
THE MACINTOSH PROJECT

DOCUMENT 0 VERSION 11

TITLE: CATALOG TO MACINTOSH DOCUM[NTS

AUTHOR: JEF RASKIN

DATE: 28 Sep-13 Feb 80

M 0.11 CATALOG*
A chronologically arranged annotated listing of all Macintosh
documents. The very document that you are reading. If there is
no asterisk aiter a document title, that document is either
obsolete or is especially technical.

M 1.4 INTRODUCTION AND PRELIMINARY CONVENTIONS
The conventions for documents, their distribution and catalogine.

tI 2.9 OVERVIEW OF PRELININARY AREAS OF CONCERN*
A lis~, slightly a~notated, of the various questions that must be
answered in designing Macintosh. It is rather comprehensive.

~1 3.5 THE APPLE COMPUTER NETWORK*
Justification of and preliminary thoughts on a network. An appendix
lists some names and addresses of networks.

M 4. 1 THOUGHTS ON ANNIE
An old memo, from May '79, with some early thoughts on what was
to b~come the ~~cintosh project. ~ccentric use of Enelish.

M 5.1 PRELIMINARY COST INVESTIGATION*
A brief rundown on the cost of the major electonic and mechanical
components of Macintosh. The $500 selling price is shown to be
a difficult mark to reach.

M 6.2 GENERAL CRITERIA
An expansion of the general criteria l;sted in M 2.B, defining the
major goals of the project.

M 7.7 A MODEL OF MEMORY VS DISK CHOICES
A d~scription of the design of a mathematical model. This is the
documentation for M 9 and MID.

M B.l PERSONAL AIMS
My aims in doing the Macintosh project.

M 9.6 PASCAL MODEL OF MEMORY VS DISK CHOICES
A non-interactive program that sweeps through various
document and memory sizes. Superceded by MID.

M 10.3 INTERACTIVE PASCAL HODEL OF MEMORY VS DISK CHOICES
An interactive model that allows you to easily vary parameters •.

M 0.11 Page 1

M 11.0 SUMMARY OF OCTOBER 10
A few of the main points of the proj~ct as of October 10, prepared.
for a meeting with Whitney, Carlson, Jobs, Markkula, Holt, Scott
Roybal and Raskin.

M 12.1 CONCERNS ABOUT USING THE TELEPHONE WITH PERSONAL COMPUTERS*
An article written for magazine publication on the probable
difficulties we might encounter working with Ma Bell.

M 13.1 IMPORTANT POINTS ABOUT MACINTOSH
A one page summary of the summary of October 10, prepared
for the meeting of 12 October.

M 14.10 THE APPLE CALCULATOR LANGUAGE*
This is an extensive document, not complete as of this version
of the catalog (22 October 79) which contains a primer of a good
portion of the language, the BNF and other technical considerations
for those portions described, and some of the justification for
the language. (Read M16 before reading this document.)

l-1 15.0 MASS STORAGE PRINTER/FACSIMILE DEVICE*
A description and discussion of a low cost device, based on present
themal or electrostatic discharge printer technology, that would
provide printing, data and program storage and dissemination,
facsimile transmission, and digitizing abilities to Macintosh.

M 16.0 AN INTRODUCTION TO THE APPLE LANGUAGE FOR CALCULATOR USERS*
An indication of how a primer for the language of M 14 might be
written.

M 17.0 REPORT ON THE HP 41C AND SHARP 51"00 CALCULATORS
What we can learn from them that helps in the design of Macintosh.

M 18.0 ON THE PROBLEM OF DELIMITING STRINGS IN PROGRAMS
A justification of the strinG delimiting mechanism used in the Apple
language described in M14.

M 19.2 THE 11ACINTOSH EDITOR*
The initial design of a very user-oriented, fast editor.

M 20.0 THE MACINTOSH DISPLAY*
Descriptions and some simulations of. the proposed display.

M 21.0 THE ON-LINE TEXT EDITING SYSTEM*
A description of the SRI text editing system developed in the late .
1960's by Englebart. Some very interesting ideas.

M 22.1 HOW CAN WE MAKE COMPUTERS TRULY PERSONAL?*
A guest editorial Raskin wrote for a magazine--not sent out as being
possibly to proprietary.

M 23.0 JANUARY 1980 OVERALL SUMMARY*
A summary of the present status of the design and the project. This

M 0.11 Page 2

supcrcedes all previous reports and summaries.

M 24.1 PASCAL MACINTOSH FONT GENERATOR
The program that generates the proportional font that will probably
be used on Macintosh.

M O.l~ Pag~ 3

THE MACINTOSH PROJECT

SELECTED PAPERS

14 FEBRUARY·1980

The enclosed documents are proprietary and confidential property of Apple
Computer Inc.

t. .
.CONFIDENTIAL

.'!.,] Jef Raskin

The photographs reproduc~d below r('pre~ent a very prelirdnary mock-up o! the:
proposed Macintosh computer. The screen size is accurately presented, howev~r
it is not known if 8 dual disk drive as shown will be available. The CR~e
design in no way represents the final appearRnce of the proposed computer, but
was created to help ~ive8 feel for the approximate size of such a machine.
If a printer is included, it will probably by R.5 inches in width rather than
the 5 inches shown in the mock-up.

It is recommended that these docufTlents be read in the fol1owin~ order:

1. M 0, the table of 'contents to the collection

2. M 2l., the sut!1r.lary of January]Q8('1

3. M 2, the list of areas of concern

and then, via the table of contents, any further iter.:s of interest.

THE MACINTOSH PROJECT

DOCUMENT 1 VERSION 4

TITLE: INTRODUCTION AND PRELIMINARY CONVENTIONS

AUTHOR: JEF RASKIN

DATE: 11 Sep 79

1. CHANGE OF NAME

To avoid using only female names on projc'cts, it has been suggested that each
major proj~ct be assign~d the name of a variety of apple. To begin with,
what once was the "Anni~" project is now called the "Hacintosh" project.

2. CATALOGING TECHNIQUE FOR MACINTOSH DOCUMENTS

As each document pertaining to Macintosh is written, it will be given a
serial number. A catalog will be kept on a diskette in my files. I
ther~fore r~quest that any document p~rtinent to the Macintosh project not be
released until it has been catalog~d. This will permit any interested party
to know what documents have been written, and will allo\l us to obtain and
use these documents when necessary. The catalog will also be available in
printed form upon request.

3. INTERNAL DESIGN OF DOCUMLNTS

It would be appreciated if each item in each document be numbered, so that we
may easily ref~r to it in other documents, for example:

Document 4, Version 3, Item 6.4.

The h~ading for each major numbered section will be in all caps, With
subsections having the first letter of the first word capitalized.

4. USE OF EDITOR FOR DOCUNr:NTS

For improved communication, documents should, whenever possible, be prepared
on the Pascal Editor, with appropriate control characters for Colin's
formatting program. A typical heading for each document might be:

• f 0 ' 'M 1 • 4 Page %

DOCUMENT *** VERSION ***

THE MACINTOSH PROJECT

TITLE: ***

AUTHOR: ***

DATE: ***

MI. 4 Pag~ 1

This will facilitate building a library of Macintosh documents t and (!asily
allow modification and updatine of these documents.

-
5. The file name of each docum~nt shall be of the form ~1x.y.text where x js
the document number and y is the version number. The catalog is MO.x.t~Y.t.

6. The responsibility for maintaining the catalog shall initially be Jef's,
but may be assigned to another member of the Macintosh team when appropriate.

'7. Distribution lists and, dates by which comm~nts must b~ received shall be
part of the cover letter t and not part of the document.

Ml.4 Pagt' 2

THE MACINTOSH PROJECT

DOCUMENT 2 VERSION 9

TITLE: OVERVIEW OF PRELIMINARY AREAS OF CONCERN

AUTHOR: JEF RASKIN

DATE: 11 Sep 79

1. MARKETING AND AUDIENCE
1. 1 Markets

1.1.1 Home
1.1.2 Business
1.1.3 Scientific
1.1.4 Industrial
1.1.5 International
1.1.6 Lducational
1.1.7 Hobby

1.2 Contributions this product will make
1.2.1 This may be the first (unless something else comes along)

portable computer. It is a personal, not a home computer. If
this point of view is adopted, then applications, such as hoee
security, where the computer is tied to a physical loc.q.tion, can
be eliminated.

1.2.2 This should be a completely self-teaching system.
1.2.3 Price vs. performance breakthrough.

1.3 Overall strategy
1.3.1 vis a vis competitors
1.3.2 vis a vis other Apple products
1.3.3 in view of unprecedented large numbers

1.4 Sales goals
1.4.1 Number of machines over time
1.4.2 Dollar figures

1.5 Major risks
1.7 General criteria

1.7.1 Reliability (works correctly, unbombable)
1.7.2 Serviceablitity (long MTBF)
1.7.3 Produceability (designed for the production line)
1.7.4 Price low, but performance high
1.7.5 External esthetics excellent (as is our custom)
1.7.6 Integrity (sufficient testing of all components incl. manuals)
1.7.7 Maintainability (short time to repair)

Possibility of self-diagnostic programs; possibility of diagnostic
through network.

1.7.8 Documentable (easy to write manuals due to good design, esp. of
software)

1.7.9 Expandable (hardware should not limit range of applications
unnecessarily)

1.7.10 Learnability (co-ordinated hardware/software/manual design with
this constraint in mind at all times)

1.7.11 Testability (must be testable automatically at the plant)
1.8 Product life

H2.9 Page 1

1.9 Profit goals

2. MAJOR CONSTRAINTS
2.1 Price constraints

The initial end-user price, for the minimal machine,. should be about
$500. It is our intent to have a clear path to lowering the price to
$300 after 18 months, while maintaining profit margins.

2.2 Weight and size constraints
2.3 Memory size

We may wish to fix memory size (and eliminate many possible user hardware
options) so that software runs on all Macintoshes. Users should not have
to know about how many bytes of memory they have. This may also allow us
to produce the machine for less. A user minimu~ of 32K bytes is suggested.
This will depend on mass storage considerations as well.

3. POWER SUPPLY
3.1 AC supply from the mains

3.1.1 US
3.1.2 F~reign

3.2 Battery supply
3.2.1 Weight
3.2.2 Reliability
3.2.j Operating time

It would be nice to obtain 6 hours without having to plug it in. What is
a minimum that is still useful?

3.2.4 Potential leakage problems
3.2.5 Primary or Secondary cells?
3.2.6 Accessory pack at extra cost for battery power.

3.3 Solar cells
To keep perpetual calendar independent of other power supplies?

4. HUMAN INTERFACE: DISPLAY
The screen should be soft if possible. Image data compression should be
considered to conserve memory.
4.1 CRIs

4.1.1 Home TV
We should have RS-170 and NTSC compatible output. It should work into
any standard TV eqUipment, such as recordl·rs. Both video and modulated
ou~puts should be available. If cost constrains, the video would go.

4.1.2 Built-in display
There is the possibility of no built-in display and only a built-in
printer. The hard-copy device, on the other hand, may be part of
the display.
4.1.2.1 Conventional CRT
4.1.2.2 Flat CRT
4.1.2.3 Projection CRT

This option has much flexibility, especially in conjunction with a
photographic hard copy scheme.

4.2 LCD display
4.3 LED display
4.4 Plasma display
4.5 Other technology (e.g. laser)
4.6 Size of screens

M2.9 Page 2

4.6.1 Number of characters (24 X 80 on CRT, 2 X 80 in portable displny)
Consider foreign language fonts.

4.6.2 'Graphic resolution (suggested minimum: 256 X 256)
4.6.3 Physical size

4.7 Color (probably only on external display)

5. MASS STORAGE
Some form of mass storage must be built in.
5.1 Floppies

5.1.1 Made by us
5.1.2 From outside vendors
5.1.3 Very small floppies (2 or 3 inch)
5.1.4 Compatible with any previous product?

5.2 Bubble memories ,
5.3 Cassettes or other tape based storage
5.4 Other technologies

6. HUMAN INTERFACE: INPUTS
6.1 Typewriter keyboard

This is probably a necessity. Atkinson points out that the halves are
separable. Keyboard should be software mapped if possible (any combination
should be valid).
6.1.1 Keyboard layout
6.1.2 Keyboard electronics

6.2 Microphone
6.2.1 As add-on accessory
6.2.2 As built-in. It may be possible to use speaker as microphone

although separate microphone probably preferable
6.3 Audio (this and 6.2 with built-in A/D)
6.4 Photocell (perhaps in conjunction'wit~ a light pen or wand?)
6.5 Graphic input: joystick, force stick, ball, or tablet
6.6 Other transducer input: pressure, moisture, temperature etc.

7. COMMUNICATIONS
7.1 RS232
7.2 Phone connector (built-in modem and DAA)
7.3 Applenet
7.4 Other

7.4.1 WWV recievcr
7.4.2 TV or radio receiver

7.5 RF link
7.6 To a paging system
7.7 IEEE 488

. 8. SOFTWARE
8.1 Major design critera

8.1.1 "Zero defect" programming
8.1.2 Excellence of human interface
8.1.3 Extraordinary testing

8.2 Initial software offering
There must be a large initial offering of software.
be

Checkbook balancing

Some examples might

8.'2. 1
8.2.2 Many games (it will be seen as a toy to some purchasers)

M2.9 Page 3

8.2.2.1 Chess
8.2.2.2 Backgammori

8.2.3 Word Processor
8.2.4 BASIC
8.2.5 Elementary communications protocols
8.2.6 Instructional programs (e.g. typing, arithmetic)
8.2.7 Day timer (can we license use of this name?)
8.2.8 Personal 'phone book
8.2.9 Bulletin board
8.2.10 Business software
8.2.11 Telephone simulator (it has a mike and speaker)
8.2.12 Terminal simulator (also: data entry d£'vicc)
8.2.13 High precision scientific calculator
Note that many of these packages could be applications of a more general
DBM system with preset data and structure.

8.3 Cumulative software effort
8.4 User languages

8.4. 1 BASIC
8.4.2 APL
8.4.3 Pascal
8.4.4 Other

8.5 System development languages
8.5.1 Pascal
8.5.2 Forth
8.5.3 Assembler
8.5.4 Other

8.6 Application development languages
8.6.1 Pascal
8.6.2 Pilot
8.6.3 Other

8.7 Software security
8.8 Operating system

9. MANUALS
9.1 Self-teaching, on-line manuals
9.2 Reference manuals

10. SCH[DULE (very preliminary)
1 Nov 79 Preliminary design spec
1 Mar 80 Final design spec
1 Jul 80 Engineering Prototype
1 Mar 81 Prototype for shows
1 Sep 81 Production in time for

11. RESOURCES REQUIRED
11.1 Personnel
11.2 Capital equipment
11.3 Supplies

12. TESTING
12.1 In house

Xmas 81

12.2 On a wide range of potential users
12.3 Of completed systems/programs/manuals

M2.9 Page 4

13. EXPERIMENTATION
13.1 With competitive machines

A. HP-41C
B. Atari 400

13.2 With technologies
A. Attach a touch-panel to an Apple II
B. Attach a few small-screen CRT's to Apples

13.3 By programming simulations
A. Small screen sizes (in terms of resolution and characters)
B. Simple editors (e.g. my "one command" editor)

13.4 With services
A. TCA
B. PCNET
C. Other "bulletin board" services
D. DIALOG (Lockheed) BALLOTS (Stanford)

14. ENCLOSURE AND COSMETICS
14.1 Design and materials
14.2 Thermal consid~rations
14.3 Choice of colors and case styles

If this is to be truly a product for the home,shouldn't we offer it
in various colors?" Matched to the 5 standard home appliance colors?
There is also the possibility of offering options such as a wooden case.

14.4 Self-protecting case design (lid opens to become display. for example)
14.5 A handle. .
14.6 If the design is modular, the parts should snap together electrically

as well as mechanfca11y.

15. PRINTER AND HARD COPY PICTURES
15.1 Built-in

15.1.1 Film based (polaroid or other quick technology)
15.1.2 Thermal
15.1.3 Electrostatic
15.1.4 Dot-matrix impact
15.1.5 Ink jet
15.1.6 Laser
15.1.7 Other

15.2 External
15.2.1 Letter quality

Is it silly to try to sell $3000 printers with this machine?
15.2.2 Portabl~s

All the possibilities under 15.1 fit here as well.
15.3 Width of paper (8.5 inch probably)

16. OTHER PERIPHERALS AND FEATURES
16.1 AC switched outlets (possibly computer controlled)
16.2 Speaker (with speech and/or music synthesizers?)
16.3 Credit card reader or HP card reader or both
16.4 Real time clock (essential)

Perhaps based on a watch module, always runs.
16.5 Actuators (e.g. R/C servos)
16.6 TTL outputs

M2.9 Page 5

16.7 Soft "off" switch.
16.8 Plotter
16.9 Check reader
16.10 Video disk (necds interfacc standards)

17. THE APPLE TIMESHARING NETWORK
One of the most powerful uses of Macintosh will become viable o~ly i~
a service such as TCA is available. We will have to consider setting
up a nation (world?) wide set of local numbers for a numher of purpo8cs
to be cover~d in another document. A standard protocol will have to be
promulgated. Study Viewdata, Teletext, Prestel

18. FUTURE PRODUCTS IN THE MACINTOSH FAMILY
Items rejected from consideration as built-in may be moved here, as well
as new ideas.

19. IMPACT ON VARIOUS DEPARTMENTS OF APPLE
19.1 Purchasing
19.2 Manufacturing
19.3 Marketing

19.3.1 Advertising
19.3.2 Dealers

19.4 Engineering
19.4.1 System software
19.4.2 Applications software
19.4.3 Analog electronics
19.4.4 Digital electronics
19.4.5 Mechanical engineering

19.5 Publications
19.6 New Product Review
19.7 Scrvice

20. ANALYSIS OF COMPETITION
20.1 Atari
20.2 Texas Instrument
20.3
20.~

20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12

21. CPU

Commodore
Tandy
Japan
Calculators
MatteI
Typewriters
Accounting machines
Electronic games
Video gam€!s
Other

It is assumed, for the time being, that memory will be byte oriented, and
that the CPU or CPUs will be 8 or 16 bits or some mix of the two.
21.1 Single or multiplc CPU
21.2 Off-shelf or our own
21.3 Consider 6809

M2.9 Page 6

THE MACINTOSH PROJECT

DOCUMENT 3 VERSION 5

TITLE: THE APPLE COMPUTER NETWORK

AUTHOR: JEF RASKIN

DATE: 11 Sep 79-11 Oct 79

1 INTRODUCTION

There are very few potential uses of the personal computer per se in the horne
at the present time. The question "What do you do with it?" still haunts the
industry. While balancing checkbooks, playing chess and writing letters are
all viable uses, it is likely that a true mass market cannot be supported on
the basis of such applications. In the face of this problem, most
manufacturers, seeing the hobbyist and technophile markets becoming
saturated, have turned to marketing business systems. The 'business system
market is big and legitimate opportunities abound there, but the volume
can never be as large as it'would be for an item that goes to consumers in
general.

There is a feeling in the industry that telecommunications will become a k~y
,part of every computer market segmt:!nt, and this is increasingly becoming so.
Many experiments and a few successful services are in operation. Aside from
long-standing timesharing systems such as GE and TYMSHARE, we have the ARPA
net, Xerox's internal Ethernet, TCA (alias "The Source"), Prestel, the MECC
network, and many others. App~ndix 1 lists a few commercial services that
may be of interest to us. A set of "underground" message centers have come
into operation, for example, the PCNET. There are also a few other
individuals and small groups that set up a microcomputer with an autoanswer
modem and some software that allows users to leave and retrieve messages.

According to "Computer Retailer.", Radio Shack and Western Union are
working out some conperative venture involving WU's "Mailgr:tm'" service
whereby Radio Shack computer owners can exchange messages.

It is clear that one answer to the question "What do you do with it?" will
probably be: "I use it to send birthday greetings to Aunt Tillie." More to
the, point there are a number of easily forseen potential uses for a networl~
of personal computers. What is more exciting is that, as has happened with
the computers themselves, there is the potential for many
unforseen applications.

1.2 POSSIBLE APPLICATION AREAS

Many applications have been put forward. Among them are:

Time of day; News (with a boolean query data base); Stock Market (as per what
we arc already doing); Soap Opera Condensations; A guide to local TV programs
(what's on at 9:00PM?, any westerns tonight?); Message forwarding and
distribution; Fax transmission (special case of message: the bits are

M 3.5 Page 1

interpreted pictorially); Weather Travel In[o; Phone directory; Local, area
or national business directory; Apple program distribution channel; Apple
update distribution channel; Access to Lockheed's DIALOG or Stanford's
BALLOTS systems or similar ones; A better way to answer user quesLions than a
phone based hotline at Apple; Library of Congress card catalog; Legal
precedents; Program exchange; Educational courses; Educational testing;
Voting; Computer program exchange; Advertising; Computer dating; Tax
information; Banking (another step to the cashless society (If ta)(es don't
reduce us to a cashless state first»; Access to larre data storage for
individual needs; Access to computer power (i.e. timesharing); Insurance,
quotes; Credit information (what is available: what is my status); Market
research; Purchasing information (who has the cheapest refrigerator model 34-
aa within 10 miles); Plane'schedules; Dictionary and Encyclopedia searches.

The list is potentially endless. Most come under one heading: Access to a
Data Base. A few come under the heading: Communication. The' remaining
handful are miscellaneous.

The point of this list is that telecommunications provides a host of answers
to the "What_do you do with it?" question. What follows is a proposal for
supplying customers with this kind of service.

2. IMPLEMENTATION OF AN APPLE TELECOM~ruNICATION SYSTDI

2.1 SOME NON-TECHNICAL PROBLEMS

kind of independent communications network
agencies, and would alarm many companies nO\-l

It is clear that setting up any
runs afoul of many bureaucratic
in the communications industry.
existing communication channels.
system are probably less than the
document M 12 discusses some of
user of the telephone network.

For these reasons alone, it is best to usc
The problems of being a user of such a
problems of being in the industry.
the potential problems with being a

2.2 NEED FOR PROMPT AND AGGRESSIVE POLICY

A~ple cannot possibly create the data bases that are required to make this
proposal viable. As we hav~ done with Dow Jones, we will have to negotiate
access for our users to existing data bases and services~ Our succeSS in
this field will depend on aggre~sive and prompt action to secure (possibly
exclusive) usc (with respect to pt!rsonal computers) of what we see as the
most important services.

2.3 TELEPHONE BASED SYSTEM

The most universal bidirectional data path to homes in this country is the
telephone. We presently have the technology to provide a low-cost computer
with a 300 baud modem. Since the Carterphone decision, access to the
telephone network has been assured (as least as much as anything can be
assured in the communications field). There are a number of ways of
providing a universal service through the telephone.

2. 3. 1 MANY LOCAL NUMBERS

M 3.5 Page 2

The time sharing services have chosen to have many regional centers or data
accumulation points. Dow Jones. for example. provides many local numbers.
There are some disadvantages to this scheme: it requires publishing a book
of telephone numbers. and some subscribers have to make toll calls if they do
not live in or very close to a major population center. One advantage of
this system is its redundancy.

2.3.2 A TOLL-FREE NUMBER

With one (or perhaps two) toll-free numbers. every phone in the country can
have access to a central computer installation or what 1 will ca~l an A
node (explained below). This has the psychological advantage of making
access to the service appear "free". The number is easi] y advertised, again
encouraging usc. Research will have to be done to determine the expected
density of useage and just how practical such a system would be.

2.4 LIMITED OR UNIVERSAL ACCESS

Can we, or should we try to, limit access to owners of Apple products? If
(we allow access to anybody with proper equipment (probably any computer or,
perhaps, even some terminals) can we legally build in advantages for Apple
owners? For example, the only software available will be for Apples. If
we use some technological means of permitting only Apples into the service,
this would require special hardware and/or software in future products, and
might not be retro-fittable to the Apple 11 series.

It is my feeling that access should be universal, with some unique services
for Apple owners. Greg Justice is devising an inexpensive mod~m for 1200
baud half duplex telephone line communications. This might be an Apple ex
clusive.

2.5 TECHNICAL PROBLEMS

If credit or any other sensit~ve information is involved. security measures
will be necessary. Security problems are inevitable. in any case since we
wish to bill our customers for their useage of at least some parts of the
service. Use of other parts may be paid for by the suppliers (e.g. when the
service amounts to advertising) and thus ~eem fr~e to the user. D. E.
Denning, in her article "Secure Personal Computing in an Interactive
Network" (CACM Vol. 22, No.8) suggests a method for implementing security
where the users, rather than the network, have control of security. While 1
question the implementation suggested there, the idea that security can corne
from the user's side is a good one.

Protocols will have to be carefully defined. simple enough for naive users,
yet powerful enough to cope with any data base to which we .subscribe. There
may have to be, as with the PCNET protocols, levels of access from the
beginner's character stream to the expert's auto-path-finding data
compressed packet. If we are fast enough, the protocols we design may be
come a d~ facto standard.

2.5.1 INTERFACIAL SOFTWARE

One way of eaSing the user's problem at accessing the many data bases that

M 3.5 Page 3

exist would be to provide, as we have begun to do for the Dow Jones services,
programs that iron out the difficulties of using the various services, so
that they all appear relatively uniform and easy to usc.

This would become an ongoing software project for Apple, and would represent
.the least involved method of providing access to data bases. It would not
provide a universal message transfer system, however, and thus possibly
decrease the desirability of the Hacintosh system. It would also not providc:
a single telephone number for all services, and might require each user to
have multiple contracts. Users would not be encouraged to try more services
as much as they might if the services were more consolidated.

If we adopt this approach, we will have to define a set of unified protocols
for accessing data bases--of diverse kinds. This is no easy task, since most
of them were designed quite independently.

2.5.2 ESTABLISHING A-NODES

The n~xt level up in user convenience from providing software for stand-alone
Apples to facilitate access to each data base would be to provide an A-
node, or data concentration center or centers. This.A-node would be accessed
through a single protocol from the user's computer, and then the A-node
would initiate and monitor (for billing purposes) the connection with the
various data base systems. This process would insulate the user from having
to be familiar with each different data base's telephone number and
protocols.

The A-node would also be a messa~e storing and forwarding center.
,"

3. IMPLICATIONS FOR THE MACINTOSH PROJECT

This proposal grew out of attempting to answer the "What do you do with it?"
question. Without Some sort of network/data base service the question is
going to be much harder to answer. I am proposing here that the creation of
Apple communications, in some form, is part of the definition of the
Macintosh computer project.

4. IMPLICATIONS FOR APPLE COMPUTER INC

We don't think of the telephone company primarily as a manufacturer of the
little $40 things with dials or pushbuttons that we have in our home~ and on
our desks. The implications of this proposal, at one extreme, is that Apple
will be seen, in the future, not so much as a builder of hardware, but as the
purveyor of a service that interpenetrates the telephone network, and
provides information.

On the other extrem~, Apple will be in its present position, adding access to
data bases on a piecemeal fashion. Message transfer will not "become a
useful function unless somebody else happens to start a message system that
is universal enough and otherwise meets our needs. I do not like trusting to
luck.

The high cost to Apple of having done our early software piecemeal and in an
ad hoc manner should act as an example of why we should not let our

M 3.5 Page 4

communications effort be similarly scattered.

The intermediate approach, using the A-node, may be the most practical. At
least its requirements are- not excessive in terms of hardware or software,
and it can start as a mere message center (for the whole United States at
first) and then grow as we contract with providers of data bases and brin~
them on line.

This proposal, if it is carried out, will represent an additional direction
for the company. We will not be alone in the personal computer
communications field, we can strive to be the best. Certain vested interests
may be threatened by an Apple communications system, and there may be
unpleasant pressures.

5. SUMMARY

It is my opinion that the A-nodes provide a practical solution to a good
portion of the "What do you do with it?" question. If, in .the next few
months, a clear alternative occurs (such as might be provided by the growth
of a company such as TCA) we should consider it. We must do something in the
way of providing communication between Apples in locations distant from each
other, and communication with sources of information.

Mike Markkula has suggested that this may be an undesireable path in that
others will be doing it, and we can use their services. He further suggested
that we establish a protocol early on, and publish it in order to', obtain a
leadership position. 1 agree with trying to establish the protocols early,
and promulgating them, but 1 think we must also press ahead with a detailed
study of the costs and benefits of our own system.

I am concerned that many of the existing services are either too poorly set
up, or don't have the breadth of vision required. We may also need growth
rates not anticipated by the existing companies. If we do not have a
communications network to use,then what will people do with the million
Macintoshes we wish to produce?

M 3.5 Pagp 5

APPENDIX 1, SOME SOURCES OF DATA BASES AND COMMUNICATIONS

Telecomputing Corporation of America
1616 Anderson Road
Mclean, Virginia 22102

A service designed for the personal computer user. It is commonly call~d
"The Source". Advertises in Byte.

Computserve, Personal Computing Division
5000 Arlington Centre Blvd.
Columbus, Ohio 43220 (

Tradenamed "Nicronet", it is a less ambitious project than The Source.
Advertises in Byte.

SDC Search Service
2500 Colorado Ave.
Santa Monica, CA 90406

A commercial service with no special attention to microcomputer users,
mentioned here because it has a wide ranee of services.

The Information Bank
1719 Route 10
Parsippay, NJ 07054

A news service to the New York Times, Wall Street Journal, Business
Week and some 60 other publications. No special attention to mi~ro
computer users.

Lockheed's Dialog data base and Stanford's BALLOTS would be fine
candidates, along with our existing Dow ~.ones service. All in all, there are
many services available. A listing of such services appears in the
Applications Directory of The Association of Time Sharing Users, Inc., P.O.
Box 9003, Boulder, CO 80301. Almost all the services listed there provide
economic, stock and commodity, mark~t or demographic information. The two
two most interesting from that list are shown above. Thanks to Tom Whitney
for showing me this catalog.

