
MusicKit Tutorials

David A. Jaffe

Edited by

Hans-Christoph Steiner

Leigh M. Smith

MusicKit Tutorials
by David A. Jaffe

Edited by Hans-Christoph Steiner

Edited by Leigh M. Smith

Copyright © 1991-1992 David A. Jaffe, CCRMA, Stanford University. All Rights Reserved.
Copyright © 1999-2001 The MusicKit Project (Updates). All Rights Reserved.

Table of Contents
Editors Preface... i

1. Class 1 Object Oriented Programming in Objective-C.....................................1

1.1. Objective-C...1
1.2. Encapsulation (motivation)...1
1.3. Messaging (motivation)..2
1.4. Basic Objective-C Terminology..3
1.5. Inheritance...3
1.6. Various Details..4
1.7. Example Using Objective-C Classes...5
1.8. Example Defining An Objective-C Class..6
1.9. OpenStep Software Kits..7
1.10. Interface Builder...8
1.11. Assignments - Week 1..8

2. Class 2 MusicKit Representation Classes...11

2.1. Review: Classes in the MusicKit..11
2.2. MusicKit Representation Classes...11
2.3. TheMKNote Class...12
2.4.MKNote Parameters...13
2.5.MKEnvelope Class...14
2.6.MKWaveTable Class...14
2.7. Example (review)..16
2.8. Assignment - Week 2..17

3. Class 3 Performance Classes..19

3.1. Review: Classes in the MusicKit..19
3.2. MusicKit Performance Classes...19
3.3. TheMKConductor Class..20
3.4.MKConductor Class Settings...21
3.5. TheMKInstrument Class..22
3.6. TheMKPerformer Class..23
3.7. ConnectingMKPerformer s toMKInstrument s...24
3.8. TheMKNoteFilter Class..25
3.9. TheMKMidi Class...25
3.10. Summary of Performance Classes..26
3.11. Assignment - Week 3..26

iii

4. Class 4 DSP Synthesis Classes...31

4.1. Review: Classes in the MusicKit..31
4.2. MusicKit Synthesis Classes..31
4.3. A Simple Common Example..32
4.4. TheMKOrchestra Class..33
4.5.MKOrchestra Settings...34
4.6. TheMKSynthInstrument Class...35
4.7. Intro toMKUnitGenerator s..35
4.8. TheMKUnitGenerator Library..36
4.9. TheMKUnitGenerator Class...37
4.10. ConnectingMKUnitGenerator s...38
4.11. TheMKSynthData Class..39
4.12. Simple Example of a Collection ofMKUnitGenerator s, Operated from a

User Interface...39
4.13. Assignment - Week 4..41

5. Class 5 MKSynthPatch es..43

5.1. Review: Classes in the MusicKit..43
5.2. MusicKit Synthesis Classes (review)..43
5.3. TheMKSynthPatch Class..43
5.4. The MusicKit SynthPatch Library Classes...44
5.5. TheMKSynthPatch Library Timbre Data Base..45
5.6. Making Your OwnMKSynthPatch Class..46
5.7. Specifying a Collection ofMKUnitGenerator s ...47
5.8. Specifying the Connections..48
5.9. Specifying the Performance Behavior..49
5.10. Specifying the Performance Behavior + Example..50
5.11. Complete Example..51
5.12. Fancier SynthPatches..52
5.13. The Complete Story About Phrase Status...54
5.14. Assignment - Week 5..55

iv

List of Tables
2-1. Examples ofMKNote Parameters...13
3-1.MKInstrument subclasses provided by the MusicKit..22
3-2. Pseudo-Instrument classes provided by MusicKit..22
3-3.MKNoteReceiver s provided byMKInstrument subclasses................................23
3-4.MKPerformer subclasses provided by the MusicKit...23
3-5.MKNoteSender s provided byMKPerformer subclasses......................................24
3-6. Pseudo-MKPerformer Performance Protocol..26
4-1.MKUnitGenerator s..36
4-2.MKUnitGenerator States...37
5-1. WaveTable synthesis:..44
5-2. Frequency Modulation synthesis:...44
5-3. Plucked string synthesis:..45
5-4.MKSynthPatch States..50
5-5. Phrase States...54

List of Figures
1-1. Example of MusicKit Inheritance...4
2-1. EnvelopeEd...15
2-2. Wave Form Display..15
3-1. A MusicKit Performance..19
4-1.MKSynthInstrument ...32
5-1. A Simple Synth Patch...46
5-2. noteTypes Time Line..53

v

vi

Editors Preface
This book contains teaching materials for the CCRMA MusicKit class taught by David
A. Jaffe in Jan-Feb 1991. This is an intensive class for programmers who already know
the C Programming Language. The materials in this book may be distributed and used
for teaching purposes. However, any publication is forbidden without the written
consent of David A. Jaffe (reachable as <daj@ccrma.stanford.edu >).

The students should have access to the MusicKit and SndKit Concepts
(http://musickit.sourceforge.net/MusicKitConcepts) Documentation. The students
should be running V5.2.2 frameworks or later and should refer to the on-line
documentation for the Reference section of the MusicKit and SndKit and the
appropriate OpenStep system documentation.

i

Editors Preface

ii

Chapter 1. Class 1 Object Oriented
Programming in Objective-C

1.1. Objective-C
Objective-C is a language that expands the C programming language by incorporating
three object-oriented concepts:

• Encapsulation

• Messaging (with dynamic binding)

• Inheritance

These serve to maximize:

• Program modularity

• Program clarity and readability

• Program maintainability

1.2. Encapsulation (motivation)

• Lets you create complex data types.

• Makes code easier to read.

• Makes function calls simpler.

C structures and typedefs already provide this functionality. Hypothetical example:

typedef struct {
double freq;
int keyNum;

} Note;

This struct Note is now a convenient package. To create a new Note, you just call
malloc .

1

Chapter 1. Class 1 Object Oriented Programming in Objective-C

Note *myNote1;
myNote1 = malloc(sizeof(Note));
myNote1->freq = 440.0;
myNote1->keyNum = 69;
play(myNote1);

But C structs only go half way. Objective-C introduces the notion of a "Class" that
encapsulates both the dataand the functions that operate on them. This serves to
protect the data and localize specialized knowledge of the data, making it harder to
introduce bad bugs.

1.3. Messaging (motivation)

• Problem: Different C structs may require different functions to provide similar
behavior. Hypothetical example:

typedef struct {
int keyNumber;

} MIDINote;

typedef struct {
double freq;

} DSPNote;

MIDINote *aMidiNote;
DSPNote *aDSPNote;

/* ... (create and fill in fields of structs) */
playMIDI(aMidiNote);
playDSP(aDSPNote);

• We’d prefer a similar behavior to be represented by a single "message". Hypothetical
example:

play(aMidiNote);
play(aDSPNote);

2

Chapter 1. Class 1 Object Oriented Programming in Objective-C

But this requires the writer ofplay to know every possible kind of Note it would be
passed. This violates the principle of programming modularity.

• Objective-C lets each Class define its ownplay "method". The Objective-C run-time
system then invokes the correctplay method. This process is called "messaging".

1.4. Basic Objective-C Terminology

• Class- analogous to thetypedefabove; defines a complex data type and functions to
operate on that data.

• Instance of a class- analogous to the pointer to themalloc ed memory above; each
instance of a class has its own memory. In this memory, the instance stores the values
of its "instance variables".

• Instance variables- analogous to the fields of thestruct. The memory allocated for
each instance is used to store that instance’s variables.

• method - A "method" is a function associated with a class. A class may have any
number of methods.

• message- A "message" is how a method is invoked. In C, you invoke a function by
using its name followed by parens. In Objective-C, you invoke a method by sending
a message to an instance, using the following syntax:

[myInstance aMessage];
or [myInstance aMessageWithArg:arg];
or [myInstance aMessageWithArg:arg otherArg:arg2];

This causes the Objective-C run-time system to look at the class of myInstance, find
the correct method for the given message, and invoke that method.

1.5. Inheritance

• Allows a Class to be "specialized" into different versions. E.g.:MKPerformer is

3

Chapter 1. Class 1 Object Oriented Programming in Objective-C

specialized toMKPartPerformer andMKScorefilePerformer in the MusicKit.

