example Here is an example of a pinboard layout placing simple
panes at arbitrary positions inside itself.

(capi:contain (make-instance
 'capi:pinboard-layout
 :description
 (list (make-instance
 'capi:text-input-pane
 :x 20
 :y 100)
 (make-instance
 'capi:push-button-panel
 :x 30
 :y 200
 :items '(1 2 3))))
 :best-width 300 :best-height 300)

Here are some examples of the use of pinboard objects with
pinboard layouts.

(capi:contain (make-instance
 'capi:pinboard-layout
 :description (list
 (make-instance
 'capi:image-pinboard-object
 :image "new-lispworks-logo"
 :x 20 :y 10)))
 :best-width 300 :best-height 300)

(capi:contain (make-instance
 'capi:pinboard-layout
 :description (list
 (make-instance
 'capi:item-pinboard-object
 :text "Hello"
 :x 40 :y 10)
 (make-instance
 'capi:line-pinboard-object
 :x 10 :y 30
 :min-width 100)))
 :best-width 200 :best-height 200)

See also pinboard-object

redraw-pinboard-object
105

CAPI Reference Entries

106
pinboard-object Class

Summary A pinboard object is a class that provides a rectangular area
in a pinboard layout with drawing capabilities. A pinboard
object behaves just like a simple pane within layouts, mean-
ing that they can be placed into rows, columns and other lay-
outs, and that they size themselves in the same way. The
main distinction is that a pinboard object is a much smaller
object than a simple pane as it does not need to create a
native window for itself.

Superclasses element

Subclasses item-pinboard-object
image-pinboard-object
line-pinboard-object
drawn-pinboard-object

Slots output-pane The output pane on which the pinboard
object is drawn.

activep If t , the pinboard object is made active.

Accessors pinboard-object-output-pane
pinboard-object-activep

Description Each pinboard object is placed into a pinboard layout (or into
a layout itself inside a pinboard layout), and then when the
pinboard layout wishes to redisplay a region of itself, it calls
the function draw-pinboard-object on each of the pinboard
objects that are contained in that region (in the order that
they are specified as children to the layout).

There are a number of predefined pinboard objects provided
by the CAPI. They are as follows:

item-pinboard-object

Draws a title.

line-pinboard-object

Draws a line.

right-angle-line-pinboard-object

Draws a right-angled line.

image-pinboard-object

Draws an image.

titled-image-pinboard-object

Draws an image with a title.

drawn-pinboard-object

Uses a user-defined display function.

The main user of pinboard objects in the CAPI is the graph
pane, which uses item-pinboard-object and line-pin-

board-object to display its nodes and edges respectively.

To force a pinboard object to redraw itself, either call the
function gp:invalidate-rectangle on it (in which case the
redrawing is done immediately), or call
redraw-pinboard-object in which case the redrawing may
be cached and displayed at a later date.

See also pinboard-layout

draw-pinboard-object

graph-pane

redraw-pinboard-object

redraw-pinboard-layout

pinboard-object-at-position Generic Function

Summary The generic function pinboard-object-at-position returns
the uppermost pinboard object containing a specified point.

Syntax pinboard-object-at-position pinboard x y
107

CAPI Reference Entries

108
Description This function returns the uppermost pinboard object in the
pinboard that contains the point specified by x and y. It deter-
mines this by mapping over every pinboard object within the
pinboard until it finds one for which the generic function
over-pinboard-object-p returns t .

Example (setq pinboard (capi:contain (make-instance
 'capi:pinboard-layout)
 :best-width 300
 :best-height 300))

(make-instance 'capi:item-pinboard-object
 :text "Hello world"
 :x 100 :y 100
 :parent pinboard)

(capi:pinboard-object-at-position pinboard 0 0)

(capi:pinboard-object-at-position pinboard 110 110)

See also over-pinboard-object-p

pinboard-object-overlap-p

pinboard-object

pinboard-layout

pinboard-object-overlap-p Generic Function

Summary The generic function pinboard-object-overlap-p returns
non-nil if a specified region overlaps with the region of a
specified pinboard object.

Syntax pinboard-object-overlap-p pinboard-object
top-left-x top-left-y
bottom-right-x bottom-right-y

Description Returns non-nil if the specified region overlaps with the
region of the pinboard object.

See also pinboard-object-at-position

over-pinboard-object-p

pinboard-object

pinboard-layout

popup-confirmer Function

Summary The popup-confirmer function creates a dialog with pre-
defined implementations of OK and Cancel buttons and a
user specified pane in a layout with the buttons.

Syntax popup-confirmer pane message
 &rest interface-args
 &key

value-function
ok-check ok-button no-button
cancel-button screen
exit-function ok-function no-function
buttons callbacks callback-type

Description The function popup-confirmer provides the quickest means
to create new dialogs, as it will create and implement OK,
Cancel and other buttons as required by your dialog, and will
place a user specified pane in a layout along with the buttons.

The argument value-function should provide a callback which
is passed pane and should return the value to return from
popup-confirmer . If value-function is not supplied, then pane
itself will be returned. If the value-function wants to indicate
that the dialog cannot return a value currently, then it should
return a second value that is non-nil .

The ok-check function is passed the result returned by the
value-function and should return non-nil if it is acceptable for
that value to be returned. These two functions are used by
popup-confirmer to decide when the OK button should be
enabled, thus stopping the dialog from returning with
invalid data. The OK button’s state can be updated by a call to
redisplay-interface on the top-level, so the dialog should
call it when the button may enable or disable.
109

CAPI Reference Entries

110
The arguments ok-button, no-button and cancel-button are the
text strings for the three buttons or nil meaning do not
include such a button. The ok-button means return success-
fully from the dialog, the no-button means continue but
return nil , and the cancel-button aborts the dialog. Note that
there are clear expectations on the part of users as to the func-
tions of these buttons — check the style guidelines of the
platform you are developing for.

The arguments exit-function, ok-function and no-function are
the callbacks that get done when exiting, pressing OK and
pressing No respectively. The exit-function defaults to exit-

confirmer , the ok-function defaults to the exit-function and
the no-function defaults to a function exiting the dialog with
nil .

The arguments buttons, callbacks and callback-type are pro-
vided as a means of extending the available buttons. The but-
tons provided by buttons will be placed after the buttons
generated by popup-confirmer , with the functions in call-
backs being associated with them. Finally callback-type will be
provided as the callback type for the buttons.

All other arguments will be passed to the call to
make-instance for the interface that will be displayed using
display-dialog . Thus geometry information, colors, and so
on can be passed in here as well. By default, the dialog will
pick up the foreground, background and font of pane.

Examples Here are two simple examples which implement the basic
functionality of two CAPI prompters: the first implements a
simple prompt-for-string , while the second implements
prompt-for-confirmation .

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane
 :callback
 'capi:exit-confirmer)
 "Enter some text:"
 :value-function 'capi:text-input-pane-text)

(capi:popup-confirmer nil
 "Yes or no?"
 :callback-type :none
 :ok-button "Yes"
 :no-button "No"
 :cancel-button nil
 :value-function #'(lambda (dummy) t))

This example demonstrates the use of :redisplay-

interface to make the OK button enable and disable on each
keystroke.

(defun pane-integer (pane)
 (ignore-errors (values
 (read-from-string
 (capi:text-input-pane-text
 pane)))))

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane
 :callback 'capi:exit-confirmer
 :change-callback :redisplay-interface)
 "Enter an integer"
 :value-function 'pane-integer
 :ok-check 'integerp)

See also exit-confirmer

display-dialog

print-collection-item Generic Function

Summary The generic function print-collection-item prints an item
as a string using a specified print function.

Syntax print-collection-item item choice
111

CAPI Reference Entries

112
Description This prints item as a string according to the print function in
choice.

Example (setq collection (make-instance
 'capi:collection
 :items '(1 2 3 4 5)
 :print-function #'(lambda (x)
 (format nil
 "<~A:>"
 x))))

(capi:print-collection-item 2 collection)

See also get-collection-item

collection

print-dialog Function

Summary Displays a print dialog and returns a printer object.

Syntax print-dialog &key screen owner first-page last-page print-
selection-p print-pages-p print-copies-p

Description The print-dialog function displays a print dialog and
returns a printer object. The print object returned will print
multiple copies if requested by the user.

If print-pages-p is t , the user can select a range of pages to
print. This should always be the case unless the application
only produces single page output. If print-pages is t , first-page
and last-page can be used to initialize the page range. For
example, they could be set to be the first and last pages of the
document.

The print-copies-p keyword indicates whether the application
handles production of multiple copies for drivers that do not
support this function. Currently this should be nil if the
application uses Page Sequential printing and t if the appli-
cation uses Page on Demand printing.

If print-selection-p is t , the user is given the option of printing
the current selection. Only specify this if the application has a
notion of selection and selecting printing functionality is pro-
vided.

The dialog is displayed on the current screen unless screen
specifies otherwise.

The interface that owns the dialog is given by owner. It should
be a currently displayed interface, and defaults to the current
top-level interface.

See also print-file

print-text

print-editor-buffer Function

Summary Prints the contents of an editor buffer to the printer.

Syntax print-editor-buffer buffer &key start end printer interactive

Description The print-editor-buffer function prints the contents of
buffer to printer, which is the current printer by default. By
default the entire editor buffer is printed, but by specifying
start and end to be editor points, a part of the buffer can be
printed. If interactive is t , the default value, then a printer dia-
log is displayed.

See also print-file

print-text

print-file Function

Summary Prints the contents of a specified file.

Syntax print-file file &key printer interactive
113

CAPI Reference Entries

114
Description The print-file function prints file to printer, which defaults
to the current printer. If interactive is t , then a print dialog is
displayed. This is the default behavior.

See also print-editor-buffer

print-text

print-text Function

Summary Prints plain text to a printer.

Syntax print-text line-function &key printer tab-spacing interactive

Description The print-text function prints plain text to a printer speci-
fied by printer, and defaulting to the current printer.

The line-function is called repeatedly with no arguments to
enumerate the lines of text. It should return nil when the text
is exhausted.

The tab-spacing argument, which defaults to 8, specifies the
number of spaces printed when a tab character is encoun-
tered.

If interactive is t , then a print dialog is displayed. This is the
default behavior.

See also print-editor-buffer

print-file

printer-metrics-device-height Function

Summary Returns the height of the printable page in the internal units
used by the printer driver or printing subsystem.

Syntax printer-metrics-device-height printer-metrics

Description The printer-metrics-device-height function takes a
printer-metric object as its argument and returns the height
of the printable page in the internal units used by the printer
driver or printing subsystem of the printer. This function and
printer-metrics-device-width should not be used to
determine the aspect ratio of the printable page as some
printers have size units that differ in the x and y directions.

See also get-printer-metrics

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-height

printer-metrics-width

printer-metrics-device-width Function

Summary Returns the width of the printable page in the internal units
used by the printer driver or printing subsystem.

Syntax printer-metrics-device-width printer-metrics

Description The printer-metrics-device-width function takes a
printer-metric object as its argument and returns the width of
the printable page in the internal units used by the printer
driver or printing subsystem of the printer. This function and
printer-metrics-device-height should not be used to
determine the aspect ratio of the printable page as some
printers have size units that differ in the x and y directions.

See also get-printer-metrics

printer-metrics-device-height

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-height

printer-metrics-width
115

CAPI Reference Entries

116
printer-metrics-dpi-x Function

Summary Returns the number of printer device units per inch in the x
direction.

Syntax printer-metrics-dpi-x printer-metrics

Description The printer-metrics-dpi-x function returns the number of
printer device units per inch in the x direction. This typically
corresponds to the printer resolution, although in some cases
this may not be known. For example, a generic PostScript
language compatible driver might always return 300dpi,
even though it cannot know the resolution of the printer the
PostScript file will actually be printed on.

See also get-printer-metrics

printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-y

printer-metrics-height

printer-metrics-width

printer-metrics-dpi-y Function

Summary Returns the number of printer device units per inch in the y
direction.

Syntax printer-metrics-dpi-y printer-metrics

Description The printer-metrics-dpi-y function returns the number of
printer device units per inch in the y direction. This typically
corresponds to the printer resolution, although in some cases
this may not be known. For example, a generic PostScript
language compatible driver might always return 300dpi,
even though it cannot know the resolution of the printer the
PostScript file will actually be printed on.

See also get-printer-metrics

printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-height

printer-metrics-width

printer-metrics-height Function

Summary Returns the height of the printable area in millimeters.

Syntax printer-metrics-height printer-metrics

Description The printer-metrics-height function takes a printer-met-
rics object and returns the height of the printable area in mil-
limeters.

See also get-printer-metrics

printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-width

printer-metrics-width Function

Summary Returns the width of the printable area in millimeters.

Syntax printer-metrics-width printer-metrics

Description The printer-metrics-width function takes a printer-metrics
object and returns the width of the printable area in millime-
ters.
117

CAPI Reference Entries

118
See also get-printer-metrics

printer-metrics-device-height

printer-metrics-device-width

printer-metrics-dpi-x

printer-metrics-dpi-y

printer-metrics-height

progress-bar Class

Summary A pane that is used to show progress during a lengthy task.

Superclasses range-pane
titled-pane

Description This pane is used to display progress during a lengthy task. It
has no interactive behavior.

The accessors (setf range-start) and (setf range-end)

are used to specify the range of values the progress bar can
display.

The accessor (setf range-slug-start) is used to set the
progress indication.

See also range-pane

titled-pane

prompt-for-confirmation Function

Summary The prompt-for-confirmation function pops up a dialog
box with a message and Yes and No buttons.

Syntax prompt-for-confirmation message &key screen

Description This pops up a dialog box containing message, with Yes and
No buttons. It returns two values:

• a boolean indicating whether Yes was pressed

• t (for compatibility with other prompt functions)

Example (capi:prompt-for-confirmation "Continue?")

See also confirm-yes-or-no

prompt-for-file Function

Summary The function prompt-for-file pops up a dialog prompting
the user for a file name.

Syntax prompt-for-file message &key pathname ok-check pane-args
popup-args filter filters if-exists if-does-not-exist operation owner

Description The function prompt-for-file prompts the user for a file
using a dialog box, optionally defaulting to pathname. Like all
the prompters, prompt-for-file returns two values: the file
and a flag indicating success. The success flag will return nil

if the dialog was cancelled, and t otherwise. An ok-check
function can be specified, which should return non-nil if a
given pathname is valid.

filter specifies the initial filter expression (defaults to “*.*”).
filters is a plist of filter-names and filter expressions. If the fil-
ter argument is not one of the expressions in filters, an extra
filter called “Files” is added for this expression. The default
filters plist is:

 `(“Lisp Source Files” “*.LISP;*.LSP”
 “Lisp Fasls” “*.FSL”
 “Text Documents” “*.DOC;*.TXT”
 “Image Files” “*.BMP;*.DIB;*.ICO;*.CUR”
 “All Files” “*.*”)

if-exists is one of :ok or :prompt . When set to :ok , the an
existing file can be returned. Otherwise the user is prompted
about whether the file can be overwritten. The default is :ok
119

CAPI Reference Entries

120
when operation is :open and :prompt when operation is
:save.

if-does-not-exist is one of :ok , :prompt or :error . When set to
:ok , a nonexistent file can be chosen. When set to :prompt ,
the user is prompted if a non existent file is chosen. When set
to :error , the user cannot choose a non existent file. The
default is :prompt if operation is :open and :ok if operation is
:save . operation is one of :open or :save . This chooses the
style of dialog used. The default is :open . owner is a capi top-
level interface which becomes the owner of the dialog. In a
CAPI callback, this defaults to current interface. Otherwise
an interface is chosen for the current thread.

Finally, as with all of the prompting functions, the prompt
itself is created by passing an appropriate pane to
popup-confirmer . Arguments can be passed to the
make-instance of the pane and the call to popup-confirmer

using pane-args and popup-args respectively. Currently, the
pane used to create the file prompter is internal to the CAPI.

Example (capi:prompt-for-file "Enter a filename:")

(capi:prompt-for-file "Enter a filename:"
 :pathname "/usr/bin/cal")

(capi:prompt-for-file "Enter a filename:"
 :ok-check 'probe-file)

See also popup-confirmer

prompt-for-string

prompt-for-form Function

Summary The prompt-for-form function pops up a text input pane and
prompts the user for a form.

Syntax prompt-for-form message
 &key

package initial-value
evaluate quotify

 ok-check value-function
pane-args popup-args

Description This function prompts the user for a form by providing a text
input pane that the form can be typed into.

The form is read in the package if specified or *package* if
not. If evaluate is non-nil then the result is the evaluation of
the form, otherwise it is just the form itself. The printed ver-
sion of initial-value will be placed into the text input pane as a
default, unless quotify, which defaults to evaluate, specifies
otherwise. If value-function is provided it overrides the
default value function which reads the form and evaluates it
when required. If the ok-check is provided it will be passed the
entered form and should return t if the form is a valid result.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case a text
input pane) to popup-confirmer . Arguments can be passed to
the make-instance of the pane and the call to
popup-confirmer using pane-args and popup-args respectively.

Example Try the following examples, and each time enter (+ 1 2) into
the input pane.

(capi:prompt-for-form "Enter a form:")

(capi:prompt-for-form "Enter a form:" :evaluate nil)

See also prompt-for-forms

prompt-for-string

popup-confirmer

text-input-pane
121

CAPI Reference Entries

122
prompt-for-forms Function

Summary The prompt-for-forms function pops up a text input pane
prompting the user for a number of forms.

Syntax prompt-for-forms message
 &key

package initial-value value-function
pane-args popup-args

Description This function prompts the user for a number of forms by pro-
viding a text input pane that the forms can be typed into, and
it returns the forms in a list. The forms are read in the speci-
fied package or *package* if not. If evaluate is non-nil then the
result is the evaluation of the form, else it is just the form
itself.

The printed version of initial-value will be placed into the text
input pane as a default.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case a text
input pane) to popup-confirmer . Arguments can be passed to
the make-instance of the pane and the call to
popup-confirmer using pane-args and popup-args respectively.

Example Try the following example, and enter 1 2 3 into the input
pane.

(capi:prompt-for-forms "Enter some forms:")

See also prompt-for-form

prompt-for-string

popup-confirmer

text-input-pane

prompt-for-integer Function

Summary The prompt-for-integer function pops up a text input pane
and prompts the user for an integer.

