
FORTH
n u 8

I i m e sions
Volume 5. Number 6

MarchlApril 1984
$2.50

FEATURES
PLll Data Structures Bruce W . Walker 8
Faster Dictionary Searches David W . Harralson 14
Revisited: Recursive Decompiler Norman L . Hills 16
Interview: William F . Ragsdale .. 20
DO . . .WHEN . . . LOOP Construct R.W. Gray 27
Fixed-Point Square Roots Nathaniel Grossman ... 28

DEPARTM E NTS
Letters ... 3
Editorial: Forth on Tap ... 3
Ask the Doctor: COUNT William F . Ragsdale 6
Fig Chapters ... 32
Techniques Tutorial:

Products & Announcements ... 40
Chapter News .. John D . Hall 42

Self-Defining Words Henry Laxen 35

8080/280 FIG-FORTH tor CPIM & CDOS systems
FULL-SCREEN EDITOR for DISK & MEMORY

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and
debugging them. You receive TWO diskettes (see below for formats available). The first disk is readable by
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG 280 mnemonics. This
disk also contains executable FORTH.COM files for 280 & 8080 processors and a special one for Cromemco
3102 terminals.

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR
DISK 8, MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE-
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data
base handler, an 8080 ASSEMBLER and a recursive decompiler.

The disks are packaged in a ring binder along with a complete listing of the FULL-SCREEN EDITOR and a
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, a complete glossary,
memory map, installation instructions and the FIG line editor listing and instructions).

This entire work is placed in the public domain in the mannerand spirit of the work upon which it is based.
Copies may be distributed when proper notices are included.

0 FIG-FORTH & Full Screen EDITOR package
USA Foreign

AIR
Minimum system requirements:
80x24 video screen w/ cursor addressability
8080 or 280 or compatible cpu
CP/M or compatible operating system w/ 32K or more user RAM

0 8" SSSD for CP/M (Single Side, Single Density)

0 8" SSSD 0 8" SSDD 0 5'h"SSSD 0 5lh" SSDD

0 8" DSSD 0 8" DSDD 0 5%'' DSSD 0 5%'' DSDD

Select disk format below, (soft sectored only) S50 S65

Cromemco CDOS formats, Single Side, S/D Density

Cromemco CDOS formats, Double Side, S/D Density

Other formats are being consldered, tell us your needs.
0 Printed 280 Assembly listing w/ xref (Zilog mnemonics) $15 $18
0 Printed 8080 Assembly listing ... $15 $18

TOTAL $- -
Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check

or money order in US Funds on US bank, payable to:
Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, AZ 85016
(602) 956-7678

r . > - - - e V NO 6 FORTH Dimensions 2

FORTH Dimensions
Published by Forth Interest Group

Volume V, No. 6
March/April 1984

Editor
Marlin Ouverson

Publisher
Roy C. Martens

Typesetting/Production
LARC Computing, Inc.

Cover Art
Al McCahon

Forth Dimensions solicits editorial material,
comments and letters. No responsibility is
assumed for accuracy of material submitted.
Unless noted otherwise, material published by
the Forth Interest Group is in the public
domain. Such material may be reproduced
with credit given to the author and the Forth
Interest Group.

Subscription to Forth Dimensions is free
with membership in the Forth Interest Group
at $15.00 per year ($27.00 foreign air). For
membership, change of address and/or to
submit material, the address is: Forth Interest
Group, P.O. Box 1105, San Carlos, CA
94070.

Editorial

Forth on lap
We are pleased to announce a new

department to appear regularly in our
pages. “Ask the Doctor” is addressed
specifically to readers’ needs. If you
are looking for an answer and can’t
seem to find it, or don’t understand a
fine point of Forth programming, write
a short letter explaining your problem.
This is an especially good opportunity
for some of you newer Forth folks who
have questions. So write!

The new column is being handled by
FIG President Bill Ragsdale. If you
haven’t yet made his acquaintance,
turn to the interview with him in this is-
sue - you’ll also learn about FIG’S
origin, the evolution of Forth and Bill’s
insights into the Forth marketplace.

Do you ever find yourself modifying
perfectly good code just because your
fingers are itchy? Maybe it’s only
“keyboard withdrawal. ” Instead of in-
finite revision, why not write an arti-
cle? Or if you are stuck for good ideas,

letters to the Editor
Appeal to Vendors

Dear FIG,
As a neophyte Forth enthusiast and

typical Compute!-reading consumer, I
would like to use this letter to tell Forth
vendors what I think they ought to pro-
duce for the mass market. First of all, I
think we all owe an enormous debt to
Laxen and Perry for their F83 model,
which I’m sure most of you have a
copy of. The VIEW feature alone puts it
in a class by itself. Why not use it as the
basis of a really deluxe Forth system?
Obviously, source code is essential for
such a system; but who wants to pro-
gram in Forth without source code?
I’m willing to pay extra for it, but I
think it must be available. The follow-
ing is a list of enhancements to F83
that, if put into a nice package with
good documentation and support,
could sell all day long at $250 per copy.

ring up one of the on-line Forth con-
ferences. Arpanet carries a list of peo-
ple interested in and/or using Forth.
The list currently operates as a “delay-
ed distribution, non-digestified” mail-
ing list of people to whom accumulated
messages are sent. To send messages to
the list, address them to:

FORTH@SRI-CSL or

To get added to the list, send a note

And don’t forget that FIG has its own
CBBS system: call 415-538-3580, an-
swer a couple of simple questions and
type “Read conferences” to see what
subject areas are in progress. There is
lots of help, and lots of categories like
software, Forth standards, humor,
vendors, enquiries, marketplace, etc.
Give it a try; you’re sure to find some-
thing useful.

Meanwhile, if you are reading this at
the West Coast Computer Faire, drop

INFO-FORTH @SRI-CSL.

to FORTH-REQUESTaSRI-CSL.

A decent screen editor.
Improved shadow-screen docu-

mentation, including high-level source
for code words. Include two shadow
screens per source screen, if necessary.
Ideally, this would just about eliminate
the need for a big manual.

Automatic inclusion of new files in

Toggle to automatically drop into
the editor if an error occurs while com-
piling a screen.

Separate heads and bodies. (An
earlier version of the F83 meta-com-
piler had this feature.)

The ability to generate ROMable
code. Ideally, the rneta-compiler would
put the bodies of only the words ac-
tually used into a file that could be read
like a .COM file in CP/M.

An optimizer feature like Auto-
Opt from Harvard Softworks or the
Native Code Compiler from Labora-

VIEW.

by the FIG booth and say hello, Or at-
tend one of the lectures and demon-
strations. And since this is the last issue
in the current volume of Forth Dimen-
sions, it’s time to renew your member-
ship! Do it in person at the Faire or
mail the reply envelope included this
month, but do it soon - you won’t
want to miss the coming issues!

--Marlin Ouverson
Editor

SEND A CHECK TO FIG TODAY!
MAKE THIS YOUR BEGINNING1

RENEW NOW!

Volume V, No. 6 3 FORTH Dimensions

tory Microsystems. One would like to
be able either to code a single word or
to have the program find that mystical
five percent of the source which really
slows the application down, and have
those words optimized automatically.

Pre-compiled (and pre-optimized?)
source code which could be loaded
from a screen.

Perhaps even a “library” file of
pre-compiled blocks which could be
loaded by a high-level word name. This
would be the equivalent of procedures
or functions in C and Pascal. The idea
is to get these things loaded automati-
cally from a different file without hav-
ing to leave FORTH.BLK (or whatever)
and open another file. Of course, hard-
core Forth freaks would think this is
silly, but as a typical consumer, I am
not yet willing to abandon CP/M and

With these enhancement to F83, I
think the average tinkerer like me has
an ideal (and commercially attractive)
environment for developing software.
As one who would rather buy VisiCalc
than re-write it, but who occasionally

MS-DOS.

has the need to write programs, I place
a premium on development time; and
that, of course, is one of the areas in
which Forth excels. I think this should
be stressed more in advertising. With
the system outlined above, one would
scarcely need to take his eyes off the
screen to write a small program. And
with optimized, ROMable code, who
could complain about inefficiency?

Sincerely,
Alan Huth

1828A Diamond
San Diego, CA 92109

VIC Dump

Dear Sirs:
I am a novice Forth enthusiast using

a system that many consider a toy: the
VIC-20 by Commodore. I have had
my computer for almost a year now,
and have become proficient in BASIC
and Pilot, and am adequate in As-
sembler.

I have to say that since I got my
Forth cartridge (from HES) I have
done little or no programming in any-
thing but Forth. The language is not
only elegant and versatile, it’s also lots
of fun. My first project was converting
BREAKFORTH (BYTE, August 1980)
to run on my computer.

Since then, I have implemented the
data base in Leo Brodie’s book, Start-
ing Forth on my VIC and have devel-
oped an artificial intelligence demon-
stration program based on an algo-
rithm in David Heiserman’s Projects in
Machine Intelligence for Your Home
Computer.

I’ve included in this letter some code
that dumps the screen to a printer with
a little demo word included. This defi-
nition is, unfortunately, machine spe-
cific because it converts Commodore
screen codes to ASCII by PEEKing
each screen location. It would be easy
to convert this to a CBM-64 and, I
think, to most other PCs.

FORTH: FOR ZW, 8086,68OoO, and IBW PC
GRAPHICS 0 GAMES0 COMMUNICATIONS0 ROBOTICS

DATA ACQUISITION 0 PROCESS CONTROL
0 FORTH programs are instantly FORTH Application Development Systems

include interpreterlcompiler with virtual memory
management and multi tasking, assembler. full
screen edltor. decompiler, utilities and 200 page microprocessors.

FORTH IS InteraCtlVe and Conver- manual Standard random access files used lor
satlonal, but 20 times faster than screen storage, extensions provided for access to
RASIC all operating system functions

portable across the four most popular

all interrupts, memory locations, and $100.00; 68ooo FORTH forCP/M-68K. $250.00.
ilo Dorts. FORTH + Svstems are 32 bit implementations

FORTH allowS full to DOS that allow creation of programs as large as 1
megabyte The entire memory address space of files and functions the 68000 or 8086/88 ts supported directly

$250 00
0 FORTH application programs can pc FORTH +

be compiled Into turnkey COM =FORTH +forCP/M-86or MS-DOS $250 00
and distributed with no license fee WOOFORTH+ forCPIM-68K $400 00

Cross Compilers are Extension Packages available include soft-
available for ROM’ed or disk based ap- ware floating point, cross compilers, INTEL
plicatlons on most microprocessors. 8087 support. AMD 951 1 support. advanced col-
Trademarks IBM International Business Machines Or graphics- custom character sets. symbolic
corp C P ~ M Digital Research inc PClForIh + and debugger, telecommunlcations, cross reference
PClGEN Laboratory Microsystems Inc utility. B-tree file manager Write for brochure

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to (213) 306-7412

4 V ~ u m V. No. 6 FORTH Dimensions

0
3

b
9
rp

.

Ask the Doctor
Bill Ragsdale

Hayward, California

Throughout the history of the Forth
Interest Group, we have gotten letters
of inquiry on the application and learn-
ing of Forth. When possible, personal
answers were sent. This new column in-
tends to broaden users’ questions into
a forum of general interest. The Doc-
tor solicits your questions about Forth
for future columns. Specialists will be
called in for consultation on vendor-
specific questions. Just address your
question to: Ask the Doctor, P.O. Box
1105, San Carlos, CA 94070.

This month, the good Doctor ans-
wers the question: “I always seem to
use COUNT just before TYPE. If this is
the only use, why shouldn’t TYPE in-
clude the COUNT function?’’

Answer: Forth generally keeps word
definitions short and generalized. You
have a large number of simple com-
mands at your disposal and the word
COUNT is a good example of this gener-
ality. It accepts the address in memory
of a text string which begins with a
character-count byte. COUNT fetches
this count and advances the address by
one to the first character of the se-
quence. The FIG Model Glossary and
Forth-83 define the word in these
terms and suggest just the typical use
with TYPE. If TYPE included the
counting function, then you would
need another version of TYPE to handle
the cases in which the count byte did
not precede the text in memory.

But more uses are available than just
with TYPE.

Definition of COUNT

itself. Its fig-FORTH definition is:

: COUNT DUP 1+ S W P CQ ;

We had first better examine COUNT

A definition more obvious in action
is:

: COUNT l + DUP 1- C@ ;

B l k 1 2

0 (E x a m p l e s f o r C O U N T R3feb13 W F R)

1 (o p t i o n s t o u p g a t e f i g - F O R T H words to F o r t h 83)

2 : CRFATF n VARIARCF -2 ALLOT :

3 : WORD WORD wFRF ;

4

5

6 (F x a m n l e #1)

7 D F C I M A L 1 4 ? O N S T A N T Q U O T E S 3 3 C O N S T A N T EIL

8

9 : V A K F C R F A T F Q U O T E S WORD C @ 1+ A L L O T ;

1 0

11 MAKF DPMO T h i s is d e m o t e x t ”

1 2

1 7

14

1 5

R l k 1 3

0 (F x a m p l e s f o r C O U N T R3feb13 W F R)

1

2 (F x a m p l e t ?)

7 : D A Y S : (c o m p i l e n d a y n a m e s)

4 o DO RL WORD CP I+ A L L O T m o p ;

5

6 C R E A T F WEEK

7 ? D A Y S : S l I N D F Y MONDAV T U E S D A Y

8 W E D N E S D A Y T H U R S D A Y F R I D A Y S A T U R D A Y

9

i n : STEP (0 . -6 --- a d d r)

11 ? n r i ~ T F n no COUNT t LOOP THEM :

1 2

1 3 : nnv (d a y # --- a d d r e s s 1

I 1- 0 M I N 6 MAX WFFK S W A P S T F P C O U N T T Y P F ; I l4

I l5

FORTH Dimensions 6 Volume V, No. 6

R l k 14

0 (F x a m p l e s f o r COUNT 8 3 f e h 1 3 WFR)

1

2 (F x a m p l e # 3)

3 : POX CRFATF C , C, C , ;

4 : SHAPF (a d d r e s s ---)

c, COUNT . COIJNT . C@ ;

6

7 1 1 i n BOX ROD

R 3 3 3 ROX CURF

9 1 2 3 POX P a R F G L F L F P I P F D

i n

11 (F x a m o l e # A)

12 CRFATF WORKSPACF 31 ALLOT

1 3 : FRESH (c lea r t h e b u f f e r t o b l a n k s)

1 4 3 0 WnRKSPACE C! (S t o r e e m p t y c o u n t)

15 WORWPECF COUNT Er, Frr,r, ;

The latter definition increments the
address, duplicates it, backs up and
fetches the count byte from memory. If
your system is still fig-FORTH you will
have to update a couple of words to
Forth-83. Just load the corrections
given in Block #12 of the figures.

Counted Text
Example one consists of a word to

make named string literals and display
them. The word MAKE creates a new
word in the dictionary and adds the
following text ending in double quote
marks. After loading from Block #12,
just type DEMO COUNT TYPE to see the
string printed. From the address left by
DEMO, COUNT converts to the start of
text and the character count, just as ex-
pected by TYPE. This is the usual use of
COUNT.

Ending Addresses
Another use of COUNT is to find the

ending address of a string (with count).
This is done by adding the address and

character count together. Example two
places the days of the week sequentially
in memory. You may then request any
day by its number. The days are num-
bered 1 through 7 starting with Sun-
day.

In the word STEP we are using COUNT
in the phrase DO COUNT + LOOP to get
the character count of the string and
add this count to the address of the
first character. This steps to the start of
the next string. The ?DUP IF. . . THEN
structure hops over this loop if we want
the address of the first (zero-th) day.

We conclude DAY using COUNT in its
usual form, to get the count of the day
name we wish to display. You may test
DAY by typing: 5 DAY and seeing
THURSDAY output.

Scanning Bytes
Notice that COUNT fetches a byte

from memory and increments to the
next address. How convenient if we
wish to fetch a sequence of bytes! Just

use the fetched byte and COUNT again.
This construct is useful in Forth as-
semblers, which often use several byte
parameters in sequence.

Our example three places in memory
the dimensions we assign to several
geometrical figures. BOX creates the
dictionary entry followed by three
values. The word SHAPE prints the
shape of the box, three dimensions. To
test, type ROD SIZE. From the address
left by ROD the word SIZE will fetch the
first dimension byte and print it; from
the incremented address it will fetch
the second dimension byte and print it;
and finally it will C@ the last dimen-
sion. Note that c@ is sufficient, as we
no longer need to maintain the address.

Manipulating Memory
COUNT can be used in character stor-

age even if text is not present; we only
need the count. Example four creates a
text workspace and FRESHenS it up with
blanks. Here we have a thirty-character
storage area named WRKSFACE with
room for the count. FRESH first shoves
the maximum character count into the
first byte of WORKSWCE. COUNT then
gets the first character address and the
count, which are needed by FILL (which
fills with blanks). Other words count
fill-in text and manipulate within the
WORKSFACE.

Now that the good Doctor has op-
ened your vistas on the word COUNT,
please take the opportunity to write
with your own questions on usage,
Forth internals or allied problems.
We'll bring in specialists as needed.

THIS IS THE END!

THE END OF YOUR MEMBERSHIP?
DON'T LET IT HAPPEN1

RENEW TODAY!

Volume V, No. 6 7 FORTH Dimensions

PLIl Data Structures in Forth

Bruce I-K Walker
San Bdro, California

This paper gives a simple way of
adding data structures (as in PL/I,
COBOL or Pascal) to Forth. It has
three sections: first, what data struc-
tures are and how they can be used in
Forth (the cookbook approach); sec-
ond, how the words work; and finally,
the words themselves.

Data Structures
Forth programs usually make do

with just two data types: numbers and
arrays of numbers. While this is ade-
quate for scientific programming,
commercial programmers have known
since time immemorial (i.e. before
1960) that many programs are easier to
design and write using the concept of a
data structure. A data structure is a
heterogeneous collection of data, and
can be thought of either as a single en-
tity or as a collection with named parts,
whichever is more convenient at the
time.

While Forth has little data structure
machinery built in, it does have the
tools needed to add new data types.
Other authors have worked on user
stacks5, complex numbers2, quad pre-
cision' and character ~ t r i n g s ~ 3 ~ . The
closest thing I have seen to data struc-
ture capability in Forth is in the article
on data base design4; that article is a
gold mine of ideas and should be read
by serious Forth programmers once a
year.