• A specialized class ("subclass") need only implement that part of its behavior that is
different from its parent class ("superclass").

• A subclass may define instance variables. Each instance of the subclass gets the
instance variables defined in both the superclass and the subclass.

• Subclassing may be applied recursively, forming trees of inheritance. All classes
inherit fromNSObject . Therefore, instances of a class are sometimes called
"objects".

• Inheritance can get confusing. For this reason, the MusicKit uses it sparingly.

• If both the subclass and the superclass implement the same method, the subclass
version takes precedence. However, the subclass can invoke the superclass version of
a method as part of its own implementation of that method by sending the message
to the special identifiersuper.

Figure 1-1. Example of MusicKit Inheritance

Performer

Object

FilePerfomer PartPerfomer

ScorefilePerfomer

Example of Music Kit Inheritance

= Abstract class (only subclasses are instanced).

4

Chapter 1. Class 1 Object Oriented Programming in Objective-C

1.6. Various Details

• To create an instance, you need to send a message directly to a class. This invokes a
"class method", which is different from an instance method in that it may be sent
only to a class.

• To make it possible to send such a message, the Objective-C compiler creates a
special "class object".

• You sendalloc followed by init (for reasons that will not be covered here.)

MKNote *aNote;

aNote = [MKNote alloc];
[aNote init];

• An object-valued variable (such as "aNote" above) need not have a type. To define an
untyped object-valued variable, use the special typeid. Example:id aNote;

• self, when used in a method definition, refers to the object that’s receiving the
message.

• Sometimes "class-wide" behavior is implemented by class methods. For example:

[MKConductor startPerformance].

1.7. Example Using Objective-C Classes
#include <MusicKit/MusicKit.h>

main()
{

MKNote *aNote;
MKPart *aPart;
MKScore *aScore;
aScore = [MKScore score]; /* In 2.0, use alloc/init */
aPart = [MKPart new];
aNote = [MKNote new];
[aNote setPar: MK_freq toDouble: 440.0];

5

Chapter 1. Class 1 Object Oriented Programming in Objective-C

[aNote setTimeTag: 1.0]; /* Play after 1 beat */
[aNote setDur: 1.0]; /* Duration is 1 beat */
[aScore addPart: aPart];
[aPart addNote: aNote];

/* "info" code may be added here - see below */
[aScore writeScorefile: @"test.score"];

}

This example writes the file "test.score". However, if you want to play that file with the
ScorePlayer application, you need to specify whichMKSynthPatch (DSP instrument)
to use. We do this by adding a specialMKNote called a "MKPart info" with a parameter
indicating the name of theMKSynthPatch :

aNote = [MKNote new]; /* Another MKNote for info */
[aNote setPar: MK_synthPatch toString: @"Pluck"];
[aPart setInfo: aNote];

1.8. Example Defining An Objective-C Class

• You need a header file (.h) and a code file (.m)

• The header file defines the interface to the class, i.e. the instance variables and
methods defined by the class. Instance methods begin with "-", class methods begin
with "+". Example:

/* Here is an example .h file, "CircularList.h".
All behavior is inherited from List, which defines a List of objects.
Nowdays we can use NSArray which is more complex than List.

*/

#include <objc/List.h> /* Superclass interface */

@interface CircularList: List /* List is superclass */
{

int currentLocation;
}

- next; /* Returns next object in List or nil if none. */

6

Chapter 1. Class 1 Object Oriented Programming in Objective-C

@end

/* Here is the corresponding .m file: */
#include "CircularList.h"

@implementation CircularList

- next
{

int numObjects = [self count];
if (currentLocation >= numObjects)

currentLocation = 0;
return [self objectAt:currentLocation++];

}

@end

1.9. OpenStep Software Kits

• Application Kit ContainsNSButtons , NSSliders , and other user interface
classes. Best used with the Interface Builder application.

• Foundation Kit Contains classes that aid the manipulation of non-user interface
data, for exampleNSArray , NSDictionary , NSString .

• MusicKit Contains classes such asMKNote, MKMidi , MKConductor , and
MKOrchestra for doing DSP synthesis, MIDI processing, scheduling, etc. The
MusicKit does not provide display capabilities. To do this, you must combine the
Music and Application Kits.

• SndKit Contains theSnd class andSndView , a class for displaying aSnd. Lets
you record, playback and display sound data.

Each class in each Kit has a "Class Description" on-line. It describes the class in prose
form, and describes in detail the instance variables and the methods. These Class
Descriptions are also given out in class.

The Apple Kit documentation for the AppKit (http://www.apple.com) and
FoundationKit (http://www.apple.com) is available as is the documentation for the

7

Chapter 1. Class 1 Object Oriented Programming in Objective-C

MusicKit (http://www.musickit.org/Frameworks/MusicKit) and SndKit
(http://www.musickit.org/Frameworks/SndKit).

1.10. Interface Builder

• Lets you make a graphic user interface using graphic tools. It takes some getting
used to, but once you "get it", it’s invaluable. It’s best understood by working
through an example. But a bit of background preparation may help:

• To use Interface Builder, you create an "Interface Builder Custom Object" and
configure a user interface to send messages to an instance of your object.

• There is one big restriction on Custom Objects: Any method that is invoked from the
user interface must have exactly one argument and this argument must be the control
that sent the message. Example:

- setFreq: sender
{

freq = [sender doubleValue];
}

You can also send messages directly to the interface from within your Custom Object.
To do this, you need to know theid of the controls in your interface. Interface Builder
provides a mechanism called "outlets" to do this. Outlets are simplyid-valued instance
variables defined by your Custom Object. In Interface Builder, you can connect an
outlet to a control then, when your program runs, the instance variable’s value will be
the control and you can send whatever messages you like to it.

1.11. Assignments - Week 1

1. In the MusicKit Concepts Manual (http://www.musickit.org/MusicKitConcepts),
read the sections System Overview
(http://www.musickit.org/MusicKitConcepts/systemoverview.html) and
Representing Musical Data
(http://www.musickit.org/MusicKitConcepts/musicdata.html).

8

Chapter 1. Class 1 Object Oriented Programming in Objective-C

2. Examples/example1 is a program that writes a one-note scorefile. Copy the
directory and modify it to write a series of notes. Then say build it using Project
Builder or "make" typed at the shell if using a non-MacOS X system.

9

Chapter 1. Class 1 Object Oriented Programming in Objective-C

10

Chapter 2. Class 2 MusicKit
Representation Classes

2.1. Review: Classes in the MusicKit

• Representation classes (7)

MKNote, MKPart , MKScore, etc.

• Performance classes (16)

MKConductor , MKPerformer , MKInstrument , etc.

• DSP Synthesis classes (4)

MKOrchestra , MKUnitGenerator , MKSynthPatch , MKSynthData

2.2. MusicKit Representation Classes

• Musical events are represented byMKNote instances.

• MKNotes are grouped intoMKPart s. EachMKPart corresponds to alike manner of
realizationduring performance. E.g. all notes in aMKPart are synthesized with the
same synthesis technique or on the same MIDI channel.

• MKParts are grouped intoMKScores . A MKScore may be written out as an ASCII
note list called a “Scorefile”. ScoreFile is actually a simple language. There is also a
binary format of the scorefile (in release 2.0).MKScores can also read/write
Standard MIDI files. Finally,MKScores , as well as all MusicKit objects, can be
“archived” using anNSArchiver , as defined in the Application Kit.

11

Chapter 2. Class 2 MusicKit Representation Classes

• MKEnvelope andMKWaveTable data are stored inMKEnvelope andMKWaveTable

objects, respectively. There are two subclasses ofMKWaveTables , MKPartials

(frequency domain representation) andMKSamples (time domain representation).

• A MKNote can only belong to oneMKPart and aMKPart can only belong to one
MKScore. However,MKEnvelopes andMKWaveTables may be referenced by any
number ofMKNotes.

• MKTuningSystem is a class that represents a mapping of the 128 MIDI keys to a set
of frequencies. These frequencies need not be increasing.