M 3.5 Page> 6

THE MACINTOSH PROJECT

DOCUMENT 4 VERSIONl

TITLE: DESIGN CONSIDERATIONS FOR AN ANTHROPOPHILIC COMPUTER

AUTHOR: JEF RASKIN

DATE 28-29 May 79

(This document was written before the Hacintosh project was operating und(·r
that name, anc was still called "Annie". This note was written as an observer
at that time not directly involved in the project. (Comments in brack~ts have
been added on Oct. 11 79)]

This is an outline for a computer designed for the Person In The Street (or,
to abbreviate: the PITS); one that will be truly pleasant to use, that will
require the user to do nothing that will threaten his or her perverse delight
in being able to say: "I don't know the first thing about computers", and one
which will be profitable to sell, service and provide software for.

You might think that any number of computers have been designed with these
criteria in mind, but not so. Any system which requires a user to ever see
the interior, for any reason, does not meet these specifications. There must
not be additional ROMS, RAMS, boards or accessories except those "that can be
understood by the PITS as a separate appliance. For example, an auxiliary
printer can be sold, but a parallel interface cannot. As a rule of thu~b, if
an item does not stand on a table by itself, and if it does not have its own
case, or if it does not look like a complete consumer item in of itself, then
it is taboo.

If the computer must be opened for any reason other than repair (for which our
prospective user must be asstimed incompetent) even at the dealer's, then it
does not meet our requirements.

Seeing the guts is taboo. Things in sockets is taboo (~nless to make
servicing cheaper without l.:nposing too large an initial cost). Billions of
keys on the keyboard is taboo. Computerese is taboo. Large manuals, or many
of them (large manuals are a sure sign of bad desicn) is taboo. Self
instructional programs are NOT taboo.

There must not be a plethora of configurations. It is better to offer a
variety of case colors than to have variable amounts of memory. It is better
to manufacture versions in ,Early American, Contemporary, and Louis XIV than to
have any external wires beyond a power cord.

And you get ten points if you can eliminate the power cord.

A~y differ~nces between models that do not have to be documented in a user's
manual are OK. Any other differences are not.

It is most important that a given piece of software will run on any and every
computer built to this specification. There must be no differences between

M 4.1 Page 1

machines whether in terms of I/O, speed, memory size, configuration, or
possible accessories.

(Speaking of accessories--off hand, the only accessory that I can see beine
sold is a printer. If this can be built in (on EVERY machine) then there is
little cause for ever having accessories at all. This is optimal.) [So far,
price constraints and the pervasive idea of a network have changed this a
bit.]

It is expected that sales of software will be an important part of the profit
strategy for the computer.

If it is anticipated that fewer than 100,000 of these anthropophilic
computers will be sold in a 2 1/2 year period, the project should not be
undertaken.

A CANDIDATE FOR SUCH A MACHINE

The computer must be in one lump. This means, giv~n present technology, a 4
or 5 inch CR~ (unless a better display comes along in the next year), a
keyboard, and a disk integrated into one package. It must be portable, under
20 lbs, and have a handle. "Apple V" would not be a bad handle. It, should
fit under an airline seat. It would be best if it were to have a battery that
could keep it running for at least two hours when fully charged.

Some things are fasy to choose. Performance, in the usual computer-science
sense, is not too critical. An 8-bit CPU, eight 64K RAM chips, one RS-232
interface, a telephone jack, and some 200K bytes on the diskette would be
fine. There must be a clock-calendar that is battery powered.

Other things are harder to pick. Clearly, there should be BASIC available.
And there should be some underlying system language, reachable through BASIC,
so that OEM software houses (and our own programmers) can do what's necessary.

One very small, inexpensive and compact language suitable for this
application is FORTH. Having to use an external development system will
hamper the growth and sales of the machine.

The end-user cost for this machine should be $500 or tess, to be sold early in
1982 (or, better still, by Christmas 1981).

THE ACCESSORIES

Printers. Maybe.

SOME USER-VIEW SOFTWARE CONSIDERATIONS

The syst~m must not have modes or levels. The user always knows where he or
she is because there is only one place to be.

THE BASIC

The language should be pure interpreted. All system commands should be
embedded in the language. all statements in the language must be commands.
The program should be user-interuptable (and process interuptable) and

M 4.1 Page 2

resumable even after being changed. Anything that can be done by the user can
done by the program and vice versa.

Consistency is important. All names, whether file names or variable names or
array names ••• should have the same syntax. Wherever a constant can be used,
so can an expression be used. Strings should not behave differently than
other arrays. All arrays should be dynamically allocated.

Declarations are taboo.

Or, rather, requiring.declarations am taboo.

TOYS

Graphics must be in the language as well as sound generation via an internal
speaker. The present set of sound-generating chips should not be considered.

Cursor controls should be on the keyboard, and should be used where graphic
input is called for. The Apple III keyboard is not far from ideal.

RS-THIS AND RS-THAT

Standard RS-170 video output is not a bad idea, especially if it is to be used
in schools. That was five two letter words in a .row. But video .output is not
necessary.

Actually, neither is an.RS-232 port. But I have a suspicion that it might be
nice. Perhaps the phone, jack, having two extra wires as it docs, could become
an RS-232 minimal (3 wire) port with an adapter. The minimum number of holes
in the case through which fing~rs, screwdrivers (either metallic or liquid),
EMI or earwigs can crawl is to be desired. I guess that adapters are OK as
accessories.

Ye same olde 'phone jacke couldst be into service yprest, forsooth to
accomodate divers keyboards, sych as yon orran hath.

The utility of the computer is vitally enhanced if the 'phone jacke had some
personae with whom to talk, to wit, a network is an essential part of the idea
of Annie. And 1 don't mean ABC, CBS, PBS, NBC and Mutual.

SUMMERY

That means fair, warm weather, just after spring.

SUMMARY

Let's make some affordable computers.

M 4. 1 Page 3

THE MACINTOSH PROJECT

DOCUMENT 5 VERSION 1

TITLE: PRELIMINARY COST INVESTIGATION

AUTHOR: JEF RASKIN

DATE: 27 Sep 79

1. COST

One of the primary goals for Macintosh is that it should sell for $500--with
the possibility of reducing the cost to $300 with increasing quantity.

By our present s~lling price versus manufacturing cost ratio this means that
Macintosh should cost us about $125 to build. Consider this highly sp~culative
cost breakdown (assuming a case and board about Apple II size)

PART 1981 COST POTENTIAL COST

keyboard 20 10

CPU
6502 4 3 minimum cost
6809 12 7 likely candidate
68000 90 65 upper end

64K bytes 80 50 8 64K 1W1S (@ $10 and $6.25)

video chip 15 10

modem chip 20 15 wi th DAA.

case 15 5 d(!pends on size

power supply 15 10

p c board 12 8 depends on size

misc 25 15 connectors, fasteners

SUBTOTAL 214 130 basic electronics cost

build, test 10 2 design for automation

(this last category has much room for lowering cost, and thus
it is includ~d even though it is not part of parts costs.)

disk drive 80 35

display 40 20

printer 50 25

TOTAL 346 '212

For this very minimal estimate we assumE.! a 6809 processor as a passable
compromise b(·tween power and cost. It is readily available, allows our video
techniques, requires few support chips, and is relatively efficien"t in terms
of compiled code size.

At a 4X selling cost VB our cost ratio there is no way, even without disk,
printer or display, that we could get below $850 given these prices. Fully
loaded, the selling price may well be $1400. And there are many items
omitted from this list, and the costs are probably optimistic. At the
minimum prices that I can forsee, the base machine might be able to sell for
$520. The full package for $850.

These costs may not be spot on, and the 4X multiplier is not fixed, but these
are indicative ball-park fi£ures. While the minimum price of $520 might look
close to our goal, remember that it is extremely optimistic, includes no
peripherals, and should (to meet our goals) be well under $300 (our
"eventual" figure).

1.1 TWO POSSIBLE DIRECTIONS

Either we can continue the design of Macintosh with the present desiderata,
and abandon our price goals, or we can keep the price ceiling and see what
kind of machine we come up wi th., It seems that the higher priced machine
that falls out of this analysis is not much different from a price reduced
Sara. Therefore we will examine what we can do for a $500 selling. price
limit.

1.2 THE MACINTOSH 500

One item on which we should not compromise is a keyboard.

$ 20

Assume, for the purpose of having truly adequate software, 64K RA}1

$ BO

We build our own video and modem chips

$ 35

Keeping the case quite small, it and the PC board might be lowered to

$ 25

If things are kept small, the power supply might drop to

$ 12

.,,' \
I ,~ I ' Page 2

Add

$ 18

for ~scellaneous, and a

$10

CPU to bring us to a nice round total of

$100.

A machine with no peripherals will have to have some ability in ROM. Assume
32KROH with a word processor and BASIC (both written in Pascal and compiled
to 6809 code). This adds

$25

or so. This, inflated by details and committee embellishment, gives us a
chance at a $500 computer. Note the following facts:

A. No display is included
B. No disk is included
C. No printer is included.

The solution to providing these is as add-ons that attach both mechanically
and electrically to the basic Macintosh product.

~~ '\ Page 3

THE MACINTOSH PROJECT

DOCUMENT 6 VERSION 2

TITLE: GENERAL CRITERIA

AUTHOR: JEF RASKIN

DATE: 28 Sep 79

1. MAJOR CONCEPTS

The most important goal (after the operational goals set out in Document
3), in my Opl.nlOn, is for this computer to have a selling price of $500 or
less. If it is significantly more expensive than this, there will be
little to differentiate it from some of our other personal computers.
Macintosh is designed to be much easier to use than existing computers, and
it must be provided with a range of pre-programmed applications that the
average person will find alluring.

1. 1 PACKAG ING

The package must be compact (13" width, 13" depth, 5" height maximums),
lightweigh~ (under 10 lbs), and robust (it would be desirable t~at a three
foot drop onto a solid floor cause at most cosmetic damage).

Since the cost analysis seems to indicate that a display, a disk, or a
printer cannot be part of the package (Document 5), these and other
peripherals should be attachable to the basic unit. It is imperative that
Macintosh not evolve into a tangle of wires. Therefore it is
probably necessary for each peripheral to attach to the basic unit both
mechanically and electrically, allowine a daisy-chain bus and therefore an
open-ended number of peripherals. Figures 4, .5 and 3 show some possible
physical arranGements. The IEEE 488 bus might be considered as part of the
definition for this application.

This would allow the basic computer, with video, RF, phone and one RS-232
outlet to have a very attractive price, with relatively inexpensive
matching peripherals.

Markkula's intriguing suggestion that the units be connected by radio links
rather than physical ones should also be. investigated. It may be less
expensive than the present suggestion. The problem of FCC regulations and
the need for separate power supplies remain open questions.

The modular packaging concept allows us to offer, for example, a variety of
displays as technology permits. A strong defcciency of modular packaging
is that we would have to write software that can work in a variety of
configurations. This greatly increases the cost to produce software, and
presents marketing and diagnostic problems as well.

1.2 PORTABILITY

M 6.2 Page 1

Aside from the size and weight constraints, it would be especially
beneficial 1f the unit could be us.ed portably. One of the add-on packages
could be a battery pack with, if necessary, an inverter. The power supply
itself could be in one of the add-on packs, giving the user the-choice of
an AC supply or a DC supply and charger.

If no display is built in, the user has the option of carrying ~ smaller
package, and using a home TV. Most home black and white TVs can support 64
characters per line. I have tested this using the Poly 88 computer, which
is a 64 character. upper/lower case machine.

1.3 LEARNABILITY

Macintosh must be easy to use. The keyboard should be typewriter-like,
with no computer jargon on the key-tops. Nonetheless, it must be able to
generate the entire ASCII code-set. But it will be the desien of the
software and manuals that will have the greatest effect on the ease with
which the computer will be used--coupled with the expectations generated in
the user by our advertising and the current personal computer milieu.

A separate set of documents will cover software and manual design, and yet
another will have to discuss advertising strategy.

1.4 SERVICEABILITY

Macintosh must be serviceable: Wil Houde would like to give a one year
unlimited warranty with the machine. What is required is a long MTBF. In
the presence of the strong price constraint we cannot merely take the path
of high quality components for whatever design we come up with--we must
restrict the ambition of the design so ·that we can afford to build it well.

The modular approach taken above is both a help and a hindrance to
reliability: each of the parts will be designed independently, arid to
different restrai~ts, they can even have different warrantees. On the
other hand, there is now a set of electrical and mechanical connections
that otherwise would not be there.

Since the signal may pass chrough a number of boxes, a failure in an
intermediate module might affect the operation (and the diagnosis) of
another unit.

A single-box design puts many electronic and mechanical pieces together,
thus significantly increasing the probability of a failure of the whole
device in a given time period. It can ·be argued that if any of the modules
fail in a modular design, any program that uses that module cannot run
anyway, and the entire machine is lost in spite of the modularity. On the
o.ther hand, it 1s easier to manage the shipment and servicing of a single
box. The software reliability of a single-box system is also greater.

Serviceability is also a function of the quality of the manuals. A
separate document will discuss the on-line and off-line manuals

1.5 MAINTAINABILITY

M 6.2 Page 2

Ease of repair is a function of simplicity, accessibility, modularity and
the design of diagnostic software and procedures. Aside from having the
design monitored by our service and repair personnel, the designs bcinr
considered seem inherently maintainable. We should consider se~ting up a
system programming effort to write a set of diagnostic routines as part of
the Macintosh project.

1.6 PRODUCEABILITY

At all times, our production engineers will be consulted on
the design of the computer. The fundamental design should be sin~le board,
with an integral keyboard if possible.

2. SOFTWARE DESIGN CRITERIA

2.1 LEARNABILTY

There is one quality that software can have to inprove 1earnability:
consistency. That one attribute is probably more important than the
details of what we are consistent about. Consistency also minimizes the
size of our manuals, and decreases the time it takes to write and test
software. It increases the time it takes to design a system, since all
aspects of the sof tware', from command level to every application program
must be considered in setting up the design pa"rameters.

2.2 MAINTAINABILITY

All the software for Macintosh must be written under the same system and in
the same language. The operating system will probably be a descendant of
50S, and the language will probably be' _Pascal. (This should not prejudice
the choice of user languages).

2.3 RELlABILITY

We expect that we shall sell hundreds of thousands of Macintosh computers.
It should be a guiding principal that software goes out as the result of a
program designed in the spirit of the-NASA "zero defect" program since it
will become uneconomical to update progl~ms once they are sold or delivered
as part of the system.

M 6.2 Page 3

THE MACINTOSH PROJECT

DOCUMENT 7 VERSION 7

TITLE: A MODEL OF MEMORY VS. DISK CHOICES

AUTHOR: JEF RASKIN

DATE: 2-4 Oct 79

1. A PATH TOWARD THE DESIGN

My investigations start off with the human input, the keyboard, and an
application, personal (as opposed to business) word processing. With this
starting point, we form a branching trail through the woods of
possibilities.

1.1 THE KEYBOARD

Macintosh will have a typewriter styled keyboard with embedded numeric pad
(as on the HP 2621). No separate key pad should be provided for three
reasons: it shaves a bit off the cost, it makes the package physically
smaller, it looks less forbidding. Such a keyboard is excellent .for word
processing, and we will first explore system requirements for this
application. Aside from the embedded numeric pad, the keyboard layout will
not differ much from Sara's excellent design.

The cost of such a keyboard will be aboui $20.

1.2 WORD PROCESSING

A practical word processor has either a buffer of over 20K bytes for user
input, or a mass storage device whose operation is totally invisible. Since
an overflow of the internal buffer can happen while a person is typing (even
in the.middle of a word), the time that the keyboard does not respond while
the system is squirrelling away the buffer should be under 0.1 second. You
don't want the system breaking the user~s concentration by upsetting him or
her with random pauses.

Since this application places some restrictions on storage, there are (at
least) two ways of going about it: supplying sufficient random access
storage, or a fast mass storage device.

1.2.1 SUFFICIENT RANDOM ACCESS STORAGE SOLUTION

This can be provided through RAM, or through some other technology such as
bubble memory. For our application, we have said we need a minimum of 20K
bytes for the user's area (there being no real upper limit on how much user
storage can be put to use). In addition we need the word processing
software, and the underlying operating system. Here the path forks again,
as the amount of storage required for the software depends on the CPU
chosen. If the CPU is a Lisa type, then the software will probably require

Page 1

about 10K bytes, and the system need only have 32K bytes altog~ther. If the
CPU has the power of, say, a 6809, then the interpreter will require perhaps
8K, the word processor about 10K and the operating system around 8K bytes.
This CPU would require 46K bytes. If 16K bytes of RAM cost $25, (a 6809 '
costing about $10) the Lisa type processor 'would have to be under.$35 to be
cost effective in this application.

1.2.2 FAST MASS STORAGE SOLUTION

In the Macintosh time frarn~, the only viable mass storage is floppy disks.
Hard disks are too expensive, and their media is not removable. Bubbles
seem to be coming alonr, a bit too slowly. Nonetheless, we will keep our eyE'S
open.

While floppies are usually considered to be too slow for our application,
they can be fast enough if we go to a mUltiple processor system so that
spooling can go on in parallel with word processing. Assumming (and here is
another branch in the path) 24 liriesof 64 characters (1536 bytes) there
could be a minimum 2K buffer which both refreshes the screen and is the text
buffer. When it scrolls off screen, it scrolls onto a floppy. The few
hundred extra bytes gives the system enough time to start up the disk
drive.

Searches might, with this kind of scheme, be a bit slow and noisy. There are
many trade-off points, the buffer can be expanded to 4K, or 8K, or larger,
and the disk useage goes down wi th each increase, in memory. A ma·thema tical
model can be built for this situation.

1.2.2.1 THE MOD[L

Assume that the user has M kilobytes of memory at a cost of $b per kilobyte,
a floppy (and associated processor and support circuitry) which costs $f with
a transfer rate of T seconds per kilobyte, and a processor and memory that
permits a search for a pattern match at a rate of G seconds per' kilobyte in a
document of D kilobytes (D*G seconds for the complete document when the
entire search is in memory). We can now examine how many kilobytes per
second of searching a system can achieve ~th disks, and what the cost i~ for
dif~2rent memory/disk tradeoffs.

If

D <= H

then no disk accesses are required, as the entire document fits in memory so
that the time required for the search is

D*G

at a hardware cost of

Mb.

In the case

D > M

where there is insufficient main memory for the entire document, disk
accesses occur. Assuming again a search through the entire document, the
number of accesses (less one) is S which can be calculated by S ·"TRUNC
(D/M). The time for reading in each segment except the last is L + M*T,
where L is the latency time of the disk.' The last segment is of length D -
S*M (which is 0 if D ~10D M = 0). For the total number of accesses the time
is S*(L+M*T) + L + (D - S*M)*T. To this is added the in-memory search ti~(:,
D*G. Simplifying the resultant expression, the total search time is

D*(G + T) + L*(S + 1)

which is easily interpreted in this form: the first major term represents the
total time for transferring and searching the document, the second term
represents the sum of the latency times.

The cost of the hardware is the memory cost plus the floppy cost

(M*b + f).

This model must be modified where, as on our floppies, the latency time is
significantly lower if the disk is already spinning. In this case

L = U

.where U is the motor-starting latency and

L = V

where V is the rotational plus av~rage seek time latency. Usually the ti~e V
is- included in U in the motor-starting case. There is also a fixed shut~down
time, W.

The time for a search through a complete segment is (D*G)/(S + 1), so that if
this time is greater than or ~qual to W, then

L = U

otherwise

L = V + W - ({D*G/(S + 1»)

which is the rotational plus seek latency, plus what is left of the motor-off
time after the search is complete. This ignores the very small program
overhead in the spooling algorithm.

'A concrete example in the late 1981 time frame might have the 'floppy (and
associated hardware) at $55, and memory at $1.60 per kilobyte. Assume that
the transfer rate averages 0.1 seconds p~r kilobyte (this is the present
Apple II 16 sector speed), and that a search in memory takes .006 seconds
per kilobyte (this is about the speed at which Sara will work). Assume
further that the latency U is 1.0 seconds, and the average latency V is 0.15
second (on the Disk II, the average rotational latency is 0.1 second, and a

Page 3

track to adjacent track seek about 0.01 second).

The reader 1s directed to the programs ~l 9 andM 10 in this serie~ of
documents to play with these values.

THE MACINTOSH PROJECT

DOCUMENT 8 VERSION 1

TITLE: REPLY TO JOBS, AND PERSONAL MOTIVATION

AUTHOR: JEF RASKIN

DATE: 2 Oct 79

1. TODAY STEVE JOBS SAID: "DON'T WORRY ABOUT PRICE, JUST SPECIFY THE
COMPUTER'S ABILITIES."

It is impossible to merely start with the desired specifications: it is too
easy. We want a small, lightweight computer with an excellent, typewriter
style keyboard. It is accompanied by a 96 character by 66 line display that
has almost no depth, and a letter-quality printer that also doesn't weigh
much, and takes ordinary paper and produces text at one page per second (not
so fast so that you can't catch them as they come out). The printer can also
produce any graphics the screen can show (with at least 1000 by 1200 points
of resolution). In color.

The printer should weigh only a fraction of a pound, and never need a ribbon
or mechanical adjustment. It should print in any font. There is about 200l{
bytes of main storage besides screen memory and a miniature, pocketable,
storage element that holds a megabyte, and costs $.50, in unit quantity.

When you buy the computer, you get a free unlimited access to the ARPA net,
the various timesharing services, and other informational, computer
accessible data bases. Besides an unexcelled collection of application
programs, the software includes BASIC, Pascal, LISP, FORTRAJ~, APL, PL\l,
COBOL, and an emulator for every processor since the IBM 650.

Let's include speech synthesis and recognition, with a vocabulary of 34,000
words. It can also synthesize music, even simulate Caruso singing with the
Mormon t:abernacle choir, wi th ",ariable reverberation.

Conclusion: starting with the abilities desired is nonsense. We must start
both with a price goal, and a set of abilities, and keep an eye on today's
and the immediate future's technology. These factors must be all juggled
simultaneously.

2. WHY TIME COST ARE OF THe ESSENCE

In an article for IEEE Computer, Raskin and Whitney argued that the
difference between a computer and a programmable calculator was the former's
ability to handle text. The HP-41C, at $295, is a (weak) computer. Ohio
Scientific has announced their C4P computer, which at $698 looks like a "good
buy". In fact, it has 8K of RAM, and the cost to get one disk land an
additional 16K is $1000. Nonetheless, I would like to see Apple have a
computer in the $500 class, and of better value than the competition's, as
soon as possible.

M 8. 1 Page 1

When a person is making a decision to buy their first computer, they do not
know enough to go much beyond the advertisments and the bottom line. Since I
believe the computers we sell, and are going to sell, are better and bett~r
supported than the competition, I would like to see a person be 'able to buy
an Apple quality product for a low entrance price--with accessories available
to bring it up to the level of computational power that we know is necessary
before the personal computer is truly a satisfactory tool.

We may not be able to achieve a mass market unless we can educate people by
selling them a system that we know they will want to expand, and letting them
learn why they need mass storage, printers and all the rest. This is one of
the main ways that Macintosh should be different from Sara and Lisa.

In the light of the above mentioned machines, the $795 Pet, and $69B TRS-BO,
the Atari 400, and some other machines now coming along, it is clear that we
need a product that looks (and is) competitive. We can (and do) among
ourselves point out the flaws from a user's point of view in the competitor's
product--it is hard to see how anybody could put up with a TRS-BO if they
have had much experience with an Apple II (At 16K the difference is only $200
between a Level II TRS-BO and an Apple II Plus). The fact is that a random
customer will not have the opportunity to make the comparison beyond seein~
the $200 difference. (That and Radio Shack's 6,000 or so outlets).

Therefore let's use our superior engineering, software, documentation,
production, service and marketing abilities to produce an excellent low-cost
computer. lam not suggestine we copy and follow our competition~ I suggest
that we leap-frog them.

My personal interest in small computers is evangelical, that's why I tackled
manual writing first. That's why I fough-t for Pascal, that's why I work for
Apple. My message is that computers are easy to use, and useful in everyday
life, and I want to see them out there, in people's hands, and being used.
My purpose will not be accomplished unless Apple continues to be one of the
leaders in terms of pure numbers of customers. I don't like being second or
third, I would rather Apple be number 1.

I think that one way to keep our position, and poss:i.bly get ahead, is by
putting out a very low cost machine. That's wl.y I felt honored when given
the charter to start the design effort on Macintosh.

M 8.1 Paec 2

(*

THE MACINTOSH PROJECT

DOCUMENT 10 VERSION 2

TITLE: VARIABLE MODEL OF MEMORY VS. DISK COSTS

AUTHORS: JEF RASKIN AND PEGGY MILLER

DATE: 3-4 Oct 79

*)

PROGRAM TRADEOFF;

TYPE SETOFCHAR=SET OF CHAR;
CRTCO~~~D= (ERASEOS.ERASEOL,UP,DOWN,RIGHT,LEFT,LEADIN);

VAR M X,L,D,s,TIME,COST,f,b,T,G,U,V,W: REAL;
ITIME,ICOST,IM: INTEGER; (*THESE NEEDED FOR PRINTING*)
ITC: INTEGER [7] ;

(* The variable names have been chosen to correspond to Macintosh document
number 7 which forms the documentation for this program*)

CH: CHAR;
CRTINFO: PACKED ARRAY [CRTCOMMAND] OF CHAR;
PREFIXED: ARRAY [CRTCOMMAND] OF BOOLEAN;
PRINT, DONE: BOOLEAN;
REPORT: INTERACTIVE;

PROCEDURE GETCRTINFO;
(**~*******)
(* *)
(* READ SYSTEM.MISCINFO AND GET CRT CONTROL CHARACTER INFO *)
(* *)
(**)
VAR BUFFER: PACKED ARRAY[0 •• 511] OF CHAR;

I,BYTE: INTEGER;
F: FILL;

BEGIN
RESET(F,'*SYSTEM.MISCINFO');
I:-BLOCKREAD(F,BUFFER,l);
CLOSE(F);
BYTE:cORD(BUFFER[72); (* PREFIX INFORMATION BYTE *)
CRTINFO[LEADIN):=BUFFER[62]; PREFIXED[LEADIN):=FALSE;
CRTINFO[ERASEOS):-BUFFER[64); PREFIXED[ERASEOS]:=ODD{BYTE DIV 8);
CRTINFO[ERASEOL):=BUFFER[65]; PREFIXED[ERASEOL]:=ODD{BYTE DIV 4);
CRTINFO[RIGHT]:-BUFFER(66); PREFIXED[RIGHT]:=ODD{BYTE DIV 2).;

M 10.2 Page 1

CRTINFO[UP]:-BUFFERI67] ;
CRTINFO[LEFT]:-BUFFER[68] ;
CRTINFO[DOWN]:ECHR(10);

END;

PREFIXED [UP]: =ODD (BYTE) ;
PREFIXED[LEFT]:=ODD(BYTE DIV 32);
PREFIXED[DOWN):=FAL5E;

PROCEDURE CRT(C: CRTCOHMAND);
(***)
(* *)
(* CRT COMMANDS ARE: ERASEOS ERASEOL,UP,DOWN,RIGHT,LEFT. *)
(* *)
(***)
BEGIN

IF PREFIXED [C) THEN UNITWRITE(1 ',CRTINFO [LEADIN], 1,0,12);
UNITWRITE(I,CRTINFO[C],I,O,12);

END;

PROCEDURE PROMPTAT(X,Y: INTEGER; S: STRING);
BEGIN

GOTOXY (X, Y) ;
WRITE (5) ;
CRT(ERASEOL);

END;

FUNCTION GETCHAR(OKSET
i

: SETOFCHAR): CHAR;
(***************************************~**************************)
(* *)
(* GET A CHARACTER, B[EP IF NOT IN OKS[T, ECHO ONLY IF PRINTING *)
(* *)
(**)
VAR CH: CHAR;

GOOD: BOOLEAN;
BEGIN

REPEAT
READ (KEYBOARD, CH) ;
IF tOLN(KEYBOARD)' THEN CH:=CHR(13);
GOOD: = CH IN OKSET;
IF NOT GOOD THEN WRITE(CHR(7»

ELSE IF CH IN [' ' •• '}'] THEN WRITE(CH);
UNTIL GOOD;
GETCHAR:=CH;

END;

FUNCTION YES: BOOLEAN;
BEGIN

YES:= GETCHAR(['Y','y','N','n']) IN ['Y','y'];
END;

M 10.2 Page 2

PROCEDURE INIT;
BEGIN

GETCRTINFO;
GOTOXY(O,O); CRT(ERASEOS);
PROMPTAT(10,20,'DO YOU WANT THE RLSULTS PRINTED? ');
PRINT:& YES;
F :& 55.0; (*FLOPPY DRIVE COST*)
B :& 1.6; (*MEMORY COST IN DOLLARS PER KILOBYTE*)
T :~ 0.1; (*DISK TRANSFER TIME PER KB*)
G : & 0.006;'" (*!-lEMORY SEARCH TIME PER KB*)
U .- 1.0;. (*MOTOR START-UP LATENCY*)
V .- 0.15; (*MOTOR ON LAT~NCY (ROTATIONAL + AVERAGE SEEK)*)
W .- 0.75; (*MOTOR SHUT-DOWN LATENCY*)
D :~ 18.0 ; (*DOCUMENT SIZE IN KB*)
M :~ 16.0; (*INITlAL MEMORY SIZL IN KB*)
X !~ 64.0; (*~MUM MEMORY SIZE IN KB*)

END; (*INIT*)

PROCEDURE TIMECOST;
BEGIN

IF D <= M
THEN

BEGIN
T !ME : ~ (D *G) ;
COST := (M*b)

END
ELSE

BEGIN
s := TRUNC (D/M) + 1; (*for convenience, s = S + 1 in document 7*)
IF (D*G/s) > W

THEN L :~ U
.ELSE L :& V + W - D*G/s;

TIME :& D*(G + T) + L*s;
COST := M*b + f

ENL;
END; (*timecost*)

PROCEDURE MENU; (* DISPLAY OPTIONS FOR CHANGES*)
VAR VALUE: REAL;

BI:GIN
REPEAT
PROMPTAT(10,20,'Enter letter or press RETURN to continue ');

CH :& GETCHAR(['F' t 'B', 'T', 'G', 'U', 'V', 'W', 'D', 'X', 'Q' ,CHR(13)]);
IF CH IN ['F', 'B', 'T', 'G', 'U', 'V', 'W', 'D', 'X'] THEN

BEGIN
PROMPTAT (10,22,'Enter new valu~ ');
READ (input,VALUE);
CASE CH OF

'F': F:- VALUE;
'B': B:- VALUE;
'T': T: - VALUE;

M10.2 Pace 3

'G' :
'U' :
'V' :
'w' :
'D' :
'X' :

END;
END;

G:c: VALUE
U:& VALUE
V:- VALUE
W: c:' VALUI:
D:& VALUE
X:& VALUI:

GOTOXY(10,20); CRT(ERASEOS); (*CLEAR PROHPT LINES*)
UNTIL (CH= CHR(13»OR (CH = 'Q');
IF CH = 'Q' THEN DONE:= TRUL;

END;

PROCEDURE HEADER (FILEID:STRING) (* PRINT PAGE HEADINGS FOR REPORT*);

VAR I: INTEGER;

BEGIN
CLOSI: (REPORT);
RI:SET (REPORT,FILEID);
WRITELN (REPORT,CHR(12»;
FOR 1:= 1 TO 5 DO
WRITELN (REPORT);
WRITELN(REPORT,' ,

'VARIABLE MODEL OF MEMORY VS. DISK COSTS');
FOR 1:= 1 TO 3 DO
WRITELN(REPORT);

END;

PROCEDURE DISPLAY (FILEID:STRING); (*DISPLAY RESULTS*)
BEGIN

CLOSE (REPORT);
RESET(RI:PORT,FILEID);

WRITELN(REPORT,'F ',f:l0:[,,' FLOPPY DRIVE COST typical value: 55.0');
WRITELN(REPORT,'B ',b:lO:4,

, NEMORY COST IN DOLLARS PER KILOBYTE typical value: 1.6 ');
WRITELN(REPORT,'T ',T: 10:4,

, DISK TRANSFER TIME PER KB typical value: 0.1');
WRITELN(REPORT,'G ',G:I0:4,

, MEMORY SEARCH TIME PER KB typical value: 0.006');
WRITELN (REPORT, 'u ' ,U: 10: 4,' MOTOR START-UP LATENCY typical value: 1. 0');
WRITELN(REPORT,'V ',V:I0:4, .

