
Power MachTen

User’s Guide

1123 Chapala Street, Santa Barbara, CA 93101
TEL 805-963-6983 • FAX 805-962-8202

1-800-6-MACH-10
info@tenon.com • http://www.tenon.com

New Dimensions in Personal Workstation Technology

Copyright 1998 Tenon Intersystems
All Rights Reserved
Printed in USA

Tenon, MachTen, Power MachTen and the Tenon logo are trademarks of Tenon Intersystems.
X Window System and X11 are registered trademarks of MIT.
Apple, Macintosh and Power Macintosh are registered trademarks, and Finder is a

trademark of Apple Computer, Inc.
UNIX is a registered trademark in the United States and other countries, licensed

exclusively through X/Open Company limited.
All other product names are trademarks of their respective holders.

09/98

Power MachTen User’s Guide i

TABLE OF CONTENTS

1.0 Power MachTen — UNIX on the Macintosh
Desktop 1

1.1 The MachTen Desktop 3

1.1.1 MachTen Terminal Window Desktop 4

1.2 The MachTen “UNIX Virtual Machine” 6

1.3 The MachTen Architecture 7

1.3.1 Dynamic Memory Configuration 7

1.3.2 Dynamically Linked, Shared Libraries 7

1.3.3 Memory Mapped File Access 9

1.3.4 Integrated Software Development Tools 9

1.3.5 Native Fast File System 9

2.0 Installing MachTen 11

2.1 Performance Tuning — Optimizing MachTen 21

2.1.1 System Optimization Guidelines 22

2.1.2 How Can You Tell When a System is Approaching
Its Limits? 25

2.2 Reinstallation 26

2.2.1 Reconfiguration 28

2.2.1.1 Automated Reconfiguration 28

2.2.1.2 Manual Reconfiguration 29

2.2.2 Accessing MachTen Sources from the CD-ROM 30

2.3 Troubleshooting 31

Power MachTen User’s Guideii

3.0 The MachTen Control Panel 33

3.1 Scheduling Priority Slide Bar 34

3.2 Configuration Screens 34

3.2.1 General Configuration Screen 35

3.2.1.1 Host Name 35

3.2.1.2 Time Zone 36

3.2.2 Memory Configuration Screen 36

3.2.2.1 Maximum Number Parameters 37

3.2.3 Networking Configuration Screen 38

3.2.3.1 Enable IP Forwarding 39

3.2.3.2 Enable Incoming Mail 39

3.2.3.3 Enable Incoming Connections 39

3.2.3.4 Internet (IP) Addresses 40

3.2.3.5 Netmasks 42

3.2.3.6 Maximum Transmission Unit Settings 42

4.0 Launching MachTen 45

4.1 The MachTen Login Console 49

4.2 MachTen Windows 52

4.2.1 The Apple Menu 53

4.2.2 The File Menu 53

4.2.3 The Edit Menu 54

4.2.4 The Window Menu 56

4.2.4.1 The Positions Sub-Menu 57

4.2.4.2 The Size Sub-Menu 58

4.2.4.3 The Order Sub-Menu 59

4.2.5 The Fonts Menu 61

Power MachTen User’s Guide iii

5.0 MachTen Administration 63

5.1 A Word About Man Pages 64

5.2 Tailoring the Startup Environment 65

5.2.1 Setting Up MachTen to Boot Automatically 67

5.2.2 Manual Startup 67

5.3 Tailoring MachTen Windows 68

5.4 Tailoring Your UNIX Environment 69

5.5 Quitting MachTen 70

5.6 Login Accounts 71

5.6.1 The Concept of a Home Directory and
a User Environment 71

5.6.2 The UNIX Shell 72

5.6.3 Superuser and Privileges 72

5.6.4 A Word About Security 73

5.6.5 The Root Password 74

5.6.6 Setting Up User Accounts 75

5.6.7 The Password File 77

5.6.8 The Group File 78

5.6.9 Administrative Login Accounts 80

5.6.10 Writing to All Users 81

5.6.11 Disabling User Logins 82

5.6.12 Removing Users 82

5.6.13 Changing the Message-of-the-Day 82

5.6.14 Special Characters 83

5.7 Managing Your UNIX Environment 84

5.7.1 What’s Running? 84

5.7.2 Killing a Program 85

5.7.3 Background Program Execution 85

5.7.4 Shell Files 86

Power MachTen User’s Guideiv

6.0 The MachTen File Systems 87

6.0.1 Fast File System (FFS) 87

6.0.2 UNIX File System (UFS) 87

6.1 UNIX Fast File System Overview 88

6.1.1 File System Organization 88

6.1.2 File Names 89

6.1.3 Access Permissions 89

6.1.4 Time Stamps 89

6.1.5 Link Counts 90

6.1.6 Hard Links 90

6.1.7 Symbolic Links 90

6.2 Macintosh Hierarchical File System Overview 91

6.2.1 File System Organization 91

6.2.1.1 Volumes and Folders 91

6.2.1.2 File Contents 92

6.2.2 File Names 92

6.2.3 Access Permissions 92

6.2.4 Time Stamps 93

6.2.5 Aliases 93

6.3 MachTen FFS 93

6.3.1 FFS Within a File 93

6.4 MachTen UFS 94

6.4.1 File Names 94

6.4.1.1 Maximum Number of Characters 94

6.4.1.2 Case-Sensitive File Names 94

6.4.1.3 Component Separators 95

6.4.1.4 Non-Printable Characters 95

Power MachTen User’s Guide v

6.4.2 Linked Files 96

6.4.2.1 Hard Links 96

6.4.3 Directory Link Counts 97

6.4.4 Locked Files 97

6.4.5 File Types 97

6.4.6 File Permissions 101

6.4.7 Time Stamps 102

6.5 MachTen Root File System Layout 103

6.5.1 The root Directory Tree 103

6.5.2 The usr Directory Tree 104

6.5.3 The var Directory Tree 105

6.5.4 Major System Administration Files 106

6.6 Mounting Macintosh Volumes 107

6.6.1 Mounting Permissions 107

6.6.2 Automatic Mounting of Removable Media 108

6.6.3 Unmounting Macintosh Volumes 108

6.6.4 Automatic Unmounting 109

6.6.5 Formatting Floppies 109

6.7 Accessing Macintosh Files from UNIX Applications 110

6.7.1 AppleSingle Encapsulation 110

6.7.2 Differentiating UNIX and Macintosh Files 110

6.7.3 Utilities for Manipulating Macintosh Files 111

6.7.3.1 dfork and rfork 111

6.7.3.2 finderinfo 111

6.7.3.3 restool 111

6.8 Text File Manipulation 112

6.8.1 Alternating Between Macintosh and UNIX Text 112

6.8.1.1 mactext 112

6.8.1.2 unixtext 113

Power MachTen User’s Guidevi

6.8.1.3 Unix <-> Text 113

6.8.1.4 dfork.text 113

6.8.2 Editing Tools 114

6.8.2.1 UNIX Editors 114

6.8.2.2 Macintosh Editing Applications 114

6.8.3 UNIX to Macintosh “Copy-and-Paste” 114

6.9 File System Administration 115

6.9.1 Creating File Systems 115

6.9.1.1 Creating an FFS Within a File 115

6.9.2 Checking/Repairing File Systems 116

6.9.2.1 fsck 116

6.9.2.2 Fast File First Aid 117

6.9.3 Mounting File Systems 117

6.9.3.1 Mounting an FFS Within a File 117

6.9.3.2 Mounting a Macintosh Volume 118

6.9.4 Unmounting File Systems 118

6.9.5 Removing File Systems 118

6.9.5.1 Removing an FFS Within a File 118

6.9.6 Space Management 119

6.9.7 Backing Up and Archiving File Systems 120

6.9.7.1 Tape Devices 120

6.9.7.2 tar 121

6.9.7.3 dump and restore 122

Power MachTen User’s Guide vii

7.0 The MachTen Network File System (NFS) 123

7.1 Using NFS 124

7.2 How NFS Works 124

7.3 Setting Up an NFS Server or an NFS Client 125

7.3.1 Server Exporting 126

7.3.2 Client Mounting 126

7.3.3 Set-Up Summary 128

7.4 NFS Volumes on the Macintosh Desktop (Desktop NFS) 130

7.4.1 Desktop NFS Volume Mounting 131

7.4.1.1 Automatic Mounting of Desktop NFS
Volumes 132

7.4.2 Macintosh Record Locking on Desktop NFS
Volumes 132

7.4.2.1 Bwnfsd UID and GID Mapping 133

7.4.3 Authentication Options 133

7.4.3.1 Credentials of Current User 133

7.4.3.2 Prompt for Username and Password 134

7.4.3.3 Username and Password on
Command Line 134

7.4.3.4 User ID and Password on Command
Line 135

7.4.4 File System Security 135

7.4.4.1 AppleShare Access Privileges 135

7.4.4.2 UNIX Access Privileges 136

7.4.4.3 Mapping AppleShare Access Privileges
into UNIX Access Privileges 137

7.4.4.4 Access Privilege Strategies 138

7.4.4.5 Differences Between Apple File
Sharing and Desktop NFS 139

7.4.5 AppleDouble 139

7.4.6 DOS Extensions 140

Power MachTen User’s Guideviii

8.0 Configuring NIS Under MachTen 143

8.1 NIS Basic Configuration Steps 143

8.2 Set YP Configuration in /etc/yp.conf 144

8.3 Set NIS Configuration in /etc/nis.conf 144

8.4 Set NIS Database Search Order 145

8.4.1 The Default /etc/nsswitch.conf File 145

8.5 Testing the Basic NIS Configuration 147

8.6 Configure MachTen for Automatic Portmap and
Ypbind Startup 148

9.0 Printing 149

9.1 MachTen Print Spooling 149

9.1.1 The Print Spooler Database 150

9.2 Local Printing 150

9.2.1 Printing Text Files to a PostScript LaserWriter
on AppleTalk 151

9.2.2 Printing to an ImageWriter or a DeskWriter 151

9.3 Remote Printing 154

9.3.1 Spooled Printing to a Remote UNIX Printer 154

 9.3.2 Receiving Remote Print Jobs 155

9.4 Selecting an Alternate Printer 156

9.5 Extending Remote Printing to Macintosh Applications 157

9.5.1 Lwsrv Configuration Files 158

9.5.1.1 Font Lists 159

9.5.1.2 PostScript Macros 159

9.5.2 Enabling lwsrv 160

9.6 Print Job Status Mail Notification 161

9.7 Status and lp Management Programs 162

Power MachTen User’s Guide ix

10.0 Networking with MachTen 163

10.1 Using OpenTransport or Replacing OpenTransport 164

10.2 Configuring Tenon TCP or Dual Stack Networking 167

10.3 Using MachTen as an Internet Host 168

10.3.1 The MachTen Networking Control Panel 169

10.3.2 Configuring Multiple Interfaces 169

10.4 Using MachTen as a Domain Name Server 170

10.4.1 Configuring MachTen as a Domain Name Server 170

10.4.2 The Domain Name Resolver 172

10.5 Using MachTen as a Web Server 173

10.5.1 Importing Macintosh Image Files 173

10.5.2 Multihoming Your MachTen Web Server 174

10.6 Using MachTen as a Router 175

10.6.1 Invoking IP Forwarding 176

10.7 Dual Stack Configuration 177

10.7.1 More RAM 177

10.7.2 Cross Talk 177

10.7.2.1 Routing Between MachTen and
OpenTransport 178

10.8 Using MachTen as a POP Mail Server 180

10.9 Using Electronic Mail 180

10.10 Using FTP 183

10.11 Using MachTen as an Anonymous FTP Server 183

10.12 Using Telnet 184

10.13 Using a Distributed File System (NFS) 184

10.14 Using Berkeley r-series Commands 185

10.15 Using Serial Line Communications 186

10.15.1 Cabling and Connectors 186

10.15.2 Matching Serial Ports to UNIX Devices 186

Power MachTen User’s Guidex

10.15.3 Baud Rates Supported 187

10.15.4 General Purpose Interface (GPI) Serial Cable 188

10.15.5 Connecting a Modem to a MachTen Serial Port 189

10.15.6 Connecting a Terminal 189

10.15.7 Configuring the System to Support an ASCII
Terminal 190

10.15.8 Using PPP 190

10.15.8.1 Setting up MachTen PPP on Your
Macintosh 191

10.15.8.2 Configuring your MachTen System as
a PPP Server 191

10.15.8.3 Configuring your MachTen System as
a PPP Client 194

10.15.8.4 IP Addressing Strategy for Multiple
PPP Clients 196

10.15.9 Using SLIP 197

10.15.9.1 Configuring MachTen to Dial Out to
SLIP Servers 197

10.15.9.2 Tip Activity Log 198

10.15.9.3 The Tip Configuration Database 198

10.15.9.4 Hardware Flow Control 200

10.15.9.5 Tip Login Script 201

10.15.9.6 Header Compression 202

10.15.9.7 Setting a Default Route 202

10.15.9.8 Setting the MTU 203

10.15.10 Configuring MachTen as a Dial-In SLIP Server 203

10.15.10.1 Serial Port Set Up 203

10.15.10.2 Login Authentication 204

10.15.10.3 The Sliplogin Program 205

10.15.10.4 SLIP Session Termination 205

10.15.10.5 Manual Connections to SLIP Servers 206

Power MachTen User’s Guide xi

10.15.10.6 Logging In 207

10.15.11 Starting SLIP 207

10.15.11.1 Testing Connectivity 208

10.15.11.2 Stopping SLIP 209

10.15.11.3 C-Shell Scripts to Expedite SLIP
Connections 210

11.0 MachTen Programming Environment 213

11.1 MachTen Development Tools 213

11.1.1 Programs, Libraries and Include Files 213

11.1.2 Documentation 217

11.1.3 Program Sources 218

11.2 PEF and XCOFF 219

11.3 Shared Libraries 219

11.3.1 Shared Library Production 220

11.3.2 Run-Time and Compile-Time Libraries 220

11.3.3 Run-Time and Compile-Time Naming
Conventions 221

11.4 Traditional UNIX Libraries 221

11.5 Header Files 222

11.5.1 Pre-Defined Names 222

11.6 Compiling Sources 224

11.6.1 Ada 224

11.6.2 C 225

11.6.3 Objective-C 226

11.6.4 C++ 226

11.6.5 Fortran 227

11.6.6 Java 228

11.7 Linking Executables 229

Power MachTen User’s Guidexii

11.7.1 ld 229

11.7.2 mkpef 229

11.8 To make or pmake 230

11.9 Symbol Information 230

11.10 Debugging 231

11.10.1 Debugging using gdb 231

11.10.2 Macintosh Debugging Tools 232

11.10.2.1 MacsBug 232

11.10.2.2 Macintosh Debugger for PowerPC 233

11.10.2.3 Metrowerks Debugger 233

11.10.3 Environment Variables for Debugging and
Monitoring 234

11.10.3.1 DEBUGGERFIRST 235

11.10.3.2 STACKCHK 235

11.10.3.3 MEMSTATS 235

11.11 Making Macintosh Applications 236

11.11.1 Macintosh OS Header Definition Files 236

11.11.2 Macintosh OS Interface Libraries 237

11.11.3 Macintosh Application Startup Routine 238

11.11.4 Macintosh Application Construction 239

11.12 Cross-Development Tools and Targets 240

11.12.1 Default MachTen Environment 240

11.13 Porting Software to MachTen 241

11.13.1 Real Memory Issues 241

11.13.1.1 Stack Overrun 241

11.13.1.2 Allocating Memory in MachTen 242

11.13.1.3 Calculating Memory Requirements 243

11.13.1.4 Setting the MachTen Heap Size 244

11.13.1.5 Problem Areas 245

Power MachTen User’s Guide xiii

11.14 Programming Example 247

11.14.1 Rogue 247

11.14.2 Building the Executable 247

11.14.3 Debugging Using MacsBug or Other Macintosh
Debuggers 248

12.0 The X Window System 249

12.1 The X Desktop 250

12.1.1 Starting the X Server 250

12.1.2 The Menu Bar 251

12.1.2.1 The File Menu 252

12.1.2.2 The Window Menu 253

12.1.3 Automatic Launch of the X Server 255

12.1.4 Quitting the X Server 255

12.1.5 Running the X Server Without a Menu Bar 255

12.1.5.1 Menu Bar Shortcuts 255

12.2 Administering the X Window Software Environment 257

12.2.1 Starting Clients 257

12.2.1.1 The Startup Script 257

12.2.1.2 Resources — X Application
Preferences 260

12.2.2 The Window Manager Client 266

12.2.2.1 Starting the Window Manager 266

12.2.2.2 Using the Mouse 267

12.2.2.3 Selecting a Window 267

12.2.2.4 Moving a Window 268

12.2.2.5 Changing the Size of a Window 270

12.2.2.6 Changing a Window Into an Icon 272

12.2.2.7 Moving an Icon 273

Power MachTen User’s Guidexiv

12.2.2.8 Restoring a Window from an Icon 273

12.2.2.9 Displaying a Window Menu and
Making Selections 274

12.2.2.10 Summary of Window Menu Functions 275

12.2.2.11 Raising a Window 276

12.2.2.12 Quitting the Window Environment 277

12.2.3 The X Server Program 278

12.2.3.1 X Server Startup Options 278

12.2.3.2 Mouse Button Mapping 281

12.2.3.3 Keyboard Mapping 284

12.2.3.4 Server Error Logging 285

12.2.3.5 X Server Performance Tuning Guide 286

12.2.3.6 The Default Font Path 287

12.2.3.7 Obtaining Fonts from a Network
Font Server 288

12.2.3.8 Providing Fonts Over the Network 289

12.2.4 X Display Management Under MachTen 289

12.2.4.1 The MachTen X Server and XDM 290

12.2.5 X Over Serial Lines 293

12.3 MachTen X Window Software Overview 294

12.3.1 Preparing Your Macintosh Control Panels 296

12.3.2 Getting Started With X 299

12.3.3 Building X Applications 299

12.3.3.1 Running X Client Applications 301

12.3.3.2 The X11 Application Development
Environment Under MachTen 301

12.3.3.3 Programming Notes 303

Power MachTen User’s Guide xv

LIST OF FIGURES

Figure 1. MachTen on the Macintosh Desktop 3

Figure 2. MachTen Terminal Window Desktop 4

Figure 3. xterm Displayed by the AfterStep Window Manager 5

Figure 4. MachTen System Architecture 8

Figure 5. MachTen CD-ROM Contents 16

Figure 6. MachTen Folder 17

Figure 7. MachTen Console Window 19

Figure 8. Chnglicense Dialog Box 20

Figure 9. Control Panel Warning Dialog Box 32

Figure 10. MachTen Control Panel 33

Figure 11. General Configuration Screen 35

Figure 12. Memory Configuration Screen 36

Figure 13. Networking Configuration Screen 38

Figure 14. Example Network Configuration 43

Figure 15. MachTen Application Folder 45

Figure 16. MachTen Initialization 46

Figure 17. MachTen Login Console 50

Figure 18. MachTen Terminal Window 51

Figure 19. MachTen Windows 52

Figure 20. A .cshrc File 76

Figure 21. The /etc/passwd File 78

Figure 22. The /etc/group File 79

Figure 23. Special Keyboard Characters 83

Figure 24. Using ps to Show What is Running 84

Figure 25. Example of File Permissions 101

Figure 26. Spooling Printer Output to UNIX Printers Using lwsrv 158

Power MachTen User’s Guidexvi

Figure 27. Resource Sharing: FTP, mail, rlogin 163

Figure 28. Example /etc/hosts File 171

Figure 29. General Purpose Interface (GPI) Serial Cable 188

Figure 30. The X Desktop 250

Figure 31. The File Menu 252

Figure 32. The Window Menu 253

Figure 33. The Order Sub-Menu 254

Figure 34. The OpenLook Environment 266

Figure 35. Grabbing the Title Bar 268

Figure 36. Repositioning the Window 269

Figure 37. A Window and Its Elastic Outline 271

Figure 38. The Title Bar Minimize Button 272

Figure 39. The OpenLook Icon 272

Figure 40. The Restored Window 273

Figure 41. The OpenLook Window Menu 274

Figure 42. A Partially Concealed Window 276

Figure 43. The Window Revealed 277

Figure 44. Logitech MouseMan™ Control Panel 283

Figure 45. Monitors & Sound Control Panel 296

Figure 46. Mouse Control Panel 297

Figure 47. Keyboard Control Panel 297

Figure 48. Control Strip Control Panel 298

Figure 49. MachTen Control Panel 298

Power MachTen User’s Guide 1

1.0 Power MachTen — UNIX on the
Macintosh Desktop

Welcome to MachTen, a complete UNIX† OS that runs as a Macintosh application.
MachTen provides a full suite of Internet services, distributed file system services,
and remote printer spooling. These services are available not only to UNIX
applications, but to Macintosh applications as well. MachTen also supports a
sophisticated set of UNIX and X software development tools, a high-performance
X Window server, and hundreds of UNIX applications.

The combined strength of UNIX and X enables seamless integration of applications
and resources across networks. Having UNIX and X on your Macintosh will
enable you to benefit from the rich array of Macintosh easy-to-use applications
and, at the same time, let you tap into your multi-vendor client/server
environment to run remote applications and to share resources across your
corporate network and the Internet.

MachTen includes a complete suite of C, C++, Objective-C, Fortran, Ada and Java
development tools. MachTen can be used in combination with standard Macintosh
editors and compilers to develop UNIX applications, X applications and
Macintosh applications, or to develop hybrid Macintosh/UNIX applications.
MachTen’s PowerPC compiler suite can be used to recompile existing UNIX
applications or to develop new UNIX applications. And the resultant applications
can be turned into clickable Macintosh applications.

This unique toolset from Tenon gives developers the ability to create an
application with a single source base not only for Power Macintoshes under a
native Apple operating system, but also for Silicon Graphics machines, SUNs,
DEC, or HP workstations. MachTen gives developers the freedom to take
advantage of time-tested UNIX development tools and to experiment with Java or
Ada tasking, without giving up the features of their favorite Macintosh editors.
MachTen creates a new standard in PowerPC software development.

† UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Power MachTen User’s Guide2

MachTen’s development environment includes the GNU compiler for Ada95, the
first internationally standardized object-oriented language. MachTen’s Macintosh
Toolbox bindings let you use Ada95 to produce native Macintosh applications. In
addition, MachTen includes the latest GNU compilers for C, C++, Objective-C and
Fortran, and the latest GNU internet programming tools, such as Perl, tcl/tk and
expect. The Kaffe Java virtual machine lets you run your newly developed Java
bytecode. Because all MachTen compilers generate standard PowerPC binary
formats, MachTen can be used in combination with any standard Macintosh
compiler and debugger. And, just in case you prefer Macintosh tools, we’ve
included such favorites as MacPerl, Alpha and BBEditLite.

Power MachTen User’s Guide 3

1.1 The MachTen Desktop

The Macintosh “desktop” is created and maintained by a Macintosh system
application called Finder™. When MachTen is installed on your Macintosh, you still
have the Finder desktop available, and you can easily switch from Macintosh
applications to MachTen. MachTen and MacOS essentially operate as co-resident
operating systems, sharing the processor and being enriched by each other’s
environment. Using MachTen will enable you to work with Macintosh and UNIX
programs concurrently, “copy and paste” between Macintosh and UNIX
documents and applications, and share files, printers and other peripherals with
networked systems. “Figure 1. MachTen on the Macintosh Desktop” shows a
typical MachTen desktop display.

Figure 1. MachTen on the Macintosh Desktop

Power MachTen User’s Guide4

1.1.1 MachTen Terminal Window Desktop

MachTen’s terminal window desktop displays a customizable set of independent
command windows. “Figure 2. MachTen Terminal Window Desktop” shows a
MachTen desktop display with multiple terminal windows on the Finder desktop.
If you log in as “root” or “mtuser” (with “MachTen” as the password), the UNIX
terminal window will be displayed.

Figure 2. MachTen Terminal Window Desktop

Power MachTen User’s Guide 5

MachTen also supports an X desktop. A variety of X window managers are
available. If you log in to MachTen as “mtnext” (with “MachTen” as the
password), you will automatically run the AfterStep X window manager, which
displays a NeXT-like desktop.

Figure 3. xterm Displayed by the AfterStep Window Manager

Power MachTen User’s Guide6

1.2 The MachTen “UNIX Virtual Machine”

MachTen is based on the University of California, Berkeley, UNIX built on a
Carnegie Mellon Mach kernel. The Mach kernel replaces many of the Berkeley
UNIX internals and provides a number of new features not available in traditional
UNIX systems. MachTen both refines and extends the capabilities of the native
Macintosh Operating System by providing a pre-emptive multitasking UNIX
environment that coexists with the MacOS cooperative sharing execution
environment. With MachTen, Macintosh applications, UNIX applications, Mach
applications and X applications run simultaneously. MachTen represents the
confluence of the best features of the Macintosh and the systematic power and
elegance of UNIX and Mach.

Tenon’s MachTen technology is an extension to MacOS. Using standard Macintosh
shared libraries and code fragments, Tenon’s MachTen extends MacOS to create a
UNIX virtual machine. The UNIX virtual machine (UVM) is implemented within
the context of a standard Macintosh application program. Therefore, other
existing Macintosh applications run in parallel with the UVM in a highly
compatible fashion. The UVM, in turn, implements a standard UNIX API (POSIX)
for a large family of traditional UNIX commands and utilities. The UVM also
implements a fully pre-emptive execution environment for its applications. Since
each UNIX application program is implemented as a Macintosh code fragment,
UNIX applications are essentially “UNIX plug-ins”. So, MachTen is a
highly-portable UNIX virtual machine that implements its applications as UNIX
plug-ins running within a Macintosh application context.

Power MachTen User’s Guide 7

1.3 The MachTen Architecture

“Figure 4. MachTen System Architecture” shows the basic system architecture.
MachTen consists of a family of shared libraries — MachTen itself is a collection of
shared libraries; the traditional UNIX libraries (libc, libm, etc.) are each a shared
library, and every UNIX application is also shared. This organization takes
advantage of the shared library, dynamic linking and memory mapped file access
features of the MacOS, and maximizes memory savings, as each software
component is loaded into memory only once. Tenon’s native fast file system (FFS)
gives the MachTen development tools access to UNIX-level performance and
features.

1.3.1 Dynamic Memory Configuration

MachTen dynamically scales its memory requirements while the system is running.
As more applications are initiated, the system brings in the necessary support, so
that the memory consumption grows as user requirements demand.

This memory configuration occurs along two axes — first, the system adjusts its
memory data tables as each new application is initiated, with more applications
requiring more memory; second, the system configures itself functionally, with
each new application potentially requiring system components to be brought into
memory. This continuous reconfiguration results in improved utilization of
memory and processor resources.

1.3.2 Dynamically Linked, Shared Libraries

The PowerPC Executable Format (PEF) is based on the concept of dynamically
loadable, shared libraries. In this architecture, software is composed of a private
space and calls to shared libraries. When an application is created, a definition
library is used to satisfy compiler header call definition requirements. When an
application is executed, a run-time version of the library is used to satisfy library
calls. If that library has already been loaded into memory, access is obtained to the
run-time library through a dynamic linkage process. Otherwise, the library is
loaded into memory and dynamic linkage occurs. When the last client of a shared
library has completed processing, the library is deallocated and its memory is
reclaimed.

Power MachTen User’s Guide8

Compared to static linking used in traditional UNIX systems, dynamic linking
results in much smaller binary images, reducing both system memory
requirements and disk footprints.