DECLARE 1 EMPLOYEE,
2 NAME CHARACTER (16),
2 AGE FIXED BINARY (15.0);

In PL/I, a program can have a dec-
laration like in figure one. This means
that EMPLOYEE has two parts, NAME
and AGE. The fields can be referenced
individually as EMPLOYEE.NAME and
EMPLOYEE.AGE. The advantage over
two separate variables is that EMPLOY-
EE can be used in assignment as a

F I G FORTH VERSION
SCR t 110

0 (P L / I STRUCTURcS 1
1 (TOTAL LENGTH, CURRENT LENGTH, F I E L D LENGTH 1
2 0 V A R I A B L E TLEN
3 0 V A R I A B L E CLEN
4 0 V A R I A B L E F L E N
5 (I N I T I A L I Z E STRUCTURE V A R I A B L E S 1
6 : 1 N I T . S V TLEN ! 0 CLEN ! ;
7
8 (STORE STRUCTURE V A R I A B L E S 1
9 : STR.SV CLEN a FLEN a - , FLEN a , ;

10
11 -->
12
13
14
15

SCR t 111
0 (ALLOCATE S T A T I C STRUCTURE 1
1 : SS (S I Z E --- 1
2 (B U I L D S DUP ALLOT I N I T . S V DOES> ;
3 (B E G I N F I E L D D E F I N I T I O N FOR DYNAMIC STRUCTURES 1
4 : DS (S I Z E --- 1 1 N I T . S V ;
5 (ALLOCATE AN ARRAY W I T H A G I V E N ELEMENT S I Z E 1
6 : S.ARRAY (B U I L D S . ALLOT DOES>

8 (MOVE A WHOLE STRUCTURE 1
9 : S.MOVE < B U I L D S TLEN a , DOES>

7 DUP 2+ >R a Y R > + ;

10 a CMOVE ;
11 -->
12
13
14
15
SCR t 112

0 (CREATE A F I E L D S I Z E ---
1 AT.RUN T I M E
2 STRUCTURE-ADDRESS --- F I E L D ADDRESS 1
3 : S.FLD (BUILDS CLEN a , DUP FLEN ! CLEN +! DOES>
4 a t ;

7 DUP zt >R a + R > a CMOVE ;

5 (MOVE FROM AN ADDRESS TO A F I E L D 1
6 : FLD.MA < B U I L D S STR.SV DOES>

8 (MOVE FROM A F I E L D TO AN ADDRESS 1
9 : FLD.MB < B U I L D S STR.SV DOES>

10 >R SWAP R a + SWAP R> 2+ a CMOVE ;
11
12 -->
13
14
15
SCR t 113

0 (MOVE A F I E L D BETWEEN STRUCTURES 1
1 : FLD.MC < B U I L D S STR.SV DOES>

3 (MOVE AN I T E M OF A F I E L D LENGTH 1
2 >R R a + SWAP R a t SWAP R > 2+ a CMOVE ;

4 : FLD.MD (BUILDS FLEN a , DOES>
5 a CMOVE ;
6 (PREPARE TO D E F I N E S U B F I E L D S 1
7 : S F CLEN ! i

8
9 i s

10
1 1
12
13
14
15

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
0 0 0 0 4 4 0 0
00004500
0 0 0 0 4 6 0 0
00004700
00004800
00004900
00005000
00005100
00005200
00005300
00005400
00005500
00005600
00005700
00005800
00005900
0 0 0 0 6 0 0 0
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
0 0 0 0 7 0 0 0

FORTH Dimensions 8 Volume V, No. 6

7 9 STANDARD VERSION
SCR # 110
0 (P L / I STRUCTURES 1
1 (TOTAL LENGTH, CURRENT LENGTH, F I E L D LENGTH 1
2 0 V A R I A B L E TLEN
3 0 V A R I A B L E CLEN
4 0 V A R I A B L E FLEN
5 (I N I T I A L I Z E STRUCTURE V A R I A B L E S 1
6 : 1HIT.SW TLEN ! 0 CLEN ! ;
7
8 (STORE STRUCTURE VARIABLES 1
9 : S T R . S J CLEN a FLEN a - , FLEN a , ;

10
11 -->
12
1 3
1 4
1 5

SCR t 111
0 (ALLOCATE S T A T I C STRUCTURE 1
1 : S S (S I Z E --- 1
2 CREATE DUP ALLOT 1 N I T . S V DOES> i
3 C B E G I N F I E L D D E F I N I T I O N FOR DYNAMIC STRUCTyRES
4 : DS (S I Z E --- 1 1NIT.SW i
5 (ALLOCATE AN ARRAY W I T H A G I V E N ELEMENT S I Z E 1
6 : S.ARRAY CREATE . ALLOT DOES>

8 (MOVE A WHOLE STRUCTURE)

9 : S.MOVE CREATE TLEN a , DOES>

7 DUP 2+ >R a * R> + ;

10 a CMOVE ;
11 -->
12
1 3
1 4
1 5
SCR R 112

0 C CREATE A F I E L D S I Z E ---
1 AT RUN T I M E
2 STRUCTURE-ADDRESS --- F I E L D ADDRESS 1
3 : S.FLD C R E A T E CLEN a , DUP FLEN ! CLEN +! DOES>
4 a + ;

7 DUP 2+ >R a + R> a m o v E ;

5 (MOVE FROM AN ADDRESS TO A F I E L D 1
6 : FLD.MA CREATE STR.SV DOES>

8 (MOVE FROM A F I E L D TO AH ADDRESS)

9 : FLD.MB CREATE STR.SV DDE5>
10 >R SWAP ~a a + SWAP R> 2+ a CMOVE ;
11
12 -->
1 3
1 4
15
SCR # 1 1 3
0 C MOVE A F I E L D BETWEEN STRUCTURES)

1 : FLD. f lC CREATE STR.SV DOES>

3 (MOVE AN I T E M OF A F I E L D LENGTH 1
2 >R R a a + SWAP R a a + SWAP R > 2+ a CMDVE ;

4 : FLD.MD C R E A T E FLEN a , DOES>
5 a CMOVE ;
6 (PREPARE TO D E F I N E S U B F I E L D S)

7 : S F CLEN ! i
8
9 i s

10
11
1 2
1 3
14
1 5

1

0 0 0 0 7 1 0 0
00007200
00007300
0 0 0 0 7 4 0 0
00007500
00007600
00007700
0 0 0 0 7 8 0 0
0 0 0 0 7 9 0 0
0 0 0 0 8 0 0 0
00008100
00008200
00008300
00008400
00008500
0 0 0 086 0 0
00008700
0000880 0
0 0 0 0890 0
00009000
0 0 0 0 9 1 0 0
0 0 0 0 920 0
00009300
00009400
00009500
00009600
00009700
0 0 0 0980 0
00009900
0 0 0 1 0 0 0 0
000l0l00
0 0 0 1 0 2 0 0
0 0 0 1 0 3 0 0
00010400
00010500
00010600
00010700
000l0800
00010900
00011000
000ll100
00011200
00011300
0 0 0 1 1 4 0 0
0 0 0 1 1 5 0 0
0 0 0 1 1 6 0 0
00011700
00011800
04011900
0 0 0 1 2 0 0 0
00012100
00012200
00012300
0 0 0 1 2 4 0 0
0 0 0 1 2 5 0 0
00012600
0 0 0 1 2 7 0 0
0 0 0 1 2 8 0 0
00012900
0 0 0 1 3 0 0 0
0 0 0 13 10 0
0 0 0 1 3 2 0 0
00013300
00013400
00013500
00013600
00013700
00013800
00013900
00014000

Figure Two

DECLARE 1 BOSS,
2 NAME CHARACTER(16),
2 AGE FIXED BINARY (15,O);

whole. For example, suppose we also
have the declaration in figure two.
Then the following assigns both fields:
BOSS = EMPLOYEE;

To do the same in Forth, we need to
declare the structure, its fields, and
create routines to do the assignment.
These turn out to be fairly easy with
CREATE and DOES>. The words are
given in the concluding section of this
article. The above example of a struc-
ture, in Forth, would look like figure
three. (I have not included all the move

18 SS EMPLOYEE

16 S F L D NAME
2 S.FLDAGE

S.MOVE EMPLOYEE.MOVE

functions, which are optional.) Refer-
ences to the field addresses are then:

EMPLOYEE NAME

EMPLOYEE AGE

And the group assignment is given by:

EMPLOYEE BOSS EMPLOYEE.MOVE

(Note that you don’t re-declare name
and age for BOSS.)

Two generalizations of data structur-
ing also appear in PL/I. First, the ele-
ments can be arrays, as in figure four.

1 Figure Four I
DECLARE 1 EMPLOYEE(IW),

2 NAME CHARACTER(16),
2 AGE FIXED BINARY (15.0);

This declares an array of data struc-
tures, here 100 employees. A program
can then have both the statements
shown in figure five.

Figure Five

EMPLOYEE(M).NAME = EMPLOYEE(N).NAME;

Volume V. No. 6 9 FORTH Dimensions

To do this in Forth, we create an ar-
ray of elements and use the dynamic al-
location form of structure declaration,
as in figure six. Figure seven is, then,
the Forth version of figure five.

1800 18 S.ARRAY EMPLOYEE
18 DS

16 S.FLD NAME

2 S.FLD AGE

S , MOVE EMPLOYEE . MOVE

FLD.MC NAME.MOVE

Figure Seven

N Q EMPLOYEE M Q EMPLOYEE
EMPLOYEE.MOVE

N Q EMPLOYEE M Q EMPLOYEE NAME.MOVE

The second generalization is to have
more than one level, as in figure eight.
Now a reference to an individual field
looks like:

EMPLOYEE(N).NAME.INITIALS

Figure Eight

DECLARE 1 EMPLOYEE(100h
2 NAME,

3 INITIALS CHARACTER(2).
3 LASTNAME CHARACTER(14),

2 AGE FIXED BINARY (15.0);

In Forth, you can do the same thing
by re-starting the count for the sub-
field by declaring the whole main struc-
ture first, then by declaring the sub-
field, as in figure nine.

Figure Nine

1800 18 S ARRAY EMPLOYEE
18 DS

16 S.FLD NAME

2 S.FLD AGE

2 S.FLD INITIALS

S.MOVE EMPLOYEE.MOVE

FLD.MC NAME.MOVE

0 NAME SF

14 S.FLD LASTNAME

So, in Forth the sub-field reference
would be:

N @ EMPLOYEE INITIALS

A typical application of a data struc-
ture is a table with two fields: KY, the
key field, and VAL, the value field.
The table must be kept sorted on the
key field when new entries are added.

TRACING COLON D E F I N I T I O N S
SCR t 1

0 1 VARIABLE TRACE
1 : OUTX (OUTPUT A NUMBER I N HEX, W H I L E S A V I N G OLD BASE >
2 BASE a HEX SWAP 6 .R SPACE BASE ! i
3
4 : TRACE.SUB (CREATE A TRACE L I N E AND CHECK FOR USER INTERRUPT 1

6 ?TERMINAL I F KEY 27 = I F ABORT THEN THEN i
7
8 : NINTERPRET B E G I N - F I N D

5 CR s p a OUTX s p a 2 - a OUTX R OUTX R 4 - a 2t NFA ID.

9 I F S T A T E a <
1 0 IF CFA , TRACE a (TRACING TURNED ON?

13 ELSE HERE NUMBER DPL a i+

11 I F ’ TRACE.SUB CFA , (STORE TRACE R O U T I N E CFA f THEN
12 ELSE CFA EXECUTE THEN ?STACK

14 I F COMPILE D L I T E R A L ELSE DROP COMPILE L I T E R A L THEN ?STACK
15 THEN AGAIN i -->
SCR 8 2
0
1 : N Q U I T (RUN W I T H TRACING)

2 0 BLK ! COMPILE
3 B E G I N RP! CR QUERY NINTERPRET
4 S T A T E a 0 - IF . m OK” THEN
5 AGAIN i
6 i f
7
8
9

10
11
12
13
1 4
15

00014100
00014200
00014210
00014300
0 0 0 1 4 4 0 0
00014500
00014600
00014700
0001480 0
00014900
00015000
00015100
00015200
00015300
00 0 1540 0
00015500
0 0 01560 0
0 0 0 1570 0
00015800
00015900
0 0 0 16 0 0 0
00016100
00016200
00016300
00016400
00016500
00016600
00016700
00016800
00016900
00017000
00017100
00017200
00017300
0001’?400
00017500

This means that when adding a new
entry, part of the processing will in-
volve only the key field (namely, doing
the test to find where the new entry
should go), while the other part of the
processing involves both fields (name-
ly, moving the other entries out of the
way).

The table in figure ten has a counter
entry ACT which gives the actual num-
ber of entries in use. The body of the
table has two fields, w and VAL, both
sixteen-bit quantities. #E is the number
of entries and has been made into a
named constant on general good pro-
gramming grounds. A convention is
made that the table will have a dummy
entry with the maximum possible key
value, at all times. This simplifies the
search, as when adding a new entry you
can be sure that you will always even-
tually come to a larger key field.

TBLINIT initializes the table, includ-
ing putting the dummy entry in the first
position, so that the condition assumed
by the search routine does hold. TBLF
assumes that there is an entry to be
added on the stack, and compares its
key field with the key fields of the en-
tries in the table in turn, until an entry
with a greater key field is found. TBLF

Figure Ten

1 VARIABLE ACT

25 CONSTANT #E

#E 4 m 4 %ARRAY TBL
4 D S S.MOVE TBL.MOVE
2 S.FLD KY
:

2 S.FLD VAL

TBL.F ACT Q 0 DO
D U P K Y Q I T B L K Y @ <
IF DROP I LEAVE THEN LOOP ;

: TBL.1 1 - #E 1 - X I
I TBL I 1 + TBL TBL.MOVE -1 +LOOP ;

: TBL.INSERT ACT Q #E = IF DROP 1 ELSE
DUP TBL.F DUP TBL.1 TBL
TBL.MOVE 0 THEN ;

: TBL.INIT 32767 0 TBL KY ! 1 ACT ! ;

then leaves that index on the stack.
TBLI assumes that there is an index on
the stack and moves all entries after
that down one entry. Finally, the user
word TBL.INSERT actually oversees the
whole operation. It checks to see if
there is room in the table, returning 1 if
not. If there is, it uses TBLF to find the
index where the entry should go. It
then uses the index twice, once as an
argument to TBL.I to clear out the
space, and once as an argument to
TBLMOVE to put the new value in place.
Finally, it returns 0 to indicate that the
entry was successfully put in the table.

FORTH Dimensions 10 Volume V, No. 6

How the Functions Work
As with all CREATE.. .DOES> words,

there is action at definition time as well
as execution time. In this case, the ac-
tion at definition time includes saving
some information for other words
which may be compiled later, as well as
storing into the dictionary. All the
words use three variables for saving in-
formation at definition time. They are:

TLEN total length of the data struc-
ture

length of the data structure up
to the field currently being
worked on

length of the field currently
being worked on

CLEN

FLEN

These variables are used to compute
the data saved by the various move
routines, data which is used by the
(common) DOES> part of the routines.
The simplest example is SMOVE, move
a whole structure. When an operation
like

S.MOVE EMPLOYEEMOVE

is executed, the Forth compiler uses
TLEN @ , to put the current value of
TLEN in EMPLOYEE.MOVE. When
EMPWYEE.MWE is executed, the ad-
dress of EMPLOYEE.MWE is put on the
stack and the DOES> part of S.MOVE is
executed. This fetches the value at that
location, which will be the value of
T E N when SMWE was executed, and
then does a CYOVE which moves the
whole structure (as advertised).

There are a few things to note about
the use of the individual words. You
would use ss to allocate a static struc-
ture and begin the data structure ma-
chinery, only when you want both
functions of allocation and data struc-
ture. When the structure is already al-
located, in one way or another, you
just use DS to start a dynamic struc-
ture. (The other ways that the data
structure might already be allocated
are if it is in an array created with
S.ARRAY or if it is a re-start to create a
sub-field.)

It seems unnecessary to have four
routines to move fields around (bet-
ween two similar structures, from a
field to an arbitrary address, from an
arbitrary address to a field, between

two arbitrary addresses), but all the
functions are needed in some place or
another; I couldn’t think of any clever
names for the four cases, either. The
words would have been somewhat
simpler using parameter passing’, but
this would also have slowed down the
words somewhat, and field references
are likely to be heavily used.

Detailed Descriptions of the Words
Since many of the words have both a

compile-time action and a run-time ac-
tion, each description has up to three
parts: first, the dictionary entry built
by the word; second, the compile-time
action of the word; third, the run-time
action of the word. For the more com-
plex words, there is a play-by-play
description of the operation of the
word, along with descriptions of the
stack, enclosed in brackets.

INIT.SV (run time) save the total length
of the structure in TLEN, initialize the
pointer to the start of the current
allocated field CLEN to zero

S1R.W (run time) save offset of this
field and field length; this is called by
compile-time words and hence creates
a dictionary entry.

FLDMA

(dictionary entry)
word one = field offset
word two = field length

ss (run time) allocate an array,
then invoke 1NIT.W

DS (run time) synonym for

S-ARRAY (compile time) save the ele-

RD.MB

INITSV

S M W E

S.FLD

men(size, then allocate an
array:
(dictionary entry)

word one = element size
word two = array entries

(run time) multiply element
size by element index, and
add base

(compile time) save total
length:
(dictionary entry)

word one = total length
(run time) get saved length
and use CMWE - the ‘from’
and ‘to’ address must already
be on the stack

(compile time) save start off-
set of this field, store field FLD.MC

length in FLEN and add to
start address pointer:
(dictionary entry)

word one = starting offset
(run time) get start address of
field, and add to base
address

(compile time) invoke sm.sV
to save characteristics of this
field:
(dictionary entry)

word one = field offset
word two = field length

(run time)
[address data-structure-
address dictionary-ptr]
DUP dup address of diction-
ary entry
2 + point at address of field
length
>R save field length address
on return stack

+ add field offset to data
structure base
R> get field length address

[address data-structure-field-
address length]
CMWE move from address to
data structure

get field offset

get field length

(compile time) invoke Sm.SV
to save Characteristics of this
field:
(dictionary entry)

word one = field offset
word two = field length

(run time)
[data-structure-address ad-
dress dictionary-ptr]
>R save dictionary pointer
SWAP swap data structure
addresses
R get dictionary pointer

+ add to data structure
address
SWAP swap data structure
addresses
R> get dictionary pointer
2 + point at length

get length
[data-structure- field-address
address length]
CMOVE move from data
structure to address

get field offset

(compile time) invoke STR.8V

FORTH Dimensions Volume V, No. 6 11

to save characteristics of this
field
(dictionary entry)

word one = field offset
word two = field length

(run time)
[data-structure-one-address
data-structure-two-address
dictionary -ptr]
> A save dictionary pointer
R get dictionary pointer
Q get field offset
+ add to data structure two
address
[data-structure-one-address
data-structure-two-field-
address]
SWAP exchange addresses
R get dictionary pointer
Q get field offset

+ add to data structure one
address
SWAP exchange addresses
R> get dictionary pointer
2 + advance to field length
Q get length field
[data-structure-one-field-
address
data-structure-two-field-
address length]
CMOVE move field

FLDMD (compile time) save field
length
(dictionary entry)

word one = field length
(run time) get field length
and move between addresses

References

1. Beers, David A., “Quadruple Word Simple
Arithmetic,” Forth Dimensions IV/l .
2 . Clark, Alfred, “Complex Analysis in Forth,”
Forth Dimensions III/4.

3. Harris, Kim, “Forth Extensibility,” BYTE,
Vol. 5 No. 8 (August 1980).

4. Haydon, Glen B., “Elements of a Forth Data
Base Design,” Forth Dimensions II1/2.

5 . Helmers, Peter H., “Userstack,” Forth
Dimensions III/ 1.

6. McCourt, Michael and Marisa, Richard A.,
“The String Stack,” Forth Dimensions III/4.

7. McMbbin, David, “Parameter Passing to
DOES > ,” Forth Dimensions IU/l.

Letters (Continued f r o m page 5)

A New Calendar

Dear Editor:
Jesse Wright’s CALANDER program

(Forth Dimensions V/4) will be useful
to many people. As published, how-
ever, it is unfinished.

The method used to get the day of
the week for the first day of the month
is to total the number of days in each
of the years from 1900 until the year
being displayed, plus the number of
days into that year, using 7 MOD to give
the offset. Besides being slow, it
doesn’t work. During September of
1989, the cumulative total of days since
l!NO exceeds the magic number 32768,
and thence forward 7 MOD thinks it is
seeing a negative number. The first line
of dates then typically overruns the
block format, producing an error in-
dication that is difficult not to notice.

Forth is a truly marvellous program-
ming tool, but it is no substitute for
thinking out the problem. In this case,
the problem boils down to calculating
the number of days to advance, for a
given year, into the pattern of weeks.
In years not evenly divisible by four,
the year begins one day of the week
later; in leap years, the beginning day
“leaps” ahead one more day. So, add-

SCR # 85
(3 (C a l e n d a r Program --- Revi sed WCG 12-24-63)
1 : DAY-OF-YEAR (day, month, y e a r -- day of y e a r)

2 IS-LEAP-YEAR-
3 IF 13 + 14 (i f l e a p y e a r , c o n v e r t o f f s e t s)
4 ELSE 1 ENDIF (else s t a r t a t month 1)

5 OVER OVER = IF DROP DROP (i f J a n u a r y , r e t u r n d a y)

6 ELSE DO I DAYS-IN-MONTH + LOOP (d a y of y e a r)
7 ENDIF i
6 : DAY-OF-WEEK (day. month. y e a r -- day o f w e e k , 0 1s Sunday)

(ca lc d a y s i n t o y e a r) 9 DUP ,R DAY-OF-YEAR R ;
10 1908 - DUP 3 + 4 / + + (calc and add l e a p d a y s 1
11 1 - 7 MOD i a d j . f o r s t a r t day , c a l c o f f s e t)

12 85 . -->
13
14
15

ing the number of years since 1900, the
number of leap years since 1900, and
the number of days into the year of in-
terest, will give the correct value much
faster and without overflow. Screen
#85 includes the revised version of DAY-
OFWEEK. Also, the only year between
1901 and 2099 which is evenly divisible
by 100 (A.D. 2000) is also evenly divisi-
ble by 400 and, therefore, is a leap
year; so for the two centuries of im-
mediate interest, the test for a leap year
can be simplified to a division by four.
Finally, in the interest of portability, I
suggest re-naming the program
CAUENDAR

Regards,
Wendall C. Gates, PE

P.O. Box 2216
Santa Cruz, CA 95063

Frequency Study

Dear Editor:
With what I have seen so far, the

Forth-83 Standard is a definite
improvement over Forth-79. I was
trained in the university fashion, and
would like to see Forth accommodate
the “traditional” vocabulary of
programming languages.

My reason for this letter is to ask if
anyone has done a frequency study of
Forth words. I am studying
compaction techniques and would like
some idea of the static frequency of
occurrence of words in major
packages. Typically, a few words are
used very frequently and others just

(Continued on page 34)

FORTH Dimensions 12 Volume V, No. 6

~~

When you make the best computer system there is-
you can offer the best warranty there is.

For ten years CompuPro has led the way in science and industry-from components for the Space
Shuttle program to components for IBM to test their components. Now we've put that performance and
reliability into computer systems for business.

365 DAYS-A FULL YEAR CompuF
expandable System 816'" and the ne
are designed to give you unfailing pel
year. And we're guaranteeing it!