, ROTATIONAL + AVERAGE SEEK LATENCY typical value: 0.15');
WRITELN(REPORT,'W ',W:I0:4,' MOTOR SHUT-DOWN LATENCY typical value: 0.75');
WRITELN(REPORT,'D ' ,D: 10: 4,' DOCUMENT SIZE IN KB: 6.0');
WRITELN(REPORT,'X ',X:I0:4,

, MAXIMUM MEMORY SIZE IN KB typical value: 64.0');

WRITELN(REPORT,'Q
WRITELN(REPORT);
WRITELN(REPORT, '

QUIT PROGRAM');

MEMORY TIME COST

M 10.2 Paee 4

TIME/COST');

WRITELN(REPORT,'
END;

SIZE (HUNDREDTHS) DOLLARS

PROCEDURE CALC (FILEID: STRING); (*CALCULATE RESULTS*)
BEGIN

CLOSE (REPORT);
RESET(REPORT,FILEID);

M :c 16.0; (*RESET INITIAL MEMORY SIZE*)
WHILE M <= X DO

BEGIN
TIMECOST;
ITlllE := TRUNC «TIME)*lOO.O);
ICOST := TRUNC (COST);
1M : = TRUNC (M);

IF COST<> °
THEN ITC := TRUNC«TIME/COST)*lOOOO.O)
ELSE ITC := 0;

* 10000');

WRITELN(REPORT,' ',IM:8,ITIME:14, ICOST:9, ITC:13);
M : = _1-1 + 1 6. ° ;

END; (*WH ILE*)
END; (*CALC*)

BEGIN (*MAIN PROGRAM*)
INIT;
DONE:=FALSE;
REPEAT

GOTOXY(O,O); CRT(ERASEOS); (*CLEAR SCREEN*)
DISPLAY('CONSOL[:');
IF PRINT THEN

BEGIN
HEADER('PRINTER:');
DISPLAY('PRINTER:');

END;
CALC('CONSOLE:');
IF PRINT THEN CALC ('PRINTER:');
MENU;

UNTIL DONE;
END.

M 10.2 Pace 5 -

THE MACINTOSH PROJECT

DOCUMENT 11 VERSION 0

TITLE: SUMMARY OF OCTOBER 10

AUTHOR: JEF RASKIN

DATE: 10 Oct 79

1.0 APPLICATIONS

1 • .1 TEXT EDITING

Some form of text editing should be part of the firmware, and will form a
major marketing feature. This editing ability should also be at the heart of
the operating system, and will be available at all times. A proposal for the
design of the t~xt editor will be part of the specification.

1.2 COMMUNICATIONS

It is agreed by nearly all authorities that the personal computer will not
achieve a mass market until communications networks are availabl~ to them. To
help make this project a success, Apple will have to provide software that
will ease access to various services, and perhaps adopt some stronger
strategies, for example:

1.2.1 INCLUDE CONTP~CTS WITH SERVIC£ VENDORS

The purchase price of Macintosh might include a limited time contract with
some vendor of personal computer network and data base services. Vendors
might wish to do this as a "corne-on".

1.2.2 ESTABLISH APPLE NODES

There is the possibility of building "nodes" (Sp.c document M 3) that provide
a uniform interface to a number of services, and which handle billinr. This
is a value added network.

1.2.3 BUILD AN APPLE NETWORK

This would be a communications network, not a data basc. It would have access
for personal computers as well as ports to other networks and data base
services.

1. 3 CALCULATOR

A simple calculator language should be provided. This will be explored in a
separate document.

2.0 MANUALS

MIl.O Page 1

Since this computer is going to a larger and more diverse audience than ev~r
before, the quality of the manuals will have to be espccially high. All
applications proerams should have self-teaching sections, and any languages
should also have computer based tutorials.

The manuals should be well constructed physically, typeset, and either wire-O
or hard bound. They should make use of color and graphics to a much greater
extent than our present manuals.

3.0 SOFTWARE

Macintosh software will have to be written to the highest levels of quality of
human interaction. Updating programs in the field, considering the number of
units we anticipate selling, will be nearly impossible. A "zero-defect"
atmosphere will have to be maintained in software development.

3.1 LANGUAGES

3.1.1 PASCAL

This is our standard language, and it should be provided, on disk, for
Macintosh. Since system d~velopment is not one of the main application areas
for Macintosh, Pascal should be a purchasable item. In spite of the fact that
Macintosh is not primarily a programming tool, it should be possible to
generate the system software on the machine itself. This "deser~ island"
philosophy assures that we will not build any essential weakness ~nto t6e
software.

3.1.2 BASIC

It is not yet possible to offer a personal computer without BASIC. We will
use whatever BASIC is implemented in Pascal for Lisa and other Apple products,
perhaps with tlle elimination of heavily business-oriented features~

3.1.3 APPLE

The name "Apple" is proposed for a programmable calculator style languagE' that
will be the subject of a future report. This languagc, along with the editor,
may be part of the firmwarL-.
'.2 "'l(,ltIlqrONJ
4 • 0 HARDWARE C. """, H'-I ". f~ .

4.1 INPUT AND OUTPUT

There will be a keyboard (upper/lower case, similar to Sara's and Lisa's but
with embedded numeric pad), one RS-232 port, one telephone port with modem
and daa (auto answer is important, dialing would be nice), a video output, a
modulated video output, and some kind of extension bus. There will be no
expansion slots per see A few lines of LCD alphameric display should be an
option. It would be advantageous to allow joystick input.

4. 2 CPU AND MEMMOR Y

The CPU choice (at present) is a 6809. There s~ems to be little advantage to

Mll.0 Page 2

going to our own processor at this time. Memory is fixed at 64K, consisting
of eight 64K dynamic RAMS.

4.3 CASE

Since the requisite c!r~uitry can fit onto a 48 sq in board, it is possible to
have the computer not much larger than a keyboard alone. Figure 7 shows one
possible case, and figure 6 shows how it might be arrangt'd internally.

4.4 POWER SUPPLY

The power supply will be external via a wall-mounted transformer thus allowing
the option of a battery supply.

4.5 DISPLAY

If a configuration such as figure 7 is used, a LCD panel should be mountable
in the lid. A separate monitor, in a matchinn and perhaps attachable case
should be provided, as in fi2ure 5.

4.6 DISKS

It is important to open a project to produ~e a low-cost, even if relatively
low performance diskette drive. One way it could be integrated into the
system is shown in figure 5. It is essential that some form of mass storage
be made available to this system.

4.7 PRINTER

Again see figure 5. It is essential that a printer be made available to this
system.

MIl.O Page 3

THE MACINTOSH PROJECT

DOCUMENT .12 VERSION 1

TITLE: CONCERNS ABOUT USING THE TELPHONE WITH PERSONAL COMPUTERS

AUTHOR: JEF RASKIN

DATE:, 9 Oct 79

The ordinary telephone lines are the only bi-directional electronic
communication links between most people. This is not only true for the United
States of America, but for a significant portion of the rest of the world as
well. The telephone lines are therefore the most obvious and accessible means
for implementing inter-computer communications at low cost.

The technical problems have been solved, and electronic interfaces between
computers, terminals, data acqusition and display devices and the phone line
are inexpensive, often costing as little as a few months telephone service.
Nothing special is required of the telephone service in order to use these
devices: the telephone system does not distinguish voice from digital signals
encoded as sequenc~s of tones (or combinations of tones). In fact, it uses
certain tones itself to establish connections, and even to do some
bookkeeping.

The bandwidth of the telephone service imposes some limit on the speed of
transmission. Inexpensive interfaces operate at a maximum of 30 characters
received or transmitted per second. More expensive interfaces could run at,
say, four times this rate over the same lines. Such faster interfaces for
personal use are still a few years away.

The main technical difficulties in using the phone network for personal
computer communications 1s in adopting protocols that will allow computers

'to speak to one another. This problem 1s being addressed by a number of
groups such as the PCNET, to name one, among many. Assuming that this problem
can be solved to a point where such communication becomes commonplace, or if
the current tim~ sharing and data base services proliferate to the point where
individuals begin to use them as individuals (instead of using them
exclusively in connection with their employment or studies), we find another
potential problem. The telephone system might start to move to disallow su,ch
use.

At first it is not clear why the t'elephone system might oppose personal
computer communications. It would seem that it would only mean increased use,
and thus increased revenue. Dr. Gammill, of the Rand Corporation (1n his
Position Paper on Personal Computers 1n the 1980's) and others have suggested
that the telephone company might seek to limit or control computer useage in
order to maximize income by charging a higher rate for computer transmissions.
Dr. Gammill.points out that "from the point of view of the phone companies,

personal voice communication 1s under-charged due to regulation of that
market", and since the tarriffs only apply to voice communication, new
tarrif!s, at (presumably) higher rates would be applied to digital
communication. This would require that the phone company have special

M 12.1 Page 1

equipment that can distinguish between the two grades of service.

I would like to suggest that there is a technological reason that the
telephone companies might be concerned with digital use of a system intended
for human communication. The phone system is based on a statistical model of
p~one use. There are not enough lines and interconnections so that all
possible non-conflicting calls can be made at once. The amount of equipment
actually installed is based on assuming a certain percentage of toe possible
calls are being made at any time, and that calls have a certain distribution
of lengths. Some calls last just a few seconds: "Hi, Jean?" "Hello Mary."
"I'll be over in five minutes." "See you then, bye." "Bye." Others last
longer.

The amount of equipment and personnel the telephone company needs depends on
the maximum acceptable number of calls that cannot be completed due to lack of
equipment, the total number of calls, and some statistics on the length of
those calls. The problem with allowing digital transmission probably has
little to do with the increased number of calls due to such use. In the next
few years the number of personal computers in use will remain under ten
million, with only a percentage of these being equipped for phone
transmission. But there are over 100 million phones in daily use. So the
number of calls made for the sake of a computer connection will remain
insignificant for the time being. The same cannot be said for the length of
those calls.

As a very simple example, assume that-there are 30 calls per hour' (at random
times) on a system that can handle one call at a time. Also assume that the
system requires no time at all to reject a call when the line is busy. If
each call lasts one minute, then the probability that a given call was placed
without waiting is about one half (it depends on some other factors such as
the delay between retries). As these calls double in length, the probability
that a given call was placed without waiting gets extremely small. If the
calls are longer than two minutes in this example, they won't all fit--some
calls can never be made. Notice that the number of calls has stayed the same.

I suspect that this phenomenon is one of the things the telephone companies
are concerned about. It is not the number of calls, but the large increase in
average length that may well cause problems.

What must not happen is that the users of personal computers get into a cat
and mouse game with the phone companies. A possible senario is this: a phone
company sets up a special, higher rate for computer use. They add a circuit
that detects the usual modem (the modem is the device that attaches a computer
or terminal to .a telephone line) frequencies and charges accordingly. At the
same time they apply to the FCC to make those frequencies mandatory
(ostensibly to help promulgate standardization and the free interchange of
data). The computer manufacturers make a modem that "sounds" to the phone
company more like the voice, so their detectors don't work. The phone company
builds a better detector, and begins to throw in random .15 second pauses that
interfere little with speech but play hob with digital transmission. The
computer buffs respond with error-correcting codes that correct for small
pauses, and make still more voice-like modulation. The phone company could
respond with a rate scheme that vastly increases the cost per minute after 10
minutes... This could be an expensive and counter-productive war.

M 12.1 Page 2

If we have the various utitilty commissions and the Federal Communications
Commission involved it may be years before true personal computer networking
gets under way. There are various strategies that may be applied-now:
attempts to have legislation passed that will not allow the telephone company
to discriminate based on the content of a telephone call (if they start with
computers, will they eventually get the rinht to charge different~y for, say
calls with good news and calls with bad news? Do they have the right to
listen in on a call at all to determine its content?) One mi£ht argue that
deaf people can communicate via terminals over the phone and that they should
not have to suffer a higher rate.

There migh~ be an attempt to get the telephone company to give a policy
decision on the matter--although this could possibly help accelerate their
coming down on what we might see as the "wrong" side. Apple Computer is,
rather naturally, interested in this situation, and would like to hear from
interested parties.

M 12.1 Page 3

THE MACINTOSH PROJECT

DOCUMENT 13 VERSION 1

TITLE: IMPORTANT POINTS ABOUT MACINTOSH

AUTHOR: JEF RASKIN

DATE: 12 Oct 79

1. The design assumes the existence of a network allowing nationwide
communications. Macintosh is a communications d~vice.

2. The cost of the main unit shall be $500, with hopes of
lowering that cost to $300 in three years.

3. The design shall have peripherals that attach mechanically as
well as electrically, making a unified packagc.

4. Some functions will be available in ROM, in particular, the network
protocols, some word processing, and possibly a simple programmahle
calculator style language.

5. It will contain a mod('m/daa, an RS-232 port, a real-time clock, speakcr
and video and modulated outputs. -.

6. Disks, printers, a TV monitor, speech recognition and synthesis devices,
and battery power supply are examples of possible peripherals, anc will
not be part of the main unit.

7. RAM size will be fixed, and probably 64K bytes. The processor will
be a commercially available product, possibly a 6809.

M 13.1 Page 1

THE MACINTOSH PROJECT

DOCUMENT 14A VERSIO~ 10

TITLl:: TUI.: APPLE CALCULATOR LANGUAGE PR-ft.IO?

AUTHOR: JEf RASKIN

DATl:: 13 Oct 79

{Note: material in braces is notes to myself, or notes to the advanced reader.
The reader might well comment that the following language seems similar to the
work done by K. Iverson over eighteen years ago. Apple is based on a re
sp(>lling of Iverson's work. Even the name "Apple" might seem derivative from
the name he chose for his languar,e.}

CHAPTER 1

IT'S A SIHPL[CALCULATOR ---- - ~~~ ----------
To begin with, this lan£uagc only uses the numbers, the signs for simple
arithmetic, and the large key over on the right side of the keyboard marked
with the word "RETURN". Press this key whenever you see the word "RETURN" in
a box. Latl:r we will usc the other keys too, so as not to be was,teful.

You can tell that it is your turn to type whenever you see an exclamation
point (!) sitting at the left e~gc of the screen. As soon as you begin
typing, the fin::it character that you type replaces the "!". The exclat:1ation
point is calle>d the "prompt" charact~r, oecause it prompts you to type
something.

Now you know when you can typ~ something. Type

5+2 [RETURN]

The computer responds by sLowing the result

7

We must say a word about fixing typing errors. You can correct a typinb error
by backspacing over it and typing the correct information. To backspace,
hold down either button marked "SHIFT" and press the space bar.

Subtraction is indicated by the usual minus sign

5-2 [RETURl~]

3

{Negative numbl:rs arc indicated by preceding them with an underscore (_), e.g.
45.4}

In this manual, an~ line not followed by [RETURN] is produced by the computer,

M 14A. 10 Pare> 1

in this case, the answer 3.

Multiplication is indicated not with an "X" but with an asterisk (*).

3*4 [RETURN]

12

Division is indicated by a slash </)

4/2 [RETURN]

2

7/4 [RETURN]

1.75

You can do more than one arithmetic oplration~ in the same lin~,

for example

6/3+2*5 [R£TUR1~]

20

A combination of a number of op~rations such as this-is called an
"expression". The rule for evaluating an expression is very simple: Start at
the left and move to the right. The expression 6/3+2*5 starts out as 6, the
leftmost number. It is then divided by 3. That's 2. Then you have to add 2:
that makes 4. Now multiply the result by 5: the result is 20.

If you are familiar with simple pocket calculators, you will recognize that
this is exactly how th~y work. You put in a number, then an operation, then a
second number and press the button with an equal sign. In this language you
press [RETURN] instead of the equal sign. Evaluating an expression is exactly
like doing a "chain calculation" on a pocket calculator where you don't bother
to get intermediate results.

If you are familiar with other computer lanrua~es, or do a lot of algebra, you
might find this strict left-to-rirht scanninf, a bit unfamiliar. Actu~lly, if
you think about it, thiS .method is more consistent and simpler. This is one
of those cases where the beginner with no prior computer experience has the
advantage.

If you wanted to add 6/3 to 2*5, you could write the expression

(6/3)+(2*5) [RETURN]

12

Parentheses aie used to group items that are to be evaluated together and
subsequently used as a single entity.

What would be the value of

M 14A.I0 Par-e 2

55/11+1+12/6*2-3

as interpreted by the computer? The answer isn't 13. The answer isn't 7. In
fact there are a whole lot of numbers that the anSWer isn't.

{ Ihe answer is 3}

Powers of numbers, such a8 2 to the tenth, arc easily obtained •

2 laTHE 10 [RETURN]
. . "',

l

1024

And to get a square root, you could write

2 laTHE .5 [RETURN]

1.41

Notice that the answer comes out to two d~cimal places. This is the
standard, or default number of decimal places. You can get almost any number
of decimal places you want. Up to a limit of {say, I8}. For example, to get
seven places, you would type

-7: ~LACES [RETURN]

2 TOTH[.5 [RETURN]

1.4142136

The answer is rounded to seven places. Thi's only affects what the computer
shows: inside it knows the truth and remembers as many decimal places as it
can. It will continue to show answers to seven places until you give it somv
other number of places. Here is another example:

10: PLACES [RETURln

22/7 [RLTURN]

3.1428571428

1: PLACES [RETURN]

22/7 + .6 [RETURN]

0: PLACES [RETURN]

22/7 + .6 [RLTURN]

4

M 14A.I0 Page 3

{There might be a WIDTH specification as well. Together with the PLACES
specification this controls precision.}

M 14A.I0 Page 4

CHAPTER 2

CLUMPS OF NUNBERS

Here is an easy one to figure out

17 [RETURN)

17

The simplest expression is just a number. It is not much more complicated to
have a clump of numbers, separated by spaces.

34 5 67 [RETURN)

34 5 67

A clump of numbers acts pretty much like a number in an expression. When you
add a number to a clump, you add it to each number in the clump. For example

34 5 67 + 3 [RETURN)

37 8 70

The way to figure out how to handle a clump is to start from the ,left, (as
always). ,Firs't you find the 34, then a space, then the 5. Since 'there was no
operation between them, you know that they must be part of a clump. Then you
find another space, followed by the 67. Since you have encountered no
operation, the 67 is also part of the clump. The next thing you find is a
space followed by a plus sign, indicatinr an operation. This is not a
number, so the clump is finished. The operation symbol you just found tells
you what to do to the entire clump, in this case you add three to each member
of the clump.

Here is an example with multiplication.

1 2 3 4 5 *6 [RETURtn

6 12 18 24 30

Just one more example of usinr. a clump.

2 5 1 -2 [RETURN]

Remember how negative numbers are indicated. There is a very good reason for
distinguishing the operation of subtraction from negative numbers. For one
thing, it is never good to use one symbol to represent two different
concepts. Furthermore, if we didn't distinguish these ideas, how would
you put a negative number into a clump?

Now let's evaluate

M 14A.I0 Page 5

7 + 2 .5 1 * 6

Starting at the left yo'u find a 7. The next thing you find is a plus sign, so
a clump isn't being formed. Continue to the right and you find a' 2. Now you
can perform the addition and add 7 to 2 to make 9. The expression is now
equivalent to

.9 .5 1 * 6 .

Clearly 9, .5 and 1 form a clump, and then you find a multiplication sign, so
the clump is done. Now mUltiply each element in the clump to get the answer

54 3 6

Parenth~scs are quite useful. For example you can use parentheses to write

7 + (2 .5 1) * 6

The seven is added to the entire clump, to give

9 7.5 8 * 6

which evaluates to

54 45 48

All this makes the calculator much more convenient for calculations 'involvinr.
a whole bunch of numbers. For example, . to convert 32, SO, 100 and 212 degrees
Fahrenheit to degrees Celsius, yo~ could write

1: PLACES [RETURN]

32 SO 100 212 -32*5/9 [RETURN]

a 10 32.8 100

(We didn't have to limit it to one decimal place, but we did, for appearances
sake.) To see how this works inside the computer (and how you can figure
out the answer yourself), the first part of this expression is equivalent to
(32 SO 100 212)-32, or a 18 68 180. This new clump is then multiplied by five,
yeilding 0 90 340 900. Lastly, it is divided by 9 (remember, just work fron
left to right) to yeild 0 10 32.8 100.

M 14A.I0 Page 6

CHAPTER 3

AUTOMATIC CLIDIPS

Some of the most useful clumps of numbers are just consecutive integers, for
example the thirteens multiplication table can be obtained by

1 2 3 4 5 6 7 8 9 *13 [RETURN)

13 26 39 52 65 78 91 104 117

You can abbreviate a clump of consecutive integers by use of what is called, in
English, the clripsis. The ellipsis is a kind of punctuation in a class with
such things as periods, commas, semicolons .••

Those three dots are the ellipsis. To save you a bit of typing, the computer
uses two dots. The thirteen's table can be produced by the expression

1 •• 9 *13 [RETURN)

13 26 39 52 65 78 91 104 117

Of course, you can count backward

5 •• 2 +3 [RETURN)

8 765

{Interestin~ly,

5 •• 7 •• 2 [RETURN)

5 4 3 2 654 3 2 765 4 3 2

Why is this? Because 5 •• 7 is 5 6 7, so the expression is equivalent to

(5 6 7) •• 2

which is 5 •• 2 6 •• 2 7 •• 2

Just rememb~r to do things strictly from left to right. Also notice that if
real numbers are used where inte~ers are expected, as in 3.6 •• 7.2, they are
truncated to integers 3 •• 7}

So far we have done arithmetic between a single number and a clump. ~en

clumps are the same length, we can easily do arithmetic between whole clumps
at a time. It is done element by element.

(1 2 3 4) + (4 3 2 1) [R E TUR N)

5 555

But remember, without parentheses, you have to work things through from left
to right, element by element.

H 14A.I0 Page 7

1 2 3 4+4 3 2 1 [RETURN]

5 6 7 832 1

This can be check~d by starting to form a clump 1 2 3 4. Then you find an
operation, which applies to the whole clump. The operation is to add four to
each element of the clump. That gives you 5 6 7 8. There is no operation
before the next number, so you must still be clumping. This explains the
given answer.

{This also shows that juxtaposition indicates c-oncatenation of output.

Another example 'is

2 •• 6 3 •• 1 [RETURN]

23456321

You might like to try

1 •• 4+4 •• 1, which is equivalent to

(1 2 3 4)+4 •• 1, but this is

(5 6 7 8) •• 1 or

5 432 165 4 321 765 4 321 8 7 654 321

Now consider

(1 •• 2)+(1 •. 3) [RETURln

243

These two clumps are of different lengths. The shorter clump is always "padded"
to make it equal in length to the longer. In this case it is padded with
zeros. {The identity element is always used as padding. For addition and
subtraction it is 0, for multiplication and division it is 1. A more complete
list of padding elements is presented later.}

One last thinp to try

3/0 [RETURN)

YOU MUSTN'T DIVIDE BY ZERO

This is an example of a "error message" which tells you that you have done
something beyond the pale.

M 14A.I0 Page 8

CHAPTER 4

SOME OTHER OPERATIONS

It is sometimes convenient to be able to get just the remainder of a division.
In accord with common practice, this is indicated by MOD

3 HOD 2 (RETURt,)

1

If you divide 3 by 2 you do, indeed, g~t one left over~ This next example is
educational

L • 16 HOD 7 [RETURN)

1 234 5 6 0 1 2 3.4 5 6 0 1 2

You can g~t the greater or lesser of a pair of numbers.

3 MAX 38 [RETURN]

38

3 MIN 38 [RETURN].

3

38 HAX 3.09 [RETURt;]

38

17 •• 21 MAX 19 [RETURN]

19 19 19 20 21

With clumps of equal length you can easily do this

1 2 4 8 16 MIN (1 3 6 9 12)

1 2 4 8 12

And, similarly, you can compare numbers. In this laneuage the nurnb~r 0 is
used to indicate that an answer is false, and 1 indicates that an answer ,is
true. While this may seem a bit strange, we will be able to use these valu('s
in some rather neat ways later.

The sign ">" means greater than.

1642 > 31.008 [RETURN)

1

5 > 7 [RETURN]

M 14A. 1 0 Pa~.e 9

o

The equal sign (=) we use unblushinr,ly to mean equals.

3 -= 4 {RETURN]

o

6.4 c 6.4 [RETURN]

1

'We usc "<" for less than, but won't bother with any examples, but go on to use
"<=" for less than or equal to and ">=" greater than or equal to.

18 <= 3 [RETURN]

o

7 >= 7 [RETURN]

1

Lastly, in this group, we use "<>" for not equal to, since it has, the meaning
"greater than or less than" which is the same idea.

5 <> 5 [RETURl~]

o

Observe that you can compare to a clump

1 2 3 4 5 6 > 3 [RETURI;]

000 1 1 1

For those who need them, we have the functions AND, OR and XOR.

o AND 0 [RETURN]

o

1 OR 0 [RETURI,]

1

1 AND 0 [RETU}{N]

o

in all the familiar combinations. For example

o 1 0 1 OR (0 0 1 1) [RETURN]

M 14A.I0 Page 10

000 1

Why didn't we write 0 1 0 1 OR 0 0 1 I?

{Because that would be 0 0 0 0 0 1 and not show all the combinations.}

Why didn't we have to write (0 1 0 1) OR (0 OIl)?

{Because we evaluate frpm left to right, but it might not ,be a bad idea to
sometimes use redundant parentheses in a situation like this to make the
expression clearer.}

1 XOR 1 [RETURN)

o

M I4A.I0 Page 11

CHAPTER 5

SOME SCIENTIFIC CALCULATOR ABILITIES

For those of you that like your calculators scientific t we have sines and
cosines and the like. On the typical calculator t if you have a number in the
displaYt and want to find its sine, you press the button marked "SIN" (no
religious implications intended). SimilarlYt in our left-to-right scheme,
after you have a number you just type "SIN" and the result is calculated. For
example

3.141592654 SIN [RETURN]

o

Here, we are working in radians. If you'd rather work in degrees, you
have an option, the way you did with the number of decimal places. You can
set the option "RADIANS" to true or false. If it is true, you are working in
radians; if it is false, you are working in degrees.

From the sine value above you can conclude that you were working in
radians. If you want to work in degrees, you make RADIANS false. It works
very much like PLACES did.

0: RADIANS [RETURN] I 'I,.. • >· .. f {.'
I.. /"

• '..1

30

To get back to working with radians, you would type

1: RADIANS [RETURN]

Incidentally, if, at any time you want to find out to how many decimal places
the computer will display, you can just type

PLACES [RETURN]

4

Or, to find out if you are working in radians or degrees, you can type

RADIANS [RETURN]

o

The trigonometric functions you have available are

SIN COS TAN ARCSIN ARCCOS ARCTAN

Also you have LOG (which is. base 10) and LN (which is base e).

M 14B.7 Page 12

There is even a constant

PI

with the usual value. You can say

PLACES: 3 [RETURN]

1 •• 4 * PI [RETURN]

3.142 6.283 9.425 12.566

Incidentally, what would you get from PI * 1 •• 4?

{3 4}

{The base of the natural logarithms is available. Its name is "E".}

We also have two simple functions, FLOOR and CEILING. FLOOR gives you the
greatest integer less than or equctl to the given number; CEILING gives you the
least integer greater than or equal to a given number·.

5.1 17 -5.1 FLOOR [RETURN]

5 15 -6

5.1 17 -5.1 CEILING [RETURN]

6 17 -5

In the same vein we have

22 22.1 22.5 22.51 22.8 ROUND [RETURN]

22 22 22 23 23

and we can truncate

22 22.335 22.8 -5.43 -4.9 TRUNCATE [RETURN]

22 22 22 -5 -4

And here is a strange, but enjoyable function. You'll have to puzzle it Ollt

from these examples.