Syntax prompt-for-integer message
 &key

min max initial-value ok-check
pane-args popup-args

Description This function prompts the user for an integer which is
returned, and the initial-value will appear in the input pane.
When min or max are specified the allowable result is con-
strained accordingly, and more complicated restrictions can
be applied using the function ok-check which gets passed the
currently entered number, and should return t if it is valid.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case a text
input pane) to popup-confirmer . Arguments can be passed to
the make-instance of the pane and the call to popup-

confirmer using pane-args and popup-args respectively.

Examples (capi:prompt-for-integer "Enter an integer:")

(capi:prompt-for-integer "Enter an integer:" :max 10)

(capi:prompt-for-integer "Enter an integer:"
 :min 100 :max 200)

(capi:prompt-for-integer "Enter an integer:"
 :ok-check 'evenp)

See also prompt-for-string

popup-confirmer

text-input-pane
123

CAPI Reference Entries

124
prompt-for-string Function

Summary The prompt-for-string function pops up a text input pane
and prompts the user for a string.

Syntax prompt-for-string message
 &key

text initial-value print-function
value-function ok-check
pane-args popup-args

Description This function prompts the user for a string and returns that
string and a flag indicating that the dialog was not cancelled.
The initial string can either be passed in as text using the text
argument, or by passing a value and a print-function for
that value. If the print-function is not specified, then it will
default to princ-to-string . The value returned can be con-
verted into a different value by passing a value-function,
which by default is identity. This value-function gets passed
the text that was entered into the pane, and should return
both the value to return and a flag that should be non-nil if
the value that was entered is not acceptable. If an ok-check is
passed, then it should return non-nil if the value about to be
returned is acceptable.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case a text
input pane) to popup-confirmer . Arguments can be passed to
the make-instance of the pane and the call to
popup-confirmer using pane-args and popup-args respectively.

Examples (capi:prompt-for-string "Enter a string:")

(capi:prompt-for-string
 "Enter an integer:"
 :initial-value 10
 :value-function #'(lambda (x)
 (let ((integer
 (ignore-errors
 (read-from-string x))))
 (values integer
 (not (integerp integer))
))))

See also popup-confirmer

text-input-pane

prompt-for-symbol Function

Summary The prompt-for-symbol function pops up a text input pane
and prompts the user for a symbol. The symbols that are
valid can be constrained in a number of ways.

Syntax prompt-for-symbol message
 &key

symbols package ok-check
pane-args popup-args

Description This function prompts the user for a symbol which they
should type into a string prompter. The symbols that are
valid can be constrained in a number of ways. The keyword
arguments are a list of all valid symbols, a package in which
the symbol must be available, and an ok-check function which
when called on a symbol will return non-nil if the symbol is
valid.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case a text
input pane) to popup-confirmer . Arguments can be passed to
the make-instance of the pane and the call to
popup-confirmer using pane-args and popup-args respectively.
125

CAPI Reference Entries

126
Examples (capi:prompt-for-symbol "Enter a symbol:")

(capi:prompt-for-symbol "Enter a symbol:"
 :package 'cl)

(capi:prompt-for-symbol "Enter a symbol:"
 :symbols
 '(foo bar baz))

(capi:prompt-for-symbol "Enter a symbol:"
 :ok-check #'(lambda (symbol)
 (string< symbol "B")))

See also prompt-for-form

prompt-for-string

popup-confirmer

text-input-pane

prompt-with-list Function

Summary The prompt-with-list function prompts the user to make a
choice from a list. By default the choice is a list panel.

Syntax prompt-with-list items message
 &key

choice-class interaction value-function
pane-args popup-args

Description This function prompts the user with a list of items from
which they must select a certain number. By default, the user
is prompted with a single selection list panel, but the class of
pane (which must be a choice) can be specified using choice-
class, and the interaction can be specified with interaction.
Finally the value that is returned is usually the selected items,
but a value-function can be supplied that gets passed the
result and can then return a new result.

For single selection, the dialog has an OK and a Cancel but-
ton, while for other selections it has Yes, No and Cancel but-

tons where Yes means accept the selection, No means accept a
null selection and Cancel behaves as normal.

Finally, as with all of the prompting functions, the prompter
is created by passing an appropriate pane (in this case an
instance of class choice-class) to popup-confirmer . Arguments
can be passed to the make-instance of the pane and the call
to popup-confirmer using pane-args and popup-args respec-
tively.

Examples (capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:")

(capi:prompt-with-list
 '(1 2 3 4 5) "Select some items:"
 :interaction :multiple-selection)

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:"
 :choice-class 'capi:button-panel)

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:"
 :interaction :multiple-selection
 :choice-class 'capi:button-panel)

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:"
 :interaction :multiple-selection
 :choice-class 'capi:button-panel
 :pane-args
 '(:layout-class capi:column-layout))

See also popup-confirmer

list-panel

choice

push-button Class

Summary A push-button is a pane that displays either a piece of text or
a generic image and when it is pressed it performs an action.
127

CAPI Reference Entries

128
Superclasses button
titled-pane

Description The class push-button inherits most of its behavior from
button . Note that it is normally best to use a
push-button-panel rather than make the individual buttons
yourself, as the button panel provides functionality for han-
dling groups of buttons. However, push buttons can be used
if you need to have more control over the button’s behavior.

Example (setq button (capi:contain
 (make-instance
 'capi:push-button
 :text "Press Me"
 :data '(:some :data)
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S"
 data)))))

(setf (capi:button-enabled button) nil)

(setf (capi:button-enabled button) t)

See also radio-button

check-button

button-panel

push-button-panel

push-button-panel Class

Summary A push-button-panel is a pane containing a group of but-
tons.

Superclasses button-panel

Description The class push-button-panel inherits all of its behavior from
button-panel , which itself inherits most of its behavior from

choice . Thus, the push button panel can accept items, call-
backs, and so on.

Examples (defun test-callback (data interface)
 (capi:display-message
 "Pressed ~S" data))

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items
 '("Press Me" "No, Me")
 :selection-callback
 'test-callback))

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items
 '("Press Me" "No, Me")
 :selection-callback
 'test-callback
 :layout-class
 'capi:column-layout))

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items '(1 2 3 4 5 6 7 8 9)
 :selection-callback
 'test-callback
 :layout-class
 'capi:grid-layout
 :layout-args
 '(:columns 3)))

See also push-button

radio-button-panel

check-button-panel

quit-interface Function

Summary The quit-interface function closes the top level interface
containing a specified pane.

Syntax quit-interface pane &key force
129

CAPI Reference Entries

130
Description This closes the top level interface containing pane, but first it
verifies that it is okay to do this by calling the interface’s
confirm-destroy-function . If it is okay to close the inter-
face, it then calls destroy to do so. If force is specified, then
neither the confirm-destroy-function or the
destroy-callback are called, and the window is just closed
immediately.

Example Here are two examples demonstrating the use of
quit-interface with the destroy-callback and the
confirm-destroy-function .

(setq interface (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S" interface)))))

(capi:quit-interface interface)

With this second example, the user is prompted as to
whether or not to quit the interface.

(setq interface (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :confirm-destroy-function
 #'(lambda (interface)
 (capi:confirm-yes-or-no
 "Really quit ~S"
 interface)))))

CL-USER 4> (capi:quit-interface interface)

See also destroy

display

interface

radio-button Class

Summary A radio-button is a button that can be either selected or
deselected, but when selecting it any other buttons in its
group will be cleared.

Superclasses button
titled-pane

Description The class radio-button inherits most of its behavior from
button . Note that it is normally best to use a
radio-button-panel rather than make the individual but-
tons yourself, as the button-panel provides functionality for
handling groups of buttons. However, radio buttons are pro-
vided in case you need to have more control over the but-
ton’s behavior.

Example (setq button (capi:contain
 (make-instance 'capi:radio-button
 :text "Press Me")))

(setf (capi:button-selected button) t)

(setf (capi:button-selected button) nil)

(setf (capi:button-enabled button) nil)

(setf (capi:button-enabled button) t)

See also push-button

check-button

button-panel

radio-button-panel

radio-button-panel Class

Summary A radio-button-panel is a pane containing a group of but-
tons of which only one can be selected at any time.
131

CAPI Reference Entries

132
Superclasses button-panel

Description The class radio-button-panel inherits all of its behavior
from button-panel , which itself inherits most of its behavior
from choice . Thus, the radio button panel can accept items,
callbacks, and so forth.

Example (capi:contain (make-instance
 'capi:radio-button-panel
 :title "Select a color:"
 :items '(:red :green :blue)
 :print-function 'string-capitalize))

(setq buttons (capi:contain
 (make-instance
 'capi:radio-button-panel
 :title "Select a color:"
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :layout-class 'capi:column-layout)))

(capi:choice-selected-item buttons)

See also radio-button

push-button-panel

check-button-panel

range-pane Class

Summary This class exists to support the progress-bar and slider
classes. Consult the reference pages for these classes for fur-
ther information.

Superclasses None

Subclasses progress-bar
slider

Slots start The lowest value of the range.

end The highest value of the range.

slug-start The current value of the range.

callback Called when the user changes the value.

Accessors range-start
range-end
range-slug-start
range-callback

raise-interface Function

Summary The raise-interface function raises the interface containing
a specified pane to the front of the screen.

Syntax raise-interface pane

Description This raises the window containing pane to the front of the
screen. To push it to the back use lower-interface , and to
iconify it use lower-interface .

Example (setq pane (capi:contain
 (make-instance
 'capi:text-input-pane)))

(capi:lower-interface pane)

(capi:raise-interface pane)

See also interface

raise-interface

lower-interface

quit-interface

redisplay-interface Generic Function

Summary The redisplay-interface generic function updates the state
of an interface.
133

CAPI Reference Entries

134
Syntax redisplay-interface interface

Description This method updates the state of an interface, such as
enabling and disabling menus, buttons, and so forth, that
might have changed since the last call. When using this as a
callback, you can use :redisplay-interface instead of the
symbol, and then it will get passed the correct arguments
regardless of the callback type.

Note: This method is called by popup-confirmer to update
its button’s enabled state, and so it should be called when
state changes in a dialog.

See also interface

redisplay-menu-bar

redraw-pinboard-layout

display

redisplay-menu-bar Function

Summary The function redisplay-menu-bar updates the menu bar of
an interface.

Syntax redisplay-menu-bar interface

Description This method updates the interface’s menu bar, such that
menus become enabled and disabled as appropriate.

Compatibility
Note

This function has been superseded by redisplay-interface ,
which updates the menu bar, but also updates other state
objects such as buttons, list panels and so on.

See also interface

redisplay-interface

redraw-pinboard-layout Function

Summary The redraw-pinboard-layout function redraws any pin-
board objects within a specified rectangle.

Syntax redraw-pinboard-layout pinboard
x y width height

 &optional (redisplay t)

Description This causes any pinboard objects within the given rectangle
of the pinboard layout to get redrawn. If redisplay is set to
nil , then the redisplay will be cached until a later date.

See also pinboard-object

redraw-pinboard-object

redraw-pinboard-object Function

Summary The redraw-pinboard-object function redraws a specified
pinboard object.

Syntax redraw-pinboard-object object &optional (redisplay t)

Description This causes the pinboard object object to be redrawn, unless
redisplay is nil in which case the redisplay will be cached
until a later date.

See also pinboard-object

pinboard-layout

redraw-pinboard-layout

remove-capi-object-property Function

Summary The remove-capi-object-property function removes prop-
erties from the property list of an object.
135

CAPI Reference Entries

136
Syntax remove-capi-object-property object property

Description All CAPI objects contain a property list, similar to the symbol
plist . The functions capi-object-property and (setf

capi-object-property) are the recommended ways of set-
ting properties, and remove-capi-object-property is the
way to remove a property.

Example (setq pane (make-instance 'capi:list-panel
 :items '(1 2 3)))

(capi:capi-object-property pane 'test-property)

(setf (capi:capi-object-property pane 'test-property)
 "Test")

(capi:capi-object-property pane 'test-property)

(capi:remove-capi-object-property pane 'test-property)

(capi:capi-object-property pane 'test-property)

See also capi-object-property

capi-object

right-angle-line-pinboard-object Class

Summary A subclass of pinboard-object that displays a line drawn
around two edges of the area enclosed by the pinboard
object.

Superclasses line-pinboard-object

Slots type The type of line.

Description A subclass of line-pinboard-object which displays a line
around the edge of the pinboard object rather than diago-
nally. The type of line can be one of two values.

:vertical-first

Draw top-left to bottom-left to bottom-right.

:horizontal-first

Draw top-left to top-right to bottom-right.

The main use of this class is to produce graphs with right-
angled edges rather than diagonal ones.

Example (capi:contain (make-instance
 'capi:right-angle-line-pinboard-object
 :min-width 100
 :min-height 100))

(capi:contain (make-instance
 'capi:right-angle-line-pinboard-object
 :min-width 100
 :min-height 100
 :type :horizontal-first))

(capi:contain (list
 (make-instance
 'capi:right-angle-line-pinboard-object
 :min-width 100
 :min-height 100)
 (make-instance
 'capi:right-angle-line-pinboard-object
 :min-width 100
 :min-height 100
 :type :horizontal-first)))

See also pinboard-layout

row-layout Class

Summary The row-layout class lays its children out in a row.

Superclasses grid-layout

Slots ratios The size ratios between the layout's chil-
dren.
137

CAPI Reference Entries

138
adjust The vertical adjustment for each child.

gap The gap between each child.

uniform-size-p

If t , each child in the row has the same
width.

Accessors layout-ratios

Description This lays its children out by inheriting the behavior from
grid-layout . The description is a list of the layout’s children,
and the layout also translates the initargs ratios , adjust , gap

and uniform-size-p into the grid layouts equivalent key-
words x-ratios , y-adjust , x-gap and x-uniform-size-p .

Examples (capi:contain (make-instance
 'capi:row-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 (make-instance 'capi:title-pane
 :text "Title")
 (make-instance 'capi:list-panel
 :items '(1 2 3)))))

(setq row (capi:contain
 (make-instance
 'capi:row-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 (make-instance 'capi:title-pane
 :text "Title")
 (make-instance 'capi:list-panel
 :items '(1 2 3)))
 :adjust :center)))

(setf (capi:layout-y-adjust row) :bottom)

(setf (capi:layout-y-adjust row) :top)

See also column-layout

screen Class

Summary A screen is an object that represents each of the known mon-
itor screens.

Superclasses capi-object

Subclasses color-screen
mono-screen

Slots width The width in pixels of the screen.

height The height in pixels of the screen.

number The screen number.

depth The number of color planes in the screen.

interfaces A list of all of the interfaces visible on the
screen.

Readers screen-width
screen-height
screen-number
screen-depth
screen-interfaces
screen-width-in-millimeters
screen-height-in-millimeters

Description When the CAPI initializes itself it creates one screen object
per monitor screen, and they are then used to specify where a
window is to appear. They can also be queried for informa-
tion that the program may need to know about the screen
that it is working on, such as its width, height and depth.

Example (setq screen (capi:convert-to-screen))

(capi:screen-width screen)
139

CAPI Reference Entries

140
(capi:screen-height screen)

(capi:display (make-instance
 'capi:interface :title "Test")
 :screen screen)

(capi:screen-interfaces screen)

See also convert-to-screen

search-for-item Generic Function

Summary The generic function search-for-item returns the index of
an item in a collection.

Syntax search-for-item collection item

Description Returns the index of item in the collection, using the
collection-test-function to determine equality, and
returns nil if no match is found. This is the counterpart func-
tion to get-collection-item which given an index, finds the
appropriate item.

See also get-collection-item

collection

set-button-panel-enabled-items Generic Function

Summary The set-button-panel-enabled-items generic function sets
the enabled state of the items in a button panel.

Syntax set-button-panel-enabled-items button-panel
 &key enable disable set test key

Description This function sets the enabled state of the items in a button
panel. If set is t , then enable is ignored and all items are
enabled except those in the disable list. If set is nil , disable is

ignored and all items are disabled except those in the enable
list. If set is not given, the items in the enable list are enabled
and the items in the disable list are disabled. If an item is in
both lists, it is enabled. A button is in a list when the data of
the button matches one of the items in the list. A match is
defined as a non-nil return value from the test function. The
default test function is equal .

See also button-panel

redisplay-interface

set-geometric-hint Function

Summary The set-geometric-hint function sets the hint associated
with a key.

Syntax set-geometric-hint element key value
 &optional override

Description Set the hint associated with key to value. If override is nil , the
value is not changed when there is already a hint for this key.
The default is t .

See also set-hint-table

element

set-hint-table Function

Summary The set-hint-table function sets the hint table for an ele-
ment to be its property list.

Syntax set-hint-table element plist

Description Set the hint table for the element to be the plist. All existing
hints are retained for keys not in the plist.
141

CAPI Reference Entries

142
See also set-geometric-hint

element

set-scroll-position Generic Function

Summary The set-scroll-position generic function moves the scroll
bars of a given pane to a specified position.

Syntax set-scroll-position pane x y

Description Move the scroll bars of pane to place the given x and y coordi-
nates in the top left-hand corner of the visible window.

See also set-scroll-range

simple-pane

set-scroll-range Generic Function

Summary The set-scroll-range generic function sets the range over
which the scroll bars for a pane apply.

Syntax set-scroll-range pane width height

Description Set the range over which the scroll bars for pane apply.

See also set-scroll-position

simple-pane

show-interface Function

Summary The show-interface function brings the interface containing
a specified pane back onto the screen.

Syntax show-interface pane

Description This brings the interface containing pane back onto the
screen. To hide it again, use hide-interface .

See also hide-interface

activate-pane

interface

simple-layout Class

Summary A simple-layout is a layout with a single child, and the child
is resized to fill the space (where possible).

Superclasses x-y-adjustable-layout

Description A simple layout’s description can be either a single child, or a
list containing just one child. The simple layout then adopts
the size constraints of its child, and lays the child out inside
itself.

Example (capi:contain (make-instance
 'capi:simple-layout
 :description (make-instance
 'capi:text-input-pane)))

See also layout

row-layout

column-layout

simple-pane Class

Summary The class simple-pane is the superclass for any elements that
actually appear as a native window, and is itself an empty
window.

Superclasses element
143

CAPI Reference Entries

144
Subclasses titled-pane

Slots background The background color of the pane.

foreground The foreground color of the pane.

font The default font for the pane.

horizontal-scroll

Non-nil if the pane can scroll horizontally.

vertical-scroll

Non-nil if the pane can scroll vertically.

visible-border

Controls whether the pane has a border.

Accessors simple-pane-background
simple-pane-foreground
simple-pane-font

Readers simple-pane-horizontal-scroll
simple-pane-vertical-scroll
simple-pane-visible-border

Description The background and foreground colors are colors specified
using the graphics ports color system, and the font must be a
generic font. The value for visible-border can be any of the
following:

nil Has no border.

t Has a border.