If anything goes wrong with
your System 816 or
CompuPro 10 within one full
year of purchase date, we
provide on-site service-
within 24 hours-through the nationwi
capabilities of Xerox Americare:" *

365 DAYS-WE COME TO YOU.

Vo's business systems- the
w multi-user CompuPro 10'"-
,formance 365 days a

UP TO FOUR TIMES THE WARRANTY OF MOST COMPUTER SYSTEMS. But . . . with the quality and
reliability we've built into the System 816 and CompuPro 10-we're betting the only call you'll ever need to
make is this one:

For business, scientific and industrial computing solutions, call (415) 786-0909 ext. 206
for the location of the Full Service CompuPro System Center nearest you.

omDuPro,,
A GODBOUT COMPANY

3506 Breakwater Court, Hayward, CA 94545

System 816 and CornPuPrO 10 are trademarks of COmpuPrO Arnericare IS a trademark of Xerox Corporation
System 816 front Panel design shown is available from Full Service CompuPro System Centers only Prices and specifications subject to change without notice

'365 Day Limited Warranty Optional 24 and 36 month programs available Service calls within 24 hours limited to work days and locations within 100 mile radius of Xerox service center
01984 CornDuPro

13 FORTH Dimensions Volume V, No. 6

Faster Dictionary Searches

David W. Harralson
Yorba Linda, California

The fig-FORTH model of the
dictionary has a variable-length name
field followed by the LFA, CFA and
PFA.

(FIND) searches through the
dictionary attempting to find a match
to a given name. If the word it is
currently examining does not match,
(FIND) must search forward character-
by-character to get to the last character
in the name, and then must use the
NFA to link back to the previous word.
This process is very slow. (FIND) must
look through the entire dictionary at
least once for each new definition
entered (twice for the fig-FORTH
-FIND) as well as an indeterminate
amount for each compiled word.

There have been proposals to
provide multiple dictionary links to cut
the search time. Also, Paul van der
Eijk proposed in Forth Dimensions
(I I I / 2) changing the dictionary
structure so that it looks like LFA,
Name Field, CFA and PFA. I have
implemented this proposal in a psuedo-
fig-FORTH-83 system. Since Forth-79
does not specify the format of entries
in the dictionary, this would appear to
be a legal Forth-79 or -83 system.

The changes necessary, which in
some cases are subtly different from
those proposed by Paul, are presented
here. The code for (FIND) is for the 8080
and is actually shorter than for the old
(FIND). Also, my version of ID. needed
to be re-coded slightly. The sequence
of PFA LFA in WORDS (VLIST) has been
replaced with 2- both to decrease its
size and to speed it up. TRAVERSE is a
CODE version that is not only shorter,
but much faster. -FIND searches UtVOCS
vocabularies as per the ONLY-ALSO
proposal. Another version is given for
a fig-FORTH that only searches
CONTUCT as per Forth-79, since all
vocabularies chain to FORTH.

As far as results are concerned,
loading nineteen blocks changed from
forty-four seconds to thirty-four

CODE (FIND) here NFA --- false I CFA length true,fig-FORTH)
D POP' BEGIN (GET LINK WORD
H POP (HERE
D A MOV E ORA NO JZ (LINK=O RETURN FALSE
H PUSH D PUSH (SAVE ADDRS
D LDAX M XRA 3F AN1 O= IF (LENGTHS = CONT
BEGIN H INX D INX (LOOK AT REST OF NAME
D LDAX M XRA O= NOT UNTIL (UNTIL MISMATCH
A ADD O= IF (IF END OF STRING CONTINUE
3 H LXI D DAD (POINT TO PFA
D POP XTHL (GET RID OF ARGS, RETURN PFA
D LDAX A E MOV 0 D MVI (GET LENGTH BYTE
D PUSH YES JMP (RETURN LENGTH & TRUE
THEN THEN (NAME NOT IT
H PO? H DCX M D MOV (GET L,INK AND LOAD
H DCX M E MOV AGAIN C; (NEXT NFA, SEARCH AGAIN

CODE TRAVERSE (addrs direction --- new-addrs
5 POP H POP ! DIR, ADDR
SEGIN 3 DAD M A MOV (GET NEXT CHAR
A ORA O < UNTIL (UNTIL EI BIT OX
HPUSH JM? C; (RETURN NEW ADDRS

(?FA --- NFA ; NFA
3 - (LAST CHAR OF NAME
-1 TRAVERSE ; (BACK TO IST CHAR

: LFA (PFA --- LFA
N?A 2 - ; ! BACK TO NAME 5r 2 MORE

: PFA (NFA --- PFA
1 TRAVERSE (FORWARD TO END XAME
3 + ; (POINT TO PFA

: ID. (NFA ---
1 i DUP 1- (NFA+l, NFA
PFA CFA (NFA+? , CFA
OVER - (NFAi1 I LENGTH OF NAME
TYPE SPACE ; (TYPE IT WITH A SPACE

: -FIND (--- PFA LENGTH TRUE 1 FALSE for ONLY-ALSO
BL WORD (PARSE NEXT WORD
#VOCS 0 DO (SEARCH VOCAB ARRAY
DROP (DROP FALSE 1 HERE
I 2 * CONTEXT i @ DUP (NEXT VOC IN CONTEXT
IF P HERE SWAP (FIND) (TRY TO FIND NAME
DUP ?LEAVE THEN LOO? ; (IF FOUND LEAVE

: FIND (--- PFA LENGTH TRUE FALSE for FORTH83
BL WORD 0 (PARSE NEXT WORD
#VOCS 0 DO
DROP (DROP FALSE I HERE
I 2 % CONTEXT + 0 DUP (NEXT VOC IN CONTEXT
IF @ (FIND) (TRY TO FIND NAME
DUP ?LEAVE THEN LOOP ; (IF FOUND LEAVE

(SEARCH VOCAB ARRAY

seconds, a decrease of twenty-three PFA->LFA for LFA
percent. This is not as good as Paul
found, but is probably due to -RND LFA->PFA for PFA
only searching CONTEXT.

The current words LFA, CFA, PFA and PFA-> NFA for NFA
NFA are somewhat confusing, since
they assume you know where you are PFA->CFA for CFA
coming from. In addition, the 2 + in
VOCABULARY could be another word. LFA->NFA for the 2 + in VOCABULARY
More descriptive word definitions
could be:

FORTH Dimensions 14 Volume V, No. 6

(: -FIND BL WORD CONTEXT d S (FIND) ; for fig-FORTH)

LATEST , (LINK TO LAST WORD DEFINED)
: CREATE (- _ _ [FORTH83 CTOGGLE]

-FIND (PARSE WORD AND SEARCH FOR MATCH)
IF DROP CR NFA ID. 4 MESSAGE THEN (ALREADY DEFINED, MSG)
HERE DUP C@ WIDTH @ KIN 1+ ALLOT (ALLOT SPACE FOR NAME)
DUP A0 SWAP CTOGGLE
080 HERE 1- CTOGGLE
CURRENT ? !
HERE 2+ ,

: <BUILDS (_ _ _
CREATE SMUDGE ;

: VOCABULARY (---
(PFA

<BUILDS
0 ,

HERE A081 ,
VOC-LINK ,S ,
VOC-LINK !
DOES> CONTEXT ! ;

: WORDS [_ _ _
CR CONTEXT C @ BEGIN
C/L OUT S -
OVER CC IF AND 7 + <
IF CR THEN

ID.
OUT @ NOT OF AND SPACES

nup DUP PFA 4 U.R SPACE

2- 5 D3p o=
?TERMINAL OR
UNTIL DROP ;

3 PO? E ?US3
3 A Y O V Z ORA NO 2 Z

M XRA 3F AN1 C- IF
BEGIN H I!Z 3 ISE
3 L3AX Y :IRA O= 3OT
A ADD O= IF
H INX XCHG
D PO? XTHL
D LDAX 40 AN1
YES JZ
I H LXI HPUSE JMP
THEN THEN
H PO? H DCX M D MOV
H DCX M E MOV AGAIN

n PUSH n LnAx

(MAKE SMUDGED, DELIMIT XAME
(DELIMIT END OF NAME)
(LINK NFA INTO CURRENT VOCAB 1
(CFA WORD AS IF FOR CODE WORD)
(THIS IS MOD BY ;CODE OR DOES>)

[orphan from fig-FORTH:)
(CREATE NAME AND UNSFUDGE IT

[compiling?
:execut i ~ g]
(CREATE NEW NAME
: ALL VOCS EN3 IN 0
(CURRENT 2- , for fig-FORTH
(3UMXY S U N K KAME FOR CHAINING
(CHAIN TO PREVIOUS VOCABULARY
(UPDATE VOC-LINK TO NEW VOCAB
(RUN TIME, UPDATE CONTEXTIC)

[fig-FORTH VLIST])
(WORDS IN VOC(0))
(SPACE LEFT ON LINE)

(NO, ISSUE CR - SETS O17T=O 1
(WILL NEW WORD FIT ON LINE?

(PRINT PFA ADDR
(AND W A F
(PAD TO KOD16 BOUKDARY WITHOUT /)
{ XCEPT I S T WHICH IS MOD15
(HELPS IF LAST WORD BARELY FITS)
(MORE WORDS IN VOC?
(OPERATOR HIT BREAK?)

1

-- ??ere false 1 CFA -!;i, FOFTL’C.5 1
(GET LINK WORD)
(HERE
(LINR=O RETURN FALSS, HERE)
(SAVE ADDRS)
(LENGTiiS = CONT)
(L O O K AT REST OF K P X C)

UNTIL (UNTIL YISMATCE)
(I7 EN3 OF STRING CONTINUE)
(F’OINT TO CFA 1
(GET FiJ OF AFGS, PETURN CFA)
[GET LENGTH BYTE, GET PREC BIT)
(RETURN -1 IF NOT IMMEDIATE)
(RETURN 1 IF IMMEDIATE)
(NAME NOT IT 1
(GET LINK AND LOAD)

c; (NEXY NFA, SEARCH AGAIN 1

End Listing

Multiuser/Multitasking
for 8080,280, 808.6

Industrial @-\
Strength

TaskFORTH,.
The First

Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:

Sr Unlimited number of tasks
* Multiple thread dictionary,

superfast compilation

* Novice Programmer
Protection PackageTM

* Diagnostic tools, quick and
simple debugging

* Starting FORTH, FORTH-79,
FORTH-83 compatible

* Screen and serial editor,
easy program generation

Q Hierarchical file system with
data base management

Starter package $250 Full package $395 Single
user and commercial bcenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CPlM 2.2 or greater

also
various 51h” formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

DEALER -
INVITED BIIR*i

i INQUIRES YIU’

Shaw Laboratories, Ltd.
24301 Southland Drive, #216

Hayward, California 94545
(415) 276-5953

15 FORTH Dimensions Volume V, No. 6

Re visited:

Recursive
Norman L. Hills

Des Moines. Iowa

The decompiler is one of the most
useful tools in the Forth toolbox. The
recursive version presented here is a
combination of ideas from three pre-
viously published decompilers, with a
few additions. Most of the hard part
was done by Ray Duncan (Dr. Dobb’s
Journal, September 1981), Robert
Dudley Ackerman (Forth Dimensions
IV/2) and the SYN-1 Users Group
(Forth Dimensions 111/2).

To use the decompiler, type RDCP
cccc where cccc is the word name to be
decompiled. If the only screen response
is cccc, the word is a code primitive. If
the word is a variable, constant or user
variable, this fact is displayed with its
current value shown in hex. “Not in
dictionary” is a message with obvious
meaning. Otherwise, the decompila-
tion begins with the display of : and the
address of the CFA. All values and ad-
dresses are shown in hex. If the word
being decompiled is an immediate
word, this fact is shown with the :.
Values are displayed for referenced
variables, etc. as well as for branch ad-
dresses and literals. If a referenced
word is an immediate, [COMPILEI is
shown before the word, since this
would be required to compile the word.

Control of further decompilation is
the result of responses to KEY. Q (for
quit) ends the decompilation, regard-
less of the nesting level. A carriage
return produces the “recursive” part
of the process by starting to decompile
the last word displayed. As the reverse
of this, U (for up) ends decompilation
of the current level and continues pro-
cessing the prior level. Any other reply
displays the next word in the current
level.

The code is in Forth-79, except that
it assumes a fig-FORTH dictionary
structure and NFA, PFA and CFA. The
CASE structure is that of Dr. Charles

(Continued on page 18)

Decompiler

RDCF‘ RDCF

EASE u5er 11:)

a
BASESAV var A
!
HEX
- F I N D
OBRANCH 3 3 A 1
DROP
8
G I N var 2

CK :
OBRANCH 3399
(GOES I NTCI 1

I

CK :

- DUP
CFA
a
L I T A 2 4

(. CR e n t e r e d

(CR e n t e r e d

2-
D I N (CR e n t e r e d)

CR
DUP . [3@
SPACES
;S

(. I i)

2+D (U e n t e r e d 1
BRANCH 33911)
NFA (Q e n t e r e d

Sample Run of RDCP
Space bar entered unless otherwise noted

(See Listings on page I7 & 18)

Volume V. No. 6 FORTH Dimensions 16

Screen W 15
0 (R e c u r s i v e D e c o m p i l e r - 1) HEX
1
2 VARIABLE G I N (No. t o Indent)

3 VARIABLE BASESAV (S a v e O r i g i n a l BASE)
4 VARIABLE KEYSW (C o n t i n u o u s or S t e p S w i t c h)

5 VARIABLE RDFEN (R e c u r s i o n Fence)
6 ' C / L 2- 3 CONSTANT CONST.ADR (R u n - t i m e CFA)
7 ' BASE 2- a CONSTANT USERV-ADR ()
8 ' G I N 2- a CONSTANT VAR.ADR ()

9 : U . 0 D. ;
10 : GOV W E R a 2+ ;
11 : 2+D 2+ DUP ;
12 : .Ga 0 4 D.R G I N a ;
13 : D I N CR DUP .M SPACES ;
14 : GIN+ CR OVER .G3 2+D G I N ! SPACES ;
15 : MYSELF LATEST PFA CFA , ; IMMEDIATE -->

S c r e e n R 16
0 (R e c u r s i v e D e c o m p i l e r - 2)

1 : GCHKTYP (p f a --- f) (C h e c k for f o l l o w i n g l i t e r a l)
2 CASE ' L I T OF 1 ENDOF
3 ' BRANCH OF 1 ENWF
4 OBRANCH OF 1 ENDOF
5 ' (LOOP) OF 1 ENDOF
6 * (+LOOP) OF 1 ENDOF
7 0 SWAP (f f return - ENDCASE drops addr)
8 ENDCASE ;
9

10 : l K E Y (p f a --- p f a c) KEYSW 3
11 I F ?TERMINAL I F A S C I I Q
12 ELSE DUP RDFEN a U<
13 I F BL ELSE OD THEN THEN
14 ELSE KEY
15 THEN ; -->

Screen # 17
0 (R e c u r s i v e D e c o m p i l e r - 3)
1
2 : GCHK (p f a --- p f a [a l tered] 1 1 (t rue fo r case)

3 CASE 6 0 V ' COMPILE =
4 ff 2+D a 2+ NFA ID. ENDOF
5 GOV GCHKTYP
6 OF 2+D a SPACE U. ENDOF
7 (GOV ' C L I T =
8 (OF 2+D C a SPACE . 1- ENDDF 1
9 GOV ' (. " I =

10 OF 2+D COUNT TYPE DUP C a 1- + ENDOF
11 (endcase w i l l drop unmatched t f)

12 ENDCASE 2+ (i n c r e m e n t p f a 1
13 -2 G I N +! ;

15 : CK: DUP CFA a ' : CFA = ; -->
14 (p f a -- p f a f)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Screen # 18
(R e c u r s i v e D e c o m p i l e r - 4)

: DISTYPE (n fa ---)

DUP C;) 40 AND (get ' i m m e d i a t e ' b i t)
I F CCOMPILEI " ID.
ELSE DUP ID. PFA CFA DUP a

CASE CONST.ADR OF ." const 'I EXECUTE U. ENDOF
VAR.ADR OF ." var I' EXECUTE a U. ENDOF
USERV-CIDR OF .'* user " EXECUTE 3 U. ENDOF
DROP

ENDCASE
THEN ; -- >

Volume V, No. 6 17

Eaker (Forth Dimensions II/3) and the
following definition

: ASCII BL WORD 1 C@ [COMPILq
LITERAL ; IMMEDIATE

(insert HERE after WORD in fig-
FORTH) is from Raymond Weisling
(Forth Dimensions 111/3) . The
parentheses in GCHK should be
removed if a byte literal is available in
your system.

Storing a non-zero value in variable
KEYSW produces a continuous decom-
pilation without keyboard interven-
tion. This is probably most useful
when EMIT is directed to a printer. A
second variable, RDFEN is used in con-
tinuous mode as a fence to prevent
looping in the innards of Forth. This
variable may be changed with care to
show more (or less) detail.

RENEW TODAY!

Listing (Continued from page 17)

Screen X 19
0 (R e c u r s i v e D e c o m p i l e r - 5)

1 : (GOESINTO) (p f a ---) CK:
2 I F 2- D I N . I ' :" 2+D NFA C a 40 AND
3 I F .I' IMMEDICITE" THEN
4 B E G I N DUP a DUP ' ; S CFA =
5 OVER ' (;CODE) CFA = OR O=
6 WHILE (High Level & not end of colon de f in i t ion)

7 2+ GIN+ DUP NFA DISTYPE
8 1KEY CASE
9 A S C I I Q OF SP! BASESCIV a BASE ! Q U I T ENWF (G e t O u t)

10 OD OF MYSELF ENDOF (CR - Go d o w n a leve l)

11 CISCII U OF DROP DROP R > DROP -2 G I N +! ENDOF (GO
12 DROP ENDCASE GCHK (up a leve l)

13 REPEAT CR
14 G I N a 6 + SPACES 2+ NFCI ID .
15 THEN DROP : _- >-

Screen X 20
0 (R e c u r s i v e D e c o m p i l e r - b)
1
2 : RDCP BASE a BCISESCIV ! HEX
3 -F IND
4 IF DROP 0 G I N ! CK:
5 I F (GOESINTO)
6 ELSE NFCI D ISTYPE
7 THEN
8 ELSE ." N o t i n D i c t i o n a r y "
9 THEN

10 CR BCISESAV a BASE ! ;
11
12 HERE RDFEN ! DECIMAL ;S
13
14
15

B-30RlN4LH
APPLICATION AND

RESEARCH
Subscriptions

Volume 2 1984 Corporate/ Institute $100 Individual $40
Subscriptions outside North America please add $20 airmail postal
charge. Information on back issues and student rates are available
upon request. Checks should be in U.S. Dollars on a U.S. bank,

payable to The Journal of Forth Application and Research, P.O. Box
27686, Rochester, New York, 14627 USA.

Published Quarterly by
The Institute for Applied Forth Research, Inc.

With the emergence of Forth as a
powerful tool for applying
computers, it's becoming difficult to
keep up with its use in areas as
diverse as laboratory and office
automation, video games, and
VLSI design. 7;he Journal of Forth
Application and Research covers
the exciting growth of the use of
Forth by providing a forum for
users and researchers in science,
industry and education. The
Journal publishes refereed papers,
technical notes, book reviews,
forth extensions and algorithms.

If you work with Forth, you need
to know what your professional
colleagues are implementing and
why. If you are considering Forth,
you need to know how and when to
apply it. The Journalcan be your
focus on Forth.

FORTH Dimensions 18 Volume V, No. 6

Break Through the
64K Barrier!

FORTH-32'" lets you use up to one megabyte
of memory for programming. A Complete

Development System! Fully Compatible
Software and 8087 Floating Point Extensions.

303 Williams Ave.
Huntsville, AL 35801

(205) 533-9405 800-558-8088

Now available for the IBM PC, PC-XT, COMPAQ, COLUMBIA MPC,
and other PC compatibles!

IBM, COMPAQ. MPC. and FOKTH-32 are trademarks of IBM, COMPAQ, Columbia Data Products, and Quest Research. respectively.

lnterview

William F. Raasdale -
- u - - -

William Ragsdale has served a5
Resider! of the Forth Interest Group
since its inception. Curious about a
man who has spent several years donat-
ing a good portion of his time to fur-
ther FIG’S grow‘h, in February Forth
Dimensions cornered Bill in his office
at Dorado Systems in Hayward,
California.

I’ve heard how the Forth Interest
Group began, but never why . . .

The “why”? There isn’t any why. It
just happened, it just grew. The rea-
sons weren’t compelling, other than a
recognition of the common need for
the ,communication of information by
people. The “how” was that I was
doing a lecture at a computer club on
high-level languages and structured
programming in about 1977 or ’78. I
used Forth as my illustration. At that
time I had just gotten a very minimal
level of Forth running at work and was
kind of proud of that. I brought it up
and showed it running. I loaded a
paper tape, Forth said “ok” and ran
very, very minimally.

John James and Dave Boulton were
present at that meeting. John had not
heard of Forth before but he was inter-
ested in it philosophically. It just had
the right aspects that he thought were
appealing. Dave was using it profes-
sionally. He was with a company that
was using Forth on the San Francisco
peninsula. So the three of us had a chat
and said, “Let’s get together some
other time and talk about it.” Well,
someone there suggested that I give a
short talk at the Homebrew Computer
Club. After that talk, the people who
were interested got together and said,
“Let’s have coffee at the Stanford stu-
dent lounge.” So we went and sat un-
der an oak tree. There was Kim Harris,
Dave Kilbridge, John James and Dave
Boulton. They were the founders of
FIG at that time. A couple other peo-
ple were present, too; one fellow
named Tom Olsen had a running Forth
system on a PDP-11 at home in his
living room, really loaded with three

floppies, hard disk drive, CRT, DEC
Writer, just loaded.