3 PICK [RETURN]

3

4 •• 8 PICK [RETURN]

5

4 •• 8 PICK [RETURN]

M 14B.7 Page 13

4

4 •• 8 PICK [RETURN]

4

4 •• 8 PICK [RETURN]

1

It gives a random choice among the clump presented to it.

There is also one logical operator among these functions

o NOT [RETURN]

1

1 NOT [RETURl\].

o

If you apply NOT to numbers other than 0 and 1, the results may seem strang~,
so it is not recommended. {The logical operators applied to integers result
in bit-wise operations. If the numbers are not integers, they are first
truncated.}

Here are some puzzles. Fill in xhe computer's part.

o NOT 3 [RETURN]

{I 3}

o 1 NOT [RETURt~]

{I O}

3.1.5.6 '-5.2 3.8 +.5 CEILING [RETURN]

{This evaluates as follows 3.6 ~5.1 ~4.7 4.3 CEILING which is 4 -5 -4 5}

M 14B.7 Page 14

CHAPTER 6

SAVING FOR! RAINY DAY AND WITH WORDS WE LEARN TO PLAY

Many calculators have a way of storing 'a number, then later recalling it.
This is usually called "memory". In this Apple Calculator, there is also
memory. For example. to save the valu~ 5 you merely give it a name. in this
case we'll call it "finger~".

5: fingers [RETURN]

Notice that the computer types nothing back to you (except the prompt, which
we nev~r show in this manual. It now sits there awaiting your command. And
it remembers that th~ value of fingers is 5.

You have seen that

5 [RETURN]

5

Well. now that you have defined fing~rs you can type

finBers [RETURN]

5

Of course

1 3 U4 56 72: hi k e [R E TUR r ~]

h ike [R[TUR!~]

I 13 84 56 72

hike -20 [RETURN]

-7 64 36 52

So you see that you can store number~ and clumps of numbers into cubbyhol~s
that have names. Names can be as long as you like; just remember that you
will have to type them so you might not want to mal~e them too long. The rest
of the rules for names are simple: they must begin with one of the twenty six
letters of the alphabet in upper or lower case, they may contain letters of
the alphabet. digits. and periods. Blanks are forbidden. It is recommended
that names be all lower case. For example

flavor.number.58

is a leeal name. It is customary to write names in low~r case characters so
that they are easily distinguished from keywords, such as SIN or TRUNCATE.
You may not use any keywords (which are always uppL·r case) as naml'S.

M 14B. 7 Page 15

This flexibility to use names that We devise ourselves mak~s this calculator a
little bit easier to use than most pocket calculators. It sure is easier to
remember that you've put the checkbook balance into a cubbyhole named
"balance" than to remember that it is in "register 4".

Our calculator doesn't only deal with numbers, but with letters as well. As
you know a cat has four legs, but the word "cat" has no legs at all. It has
three letters. We distineuish, in English (and most other phonetic tongu~s)
between the way the word is written and its meaning by using quotes. This is
true of the Apple language as well. Here are some examples.

"cat" [RETURN]

cat

It should be clear that

fingers [RETURN]

5

"fingers" [RETURN]

fingers

One very useful ability is to be able to find the number of characters in a
string.

flf ingers" LENGTH [RETURt;J

7

Incidentally, this function also works with clumps of numbers

1 2 3 LENGTH [RETURN)

3

3 •• 9 LENGTH (RETURN]

7

Is this answer correct?

{Sure is, even though 9-3 is 6.}

As we have Seen, just writing two clumps one after the other gives a longer
clump

2 •• 6 7 •• 5 (RETURN]

23456 76 5

the same thing happens with letters

M 14B. 7 Page 16

"had" "dock" " smells" [RETURN]
J

haddock smells

This is called "concatenation", the bringing together of two or more objects
side by side. Notice that the space between the quote and the word "smells"
is not accidental.

Letters between quotes are called strings. You can concatenate strings even
if they have been given names.

"abcd":alpha [RETURN]

"efghij":bet [RETURN]

alpha bet [RETURN]

abcdefghij

Every name, whether you use it or not, has a value.

elephant [RETURN]

a

That is because any name that you haven't given a value to is zero. If the
name is used as part of an expression involving strings, and it hasn't been
given a value, then its value is a string with no characters. This is called
the "null strine" in the jargon. In this example the name "alphabet" has not
been given a value, so it is the null string and has no effect when
concatenated to the string named "alpha".

alphabet alpha [RLTURN]

abed

M 14B. 7 Page 1 7

CHAPTER 7

AN INTERLUDE: A SUMMARY AND RE-PRESENTATION - --- ----------------
The prompt character is "!", and it is overridden by the first typed
character. User input is terminated by [RETURN).

The dyadic operators (those that come between two quantities and do something
involving both of them to result in another qantity) are

+ * / TOTHE HOD MIN MAX < = > >= <= <> AND OR XOR INSERT

001 1 1 1 o o 000 0 0 0 1 0 o

The numbers under each operator is the padding value in case the operation is
attempted between clumps of different lengths. Strings are padded with nulls.

The special variables (names that have a meaning to the system) are

PLACES RADIANS PI E

The monadic operators (those that come after a quantity and do something
involving it) are

SIN COS TAN ARCSIN ARCCOS ARCTAN NOT LOG LN FLOOR CEILING ROUND TRUNCATE PICK
LENGTH

Names may begin with any letter, and may have letters, digits and
underscores. The assignment operator, which should be a right-pointing arrow,
is the colon because ASCII doesn't have B. righ t-pointing arrow. Expressions
are evaluated strictly from left to right, but the order may be modified with
parentheses. Any printing characters, space, and return may occur in
strings. Much more is to come.}

M 14B.7 Page 18

CHAPTER ~

! FEW MORE STRING OPERATIONS

Strincs can be converted to clumps of numbers and vice versa. A table {the
standard ASCII codes} shows what numbers go with what characters. For example

"ABC" NUMBER [RETURN]

65 66 67

68 69 70 LETTER [RETURln

DEF

If you give the LETTER function a number too high to represent any letter in
the clump, then it gives back the null character.

{It is nice if

"" NUMBER [RETURN]

o

and vice versa}.

You can compare two lett~rs

"a" > "b" [RtTURN]

o

You can compare strings for alphabetic order

"jello" <= "hello" [RETURN]

o 1 1 1 1

"jello" > "hello" [RETURN]

1 0 0 (; 0

just as you could for clumps of numbers.

It is sometimes useful to deliberat~ly change the value of a numerical
quantity into a string, for example

34 STRING "b" [RETURN]

34b

And to go the other way, ther~ is the VALUE function

"2" VALUE '+1. 1 [RETURN)

M 14B.7 Page 19

3.1

Single quotes are used when the string has double quotes in it

'He said, "Do not shoot, I have a cold".' : linc.from.movi~ [RETURN]

line. from. movie [RETURN]

He said, "Do not shoot, I have a cold".

H 14B.7 Page 20

said, Don t shoot, 1 have a cold

CHAPTER ,

INSERTING OPERATIONS INTO CLUMPS

Let's say you wanted the odd numbers between 1 and 19 inclusive. It is easy
· to get the even numbers between 2 and 20

1 •• 10 * 2 [RETURN]

2 4 6 8 10 12 14 16 18 20

if you then subtract 1, you get the odds (in this example they are first
stored und\.' r the name "odds" and then di splayed.)

1 •• 10 * 2 - 1: odds [RETURN]

odds [RETURN]

1 3 5 7 9 11 13 15 17 19

Now, say you wanted to find the sum of all the odds in this range. You could
write the expression

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

which does the trick. But there is an easier way. You can automatically
insert any operator that works on two entit'ies (called a "dyadic" operator)
between all the elements of a clump. The operation is called "INSERT". After
the word "INSERT" you place the operation you want inserted into the clump.
For example, the sum of all the odd numbers above can be easily obtained by

odds INSERT + [RI:TURN]

100

You can get the largest of a clump of numbers by using INSERT MAX

34.667 92 3 45.09 INSERT MAX [ReTURN]

92

The small~st of a clump?

odds INSERT MIN [RETURN]

1

To demonstrate another application of INSERT, we introduce the monadic
function ODD.

11 ODD [RETURN]

1

M 14C.O Page 20

said, Don t shoot, 1 have a cold

34 ODD [RETURN]

o

onD determines if a number is odd. Here is a clump

•• 12 34 55 18 67 31 24 : bunch [RETURN]

For convenience, we have given the clump a name. It is simple to find how
many odd number~ there are in the clump.

bunch OnD INSERT + [RETURN]

3

This tells us that there are three odd numbers in the bunch. Step by step, it
works like this:

bunch ODD

evaluates to

0010110

and then

o 0 1 0 1 1 0 INSERT +

evaluates to

o + 0 + 0 + 1 + 0 + 1 + 1 + 0

which is

3

How many even numbers in the clump?

bunch LEN· - bunch ODD INSERT +

Or, you can use the handy EVEN operator

bunch EVEN INSERT +

We can ask, for example, how many examples of the letter "e" occur in a text.

"The quality of mercy is not strained. 1I == "e" INSERT + [RETURN]

3

M 14C.O Page 21

ABOUT CLUMPS

1. ETYMOLOGY AND PHYLOGENY OF CLUMPS

Clumps are a data structure. 1 searched' about for a while to find this nam(.'.
The b~st English word for them is probably "lists". A shopping list is an
excellent model:

One Useless

Three boxes of Dreadful

Two packages of a dozen Expensives each

A pound and a half of Unobtainium

A Gimcrack

A dozen Shoddies, or a bag of Overpriced, whichever is cheaper

However, the word "list" has been pre-empted by computer science to mean a
clump with pointers b~tween the items in the clump. A clump is something like
a vector, but the word "vector" is scary to many beginners, besides, the
terms "vector" and "array" in most technical parlance usually imply
elements of like kind. The same problem applies to "matrix". A clump is not
a set, since it's elements arc ordered: it is an ordl'red set, but that name
is too clumsy. I can't use many other English words, such as "group" or
"conglomeration" or "accretion" on the grounds of overuse, lack of euphony, or
excess length. Thus, "clump". This word also has the feeling of "sticking
together", which is how clumps behave in expressions. (The verb "to clump"
means to put things together in generally irregular ways.)

The word "clump" has a certain informality about it. This corresponds nicely
to the way they are used. Clumps are not cieclared, they just happen as they
are needed. tiumps are not fixed in size or composition. However, they are
ordered; each clump has, at any moment in a program's execution, a fixed
number of elements, each associated with an ordinal number that gives its
position. -CltlMr>6 are +3 ne!tf".

A clump may have an element that is, itself, a clump. There is no null clump.
If you create a clump, it is assumed to be something, depending on context.

The smallest clumps are things like the null string, a single numerical value
(possibly zero), or just one other clump. Clumps are the only named objects
in this language. Programs are clumps.

I fear a strong abreaction from structured programming devotees. I wish to
say to them: live and let live. Programming languages and structures are
tools, and each tool has its rightful place. Computers are not only to be
used by car~fully disciplined coders in phalanx. They are also to be used by
undisciplined non-programmers who care to solve a problem'in the- quickest,
most haphazard way they can. You cannot argue with human happiness, and a

M14Y.3 Page 1

formal, structured, declared approach is not always appropriat<!. If you think
that it is, then you have a bit of the martinet or despot in you, and would
have everybody toe the line and write magnificent, portable, durable code.
If you are true to form, you probably won't let anybody write a qOick note in
pencil to a friend, but require them to have it typeset, on 100% rag paper,
and sent by liveried messenger.

Apple is an informal communication between a user and his or her computer, it
is qUick, impermanent, friendly, and useful. Do not fret, my structured
friend, you will not be put out of business, nor threatened by this any more
than 1, a professional writer by trade, am threatened by universal literacy.
Such literacy just means a wider audience for my professional talents. So
will it be for programmers. The more people know how to program and use
computers (the two are not synonymous) the more customers there will be for
good programs. The more a person knows about programming, the more he or she
realizes the quality of a fine program. Apple is no impediment to the writing
of fine software.

2. THE ELEMENTS OF CLUMPS

The elements of clumps are of two kinds

A. Numbers

A number is a sequence of digits and, optionally, a decimal point~ There is
no notation for powers of 10 such as 34.2E14. Such numbers can be represented
externally using the usual notation for powers. The output routines will do
this when necessary. There is no problem on input, since exp'ressions can be
used wherever a constant may be. The in~erna1 representation of numbers is
not a really a concern of the language design, except that it is expected that
there will be at least 18 dt·cima1 digi ts of precision. Numbers will generally
be stor~d as integers unless a real representation is required. The precision
of the r~presentation may also change.

B. Characters

Characters are those codes that can be generated by the computer. Some of
them (at least the usual set of 96 ASCII/ISO characters) can be snown on a
display or printed. They are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ (26 uppercase letters)

abcdefghijklmnopqrstuvwxyz (26 lowercase letters)

12345678890 (10 digits)

\:~@""[;],./I!"iI$%&'()O*='-{+}<>?_ (33 special characters)

(1 space)

Strings are no part of the language. There are just clumps of characters.

3. A FORMAL, BEEN EFF ,DEFINITION OF CLUJ-IPS

M14Y.3 Page 2

A formal item in braces means that it may appear zero or more time~.

digit :e 0 I 1 I 2 I 3 r 4 I 5 I 6 I 7 I 8 I 9

decimal point :- •

integer :c <digit>{<digit>}

number :c <integer> I <integer><decimal point> I <decimal point><integer>

r <integer><decimal point><integ~r>

characterl .- <any of the 96 characters shown above except the single quote>

character2 := <any of the 96 characters shown above except the double quote>

letter := <any uppercase or lowercase letter>

name := <letter>{<letter> <digit> I <decimal point>}

space :=

string := "{<character2}" I '{<characterl>}'

element := <string> I <number> I <name>

clump := <element><space><clump>

Note that integers and strings per se do not appear as separate concepts in
the user's view of the laneuage, and that exactly one space is specified
between clumps.

4. EXPRESSIONS INVOLVING CLUMPS

We first d~fine the assignment operator which has the form

<clump> : <name>

Therea!ter the name stands for the clump. The value includes type and
structure information. This is different than most languages where this
information is associated with the name, rather than the value.

Every clump has a length L. L >= 1. This length is the number of
elements that comprise it.

There are two kinds of operators in this language, monadic and dyadic.
Operators may be distributing, expanding or reducing •. A distributng operator
operates on each element of a clump and leaves a different clump of the same
length. A reducing operator reduces a clump to a smaller clump, usually an
element. For example, the LEN operator reduces a clump to a number, the
assignment operator (:) reduces a clump and a name to a name. The sequence
operator (••) takes two numbers A and B and expands them into a clump of (B
A+l) elements.

M14Y.3 Page 3

A monadic operator occurs after the clump on which it operates. A dyadic
operator occurs between two clumps.

monadic operator := LLN (to be filled in)

dyadic operator := + I - I * I / I TOTHE I MOD
in)

expression := <clump> I <clump><monadic operator> I

<clump><dyadic opcrator><expression>

M14Y.3 Page 4

I •• I (to be filled

said, Don t shoot, I have a cold

CHAPTER~

SELECTING ELEMEN~S FROM A CLUMP -------- ---- - -----
By this time, you are quite experienced, so a few examples should suffice.

"abcde" [1] [RETURN]

a

"abcdl'" (2) [RETURN]

b

"abcdto" [5] [RETURN]

e

"abcde" [2 5 1 4] [RETURN].

bead

12.5 99 63 [2] [RETURN)

99

12.5 99 63 [5] [RETURl~]

o

"abcdt:" [_3] [RETURN]

This last example evaluates to the null string.

ABOUT CLID1PS

1. ETYMOLOGY AnD PHYLOGENY OF CLill-tPS

Clumps are a data structure. I searched about for a while to find this namt:.
The best English word for them is probably "lists". A shopping list is an
excellent model:

One Useless

Three boxes of Dreadful

Two packages of a dozen Expcnsives each

A pound and a half of Unobtainium

M14Y.3 Page 22

POSTSCRIPT AND DIATRIBE

To the Reader:

To those of us not familiar with APL, this language may seem a bit odd. To
those of us who know APL, this language may seem a bit odd too, but in a
different way. One of the major aims of the designer of general purpose
computer languages should have is to improve the quality of life of the
programmers who will use it. The important item here is the programmer or
user, not the system. The whole idea of a higher level language is this:
programming time is very dear, let's use the computer to minimize it. As
computers become cheaper, this strategy becomes ever more valuable. Computers
are now very cheap. In the room in my house where I am writing these words

, (on a computer system) are no less than three computers. The most 'expensive
piece of equipment, on an hourly basis, is me.

It is with the utmost trepidation that I dare to attempt to design a new
computer language. New computer languages are plentiful and easy to come by,
many old language are adequate and well entrenched. ~~ motivations are
simple, and relatively pure. The advent of personal computers gives me
sufficient excuse, and a new potential audience. None of the major languages
was designed for use by untutored individuals using computers in their
personal lives. And, as I shall attempt to show, none of them is truly
suitable to this arena.

My main motive is to give people as much power for as little effort as I can
conceive. I have been proeramming computers for most of my life, and of the
many languages I have used, one stood out as permitting me to accomplish, in a

, given amount of programming time, more than any of the others. Subsequent
studies by others have shown that I was not unique in my appreciation of this
language. But before going on, perhaps a brief examination of the broad
characteristics of computer languages, from the point of view of programmer
effort, and why each language is popular is in order.

A VIEW OF EXISTING LANGUAGES

One language is "higher" than another if its primitives are constructs in the
other. Sometimes "higher" depends on the task. For many processes involving
lists and grammars, LISP is a very high level language. It is not quite so
high level a language for some engineering applications. The major directions
in higher level languages might well be summed up in these words: ALGOL,
BASIC, COBOL, SNOBOL, LISP, APL.

FORTRAN and PL/l are derivatives or fellow travelers of ALGOL, as is Pascal.
As declared languages they are inherently poor at simulating human trains of
thought. I am well aware of the advantages of declarations, and take joy at
the' improvement in control structures of, say Pascal over FORTRAN. But these
are all improvments of a detailed, nit-picking sort. What languages should do
is remove the nits, and minimize the detail you must think about when solving
problems. What Pascal's data structures, declarations, and control structures
have done is to make those details more explicit, and thus cleaner. It is a
real improvement, but unfortunately leans in the direction of discipline and
rigidity.

M 14Z.3 Page 1

BASIC derives from the same traditin as FORTRAN, standing out only because of
its interactive environment. BASIC is a very weak language, and is being
shored up in many ad hoc ways. Any student of programming languages can
easily 'poke holes in it. Nonetheless, it will continue to be used for many
years, which is a tribute to its environment, not its internal design. BASICs
well- deserved popularity demonstrates that minimizing programmer effort and
time is often more important, when it comes to purchasing a 'language, than t}w
language's features as d~scribed in the spirit of traditional computer
science.

COBOL~ with regard to general problem solving, is weak and inefficient of
programmer time. Its widespread use is proof that money and marketing
strategy can be as important as rigor and technical perfection. I have never,
in any study of the desigri of computer languages, seen a chapter (or e~en a
paragraph) devoted to the importance of marketing to the general adoption and
use of a language. When COBOL was introduced, computers were "IBM machines",
and IBM pushed COBOL for business applications. It actually has features that
are advantageous in some business applications, but it never would have
succeeded on pure merit. It is not the only product in the world that owes
its success to PRe

SNOBOL, which has some novel features, was first designed for string
processing, at which it is a very high level language. Like many other
languages, it will retain a small and devoted folloWing. Besides the string
processing features, SNOBOL is rather consistent in design, and its program
structuring technique is interesting. I mention it .only because it
exemplifies a language that was designed for a special, limited purpose which
later (because of its excellent design) became more widely used than one would
have expected given its intended audience.

LISP has been given lisp service above. It is an interesting corner of the
programming universe, and is relatively efficient of programmer time. It
suffers from an overdose of recursion and a lack of approachableness for
common, everyday activities.

WHY APL IS SINGLED OUT

Most of my praise and commentary must be reserved for APL. In terms of
stating many algorithms, APL is a much higher level language than the ALGOL
group. For example, APL builds most loops into its expressions, whereas the
ALGOL group of languages (as well as most others) require the programmer to
pay attention to the details of each loop. APL was designed with an
interactive human environment as part of its specification. It was years
ahead in this regard.

Pascal is often pointed out as a modern, well designed language. It is, to be
sure, tolerably efficient. Its efficiency is du~ to many design choices aimed
at making life easier for the compiler writer and system programmer. The user
is often ignored. The programming environment is not even the least part of
the design (although the assumed environment had a subtle influence). This
brands Pascal as practically r~actionary rather than forward looking. Wirth,
Pascal's designer, invented it (in his words) to foster a "systematic
discipline" of programming that would be implemented so as to be "reliable and

M 14Z.3 Page 2

efficient on presently available computers". Do we want to impose a
"systematic discipline" on the purchasers of personal computers? The v~ry
opposite is true. Are we really concerned with saving the computer
occasional microseconds? No, we are concerned with saving the hum?n hours of
thought and work.

APL, from its very inception, was interactive as far as a Selectric terminal
would allow. The human being was treated as supreme, the machine "as his or
her servant. 1, being a human and not a machine rather prefer this
orientation.

In a number of ways, such as consistency, elegance, and power at handling
array and matrix structures (of numbers or strings) APL is unmatched. On the
other hand, APL uses a eccentric notation replete with Greek characters and a
hodge-podge of unique symbols that make it look very strange indeed. Iverson
was trying to invent a new notation for mathematics, and mathematicians never
quail at creating obscure symbols. This notation has been a millstone about
APL's neck. There is also a feeling that APL works from right to left, which
people find strange. This accusation is true, but Iverson was only being
consistent where most of us (and most of our programming languages) are
inconsistent. For example, look at expressions such as

SIN (TAN (COS (3 * (PI/2»»

To evaluate this, yo'u start nearly at the right, evaluate PI/2, then multiply
it by 3, then take the cosine, then the tangent and finally we get to the
left and take the sine. See! you do work from right to left.

Iverson, realizing how troublesome the rules of precedence are (he is so
right, as anybody who has taught programming knows), and being consistent, has
everything evaluated from right to left in expressions. And APL is almost all
expressions. As a consequence, APL is easy to teach, easy to learn, easy
to parse, and looks. most peculiar to people brought up on other computer
languages. APL is also notoriously slow to execute, and until Abram's work,
it seemed impossible to make it efficient.

With these black marks agt-inst it, it is only APL's extreme learnability,
interacLive environment, great power, and human progra~ming speed that have
kept it alive at all.

Another comment that one often hears is that an APL program is unreadable,
undocumentable, and only can be used by the person who wrote it. All this is
usually true. Of course, if the main use of a personal computer is for "throw
away" programs that are used but once, or perhaps only a few times (and this
is often the case) then these objections have little force.

These problems are not inherent to the idea of using expressions as does APL.
They are partly due to the style in which APL is taUGht, and mostly due to the
particular embodiment of the language, not to its concepts. Most APL
programmers take little trouble to make programs readable, as there is a
temptation to do as much as possible in as few symbols as possible. The
mechanism for introducing comments is extremely difficult to type, and its use
is not encouraged by any books on the subject. Most of Iverson's pamphlets
don't even mention comments.

M 14Z.3 Page 3

Given the good and bad of APL, Apple is an attempt to keep the good, and
ameliorate the bad. Apple uscs the common subset of the ASCII and ISO
character sets rather than Iverson's special character set. Many-unique
symbols are replaced by readable keywords. A typical example is that Apple
uses SIN and ARCTAN rather than 10 and -30 to represent the sine and
arctangent functions respectiv~ly.

I must admit that English keywords diminish a languages international
appeal to a Slight degree--BASIC, FORTRAN and Pascal usually kcep their
English keywords in most non-English speaking countries.

Out of context, some of Iverson's conventions may seem counterproductive or
even stupid. This is not the case. If you had to sit in front of a 15
character per second terminal, you would welcome shortening a function name by
even a singlc letter. The personal computer's fast screen gives the present
design much freedom that Iverson did not have. Even the comments made above
about Pascal should be seen charitably: Wirth was countering languages that

I did not aid in -teaching rigourous, professional programming practices and that
included the concept of structured data types. His primary environment was a
large, card-entry, batch processed computer center. Pascal, too, is a work of
considerable brilliance. In the kinds of world Wirth was considering for
Pascal, where hours separate runs and computer time is precious, Pascal is
superior to its predecessors (including APL). Just observe that even when it
isn't explicitly mentioned, the programmer's environment conditions the design
of a language to a great degree.

SOME DETAILS OF APPLE, JUSTItIED

Jean Sammet, in her book "Programming Languages", after some quite positive
comments, said of APL, "I cannot becoce enthusiastic about a language that has
this notational complexity .. James Martin, in his book "Design of Man-Machine
Dialogues" observed that "It was easy for a person who was not a profeSSional
programmer to become hooked on APL." These statements are in contradiction.
If the notation of APL is truly complex, then why is it so easy for non
programmers? Because they have no prejudices to work against. Apple is an
att~mpt to cure the disease of notat~onal complexity that Sammet complains
about, while retaining and enhancing tr.~ features that make APL s~ addictive
to novices.

One of the easiest things to do with APL to make it more useable is to reverse
the order of evaluation •. As this document attempts to show, this should make
Apple especially easy for the millions of people who have used pocket
calculators. The next thing that was done was to change the peculiar symbols
into keywords, which had the beneficial side-effect of totally eliminating the
tedious requirement in APL for backspacing and overstriking to create new
symbols.

Iverson's confusing use of a single symbol to represent two related (somfltimes
very ingeniously related) functions, one of which is monadic and the other
dyadic has been eliminated in favor of simply having two separate function
names. A bit of mathematical insight is lost in favor of much mnemonic
convenience.

M 14Z.3 Page 4

A ROSETTA STONE

A number of ideas from other languaees have been adopted. The alternating use
of single and double quotes from SNOBOL, the range notation from Pascal, and
others that the knowledgeable reader will notice. It might be interesting to
extend the example on page 64 of Martin's "Design of Man-Machine Dialogues"
for inclusion here. The ~ame simpl~ program is presented in a number of
different languages. In each case the program produces the average of
a list of real numbers. In all but Apple and APL, the list has an limit
of 100 items. In Apple and APL there is no limit beyond the amount
of available memory.

I have taken the liberty of modernizing the BASIC example, and have written
examples in Pascal and Apple.

FORTRAN

DIMENSION X (100)
READ (5,10) N, (X(I), I= I,N)

1 0 FORMAT (IS, (E 15. 2))
S = 0.0
DO 9 1=1, N

9 S = S + X(l)
A = SIN
WRITE (6,20)A

20 FORMAT (EI5.2)
END

BASIC

20 S = 0
30 READ N
40 FOR I = 1 TO N
50 READ X
60 S = S + X
70 NEXT I
80 A = SIN
90 PRINT A

100 DATA {the data on which the program would operate goes here,
110 and perhaps on the next few lines.}
120 END

Pascal

PROGRAM AVERAGE;
VAR ITFl1, N, SUH: Rr.A.L;
sml :- 0.0;
READ (N);
FOR I := 1 TO N DO

BEGIN
READ (ITFl1);
SUM :a SUM + ITm

~ 14Z.3 Page 5

END;
WRITELN (SUM/N);
END.

DeL x (100) INITIAL (0);
GET LIST (N, (X(I) DO 1 = 1 TO N»;
PUT LIST (SUH (X) IN) ;

APL

(Using p for rho, : for the division sign, <- for the left arrow, and []
for the box we could write it +/Xp:X<-[]. This is done just in case the
program segment above has not been filled in by hand with the actual APL
symbols.)

APPLE

INPUT: many.numbers
many.numbers INSERT + I (many. numbers LENGTH)

COMMENTARY ON THE LANGUAGES

Which ones are immediately readable to you depends on what you are used to. 1
rememb~r bein£ told that a Pascal program was really easy to read, even if you
didn't know Pascal. At the time, 1 didn't know Pascal, and I couldn't read.
it, or even figure out much about it. NOw it looks as clear as good English
to me. So do all the other examples.

One obvious difference in the examples is their lengths. For the purposes of
these counts, 1 have not counted extraneous spaces introduced for the purpose
of clarity, and all variable names are counted as one character in length.
The DATA statements in BASIC have also not been counted. Taking a BASIC
program as 'oeing of lc::ngth 1, then FORTRAN is 1.5, Pascal 1.2, PL\l .85, Apple
algorithm being represented. Pascal ana PL\l improve strongly as things get
more complex. FORTRAN, APL and Appl~ (a8ain, relative to BASIC) improve
slightly with increasing"complexity.

SOH[ADDITIOfiAL FEATUR[OF APPLE
(a potpourri of notes to myself)

Compar,ed to APL, string operations are given more prominence in Apple.
Graphics are an integral part of the language, although they do not appear at
all in APL. Some notations from other langua8es have been substituted for
Iverson's, especially notable is the use of Pascal's abbreviated ellipsis for
the iota. This also allows expressions to be more readable when the range does
not begin with 1. (Suggestion of R. Kelly). The PROGRAM function is based on
APL's evaluate. Apple makes decisive use of upper and lower case.

M 14Z.3 Page 6

THE MACINTOSH PROJECT

DOCUMENT 15 VERSION 0

, TITLE: MASS STORAGE PRINTER/FACSIMILE DtVICE

AUTHOR: JEF RASKIN

DATE: 22 Oct 79

1;. INTRODUCTION

On the 14th of this month I was trying to find a less expensive mass storage
devic~ for the Macintosh project. The bar-code reading wand is one of the
least expensive computer input devices, but is limited by the ope~ator's
dexterity_ I was also considering the possible requirement for a 'printer--i t
is agreed that it would be best, although possibly uneconomic, if Macintosh
could have both a mass storage device and a printer. Any low cost printer
would have to be a dot matrix based device given the present state of the art.