:default Use the default for the window type.

Any simple pane can be made to scroll by specifying t to
:horizontal-scroll or :vertical-scroll . By default these
values are nil , but some subclasses of simple-pane default
to t where appropriate (for instance editors always default to
having a vertical scroll-bar).

In order to display a simple pane, it needs to be contained
within an interface. The two convenience functions
make-container and contain are provided to create an inter-
face with enough support for that pane. The function
make-container just returns a container for an element, and
the function contain displays an interface created for the
pane using make-container .

Examples (capi:contain (make-instance 'capi:simple-pane))

(capi:contain (make-instance 'capi:simple-pane
 :background :red))

(capi:contain (make-instance 'capi:simple-pane
 :background :red
 :horizontal-scroll t))

(capi:contain (make-instance 'capi:simple-pane
 :visible-border t))

See also contain

simple-pinboard-layout Class

Summary A simple-pinboard-layout is a pinboard-layout that can
contain just one pinboard object or pane as its child, and it
adopts the size constraints of that child.

Superclasses pinboard-layout
simple-layout

Subclasses graph-pane

Slots child The child of the pinboard layout.

Description The class simple-pinboard-layout is normally used to place
pinboard objects in a layout by placing the layout inside a
simple-pinboard-layout , thus displaying the pinboard
145

CAPI Reference Entries

146
objects. It inherits all of its layout behavior from
simple-layout .

Example (setq column (make-instance
 'capi:column-layout
 :description
 (list
 (make-instance
 'capi:image-pinboard-object
 :image "new-lispworks-logo")
 (make-instance
 'capi:item-pinboard-object
 :text "LispWorks"))
 :x-adjust :center))

(capi:contain (make-instance
 'capi:simple-pinboard-layout
 :child column))

See also pinboard-object

simple-print-port Function

Summary Prints the contents of an output pane to a printer.

Syntax simple-print-port port &key jobname scale dpi printer
interactive background

Description The simple-print-port function prints the output pane
specified by port to the default printer, unless specified other-
wise by printer. The arguments of scale and dpi are used to
determine how to transform the output pane’s coordinate
space to physical units. There meaning here is the same as in
get-page-area , except that scale may also take the value
:scale-to-fit , in which case the pane is printed as large as
possible on a single sheet.

The background color of the pane is ignored, and the value
given by background is used instead. This defaults to :white .

If interactive is t , a print dialog is displayed. This is the
default. If interactive is nil , then the document is printed to
the current printer without prompting the user.

See also print-dialog

slider Class

Summary A pane with a sliding marker, which allows the user to con-
trol a numerical value within a specified range.

Superclasses range-pane
titled-pane

Description The slider class allows the user to enter a number by mov-
ing a marker on a sliding scale to the desired value.

switchable-layout Class

Summary A subclass of simple-layout that displays only one of its
children at a time, and provides functionality for switching
the displayed child to one of the other children.

Superclasses simple-layout

Slots visible-child The currently visible child from the children.

Accessors switchable-layout-visible-child

Description The switchable-layout is passed a list of children to be its
initial list of children, and also the initially visible child
(which defaults to the first of the children). It inherits all of its
layout behavior from simple-layout as it only ever lays out
one child at a time.
147

CAPI Reference Entries

148
Example (setq children (list
 (make-instance 'capi:push-button
 :text "Press Me")
 (make-instance 'capi:list-panel
 :items '(1 2 3 4 5))))

(setq layout (capi:contain
 (make-instance
 'capi:switchable-layout
 :description children)))

(setf (capi:switchable-layout-visible-child layout)
 (second children))

(setf (capi:switchable-layout-visible-child layout)
 (first children))

See also layout

tab-layout Class

Summary The class tab-layout has two distinct modes. The first lays
out a number of panes in a switchable layout. Each pane has
an associated tab which, when clicked on, pulls the pane to
the front. In the second mode the tabs are linked to a
:selection-callback as for button-panel .

Superclasses choice
layout

Slots description The main layout description.

items Specifies the tabs of the tab layout.

visible-child-function

The visible children for a given selection.

key-function Specifies a function to use in referring to
items in the items list.

print-function

The function used to print a name on each
tab.

callback-type The type of data passed to the callback func-
tion.

selection-callback

The function called when a tab is selected.

Description A tab layout can have two distinct modes. In its first mode,
the tab layout consists of a number of panes, each with its
own tab. Clicking on a tab pulls the corresponding pane to
the front. In this mode the tab layout is like a switchable lay-
out with the switching performed by the user selecting a tab.
In this mode the visible-child-function is used to specify
which child to make visible for a given tab selection.

In its second mode the tab layout does not work as a switch-
able layout, and the result of any selection is specified using a
callback specified by :selection-callback , in a similar way
to a button panel callback. In this mode the :description slot
is used to describe the main layout of the tab pane.

Examples The following example shows the use of a switchable tab lay-
out. Each tab is linked to an output pane by pairing them in
the :items list.
149

CAPI Reference Entries

150
(defun switchable-tab-layout ()
 (let* ((red-pane (make-instance
 ’capi:output-pane
 :background :red))
 (blue-pane (make-instance
 ’capi:output-pane
 :background :blue))
 (tl (make-instance
 ’capi:tab-layout
 :items (list (list "Red" red-pane)
 (list "Blue" blue-pane))
 :print-function ’car
 :visible-child-function ’second)))
 (capi:contain tl)))

(switchable-tab-layout)

Here is an example of the second mode of a tab layout, which
uses the selection of a tab to change the nodes of a graph
pane through the use of a selection callback.

(defun non-switchable-tab-layout (tabs)
 (let* ((gp (make-instance
 ’capi:graph-pane))
 (tl (make-instance
 ’capi:tab-layout
 :description (list gp)
 :items tabs
 :visible-child-function nil
 :key-function nil
 :print-function (lambda (x)
 (format nil "~R" x))
 :callback-type :data
 :selection-callback
 #’(lambda (data)
 (setf (capi:graph-pane-roots gp)
 (list data))))))
 (capi:contain tl)))

(non-switchable-tab-layout ’(1 2 4 5 6))

See also callbacks

simple-layout

switchable-layout

text-input-choice Class

Summary This pane consists of a text input area, and a button. Clicking
on the button displays a drop-down list of strings, and select-
ing one of the strings automatically pastes it into the text
input area.

Superclasses choice
text-input-pane

Description The text-input-choice class behaves in the same way as a
text-input-pane , but has additional functionality. The ele-
ment inherits from choice , and the choice items are used as
the items to display when the user clicks on the button.

The selection callback is called when the user selects an item
using the drop-down list, or when the user presses the return
key.

See also choice

text-input-pane

text-input-pane Class

Summary The class text-input-pane is a pane for entering a single line
of text.

Superclasses titled-pane

Subclasses password-pane

Slots text The text in the pane.

caret-position

The position of the caret in the text (from 0).
151

CAPI Reference Entries

152
max-characters

The maximum number of characters
allowed.

enabled Is the text-input-pane enabled?

completion-function

A function called when the user completes
the input by pressing tab.

callback-type The type of arguments to the callback.

callback A function called when the user presses
Return.

change-callback-type

The type of arguments to the callback.

change-callback

A function called when a change is made.

confirm-change-function

A function called to validate a change.

Accessors text-input-pane-text
text-input-pane-caret-position
text-input-pane-max-characters
text-input-pane-completion-function
text-input-pane-callback
text-input-pane-confirm-change-function
text-input-pane-change-callback
text-input-pane-enabled

Description The class text-input-pane provides a great deal of flexibility
in its handling of the text being entered. It starts with the ini-
tial text and caret-position specified by :text and
:caret-position respectively, and limits the number of
characters entered with the :max-characters keyword
(which defaults to nil , meaning there is no maximum). The
pane can be enabled and disabled with the accessor
text-input-pane-enabled .

A completion-function can be specified which will get
called when the completion gesture is made by the user (or
pressing the Tab key). The function is called with the pane
and the text to complete and should return either nil , the
completed text or a list of possible completions. In the latter
case, the CAPI will prompt the user for the selection they
wish and this will become the new text.

When the text or caret-position is changed, the callback
change-callback is called with the text, the pane itself, the
interface and the caret position. The arguments that are
passed to the callback can be specified with the
change-callback-type .

It is possible to check changes that the user makes to the text
input pane by providing a confirm-change-function which
gets passed the new text, the pane itself, its interface and the
new caret position, and which should return non-nil if it is
okay to make the change. If nil is returned, then the pane
will be unaltered (and a beep will be signalled indicating that
the new values were invalid.

Compatibility
Note

The confirm-change-function was called
before-change-callback in LispWorks 3.1. Both the old ini-
targ and the old accessor are still supported, but may not be
in future releases.

Examples (capi:contain (make-instance 'capi:text-input-pane
 :text "Hello world"))

(setq text-input-pane (capi:contain
 (make-instance
 'capi:text-input-pane
 :enabled nil)))

(setf (capi:text-input-pane-enabled text-input-pane) t)

(setf (capi:text-input-pane-enabled text-input-pane)
 nil)

(setf (capi:text-input-pane-text text-input-pane)
 "New text")
153

CAPI Reference Entries

154
(capi:contain (make-instance 'capi:text-input-pane
 :max-characters 10))

(capi:contain (make-instance
 'capi:text-input-pane
 :text "Hello world"
 :callback #'(lambda (text interface)
 (capi:display-message
 "Interface ~S's text: ~S"
 interface text))))

See also editor-pane

title-pane

display-pane

titled-image-pinboard-object Class

Summary A titled-image-pinboard-object is a pinboard-object

that displays itself as a generic image with a title underneath
it.

Superclasses image-pinboard-object
item-pinboard-object

Slots title The title of the pinboard object.

x-adjust The offset adjustment between the image
and title.

Description The relative positions of the title and the image can be speci-
fied with adjust . By default, the adjust is :center , meaning
that the image and title should be centered, but the value can
take any of the arguments accepted by pane-adjusted-

offset .

Example (setf image (capi:contain
 (make-instance
 'capi:titled-image-pinboard-object
 :title "LispWorks"
 :image "new-lispworks-logo")))

(setf (capi:image-pinboard-object-image image)
 "diamond1")

(setf (capi:image-pinboard-object-image image)
 "new-lispworks-logo")

(capi:contain (make-instance
 'capi:titled-image-pinboard-object
 :title "LispWorks"
 :x-adjust :right
 :image "new-lispworks-logo"))

See also pinboard-layout

pinboard-object

titled-menu-object Class

Summary The class titled-menu-object is a subclass of menu-object

which supports titles, and it is used by menus, menu compo-
nents and menu items.

Superclasses menu-object

Subclasses menu
menu-component
menu-item

Slots title The title for the object.

title-function

Returns the title for the object.

Accessors menu-title
menu-title-function

Description The simplest way to give a title to a titled-menu-object is
to just supply a title string, and this will then appear as the
title of the object. Alternatively, a title-function can be
provided which will be called with the object when the menu
is about to appear and which should return the title to use.
155

CAPI Reference Entries

156
Examples (capi:contain (make-instance 'capi:menu-item
 :title "Press Me"))

(capi:contain (make-instance
 'capi:menu-item
 :title-function #'(lambda (item)
 (princ-to-string
 (random 5)))))

titled-pane Class

Summary The class titled-pane provides support for decorating a
pane with a title (a piece of text positioned next to the pane)
and with a message (a piece of text below the pane).

Superclasses simple-pane

Subclasses interface
layout
title-pane
display-pane
text-input-pane
button
list-panel
button-panel
option-pane
contain

Slots title A title string for the current pane (or nil).

title-args Keyword arguments to the title make-
instance.

title-position

The position of the title.

title-adjust How to adjust the title relative to the pane.

message A message string for the current pane (or
nil).

message-args Keyword arguments to the message make-

instance .

Accessors titled-pane-title
titled-pane-message

Description The titled pane makes its decorations from title panes, and
their look can be changed with the arguments title-args

and message-args .

The message is always placed below the pane, but the title’s
position can be adjusted by specifying a title position which
can be any of the following.

:left Place the title to the left of the pane.

:right Place the title to the right of the pane.

:top Place the title above the pane.

:bottom Place the title below the pane.

The title-adjust slot is used to adjust the title so that it is
left justified, right justified or centered. The value of title-

adjust can be any of the values accepted by the function
pane-adjusted-offset , which are :left , :right , :top ,
:bottom , :center and :centre .

Examples Try each of these examples to see some of the effects that
titled panes can produce. Note that text-input-pane is a
subclass of titled-pane , and that it has a default
title-position of :left .

(capi:contain (make-instance 'capi:text-input-pane))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"))

(capi:contain (make-instance
 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top))
157

CAPI Reference Entries

158
(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top
 :title-adjust :center))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top
 :title-adjust :right))

(capi:contain (make-instance 'capi:text-input-pane
 :message "A message"))

(capi:contain (make-instance 'capi:text-input-pane
 :message "A message"
 :title "Enter some text:"))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-args
 '(:foreground :red)))

See also title-pane

title-pane Class

Summary This class provides a pane that displays a piece of text.

Superclasses titled-pane

Slots text The text to appear in the title pane.

Accessors title-pane-text

Description The most common use of title panes is as a title for a pane,
and so the class titled-pane is provided as a class that sup-
ports placing title panes around itself.

By default, title panes are constrained so that they cannot
resize (that is, the values of max-width and max-height are t)
but this can be altered by using :max-width nil or
:max-height nil .

Examples (setq title-pane (capi:contain
 (make-instance
 'capi:title-pane
 :text "This is a title pane")))

(setf (capi:title-pane-text title-pane) "New title")

toolbar Class

Summary This class provides a pane containing toolbar buttons and
panes.

Superclasses collection
simple-pane
toolbar-object

Slots dividerp If t , a divider line is drawn above the tool-
bar, to separate it from the menu bar. The
default value is nil .

images A list of images, in one-to-one correspon-
dence with the items. Elements correspond-
ing to toolbar-button items or toolbar-

component items are ignored.

callbacks A list of callback functions, in one-to-one
correspondence with the items. Elements
corresponding to toolbar-button items or
toolbar-component items are ignored

tooltips A list of tooltip strings, in one-to-one corre-
spondence with the items. Elements corre-
sponding to toolbar-button items or
toolbar-component items are ignored

button-width The width of the toolbar buttons. The
default is 24.

button-height The height of the toolbar buttons. The
default is 22.
159

CAPI Reference Entries

160
image-width The width of buttons in the toolbar. The
default value is 16.

image-height The height of buttons in the toolbar. The
default value is 15.

default-image-set

An optional image setting object which can
be used to specify images. See toolbar-

button and image-set for more details.

Description The class toolbar inherits from collection , and therefore
has a list of items . It behaves in a similar manner to push-

button-panel , which inherits from choice .

The items keyword may be used to specify a mixture of
toolbar-buttons and toolbar-components , or it may con-
tain arbitrary objects as items. The list may also contain CAPI
panes, which will appear within the toolbar. This is typically
used with text-input-panes , option-panes , and text-

input-choices .

For items that are not toolbar buttons or toolbar components,
a toolbar button is automatically created, using the appropri-
ate elements of the images, callbacks and tooltips lists. If no
image is specified, the item itself is used as the image. For
more information on acceptable values for images, see
toolbar-button .

All toolbar buttons within the item list behave as push but-
tons. However, toolbar button components may be single-
selection or multiple-selection. See toolbar-component for
further details.

See also collection

push-button-panel

toolbar-component

toolbar-button Class

Summary This class is used to create instances of toolbar buttons.

Superclasses item
toolbar-object

Slots callback A function that is called when the toolbar
button is pressed.

image A slot specifying the image to use for the
toolbar button.

tooltip An optional string which is displayed when
the mouse moves over the button.

Description Toolbar buttons may be placed within toolbars and toolbar
components. However, there is usually no need to create
toolbar buttons explicitly; instead, the :callbacks , :images

and :tooltips arguments to toolbar or toolbar-component

can be used.

The image may be one of the following:

A pathname or string

This specifies the filename of a file suitable
for loading with gp:load-image . Currently
this must be a bitmap file.

A symbol The symbol must have been previously reg-
istered by means of a call to gp:register-

image-translation .

An image object, as returned by gp:load-image .

An image locator object

This allows a single bitmap to be created
which contains several button images side
by side. See make-image-locator for more
161

CAPI Reference Entries

162
information. On Windows, this also allows
access to bitmaps stored as resources in a
DLL.

An integer This is a zero-based index into the default-
image-set of the toolbar or toolbar compo-
nent in which the toolbar button is used.

The image should be of the correct size for the toolbar. By
default, this is 16 pixels wide and 15 pixels high.

See also make-image-locator

toolbar

toolbar-component

toolbar-component Class

Summary A toolbar component is used to group several toolbar buttons
together. Each component is separated from the surrounding
components and buttons.

Toolbar components are choices, and may be used to imple-
ment toolbars on which groups of button have single-selec-
tion or multiple-selection functionality.

Superclasses toolbar-object
choice

Slots images A list of images, in one-to-one correspon-
dence with the items. Elements correspond-
ing to toolbar-button items or toolbar-

component items are ignored

callbacks A list of callback functions, in one-to-one
correspondence with the items.Elements
corresponding to toolbar-button items or
toolbar-component items are ignored

tooltips A list of tooltip strings, in one-to-one corre-
spondence with the items. Elements corre-
sponding to toolbar-button items or
toolbar-component items are ignored

default-image-set

An optional image-set object which can be
used to specify images. See toolbar-button

and image-set for more details.

Description The class toolbar-component inherits from choice, and hence
has a list of items. Its behavior is broadly similar to button-

panel .

The :items keyword may be used to specify a mixture of
toolbar buttons and toolbar components, or may contain
arbitrary objects as items. The list may also contain CAPI
panes, which will appear within the toolbar. This is typically
used with text-input-panes , option-panes , and text-

input-choices .

For items that are not toolbar buttons or toolbar components,
a toolbar button is automatically created, using the appropri-
ate elements of the images , callbacks and tooltips lists. If
no image is specified, the item itself is used as the image. For
more information on acceptable values for images, see
toolbar-button .

See also toolbar

toolbar-button

toolbar-object Class

Summary This is a common superclass of toolbar , toolbar-button

and toolbar-component .

Superclasses None
163

CAPI Reference Entries

164
Subclasses toolbar
toolbar-button
toolbar-component

Slots enabled If t , the toolbar object is enabled.