Well, we said, “Let’s get together to
talk about it some more and to see
what our common interests are.” That
was about a month later. I remember it
was Super Bowl Sunday, 1978, when
FIG was founded in an apartment in
Sunnyvale. At that point we vowed to
write a newsletter. John James wrote
the first couple of articles, and five or
six of us developed an editorial that
kicked off Forth Dimensions. Tom text
processed the first couple of issues on
his PDP-11. At that point, my wife
Anne and I took over the printing,
publication and mailing of Forth Di-
mensions. We got the material together
and did the next several issues. Sadly,
along the way Tom died of diabetes.
When we lost him, we lost one of the
team members there at the start. So the
five of us carried on.

The West Coast Computer Faire
came along about three months later.
At that time we had a couple of issues
of Forth Dimensions. We were giving it
away then - the first three issues were
free because we didn’t know the lon-
gevity of it. We got about two hundred
people from the computer fair to join
or subscribe. Then the following year,
we really started swinging.

How did you put out information
about Forth in the very beginning?

We announced one Saturday, “Let’s
have a class on Forth, ten o’clock on
Sa tu rday morn ing a t D o r a d o
Systems.” About thirty people showed
up. We had a room full of people. We
had every chair, all the sofas, all the
floor space filled. So we gave a talk on
Forth. I had a demonstration system
available, so they could see it running
in a minimal way. We had a couple of
hours of teaching, but then we polled
the people and asked, “What access do
people have to Forth? How many
people have a running Forth system?”
Out of thirty, I think only three raised
their hands: me, Dave Boulton and
Tom. I was dismayed, because we knew

that from a learning standpoint, people
would leave the classroom, go home
and a week later they would have
trouble remembering all they had
learned.

A short time thereafter - it might
have been at that meeting - the first
microcomputer implementation of
Forth was made available for the Pet
computer. Forth Dimensions immedi-
ately started getting letters telling us
how terrible the product was and how
people hated it. That put us in the wor-
ried mode. Here was a vendor pro-
claiming loud and clear that he was
selling a Forth system, which was very
poor, for personal computer use. We
had contact, by that time, with Eliza-
beth Rather from FORTH, Inc. We
queried their future role, would they
have Forth for the Apple and the Pet,
would they support personal compu-
ters? She very clearly stated, “abso-
lutely not,” that was not their mission
and they would not support personal
computer versions. They sold systems
costing $2000 - $10,000 to scientific
and industrial areas.

History has borne that out, although
they did come out almost five years
later with a version for the IBM-PC.
But in the interim they have not sup-
ported any other personal computers
with a commercial product. These two
factors - first, the potential for people
who don’t know any better to put out
terrible implementations and, second-
ly, the leader in our industry saying
that they were not going to be active in
personal computers - meant that to
learn and to teach Forth we were ab-
solutely up a creek, because there were
going to be no commercial sources of
the language.

So FIG decided to do its own im-
plementations?

Not quite. We wanted to supply
guidelines to suitable vendors, but
none existed. I decided to “salt the
gold mine.” By that time, I had gone
through three releases of our system
here at Dorado. It was up to version

FORTH Dimensions 20 Volume V, No. 6

3.6 and by that time it was turning into
a usable system. So after careful con-
sideration, my opinion at that time was
to release Dorado Systems Forth ver-
sion 3.6 into the public domain, and
that became the foundation for the
FIG model. In fact, the other day I had
reason to go back and refer to it and, if
you look at about block #54 of the FIG
model, the abort message says, “Forth
65 version 4.0.” Forth 65 was our in-
house name for it, version 4.0 was a
cleaned-up 3.6, and that became fig-
FORTH 1.0.

With the release of that into the pub-
lic domain, we needed multiple, port-
able implementations. Ours was writ-
ten in 6502 and I was not competent to
write a version for six or eight other
processors, technically or from a time
standpoint. So in Forth Dimensions we
put out a call for participation that an-
nounced the project and said, if you
have assembly language background
and high-level language interest - just
the interest - then come to this work-
shop.

We got a lot of respondents and
screened them down to two people per
processor, a primary candidate and a
backup. We had the 8080, 6800,
PDP-11, Pace, 1802, TI 9900, with
two people covering each - like Noah
and the ark, it was two by two. We
then started what has turned into the
Saturday FIG meetings in Northern
California. Kim Harris was our
librarian and took meticulous notes as
the work expanded and as the
information was developed and fine
tuned. We used that document to go
back and analyze and correct our
notes. That provided an invaluable
record of the sessions.

We walked people through one sec-
tion at a time, and when they ran into
problems we swapped answers and
analyses. We looked at machine-port-
able solutions. Out of that, two im-
provements were made before the final
release. Dave Kilbridge worked on the
fixed-point arithmetic, because in the
original implementation some of the
signing, carries and so on needed im-
provement. By that time we had con-
tact with the people at the State Uni-
versity at Utrecht in the Netherlands.
They swapped with us the entire source
code for their system, some 2000
screens of it, with permission to utilize

portions in our own implementation.
We took the compiler security from
their code; until that time, none of the
USA versions had that.

The first running Forth system thir-
teen of the team members ever saw was
the one they had developed. We had a
few ground rules in there that everyone
adhered to meticulously. It worked out
very nicely. They would basically fol-
low the model faithfully and minimize
any deviations from that model be-
cause we realized that it was to be a
Rosetta stone, where we would have
the same information presented in a
variety of forms. We even got to the
point of having the very same assembly
language labels throughout, and one of
our very late sessions was to agree on
the labelling so that all read the same;
they were to be in the same order and
so on.

So the University at Utrecht had
Forth that early on?

Yes, it grew from Chuck’s original
work at Kitt Peak. Astronomers from
around the world would spend time at
Kitt Peak. Depending on what machine
they had at home, they would take a
tape back with them around the world
and, bingo, they had Forth. Then
Forth was up at St. Andrews in Scot-
land, at a couple of places in France, in
Chile and CalTech. This was all before
the FORTH, Inc. days, from 1969 to
about 1973. Forth started its migration
through the world of astronomy.

Forth then was really an operating
system for what I call a crippled com-
puter. Forth has been treated in a re-
ceptive way by users of computers with
very limited resources in terms of me-
mory, mass storage or input/output.
The Varian 62Oi was a crippled com-
puter. Some of the early Hewlett-Pac-
kards, the 2100 series for instance, had
very limited manufacturer support. In
such cases, Forth has been graded with
very high marks.

On the other hand, we in the Forth
community face a very real problem, in
that as the manufacturers have pro-
vided increased quality of software, the
need and demand for Forth appears to
diminish. Forth was providing some ir-
replaceable attributes five years ago.
Now it appears that a number of those
attributes are no longer as attractive as
they were. For example, there is more

memory space available, I/O is faster,
more disk space is available, file struc-
tures are less limiting. This puts an in-
creased challenge on people using and
writing Forth systems. Are they going
to stay back in the “crippled
computer” mentality or are they going
to continue to grow and follow the in-
dustry needs?

Considering the attributes of Forth
and of today’s computers, is the lan-
guage still contemporary?

Forth has the proper elements, but I
fear people are not making anywhere
near the use of them that they should
be. We are corning around a five-year
circle, back to where in 1979 Hans
Niewenhuijzen said we would be. Forth
itself was a foundation, a base on
which higher-level language constructs
would be developed. Hans was espous-
ing that idea at meetings and the
message didn’t sink in very well. Hans
was saying, “Look at these other lan-
guages, Pascal, Algol, Lisp; see the
components of them that are neat, pull
them into Forth and then build Forth
into a higher-level language.’’ Around
here, the message didn’t really take
root very well and Hans was disap-
pointed as a result of it. He felt that
people didn’t appreciate his ideas. I
think it was really more that they
didn’t see and appreciate the deficien-
cies of Forth.

But the last five years have shown
me that the deficiencies aren’t in the
language itself. It’s in the utility as-
pects of the language. That is, the ab-
sence of a file system, the limited
choices that you have to manipulate
amounts of information larger than
just a number on the stack or a charac-
ter string. Some of the other program-
ming environments, such as UNIX,
allow you to manipulate files, or to
pipe or convey information, and to
modify it from one file structure to
another on its way from input to out-
put. These much higher-level program-
ming environment constructs have not
been carried forward in Forth. So
Forth has stagnated over the last four
or five years. The improvements in
Forth have been very modest compared
to the user utility we find in other pro-
gramming environments.

The worry to me is that we are slow-
ing down, and that users now cannot

Volume V, No. 6 21 FORTH Dimensions

I

do much more with Forth than they did
four or five years ago. The major ques-
tion is, how do we create the attitudes,
the interests and the environment for
people to build on a Forth system, to
make it more and more interactive, to
be more and more useful and to mani-
pulate higher-level constructs than just
numbers and a few characters?

Are you saying that some of our ef-
forts toward standardization should be
re-directed to encourage more creative
approaches?

Not at all. No, I think the Forth
Standards Team’s effort, as it is pre-
sently going on, is exactly the right ap-
proach at exactly the right level. It is
not too low level, just at the code and a
few primitive words; on the other
hand, it is not into very high-level con-
structs such as trying to have a stan-
dard editor or trying to have standard
telecommunications protocols. So I
think it is just right. There is enough in
the standard to write useful applica-
tions that are fundamentally standard
even though small parts of them may
have to be specialized enough that they
are non-standard.

We are now ready for a new effort
level and a new mutual agreement be-
tween users and vendors on such things
as a file structure, and an allocator
mechanism for mass storage. That is,
files with limited sets of rules associ-
ated with them. Not “no rules,” but
with a modest and simple rule set so
that I can generate variable-length data
structures called files. On the other
hand, I should still be able to hold data
in blocks if I wish. This means that I
would ask the system to generate a file
for me and I can put data into that; or I
can ask the system to give me some
blocks because for some applications
the blocks may be better. I can ask for
contiguous blocks or scattered blocks,
and when I am done using them I can
return them to the system and say,
thank you very much. That’s a mini-
mal next step. -

Beyond that, we start to look at the
user interface to a computer and how it
can be more responsive to our needs
for such things as graphics, sound,
pointing devices such as a light pen,
mouse or graphics tablet. How are
these going to be addressed or utilized
in a Forth environment so that we are

not constrained by one specific set of
hardware?

Will these things come to pass, or
will they require a fifth-generation
language?

No, no, no. No new breakthroughs!
Everything in manageable, bite-sized,
modular pieces. No new fifth langu-
age, no throwing the baby out with the
bath water. But I think it is very ap-
propriate for us all to question what is
the right environment, and to encour-
age things like this to happen. Will it
come through the present vendor chan-
nels, will it come through academic
support, will it come through users
groups, will it just come through in-
novative individuals working on their
own? The avenue through which these
things are likely to come is not at all
obvious to me.

There is a tremendous range of op-
portunity for the vendors to build in
this area. For example, an interesting
one people should look for is Pierre
Moreton, who is currently working in
Palo Alto, California. He is publishing
a portable Forth file system that he has
developed over the years. People who
utilize it say it is a very good work. I’m
not advocating Pierre’s file structure as
the standard Forth system, my point is
that people immediately see and value
his work, appreciate it and begin to use
it. That demonstrates its merit. Ex-
amples of that sort of an enhancement
are fairly limited; that is, there have
been very few of them so far and there
is a tremendous opportunity for more.
Ren Curry’s programming tools are
spoken of very highly by users who
would not have a running system now
without that sort of a debugger, break-
pointer and decompiler.

The vendors now walk a fine line be-
tween what is good Forth and what are
good contributions for products of the
future. I think they are playing it too
conservatively. Right now the vendors
are just trying to do a good job on
Forth and to document it; they are
pulling back too soon. They are not
meeting the challenge, not addressing
unfulfilled needs. I do not know where
there is a commercially available
spreadsheet in Forth. There is QTF, the
text processor from Leo Brodie; on the
other hand, that works on blocks and
is a fairly constrained text processor. It

is enough to get the job done, but you
wouldn’t use it if you had better
alternatives. I think there is a tremen-
dous opportunity for someone to come
along with a good Forth system as a
basis and to add the interfaces users
expect .

What is it that enables you to go into
a situation like meetings of FIG volun-
teers, where there may be an emotional
charge in the air, yet come out of it
with a concensus and everyone still
working together? There may be argu-
ments and debates, but votes are taken,
a decision is reached and people con-
tinue to work together.

It may be a little corny, but the moti-
vation and common interest we have in
Forth really transcends a lot of these
short-term individual priorities. I
would not at all allude to the fact that
it is a management style, or an environ-
ment that is created which makes this
happen. It falls strictly back to the
spirit of the individuals; there is a bit of
a filtering process that goes on, be-
cause a number of people who may
have significantly contrary points of
view just don’t continue to participate.
Therefore, we have people who think
in a fairly consistent fashion, and who
are able at least to see the other
fellow’s point of view.

The volunteer aspect, you see, is a
major element, in that people realize
that they have to work for their own
self interest to enjoy participating. We
have to recognize that and allow it to
play a role. They are doing it because
they want to and because it is needed,
not becahse it is required by someone
else. They also do it because there is a
feeling of dependence: for whatever
function they are performing, other
people are depending on them to do
that. For example, the team that puts
the FORML conference together has
done so year after year because they see
a very great need for that sort of forum
to exist, and for the proceedings to get
published and that a diversity of opin-
ions be represented at the meeting. It is
common desire and common good that
makes it flourish.

I see us at a major turning point in
the interest group’s development. Until
now, of necessity and correctly, it has
been fairly focused in Northern Cali-
fornia because we had enough people

FORTH Dimensions 22 1 Volume V, No. 6

here to reach critical mass to get the
work done. Now we are at a point
where we can start to distribute the
participation totally through the mem-
bership and to strengthen FIG as a
membership-driven organization -
one that is controlled and operated by,
and dependent on, its membership. Up
till now it has been organized so that it
is the central FIG planning group that
provides services to members: publica-
tions, listings, conference proceedings
and major events. I think the pendu-
lum is now swinging so that work such
as the chapter development done by
John Hall will begin to bear fruit. I
hope that in the next few years we will
have our national convention regional-
ly so that it will be in Washington, Dal-
las, New Orleans. We will know we
have an effective membership organ-
ization when we can move around the
country and have the organization ef-
fort done regionally.

Why do you expend such volunteer
effort on behalf of FIG? Some people
are surprised at your investment of
Seven years.

I’ve heard that more than once.
Some suspicious types feel there must
be something sinister in a sustained ef-
fort for that period with no financial
compensation. The obvious answer, at
least to me, is that I enjoy communi-
cating, both in written and spoken
form. In order to talk about Forth,
there must be others, so a growing
group is necessary for all of us to have
a forum.

How do you view the role FIG now
serves?

There is still a great deal of under-
standing being sought about FIG’S ser-
vice role and how it is changing. Early
on, it was to provide a newsletter and
education to people, to fill that need of
how do people learn about Forth, how
to use Forth in a productive way to
meet their own needs.

One question currently being debat-
ed with a great amount of interest is
whether the interest group should en-
gage a significant amount of its resour-
ces in the popularization of Forth to
people who are otherwise unacquaint-
ed with it. Or should its role be devoted
primarily to serving members’ needs,
people who are already familiar with

Forth and who wish to enhance their
own understanding and skills? That is,
are we on a public relations-oriented
mission to legitimize Forth and make
people aware of it who otherwise
would have no contact? Some say that
is a more appropriate role for the ven-
dors; that the interest group comes into
play once someone has an awareness of
Forth and desires to enhance his skills.
There is certainly no answer to those
topics yet, and the more points of view
we receive, the better off we will be.

Why hasn’t FIG outlived its use-
fulness?

There is an easy answer to that. It’s
the only game in town. It is the only
community of interest that has devel-
oped associated with Forth. The stan-
dards team is a group of only about
twenty-six people with periods of in-
tense activity and periods of latency in
between. One manufacturer has started
and supported a users group. I am not
familiar with the exact structure of it
but the activity, from all indications I
see, is very modest. But FIG, as I said,
is the only game in town. Does that
sound piggy?

The membership aspects of FIG are
just being tapped and developed. I feel
very firmly that over the next two to
three years we will see a major change
in the complexion of FIG in its interac-
tion with and its dependency on its
membership. We have a number of ele-
ments going into effect this year, such
as membership cards, discounts, possi-
bly expanded hotline services based on
membership. There are half a dozen or
so aspects that we are trying to streng-
then for the membership. It is a case of
two plus two equals five - if the peo-
ple gather together, they get more
results from their common interests.

Is FIG likely to endorse Laxen and
Perry’s F83 implementation as a lan-
guage model?

I certainly hope we will. The stan-
dards team, I think, missed a boat: up-
on the team members’ acceptance of
the draft, they felt their job was done.
It is becoming apparent to me now that
it wasn’t. There is another stage left,
which is to encourage ratification, if
you will, of the standard draft by com-
munities of users. The standard really
isn’t a standard until it is accepted

broadly and used broadly. One of the
goals of the Forth Interest Group is to
take a formal action on behalf of our
membership with regard to the stan-
dard, to set up a ratification process to
examine it against our mutual needs.
Then if this review team considered it
appropriate, it would come out with an
acceptance statement on behalf of the
membership and the interest group, en-
dorsing the standard and recommend-
ing its use.

What is your relationship with other
organizations, for example Forth Inc.
and the Forth Vendors Group?

I purchased stock in Forth Inc. in
1979 and was subsequently invited to
join their Board of Directors. I served
as Director from 1980 through late
1982, and then as Chairman until Oc-
tober of 1983. My only current involve-
ment is as an investor.

I joined the Forth Vendors Group at
its inception, about a year ago. My
product is the Ultra Compiler, a target
compiler, which is made available to
industrial customers. One vendor cur-
rently re-sells it as part of a complete
system. I’m sure I’ll have further in-
volvement with Forth applications-,

Does a marketplace exist for Forth
and Forth products?

The market is developed for Forth
programmers, but not for Forth pro-
ducts. Right now, there is a sufficient
number of industrial uses for Forth
that professionally skilled Forth pro-
grammers don’t seem to have any
trouble getting a job. I know of two in-
dustrial companies which were con-
sidering dropping Forth as their pro-
gramming language in the past year
because of their difficulty recruiting
people. The projects had been started
in Forth by someone who was skilled in
it, the person left the organization and
the firm had such difficulty in support-
ing the activity with other people, that
they were very insistent about dropping
Forth.

The skills for Forth programmers are
merchandisable. On the other hand, it
is not at all obvious to me that there is
truly a marketplace for Forth itself, but
I have a lesser reservation on Forth
applications. I would substantiate this
by looking at the sales of companies
such as Digital Research and

Volume V, NO. 6 23 FORTH Dimensions

Microsoft. They are providing lan-
guages and operating systems, essen-
tially productivity tools for other pro-
grammers. Well, that’s what Forth
does. Now, if we take the sales of the
top ten companies in the Forth com-
munity, filling in your own names as to
which they may be, we would add up
their total gross sales at maybe some-
thing like three million dollars max,
and possibly something closer to two
million dollars. Digital Research and
Microsoft are 6O00 percent larger than
us. So another way of saying this is
that the Forth community has to grow
by, say, a hundredfold; there is a hun-
dredfold growth opportunity for the
Forth community to come into its own
in the market.

Now if we are saying that Forth is so
dynamite, so productive, so innova-
tive, so useful, solves so many prob-
lems, why do we have this hundred-to-
one gap between Forth and the other
environments? The challenge is essen-
tially on the vendors’ shoulders. They
,have to make products that are respon-
sive to real-world needs, not their own
needs, not their staff‘s needs. They
have to define their business activity by
the nature of the customer marketplace
they want to serve. Right now it is ob-
vious that they are defining the nature
of their companies in terms of a very
small number of customers with a very
limited need. To me it is a pity, because
the Forth manufacturers choose volun-
tarily, in the way they conduct their
businesses, to define their service role
in such a narrow way.

Perhaps some of the innovation you
mentioned earlier should come about
because people listen to public
needs. . .

That’s good. As you said those very
words, when you came to the “inno-
vate” part I winced a little bit, and
then you got to the part about “cus-
tomer needs” and I smiled a little bit
because that is right. We have, I think,
been polishing a precious gemstone
and telling everyone how pretty it is,
rather than being responsive to the type
of jewelry people really wish to wear.
Now, I’m not at all advocating that we
throw over the precepts of simplicity
and portability and generality that
make Forth so strong. But we have a
tremendous resource to be used for

solutions that we have missed so far to
users’ problems and productivity
needs. A few vendors have responded
in the past to these sorts of customer
needs, but it looks to me as if the
growth curve that the microcomputer
industry is currently enjoying, some-
thing like thirty-five or fifty percent
per year, is not going on within the
Forth vendor community.

Can someone going into business as
a Forth vendor look forward to a sub-
stantial profit? Or is that premature
thinking?

I see an opening as big as a barn, a
gigantic pot of gold at the end of the
rainbow, or Ali Baba’s treasure cave. It
is the tremendous financial reward that
can be achieved by the use of Forth
that, unfortunately, isn’t being
realized. They seem to be solving three-
year-old problems with two-year-old
solutions. They are not looking where
the action is or where the needs are.

I’ll point out elements that I feel are
components of this. I see a system with
an integrated file structure and data
base engineered by ordinary good prac-
tice, contemporary practice that you
can get by reading texts coming out in
the university community. Compo-
nents are two-phase record locking and
transactions with roll-back and roll-
forward journalling. That is then cou-
pled with a compatible query language
and virtual execution. Not the Forth
style of access to disk blocks and data
storage, but the ability to execute code
out of virtual memory. A good com-
bination of these elements would be
competitive in the operating system
arena equivalent to, say, the UNIX
system.