Figure 4. MachTen System Architecture

UNIX Applications

Macintosh
Applications &
Development

Tools

BBEdit Lite
MacPerl
Alpha

Macintosh Code Fragment ManagerMacintosh Trap Handler

Toolbox Managers

Operating System Managers & Utilities

Device Drivers & Device ManagersM
a

c
O

S

MachTen
Window

Mgr

Mach — MacOS InterfaceTen

Mach IPC

Mach Tasks
& Threads

Mach
Memory

Mgmt

Mach
Time
Mgmt

UNIX Virtual
File System

UFS

Mach Ten

UNIX Development Tools

FFS

NFS

XDR

TCP

RPC

UDP

IP

ARP

Sockets

UNIX C Library POSIX Threads
UNIX

Process
Mgmt

UNIX
IPC

UNIX
Timer
Mgmt

UNIX
Mem
Mgmt

UNIX
TTY
Mgr

Power MachTen User’s Guide 9

1.3.3 Memory Mapped File Access

The Power Macintosh Memory Manager provides memory mapped file access for
programs. Allocation of application instruction memory is deferred until an actual
reference to a specific “page” of instructions is made by the application. Only then
is memory allocated and the specific page of instructions copied into memory from
disk. This is a significant benefit for large libraries that are only used a
little-at-a-time.

1.3.4 Integrated Software Development Tools

Power MachTen creates binary PEF files that integrate directly with other
Macintosh development tools. Software produced by development systems from
Apple, Metrowerks and others may be freely intermixed with the output of the
MachTen development system. With MachTen, UNIX software development tools
can be used to generate Macintosh applications, and Macintosh software
development tools can be used to generate UNIX applications. This enables
developers to build hybrid applications that make both MacOS and MachTen
system requests. Such hybrid applications will be able to simultaneously take
advantage of the power of the MacOS and UNIX.

1.3.5 Native Fast File System

MachTen uses a derivative of Berkeley’s BSD Fast File System to dramatically
increase speed and save space. The Fast File System circumvents the limitations
imposed by the Macintosh Hierarchical File System. More information about the
Fast File System (FFS) is available in section “6.0 The MachTen File Systems”.

Power MachTen User’s Guide10

Power MachTen User’s Guide 11

2.0 Installing MachTen

MachTen will run on all Power Macintoshes with MacOS version 7.1.2 or later. The
entire MachTen system is contained on a CD-ROM and is comprised of the
following components:

MachTen README and Online User’s Guide

This component contains two README files — README.html and README.
The README file is strictly a text file and can be displayed by simply
double-clicking on the file and scrolling through the document. The
README.html is meant to be displayed by a browser such as Netscape
Communicator or Internet Explorer. The README files contain
up-to-the-minute release information and directions that became available
after the documentation was frozen for production purposes.

Licensing

This folder contains important licensing information concerning MachTen and
various software subsystems that have been licensed from other parties and
included with this release. It is important that you review and agree with the
licensing information contained in this directory and that you abide by the
covenants and restrictions found therein.

MachTen Installer

This is an installer that contains the MachTen application, the MachTen virtual
machine and the UNIX libraries. The standard MachTen application set
includes network access programs, printer spooling, text editors, basic
utilities, administration aids and software development tools. The biggest
part of the installation involves double-clicking on this installer and allowing
it to transfer a MachTen image to a local hard disk.

Power MachTen User’s Guide12

Documentation

This directory contains the data files that compose the online electronic
documentation. This documentation includes an electronic MachTen User’s
Guide, UNIX User, Programmer and System Administrator documents,
GNAT documentation in PostScript for the MachTen Ada environment, and an
Objective-C overview.

Utilities

Contains an index.html file which is meant to be viewed with an internet
browser. The index file contains information about four sub-folders —
Debuggers, Development Utilities, Text Utilities and Fast File Utilities. The
index file describes the contents of each of the sub-folders and their use within
the MachTen environment.

index.html

This HTML file provides an overview of the contents of the Utilities folder.

Debuggers

Contains Apple’s MacsBug, Macintosh Debugger, and information on
obtaining The Debugger (also known as Jasik).

Development Utilities

Contains the Ada 95 Mac Application Framework (AMAF), libraries and
include files from Essential Tools and Objects (ETO) #22, and Apple’s
resource editor ResEdit.

Text Utilities

Contains the Alpha†, Adobe Acrobat and BBEditLite text editing and
presentation applications. It also contains Unix <-> Text, an application
for converting the end-of-line characters in a text file between standard
Macintosh and UNIX conventions.

† Alpha is shareware and is not registered. If you use Alpha, please register it.

Power MachTen User’s Guide 13

Fast File Utilities

Contains tools to aid in fast file system maintenance. Fast File First Aid is
the MachTen fsck utility built as a Macintosh application. It performs an
interactive file system check and repair operation. Fast File First Aid may
be used to correct file system corruption which can prevent MachTen from
booting up. The Recovery folder contains a special minimal version of
MachTen for use when file system corruption has affected key programs or
support files. In the unlikely event that file corruption occurs, drag the
Recovery folder onto a hard drive and launch the MachTen.emerg
application. This will allow you to access your file systems and take
appropriate actions from within a working MachTen environment.

FFS_Installer

MachTen includes an installer utility called FFS_Installer to greatly simplify
the task of adding fast file systems to your MachTen system.

To create a new FFS, launch this program and select the desired size FFS.
Install it into the MachTen folder and launch MachTen. The new FFS will
be automatically mounted when MachTen starts up.

Mac_Perl_510r2_appl

This application installs MacPerl. MachTen also includes UNIX Perl.

OpenGL Installer

This application installs OpenGL capabilities into MachTen. To receive the
necessary OpenGL license number, you must separately purchase the
OpenGL option.

Source_FFS

This is a large file of about 400MB of data. It is a MachTen fast file system
file that is meant to be mounted within the MachTen file system under the
MachTen directory. If the MachTen CD-ROM is inserted when MachTen is
started, the Source_FFS fast file system will be automatically mounted and
immediately available by reference to files and directories under the
/base/src directory. The Source_FFS contains a great deal of the source that
goes into making MachTen and its applications.

Power MachTen User’s Guide14

MachTen runs as an application, therefore all of the network and peripheral devices
that your Macintosh supports are still supported when MachTen is installed. Since
MachTen internet software has been interfaced to MacOS LocalTalk, MacOS
EtherTalk, MacOS TokenTalk and MacOS serial port hardware, all of the MachTen
communications are equally applicable to LocalTalk, EtherTalk, TokenTalk or
serial line networks, individually or in combination with each other.

Follow the steps below to install the complete MachTen software package.

1. Site Preparation

• Verify RAM

Pull down the Apple menu and choose “About this Computer”. It will
display the version of the system as well as the amount of RAM
configured for the system. Make sure the “Total Memory” is at least
32MB†. Check MacOS version and “Power Macintosh”.

• Verify disk space

Make sure the hard disk has at least 350MB available by viewing any
folder on your hard disk using “View by Icon”. If there is not ample free
disk, you will need to remove documents and folders to make additional
space on your hard disk. MachTen does not have to be installed on the
MacOS boot volume. Much of MachTen is contained within MachTen fast
file system files. These are UNIX file systems that exist within MacOS
files. See section “6.3 MachTen FFS” for a complete discussion of MachTen
fast file systems.

The free disk space requirement numbers are based on a target
volume with an unformatted capacity of 1GB. Due to the MacOS
block allocation scheme, large capacity disks will require more free
space for the complete software distribution; smaller capacity
disks will require less disk space. A 1GB capacity disk will require
up to 450MB for MachTen. To conserve disk space, we suggest
installing MachTen on HFS+ partitions.

† MachTen will run with 32MB of RAM. However, 48MB of RAM is recommended
for good performance. Power MachTen itself consumes about 14MB of RAM
during normal operation (excluding X Windows).

Power MachTen User’s Guide 15

• Prepare your hard disk

The efficiency of the disk device driver plays an important role in the
overall performance of the system. Reformatting your hard disk with a
high-performance device driver can noticeably improve overall
performance. MachTen works with HFS+ partitions.

All MacOS system software, network drivers and other peripheral
software should be installed before the MachTen application is started.

The MachTen Installer adds extensions and control panels to your System
Folder, so make sure your System Folder is not protected during the
installation.

If you are installing Power MachTen over an existing version of MachTen
on your disk, you may want to review section “2.2 Reinstallation”.

• Assemble IP addressing and configuration information

The installation process requires knowledge of your network
environment. You will need the following information:

• the local time zone

• the name of your host (the machine on which MachTen is being
installed)

• your Internet address on Ethernet (or EtherTalk) and the subnetwork
mask (if appropriate)

• your Internet address on AppleTalk and subnetwork mask (if
appropriate)

• your domain name and the internet address of your Domain Name

Server

• the name and internet address of your default gateway (you may be
using either a MacIP gateway or a standard IP gateway)

MachTen includes its own TCP protocol stack. If you have already
configured the Apple TCP/IP control panel, MachTen will use the
networking information provided by OpenTransport by default.

Power MachTen User’s Guide16

If you are running MachTen on a Macintosh that is not connected to a
network, you can reconfigure MachTen for the added network
connections at a later time. Refer to section “2.2.1 Reconfiguration”.

• Quit all applications

Quit all currently running Macintosh applications. AutoDoubler and
any startup Macintosh applications should also be disabled. Holding
down the <Shift> key while rebooting will disable virus protection
software and startup routines that can interfere with the installation.

2. Install the MachTen Software on your Hard Disk

• Insert the MachTen CD-ROM

Insert the MachTen CD-ROM and double-click on the disk icon. The disk
will show an open window as illustrated below.

Figure 5. MachTen CD-ROM Contents

The installation procedure requires double-clicking on the MachTen Installer and
following the directions contained there. The following steps detail the
installation instructions.

Power MachTen User’s Guide 17

• Double-click on the MachTen Installer

Double-click on the MachTen 4.x Installer on the CD-ROM. This will start
a self-extracting operation that will create a MachTen 4.X folder on the
hard drive that you select. Additionally, it will install a number of files
in the active System Folder supporting control panel and System Folder
extensions. This will require approximately 350MB of disk space and
may take between 10 and 15 minutes.

Figure 6. MachTen Folder

Power MachTen User’s Guide18

In the same manner that successfully booting and running the
Macintosh OS is dependent on the System Folder and some very
specifically named files and folders in the System Folder, MachTen
is dependent on its file system hierarchy, including the names,
locations and permissions of its files.

Unless you are fully aware of MachTen’s dependency on its file
system organization and the read/write ability of the contained
files, DO NOT reorganize the MachTen distribution hierarchy.

Be very careful when using Macintosh imposed restrictions on the
MachTen folders and files. This includes locking or assigning File
Sharing privileges to any MachTen file or folder.

• Reboot

After the installation process is complete, the installer application will
request that it be allowed to reboot the system. When given an OK, the
system will be automatically rebooted. This process is necessary to
incorporate the MachTen control panel and MachTen system extensions.

• Configure the MachTen control panel

Configure the MachTen control panel according to the instructions in
section “3.0 The MachTen Control Panel”.

3. Launch MachTen

• Double-click on the MachTen application icon

Launch MachTen by double-clicking on the MachTen application icon in
the MachTen folder. For easier launching, you may make an alias to this
application and put it on the desktop or in the System Folder/Apple Menu
Items folder. To automatically start MachTen when your Macintosh is
started, you may put an alias in the System Folder/Startup Items folder. If
your system does not successfully start up and present you with the
“login:” prompt after a few moments, contact Tenon Technical
Support at 1-800-6-Mach10.

A MachTen console window will appear with system configuration
information taken from the MachTen control panel.

Power MachTen User’s Guide 19

Figure 7. MachTen Console Window

Your MachTen system is now ready to use. Please read section “4.1 The MachTen
Login Console” for information on how to log in. Refer to the following sections
for additional set-up procedures: “3.0 The MachTen Control Panel”, “5.6.5 The
Root Password”, and “5.6.6 Setting Up User Accounts”.

Power MachTen User’s Guide20

4. Enter Your License Number

MachTen license numbers can be entered at any time before the temporary
license expires. To enter your license number, execute the chnglicense program
and type your license number into the dialog box. Be careful to use proper
case for the letters and include the dashes (‘-’) in the license number.

Figure 8. Chnglicense Dialog Box

Click “OK” to complete the license number registration process.

Power MachTen User’s Guide 21

2.1 Performance Tuning — Optimizing MachTen

MachTen differs from other UNIX implementations in several significant ways.
MachTen was designed to run on the Macintosh platform. This includes machines
with limited disk space and memory. As services and capabilities are added to
these systems, it is inevitable that one or the other of these limits will be reached.

You can optimize MachTen performance by tailoring your system to fit your system
configuration. MachTen performance can be dramatically improved by giving
some attention to the following configuration options.

• Use a fast disk driver

The efficiency of the disk device driver plays an important role in the
overall performance of the system. Choosing a fast disk and disk driver
(such as FWB†) and adhering to the guidelines of disk optimizing tools
will improve the MachTen system’s performance.

• Use disk caching

Setting the disk cache in the MacOS Memory control panel is essential to
getting the most performance from your Macintosh. MacOS file
manipulation software operates much more efficiently when disk
caching is enabled and set to a large value. In some cases, the larger the
value the better. A disk cache size of 512K is recommended.

• Turn off file sharing

Disable the file sharing option located in the File Sharing control panel.

• Close control panels after use

Do not keep the MachTen Scheduling Priority slide bar or any control
panel on the desktop. An open control panel consumes valuable CPU
cycles.††

† See http://www.fwb.com or phone (650)482-4800.
†† Refer to section “3.0 The MachTen Control Panel” for a more details on using the
 Scheduling Priority slide bar.

Power MachTen User’s Guide22

• Adjust your search path

When running MachTen in the default configuration, the following
directories are searched (in the order listed) when a MachTen command
is executed:

 /usr/bin
 /bin
 /usr/X11/bin
 /usr/libexec

If the user is root, these two additional directories are searched:

 /sbin
 /usr/sbin

Adjust your search path in the .login or .profile file in your home directory.

• Increase UFS and NFS buffers

Increase the number of UFS and NFS buffers in the MachTen Memory
control panel. Increasing the number of buffers to 32 or 64 can
significantly improve performance by increasing the frequency of file
system cache hits.

2.1.1 System Optimization Guidelines

The System Optimization Guidelines table which follows will help you customize
MachTen systems for particular environments. A little system attention will go a
long way to give you a smoothly running system.

It is important to remember that MachTen relies solely on physical memory.
However, if you monitor your system resources and are careful not to overload
your system with unneeded daemons, you will have good results with MachTen,
even with limited memory.

Power MachTen User’s Guide 23

Table 1. System Optimization Guidelines

Disk Space Limitations

A system with 500MB or less
of hard disk will probably
require careful attention to
“tidiness” of the available
disk space.

By default, the /etc/rc file will preserve the
editor files, and then automatically remove
files in /tmp on each restart. (Note that
subdirectories in /tmp are not purged.)

A cron(8) entry may be created to purge old
‘preserved’ editor files from /var/preserve.

If a server system is available with more disk
space, always use NFS.

Use df(1) to determine the capacity and
available space of each mounted file system.

Memory Space Limitations

Since MachTen does not
support paging, nor does it
swap processes from memory
to disk, all of the processes
(blocked, sleeping and
running) consume real
memory. When the memory
is filled up, no new processes
can be started. Process
instantiation (execve(2)) will
fail with an ENOMEM (Error:
not enough memory).

Run only the daemon processes that are
needed. If you do not need the services
provided by a daemon, you can disable it via
rc.conf(5).

Use ps(1) to find out how much memory each
process is consuming.

If available memory is filled, terminate
unwanted processes with kill(1). This will free
up the memory those processes are
consuming.

Keep the maximum memory that you are
consuming below a high water mark to avoid
memory fragmentation problems. (The
probability of memory fragmentation
increases as the percentage of free space
decreases.)

You can run many Macintosh applications at
the same time by reducing each Macintosh
applcation’s memory allotment. Under
Finder, select the application; select “Get Info”
from the File menu; double-click to select the
number in the box labeled “Application
Memory Size”; click on the Close box.

Power MachTen User’s Guide24

Daemon Processes

NFS Server:
This service is provided by
three daemons — portmap,
mountd and nfsd.

Run NFS daemons on NFS servers only.
There is no advantage to running multiple
nfsd’s under MachTen; they only consume
more memory.

sendmail sendmail is a large application. It is required to
receive network mail. It is not required to
send network mail. If you are short on
memory, you may want to rlogin to another
machine or use a POP client to read your mail.

syslogd This is the system logger daemon. Syslogd
reads and forwards system messages to the
specified log files and/or users, depending on
the priority of the message and the originating
facility. A major reason for running this
daemon is to log the results of sendmail
activities. Run syslogd while changing system
configuration files for other daemons, or
when running sendmail, but not otherwise.

inetd inetd is only needed for incoming or loopback
connections. If a machine is not providing
telnetd, rlogind, ftpd, or other similar services,
inetd does not need to be run. Note that telnet,
rlogin and ftp clients (for outgoing
connections) can still be run on demand.

Router Service No daemons are necessary to provide IP
forwarding, although you may choose to run
routed. A system that is forwarding IP packets
may allocate additional mbufs dynamically,
but these allocations are small compared to
the size of most programs.

Serial Ports getty is a process like any other, so an unused
serial line with a waiting getty is consuming
memory. Ttys can be turned on and off when
needed (see init(8)).

Power MachTen User’s Guide 25

2.1.2 How Can You Tell When a System is
Approaching Its Limits?

A system that is running near full memory capacity will begin to slow down.
Output to the console (or any of the windows) may be noticeably slower.
Programs that request more memory may fail or simply block and wait until
memory is available. The C shell will return “Not enough memory” when
attempting to invoke a new program.

Remote machines which attempt to rcp(1), ftp(1) or telnet(1) to a loaded machine
may see “Protocol error, server closed connection” or “/bin/csh:
No memory”, depending on how far the server side of the connection was able to
progress before memory was exhausted.

wind

The default .profile and .login
files automatically start up
the window daemon each
time a login occurs in the con-
sole. Note that the window
daemon is started with the
command:

exec /usr/libexec/wind

to free up the space of the
invoking call.

wind(8) is the window daemon controlling the
MachTen window environment. It is not
necessary to use the window daemon since
MachTen also supports a simple console
device. However, the added value of the
window environment is almost always worth
the extra memory it consumes.

lpd Printing services are provided by lpd(8).
Systems that do not require printing services
need not run this daemon. MachTen will
automatically start this daemon when a print
command is invoked.

httpd Run only if providing a World Wide Web
service.

Power MachTen User’s Guide26

2.2 Reinstallation

Occasionally you may want to reinstall MachTen. Your current system may become
damaged, or you may need to install a system upgrade. Perform the following
steps before reinstalling MachTen.

1. Preserve Personalized Files and Files That Have Been Changed

• Create a folder named Preserve in the top level of your hard disk

• Preserve changed configuration files

Copy any configuration files you have changed to the Preserve folder.
This includes many of the files located in /etc, such as fstab, group, hosts,
inetd.conf, sendmail.cf and passwd. It may be best to save all of /etc and
review the files after installation is complete. Private user files in the
/home directory should be saved. Note that the .cshrc, .login, .mailrc and
.profile files for the root account (/home/root) may be updated in
subsequent releases.

• Copy changed files to the Preserve folder

Copy any other files you have changed in /dev, /src or /usr and/or
binaries you have built in /usr/local to the Preserve folder.

• Visit the var folder

Visit the var folder and determine whether or not to preserve the
administrative log files, queued mail messages, print requests and
accounting files contained in the sub-folders adm, log, spool, tmp and
preserve. If in doubt, preserve the file(s) and take a closer look after the
installation is complete.

2. Quit MachTen

Power MachTen User’s Guide 27

3. Remove Outdated MachTen System Files From Your Hard Disk

• Drag files to the Trash

From the top-level folder, drag the MachTen folder to the Trash. Drag the
Tenon Libraries to the Trash. Certain system configuration information is
stored in the MachTen Preferences. This configuration information will
be re-assumed if you do not drag the Preferences to the Trash.

• Empty the Trash

4. Install the New MachTen System

5. Restore the Saved Control Panel Settings

• Open the MachTen control panel

Before launching MachTen, open the MachTen control panel and visit each
configuration screen. Verify that your installation parameters are
correct. Press the “Save” button, even if no changes were made.

6. Launch MachTen by Double-Clicking the MachTen Application

7. Restore the Remaining Saved Configuration Files

• Check files in the Preserve and /etc folders

When the MachTen re-installation is complete, compare any customized
configuration files from the Preserve folder to the corresponding files in
the /etc and /home folders.

If you have not explicitly made changes to a configuration file, do
not restore it. Configuration files sometimes change in new
releases of MachTen, and restoring old configuration files may
make the new release behave unexpectedly.

Power MachTen User’s Guide28

2.2.1 Reconfiguration

If you change your control panel settings, or if you installed MachTen before you
were attached to a network, numerous files must be updated. This may be done
automatically by using the MachTen control panel or manually by updating the
necessary files by hand. Some network service changes, such as disabling ftpd or
enabling fingerd, will require manual intervention as noted below. Where possible,
the automated approach to network reconfiguration is strongly recommended.

2.2.1.1 Automated Reconfiguration

In automated configuration, the following files are updated according to the
information entered in the Networking Configuration screen of the MachTen
control panel:

/etc/rc.conf
/etc/resolv.conf
/etc/sendmail.cf
/etc/sendmail.cw
/etc/hosts
/usr/etc/zoneinfo/localtime
/usr/lib/sendmail

Take the following actions:

• Quit MachTen

• Open the MachTen control panel

Choose “Control Panels” from the Apple menu and open “MachTen
Controls”. Press the “Networking” button, make the appropriate
changes, and press the “Save” button.

• Change settings

Make the appropriate changes in the General or Memory configuration
screen, and click the “Save button. Click on “Cancel” to abort the
changes (see section “3.0 The MachTen Control Panel”).

Power MachTen User’s Guide 29

• Launch MachTen

During the normal boot process, updated configuration parameter
values will be noted and applied. Comments similar to the following
will be displayed:

Applying Installation configuration parameter settings..
Creating directory "/etc/PRE.Aug_20_13:54:01" to preserve
original copies
Setting timezone to US/Pacific

Updating /etc/hosts

Creating /etc/sendmail.cw

Updating /etc/sendmail.cf
Creating /etc/resolv.conf

Updating /etc/rc.conf

"/etc/PRE.Aug_20_13:54:01" may be removed when the original copies

it contains are no longer of interest for review or recovery.

2.2.1.2 Manual Reconfiguration

The following table lists the files you must edit for the indicated configuration
change:

domain name change /etc/hosts
/etc/resolv.conf
/etc/sendmail.cf

host name change /etc/hosts
/etc/rc.conf (local host change)
/etc/sendmail.cw (local host change)

IP address change /etc/hosts

network service change (for example,
disabling ftpd)

/etc/inetd.conf

NFS server change /etc/fstab
/etc/hosts

Power MachTen User’s Guide30

If you are changing the local host name and/or address, be sure to reboot MachTen
after updating the appropriate files in order to put them into effect.

2.2.2 Accessing MachTen Sources from the CD-ROM

The MachTen files may be accessed directly from the CD-ROM, rather than copying
them to your hard disk. Although CD-ROMs typically have slower access times
than hard disks, this configuration significantly reduces the hard disk footprint
necessary to take full advantage of the MachTen distribution.

The Source_FFS supplied with MachTen is 400MB in size. It will be mounted
automatically when MachTen starts up. In order to access files directly from the
CD, the CD must be online (visible on the desktop) and be mounted under
MachTen. The default /etc/fstab file will mount the MachTen CD on the path
/volume/CDROM if the CD is online when MachTen is started, or if the CD is
inserted when MachTen is running.

To access the source files from the CD-ROM, a mount command must be executed
to make the CD-based Source_FFS accessible within the MachTen file system. As
root, execute the following commands:

cd /volume/CDROM
/sbin/mount -t ffs Source_FFS /base/src

Note that the target directory /base/src is still on the hard disk, so the objects for the
BSD4.4 sources can be built even though the sources are on the CD. Obviously you
cannot modify these programs by changing the source without first copying them
from the CD to your hard disk. Also note that this mount will take place
automatically if the MachTen CD-ROM is installed when MachTen is started. You
can see if the directory /base/src is already mounted on Source_FFS by issuing a
mount command with no parameters. This will give you a list of the mounted
volumes and the directories on which those volumes are mounted.

route change /etc/hosts
/etc/rc.conf

local service change (for example,
starting httpd at MachTen boot up)

/etc/rc.local

Power MachTen User’s Guide 31

2.3 Troubleshooting

The MachTen installation automatically configures the UNIX networking software
and adjusts the Macintosh system environment to ensure a properly running
system. This section will help you solve problems that may arise as you work with
MachTen.

Symptom Solution

While installing and
copying files from the
CD-ROM to the hard
disk, a dialog box
appears saying that a
particular file cannot
be copied and
should be removed
from the hard disk.

• Temporarily remove or disable extensions,
particularly any anti-virus extensions. Unprotect
your System Folder. Retry the installation.

• Check disk space requirements for your installation
options.

MachTen seems to
slow down.

Type the command ps -aux to observe what processes
are running. Use kill(1) to terminate unwanted
processes. Read section “2.1 Performance Tuning —
Optimizing MachTen” for system optimization hints. If
using Desktop NFS, make sure “Calculate Folder
Sizes” is turned off in the Views control panel.

You notice loss of
data due to file
truncation.

Due to MachTen file caching, MachTen may not return
an error when writing to a file system that is full.
Check the free space on your file system before
continuing.

You experience a
power failure or
irregular shutdown
of MachTen.

MachTen must be restarted after a power failure.
Traditional UNIX file systems are sensitive to power
failures. Use Fast File First Aid in the event of a power
failure.

Power MachTen User’s Guide32

Figure 9. Control Panel Warning Dialog Box

Launching MachTen
causes a system
“bomb”.

There may be a control panel or extension conflict. Try
temporarily disabling all extensions except the
MachTen extensions to determine whether or not you
have a conflict.

1. Make two new folders in your System Folder
called Control Panels check and Extensions check.

2. “Select All” in the Control Panels folder, and then
hold the <Shift> key down and click “MachTen
Controls”. Drag the selected files into the Control
Panels check folder.

3. “Select All” in the Control Panels folder, and then
hold the <Shift> key down and click “MachTen
NFS” and “Foreign File Access”. Drag the selected
files into the Extensions check folder.

4. Restart your Macintosh.

5. Run MachTen.

If MachTen successfully starts up, a control panel or
extension in your system is incompatible with MachTen.
You can identify the culprit by restoring and disabling
your control panels and extensions by halves until
there is one remaining.

Launching MachTen
causes the Control
Panel Warning
Dialog Box to appear.

Open the MachTen Controls control panel. Configure
and save the General, Memory and Networking
screens.

Symptom Solution

Power MachTen User’s Guide 33

3.0 The MachTen Control Panel

The MachTen control panel is used to configure certain parameters in your MachTen
system. It is normally opened once prior to launching MachTen for the first time,
and subsequently if you want to change any MachTen operating parameters.

To view the MachTen control panel, choose “Control Panels” from the Apple menu
and double-click on “MachTen Controls”. The control panel consists of the
Scheduling Priority slide bar and three configuration buttons. With the exception
of Scheduling Priority slide bar adjustments, all changes made in the MachTen
control panel require you to restart MachTen in order for the modifications to take
effect.

Figure 10. MachTen Control Panel

Power MachTen User’s Guide34

3.1 Scheduling Priority Slide Bar

On a busy system where both MachTen and Macintosh programs are running
simultaneously, the Scheduling Priority slide bar allows you to control the relative
CPU time spent running UNIX programs versus running Macintosh programs. A
change of priority goes into effect immediately, allowing you to tune your system
depending on your personal workload priority. For optimal performance, the
MachTen control panel should be closed after making any scheduling priority
adjustments.

The MachTen scheduler is designed to optimize performance independent of the
slide bar position. Therefore, when no other Macintosh applications are running,
the slide bar position will have no effect on the performance of MachTen. Similarly,
when no MachTen processes are active, the impact of MachTen on Macintosh
applications will be minimal, regardless of the slide bar setting.

3.2 Configuration Screens

There are some basic configuration parameters that must be set in order for
MachTen to operate properly. These include general MachTen system information,
settings that affect MachTen memory utilization, and addressing and server
information if participating on a network.