Accessors simple-pane-enabled
toolbar-object-enabled-function

Description Any toolbar object may be disabled, by setting its enabled

state to nil . Disabling a toolbar or toolbar component pre-
vents the user from interacting with any buttons contained in
it.

All toolbar objects may also have an enable function speci-
fied. This is evaluated whenever update-toolbar is called. If
it returns t , the toolbar object will be enabled; if it returns
nil , the object will be disabled.

See also toolbar

toolbar-button

toolbar-component

update-toolbar

top-level-interface Generic Function

Summary Returns the top level interface containing a specified pane.

Syntax top-level-interface pane

Description Returns the top level interface that contains pane.

See also top-level-interface-p

interface

element

top-level-interface-p Generic Function

Syntax top-level-interface-p pane

Description Returns non-nil if pane is a top level interface.

See also top-level-interface

interface

element

undefine-menu Macro

Syntax undefine-menu function-name &rest args

Description This function undefines a menu created with define-menu .

See also define-menu

menu

unhighlight-pinboard-object Generic Function

Syntax unhighlight-pinboard-object pinboard object &key (redisplay
t)

Description This removes the highlighting from a pinboard object if nec-
essary, and then if redisplay is non-nil it redisplays it. The
default value of redisplay is t . To highlight a pinboard object
use highlight-pinboard-object .

See also highlight-pinboard-object

pinboard-object
165

CAPI Reference Entries

166
unmap-typeout Function

Syntax unmap-typeout collector-pane

Description This switches the collector-pane out from its switchable layout,
and brings back the pane that was there before map-typeout

was called.

See also map-typeout

with-random-typeout

collector-pane

update-pinboard-object Function

Syntax update-pinboard-object object

Description This function checks the object’s constraints, and adjusts the
object’s size as necessary. It then forces the layout to redisplay
the object at its new size. Finally, it returns t if a resize was
necessary.

See also redraw-pinboard-object

pinboard-object

update-toolbar Function

Summary Updates a toolbar object.

Syntax update-toolbar self

Description The update-toolbar function updates the toolbar object self.
It computes the enabled function of self and the enabled func-
tions of any toolbar components or toolbar buttons contained
in it. Each toolbar object is enabled if the enabled function
returns t , and is disabled if it returns nil .

See also toolbar

toolbar-button

toolbar-component

with-atomic-redisplay Macro

Summary The with-atomic-redisplay macro delays the updating of a
pane until all state changes have been performed.

Syntax with-atomic-redisplay (pane) &body body

Description Most CAPI pane slot writers update the visual appearance of
the pane at the point that their state changes, but it is some-
times necessary to cause all updates to the pane to be left
until after they are all completed. The macro
with-atomic-redisplay defers all visible changes to the
state of the pane until the end of the scope of the macro.

Compatibility
Note

The pane argument was new in LispWorks 3.2, and hence
code written for 3.1 will have to be changed to supply it.

See also display

simple-pane

with-document-pages Macro

Summary Executes a body of code repeatedly with a variable bound to
the number of the page to be printed each iteration.

Syntax with-document-pages page-var first-page last-page &body body

Description The with-document-pages evaluates body repeatedly, with
page-var bound to the number of the page to print on each
iteration. It is used to by applications providing Page on
Demand printing.
167

CAPI Reference Entries

168
The first-page and last-page arguments are evaluated to yield
the page numbers of the first and last pages in the document.

See also with-page

with-print-job

with-geometry Macro

Summary The with-geometry macro is used for defining layouts and
for creating new pinboard-object classes, by binding a set of
variables to a pane’s geometry.

Syntax with-geometry pane &body body

Description The macro with-geometry binds the following variables
across the forms in body to slots in the pane’s geometry in
much the same way as the Common Lisp macro with-slots .
Its main uses are for defining layouts and for creating new
pinboard-object classes.

%x% The x position of the pane.

%y% The y position of the pane.

%width% The width in pixels of the pane.

%height% The height in pixels of the pane.

%min-width% The minimum width of the pane.

%min-height% The minimum height of the pane.

%max-width% The maximum width of the pane.

%max-height% The maximum height of the pane.

%object% The object whose geometry this is.

%child% The same as %object% (kept for 3.1 compati-
bility).

%ratio% Ratio information.

Compatibility
Note

In LispWorks 3.1, this macro and all of its variable names
were in the capi-layouts package. They have been moved
into the CAPI package for simplicity.

See also element

with-page Macro

Summary Binds a variable to either t or nil , and executes a body of
code to print a page only if the variable is t .

Syntax with-page var &body body

Description The with-page macro binds var to t if a page is to be printed,
or nil if it is to be skipped. The body is executed once, and is
expected to draw the document only if var is t . Each call to
with-page contributes a new page to the document.

See also with-document-pages

with-page-transform

with-page-transform Macro

Summary Defines a rectangular region within the coordinate space of
an output pane or printer port.

Syntax with-page-transform x y width height &body body

Description The with-page-transform macro evaluates x, y, width and
height to define a rectangular region within the coordinate
space of an output pane or printer port. Within body the
region is mapped onto the printable area of the page. If the
specified rectangle does not have the same aspect ratio as the
printable area of the page, then non-isotropic scaling will
occur.
169

CAPI Reference Entries

170
Any number of calls to with-page-transform can occur dur-
ing the printing of a page; for example, it is sometimes conve-
nient to use a different page transform from that used to print
the main body of the page when printing headers and foot-
ers.

See also get-printer-metrics

with-print-job Macro

Summary Creates a print job that prints to the specified printer.

Syntax with-print-job var &key pane jobname printer &body body

Description The with-print-job macro creates a print job which prints to
printer. If printer is not specified, the default printer is used.
The macro binds var to a graphics port object, and printing is
performed by using graphics port objects to draw the object.

If pane is specified it must be an output pane. In this case var
is bound to pane, and the output pane is modified within the
dynamic extent of the with-print-job so all drawing opera-
tions draw to the printer instead of the output pane. This can
be useful when implementing printing by modifying existing
redisplay code that is written expecting the output pane.

See also with-document-pages

with-page

with-page-transform

with-random-typeout Macro

Summary Binds a stream variable to a collector pane.

Syntax with-random-typeout (stream-variable pane) &body body

Description The with-random-typeout macro binds the variable stream-
variable to a collector pane stream associated with pane for the
scope of the macro. The collector pane is automatically
mapped and unmapped around the body. If the body exits
normally, the typeout is not unmapped until the space bar is
pressed or the mouse is clicked.

See also map-typeout

unmap-typeout

collector-pane

x-y-adjustable-layout Class

Summary The class x-y-adjustable-layout provides functionality for
positioning panes in a space larger than themselves (for
example, it is used to choose whether to center them, or left
justify them).

Superclasses layout

Subclasses simple-layout
grid-layout

Slots x-adjust The adjust value for the x direction.

y-adjust The adjust value for the y direction.

Accessors layout-x-adjust
layout-y-adjust

Description The values for x-adjust and y-adjust are used by layouts to
decide what to do when a pane is smaller than the space in
which it is being laid out. The values themselves are inter-
preted by the function pane-adjusted-offset , which by
default can be any of the following:

:top Place the pane at the top of the region.
171

CAPI Reference Entries

172
:bottom Place the pane at the bottom of the region.

:left Place the pane at the left of the region.

:right Place the pane at the right of the region.

:center Place the pane in the center of the region.

Example Note: column-layout is a subclass of x-y-adjustable-

layout .

(setq column (capi:contain
 (make-instance
 'capi:column-layout
 :description (list
 (make-instance
 'capi:push-button
 :text "Ok")
 (make-instance
 'capi:list-panel
 :items '(1 2 3 4 5)
)))))

(setf (capi:layout-x-adjust column) :right)

(setf (capi:layout-x-adjust column) :center)

See also pane-adjusted-offset

2

2GP Reference Entries
The following chapter provides reference entries for the functions and macros
exported from the gp package. You can use these functions to draw graphics
in CAPI output panes, which are a kind of graphics port. See the Graphics
Ports chapter in the CAPI User Guide for more information on graphics ports
and their associated types.

default-image-translation-table Variable

Summary The default image translation table.

Signature *default-image-translation-table*

Description The *default-image-translation-table* variable contains
the default image translation table. It is used if no image
translation table is specified in calls to image translation table
functions.
173

GP Reference Entries

174
unit-transform Variable

Summary The list (1 0 0 1 0 0) .

Signature *unit-transform*

Description The *unit-transform* variable holds the list (1 0 0 1 0 0)

which is the unit transform I, such that X = XI, where X is a 3-
vector. Graphics ports are initialized with the unit transform
in their graphics state. This means that port coordinate axes
are initially the same as the window axes.

analyze-external-image Function

Summary Returns the width, height, color-table, and number of impor-
tant colors for an external image.

Signature analyze-external-image external-image => width height
color-table number

Arguments external-image An external image

Values width An integer

height An integer

color-table A color table

number An integer

Description The analyze-external-image function returns the width,
height, color-table, and number of important colors for an
external image.

apply-rotation Function

Summary Modifies a transform such that a rotating of a given number
of radians is performed on any points multiplied by the
transform.

Signature apply-rotation transform theta =>

Arguments transform A transform

theta A real number

Description The apply-rotation function modifies transform such that a
rotation of theta radians is performed on any points multi-
plied by the transform. Any operations already contained in
the transform occur before the new rotation.

apply-scale Function

Summary Modifies a transform such that a scaling occurs on any points
multiplied by the transform.

Signature apply-scale transform sx sy =>

Arguments transform A transform

sx A real number

sy An integer

Description The apply-scale function modifies transform such that a scal-
ing of sx in x and sy in y is performed on any points multi-
plied by the transform. Any operations already contained in
the transform occur before the new scaling.
175

GP Reference Entries

176
apply-translation Function

Summary Modifies a transform such that a translation is performed on
any points multiplied by the transform.

Signature apply-translation transform dx dy =>

Arguments transform A transform

dx A real number

dy A real number

Description The apply-translation function modifies transform such
that a translation of (dx dy) is performed on any points multi-
plied by the transform. Any operations already contained in
the transform occur before the new translation.

augment-font-description Function

Summary Returns a font description combining the attributes of a given
font description with a set of font attributes.

Signature augment-font-description fdesc &rest font-attribute* =>
return

Arguments fdesc A font description

font-attribute A font attribute

Values return A font description

Description The augment-font-description function returns a font
description that contains all the attributes of fdesc combined
with the extra font-attributes. If an attribute appears in both
fdesc and a font-attribute, the value in the font-attribute is used.
The contents of fdesc are not modified.

clear-external-image-conversions Function

Summary Clears external image conversions for a port.

Signature clear-external-image-conversions external-image gp-or-null
 &key free-image all errorp =>

Arguments external-image An external image

gp-or-null A graphics port or nil

free-image A boolean

all A boolean

errorp A boolean

Description The clear-external-image-conversions function clears
the external image conversions for a port. If gp-or-null is nil

all conversions are cleared using the image-color-users. If all
is non-nil all conversions for all ports are cleared using gp-
or-null. Conversions are also freed if free-image is non-nil . By
default, free-image is t , all is (null gp-or-null) , and errorp is t .

clear-graphics-port Function

Summary Draws a filled rectangle covering the entire port in the port’s
background color.

Signature clear-graphics-port port =>

Arguments port A graphics port.

Description The clear-graphics-port function draws a filled rectangle
covering the entire port in the port’s background. All other
graphics state parameters are ignored.
177

GP Reference Entries

178
clear-graphics-port-state Function

Summary Sets the graphics state of a port back to its default values.

Signature clear-graphics-port-state port =>

Arguments port A graphics port

Description The clear-graphics-port-state function sets the graphics
state of port back to its default values, which are the ones it
possessed immediately after creation.

clear-rectangle Function

Summary Draws a rectangle in the port’s background color.

Signature clear-rectangle port x y width height =>

Arguments port A graphics port

x A real number

y A real number

width A real number

height A real number

Description The clear-rectangle function draws the rectangle specified
by x, y, width, and height in port’s background color. All other
graphics state parameters are ignored.

compress-external-image Function

Summary Converts external image data into compressed DIB format.

Signature compress-external-image external-image =>

Arguments external-image An external image

Description The compress-external-image function converts the exter-
nal-image data into compressed DIB format.

compute-char-extents Function

Summary Returns the starting x coordinates of each of the characters in
a string if the string was printed to a graphics port.

Signature compute-char-extents port string &optional font => extents

Arguments port A graphics port

string A string

font A font

Values extents An array of integers

Description Returns the extents of the characters in string in the font asso-
ciated with port, or the font given. The extents are an array,
one element per character, which gives the starting x coordi-
nate of that character if the string was drawn to port.

convert-external-image Function

Summary Returns an image derived from an external image format.

Signature convert-external-image gp external-image &key cache force-new
 => image

Arguments gp A graphics port

external-image An external image

cache A boolean
179

GP Reference Entries

180
force-new A boolean

Values image An image

Description The convert-external-image function returns an image
derived from external-image. The image is ready for drawing
to the given graphics port. If cache is non-nil images conver-
sions are cached by (color-device a b) in the external-image
where a is the transparent-pixel-index and b the image-back-
ground-color of the port. If force-new is non-nil a new image
is always created, and put in the cache. By default, cache has
the value *cache-external-images-p* .

copy-external-image Function

Summary Returns a copy of an external image.

Signature copy-external-image external-image &key new-color-table =>

Arguments external-image An external image

new-color-table A color table

Values new-external-image

An external image

Description The copy-external-image function returns a copy of the
external-image, optionally supplying a new-color-table. An
error is signalled if this is a different size from the existing
color-table.

copy-pixels Function

Summary Copies a rectangular area from one port to another.

Signature copy-pixels to-port from-port to-x to-y width height from-x
from-y &rest args =>

Arguments to-port A graphics port

from-port A graphics port

to-x A real number

to-y A real number

width A real number

height A real number

from-x A real number

from-y A real number

Description The copy-pixels function copies a rectangular area from one
port to another. The transform , mask, mask-x and mask-y

from the to-port’s graphics state are used. The (to-x to-y) is
transformed according to to-port’s transform, but the image is
not scaled or rotated. The to-port and from-port need not be
the same depth and can be the same object. The from-x and
from-y values are interpreted as pixel positions in the window
coordinates of from-port, that is, they are not transformed by
from-port’s transform.

copy-transform Function (inline)

Summary Returns a copy of a transform.

Signature copy-transform transform => result

Arguments transform A transform

Values result A transform

Description The copy-transform function returns a copy of transform.
181

GP Reference Entries

182
create-pixmap-port Function

Summary Creates a pixmap port and its window system representation.

Signature create-pixmap-port pane width height &key background collect
relative clear => pixmap-port

Arguments pane A graphics port for a window

width An integer

height An integer

background A color designator

collect A boolean

relative A boolean

clear A list or t

Values pixmap-port A pixmap graphics port

Description The create-pixmap-port function creates a pixmap-port and
its window system representation. The pane argument speci-
fies the color-user, used for color conversions, and its repre-
sentation may also be used by the library to match the
pixmap port properties. The value of background is used to
initialize the graphics-state-background .

If clear is t , the pixmap is cleared to its background color, oth-
erwise the initial pixel values will be non-deterministic. If
clear is a list of the form (x y width height) , only that part of
the pixmap is cleared initially. The default value is nil .

If relative is non-nil , the pixmap graphics port collects pixel
coordinates corresponding to the left, top, right, and bottom
extremes of the drawing operations taking place within the
body forms, and if these extend beyond the edges of the pix-
map (into negative coordinates for example) the entire draw-
ing is offset by an amount which ensures it remains within
the port. It is as if the port moves its relative origin in order to

accommodate the drawing. If the drawing size is greater than
the screen size, then some of it is lost. The default value is
nil .

If collect is non-nil , this causes the drawing extremes to be
collected but without having the pixmap shift to accommo-
date the drawing, as relative does. The extreme values can be
read using the get-bounds function, and make-image-from-

port .

define-font-alias Function

Summary Defines an alias for a font.

Signature define-font-alias keyword font =>

Arguments keyword A keyword

font A font

Description The function define-font-alias defines keyword as an alias
for font.

destroy-pixmap-port Function

Summary Destroys a pixmap port, thereby freeing any window system
resources it used.

Signature destroy-pixmap-port pixmap-port =>

Arguments pixmap-port A pixmap port

Description The destroy-pixmap-port function destroys a pixmap-port,
freeing any window system resources.
183

GP Reference Entries

184
dither-color-spec Function

Summary Returns t if the color specification for a given pixel should
result in a pixel that is on in a 1 bit dithered bitmap.

Signature dither-color-spec rgb-color-spec y x

Arguments rgb-color-spec An RGB specification

y An integer

x An integer

Values result A boolean

Description The dither-color-spec returns t if rgb-color-spec should
result in a pixel that is on in a 1-bit dithered bitmap. The cur-
rent set of dithers is used in the decision.

See also initialize-dithers

with-dither

draw-arc Function

Summary Draws an arc.

Signature draw-arc port x y width height start-angle sweep-angle &rest
args &key filled =>

Arguments port A graphics port

x A real number

y A real number

width A real number

height A real number

start-angle A real number

sweep-angle A real number

filled A boolean

args General graphics port drawing arguments

Description The draw-arc function draws an arc contained in the rectan-
gle from (x y) to (x+width y+width) from start-angle to start-
angle+sweep-angle. Both angles are specified in radians. Cur-
rently, arcs are parts of ellipses whose major and minor axes
are parallel to the screen axes. If the port has rotation in its
transform, the enclosing rectangle is modified to be the exter-
nal enclosing orthogonal rectangle of the rotated rectangle.
The start angle is rotated. The transform, foreground, back-
ground, operation, thickness, scale-thickness, stipple, pattern,
mask-x, mask-y, and mask from the port’s graphics state are all
used. When filled is non-nil , a sector is drawn.

draw-arcs Function

Summary Draws several arcs.

Signature draw-arcs port description &rest args &key filled =>

Arguments port A graphics port

description A description sequence

filled A boolean

args General graphics port drawing arguments

Description The draw-arcs function draws several arcs as specified by
the description sequence. This is usually more efficient than
making several calls to draw-arc . The description argument is
a sequence of values of the form x y width height start-angle
sweep-angle. See draw-arc for more information.

See also draw-arc
185

GP Reference Entries

186
draw-character Function

Summary Draws a character in a given graphics port.