2.3. The MKNote Class

• A MKNote consists of:

• a noteType and anoteTag

• a set of parameters

• an optionaltimeTag and duration

• There are 5 types ofMKNotes, represented by thenoteType:

• noteOn - start of a musical phrase or rearticulation

• noteOff - end of a musical phrase

• noteDur - a noteOn with a duration

• noteUpdate - update to a running musical phrase(s)

• mute - none of the above

(in an MusicKit program, a prefix is required, as inMK_noteOn)

• ThenoteTag groups a series ofnoteOns andnoteUpdates with a single
noteOff . This is called aphrase.

noteTag is essential fornoteOn andnoteOff

noteTag is optional fornoteDur andnoteUpdate

noteTag is not used formute

12

Chapter 2. Class 2 MusicKit Representation Classes

• A noteUpdate without anoteTag applies to all running patches and is “sticky”.

• A noteDur represents anoteOn /noteOff pair. If anothernoteOn with the same
noteTag appears before the duration is expended, the impliednoteOff is canceled.

• The timeTag refers to the location of theMKNote in a MKPart and is only used in
that context. Its value is in beats.

2.4. MKNote Parameters

• Parameters consist of an integer identifier and a value.

Table 2-1. Examples ofMKNote Parameters

Examples: identifier value
MK_freq 440

MK_amp 0.4

MK_waveform “SA”

• The MusicKit defines a number of parameters. These begin with the “MK_” prefix.
In addition, you can define your own with [MKNote parTagForName:
@"myParameter"]

• Parameter values may be one of the following types:

• int

• double

• NSString

• MKEnvelope

• MKWaveTable

• any object (e.g. a param’s value could be aMKScore)

• The object that realizes theMKNote determines how to interpret the parameters. Any
parameters it doesn’t care about are ignored. This makes reorchestration easy.

13

Chapter 2. Class 2 MusicKit Representation Classes

• TheMKNote class does automatic type conversion where possible. Thus, the
consumer of aMKNote parameter need not concern himself with how the parameter
was set.

2.5. MKEnvelope Class

• MKEnvelopes are (x,y,z) triplets:

x time in seconds. The firstx value is usually 0.

y value

z smoothing value (rarely used)

• An envelope may have a “stickpoint”. The envelopes stops at the stickpoint until the
noteOff or the end of its duration.

• Example scorefile: [(0,0)(.1,1)(2.1,.5) | (2.7,.1)(3,0)];

• Same example in Objective-C

MKEnvelope *env;

double times[] = {0, 0.1, 2.0, 2.7, 3.0};
double values[] = {0, 1, 0.5, 0.1, 0};
env = [MKEnvelope new]; /* or alloc/init in 2.0 */
[env setPointCount:5 xArray:times yArray:values];
[env setStickPoint:2]; /* zero-based */

• SomeMKSynthPatches (software DSP instruments) also support attack and release
parameters. If present, they override the times in theMKEnvelope . E.g. if attack is
0.1 in example above, the envelope times becomes {0,.005,0.1...}

• Scaling parameters are also common. E.g. freq1 for value when frequency envelope
is 1 andfreq0 for value when frequency envelope is 0.

• The EnvelopeEd program (included in the MusicKit distribution) helps design
envelopes.

14

Chapter 2. Class 2 MusicKit Representation Classes

2.6. MKWaveTable Class

• MKWaveTable class can supply data asDSPDatumor double.

• MKPartials objects (frequency domainMKWaveTables) are set in a similar
manner toMKEnvelopes , where (x,y,z) are harmonic number, relative amplitude,
and phase in degrees.

• MKSamples objects (time domainMKWaveTables) are set by supplying aMKSound

object orsoundfile. Currently, theMKSound’s length must be a multiple of 2, and
the sound must be 16 bit mono.

• The WaveformEditor program (ccrma ftp) helps design waveforms.

Figure 2-1. EnvelopeEd

15

Chapter 2. Class 2 MusicKit Representation Classes

Figure 2-2. Wave Form Display

2.7. Example (review)
#import <MusicKit/MusicKit.h>
#import <MKSynthPatches/MKSynthPatches.h>
MKNote *aNote;
MKPart *aPart;
MKScore *aScore;
MKEnvelope *env;

double times[] = {0,0.1,2.1,2.7,3.0};
double values[] = {0,1,0.5,0.1,0};
aScore = [[MKScore alloc] init];
aPart = [[MKPart alloc] init];
aNote = [[MKNote alloc] init];
env = [[MKEnvelope alloc] init];
[env setPointCount: 5 xArray: times yArray: values];
[env setStickPoint: 2];
[aNote setPar: MK_ampEnv toEnvelope: env];
[aNote setPar: MK_freq toDouble: 440.0];
[aNote setTimeTag: 1.0]; /* Play after 1 beat */
[aNote setDur: 1.0]; /* Duration is 1 beat */

16

Chapter 2. Class 2 MusicKit Representation Classes

[aScore addPart: aPart];
[aPart addNote: aNote];
aNote = [[MKNote alloc] init]; /* Another Note for info */
[aNote setPar: MK_synthPatch toString: @"Wave1i"];
[aPart setInfo: aNote];
[aScore writeScorefile: @"test.score"];
system("playscore test.score"); /* We’ll show how to do this in the program later. */

2.8. Assignment - Week 2

1. Do Interface Builder example (MusicKitClass/example2.wn).

2. Create an Interface Builder program that creates aMKScore algorithmically (based
on user input), writes a scorefile, and invokesplayscoreby:

system("playscore test.score");

UseExamples/example3 as an example. In a few weeks, we’ll show you how to
play the score directly from Objective-C.

17

Chapter 2. Class 2 MusicKit Representation Classes

18

Chapter 3. Class 3 Performance
Classes

3.1. Review: Classes in the MusicKit

Representation classes (7)

MKNote, MKPart , MKScore, etc.

Performance classes (16)

MKConductor , MKPerformer , MKInstrument , etc.

DSP Synthesis classes (4)

MKOrchestra , MKUnitGenerator , MKSynthPatch , MKSynthData

3.2. MusicKit Performance Classes

• TheMKConductor class provides scheduling capability.

• TheMKInstrument class (abstract) realizesMKNotes in some manner. E.g.
MKSynthInstrument realizesMKNotes on the DSP.

• TheMKPerformer class (abstract) dispatches a time-ordered stream ofMKNotes.
For example to perform aMKScore, you use aMKPartPerformer for eachMKPart

in theMKScore.

19

Chapter 3. Class 3 Performance Classes

Figure 3-1. A MusicKit Performance

Performer

NoteFilter

Instrument

Instrument

Synth

- NoteSender

- NoteReceiver

KEY

A Music Kit Performance

Conductor

3.3. The MKConductor Class

• TheMKConductor class is the primary performance class.

• Allows you to schedule an Objective-C message to be sent in the future. Example:

[aConductor sel: @selector(hello:)
to: anObject

atTime: 3.0
argCount: 1, anotherObject];

20

Chapter 3. Class 3 Performance Classes

At time 3.0, aConductor will send:

[anObject hello: anotherObject];

• A MusicKit performance requires aMKConductor . You need not create a
MKConductor explicitly. A “defaultConductor” is created for you and is obtained
by:

[MKConductor defaultConductor];

• Multiple MKConductor s may be used. Each may have its own tempo and may be
paused/resumed independently. However, the entire performance is controlled by the
MKConductor class. E.g., to start a performance, you send:

[MKConductor startPerformance];

3.4. MKConductor Class Settings

+ setClocked:

YES(clocked) messages sent at the proper time Use this mode when you want
to interact with the performance. This is the default. Example: ScorePlayer

NO (unclocked) messages sent in time order, but ASAP. Use this mode when
no interaction is required. Example:playscore

+ setFinishWhenEmpty:

YES [MKConductor finishPerformance] is automatically triggered when the
MKConductor has no more scheduled messages. This is the default. Example:
ScorePlayer.

NO The performance continues until the Application sends[Conductor
finishPerformance]. Example: Ensemble.

21

Chapter 3. Class 3 Performance Classes

MKSetDeltaT(double val) sets “scheduler advance” over MIDI and DSP. The larger
the argument, the more dependable the performance and the greater the latency. E.g.
MKSetDeltaT(0.1) sets a “delta time” of 100 ms.