I realized that such a printer could print bar codes.

My next thought was to eliminate the need for operator dexterity. First I
thought of a plastic guide with slots that the wand could run along. Then,
considering the sweeping motion of the hand moving the wand through the
slots, it b~came apparent that the printer head is already (making' such a
motion, and that the wand's sensor should be incorporated into the printer's
head. It occured to me that the design could also affect read-after-write
checking (a rarity with printers), and that it could also be used as a
facsimile machine--which fits in wonderfully with Macintoshes proposed
communicatjons abilities.

The possibility of providing the public with a very low cost computer that
includes both mass storace facilities and a printer at very low cost is what
makes this idea intersting at all.

2. DATA PACKING DENSITIES

Since, by using pin-fl·ed or by some feedback from the sensors, the motion of
the head across the paper can be done with some accuracy, it would be possible
to have more than a Simple bar cod~, and the head could read a number of bar
codes in one character he{ght--purhaps even read each of, say, eight dots by
means of eight photo sensors (and, possibly, a bar-shaped LED to provide
constant local illumination). This provides (given a 5 by 8 character
matrix) 6 bytes in the space of one character. Given compression due to the
fact that pages of a document are not filled uniformly, this means that a
document could be stored in 1/8 the number of pages it would take to print it
in natural language form.

If 80 characters can be stored across the 8 1/2 inch page, and 68 lines of
such characters fit into the 11 inch height, then 32640 bytes can be stored on
a standard page, with reasonable margins. This means that the 64K memory of
the Macintosh will fit on a bit over two pages. If, as Victor Bull indicates,
a few more characters can be put on a line, 64K bytes could fit on two pages.

M 15.0 Page 1

3. DATA TRANSFER RATES

While the data packing densities indicatcd here may not be achievable in
practice, they do give us a believable upper limit. They also give us an
upper limit on data transfer rates. Without any changes in the mechanism,
the data in and data out rates will be equaJ. At one line a second, that's
480 bytes per seco~d, or 28,800 bytes per minute. It would take 2 1/2
minutes at this rat~ to dump or fill the entire 64K memory.

4. POSSIBLe OTHER TECHNOLOGIES

At present the simplest printers are thermal and electrostatic discharge
(ED). 1 considered the possibility of reading the aluminized paper produced
by an ED printer by merely sensing the change in resist~nce caused by the
burning away of the aluminum coating. Using an ohmmeter, and a probe made of
#26 wire in a suitable holder, I found that there is an increase of resistance
on the burned areas. However, it is a spotty effect, and seems an unreliable
basis for a mass storage device.

It is possible that this technology, which is potentially faster than thermal
printing, given a head designed to optimize resistance readability, could
result in a superior storage device. Interestingly, the same head could
possibly both read and write the~data. This could be the lowest cost
approach, excludinB the cost of the paper.

5. USE OF PRINTING PRESS FOR DISTRIBUTING SOFTWARE

It is no new idea that once a printable, machine readable code is available,
the printing press now becomes an instrument for the dissemination of
software. The use of a resistance reader becomes more difficult in this case
(although by no means impossible), but the benefits of , an optical reader are

. increased. This possibility may well be the strongest motivation to usin£ a
printer/reader, since software duplication and distribution is a major problem
at the present time.

6. LIMITATIONS ON ITS USE

It is not clear whether such a device, which does not even have the power of
a floppy disk, would be seen as an inducement to purchase a Macintosh class
product. The potentially low cost is attractive, but operation of a
printer/reader would be clumsy compared to a disk. To switch from writing to
reading would require removinr. the blank paper and inserting the writtcn
paper~ Changing back would be as difficult, except that the paper could b~
fed through instead of pulled back. Making the design largely self-loading
could ease this problem, although paper handling is apparently not an easy
engineering problem, considering some of the printers I have seen.

Unlike a disk, it would be complicated to use a printer/reader to 'store
intermediate results (although not impossible, giv('n bidirectional paper
feed), and it would probably be unreliable compared with a disk. It would be
most practical in the roles of archival storage, and program and data
distribution.

H 15.0 Page 2

The major question is: would the cost advanta~e, software distribution
advantages, and facsimile ability overweigh, in the user's mind, the
difficulties caused by having to use the device as the sole mass storage
medium in a personal computer system?

7. MECHANICAL DIFFICULTIES

There are a number of engineering questions that have to be answered before it
is known if this technology is practical. The maximum data transfer rates,and
packing densities cited above, if achieved, are practical. Much less than
that, even by a factor of two, and the concept becomes too clumsy.

7.1 Accuracy of tracking, between writing and reading.

At 12 pitch, the width of a character, including the intercharacter space, is
0.083 inch~s. The width of a single dot is 0.014 inches. Assuming a 5 by 7
character in a 6 by 8 matrix, assuming 1:1 aspect ratio for the dots, and
assuming a reading circle of 0.005 inches, the maximum absolute positioning
error is plus or minus 0.01 inches both horizontally and vertically. While
these assumptions may not be exact, this is certainly in the right range. It
is also in the range where the humidity coefficient of expansion of the paper
becomes a problem. Accuracies on this order are not possible with a friction
feed paper drive.

7.1.1 Pin feed

With pin feed, absolute paper positioning within 0.01 inch is possible
assuming dimensionally stable paper. Unlike plotters, which re-draw over the
same surface during a short time interval, it can be expected that records
written with the printer/writer may be read from minutes to months later.
Humidity and temp~rature changes over longer time periods can change the
dimensions of the paper to a sufficient degree that even pin feed may not
assure 0.01 inch absolute positioning.

7.1.2 Optical feedback tracking

It should be possible to place a horizontal line segment at each end of every
printed line. If a stepping motor was used for paper feed, controlled by the
sensors on the head, then absolute vertical alignment would be assured.
Horizont~l tracking can be obtained a number of ways. If there was a ninth
dot, then it could be used in a number of ways. It could be used as a parity
bit. Another interesting possiblity is that it could be alternated on and
off, providing an optical clock track that would assure accurate trackinr
horizontally.

Paper skew is probably eliminated to a sufficient degree by pin feed. If
separate right and left paper motions were allowed (or there were a
controllable clutch between the left and right sides of the feed) then the
horizontal alignment marks could be used, along with a sweep of the print
head, to adjust the paper for any small skew.

7.2 Accuracy of tracking, between different units.

Given a feedback mechanism for vertical and horizontal trackinb , then

M 15.0 Page 3

information should be transferrable between different units. The only
mechanical restraint is that the heads produce the same size dots, within
rather broad limits, and that the vertical spacing between dots be constant,
to narrow limits. These last requirements are easy to meet.

Any non-feedback scheme would probably make the printing and transfer of
software difficult, or require a much lower bandwidth. The lower.bandwidth
can be obtained by printing codes as' bars across the entire height of the
charact~r, or by some number of vertical bars (each composed of two, three, or
four dots, for example) in the height of a character.@

7.3 Error rates

Error rates depend on noise- introduced at five points.

A. Flaws in the paper

B. Writing errors

c. Misalignment of the paper

D. Misreading of a correctly placed dot

E. Errors made by the electronics

I have not mad~ any tests or done any research on the quality con~rol of
thermal paper. I have ~xamined some sample's, and found occasional dark marks
that might be mistaken for a signal. With a read-after-write scheme, and
software that marks errors and re-writes.the correct information, it seems
likely that this SourCe of errors can, for the most part, be overcome.

Writing errors can also be caught by the read-after-write scheme, and
corrected 'similarly. A protracted period of writing errors might cause the
system to increase the writing current, if this is under software control.

Misalignment would probably cause gross errors in reading the data. Either
the parity (if parity was used) or an abberant clock track (if a clock track
scheme was used) would alert the syst~m, and a message requesting that the
paper be r~inserted issued.

A dirty or failing light"source, or an occluded or defective photo sensor
might cause rcading errors. Checksums, and other data checking schemes are
the only protection against this kind of error.

Errors caused by electronic malfunction can be caught in the same manner.

I can give no estimates of the probable error rates with and without each of
the various safeguards mentioned. I suspect that empirical studies are the
best way of determinin£ actual error rates.

7.4 Patentability

It is unclear how broad a patent might be obtained on this concept, if it were
decided that Apple Computer Inc. had an interest in pursuing it. I have been

H 15.0 Pace 4

told that Spherc computers was thinking of a device with a sensor on the
printer head, probably for facsimile use (but, apparently, not as a data
storage medium). The combination of printer, data storar,c, read-after-write
checking on a printer,~and facsimile seems to be unique. Details of
execution of the dcvice~ of course, may be patentable.

8. WRITE PROTECTION

It is important to have write protection. In the case of a themal, read
before-write dcsign, it would be sufficient to disable printing if the paper
already had marks upon it. In the case of ED designs, it might be possible to
do a sense-before-burn.

9. COMMENTS SOLICITeD

Comments and suggestions are welcome, especially on the marketing
desireability and the tecllnical feasability of this project.

M 15.0 Pace 5

THl MACINTOSH PROJECT

DOCUMENT 16 VERSION 0

AUTHOR: JEF RASKIN

DATE: 20 Oct 79

TITLE: An Introduction to the Apple language for Calculator Users

1. APPLI: IS JUST LIKE A CALCULATOR (but, oh, what a calculator).

Picture a small calculator. There is one number that you can see displayed
at the top at the top of the calculator: we will call that number the
"result". On a calculator you press the ~qual sign or a button marked
"ENTER" to let it know that you are finished typing' for the moment and want
to see a result. On the computer, you press the button marked "RETURN".

Since this i~ a written document and not an animated presentation, we will
need some way to show when you press the return button. So, whenever you
must press it, we will have the symbol

[RETURN]

When the computer presents an result, we will just write the result on a line
by itself. For exampl~, if the answer was 98.6, we would show it as

98.6

You can tell that the computer produced this number since it is not followed
by a [RETURN]. We are now ready to begin.

Unless the computer is in the process of displaying a result, it is waiting
for you to type your request. Like a calculator, it is always ready, unless
it isn't plugged in.

For reassurance, the computer displays an exclamation point (!) when it
expects you to type something. A dialog between you and the computer will be
presented in this docume~t in the style of this example:

2+3 [RETURN]

5

In this example you typed the first line, and the computer res~ondcd by
typing the single number 5.

The simplest example is where you type a numbl'r, and the computer responds
with the same number. This example shows that dec'imal points are
permissible.

56.21 [RETURN]

m16.0 Page 1

56.21

If you want to add 2 to this, you can type

+ 2 [RETURN]

and the computer will respond

58.21

You can do subtraction

- .21 [RETURN]

58

and multiplication

* 20 [RETURN]

1160

and division

/40 [RETURN]

29

Let's add one

+1 [RETURN]

30

and then, since this is a scientific style calculator, take the sine of this
quantity

SIN [RETURN]

.5

Or, you could do this all at once, instead of a step at a time

56.21 + 2 -.21 * 20 / 40 + 1 SIN (RETURN]

.5

2. A COMPARISON WITH SOME OTHER COMMON METHODS OF WRITING EXPRESSIONS

An essay for experts.

In ordinary computer languages, a combination of operations and numbers (or
names that stand for numbers) is called an expression. The same is true

here. The difference is that the exprcssion abov~ would be written

SIN «(56.21 + 2 -.21) * 20 / 40) + 1)

in most computer languages. The reason it is different here is that this
language is much simpler, and works li~e a calculator. You do not have to
remember any rules but one: START AT THE LEFT, AND WORK TO THE RIGHT. You
can' use parentheses if you wish, but there are no "hierarchies of operators"
to remember. To write an expression to solve a proble~, just ask yourself
what is to be donc from first to last, and then type it in--in that ord~r.

In RPN (Reverse Polish Notation), used in some calculators, the expression is

56.21 E 2 + .21 - 20 * 40 / 1 + SIN

where E is the "enter" button.

In APL (Iverson's "A Pr08ramming Language") it is (since this font doesn't
have the proper division sign, forgive us for using $ for division in this
case)

10«(56.21 + 2 - .21)X 20 $ 40) + 1)

10 is how APL indicates the SIN function.

The usual hierarchical schemes begin to collapse when the number of operators
gets great. For example, in Nicklaus Wirth's Pascal language, the expression

3 + 4 > 8

is ill-formed, since the logical operators have higher precedence and you
can't add 3 to FALSE. But in most BASICs (Beginner's All-purpose Symbolic
Instruction Cod~, by Kemeny and Kurtz) that same expression is l~gal, and
evaluateb to FALSE since arithmetic operator~ have higher precedence. The
only precedent (using the word in its legal sense) for hierarchy in op~rators
comes from mathematics where there is only the precedence of multipication
and division over addition and subtraction. It arose there only as a
shorthand. As RPN, APL and this Apple language have found, the elimination
of hierarchies of precedence contributes greatly to readability, simplicity
memorability and consistency of a language. It also makes expressions
&horter, and easier to type.

3. Document 14 contains the full details of the rest of the Apple language.
This document demonstrates how easily the Apple language can be introduced to
users of calculators, and gives a comparison of various methods of
expressions.

An article by Backus in a recent Communications of the AC~1 (Backus of BNF
fame, now employed by IBM in San Jose) points out that expressions are easier
to comprehend than programs. He suggests that the languages of the future
will have their structure embedded in expressions, and points to APL as being
a step in that direction. Apple does not extend the power of expressions
beyond the scope of APL's uses of expressions, and does not forward Backus'
ideas. It just makes these ideas more accessible.

PROJECT MACINTOSH

DOCUMENT 17 VERSION 0

,TITLE: REPORT ON THE HP41C AND SHARP 5100 CALCULATORS

AUTHOR: Jef Raskin

DATE: 27 Oct 79

1. HP 41 C

The HP 41C is a general purpose, hand held, primary battery operated
scientific calculator. It s~lls for $295, or less. It is slightly smaller
than their original HP35, and the styling is still the classic wedge.

1.1 DISPLAY

The display is a 24 character LCD 14 segment alphameric display. Generally it
is very easy to read, however some lower case characters, such as "e" are
unrecognizable until you have a bit of experience interpreting them. This
suggests that' a segment typ~ display is probably inadvisable for a general
purpose computer system where upper and lower case letters must both be
display~d.

The visual clarity is excellent, with the ,letters being a dense black on a
silver-white background.

Information can be scrolled right and left.

1 • 2 KEYBOARD

The keyboard is typical HP, with excellent feel. It is simpler than some of
,the other keyboards' of equally complex products, since many of the alternative
uses of the keys are under software control. Pressing a k~y and holding it
reveals on the display, in. letters, the functions it will perform.

The complete upp£:rcase alphabet appears on the keyboard, along with some
punctuation. I found it difficult, without practice, to form words. This is
especially true due to the irregular spacing and size of the keys, which have
been optimized for calculation.

The fact that the keys have many functions, depending on your programming, and
what modules have been inserted, makes this calculator the least mnemonic of
any of the HP series. On the other hand, its power is considerably greater.
Legends appear on the top and front of the keys, as well as on the keyboard
panel.

1.3 ALPHAMERICS

The HP 41C is clearly a digital computer in almost any sense of the word. You
can give variables, subroutines and statements alphanumeric labels (which is
more than you can do in BASIC!). You can compare strings for lexicographic

M17.0 Page 1

order, and have messages printed in English. You can request alphameric
input. With a bit more memory and a full-size keyboard, the HP 41C, with its
compact and powerful language, would be a practical personal system.

1.4 PERIPHERALS

If it didn't look like a computer system already, th~ addition of a printer
which can support graphics and a user-definable character set, a card
reader/writer (backwards compatible to the HP 67/97), program libraries on
ROM, additional RAM, and a bar-code reading wand would be a convincing
argument for its "computerness".

1.4.1 PRINTER

The 2 1/4 inch, 24 character, thermal printer, which seems large compared to
the built in HP printers, e.g. in the HP 97, has variable intensity control,
and a number of modes. The modes allow tracing of a program, printing only on
demand, or printing at key moments in a calculation. Placing the mode switch
on the printer, as well as the PRINT X function, frees up a number of keys on
the calculator. The printer, unlike the calculator, operates from rechargable
NICADs , or from the AC line.

The blue colored printing is quite clear, definitely superior to previous HP
calculator thermal printers. The calculator uses a 5 X 7 dot matrix to form
its characters, with lower c~se descenders. It is very easy to ~ead the
entire character set. The edges of each dot are relatively sharp, but this
may be due to the very fine surfaced paper that HP provides. It may be
worthwhile, as an experiment, to try a sample of this paper in our printer.

1.5 LANGUAGE

I continue to be impressed by the consistent and logical way HP has extended
the simple idea of RPN to make it into a programming language. As shown in
the "Rosetta Stone" portion of the postscript to document ~U6, it ,compares in
eff.iciency for problems involving scalars wi th the best current computer

. languages. It is, at present~ weak in handling any data structures.

The technique of "sneaking" in programming by presenting the language as a
calculator has been very effective, and many people learn to program a
calculator quite painlvssly due to this subterfug~. It is powerful from both
a marketing and a pedagogical standpoint.

1.6 SOFTWARE

At release, the HP 41C came with a ROH "Math-Pac", and a book with many
application programs from a wide variety of fields, including the inevitable
game of Hangman, this time complete with real words appearing on the screen.
It would not be difficult to draw the scaffold on the printer. HP can be
probably be relied upon to provide translations of their usual software
offerings (e.g. Surveying, Navigation, Astronomy, Games, Electrical
Engineering, etc.) rather quickly. As it comes, the HP 41C card reader has a
built-in program which translates (as far as is possible) HP 67/97 magnetic
card software to HP 41C notation and format.

MI7.0 Page 2

1.7 HARDWARE AND PACKAGING

I did not physically examine the construction of this device since it is the
personal property of Woz. Interestingly. the connectors for the ROM's and
peripherals seem to be part of a flexible PC board. as are the battery
connectors. I suspect that the number of connectors required inside is very
small, and that relatively full advantaee is taken of the flex PC board.

There is some clever user-level packaging here. and each component has a place
or carrying case. Even the ROH packs and the spare slot covers have a little
book with formed places for them.

1.7.1 EHI

The calculator disturbs some channels of TV reception if it is within three
feet of a top-quality SONY TV. The interference sometimes has the' unusual
apperance of a few lines of widely spaced white dots. An AM radio can pick up
its operation from a distance of up to 4 feet on some frequencies, and it
hardly disturbs an FM radio at any distance beyond an inch or two. The case
is plastic. but it was not opened to observe the amount, if any, of shielding.

Since HP typically uses CMOS, low EMI would be expected compared to TTL.

1.8 NANUALS

There are quite a number of manuals, all printed on heavy coated stock, with
at least three colors on each page. The instructions are complete and very
accurate. and the wire-o binding is convenient. The manuals are HP's usual 5
1/2 by 8 1/2 (as are Apple's--which copy HP in this respect). There are no
errata sheets or other loose pages. except for the handy summary cards,
carefully plasticized.

While these manuals continue to be complete and of very high quality in
layout and appearance. the writing style has lost some vigor compared with
the earlier manuals. In some places, the choice of words shows a lack of
care, which has not been evident in earlier HP calculator .manuals.

1.9 SUMMARY

In many ways. this is the first handheld computer--the distinguishing feature
being alphamerics. It is well thought out. with the main annoyance being the
small number of characters on the screen, and the need to type long subroutine
names (sometimes as many as six characters) to summon certain functions-
although those functions you use frequently can be reassigned to whatever key
you wish. Labels are provided for relabelling the keyboard.

There is some real genius in this machine, and it probably competes for one
tiny corner of Macintoshes intended mark~t. 1 am still more concerned about
any improved versions. and HP's competitors.

2.0 THE SHARP EL5100 CALCULATOR

For $99, the user gets a 7 by 2 3/4 by 1/2 inch scientific calculator. It is
distinguished by a large number of keys (60) with many unguessable function

M17.0 Pagt· 3

symbols, and a large display Window (4 3/8 by 1/2 inches). It com~s with a
hard, plastic carrying case--probably a necessity since its form factor and
construction make it a likcly victim of back-pocket destruction, which they
duly warn against.

It looks tawdry. Especially since there is a special (kludged) RESET button
on the back, the use of which is not clearly spelled out in the manual. 1
suspect that the software can get wedged, and that in some circumstances this
button is the only way out.

2.1 THE DISPLAY

This calculator was purchased primarly to examine and gain cxperience with the
feel of a relatively large, high density LCD display. It is an extraordinarly
easy-to-read 24 character window, with each character position being a 5 by
7 dot matrix. Each dot is a precise square. The space between dots is about
1/3 the width of each square. The height of each character is 3/16 (.019)
inch, for a dot size of .02", and a dot-with-space size of about .027". The
characters give the impression of being very large, since they correspond to
about 14 point type. Books are typically 8 or 10 point.

Clever use of the dot matrix allows Sharp to present a wide variety of
characters, including a few (carefully selected) in bold face. The display
scrolls right and left, and allows insertion and deletion of charaters.

After those who Wish to evaluate this unit have done so, I wou~d like to
disassemble it to examine how the display is electically connected to the
remainder of the circuitry.

2. 2 KEYBOARD

The keyboard is a hodge-podge with a four-function calculator in the center,
wi th a sci'entific function panel off to the left, and the first ten letters of
the alphabet, memory and editing functions off to the right. Many of the keys
have strange labels, such as "Exp" where the "E" is bold face, the "x" in
italics and the "p" in simple lowe~ case. It allows you to enter the exponent
of 10 in scientific notation. Other such as PB, CD, F<>E, and TAB leave you
guessing as to their use. TAB, by the way, specifies the number of digits to
which numbers will be rounded!

The keys are brown and stIver, with one red and one yellow key. Thelegcnds
are white on brown, and either black or blue on silver.

The keys have a definite "fall through" although it is not as sharp or
definite as that on the HP's. Nonetheless, it is better than the majority of
calculators. The keys' contacts make, direct contact With the single, phenolic
based, two-sided PC board, as does the mode switch. The keyboard labels are
typographically clear, and the grouping does make each key easy to find when
you need it.

2.3 ALPHAMERICS

All symbols are clear and distinct, ev~n if inscrutable as to function at
times. Only the letters "A" through "J" can be typed, and no confusion with

M17.0 Page 4

other symbols is possible. The limited portion of the alphabet prevents this
device from being used as a note pad. The letters are much easier to type
than on the HP, being on the tops of the keys--this shows a problem with
mUltiple key designators.

2.4 PERIPHERALS

The EL 5100 uses primary batteries, and has no provisions for any peripherals.

1.5 LANGUAGE

Here is were this calculator falls apart. There are 10 levels of priority,
plus parentheses, and some auxilary rules. For example you have to remember
that the fifth priority is "Multiplication cleared of "X" instruction located
just before memory or pi." which .is three priorities higher than ordinary
multiplication, but lower than a single term function when preceded by
numerals, but higher than a single term function followed by numerals.

While this calculator is far less powerful than the HP 41C, it is far more
difficult to understand and use. Or, at least, it seems that way. The
totally inadequate manual aids and abets the crime.

Using it as a scientific calculator with "normal" mathematical style
expression input is not difficult, the trouble is that there are many obscure'
gotchas.

Another example of the kind of rules you have to memorize is the one that says
"Provided that functions shown in item (5) (6) [fifth and sixth priority]
above are successively deSignated in an algebraic formula, calculations are
performed from the right to the left. The other functions are calculated from
the left to the right."

With all this complexity, the machine is not programmable.

1.6 SOFTWARE

Without programmability~ there is no software. The functions on the
calculator, besides the usual scientific functions, include combinations,
factorial, cube root, and the hyperbolic functions; besides the usual
statistical functions is a correlation coefficient; angles are in degrees,
radians and (as everybody seems to do) grads.

1. 7 HARDWARE

The construction- is conventional, and extremely cost conscious, using lands on
the PC board as switch contacts. The case is metal, resulting in no TVI, and
interference to a sensitive AM receiver can be detected only within inches of
the front of the calculator.

1.8 MANUAL

The manual is dreadful. This may be partly due to translation--we should have
some mechanism to make sure that Apple does not look this stupid in other
languages--and partly due to a design that makes documentation difficult. The

M17.0 Page 5

booklet has the same form-factor as the calculator and is 100 pages in
length. It is poorly organized and has no index. It is typeset and printed
in brown ink.

This is not the worst manual I have ever seen, but it renders many features 0.£
the calculator opaque, even to an experienced calculator and computer user.
It points out to me the importance of clarity.

1.9 SUMMARY

Except for the display, and its relatively sophisticated editing (delete and
insert) for a calculator, there is little instructive about it.

H17.0 Page 6

THE MACINTOSH PROJ£CT

DOCUMENT 18 VERSION a

TITLE: ON THE PROBLEM OF DELIMITING STRINGS IN PROGRMfS

AUTHOR: JEF RASKIN

DATE:' 3 Nov 79

1. INTRODUCTION

The problem
can include
delimiters.
obvious that
close quote.

is how to delimit a string in a program. A strinr, by definition,
any dis~layable symbols, which usually include the string
If a string is delimited by quotes for example, then it is
a quote that occurs as part of the strinE may be mistaken for a

2. THE SNOBOL SOLUTION

SNOBOL uses two kinds of quotes, single and double, on the theory that any
string containing one kind would be deli~ited by the other. To include a
string such as

"Don't shoot," he said, "don't! I'm unarmed."

in a program you have to represent it as the concatenation of the following
substrings

'''Don'

"'t shoot,"

' .. he said, "don'

", t! I'm una:-med."

,,,,

Not a pretty sight. The problem is not quite solved by adding a third kind of
quote since one can then contrive an example (say, where people are discussinr
his new kind of quote) that is as messy as the example above. Further quote
symbols merely exhaust the character set without solving the fundamental
problem. But see section 5 below.

3. THE PASCAL METHOD

The solution chosen by the d~signers of Pascal (and some others) is to have
but one kind of quote and to use it twice in succession to represent a quote
within the string. The messy example above bccoml's

'''Don''t shoot," he said, "don"t! I"m unarmed.'"

MI8. o Page 1

One could do the same dl!signating the double quote (") rather than the single
quote as the standard quote symbol (Pascal made the incorrect choice. since
the usual character sets use the sam~ symbol for both the single quote and the
apostrophe--which occurs far more often in strings than does the double quote.

Thus, Pascal has to use the awkward repeated symbol more often than it should.
The most annoying aspect of this notation occurs when you are trying to

produce nicely formatted output. in which case the number of characters is
distorted. so that line lengths do not appear in the program as they will upon
output.

To represent, with this notation. n quotes in a row you use n+1 quotes.

4. FORTRAN'S HOLLERITH DEVICE

FORTRAN manages to both avoid the need for quotes and keeps the length of
string~ constant between program and output. It represents the test string
above as

45H"Don't shoot," he said, "don't! I'm unarmed."

Where the 45 before the "H" means that the 45 characters following it are a
literal string. This works without fail, but requires that you count every
character--and there is no room for error. It is flawless from every point of
view except that of the programmer.

The "H" stands in memory of Herman Hollerith who was instrumental in ,the
development of punched card accounting machines.

5. COMPOUND QUOTE SYMBOLS

One can create a large hierarchy of quotes by USing a symbol that includes a
number--in this case the compound symbol is '34'.

'34'''Don't shoot," he said, "don't! I'm unarmed."'34'

In case a string happens to contain a particular compound quote symbol, or
even a ~~ole bunch of them. there is another quote symbol you can urse. It.i s
unlikely that a string could, be so long that it could contain all possible
quote symbols.

6. USING NON-PRINTING CHARACTERS

A string could be delimited by non-printin£ characters. This works in all
regards except that it makes it impossible to tell, by looking at the probra~,
if the delimiters are present or not. You might define a symbol that can only
appear in programs, and not in output. This is weak, for example, you can't
write a program that writes programs (or even have examples to instruct a
user in the use of strings). Both of these schemes have to modified by one of
the methods already discussed so that quoted strings can be quoted.

7. VSING PAIRS OF ASYMMETRICAL SYMBOLS

The problems with quotes do not occur with parentheses in expressions for two

MI8.0 Page 2

reasons: paretheses have syntactic function so that well formed expressions
cannot have random or unexpected parentheses; secondly, parentheses corne in
pairs. It is possible to use symmetrical pairs of quotes. The ASCII
character set has both" , It as well as It , ". This allows nesting of quoted
strings, but since these symbols can occur without structure inside strinrs,
an additional mechanism is required.

If it could be assured that the quote delimiter symbols would occur only in
matched pairs inside strings, then there would be little problem.

8. SUMMARY AND CONCLUSION

SNOBOL's solution is unsatisfactory in its lack of depth and potential
operational complexity. The Pascal method seems too ad hoc, and the FORTRN~
Hollerith notation is unattractive in light of the need for an easy-to-use
language. Non-printing characters are unacceptable, and the use of asymmetry
does not gain us any advantage. A dual solution presents itself: to use
simple quotes (") when no problem is engendered by their use. When a more
complex situation occurs, use the compound quote symbol shown above.

Formally, the syntax for strings is as follows, where <character> is any
displayable symbol: (here, the braces are used to indicated zero or more
occurrences of a syntactic clement)

<string> := "{<character>}" I '<integer l>'{<character>}'<integer 2>'

The syntax requires that <integer 1> and <integer 2> be identical, and that

'<integer 1>'

not occur in the characters comprising the content of the string.

Such a syntax can be "fooled" by an occurrence of

, <integer 2>'

in the string, so that it is the programmer's responsibility to choose the
ap:'I~priate integer. A compound quote. can ber parsed easily:

A. When a singl~ quote is found, not within a normal quoted string, store the
integer following it. This integer, called X, is delimited by another quote.
If not, it is a syntax error.

'B. Every character thereafter is stored as part of the string unless it is a
single quote followed by a non-integer, or an integer other than X in which
case continue from B.l otherwise continue from step B.2

B.l The quote is part of the strin[. Continu(' from step B.

B.2 In this case the quote is followed by the i.nteger X delimited by anoth(~r
single quote so that the first single qtibte is not part of the string, and the
string is complete. Parsing continues from the first character after the
second single quote.