Signature draw-character port character x y &rest args &key block =>

Arguments port A graphics port

character A character

x A real number

y A real number

block A boolean

args General graphics port drawing arguments

Description The draw-character function draws the character at (x y) on
the port. The transform , foreground , background , opera-

tion , stipple , pattern , mask, mask-x , mask-y and font from
the port’s graphics state are all used. The (x y) specifies the
leftmost point of the character’s baseline. block, if non-nil ,
causes the character to be drawn in a character cell filled with
the port’s graphics state background.

draw-circle Function

Summary Draws a circle.

Signature draw-circle port x y radius &rest args &key filled =>

Arguments port A graphics port.

x A real number.

y A real number.

radius A real number.

args General graphics port drawing arguments.

filled A boolean.

Description The draw-circle function draws a circle of the given radius
centered on (x y). The transform, foreground, background,
operation, thickness, scale-thickness, and mask from the
port's graphics state are all used. When filled is non-nil , the
circle is filled with the foreground color.

Examples (gp:draw-circle port 100 100 20)

(gp:draw-circle port 100 100 50
 :filled t
 :foreground :green)

draw-ellipse Function

Summary Draws an ellipse.

Signature draw-ellipse port x y x-radius y-radius &rest args &key filled
=>

Arguments port A graphics port.

x A real number.

y A real number.

x-radius A real number.

y-radius A real number.

radius A real number.

args General graphics port drawing arguments.

filled A boolean.
187

GP Reference Entries

188
Description The draw-ellipse function draws an ellipse of the given
radii centered on (x y). The transform, foreground, back-
ground, operation, thickness, scale-thickness, and mask from
the port's graphics state are all used. When filled is non-nil ,
the ellipse is filled with the foreground color.

Examples (gp:draw-ellipse port 100 100 20 40)

(gp:draw-ellipse port 100 100 50 10
 :filled t
 :foreground :green)

draw-image Function

Summary Displays an image on a graphics port at a given position.

Signature draw-image image to-x to-y &rest args &key from-x from-y
to-width to-height from-width from-height =>

Arguments image An image

to-x A real number

to-y A real number

from-x A real number

from-y A real number

to-width A real number

to-height A real number

from-width A real number

from-height A real number

args General graphics port drawing arguments

Description The draw-image function displays image on the port at to-x to-
y. Graphics state translation is guaranteed to be supported.
Support for scaling and rotation are library dependent. The

default value of from-x and from-y is 0. The width and height
arguments default to the size of the image.

draw-line Function

Summary Draws a line between two given points.

Signature draw-line port from-x from-y to-x to-y &rest args =>

Arguments port A graphics port

from-x A real number

from-y A real number

to-x A real number

to-y A real number

args General graphics port drawing arguments

Description The draw-line function draws a line from (from-x from-y) to
(to-x to-y). The graphics state parameters transform, fore-
ground, background, operation, thickness, scale-thickness, dashed,
dash, line-end-style, stipple, pattern, mask-x, mask, and mask are
used.

draw-lines Function

Summary Draws several lines between pairs of two given points.

Signature draw-lines port description &rest args =>

Arguments port A graphics port

description A description sequence

args General graphics port drawing arguments
189

GP Reference Entries

190
Description The draw-line function draws several lines as specified by
the description sequence. This is usually more efficient than
making several calls to draw-line . The description argument
is a sequence of values of the form x1 y1 x2 y2. See draw-line

for more information.

See also draw-line

draw-point Function

Summary Draws a pixel at a given point.

Signature draw-point port x y &rest args =>

Arguments port A graphics port

x A real number

y real number

args General graphics port drawing arguments

Description The draw-point function draws a single-pixel point at (x y).
The transform, foreground, background, operation, stipple, pat-
tern, mask-x, mask-y, and mask slots of the graphics state are
used.

draw-points Function

Summary Draws a pixel at a given point.

Signature draw-point port description &rest args =>

Arguments port A graphics port

description A description sequence

args General graphics port drawing arguments

Description The draw-point function draws several single-pixel points as
specified by the description argument, which is a sequence of
x y pairs. It is usually faster than several calls to draw-point .
See draw-point for more information.

See also draw-point

draw-polygon Function

Summary Draws a polygon.

Signature draw-polygon port points &rest args &key filled closed fill-rule
=>

Arguments port A graphics port

points A description sequence

filled A boolean

closed A boolean

fill-rule A keyword

args General graphics port drawing arguments

Description The draw-polygon function draws a polygon using alternat-
ing x and y values in the points argument as the vertices.
When closed is non-nil the edge from the last vertex to the
first to be drawn. When filled is non-nil a filled, closed poly-
gon is drawn; the closed argument is ignored if filled is non-
nil . transform, foreground, background, operation, thickness,
scale-thickness, dashed, dash, line-end-style, line-joint-style, stip-
ple, pattern, mask-x, mask-y, and mask from the port’s graphics
state are all used. The fill-rule specifies how overlapping
regions are filled. Possible values are :even-odd and
:winding .
191

GP Reference Entries

192
draw-polygons Function

Summary Draws several polygons.

Signature draw-polygon port description &rest args &key filled closed fill-
rule =>

Arguments port A graphics port

description A list of real numbers

filled A boolean

closed A boolean

fill-rule A keyword

args General graphics port drawing arguments

Description The draw-polygons function draws several polygon using a
sequence alternating x and y values in the description argu-
ment as the vertices. The description arguments consists of
groups of points as in draw-polygon . When closed is non-nil

the edge from the last vertex to the first to be drawn. When
filled is non-nil a filled, closed polygons are drawn; the closed
argument is ignored if filled is non-nil . transform, foreground,
background, operation, thickness, scale-thickness, dashed, dash,
line-end-style, line-joint-style, stipple, pattern, mask-x, mask-y,
and mask from the port’s graphics state are all used. The fill-
rule specifies how overlapping regions are filled. Possible val-
ues are :even-odd and :winding .

Example This draws two heaxgons, one inside the other:

(gp:draw-polygons oo
 '((150 100 200 100 235 150 200
 200 150 200 115 150)
 (140 90 210 90 250 150
 210 210 140 210 100 150))
 :closed t)

See also draw-polygon

draw-rectangle Function

Summary Draws a rectangle.

Signature draw-rectangle port x y width height &rest args &key filled =>

Arguments port A graphics port

x A real number

y A real number

width A real number

height A real number

filled A boolean

args General graphics port drawing arguments

Description The draw-rectangle function draws a rectangle whose cor-
ners are (x y), (x+width y), (x+width y+height) and (x y+height).
The filled keyword if non-nil causes a filled rectangle to be
drawn. While the exact results are host-specific, it is intended
that a filled rectangle does not include the lines (x = x+width)
and (y = y+height) while a non-filled rectangle does. This
function works correctly if the port’s transform includes rota-
tion. The graphics state parameters transform, foreground,
background, operation, thickness, scale-thickness, dashed, dash,
line-joint-style, stipple, pattern, mask-x, mask-y, and mask are
used.

draw-rectangles Function

Summary Draws several rectangles.

Signature draw-rectangle port description &rest args &key filled =>

Arguments port A graphics port
193

GP Reference Entries

194
description A description sequence

filled A boolean

args General graphics port drawing arguments

Description The draw-rectangle s function draws several rectangles as
specified in description which consists of a group of values
given as x y width height. The filled keyword if non-nil causes
filled rectangles to be drawn. While the exact results are host-
specific, it is intended that a filled rectangle does not include
the lines (x = x+width) and (y = y+height) while a non-filled
rectangle does. This function works correctly if the port’s
transform includes rotation. The graphics state parameters
transform, foreground, background, operation, thickness, scale-
thickness, dashed, dash, line-joint-style, stipple, pattern, mask-x,
mask-y, and mask are used.

See also draw-rectangle

draw-string Function

Summary Draws a string with the baseline positioned at a given point.

Signature draw-string port string x y &rest args &key start end block =>

Arguments port A graphics port

string A string

x A real number

y A real number

start A real number

end A real number

block A boolean

args General graphics port drawing arguments

Description Draws the string with the baseline starting at (x y). The
transform , foreground , background , operation , stipple ,
pattern , mask, mask-x , mask-y and font from the port’s
graphics state are all used. start and end specify which ele-
ments of the string to draw. block if non-nil causes each char-
acter to be drawn in a character cell filled with the port’s
graphics state background.

By default, start is 0.

external-image Class

Summary A class representing a color image.

Description The class external-image provides a representation of a
color image that is subject to write-external-image , read-

external-image and convert-external-image operations.

external-image-color-table Function

Summary Returns a vector containing RGB color specifications of an
external image.

Signature external-image-color-table external-image => color-table

Arguments external-image An external image

Values color-table A color table

Description The external-image-color-table function returns a vector
containing RGB color specifications representing the color
table as specified in the external image. If the result is nil , the
external image is a 24-bit DIB, with the colors defined in each
pixel instead of through a table.
195

GP Reference Entries

196
external-image-color-table Setf Expander

Summary Replaces the color table in an external image.

Signature (setf (external-image-color-table external-image)
replacement-color-table) =>

Arguments external-image An external image

replacement-color-table

A color table

Values

Description The external-image-color-table setf expander replaces the
color table in external-image. The color table specified by
replacement-color-table must be the same length as the external
image’s original color table. It is a vector of RGB color-speci-
fications.

externalize-image Function

Summary Returns an external image containing color information from
an image.

Signature externalize-image gp image &key maximum-colors
important-colors &allow-other-keys =>

external-image

Arguments gp A graphics port

image An image

maximum-colors An integer or nil

important-colors An integer or nil

Values external-image An external image

Description The external-image function returns an external image con-
taining color information from image. If maximum-colors is
nil , the default value, an external image using all the colors
in image is created. If maximum-colors is an integer, the exter-
nal image containing image will be created using no more
than that number of colors. If the image contains more than
maximum-colors colors, the maximum-colors most frequently
used colors will be accurately stored; the remainder will be
approximated by nearest colors out of the accurate ones,
using the Color System parameters color::*local-rgb-

color-distance-red-weight* and so on as the weighting
factors for the color distance. The value of important-color is
recorded in the external-image for later use, and specifies the
number of colors required to draw a good likeness of the
image. The default value is the number of colors in the
image.

find-best-font Function

Summary Returns the best font for a graphics port.

Signature find-best-font pane fdesc => font

Arguments pane A graphic port

fdesc A font description

Values font A font

Description The find-best-font function returns the best font for pane
which matches fdesc. When there alternative fonts available
the choice of best font is operating system dependent.
197

GP Reference Entries

198
find-matching-fonts Function

Summary Returns a list of the font objects available for a pane.

Signature find-matching-fonts pane fdesc => fonts

Arguments pane A graphics port

fdesc A font description

Values fonts A list of fonts

Description The find-matching-fonts function returns a list of the font
objects available for pane which match the attributes in fdesc.
nil is returned if none match.

font-description Function

Summary Returns a font description object for a given font.

Signature font-description font => fdesc

Arguments font A font

Values fdesc A font description

Description The font-description function returns a font description
object for font. Using this font description in a later call to
find-matching-fonts or find-best-font on the original
pane is expected to return a similar font.

font-description-attributes Function

Summary Returns the attributes of a given font description.

Signature font-description-attributes fdesc => font-attributes

Arguments fdesc A font description

Values font-attributes A list of font attributes

Description The font-description-attributes function returns the
attributes of the fdesc. The list should not be destructively
modified.

font-description-attribute-value Function

Summary Returns the values of a given font attribute in a font descrip-
tion.

Signature font-description-attribute-value fdesc font-attribute =>
value

Arguments fdesc A font description

font-attribute A font attribute

Values value A font attribute value

Description The font-description-attribute-value function returns
the value of font-attribute in fdesc, or :wild if font-attribute is
not specified in fdesc.

font-fixed-width-p Function

Summary Returns t if a specified font is of a fixed width.

Signature font-fixed-width-p port &optional font => bool

Arguments port A graphics port
199

GP Reference Entries

200
font A font

Values bool A boolean

Description The font-fixed-width-p function returns t if the font associ-
ated with port, or the optionally specified font, is fixed width.

free-image Function

Summary Frees the library resources allocated with an image.

Signature free-image port image =>

Arguments port A graphics port

image An image

Description The free-image function frees the library resources associ-
ated with image. This should be done when an image is no
longer needed.

get-bounds Function

Summary Returns the four values of the currently collected drawing
extremes.

Signature get-bounds pixmap-port => left top right bottom

Arguments pixmap-port A graphics port

Values left An integer

top An integer

right An integer

bottom An integer

Description The get-bounds functions returns the four values left, top,
right, bottom of the currently collected drawing extremes. The
values can be used to get an image from the port.

Example (with-pixmap-graphics-port (p1 pane width height
 :relative t)
 (with-graphics-rotation (p1 0.123)
 (draw-rectangle p1 100 100 200 120 :filled t
 :foreground :red)
 (get-bounds p1)))

produces the following output:

72
112
285
255

See also make-image-from-port

get-character-extent Function

Summary Returns the extent of a character in pixels.

Signature get-character-extent port character &optional font =>
left, top, right, bottom

Arguments port A graphics port

character A character

font A font

Values left An integer

top An integer

right An integer

bottom An integer
201

GP Reference Entries

202
Description The get-character-extent function returns the extent in
pixels of the character in the font associated with port, or the
font given.

get-char-ascent Function

Summary Returns the ascent of a character in pixels.

Signature get-char-ascent port character font => ascent

Arguments port A graphics port

character A character

font A font

Values ascent An integer

Description The get-character-ascent function returns the ascent in
pixels of the character in the font associated with port, or the
font given.

get-char-descent Function

Summary Returns the descent of a character in pixels.

Signature get-char-descent port character font => descent

Arguments port A graphics port

character A character

font A font

Values descent An integer

Description The get-char-descent function returns the descent in pixels
of the character in the font associated with port, or the font
given.

get-char-width Function

Summary Returns the width of a character in pixels.

Signature get-char-width port character font => width

Arguments port A graphics port

character A character

font A font

Values width An integer

Description The get-char-width function returns the width in pixels of
the character in the font associated with port, or the font given.

get-enclosing-rectangle Function

Summary Returns the smallest rectangle enclosing the given points.

Signature get-enclosing-rectangle &rest points => x y width height

Arguments points Real numbers

Values x A real number

y A real number

width A real number

height A real number
203

GP Reference Entries

204
Description The get-enclosing-rectangle function returns four values,
describing the rectangle which exactly encloses the input
points.The points argument must be a (possibly empty) list of
alternating x and y values. If no points are given the function
returns the null (unspecified) rectangle, which is four nil s.

get-font-ascent Function

Summary Returns the ascent of a font.

Signature get-font-ascent port &optional font => ascent

Arguments port A graphics port

font A font

Values ascent An integer

Description The get-font-ascent function returns the ascent in pixels of
the font associated with port, or the font given.

get-font-average-width Function

Summary Returns the average width of a font in pixels.

Signature get-font-average-width port &optional font => average-width

Arguments port A graphics port

font A font

Values average-width An integer

Description The get-font-average-width function returns the average-
width in pixels of the font associated with port, or the font
given.

get-font-descent Function

Summary Returns the descent in pixels of a font.

Signature get-font-descent port &optional font => descent

Arguments port A graphics port

font A font

Values descent An integer

Description The get-font-descent function returns the descent in pixels
of the font associated with port, or the font given.

get-font-height Function

Summary Returns the height of a font.

Signature get-font-height port &optional font => height

Arguments port A graphics port

font A font

Values height An integer

Description The get-font-height function returns the height in pixels of
the font associated with port, or the font given.

get-font-width Function

Summary Returns the width of a font.

Signature get-font-width port &optional font => width
205

GP Reference Entries

206
Arguments port A graphics port

font A font

Values width An integer

Description The get-font-width function returns the width in pixels of
the font associated with port, or the font given.

get-graphics-state Function

Summary Returns the graphics state object for a graphics port.

Signature get-graphics-state port => state

Arguments port A graphics port

Values state A graphics state object

Description The get-graphics-state function returns the graphics state
object for port. The individual slots can be accessed using the
accessor functions.

See also make-graphics-state

get-origin Function

Summary Returns the coordinate origin of a pixmap graphics port.

Signature get-origin pixmap-port => x y

Arguments pixmap-port A graphics port

Values x An integer

y An integer

Description This returns two values being the coordinate origin of the
pixmap graphics port. Normally this is (0 0) but after a series
of drawing function calls with :relative t , the drawing
may have been shifted. The get-origin values tell you by
how much. The values are not needed when making images
from the port’s drawing.

Example (with-pixmap-graphics-port (p1 pane width height
:relative t)
 (with-graphics-rotation (p1 0.123)
 (draw-rectangle p1 0 0 200 120 :filled t
 :foreground :red)
 (get-origin p1)))

produces:

-15
0

get-string-extent Function

Summary Returns the extent in pixels of a string.

Signature get-string-extent port string &optional font => left, top,
right, bottom

Arguments port A graphics port

string A string

Values left An integer

top An integer

right An integer

bottom An integer

Description The get-string-extent function returns the extent in pixels
of the string in the font associated with port, or the font given.
207

GP Reference Entries

208
get-transform-scale Function

Summary Returns the overall scaling factor of a transform.

Signature get-transform-scale transform => result

Arguments transform A transform

Values result A real number

Description The get-transform-scale function returns a single number
representing the overall scaling factor present in the trans-
form.

graphics-port-transform Function

Summary Returns the transform object of a graphics port.

Signature graphics-port-transform port => transform

Arguments port A graphics port

Values transform A transform object

Description The graphics-port-transform function returns the trans-
form object (a six-element list) associated with port.

image Class

Summary An abstract image object. An image can be drawn via draw-

image .

Superclasses

Subclasses

Description The image class is the abstract image object class. An image
can be drawn using draw-image .

See also draw-image

image-freed-p Function

Summary Determines whether an image has been freed.

Signature image-freed-p image => bool

Arguments image An image object

Values bool A boolean

Description The image-freed-p function returns non-nil if the image has
been freed, and nil otherwise.

image-loader Function

Summary Returns the image load function

Signature image-loader image-id &key image-translation-table => loader

Arguments image-id An image identifier

image-translation-table

An image translation table

Values loader An image load function

Description The image-loader function returns the image load function
that would be called to load the image associated with image-
id in image-translation-table. If the image-id is not registered
with a load function, the default image load function is
209

GP Reference Entries

210
returned. The default value of image-translation-table is
default-image-translation-table .

image-translation Function

Summary Returns the translation for an image registered in its image
translation table.

Signature image-translation image-id &key image-translation-table =>
translation

Arguments image-id An image identifier

image-translation-table

An image translation table

Values translation A translation

Description The image-translation function returns the translation for
image-id registered in image-translation-table. The default
value of image-translation-table is *default-image-

translation-table* .

initialize-dithers Function

Summary Initialize dither objects up to a given order.