3.5. The MKInstrument Class

• An abstract class that realizesMKNotes in a manner defined by the subclass.
MKInstrument s are passive, they respond toMKNotes sent to them by the user
interface or aMKPerformer .

• The subclass defines its means of realization by implementing
realizeNote:fromNoteReceiver:.

•

Table 3-1.MKInstrument subclasses provided by the MusicKit

Class Means of realization
MKPartRecorder addsMKNotes to aMKPart .

MKSynthInstrument realizesMKNotes on DSP.

MKFileWriter (abstract) writesMKNotes to a file.

MKScorefileWriter writesMKNotes to a scorefile.

•

Table 3-2. Pseudo-Instrument classes provided by MusicKit

Class Means of realization
MKMidi sendsMKNotes to MIDI via serial port

MKScoreRecorder manages set ofMKPartRecorder s

• MKNoteFilter is a special (abstract) subclass of Instrument that processes
MKNotes it will be described later.

• MKInstrument s receiveMKNotes via their “inputs”, which are small objects called

22

Chapter 3. Class 3 Performance Classes

MKNoteReceiver s. You can sendMKNotes directly to aMKNoteReceiver or use a
MKPerformer to dispatch theMKNotes (e.g. when playing aMKScore).

Table 3-3.MKNoteReceiver s provided by MKInstrument subclasses

Class Number of MKNoteReceiver s
MKSynthInstrument 1

MKPartRecorder 1

MKScoreRecorder 1 per Part in the Score

MKScorefileWriter 1 perMKPart in the scorefile

MKMidi 1 per MIDI channel + 1 extra

• You can tell anMKInstrument to realize aMKNote by sendingreceiveNote:to one
of its MKNoteReceiver s. You can obtain theMKNoteReceiver in various ways. To
get its firstMKNoteReceiver , sendnoteReceiverto theMKInstrument .

• When sendingMKNotes directly to anMKInstrument ’s MKNoteReceiver , you
must update time. Afterwards (if using the DSP) you must make sure that the DSP
command buffers are properly emptied. Example:

[MKConductor lockPerformance];
[[anInstrument noteReceiver] receiveNote: aNote];
[MKConductor unlockPerformance];

3.6. The MKPerformer Class

• An abstract class that dispatchesMKNotes in a time-ordered fashion.MKPerformer s
are active; they areMKNote dispatchers.

• Subclass implementsperform , invoked periodically by itsMKConductor , as
determined by the instance varnextPerform, reset withinperform to specify when
nextMKNote is to occur.

•

23

Chapter 3. Class 3 Performance Classes

Table 3-4.MKPerformer subclasses provided by the MusicKit

Class Means of performance
MKPartPerformer performsMKNotes from aMKPart .

MKFilePerformer (abstract) performsMKNotes from a file.

MKScorefilePerformer performsMKNotes from a scorefile.

MKScorePerformer manages a set ofMKPartPerformer s

MKMidi (abstract) performsMKNotes it receives
via MIDI

• MKPerformer s sendMKNotes via their “outputs”, small objects called
MKNoteSender s. A MKPerformer sends aMKNote to one of itsMKNoteSender s:
[aNoteSendersendNote:aNote];

Table 3-5.MKNoteSender s provided by MKPerformer subclasses.

Class Number of MKNoteSender s
MKPartPerformer 1

MKScorePerformer 1 perMKPart in theMKScore

MKScorefilePerformer 1 perMKPart in the scorefile

MKMidi 1 per MIDI channel + 1 extra

• MKPerformer s may be paused, resumed, delayed, and created dynamically. Similar
to Pla “voices” or Common Music “parts”.

3.7. Connecting MKPerformer s to
MKInstrument s

• To connect aMKPerformer to anMKInstrument , you send the messageconnect:
to aMKNoteSender of a MKPerformer with a MKNoteReceiver of an
MKInstrument as an argument. Example:

[[aPerf noteSender] connect: [anIns noteReceiver]];

24

Chapter 3. Class 3 Performance Classes

Or, equivalently:

[[anIns noteReceiver] connect: [aPerf noteSender]];

• Any number ofMKNoteReceiver s may be connected to aMKNoteSender and vica
versa. Any number ofMKPerformer s andMKInstrument s may be involved in a
single performance. Any number ofMKPerformer s may be governed by one
MKConductor

3.8. The MKNoteFilter Class

• A MKNoteFilter (subclass ofMKInstrument) is an abstract class that processes
MKNotes in some manner.

• MKNoteFilter inherits theMKNote-receiving behavior ofMKInstrument . It also
supports theMKNote-sending behavior ofMKPerformer .

• Like any otherMKInstrument , MKNoteFilter s implement
realizeNote:fromNoteReceiver:to processMKNotes it receives. Example:
MidiEcho.

• Rules:

1. CopyMKNote on write.

(Or returnMKNote to original condition)

2. CopyMKNote on store.

• Ensemble is an Application based onMKNoteFilter s.

3.9. The MKMidi Class

• MKMidi is a pseudo-MKPerformer in that it can’t predict when the nextMKNote

will occur. However, it may be treated as any otherMKPerformer .

25

Chapter 3. Class 3 Performance Classes

• There may be two instances, one for each serial port. Thus, 32 MIDI channels are
possible.

• MKMidi is a direct connection to the MIDI Device Driver. Similarly,MKOrchestra

is a direct connection to the DSP. Both implement the following protocol:

Table 3-6. Pseudo-MKPerformer Performance Protocol

open claims device

run starts device clock

stop stops device clock

close releases device after waiting

abort releases device without waiting

• To useMKMidi (or MKOrchestra), you must sendrun when you send
startPerformance to theMKConductor . Example:

[aMidi run];
[MKOrchestra run];
[MKConductor startPerformance];

3.10. Summary of Performance Classes
MKConductor

• MKPerformer , MKNoteFilter & MKInstrument

• MKPartPerformer & MKPartRecorder

• MKScorePerformer & MKScoreRecorder

• MKFilePerformer & MKFileWriter

• MKScorefilePerformer & MKScorefileWriter

• MKNoteSender & MKNoteReceiver

• MKSynthInstrument

• MKMidi

26

Chapter 3. Class 3 Performance Classes

3.11. Assignment - Week 3
Copy and modifyExamples/MusicKit/MidiEcho to do some other type of
MKNoteFilter processing on MIDI data.

The following is an exampleMKNoteFilter :

/* This class is a MKNoteFilter that generates echoes and sends them to
its successive MKNoteSenders. In MyApp, we connect the MKNoteSenders to
the MKNoteReceivers of MKMidi, thus producing MIDI echoes on successive
MIDI channels. To use this app, you need to have a MIDI synthesizer that
can receive on multiple channels, such as the Yamaha SY77 or FB01. */

#import <MusicKit/MusicKit.h>
#import "EchoFilter.h"
#define NUMCHANS 8 /* My MIDI Synthesizer handles 8 channels. */

@implementation EchoFilter : MKNoteFilter
/* A simple note filter that does MIDI echo */

{
double delay; /* delay between echos, in seconds */

}

- init
/* Called automatically when an instance is created. */

{ int i;

[super init];
delay = .1;
for (i = 0; i <= NUMCHANS; i++) /* 1 for each channel plus ’sys’ messages */

[self addNoteSender: [[MKNoteSender alloc] init]];
[self addNoteReceiver: [[MKNoteReceiver alloc] init]];
return self;

}

- setDelay: (double)delayArg
/* change the amount of delay (in seconds) between echoes */

{
delay = delayArg;
return self;

}

- connectAcross: anInstOrNoteFilter
/* Just connects successive MKNoteSenders of the receivers to successive

MKNoteReceivers of anInstOrNoteFilter. */

27

Chapter 3. Class 3 Performance Classes

{
NSArray *pList = [self noteSenders];
NSArray *iList = [anInstOrNoteFilter noteReceivers];
int i,siz;
int pSiz = [pList count];
int iSiz = [iList count];
siz = (pSiz > iSiz) ? iSiz : pSiz; /* Take min length */
for (i = 0; i < siz; i++) /* Connect them up */