MI8.0 Par,e 3

THE MACINTOSH PROJECT

DOCUMENT I9A VERSION 2

TITLE: THL MACINTOSH EDITOR, PART A

AUTHOR: JEf RASKIN

DATE: 03 Nov 79

1. INTRODUCTION

In a personal computer system meant for the general public the design of the
text editor must be especially approachable and easy and quick to learn and
use. To this end, an editing sys~em has evolved that is somewhat different
from the main stream of word processor design.

2. ORGANIZATION OF THE SYSTEM

When the computer is first turned on, it is executing some program'~ As
supplied, it powers up in the editor. There arc a few editor options that
make it "smart" with respect to the task that it is to do--for example in
editing a program--but its capabilities remain basically the same. The
options might include some of: the "Apple" calculator language, BASIC,
Pascal, the Personal Communicator and the Personal Assistant. You can
make any of these or any application program the default upon system power
.up.

The editor abilities are common to the entire system (except durin~ execution
of application programs).

There are two special keys on the keyboard. On Sara they are Apple 1 and
Apl>lc 2. For now we will call them HELP and CHANGE.

3. THE EDITOR, A FIRST LOOK

The design is b~s~d on the Bannister & Crun text editot. It is aieed at the
personal creation and editing of documents rather than the typing and editing
of documents created by others. Most commercial word processors are
optimized for the latter task.

• I

3.1 INITIAL APPI:ARANCE TO THE USER

The system is very easy to learn. and to teach since it merely simulates a
rather smart typewriter. It requires no commands to be used as a simple
editor. You type, and what you type appears on the screen. Shift Space is
the destructive backspace, and the keyboard has auto-rer~at. With no
further information than this, you can create documents more easily than
with a conventional typewriter.

3.2 INITIAL STORING OF A DOCUMENT

What is kept on the mass storage device is not a copy of the document as you

M 19A.2 Page 1

see it on the screen, but a keystroke trail of the document. At the cost of
(usually) very little extra space, this is a far more powerful item to.
store. It not-only represents the current state of a document, but every
previous state as well. You will have the option (as we shall see later) of
storing the final result of followinc the trail, as well as the formatted
version of the file. (Note that a document that is built out of many copies
of a set of items is stored more compactly in trail form than in literal
form.)

Another useful fact about the keystroke trail is that it never need be re
written but only appended to. This is be done automatically as soon as a
given buffer fills. What you see on the screen, of course, is not the
trail, but the current state of the document.

As far as the you are concerned, no thought at all need be given to the
storing of a document. Given the "soft off" feature, and the automatic
dumping of the keystroke buffer, the current document is always placed into
non-volatile memory. Only a power failure (or other act of God, such as the
dog chewing up a disk) can cause loss of data--and a power failure will lose
at most on~ buffer (probably about ~ bytes).

° If:..
You will have to give some thought to filing things away when a new
document is to be started. Pressing the HELP button obtains a menu (at the
bottom of the screen, called the "menu area"·, which is scrolled up to
accomodate it). One item on the menu during editinOg is to file a document.
The system asks for a name, and a description {which is optional j.. When

\

given the name (and the description) the keystroke trail is squirreled
away. Later we will discuss retrieving files, and keeping versions
straight.

3.3 INITIAL PRINTING OF A DOCUMENT

There is a default formatter in the system. Another item on the HELP menu
during edits is to print a document. With no further instructions, standard
margins, pagination and font selection will be operative. The document
presently bl!ing edited (what UCSD Pascal would call being "in the Workfile")
is the document that will be printed. Later we will see that it is possible
to format and/or print oth~r documents.

3.4 SUM}~RY OF FIRST USER INTERACTION

With but a few minutes of instruction from the computer (or, at worst, a few
minutes reading the manual), you (or even a naive user) will be able to edit,
store and print a document satisfactory for many purposes. To get further
options you Will have to press HELP rather than RETURN after selecting
an item such as PRINT from the edit HELP menu.

In general, the menus will be very simple, and at each stage selecting an
item and pressing RETURN creates an action. Selecting an item and pressing
HELP gets a 8ub-selection or further details on the item in the original
menu if no sub-selection is possible.

Note that all Apple-supplied programs for this computer will have to adhere
to this style of user interaction.

M 19A.2 Page 2

4. THE CHANGE COMMAND

During editing, you can press the CHANGE key. The bottom line
immediately shows this format--the cursor position is indicated by []

CHANGE [] INTO

The cursor in the text stops flashing, and the cursor in the bottom lin~
flashes.

4.1 USING THE CHANGE COMMAND WITH LITERALS

You type the word or phrase you wish changed (called the "pattern"), and then
press the CHANGE key again. The screen shows (for example)

CHANGE frugile INTO []

Now you can type what you want the strin'g changed into (called the
"replacement'~). The cursor in the text moves to the point at which it found
the example for which you were looking, and highlights it.

[The CHANGE instruction is operative, by using SHIFT CHANGE, even during a
change.]

The search proceeds from the current text cursor position and proceeds
backwards, wrapping around if necessary to complete the search. You may
think it strange that the search is backwards, however in creating a
document, this is the direction most often needed.

If you want to change the instance of the pattern (continue searching), you
use the HELP key which has this item on the menu. Usually you will include
enough context to avoid needing this feature (which should not be introduced
a t firs t).

Once you have found the desired instance of the pattern you can complete the
command, which becomes

CHANGE frugile INTO fragile

and is terminated by a (third) press of the CHANGE key.

(Wer(! you expecting, maybe, "frugal?)

When the instance of the pattern in the text is found (it was, you remember,
highlighted) it is replaced by the replacement string. One HELP option is to
do it again, another is to do it for every instance. Again, note that you
need not USe any HELP options in order to do most editing,. nor do you need
them to use the simpler method.

If the INTO field is empty (it is terminated by a press of the CHANGE key)
then this command is a deletion. This is most natural, and avoids having a
separate instruction or button for d~letion.

H 19A.2 Page 3

Lt.2 MOVI'NG THE CURSOR

When an instance of a pattern is replaced, the cursor is left just after the
replaced section. TypinC will appear at the cursor location--it ~s an
implicit insert. The instruction

CHANGE run INTO run

serves to move the cursor to the most recent instance of the string "run".
(It might be into the middle of the word "brunch" for example. If you wanted
to find the word "run" you miCht type" run" for the pattern.)

The empty string is understood to occur at the end of the text, so that
entering no string for the pattern (i.e. pressing CHANGE twice in a row)
places whatever would be put as the replacement at the end of the text.
It thus becomes quickly learned that three presses of the CHANGE key moves
,the cursor to the end of the text. Two presses does the same thing, except
that the text you want to add appears as the INTO portion of the bottom
of the screen.

The menu area of the screen can grow as needed until it is the entire screen
or more if necessary.

4.2.1 THE EFFICIENCY OF THIS. METHOD OF MOVING THE CURSOR

Interestingly, experience with an editor of this desi£n has shown· that you
can unabiguously specify most instances of patterns in natural language text
with three chcracters. With the wild cards in 4.4 below, this means that
moving the cursor is usually faster using this method than with cursor motion
commands.

In most programming languages, the text is more repetitious, and you will
often need to specify three or four tokens to move the cursor. A compact
language such as that suggested for the calculator language is nearly ideal
for this editor. (See docu~ent M14)

The four normal cursor control buttons or some equivalent device is also
expected to be available.

4.3 USING RANGES IN THE CHANGE COMMAND

A mechanism for specifying and movinr large portions of the text is provided.
The syntax is much like that or' Pascal. (This concept has appeared in the
text editor described recently in CAC}! [find reference), however it was first
used by the author some ten years ago, albeit with three dots instead of
two.)

Lt. 3.1 USING THE CHANGE COt-fMAND WITH RANGES

Changing a large body of text can be tedious unless a range specifier is
allowed.
CHANGE you m •• ker INTO expletive deleted

Will take the most recent occurrence of "ker" and then find the first

M 19A. 2 Page 4

occurrence of "you mil prior to that.~ The periods that app(!ar in the pattern
are obtained via the HELP key, and are not ordinary periods.

If the INTO field is empty, this mechanism allows deletion of large portions
of text. Since the text is highlighted, and since commands can be aborted by
means of the HE~P key, errors can be avoided.

4.3.2 USING A RANGE AS TH[REPLACEMENT

When a range is specified as the replacement, the text sPecified by the
replacement range is moved into the place specified by the pattern. This
allows blocks of text to be easily moved. A HELP option for the pattern
allows the movement to be to the current cursor position.

There are a number of techniques that users quickly develop that make this
command structure more useful than it might appear to people unused to it.

THE MACINTOSH PROJECT

DOCUMENT 19B VERSION 0

TITLE: THE MACINTOSH EDITOR, PART B

AUTHOR: JEF RASKIN

DATE: 03 Nov 79

4.4 USING THE WILD CARDS

4.5 SCANNING THROUGH A DOCUMENT (and grammatical positioninb) (to beginning
and ~nd)

4.6 UNDERLINING AND OTHER MODIFICATIONS OF CHARACTERS

4.7 OUTPUT FOR}~TTING (& widows and orphans)

4.8 ABILITY TO UNDO MISTAKES(and the lack of need to protect areas of text)

4.9 THE MENU AREA (and enviornment setting: headings, footings, margins, page
numbers, footnotes, paragraphs)

4.10 HANDLING USER ERRORS

4.11 TABS AND COLUMNS

4.12 MACROS

4.13 DIFFERENT PRINTERS

M 19B.O Pagl' 5

5.0 PROPERTIES OF THE EDITOR

This is certainly one of the "what you see is what you get" variety editors.
It has roughly the same power as the UCSD and Apple Word editors. Each of
these editors has some "features" the other lacks, but they can all do about
the same job. Apple Word is easier than our other editors to use, and I
suspect the present editor may be easier still.

5.1 SIMULATING THE B&C EDITOR ON AN APPLE 11

This system can be simulated with CTRL C and CTRL D for the CHANGE and HELP
-keys. On most sytems CTRL H is the destructive backspace, if SHIFT SPACE is
~not available.

5.2 MANUALS, BOTH ON- AND OFF- LINE

6. IMPLEMENTATION

6.1 PERSONNEL

6.2 INPLEHENTATION METHODS

6.3 SCHEDULE

7. FUTURE 0IBr:LLISHMENTS

B. ENGr:LBART STRUCTURE OF A TEXT

M 19B.O Page 6

THE MACINTOSH PROJECT

DOCUMENT 20 VERSION 0

TITLE: THE MACINTOSH DISPLAY

AUTHOR: JEF RASKIN

DATE: 12 Dec 1979

ABSTRACT
Many display technologies have been studied. Regretably, all but the CRT are
as yet either not ready or too expensive to consider. Human factors studies
sugg~st that a screen should have from 25 to 30 dots per centimeter to make
the displayed characters appear continuous. More is uneconomical. Fewer
make the dots visibl~ to the average reader at normal reading distances.
Programming considerations show that a 256 by 256 display is desirable in
terms of program speed and efficiency. These factors fit nicely with a small
CRT with a viewing area of from 8.5 by 8.5 cm. to 10 by 10 cm.

The photo&raphs on the next page show a simulation of the proposed screen at
actual size. In printer's terms, the characters are in an 8 point font, which
is larger than the print you are reading now.

Portability and cost constraints, combined with the expected application
areas of Macintosh, preclude color.

th,s IS i simulalion of the proposed tv1acinlosh strelm. H has the sa_
har i:Dnbl resDlulion, bulless yertiCilI resolution: the ildual Yfrlacal
51:! lI.liII be 25lin!s of text (25~ pixels). Using this font an average Df

oyer 78 chilraders tiln be displayed on a lin!. 1 a facililalE~ columnar
d,spliY of dab, the digits are of [onstanl widlh: e 123.qS£78~. 51 num
er als can be displayed on a single line. The character set which is full
f6CII 1 is: abcdefghijklmnopqrsluvwxyz ABCOEfGHIJKLMNOrQf.:SlllV
IJJ::'::YZ I! II tt $ X & I () * = ' ,.., { } _ • ? < > \ : -e " [] ; / . , plus
the dlgils sholJ.ln above.

The chilt ader s in this photograph are almosl exadly the size lhey will
be an the proposed Macinlosh display.

This phot.Dgrilph is confldenlial and pr'oprieliry properly of Apple CDm
puJrr Inc. n may nol be exhibiled outside the company wilhout ilulh-
Irl2ahan. Jef Raskin, 13 Detember 1979

H20.0 Page 1

TIis is i -.bt .. rJ tile ;r DJtVSN ~[iIIt.g scr!ft. IlIaiJ5 til! s.f

.. u.bI r!Sll.tiu" W lrss ¥frIicill rfsoluliaa: 1t.! iJd&l ftriDI
siz! wi. 2S IiIrs rllfXl (25G "If'S). Usia! Ihis fill" • JftI'iip ~
Iftr 78 cUriICiers [ala! ~playH II iI 1itIe. 1. f ilCibl! [~
~ rJ llilti" t. "its ilff rI [1851. wiIlh: 812315tm. 51 __
frals [•• ~ H i siIIgI! line. T. [brKt!f !i!l" Wd is hi
ASCII" is: ilkRfghijklmupqrstU¥Wq2 ABCDEFGHI~RSTlN
WXVZ I!'" $ I " • () • = ' ~ { } _ + ? < > \ : -e ,.. [] ; I . ~ ,lis
~ IliPs sI.wI iIIIIeft.

1. ~ild!t'5 ill Uns ,utagriiph ilrf iIImesl nad.llle siz! ~ ~
lie • ~ ",.,asH ~inlDsh 'splay.
This is iI sHnuliitiDn Df the 25S .. dot wide Matintosb Stfeen. Siace il is
bring simulaled on iln Apple II, lhe full 24 lines Cilnnol be displayed. On
lhis stt'!!n, using lhe fonlat whith you are now looking .. in ilyenge of
Dyet' seyrnly thilrilders per line un be displayed in normi1 English l!):l
ilppllcil~iDns. The numeriral font is tonstant widlh: 111122223333444
12345f.789012345G789012345G789012345G78ge12345b78~Bl
tis demDnslt'l~ed here, 51 numbers tan be displayed ilcross lhe full wid~
h of the SCt'fI!n. abcdefghijklmnopqrsluvwxyz , .1 ; [] A e -: \
I ! It tt S, r. ~~, ' () * = ' 'v { } + ?> < ABCOEFGHIJKLMNOPQRSTUVWX
VZ _ This comprises the complete ASCII [harader set Here is some
f'asral code;

fundiDn GCO(flrstnumber, setondnumber: inhger): in\eger;
\'at t'emaindet': integet'i

begin
if firslnumber < sl!tondnumbet'

then
GCO := GCO(sl!tondnumber I ftrslnumbE!r)

I!Ise
begin

remainder := firstnumbet" MOD sl!tondnumber;
if rl!mainder = e

end

lhen
ceo := sl!tondnumbet'

else
GCO:= GCO(setondnumbE!r I remainder)

M20.0 Page 2

d"e~t>4he CRT ~'f~
"~IO j "'It ," f.~+~-"i
~noW\ O6C1~ 2!. "M~~

·' __ ""h~t -\lu.t\ ~ l..~
,."'\ (.~ II ,,,.,,./,M6fl) or

2 r 11'"1\ CA1- IU Iu.sJ ck~)
~~-\ ."ov\'" .. f f Pit/)

1. INTRODUCTION

The various questi~ns about th~ nature of Macintosh's display have been
largely resolved. This document summariz~s the res~arch done to date.

1.1 BUILT-IN DISPLAY

In Document M2, a number of areas of concern about the display were brour,ht
forward, notably absent was any mention of predictability. One of the main·
weaknesses of th~ Apple II was the display limitations imposed by the
variability of external displays that might be attached. We were forced to
d~sign for the lowest common denominator: a poor color TV. In order that
Macintosh be self-contained and to give us control over the quality and
specifications of the display, it will be mechanically and electrically part
of the main packag~.

1.2 BIT-MAPPED ARCHITECTURE

To permit both graphics and text, a bit-mapp~d display has been chosen.
Experience has shown it to be both a cost-effective technique with few
limitations 1n applications. In fact, the bit-mapped display on the Apple II
is certainly one of the reasons it has ~emained so popular.

1.3 MARKETS SERVED

The display resolution proposed below will satisfy the needs of most major
marketing areas such as personal use in business, science, industry, and the
hobbyist. A small problem with some potential educational applications is
discussed below.

2.0 DISPLAY TECHNOLOGY

A number of technologies have be~n explored. It is clear that Apple must
follow and perhaps even develop one or more of these (or even oth~r possible)
display technologies.

2.1 LIQUID CRYSTAL

Two avenues have b\..:~n explored, direct LCD viewing and a small LCD "slide"
using transmitted light onto a screen. The problem of multiplexing an LCD
matrix of the required resolution at any size has not been solved at the
pres~nt time. When and if this technology matures, its small size, light
weight and low pOwer consumption will inspire many products--including a
red~signed p~rsonal computer.

2.2 PLASMA AND SELF-SCAN PANELS

At present this attractive technology suffers from excessive cost. A 256 by
256 display without electronics can be purchased for $100. Paul Baker has
suggested that we could produce the panels (with moderate resolution) in
house at reasonublc cost. but at present this option has not been studied.

2.3 LIGHT EMITTING DIODE ARRAYS

H20.0 Page 3

These have just become available, and are being applied by the military. TI)(,y
are too exp~nsive to consider at the present time. There are some concerns
about power requirements as well.

2.4 FIELD [MISSION DISPLAYS

While a promising technolohy, it is unlikc·ly to be ready in time for the
present project.

2.5 ELECTROLUMINESCENT PANELS

Sharp and H~tachi, among others, have exhib~ted such displays. They are not
yet available commercially.

2.6 LASrR SCANN[RS

An optomechanical scanning device was considered but abandoned on the grounds
of mechanical difficulty and questionable maintainability.

2.7 CRT

CRTs are und~sirable on grounds of size, weight, fragility and the high
voltage necessary. Nonetheless, nothing approaching their low cost and ready
availability exists. Two approaches have been considered: direct view and
projection.

"

2.7.1 PROJECTION CRT

Our consultant, Alan Stein has been investigating this possibility. At
present there are possible difficulties with brightness and contrast, and it
is not clear just how available are the extreme brightness CRT's required.
In any cas~ these projection CRTs are about 7 or 8 cm in size, which is quite
close to the size of the direct view CRTs being proposed. Of course a
projection CRT would give us a larger screen, but in that case more resolution
would be required to meet the goal of 25 to 30 dots per cm. (see section 3
below) •

Use of a projection scheme is very attractive siuce it allows a folding
display and thus a compact, lightweight package. On the other hand, it
requires more mechaical assembly, optics and other parts that would increase
maintainance problems. Keep in mind that a projection CRT system has all the
complexity of a CRT, and in addition has optical and mechanical components.

2.7.2 DIRECT VIEW

A direct view CRT has the ~dvantage of simplicity. Such a CRT may either be a
flat screen display or a conventional (and awkward) bottle type CRT.

2.7.2.1 FLAT CRT

Allen Stein has been investigating these, such as the Sinclair rectangular
tube. As with many other promising technologies, this one is, at present,
merely promising. It docs not seem that such a CRT will be prepared in time
and at a competitive price, although it is by no means out of the question

H20.0 Page 4

that giv~n ad~quate incentiv~s it could be done.

2.7.2.2 CONVENTIONAL BOTTLE

There is no doubt that the conventional CRT is an excellent candidate for
Macintosh's display.

2.8 HARD COpy AS A DISPLAY MEDlll1

Mike Markkula has suggested that the possiblity of havine no volatile display
be investigated--or, if one could be invented, a volatile hard, copy display be
devised. The requirements for too many applications require a fast-changing
display, and no known technology (unfortunately) will permit updating a piece
of pap~r or other hard copy medium at anything near the required rates.

3'. 0 HUMAN FACTORS

The main factors with which we are concerned are resolution, flicker, size,
color, brightness and contrast.

3.1 RESOLUTION BOTH GRAPHICAL AND OPTICAL

We have two resolutions, the program resolution or number of ,dots compr1s1ng
the picture, and the resolution of the screen as seen by the human eye. For a
given screen size, fixing one determines the other. Experience and a number
of studies have shown, as stated above, that characters composed of dots seen
continuous at between 25 and 30 dots per cm, and their edges seem smooth at
above 80 to 90 dots p~r cm. Careful inspection of a character will reveal
jagged edge~ until a dot density of 150 to 200 dots per cm. is achieved.
(these studies assume round dots just touching at their edges in a square
packed tesselation).

For our purposes, the formation of characters that appear continuous, we
should strive for a screen dot density of 25 to 30 dots per cm. If we choose,
for the purposes of portability, a 4 or 5 inch CRT, then the desired density
is obtain~d with between 200 and 300 dots across the tube. Programming
consid~rations on a byte oriented machine suggests the convenient fipure of
256 dots.

3.2 BLACK ON WHITE VS. WHITE ON BLACK

Th~ work wit}l a number of comm~rcial word processors (~.g. CPT, experienceat
Xt::rox PARC, aIlc also the photor.,raphs on page 2, suggest that black on white,
as used nt::arly universally on the printed pag(', is to be preferred. I suggest
that this not be made a user option.

3.3 FLICKER

A light-colored background makes flickC'r more noticable than does a black
background. User preference indicates that a white phosphor is to be
preferred over the slower green. 50Hz seems to be a bit slow, so it is
suggested that a higher rate be used. If, as proposed here, no attempt be
made to have standard video, and we do not have to be PAL or NTSC compatible,
than any refresh rate above 50Hz would be acceptable, and we can choose some

M20.0 Pag(' 5

convenient sub-multiple of the system clock.

3.4 COLOR

Considerations of cost and portability practically exclude color as even an
option on Macintosh. The areas in which it is intended to be used,
fortunately, do not rely BS heavily· on color as would a home or game orient~d
machine. .

4.0 COST

Gary Baker estimates that a CRT system that can display 256 by 256 dots might
cost in the $20 to $30 range.

5.0 SIZE AND WEIGHT

The CRT will be about 6 inches in width, 5 high, and between 6 and 8 inches in
length. The entire CRT and associated components will weigh between one and
two pounds.

6.0 MEMORY REQUIRD1ENTS

A bit mapped 256 by 256 display requires exactly 8,192 bytes of memory.

7.0 PROBLLMS WITH NON-STANDARD VIDEO

While non-standard video has some advantages, such as extra vertical
resolution and electronically convenient refresh and scannin~ rates, we lose
the ability to usv inexvensive slave monitors. This hurts us most in t1le
educational arena wll~re large monitors are especially useful. It also makes
dealer display more difficult.

On the other hand, the enhanced quality of the imar,e and lower price permitted
by non-standard scanning may be a greater asset.

8.0 POWER CONSIDERATIONS

A conventional CRT and associated electronics adds a load of betwc"n 9 and 12
watts to the system.

9.0 FONTS, DOMESTlC AND FOREIGN

As shown by tIle photographs, a small CRT, with the appropriate fonts, can be
extremely readable. The large number of lines will allow the special
characters and diacritical marks demand~d by non-English languages. The
software engendered by this approach will be very flexible in these regards.

10.0 APPENDIX: .FONT GENERATOR PROGRAM

This is a simple program that generates and allows primitive editing of a
proportional font.· Th~ one shown is called "Two-bit Gothic Proportional
Condensed" and was designed by the author to demonstrate how readable a truly
compact font can be.

M20.0 Page 6

DOCUMENT 21 VERSION 0

TITLE: BEYOND WORD PROCESSING: THE ONLINE TEXT SYST~1

AUTHOR: DAVID CASSERES

DATE: 3 October 1979

The purpose of this pap~r is to stir up some interest in the
possibility of an Apple implementation of a unique and powerful
personal computer tool, th~ Online Text System (OTS).

ors is a personal system for entering, editing, and studying text. It
differs radically from today's concepts of "editors" and "word
processors" as explained below, and is optimized for the user who
wants to use text in large quantities as a primary intellectual tool.

As explained below under "History," the essential concepts presented
here are not new. They have been implemented in a research prototype
system and exhaustively tested in a work environment for several
years by a team of up to twenty technical, clerical, management, and
documentation people.

There is reason to think that someone besides me is thinking about
implementing these ideas on a personal computer.

ors IS NOT ANOTHER WORD PROCESSOR

Most existing text proc~ssors fall into two categories:

Editors: Direct or indirect descendants of hacks developed
(often decades ago) by programmers who needed to edit source
cod~.

Word Processors: Elaborately integrated systems to be used by
a clerical operator. Th~se systems are intended for
production of business documents from letters up to
(occasionally) manuals. The function of formatting the text
for hard-copy production is the heart of these systems. Text
entry is assumed to be done from some kind of draft provided
to the operator by someone else. Documents are assumed to be
small. Editing is assumed to be simple, and it is assumed
that if you want to study a document you get a hard copy.

The proposed OTS is more like an editor thana word processor, in that
it is to be operated personally by the creative worker. Also, it does
not inc;orporate hard-copy formatting at all -- this is done by any of a
Whole family of external processes with various specializations. All
formatting done by OIS is scr~en formatting, and ors is heavily
optimized for this.

M21 • 0 Pag c. 1

For exampl~, while almost all editors and word processors are at least
partly line-oriented, OTS is line-ignorant. It breaks statements into
lines according to current display parameters. and does not store
lines as such except ~len the user explicitly wants it to.

CONCEPTS

OTS is designed with large, complex texts in mind. The problem in
dealing with such texts on a screen is the difficulty of orienting
oneself to the structure and content of the text. When you try to
study, you get lost very qUickly. Anyone who has tried this can
understand the problem. It has never been addressed in a meaningful
way by any production text system.

OTS does address this problem. By letting hard-copy formatting be an
external function. OTS is able to have a study function as well as the
traditional capture and modification functions 6f an editor. ~he same
features that optimize OTS for studying the text also optimize it for
ultra-efficient editing (since study is a key part of editing).

Existing systems tr~at the computer as a tool for developing hard
copy, under the assumption that hard copy is THE medium for text.
Such sys tems are based on partial simula tion of hard copy on the ·.CRT.
OTS treats the computer/CRT as a new medium for text in its own right.

TEXT STRUCTURE

The key idea of OTS is that a text has an implicit structure which is
known to the system. The structure used is the classic tree. Nodes in
the tree are called "statements," and the content of a statement can
be any string. Typically, an OTS statement is used to contain a
paragraph, a heading, or a source-language statement. (Anyone who
finds it hard to visualize 3 document as a tree structure need only
think of the conventional "outline form" we learned in high school.)

So every statement not only has a certain position within t~e sequence
of statements, but it also has a "lev~l" in the hierarchy of the tree.
The system knows about levels. For example, when you create a new
statement the system off~rs you a default level which is the level of
the preceding statement. You can adjust the level down or up.

For a first glimpse of the power this affords, imagine a huge text
equivalent to an entire corporate planning document. for example. Each
chapter heading is a top-level statement; each section heading within a
chapter is a second-level statement. and so forth. .

If you loaded up such a text in a conventional editor or word
processor, you would then be in bad trouble if you wanted to find
something that might be near the middle of the text. With tree

M21.0 Page 2

structurc, you can command OTS to display only first-level and second
level statements. The second-level statements are displayed indented.
Instant outline ••• Now you find the section you want, and move it to
the top of the screen; at the same time, you spccify "opcning up"
another level, with only the first line of each statement on the
display. In this mann~r, you can very quickly find what you are
looking for (in most cases).

The tree structure is chosen because it is natural for "both documents
and computers. It is also an easy structure to understand. Writers
who use it as an organizing principle soon learn to love it, and
documents written this way are merely obeying the ancient high-school
teaching: start by making an outline. It is not limiting, since the
user is perfectly free to write all statements at the first level.
This results in a "conventional" structure, i.e. linear.

Using a system of this kind to develop and study the source code of a
large program written in a block-structured language is a revelation.
Moreover, it turns out that if you use such a system as an editor for
developing l~rbe source codes, it encourages structured programming.

USE OF TEXT STRUCTURE IN EDITING

The editing function falls into two parts: statement editing (the
familiar manipulation of strings, words, and characters) and structure
editing. Structure editing is the manipulation of structural entities I

within the tree. For example, a "branch" is a subtree -- a particular
statement, all its substatements, all their substatements, etc. You
can delete branches, move them, copy them, etc.

Other structure entities are defined: a "plex" is all the branches
that are subtrees of a common parent; a "group" is a set of contiguous
branche8.

The display normally shows structural relationships by indenting
statements accordi:'!; to their level. Also, statements implicitly have
numbers like

M21.0 Page 3

1 xxx

1a xxx

2 xxx

3 xxx

2 xxx

~l xxx

~2 xxx

~3 xxx

3b xxx

3c xxx

4 xxx

The statement numbers are generated automatically and displayed on
command. Of course, statement numbers change automatically whenever
structure ~diting is done.

USE OF TEXT STRUCTURE IN STUDYING

The study function is supported by commands such as the J(ump set:
[The prompt notation of UCSD Pascal is used here as an example, it
should probably not be used in an Apple implementation of these ideas-
Jef]

J(ump
S(uccessor: next statement at same level
P(red~cessor: precedin~ statement at same ~evel
U(p: parent statem~nt
D(own: first daughter statement
O(rigin: root of tr~e, first statement in text
L(ink: statement referenced in textual link
N(ext: next statement in linear order
E(nd: last statement in text
R(eturn: statement jumped from to get current state

A J(ump command operates by placing the specified statement at the top
of ·the screen. The syntax also allows for the entry of various one
character codes called viewspecs. The viewspecs set the display
control parameters for such things as the number of levels displayed,
number of lines displayed per statement, whether statement numbers,
labels, links, etc. are displayed, and so' on.

Another important viewspec enables or disables display filtering.

M21.0 Page 4

Display filtering is OTS's equivalent of the "string search"
capabilities of a typical text editor. OTS offers the user a powerful
"string specification language" (SSL) for specifying content
characteristics of statements to be displayed; only statements with the
specified type of content will be displayed when filtering is enabled.