Signature initialize-dithers &optional order =>

Arguments order An integer

Values

Description The initialize-dithers function initializes dither objects
up to the given order (size = 2 ^ order). By default, order is 3.

inset-rectangle Function (inline)

Summary Moves the corners of a rectangle inwards by a given amount.

Signature inset-rectangle rectangle dx dy &optional dx-right dy-bottom
 =>

Arguments rectangle A list of integers

dx An integer

dy An integer

dx-right An integer

dy-bottom An integer

Values

Description The inset-rectangle function moves the left, top, right and
bottom elements of rectangle inwards towards the center by
the distances dx, dy, dx-right and dy-bottom respectively.

By default, dx-right is dx, and dy-bottom is dy.

inside-rectangle Function

Summary Determines if a point lies inside a rectangle.

Signature inside-rectangle rectangle x y => result

Arguments rectangle A list of integers

x An integer

y An integer

Values result A boolean
211

GP Reference Entries

212
Description The inside-rectangle function returns t if the point (x y) is
inside rectangle. The rectangle is expected to be ordered; if the
rectangle is specified by (left right top bottom), then left must
be less than right, and bottom must be less than top. The lines
y = bottom and x = right are not considered to be inside
the rectangle.

invert-transform Function

Summary Constructs the inverse of a transform.

Signature invert-transform transform &optional into => inverse

Arguments transform A transform

into A transform or nil

Values inverse A transform

Description This function constructs the inverse of transform. If T is trans-
form and T’ is its inverse, then TT’ = I. If into is non-nil it is
modified to contain T’ and returned, otherwise a new trans-
form is constructed and returned.

load-image Function

Summary Loads an image and returns the image object.

Signature load-image gp id &key cache image-translation-table => image

Arguments gp A graphics port

id An image identifier

cache A keyword

image-translation-table

An image translation table

Values image An image object

Description The load-image function loads an image identified by id via
the image-translation-table using the image load function reg-
istered with it. It returns an image object with the representa-
tion slot initialized. The gp argument specifies a graphics port
used to identify the library. It also specifies the resource in
which colors are defined and if necessary allocated for the
image. If id is in the table but the translation is not an external
image, and the image loader returns an external image as the
second value, that external image replaces the translation in
the table. The default value of image-translation-table is
default-image-translation-table .

The cache argument controls whether the image translation is
cached. See the convert-external-image function for more
details.

make-dither Function

Summary Makes a dither matrix of a given size.

Signature make-dither size => matrix

Arguments size An integer

Values matrix A dither matrix

Description The make-dither function makes a dither matrix of the
given size.
213

GP Reference Entries

214
make-font-description Function

Summary Returns a new font description object containing given font
attributes.

Signature make-font-description &rest font-attribute* => fdesc

Arguments font-attribute A font attribute

Values fdesc A font description object

Description The make-font-description function returns a new font
description object containing the given font attributes. There
is no error checking of the attributes at this point.

make-graphics-state Function

Summary Creates a graphics state object.

Signature make-graphics-state =>

Arguments None

Values None

Description The make-graphics-state function creates a graphics state
object. Each graphics port has a graphics state associated
with it, but you may want to create your own individual
graphics states for use in specialized drawing operations.
Graphics state objects do not consume local resources beyond
dynamic memory for the structure (so you can be relaxed
about creating them in some number if you really need to).
Such objects are used in the with-graphics-state macro
described below and modified using the following functions:

graphics-state-transform
graphics-state-foreground
graphics-state-background
graphics-state-operation
graphics-state-stipple
graphics-state-pattern
graphics-state-thickness
graphics-state-scale-thickness
graphics-state-dashed
graphics-state-dash
graphics-state-fill-style
graphics-state-line-end-style
graphics-state-line-joint-style
graphics-state-mask
graphics-state-mask-x
graphics-state-mask-y
graphics-state-font

These are the read and write (via setf) accessors for the
graphics state slots. See the LispWorks User Guide for valid
values for these accessors.

make-image-from-port Function

Summary Makes an image out of a specified rectangle of a graphics
port’s contents.

Signature make-image-from-port port &optional x y width height =>
image

Arguments port A graphics port

x An integer

y An integer

width An integer

height An integer

Values image An image
215

GP Reference Entries

216
Description The make-image-from-port function makes an image out of
the specified rectangle of the port’s contents. The default is
the whole port, but a region can be specified using x, y, width,
and height. The default value of x and y is 0.

make-transform Function

Summary Returns a new transform object initialized according to a set
of optional arguments.

Signature make-transform &optional a b c d e f => transform

Arguments a A real number

b A real number

c A real number

d A real number

e A real number

f A real number

Values transform A transform

Description The make-transform function returns a new transform object
initialized according to the optional args. The default args
make the unit transform.

Default values are as follows: a and d are 1; b, c, e, and f are 0.
The transform matrix is

 a b 0
 c d 0
 e f 1

for generalized two dimensional points of the form (x y 1) .

merge-font-descriptions Function

Summary Returns a font description containing the attributes of two
specified font descriptions.

Signature merge-font-descriptions fdesc1 fdesc2 => fdesc

Arguments fdesc1 A font description

fdesc2 A font description

Values fdesc A font description

Description The merge-font-description function returns a font
description containing all the attributes of fdesc1 and fdesc2. If
an attribute appears in both fdesc1 and fdesc2, the value in
fdesc1 is used. The contents of fdesc1 and fdesc2 are not modi-
fied.

offset-rectangle Function (inline)

Summary Offsets a rectangle by a given distance.

Signature offset-rectangle rectangle dx dy =>

Arguments rectangle A list of integers

dx A real number

dy A real number

Description The offset-rectangle function offsets the rectangle by the
distance (dx dy).

ordered-rectangle-union Function

Summary Returns the union of two rectangles.
217

GP Reference Entries

218
Signature ordered-rectangle-union left-1 top-1 right-1 bottom-1
left-2 top-2 right-2 bottom-2 =>
left top right bottom

Arguments left-1 A real number

top-1 A real number

right-1 A real number

bottom-1 A real number

left-2 A real number

top-2 A real number

right-2 A real number

bottom-2 A real number

Values left A real number

top A real number

right A real number

bottom A real number

Description The ordered-rectangle-union function returns four values:
the left, top, right and bottom of the union of the two rectangles
specified in the arguments. The caller guarantees that each
input rectangle is ordered, that is, the left values must be
smaller or equal to the right values, and the top values must
be greater than or equal to the bottom ones.

See also rectangle-union

pixblt Function

Summary Copies one area of a graphics port to another area of a differ-
ent graphics port.

Signature pixblt to-port operation from-port to-x to-y width height from-x
 from-y &optional depth =>

Arguments to-port A graphics port

operation A graphics state operation

from-port A graphics port

to-x An integer

to-y An integer

width An integer

height An integer

from-x An integer

from-y An integer

depth An integer

Description The pixblt function copies one area of from-port to another
area of to-port using the specified operation and mask. Both
ports should be the same depth. The depth argument is avail-
able only to further optimize performance. If it is supplied, it
should give the depth in pixels of both ports. Its presence
obviates another call to port-depth in order to find out the
destination port depth. The graphics port transforms are not
used.

pixmap-port Class

Summary The class of pixmap graphics port objects.

Description The pixmap-port class is the class of pixmap graphics port
objects which can be used for drawing operations.
219

GP Reference Entries

220
port-depth Function

Summary Returns the pixel depth of a port.

Signature port-depth port => result

Arguments port A graphics port

Values result An integer

Description The port-depth function returns the pixel depth of port.

port-height Function

Summary Returns the pixel height of a port.

Signature port-height port => result

Arguments port A graphics port

Values result An integer

Description The port-height function returns the pixel height of port.

port-string-height Function

Summary Returns the height of a string drawn to a given port in pixels.

Signature port-string-height port string => height

Arguments port A graphics port

string A string

Values height An integer

Description The port-string-height function returns the height in pixels
of string when drawn to port. The font used is the one cur-
rently in the port’s graphics state.

port-string-width Function

Summary Returns the width of a string drawn to a given port in pixels.

Signature port-string-width port string => width

Arguments port A graphics port

string A string

Values width An integer

Description The port-string-width function returns the width in pixels
of string when drawn to port. The font used is the one cur-
rently in the port’s graphics state.

port-width Function

Summary Returns the pixel width of a port

Signature port-width port => width

Arguments port A graphics port

Values width An integer

Description The port-width function returns the pixel width of port.
221

GP Reference Entries

222
postmultiply-transforms Function

Summary Postmultiplies two transforms.

Signature postmultiply-transforms transform1 transform2 =>

Arguments transform1 A transform

transfrom2 A transform

Description The postmultiply-transforms function postmultiplies the
partial 3 x 3 matrix represented by transform1 by the partial
3 x 3 matrix represented by transform2, storing the result in
transform1. In the result, the translation, scaling and rotation
operations contained in transform2 are effectively performed
after those in transform1.

transform1 = transform1 . transform2

premultiply-transforms Function

Summary Premultiplies two transforms.

Signature premultiply-transforms transform1 transform2 =>

Arguments transform1 A transform

transform2 A transform

Description The premultiply-transforms function premultiplies the
partial 3 x 3 matrix represented by transform1 by the partial
3 x 3 matrix represented by transform2, storing the result in
transform1. In the result, the translation, scaling and rotation
operations contained in transform2 are effectively performed
before those in transform1.

transform1 = transform2 . transform1

read-and-convert-external-image Function

Summary Returns an image converted from an external image read
from a file.

Signature read-and-convert-external-image gp file => image

Arguments gp A graphics port

file A pathname designator

Values image An image

Description Returns an image converted from an external image read
from file. The external image is returned as a second value.

read-external-image Function

Summary Returns an external image read from a file.

Signature read-external-image file => image

Arguments file A pathname designator

Values image An external image

Description The read-external-image function returns an external
image read from file.

rectangle-bind Macro

Summary Binds four variables to the corners of a rectangle across a
body of code.

Signature rectangle-bind ((a b c d) rectangle) &body body => result
223

GP Reference Entries

224
Arguments a A variable

b A variable

c A variable

d A variable

rectangles A rectangle

body A body of code

Values result The return value of the last form in body

Description The rectangle-bind macro binds the variables a b c d to left
top right bottom of rectangle for the body of the macro.

rectangle-bottom Macro

Summary Returns the bottom element of a rectangle. Can be used to set
this element using setf .

Signature rectangle-bottom rectangle => bottom

Arguments rectangle A rectangle

Values bottom A real number

Description Returns and via setf sets the bottom element of rectangle.

rectangle-height Macro

Summary Returns the height of a rectangle.

Signature rectangle-height rectangle => height

Arguments rectangle A rectangle

Values height A real number

Description The rectangle-height macro returns the difference between
the bottom and top elements of rectangle.

rectangle-left Macro

Summary Returns the left element of a rectangle. Can be used to set this
element using setf .

Signature rectangle-left rectangle => left

Arguments rectangle A rectangle

Values left A real number

Description The rectangle-left macro returns and via setf sets the left
element of rectangle.

rectangle-right Macro

Summary Returns the right element of a rectangle. Can be used to set
this element using setf .

Signature rectangle-right rectangle => right

Arguments rectangle A rectangle

Values right A real number

Description The rectangle-right macro returns and via setf sets the
right element of rectangle.
225

GP Reference Entries

226
rectangle-top Macro

Summary Returns the top element of a rectangle. Can be used to set this
element using setf .

Signature rectangle-top rectangle => top

Arguments rectangle A rectangle

Values top A real number

Description The rectangle-top macro returns and via setf sets the top
element of rectangle.

rectangle-union Function

Summary Returns the four value of a union of two rectangles.

Signature rectangle-union left-1 top-1 right-1 bottom-1 left-2 top-2 right-2
bottom-2 => left top right bottom

Arguments left-1 A real number

top-1 A real number

right-1 A real number

bottom-1 A real number

left-2 A real number

top-2 A real number

right-2 A real number

bottom-2 A real number

Values left A real number

top A real number

right A real number

bottom A real number

Description The rectangle-union function returns four values: the left,
top, right and bottom of the union of the two rectangles speci-
fied in the arguments. The values input for the two rectangles
are ordered by this function before it uses them.

See also ordered-rectangle-union

rectangle-width Macro

Summary Returns the difference between the left and right elements of
a rectangle.

Signature rectangle-width rectangle => width

Arguments rectangle A rectangle

Values width A real number

Description The rectangle-width macro returns the difference between
right and left elements of rectangle.

rect-bind Macro

Summary Binds four variables to the elements of a rectangle across a
body of code.

Signature rect-bind ((x y width height) rectangle) &body body => result

Arguments x A variable

y A variable

width A variable

height A variable
227

GP Reference Entries

228
rectangle A rectangle

body A body of Lisp code

Values result The return value of the last form in body.

Description The rect-bond macro binds x y width height to the appropri-
ate values from rectangle and executes the body forms. The
rectangle is a list of the form (left top right bottom) .

register-image-load-function Function

Summary Registers one or more image identifiers with an image load-
ing function.

Signature register-image-load-function image-id image-load-function
 &key image-translation-table =>

Arguments image-id An image identifier or a list of image identi-
fiers

image-load-function

A function

image-translation-table

An image translation table

Values

Description The register-image-load-function function registers one
or more image-ids with an image-load-function in the image-
translation-table. If image-load-function is nil it causes the
default loader to be used in subsequent calls to load-image .
The image-id argument can be a list of identifiers or a single
identifier. The default value of image-translation-table is
default-image-translation-table .

register-image-translation Function

Summary Registers an image identifier and image loading function
with a translation in an image translation table.

Signature register-image-translation image-id translation
 &key image-translation-table image-load-fn
 =>

Arguments image-id An image identifier

translation An image translation

image-translation-table

An image translation table

image-load-fn An image loading function

Values

Description The register-image-translation function registers image-
id and image-load-fn with the translation in the image-transla-
tion-table. When load-image is call with second argument
image-id, the image-load-fn is called with translation as its sec-
ond argument. If image-load-fn is nil , the image translation
table’s default image loader is used; this converts an external
image object or file to an image. If translation is nil the identi-
fier is deregistered. Returns the image-id and the image-load-fn.
The default value of image-translation-table is *default-

image-translation-table* .

reset-image-translation-table Function

Summary Clears the image translation table hash tables.
229

GP Reference Entries

230
Signature reset-image-translation-table &key image-translation-table
 =>

Arguments image-translation-table

An image translation table

Values

Description The reset-image-translation-table function clears the
image translation table hash tables and set the default image-
load-fn to read-and-convert-external-image . The default
value of image-translation-table is *default-image-transla-

tion-table* .

separation Function

Summary Returns the distance between two points.

Signature separation x1 y1 x2 y2 => dist

Arguments x1 An integer

y1 An integer

x2 An integer

y2 An integer

Values dist A real number

Description The separation function returns the distance between points
(x1 y1) and (x2 y2).

set-default-image-load-function Function

Summary Sets the default image load function of an image translation
table.

Signature set-default-image-load-function image-load-function
 &key image-translation-table
 =>

Arguments image-load-function

An image load function

image-translation-table

An image translation function

Values

Description The set-default-image-load-function function sets the
default image load function of image-translation-table. The
default image load function is gp:read-and-convert-

external-image . The default value of image-translation-table
is *default-image-translation-table* .

set-graphics-port-coordinates Function

Summary Modifies the transform of a port such that the edges of the
port correspond to the arguments given.

Signature set-graphics-port-coordinates port &key left top right
bottom =>

Arguments port A graphics port

left A real number

top A real number

right A real number
231

GP Reference Entries

232
bottom A real number

Description The set-graphics-port-coordinates function modifies the
transform of the port is permanently such that the edges of
the port correspond to the values of the arguments.

Example The following code

(set-graphics-port-coordinates port :left -1.0
 :top 1.0
 :right 1.0
 :bottom -1.0)

changes the coordinates of the port so that the point (0 0) is in
the exact center of the port and the edges are a unit distance
away, with a right-handed coordinate system.

By default, left and top are 1.

set-graphics-state Function

Summary Directly alters the graphics state of a graphics port according
to the keyword arguments supplied.

Signature set-graphics-state port &rest args
 &key transform foreground background

operation stipple pattern
thickness scale-thickness

dashed dash line-end-style line-joint-style
mask mask-x mask-y font

 =>

Arguments port A graphics port

args

Values

Description This directly alters the graphics state of port according to the
keyword arg values. Unspecified args leave the associated
slots unchanged.

transform Type

Summary The transform type, defined for transform objects.

Description The transform type is the type defined for transform objects,
which are six-element lists of numbers.

transform-area Function

Summary Transforms a set of points and returns the resulting rectangle.

Signature transform-area transform x y width height => rectangle

Arguments transform A transform

x A real number

y A real number

width A real number

height A real number

Values rectangle A rectangle

Description The transform-area function transforms the points (x y) and
(x+width y+height) and returns the transformed rectangle as
(x y width height) values.
233

GP Reference Entries

234
transform-distance Function

Summary Transforms a distance vector by the rotation and scale of a
transform.

Signature transform-distance transform dx dy => dx2 dy2

Arguments transform A transform

dx A real number

dy A real number

Values dx2 A real number

dy2 A real number

Description The transform-distance function transforms the distance
(dx dy) by the rotation and scale in the transform. The transla-
tion in the transform is ignored. Transformed (dx dy) is
returned as two values.

transform-distances Function

Summary Transforms a list of alternating distance vectors by a given
transform.

Signature transform-distances transform distances => result

Arguments transform A transform

distances A list of pairs of real numbers

Values result A list of pairs of real numbers

Description The transform-distances function transforms a list of alter-
nating (dx dy) pairs in distances by the transform. Transformed
values are returned as a new list.

transform-is-rotated Function

Summary Returns t if a given transform contains a rotation.

Signature transform-is-rotated transform => bool

Arguments transform A transform

Values bool A boolean

Description The transform-is-rotated function returns t if transform
contains any rotation.

transform-point Function

Summary Transforms a point by multiplying it by a transform.

Signature transform-point transform x y => xnew ynew

Arguments transform A transform

x A real number

y A real number

Values xnew A real number

ynew A real number

Description The transform-point function transforms the point (x y) by
multiplying it by transform. The transformed (x y) is returned
as two values.

transform-points Function

Summary Transforms a list of points by a transform.
235

GP Reference Entries

236
Signature transform-points transform points &optional into => result

Arguments transform A transform

points A list of pairs of real numbers

into A list

Values result A list of pairs of real numbers

Description The transform-points function transforms a list of alternat-
ing (x y) pairs in points by the transform. If into is supplied it is
modified to contain the result and must be a list the same
length as points. If into is not supplied, a new list is returned.

transform-rect Function

Summary Returns the transform of two points representing the top-left
and bottom-right of a rectangle.