The configuration screens are activated by clicking on the appropriate button in
the main control panel. Each screen contains edit fields and check boxes for
specifying configuration values. The “Default” button in each configuration
screen will reset the entries in the screen to installation default values. After
entering your configuration values, click on the “Save” button to confirm your
entry, or on the “Cancel” button to leave the values unchanged. Changed values
will automatically take effect the next time you start MachTen.

Power MachTen User’s Guide 35

3.2.1 General Configuration Screen

Figure 11. General Configuration Screen

3.2.1.1 Host Name

The host name is the name given to your Macintosh. The host name entered will
be used in conjunction with addressing information from the Networking
Configuration screen (described in section “3.2.3 Networking Configuration
Screen”) to uniquely identify your system on an internet network. The default
host name will be taken from the “Macintosh Name” field in the “Network
Identity” section of the Sharing Setup control panel. Under MachTen, blanks and
special characters (other than periods and underscores) are not allowed in a host
name. Special characters found in the default host name are converted to
underscores.

Power MachTen User’s Guide36

3.2.1.2 Time Zone

This is a pop-up menu for choosing the appropriate time zone for your system.
Many UNIX systems set the system clock to Greenwich Mean Time (GMT) and
automatically compensate for Daylight Savings Time. In order to integrate with
time as seen on the Macintosh, MachTen uses the time as set in the Macintosh
Date & Time control panel, typically local time. The time zone information helps
MachTen convert between local time and GMT. Users are responsible for adjusting
the Date & Time control panel clock by hand when changing to and from Daylight
Savings Time.

If available, the default time zone is extracted from the setting in the Map control
panel.

3.2.2 Memory Configuration Screen

MachTen uses maximum parameter values in the Memory Configuration screen to
dynamically allocate UNIX kernel memory resources at boot time. As your system
requirements change, these values can be adjusted accordingly.

Figure 12. Memory Configuration Screen

Power MachTen User’s Guide 37

3.2.2.1 Maximum Number Parameters

UNIX kernel parameters are presented as maximum allowable values:

UNIX processes. This is the maximum number of processes (shells,
programs, daemons, etc.) that can be run at one time. The default value of
36 processes should be adequate for single user Macintoshes. If you have
multiple users logged in to your system over the network, you may have to
increase this parameter.

Open files. This entry specifies the number of files MachTen can have open at
one time. The default number of open files is 118.

UFS buffers. This entry is the number of 8 kilobyte UNIX file system (UFS)
buffers available for buffering file transfer to and from the local disk.
Increasing this number from the default 16 buffers will speed up your system
at the expense of increased memory usage.

NFS buffers. This entry is the number of 8 kilobyte Network File System
(NFS) network buffers available for NFS access. Increasing this number from
the default 16 buffers will speed up your system at the expense of increased
memory usage.

Power MachTen User’s Guide38

3.2.3 Networking Configuration Screen

MachTen allows for a multi-homed internet networking environment — permitting
multiple independent networks to be connected to a single system. MachTen
supports several physical interface types, including Ethernet, SLIP, TokenRing
and LocalTalk, in addition to a logical local loopback interface. MachTen also
supports multiple interfaces of the same type, including up to four Ethernets, three
SLIP and/or PPP lines†, and a single LocalTalk.

Figure 13. Networking Configuration Screen

MachTen will extract all default network parameters from the TCP control panel, if
available.

See section “10.0 Networking with MachTen” for more details on internetworking
topics introduced by the Networking Configuration screen.

† The default number of serial interfaces can be increased to satisfy custom serial
interface requirements. See the Configuration Resources technical note in the
/pub/tech_notes directory on ftp.tenon.com.

Power MachTen User’s Guide 39

3.2.3.1 Enable IP Forwarding

Check this box to enable forwarding of Internet Protocol (IP) packets. IP packet
forwarding enables the system to act as a router between LocalTalk and Ethernet
or other interfaces.

3.2.3.2 Enable Incoming Mail

Check this box if you want to receive internet network mail messages directly on
your system (i.e., turn your MachTen system into a mail server). When checked, the
UNIX sendmail daemon is started automatically when MachTen is launched. If you
use any other mail program (e.g., QuickMail, ccMail, Eudora), leave this box
unchecked. By default, sendmail is disabled.

There is no need to enable sendmail to send electronic mail to the
network or to send and receive local MachTen mail among user
accounts on your MachTen Macintosh.

3.2.3.3 Enable Incoming Connections

Check this box to accept connection requests for internet network services. When
checked, MachTen will automatically start inetd — the internet “super server” —
upon MachTen launch. inetd listens for connections on well-known internet
“ports”, such as Telnet and FTP. With inetd disabled, connection requests for these
services will be denied. By default, inetd is enabled.

Unlike sendmail, inetd must be enabled to accept local loopback
connections on the well-known internet ports.

Power MachTen User’s Guide40

3.2.3.4 Internet (IP) Addresses

The Networking Configuration screen is a convenient way to configure the
primary interface on AppleTalk, Ethernet and TokenRing for internet networking.
If you have multiple interfaces of the same type, refer to section “10.0 Networking
with MachTen”. Also detailed are instructions on how to configure PPP or SLIP
interfaces (see the appropriate section “10.15.8 Using PPP” or “10.15.9 Using
SLIP”). Each configured interface (described below) must be assigned a unique
internet address in standard internet “dot” (decimal) format. The two-letter
description in parentheses is a short version of the interface name as used by
MachTen. It is followed by a zero, indicating the primary interface.

AppleTalk (at0). If your Macintosh is connected to a LocalTalk network or
your MacTCP control panel is configured for AppleTalk over Ethernet
(“EtherTalk”) or for AppleTalk over TokenRing (“TokenTalk”), assign an
internet address to the AppleTalk interface. The default value, if shown,
comes from your MacTCP configuration. You will be able to use Apple
networking facilities (printers, file sharing, etc.) without assigning an internet
address to your LocalTalk interface; however, if you wish to have IP
connectivity on AppleTalk, it must have an internet address. (This is useful if,
for example, users with NCSA Telnet on AppleTalk want to connect to your
MachTen Macintosh directly over AppleTalk.) If a MacIP gateway and
dynamic addressing are used on your network, enter an IP address of
“0.0.0.0”.† (Unless you plan to use your MachTen networking code solely for
Telnet access to some other system, it is recommended that you do not use
dynamic internet addressing.)

On a system with more than one type of networking interface, the host name
assigned by MachTen to the AppleTalk interface will be “host_a”, where host
is the host name selected in the General Configuration screen of the MachTen
control panel. If this interface is the only configured interface, the host name
associated with the IP address entered will simply be “host”.

† By default, MachTen scans the locally connected AppleTalk zone for an IP gateway
that will provide the IP address. MachTen may be configured to scan multiple zones
to locate a MacIP gateway during dynamic IP address assignment. See the
Configuration Resources technical note in the /pub/tech_notes directory on ftp.tenon.com.

Power MachTen User’s Guide 41

Users running EtherTalk or TokenTalk on their system may elect to configure
the corresponding Ethernet or TokenRing interface under MachTen in addition
to the AppleTalk interface. This requires the assignment of a unique IP
address (that is, different than the address assigned to AppleTalk) to the
Ethernet or TokenRing interface described below. In this configuration on
Ethernet, users would have direct access to other non-Macintosh internet
hosts from MachTen without the overhead of EtherTalk packet conversion by
an AppleTalk-to-Internet gateway, while still enjoying connectivity with
AppleTalk hosts via EtherTalk.

In effect, two logically distinct network nodes are created on your Macintosh
and share a common Ethernet cable to send and receive packets. The host
name on EtherTalk assigned by MachTen and corresponding to the AppleTalk
IP address entered would be “host_a”. The Ethernet host name
corresponding to the Ethernet IP address entered would be “host” with an
alias of “host_e”, where host is the host name selected in the General
Configuration screen of the MachTen control panel.

Ethernet (ie0). If your Macintosh is connected to an Ethernet, this field
represents the assigned internet address of the Ethernet network interface.
The IP address from the MacTCP control panel will appear by default if
MacTCP has been configured for communication over Ethernet.

In a multiple interface configuration, the host name assigned by MachTen to
this interface will be “host”, where host is the host name selected in the
General Configuration screen. The host name alias “host_e” will also be
assigned to this interface.

TokenRing (tr0). If your Macintosh is connected to a TokenRing, this field
represents the assigned internet address of the TokenRing network interface.
The IP address from the MacTCP control panel will appear by default if
MacTCP has been configured for communication over TokenRing.

In a multiple interface configuration, the host name assigned by MachTen for
this interface will be “host_t”, where host is the host name selected in the
General Configuration screen. If this interface is the only configured interface,
the host name associated with the IP address entered will simply be “host”.

Power MachTen User’s Guide42

Default Gateway. This field represents the internet address in standard
internet “dot” (decimal) format of the default gateway system on your
network, and defaults to the “gateway” field in the MacTCP control panel.
All access to systems not on your network will be made through the default
gateway.

Domain Name Server and Domain Name. The “Domain Name Server” field
represents the internet address in internet “dot” format of the network
domain name server. The domain name is an ASCII string (for example,
tenon.com) representing your network domain name. Both entries default to
the “Default” Domain Name Server IP Address and Domain in the MacTCP
control panel.

3.2.3.5 Netmasks

If subnetworking is implemented on your network, the “Netmask” fields are used
to derive the network and host (node) portions of the internet address for a given
network interface.

Netmasks are entered either in standard internet “dot” format or in hexadecimal
format preceded by the characters ‘0x’. The default value is taken from the
MacTCP control panel. If subnetworking is not employed on any of your
networks, the “Netmask” field for each configured interface should be left blank.
In this case, MachTen will determine the correct netmask based on the interface IP
address.

3.2.3.6 Maximum Transmission Unit Settings

The maximum transmission unit (MTU) sets the maximum output packet size for
connections on a particular network interface. MachTen allows the adjustment of
the MTU for connections over SLIP lines and on TokenRing networks. For
LocalTalk, Ethernet and local loopback interfaces, the MTU is fixed at 576, 1500
and 1536 bytes, respectively. The MTU for PPP interfaces defaults to 1500 bytes
and is negotiated by the PPP client and server during connection establishment.
The MTU setting will be applied to all interfaces configured in systems with
multiple interfaces of the same type.

Power MachTen User’s Guide 43

SLIP MTU. This parameter sets the maximum output packet size for SLIP
connections. The default value is 296 bytes. Increasing this value will
improve network performance at the expense of interactive response time.

TokenRing MTU. This parameter sets the maximum output packet size for
the TokenRing interface, if configured. The default value is 4464 bytes.

Example Network Configuration. The following figure illustrates a fully
configured Networking Configuration screen for a Macintosh, with both an
Ethernet and an AppleTalk interface in the tenon.com domain. Both interfaces
are part of a subnetworking environment. Packets to non-tenon.com hosts will
be sent to an IP gateway on Ethernet. For host name resolution, this
Macintosh will use a Domain Name Server on Ethernet.

Figure 14. Example Network Configuration

Power MachTen User’s Guide44

Power MachTen User’s Guide 45

4.0 Launching MachTen

MachTen consists of a Macintosh application called MachTen and a collection of
shared libraries that contains the bulk of the MachTen system software — the UNIX
kernel. When the system is installed, these files are stored in a top-level MachTen
folder and a MachTen Libraries sub-folder.

Figure 15. MachTen Application Folder

When you double-click on the MachTen icon, MachTen executes as a standard
Macintosh application.

In the time between starting MachTen and the appearance of the login prompt,
MachTen initialization takes place (see “Figure 16. MachTen Initialization”). The
UNIX boot process is controlled by parameterized scripts that work in conjunction
with three UNIX database files — MachTen Prefs, MachTen Conf and Install.conf —
built by the MachTen control panel.

The MachTen application’s function is to load the MachTen libraries into memory
and begin executing as a UNIX kernel. The UNIX kernel reads MachTen Prefs and
configures some internal data tables accordingly. The kernel then starts the first
UNIX process, init(8).

Power MachTen User’s Guide46

init establishes a default environment for all subsequent processes. It sets certain
environment variables and takes care of Macintosh time-to-GMT mappings. Once
the default environment is set up, init starts a program that reads the /etc/rc
database and executes the commands in it. With input from the /etc/rc.conf
configuration file generated from the MachTen control panel settings, the network
interfaces are activated. Also, several server programs, or daemons, are started (see
“Table 2. MachTen Daemons”). If successful in completing all of the commands in
/etc/rc, a login console is displayed.

MachTen daemons are described in detail in section 8 of the UNIX man pages. In
MachTen, the startup data files (“Table 3. MachTen Data Files”) may be configured
via the MachTen control panel. MachTen data files are described in detail in section 5
of the man pages.

Figure 16. MachTen Initialization

inetd cron lpd nfsd portmapmountd sendmail syslogd named

/etc/rc.local

/etc/motd

MachTen Libraries

(unix)

/etc/rc

/MachTen/misc/rc.config

/usr/etc/ifconfig

/usr/etc/route

/usr/etc/mount

macmntd

/etc/inetd.conf

/dev/diskinsert

/etc/exports

/etc/syslog.conf

/etc/named.boot

/usr/lib/crontab

/etc/printcap

/MachTen/misc/Install.conf

MachTen Prefs
(Preferences Folder)

/etc/rc.conf

/etc/resolv.conf

/etc/sendmail.cf

/etc/sendmail.cw

/etc/hosts

/usr/lib/sendmail

/usr/etc/zoneinfo/localtime

/etc/fstab

KEY

 A runs B

written database file

read database file

MachTen Console

4.4BSD Unix (console)
login:

/etc/init

/etc/ttys

MachTen

A B

Power MachTen User’s Guide 47

Table 2. MachTen Daemons

rc Main configuration file controlling startup and
customization of UNIX. Reads /etc/rc.conf file created via
MachTen control panel and starts specified daemons.

inetd Controls incoming network connections for the following
services: ftp, rsh, rlogin, rexec, uucp, tcptraffic, pop, finger,
tftp, ntalk, comsat, name, daytime, time, echo and discard.
Configured via /etc/inetd.conf database.

cron Controls starting of services or system tasks. Configured
via /usr/bin/crontab.

lpd Controls printing. Configured via /etc/printcap database.

nfsd, mountd,
portmap

Control NFS service if system is exporting file system to
other network clients. mountd uses /etc/exports database to
control which file systems are exported.

mactcpd Replaces the Macintosh TCP service.

macmntd Senses removable disk insertion (floppy, CD-ROM, etc.)
and automatically mounts the disk in /volume.

sendmail Accepts e-mail coming in from network connection.
Configured via /etc/sendmail.cf and /etc/sendmail.cw
databases.

syslogd Logs system activities and errors. Configured via
/etc/syslog.conf database.

named Provides name service. Maps host names to Internet
addresses, and vice versa. Configured via /etc/named/boot
database.

wind Controls the MachTen windows environment after log in.

httpd Serves World Wide Web (WWW) documents to internet
Web browsers.

Power MachTen User’s Guide48

Table 3. MachTen Data Files

/etc/ttys Controls logins on the UNIX system terminals.

/etc/motd Message of the day. Built by /etc/rc process and
used by login process each time user logs in.

/etc/rc.local Invoked by /etc/rc process. Should be used to
configure site-specific daemons.

/MachTen/misc/rc.config Invoked by /etc/rc process. Reads /etc/Install.conf
database built by MachTen control panel and
configures several system databases accordingly.

/etc/resolv.conf Controls where client requests for name services
are sent. Could be configured for a name server
running on this system or another networked
system.

/etc/localtime Controls the time zone mappings to GMT.

/etc/rc.conf Used by /etc/rc. Reflects parameters from the
Networking Configuration and General
Configuration screens of the MachTen control
panel.

/etc/fstab Database of file systems. Used by /sbin/mount.

/etc/sendmail.cf Sendmail(8) configuration file.

/etc/hosts Host name-to-internet-address mapping.

Power MachTen User’s Guide 49

4.1 The MachTen Login Console

When MachTen is first started, it displays a command window† and asks users to
identify themselves with a user name and password. At this point, the desktop
looks like a conventional Berkeley 4.4BSD UNIX system. (See “Figure 17. MachTen
Login Console”.)

MachTen provides three pre-configured login accounts — root, mtuser and mtnext.
Each of these accounts has the password “MachTen”. The root and mtuser accounts
default to a UNIX terminal window environment. The mtnext account defaults to
a high-performance X desktop, using the AfterStep window manager.

In the example in “Figure 17. MachTen Login Console”, “fred” is the host name
that was entered into the control panel when MachTen was installed. Log in as root
by typing “root” (followed by a carriage return), and then typing the password
“MachTen”. Observe what happens. Be careful to use lowercase. Unlike the
Macintosh, MachTen is case sensitive. If you make a mistake you can use the Delete
key to correct your error. When root logs in, the console window is automatically
closed and a MachTen “terminal window” is opened (see
“Figure 18. MachTen Terminal Window”).

After logging in, you will enter a windows environment controlled by the wind(8)
program. MachTen windows let you create multiple windows, each representing a
UNIX “shell” (the UNIX command interpreter). When you type commands in a
MachTen terminal window, you are communicating with the shell. MachTen
provides the Bourne shell (sh(1)) (the default), the C shell (csh(1)), bash(1) and
tcsh(1). MachTen windows are described in detail in section “4.2 MachTen
Windows”.

Once you log in, you should immediately invoke the passwd(1) program and create
a password for the root login. This is done by typing the following:

passwd
New password: <new_root_password>
Retype new password: <new_root_password>

For more information, refer to section “5.6.5 The Root Password”.

† Customizing the size and location of the console window may be achieved by
using ResEdit to edit the WIND resource, ID 128, in the MachTen application.

Power MachTen User’s Guide50

Figure 17. MachTen Login Console

Power MachTen User’s Guide 51

Figure 18. MachTen Terminal Window

At this point you may wish to set up a user account for yourself. Refer to section
“5.6.6 Setting Up User Accounts”.

Once the system recognizes a user, it sets the current working directory, executes
a series of commands to perform any automatic startup processing, checks to see
if any electronic mail has arrived, and prints a prompt† indicating that the system
is waiting for input. To establish a new password††, use the passwd(1) command,
just as you did before as root.

† For non-root logins, a ‘$’ is the default prompt for sh(1) users; for csh(1) users, the
default prompt string includes your user name, host name and the ‘%’ character
in the form username@host%.

†† When this is done, you will have changed the password for the current user. It
is now up to you to remember the password, as there is no way to “look up” a
password in MachTen.

Power MachTen User’s Guide52

4.2 MachTen Windows

The MachTen windows environment is a menu-oriented system enabling the user
to create and control multiple command interpreter windows. It is created after
you log in on the login console and is controlled by wind(8), the MachTen window
daemon. The windows environment closely follows the Macintosh user interface
standard. The windows of each Macintosh program are logically grouped
together. All UNIX-style terminal windows are grouped together as MachTen
windows. Each window is a Macintosh “zoom window” with a title bar, scroll bar,
zoom box, size box and close box. The title bar of the active terminal window will
be highlighted (see “Figure 19. MachTen Windows”).

Figure 19. MachTen Windows

MachTen menus are located at the top of the screen and operate like traditional
Macintosh menus.

Power MachTen User’s Guide 53

4.2.1 The Apple Menu

The Apple menu gives you access to “About MachTen”.

4.2.2 The File Menu

The File menu lets you create MachTen windows and manipulate your window
environment.

About MachTen Information on how to contact Tenon.

Create Window Command-N Create a new terminal window.

Close Window Command-W Close the active terminal window.

Logout Command-Z Quit windows and return to the
login console.

Quit Command-Q Quit MachTen.

Power MachTen User’s Guide54

4.2.3 The Edit Menu

The Edit menu gives you access to the Macintosh Clipboard. Text can be selected
by moving the mouse cursor to the start/end of a selection and holding the button
down while moving forward/backward to the end point of your selection, and
then releasing the button. Selected text is displayed as white letters on a black
background. Double-clicking the mouse selects the word where the mouse cursor
is; triple-clicking selects the entire line.

Undo Command-Z “Undo” is provided only to
support desk accessories and is
not active under MachTen.

Cut Command-X “Cut” is provided only to support
desk accessories. The concept of
“cutting” from a UNIX “history”
screen is not meaningful.
Moreover, specific applications
need built-in “cut” support. In
MachTen, traditional
“cut-and-paste” functions
become “copy-and-paste”.

Copy Command-C Put a copy of the selection on the
Clipboard.

Power MachTen User’s Guide 55

Paste Command-V Put a copy of the contents of the
Clipboard into the active window.
The same item may be pasted
many times until the next “Copy”
command.

Clear “Clear” is provided only to
support desk accessories and is
not active under MachTen.

Select All Command-A Select all the text in the active
window.

[Copy], Paste, <cr> Command-G Copy current selection to the
Clipboard. The Clipboard is then
provided as input to the active
window, followed by a carriage
return. This lets you select
something from the screen and
turn it into (the tail end of) a
UNIX command.

Save Selection Save the selected text to a file.

Power MachTen User’s Guide56

4.2.4 The Window Menu

The Window menu begins with three hierarchical menu items. To access these
menus, slide the mouse cursor over the item and to the right. This will make their
sub-menus visible. The other items in the Window menu are the names of existing
terminal windows. The item with a check mark is the current console window.
The active window is displayed in outline font. The keyboard shortcut for these
windows is <Command>-#, where “#” is the number of the terminal window.

Power MachTen User’s Guide 57

4.2.4.1 The Positions Sub-Menu

Windowpanes Command-P Position the windows so that they
are all visible on the screen,
creating a windowpane effect.

Horizontal Panes Windowpane effect with each
window as wide as the complete
screen.

Vertical Panes Windowpane effect with each
window as tall as the complete
screen.

Original Positions Undo the windowpane effect.

Power MachTen User’s Guide58

4.2.4.2 The Size Sub-Menu

Original Size Command-O Return the active window to the
size it was when it was opened.

Full Height Command-F Make the active window as tall as
will fit on the screen.

Zoom Window Command-B Make the active window as big as
will fit on the screen. This is a
toggle command — if the active
window is full size, it will return
to its previous size. The results of
this command are identical to
clicking in the zoom box of the
active window.

Power MachTen User’s Guide 59

4.2.4.3 The Order Sub-Menu

Hide “Terminal #” Command-H Make the active window invisible. A
hidden window can be made visible
using the “Show All” command
(described below), or by selecting that
window.

Hide All Command-D Make all windows invisible.

Show All Command-K Make all windows visible.

Last Window Command-L Make the previously active window the
current active window.

Rotate Windows Command-R Make the current rear window (furthest
from the front on the desktop) the front
active window, and make the active
window the second window.

Power MachTen User’s Guide60

Save Scrolled
Lines /Don’t Save
Scrolled Lines

If “Save Scrolled Lines” is selected for a
given window, the lines scrolled off the
top of the window will be saved and the
scroll bar will be activated. The window
will stay in this state until “Don’t Save
Scrolled Lines” is selected. These two
commands share one line in the
Window menu; when “Save Scrolled” is
enabled, the menu says “Don’t Save”,
and vice versa.

Remove Scrolled
Lines

If “Save Scrolled” is enabled, this will
throw away any saved lines.

Save Window
Environment

Save a description of the sizes and
locations of the current MachTen
windows environment to a named file.
Font types and sizes are also saved. This
file is suitable to become the MachTen
window environment startup file.

Send Window
Size

Command-S Provide the string

stty rows n columns m

as input to the current active window,
where “n” is the number of rows that
will fit in that window using the current
font type and size, and “m” is the
number of columns. This is useful when
accessing network-based UNIX systems
that want to know the size of the
terminal.

An example would be using telnet to
access a Sun workstation, and trying to
run a screen-oriented program such as vi
on the remote system. After connecting
to the remote system, the stty(1)
command will inform the remote system
of the terminal size to use.

Power MachTen User’s Guide 61

4.2.5 The Fonts Menu

The Fonts menu is created at startup time and contains all fixed-width fonts found
in the current system, with point size choices of 9, 10, 12, 14, 18, 24 and 36. The
current font size of the active window is checked, and the font sizes of “real” fonts
are displayed in outline font. Real fonts are non-scaled and tend to look nicer for
standard UNIX command interactions. Some commonly found fixed-width fonts
are Courier and Monaco.

Font sizes can be changed to the next larger/smaller size by typing
<Command>-<up arrow> and <Command>-<down arrow>.

Variable-width fonts in the system will not appear in the MachTen
Fonts menu.

Power MachTen User’s Guide62

Power MachTen User’s Guide 63

5.0 MachTen Administration

This section deals with MachTen system initialization, user accounts, file system
maintenance and virtual memory.

MachTen requires considerably less “administration” than traditional UNIX
systems. Since the underlying operating system is the Macintosh Operating
System (MacOS), running MachTen is, in general, no more complex than running a
MacOS application. MachTen, however, is a multiuser system with the concept of
logins, passwords and file permissions. Further, it contains sophisticated
networking software. System administration for MachTen includes establishing
host names and domain names for standard internet protocol interactions, as well
as setting MachTen up as a gateway, an NFS client or server, as a mail host, or as a
UUCP participant.

MachTen system administration can be performed by ordinary users. If MachTen
systems are integrated into a corporate or campus network, the network setup
tasks will no doubt be performed by the site network administrator. In an
environment where there is already a UNIX administrator, MachTen systems can
easily be incorporated into the standard UNIX environment.

Power MachTen User’s Guide64

5.1 A Word About Man Pages

MachTen supports a vast array of UNIX commands and utilities. All of the UNIX
commands are documented in a set of “man” pages included with MachTen. The
UNIX man pages are divided into numbered sections. Commands in this manual
and all other MachTen documents are referenced using these section numbers (e.g.,
gawk(1)).

The man page sections are:

Section No. Section Title

1 User Commands

2 System Calls

3 Library Functions

4 Special Files

5 File Formats

6 Games

7 Public Files, Tables & Troff Macros

8 Maintenance Commands

9 X Window System Commands

Power MachTen User’s Guide 65

5.2 Tailoring the Startup Environment

Changes made in the MachTen control panel screens are recorded in the file
/etc/Install.conf. Whenever /etc/rc sees changes in this file, it invokes the shell script
/etc/rc.config to update several system files, including /etc/rc.conf. /etc/rc then reads
the variables defined in /etc/rc.conf and initializes the services and daemons
specified.

Most variable definitions in rc.conf reflect the configuration settings entered in the
MachTen control panel. When you modify the control panel, the changes are
applied to rc.conf the next time MachTen boots. For definitions not covered by the
control panel, edit rc.conf and modify the variable directly. All rc.conf definitions
are described below.

The first set of variable definitions controls the configuration of the network
interface(s) installed in your system:

HOSTNAME The name of the machine running MachTen.

ADDRINFO_* The host name of the machine on Ethernet (e),
AppleTalk (a), SLIP (s) and/or TokenRing (t). All
assigned names should also appear in the /etc/hosts file.

IFCONFIG_* The network interface configuration parameters for
Ethernet (ie0), AppleTalk (at0), SLIP (sl0) and/or
TokenRing (tr0). This variable is only defined if the
interface is installed in the system and is to be initialized
by MachTen.

NETMASK_* The internet subnetwork mask for a configured network
interface on Ethernet (e), AppleTalk (a), SLIP (s) and/or
TokenRing (t).

Power MachTen User’s Guide66

The following boolean variables determine whether or not an optional service is
invoked, or is started by rc:

A null value (or string) is interpreted as negative; any other value is interpreted as
affirmative. For example, the entry:

START_sendmail="yes"

will start the sendmail daemon during the boot process, whereas the entry:

START_sendmail=

will not start sendmail. Unused variables can be also be disabled (made negative)
by preceding the entry with a pound sign (#).

CLEANUP_tmp Remove files from /tmp (aka /var/tmp) at
startup.

MOUNT_REMOTE_FILES Mount all file systems recorded in /etc/fstab
(fstab(5)) at startup.