SSL is essentially an extended BNF. It contains a subset that is easy
to use and approximates the customary string search function. For the
more experienced user, a specification written in SSL can be stored as
statement text and used by means of the command E(xecute S(tatement.

SSL is itself a subset of a larger language which allows specification
of primitive string-editing functions. This is String Search and
Editing Language or SSEL. Users who are interested can also have all
of SSEL, and can execute their own automatic editing sequences via
E(xecute T(ext.

This accesibility of detailed primitive functions via high-powered
languages, and their integration into the text via E(xecute T(ext, is
an important part of the design philosophy of OTS. Another step in the
same direction is the O(utput to C(ompiler command, which outputs a
text of high-level source code (say Pascal) to a pre-compiler which
converts it from OTS tree-structured file format to a compilable file.
At this pOint OTS becomes reasonably serious as a software
development/maintenance tool.

ANOTHER KIND OF STRUCTURE

Although the tree is about the most general and useful of the regular
graph structures, it cannot do everything. Often it is desirable to
have a linkage b~tween two statements entirely independent of the tree
structure. OTS allows you to establish such a linkage by giving a
label to a statement and giving other statements links to that
statement. The system knows ahout the meaning of links, and can
"follow" them on command, displaying a btatement according LO a
reference in another statement.

Labels "and links are part of the content of a statement, but can be
suppressed from the display on command. Notice that in high-level
source code, labels and links can have the syntax of procedure names
and procedure references. Also, a link can point outside of the
current text.

In summary, a text has an inherent tree structure and may also have a
user-imposed arbitrary structure based on links. The link structure
can point out of the text and into another text. The two structures
are entirely ind~pendent of one another and both are actively supported
by the user system.

M21.0 Page 5

HUMAN INTERFACE

The success of any OTS implementation depends critically on the beauty
of its human interfac~. The interface must feel extremely responsive.
Speed of human input and speed of system response are both important.

Human input is of two kinds: command mnemonics and cursor positioning.

Cursor positioning is done by means of an analog device stich as a
joystick, forcestick, graphics pad, or mouse. Cursor control k~ys are
absolutely not adequate, and it is critically important to make cursor
positioning as easy as possible. [I suggest that all of these means of
cursor positioning are relatively slow, see M19--JefJ

It is desirable to have two control buttons available on the cursor
positioning device: one is used for a "command accept" function, and
the other for "command delete."

Most command mnemonics are single characters, and the command set is
tree-structured. The flavor of OTS commands is best given by example;
the D(elete commands are a good example:

D(elete
B(ranch
P(lex
G(roup
S(tatement
W(ord
V(isible
l(nvisible
T(ext
C(haracter

These commands illustrate the general philosophy of OTS editing
commands: one character (D) specifies a kind of action, and the next
character specifies the kind of entity to be acted on. The entity
W(ord, for example, means a string of alphanumericb bounded at both
ends by non-alphanumerics (or statement boundaries). After typing DW,
the user positions the cursor to any character in the word and types a
"command accept" character (which might be ctrl-C). The word is
del~ted; and OTS is smart enough to delete a space along with it, if
the space delimits it. Alternately, instead of "command accept" the
user may select another word; the meaning is to delete the two
selected words and all between them.

A V(isible is simply any string of non-blank characters; an l(nvisible
is any string of blank characters. T(ext is an arbitrary string
defined by pointing to its first and last characters.

In general, when OTS has a traditional function such as editing, it
beats the competition by being smarter. For example, M(ove and C(opy
are distinct editing commands, and there is a T(ranspose command as
well. The entity W(ord is handled correctly in all cases, as regards

M21.0 Page 6

punctuation and spacing after an editing command is executed. Such
features are not frills; they are essential to the "hot" interface
that any system like OTS must have if it is to succeed.

NOTES TOWARD IMPLEMENTATION

the file structure of an OTS text is something to think about.
Ideally, there would be random access to statements; and ideally a
text could extend over many diskettes. Hard disks are a natural thing
to think about here.

Speed of response is important -- particularly the time required to
reformat the screen.

MARKET

Who knows? My own position has always been that the potential market
for this kind of tool is far, far greater than anyone has yet guessed
-- at least if it is as cheap as it now can be. Many of the
capabilities have to be used to be fully appreciated, and my guess is
that to sell a full-dress OTS (or even half-dressed) would requi~e
some serious educational efforts. The implication is that if an OTS
is worth doing, it's worth doing right.

HISTORY

At the 1967(1) Fall Joint Computer Conference in San Francisco, Dr. D.
C. Englebart of SRI presented a system called NLS (for oN-Line
System). NLS was presented as a tool of very wide scope for
"augmenting the human intellect," but in its specifics it was a system
for editing and viewing text information. It offered the individual
text-oriented worker far more power than anything before or s~nce.

People who saw the FJCC presentation were overwhelmed -- as much by
the presentation as by its content.' Englebart sat on stage at a
futuristic workstation custom-designed by Herman Miller, and operated
the system in Menlo Park via microwave. The CRT image was projected
on a theater-size screen behind him; TV images of his face and of busy
workers at the Menlo Park site were intercut with the NLS display. It
was a media triumph, but unfortunately one of the main impressions
people got was that NLS was a monstrously expensive, extravagant,
esoteric superwhizzie for use in a futuristic laboratory by the most
rarefied geniuses. I think that many went away with their eyes
bugging out, talked about it for a while, and then forgot.

At that time, NLS ran on a timesharing XDS-940 dedicated entirely to
serving NLS users. About half a dozen users could be served
efficiently, up to about 20 with serious degradation of response.

M21.0 Page 7

Later, SRI's Augmentation Research Center operated NLS as a tool for
the ARPA Network Information Center (NIC). This incarnation of NLS
ran on a PDP-IO. Another incarnation was delivered to the Air
Force.

The engineering that went into NLS was extremely impressive. For
example, a high-level machine-oriepted language called MDL940 was
developed for the XDS-940. It served as the mainstream language for
developing NLS; but it was also used to develop a metacompiler which
created compilers for a family of Special-Purpose Languages (SPL's).
The SPL's included a string search and editing language, a tree
manipulation language, etc. Some of the SPL's, or subsets of them,
were directly available to the NLS user via NLS itself. Eventually
all the NLS software was contained in NLS structured files, cross~ . .
referenced to each other by the actual procedure calls in the source
code and also by text links to the object code files. It was easily
the most elegant large software system around.

Hardware engineering was equally impressive; for example, the "mouse"
device was invented in connection with this project. Some of the
technical people on the project were Bill English, Jeff Rulifson, Bill
Paxton, Chuck Irby, Don Andrews, Dave Hopper, Bill Duvall, Mimi
Church, and Bruce Parsley, many of whom later went to Xerox PARC.

At the time of its d~velopment, NLS was strictly a demonstration bf
concept, as far as any public beyond the ARPA community was
concerned. It was very expensive to use, its human interface
depended on then-exotic hardware, timesharing systems were unreliable
and inefficient. The concept of computet text processing was not
thought to involve anything better than justified margins on a
Flexowriter. Eventually funding dried up, most of Englebart's
technical people went to Xerox PARC where they were forever walled up
in ivory, and NLS was forgotten -- by most people.

I was until 1969 the technical writer for the project, and have been
carrying some of the ideas around ever sinc~. I always thought it was
a great pity that such ~ spectacular tool for writing and studying
text was forgotten. It is now clear to me that future Apple systems
are ideal for a modern descendant of NLS, optimized for an individual
user. OTS is such a descendant, and I believe that if Apple does not
eventually implement something like DTS, someone else will.

M21.0 Page 8

THE MACINTOSH PROJECT

DOCUMENT 22 VERSION 1

TITLE: HOW CAN WE HAKE COMPUTERS TRULY PERSONAL?

AUTHOR: JEF RASKIN

DATE: 10 FEB 80

What is currently considered, "state-of-the-art" technology is beinl: applied in
many ways that affect our lives. Whil~ anything that affects ou~ lives has
an impact upon us as individuals, and is "personal" in that sense, I wish to
distinguish one special set of application areas of technology from the rest.

This distinction is easily made by observing some existing technologies, each
of which is over a c~ntury old: the telephone, home central heating, and the
office desk. Consider the d~sk first. In most circumstances it is assigned
to a particular individual who will be the only person to use it--sometimes
for many decades. ~1any socioloEical rituals and taboos surround the desk.
Only the owner and a few other people, such as the owner's secretary or boss
or other immediate "family" within the company feel at ease looking through
it. In some instances there may be no other person who is authorized to go
through your desk. In spite of this close attachment of the des~.to an
individual, it is rarely considered personal property.

This example shows that an item, though closely connected with one individual,
may not be personal in that it is neither own~d nor controlled by the
individual (the company may r~assign the desk, say to move in a new one,
without violatin~ any taboos). It only affects the individual at work, and

, is rarely (if ever) thought of outside of one's place of employment.

The example of central heating may be taken to stand for the welter of
tangible property that We own (or rent) and that is associated with our homes.
There is no doubt that this is all personal property, but none of it is
essential personal technology in th~ sense beinr. discussed here, even thoueh
it affects our everyday lives and is often ~~~hnologicai!y based. I exclude
these items because they ar~ attached to the house and not to the person.
When we move from place to place, we do not take the furnace and radiators or
ductwork with us. While they may belong to us, they equally well belong to
the home. Other items, such as a console television set, will move with us
if we move, but they are primarily used at home. It is rare to find a 25 inch
TV at the b~ach or in the office. Rather than personal technology,these
items arc appliances or fixtures. A small portable TV may be an instance of
personal technology.

The telephone instrument itself is attached either to home or to the working
place (or is a public phone), and is thus not essential personal technology,
but the telephone system is a different matter entirely. It affects every
phase of our lives, in matters both personal and involving our jobs. We

M22.1 Page 1

carry telephone numbers with us, in books and in our heads and feel free to
use them at almost any time. The telephone system, thoup,h not owned by any
of us, and not physically within our command, is an example of essential
personal technology in the sense 1 am trying to develop.

The general characteristics of an essential personal technology include its
applicability to work, homelife and play; portability or wide geographic
access or both; its importance or significance to the user in all these
roles; affordability; and options to make the technology aesthetically
acceptable to the own~r.

If a technology does not impact all phases of the user's life, that technology
'is not personal; if it is limited as to where and,when it can be used, a
technology is not personal; if the user cannot purchase the technology or its
use, it is not personal; if the user does not feel comfortable using the
,technology it is not personal ; if it does not matter to the individual if the
technology is always available or nearly so, it is not the kind of essential
'personal technology being discussed here.

Calculators are an example of a technology that moved from non-personal to
personal technology in the past decade. For many individuals it is used at
work (say, to figure out sales tax), at home (to balance the checkbook) and at
play (to average bowling scores). The pocket calculator is independent of
power lines, is small and cheap, and comes in a wide range of styles to appeal
to the consumer's illusion of making a significant choice. It became personal
when microelectronics made it small and inexpensive.

The same technology spawned the "personal" computer. However, in" "spite of
their name, they are not yet truly personal. The so-called personal conputers
fail the tests proposed here on a number of grounds. Because computers, much
more than most other technologies, have a wide and unpredictable range of
application areas, th~ argument is more complex, but the basic factors are the
same.

The personal computer of today (such as the Apple lIon which 1 write this)
fails nearly every test that I propose. 1 can use it at work, and do so every
day. But then, 1 am a system designer, programmer and writer by trade. I do
use it at home, but just to continue my working day at a different location.
My calculator balances checkbooks ne&rly as well, and a lot more
conveniently. 1 can force the computer into my avocations, but it is a square
peg in a round hole. If the computer is used,as many have proposed, to
control my house (e.g. adjust the heat, the windows and shades so as to take
maximum advantage of solar heat and minimize thermal losses) then it becomes
a fixed appliance and cannot be moved without disrupting the house.

The presentpl'rsonalcomputer is neither truly portable nor Widely available.
Even though my computer is very light, rugged and small (about 5 Kilograms,
and the size of a portable typewriter) and attaches to the ubiquitous
television, by the time you bring along the mass of cables, the disk drives,
and (heaven forbid) the printer, you need a wheeled cart or pet octopus to
help you out. In addition, it must be plugged in before it can be used, so
that it is difficult to use while travelling or even on a desk in the middle
of a classroom--both places where the calculator is as handy as ever.

M22.1 Page 2

My Apple is very significant' to my life. 1 quail at the prospect at ever
having to use as clumsy a tool as a typewriter again. 'Yet it is not
significant enough to be carried along wherever 1 go, nor do I feel a pressing
need to have corner computer booths as we now have telephone booths. Thus its
significance to me is not enough for it to classify as an essential personal
technology. Only technocrats will find it as useful as I do.

There is some question as to whether personal computers are affordable. With
the accessories required to make them practical for a wide range of roles the
cost is certainly over $2,000. This is too much by a factor of at least two.
A realistic system, including sufficient quantities of mass storage (which
stores information and not mass!) and means for making this information
available to the user (such as a screen or a printer) will cost much more than
that. My system, to be practical just for the writing tasks I perform (such
as this article) has a retail cost of about $7300. To be personal it should
cost under $1000.

The system also fails the test of comfort of use and compatibility with the
dictates of personal style and interior decorating. While I could build (and
many have built) a special enclosure to hide it all, the many separate pieces
and their interconnecting cables have a mad scientist air about them. And ~y
computer happens to be one of the neater ones on the market--most are worse.
The computer comes in only one color, a neutral off-white. Again this is
better than many others, but even the telephone company offers a choice of
colors and styles for their electronically identical instruments.

Computers are not comfortable to use. A parallel comes to mind: The first
scientific calculator used a notation called "RPN" (Reverse Polish Notation)
which while truly sup~rior to the way most later calculators operate, does
,require a few minutes of thought and practice. As a result, only a small
percentage of calculators use RPN because it was not immediately comfortable.
Similarly, to get th~ full benefit from ~ computer, and to exploit its
inherent flexibility th~ user must program it in some form (although many
benefits are available without programminr).

Programming, as a human activity, rates with torture in the popularity polls.
As presently constituted programming requires study and practice. The low
proportion of scholars and violinists in our population attests to the
avoidance of study and practice by most people.

It may be possible to provide programmability in a convenient and painless
form, but it has not yet been achieved.

If a computer is not programmed by t'he user, then it must be employed via
programs written by someone else. Whether such programs are comfortable to
use depends on the sympathy and insiLht of the programmer or program desir-ncr.
At present, programs more commonly reflect the difficulties encountered in
programming than the real needs of the user: like the spines of a sea urchin,
the awkwardness of most computer systems comes through in spite of many
attempts to make the programs smooth and human~.

The instructional books provided with programs (and with most so-called
personal computers) all too often do not provide the cushion they might
against tla~ stiff frames cr~at~d by the programmers and system designers.

M22. 1 Page 3

Thus present personal computers fail the test of comfort as well, and present
owners must put themselves out in order to use them.

The personal computer will come of age when it goes the way of the calculator
or the telephone, or probably both. It will be small and portable,
affordable, come in many styles, be easy to program when programmability is
desirable, it. will have features and software that make its use natural and
convenient for an individual in the multiplicity of functions that each
individual performs. In other words, it will become a nearlyindespensible
companion like a Swiss Army Knife becomes to certain people, and its own~r
will feel a bit helpless when she or he leaves it behind.

H22.1 Page 4

THE MACINTOSH PROJECT

DOCUMENT 23 VERSION 0

TITLE: JANUARY 1980 OVERALL SUMMARY OF THE ~~CINTOSH SYSTEM

AUTHOR: JEF RASKIN

DATE: 12 Jan 80

o. Concept

The purpose of this design is to create a low-cost, portable computer so
useful that its owner misses it when it's not around--even if its owner isn't
a computer freak. [M2, M4, M6, M8, M13]

The notations, such as [~10] refer to existing documents giving further
details.

1. Hardware

Macintosh is intendl:d to be a complete, self '-:contained, portable, personal
computer. It does not have to be attached to anything other than a power
source in order to operate. An optional battery pack will be ava,ilable.

Macintosh is designed to sell for about $1000 [M5], and will have a disk drive
(with consideration of the possibility of a dual disk drive) and 7 inch CRT.
A lightpen for graphic input is being considered and the computer may contain
a small printer [MI5] t. Macintosh will have a full alphanumc"ric keyboard,
without separate numeric pad (an embedded pad will be used instead). If we
have dual disks, they will share drive and head positioning motors. The size
should be about 12" inches wide, 14 inches deep (maximum), and 6 1/2 inches
high. The weight should be under 22 lbs.

The electronics are conventional but streamlined: a 6809E processor, eight
64K RAMs (no expansion provided), 6845 vid(!o generator, a modem/DAA, ACIA, and
supporting circuitry~ We have not begun to approach the limits of what can be
done with such an architecture.

One central concept in th.e design of the hardware is that the programmers must
have a fixed environment. This will help insure reliable user lev~l programs-
the emphasis in selling Macintosh will not fallon the hardware as much as the
tasks that can be done with it. There must be no hidden "gotcha's" in the
design (this program works only if you have a super-duper board in slot 3, and
have a jumper from pin 5 of IC 56 to your left pinky) [M6]

The display is bit-mapped, black-and-white, 256 by 256 resolution with a 10 by
10 em (4.5 inch) display area. A speaker and microphone will be built in,
along with 8-bit D/A and A/D circuitry as necessary. Portability and cost
constraints preclude color--in addition, the software should be compatible
with future display technologies, which are likely to be monochromatic at

H23.0 Page 1

first.

There ~ll be a battery-supported real time clock.

The computer may operate on 12 to 15 VDC, allowing operation from a wall
transformer (minimizing thermal problems as well as simplifying UL approval),
a battery pack, or from an automobile battery.

2. Software

At the user level there will be a combined text ~ditor-data base manager, a
calculator based language, and a disk oriented BASIC.

The text editor is designed to be especially easy to learn and very fast to
use. It is conceptually quite different than existing text editors, and. a
demonstration is being prepared. Tests have shown that many simple operations
require one third to one tenth the time (for the operator) when compared to
current Apple-based editors. The same mechanisms that allow the user to
search through and modify text will be designed to allow searching--and
modifying a data base. [MI9, M2I]

Text is displayed in a proportional font, allowing an averar-e of 72 characters
per line; there will be at least 24 lines of text.

The calculator based language is, again, extremely easy to learn. It is
designed to sneak the user into programming, and y,et provide powerful and
immediate commands without creating programs. It is at the same "level" as
the text editor and will operate without system commands. [M1'4, Ml'6]

The BASIC should be an ANSI standard BASIC. It will be disk resident.

At the system level will be Pascal and a~macro assembler. The operating
system, invisible to the user, will be partly based on the concepts found in
the Sara operating system.

3. Network

Macintosh, however nifty its hardware and software, will not sell unless it
does something useful. 'The number of useful things a personal computer can do
with a notwork is vastly greater (probably by two orders of magnitude) than
what it can do without a network. Thus the modem/DAA is an essential part of
Macintosh, and Apple must provide, at the very least, hooks into va'rious
information services. [M3, M12]

4. Manufacturing and Service

The electronics and sof twa·re of Macintosh, as well as the physical packar,ing,
are being designed to allow economical manufacturing techniques and ease of
repair. The electronics will be conceptually modular, for example timing will
be done by one circuit instead of being distributed as it is on the Apple II.
The elimination of user options will streamline all aspects of the design.

5. Learning to use Macintosh

M23.0 Page 2

It is time to stop thinking exclusively in terms of writing manuals for
computer systems. Manuals are just one m~ans for accomplishing the real goal,
which is to teach the user how to operate the software and hardware. For this
teaching task, we must use whatever media arc most effective within our cost
and time constraints: it is essential to the success of -Macintosh that it
have a level of educational accessories (whether CAl, cassettes or whatever)
beyond even what present Apple products do. A major portion of the effort in
producing software for this product may go into its self-teaching aspects.

6. Personnel

At present Woz is working part-time on Macintosh. The detailed electronic
design and breadboarding is being done by Burrell Smith. A software designer
programmer will be hired. This team, along with myself and a support person,
will design and produce prototypes of the electronics, first drafts of the
language and hardware manuals and will write the major portion of the
software.

It is expected that these 4 full-time people will be able to carry the project
through the majority of the hardware and software design and execution stages.
The BASIC interpreter or compiler, the industrial designing, the disk and
printer hardware, the analog video and power supply design may require the
aid of engineering people outside the project personnel.

7. Accomplishments to date

The proportional font has been demonstrated; the majority of the electronics
has been designed and breadboarded; preliminary specifications far the editor
and a portion of the language have been prepared along with the outline and a
few chapters of the user manuals. Much information pertaining to the software
and hardware has been gathered, and many design choices [M2] have been made.

8. Immediate tasks

The following are some major tasks that should be completed in the next few
months.

A. A breadboarded version of the computer will be completed, this should be
done by 20 Feb 80, unless there are excessive delays in obtaining parts
(Smith).

B. The editor portion of the software should be written to be demonstrated by
15 March 80. This also entails a preliminary keyboard design. (Raskin)

C. The UCSD Pascal system should be brought up on the breadboarded
electronics by 1 April 80 (programmer to be hired).

D. A support person should be assigned to the project. Aside from being the
project librarian, this person will do some engineering and research tasks
(e.g. investigate current information services for small computer users).

E. A decision is required from engineering as to what kind of disk drives we
can expect for this project. 1 We prefer a dual disk drive on a single spindle
using something of the power of our present 16 sector technology.

M23.0 Page 3

{

THL MACINTOSH PROJECT

DOCUMENT 24 VERSION 1

TITLE: MACINTOSH FONT GENERATING PROGRAM

AUTHOR: JEF RASKIN

DATE: Dec 79

INTRODUCTION

With this program, on an Apple II screen, upper and lower case letters
(an average of 78 characters per line of normal English text) can be displayed.
On the 256 by 256 Macintosh display there will be at least 23 lines of
about 70 characters each, thus giving over 1600 characters on the screen.
}

(*$S+*)
PROGRAM MAKEFONT;

USES TURTLEGRAPHICS;

CONST INTERSPACE=l;
TALL=lC; (* Height of characters. *)

VERTSPACE=l; (* Pixels between successive lines. *)
LEFT = 12;
RIGHT = 267;
BOTTOM -= 0;
TOP = 189;

TYPE BYTE=0 •• 255;
BITMAP=PACKED ARRAyrO •• 9] OF BYTE;
FONTPOINTER=-FONT;
FONT=RECORD

WIDTHS: ARRAY[0 •• 127] OF INTEGER;
CHARDATA: ARRAY [0 •• 127] OF BI1MAP;

END;

VAR CURRENTFONT: FONTPOINTER;

FUNCTION BINARY(5: 5TRING):INTEGER;
VAR I,NUM: INTEGER;

BEGIN
HUM: -=0';
FOR I:-=LENGTH(5) DOWNTO 1 DO

BEGIN
NUM: -=NUM* 2 ;
IF 5(1]<>' , THEN NUM:=NUM+l;

END;
BINARY:=NUM;

END;

M24.1 Page 1

PROCEDURE MAKECHAR(ASCll,WIDTH: INTEGER;
S9,SB,S7,S6,S5,S4,S3,S2,SI,SO: STRING);

BEGIN
WITH CURRENTFONT~ DO

BEGIN
WIDTHS[ASCII):-WIDTH;
CHARDATA[ASCII, 9]:-BINARY(S9)
CHARDATA[ASCII, B]:=BINARY(SB)
CHARDATA[ASCII, 7]:cBINARY(S7)
CHARDATA[ASCII, 6]:cBINARY(S6)
CHARDATA[ASCII, 5]:cBINARY(S5)
CHARDATA[ASCII, 4):=BINARY(S4)
CHARDATA[ASCII, 3]:=BlNARY(S3)
CHARDATA[ASCII, 2):cBINARY(S2),
CHARDATA[ASCII, 1]:cBINARY(SI);
CHARDATA[ASCII, O]:=BINARY(SO);

END;
END;

PROCEDURE INIT3A;
BEGIN

MAKECHAR(3,0,", , ,

,
, ,) ;

MAKECHAR(8,0,", , ,

, ,
, ,

, , ,
, ,) ;

HAKECHAR(14,0,", , ,

, ,

, ,

M24.1 Page 2

, ,

,
, ,) ;

MAKECHAR(16,0,",

, ,

,
, ,) ;

MAKECHAR(32,1,'

MAKE CHAR (

MAKECHAR(

,

,

,

,
,) ;

33,1,'@',
'@' ,
'@' ;
'@',
'@' ,

'@' ,

'@' , , ,
, ,) ;

34,3,'@ @',
'@ @' .
'@ @' ,
, ,
, ,

,
, ,) ;

MAKE CHAR (35,5,' @ @',
, @ @',
'@@@@@' ,
, @ @',
, @ @',
'@@@@@' ,

M24.1 Page 3

END; (* INI!3A *)

PROCEDURE INIT3B;
BEGIN

, @ @',

, @ @',
,

, ,) ;

MAKECHAR(36,5,' @',
, @@@',

'@ @ @',
'@ @',
, @@',
, @@',
, @ @',
'@ @ @',
, @@@',
, @') ;

MAKE CHAR (37,4,'@@ @',
'@@ @',

l-IAKECHAR(

MAKECHAR(

MAKECHAR(

38,5,

, @',
, @',

, @',
, @',
'@ @@',
'@ @@',

,
, ,) ;

,
@' ,

'@ @' ,
'@ @' , , @' ,
'@ @ @' ,
'@ @' ,
'@ @ @' , ,

@ @' ,
,

, ,) ;

39,1,'@',
'@' ,
'@' ,

, ,
, ,
, ,

,
, ,) ;

40,3,
, @', , @',

M24.1 Page 4

'@' ,
'@' ,
'@' ,

'@' ,
, @',
, @',

,
, ,) ;

MAKE CHA R (41,3,'@',
, @',

END; (* INIT3B *)

PROCEDURE INIT4A;
BEGIN·

@' ,
, @',
, @',
, @',
, @',

'@' ,

, ,) ;

MAKECHAR(42,5,' @',
'@ @ @',
, @@@' t

'@ @ @' t

, @' t

, ,

t
, ,) ;

MAKECHAR(43,3,",
,

, @',
, @' t

'@@@' ,
, 0',
, @',

, , ,
, ,) ;

MAKE CHAR (44,2,",

,
, @',
, @'.

'@' •

M24. 1 Pagc> 5

END; (* INIT4A *)

PROCEDURE INIT4B;
BEGIN

, ,) ;

HAKECHAR(45,3,",

, ,

'@@@' , , ,
, ,

, , ,
, ,) ;

MAKECHAR(46,1,", , ,

, ,

,
'@',
'@' ,
, ,
, ,) ;

MAKECHAR (47, 4 , ,

,

@' ,

@' ,
@' ,
@' ,

, @',
, @',

'@' ,
'@' , , , ,
, ,) ;

MAKECHAR(4b,4,' @@',
'@ @',

'@ @',
'@ @@', .