I see vendors such as Unisoft and
Relational Technology in Berkeley that
are currently doing four to five million
dollars a year, and are heading toward
doing fifteen to twenty million dollars
a year in what is very high margin
work. Once you write the code, you
then have multiple uses of it. You are
licensing a couple of hundred other
companies to go out and sell your sys-
tem. These two companies are going
from startup into two and’twenty mil-
lion dollars a year in sales and I see no
reason whatsoever why this cannot be
done with a Forth starting point. So,
with those grandiose statements, how

do we inspire the vendors to set their
goals high enough, to set their desires
to a sufficient level that they will be
able to go out and achieve that?

It’s a tall order. The technology
components are available. So it looks
like it’s going to need an accident.
Maybe we just need some luck, where
the right innovator drops into the right
business environment coupled with the
right sensitivity toward customer
needs, and it takes off.

Yet many of the people who use
Forth have chosen to avoid large
systems.. .

I’m not talking about big environ-
ments. The Pick operating system has
many of the characteristics I just men-
tioned and is smaller than Forth. It
runs with a 4K nucleus and 250K of
code. It has virtual execution, data
base, query language, text processor,
multi-tasking. When someone wants to
use that system, it is a million dollar
license. Now that’s leadership. They
have customers lined up. They used to
do one implementation a year, now
they do four a year and they have them
lined up and waiting. If Dick Pick and
Chuck Moore had gotten together on
day one, a miracle would have
resulted.

Why isn’t this being done in Forth?
Well, I’m not sure. It may be that inno-
vations occur when people are in un-
comfortable situations, when they are
boxed in. Then they have to find solu-
tions, whether they are technical,
managerial, people or financial. May-
be we just have to go along until the
right combination of people are in that
box.

If I’m so smart, why don’t I go do
it? Well, it’s not easy, it’s a Herculean
task - it’s building an industry. Up till
now, Forth and Chuck Moore have
built an avocation. How are we going
to make an industry out of it? That’s
why I did the paper at FORML on
leadership, trying to get that inspira-
tion going.

Forth right now is like a well-worn,
comfortable slipper. It is convenient,
easy, fun, all that. A new order must
form to respond to needs. What we
need is another Ice Age, some more
freezing people struggling to kill ano-
ther mastodon for dinner.

FORTH Dimensions 24 Volume V, No. 6

What do you personally want from
FIG?

It has gone on too long with me call-
ing the shots. That doesn’t help FIG, it
doesn’t help me. So we have got to find
a way to ease me out, and the best way
is by having people who grow and de-
velop, and who want to participate and
pick up the interest, skills and rewards
from doing it on a public-service basis.
I think that’s what FIG needs now. It’s
like a relay race and we now need a
continuing team. Seeing John Hall
come along is a breath of fresh air. He
just came in at the right time and the
right place, picked up the challenge
and responded to it and is doing very
well. TWO or three years ago, Kim Har-
ris did that with FORML. Right now,
we need a little horsepower to aid the
plain old business management. For a
while I did it, then we turned it over to
Roy Martens and now it looks like we
are in the next generation of that area.

Beyond that, I fall back on plati-
tudes. We want a membership-based
.organization that has sufficient inter-
national strength and depth that we

provide mutual support to one ano-
ther. That is, we have the right people
skills, the right technical skills, the
right communication skills so that
Forth Dimensions flourishes, the chap-
ters interact at a people level and at a
chapter level. Then we have one or two
international events a year so we inter-
act on a global level. It is just like Forth
words: you have the code words and
the high-level words, the user interac-
tion at the topmost level, everything
layered up. And it’s the same way with
the group activities on local, national
and international levels. The Forth
Interest Group has hit a level of sup-
port and need such that it will continue
unabated, it will flourish of its own
momentum.

Are there any limits to growth? I’m
not sure on that. There must be, the
day will not come that there are a mil-
lion members of FIG. I use the book
Starting Forth to test our potential
universe. I understand there are fifty or
sixty thousand copies in print, and ev-
erybody who owns a copy ought to be a
member of FIG also. When we’ve done

that, maybe we’ve reached our limit.
With a group that large, the benefits go
up exponentially.

What kind of people are attracted to
Forth, and which do not do well with
it?

I see two types of people that seem to
find Forth valuable. The first is the in-
novative or ingenious person, a sort of
puzzle solver who takes as much relish
in the method of solution as he does in
the solution itself. I can write a pro-
gram in BASIC, in Fortran and in
Forth, and yet I’m proudest of the
Forth solution when I am done. That is
the one I would show to somebody.
The other type of person is one who
appreciates the flexibility of Forth. In
some cases they are a little more rebel-
lious or non-conformist, they don’t
want to solve the problem the way the
other person does it. They want the
liberties Forth provides to develop their
own style of solution, their own
method of expression. Rather than
showing off the solution, they tend to
be most content with the fact that they

ProFORTH //e
The f ist development system exclusively for the APPLE //e us@ the
new ProDCS operatiag system.

DEVWPMENT SYSTEM - $200.00
Virtual editor, assembler and utilities -- Full access to Prom and
machine language interface -- Hard disc compatible -- Print spooler.
MmACOMPILJ3t and VIRTUAL WADER - $200.00
FORTH PROGRAMMING AIDS - $200.00
Translator, decompiler, call finder and subroutine decompiler.

BUY ALL THREE FOR - $500.00
Requires: APPLE //e, extended 80 col card, 2 drives

P!UF8SSfU’AAL APPL fCA IXW..
214 S. Rock Rd. Suite lOlb

Wichita, ICS 67207
(3 16) 683-0225
PrB wi8td t r s d d d APPLE CoePprrtW. I=. APPLE d

Volume V, No. 6 25 FORTH Dimensions

C64=FORTH/79
New and
Improved

for the
Commodore 64

C64-FORTH/7V for the Commodore 64-
$99.95

.New and improved FORTH-79
implementation with extensions.

.Extension ackage including lines,
circles, xafhg, windowing, mixed
high res-character graphics and
sprite graphics.

.Fully compatible floatin point package
including arithmetic, rektional, logical
and transcendental functions.

.String extensions including LEFT$,
RIGHT$, and MID$.

.Full feature screen editor and
macro assembler.

.Compatible with VIC peripherals
including disks, data set, modem,
printer and cartridge.

.Expanded 167page manual with
examples and application screens.

.“SAVE TURNKEY” normally allows
application program distribution
without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER

-Disk only.
-Check, money order, bank card,

-Add $4.00 osta e and handling in

-Mass. orders add 5% sales tax
-Foreign orders add XEA shipping

-Dealer inquiries welcome

COD’S add $1.65

USAand &na&

and handling

PERFORMANCE
MICRO

PRO DO CTS
770 Dedham Street,
Canton, M A 02021

(617) 828-1209

have solved the problem in their way.
The latter type also is more heretical or
non-conformist in that they are proud-
er of the solution if it is a little out of
the mainstream.

What are your biases as a Forth pro-
grammer?

I have the same bias that most have,
and it’s not a good one. That is the at-
titude that I can do it better, that my
code is, by definition, better than your
code. Now I have enough perspective
to joke about it and to realize it. But
people re-invent the wheel and then
feel that the best solution to any prob-
lem is the one they just thought of.
Forth itself encourages people like
that. It comes with the territory, and it
gains us the insights of bright, creative
people. On the other hand, it means
that we lose the ability to build and
utilize the work of others. I see a ten-
dency for people to either implement
their own system or install their own
system, rather than to search for and
utilize the benefits of vendors’ systems.
If more people made better and more
extensive use of vendors’ products, it
would improve the quality of the pro-
duct they get and there would be a
stronger and better marketplace.

One illustration of that: I flip open a
magazine such as Dr. Dobb’s Journal
and I see in there six implementations
of C, one of which sells for $350, and
the rest for $500 or $600. Then I take
the same magazine and look at Forth
implementations. I see about six im-
plementations of Forth, the lowest cost
for which is $35 and the most expen-
sive, I believe, about $195, with most
about $85 or $100. Well, pricing often
can be a clue to perceived worth. What
this tells us is that the purchaser per-
ceives that in a Forth system he has on-
ly one-fifth the value he would have in
a C system. That’s not a good testi-
mony. We want to demonstrate the
value of the Forth systems in such a
way that the perceived value goes up
and Forth systems are now worth every
bit as much as C systems.

Biases part two: “I can do it better”
is typical of the individualist aspect in
the interest group. We recently had a
planning session at which these topics
were discussed, and it was brought out
at the meeting that one of the charac-
teristics of the Forth programmer is

that he would prefer to modify his pro-
gramming environment to match his
own needs rather than moderating his
needs to match those of the environ-
ment around him. I don’t think this is
necessarily a negative characteristic,
but I think it is one that we should car-
ry in the back of our mind. Where
could we use that as a strength to build
on?

There’s a saying that where pro-
gramming is concerned, better isn’t al-
ways best. Refinements of the design
and code can go on and on, with the
project never reaching completion.

A classic quote goes like this: Hard-
ware designers and engineers are used
to standing on each other’s shoulders,
building from components supplied by
other people. Programmers tend to
stand on each other’s toes. They get in
each other’s way and each individual
makes only a small contribution. How
do we get to the point where we are
standing on each other’s shoulders and
each one is getting a two-to-one multi-
plier over the productivity of another?

The people in the Forth Interest
Group have changed, and the collective
nature of the group has changed. In the
1979-1980 era, we were very heavily in
an evangelical or missionary role. We
were at meetings saying, “Look at this,
read my code, Forth is great!” It was
out of pride, and it also reflected the
fact that many people had not had any
exposure at all to Forth. I’m pleased
that changes have occurred, and that
now we are less strident in our tone,
less vocal. We are now providing infor-
mation t a a more receptive audience
who is saying, “Say, I’ve heard about
Forth. Can you help me to understand
more or to get some use from it?” That
is a remarkable improvement in the
short space of three years.

SEND A CHECK TO FIG TODAY!
MAKE THIS YOUR BEGINNING1

RENEW NOW1

26 Volume V. No. 6 FORTH Dimensions

DO.. . WHEN.. . LOOP Construct

R . W. Gray
Los Angeles, California

This article will introduce a new
Forth loop construct which is clear and
compact. This construct can have the
forms shown in figure one.

These constructs are a result of an
attempt to implement the Forth-83
LEAVE which exits the loop immediate-
ly; plus the realization that every LEAVE
must be contained in an IF ... THEN
type of construct. Thus, the screens
contain definitions which implement a
conditional Forth-83 Standard LEAVE.
The DO . .. WHEN . .. LOOP construct
can be seen as similar to a BEGIN . . .
WHILE . . . REPEAT structure.

A problem with the Forth-83 LEAVE
is that it requires improper nesting of
conditional statements. Since LEAVE
must be in a conditional statement like:

DO . . . IF LEAVE THEN . . . LOOP

and the LEAVE forces immediate escape
from the loop, it must jump over the
following THEN. This results in com-
plications when compiling. A solution
to this dilemma is to place the resolving
THEN into LOOP and to implement a
conditional compilation which recog-
nizes that a LEAVE is being imple-
mented. The resulting construct then
becomes:

DO . . . IF LEAVE ELSE . . . THEN LOOP

The terminating THEN is now
adjacent to LOOP and proper nesting
can be maintained.

The accompanying listing is written
in "q4th," which differs from fig-
FORTH in that it compiles absolute
address jumps instead of differential
relative jumps. (The listing uses BACK
to simplify translation.) Also, lower-
case words are used instead of paren-
theses for primitives. The listing uses
the fig-FORTH or 79-Standard LEAVE
which simply sets the loop index equal
to the loop limit, and all branching is
controlled by IF.. .THEN statements.

mous and the choice of usage can be
WHENLEAVE and NOTWHEN are synony-

1L
13
14
15

Scveen # 18
0 (L(3OP tLC)OP
I
2 : LOOP XIUP 2 :. IF j '?PAI:R!i
J ELSE LCOMVlLE 3 IHEN
4 THEN COMPILE lo (s~ . 1(ACI\ i IHMEIIIh'l 't

6

8 ELSE HERE 2- LlUP G ::.R < 59vc i nwesen t)
9 2- @ ' l i t e r a l CFA .- (t k 5 t if LIT)
10 I F .-4 ALLOT CCOMF'ILEI 'THEN
I1 COMPILE l i t e r s 1
12 ELSE -2 A L L O T CCOMF'ILEI 'THEN
13 THEN H> I (r e s t o r e intreaent)
14 .THEN COMPILE tloor BACK i 1MIIEI:IIA'IE
15

J

7 : + L o w D ~ J P 2 :z IF 3 ?PAIre,

DO.. .WHEN.. .LOOP (or +LOOP)

DO...NOTWHEN...LOOP (or +LOOP)

DO...WHENLEAVF...LOOP (or +LOOP)

Figure One

:COUNTING 2n o no I 15 < WHEN I . LOOP ;
run i t

COIINTJNG -> 0 1 2 3 4 5 7 R 9 10 11 1 2 13 14 ok

:CDUNTING-RY-~ 3 0 n DO I 2 1 = NOTWHFN I . 3 +Loop ;
run i t

COUNTING-BY-3 -> 0 3 6 9 13 15 18 ok

Figure Two

decided by the user (or some future
standards committee) to make the most
sense in context.

It can be seen from the examples in
figure two that as soon as the condition
for exit is met, then the loop ter- RENEW TODAY!
minates.

It is hoped that the DO.. .WHEN.. .
LOOP construct will be useful and will

help resolve some problems with im-
plementing the 83-Standard on older
systems.

Volume V, No. 6 27 FORTH Dimensions

Newton’s Method:

‘ I I I
- 1

FixedlPoint Square Roots
in Forth

Nathaniel Grossman
Los Angeles, California

Every specialty has its own folklore.
Numerical analysis is no exception,
and a big part of this folklore is de-
voted to tales of one or another cal-
culation that must be carried out by
such-and-such a method because it
can’t be pushed through by so-and-so’s
method in (?)-point. A good example
is contained in Klaxon Suralis’ article,
“Fixed-Point Square Roots” (Forth
Dimensions IV/l). Before describing a
pretty algorithm for extracting sixteen-
bit square roots of thirty-two-bit radi-
cands, he asserts that the well-known
iterative square-root algorithm called
“Newton’s Method” is “. . .best suit-
ed to CPUs with full floating-point
arithmetic hardware.”

This assertion is simply not true.
Yes, Newton’s method is easier to
implement in floating point, but for
Forth systems without number-crunch-
ing arithmetic hardware, Newton’s
method is both feasible and fast in
fixed point. I remember, as a boy,
beginning “high-powered” computa-
tion after acquiring a Marchant 9 x 9 x
18 hand-cranked, geared calculator.
The arithmetic on that machine was
not unlike the formal fixed-point arith-
metic in Forth, even up to the lack of a
carry digit. I worked through many
famous algorithms with that machine
nevertheless, and Newton’s method
was one of them.

I will show here how to implement
Newton’s method in (fixed-point)
Forth, obtaining for any unsigned
thirty-two-bit a sixteen-bit, unsigned
integer that is the floor of its square
root. The core of the method is an
observation about iterative solution of
equations, that has much greater
scope. (For example, it could be used
to produce integer cube or higher
roots, or the roots of many other
equations.)

y-axis

/ y = x

r / r I i~
I .

Figure One

Basis for the Algorithm
Suppose M is a positive integer. The

goal is the number [JM]. The [I nota-
tion is standard in mathematics: if x is
any real number, then [XI is the largest
integer not greater than x. (In the
Forth-83 Standard, [XI is called the
floor of x. For example, [.3] = 0 and
[-.4] = -1.)

Newton’s method for finding JM is
realized in the iteration scheme

X k + l = %(Xk + M/Xk)

in which ~0 may be chosen to be any
positive number. As k increases, Xk
gets closer and closer to &I. One can
show that this scheme is quadratically
convergent, meaning that eventually
the number of correct digits doubles
with each iteration.

It is obvious that this iteration
scheme does not yield only integers.
This may be what the folklore is point-
ing to. But many iteration schemes,
and the Newton scheme is one of these,
are stable in the sense that small pertur-
bations of the scheme do not destroy
the convergence, although it may be
slowed down. They can even recover
from errors in computation. (Those
who carried out hand computation of-
ten made copying errors such as trans-
position of digits, but Newton’s me-
thod forgives minor trespasses.) We
can try to modify Newton’s method to
work in integers. The modification is
easy to explain in a more general set-
ting, and it too is part of the specialized
folklore.

A first-order iteration scheme is of
the form

FORTH Dimensions
~

28 volume V, NO. 6

y-axis

x2 x1 xO
X r n 3

Figure Two

4 Y = g(x>

- x-axis

Xk + 1 = g(xk)
with x,, a suitable choice. If g is “nice”
and x,, is a congenial choice for the
starting guess, then xk gets closer and
closer to a root of the equation x =
g(x) as k increases. (Different xo may
lead to different roots.) For example,
the function g(x) = %(x + M/x) gen-
erates Newton’s method for square
roots, and the positive root of x = %(x
+ M/x) is JM.

Each iteration scheme has a geome-
trical picture. If g(x) generates the
scheme, graph the line y = x and the
curve y = g(x) on the same axes. Let yk
= g(xk). Each time an Xk is generated,
the corresponding yk is used for the
next x, that is, Xk+ 1. The passage from
x to y is made by horizontal and verti-
cal motions broken at the line. Of
cour se , we a r e seeking t h e
intersection(s) of the line and the
curve. Figure one shows the iteration
as a flow in a good case.

Suppose that the goal is not the root
r for which r = g(r) but its floor [r].
Then we modify the iteration scheme
into the form xk+ = [g(xk)]. Now the
values of Xk may no longer converge to
a limiting value. In some cases, the new

Xk may converge to the integerpart of a
root of the equation x = g(x). One case
is as follows.

Suppose that g(x) is defined and con-
tinuous for x > 0 and that there is an
m > 0 so that g(m) is the minimum
value of g(x) for x > 0, while g is
strictly increasing as x leaves m in
either direction. Suppose also that m is
the unique root of the equation x =
g(x). Pick any x,, > m and compute xl,

Let k = j be the first index at which the
iterates stop marching to the left: x. -=
[m] = xj.

Verification of the Modified Scheme
A picture (figure two) helps in fol-

lowing the argument.
Select ~0 > m. The ordinate to the

curve y = g(x) at x = x,, has value y9 =
g(x,,). But “xl” = yo, the intersection
of the horizontal at height yo with the
line y = x. If “xl” is not an integer,
the new scheme requires a hop left to x1
= [“xl”]. This step is iterated to gen-
erate x2, x3, So long as the points
(xk, yk) be on that branch of y = g(x)
to the right of x = m, the iterates will
either march to the left or eventually (if

X2, . . . by the scheme Xk + 1 = [g(xk)].

X j + l but xk+l I Xk for k < j. Then

m is an integer) remain fixed. In the
second case, there will be a first index j
such that xj = [m] = m. If the iterates
are not eventually fixed, then there
must be a k so that xk - m < 1: if not,
all k lead to X k L m + 1 and the xk
must converge to p L m. Because g is
strictly increasing at x = p and m is a
minimum point for g, [g(p)] < m and
X k + l = [g(xk)] < m < p for some k.
This is a contradiction; hence there is a
first j so that x. < m < xj-l < xj-2 <
. . . < x,, whie xj < xj + 1. Finally,
x j + l - xj I 1 because otherwise the
horizontal at jth height, yj-l, would in-
tersect y = x at an x* > m. Either this
x* is an integer, contradicting the defi-
nition of j , or it is not an integer, in
which case xj I m < x* and xj = [m].
This is the conclusion sought.

Implementation of the Modified
Scheme

If g(x) = (x + M/x)/2, the
generator of Newton’s square-root
method, the unique positive minimum
of g occurs at x = JM, the sole posi-
tive root of x = g(x). The continuity
and monotonicity conditions _are
satisfied. Thus, the following scheme
generates [JM] :

Pick x,, > JM and generate xl, x2, . . .
by

If j is the smallest index for which xj
5 xj+ then xj = [JM]

It is this scheme - or, rather, a
slightly fudged version of it - that I
implement.

Why is there a fudge? Suppose, to be
concrete, that M fits into a thirty-two-
bit register while [&I] is to fit into a
sixteen-bit register. The arithmetic is to
be fixed-point with no carry bits. It
may happen either that M/xk is wider
than sixteen-bit or that x k + M/xk is
wider than sixteen-bit even though the
summands are not. The second case
might be handled by computing (xk/2)

but some care would be necessary
because [(x + y)/21 2 [x/21 + [y/21
and > will occur if both x and y are
odd integers. Blind implementation of
the iteration scheme can (and will) lead
to nonsense results and, perhaps, a
crash. (This manifests the nasty reality

+ (M/2Xk) instead Of (Xk + M/Xk)/2,

Volume V, No. 6 29 FORTH Dimensions

that the objects in the arithmetic
registers are not numbers but only sur-
rogates for numbers, and the
arithmetic of those objects only mimics
the arithmetic of numbers.) Therefore,
the algorithm must be implemented to
avoid attempting directly the taking of
square roots of numbers that are “too
wide.” A little experimentation
suggests that 230 is already too wide for
a thirty-two-bit register.