PRESERVE_EDITOR_FILES Preserve ex and vi edits in progress in the
event of a system crash.

START_cron Execute commands by date/time via cron(8).

START_inetd Service incoming internet connections via
inetd(8).

START_lpd Manage spooled printer output via lpd(8).

START_macmntd Automatically mount inserted floppies via
macmntd(8).

START_named Answer network queries for host names and
addresses via named(8), the domain name
server.

START_sendmail Enable incoming internet mail via sendmail(8).

START_syslogd Log system messages via syslogd(8). By
default, this variable is set if the
START_sendmail definition is affirmative.

Power MachTen User’s Guide 67

The following definitions are miscellaneous service definitions:

When editing /etc/rc.conf, be careful not to remove any variables which the script
/MachTen/misc/rc.config expects to find.

As a final step in the startup process, /etc/rc executes commands in a user-supplied
file named /etc/rc.local, if it exists. The /etc/rc.local file is typically used to start any
machine-specific processes after MachTen has booted, such as MacTCP
applications. Online examples of these files can be found in the /usr/share/skel
directory.

5.2.1 Setting Up MachTen to Boot Automatically

MachTen can be set up so that it boots automatically when you start your machine.
Place an alias of the MachTen application file in the System Folder:Startup Items
folder. Later, if you want to reset your Macintosh not to boot MachTen
automatically, simply remove the alias files from the Startup Items folder.

5.2.2 Manual Startup

If MachTen has not been configured to start automatically, simply double-click the
MachTen application in the MachTen folder on your Finder desktop.

GATEWAY The host name or internet address of the gateway to
other networks. The name given should also appear
in the /etc/hosts file. The route(8) command is invoked
with this variable by rc to establish the default route.
The variable should remain undefined if no gateway
exists.

NAMED_BOOT The domain name server boot file. By default, the file
is /etc/named/boot.

Power MachTen User’s Guide68

5.3 Tailoring MachTen Windows

MachTen windows are started by the /usr/bin/wind daemon. Note how /usr/bin/wind
is invoked by the .login file when you log on to the MachTen console. When
/usr/bin/wind is initiated, the system looks in your home directory for a file named
.windrc, which specifies your preferred window environment.

If there is no .windrc file in your home directory, a single 24-row by 80-column
window is opened with a default font and font size (Monaco 9 or the closest
available fixed-width font).

If you want to design your own window environment, a .windrc file must exist in
your home directory. The easiest way to create a .windrc file is to create the
windows you want for your standard startup environment, position them as
desired, and set the active window’s font type and point size to the font and size
you prefer. Then select “Save Window Environment” in the File menu. You will
be asked to provide a file name. The first time you do this, you must name the file
.windrc and place it in your home directory. The changes will take effect the next
time you launch MachTen.

It is a good idea to keep a copy of your current .windrc file each time you change
your window environment so that you can easily return to the previous
environment. If you want to return to the system default, simply remove the
.windrc file you created.

To change the name of a terminal window, edit the .windrc file and change the
name from “Terminal n” to whatever you would like.

If you want a terminal window to run an alternative program instead of the shell
specified in your /etc/passwd entry, simply follow the window name with a
“-command”, where command is any legal program name (you must use the
complete path name) and any parameters. When that terminal window opens it
will run the command specified. Note that the terminal window will close
automatically when that command terminates. Useful commands to use here are
interactive programs such as /usr/bin/rlogin <hostname> or /usr/bin/vi <filename>.
See the wind(1) man page for details on tailoring your .windrc environment.

Power MachTen User’s Guide 69

5.4 Tailoring Your UNIX Environment

The user’s environment includes the TERM, TERMCAP and TTY environment
variables set by the wind daemon. It is important that these remain set to proper
values; otherwise undesirable functioning of the VT100 emulation within your
terminal windows may result. Under MachTen, login(1) creates a special variable
called MACHTEN, which indicates the MachTen kernel version number.

To see your current environment, type:

printenv

A typical environment looks like this:

VIRTUAL_MEMORY=false
POSIX=true
HOME=/home/root
SHELL=/bin/csh
LOGNAME=root
USER=root
PATH=/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11/bin:/usr/libexec
MACHTEN=4
PWD=/var/tmp
EDITOR=/usr/bin/vi
VISUAL=/usr/bin/vi
EXINIT=set shell=/bin/csh magic redraw
TERM=vt100

TERMCAP=vt100:do=^J:co#80:li#24:cl=50\E[;H\E[2J:sf=2*\ED:le=^H:bs:am:cm
=5\E[%i%d;%dH:nd=2\E[C:up=2\E[A:ce=3\E[K:cd=50\E[J:so=2\E[7m:se=2\E[m:u
s=2\E[4m:ue=2\E[m:md=2\E[1m:mr=2\E[7m:mb=2\E[5m:me=2\E[m:is=\E[1;24r\E[
24;1H:if=/usr/share/tabset/vt100:rs=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:k
s=\E[?1h\E=:ke=\E[?1l\E>:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=^H:ho=\E[H:
k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:pt:sr=2*\EM:v

t#3:xn:sc=\E7:rc=\E8:cs=\E[%i%d;%dr:
TTY=/dev/wina0
WIND_NAME=Terminal 1
DISPLAY=:0

Power MachTen User’s Guide70

To change the default editor from vi(1) to ex(1) under csh(1), for example, type the
following:

setenv EDITOR /usr/bin/ex

The environment default settings have been carefully chosen to minimize
difficulties for users new to UNIX. Be careful not to unwittingly change these
parameters.

5.5 Quitting MachTen

Selecting “Quit” from the File menu can be used to quit MachTen without restarting
the MacOS. MachTen can subsequently be launched again. The command reboot
will kill all of the UNIX processes and then quit MachTen. The -q option to reboot
will quit MachTen immediately, without attempting to kill the other UNIX
processes. To provide a degree of remote control (via MachTen) to restart the
MacOS, use reboot with -M. halt behaves like reboot, except that after killing the
UNIX processes (if no -q option), the Macintosh is shut off (like Finder selecting
“Shut Down”).

When the Finder is used and either “Restart” or “Shut Down” is selected from the
Special menu, MachTen invokes /sbin/reboot to kill the UNIX processes and then quit
MachTen. Control returns to the Finder to “Shut Down” or “Restart”, as
appropriate.

When MachTen menus are used and the “Quit” item under the File menu is
selected, MachTen invokes /sbin/reboot. Holding down the <Shift> key while
selecting this item invokes /sbin/reboot -q. This also applies to the “hot key”
combinations <Command-Q> and <Shift>-<Command-Q>.

Power MachTen User’s Guide 71

5.6 Login Accounts

Since MachTen supports parallel execution of programs, it is possible to support
multiple users at the same time. Each user, whether accessing the system locally
or over a network, has a user name and a password. The password is used to
convince the system that the users are really who they say they are. While login
names are used for a variety of public purposes, such as receiving electronic mail,
passwords are meant to be kept as private as possible, and therefore are not echoed
by the system. Having individual login accounts enables each user to have a
customized working environment without modifying another user’s files and
environment.

5.6.1 The Concept of a Home Directory and a User
Environment

When users are given accounts on a UNIX system, they are assigned individual
and group IDs and are given a “node” in the directory tree structure. This node
(also called the user’s “login directory” or “home directory”) designates a private
storage area for that user.

In addition, a “user environment” is established for each user. The user
environment is governed by the user’s choice of UNIX shell (see section “5.6.2 The
UNIX Shell”) and associated login file(s) placed in the user’s home directory. The
parameters that describe each user account are kept in a special password file
called /etc/passwd (see passwd(5)), described in sections “5.6.7 The Password File”
and “5.6.8 The Group File”.

MachTen supplies a utility program (adduser(1)) for establishing login accounts and
home directories. (See section “5.6.6 Setting Up User Accounts”.)

Power MachTen User’s Guide72

5.6.2 The UNIX Shell

The UNIX “shell” is the UNIX command interpreter. When you type commands
in a MachTen terminal window, you are communicating with the shell. MachTen
provides both the Bourne shell (called sh) and the C shell (called csh). If you have
already logged in as root, you are running under the C shell. Both the Bourne shell
and the C shell are powerful execution environments. In addition, both shells
support programming languages that include flow control primitives, parameter
passing, variables and string substitution. The Bourne shell is more compact and
uses less memory. The Bourne shell relies on a .profile file in the user’s home
directory, while the C shell uses .login and .cshrc files to determine the user’s
environment. As part of establishing a user account, you may stipulate a
particular shell by specifying the appropriate parameter to the adduser script, or
you may change shells at a later time using the chpass <username> command.

5.6.3 Superuser and Privileges

Intrinsic to each user login is the concept of login privileges. When you are logged
in as root, you are the most privileged user on the system — the “superuser”. The
superuser has access to and authority over system resources that are not available
to all users. The superuser has access to private user data, can add and delete users
from the system, and can provide support when a user has forgotten his or her
password.

You can become superuser by logging in as root or by typing “su” when logged in
as a normal user. In order for an ordinary user to become superuser, access must
be granted via the /etc/group “wheel” group, and you must know the root
password.

$ su
Password: your_root_password
. . . privileged operations . . .
^D
$

Power MachTen User’s Guide 73

If an ordinary user is also the system administrator, it is advisable to log in as
superuser only when doing administrative tasks and to revert to the normal user
login otherwise. This is a security precaution to ensure that key system resources
are not inadvertently destroyed. When logged in as an ordinary user, typing “su”
will enable you to become superuser for performing tasks that require extra
privilege.

5.6.4 A Word About Security

Since MachTen is implemented as an application on a non-secure operating system
(the MacOS), traditional UNIX-style security is not enforced by Macintosh
applications. However, since MachTen imposes traditional UNIX permissions on
files and supports traditional UNIX password protections, MachTen files are
protected from users logging in remotely, and MachTen permissions are enforced
on NFS exported files. Since the MachTen file system is simply the native
Macintosh file system, traditional Macintosh security software, such as FolderBolt,
works well with MachTen for file protection. In addition, security-relevant
database files, such as the password file, can be stored on remote secure UNIX
servers and accessed via NFS.

Power MachTen User’s Guide74

5.6.5 The Root Password

In a newly installed MachTen system, the root account has the password
“MachTen”. Once you log in, you should immediately invoke the passwd(1)
program and change the password for the root login. This is done by typing the
following:

passwd
New password: <new_root_password>
Retype new password: <new_root_password>

As a precaution, in order to ensure that system resources will not inadvertently be
destroyed, you should normally log in as an ordinary user and use the su
(superuser) command to perform tasks that require extra privilege. The su
command will give you the same capabilities as the root login, and will expect the
root password. Only users listed as belonging to the “wheel” group in the
/etc/group file can use the su command (see “Figure 22. The /etc/group File”).

%su
password: <root_password>
(... whatever you need to do)
#^d (typing <Control>-d ends the session)
%

Note that the system prompt for an ordinary user is different than the superuser or
root prompt. This difference will remind you to exit from su once administrative
tasks have been completed. Read the next few sections and then set up an account
for yourself and for any others that will be using the system. When you are setting
up login accounts, you can give certain users the privilege of becoming superuser.

Power MachTen User’s Guide 75

5.6.6 Setting Up User Accounts

A user account is added to the system using the adduser(1) command:

adduser username [-g gid] [-u uid] [-p passwd]
[-n user] [-d home] [-s login]

-g (gid) Group ID of the new user.

-u (uid) User ID of new user.

-p (passwd) Text form of the user password; default is username.

-n (user) Specifies user information, e.g. “John Brown”; default is
username.

-d (home) Specifies the user’s home directory; default is /home/username.

-s (login) Specifies program to run as login shell; default is /bin/sh
(Bourne shell). The entry /bin/csh specifies the C shell.

Only the username is required; adduser will assign default values to the remaining
parameters. A group ID of 10 is suggested for user accounts. As an example, to
establish an account for user “John” in group 10, enter:

adduser john -g 10 -n “John Brown”

adduser creates default .login and .cshrc files for the new user. A portion of the .cshrc
file is shown in “Figure 20. A .cshrc File”.

Once the system recognizes a user, it sets the current working directory, executes
a series of commands to perform any automatic startup processing, checks to see
if any electronic mail has arrived, and prints a prompt ($)† indicating that the
system is waiting for input.

† For non-root logins, a ‘$’ is the default prompt for sh(1) users; for csh(1) users, the
default prompt string includes your user name, host name and the ‘%’ character
in the form username@host%.

Power MachTen User’s Guide76

Figure 20. A .cshrc File

.cshrc File:
set host=`hostname` tty=`tty` Set up some additional useful shell variables

set mail=/usr/spool/mail/$USER Tell the shell where to look for new mail. It will
check every 10 minutes and notify you if there
is anything new.

if ($?prompt) then Run only the following on interactive shells.
 cd Change directory to home directory every time.
 setenv EDITOR '/usr/bin/vi' Set Mail control variables.
 setenv SHELL /bin/csh
 setenv VISUAL /usr/bin/vi
 setenv EXINIT 'set shell=/bin/csh magic redraw'setenv SHELL /bin/csh

ex/vi settings

 SET UP CSH CONTROL VARIABLES
 set filec Enable filename completion with <esc> and ^d.

Normally csh will log out when ^d is typed at
start of command line.

 set ignoreeof Disable this feature.
 set noclobber Tell csh not to write over existing files during

I/O redirection.
 set notify Tell csh to provide immediate job completion

messages.
 set history=20 Tell csh to remember the last 20 commands.
 set savehist=20 Tell csh to remember last 20 commands from

previous login.
 set prompt="$user@$host% " Set prompt to include the user's name and local

host's name.

 COMMAND ALIAS SECTION
 alias psh pushd Set up some useful short versions of often
 alias pop popd used commands.
 alias hi history
 alias j jobs -l
 alias cd 'set old="$cwd"; chdir \!*'
 alias back 'set back="$old"; set old="$cwd"; cd "$back"; unset back; dirs'

Set up alias for cd/back. cd works like regular
cd and sets shell variable $old so that the back
alias will put us back to the previous directory.

 alias new 'ls -aglt \!* | head -15'
Set up alias that will show the 15 newest files in
the local directory, newest first.

endif

Power MachTen User’s Guide 77

5.6.7 The Password File

Once you are set up as a user, you should add a password using passwd.

In 4.4BSD, the /etc/passwd(5) file is an ASCII file which is a shadow of the actual
password database file. Do not make changes to this file. Use the passwd, chpass
and chroot commands to make changes to the actual password database, which
will automatically be reflected in the /etc/passwd file.

The /etc/passwd(5) ASCII file contains entries for the following:

name (login name, contains no uppercase)
dummy password field
numerical user ID
numerical group ID user’s real name, office extension, home phone
home directory
program to use as shell

Each field is separated by a colon. Each “user” is separated by a new-line. Since
MachTen uses shadow passwords, the real password is stored in /etc/master.passwd,
and the password field consists of a single asterisk in the /etc/passwd file. If the shell
field is null, then /bin/sh is used. If a user forgets his or her password, the system
administrator can change their password using the chpass command.

Each user should have a unique user ID.

In “Figure 21. The /etc/passwd File” notice that root has selected the C shell. By
using the chpass command, you can change the root default shell to the Bourne
shell.

Power MachTen User’s Guide78

Figure 21. The /etc/passwd File

5.6.8 The Group File

The /etc/group file is used to organize users into groups in order to control system
access and authorizations. Groups are defined by entries in the /etc/group file.
Each entry has the following fields:

name
encrypted password
numeric group ID
authorized users (separated by commas, with no spaces)

The fields are separated by colons. The authorized user list is optional. It provides
a way for users to belong to multiple groups. If the encrypted password is an
asterisk, there is no password for that group.

“Figure 22. The /etc/group File” shows how the /etc/group file looks when
MachTen is first installed. This is the file used to designate group affiliations.

root:*:0:1:Operator:/home/root:/bin/csh
toor:*:0:1:Bourne-again Operator:/home/root:/bin/sh
nobody:*:65534:65534:Unprivileged user:/tmp:/sbin/nologin
ftp:*:65533:65533:Anonymous FTP:/home/ftp:/sbin/nologin
ppp:*:65532:65532:PPP Dialin Account:/tmp:/etc/pppserver
daemon:*:1:1::/:/sbin/nologin
sync:*:1:1::/:/bin/sync
operator:*:2:5:System &:/home/operator:/bin/csh
bin:*:3:7:Binaries Commands and Source:/usr/bin:/sbin/nologin
uucp:*:4:4:UNIX-to-UNIX Copy:/var/spool/uucppublic:/usr/lib/uucp/uucico
news:*:6:8:Network News:/var/spool/news:/sbin/nologin
games:*:7:13:Games pseudo-user:/var/spool/news:/sbin/nologin
mta:*:10:10:Post.Office MTA:/tmp:/sbin/nologin
mtuser:*:100:20:mtuser:/home/mtuser:/bin/csh

Power MachTen User’s Guide 79

The first line in the /etc/group file is the “wheel” entry, for people with total access
to system resources or root privileges — the “big wheels”. Only users listed in the
“wheel” group are allowed to become superuser with the su(8) command. You
may want to establish separate logins for members of a project team and give all
members access to the project files.

An entry for an accounting group with two members would be as follows:

accounting:*:7:shawn,lauren

Figure 22. The /etc/group File

wheel:*:0:root
nogroup:*:65534:
daemon:*:1:daemon
kmem:*:2:root
sys:*:3:root
tty:*:4:root
operator:*:5:root
bin:*:7:
news:*:8:
wsrc:*:9:
games:*:13:
dialer:*:17:
ftp:*:19:
staff:*:20:root

Power MachTen User’s Guide80

5.6.9 Administrative Login Accounts

It is customary to set up special administrative accounts with varying degrees of
privilege. These accounts are used by system administrators or by programs to
perform specific administrative tasks. The default MachTen /etc/passwd file contains
the following accounts:

root:*:0:1:Operator:/home/root:/bin/csh
toor:*:0:1:Bourne-again Operator:/home/root:/bin/sh
nobody:*:65534:65534:Unprivileged user:/tmp:/sbin/nologin
ftp:*:65533:65533:Anonymous FTP:/home/ftp:/sbin/nologin
ppp:*:65532:65532:PPP Dialin Account:/tmp:/etc/pppserver
daemon:*:1:1::/:/sbin/nologin
sync:*:1:1::/:/bin/sync
operator:*:2:5:System &:/home/operator:/bin/csh
bin:*:3:7:Binaries Commands and Source:/usr/bin:/sbin/nologin
uucp:*:4:4:UNIX-to-UNIX Copy:/var/spool/uucppublic:/usr/lib/uucp/uucico
news:*:6:8:Network News:/var/spool/news:/sbin/nologin
games:*:7:13:Games pseudo-user:/var/spool/news:/sbin/nologin
mta:*:10:10:Post.Office MTA:/tmp:/sbin/nologin
mtuser:*:100:20:mtuser:/home/mtuser:/bin/csh

Non-interactive accounts for programs:

nobody Default user ID for remote root access via NFS.

daemon Owner of certain background processes that handle system
services, such as print spooler (lpr(1)) and network
communication.

sync Special login to update write buffers. Performs a sync and logs
out.

bin Owner of most standard commands.

uucp Login assigned to uucp requests.

news Login used by netnews program. (This is a placeholder, since
news is not implemented in MachTen.)

Power MachTen User’s Guide 81

5.6.10 Writing to All Users

wall(1) reads its standard input until an end-of-file. It then sends the message it
read, preceded by “Broadcast Message ...”, to all users. The sender should
be superuser to override any protections that users may have invoked.

#wall
The system is going down in 5 minutes for maintenance.
^D

The result on each user’s active terminal window will be:

Broadcast message from root:
The system is going down in 5 minutes for maintenance.

User accounts:

root Login for superuser. The home directory is /home/root and the
shell is /bin/csh.

toor Alternate login for superuser. The home directory is /home/root
and the shell is /bin/sh.

Power MachTen User’s Guide82

5.6.11 Disabling User Logins

If the file /etc/nologin exists, no logins (other than root) will be allowed on your
system. See login(1).

5.6.12 Removing Users

To prevent a user from logging in, use the passwd command and change the
password string for the user, thus preventing any possible match. Then, when
convenient, perhaps after backing up, the deleted user’s storage can be reclaimed.
Removing a user involves removing the entry from the /etc/master.passwd file,
rebuilding the password databases with the command:

pwd_mkdb /etc/master.passwd

and deleting disk files.

5.6.13 Changing the Message-of-the-Day

As root or superuser you can edit the file /etc/motd. If this file does not already exist,
it can be created with the touch(1) command. Whatever data you place in that file
will be printed out each time a user logs into MachTen (except for the top two lines,
which are edited by the /etc/rc script at reboot and filled in with a version number).

Power MachTen User’s Guide 83

5.6.14 Special Characters

A number of keyboard characters have special meaning in UNIX. The chart in
“Figure 23. Special Keyboard Characters” will help you use the UNIX command
line environment.

Figure 23. Special Keyboard Characters

TERMINAL HANDLER SPECIAL CHARACTERS

• Line Termination The Return key indicates completion of input
at the end of a line. A command is initiated
when the Return key is struck.

• Character Deletion The Delete key deletes a character.

• Word Deletion Control-W deletes the last word of input.

• Line Deletion Control-U deletes the entire line.

• Output Suspend/ Control-S temporarily halts output to the
Restart screen. Control-Q restarts output.

• Program Interrupt Control-C interrupts a program. Programs
that do not intercept this input are terminated
and the command interpreter is given control.

• End of File Control-D demarks the end of a series of input
lines.

• End of Session Control-D is used by one of the command
interpreters to demark end of session and log
a user out of the system. (sh only)

• Program Suspension Control-Z suspends execution of interactive
programs and takes a user to the command
interpreter. fg (foreground) returns the user to
the program. (csh only)

• Escaping Input Preceding special characters with a "\"
(backslash) escapes the special character and
passes it on as regular input.

COMMAND INTERPRETER SPECIAL CHARACTERS

• * Matches zero or more characters in a filename.
May be used to match filename strings.

• ? Matches one single character pattern.

Power MachTen User’s Guide84

5.7 Managing Your UNIX Environment

5.7.1 What’s Running?

Since MachTen runs multiple programs at the same time, there will be times when
you will want to see which programs are executing, how much system time they
are using and, if they are not running, why not. The program ps prints the process
status of each Macintosh and UNIX program that is running.

“Figure 24. Using ps to Show What is Running” shows the sample output from a
ps -lax command.

Figure 24. Using ps to Show What is Running

Power MachTen User’s Guide 85

5.7.2 Killing a Program

The kill(1) program is used in conjunction with the ps program to abort the
execution of a program. First, use ps to determine the process ID (PID) that you
wish to abort. Then use the kill program with that process ID to terminate that
program. Occasionally, after you execute kill, you may receive a message telling
you that the program actually terminated. This delay results from the fact that to
terminate a program, the program must be scheduled for execution and must
terminate itself. For example:

kill -9 25

would abort the inet daemon shown running in “Figure 24. Using ps to Show What
is Running”.

5.7.3 Background Program Execution

Some programs execute for a long time. Rather than tie up a window, you can start
the program and let it run behind the scenes. To place a program in “background
execution”, simply type an ampersand (&) at the end of the command line. The
shell will begin executing the program. Rather than waiting for the program to
complete execution before returning a prompt, the shell returns immediately with
a process ID identifying the program that started execution, and a prompt
signifying that it is ready to run another command. For example:

% grep ioctl *.c > found &

Power MachTen User’s Guide86

5.7.4 Shell Files

MachTen provides a means for executing multiple commands by defining them
within a file. The file can then be run as a single command. Use an editor to create
a file called startup with the commands date, who and pwd. Here is an example
using the ed editor:

ed invoke ed
#!/bin/sh
a append text
date run the date command
who run the who command
pwd run the pwd command
w startup write to a file named startup
q quit
%

To execute this file, type:

sh startup

Note that the commands are executed before the prompt is returned. If you
change the file permissions to allow the file to be executed, you can eliminate the
“sh”. Type:

chmod +x startup

This changes the mode of the startup file and makes it an executable file.

Now you can simply type:

startup

and the commands within startup will execute. If you place startup in your .login
or .profile file (depending upon your standard shell), these commands will be
executed every time you log in.

The shell has a sophisticated command language to allow you to control and
parameterize the execution of a set of programs.

Power MachTen User’s Guide 87

6.0 The MachTen File Systems

In the traditional UNIX world, disks are “devices” that can be formatted into file
systems and mounted for access by UNIX applications. In the Macintosh world,
disks are called “volumes”. The Macintosh File Manager is the entity responsible
for formatting disks into volumes and controlling access to the files on those
volumes. MachTen augments the MacOS HFS or HFS+ file system with two UNIX
file system implementations — a native fast file system (FFS) and a UNIX file
system (UFS) that sits on top of the MacOS HFS or HFS+.

6.0.1 Fast File System (FFS)

The FFS implements a traditional native UNIX fast file system within a single
Macintosh file. There is no need to reformat or partition a volume to create an FFS
within a file. For an FFS within a file, MachTen continues to use the services of the
Macintosh File Manager, but only for basic I/O operations. Macintosh files may
be stored in an FFS, but they are not available for access by Macintosh applications.

6.0.2 UNIX File System (UFS)

The UNIX file system is implemented on top of the Macintosh hierarchical file
system. MachTen imposes UNIX file system semantics on the Macintosh by
mapping the UNIX file system requests onto the appropriate Macintosh File
Manager routines. UNIX files are stored alongside Macintosh files, so there is no
requirement to reformat/partition existing HFS volumes.

Power MachTen User’s Guide88

6.1 UNIX Fast File System Overview

MachTen’s FFS is derived from the Berkeley BSD UNIX high-performance file
system. It is a simple and elegant file system that has its roots in the original UNIX
file system developed at Bell Labs. Detailed information may be found in two
supplementary documents — “A Fast File System for UNIX” and “Fsck - The
UNIX File System Check Program”. These are located in the Documentation folder
under /MachTen UNIX Docs/Sys Admin’s Docs (smm)/fastfs.pdf and fsck.pdf.

6.1.1 File System Organization

UNIX disks are divided into one or more partitions. Each partition may contain
one file system, and a file system never spans multiple partitions. Critical file
system sizing parameters are stored in a “super-block”, which is replicated to
protect against catastrophic loss.

The file system stores files. Certain files are designated as directories that contain
pointers to other files, some of which may be other directory files. Every file has
an associated descriptor called an “inode”, which contains ownership,
permissions, time stamps and pointers to assigned data blocks.

A disk partition is divided into one or more areas called “cylinder groups”. A
small percentage of each cylinder group is taken for some bookkeeping
information, including a redundant copy of the super-block, inode slots, a bitmap
of available data blocks, and data block usage summary information.

A static number of inodes is allocated when the file system is created. The default
policy is to create one inode per 2048 bytes of space in the cylinder group, which
is expected to be far more than will be needed.

UNIX files are a single stream of bytes, with no operating system-imposed format.
Text files use the ASCII “LF” character (“\n”) to denote an end-of-line. Binary files
often begin with a four-byte code identifying the format of the data that follows.

Power MachTen User’s Guide 89

6.1.2 File Names

UNIX file and directory names are limited to 255 characters. MacOS file names are
limited to 31 characters. Names may not include the “/” character because it is
used in path names to separate directory and file name components. An absolute
path name begins with a “/”; anything else is relative to the current working
directory.

Name matching is case sensitive. (MacOS file names are not case sensitive;
however, Tenon’s extension enables case sensitivity in Tenon’s UFS file system.)

6.1.3 Access Permissions

UNIX file and directory access rights are divided into read, write and execute
permissions. “Read” permission allows a user to examine the contents of a file.
“Write” permission allows a user to change or append data to a file. “Execute”
permission for binary files and scripts allows a user to execute the file as a
program, and for directories allows a user to search the directory. Each file and
directory is tagged with a user and group ID. Three levels of permissions are
specified — one for the owner of a file, a second for the members of the designated
group, and a third for “everyone else”.