[[pList objectAtIndex: i] connect: [iList objectAtIndex: i]];
return self;

}

#define NOTESENDER(_i) [noteSenders objectAtIndex: _i]

- realizeNote: aNote fromNoteReceiver: aNoteReceiver
/* Here’s where the work is done. */

{
/* This relies on the knowledge that the MKMidi object sorts its incoming

notes by channel as well as by noteTag. Thus, duplicating a note with
a particular noteTag on several channels works ok. In general, this
MKNoteFilter assumes each output (MKNoteSender) is assigned a unique
connectio (MKNoteReceiver). */

int i;
double curDly;
int velocity, noteType;
id newNote;

noteType = [aNote noteType];
if (noteType == MK_mute) {

[NOTESENDER(0) sendNote: aNote]; /* Just forward these */
return self;

}
curDly = 0;
[NOTESENDER(1) sendNote: aNote]; /* Send current note */
velocity = [aNote parAsInt: MK_velocity]; /* Grab velocity */
for (i = 2; i <= NUMCHANS; i++) { /* Make echoes */

curDly += delay;
newNote = [aNote copy]; /* Need to copy notes here */
if (noteType == MK_noteOn) /* Decrement echo velocity */

[newNote setPar: MK_velocity toInt: velocity -= 15];
/* Schedule it for later */
[NOTESENDER(i) sendAndFreeNote: newNote withDelay: curDly];

}

28

Chapter 3. Class 3 Performance Classes

return self;
}

@end

29

Chapter 3. Class 3 Performance Classes

30

Chapter 4. Class 4 DSP Synthesis
Classes

4.1. Review: Classes in the MusicKit

Representation classes (7)

MKNote, MKPart , MKScore, etc.

Performance classes (16)

MKConductor , MKPerformer , MKInstrument , etc.

DSP Synthesis classes (4)

MKOrchestra , MKUnitGenerator , MKSynthPatch , MKSynthData

(alsoMKSynthInstrument)

4.2. MusicKit Synthesis Classes

• TheMKOrchestra class manages the DSP as a whole.

• TheMKUnitGenerator class (abstract) represents a DSP processing or generating
module, such as an oscillator or a filter.

• TheMKSynthData class represents a piece of DSP memory. A special type of
MKSynthData called a "patchpoint" is used to connectMKUnitGenerator s.

• TheMKSynthPatch class (abstract) contains a list ofMKUnitGenerator s that
make up a single sound-producing entity. To produce a chord, multiple instances of a
MKSynthPatch subclass are required.

• TheMKSynthInstrument class manages a set ofMKSynthPatches (voice
allocation).

We’ll proceed as follows:

31

Chapter 4. Class 4 DSP Synthesis Classes

1. Look at the system from a high level, focusing on theMKSynthInstrument and
MKOrchestra classes.

2. Look in detail at theMKOrchestra , MKUnitGenerator andMKSynthData

classes.

3. 3. Look at theMKSynthPatch class. (next time)

Figure 4-1. MKSynthInstrument

OscgUGxy

Out2sumUGx

X

SimpleSynthPatch

OscgUGxy

Out2sumUGx

X

SimpleSynthPatch

OscgUGxy

Out2sumUGx

X

SimpleSynthPatch

SynthInstrument

4.3. A Simple Common Example

• The easiest way to do DSP synthesis is to use one of theMKSynthPatches in the
MKSynthPatch Library. These are general and implement standard synthesis

32

Chapter 4. Class 4 DSP Synthesis Classes

techniques.

• MKOrchestra uses the same protocol asMKMidi : (open, run, stop, close, abort).
First, you create and open theMKOrchestra .

• Then you create aMKSynthInstrument and set itsMKSynthPatch class (and,
optionally, synthPatchCount). Finally, you start the performance and run the
MKOrchestra :

MKSynthInstrument *synthIns;
MKOrchestra *orch = [MKOrchestra newOnDSP: 0];
synthIns = [[MKSynthInstrument alloc] init];
[orch open];
[synthIns setSynthPatchClass: [Pluck class]];
[orch run];
[MKConductor startPerformance];

• You can then sendMKNotes (as explained last class), from your user interface,
MKMidi , or aMKPerformer . E.g.:

MKNote *aNote = [[MKNote alloc] init];
[aNote setDur: 1.0];
[MKConductor lockPerformance];
[[synthIns noteReceiver] receiveNote: aNote];
[MKConductor unlockPerformance];

4.4. The MKOrchestra Class

• Manages control of DSP:

newor newOnDSP:, open, run , stop, close, abort

• Manages allocation of DSP resources:

allocUnitGenerator:,

allocSynthData:,

33

Chapter 4. Class 4 DSP Synthesis Classes

allocSynthPatch:, etc.

• Class object manages a collection of DSPs:

+ open, + run , + allocSynthPatch:, etc.

• All allocation of DSP resources is done through theMKOrchestra . You don’t send
alloc directly to aMKUnitGenerator or MKSynthPatch .

• You only need to specify allocation requests directly to theMKOrchestra when
working at a low level. If you use aMKSynthInstrument , it takes care of the
allocation for you (as in the previous example.) Similarly, if you make your own
MKSynthPatch , the actual allocation ofMKUnitGenerator s from the
MKOrchestra is done behind the scenes.

4.5. MKOrchestra Settings

+setTimed:

YES (timed) DSP keeps its own clock running for precise timing. Good for
playing scores and when envelope timing is crucial.

NO (untimed) DSP executes messages as soon as they are received.

+setFastResponse:(beforeopen)

YES Use small sound-out buffers to minimize latency.

NO Use larger sound-out buffers +more efficient from the system’s point of
view and gives the DSP more of a cushion.

+setOutputSoundfile:(beforeopen)

Sets the name of a file to which samples are written. DACs are not used in this
mode.

34

Chapter 4. Class 4 DSP Synthesis Classes

+setOutputCommandsFile:(beforeopen)

Sets the name of a file to which DSP commands are written. DACs are used in this
mode.

+setSamplingRate:(beforeopen)

Sets the sampling rate to 44100 or 22050.

4.6. The MKSynthInstrument Class

• An MKInstrument subclass that realizesMKNotes on the DSP.

• You specify whichMKSynthPatch subclass to use withsetSynthPatchClass:.

• Allocates patches based onnoteTags of incomingMKNotes. Allocation can be done
from a global or a local pool. If you sendsetSynthPatchCount:, the pool is local
(MK_MANUALALLOC) and contains the number of patches specified. Otherwise, pool
is global (MK_AUTOALLOC).

• Supports automatic preemption of the oldest running patch. You can subclass
MKSynthInstrument and override one method to provide an alternative
preemption strategy.

• Advantage of automatic mode is that there’s never any wasted of patches.

• Advantage of manual mode is that important musical parts can be given precedence.
(E.g. you can get around a screw case such as overlapping bass-line notes causing a
disappearing melody.)

• In Scorefiles, theMKSynthPatch is specified in the part info’ssynthPatch:
parameter. Manual mode is specified in the part info’ssynthPatchCount:parameter.
Example:

part p1; /* Scorefile excerpt*/
p1 synthPatch: "Pluck" synthPatchCount: 2;

35

Chapter 4. Class 4 DSP Synthesis Classes

4.7. Intro to MKUnitGenerator s

• MKUnitGenerator is abstract. It is an Objective-C class that represents a DSP
module. The MusicKit supplies a library ofMKUnitGenerator subclases. Each has
the letters UG in its name. The library is sufficient for most common uses.

• To be fast, the DSP uses parallel memory spaces X, Y, P. To get the most possible
voices in real time, it is necessary to concern ourselves with memory spaces. The
MusicKit has the best benchmarks for 56001 usage we have seen.

• EachMKUnitGenerator has some number of inputs and outputs. For each
configuration, aMKUnitGenerator subclass exists. Example:

• OnepoleUG ("master class") has 1 input and 1 output. Therefore, it has 4
subclasses ("leaf classes"):

OnepoleUGxx , OnepoleUGxy ,

OnepoleUGyx , OnepoleUGyy

• OnepoleUGxy writes its output to X memory and reads its input from Y memory.
For starters, you can just use all x memory and worry about optimization later.