To create some leeway, suppose that
226 I M c 232. Write by division M =
64A + B, where the quotient A
satisfies 220 I A c 226 and the
remainder B satisfies 0 s B c 63.
Then A is not too wide, and [JA] can
be computed by the Newton scheme
without overflow problems.

Note that

M = (8[JA])2 + B + #A - 64[JAI2

There is an approximation formula

J(P2 + 4) P + q/2P

We may call this the Babylonian ap-
proximation because study of the
cuneiform tablet Plimpton 322 (ca.
1900 - 1600 B.C.), found during
excavations of Babylon, shows it to be
a table of various ratios of sides in
right triangles, evidently computed
using this approximation formula. The
approximation is evidently the x1
generated by the Newton formula
when xo = p is chosen. The
approximation also represents the first
two terms in the infinite series for J(p2
+ q) when the binomial theorem for
fractional exponents, first written out
by Isaac Newton, is employed.
Application of the Babylonian formula
to the expression for M with p =
8[JA] and q = B + #A - 64[JAI2
gives the approximation hereafter
referred to as (*):

&I s 8[JA] + (B + #A -
64[JAI2Y 16[JAI

We will implement the formula (*) in
fixed-point Forth. The first term,
8[JA], is an integer. The second term
is not necessarily an integer, but the
integer part of &I is the sum of 8[JA]
with the integer part of the second
term. To be sure, it is necessary to rule
out the possibility that additional
correction terms will take the refined

0 (SCR d l : 16-BIT SQRT OF 32-BIT INTEGERS)
1 (NATHANIEL GROSSMAN, 9/27/83 --- HES VIC-FORTH)
2 (DOUBLE PRECISION MATHEMATICS WORDS, AFTER FD-V,1 1
3: T* (U D , U N --- UT)
4 DUP ROT U* > R > R
5 U 4
6 0 R > R > D+ ;
7: T / (UT,UN -- UD 1
8 > R R U / SWAP
9 ROT 0 R U / SWAP

10 ROT R > U / SWAP DROP
11 0 2SWAP SWAP D + ;
72: U * / (U D , U N , U N --- VD)

14
15

13 > R T* R > TI ; ;s

0 (SCR 112: 16-BIT SQRT, CONT NG,9/27/83)
1: D < (AFTER “ALL ABOUT FORTH“)
2 ROT 2DUP =
3 IF ROT ROT DMINUS D+
4 ELSE SAAP < SWAP DROP
5 ENDIF SWAP DROP ;
6: D U < (FD-IV,1)
7 32768 + ROT 32768 + 93T RST D< ;
8
9 0 VARIABLE #DYADS

10 1024 CONSTANT ROOT-CUT
11
12
13
14
15

0 (SCR 13: 16-BIT SQRT, CONT NG.9/27/83)

2 SEGIN
3 4 / DUP (SHIFT BY DYADS TO THE RIGHT
4 WHILE (IF NOT SHIFTED INTO 0
5 1 #DYADS +! (THEN INCREASE #DYADS B Y 1

7: DYAD-COUNT (U D -- U D)

1: DYADS-IN-CELL? (U N --)

6 REPEAT DROP ;

8 1 #DYADS ! 2DUP (I N I T I A L I Z E
9 I F 8 #DYADS +! (IF HIGH PART NOT 0, INCREASE

10 DROP DUP (#DYADS BY 8, DROP LOW PART
11 DYADS-IN-CELL? (COUNT DYADS)
12 ELSE DYADS-IN-CELL? (I F H I G H PART IS 0, COUNT DYADS)
13 ENDIF ; ; S
14
15

0 (SCR C4: 16-BIT SQRT, CONT NC,g/27/83)
1: FIRST4UESS (SETS UP U N 111111 ... 11)
2 DYAD-COUNT (COUNT 3YADS)

4 DUP 0 = (3 N L Y 3 Y C DYAD?)
5 IF (YES?)
6 DROP 2 (FIRST ZUESS I S 2)
7 ELSE (YORE THAN ONE DYAD?)
3 1 SWAP (THEN FILL OUT THE FIRST GUESS)
9 0 DO (WITH a I N A R Y DIGITS 1)

3 #DYADS @ 1 -

10 DUP + 1 +
11 LOOP
12 ENDIF ; ;S
13
14
15

FORTH Dimensions 30 Volume V, No. 6

0 (SCR 115: 16-BIT SQRT, CONT N G , 9 / 2 7 / 8 3)
1: HERON (UD,UN --- UD,UN)
2 BEGIN (START ITERATION LOOP)
3 >R 2DUP R (S E T UP DATA)
4 U / SWAP DROP S->D R S->D (D I V BY T R I A L ROOT, TURN)
5 D+ 2 U / SWAP DROP (GUESS AND QUOT INTO DBL)
6 R > (AVERAGE, AND SAVE NEW)
7 2DUP < (OLD < NEW ?)
8 I F DROP 0 (YES? DROP NEW, E X I T LOOP)
9 E L S E SHAP DROP 1 (NO? GO AROUND AGAIN)

1 0 ENDIF
1 1 U N T I L ;

1 3 F I R S T - G U E S S
1 4 HERON
1 5 SWAP DROP SUAP DROP ; ; S

1 2 : NEWTON-ISQRTI (UD,UN -- LIN)

0 (SCR 116: 1 6 - B I T SQRT. CONT N G , 9 / 2 7 / 8 3)
1: RAD(MOD64) (UD --- UN,UD; RE*I,QU3T :.10D 6 4)
2 2DUP
3 1 6 4 U*/ (D I V BY 6'1 T 3 GET A)
4 2 DUP >R > R (S E T C 3 P Y OF ?!IOT)
5 6 4 1 U*/ ($GET)
6 DMINUS D+ (REMAINDER)
7 DROP A > R > ; (CONVEHT 0 TO S, RECALL PUOT)
8 : CORRECTED- SQRT (N , N , U ! ! -- !IN)
9 DUP 2DUP >R >R (114KE, STORE T O P I E S OF C S Q R T (R) I)

1 0 u * DElINUS D+ (A - C S Q R T (A) l * * 2)
1 1 6 4 1 U * / (GET)
12 ROT S->D D+ (NU'4ERATOR)
1 3 R > U / 1 6 / (9lV TO GET CORRECTION)
1 4 R > 8 * + ; ; S (WIN TERV PLUS CORRECTION)
1 5

0 (SCR1/7: 1 6 - B I T SQRT, CONCLUDED N G , 9 / 2 7 / 8 3)
1: SQRT (UD --- IJN)
2 2DUP
3 0 ROOT-CUT DU< (I S RADICAND SMALL?
4 I F (YES? TAEN
5 NEWTON-ISQRTI (TAKE THE ROOT DIRECTLY
6 ELSE (NO? THEN TAKE I T INDIRECTLY
7 RAD(MOD64) (GET REDUCED 'ADICAND
8 2DUP (AND TAKE I T S SQRT
9 NEWTON-CSQRTI (GET CORRECTION, BLOW UP

1 0 CORRECTED-SQRT (REDUCED ROOT, AND ADD
1 1 ENDIF ; ;S
1 2
1 3 (KEY I N A 3 2 - B I T - THAT IS, UNSIGNED DOUBLE --)
1 4 (THEN SQRT, AND EXECUTE. RESULT IS 1 6 - B I T THAT)
1 5 (IS FLOOR OF SQRT OF BIT.)

approximation across an integer, and in fact is negative. Write
altering the value assigned to [JM].

The following worst-possiblecase
estimate shows that additional
correction terms will not change the
value of [&I] given by the two-term
Babylonian approximat ion . By
examining the rest of the terms in the
infinite series for J(p2 + q) one can
show that the total contribution from

JA = [JA] + 6, 0 I 6 < 1. Then
A = [JAI2 = [JAI2 + 26[JA] + 62,
so that
B + 64A - 64[JAI2 = B + 1286[JA]
+ 6462. But, 0 I B < 63 and both
6 < 1 and 62 < 1, so that
B + 1286[JA] + 6462 < 128[JA] +
128 I 256[JA]. Therefore, the
magnitude of the secondary correction

the infinitely many terms neglected by can- be no more than
the two-term approximation (*) for M
is no bigger in absolute value than

(B + 64A-64[JA])2
212[JAI3

On the other hand, if the primary
correction is not 0, the ratio of the
corrections is

secondary correction - -
primary correction

(B + . . .)2 X 16[JAl
4096 [JA] (B + . . .)

< I - (B + . . .)
256[JAI2

-

Hence, the contribution from the
primary correction cannot be canceled
out by the negative secondary
correction, and (*) is satisfactory.

Coding the Algorithm into Forth
I implemented an algorithm based

upon (*) on a VIC-20 computer oper-
ating with HES VIC-FORTH (which
has the U/ bug described in Forth Di-
mensions IV and V). The algorithm ac-
cepts thirty-two-bit radicands and
produces sixteen-bit square roots. Note
that the algorithm is extensible to wider
radicands, but such extensions will
require division to be extended in order
that divisors wider than sixteen bits be
accepted. If possible time penalties
coming from division extensions be ig-
nored, the running time for a Newton-
style square root on a radicand b bits
wide will be proportional to log b. The
time to run a square root algorithm of
Suralis' style will be proportional to b,
so the Newton-type will eventually be
far superior.
Here is a commentary on the accom-
panying Forth screens:
Screen #I: The words T*, T/ and U*/ are
taken from Forth Dimensions (V/l). I
tried to modify them to return remain-
der as well as quotient along the lines
suggested by Bieman, but ran into
some difficulties that may come from
the 6502 U/ bug built into HES VIC-
FORTH.
Screen #2: The words D< and DU<
follow Suralis (Forth Dimensions
IV/l).
Screen #3: The choice of initial square
root approximation is crucial in keep-
ing down running time. If the first
guess is far away from the true square
root, many extra time-costly iterations

Volume V. No. 6 31 FORTH Dimensions

(with their divisions) will be necessary.
On the other hand, the method re-
quires that the initial guess be no small-
er than the true square root. Machines
using floating point typically compute
the first guess from a rational function
of the radicand, and this function is
derived by Pade approximation or in
some other esoteric way. Fixed-point
computers do not enjoy such freedom.
I obtain an optimal first guess by coun-
ting dyads. The radicand M is repre-
sented by a binary integer with leading
digit 1. Starting from the right, mark
off dyads - pairs of digits - and
count how many dyads, say p, are
needed to cover M. Then [MI will be
an integer of p binary digits, the left-
most 1. The largest integer with p bi-
nary digits is just l l 1 . . . l l , a string of
p Is, and this I take for the first guess
at [MI. Since 11 1 . . . 11 itself is the
square root of its square, the choice is

optimal.
The word DYADS-IN-CELL? counts dyads
in a sixteen-bit number. DYAD-COUNT
counts dyads in a thirty-two-bit
number: if the high cell is non-zero, the
counting storehouse #DYADS is credited
with eight dyads for the low cell and
the high cell count is added in, while if
the high point is zero, it is dropped and
the low cell is counted.
Screen #4: The word FIRST-GUESS sets
up the first guess as a line of 1s accord-
ing to the scheme explained under
Screen #3.
Screen #5: The Russian commentators
credit the Greek mathematician Heron
of Alexandria (second half of the first
century A.D.) with inventing the itera-
tion scheme used for Newton-style
square roots. As I have remarked
above, the basic method was known
much earlier to the Babylonians. But
HERON is much shorter than BABY-

LONIAN, so HERON is the word that
carries out the iteration. Then
~ m N - (s Q R l j combines the FIRST-
GUESS and the HERON iteration to give
the integer part [MI if M is not “too
wide.” This word does not check
width, so it will return nonsense if used
on a radicand that is too wide.

‘Screen #6: The word RAD(MOD64) de-
composes a thirty-two-bit radicand in-
to the form M = 64A + B.
Screen #7: The word SQRT checks
width first. If M is not too wide, SQRT
takes the square directly. Otherwise,
SQRT decomposes M, takes the square
root of A, computes the correction,
and assembles the square root of M
using the word CORRECTEDSQRT from
screen #6.

Fig Chapters

U.S.

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 11 a.m.
Allstate Savings
8800 So. Sepulveda Boulevard
1/2 mile North of LAX
Los Angeles
Call Phillip Wasson

Northern California Chapter
Monthly, 4th Sat., I p.m.
FORML Workshop at 10 a.m.
Palo Alto area.
Contact FIG Hotline

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst
Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung

2 13/649- 1428

41 5/962-8653

714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon.
Call Guy Kelly
619/268-3100 ext. 4784

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

ILLINOIS

Fox Valley Chapter
Call Samuel J. Cook

Rockwell Chicago Chapter
Call Gerard Kusiolek

3 12/879-3242

3 12/885-8O92

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat.
Call Richard Turpin

IOWA

Iowa City Chapter
Monthly, 4th lbes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilber E. Walker Co.
532 S. Market
Wichita, KS
Call Arne Hones

317/923-1321

3 19/337-7853

316/267-8852

MASSACHUSETTS

Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MINNESOTA
MNFIG Chapter
Even month, 1st Mon., 7:30
p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall, Univ. of MN
St. Paul, MN
Call Fred Olson
612/588-9532

MISSOURI

Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Orth

St. Louis Chapter
Monthly, 3rd Tue., 7 p.m.
Thornhill Branch of
St. Louis County Library
Call David Doudna
3 14/867-4482

816/444-6655

NEVADA

Southern Nevada Chapter
Suite 900
101 Convention Center Drive
Las Vegas, NV
Call Gerald Hasty
702/452-3368

NEW JERSEY

New Jersey Chapter
Call George Lyons
201/451-2905 eves.

NEW YORK
New York Chapter
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Tom Jung
212/432-1414 ext. 157 days
212/261-3213 eves.
Rochester Chapter
Bi-monthly, 4th Sat., 2 p.m.
March, May & June
Hutchison Hall
Univ. of Rochester
Call Thea Martin

Syracuse Chapter
Monthly, 1st ’hes., 7:30 p.m.
Call C. Richard Corner

716/235-0168

3 15/456-7436

OHIO

Athens Chapter
Call Isreal Urieli
614/594-3731
Cleveland Chapter
Call Gary Bergstrom

Dayton Chapter
Twice monthly, 2nd Tues &
4th Wed., 6:30 p.m.
CFC, 11 W. Monument Ave.
Suite 612
Dayton, OH
Call Gary M. Granger

216/247-2492

5 13/849- 1483

FORTH Dimensions 32 Volume V, No. 6

OKLAHOMA

f i l sa Chapter
Monthly, 3rd Tues., 7:30 p.m.
The Computer Store
4343 South Peoria
Tulsa, OK
Call Art Gorski
918/743-0113

OREGON
Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Computer & Things
3460 SW 185th, Aloha
Call Tlmothy Huang
503/289-9135

PENNSYLVANIA

Philadelphia Chapter
Monthly, 3rd Sat.
LaSalle College, Science Bldg.
Call Lee Hustead
215/539-7989

TEXAS

DalladFt. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Software Automation, Inc.
14333 Porton, Dallas
Call Chuck Durrett

Bill Drissel

Houston Chapter
Call Dr. Joseph Baldwin
7 13/749-2120

214/788-1655

2 14/264-9680

VERMONT
Vermont Fig Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Hal Clark
802/877-2911 days
802/452-4442 eves

VIRGINIA
Potomac Chapter
Monthly, 1st Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/437-92 1 8 eves.
Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
Basement, Puryear Hall
Univ. of Richmond
Call Donald A. Full
804/739-3623

FOREIGN

AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact: Lance Collins
65 Martin Road
Glen Iris, Victoria 3146

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.,
Rm LG19
Univ. of New South Wales
Sydney
Contact: Peter Tregeagle
10 Binda Rd., Yowie Bay

Forth Times Fig Chapter
Contact: Ritchie Laird
25 Gibsons Road
Sale, Victoria 3850

03/29-2600

02/524-7490

05 1 /44-3445

BELGIUM

Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact: Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

CANADA

Nova Scotia Chapter
Contact: Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P 2E5

Southern Ontario Chapter
Monthly, 1st Sat., 2 p.m.
General Sciences Bldg,
Rm 312
McMaster University
Contact: Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S 4K1
416/525-9140 ext. 2065

W2/542-78 12

COLOMBIA

Colombia Chapter
Contact: Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND

Forth Interest Group - U.K.
Monthly, 1st Thurs., 7 p.m
Bradden Old Rectory
Towchester, Northamptonshire
"12 8ED

FRANCE

French Language Chapter
Contact: Jean-Daniel Dodin
77 rue du Cagire
31 100 Toulouse
(16-61) 44.03.06

IRELAND
Irish Chapter
Contact: Hugh Dobbs
Newton School
Waterford
051/75757
05 1 /74124

ITALY

FIG Italia
Contact: Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

SWITZERLAND

Swiss Chapter
Contact: Max Hugelshofer
ERN1 & Co. Elektro-lndustrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

TAIWAN

Taiwan Chapter
Contact: J.N. Tsou
Forth Information Technology

Taipei
P.O. BOX 53-200

02/33 1-1 3 16

SPECIAL GROUPS

Apple Corps FORTH
Users Chapter
Twice Monthly, 1st &
3rd Tues., 7:30 pm
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 5/626-6295
Baton Rouge Atari Chapter
Call Chris Zielewski

Detroit Atari Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz

504/292-1910

313/524-2100 Contact: Keith Goldie-Morrison
15 St. Albans Mansion FIGGRAPH
Kensington Court Place Call Howard Pearlmutter
London W8 5QH 408/425-8700

Volume V. No. 6 33

polyFORTH II
The Operating System and
Programming Language
designed especially for

REALTIME

Robotics
Instrumentation
Process Control
Graphics ... and many more.

polyFORTH II has the high-per-
formance features you need to
slash development time by months:

POWER
All the programming tools you
need - multiprogrammed OS,
FORTH compiler and assembler,
editor, over 400 primitives and de-
bugging aids - resident and ready
to use.

SPEED
3-5 times faster than Pascal, 20
times faster than Basic, with a resi-
dent assembler for time-critical
functions.

MULTITASKINGIMULTI-USER
Supports any number of tasks.
Even the smallest systems may
have two or more programmers
coding and testing interactively.

COMPACT CODE
Entire development system resi-
dent in under 12K. ROMable appli-
cations can run under 1K. Large
applications up to 10 times small-
erthan with other techniques.

SUPPORT
On-line interactive documentation,
over a thousand pages of manuals,
FORTH Programming Courses,
and the FORTH, Inc. Hot Line plus
Contract Programming and Con-
sulting Services.
Available for most popular minis
and micros. From FORTH, Inc., the
inventors of FORTH, serving pro-
fessional FORTH programmers for
ten years.

FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach
CA 90254

(213) 372-8493
TWX 910-344-6406
(FORTH INC HMBH)

Letters (Continued from page 12)

once or twice. This results in an
exponential or hyper-exponential
distribution. The exact nature of the
distribution can be used to design fairly
general compacting codes with savings
of two to four over the already very
compact address strings. (Of course,
the address interpreter becomes slower
and larger.)

James C. Brakefield
5803 Cayuga

San Antonio, TX 78228

Variable Urges

Hello:
I’m a Forth novice, and I just read

Michael Ham’s “Why Novices Use So
Many Variables” (Forth Dimensions
V/4) and I should like to add to what
he says.

My own urges to define variables are
rooted in my experience with other lan-
guages. I am accustomed to saying
things like X = X + 1 and INC X.

Each number used in non-Forth
programs has been a static entity whose
value could be evoked by merely
mentioning its name. But numbers in
Forth are most powerfully managed by
keeping them in a stack where they
may be accessed rapidly. And the stack
elements are dynamic entities - this is
where my problems arise.

In Forth, I am required to prepare a
strategy by which each value on the
stack will be in the right place at the
right time. This is a nuisance. What
was once taken care of by an
assignment statement now requires
thought: “HOW can I make this num-
ber work on the stack without messing
up the code by including stack words
whose operands are difficult to
determine?” And there’s the rub.
Among Forth programming’s other
unusual attributes, there is the
necessary activity of planning when
and where a number will be used.

Without malice a’ Forth-thought,
Bryn Aash

4601 S.W. 58th Ave.
Miami, FL 33155

CQ.. .CQ.. .
Dear Sir:

After having purchased a new com-
puter, I wish to interface it to a ham
radio for the purpose of copying CW
and RTTY. The computer is Epson’s
QX-10, and is set up to handle
CP/M-80, MBASIC and Z80 FORTH
by Laboratory Microsystems.

Whatever help your company can
give me in getting this interface going
will please me and a few of my friends.
If this configuration doesn’t work, I
have been looking to purchase the Kay-
pro 4, if it will interface. As far as soft-
ware control, I do need a good pro-
gram that will produce ASCII files that
my word processor can read.