6.1.4 Time Stamps

UNIX saves three time stamps for each file — the time the file’s data was modified,
the time the file’s attributes were last modified, and the time the file was last
accessed (i.e., the data was read).

Power MachTen User’s Guide90

6.1.5 Link Counts

Physical files are uniquely identified by their inode, but they may be identified by
multiple names. The link count is simply the number of references to an inode.

6.1.6 Hard Links

The mapping of a file name in a directory to an inode is known as a hard link.
Hard links are not allowed to cross file system boundaries.

6.1.7 Symbolic Links

Symbolic links are special files whose content is the path name of the intended file
or directory. The path name may be absolute or relative, and may refer to other file
systems. Symbolic links may point to other symbolic links.

Power MachTen User’s Guide 91

6.2 Macintosh Hierarchical File System
Overview

The MacOS method of organizing files is known as the hierarchical file system
(HFS). Detailed information about the Macintosh file system and File Manager
may be found in the “Files” manual, which is part of the “Inside Macintosh”
documentation series published by Addison-Wesley.

6.2.1 File System Organization

Each Macintosh hard disk is formatted into a number of 512-byte addressable units
known as “logical blocks”. A “volume” is a consecutive sequence of these blocks.
Small disks are typically used whole as a single volume, while large disks are often
partitioned into two or more volumes.

6.2.1.1 Volumes and Folders

A volume consists of overhead, file storage and free space. The overhead includes
boot blocks, bitmap, master directory blocks, catalog and extents files. The catalog
file maintains the hierarchy of directories and files on a volume, and the extents
overflow file tracks assignment of “allocation blocks” to files which cannot be
stored in the catalog file.

File storage is assigned in units of allocation blocks, which are one or more
consecutive logical blocks. A volume has at most 65,536 allocation blocks. This
addressing constraint dictates the ratio of logical blocks to an allocation block.
Files are stored in directories (also known as folders), which are themselves stored
in directories. Each directory and file is assigned an integer ID which uniquely
identifies it on a given volume.

Every volume has a top directory known as the “root” directory, with a directory
ID of 2. When a volume is mounted for use, the MacOS assigns a volume reference
number that remains valid as long as the volume is mounted. Macintosh files are
uniquely specified with a volume reference number, a parent directory ID and a
file name.

Power MachTen User’s Guide92

6.2.1.2 File Contents

A Macintosh file has two forks — a “data fork” and a “resource fork”. File data
resides in the data fork, while file resources are stored in the resource fork. An
application would typically have resources such as menus, dialog boxes, icons,
and even code segments. A document file could have resources such as preference
settings, window locations, fonts and icons. Files are marked with a four-byte
creator and type, usually shown as alphanumeric tags, such as “APPL”, “TEXT”
or “BINA”. The creator identifies the application that created the file, and the type
generally indicates the file content. Text files use the ASCII “CR” character (“\r”)
to denote an end-of-line.

6.2.2 File Names

Macintosh file and folder names are limited to 31 characters. Names may not
include the “:” character because it is used in path names to separate volume,
directory, and the file name components. An absolute path name begins with a
volume name. A path name relative to the current working directory begins with
a “:”. The File Manager is not case sensitive when matching file names; however,
it does not ignore diacritical marks. (MacOS file names are not case sensitive;
however Tenon’s extension enables case sensitivity in Tenon’s UFS file system.)

6.2.3 Access Permissions

Permissions for files on local volumes are based on the order and manner in which
programs open them. Files can be opened for reading, writing or exclusive
read/write. Write access can be denied on an individual file basis by locking it via
the Finder’s “Get Info” dialog box. The File Manager also prevents locked files in
the Trash from being deleted on an “Empty Trash” request. Setting a volume to
read-only (by hardware or software) prevents any changes to all files on that
volume.

Power MachTen User’s Guide 93

6.2.4 Time Stamps

The Macintosh File Manager saves three time stamps for each file — the time the
file was created, the time the file was last modified, and the time the file was last
backed up (rarely used in the Macintosh world).

6.2.5 Aliases

An alias is a special kind of file that represents a file, folder or volume.

6.3 MachTen FFS

MachTen’s implementation of the UNIX Fast File System (FFS) allows fast file
systems to be stored within Macintosh HFS files. Storing a fast file system in a file
allows existing volumes to be used, without the need for additional partitioning,
provided they have sufficient space to store the fast file system.

6.3.1 FFS Within a File

Macintosh files containing an FFS are treated as block devices by MachTen. They
are set with creator “MUMM” and type “BLK”. These files are visible to Finder
and may be moved or copied to other folders or volumes. They may also be
dragged to the Trash for removal. Be sure that this is intended before requesting
“Empty Trash”. These files should never be selected for write access by other
Macintosh applications. Even minor changes by other Macintosh applications
could render the fast file system file unusable by MachTen. See section
“6.9.1.1 Creating an FFS Within a File”.

Power MachTen User’s Guide94

6.4 MachTen UFS

MachTen’s implementation of the local UNIX file system (UFS) uses the Macintosh
File Manager, enabling MachTen’s UNIX files to be stored alongside Macintosh
files. However, there are some constraints imposed by the Macintosh File
Manager that the astute user should be aware of when porting other UNIX
applications to MachTen.

6.4.1 File Names

6.4.1.1 Maximum Number of Characters

The Macintosh File Manager allows a maximum of 31 characters in a file name;
hence, MachTen UFS file names are limited to 31 characters.

6.4.1.2 Case-Sensitive File Names

MachTen supports case-sensitive file names by appending a four-byte integer to the
end of any case-sensitive file name that collides with an existing case-insensitive
name. HFS stores the length of the file name; hence the names are unique within
HFS. UNIX requests use a null terminated string comparison for identifying files;
hence the appropriate file is matched as long as the first of the four appended bytes
is “NULL”. MachTen guarantees that this is the case. For subsequent collisions, a
new integer is used.

Since the HFS limit on file name length is 31 characters, this method of resolving
case sensitivity is limited to file names 27 characters or less in length. Attempting
to create a new file that collides with an existing case-insensitive file name of
greater than 27 characters will fail.

Power MachTen User’s Guide 95

6.4.1.3 Component Separators

The Macintosh File Manager uses the character “:” to separate names into volume,
folder and file name components. Thus, Macintosh file names cannot contain the
“:” character. UNIX uses the character “/” for the same purpose. MachTen
automatically maps all occurrences of “:” (which is valid in UNIX file names) into
“/” (which is valid in Macintosh file names) before passing UNIX file names to the
Macintosh File Manager.

6.4.1.4 Non-Printable Characters

Macintosh file names often include unprintable characters (the trademark symbol,
for example). Although these characters are not invalid in UNIX file names, they
are impossible to type or display on a UNIX command line. For this reason,
non-printable ASCII characters in Macintosh file names are translated according
to the AppleSingle 7-bit ASCII naming convention.† Non-printable characters are
translated to a percent sign (“%”) followed by a two-digit hexadecimal
representation of the character’s value. The following are some examples:

† For more information on AppleSingle, refer to section “6.7.1 AppleSingle
Encapsulation”.

File Name as Viewed by MacOS File Name as Viewed by MachTen

Filename™ Filename%aa

Filename® Filename%a8

Filename© Filename%a9

Power MachTen User’s Guide96

6.4.2 Linked Files

In UNIX, linking allows several file names to be associated with the same physical
file. MachTen properly supports UNIX hard and soft links via the link(2) and
symlink(2) system calls.

6.4.2.1 Hard Links

MachTen provides a file system paradigm that permits copying or moving either
UNIX or Macintosh files with either UNIX or Macintosh tools with equal results.
However, the UNIX implementation of hard links prohibits cross-disk hard links.
Using the Finder to copy MachTen’s hard links from one volume to another will not
work. Therefore, you cannot use the Finder (or any other Macintosh tool) to copy
or move MachTen hard links from one Macintosh volume to another. This
restriction is similar to the traditional UNIX restriction — no cross-disk hard links.

MachTen’s implementation of hard links uses a hidden folder at the root level of a
volume, and uses the Macintosh HFS equivalent of “inode” numbers to find
targets of hard links in this folder. When the source of a hard link is moved to
another volume, the link will be unresolvable. Even if the correct target of the link
is copied from the source volume’s hidden folder, it will be assigned a new inode
number and the source link will still be unresolvable.

In general, unless an application requires specific semantics of hard links that are
not also supplied by soft links, soft links should be the preferred method of linking
UFS files.

Power MachTen User’s Guide 97

6.4.3 Directory Link Counts

The stat() system call does not return the correct number of links for a directory.
The Macintosh File Manager does not keep a directory link count for Macintosh
folders, and MachTen does not attempt to fabricate a correct directory link count for
UNIX directories on local Macintosh file systems†.

6.4.4 Locked Files

The Macintosh file system has the ability to lock individual files, effectively
making the file “read only”. The UNIX file system has no notion of locking for
individual files, although it does support the locking of entire file systems by
mounting them as “read only”. If a UNIX application attempts to modify or
remove a locked file, MachTen will return the error “EROFS”. Although this error
implies that the entire file system is “read only”, it may be only the individual file
that is locked. In this case it is necessary to unlock the file (use the Finder’s “Get
Info” entry in the File menu) before MachTen can modify or remove the file.

6.4.5 File Types

The Macintosh File Manager saves a file type and file creator as part of the
attributes for every file. MachTen uses the identifier “MUMM” for UNIX files. In
MachTen the term “UNIX file” is used to refer to any file with a creator “MUMM”;
the term “Macintosh file” is used to refer to all other files. Note that Macintosh
applications can see and often access the UNIX files, since they are simply
Macintosh files with a creator “MUMM”. For example, you can drag-and-drop a
“MUMM/TEXT” MachTen file over Netscape, although this will not work with a
“MUMM/BINA” file (a UNIX executable).

MachTen makes the distinction between UNIX files and Macintosh files.

† MachTen always returns a link count of 2 for UFS directories.

Power MachTen User’s Guide98

All MachTen documents and files are owned by the application named MachTen.
MachTen uses file types for the different classes of files in UNIX. Each file type has
a unique icon, easing identification of UNIX files when using the Macintosh
Finder.

BINA — Binary Files

Binary files are streams of data. They may be UNIX executable files, text files,
database files or others. No translation of the data is done on binary files when
accessed via MachTen. This is the simplest, fastest and most common type of
file. When MachTen creates a new file, it always creates files of type “BINA”.

TEXT — Text Files

Files containing only ASCII printable characters are referred to as text files.
The Macintosh and UNIX formats for text files have subtle differences.
Macintosh uses the character “cr” (0xD) to terminate a line of text, and UNIX
uses the character “nl” (0xA). MachTen files with a type “TEXT” are stored on
the disk in the native Macintosh text file format (the line terminator is “cr”).

When UNIX applications access type “TEXT” files, MachTen automatically
translates the “cr” character to “nl”, so the UNIX applications see these files
in the expected UNIX text file format. A result of this automatic translation is
that both Macintosh word processors and UNIX editors can be used to edit
“MUMM/TEXT” files. Note that some Macintosh word processors may
inadvertently add resource forks to the UNIX text files, but these resource
forks will always be ignored by MachTen. For more information on the
handling of text files in MachTen, refer to section “6.8 Text File Manipulation”.

Power MachTen User’s Guide 99

LINK — Symbolic Links

This file type is used to identify UNIX symbolic links. The path to follow for
the symbolic link is stored in the data fork of the file.

CHR — Character Devices

This file type is used to identify UNIX character devices. UNIX assigns two
numbers to each device. The “major” number describes the device type, and
the “minor” number uniquely identifies the device. The major and minor
numbers for this device are packed in four bytes and are stored in the data fork
of the file.

BLK — Block Devices

This file type is used to identify UNIX block devices. The major and minor
numbers for this device are packed in four bytes and are stored in the data fork
of the file.

SOCK — Sockets

This file type is used to identify UNIX sockets. Sockets are communication
endpoints used for sending and receiving data.

Power MachTen User’s Guide100

FIFO — Pipes

This file type is used to identify named UNIX “pipes”. A pipe is a special type
of file that is created by UNIX processes in order to pass information to other
processes. Pipes enforce a first-in, first-out (FIFO) mechanism on data.

HLNK — Hard Links

This file type is used to identify hard links. Hard linking allows several file
names to be associated with the same physical file.

SHLB — Shared Libraries

This file type is used to identify a shared library file. Many of the traditional
UNIX shared libraries (libc, libm, etc.) will have two versions in MachTen — one
for the compile-time Header Call definitions, and the other for the run-time
dynamic linking.

Power MachTen User’s Guide 101

6.4.6 File Permissions

MachTen stores the user ID, group ID and mode bits in a reserved area of the
resource fork for each UNIX file. MachTen can also set these attributes for
Macintosh files.† Note that this protection only applies to file access from MachTen;
it does not apply to the Finder or other Macintosh applications.

On Macintosh HFS file systems, MachTen stores the protection attributes for a
directory in a special file within the folder. This file has the name “/” and is
invisible to the Finder. However, other Macintosh applications may see this file.
It should not be deleted or changed.

Figure 25. Example of File Permissions

† The MachTen application has resources which allow the user to configure the default
UNIX access privilege modes for Macintosh files and folders (see “Appendix B,
Resources — MachTen Application”, in the online Power MachTen User’s Guide).

ls -la
total 3391
drwxr-xr-x 2 bin 9216 Apr 28 15:55 .
drwxr-xr-x 2 bin 1024 Apr 17 22:51 ..
-rwxr-xr-x 1 bin 25576 Apr 24 08:45 acp
-rwxr-xr-x 1 bin 14597 Apr 18 09:32 apply
-rwxr-xr-x 1 bin 38373 Apr 18 09:32 ar
-rwxr-xr-x 1 bin 87161 Apr 18 09:35 awk
-rwxr-xr-x 1 bin 12807 Apr 18 09:32 basename
-rwxr-xr-x 1 bin 34108 Apr 18 09:32 bc
-rwxr-xr-x 1 bin 21711 Apr 18 09:32 cal
-rwxr-xr-x 1 bin 20173 Apr 18 09:32 cat

Power MachTen User’s Guide102

6.4.7 Time Stamps

When MachTen examines the time stamps of a Macintosh file, the file’s Macintosh
creation time is used for the UNIX data modification time. The file’s Macintosh
modification time is used for the UNIX attribute modification times. The file’s
Macintosh last-backed-up time is used for the UNIX last-accessed-time. When
MachTen modifies the time stamps of a Macintosh file, the file’s Macintosh creation
time is set to the UNIX data modification time. The file’s Macintosh last-backed-up
time is set to the UNIX last-accessed time. The file’s Macintosh modification time
is set to the UNIX attribute modification time.

Since most of the interaction between UNIX and Macintosh programs depends on
only the “modified” time stamp, the MachTen interpretation of the Macintosh time
stamps provides Mac/UNIX interoperability. For example, changing a source file
with a UNIX tool (like vi) results in a change to the file’s “modified” time stamp.
A Macintosh application that subsequently accesses this file will notice the change
in the modified time, and will behave accordingly (e.g., a Macintosh development
tool will rebuild a project if the project depends on the modified source file).

In the reverse situation, a Macintosh editor will also change the file’s “created” and
“modified” time stamps, which will be interpreted by UNIX programs in the
proper “the-data-(or attribute)-has-been-modified” sense. In some cases, the
Macintosh editor may only change the UNIX attribute modification time. In this
case, it may be necessary to touch(8) the file from within MachTen to rebuild the
project correctly.

File Time Stamps

Macintosh UNIX

file created data last modified

file modified attributes last modified

file backed up data last accessed

Power MachTen User’s Guide 103

6.5 MachTen Root File System Layout

The MachTen root file system is delivered as an FFS within a file. The FFS file is
named MachTen_FFS, and resides in the same folder as the MachTen application. A
companion folder named MachTen_HFS provides for UFS-oriented storage.

At the top of the MachTen file system hierarchy is the UNIX root directory, also
referred to as “/”. The path “//” is a special case in MachTen that allows UNIX
processes to refer to files and folders outside of the MachTen root. “//” is
interpreted to mean the real root of the Macintosh volume that contains the
MachTen file system hierarchy. The corresponding routines in the MachTen libraries
(getwd(3)) have been modified to understand a path name that begins with “//”.

6.5.1 The root Directory Tree

The root directory is represented by a “/” and contains the following directories:

Name Description

CDROM Mount point for MachTen CD-ROM

base Base of source code and place for building binaries in MachTen
distribution

bin Basic user utilities

bootvol Symbolic link or mount point for the root of the MacOS boot
volume

dev Block, character and other special device files

etc System configuration files and scripts

hfs Symbolic link to MachTen_HFS

lost+found Storage for files lost or corrupted by file system damage

mnt Temporary mount point

sbin Basic system administration utilities

Power MachTen User’s Guide104

6.5.2 The usr Directory Tree

Name Description

tmp Directory for temporary files

usr Contains majority of system utilities and files

var Multi-purpose log, temporary, transient and spool files

volume macmntd creates subdirectory mount points for removable
volumes

Name Description

X11 Symbolic link to MachTen X Window software (X11R6)

X11R6 MachTen X11R6 software

bin Binaries

doc Miscellaneous documentation

include C and C++ header files

info Documentation for GNU programs

lib Compile-time libraries

libexec Catchall for system daemons

local Mount point for file system containing local applications and
support files

macppc PowerPC-specific files go here

man troff source for man pages

sbin System administrator binary files

share Text and database files readily shared among 4.4BSD systems

src rpm support tree

Power MachTen User’s Guide 105

6.5.3 The var Directory Tree

Name Description

adm Administrative files

at Timed command scheduling files

backups Miscellaneous backup files

cron cron data files

db Database files

games Miscellaneous game status and log files

lib Dynamic, machine-specific application support files

lock Storage for emacs file locking

log Miscellaneous system log files

msgs System messages

obj Object files

preserve Temporary home of files preserved when editors fail

run System information files; rebuilt after each reboot

spool Miscellaneous printer spooling directories

tmp Temporary files that are not discarded between system reboots

Power MachTen User’s Guide106

6.5.4 Major System Administration Files

For details about these files, see online man pages.

Name Description

/etc/fstab Contains file system mount information
(fstab(5))

/etc/group Defines mapping of group numbers to names
and authorized users (group(5))

/etc/hosts Defines host names, aliases and IP address

/etc/master.passwd Defines the set of users authorized to log in.
Provides mapping between user ID and name,
default group, home directory and shell
(passwd(5))

/etc/printcap Contains the list of available printers and the
parameters used by the line printer daemon
(printcap(5))

/etc/rc Contains the script of commands init(8) is to
execute to establish the desired environment
(rc(8))

/etc/rc.conf Contains variables derived from information
entered in the MachTen control panel for use
by /etc/rc when starting MachTen

/etc/syslog.conf /usr/sbin/syslogd configuration file (syslog(8))

/etc/ttys Specifies terminal support information for
init(8) (ttys(5))

/usr/share/misc/termcap Defines the capabilities for numerous terminal
types (termcap(5)). Being phased out by
ncurses

Power MachTen User’s Guide 107

6.6 Mounting Macintosh Volumes

MachTen stores UNIX files on Macintosh volumes alongside Macintosh files. Since
all Macintosh volumes are formatted with the Macintosh Hierarchical File System
(HFS), it is not necessary to use the traditional UNIX file system formatting
commands (mkfs, fsck, etc.).

In MachTen, the mount(8) command has been modified to accept a Macintosh
volume name, in addition to a UNIX device name, for mounting local file systems.
When MachTen is started, the root folder of the volume from which MachTen was
launched is automatically mounted as “//”.

Once MachTen is running, any other Macintosh volume may be mounted. For
example, to mount an external hard disk named “External Disk” on the path
/external and to mount a floppy disk named “Untitled” on the path /mnt/Untitled,
the following commands may be used:

mkdir /external /mnt/Untitled
mount "External Disk" /external
mount Untitled /mnt/Untitled

Note that the path where the volume is to be mounted must exist (/mnt is created
by the MachTen installation program), and that volume names with spaces must be
contained within quotes.

UNIX provides a database file called /etc/fstab to specify the path on which each file
system is to be mounted. In MachTen, the format of this file has been extended to
accept Macintosh volume names, just like the mount command (see fstab(5)).

6.6.1 Mounting Permissions

Since MachTen is targeted for a single user, non-networked system, the mount and
umount commands have been set to run as root. This allows you to log in as a
normal user and still be able to mount or unmount file systems without having to
be superuser to gain temporary root privileges.

Power MachTen User’s Guide108

6.6.2 Automatic Mounting of Removable Media

MachTen provides a special UNIX daemon called macmntd(8) to handle automatic
mounting of removable media like floppies, CDs, and Bernoulli, Jaz, Syquest and
Zip disks. macmntd watches for disk-inserted events and passes the volume name
of the inserted disk to the mount command. If an entry for this volume exists in the
/etc/fstab file, the volume will be automatically mounted on the specified path. If
no entry exists, macmntd will create a directory named /volume/<volume name> and
mount the volume on this directory.

Once mounted, whether automatically or explicitly by the mount command, the
volume can be used as a normal UNIX file system. If you look in the /volume
directory, you will see the floppy_name directory. To change to the directory to see
the files on your floppy, the commands are as follows:

cd /volume/<volume_name>
ls

Now you can perform any valid operation on those files, such as copying (cp(1)),
moving (mv(1)), or executing (by typing the name of the file followed by a carriage
return).

6.6.3 Unmounting Macintosh Volumes

In MachTen, the umount(8) command has been modified to accept Macintosh
volume names for unmounting file systems. To unmount the volumes mounted
in the example above, use:

umount "External Disk"
umount Untitled (floppy will not eject)

Power MachTen User’s Guide 109

6.6.4 Automatic Unmounting

In MachTen, Macintosh volumes will be automatically unmounted when the Finder
is used to drag the disk to the Trash.

6.6.5 Formatting Floppies

In UNIX, it is often desirable to write directly to a device (disk) without regard for
file system structures. MachTen permits this type of raw access. Under MachTen
you can format a floppy for use as a raw device. If you do not give the floppy a
Macintosh volume name, the floppy will automatically be formatted as a raw
device. If MachTen is the front application when you insert an unformatted floppy,
a dialog box will prompt you to supply a name; simply choose “Cancel”. If,
instead, you name the floppy, it will get a Macintosh volume name. Beware that
using a null name results in a floppy with “???” for a Macintosh volume name.
Raw floppies are not seen by the Finder, so no icon will appear on the Finder
desktop.

MachTen devices for accessing floppies are /dev/rfd0 and /dev/rfd1 to provide
traditional raw access, and /dev/fd0 and /dev/fd1 to buffer floppy accesses in
512 byte blocks. You can determine what number device you have by
experimenting with the eject command. A Macintosh with a single floppy drive
typically uses the fd1/rfd1 device. Raw floppies may be accessed via tar(1), for
example, but they cannot be mounted.

To eject a raw floppy, use the eject(1) command. The eject command is:

eject 1 (floppy will eject)

Power MachTen User’s Guide110

6.7 Accessing Macintosh Files from UNIX
Applications

6.7.1 AppleSingle Encapsulation

In contrast to UNIX files which have only one stream of data, Macintosh files may
have two streams (or forks) of data. These streams are called the “data fork” and
the “resource fork”. In order to preserve all of the data in a Macintosh file when it
is accessed by a UNIX application, it is necessary to encapsulate the two streams
of data into a single stream. Consider the case of using the UNIX cp(1) command
to copy a Macintosh file. It is most desirable that both forks of the file be copied
from the source to the destination. Apple has defined a standard for the
encapsulation of Macintosh files into a single stream, known as the AppleSingle
format. MachTen uses this method of encapsulation.

6.7.2 Differentiating UNIX and Macintosh Files

In order to determine whether or not a file must be encapsulated in the
AppleSingle format, it is necessary to be able differentiate UNIX files from
Macintosh files. Since MachTen uses the file creator “MUMM” for all UNIX files, all
files with any creator other than “MUMM” must be Macintosh files. Therefore,
any file with a creator other than “MUMM’ is automatically encapsulated in the
AppleSingle format by MachTen when the file is accessed by UNIX applications.
Conversely, when an AppleSingle format file is written by a UNIX application
such as tar(1), MachTen automatically re-creates a proper Macintosh file with the
specified data and/or resource forks.

Power MachTen User’s Guide 111

6.7.3 Utilities for Manipulating Macintosh Files

6.7.3.1 dfork and rfork

MachTen provides a UNIX filter called dfork(1) which reads an AppleSingle format
file from its standard input and writes only the data fork to the standard output.
MachTen also provides a filter called rfork(1) which reads an AppleSingle format file
from its standard input and writes only the resource fork to the standard output.

6.7.3.2 finderinfo

MachTen provides a UNIX utility called finderinfo(1) for accessing and changing the
Finder information of a Macintosh file, such as creator and type. Options to
finderinfo specify which Finder information fields to change. The following
command illustrates changing the creator to “MUMM” and type to “TEXT” for a
Macintosh file:

finderinfo -C MUMM -T TEXT <Macintosh_file>

Note that using this utility in no way changes the data in either fork of a file.

6.7.3.3 restool

MachTen provides a UNIX utility called restool(1) for merging the resources of one
(or more) Macintosh file(s) into another. restool requires the services of the
Macintosh Resource Manager, and thus can only work with UFS files.

Power MachTen User’s Guide112

6.8 Text File Manipulation

MachTen gives you the capability to integrate UNIX-created ASCII text files into
documents that have been created by Macintosh word processor programs (such
as Microsoft Word) and to export Macintosh-created text to UNIX applications.

6.8.1 Alternating Between Macintosh and UNIX Text

Since the Macintosh and UNIX text file formats differ in the choice of line
terminator, in some cases it may be necessary to translate the data from one format
to the other. MachTen provides several mechanisms to convert text files from the
Macintosh format to the UNIX format.

MachTen provides a common text file format which permits UNIX text files to be
successfully accessed by both UNIX and Macintosh applications. These files have
the creator “MUMM” and type “TEXT” and are referred to as “MUMM/TEXT”
files. These files are stored on the file system in the Macintosh text file format, so
Macintosh applications can access them normally. MachTen automatically
translates “MUMM/TEXT” files to the UNIX text file format when they are
accessed by UNIX applications.

6.8.1.1 mactext

The mactext(1) utility program will create “MUMM/TEXT” files from traditional
UNIX files (type “BINA”, “nl” termination). The resultant file will be
recognizable by UNIX and Macintosh applications.

Power MachTen User’s Guide 113

6.8.1.2 unixtext

The unixtext(1) utility program will convert a standard Macintosh text file (type
“TEXT” with “cr” character line termination) to a standard UNIX text file
(“MUMM/BINA” with “nl” character line termination). The resultant file will
not be accessible by Macintosh word processors. This command is useful when
copying a Macintosh text file to a remote non-MachTen UNIX system for access by
the remote system.

6.8.1.3 Unix <-> Text

The Unix <-> Text application performs the functions of mactext and unixtext using
a Macintosh user interface. You can use the Finder to drag “MUMM/BINA” files
on top of the Unix <-> Text icon to create MachTen common text format files or to
convert Macintosh text files to “MUMM/BINA” files. Unix <-> Text only works
on Macintosh files that have been saved in “Text Only” mode. In most
applications this is done by choosing “Save As...” from the File menu.

6.8.1.4 dfork.text

MachTen provides the UNIX utility program dfork.text(1) to extract the data fork
from its standard input (typically a Macintosh text file), translate the “cr”
character to “nl”, and produce the results on its standard output. This utility is
useful if you want to leave an original Macintosh file untouched and make a copy
of its text for access by some UNIX utilities.

For example, to search for a specific word in a Macintosh text file using the UNIX
utility grep(1), try:

dfork.text <Macintosh file> | grep <pattern>

Power MachTen User’s Guide114

6.8.2 Editing Tools

6.8.2.1 UNIX Editors

MachTen provides a number of UNIX text editing programs, such as vi(1), ex(1) and
ed(1). Another popular UNIX editor is GNU emacs. UNIX text editing programs
will operate correctly on all MachTen text files of type “BINA”, as well as files in the
MachTen common text format (“MUMM/TEXT”). They will not recognize
Macintosh “TEXT” files due to the line termination differences previously
described.