• When creating your ownMKUnitGenerator , you only have to write the DSP code
and run the command-line programdspwrap, which automatically writes all the
classes for you. Youneverhave to edit the leaf classes. You mayoptionallyedit the
master class.

4.8. The MKUnitGenerator Library

Table 4-1.MKUnitGenerator s

Filters: Allpass1 , Onepole , Onezero

Oscillators: Oscg, Oscgaf , Oscgafi

Scale, mix: Add2, Mul1add2 , Mul2 , Interp , Mul2 ,
Scl1add2 ,Scl2add2 , Constant

Noise: Unoise , Snoise

36

Chapter 4. Class 4 DSP Synthesis Classes

Delay: Delay

Timed switch: Dswitcht , Dswitch

Output: Out1a , Out1b , Out2sum

• Header files for all theMKUnitGenerator s are referenced from:

#import <MKUnitGenerators/MKUnitGenerators.h>

• DSP source code is provided for all the unit generators on/usr/lib/dsp/ugsrc/* . You
can copy the DSP source code to a unit generator and modify it to create a new unit
generator. You can then run it throughdspwrap to produce the classes. This is
considered “advanced”, since it requires knowledge of 56001 assembly and will not
be covered in this class.

4.9. The MKUnitGenerator Class

• You can allocate aMKUnitGenerator from an openMKOrchestra .

[orch allocUnitGenerator: [Out2sumUGx class]];

• An allocatedMKUnitGenerator is, by definition, running on the DSP. You can
deallocate aMKUnitGenerator by sending:

[aUnitGenerator release];

• MKUnitGenerator s are in one of three possible states:

Table 4-2.MKUnitGenerator States

MK_idle Disconnected, not usable.

MK_running Running

MK_finishing Envelope release

37

Chapter 4. Class 4 DSP Synthesis Classes

• To set these states you send the following standard messages:

idle, run , finish

• These invoke the following methods, which you may implement if you make your
own MKUnitGenerator class:

idleSelf, runSelf, finishSelf

• The return value offinish (andfinishSelf) is a double that indicates the time until the
MKUnitGenerator will be finished.

• In addition to these standard methods, individualMKUnitGenerator classes
implement methods particular to their operation. Common methods include
setInput: andsetOutput:. E.g. oscillators implementsetFreq:.

4.10. Connecting MKUnitGenerator s
To connect twoMKUnitGenerator s, you use a "patchpoint", a kind ofMKSynthData ,
which you can allocate from theMKOrchestra . You must be sure to specify the
memory space corresponding to the memory space of the input/output that the
MKUnitGenerator s will be reading/writing. Example:

MKSynthData *pp;
MKUnitGenerator *osc,*out;
MKOrchestra *orch = [MKOrchestra new];
[orch open];
pp = [orch allocPatchpoint: MK_xPatch];
osc = [orch allocUnitGenerator: [OscgUGxy class]];
out = [orch allocUnitGenerator: [Out1aUGx class]];
[osc setOutput: pp];
[out setInput: pp];
[osc setFreq: 440];
[osc setAmp: 1.0];
[osc setTableToSineROM];
[orch run];
[osc run];
[out run];
/* You now hear a full-amplitude sine wave at 440 hz */

38

Chapter 4. Class 4 DSP Synthesis Classes

Patchpoints may be reused, if you’re careful about the order in which
MKUnitGenerator s run. (More on this later.)

4.11. The MKSynthData Class

• In addition to patchpoints, you may need other DSP memory. For example, you may
want to load a wave table. To do this, you allocate aMKSynthData object.

• To allocate aMKSynthData , you specify the length and the space:

MKSynthData *sd = [orch allocSynthData: MK_xData length: 256];

• To load theMKSynthData with an array:

DSPDatum someData[256] = {0, 1, 2, 3, ...};
[sd setData: someData];

• To load theMKSynthData with a constant:

[sd setToConstant: 1];

• Since patchpoints are actuallyMKSynthData , you can use these methods for them as
well.

• For convenience,MKWaveTables have adataDSPLength:method:

[sd setData: [aWaveTable dataDSPLength: 256]];

39

Chapter 4. Class 4 DSP Synthesis Classes

4.12. Simple Example of a Collection of
MKUnitGenerator s, Operated from a User
Interface

#import <MusicKit/MusicKit.h>
#import <MKUnitGenerators/MKUnitGenerators.h>
#import "MyCustomObject.h"

@implementation MyCustomObject

MKSynthData *pp;
MKUnitGenerator *osc,*out;

+ init
{

MKOrchestra *orch = [MKOrchestra new];
[MKUnitGenerator enableErrorChecking: YES];
[orch open];
pp = [orch allocPatchpoint: MK_xData];
osc = [orch allocUnitGenerator: [OscgUGxy class]];
out = [orch allocUnitGenerator: [Out2sumUGx class]];
[osc setOutput: pp];
[out setInput: pp];
[osc setFreq: 440];
[osc setAmp: 0.1];
[osc setTableToSineROM];
[osc run];
[out run];
[orch run];
[MKConductor startPerformance];

}

+ setFreqFrom: sender
{

[MKConductor lockPerformance];
[osc setFreq: [sender doubleValue]];
[MKConductor unlockPerformance];

}

+ setBearingFrom: sender
{

[MKConductor lockPerformance];

40

Chapter 4. Class 4 DSP Synthesis Classes

[out setBearing: [sender doubleValue]];
[MKConductor unlockPerformance];

}

+ setAmplitudeFrom: sender
{

[MKConductor lockPerformance];
[osc setAmp: [sender doubleValue]];
[MKConductor unlockPerformance];

}

@end

4.13. Assignment - Week 4
Modify Examples/example4 to make a different sound. Try using some other
MKUnitGenerator s.

Read the documentation on DSP synthesis in the MusicKit Concepts Manual
(http://www.musickit.org/MusicKitConcepts). Next week we’ll cover
MKSynthPatches .

41

Chapter 4. Class 4 DSP Synthesis Classes

42

Chapter 5. Class 5 MKSynthPatch es

5.1. Review: Classes in the MusicKit

Representation classes (7)

MKNote, MKPart , MKScore, etc.

Performance classes (16)

MKConductor , MKPerformer , MKInstrument , etc.

DSP Synthesis classes (5)

MKOrchestra , MKUnitGenerator , MKSynthPatch , MKSynthData ,
MKPatchTemplate (alsoMKSynthInstrument)

5.2. MusicKit Synthesis Classes (review)

• TheMKOrchestra class manages the DSP as a whole.

• TheMKUnitGenerator class (abstract) represents a DSP processing or generating
module, such as an oscillator or a filter.

• TheMKSynthData class represents a piece of DSP memory. A special type of
MKSynthData called a “patchpoint” is used to connectMKUnitGenerator s.

• TheMKSynthPatch class (abstract) contains a list ofMKUnitGenerator s that
make up a single sound-producing entity. To produce a chord, multiple instances of a
MKSynthPatch subclass are required.

• TheMKSynthInstrument class manages a set ofMKSynthPatch es (voice
allocation).

• TheMKPatchTemplate class is an auxiliary class used to define the
MKUnitGenerator s that make up aMKSynthPatch .

43

Chapter 5. Class 5 MKSynthPatch es

5.3. The MKSynthPatch Class

• Abstract class. You never directly instantiate an instance of theMKSynthPatch

class. You instantiate its subclasses.

• Each subclass represents a particular synthesis technique. E.g. frequency modulation
synthesis, additive synthesis, etc.

• An instance is a single sound-producing entity. Can not ordinarily produce chords.

• A collections ofMKSynthPatch instances of a particular class are most
conveniently managed by aMKSynthInstrument . Multiple collections of instances
of different classes may be managed by multipleMKSynthInstruments .

• Alternatively you can allocate and manage a collection ofMKSynthPatch es
yourself:

id sp = [orch allocSynthPatch: [Pluck class]];

• The MusicKit provides a library ofMKSynthPatch es.