Thank you,
Glen A. Fuller

WA8EQO
Box 765 USCG S/C

Kodiak, AK 99619

(Continued on page 38)

No Other Forth Comes Close.
Compare for yourself. FAST FORTH runs over twice as
fast as our closest competitor in these benchmark tests.
Version Seconds Computer

FAST FORTH 33 280
Timin release 3 76 280
Laboratory Microsystems: 78 280
f ig-FORTH 84 280
JKL 112 280
Laboratory Microsystems 150 Z80 Sorcerer
MMSFORTH 1.9 190 TRS-80 Mod I
Miller 253 TRS-80 Mod I

~~

Source BYTE, hnuary 1983. Vol 8 No I . p p 283-326

FAST FORTH is an exceptionally powerful and high-speed programming system. It’s a new, radi-
cally improved version of FORTH that retains FORTH‘s flexibility and charm. It gives you full String
manipulation with a special string stack. FAST FORTH’s file handling has been significantly extended
so you can easily manipulate large files and records in any number of files. Improvements in FAST
FORTH overcome awkward 1/0 routines found in common FORTHs. It also features a complete set of
nestable control statements including For-Next loops, Case statements, and Do-While loops. A full-
featured word processor type editor is included for programming ease. The system cleverly lets you
hide groups of words from being wiped out by redefinitions and its debug facility is unmatched.

We Sell FAST FORTH at prices competitive with much lesser FORTHs. It comes with a well writ-
ten, easy-to-use reference manual. CP/M versions are currently available and more are on the way.
Give us a call at I8011 53 1-0757 for more information. 254 West Fourth South IEv Suite 280

Corporation 801-53 1-0757
Salt Lake Clty, Utah 84101

FORTH Dimensions 34 Volume V, No. 6

Tech n i q u es Tutorial

SelflDefining Words
Henry Laxen

Berkeley, California

Before I get into the topic of what I
call self-defining words, I would like to
give a little bit of “motivation,” as
mathematicians put it when they are
ashamed to admit they are just making
things up. Let’s start with execution
vectors or, as I like to call them, defer-
red words. Consider the definition in
figure one, which I am sure you will
recognize.

DEFER is a defining word which
allows you to change its run-time de-
finition at a later time by simply stor-
ing a new code field address into the
parameter field of the word defined by
DEFER. (I am assuming you are using
an 83-Standard Forth system.)

For example, suppose we define the
words in figure two. Now by setting the
parameter field of HELLO to be either
the code field address of RUSSIAN or
the code field address of GERMAN, we
can change the execution behavior of
GREETING without modifying GREET-
ING at all. This ability to change the
run-time behavior of words is very
powerful, and has been discussed at
length in my article on execution vec-
tors (Forth Dimensions 111/6).

Suppose we want to do more than
just defer the run-time behavior of a
word. For example, consider the top-
of-page function for a printer. It
consists of two components, one that is
printer dependent and another that is
printer independent. If we have system
variables called MGEX and #LINES then
every time we want a new page on the
printer, we need to execute code which
will cause the printer to advance to the
top of the next page, as well as
increment WOE# and set #LINES back
to 0. If we do this with the DEFER
mechanism, we would have to do
something like that shown in figure
three.

That is not too bad, but there is no
real reason to have a definition called
TOP-OF-FORM. (I try to be frugal with
the number of names I add to my sys-
tem, since I am approaching thirty and

my memory is beginning to fail.) Ano-
ther approach is to create a custom
defining word, as in figure four.

Again, this is a poor solution, since
the MGE: defining word is basically
wasted. It is very unlikely to be used
again to define another version of
MGE.

At this point, I was forced to be
creative, and I thought, “Why do
CREATE and DOES> always have to be
together?” The answer is, they don’t.
In fact, we often use CREATE without
DOES> when we define pointers or ar-
rays. What would happen if we used
DOES> without a CREATE? Suppose we
did the deed expressed in figure five?

Well, unfortunately, this is imple-
mentation dependent, but on most
Forth-79 and Forth-83 systems it
should work as follows. You must ex-
ecute WGE immediately, before defin-
ing any other words. This will cause the

code field of MGE to be re-written to
point to the DOES> portion of the de-
finition. At this point, you must set the
parameter field of RAGE to the code
field of the word you want to execute
to cause the paper to advance. On a
Forth-83 system, the code in figure six
would work.

From now on, when you execute
MGE, then FORM-FEED will be executed,
followed by the 1 MGEU + I and the 0
#LINES ! is next. If you change printers
and need to modify how MGE works,
then you need only set the parameter
field of PAGE to a different code field.
Now the only question is, what in the
world are we doing, and why the hell
does it work? The answer lies in the im-
plementation of DOES>.

On Forth-79 and Forth-83 systems,
DOES> is an immediate word, which
compiles a word called (;CODE) fol-
lowed by a call instruction to the run-

Figure One
: DFFER C R E A l E 1 ‘ I ANC)R’I D O L S i @ EXEClJl-E j

Figure Two
: RU361AN , ‘ I Z d r * a s u o y t y ~ I i ” j
: GERWAN . “ G u ten T a q ” i

DEFER HELLO
: GREETING , * I T h e o n l y f o r e i g n g r e e t i n g I kiiow is ” HE:I..L.Il j

~~

Figure Three
DTFER TOP-OF-FORM

: PAGE TOP-OI-.-FORM 1 PACI-Y + I 0 4-LINtS I j

Figure Four
: PRGE: VARIABLE DOES) @ EXECUTE 1 P A G F I .(I 0 #l INES j

P A G E : PACE

Figure Five
I PAGE DOES) EXECUTE 1 PAGEC + ! 0 .CI..INES ! j

Figure Six
: FORH-FEED 12 E M I T ’
’ FORM-FEED ‘ PAGE)BdDY !

Figure Seven
: (;CODE) R) LAST @ NAME) ! ;

FORTH Dimensions VolurneV, No.6 35

THE IDEAL
FORTH OPPORTUNITY

NAR A Technologies
designs and builds
state-of-the-art
graphics systems
using Forth and

assembly language on
multiple 68000-based

machines.

W e a r e seeking qualified
people to develop

animation routines
and modeling tools

and to support
our Forth environment.

Work with a skilled
team of programmers,
engineers and ar t is ts
creating tomorrow's

finest video products.

Send resumes to:

Randolph Straw
Software Manager

NARA Technologies Corp.
2908 Scott Blvd.

Santa Clara, CA 95050
(408) 748-9200

TECHNOLOGIES CORP.

time code for DOES>. The run-time
code pushes the address of the parame-
ter field of the current word onto the
parameter stack, and causes interpre-
tation to proceed at the words follow-
ing the DOES> in the definition. The
(;CODE) word causes the code field of
the most recently defined definition to
be re-written to point to the call in-
struction that was compiled by DOES>.
Let's look at what is compiled by the
above example:

Header of MGE followed by
run-time for : usually called
NEST

cfa Of (;CODE)

CALL DODOES> A machine-
language call to the run-time for
DOES>

cfa of @

cfa of EXECUTE

etc.

When MGE is executed the first time,
(;CODE) is executed. Its definition is
something like that shown in figure
seven, where LAST is a variable that
points to the name field of the most
recently defined definition, and
NAME> is an operator that converts a
name field to a code field. In essence,
(;CODE) re-writes the code field of the
most recently defined word to point to
the byte immediately following the
(;CODE) code field. Thus, in the above
definition of RAGE, after it is executed
for the first time the code field of MGE
will point to the CALL DODOES>
instruction that was compiled by
DOES>. Also, by coincidence or
foresight, the first two bytes of the
parameter field of WOE, which contain
the code field of (;CODE), are now
available for something else. Thus, if
you set the parameter field of RAGE to
the code field of the word you want to
execute via the @ EXECUTE clause, it
will be done. By executing RAGE once,
it has re-defined itself and, in fact, has
become an execution vector plus
something extra, namely the page
incrementing and line number re-sett-
ing part. This is why I call the above
construct a self-defining word, since it
has the ability to re-define itself.

Now for the admission of guilt. The
fact is, that like a mathematician, the
way I came up with self-defining words
was by just playing around. The moti-
vation was conceived of afterward as a
justification for using the crazy scheme
I have described above. Having come
up with this strange mechanism that
happened to work because of a comedy
of circumstances, it took me quite a
while to dream up an example in which
it would be useful. However, the MGE
example is valid and, having discov-
ered the technique, it is not uncommon
to find an application for it. I hope you
will be able to use it in useful ways, be-
sides just confusing your Forth friends.

Until next time, good luck, and may
the Forth be with you!

Copyright 0 1983 by Henry Laxen.
All rights reserved. The author is Vice-
Resident of Research and Develop-
ment for Paradise Systems, Inc., 150
North Hill Drive #8, Brisbane, CA
94005, manufacturers of the MultiDis-
play Card for the IBM-PC and other
computer-related products.

RE N EW TO DAY!

Use the Envelope
in the center!

Do it TODAY!

FORTH Dimensions 36 Volume V, No. 6

THE FORTH SOURCE^
Stable - Transportable - Public Domain - Tools
You need two primary features in a software development package a
stable operating system and the ability to move programs easily and
quickly to a variety of computers. MVP-FORTH gives you both these
features and many extras. This public domain product includes an editor,
FORTH assembler, tools, utilities and the vocabulary for the best selling
book "Starting FORTH". The Programmer's Kit provides a complete
FORTH for a number of computers. Other MVP-FORTH products will
simplify the development of your applications.

MVP W S - A Series
0 Volume 1, A// about FORTH by Haydon. MVP-FORTH

glossary with cross references to fig-FORTH, Starting FORTH
and FORTH-79 Standard. 2"d Ed. $25

0 Volume 2, MVP-FORTH Assembly Source Code. Includes
CP/Mm , IBM-PC@ , and APPLEm listing for kernel $20

$1 0
$25

& - 0 Volume 3, floating Point Glossary by Springer
.& 0 Volume 4, Expert System with source code by Park
v 0 biume 5, File Management System with interrupt security by
*d Moreton $25

MVP-FORTH Software - A Transportable FORTH
0 MVP-FORTH Programmer's Kit including disk, documen-

tation, Volumes 1 & 2 of MVP-FORTH Series (A// About
FORTH. 2"d Ed. & Assembly Source Code), and Starting
FORTH. Specify 0 CPIM, 0 CPlM 86, 0 CP/M+ , 0 APPLE,
0 IBM PC, 0 MS-DOS. 0 Osborne, 0 Kaypro, 0 H89IZ89.
0 2100, 0 TI-PC, 0 MicroDecisions, 0 Northstar.
0 Compupro. 0 Cromenco, 0 DEC Rainbow, 0 NEC 8201, 4 0 TRS-801100 $1 50

0 MVP-FORTH Cross Complier for CPIM Rogrammer's Kit.
Generates headerless code for ROM or target CPU

0 MVP-FORTH Meta Complier for CP/M Programmer's kit. Use
for applicatons on CPIM based computer. Includes public
domain source $1 50

0 MVP-FORTH Fsst Floating Point Includes 951 1 math chip on
board with disks, documentation and enhanced virtual MVP-
FORTH for Apple 11, II+ , and Ile.

0 MVP-FORTH Programming Aids for CP/M, IBM or APPLE
Programmer's Kit. Extremely useful tool for decompiling,
callfinding, and translating. $1 50

0 MVP-FORTH PADS (Professional Application Development
System) for IBM. or APPLE. An integrated development
system with complete documentation for PC. XT or PCjr and
Apple 11, 11+ and Ile. Will run on most IBM and Apple look-
alikes. $500

$300

$450

+& 0 MVP-FORTH Floating Point & Matrix Math for IBM or
Apple $85

+& 0 MVP-FORTH Graphics Extension for IBM or Apple

*
$65
$80

$1 00

0 MVPFORTH MS-DOS file interface for IBM PC PADS
0 MVP-FORTH Expert System for development of knowledge- d

based programs for Apple, IBM, or CP/M.

FORTH COMPUTER
0 Juplter Ace $1 50
0 16K RAM Pack $50
0 48K RAM-Pack $1 25

FORTH CROSS COMPILERS Allow extending, modifying and compiling
for speed and memory savings, can also produce ROMable code.
*Requires FORTH disk.

0 CPIM $300 0 IBM. $300
0 8086. $300 0 280. $300
0 68000 $300 0 Apple 11/11+ $300

FORTH MSKS
FORTH with editor, assembler, and manual.
0 APPLE by MM $100 0 280 by LM $1 00
0 APPLE by Kuntze $90 0 8088188 by LM $1 00

0 HP-85 by Lange $90 cartridge $50

0 ATARP valFORTH $60 0 68000 by LM $250
$100 0 CPlW by MM

0 HP-75 by Cassady $1 50
$60 0 IBM-PW by LM $100

0 NOVA by CCI 8" DS/DD$175 by HW $25

Enhanced FORTH with: F-Floating Point, G-Graphics. T-Tutorial.
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Other
Extras, 79-FORTH-79, 83-FORTH-83.
0 APPLE by MM,

0 ATARi by PNS. F,G, & X. $90

0 Apple, GraFORTH by I $75 0 ~ , ~ - ~ ~ ~ ~ ~ ~ 6 , $, oo
0 Multi-Tasking FORTH by SL, 0 951 support

0 TRS-8011 or 111 by MMS

0 Timex by FD, tape G,X,

0 Victor 9000 by DE,G,X $150 3equires LM disk.
0 fig-FORTH Programming Aids for decompiling. callfinding,

0 VIC FORTH by HES. VIC20

0 c64 by HES Commodore 64

0 Extensions for LM Specify
F, G, & 83 $160 IBM. Z80, or 8086

0 Software Floating
0 CPlM by MM. F & 83 $1 60 Point $1 00

CPIM. X & 79 $395 (Z80 or 8086) $1 00
0 Color Graphics

0 Data Base
F, X. & 79 $130 (IBM-PC) $1 00

& 79 $45 Management $200

and translating. CP1M. IBM-PC, 280, or Apple $1 50

0 ALL ABOUT FORTH by 0 I980 FORML Roc. $25
$25 0 I981 FORML Roc 2 Vol $40

0 FORTH EncYcloWdia by 0 1982 FORML Roc. $25
$25 0 I981 Rochester FORTH &* 0 The Complete FORTH by Roc. $25
$' 13 0 1982 Rochester FORTH

0 Understanding FORTH by Roc. $25
$:%4 0 1983 Rochester FORTH

0 FORTH Fundamentals, Roc. $25
$16

+& 0 FORTH Fundamentals, References, 1st. Ea. $1 5
$13

+& 0 FORTH TOOIS, V0i.1 by

,& 0 Beginning FORTH by

0 FORTH Encyclopedia

FORTH MANUALS, GUIDES & DOCUMENTS

Haydon. See &Jve.

Derick & Baker

Winfield

Reymann

Vol. I by McCabe

Vol. II by McCabe

0 A Bibliography of FORTH

iI3 The Journal of FORTH
Appilcatbn & Research

Anderson & Tracy $20 voi. 1, N ~ . 1 $20
0 Threaded interpretive

0 METAFORTH by
Chirlian $1 7 Languages $23

Pocket Guide $7 Cassady $30
0 And So FORTH by Huang A

college level text $25
0 FORTH Programming by

Scanlon $1 7
0 FORTH on the ATARi by E

Floegel $8
0 Starting FORTH by Brodie

Best instructional manual
available (soft cover) $1 8

cover) $23

assembler 525
Jupiter ACE Manual by
Vickers $1 5

0 Starting FORTH (hard

,&O 88000 fig-forth wtth

0

0
0
0
0
0

0
0

0

0 instaiiation Manual for fig-FORTH,

Systems Guide to fig-
FORTH
invitation to FORTH
PDP-11 User Man.
FORTH-83 Standard
FORTH-79 Standard
FORTH-79 Standard
Con ve r s I o n
Tiny Rscai fIg-FORTH
NOVA fig-FORTH by CC
Source Listing
NOVA by CCI User's
Manual

$25
$20
$20
$1 5
$1 5

$1 0
$1 0

$25

$25

:I

$1 5

Ordoring Infamallon: Check, Money Order (payable to MOUNTAIN VIEW PRESS,
INC.). VISA, Mastercard, American Express. COD'S $5 extra. Minimum order $1 5
No billing or unpaid Po's. California residents add sales tax. Shipping costs in US
included in price Foreign orders, pay in US funds on US bank, include for handling
and shipping by Air. 55 for each item under $25,510 for each item between 525 and
$99 and $20 for each item over $1 00. All prices and picducts sublect lo change or

Source Listings of fig-FORTH, for specific CPU's and computers. The
Installation Manual is required for implementation. Each $1 5
0 1802 0 6502 0 6800 0 AlphaMicro
0 8080 0 8086/88 0 9900 0 APPLE II
0 PACE 0 6809 0 NOVA 0 PDP-11ILSI-11
0 68000 0 Eclipse 0 VAX 0 280 withdrawal without notice Single system andlor single user license agreement

rewired on some products

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415) 961-4103

I' I

37 FORTH Dimensions Volume V. No. 6

Letters (Continued from page 34)

Dear Editor:
To expand on Mr. Ham’s comments

(“Why Novices Use So Many
Variables”): while I certainly agree
that the stack effect of a word should
not vary, here are a couple of reasons
why novices (and others, too) might
find it advantageous to refer to data as
explicitly declared and named
variables, rather than as carefully man-
aged stack references.

1. Readability and maintainability of
the program is improved, since the
data is precisely identified as it is
created and used, and any future
changes in the algorithm that affect
stack depth do not affect data
references.

2. Except in very simple cases,
management of the data on the stack
(keeping track of what’s where)
consumes significant time and is prone
to errors; therefore, programmer
productivity is reduced.

Sincerely,
David Held

P.O. Box 483
Hermosa Beach, CA 90254

Mil-Std-1750, Anyone?

Gentlemen:
Fairchild produces the F9450

processor (bipolar, 18 MHz clock
frequency) which executes the Mil-
Std-1750 instruction set. Our question
is whether you know of anybody who
has implemented Forth targeting the
Mil-Std-1750 instruction set. Or is
there any chance that our request can
be published in the next issue of Forth
Dimensions?

Thank you very much for your help.
Sincerely,

Hans J. von der Pfordten
Systems Manager

Bipolar Microprocessor Products
Fairchild

450 National Ave.
Mountain View, CA 94043

DO. . . LOOP83 Caution

Dear Marlin:
The following may save people a lot

of debugging time. More hidden logic
has been added to DO. . . ~ 0 0 ~ 8 3 .

D083’s run time (D0)83 may not
necessarily place the actual index and
limit on the return stack. You may find
instead that the number has been
changed in some machine-dependent
way.

The practical problem stems from
expectations arising from DO78 and
DO79 behavior. (D0)78 and (~0)79 place
the actual limit and index on the stack
in all the implementations I have seen
(however, I have not seen all imple-
mentations). Such (DO) action is, to me,
natural in the sense that what happens
is directly related to the code one reads.

The ’78 and ’79 standards defined R
and R@ to return the value at the top of
the return stack, whereas I is defined to
return the value of the index. Forth-83
has the same definitions for RQ and I.

I have seen a lot of code where R or
R@, and I are used as if they are identi-
cal, which is technically incorrect but,
in practice, the code works. In
Forth-83, this “habit” from the past
must be discarded and proper use of R
or RQ and I must be employed if you
want your code to be transportable.

Sincerely yours,
Nicholas Pappas
1201 Bryant St.

Palo Alto, CA 94301

;CODE: vs. DOES>

Dear Editor:
;CODE is the suggested name for a

new word that performs the same func-
tion as DOES> but uses one word less
storage in every word compiled by the
defining word, in which it is used in the
form
: ccc CREATE . . . ;CODE . . .

At least as implemented in the 6502
f ig-FORTH model, <BUILDS. . .
DOES> uses the first word in the
parameter field as a pointer to the
high-level code following DOES> in the
defining word, with the code field
pointing to the routine which controls
IP at run time. By contrast, ;CODE does
not use the parameter field at all and
uses the code field to point to the code
immediately following ;CODE in the
defining word. At compile time, ;CODE
places a machine-language subroutine
call in the defining word to a routine
which controls IP with the same effect

as DOES>. This works on installations
using the machine return stack for the
Forth return stack, and may be imple-
mented as in figure one.

Figure One

HEX
: ;CODE: COMPILE (;CODE)
jsr C, LIT [HERE 2 ALLOT] ,
; IMMEDIATE HERE SWAP !

..machine code to do the following:
. Push W + 2 on the computation

stack.
!. Swap IP and the top of the

return stack.
5 . Jump to NEXT

ASSEMBLER

“jsr” is the literal value of the JSR
opcode for the machine. Even when
the machine and Forth return stacks
are not the same, there is an equivalent
implementation.

The word ;CODE is actually DOES>
in 79-Standard. When writing nine
months before publication of that stan-
dard, I used a different name to allow
public reaction before changing a
definition in the FIG Model (a practice
to which Bill Ragsdale objected). At
this time, 1983, many FIG Model users
have still not converted their systems
over to this new form, perhaps because
the implementation was not clear. In-
stead of the code routine above, im-
plementations like the FIG 8086 publi-
cation require the following routine
because they use the machine stack for
the parameter field rather than the
return stack:

1. Push IP in the return stack.
2. Pop the parameter stack into IP.
3. Push w+2 on the parameter stack

(or just jump to the code for variables).
One can also use a JMP instead of a

JSR, computing the implicit results of
the JSR from the code field, which
may actually be faster on some proces-
sors.

Sincerely yours,
George B. Lyons

280 Henderson St.
Jersey City, NJ 07302

Volume V, No. 6 FORTH Dimensions 38

SCR# 122
(GRICING PROGRAM - FORTH DEW DEC-1983 i
: UND* i R OVER U+ ROT R i * + ; (UI.! i j D 1 UDE j

DECIMAL
W A R I ABLE TOTAL.