6.8.2.2 Macintosh Editing Applications

A few Macintosh editing applications may be found on the MachTen CD-ROM in
the sub-folder Utilities: Text Utilities. Please be sure to register any shareware that
you decide to use on an ongoing basis.

6.8.3 UNIX to Macintosh “Copy-and-Paste”

Using conventional Macintosh “copy-and-paste” techniques, you can copy text
from a UNIX terminal screen directly to a Macintosh application.

Power MachTen User’s Guide 115

6.9 File System Administration

6.9.1 Creating File Systems

To create an FFS, you must decide how large you want it and where to place it on
your disks. When sizing the file system, keep in mind that about 4% of space goes
to overhead, and that (by default) 10% is held as a reserve. When free space falls
below the reserve, new files may be opened only by root. A different reserve
percentage may be set during file system creation.

Since UFS file systems are simply Macintosh HFS volumes viewed through a
UNIX lens, there are no MachTen activities required other than creating the
directories on which to mount them.

6.9.1.1 Creating an FFS Within a File

MachTen includes an installer utility to greatly simplify the task of adding fast file
systems to your MachTen system. FFS_Installer is an installer program for creating
additional fast file systems for MachTen.

To create a new FFS, launch this program and select the desired size FFS. Install it
into the MachTen folder and launch MachTen. This new FFS will be mounted
automatically when MachTen starts up.

To create a custom FFS within a file, first decide on the amount of storage you
need. Identify the HFS volume that will accommodate it and, if necessary, mount
it for access under MachTen. (See section “6.9.3 Mounting File Systems” for more
information on mounting.) Then use the newfsf(8) command as follows:

newfsf -s <size> <FSFile_pathname>

where size is the number of 512 byte blocks that provide the desired storage, and
pathname specifies the name of the FFS file to create.

Power MachTen User’s Guide116

Following creation, an FFS within a file must be mounted under MachTen before it
can be used. If necessary, create the directory on which you will mount it. The
mount command syntax is as follows:

/sbin/mount -t ffs <FSFile_pathname> <directory>

If you plan on using this file system on a regular basis, consider making an entry
in /etc/fstab so that it is automatically mounted on each launch of MachTen.

6.9.2 Checking/Repairing File Systems

A chief FFS maintenance activity is the periodic checking and repairing of FFS
bookkeeping structures using the fsck(8) utility. During startup, MachTen
automatically checks each FFS registered in /etc/fstab unless the file /clean_start
exists. This file is only present if MachTen was cleanly shut down on the prior
launch.

The Macintosh File Manager assumes responsibility for checking and making
minor repairs to Macintosh HFS volumes. Other Macintosh applications, such as
Disk First Aid, perform more extensive checks and repairs. Therefore, MachTen
takes no additional action to check or repair UFS file systems.

6.9.2.1 fsck

Whenever the state of an FFS is in doubt, run fsck(8) to check and correct the
consistency of the FFS bookkeeping information. The following command
illustrates how to check an FFS within a file:

/sbin/fsck <FSFile_pathname>

Power MachTen User’s Guide 117

6.9.2.2 Fast File First Aid

The fsck utility is also available as a standalone Macintosh application Fast File First
Aid, located on the MachTen CD-ROM in the sub-folder Utilities: Fast File Utilities.
Fast File First Aid should be used when MachTen is unable to boot due to root file
system damage. It performs a more aggressive and interactive repair of specified
FFS files. The document fsck.pdf, located on the MachTen CD-ROM in the
sub-folder Documentation: MachTen UNIX Docs: SysAdmin’s Docs(smm), contains
some information that may be useful in this process.

6.9.3 Mounting File Systems

File systems must be mounted before they may be accessed under MachTen. During
startup, the MachTen kernel automatically mounts the root file system (“/”) and the
root folder of the Macintosh volume on which MachTen resides (“//”). The /etc/rc
script optionally mounts file systems registered in /etc/fstab. If MachTen is not
running on the boot volume, the boot volume will be mounted on /bootvol by the
/etc/rc script.

6.9.3.1 Mounting an FFS Within a File

Use the following command to mount an FFS within a file:

/sbin/mount -t ffs <FSFile_pathname> <directory>

If the FFS resides on a different Macintosh volume, refer to section
“6.9.3.2 Mounting a Macintosh Volume”.

Power MachTen User’s Guide118

6.9.3.2 Mounting a Macintosh Volume

Use the following command to mount a Macintosh volume:

/sbin/mount <Mac Volume> <directory>

6.9.4 Unmounting File Systems

Unmounting FFS and UFS file systems is done with the umount command. Its
argument may be a mount point path name, an FFS file name, or a Macintosh
volume name. Any argument that contains special characters, such as a space,
should be inside double quotes.

/sbin/umount /mnt
/sbin/umount <FSFile_pathname>
/sbin/umount /dev/sd<#P>
/sbin/umount <Mac Volume>

6.9.5 Removing File Systems

When an FFS is no longer needed, its space should be returned for other purposes.
The first action is to unmount it. The second is to remove any entry in /etc/fstab that
automatically mounts it. The third is to remove it, as described in section
“6.9.5.1 Removing an FFS Within a File”.

6.9.5.1 Removing an FFS Within a File

Delete an FFS file with Finder, or by using the following command:

rm -f <FSFile_pathname>

Power MachTen User’s Guide 119

6.9.6 Space Management

When running any UNIX system, the percentage of disk space used under normal
operation can increase until all of the allocated space is used up. When the file
system becomes full, processes run very slowly, if at all, and the system is kept
busy notifying the user that the file system is full. With respect to the file system,
a key administrative role is to keep the size (and number) of temporary UNIX
working files under control.

The following techniques are available to keep the file system manageable:

• monitoring the disk space with df(1)

• monitoring files or directories that grow; temporary files (i.e., files in /tmp)
should be purged periodically (/tmp is used by numerous executables to store
intermediate results)

• identifying and removing inactive files

• identifying users that routinely consume a large amount of disk space.

You will monitor your own usage on a single user system.

By default, /etc/rc contains commands to preserve editor temporary files before
removing files from /tmp during system startup.

The following directories and files should be watched for growth:

/tmp
/etc/wtmp (if created by the user)
/var/log/syslog
/var/adm/messages
/var/log/messages

The system administrator may need to create some directories that log
administrative messages. If administrative files do not already exist, simply type:

touch <filename>

to create and time stamp a zero length file.

Power MachTen User’s Guide120

6.9.7 Backing Up and Archiving File Systems

Backing up and archiving are two methods of file system protection. Backing up
involves making a complete copy of a file system onto another hard disk or a
removable medium such as tape, Jaz, Zip, Bernoulli or Syquest. Archiving usually
involves storage of specific files on similar media as for backups, or even
Macintosh floppies.

Archiving may be done for preserving development milestones or for recapturing
space consumed by large, infrequently used files that can be restored when
required. Backups should be done on a regular basis to prevent loss due to disk
failure or human error. Archiving should be done as needed.

There are three programs that are useful for backing up and archiving — tar(1),
dump(1) and restore(8). tar may be used to both write and read backups or archives.
It writes a portable, structured image that is independent of the source file system.
dump and restore may be used for complete and incremental backups of FFS file
systems. They are file system structure dependent.

6.9.7.1 Tape Devices

MachTen supports DAT (4mm) and Exabyte (8mm) tape drives. The MachTen tape
interface has been designed to support a generic SCSI tape device and has been
tested specifically using the following mechanisms:

 DAT Models using the Archive Python tape drive
(e.g., ClubMac and Wang DAT 2600)

 Exabyte Model EXB-8200

Power MachTen User’s Guide 121

MachTen can be configured to simultaneously support up to four tape drives, and
is configured by default for a single tape device (e.g., “MAKEDEV mt0” in the
following example has already been done). Additional tape device files may be
created by executing the following commands (see mtio(4) and /dev/MAKEDEV):

cd /dev
./MAKEDEV mt1
./MAKEDEV mt2
./MAKEDEV mt3

MachTen uses four device files for each tape drive. For example, the following
device files apply to the first tape drive, unit 0. MachTen uses a scan of the SCSI
chain (from ID-6 to ID-0) to identify tape sub-systems and associate them with unit
numbers. The first tape drive found is unit 0, the second is unit 1, and so on.

/dev/rmt0 -- unit 0, rewind on close
/dev/rmt4 -- unit 0, no rewind on close
/dev/rmt8 -- unit 0, compressed, rewind on close
/dev/rmt12 -- unit 0, compressed, no rewind on close

The minor device number encodes two attributes — whether or not to rewind the
tape on completion and whether or not to use compression (if supported by the
tape hardware).

6.9.7.2 tar

The tape device files may be used to read and write tapes using tar, dd and other
utilities. tar may be used to back up both FFS and local Macintosh volumes.
Macintosh files will be written in AppleSingle format to preserve both the resource
and data forks of the file.

An additional utility called mt is provided with MachTen to position, rewind and
offload tapes. It may also be used to print out tape information (see mt(1)).

Power MachTen User’s Guide122

Example 1:

Example of archiving your entire MachTen file system to tape using a blocking
factor of 64, hardware compression, and rewinding the tape when the backup
is finished:

tar cvfb /dev/rmt8 64 /

Example 2:

Example of archiving two different volumes in two different save sets on a
single tape using a blocking factor of 64, hardware compression, and
rewinding the tape when the second archive is finished.

tar cvfb /dev/rmt12 64 /volumes/MacDisk1
mt -f /dev/rmt12 eof 1
tar cvfb /dev/rmt12 64 /volumes/MacDisk2
mt -f /dev/rmt8 eof 1

Note that the mt utility is used to place an <End Of File> marker on the tape
after each save set. Doing this enables the mt utility to find any of the save sets by
searching for the <EOF> marker from the beginning of the tape. For example, use
the following commands to find the start of the second save set in the above
example, and then restore /volumes/MacDisk2:

mt -f /dev/rmt12 fsf 1
tar xvfbp /dev/rmt12 64

6.9.7.3 dump and restore

Complete and incremental backups of fast file systems may be done with dump.
Recovery of files is done using restore. These tools are not useful on UNIX file
systems. Details for using dump and restore are provided in the online man pages.

Power MachTen User’s Guide 123

7.0 The MachTen Network File System
(NFS)

The MachTen NFS is derived from the Berkeley 4.3BSD Reno release. It is fully
interoperable with the NFS shipped by Sun and its licensees. Properly configured,
a Macintosh running MachTen can share files with mainframes and workstations
that support NFS. NFS is an open interface standard that exists on a wide variety
of UNIX and non-UNIX PCs, workstations, minis and mainframes. MachTen
extends NFS to include the entire Macintosh family.

MachTen systems may be used as NFS clients or NFS servers. As a client, a system
running MachTen can use files stored remotely on NFS networked machines as
though they were local files. As a server, a MachTen system can store files for other
NFS clients. If two MachTen servers exist in a single environment, they can be set
up to be each other’s client.

The MachTen NFS capability allows users to cluster diskless Macintoshes and to use
a single, large disk on a remote system to provide file service for the cluster.
Providing file service for Macintosh systems not only provides for centralized
backup and maintenance of disk data, but also minimizes the amount of disk space
required to store Macintosh application programs, since users no longer need their
own individual copy of an application. Moreover, NFS eliminates file copying,
which often results in multiple, potentially inconsistent, copies of a particular file,
and reduces the need to Telnet to specific hosts to gain access to a resource. With
NFS, multiple Macintoshes, workstations and other PCs can give the appearance
of having a single, large file system.

Aside from the convenience and economy of file sharing, NFS may provide better
overall performance at a lower cost. A server with a large, high-performance disk
may provide better service than an environment where each PC has its own small
disk. Widely used read-only files can be stored on several servers at the same time,
and a complete file system can be distributed across several servers to turn a
network into a multiprocessor environment.

Power MachTen User’s Guide124

7.1 Using NFS

MachTen supports remote file system access over Ethernet, AppleTalk, TokenRing,
and SLIP and PPP connections. MachTen’s extended file system is based on an
industry standard developed by Sun Microsystems for file sharing and exchange
called NFS® (Network File System). A MachTen system can be set up as either an
NFS client or an NFS server, or both. This section describes the MachTen NFS
installation, operation and maintenance.

7.2 How NFS Works

The MachTen NFS performs two major functions — exporting and mounting. In
each NFS server, the /etc/exports file lists the directories that the server will permit
others to access. NFS security is controlled by the /etc/exports file; only file systems
that are listed in this file are accessible over NFS. Access to exported file systems
can be limited to certain hosts on your network or made available to all other hosts.

Clients may access files on the server by mounting the server’s exported
directories. A MachTen client can mount a directory when the system is launched,
or the superuser can explicitly mount and unmount directories by issuing mount(8)
and umount(8) commands. When a client mounts a directory, it does not make a
copy of that directory. Instead, the NFS software mounting mechanism invokes a
series of remote procedure calls to enable the client to transparently access the
directories on the server’s disk. When a file system is mounted by an NFS client,
it appears in the client’s file system as does a local file system. NFS makes all files
within an NFS system appear as a single file system.

The NFS protocols use Remote Procedure Calls (RPCs) and User Datagram
Protocol (UDP) transfers to provide transparent access to users of the client
machine. Each time the client needs data from a mounted directory, the client NFS
software makes a remote procedure call to the server. Because NFS uses RPC calls
that operate over UDP, NFS is “stateless”. This means that the server can crash
and recover without affecting the client at all, other than a delayed response to the
client’s request. If a client mounts a directory, the mount command will be re-sent
until the client receives a response from the server. Once the server responds, the
client can assume that the information is on stable store and available for the
client’s use.

Power MachTen User’s Guide 125

NFS servers are supported by programs or daemons that read the special NFS
system files, such as the /etc/exports file. The portmap daemon (portmap(8)), the
mount daemon (mountd(8)), and the NFS daemon (nfsd(8)) are started at boot time.
The portmap daemon provides RPC clients (like mount) UDP port numbers for
access to the services provided by mountd and nfsd. The nfsd daemon listens for
service requests on the NFS port as specified in the “Network File System Protocol
Specification, RFC 1094”. The mountd daemon determines whether or not the
client issuing the mount request has access rights to the requested directories. If the
client has the appropriate permissions, the server permits access to the file system.
When a directory is mounted it is not transferred to the client machine, but instead
appears in the client’s directory structure as though it were locally stored. Once a
directory is mounted, the client accesses remote files in the same manner it
accesses local files. Standard UNIX directory and file manipulation commands
can be applied to remote directories in exactly the same way they are applied to
local directories.

The following man pages describe all of the NFS daemons, commands and special
files — exports(5), fstab(5), inetd(8), mount(8), mountd(8), nfsd(8), portmap(8) and
rpcinfo(8). You should have a general familiarity with the names and functions of
these network file system components.

7.3 Setting Up an NFS Server or an NFS Client

Every MachTen system can be set up as an NFS client, an NFS server, or as a system
that acts both as a client and a server. An NFS client system receives services from
an NFS server; an NFS server provides services to one or more NFS clients. A
client may or may not have a disk; a server must have at least one local disk. A
client mounts directories, while a server exports directories. Clients play an active
role, initiating a binding between themselves and a server; the server completes
the binding. The server plays a passive role, simply advertising files that clients
can access; the clients actively mount directories that are advertised by the server.

Power MachTen User’s Guide126

7.3.1 Server Exporting

The server advertises the directories that it is prepared to export in the /etc/exports
file. Each directory entry also contains any access restrictions that may apply. This
file is created by the system administrator using a text editor, and processed by
mountd upon startup.

An /etc/exports file has the following syntax:

directory -option[, option] hostlist

where directory is the path name of a directory, option is a list of options, and hostlist
is a space-separated list of host names indicating who can access the directory. The
following is a typical /etc/exports file. Note that there must not be any comments
or blank lines in this file:

/
/usr -ro payrollclient accountingclient
/etc
/Applications
/exports/root/gladys gladys

If an /etc/exports file exists, MachTen will automatically launch portmap, mountd and
nfsd at boot time via the /etc/rc file. Otherwise, the NFS server daemons will not be
started.

7.3.2 Client Mounting

Clients may gain access to advertised service files and directories by mounting that
file or directory. Directories and files are mounted either by an explicit mount
command issued by the client, or automatically at system startup by the /etc/rc file.
If a client needs a particular directory for a limited amount of time, the mount and
umount commands can be used as needed. A client can mount any directory that
is in the server’s /etc/exports file as long as that client has access permission. Before
a client can issue a mount command, the client must prepare a mount point — that
is, allocate a place for the exported file or directory. Clients should use the mkdir(1)
command to make a directory for each directory the client wishes to mount.

Power MachTen User’s Guide 127

The mount command has the following syntax:

 /sbin/mount -t type [-rw] -o [options] server:/dir /mount_point

where:

Refer to the mount(8) manual page for more details.

Diskless clients can be configured so that directories that are needed all of the time
are mounted automatically when the system is booted. The command:

mount -a

will instruct mount to look in the /etc/fstab file for a list of the file systems to be
mounted. The syntax for entries in the fstab file is as follows:

server:server_dir client_mount-point type options freq pass

where:

t type of mount (type is “nfs” for NFS mounting)

r read-only

w read-write

o indicates that a list of options follows; e.g., soft
(try once) or hard (keep trying)

server name of the server

/dir name of the exported directory

/mount_point client mount point

Power MachTen User’s Guide128

As an example, the entry:

omar:/space /mnt nfs rw,soft 0 0

describes the directory /space on a remote host named omar and a mounting point
on the local system of /mnt. The directory is an NFS directory. When mounted,
the user will have read and write access to the directory. mount will return an error
if the server is not responding.

At boot time, MachTen will automatically mount the file systems listed in /etc/fstab
if the MOUNT_REMOTE_FILES variable is set in the file /etc/rc.conf. This file is
used by /etc/rc at startup (see rc(8)).

7.3.3 Set-Up Summary

Note that only the NFS server needs to have the NFS daemons running. The server
needs an /etc/exports file, and the client needs to either explicitly mount file systems
delineated in the exports file or have the system set up for automatic mounting by
using /etc/fstab.

server name of ther server

server_dir the directory that the client wishes to mount

client_mount-point the directory that the client uses to access server_dir

type nfs (for remote NFS mount)

options mounting options

freq 0 (needs to be included, but not used in MachTen)

pass 0 (needs to be included, but not relevant to MachTen)

Power MachTen User’s Guide 129

Configure MachTen as an NFS server and client by following these steps:

1. Find out the host names and IP addresses of the machines that will act as NFS
servers on your network. You can configure a MachTen host as an NFS server
or use an existing NFS server on your network (a Sun workstation, for
example).

2. Find out the host names and IP addresses of machines on your network that
will receive NFS service. Unless you have an internet domain name server on
your network, the server needs to have all of its clients listed in its /etc/hosts file.
Likewise, each client needs to have the address of its NFS server listed in its
/etc/hosts file (unless the name server is in use).

3. Become superuser so that you can edit the /etc/exports and the /etc/fstab files.

4. Edit the /etc/exports file on the server so that it includes each directory and file
that will need to be exported to clients. Make sure that each entry includes the
proper restrictions. If you do not intend for your system to act an an NFS
server, skip this step. If your system is to be used as an NFS server, restart
MachTen now to bring up the NFS server daemons.

5. Edit the /etc/fstab file on each client system. Create an entry in the file for each
directory to be mounted.

6. Create the appropriate directories to be used as mount points listed in /etc/fstab
on each client machine using the mkdir(1) command.

7. Use the command umount -a to unmount all directories that are not busy (i.e.,
those directories that are not in the user’s working directories). This
unmounts directories previously mounted, for example, by an older /etc/fstab
file.

8. Use the command mount -a to mount everything in the current /etc/fstab file.
Each time the client system is booted up, if /etc/rc.conf has
MOUNT_REMOTE_FILES set, a mount -a command is performed
automatically.

Power MachTen User’s Guide130

7.4 NFS Volumes on the Macintosh Desktop
(Desktop NFS)

MachTen extends the traditional NFS service (accessible from UNIX applications)
to include access to NFS volumes from Macintosh applications. This feature is
called Desktop NFS (DTNFS) because the NFS volumes appear on the Finder’s
desktop. Using Desktop NFS, remote file system data is made available to local
Macintosh applications by representing the NFS server as a volume icon on the
Macintosh desktop. Macintosh application references to folders and files in these
volumes are intercepted by MachTen and translated into requests for foreign NFS
file access. Desktop NFS has been designed to operate as much as possible like
Apple File Sharing.

Desktop NFS provides support for both AppleSingle and AppleDouble file
formats. To make an NFS volume visible on the desktop, use the dtmount
command after mounting the NFS volume. For example, to make the directory
Marketing from the server Opus visible on the desktop as the volume named Shared,
use the following command:

mount -t nfs -o rw,soft Opus:/Marketing /Shared
dtmount /Shared

Note that the path /Shared must exist on the MachTen system. The name Shared will
be the Macintosh volume name assigned to the NFS volume. It will appear under
the NFS server icon on the Finder desktop. Desktop NFS mounts can also be
entered in the /etc/fstab file (see fstab(5)).

MachTen DTNFS automatically recognizes and performs the proper file system text
translations for Macintosh applications. This transparent file translation enables
Macintosh applications to operate on UNIX text files residing on a Desktop NFS
volume.

MachTen DTNFS optionally supports Macintosh file and record locking via bwnfsd
or pcnfsd, which are locking daemons that run on the NFS server. Note that
MachTen’s NFS server provides bwnfsd, but not pcnfsd.

Power MachTen User’s Guide 131

7.4.1 Desktop NFS Volume Mounting

MachTen DTNFS is, in essence, an NFS client with special capabilities. The
previous section describing NFS server and client setup applies to DTNFS as well.
dtnfs is activated when the dtmount command is issued. As an example, the
command:

mount -t nfs -o rw,soft omar:/space /mnt

will mount the /space file system from a remote NFS server named omar on the local
client MachTen system at mount point /mnt. The command:

dtmount /mnt

promotes the NFS file system to appear as a network volume icon named mnt on
your local desktop. Traditional Macintosh point-and-click operations using the
volume icon will generate NFS requests on omar’s /space directory, while having
the appearance to the Finder and other Macintosh applications that the volume
and all files and folders within it are on an AppleShare server.

Drag the DTNFS volume to the Trash to remove it from the desktop. This will
sever the linkage between the desktop and the remote NFS server. If you prefer,
udtmount(8) may be used to remove the volume:

udtmount /mnt

Finally, to completely remove the NFS server from the NFS client, use the
umount(8) command:

umount /mnt

Power MachTen User’s Guide132

7.4.1.1 Automatic Mounting of Desktop NFS Volumes

As with non-DTNFS volumes, the /etc/fstab file is searched for DTNFS volumes to
mount in response to a mount -a command. A DTNFS entry is distinguished from
a non-DTNFS entry in /etc/fstab by the option dtfst:

omar:/space /mnt nfs dtfst,rw,soft 0 0

7.4.2 Macintosh Record Locking on Desktop NFS
Volumes

A DTNFS mounted volume will advertise support for Macintosh record and file
locking to Macintosh applications if a special option is provided in the mount
command or in the /etc/fstab entry for the DTNFS file system. With DTNFS record
locking enabled, Macintosh applications that make use of record locking on
AppleShare volumes will also support record locking on DTNFS volumes.

DTNFS record locking works in conjunction with a locking daemon running on
the remote NFS server. For MachTen NFS servers, the locking daemon is bwnfsd,
and the option flag supplied to mount (or placed in /etc/fstab) to enable locking is
bw_lock:

mount -t nfs -o dtfst,bw_lock,rw,soft omar:/space /mnt

For Sun NFS servers, the locking daemon is lockd, and the option flag supplied to
mount is lockd:

mount -t nfs -o dtfst,lockd,rw,soft omar:/space /mnt

The locking daemon must be running on the NFS server when the desktop NFS
volume is mounted. Under MachTen, the command:

/usr/sbin/bwnfsd -A

starts the locking daemon. Place this command in the file /etc/rc to automatically
start the locking daemon on system startup.

Power MachTen User’s Guide 133

7.4.2.1 Bwnfsd UID and GID Mapping

bwnfsd also provides a mapping between numeric user and group IDs to their
corresponding symbolic names. DTNFS uses this service of bwnfsd, by default, if
it finds a running bwnfsd daemon on the NFS server. It is not an error if a bwnfsd
daemon is not found on the NFS server AND the only service desired of bwnfsd is
the UID and GID mapping. In this case, UIDs and GIDs are mapped to the strings
user %d and group %d, where %d represents the numeric UID or GID. To disable
this default use of the bwnfsd’s mapping services, use:

dtmount -o nobw_map /SharedDisk

7.4.3 Authentication Options

Desktop NFS requires the specification of a user’s credentials when an NFS server
is being promoted to the desktop. Once these credentials are authenticated, they
will be used for all accesses made of the NFS server caused by the Macintosh
applications that use this Desktop NFS volume. The Desktop NFS credentials can
be specified in a number of ways, and may be authenticated using either the local
/etc/passwd database, or the server’s /etc/passwd database, via bwnfsd or lockd.

The mechanisms to mount Desktop NFS volumes are described below. In each
case, it is assumed that the NFS server opus:/Marketing has already been mounted
on the path /SharedDisk by the root user for access by the UNIX processes.
Typically this is done by listing the NFS servers in the /etc/fstab file. /etc/rc will then
automatically mount these file systems.

7.4.3.1 Credentials of Current User

In the traditional case, it is desirable to use the credentials of the user who mounts
the Desktop NFS volume. In this case, the user has already been authenticated at
login time, and has been assigned a valid set of credentials. To use these
credentials for the Desktop NFS volume, use:

dtmount /SharedDisk

The credentials used will be those of the user who issued the dtmount command.

Power MachTen User’s Guide134

7.4.3.2 Prompt for Username and Password

To closely mimic the Apple File Sharing model, a user may be prompted for a
username and a password for each Desktop NFS volume added to the desktop.
This username and password are authenticated by the server. If the authentication
succeeds, the server returns the credentials to be used when accessing this volume.
To prompt the user for a username and password, use:

dtmount -o bw_auth /SharedDisk

This command will display a Macintosh-style dialog box requesting a username
and a password. Once the username and password are entered, they are passed to
the server for authentication. In this case, bwnfsd is used to do the authentication,
so a bwnfsd daemon must be running on the server. If the authentication succeeds,
the volume will appear on the desktop and the credentials used will be those
returned by bwnfsd.

7.4.3.3 Username and Password on Command Line

It is also possible to specify the username and password on the dtmount command
line. This situation could be used if an administrator was setting up a MachTen
system for a particular user, and it was desirable to mount the Desktop NFS
volumes automatically, without any interaction from the user. To specify a
username and password on the command line, use:

dtmount -o bw_auth2,username,password /SharedDisk

This command passes the given username and password to the server for
authentication. In this case, bwnfsd is used to do the authentication, so a bwnfsd
daemon must be running on the server. If the authentication succeeds, the volume
will appear on the desktop and the credentials used will be those returned by
bwnfsd.

Power MachTen User’s Guide 135

7.4.3.4 User ID and Password on Command Line

It is also possible to specify the user ID and password on the dtmount command
line. This situation could be used if an administrator was setting up a MachTen
system for a particular user, and it was desirable to mount the Desktop NFS
volumes automatically, without any interaction from the user. To specify a user
ID and password on the command line, use:

dtmount -o bw_auth3,userid,password /SharedDisk

This command passes the given user ID and password to the server for
authentication. In this case, bwnfsd is used to do the authentication, so a bwnfsd
daemon must be running on the server. If the authentication succeeds, the volume
will appear on the desktop and the credentials used will be those returned by
bwnfsd.