5.4. The MusicKit SynthPatch Library Classes

Table 5-1. WaveTable synthesis:

Wave1 “1” stands for one oscillator

Wave1i “i” stands for interpolating oscillator

Wave1v “v” stands for vibrato (random,periodic)

Wave1vi

DBWave1vi “DB” stands for “data base of timbres”

DBWave2vi “2” stands for two oscillators

Table 5-2. Frequency Modulation synthesis:

Fm1 “1” stands for one modulator

Fm1i “i” stands for interpolating carrier

44

Chapter 5. Class 5 MKSynthPatch es

Fm1v “v” stands for vibrato (random,periodic)

Fm1vi

DBFm1vi “DB” stands for “data base of timbres”

Fm2pvi “2p” stands for 2 modulators in parallel

Fm2cvi “2c” stands for 2 modulators in cascade

Fm2pnvi “n” stands for a noise modulator

Fm2cnvi

Table 5-3. Plucked string synthesis:

Pluck Karplus/Strong/Jaffe/Smith plucked string
simulation

All Wave and FmMKSynthPatch es have separate envelopes with arbitrarily many
points on amplitude, frequency, and the various FM indecies. Vibrato may run at audio
rates. Both carrier and modulators may have any periodic waveform.

5.5. The MKSynthPatch Library Timbre Data
Base

You specify a “timbre” as a string to thewaveform parameter. For theDBFm1vi, you
can also specify the modulating wave as a timbre.

Each “timbre” represents a family ofMKWaveTables , one for each frequency range.
This is very similar to how samplers work. By changing waveforms as the pitch
changes, the “munchkin” effect is avoided. Also, the waveforms are band-limited,
preventing aliasing.

List of timbres, derived from analysis of recorded data, includes:

soprano, tenor and bass voices singing various vowels woodwind instrments such as
clarinet, oboe and sax. stringed instruments such as violin and cello

piano

various electronic waveforms such as square wave

Interpolation from one timbre to another is supported in some of theMKSynthPatch es.

In release 3.0 the data base is user-extendable.

45

Chapter 5. Class 5 MKSynthPatch es

5.6. Making Your Own MKSynthPatch Class
A MKSynthPatch subclass consists of three fundamental parts:

1. A specification ofa collection ofMKUnitGenerator s Classesinstances of which
comprise eachMKSynthPatch instance. This is done using an auxiliary object
called a “MKPatchTemplate .” A single MKSynthPatch class may supply various
MKPatchTemplates representing various “flavors” of theMKSynthPatch . For
example, there may be an additive synthesisMKSynthPatch with an 8-oscillator
flavor and a 16-oscillator flavor. This is done by supplying the class method:

+ patchTemplateFor:

2. A description of theinterconnectionsof theMKUnitGenerator instances. This
may be done in theMKPatchTemplate or in theMKSynthPatch init instance
method.

3. A description of thebehavior of theMKSynthPatch when sent notes. This is done
by supplying the instance methods:

noteOnSelf:

noteOffSelf:

noteUpdateSelf:

noteEnd

46

Chapter 5. Class 5 MKSynthPatch es

Figure 5-1. A Simple Synth Patch

OscgUGxy

Out2sumUGx

X

SimpleSynthPatch

+patchTemplateFor:aNote { . . . }

-init { . . . }

-noteOnSelf:aNote { . . . }

-noteOffSelf:aNote { . . . }

-noteEnd { . . . }

5.7. Specifying a Collection of
MKUnitGenerator s

To specify the collection, theMKSynthPatch subclass implements a single class
method:

+ patchTemplateFor: aNote

This method creates theMKPatchTemplate used to represent the connections. The
MKNote passed to the method may be used to choose between various “flavors”.

TheMKPatchTemplate consists of a list of theMKUnitGenerator classesand
MKSynthData requestsneeded to build an instance of theMKSynthPatch .

TheMKOrchestra uses theMKPatchTemplate to build an instance of the
MKSynthPatch . For each entry in theMKPatchTemplate , it allocates an appropriate

47

Chapter 5. Class 5 MKSynthPatch es

MKUnitGenerator or MKSynthData instance. The collection ofMKUnitGenerator s
appears in theMKSynthPatch instance as aList object in the instance variable
synthElements.The instance can retrieve a particularMKUnitGenerator or
MKSynthData instance by sending itself the message:

+ synthElementAt: (int) index

TheMKUnitGenerator s appear in the order they were specified in the
MKPatchTemplate . For convenience, theMKPatchTemplate specification methods
return the integer used to later access the particular element. By convention a
MKSynthPatch stores this integer in a static int variable.

MKUnitGenerator s may be specified as ordered or unordered. By default, they are
ordered. Note that you must specify the particularMKUnitGenerator leaf class.

MKSynthData are specified by supplying a memory space and a length.

Example for simpleMKSynthPatch :

static int sc, patchPoint, out;

+ patchTemplateFor: aNote
/* We ignore aNote in this simple MKSynthPatch */
{ static PatchTemplate *t = nil;

if (!t) { /* Only create template the first time. */
t = [[PatchTemplate alloc] init];
osc = [t addUnitGenerator: [OscgUGxy class]];
patchPoint = [t addPatchpoint: MK_xPatch];

out = [t addUnitGenerator: [Out2sumUGx class]];
}
return t;

}

Alternative to MKPatchTemplate :. Just allocate directly fromMKOrchestra in -init
method. The advantage of using aMKPatchTemplate is that the patch is stored as data
and aborting on allocation failure is handled automatically.

48

Chapter 5. Class 5 MKSynthPatch es

5.8. Specifying the Connections
Two MKUnitGenerator instances communicate via a patchPoint. The patchPoint’s
memory space must match the space of the input or output to which it is connected.
Connections are made by sending an appropriate message to theMKUnitGenerator s
with the patchPoint as an argument.

There are two ways to specify the connections:

1. 1. In theinit method.

2. 2. In theMKPatchTemplate itself.

It is a bit easier to specify the connections in theinit method. The only advantage of
using theMKPatchTemplate is that it allowsMKSynthPatch es to be more easily
edited using a patch editor, since the connections can be stored as data using the
NXTypedStream mechanism. For now, we will address only theinit approach.

Let’s continue our example. To make it easy to read, let’s define some macros:

#define OSC [self synthElementAt: osc]
#define OUT [self synthElementAt: out]
#define PATCHPOINT [self synthElementAt: patchpoint]

+ init
{ [OSC setOutput:PATCHPOINT];

[OUT setInput:PATCHPOINT];
return self;

}

5.9. Specifying the Performance Behavior
Behavior is defined by supplying the instance methods:

noteOnSelf:

noteUpdateSelf:

noteOffSelf:

noteEndSelf

These are invoked as follows:

49

Chapter 5. Class 5 MKSynthPatch es

1. When anoteOn or noteDur arrives, thenoteOn: message is sent. This invokes
noteOnSelf:

2. When anoteUpdate arrives, thenoteUpdate: message is sent. This invokes
noteUpdateSelf:

3. When anoteOff arrives or the end of the duration occurs, thenoteOff: message
is sent. This invokesnoteOffSelf: noteOffSelf: returns the time required to
finish, in seconds. This is ordinarily the time for the amplitude envelope to finish
its release portion.

4. When the phrase is really finished (the release portion is finished) , thenoteEnd
message is sent. This invokesnoteEndSelf

Like a MKUnitGenerator , aMKSynthPatch may be in one of three states:

Table 5-4.MKSynthPatch States

MK_idle Not producing sound.

MK_running Running.

MK_finishing MKEnvelope release.

• A MKSynthPatch is in the idle state when it is first created or after it has received
noteEnd

• A MKSynthPatch is in the running state when it has received anoteOn or noteDur .

• A MKSynthPatch is in the finishing state when it has received anoteOff or its
duration has elapsed.

• The only requirement for the behavior of aMKSynthPatch is that it be left “safe”
and “quiet” when idle.

• An easy way to make aMKSynthPatch quiet is to set its amplitude to 0.

5.10. Specifying the Performance Behavior +
Example

For our simple example we make several assumptions:

1. We ignore noteUpdates for now.

50

Chapter 5. Class 5 MKSynthPatch es

2. We assume that every parameter about which we care is present in every note.

Since our simple example has no envelopes, we need not implement thenoteOffSelf:
method. We can just use the default version that returns 0.

So we need to provide only two methods,noteOnSelf:andnoteEndSelf.