: .MONEY (# # P RSCTI . HOLD #S RSCI i . B i iOLD #) TYPE SPACF :
: +TOTAL TOTAL. 213 D+ TOTAL 2 ’ :
: PRICE CREFlTE , , DOES) 21) UND+ +TOTAL :
: COST CREATE , , DOES) ,213 +TOTAL :
: LOCFlTES CREATE , DOES) 13 LOAD :
: DOZEN 12 * ;
: FIGURE 8 8 TOTFli.. 2 ’ CCOMPLEj FIND EXECUTE TDTQL 212 .MOhiEY :
(DIRECTORY i
1233 L-OCATES PRICES
124 LOCATES FRUIT-BQSKET

Manufacturing Elegance

Dear Editor,
In his “Manufacturing Cost Pro-

gram” (Forth Dimensions V/4), Marc
Perkel challenges “. . .anyone to write
such an elegant program in any other
language.” Because I am at the novice
level, one of the learning methods I use
is to translate interesting programs
from Forth Dimensions into MicroMo-
tion Forth, and to try to make im-
provements if possible.

In PRICE, the words >ROVER U m ROT
R> + multiply an unsigned number
by an unsigned double number and
yield an unsigned, double-precision
product. I defined these words as
UND m (UN UD1 --- UD2) in the attached
code. (Note: 0. puts o o on the stack
and FIND replaces ’.) Also, MicroMo-
tion has a utility word UDNm (UD1 UN
--- UD2) that is defined in assembly
code, and a ROT UDN m works very nice-
ly.

Yes, Perkel’s program is elegant. But
the real challenge is trying to maintain
Forth’s tradition of short, well-defined
words, especially in a program being
used by a manufacturer.

Sincerely,
Ronald E. Apra

Physics Department
Pioneer High School

1290 Blossom Hill Rd.
San Jose, CA 95 11 8

When NOT is Not O =

Dear FIG,
I’m grateful for anyone who warns

me that the plate is hot before I burn
my fingers. If any of you are about to
convert an existing program to
Forth-83, let me tell you how I burned

my fingers, in hope of saving you the
pain.

I had read all about the changes, and
thought I was prepared for them. But
two subtle changes crept up on me. The
first is that NOT is now a one’s comple-
ment operation. This is inconsistent
with the historical use of NOT which
was to reverse the effect of IF. For in-
stance, we can write:

: TESTI BLK IF .*I Using Mass storage ‘I

i.e., if BLK contains non-zero, we’re
using mass storage. Raditionally, we
could also define the reverse:

: TEST^ BLK NOT IF Using input
message buffer “ ;

i.e., if the contents of BLK is not non-
zero (it’s zero), we’re using the input
message buffer.

The traditional NOT is identical with
o = . The whole point of having two
words with the same name is to en-
hance readability. With the 83-Stan-
dard, NOT no longer reverses the effect
of IF. Assuming the contents of BLK is
80, then NOT returns -81, which IF will
regard as true.

THEN ;

This problem appeared about five
times in the program I just converted
- even after I had thought I’d wrung
out all the bugs. My solution in each
case was to re-edit each NOT to a 0 = . In
retrospect, I feel that the 83-Standard
is simply wrong; in the future I will re-
define:

:NOTO=;

If the need should arise for a one’s
complement operation, I’ll use the

traditional phrase -1 XOR. (If I ever felt
the need to define this operation as a
word, I’d name it more appropriately
INVERT.)

The second unexpected problem
arose with the new LEAVE which in the
83-Standard causes an immediate
jump out of the loop. Now, I knew
about that and carefully checked
through the listing to make sure that
every instance of LEAVE appeared at the
end of the loop code, just before the
LOOP.

But in verifying my conversion, I
found that one loop sometimes left a
value on the stack upon completion.
This particular loop uses a variable in-
crement each time through: if it TYPES
a long string, the length of the string is
the increment; if it EMITS a single char-
acter, one is the increment. After com-
puting the appropriate increment, the
loop ends with the phrase:

. . . DONE? IF LEAVE THEN + LOOP ;
I double-checked every word in the

definition to see which one was leaving
the extra value on the stack. R y as I
might, I couldn’t find it. Finally, I
realized that, with LEAVE exiting the
loop immediately, +LOOP was no lorrg-
er consuming the final increment the
last time through, as it had done
before.

Having found the problem, the solu-
tion was simple:

. . . IF DROP LEAVE THEN + LOOP

But it seemed wrong that I should
have to change the code in this way. I
believe this is because the new LEAVE is
now as dangerous as using EXIT in the
middle of a definition; you must know
what you are doing to make sure the
stack comes out all right.

I hope these comments will serve to
warn innocent users of these anomalies
with the new standard system, and also
to stimulate re-consideration by the
Forth Standards Team of ideas that ap-
pear not to have been tested in actual
implementations.

Sincerely,
Leo Brodie

17714 Kingsbury St.
Granada Hills, CA 91344

RENEW TODAY!

Volume V, No. 6 39 FORTH Dimensions

Products & Announcements

Competitions
The Forth Vendors Group has

decided to take drastic action to help
raise public consciousness about Forth.
A “substantial” cash prize will be
awarded to the author of the best
article about Forth to be published in a
general interest computer magazine
during 1984. Rules, regulations and
other fine print pertaining to this
competition may be obtained by
writing to: Ray Duncan, c / o
Laboratory Microsystems Inc., P.O.
Box 10430, Marina Del Rey, CA
90295.

Mountain View Press will award
grants totalling $5000 to full-time
college or university students, for the
best entries of 2500 words or less
describing “An EXPERT System Rule
Set for Writing EXPERT System Rule
Sets.” First place award will be $2000,
second place will be $1000 and twenty
honorable mentions will receive $100
grants. Entries must be received by
June 30, 1984 and postmarked by June
15, 1984. For complete rules, write to:
Student Grant Competition, Mountain
View Press Inc., P.O. Box 4656,
Mountain View, CA 94040.

Classes
Humboldt State University presents

two summer classes on Forth. June

18-21 are the dates of the introductory
class; advanced material will be
covered June 26-29. Tuition ranges
from $125 - $200, depending on the
course and if academic credit is
desired. For information, call the
Office of Continuing Education at
707-826-3731. Classes will be filled on
a first-come, first-served basis.

New Products
MicroMotion has announced Forth

Tools, a comprehensive text introduc-
ing the Forth-83 Standard and its ex-
tensions. Data structures, I/O and
CREATE. . . DOES> are covered, and
each chapter contains problems and
solutions. The $20 book is the required
text for UCLA and UC-Berkeley exten-
sion courses on Forth. Write to: Micro-
Motion, 12077 Wilshire #506, Los
Angeles, CA 90025.

Henry Laxen and Michael Perry
have implemented a public-domain
Forth system conforming to the
Forth-83 Standard. Only the following
disk formats are available: 8 ” ss/sd
CP/M-80 for 8080; 8 ” ss/sd CP/M-86
for 8086; 8 ” ss/sd CP/M-68K for
68000; and 5.25” ds/dd for IBM-PC
MS-DOS. Each system costs $25, is
public domain and comes with no
visible support. Available from: No
Visible Support Software, P.O. Box

1344, 2000 Center St., Berkeley, CA
94704.

q4th is available for CP/M 2. + 280
systems from Quanta Corp. It is a
superset of Forth-79 and includes
ROMable code, editor, assembler,
debug, trig and other features.
Introductory price is $95; outside of
USA, add $30 shipping. 5 ” disk
formats are Televideo, Epson,
Northstar, Zenith; and 8 ” ss/sd for
IBM. Write: Quanta Corp., 2510
Sunset Blvd., Los Angeles, CA 90026.

PROA Corp. will make publicly
available the control board developed
for its line of automated machines. The
multi-purpose controller is based on
Rockwell’s R65F11 chip, which
contains Forth in ROM. The
PROATROL can function as both
development system and as dedicated
controller. For price and on-board
options, write: PROA Corp., 4019
Edith Blvd. NE, Building 2B,
Albuquerque, NM 87107.

ACSG Inc. offers fig-FORTH for
the Sage, adapted to the UCSD
P-system 68000 assembler. Available
on 5.25 lr diskettes for Sage I1 and IBM-
PC; for $50. For information, write:
ACSG, Inc., P.O. Box 40878, Tucson,
AZ 85717.

1984
Asilomar Conference

Place: Pacific Grove, California
Sponsors: FORML (Forth Modification

Laboratory)
Forth Interest Group

Time: November 23-25, 1984

Contact: Mr. Robert Reiling
Forth Interest Group
P.O. Box 11 05
Son Carlos, CA 94070

CALL for PAPERS

1984
Taipei FORML Conference Shanghai FO

1984
ML Conference

Place: Taipei, Taiwan

Sponsors: FIG Chapter,
Republic of China

Republic of China
FORML (Forth Modification
La boratory)
Forth Interest Group

Time: September 28-30, 1984
Contact: Dr. C. H. Ting

156 14th Ave.
Son Mateo, CA 94402
(475) 577-7639

Place: Shanghai,
People’s Republic of China

Sponsors: Chiao-tung University,
Shanghai
FORML (Forth Modification
Laboratory)
Forth interest Group

Time: October 3-5, 1984
Contact: Mr. Robert Reiling

Forth Interest Group
P.O. Box 1105
Son Carlos, CA 94070

FORTH Dimensions 40 Volume V, No. 6

I

“If you require an expert in a given area you have three choices: you
can hire one, you can cultivate one, or you can find a consultant who is
already an expert. The first two choices are reasonable only if this
expertise is required on a very long term basis. Cultivating an expert can
be a particularly frustrating experience since it usually takes one to make
one. A consultant, on the other hand, can supply his expertise only when
and in the amount needed. It will cost quite a bit more per hour to use a
consultant expert but the long run savings, in this case, are dramatic ...”

“Guide to Using Consultants ’’
Inner Access Corporation 1984

For your free copy of “Guide to Using Consultants” call or write:
51 7-K Marine View, Belmont, CA 94002 (4, 5) 591 -8295
P.O. Box 888, Belmont, CA 94002 OR

A computer software and hardware consulting firm for business and industry

= GRAPHICS = HARDWARE DESIGN. SELECT/SORT/MERGE .SOFTWARE SUPPORT
= T

- c -

=PROCESS CONTROL ‘DATABASE MANAGEMENT= DATA ACQUISITION

URN-KEY SYSTEMS. FORM DRIVEN SOFTWARE. 68000 = 28000 8086/88= NCS 800
= 8048/49 = 280/8085 FORTH SYSTEMS SOFTWARE = SPECIALIZED EDITORS
= MULTI PROCESSOR SOFTWARE. AUTOMATED DESIGN = MODELLING

PECIFICA TION. DOCUMENTA TION = TRAINING * MICROPROCESSOR APPLICA TIONS
I

FORTH Din 41 Volume V, NO. 6

Chapter News
John D. Hall

Oakland, California

We have three new chapters - that
makes forty-seven!

Richmond Forth Group
Richmond, Virginia

French Language FIG Chapter
Toulouse, France

Irish FIG Chapter
Waterford, Ireland

The purpose of this column is to
report to you, the members, what each
of the chapters is doing. I do not attend
all the chapter meetings, so it is up to
the chapters to send me a report of the
happenings. Some of the newsletters
are so good as they are, that I do not
want to summarize them. Here, then,
is the Kansas City FIG Chapter News,
reprinted as presented:

Kansas City FIG Chapter News

Our last meeting was held November
22, 1983 with eighteen people
attending. During the first part of the
meeting, we went over the problems in
chapters one and two of Starting
Forth. The first part of the meeting has
been dedicated to introducing Forth
and helping beginners get started.
Feedback is encouraged, so let’s hear
from you beginners. This is your hour!
In the meantime, during subsequent
meetings we will continue working the
problems in Starting Forth until we are
finished, and then we will start over.
We have a computer and monitor
available at the meetings and enough
copies of the book such that everyone
can follow along. Going over the
problems together has been beneficial
to everyone. Among other things, it
has provided an impetus for discussing
the various implementations and
differences in versions of Forth that are
available.

Also at our last meeting, Marty
Sainsbury spoke on the topic “Pro-
gramming Style and Organization.”
He directed a workshop on solving a
telephone switching problem that Kim
Harris presented at the 1981 Rochester
Forth Conference. For more informa-
tion, refer to the 1981 Rochester Forth
Proceedings. Donna1 Walkers drew a
Warnier-Orr diagram of the solution
for the same problem. He uses this type
of diagram to improve communication
between programmers working on the
same project.

Forth publications and programs
offered by Mountain View Press are
available at our chapter at a forty
percent discount. We will finalize an
order at our next meeting, December
27, 1983. Please take advantage of this
offer and have your order ready. If you
cannot attend the next meeting, please
send your order to me immediately.

We will receive newsletters and
handouts from other FIG chapters
when they are made available to the
Chapter Coordinator, John Hall in
California. What we have received will
be available for review at our meetings
and can be checked out. This
newsletter will be sent to John Hall for
distribution to other FIG chapters after
approval of the newsletter is made at
our next meeting. If you wish to add or
change something, please let me know
before or during our next meeting.

Notes of appreciation:

hall.
Bill Jellison for getting our meeting

Bill Pitts for copies of the newsletter.

Kansas City FIG Chapter News
January 17, 1984

Our last meeting was held December
27, 1983. Few people were able to
attend, so our agenda for the last
meeting has been re-scheduled for the
next meeting, January 23, 1984. We
will do problems and exercises in
Starting Forth. Our topic for

discussion is “Metacompilers.” Les
Lovesee will give a demonstration of
his metacompiler .

We finally have an order to send to
Mountain View Press. I believe we can
get another large order in six months.
Keep this in mind. We have close to
fifty people in our chapter and about
half attend the meetings regularly. We
can purchase anything offered by MVP
or FIG at a forty percent discount for
orders greater than $l,OOO. If there is
anything you wish to order, let me
know and we will start getting a new
order together.

Our schedule for meetings in 1984 is
as follows:

Place: Midwest Research Institute
Mag Conference Center
Time: 7:OO - 9:OO p.m.
Dates:
Mon., Jan. 23
Tues., Feb. 28
Mon., Mar. 26
lhes., Apr. 24
Mon., May 28
Tues., June 26
Tbes., July 24
Tues., Aug. 28
Mon., Sept. 24
Tues., Oct. 23
lhes., Nov. 27
(Dec. to be scheduled)

Con tac t : Linus O r t h , work:
8161444-6655

FIG of NYC

At the November meeting, Redmond
Simon demonstrated his enhancements
to the GraFORTH Apple I1 graphics
package.

At the December meeting, the group
began what will become an ongoing
group project, attempting to formulate
and implement a virtual terminal
interface standard, which would allow
the creation of transportable editors.
Also in December, the FIG of NYC
was granted tax-exempt status by the
Internal Revenue Service as a publicly
supported organization.

FORTH Dimensions 42 Volume V, No. 6

Missing Cities?

As I searched across the map of FIG
chapters, I noticed that several cities
were missing. MISSING??? In these
cities, there are sufficient FIG
members, there are many new people
interested in Forth, and there is the
need for a chapter. I can only ask, why
don’t we have chapters in these cities?
Is it a lack of missionaries, a shortage
of heroes, a deficit (thanks, trusty
thesaurus) of expertise? No, sadly, it is
probably from a malaise brought on by
the effects of an insufficient amount of
sleep by our FIG members in their
pursuit of the higher goal of spreading
the word of Forth.

For any of you that do not qualify
above, figure one provides a list of
forty-three cities where there are more
than enough FIG members to get a
chapter organized. Just send a note
asking for a Chapter Kit to:

John Hall
National Chapter Coordinator

P.O. Box 1105
San Carlos, California 94070

Newark, NJ
Pittsburg, PA
Tallahassee, FL
Columbus, OH
South Bend, OH
Kalamazoo, MI
Milwaukee, WI
Omaha, NE
Baton Rouge, LA
Lubbock, TX
Reno, NV
Monterey, CA
Eugene, OR
Schenectady, NY
Blacksburg, VA
Gainesville, FL
Toledo, OH
Ft. Wayne, IN
Ames, IA
Rochester, MN
Lincoln, NE
Oklahoma City, OK

Figure One

Colorado Springs, CO
Lompoc, CA
Arcata, CA
Spokane, WA
Ithaca, NY
Durham, NC
Miami, FL
Cincinnati, OH
Lafayette, IN
Madison, WI
Urbana, IL
New Orleans, LA
San Antonio, TX
Salt Lake City, UT
Ridgecrest, CA
Corvallis, OR
Kodiak, AK
Tokyo, Japan
Helsinki, Finland
Copenhagen, Denmark
Amsterdam, Netherlands

Chapters in Formation

Here are more of the new chapters that
are forming. If you live in any of these
areas, contact these people and offer
your support and help in forming a
FIG chapter. You are not expected to
be one of the “Forth experts.” The job
of organizing a chapter may well be
better left to the people who are better
in organizing than in programming, or
to people who are in need of the help
and support that a chapter can return.
Lend a hand!

RENEW NOW!

SEND A CHECK TO FIG TODAY!

Tom Konantz
7808 Logan Dr.
Huntsville, AL 35802
205/88 1-6483

John C. Mead
3325 E. Tera Alta Blvd.
Tucson, AZ 85716

Chuck Larrieu
P.O. Box 294
Corte Madera, CA 94925
415/457-8791

Tom Ghormley
1315 E St.
Sacramento, CA 95814

Charles A. Krajewski
205 Blue Rd.
Middletown, CT 06457

Charles B. Duff
KRIYA
505 North Lake Shore Dr.
Chicago, IL 6061 1
3 12/822-0624

Michael J. Hannah
Sandia National Lab
Organization 2614
Albuquerque, NM 87185
505/846-3459

William L. Edmonds
1716 Bailey Road
Grafton, VA 23692

B. Lambey
151 rue Pierre Cardinal
36100 Montpellier
France

Ken McAllister
P.O. Box 8100
Christchurch
New Zealand

Volume V, No. 6 43 FORTH Dimensions

FORTH INTEREST GROUP

BULK RATE
U.S. POSTAGE

PAID
Permit No. 261

MAIL ORDER

OMerrbership in FORTH Interest Group and

a B a c k Volumes o f FORTH DIMENSIONS. R i per each.

0 fig-FORTH Installation Manual, containing the language model

UAsswnbly Language Source Listings of fig-FORTH for specific CPUs

Volume V of FORTH DIMENSIONS

01 On OIU O N
of fig-FORTH, a complete glossary, memory map and installation inatructions

and machines. The above manual is required for installation.
Check appropriate boxbs). Rlcs per each.

@I80 08U86/8088 a9900 UAPPLE 11 UEUJF'SE
QPACE NOVA U P I F - 1 1 O68000 OALPHA MICRO

Oleo2 0 6 5 0 2 0 6 8 0 0 0 6 8 0 9 O V A X Ozeo

4 " S t a r t i n g FORTH, by Brodie . BEST book on FORTH. (Paperback) n " S t a r t i n g FORTH" by Brodie. (Hard Cover) a PROCEEDINGS: FORML (FORTH Modif ica t ion Conference)
1980, $25USA/$35Foreign

;1 1981, Two V o l . , $4OUSA/$55Foreign
1982, $25USA/$35Foreign

ROCHESTER FORTH Conference a 1981, $25USA/$35Foreign
,g 1982, $25USA/$35Foreign a 1983, $25USA/$35Foreign T o t a l - /7 STANDARD: FORTH-79, cr FORTH-83. $15USAfS18Poreign EACH. T o t a l

-MAGAZINES ABOUT FORTH: -BYTE ReDKintS 8180-4181
K i t t Peak Primer, by Stevens. An in-depth s e l f - s t u d y book.

- 7 DK Dabb's J r n l , 2 % 8 1 , 1 - 7 $82, 9/83
Poplar Computing, 9/83 $E50USA/$5Foreign EACH. T o t a l

FIG T-sh i r t s : 1-J Small =Medium fl Large m X - L a r g e n Poster , BYTE Cover 8/80, 16"x22"
~

,1FORTH Programmer's Reference Card. I f o rdered s e p a r a t e l y . send
a stamped, s e l f addressed envelope.

USA
$15

$15

$15

$15

$18
$23

FORRGN
AIR
$27

$18

$18

$18

$22
$28

$
$25 $35

$
$10 $12
$ 3 $ 5

Free

TOTAL $

NAME MS /APT

ORGANIZATION PHONE()

~~ ~~ ~~

CITY STATE ZIP COUNTRY

VISA# MASTERCARD#

AMERICAN EXPRESS# Card Expi ra t ion Date
(Minimum of $15.00 on Charge Cards)

Make check or money Order i n US Funds on US Bank, payable to: FIG.
postage. No purchase o r d e r s without check. C a l i f o r n i a r e s i d e n t s add sales tax. 10/83

A l l p r i c e s i n c l u d e

OROER pHoFE NU&ERz (4l5) 962-8653

FORTH INTEREST GROUP * PO BOX 1105 * SAN CARLOS, CA 94070
___1" ---I- ____ __I__"_

-

ORTH INTER
PO. Box 1105
Sari Carlos, CA 94070

Address Correction Requested