7.4.4 File System Security

As the sharing of file system data becomes more prevalent, the possibility of
external tampering or damage to local file data exists. MachTen enforces UNIX user
name and group file system security for all exported NFS files and folders. Each
remote NFS request contains validated user and group identifiers, which
determine whether a file or directory/folder can be accessed or modified. The
MachTen chown and chmod commands can be used to set ownership and access
rights for both UNIX and Macintosh files. These rights will be enforced by the NFS
server.

7.4.4.1 AppleShare Access Privileges

AppleShare access privileges are imposed on each folder on an AppleShare server.
These privileges apply to the files and folders within a folder. They also apply to
the index of a folder. (The index of a folder is the list of entries within the folder;
i.e., a list of files and other folders.)

Power MachTen User’s Guide136

The access privileges for AppleShare folders are:

7.4.4.2 UNIX Access Privileges

UNIX access privileges are imposed on each file and directory on a file system.

The access privileges for UNIX files are:

The access privileges for UNIX directories are:

See
Files

Permission to read the index of a folder. Permission to read the
files listed in the index.

See
Folders

Permission to read the index of a folder. Permission to see the
folders listed in the index.

Make
Changes

Permission to read the index of a folder. Combined with “See
Files” or “See Folders”, provides permission to add or delete index
entries for files or folders, respectively. Combined with “See
Files”, provides permission to make changes to the files listed in
the index. Permissions to make changes to the folders listed in the
index are subject to the access privileges of each of those folders.

Read Permission to read the file.

Write Permission to write the file.

Execute Permission to execute the file (the file is a program).

Read Permission to read the index of a directory.

Write Permission to make changes to the index of a directory.

Execute Permission to locate a directory entry, given the entry is in the
index. In UNIX, there is a separation of the actions of finding an
entry in the index and actually locating this entry on the file
system. The permission to locate the entry is the “Search”
permission.

Power MachTen User’s Guide 137

Note that in UNIX, permissions to read or write the files within a directory are not
granted by the permissions of the directory, but rather by the permissions of the
files themselves. Also, the permissions to “Read”, “Write” or “Search” the index
of a directory does not differentiate between files and directories in the index.

7.4.4.3 Mapping AppleShare Access Privileges into
UNIX Access Privileges

The default Apple File Sharing permissions allow all other users and groups to
access newly created files and folders. Desktop NFS mimics this behavior by
assigning the access privilege of “Read”, “Write” and “Execute” for each of the
“owner”, “group” and “others” when a Macintosh application creates a file or
folder on a Desktop NFS volume. Since the Apple File Sharing default is not
settable on an individual user’s basis, Desktop NFS does not use a umask to specify
the permissions to be used when creating a new file or folder on a Desktop NFS
volume. The Finder’s “Sharing” dialog box can subsequently be used to restrict
access to such newly created folders. Note that the Apple File Sharing permissions
apply only to folders. To set the access privileges of individual files, the UNIX
interface must be used. Since NFS supports permissions for both files and folders,
Desktop NFS users can further restrict access to Desktop NFS files by specifying
the access permissions for the individual files themselves. In this case, the UNIX
chmod command must be used, as the Finder’s “Sharing” dialog box will only
allow making changes to folders.

Since the UNIX access permission to “Read”, “Write” or “Search” the index of a
directory does not differentiate between files and directories in the index, Desktop
NFS does not allow setting one of “See Files” and “See Folders” in the access
privileges of a folder. Either both are permitted or both are not. A Desktop NFS
folder with “See Files” and “See Folders” permitted actually has the UNIX
permissions “Read” and “Search”. A Desktop NFS folder without “See Files” and
“See Folders” permitted does not have the UNIX permission “Read” and may not
have the UNIX permission “Search”, depending on the setting of the “Make
Changes” permission.

A Desktop NFS folder with “Make Changes” permitted actually has the UNIX
permissions “Write” and “Search”. A Desktop NFS folder without “Make
Changes” permitted does not have the UNIX permission “Write” and may not
have the UNIX permission “Search”, depending on the setting of the “See Files”
and “See Folders” permissions (as above).

Power MachTen User’s Guide138

7.4.4.4 Access Privilege Strategies

Locked Folders. A Desktop NFS folder without “See Files”, “See Folders” or
“Make Changes” permissions has none of the UNIX “Read”, “Write” or “Search”
permissions. This mode is used to maintain complete privacy on a folder and is
called a “locked folder”. Desktop NFS locked folders are as secure as AppleShare
locked folders and require no additional permission settings on the individual files
within the folder.

Bulletin Board Folders. A Desktop NFS folder with “See Files” and “See
Folders” permissions but without “Make Changes” permissions has the UNIX
permissions “Read” and “Search”. This mode is used to maintain a bulletin board
style of privacy — users can open and read the files but are prevented from
changing or deleting them. In Desktop NFS, the permissions to “Read” or “Write”
the files within a bulletin board folder are granted by the permissions of the actual
files themselves. To implement a bulletin board folder in Desktop NFS, the files
should have only the UNIX permission “Read”.

Shared Folders. A Desktop NFS folder with “See Files”, “See Folders” and
“Make Changes” permissions has the UNIX permissions “Read”, “Write” and
“Search”. This mode is used to maintain a shared folder — users can open, read,
change, add and delete files. In Desktop NFS, the permissions to “Read” or
“Write” the files within a shared folder are granted by the permissions of the actual
files themselves. To implement a shared folder in Desktop NFS, the files should
have the UNIX permissions “Read” and “Write”.

Note that with Desktop NFS, it is possible to mix bulletin board and shared folder
styles, with each file maintaining its own privileges.

Drop Folders. A Desktop NFS folder without “See Files” and “See Folders”, but
with “Make Changes” permissions, has the UNIX permissions “Write” and
“Search”. This mode is used to maintain a drop folder. Users can deposit files or
folders but cannot read, remove or change anything in the folder.

Power MachTen User’s Guide 139

7.4.4.5 Differences Between Apple File Sharing and
Desktop NFS

With Apple File Sharing, users can give away ownership of the files they own.
More specifically, users can change the owner of a file from themselves to some
other user. In NFS, only the superuser (or root user) can change the ownership of
a file. Therefore, with Desktop NFS it is not possible for a non-root user to change
the owner of a file. Attempting to do so will result in an error.

7.4.5 AppleDouble

Desktop NFS supports two formats for storing Macintosh files on NFS servers.
The default format is AppleSingle. In this format, each file contains an
AppleSingle header, a data fork and a resource fork. AppleSingle files
autonomously contain all of the necessary Macintosh information in a single file.
The other supported format is AppleDouble. In this format, the data fork of the
Macintosh file is contained in one file, while the AppleDouble header and the
resource fork are contained in another file. The name for the file containing the
AppleDouble header and the resource fork is created by appending the percent
(“%”) character to the beginning of the original file’s name.

The AppleDouble format provides convenient sharing of data between Macintosh
applications and their counterparts that run on other platforms (like IBM PCs or
UNIX workstations). It is necessary for the cross-platform applications to share a
common format for the data passed between platforms.

A MachTen Desktop NFS client can simultaneously read files in both the
AppleSingle or AppleDouble format. To specify the format to be used when
creating a file on a Desktop NFS volume, use the “double” option when promoting
the NFS volume to the desktop.

To use the AppleDouble format when creating files, use:

dtmount -o double /SharedDisk

To use the default AppleSingle format when creating files, do not specify the
“double” option. Instead, use:

dtmount /SharedDisk

Power MachTen User’s Guide140

7.4.6 DOS Extensions

Desktop NFS maps files with DOS extensions (trailers) to configurable Macintosh
creators and types. These mappings are specified in the Dext resource in the
MachTen application. This resource may be edited using ResEdit. Dext has its own
template, with the following fields:

Some special cases can be specified in the Dext resource to specify default
mappings for files with no DOS extension, or DOS extensions that do not match
any of the specified extensions:

DOS Trailer DOS extension, including the dot (“.”) (e.g., .XLS)

Creator Macintosh creator (e.g., XCEL)

Type Macintosh type (e.g., XLS3)

before Before checking for AppleSingle or AppleDouble
headers, and before looking at data in the file, map it
to this creator and type. This option is intended for
use on NFS servers with slow access times and
possibly hundreds of files in each directory (e.g., an
optical Juke Box). In this case, checking each file for
AppleSingle/Double headers, or checking to see if it
contains text, may take a long time. Setting the
“before” special case prevents such checking and
immediately assigns a default creator and type to the
file.

text After checking for AppleSingle and AppleDouble
format, and after looking at the data in the file, if data
is text, map it to this creator and type.

binary After checking for AppleSingle and AppleDouble
format, and after looking at the data in the file, if data
is not text, map it to this creator and type.

Power MachTen User’s Guide 141

The mapping algorithm to assign creators and types to files on Desktop NFS
volumes follows:

1. Does the file have a DOS extension, and does this extension match any of the
specified extensions? If so, use this extension’s specified creator and type.

2. Is the special case specification “before” set? If so, use the given creator and
type.

3. Does the file have an appropriate AppleDouble pair? If so, use the creator and
type specified in the AppleDouble header (within the AppleDouble file).

4. Does the file have a valid AppleSingle header? If so, use the creator and type
specified in the AppleSingle header.

5. Does the file contain text?

a. Is the special case specification “text” set? If so, use the given creator and
type.

b. Otherwise, use the creator “MUMM” and the type “TEXT”.

6. The file is a binary UNIX file.

a. Is the special case specification “binary” set? If so, use its creator and type.

b. Otherwise, use the creator “MUMM” and the type “BINA”.

Power MachTen User’s Guide142

Power MachTen User’s Guide 143

8.0 Configuring NIS Under MachTen

NIS (Network Information Service), formerly called Yellow Pages or YP, is a client
and server system developed by Sun Microsystems that supports remote data
access to various system parameters. NIS clients are able to make network-based
requests to a centralized set of NIS servers for user and password, host name,
internet names and addresses, and other UNIX system-specific information.

MachTen has a pre-installed NIS client implementation that, with a relatively
simple configuration, will support MachTen NIS client operations. This section
describes the MachTen NIS client configuration process.

In the context of MachTen, NIS and NIST refer to version 3 of the NIS protocol. YP
is used to refer to an earlier version 2 of the protocol. MachTen has
implementations of both version 2 and version 3 of the NIS protocol.
Configuration of NIS and NIST parameters provides for setup and operation of an
NIS client with a version 3 NIS server. Configuration of YP parameters provides
for version 2 NIS server operations. You may specify either or both configurations,
according to your needs.

Data to resolve NIS client requests may reside on one or several local or remote
databases. By default, the local database is searched first. If a match to the request
is not found, one or more remote databases are searched. The MachTen NIS client
configuration provides for specifying the order in which databases are searched.

8.1 NIS Basic Configuration Steps

To enable NIS operations, a system must be configured with the information to
contact one or more NIS servers. The order and types of search for an NIS server
can be specified as part of the MachTen NIS client configuration. The NIS server
specifications for NIS version 2 YP operations are contained in the /etc/yp.conf file.
The NIS server specifications for NIS version 3 NIS and NIST operations are
contained in the /etc/nis.conf file. The order in which databases are searched is
defined in the /etc/nsswitch.conf file. After a set of NIS servers and their search
order are specified, the system configuration file /etc/rc.conf must be modified to
start two NIS client software daemons — portmap and ypbind. After those
configuration steps are complete, NIS client operations should be available.

Power MachTen User’s Guide144

8.2 Set YP Configuration in /etc/yp.conf

To configure operations for a version 2 NIS server, the /etc/yp.conf file is modified.
The /etc/yp.conf file contains ypserver and domainname entries. To define a YP NIS
server, specify the internet address or name of the server on a ypserver line in the
/etc/yp.conf file. There may be multiple ypserver entries in an /etc/yp.conf file. The
servers are contacted in the order in which they are entered in the file until a match
for the requested data is found. ypserver entries have the following form:

ypserver 10.0.0.28
ypserver 10.0.0.29

Setting a domainname entry in /etc/yp.conf maps all operations of a specific domain
to the specified ypserver:

domainname tenon.com

8.3 Set NIS Configuration in /etc/nis.conf

The /etc/nis.conf file controls the sequence and internet addresses of a list of NIS
version 3 servers. Like the /etc/yp.conf file, the /etc/nis.conf file contains nisserver
entries and domainname entries. The nisserver entries define NIS version 3 servers
to contact, and the order in which they are contacted. The domainname entries
override server specifications and map all operations for a specified domainname to
a specified nisserver. The nisserver entries have the following form:

nisserver 10.0.0.30
nisserver 10.0.0.31

The domainname entries have the following form:

domainname tenon.com

Power MachTen User’s Guide 145

8.4 Set NIS Database Search Order

The order in which data files and remote data sources are searched to satisfy a
request is important. By providing for an ordered search of data, local data can
specify overrides to host names, user names or other information that is special to
local operations. If a request is not satisfied by looking locally, remote data sources
are searched in the order specified in their configuration files.

The /etc/nsswitch.conf file contains line-by-line entries that specify the data sources
and the search order for each of the types of NIS data requests that are supported
by the MachTen NIS and YP software. In the /etc/nsswitch.conf file, nisplus and nis+
are used to refer to NIS version 3 protocol operations. nis and yp are used to refer
to NIS version 2 protocol operations.

8.4.1 The Default /etc/nsswitch.conf File

The following is a copy of the default /etc/nsswitch.conf file:

#
/etc/nsswitch.conf
#
An example Name Service Switch config file. This file should be
sorted with the most-used services at the beginning.
#
The entry '[NOTFOUND=return]' means that the search for an
entry should stop if the search in the previous entry turned
up nothing. Note that if the search failed due to some other reason
(like no NIS server responding) then the search continues with the
next entry.
#
Legal entries are:
#
nisplus or nis+ Use NIS+ (NIS version 3)
nis or yp Use NIS (NIS version 2), also called YP
dns Use DNS (Domain Name Service)
dbm Use DBM access
files Use the local files
[NOTFOUND=return] Stop searching if not found so far
#

passwd: dbm files nisplus nis
shadow: files nisplus nis
group: files [NOTFOUND=return] nisplus nis

Power MachTen User’s Guide146

hosts: files dns [NOTFOUND=return] nisplus nis

services: files [NOTFOUND=return] nisplus
networks: files [NOTFOUND=return] nisplus
protocols: files [NOTFOUND=return] nisplus
rpc: files [NOTFOUND=return] nisplus
ethers: nisplus [NOTFOUND=return] files
netmasks: nisplus [NOTFOUND=return] files
bootparams: nisplus [NOTFOUND=return] files

netgroup: nisplus

publickey: nisplus

automount: files nisplus
aliases: files nisplus

Lines in the /etc/nsswitch.conf file that begin with a “#” character designate
comments which are ignored by the software that processes the file. Lines that
begin with a “name” followed by a “:” are lines that specify the order in which
different databases are searched to satisfy a request for data of the type specified
by the “name” parameter. The passwd “name” specifies the database search order
for user and password requests. The hosts “name” specifies the database search
order for host names and addresses. The files search order designation refers to a
local data file. The dbm designation refers to a local database file. The nisplus and
plus designations refer to remote NIS requests to NIS version 3 and NIS version 2
protocol servers. The NOTFOUND=return file search order designation specifies
that a search should terminate if all previous database entities have been checked
and have responded negatively to a request. If a search failed for some other
reason, such as NIS server not responding or unavailable, the search continues
with the next entry.

The previous example contains the default settings included with MachTen NIS.
The order of these settings is fairly standardized and typically requires little or no
modification.

Power MachTen User’s Guide 147

8.5 Testing the Basic NIS Configuration

After /etc/nis.conf, /etc/yp.conf and /etc/nsswitch.conf have been reviewed and their
configurations set appropriately, it is possible to test the basic NIS network
configuration for proper operation. First the portmap and ypbind software
daemons must be started to facilitate the testing. The commands:

root@ppc0# /usr/sbin/portmap
root@ppc0# /usr/sbin/ypbind
root@ppc0# ps -ax
 PID TT STAT TIME COMMAND
 0 ? R (kernel idle)
 1 ? S /sbin/init
 63 ? S 0:00 /usr/sbin/syslogd
 80 ? S 0:00 /usr/sbin/inted
 232 ? S 0:00 /usr/sbin/portmap
 235 ? S 0:00 ypbind (slave)
 236 ? S 0:00 ypbind (slave)
 86 co S 0:00 /usr/bin/wind
 88 co S 0:03 -csh (tcsh)
 237 w0 R 0:00 ps -ax

start the /usr/sbin/portmap and /usr/sbin/ypbind software daemons. The ps -ax
command outputs a list of the executing programs and, in this example, shows that
the portmap and two ypbind (slave) instances are ready for NIS operations.

To test that the daemons can properly contact a YP or NIS server, use the ypmatch
or ypcat applications. The commands:

root@ppc0# ypmatch newton passwd
newton:.w.Xh2GK08Aw:507:507:Jon Newton:/home/newton:/bin/csh
root@ppc0# ypcat hosts
10.1.1.2 ppc100
127.0.0.1 host.foo.com
127.0.0.1 localhost
10.1.1.1 lamp100

are used to exercise the NIS component of the MachTen configuration. The ypmatch
newton passwd contacts the first NIS server specified in the /etc/nis.conf file and
requests a match for user newton in the password database. The printed
information is the corresponding newton entry from the centralized database.

The ypcat hosts command causes a dump of the complete database to be printed on
the local screen. In the example above, the hosts database was printed.

Power MachTen User’s Guide148

Both ypcat and ypmatch have manual page entries with more information about
running the applications and other parameters. The manual pages for ypcat and
ypmatch are available by typing the man ypcat or man ypmatch commands.

8.6 Configure MachTen for Automatic Portmap
and Ypbind Startup

After proper operation has been confirmed, the MachTen system should be
configured to automatically start portmap and ypbind when MachTen is launched.
This is done by modifying the /etc/rc.conf file and setting the START_portmap and
START_ypbind configuration settings to the string “yes”.

START_portmap=”yes”
START_ypbind=”yes”

Any subsequent restarts of the configured MachTen system will automatically
cause ypbind and portmap to be started and facilitate the automatic access to NIS
data.

Power MachTen User’s Guide 149

9.0 Printing

MachTen supports UNIX-style spooled printing to PostScript LaserWriters on
AppleTalk, to ASCII-based ImageWriters on serial ports, and to remote UNIX
printers via Berkeley’s line printer daemon (lpd(8)). These printing capabilities
support both UNIX and Macintosh applications. This means that with MachTen
your Macintosh can take full advantage of UNIX-style printer sharing and printer
administration.

With this hybrid system, interconnected MachTen and other UNIX systems are able
to spool text and PostScript to traditional UNIX printers, as well as AppleTalk
LaserWriter and ImageWriter printers. MachTen supports full UNIX print job
control, including the management of multiple printers, multiple spooling queues,
and access to printers either local or accessible across a network. In addition, using
the LaserWriter server daemon (lwsrv), MachTen can emulate a named AppleTalk
LaserWriter. This allows remote Macintosh applications to direct printer output
to a MachTen system which will, in turn, spool the output as a MachTen print job.

9.1 MachTen Print Spooling

Printing in a standard Macintosh environment requires competing for the
exclusive use of a printer and waiting for the relatively slow printing process to
complete. With MachTen, every Macintosh is able to be more efficient in its printing
by becoming a spooling client/server system.

In a MachTen spooled system, text that would normally be sent directly to an
AppleTalk LaserWriter is instead directed to a client program. The client transfers
the data to a spooling area monitored by a spooling server program and returns
control to the application. Thus, applications are only required to spend the
amount of time it takes to transfer the print data from one disk to the spooling disk
before being able to continue. Since MachTen is a multi-tasking system, the server
continues to run in the background and feeds the spooled data to a designated
printer one file at a time. In a networked printing environment, the server
forwards the spooled data to a remote server for printing from the remote system.
Thus, MachTen provides not only local printer spooling, but remote printer
spooling as well.

Power MachTen User’s Guide150

The client program in the MachTen print spooling system is lpr(1). The background
server program, also known as the print daemon, is lpd(8). Detailed information
on lpr, lpd and other programs used by the MachTen spooling system can be found
in the online manual pages, as well as in the document “4.3BSD Line Printer
Spooler Manual” in the System Manager’s Manual section on the MachTen
CD-ROM.

9.1.1 The Print Spooler Database

The /etc/printcap file (see printcap(5)) is the master database for the MachTen printing
system. It describes all printers directly attached to your system, as well as
printers accessible across the network. MachTen is shipped with an initial
/etc/printcap file (that will print to a Chooser-selected LaserWriter over AppleTalk)
which you may need to modify, depending on your printing configuration.

9.2 Local Printing

In order to print with a minimum of system configuration, MachTen comes
configured for local spooling of print data. With local spooling, a MachTen system
acts as both a print spooling client and server.

MachTen supports two local print capabilities for UNIX and Macintosh
applications:

• Spooled printing to a PostScript LaserWriter on AppleTalk. This is the default
configuration.

• Spooled printing to an ASCII-based ImageWriter or DeskWriter connected
directly to a serial port.

Power MachTen User’s Guide 151

9.2.1 Printing Text Files to a PostScript LaserWriter
on AppleTalk

To use a LaserWriter on AppleTalk, simply select the printer by using the Chooser.
Then use the lp(1) command as follows:

lp <file_name>

lp is a MachTen shell script which invokes pstext(1), generating formattedPostScript
output from the text file. The PostScript output is then queued to the spooling area
by lpr, where lpd spools the file to the LaserWriter on your AppleTalk network
selected by the Chooser. This is the default configuration for MachTen. If you are
not already running lpd, lp will start it for you. lp will accept pstext options,
allowing you to control the output format with respect to orientation, headers,
fonts, etc.

9.2.2 Printing to an ImageWriter or a DeskWriter

UNIX files can be printed to an attached ImageWriter or DeskWriter using the
UNIX pr(1) command by utilizing the printer’s ASCII text printing capability.

1. To print to a locally connected ImageWriter or DeskWriter, perform the
following steps:

For an ImageWriter:

Edit the /etc/printcap file and uncomment (remove the pound marks (“#”))
from the beginning of each line for the ImageWriter entry. The uncommented
entry should look like this:

iw|lp|ImageWriter|ImageWriter II:\
 :MF:br#9600:fs#06320:\
 :lp=/dev/ttyfa:\
 :sd=/var/spool/iw:\
 :tr=\f\f:\
 :of=/usr/lib/lpf:\
 :af=/var/spool/iw/acct:\
 :lf=/var/spool/iw/errs:

Power MachTen User’s Guide152

For a DeskWriter:

Edit the /etc/printcap file and uncomment the entry starting with
“dw|lp|DeskWriter:\”. The DeskWriter entry differs from the
ImageWriter entry in the setting of the serial port speed (baud rate)
designated by the “:br#<table entry>:” field in the entry. Modify this
field as necessary to match the baud rate of your DeskWriter according to the
following table:

The default serial port speed setting for DeskWriter entry in /etc/printcap is
57.6K baud.

2. If the printer is connected to the printer port, change the line that says
“lp=/dev/ttyfa” to read “lp=/dev/ttyfb”. If the printer is connected to
the modem (phone) port, skip this step; printcap is already set in this
configuration.

br# entry DeskWriter Baud Rate

50 14.4 Kbps

75 28.8 Kbps

110 57.6 Kbps

300 300 bps

600 600 bps

1200 1200 bps

1800 1800 bps

2400 2400 bps

4800 4800 bps

9600 9600 bps

19200 19.2 Kbps

38400 38.4 Kbps

Power MachTen User’s Guide 153

3. Print a UNIX file by using one of the following two commands:

pr <file_name> | lpr -Piw
lpr -Piw <file_name>

The first version will paginate the output; the second version will produce
“raw” output.

If lpd is not running, the following error message will appear:

lpr: connect: No such file or directory
jobs queued, but cannot start daemon

In order to start lpd, you must “su” to root and start the daemon by giving the
command /usr/sbin/lpd. If you print from MachTen frequently, edit the /etc/rc.conf
file to start lpd automatically.

The ImageWriter is not selected with the Chooser, but rather with
the -P option of the lpr command. The name following -P may be
any one of the names listed on the first line of the /etc/printcap
entry for the ImageWriter — iw and ImageWriter work equally well
in this case.

Macintosh files, such as Microsoft Word files with embedded
formatting characters, must be printed from their Macintosh
application. They cannot be printed with an lp, lpr or pr command.

Macintosh programs running on the Macintosh can access the
ImageWriter as they normally do via Chooser.

Power MachTen User’s Guide154

9.3 Remote Printing

In a networked printing environment, MachTen supports spooling to a remote
UNIX or MachTen system with an attached printer via lpd. The local lpd uses the
TCP protocol to communicate with the remote lpd. Your MachTen system can be
configured as an lpd client (invoking remote printing services) or an lpd server
(spooling a received file to its local printer). Both ends of the lpd connection are
configured through line entries in the /etc/printcap file.

9.3.1 Spooled Printing to a Remote UNIX Printer

To set up MachTen to spool files to a remote printer, perform the following steps:

1. Configure the other machine to spool to the printer, following the instructions
for that machine and printer. If the machine is a MachTen system, refer to the
instructions below. It is possible this step is unnecessary if a machine already
exists on your network that is doing spooling. Test that the remote machine
can print by printing a document while logged on to that machine.

2. Edit the local /etc/printcap file and uncomment (remove the pound marks
(“#”)) the beginning of each line for the remote entry. The uncommented
entry should look like this (substitute the printer name you wish to use for
“mumm” on the first line and the remote host machine name on the second line
(rm=<host>):

mumm: \

:lp=:rp=lp:rm=mumm:sd=/var/spool/mummlpd:lf=/var/adm/ldp-errs:

3. In addition to knowing the remote spooler’s name and printer, you must also
have print access to the remote host. To obtain print access, your host name
must be entered in the remote spooler’s /etc/hosts.equiv or /etc/hosts.lpd file.
Enter the full domain name in either file (for example, myhost.tenon.com).

4. Create the spool directory /var/spool/mummlpd. The actual name chosen
typically references the remote host name. The directory name must match
the “sd=” entry above. Give write permission to all users by using the
chmod(1) command.

Power MachTen User’s Guide 155

5. Start the line printer daemon:

lpd

6. Print:

pr /etc/passwd | lpr -Pmumm

The name used with the -P option corresponds to the first line of
the remote printer entry in /etc/printcap.

9.3.2 Receiving Remote Print Jobs

MachTen can act as a print spooler for other UNIX machines on your network. The
printer can be a directly connected ImageWriter, a LaserWriter on AppleTalk, or
any printer on the network. To set up MachTen to act as a print spooler for other
UNIX machines on the network, perform the following steps:

1. Configure your local printer following the instructions in section “9.2 Local
Printing”.

2. To enable remote print access, add any remote host names that will use the
printer as a remote printer to the /etc/hosts.lpd file. Refer to the rlogin(1) manual
page for more information on the format of the /etc/hosts.equiv file. Add the
host name as a full domain name (for example, myhost.tenon.com).

3. Start the line printer daemon:

lpd

4. Enable the printer with the command:

lpc enable <printer>

Power MachTen User’s Guide156

9.4 Selecting an Alternate Printer

Printing involves explicit or implicit selection of a physical printer. To explicitly
select a printer you may use the -P option for the lpr command. If no -P option is
specified, the lpr program uses the value of the PRINTER shell environment
variable (see printenv(1)) and section “5.4 Tailoring Your UNIX Environment” for
more information). If the environment variable does not exist, lpr uses the the first
printer with the name lp specified in the /etc/printcap file. In the default
configuration, this is also the AppleTalk printer selected via Chooser.

For environments with multiple printers on AppleTalk, selecting a printer other
than the Chooser printer requires an entry in /etc/printcap. A valid entry looks like
this:

:at=mylaser\:LaserWriter@*:

An “at” entry in the /etc/printcap file specifies the AppleTalk name of a printer. An
“at” entry must include the complete AppleTalk name, type and zone designator
in standard AppleTalk format (<name>:<type>@<zone>). A “*” may be used to
refer to the “local” zone.