Signature transform-rect transform left top right bottom =>
left2 top2 right2 bottom2

Arguments transform A transform

left A real number

top A real number

right A real number

bottom A real number

Values left2 A real number

top2 A real number

right2 A real number

bottom2 A real number

Description The transform-rect function transforms the rectangle repre-
sented by the two points (left top) and (right bottom) by trans-
form.

undefine-font-alias Function

Summary Removes a font alias.

Signature undefine-font-alias keyword =>

Arguments keyword A keyword

Values

Description The undefine-font-alias function removes the font alias
named by keyword.

union-rectangle Macro

Summary Modifies a rectangle to be a union of itself and another rect-
angle.

Signature union-rectangle rectangle left top right bottom => rectangle

Arguments rectangle A rectangle

left A real number

right A real number

top A real number

bottom A real number

Values rectangle A rectangle
237

GP Reference Entries

238
Description The union-rectangle macro modifies the rectangle to be the
union of rectangle and (left top right bottom) .

unit-transform-p Function

Summary Returns t if a given transform is a unit transform.

Signature unit-transform-p transform => bool

Arguments transform A transform

Values bool A boolean

Description The unit-transform-p returns t if transform is the unit trans-
form.

unless-empty-rect-bind Macro

Summary Binds the elements of a rectangle to four variables, and if the
rectangle has a non-zero area, executes a body of code.

Signature unless-empty-rect-bind ((x y width height) rectangle)
 &body body => result

Arguments x A variable

y A variable

width A variable

height A variable

rectangle A rectangle

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The unless-empty-rect-bind macro binds x, y, width, and
height to the appropriate values from rectangle and if the width
and height are both positive, executes the body forms.

untransform-distance Function

Summary Transforms a distance by the rotation and scale of the inverse
of a given transform.

Signature untransform-distance transform dx dy => x y

Arguments transform A transform

dx A real number

dy A real number

Values x A real number

y A real number

Description The untransform-distance function transform the distance
(dx dy) by the rotation and scale of the effective inverse of
transform. The translation in the inverse transform is ignored.
The transformed distance (dx dy) is returned as two values.

untransform-distances Function

Summary Transforms a list of integer pairs representing distances by
the inverse of a transform.

Signature untransform-distances transform distances => result

Arguments transform A transform

distances A list of pairs of real numbers
239

GP Reference Entries

240
Values result A list of pairs of real numbers

Description The untransform-distances function transforms a list of
alternating (dx dy) pairs in distances by the effective inverse of
transform. Transformed values are returned as a new list.

untransform-point Function

Summary Transforms a point by multiplying it by the inverse of a given
transform.

Signature untransform-point transform x y => x2 y2

Arguments transform A transform

x A real number

y A real number

Values x2 A real number

y2 A real number

Description The untransform-point function transform the point (x y) by
effectively multiplying it by the inverse of transform. The
transformed (x y) is returned as two values.

untransform-points Function

Summary Transforms a list of points by the inverse of a given trans-
form.

Signature untransform-points transform points &optional into => result

Arguments transform A transform

points A list of pairs of real numbers

into A list

Values result A list of pairs of real numbers

Description The untransform-points function transforms a list of alter-
nating (x y) pairs in points by the effective inverse of trans-
form. If into is supplied it must be a list the same length as
points. If into is not supplied, a new list is returned.

with-dither Macro

Summary Specifies a dither for use within a specified body of code.

Signature with-dither (dither-or-size) &body body => result

Arguments dither-or-size See description

body A body of Lisp code

Values result The return value of the last form executed in
body.

Description The with-dither function specifies a dither for use within
body. The dither-or-size argument can be a dither mask object
from make-dither or a size, in which case a dither of that size
is created.

with-graphics-mask Macro

Summary Binds the mask slot of a graphics port to a rectangular area
across the execution of a body of code.

Signature with-graphics-mask (port mask mask-x mask-y &key)
 &body body => result

Arguments port A graphics port
241

GP Reference Entries

242
mask A list of the form (x y width height) or nil

mask-x An integer

mask-y An integer

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-mask macro binds the mask slot of port’s
graphic state to a rectangular area across the execution of
body. By default, mask-x and mask-y are both 0.

with-graphics-rotation Macro

Summary Performs a call to apply-rotation with a given angle for the
duration of the macro’s body.

Signature with-graphics-rotation (port angle) &body body => result

Arguments port A graphics port

angle A real

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-rotation marco performs a call to

(apply-rotation transform angle)

on the port’s transform for the duration of the body of the
macro.

See also apply-rotation

with-graphics-scale Macro

Summary Performs a call to apply-scale with a given scale for the
duration of the macro’s body.

Signature with-graphics-scale (port sx sy) &body body => result

Arguments port A graphics port

sx A real number

sy A real number

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-scale macro performs a call to

(apply-scale transform sx sy)

on the port’s transform for the duration of the body of the
macro.

See also apply-scale

with-graphics-state Macro

Summary Binds the graphics state values of a port to a list of arguments
and executes a body of code.

Signature with-graphics-state (port &rest args
 &key transform foreground background

operation thickness
scale-thickness dashed dash
line-end-style line-joint-style
mask font state
fill-style stipple pattern mask-x

 mask-y) body => result
243

GP Reference Entries

244
Arguments port A graphics port

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-state macro binds the graphics state
values for the specified port to the values specified in the args
list. The keywords args are the same as the symbols of the
slots in the graphics state, as described above. For example:

(with-graphics-state (port :thickness 12
 :foreground fore-color) ...)

Arguments that are not supplied default to the current state
of that slot in the graphics state.

An extra keyword argument :state can be used. The value
must be a graphics state object created by a call to make-

graphics-state . The contents of the graphics state object
passed are used instead of the port’s state.

Example (setf gstate (make-graphics-state))
(setf (graphics-state-foreground gstate) my-color)
(with-graphics-state (port :state gstate)
 (draw-rectangle port image-1 100 100))

with-graphics-transform Macro

Summary Combines a given transform with the transform of a port for
the duration of the macro.

Signature with-graphics-transform (port transform) &body body
 => result

Arguments port A graphics port

transform A transform

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-transform macro combines the trans-
form associated with the graphics port port with transform
during the body of the macro. The port is given a new trans-
form obtained by pre-multiplying its current transform with
transform. This has the effect of preceding any translation, scal-
ing and rotation operations specified in the body of the
macro by those operations embodied in transform.

with-graphics-translation Macro

Summary Applies a translation to a given port for the duration of the
macro.

Signature with-graphics-translation (port dx dy) &body body => result

Arguments port A graphics port

dx A real number

dy A real number

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-graphics-translation macro performs a call to

(apply-translation transform dx dy)

on the port’s transform for the duration of body of the macro.
245

GP Reference Entries

246
with-inverse-graphics Macro

Summary Executes all drawing function calls to a given port within the
body of the macro with foreground and background colors
swapped.

Signature with-inverse-graphics (port) &body body => result

Arguments port A graphic port

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-inverse-graphics macro ensures that all drawing
function calls to port within the body of the macro are exe-
cuted with the foreground and background slots of the
graphics state of the port swapped around.

without-relative-drawing Macro

Summary Evaluates a body of Lisp code with the relative and collect
internal variables of the port set to nil .

Signature without-relative-drawing (port) &body body => result

Arguments port A graphic port

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-relative-drawing macro evaluates the code in
body with the relative and collect internal variables of the pix-
map graphics port port set to nil to turn off the port’s collect-

ing of drawing bounds and automatic shifting of its origins.
Use this macro only within a with-pixmap-graphics-port

macro.

with-pixmap-graphics-port Macro

Summary Binds a port to a new pixmap graphics port for the duration
of the macro’s code body.

Signature with-pixmap-graphics-port (port pane width height
 &key background collect relative clear)
 &body body) => result

Arguments port A graphic port

pane An output pane

width An integer

height An integer

background A color keyword

collect A boolean

relative A boolean

clear A list or t

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-pixmap-graphics-port macro binds port to a new
pixmap graphics-port. pane and the other arguments are
passed to create-pixmap-port . The body is then evaluated.
The port is destroyed when body returns.
247

GP Reference Entries

248
with-transformed-area Macro

Summary Transforms a rectangle using a port’s transform, and binds
the resulting values to a variable across the evaluation of the
macro’s body.

Signature with-transformed-area (points port left top right bottom)
 &body body

Arguments points A variable

port A graphics port

left A real number

top A real number

right A real number

bottom A real number

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-transformed-area macro transforms a rectangle,
binding the resulting four corner points to points for the dura-
tion of body. The left top right bottom values represent a rectan-
gular area bounded by four points. The four points are
transformed by the port’s transform and the list of eight val-
ues (alternating x and y values for four points) bound to the
points variable for the duration of the macro body.

with-transformed-point Macro

Summary Binds a point transformed by a given ports transform to two
variables across the body of the macro.

Signature with-transformed-point (new-x new-y port x y) &body body
 => result

Arguments new-x A variable

new-y A variable

port A graphics port

x A real number

y A real number

body A body of Lisp code

Values result The return value of the last form executed in
body

Description The with-transformed-point macro transforms the point
given by (x y) using the port’s transform and the resulting
values are bound to the new-x and new-y variables. The body
of the macro is then evaluated with this binding.

with-transformed-points Macro

Summary Binds a list of transformed points in a port to a list across the
execution of the macro’s body.

Signature with-transformed-points (points port) &body body => result

Arguments points A list of real numbers

port A graphics port

Values result The return value of the last form executed in
body

Description The with-transformed-points macro binds points to a new
list of x and y values obtained by post-multiplying them by
the current transform of port, and then evaluates body. The
249

GP Reference Entries

250
points symbol must be bound to a list of alternating x and y
values representing coordinate points in the port.

with-transformed-rect Macro

Summary Transforms the coordinates of a rectangle and binds them to
four variables for the duration of the macro’s body.

Signature with-transformed-rect (nx1 ny1 nx2 ny2 port x1 y1 x2 y2)
 &body body => result

Arguments nx1 A variable

ny1 A variable

nx2 A variable

ny2 A variable

port A graphics port

x1 A real number

y1 A real number

x2 A real number

y2 A real number

body A body of Lisp code

Values result The return value of the last form executed in
body

Description During the evaluation of the with-transformed-rect macro
body, the two points (x1, y1) and (x2, y2) are transformed by
the port’s current transform and the resulting values bound
to the variables named by the nx1 ny1 nx2 ny2 args.

write-external-image Function

Summary Writes an external image to a file.

Signature write-external-image external-image file &key if-exists =>

Arguments eternal-image An external image

file A file

if-exists A keyword

Values

Description The write-external-image function writes an external
image to a file. By default, if-exists is :error . The if-exists argu-
ment is used in a call to open.
251

GP Reference Entries

252

Index
A
abort-dialog function 1
accessor functions

editor-pane-buffer 46
activate-pane function 2
activep slot 106
adjust slot 26, 138
analyze-external-image function 174
apply-rotation function 175
apply-scale function 175
apply-translation function 176
attach-interface-for-callback

function 3
augment-font-description function 176

B
background slot 144
beep-pane function 3
best-height slot 66
best-width slot 66
best-x slot 66
best-y slot 66
buffer-name slot 25, 45
button class 3
button-panel class 6

C
calculate-constraints generic

function 9
calculate-layout generic function 10
callback slot 4, 92, 152
callback-data-function slot 93
callbacks 11

for button panels 7
for buttons 5

passing different variables 3
callbacks class 11
callbacks slot 7
callback-type slot 149, 152
call-editor generic function 13
capi-object class 13
capi-object-property function 14
caret-position slot 151
change-callback slot 152
change-callback-type slot 152
check-button class 15
check-button-panel class 16
child slot 145
children-function slot 55
choice class 17
choice-selected-item generic

function 19
choice-selected-items generic

function 20
classes

button 3
button-panel 6
callbacks 11
capi-object 13
check-button 15
check-button-panel 16
choice 17
collection 21
collector-pane 25
color-screen 26
column-layout 26
display-pane 41
drawn-pinboard-object 42
editor-pane 44
element 46
external-image 195
253

254
form-layout 51
graph-pane 55
grid-layout 58
image 208
image-list 62
image-pinboard-object 63
interactive-pane 64
interface 65
item 71
item-pinboard-object 73
layout 74
line-pinboard-object 75
listener-pane 76
list-panel 76
list-view 77
menu 88
menu-component 90
menu-item 91
menu-object 92
mono-screen 94
multiple-line-text-input-pane 95
option-pane 95
output-pane 96
password-pane 103
pinboard-layout 104
pinboard-object 106
pixmap-port 219
progress-bar 118
push-button 127
push-button-panel 128
radio-button 131
radio-button-panel 131
range-pane 132
right-angle-line-pinboard-

object 136
row-layout 137
screen 139
simple-layout 143
simple-pane 143
simple-pinboard-layout 145
slider 147
switchable-layout 147
tab-layout 148
text-choice 151
text-input-pane 151
titled-image-pinboard-object 154
titled-menu-object 155
titled-pane 156
title-pane 158
toolbar 159
toolbar-button 161
toolbar-component 162
toolbar-object 163
x-y-adjustable-layout 171

clear-external-image-conversions
function 177

clear-graphics-port function 177
clear-graphics-port-state

function 178
clear-rectangle function 178
collection class 21
collection-search generic function 24
collector-pane class 25
color-screen class 26
column slot 58
column-layout class 26
completion-function slot 152
compress-external-image function 178
compute-char-extents function 179
confirm-change-function slot 152
confirm-destroy-function slot 66
confirm-yes-or-no function 28
contain function 28
convert-external-image function 179
convert-to-screen function 30
copy-external-image function 180
copy-pixels function 180
copy-transform function 181
count-collection-items generic

function 30
create-pixmap-port function 182
current-printer function 31

D
data slot 71
default slot 74
default-image-translation-table

variable 173, 210
define-command macro 31
define-font-alias function 183
define-interface macro 33
define-layout macro 36
define-menu macro 37
depth slot 139
description slot 74
description slot 148
destroy generic function 38
destroy-callback slot 66
destroy-pixmap-port function 183
dialogs

aborting 1
direction slot 75
disabled-image slot 4
display function 39

display-callback slot 42, 96
display-dialog function 39
display-message function 40
display-message-for-pane function 41
display-pane class 41
dither-color-spec function 184
draw-arc function 184
draw-arcs function 185
draw-character function 186
draw-circle function 186
draw-ellipse function 187
draw-image function 188
draw-line function 189
draw-lines function 189
drawn-pinboard-object class 42
draw-pinboard-object generic

function 43
draw-pinboard-object-highlighted

generic function 44
draw-pinboard-object-unhighlighted

generic function 44
draw-point function 190
draw-points function 190
draw-polygon function 191
draw-polygons function 192
draw-rectangle function 193
draw-rectangles function 193
draw-string function 194

E
edge-pinboard-class slot 56
editor-pane class 44
editor-pane-buffer accessor function 46
element class 46
enable slot 4
enabled slot 45, 92, 95, 152
enabled-function slot 92
enabled-slot slot 92
ensure-interface-screen function 49
exit-confirmer function 49
exit-dialog function 50
external-image class 195
external-image-color-table

function 195, 196
externalize-image function 196

F
find-best-font function 197
find-matching-fonts function 198
find-string-in-collection generic

function 51

focus
moving to a new pane 2

font slot 73, 144
font-description function 198
font-description-attributes

function 198
font-description-attribute-value

function 199
font-fixed-width-p function 199
foreground slot 73, 144
form-layout class 51
free-image function 200
functions

abort-dialog 1
activate-pane 2
analyze-external-image 174
apply-rotation 175
apply-scale 175
apply-translation 176
attach-interface-for-callback 3
augment-font-description 176
beep-pane 3
capi-object-property 14
clear-external-image-

conversions 177
clear-graphics-port 177
clear-graphics-port-state 178
clear-rectangle 178
compress-external-image 178
compute-char-extents 179
confirm-yes-or-no 28
contain 28
convert-external-image 179
convert-to-screen 30
copy-external-image 180
copy-pixels 180
copy-transform 181
create-pixmap-port 182
current-printer 31
define-font-alias 183
destroy-pixmap-port 183
display 39
display-dialog 39
display-message 40
display-message-for-pane 41
dither-color-spec 184
draw-arc 184
draw-arcs 185
draw-character 186
draw-circle 186
draw-ellipse 187
draw-image 188
255

256
draw-line 189
draw-lines 189
draw-point 190
draw-points 190
draw-polygon 191
draw-polygons 192
draw-rectangle 193
draw-rectangles 193
draw-string 194
ensure-interface-screen 49
exit-confirmer 49
exit-dialog 50
external-image-color-table 195,