+ noteOnSelf: aNote
{

[OSC setFreq: [aNote freq]];
[OSC setAmp: [aNote parAsDouble: MK_amp]];
[OUT setBearing: [aNote parAsDouble: MK_bearing]];
[synthElements makeObjectsPerform: @selector(run)];
return self;

}

+ noteEndSelf
{

[OSC setAmp: 0.0];
return self;

}

5.11. Complete Example
#import <MusicKit/MusicKit.h>
#import <MKUnitGenerators/MKUnitGenerators.h>

@implementation MySynthPatch : MKSynthPatch { }

static int osc, patchPoint, out; /* Used as indexes into synthElements array */
+ patchTemplateFor: aNote
{

static PatchTemplate *t = nil;

if (!t) { /* Only create template the first time. */
t = [[PatchTemplate alloc] init];

osc = [t addUnitGenerator: [OscgUGxy class]];
patchPoint = [t addPatchpoint: MK_xPatch];
out = [t addUnitGenerator: [Out2sumUGx class]];

}
return t;

}

51

Chapter 5. Class 5 MKSynthPatch es

#define OSC [self synthElementAt: osc]
#define OUT [self synthElementAt: out]
#define PATCHPOINT [self synthElementAt: patchpoint]

+ init /* Sent once when object is created */
{

[OSC setOutput: PATCHPOINT];
[OUT setInput: PATCHPOINT];

return self;
}

+noteOnSelf: aNote
{

[OSC setFreq: [aNote freq]];
[OSC setAmp: [aNote parAsDouble: MK_amp]];

[OUT setBearing: [aNote parAsDouble: MK_bearing]];
[synthElements makeObjectsPerform: @selector(run)];
return self;

}

+ noteEndSelf
{

[OSC setAmp: 0.0];
return self;

}

5.12. Fancier SynthPatches
To supportnoteUpdates , you merely supply anoteUpdateSelf: method. It is up to
you what parameters you want to allow to change in anoteUpdate . Example:

+ noteUpdateSelf: aNote
{

[OSC setFreq: [aNote freq]];
[OSC setAmp: [aNote parAsDouble: MK_amp]];

[OUT setBearing: [aNote parAsDouble: MK_bearing]];
return self;

}

52

Chapter 5. Class 5 MKSynthPatch es

To relax the restriction that allMKNotes need to have every parameter present, you can
set the parameter innoteOnSelf:andnoteUpdateSelf:only when it is present, store its
value in an instance variable, and set it back to a default value innoteEnd . E.g., if
there is an instance variablefreq.

+ noteOnSelf: aNote
{

if ([aNote isParPresent: MK_freq])
freq = [aNote freq];

[OSC setFreq: freq];
. . .

}

+ noteEndSelf
{

freq = 440;
[OSC setAmp: 0.0];
return self;

}

To add an amplitude envelope, we need to use anAsympUG MKUnitGenerator to
create the envelope, write it to a patch point and use an oscillator that is capable of
reading its amplitude from a patchpoint. TheOscgafiUG supports reading both its
amplitude and its frequency from a patchpoint. The C functionMKUpdateAsymp()

makes it easy to apply an envelope withAsympUG and supports attack and release
times, scaling values, and phrase transitions:

MKUpdateAsymp(
AsympUG *anAsymp, // asymp instance
MKEnvelope *ampEnv, // the envelope
double amp0, // value when env at 0
double amp1, // value when env at 1
double ampAtt, // attack time
double ampRel, // release time
double portamento, // transition time on rearticulation
MKPhraseStatus phraseStatus); // see below

Any argument may be omitted. For double arguments, omitting the argument means
supplying the special valueMK_NODVAL(which stands for “No Double Value”).

Phrase status is obtained by sending [self phraseStatus];

53

Chapter 5. Class 5 MKSynthPatch es

Figure 5-2. noteTypes Time Line

Time Line

noteOn:

 on

noteOn:

 rearticulate

noteUpdate:

 update

noteOff:

 off

Time Line (cont.)

noteUpdate:

 offUpdate

noteEnd

 off

5.13. The Complete Story About Phrase Status
Phrase status defines, within aMKSynthPatch , all the possible places we can be in a
MusicKit phrase:

Table 5-5. Phrase States

MK_phraseOn New phrase

MK_phrasePreempt New phrase, but from preempted patch

MK_phraseUpdate Note update

MK_phraseOff Note off

MK_phraseOffUpdate Note update during release

MK_phraseEnd Note end

MK_noPhraseStatus Not in aMKSynthPatch method.

Preemption occurs when there is not enough DSP resources to support the requested
number of simultaneous notes. It is controlled by theMKSynthInstrument . The

54

Chapter 5. Class 5 MKSynthPatch es

MKSynthPatch designer need only implement a method:

+ preemptFor: newNote

A typical implementation aborts any running envelopes. Example:

+ preemptFor: newNote
{

[ampEnvelopeAsymp preemptEnvelope];
return self;

}

5.14. Assignment - Week 5
StudyExamples/exampleSynthPatch .

Modify Envy.m to set theMKWaveTable of the synthesis. Then recompile it, create a
scorefile that specifies aMKWaveTable, and test it.

Modify any one of the example synthpatches on that directory to do some other sort of
synthesis, such as amplitude modulation.

55

Chapter 5. Class 5 MKSynthPatch es

56

	MusicKit Tutorials
	Table of Contents
	List of Tables
	List of Figures
	Editors Preface
	Chapter 1. Class 1 Object Oriented Programming in ObjectiveC
	1.1. ObjectiveC
	1.2. Encapsulation (motivation)
	1.3. Messaging (motivation)
	1.4. Basic ObjectiveC Terminology
	1.5. Inheritance
	1.6. Various Details
	1.7. Example Using ObjectiveC Classes
	1.8. Example Defining An ObjectiveC Class
	1.9. OpenStep Software Kits
	1.10. Interface Builder
	1.11. Assignments Week 1

	Chapter 2. Class 2 MusicKit Representation Classes
	2.1. Review: Classes in the MusicKit
	2.2. MusicKit Representation Classes
	2.3. The MKNote Class
	2.4. MKNote Parameters
	2.5. MKEnvelope Class
	2.6. MKWaveTable Class
	2.7. Example (review)
	2.8. Assignment Week 2

	Chapter 3. Class 3 Performance Classes
	3.1. Review: Classes in the MusicKit
	3.2. MusicKit Performance Classes
	3.3. The MKConductor Class
	3.4. MKConductor Class Settings
	

	3.5. The MKInstrument Class
	3.6. The MKPerformer Class
	3.7. Connecting MKPerformers to MKInstruments
	3.8. The MKNoteFilter Class
	3.9. The MKMidi Class
	3.10. Summary of Performance Classes
	3.11. Assignment Week 3

	Chapter 4. Class 4 DSP Synthesis Classes
	4.1. Review: Classes in the MusicKit
	4.2. MusicKit Synthesis Classes
	4.3. A Simple Common Example
	4.4. The MKOrchestra Class
	4.5. MKOrchestra Settings
	

	4.6. The MKSynthInstrument Class
	4.7. Intro to MKUnitGenerators
	4.8. The MKUnitGenerator Library
	4.9. The MKUnitGenerator Class
	4.10. Connecting MKUnitGenerators
	4.11. The MKSynthData Class
	4.12. Simple Example of a Collection of MKUnitGenerators, Operated from a User Interface
	4.13. Assignment Week 4

	Chapter 5. Class 5 MKSynthPatches
	5.1. Review: Classes in the MusicKit
	5.2. MusicKit Synthesis Classes (review)
	5.3. The MKSynthPatch Class
	5.4. The MusicKit SynthPatch Library Classes
	5.5. The MKSynthPatch Library Timbre Data Base
	5.6. Making Your Own MKSynthPatch Class
	5.7. Specifying a Collection of MKUnitGenerators
	5.8. Specifying the Connections
	5.9. Specifying the Performance Behavior
	5.10. Specifying the Performance Behavior + Example
	5.11. Complete Example
	5.12. Fancier SynthPatches
	5.13. The Complete Story About Phrase Status
	5.14. Assignment Week 5