'@@ @',
'@ @',
'@ @',
, @@',
, , ,
, ,) ;

MAKECHAR(49,4,' @',
, @@',
, @',

M24.1 Page 6

END; (* INIT4B *)

PROCEDURE INIT5A;
BEGIN

, @',
, @',

@' ,
, @',
, @@@',

,
, ,) ;

KAKECHAR(50,4,' @@',
'@ @',
, @' ,

@' ,
, @',
'@' ,
'@',
'@@@@,' , , , ,
, ,) ;

MAKECHAR(51,4,' @@',
'@ @',

@' ,
, @@',

@' ,
, @' ,

'@ @',
, @@',

,
, ,) ;

MAKECHAR(52,4,' @',
, @@',
, @ @',
'@ @',
'@@@@',

,
",) ;

@' ,

@' ,
@' ,

MAKE CHAR (53,4,'@@@@',
'@' ,
'@',
'@@@' ,
, @' ,
, @' ,

'@ @',
, @@', , ,

, ,) ;

M24.1 Page 7

~~CHAR(54,4,' @@',
'@ @',

END; (* INIT5A *)

PROCEDURE INIT5B;
BEGIN

'@' ,
'@',
'@@@',
'@ @',
'@ @',
, @@',
, , ,
, ,) ;

MAKECHAR(55,4,'@@@@',
, @' ,
, @' ,
, @',

, @',
, @',

, @',
, @',

,
, ,) ;

MAKECHAR(56,4,' @@',
'@ @',
'@ @',
, @@',
'@ @',
'@ @',

'@ @',
, @@',

,
, ,) ;

~~KECHAR(57,4,' @@',
'@ @',
'@ @',

, @@@',
,

@' ,

@' , .
@' ,

, @',

,
, ,) ;

HAKE CHAR (58,1,", , ,
, ,

'@',
'@', , , ,

M24.1 Page 8,

'@',
'@',
, ,
, ,) ;

MAKECHAR(59,2,",

END; (* INIT5B *)

PROCEDURE INIT6A;
BEGIN

,
, @',
, @',

,
, @',
, @',
'@' ,
, ,) ;

MAKECHAR(60,4,", , @',
@' ,

, @',
'@',
, @',

@' , , @', , ,
, ,) ;

MAKECHAR(61,3,",

" ,
'@@@', , ,

'@@@' , , ,
, ,
, , ,
, ,) ;

MAKECHAR(62,4,",
'@' ,
, @',

@',
@' ,

, @',
, @',
'@',
, , ,
, ,) ;

MAKECHAR(63,4,' @@',

M24.1 Page 9

'@ @',
, @' ,
, @',
, @',
, , ,
, @',
, @',
, ,
, ,) ;

MAKECHAR(64,5,' '"
, @@@',
'@ @' ,
'@ @ @',
'@ @@' ,.
'@' ,
'@' ,

, @@@@',
,

, ,) ;

MAKE CHAR (65,4,' @@',
'@ @',
'@ @',
'@@@@' ,

END; (* INIT6A *)

PROCEDURE INI76B;
BEGIN

'@ @',

'@ @',
'@ @',
'@ @',

,
, ,) ;

MAKECHAR(66,4,'@@@',
'@ @',
'@ @',
'@@@',
'@ @',
'@ @',

'@ @',
'@@@' ,

,
, ,) ;

HAKECHAR(67,4,' @@',
'@ @',
'@',
'@' ,
'@' ,
'@',
'@ @',
, @@',

M24.1 Page 10

, ,
, , } ;

MAKECHAR(68,4,'@@@',
'@ @',
'@ @',
'@ @',
'@ @', '

'@ @',
'@ @',
'@@@',

,
, , } ;

MAKECHAR(69,4,'@@@@',
'@',
'@',
'@@@' ,
'@' ,
'@',
'@',
'@@@@' ,

,
, , } ;

MAKECHAR (70,4,'@@@@',

END; (* INIT6B *)

PROCEDURE INIT7A;
BEGIN

, @' ,

'@' ,
'@@@',
'@' ,
'@',
, @' ,

, @' ,

,
, ,) ;

MAK£CHAR(71,4,' @@',
'@ @',
'@' ,

'@' ,
'@ @@',
'@ @',
'@ @',
, @@',
, , ,
, ,) ;

MAKECHAR(72,4,'@ @',
'@ @',
'@ @',
'@@@@' ,

M24.1 Page 11

'@ @' ,
'@ @' ,
'@ @' ,
'@ @' , , , ,
, ,) ;

MAKECHAR(73,3,'@@@',
, @',
, @',
, @',
, @',

, @',
, @',
'@@@' ,

,
, ,) ;

MAKE CHAR (74,4,' @',
@' ,
@' ,
@' ,
@' ,

,

, @',
'@ @',
, @@',

,
, ,) ;

MAKE CHAR (75, 5, , @. @' ,

END; (* INIT7A *)

PROCEDURE INIT7B;
BEGIN

'@ @',
'@ @',
'@@' ,
'@ @',
'@ @',
'@ @' ,
'@ @', , ,
, ,) ;

MAKECHAR(76,4,'@',
, @' ,

'@' ,
'@' ,
'@' ,
'@' ,
'@' ,

'@@@@' ,
,

, ,) ;

H24.1 Pace 12

MAKECHAR(77,7,'@ @',
'@@ @@' ,
~@@ @@' ,
'@ @ @ @',
'@ @ @ @',
'@ @ @',
'@ @' ,
'@ @' ,

,
, ,) ;

MAXECHAR(78,5,'@ @',
'@@ @',
'@@ @',
'@ @ @',
'@ @ @',
'@ @@',
'@ @@',

'@ @' , , , ,
, ,) ;

MAKE CHAR (79,4,' @@',
'@ @',
'@ @',

'@ @',
'@ @',
'@ @',
'@ @',
, @@',

,
, ,) ;

MAKE CHAR (80,4,'@@@',
'@ @',
'@ @',

'@@@' ,
'@',
'@',
'@' ,
'@',

, ,) ;

END; (* INIT7B *)

PROCEDURE IN IT SA ;
BEGIN
MAKE CHAR (Bl,5,' @@',

'@ @',
'@ @',
'@ @',
'@ @',
'@ @',

M24.1 Page) 3

'@ @',
, @@@',
, @' ,
, ,) ;

MAKECHAR(82,4,'@@@',
'@ @',
'@ @',
'@@@',
'@@' ,
'@ @',
'@ @',
'@ @', , ,
, ,) ;

MAKECHAR(83,4,' @@',
'@ @',
'@',
, @@',
, @' ,
, @' ,

'@ @',
, @@',

,
, ,) ;

MAKE CHAR (84,3,'@@@',
, @',

, @',

, @',
, @',

, @',
, @',
, @',

,
, ,) j

MAKE CHAR (85,4,'@ @',
'@ @',
'@ @',
'@ @',

END; (* INITtA *)

PROCEDURE INIT8B;
BEGIN

'@ @',.

'@ @',
'@ @',
, @@',

,
, ,) ;

MAKECHAR(86,S,'@ @',
, @ @' ,

M24.1 Page 14

'@ @' ,
'@ @' ,
, @ @',
, @ @',
, @',
, @',
, , ,
, ,) ;

MAKECHAR(87,7,'@ @' ,
'@ @' ,
'@ @ @',
'@ @ @' ,
'@ @ @' ,
'@ @ @' ,
'@ @ @ @', ,

@ @', , , ,
, ,) ;

MAKECHAR(88,5,'@ @',
'@ @' ,
, @ @',
, @',
, @',
, @ @',

'@ @' ,
'@ @' ,

,
, ,) ;

MAKECHAR(89,5,'@ @',
'@ @' ,
'@ @' ,
, @ @',
,

,

, ,

@',
@' ,
@' ,
@',

,
, ,) ;

MAKECHAR(90,4,'@@@@',

END; (* INIT8B *)

, @' ,

@',
@' ,

, @',

, @',

'@',
'@@@@' , , , ,
, ,) ;

M24.1 Page 15

PROCEDURE INIT9A;
BEGIN

HAKECHAR(91,3,'@@@',
'@' ,
'@' ,
'@',

. '@',
'@' ,
'@' ,
'@@@' , , ,
, ,) ;

MAKECHAR(92,4,'@',
'@',
, @',
, @',

, @',
, @',

,
, , ,
, ,) ;

@' ,

@' ,

MAKE CHAR (93,3,'@@@',
, @',
, @',
, @',
, @',

@' ,

@' ,
'@@@' ,

,
, ,) ;

MAKE CHAR (94,5,' @',

END; (* INIT9A *)

PROCEDURE INIT9Bj
BEGIN

, @ @',
'@ @',

, ,

, ,

, ,) ;

HAKE CHAR (95,4,", , ,
, ,
, , , , ,

H24.1 Page> 16

"

,
'@@@@',
, ,) ;

MAKECHAR{ 96,2,'@',

MAKE CHAR (97,3,

'@',
, @',

, ,
, ,

,
, ,) ;

' , , , ,

,
'@@@', , @',
'@@@' ,
'@ @' ,
'@@@',

,
, ,) ;

MAKE CHAR (98,3,'@',

MAKE CHAR (99,3,

END; (* INIT9B *)

'@' ,
'@' ,
'@@@' ,
'@ @',
'@ @',
'@ @',
'@@@',

,
, ,) ;

' , , , ,

'@@@',
'@' ,
'@' ,
'@' ,
'@@@',
, , ,
, ,) ;

PROCEDURE INITI0A;
BEGIN

MAKECHAR{100,3,' @',

M24.1 Page 17

, @',
@' ,

'@@@' ,
'@ @',
'@ @',
'@ @',
'@@@' ,

, ,) ;

MAKECHAR(lOl,3,",
, ,
, ,

t

'@@@' ,
'@ @',
'@@@',
'@',
'@@@' ,

t , ,) ;

MAKECHAR(l02,3,' @@',
'@' ,
'@',
'@@',
'@',
'@' ,

'@' ,
'@',

, ,) ;

MAKECHAR(103,3,", , ,

,
'@@@' ,
'@ @',
'@ ,@' ,

'@ @',
'@@@' ,
, @',
'@@@');

MAY~CHAR(l04,3,'@' ,
'@',
'@' ,
'@@@',
'@ @' t

'@ @',
'@ @',
'@ @',

t
, ,) ;

END; (* INITIOA *)

H24.1 Page 18

PROCEDURE INITIOBj
BEGIN
MAKECHAR(105, 1,",

'@',
,

'@',
'@',
'@',
'@',
'@',

,
, ,) j

MAKECHAR(lO&,2,",
, @',

,
, @',
, @',
, @',
, @',
, @',
, @',

'@@')j

MAKECHAR(l07,4,'@' ,
'@' ,
'@',
'@ @',
'@ @',
'@@' ,
'@ @',
'@ @',

,
, ,) j

MAKECHAR(l08,1,'@' ,
'@',
'@',
'@',
'@',
, @' ,

'@',
'@',

,
, ,) ;

MAKECHAR(109,5,",

, ,

'@@@@@' ,
'@ @ @',
'@ @ @' ,
'@ @ @' ,

M24.1 Page 19

'@ @ @', , , ,
, ' ,) ;

END; (* INITIOB *)

PROCEDURE INITIIA;
BEGIN

MAKECHAR(110,3,", , ,
, , ,
'@@@',
'@ @',
'@ @',
'@ @',
'@ @', , ,
, ,) ;

MAKECHAR(111,3,", , ,

,
'@@@' ,
'@ @',
'@ @',
'@ @',
'@@@' , , , ,
, ,) ;

I

MAKLCHAR(II2,3,", , ,

'@@@' ,
'@ @',
'@ @',
'@ @',
'@@@' ,
'@',
'@') ;

,MAKECHAR (113,3, , , ,

,
'@@@' , '

'@ @',
'@ @',
'@ @',
'@@@',

@',
, @');

MAKECHAR(l14,3,", , , ,

M24.1 Page 20

, , ,
'@ @',
'@@',
'@' ,
'@',
'@', , , ,
, ,) ;

END; (* INITIIA *)

PROCEDURE INlT lIB;
BEGIN
MAKECHAR(115,3,", , ,

,
'@@@' ,
'@' ,

'@@@' ,
, @',
'@@@',
"
, ,) ;

MAKECHAR(116,2,'@',
'@' ,
'@',
'@@' ,
'@' ,
'@' ,
'@',
, @',
, ,

, ,) ;

MAKECHAR(117,3,",

,
'@ @',
'@ @',
'@ @',
'@ @' t

'@@@' , , ,
, ,) ;

MAKECHAR(118,3,", , , , , , ,
'@ @',
'@ @',

"@ @',
, @',
, @',
, ,

M24.1 Page 21

, ,) ;

MAKECHAR(119,5,", , ,
, , ,
'@ @' ,

'@ @ @',
'@ @ @',
'@ @ @',
, @ @',

,
, ,) ;

END; (* IN IT lIB *)

PROCEDURE INITI2A;
BEGIN

MAKECHAR(120,3,", , ,

" ,
'@ @',
'@ @',
, @',
'@ @',
'@ @', , ,
, ,) ;

MAKECHAR(121,3,",

, , ,
'@ @',
'@ @',
'@ @',
'@ @',
'@@@' ,
, @',
'@@@');

MAKECHAR(122,3,", , ,
, , ,
'@@@' ,
, @',
, @',
'@',
'@@@' , , , ,
, ,) ;

MAKECHAR(123,3,' @',
, @',
, @',
, @',

M24. I Page 22

'@',
, @',
, @',
, @',
, @',
");

MAKECHAR(124,l,'@',
'@',
'@' ,

. '@' ,

'@',
'@',
'@',
'@' ,
'@',
, ,) ;

END; (* INITl2A *)

PROCEDURE INIT 12B j
BEGIN
MAKECHAR(12S,3,'@',

, @',
, @',
, @',
, @',
, @',
, @',
, @',
'@',
, ,) ;

MAKECHAR(126,S,",
, @',
'@ @ @', ,
, ,

" ,
" , ,

" ,
, ,) ;

END; (* INIT12B *)

PROCEDURE INITCHARSj
BEGIN

INIT3A; INIT3B
INIT4A; INIT4B
INITSAj INITSB
INIT6Aj INIT6B
INIT7A; INIT7B
INITBA; INIT8B
INIT9A; INIT9B
INITI0A; INITIOB;

@' ,

M24.1 Page 23

INITIIA; INITIIB;
INIT12A; INIT12B;

END;

PROCEDURE NEWLINE;
BEGIN

MOVETO(LEFT,TURTLEY-(TALL+VERTSPACE»;
, END;

PROCEDURE WCHAR2(CH: CHAR);
BEGIN

DRAWBLOCK(CURRENTFONT-.CHARDATA(ORD(CH)],l,O,O,
CURRENTFONT-.WIDTHS[ORD(CH)]+INTERSPACE,TALL,TURTLEX,TURTLEY, 5);

IF TURTLEX < (RIGHT - 8)
THEN MOVETO(TURTLEX+CURRENTFONT-.WIDTHS[ORD(CH)]+IN~ERSPACE,TURTLEY)
ELSE NEWLINE;

END;

. PROCEDURE HOME;
BEGIN

MOVETO(LEFT,TOP-(TALL+VERTSPACE»;
END;

PROCEDURE POKE(LOC,VALUE:INTEGER);
TYPE WINDOW = PACKED ARRAY[O •• O]OF CHAR;
VAR ADDR:INTEGER;
P: WINDOW;
BEGIN

ADDR := LOC;
MOVELEFT (ADDR,P,2);
P-[O] := CHR(VALUE);

END; (*POKE*)

PROCEDURE SEND(CH: CHAR);
BEGIN

UNITWRITE (6,CH,1,O,12);
END;

PROCEDURE UNIDIRECTIONAL;
CONST MAXBYTE = 255;

DIRECTION ~ -12529;
BEGIN

POKE (D IR ECT ION, MAXB YT E).
END; (* UNIDIRECTIONAL *)

PROCEDURE PRINTPIC;
CONST CQ = 17;
BEGIN

UNIDIRECTIONAL;
SEND (CHR (CQ»;(* DISPLAY THE PICTURE *)

END;

M24.1 Page 24

PROCEDURE INTENSITY (DARK:INTEGER);
CONST INTEN ~ -12528;
BEGIN

IF DARK < 0 THEN DARK :~ 0;
IF DARK> 7 THEN DARK := 7;
POKE (INTEN,DARK);

END;

PROCEDURE ECHO;
VAR I:INTEGE}{;

CH:CHAR;
BEGIN

INITTURTLE;
FILLSCREEN (REVERSE);
HOME;

REPEAT
READ (KEYBOARD, CH) ;
IF EOLN(KEYBOARD)

THEN
BEGIN

NEWLINE;
WRITELN;

END
ELSE

BEGIN
WCHAR2 (CH) ;
WRITE (OUTPUT,CH);

END;
CASE ORD(CH) OF

8: MOVETO(TURTLEX-2,TURTLEY); (* graphic backspace *)
14: FILLSCREEN (REVERSE);
16: HOME;
102: MOVETO(TURTLEX-l,TURTLEY); (* ligature on lower case "f" *)

END (* OF CASES *)
UNTIL ORD(CH)=3;

intensity (6);
printpic;
T~XTMODE;

END;

BEGIN (* MAIN PROGRAM *)
NEW (CURRENTFONT); .
INITCHARS;
WRITELN ;'
WRITELN ('START TYPING. CTRL-C TO QUIT, CTRL-N FOR BLACK-ON-WHITE.');
WRITELN ('CTRL-P HOMES, CTRL-H (LEFT ARROW) BACKSPACES GRAPHICALLY.');
ECHO;
WRITELN;
WRITELN('TEST COMPLETE');

END.

M24.1 Page 25

31

18

38

21

17
If,

I~

Itl
13
Il..
1/
1{fJ
q
B
't
b
!)

4
3
1-

...

l'i J

,

QLJ V]

~G;:D:rLL 'A~ ::-l "'8'/ Q J LJ~
11 'iz. 5" It L.!L '(1-w~ L-1J..> LS/0Q I> LSI(l)q -I W
o....~ .1- f t tL~ 'I" ~ K'S' R' 0,' K'S' R' Q'
<t:U1

II I'S" Sl /
~ -

- 1 RES'

~R/W' -----....

'---

GD
--ri'O'1

SEL' -- 3 - I RDY -- 2-

01

~ DG
DS"
D4-
D3

V D2
DI
D~ -

-
A/5~ 1[\

15 ~ ~4- re' C.LI<.

< A/3 At ___ JH~ 1/ 5 I
'----_.- 11

fb J 5' p.: <--AJ.~ 1 G QH ,~-~ Q
0.~ I

___ /~~
F "l(' 'IL __ It[! .. IJ> A/0 1 E 1ljlf.G - LS/mq

~
J K' "w'" ~1}-

1 D Q' '1-. C I
3 :-- I B At L AflJ A AG C.t.!1f st:R. CL..'

AS" P 1
9

A'f
A3 -
A2 V ~~ Am

25"<!5J ! ! 1 :t J f----D-.Jl.----C)--Q---1¢~~~\ 5N=r S
If,

L

-~

IL-

I

IflJ

-J~
q

J
a

1[\

1/ If..

~ J S' ,,' Q 10

121"> '17..
LSI~q

~'~ K' Q' :L
11_ II

" __ Ia~ Ot-
J9._ .• 13 D? 01

5" t-L1 .. _/6.-
ILf I!;

6 t-L~. .Jl--
LS31-'f-8 3_

__ 7~ _6_ .•
--~ .. t--~.
~. D0 QIb l

c;> f
-It I

II
B ---OF-

D1 I4J8-I-- - 0.1
._.16_. '.L_f __

---L~ ,..L'L-
11 13
q LS3'1lf .B_
6 ~'J_
s- 14'1·

Z D(JJ l..-~-Q0
I c.1>

111

-1-

Ie;

10
OE'

A'7 rId
I

1.3 ric
1 f-G-. IIh

ALf 3 rIa
A/5 fI IQld

I .--1!!:~ Imc
1 ~-. Imb

I\ll ---1.. .. Imd

LS2..S1<
IS"
(..l~-

A3 Iq)
rid

1 -----L3.. rIC.

I --(:)~ rIb
A0 3 rIo
All /I LflId

I I'f IGIC

--~rmb 1

AS Icl'C1

r----..--...,...- A.x' I 1 &')
l,P .
i

I
.s

Yd

Yc.

Yb

Yo

f
,S

y~

Yc

Yb

'fa

q

12-

1-

'f-

- r-qt;(
Jon:
RIll" I r l

t---.
L-(;,·lt

'- -
__ L\

I",
-

t-...t .:
~: t
>/

-
tn --?

1 c -
!./If": J

v 1

:r. ..

\7 ,..--_ ..
~l.

DC,
1--' - .-

t--~~
-~.~

_

I ' r.. I~

1'1

• f l

I IL ~-
IlL -----
Ot

-:"_-

Dill

I " :-1 :','
:.J '1

-'-

"'~
rXJ

1\1\""
,-!,-,~

j'P-.,/\t-,
~r;_

Il\~;"
.'L

I I-q-- II,M\
!' -'. ~l'l

L1.. __ --rJ\,~
L....!.' 1. 1 J

1 [\i. ~IL

'..I I -'L-C;-: 0C1_

"Pp'LE J[- ,"i;' C IN ros H N"'f\ 1
oro... I ~-::::",i~'~'I_

1_"_"_0 . ..::2,-' '-=-)_-r:~-([::.;.) _______ -,-E_··_···_·"_(J~' __

II<.

q D(b

Iq) DI
1/ D2.
12. DJ
(.3 D4-
Iff 1'5"
15 Db
IG])'+

t
l
3
'I-
5"
G
f-
a

·i ..------4 ~s ') C 3)

A flll----~2-~
A 13 ___ -.!.l.. •

AIZ :p--
'" II s 6
A/~·----

A7 q

A8 I~!O .. V13
r::.-,.-4-i

~ ___ l __ " ______________ ~
~I!

L ,.r
1
I D III -

)1LLlLJI ~

[

- ",",~ L: T' ,,' N" -'---:-'-I' f::"!-:-' ---...:.~
:'1 rr·J 5 E " M R ~

CS 7 r:q~
VSS=I , VCe. "! "1-

68(l)qE

:..:.:.....:.- - - - - - - - - - - - - - ""

RI\M 3
P..IW

AAM A-S '
'f

flAM CAS' 'S"

S-

?

_b

--'?-

"
r~:

_I}

~v

P.. ... s
CAS

A2

I

A7-

q

AI

:~ I'f 13 12 If I.} q 8

1. 51

"j'/::.(;:r~~u M'G L"a.'"

C-: ;A Tl='\ I\'J: L'l3l.

PaC:"'-;.<'; IWI:. LSIl.l\".

D<Zl PE.I-----.

"

-. ~ J. .. _. ~ ,. A

~5L~1 ~ !~L~ ,:.r 1/3
(l) (2 3' 0 I 2... 3

OE~ A ~ R

O£b

"...}
T\ES'4' l

.1. 1

toll. v '"I' • •

I.

__ ._._1
;t_ J ~'- ~ t .. ; ~
,.\~. C.f' ~

Q •. __ . __ 11 q7 D7- :e '.
CAS' __ .. __ /G .I? - ./

(e (~ j R AS' 4 -. J. i I

/If 51.) 833f,;' 4 _-1~ :3 i l : ! I
E 4-- .• -- I :_! : I, I

A X' 4 -- 1--'':' I I I
l - I: I ! j ~--,.----.----- r II- I' Iii i

SE RC L k 4-- - .. -.' ! I ' I II
LD P 5' 4-- -1"l cf:~~? 3. i II 'Ii I

/'l;, A'", 1) fJj L I "

_iL I I l. I
_/2 3. __ . 'I

·.3 .IL ..

2- SI Yo i'L

t q

1\..: ~").

I.Y N~ 5.. J
J~ ..
? -- -- ~

<L

MAtINTO':lH

t------------------,r-c ... , .. ~-_ .. -_.-.. -~-

THE MACINTOSH PROJECT

DOCUHENT 25 VERSION 1

TITLE: THE COMPLETELY DISTRIBUTED COHHUNICATIONS NET\.,'ORK

AUTHOR: JEF RASKIN

DATE:lt FEB 1980

o. INTRODUCTION

Previous lfacintosh documents have made a case for the establishment of a
communications network as being essential to the large- scale sales of
personal computers. This realization is not unique to Apple, of course, but
is being increasingly recognized by many segments of the computing
community. The most important question is: How can Apple establish
communications ne.tworks for our customers in a timely and economical fashion?

1. WHAT IS A COMMUNICATIONS NETWORK?

A'communications network consists of addressors who generate messages and
addressees for whom the messages are intended; and a set of potential pathways,
that join all possible pairs of addressors and addressees. Addressors and
addressees are usually people. Each person in the network has both a sender
and a receiver which are devices that effect the generation, transmission and
delivery of messages.

An addressor generates a message, transmits it over a pathway by means of the
sender; an addresee receives the message on the receiver. This formalism
describes, for example, the familiar telephone communication network. The
usual television and radio "networks" are not communications network~ in the
sense being discussed here since they are unidirectional.

We must distinguish, in our communications network, between the sending of a
message, its transmission, and its reception. A message is sent_when the
addressor consigns it to the network. The network may have to store the
message until a transmission pathway becomes available. Thus the time at
which a message is sent may not be the same as when it is transmitted. In any
case, the two actions are distinguishable. (We can further distinguish
between the time a message is generated, and the time it is sent.) , ",'

Likewise, at the receiving end, the receiver or addressee might not· be
available. Thus the network (or the receiver) may have to store it. The
time at which a message is transmitted may not be the same as when it is
received. And the time at which it is acquired by the receiver may not be the
same as the time when it is (finally) read by the addressee. Again, in any
cap~, the actions of recep~ion and reading differ.

These distinctions .:re, of course, not necessary with the usual use of the
telephone network, which may be described as a "real time" network. One of
the benefits of a non-real-time network is immediately apparent to anyone who

'121.1 Page 1

has had to work across time zones--or who wishes to speak ~o someone on a
radically different schedule.

In summary, then, the actions are:

Generation --> Sending --> Transmission --> Reception --> Reading

The corresponding actors are:

Addressor •••••• Sender •••••• Pathway •••••••••• Receiver •••••• Addressee

1.1 THE ABILITIES OF A NETWORK

The personal computer network must have these abilities:

a. An addressor may, at any time, generate and, at that or any later time
send a message.

b. An addressor may inquire as to whether a message has been read by the
addressee, and possibly inquire as to the exact state of the message (sent or
not, in transmission, received or not, read or not).

~

c. An addressee may inquire as to the presence of received messages for him
or her, and read any or all of them at will.

2. ~VHY WE MTJST HAVE PERSONAL CONPUTER NETWORKS

It is pretty clear from the amount of activity going on in the field that this
is a "hot" area. The reason that it is so popular is that there is not much
most individuals can do with a single, isolated computer. Yet, with access to
a number of data bases and message sending and receiving ability, it is
possible to see many uses of personal computers that are neither esoteric nor
difficult. A previous Macintosh paper discusses this issue.

3. THE COMPLETELY DISTRIBUTED NETWORK

The ordinary telephone network is not distributed at all (from the point of
view of the user). Each telephone has only the ability to passively receive
a message, or to initiate the sending of one. What intelligence the system
has, and its control, resides elsewhere.

It "is useful to define a node as a place on the network where one or more of
message generation, sending, reception, and reading may take place. A node
ma~, as a consequence, perform a switching function--i.e. receiving a message
and then sending it on one or more pathways for whatever reason.

A terminal node has exactly one bi-directional path leading to it.

A distributed system is one where each terminal node has some control, but
where there are non-terminal nodes which can control the flow of information
about the network. These non-terminal nodes may also generate, ~tore, monitor
or act on messages.

In a completely distributed network, all intelligence and control resides

at terminal nodes.

In the completely distributed network being con~idered here, the terminal
nodes are personal computers, and the· pathways are ordinary telephone lines.

4. HOH THIS COMPLETELY DISTRIBUTED NETHORK OPERATES

The terminal node for each person is a computer. When an addressor sends a
message his or her computer stores it. The message contains the "address" of
the addressee, which in this case is probably the addressee's telephone
number. The computer (as soon as it can) attempts to dial the addressee's
phone. It can recognize whether or not the phone is answered by the
addressee's computer. If it is not properly answered, it tries again after a
certain delay (there are reasons for making the delay a constant plus a random
time). It will continue making these attempts until the message is received
and acknowledged--or until the message is deleted from the list of messages
waiting to be sent by the addressor.

Since the computer has a real-time clock, it can be instructed to wait until
low night telephone rates are in effect (or until some other condition is met)
before it transmits messages.

At the receiving end, the computer, when an incoming call arrives, determines
whether it is a computer call or a human call. If it is a human call, it
allows the telephone bell to ring, and ignores the call thereafter. If it is
a computer call, it stores the message, and sends out the acknowledgement
message. If it has been instructed to'do so, it will display the message as
it arrives, if not, it will store it until the addressee wishes to see it.

4.1 SOME PROBLEMS '-lITH A COMPLETELY DISTRIBUTED NETWORK

If a message is sent, but the receiving computer is not attached, a person on
the receiving end may answer the phone and discover a tone. If the receiver
is available, there should be enough time allowed to plug it in, but if not,

''''',
S

dthiestCral0blultWl.edolnlebtweowrkasgtl:vde.n This is a definite problem with a completely
. current phone tariffs and technology.

A broadside (a message to many addressees) can be sent by havin~ a file of
many telephone numbers, all of which are sent the same message. But it is in
the area of dealing with classes of users that the completely distributed

. system is weakest compared to a partially distributed system. For example, if
a person wanted to correspond with ~ll others interested in, sa~, butterfly'
collecting, it would be relatively easy for a central computer to put out such
a dotice--since it would have the addresses of all users. In a completely
distributed system it would take many fruitless calls to try to find these
users.

On the other hand, the completely distributed network assures a great degree
of privacy to the individuals involved.

'. message may t· :'"orwarded by merely indicating to the addressee that it is to
be forwarded. 1 suspect that any automatic forwarding scheme will unduly
raise the hackles of the phone company.

U25.1 Page 1

5. SECURITY

f lrity is not e ~esponsibility of the network, but of the individual users
01 the network. 10_1 users of the network must assume that transmissions
are public. Therefore, a user wishing to make a secure communication must
take ~esponsibility for encryption and subsequent decoding by the addressee.

This shifts the burden of privacy away from the network itself. It might be
observed that security software is a salable commodity.

6. LEGAL AND REGULATORY PRORLEMS

The use of computers over the telephone network poses a number of problems for
the telephone company. As discussed in a earlier Macintosh document, the
'useage statistics are skewed when computers talk' to eachother. In addi tion,
some time-slice methods now in use for compressing many conversations into a
single broadband channel may play havoc with schemes for getting greater
transmission speeds (in excess of 300 baud) between terminal nodes. There mAy
even be difficulty at 300 baud.

Aside from any genuine difficulties that a computer communications network may
cause the telephone system, we must be concerned with the possibility of their
attempting to derive added revenues whenever digital communications are used.
This, too, was discussed in document M3, to which you are referred.

There are pathways other than the telephone system, but they may not be in
place quickly enough for our present needs.

7. DATA BASES

A data base may be considered a "person" who is the addressee of requests for
information, and who responds by sending messages consisting of the desired
information. No new network protocol is required--but the form of messages
received by the data base will have to be carefully contrived.

Companies that provide data bases may also provide message services. The use
of data bases is discussed in M3, which includes a list of applications as
well as possible vendorb.

8. THE REQUIRED INFORMATION EACH MESSAGE CONTAINS

A protocol will have to be established so that messages contain sufficient
information to keep the network in operation. For example:

a. Date and time sent.

b. Addressor

c. Addressee (which may be a class)

d. items a, band c of the message being responded to (if any).

The questions of pro!ocols, both electronic as well as interpersonal have been
widely discussed. A planned (but not yPt promised) Macintosh document may

M25.1 Page 4

cover this in ~reater detail. ln the meantime, a model based on the PCNET (P.
O. Box E, Menlo Park, CA 94025) protocols or the Arpanet heading conventions
may be kept in mind (See The Network Nation by Hiltz and TUTOff).

M2S.l Page S

	00-01
	00-02
	00-03
	001
	002
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	13-01
	14A-01
	14A-02
	14A-03
	14A-04
	14A-05
	14A-06
	14A-07
	14A-08
	14A-09
	14A-10
	14A-11
	14B-12
	14B-13
	14B-14
	14B-15
	14B-16
	14B-17
	14B-18
	14B-19
	14B-20
	14C-20
	14C-21
	14Y-01
	14Y-02
	14Y-03
	14Y-04
	14Y-22
	14Z-01
	14Z-02
	14Z-03
	14Z-04
	14Z-05
	14Z-06
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	18-01
	18-02
	18-03
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	22-01
	22-02
	22-03
	22-04
	23-01
	23-02
	23-03
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	25-01
	25-02
	25-03
	25-04
	25-05