196
externalize-image 196
find-best-font 197
find-matching-fonts 198
font-description 198
font-description-attributes 198
font-description-attribute-

value 199
font-fixed-width-p 199
free-image 200
get-bounds 200
get-character-extent 201
get-char-ascent 202
get-char-descent 202
get-char-width 203
get-constraints 53
get-enclosing-rectangle 203
get-font-ascent 204
get-font-average-width 204
get-font-descent 205
get-font-height 205
get-font-width 205
get-graphics-state 206
get-origin 206
get-page-area 54
get-printer-metrics 55
get-string-extent 207
get-transform-scale 208
graphics-port-transform 208
graphics-state-background 215
graphics-state-dash 215
graphics-state-dashed 215
graphics-state-fill-style 215
graphics-state-font 215
graphics-state-foreground 215
graphics-state-line-end-

style 215
graphics-state-line-joint-

style 215
graphics-state-mask 215
graphics-state-mask-x 215
graphics-state-mask-y 215
graphics-state-operation 215
graphics-state-pattern 215
graphics-state-scale-thickness 215
graphics-state-stipple 215
graphics-state-thickness 215
graphics-state-transform 215
hide-interface 61
image-freed-p 209
image-loader 209
image-set 64
image-translation 210
initialize-dithers 210
inset-rectangle 211
inside-rectangle 211
invalidate-pane-constraints 70
invert-transform 212
invoke-command 70
invoke-untranslated-command 71
load-image 212
lower-interface 83
make-dither 213
make-font-description 214
make-general-image-set 84
make-graphics-state 214
make-image-from-port 215
make-image-locator 85
make-resource-image-set 85
make-transform 216
map-typeout 87
merge-font-descriptions 217
modify-editor-pane-buffer 94
offset-rectangle 217
ordered-rectangle-union 217
page-setup-dialog 100
pixblt 218
popup-confirmer 109
port-depth 220
port-height 220
port-string-height 220
port-string-width 221
port-width 221
postmultiply-transforms 222
premultiply-transforms 222
print-dialog 112
printer-metrics-device-height 114
printer-metrics-device-width 115
printer-metrics-dpi-x 116
printer-metrics-dpi-y 116
printer-metrics-height 117

printer-metrics-width 117
print-file 113
print-text 114
prompt-for-confirmation 118
prompt-for-file 119
prompt-for-form 121
prompt-for-forms 122
prompt-for-integer 123
prompt-for-string 124
prompt-for-symbol 125
prompt-with-list 126
quit-interface 129
raise-interface 133
read-and-convert-external-

image 223, 231
read-external-image 223
rectangle-union 226
redisplay-menu-bar 134
redraw-pinboard-layout 135
redraw-pinboard-object 135
register-image-load-function 228
register-image-translation 229
remove-capi-object-property 136
reset-image-translation-table 229
separation 230
set-default-image-load-

function 231
set-geometric-hint 141
set-graphics-port-coordinates 231
set-graphics-state 232
set-hint-table 141
show-interface 142
simple-print-port 146
transform-area 233
transform-distance 234
transform-distances 234
transform-is-rotated 235
transform-point 235
transform-points 235
transform-rect 236
undefine-font-alias 237
unit-transform-p 238
unmap-typeout 166
untransform-distance 239
untransform-distances 239
untransform-point 240
untransform-points 240
update-pinboard-object 166
update-toolbar 166
write-external-image 251

G
gap slot 26, 138
generic functions

calculate-constraints 9
calculate-layout 10
call-editor 13
choice-selected-item 19
choice-selected-items 20
collection-search 24
count-collection-items 30
destroy 38
draw-pinboard-object 43
draw-pinboard-object-

highlighted 44
draw-pinboard-object-

unhighlighted 44
find-string-in-collection 51
get-collection-item 53
highlight-pinboard-object 61
interpret-description 69
itemp 73
make-container 83
map-collection-items 86
map-pane-children 86
over-pinboard-object-p 99
pane-adjusted-offset 100
pane-adjusted-position 101
parse-layout-descriptor 103
pinboard-object-at-position 107
pinboard-object-overlap-p 108
print-collection-item 111
redisplay-interface 134
search-for-item 140
set-button-panel-enabled 140
set-scroll-position 142
set-scroll-range 142
top-level-interface 164
top-level-interface-p 165
unhighlight-pinboard 165

generic images 5
get-bounds function 200
get-character-extent function 201
get-char-ascent function 202
get-char-descent function 202
get-char-width function 203
get-collection-item generic function 53
get-constraints function 53
get-enclosing-rectangle function 203
get-font-ascent function 204
get-font-average-width function 204
get-font-descent function 205
get-font-height function 205
257

258
get-font-width function 205
get-graphics-state function 206
get-origin function 206
get-page-area function 54
get-printer-metrics function 55
get-string-extent function 207
get-transform-scale function 208
graphics-port-transform

function 208
graphics-state-background

function 215
graphics-state-dash function 215
graphics-state-dashed function 215
graphics-state-fill-style

function 215
graphics-state-font function 215
graphics-state-foreground

function 215
graphics-state-line-end-style

function 215
graphics-state-line-joint-style

function 215
graphics-state-mask function 215
graphics-state-mask-x function 215
graphics-state-mask-y function 215
graphics-state-operation

function 215
graphics-state-pattern function 215
graphics-state-scale-thickness

function 215
graphics-state-stipple function 215
graphics-state-thickness

function 215
graphics-state-transform

function 215
graph-pane class 55
grid-layout class 58

H
height slot 139
hide-interface function 61
highlight-pinboard-object generic

function 61
horizontal-scroll slot 144

I
image class 208
image slot 4
image-freed-p function 209
image-list class 62
image-loader function 209
image-pinboard-object class 63
images

generic 5
image-set function 64
image-translation function 210
initialize-dithers function 210
input-model slot 96
inset-rectangle function 211
inside-rectangle function 211
interaction slot 4, 17
interaction styles 5
interactions

for choice 18
interactive-pane class 64
interface class 65
interface slot 46
interfaces slot 139
interpret-description generic

function 69
invalidate-pane-constraints

function 70
invert-transform function 212
invoke-command function 70
invoke-untranslated-command

function 71
item class 71
item-map-function slot 22
itemp generic function 73
item-pinboard-object class 73
items slot 22, 88, 90, 148
items-count-function slot 22
items-function slot 88, 90
items-get-function slot 22

K
keep-selection-p slot 17
key-function slot 148

L
layout class 74
layout slot 66
layout-args slot 7
layout-class slot 7
layout-function slot 55
line-pinboard-object class 75
listener-pane class 76
list-panel class 76
list-view class 77
load-image function 212
*local-rgb-color-distance-red-

weight* variable 197

lower-interface function 83

M
macros

define-command 31
define-interface 33
define-layout 36
define-menu 37
rectangle-bind 223
rectangle-bottom 224
rectangle-height 224
rectangle-left 225
rectangle-right 225
rectangle-top 226
rectangle-width 227
rect-bind 227
undefine-menu 165
union-rectangle 237
unless-empty-rect-bind 238
with-atomic-redisplay 167
with-dither 241
with-document-pages 167
with-geometry 168
with-graphics-mask 241
with-graphics-rotation 242
with-graphics-scale 243
with-graphics-state 243
with-graphics-transform 244
with-graphics-translation 245
with-inverse-graphics 246
without-relative-drawing 246
with-page 169
with-page-transform 169
with-pixmap-graphics-port 247
with-print-job 170
with-random-typeout 170
with-transformed-area 248
with-transformed-point 248
with-transformed-points 249
with-transformed-rect 250

make-container generic function 83
make-dither function 213
make-font-description function 214
make-general-image-set function 84
make-graphics-state function 214
make-image-from-port function 215
make-image-locator function 85
make-resource-image-set function 85
make-transform function 216
map-collection-items generic

function 86
map-pane-children generic function 86

map-typeout function 87
max-characters slot 152
max-height slot 47
max-width slot 47
menu class 88
menu-bar-items slot 66
menu-component class 90
menu-item class 91
menu-object class 92
merge-font-descriptions function 217
message slot 156
message-args slot 157
min-height slot 47
min-width slot 46
modify-editor-pane-buffer function 94
mono-screen class 94
multiple-line-text-input-pane

class 95
multiple-selection interaction style 5

N
name slot 13
node-pane-function slot 56
node-pinboard-class slot 56
no-selection interaction style 5
number slot 139

O
offset-rectangle function 217
option-pane class 95
ordered-rectangle-union function 217
orientation slot 58
output-pane class 96
output-pane slot 106
over-pinboard-object-p generic

function 99

P
page-setup-dialog function 100
pane-adjusted-offset generic

function 100
pane-adjusted-position generic

function 101
parent slot 46
parse-layout-descriptor generic

function 103
password-pane class 103
pinboard-layout class 104
pinboard-object class 106
pinboard-object-at-position generic

function 107
259

260
pinboard-object-overlap-p generic
function 108

pixblt function 218
pixmap-port class 219
plist slot 14
popup-callback slot 92
popup-confirmer function 109
port-depth function 220
port-height function 220
port-string-height function 220
port-string-width function 221
port-width function 221
postmultiply-transforms

function 222
premultiply-transforms function 222
print-collection-item generic

function 111
print-dialog function 112
printer-metrics-device-height

function 114
printer-metrics-device-width

function 115
printer-metrics-dpi-x function 116
printer-metrics-dpi-y function 116
printer-metrics-height function 117
printer-metrics-width function 117
print-file function 113
print-function slot 22, 71, 149
print-text function 114
progress-bar class 118
prompt-for-confirmation

function 118
prompt-for-file function 119
prompt-for-form function 121
prompt-for-forms function 122
prompt-for-integer function 123
prompt-for-string function 124
prompt-for-symbol function 125
prompt-with-list function 126
push-button class 127
push-button-panel class 128

Q
quit-interface function 129

R
radio-button class 131
radio-button-panel class 131
raise-interface function 133
range-pane class 132
ratios slot 26, 137
read-and-convert-external-image
function 223, 231

read-external-image function 223
rectangle-bind macro 223
rectangle-bottom macro 224
rectangle-height macro 224
rectangle-left macro 225
rectangle-right macro 225
rectangle-top macro 226
rectangle-union function 226
rectangle-width macro 227
rect-bind macro 227
redisplay-interface generic

function 134
redisplay-menu-bar function 134
redraw-pinboard-layout function 135
redraw-pinboard-object function 135
register-image-load-function

function 228
register-image-translation

function 229
remove-capi-object-property

function 136
reset-image-translation-table

function 229
right-angle-line-pinboard-object

class 136
roots slot 55
row-layout class 137
rows slot 58

S
screen class 139
scroll-callback slot 96
search-for-item generic function 140
selected slot 4, 72
selected-item slot 17
selected-items slot 17
selection slot 17
selection-callback slot 149
separation function 230
set-button-panel-enabled-items

generic function 140
set-default-image-load-function

function 231
set-geometric-hint function 141
set-graphics-port-coordinates

function 231
set-graphics-state function 232
set-hint-table function 141
set-scroll-position generic

function 142

set-scroll-range generic function 142
show-interface function 142
simple-layout class 143
simple-pane class 143
simple-pinboard-layout class 145
simple-print-port function 146
single-selection interaction style 5
slider class 147
special variables

unit-transform 174
stream slot 25, 65
streams 25
switchable-layout class 147

T
tab-layout class 148
test-function slot 22
text slot 41, 45, 71, 151, 158
text-choice class 151
text-input-pane class 151
title slot 66, 154, 155, 156
title-adjust slot 52, 156
title-args slot 156
titled-image-pinboard-object

class 154
titled-menu-object class 155
titled-pane class 156
title-function slot 155
title-gap slot 52
title-pane class 158
title-position slot 156
toolbar class 159
toolbar-button class 161
toolbar-component class 162
toolbar-object class 163
top-level-function slot 65
top-level-interface generic

function 164
top-level-interface-p generic

function 165
transform type 233
transform-area function 233
transform-distance function 234
transform-distances function 234
transform-is-rotated function 235
transform-point function 235
transform-points function 235
transform-rect function 236
type slot 136
types

transform 233

U
undefine-font-alias function 237
undefine-menu macro 165
unhighlight-pinboard-object generic

function 165
uniform-size-p slot 26, 138
union-rectangle macro 237
unit-transform special variable 174
unit-transform-p function 238
unless-empty-rect-bind macro 238
unmap-typeout function 166
untransform-distance function 239
untransform-distances function 239
untransform-point function 240
untransform-points function 240
update-pinboard-object function 166
update-toolbar function 166

V
variables

*default-image-translation-
table* 173, 210

*local-rgb-color-distance-red-
weight* 197

vertical-adjustment slot 52
vertical-gap slot 52
vertical-scroll slot 144
visible-border slot 144
visible-child slot 147
visible-child-function slot 148

W
width slot 139
with-atomic-redisplay macro 167
with-dither macro 241
with-document-pages macro 167
with-geometry macro 168
with-graphics-mask macro 241
with-graphics-rotation macro 242
with-graphics-scale macro 243
with-graphics-state macro 243
with-graphics-transform macro 244
with-graphics-translation macro 245
with-inverse-graphics macro 246
without-relative-drawing macro 246
with-page macro 169
with-page-transform macro 169
with-pixmap-graphics-port macro 247
with-print-job macro 170
with-random-typeout macro 170
with-transformed-area macro 248
261

262
with-transformed-point macro 248
with-transformed-points macro 249
with-transformed-rect macro 250
write-external-image function 251

X
x slot 47
x-adjust slot 154, 171
x-gap slot 58
x-ratios slot 58
x-uniform-size-p slot 58
x-y-adjustable-layout class 171

Y
y slot 47
y-adjust slot 171
y-gap slot 58
y-ratios slot 58
y-uniform-size-p slot 59

	LispWorks® CAPI Reference Manual
	Preface
	CAPI Reference Entries
	abort-dialog
	activate-pane
	attach-interface-for-callback
	beep-pane
	button
	button-panel
	calculate-�constraints
	calculate-layout
	callbacks
	call-editor
	capi-object
	capi-object-property
	check-button
	check-button-panel
	choice
	choice-selected-item
	choice-selected-items
	collection
	collection-search
	collector-pane
	color-screen
	column-layout
	confirm-yes-or-no
	contain
	convert-to-screen
	count-collection-items
	current-printer
	define-command
	define-interface
	define-layout
	define-menu
	destroy
	display
	display-dialog
	display-message
	display-message-for-pane
	display-pane
	drawn-pinboard-object
	draw-pinboard-object
	draw-pinboard-object-highlighted
	draw-pinboard-object-unhighlighted
	editor-pane
	editor-pane-buffer
	element
	ensure-interface-screen
	exit-confirmer
	exit-dialog
	find-string-in-collection
	form-layout
	get-collection-item
	get-constraints
	get-page-area
	get-printer-metrics
	graph-pane
	grid-layout
	hide-interface
	highlight-pinboard-object
	image-list
	image-pinboard-object
	image-set
	interactive-pane
	interface
	interpret-description
	invalidate-pane-constraints
	invoke-command
	invoke-untranslated-command
	item
	itemp
	item-pinboard-object
	layout
	line-pinboard-object
	listener-pane
	list-panel
	list-view
	lower-interface
	make-container
	make-general-image-set
	make-image-locator
	make-resource-image-set
	map-collection-items
	map-pane-children
	map-typeout
	menu
	menu-component
	menu-item
	menu-object
	modify-editor-pane-buffer
	mono-screen
	multiple-line-text-input-pane
	option-pane
	output-pane
	over-pinboard-object-p
	page-setup-dialog
	pane-adjusted-offset
	pane-adjusted-position
	parse-layout-descriptor
	password-pane
	pinboard-layout
	pinboard-object
	pinboard-object-at-position
	pinboard-object-overlap-p
	popup�confirmer
	print-collection-item
	print-dialog
	print-editor-buffer
	print-file
	print-text
	printer-metrics-device-height
	printer-metrics-device-width
	printer-metrics-dpi-x
	printer-metrics-dpi-y
	printer-metrics-height
	printer-metrics-width
	progress-bar
	prompt-for-confirmation
	prompt-for-file
	prompt-for-form
	prompt-for-forms
	prompt-for-integer
	prompt-for-string
	prompt-for-symbol
	prompt-with-list
	push-button
	push-button-panel
	quit-interface
	radio-button
	radio-button-panel
	range-pane
	raise-interface
	redisplay-interface
	redisplay-menu-bar
	redraw-pinboard-layout
	redraw-pinboard-object
	remove-capi-object-property
	right-angle-line-pinboard-object
	row-layout
	screen
	search-for-item
	set-button-panel-enabled-items
	set-geometric-hint
	set-hint-table
	set-scroll-position
	set-scroll-range
	show-interface
	simple-layout
	simple-pane
	simple-pinboard-layout
	simple-print-port
	slider
	switchable-layout
	tab-layout
	text-input-choice
	text-input-pane
	titled-image-pinboard-object
	titled-menu-object
	titled-pane
	title-pane
	toolbar
	toolbar-button
	toolbar-component
	toolbar-object
	top-level-interface
	top-level-interface-p
	undefine-menu
	unhighlight-pinboard-object
	unmap-typeout
	update-pinboard-object
	update-toolbar
	with-atomic-redisplay
	with-document-pages
	with-geometry
	with-page
	with-page-transform
	with-print-job
	with-random-typeout
	x-y-adjustable-layout

	GP Reference Entries
	default-image-translation-table
	unit-transform
	analyze-external-image
	apply-rotation
	apply-scale
	apply-translation
	augment-font-description
	clear-external-image-conversions
	clear-graphics-port
	clear-graphics-port-state
	clear-rectangle
	compress-external-image
	compute-char-extents
	convert-external-image
	copy-external-image
	copy-pixels
	copy-transform
	create-pixmap-port
	define-font-alias
	destroy-pixmap-port
	dither-color-spec
	draw-arc
	draw-arcs
	draw-character
	draw-circle
	draw-ellipse
	draw-image
	draw-line
	draw-lines
	draw-point
	draw-points
	draw-polygon
	draw-polygons
	draw-rectangle
	draw-rectangles
	draw-string
	external-image
	external-image-color-table
	external-image-color-table
	externalize-image
	find-best-font
	find-matching-fonts
	font-description
	font-description-attributes
	font-description-attribute-value
	font-fixed-width-p
	free-image
	get-bounds
	get-character-extent
	get-char-ascent
	get-char-descent
	get-char-width
	get-enclosing-rectangle
	get-font-ascent
	get-font-average-width
	get-font-descent
	get-font-height
	get-font-width
	get-graphics-state
	get-origin
	get-string-extent
	get-transform-scale
	graphics-port-transform
	image
	image-freed-p
	image-loader
	image-translation
	initialize-dithers
	inset-rectangle
	inside-rectangle
	invert-transform
	load-image
	make-dither
	make-font-description
	make-graphics-state
	make-image-from-port
	make-transform
	merge-font-descriptions
	offset-rectangle
	ordered-rectangle-union
	pixblt
	pixmap-port
	port-depth
	port-height
	port-string-height
	port-string-width
	port-width
	postmultiply-transforms
	premultiply-transforms
	read-and-convert-external-image
	read-external-image
	rectangle-bind
	rectangle-bottom
	rectangle-height
	rectangle-left
	rectangle-right
	rectangle-top
	rectangle-union
	rectangle-width
	rect-bind
	register-image-load-function
	register-image-translation
	reset-image-translation-table
	separation
	set-default-image-load-function
	set-graphics-port-coordinates
	set-graphics-state
	transform
	transform-area
	transform-distance
	transform-distances
	transform-is-rotated
	transform-point
	transform-points
	transform-rect
	undefine-font-alias
	union-rectangle
	unit-transform-p
	unless-empty-rect-bind
	untransform-distance
	untransform-distances
	untransform-point
	untransform-points
	with-dither
	with-graphics-mask
	with-graphics-rotation
	with-graphics-scale
	with-graphics-state
	with-graphics-transform
	with-graphics-translation
	with-inverse-graphics
	without-relative-drawing
	with-pixmap-graphics-port
	with-transformed-area
	with-transformed-point
	with-transformed-points
	with-transformed-rect
	write-external-image

	Index