The colons at the beginning and end of the entry are required to distinguish the
entry from other parameters. The above entry designates a LaserWriter with the
AppleTalk name “mylaser”, of type “LaserWriter”, associated with the local
zone. Note the use of the required backslash to escape a colon internal to the
specification. If the name field entry is null, the MachTen system will retrieve the
name of the printer from the information saved by the Chooser.

Power MachTen User’s Guide 157

9.5 Extending Remote Printing to Macintosh
Applications

The MachTen UNIX spooling capability is not only available for UNIX applications,
but is extended to all Macintosh applications (even Macintosh applications on
non-MachTen systems) through a LaserWriter server named lwsrv(8). lwsrv is a
background MachTen program that identifies itself to the local AppleTalk zone as
a LaserWriter. Remote Macintoshes can select this “synthetic LaserWriter” with
their Choosers as an output device. Once selected, Macintosh application print
operations automatically direct printer output to lwsrv. Any Macintosh
application on a remote Macintosh can send printer output to an lwsrv printer.
lwsrv, in turn, passes the printer output to lpd, and lpd spools to the designated
printer as per Chooser or the /etc/printcap entry.

Applications running on the same Macintosh as lwsrv cannot
send output to lwsrv due to a lockout condition in the MacOS
network software. This is not a problem in environments with
more than one MachTen system, since Macintosh applications can
send their output to an lwsrv on another machine for spooling.

As an example, imagine four devices — a Printer, a Sun workstation that is the
print spooler for the printer, a MachTen Macintosh and Macintoshes not running
MachTen. In this example, the Printer and the Sun workstation are on Ethernet, the
MachTen Macintosh is on both Ethernet and AppleTalk, and the Macintosh clients
are on AppleTalk.

The Macintosh user on Pippin wants to print to the Printer. An lwsrv daemon
running on Max enables him to do this. The printer will appear in the Choosers of
Pippin and Granny Smith. When Pippin and Granny Smith choose “Printer” and
print, printer output is sent from Pippin and Granny Smith to Printer via Max and
lwsrv.

Power MachTen User’s Guide158

Figure 26. Spooling Printer Output to UNIX Printers Using lwsrv

9.5.1 Lwsrv Configuration Files

lwsrv requires two types of configuration files. A single file describes the fonts
available in the printer being used. The other files contain a QuickDraw-to-
PostScript macro that this Macintosh user has on the client Macintoshes (Granny
Smith and Pippin in the above example). Tenon supplies font files that will work
for LaserWriter or LaserWriter Plus printers, as well as a macro (LaserPrep) file
that will work for Macintosh users that have installed version 5.2 or 7.0 of
LaserPrep under MacOS System 6, MacOS System 7 or MacOS System 8.

Power MachTen User’s Guide 159

9.5.1.1 Font Lists

When a Macintosh wants to send printer output to a particular printer, it first
inquires about available printer fonts. It uses this information to map its internal
fonts to the fonts available on the printer. If necessary, it will download any
additional fonts needed for the document being processed. In order for lwsrv to
work correctly, lwsrv must know what fonts are available on the printer being
used.

The Tenon-supplied font files /usr/lib/LWFonts and /usr/lib/LWPlusFonts contain
font lists for use with LaserWriter and LaserWriter Plus printers. However, in
order to use printers other than a LaserWriter or LaserWriter Plus, the list of fonts
must be obtained and placed in a file for lwsrv to read at startup time. One way of
doing this is to use the Apple LaserWriter font utility which is on the System
Software disk. A second way is to run lwsrv in “trace mode” (using the -t option;
see the lwsrv(8) man page). The data obtained must be edited to be in a usable form
known as a “font dictionary”. Under the newer LaserPrep, the font list is
encapsulated in a query that can be retrieved by running lwsrv with tracing on.
The appropriate code is framed with a %%?BeginFontListQuery,
%%?EndFontListQuery:(*) pair, and the last item is indicated with a “*”.

9.5.1.2 PostScript Macros

A second configuration file used by lwsrv describes the mapping of QuickDraw
commands to PostScript commands. Similar to the process with fonts, these
macros are downloaded to the printer if they are not in the printer prior to printing
a document. The macro files are contained in the directory /usr/lib/adicts. Each file
contains what Apple calls an “AppleDict”. The AppleDict is really known as a
“Procedure Set” (ProcSet) under the PostScript document structure conventions.

Power MachTen User’s Guide160

9.5.2 Enabling lwsrv

To set up the MachTen spooling system to act as a LaserWriter emulator for remote
Macintosh applications, perform the following steps:

1. Configure your printer following the instructions in sections “9.2 Local
Printing” or “9.3 Remote Printing”.

The /etc/printcap entry used by lwsrv must have an explicit printer
designation using either an rm, at or explicit local printer series of
specifications. Without this configuration, a logical print loop will
result which has lwsrv handing its output to lpd and lpd handing
its output to lwsrv. Explicit declaration of a printer for lpd is
important in avoiding this recursive configuration. Naturally, this
is true of multiple lwsrv, lpd, lpd...lpd, lwsrv situations as well, and
should be carefully understood when picking a name for lwsrv to
advertise to its AppleTalk zone.

When a MachTen system is using a remote lwsrv to support local lpd operations,
the local /etc/printcap must have an “at” entry and an “rl” entry in the form:

:at=mylaser\:LaserWriter@*:rl:

indicating the remote LaserWriter is a “synthetic system” and is unable to
support normal maintenance PostScript requests such as PostScript page
count. Refer to section “9.4 Selecting an Alternate Printer”.

2. If the printer you are accessing is a LaserWriter or LaserWriter Plus, proceed
to the next step. Otherwise, while still on Max (see “Figure 26. Spooling
Printer Output to UNIX Printers Using lwsrv”), obtain the font list from the
printer and install it in a file in /usr/lib/<something>Font. Use one of the
techniques described in the section “9.5.1.1 Font Lists”.

Power MachTen User’s Guide 161

3. Start lwsrv. The command:

/usr/sbin/lwsrv\
-n mylaser \
-a /usr/lib/adicts \
-f /usr/lib/LWPlusFonts \
-l /var/adm/lwsrv-errs -p lp

is used to start a local LaserWriter spooler which advertises its name as
mylaser, with ProcSet directory /usr/lib/adicts, with font set
/usr/lib/LWPlusFonts, error output file /usr/adm/lwsrv-errs and local lpd printer
lp. (If you want lwsrv to be invoked every time you start MachTen, this
command should be placed in your /etc/rc file.) Once invoked, this command
causes other Macintoshes on the local AppleTalk segment to “see” a new
LaserWriter named mylaser for selection with their Choosers. Any subsequent
Macintosh application print operations will be sent to the mylaser lwsrv, which
will spool it to its local lpd printer (named lp) for printing.

4. Go to a Macintosh that does not have lwsrv running and open the Chooser.
Verify the entry for the spooled printer mylaser in the Chooser LaserWriter
menu.

9.6 Print Job Status Mail Notification

If there is an access violation or print filter error, any MachTen lpd will automatically
generate electronic mail to the user and host initiating the print request. This
feature can be inactivated for any printer by removing the “:MF:” entry from the
printer’s specification in the /etc/printcap file. A user may also explicitly specify
that electronic mail be sent on successful printing of their print job by adding the
-m flag to their originating lpr request.

Power MachTen User’s Guide162

9.7 Status and lp Management Programs

The lpq(1) program shows the status of all files from the local system queued for
printing, as well as the status of the remote printer. Use lpq to determine the status
of each of your print jobs. Each print job has a number. That number is used to
manipulate the job with the lprm and lpc commands. The example below shows a
file queued for printing.

lpq
lp is ready and printing
Rank Owner Job Files Total Size
active johnson 685 standard input 24799 bytes

The lprm(1) command is used to delete already queued print files that you have
subsequently decided not to print. lprm will first look locally for queued files and
then contact any remote spooling systems to request that files be deleted. Files are
specified by the job numbers obtained from lpq. For example:

lprm 685

Finally, the lpc(8) program is used to perform larger management operations with
printers and queues of print jobs. lpc will enable or disable the overall operations
of a specific printer, enable or disable the spooling queue of a printer, rearrange the
order of jobs in the spooling queue, and find the status of printers, associated spool
queues and spooling daemon software.

Power MachTen User’s Guide 163

10.0 Networking with MachTen

MachTen is rich in features that promote the sharing of data and processor
resources with remote systems. MachTen communications software supports the
exchange of data, remote timesharing of resources, and global electronic mail with
a wide variety of systems. “Figure 27. Resource Sharing: FTP, mail, rlogin” shows
a MachTen system with three MachTen windows open. The user has an rlogin
session in one window, an ftp (File Transfer Protocol) in another, and has just sent
a message in a third window. Since MachTen implements the Internet family of
protocols, including the Transmission Control Protocol (TCP) and the Internet
Protocol (IP), it is able to interact with other TCP-based microcomputers,
workstations (such as a Sun workstation), and larger scale mini- and maxi-class
computers (such as a DEC VAX).

Figure 27. Resource Sharing: FTP, mail, rlogin

Power MachTen User’s Guide164

10.1 Using OpenTransport or Replacing
OpenTransport

MachTen has been programmed with two alternative TCP/IP protocol
implementations. The first is an implementation of the standard MachTen sockets
interface which has been mated with MacOS OpenTransport. In this
configuration, calls to the MachTen sockets interface are translated into one or more
calls onto the MacOS OpenTransport TCP/IP implementation. In addition, the
results of any OpenTransport calls are translated into MachTen sockets operations.
This is the default MachTen configuration. It provides for complete compatibility
between MachTen networking applications and other MacOS networking
applications.

The second TCP/IP configuration provides for the replacement of OpenTransport
with Tenon’s MachTen TCP/IP stack. This implementation is an industrial-
strength BSD UNIX TCP/IP implementation containing many features not found
in OpenTransport, such as multi-link, multihoming.†

A third alternative is to simultaneously use both OpenTransport and Tenon’s
TCP/IP stack. The advantages and details for setting up this “dual” stack
configuration are discussed in section “10.7 Dual Stack Configuration”.

The TCP stack in MachTen is more robust, better-performing, and more fully
featured than Apple’s OpenTransport. When MachTen is running, Macintosh
applications that are accustomed to using MacTCP will automatically use the TCP
protocols in MachTen. “Table 4: MachTen TCP/IP Protocol Stack” shows the
differences between Tenon’s TCP stack and Apple’s OpenTransport.

† OpenTransport 1.3 includes single-link, multihoming.

Power MachTen User’s Guide 165

Table 4: MachTen TCP/IP Protocol Stack
(Comparison with OpenTransport)

OpenTransport MachTen’s TCP

Performance Caters to LANs. Buffering strategies,
window management, and
packet re-transmission
algorithms are designed to
maximize both LAN and
WAN performance.

Multihoming OpenTransport 1.3.

Supports single-link,
multihoming.

Supports multi-link,
multihoming. Support for
multiple network
interfaces allows you to
have redundant network
connections and allows
MachTen to act as a gateway
to forward IP packets.

Maximum Number
of TCP
Connections

No limitation. No limitation.

Control Over
Interface Options

No intrinsic control. Many
individual shareware
packages are available to
fulfill various control
functions.

Provides a range of
management options, such
as ARP table management,
statistics reporting and
reconfiguration without
rebooting.

Routing Control Supports single default
route.

Allows many routing
entries and supports
dynamic routing
configuration via routed
and gated.

Domain Name
Resolution

Supports single (remote)
domain name server and
uses a non-standard
“hosts” file

Supports multiple domain
name servers (local and
remote) and uses a
standard “hosts” file.

Power MachTen User’s Guide166

MachTen internetworking is designed to be self-configurable upon installation.
However, the installation process assumes that you are installing MachTen on an
existing internet, that you already have an internet address, and that you know the
internet address of your gateway and your domain name server, if they exist.

Consult the following “setting up” sections for steps that need to be performed to
set up or change your network environment and to keep your network running —
“10.3 Using MachTen as an Internet Host”, “10.4 Using MachTen as a Domain Name
Server”, and “10.6 Using MachTen as a Router”.

Simultaneous
Support of UNIX
and Macintosh
Applications

Yes, when used with
MachTen.

Yes, unless the application
is OpenTransport-only.

Multicast No. Yes.

Loopback
Operation

Yes. Yes.

IP Aliasing Yes. Supports multiple IP
addresses on a single
network interface.

OpenTransport MachTen’s TCP

Power MachTen User’s Guide 167

10.2 Configuring Tenon TCP or Dual Stack
Networking

The choice of using OpenTransport, Tenon TCP or dual stack networking is
controlled by the placement of three libraries in the Tenon Kernel Libraries folder.
Table 5 shows the valid combinations for the location of these libraries. To change
configuration, quit MachTen, use the Finder to re-position the libraries, and
re-launch MachTen.

Table 5: Networking Configuration Choices

Configuration Tenon Kernel
Libraries

Disabled

Use OpenTransport (default) OT SocketLib SocketLib
MacTCPdLib

Replace OpenTransport SocketLib
MacTCPdLib

OTSocketLib

Dual stack SocketLib OTSocketLib
MacTCPdLib

Power MachTen User’s Guide168

10.3 Using MachTen as an Internet Host

MachTen supports internet communications. The Internet is a collection of
networks that provides global communications. Each host on an internet is
assigned an internet address which consists of a network identifier and a host
identifier. MachTen supports the full range of internet class A through C internet
addresses, as well as internet subnetting capabilities. You must contact Network
Solutions in Herndon, Virginia (http://www.internic.net) to obtain an internet
address for your network. It is a good idea to get an “official” internet address,
even if you don’t plan to connect to the Internet. This will ease the transition
downstream, if and when you decide to join the global network.

Once your system is set up as an internet host, you will be able to use the
networking protocols (Telnet, SMTP, FTP, HTTP, etc.) to communicate with other
hosts that are accessible over your internet. Even if you are not connected to the
global Internet, you can benefit by using these protocols to form an internal
company-wide internet.

In MachTen, your host name and internet address are from information supplied in
the MachTen control panel. The translation of your host name to an internet
address is found in the file /etc/hosts. This file is set up automatically when the
system boots.

MachTen employs two methods of translating host names to addresses — by using
the /etc/hosts table and by using a domain name resolver to query a centralized,
automated domain name server. You can disable a translation method or specify
which method is used first in the /etc/net_search_rules file (see net_search_rules(5)).
Refer to section “10.4 Using MachTen as a Domain Name Server” for an explanation
of the domain name system. If your internet does not use domain name service,
add an entry for each host on your network in /etc/hosts.

Power MachTen User’s Guide 169

10.3.1 The MachTen Networking Control Panel

MachTen allows for a multi-homed internet networking environment — permitting
multiple independent networks to be connected to a single system. MachTen
supports several physical interface types, including Ethernet, SLIP, PPP,
TokenRing and LocalTalk, in addition to a logical local loopback interface. The
MachTen Networking control panel is a convenient way to configure an interface
on AppleTalk, Ethernet and TokenRing for internet networking. Refer to section
“3.0 The MachTen Control Panel” for information on configuring the primary
interface for each network attached to your system. If you want to set up a PPP or
SLIP interface, refer to sections “10.15.8 Using PPP” and “10.15.9 Using SLIP”.

10.3.2 Configuring Multiple Interfaces

MachTen supports multiple interfaces of the same type, including up to four
Ethernets, four TokenRings, and multiple SLIP and PPP interfaces. If you have
multiple interfaces on Ethernet or TokenRing, you will need to configure those
interfaces in /etc/rc using ifconfig(8). MachTen permits up to four Ethernet
interfaces, named ie0-ie3. For example, the command:

ifconfig ie1 joe up -trailers

configures the second Ethernet interface installed in your system. The host name
“joe” should be added to your /etc/hosts file, along with a unique internet address
assigned to the second Ethernet interface.

Power MachTen User’s Guide170

10.4 Using MachTen as a Domain Name Server

MachTen is designed to use the Internet Name Server protocol to translate host
names into internet addresses. The MachTen domain name service (DNS) invokes
the Berkeley Internet Name Domain (BIND) software (via named(8), the name
daemon) to match host names to internet addresses. When you install MachTen, the
MachTen installer, in conjunction with the MachTen control panel, automatically sets
up a table of host names and internet addresses in the file /etc/hosts. If all of the
appropriate information was available when you installed MachTen and you are
using a Domain Name Server, the host table should be ready to go; otherwise you
may have to hand-tailor this file as outlined in the following section. The “Name
Server Operations Guide for BIND” section (included in the System Manager’s
Manual section on the MachTen CD) tells you how to set up a sub-domain and how
the name server works.

For a system using a Domain Name Server, the host table only needs the host name
and internet address of your Domain Name Server and, if you are connected to the
internet via an IP gateway, the name and internet address of the IP gateway.

If your environment does not support a name server, you must make sure that
your /etc/hosts table has all of the host names and corresponding internet addresses
that you will need.

10.4.1 Configuring MachTen as a Domain Name Server

If you want to configure one of your MachTen systems to be a name server, you
need to compose data files that describe hosts in your domain and define domain
name service parameters. The MachTen distribution contains example name server
data files in the /etc/named directory. If you are configuring the network software
manually, you may need to import a full host table from another established host
on the network. Over time, this file may need to be edited to add or subtract hosts
(see “Figure 28. Example /etc/hosts File”.

It is convenient to keep your active files in a subdirectory of /etc (/etc/nsdata, for
example). If you are interconnecting to a public or regional network, you must
also follow their domain registration procedures.

Power MachTen User’s Guide 171

The name server — named(8) — reads a boot file at startup. This file tells the server
what kind of name server it is, what domains (zones) it has authority over, and
where to get its initial data. The name /etc/named/boot is assumed unless named is
initiated with a -b option, such as -b /etc/nsdata/boot.

Figure 28. Example /etc/hosts File

Example host file
#
127.0.0.1 localhost
#
Class C address is subnetted to allow 4 subnets of 62 hosts each;
subnet mask 255.255.255.192
subnet 0 is the ethernet subnet
subnet 1 is the appletalk subnet
subnet 2 is the slip subnet
subnet 3 is reserved
#
Suffix convention for naming the address of a host interface:
_a for AppleTalk, _e for Ethernet, _s for SLIP
The hostname sans suffix identifies the preferred (or only) address.
#
The following machines have both Ethernet and AppleTalk interfaces
#
223.255.254.1 mumm mumm.some.com mumm_e
223.255.254.65 mumm_a
#
The remaining machines are AppleTalk only
#
223.255.254.96 classic classic.some.com classic_a
223.255.254.97 jazz jazz.some.com jazz_a
223.255.254.98 rock rock.some.com rock_a
#
Root domain name servers
#
10.0.0.51 SRI-NIC.ARPA
26.0.0.73 SRI-NIC.ARPA
128.102.16.10 NS.NASA.GOV
26.3.0.103 A.ISI.EDU
128.20.1.2 BRL-AOS.ARPA
192.5.25.82 BRL-AOS.ARPA
192.5.22.82 BRL-AOS.ARPA
26.1.0.13 GUNTER-ADAM.ARPA
128.213.5.17 C.NYSER.NET
10.1.0.17 TERP.UMD.EDU

Power MachTen User’s Guide172

The example boot file in /etc/named/boot follows:

 ; Boot file for YourZone primary master name server
 ;
 ; domain YourZone
 directory /etc/named
 primary YourZone zone
 primary 255.254.253.in-addr.arpa zone.rev
 primary 127.in-addr.arpa local
 cache . cache

To enable named at startup, set the START_named variable in /etc/rc.conf.

10.4.2 The Domain Name Resolver

An associated component of the domain name system — the “domain name
resolver” — allows the /etc/hosts table to be reduced simply to the host name and
internet address of your name server and your gateway. Each time you attempt to
send electronic mail or open a connection to another host, the resolver queries the
name server and furnishes the correct address. The file /etc/resolv.conf contains
your domain name and the internet address (not the internet name) of your
network name server:

domain your.domain.name
nameserver 253.254.255.101

When you install MachTen, the only requirement in order for your Macintosh to
make use of the resolver is to specify your domain name and the internet address
of your name server in the MachTen control panel. The name server may be a named
running on your local machine or on another network host. MachTen will
automatically create the /etc/resolv.conf file when launched. If you want the
resolver to also query a backup name server, simply edit the /etc/resolv.conf file and
add the name server address in the form shown above.

Power MachTen User’s Guide 173

10.5 Using MachTen as a Web Server

The Apache hypertext transfer protocol daemon (httpd) serves World Wide Web
(WWW) documents from your MachTen system. The httpd daemon is
pre-configured for standalone operation with configuration files in /etc/httpd. To
turn your Macintosh into an internet WWW server, simply type the following
from the root account:

httpd

To automatically start httpd during MachTen boot up, edit the /etc/rc.conf file by
changing the line START_httpd to START_httpd=”yes”. Then restart MachTen.

For detailed documentation on Apache httpd, as well as general information on
creating Web documents, refer to the online links in your default home page. Your
home page is available for viewing by your favorite Web browser (such as Mosaic
or Netscape™) at URL http://localhost, and for editing in the local file
/etc/httpd/htdocs/MyHomePage.html.

The BBEditLite text edit utility contains some useful extensions for expanding
upon your default home page and for creating other documents in HyperText
Markup Language (HTML) format for your Web server. Refer to the BBEditLite
documents located in the Utilities:Text Utilities folder on the MachTen CD-ROM for
more information.

10.5.1 Importing Macintosh Image Files

Images (such as GIF or JPEG files) created by Macintosh applications for use with
httpd must have a “MUMM/BINA” file creator/type. Use the chcreat(1) and
chtype(1) utilities to change an image file’s creator and type:

chcreat MUMM <image.gif>
chtype BINA <image.gif>

Power MachTen User’s Guide174

10.5.2 Multihoming Your MachTen Web Server

The MachTen httpd supports multiple, simultaneous independent Web sites on a
single Macintosh. This is useful if, for example, you operate HTTP servers on
behalf of several independent organizations. Each IP address on your Macintosh
is assigned a domain name associated with the organization on whose behalf you
run the Web server. MachTen achieves this unique level of service in two ways:

First, MachTen allows you to run multiple instances of httpd running
simultaneously on a single multi-homed (more than one network interface) host,
with each httpd instance “bound” to a particular network interface and IP address
in your system. Each httpd server is entirely independent, and has a different set
of configuration files.

Second, a Macintosh host that is physically single-homed (one network interface)
can be configured to appear multi-homed. Up to twenty unique “virtual” IP
addresses and domain names may be aliased to the single physical interface. This
allows you to run one instance of the httpd server, with the Web server’s home
page and document directory changing depending on the local IP address alias
received on a particular incoming HTTP connection request.

Power MachTen User’s Guide 175

10.6 Using MachTen as a Router

The MachTen internet routing service is typically used to connect MachTen systems
on an AppleTalk network to MachTen systems and other UNIX systems on an
Ethernet. By supplying an Ethernet interface to any Macintosh running MachTen,
that Macintosh can serve as a router between a set of Ethernets and a set of
AppleTalk networks. The MachTen system providing the routing service must be
connected to both the AppleTalk network and the Ethernet. The other hosts
(MachTen, UNIX and others) need to know which MachTen host is the routing server
so that they can send packets destined for other networks to the routing server.
The routing server then forwards those packets on to their destination network.
The command used to tell MachTen the address of the routing server is the route(8)
command. MachTen systems on either network will have full connectivity to each
other and to other systems supporting internet protocols, NFS and remote printer
access.

Consider the example in the section “9.5 Extending Remote Printing to Macintosh
Applications” of an AppleTalk network and an Ethernet each supporting MachTen
hosts, as well as other hosts. All MachTen hosts on the AppleTalk network must
have an internet address with the same network identifier and a unique host
identifier. Correspondingly, each host on the Ethernet must have an internet
address with the same network identifier — which is different than the network
identifier of the AppleTalk network — and a unique host identifier. The routing
server must have two internet addresses, one for its connection on each of the two
networks. For the example below, assume that the router’s address on AppleTalk
is “A.1” and that the router’s address on Ethernet is “E.4”.

Each internet host (other than the MachTen routing server) needs to add a route to
its attached network using the route command. This command could be executed
at any time, but typically it is put in the /etc/rc file and is executed each time
MachTen is booted. Each host on the Ethernet needs to invoke the route command
as follows:

route add net A.0 E.4 5

where “A.0” means all addresses on AppleTalk.

Power MachTen User’s Guide176

The route command tells the MachTen kernel to route all packets destined for the
AppleTalk network to the Ethernet address “E.4”. The final parameter is a
heuristic used by the router to evaluate the desirability of a route. Although it is
not needed by the router in this trivial routing case, it is necessary to include it as
a parameter to the route command.

Each AppleTalk host (other than the routing server) needs to add a route to the
Ethernet network using the following command:

route add net E.0 A.1 5

where “E.0” means all addresses on Ethernet.

This command tells the MachTen kernel to route all of the packets destined for the
Ethernet to AppleTalk address “A.1”.

Non-routing MachTen systems refer to routers as “gateways”. Configure your
system with a default gateway in the Networking screen of the MachTen control
panel. Other routes may be added using the route(8) command.

10.6.1 Invoking IP Forwarding

If a host connected to more than one network desires to forward (route) IP
datagrams, check the “Enable IP Forwarding” box in the MachTen control panel. If
the setting of the check box is changed, the new setting takes effect after the system
is rebooted.

Power MachTen User’s Guide 177

10.7 Dual Stack Configuration

It may be convenient to configure both OpenTransport and the MachTen TCP/IP
for simultaneous operations on the same system. This configuration requires
configuring each TCP/IP with a different IP address. Using this configuration, a
single Macintosh has two Internet Protocol (IP) addresses. The IP address
configured for OpenTransport is contained in the OpenTransport TCP/IP control
panel. The IP address configured for MachTen is contained in the MachTen control
panel under the Networking sub-panel. Simply configuring different addresses in
each of these control panels, and configuring MachTen for MachTen BSD TCP/IP
operations, will provide for a configuration that allows MachTen networking
applications to take full advantage of the strength of the MachTen TCP/IP stack. At
the same time, the OpenTransport TCP/IP is fully configured and operational for
any Macintosh applications that wish to take advantage of its capabilities.

There are a few things you should consider if you decide to use the dual stack
configuration. First, more RAM will be required to run both stacks. Second,
communication between the two stacks may be configured.

10.7.1 More RAM

More RAM will be used when running both TCP/IP implementations. You
should be prepared to dedicate as much as 850K of extra RAM to simultaneous
TCP/IP operations. This RAM will not be available to your applications.

10.7.2 Cross Talk

Since both TCP/IP implementations are running on the same physical interface on
the same machine, under normal circumstances they cannot talk directly to each
other. If you have no requirement for the OpenTransport applications to talk to
MachTen applications (on the same machine), this may not be an issue. However,
if such communications are necessary, there is a solution.

Power MachTen User’s Guide178

10.7.2.1 Routing Between MachTen and OpenTransport

MachTen allows the deft administrator to use a local router as an intermediary for
packet exchange between the two TCP/IP stacks.

The trick is to configure OpenTransport with an IP address and a subnet mask
where, from OpenTransport’s point of view, the MachTen IP address will be on a
different subnet than the OpenTransport IP address. This will force
OpenTransport to direct all packets destined for MachTen’s TCP/IP to the router
address specified in your OpenTransport TCP/IP control panel. Note that you
should assign your OpenTransport IP address and subnet mask such that the
OpenTransport IP address is on the same subnet as your default router.

On the MachTen side, launch the MachTen control panel and display the
“Networking Preferences” dialog. Configure an IP address that now resides on a
logical subnet different than the subnet containing the OpenTransport IP address
and based on the OpenTransport subnet mask as configured in the OpenTransport
TCP/IP control panel. No adjustment to the MachTen TCP/IP subnet mask to
match the OpenTransport subnet mask is necessary; use your original subnet
mask for MachTen.

Next you must adjust the MachTen TCP/IP routing behavior, routing local packets
sent to your OpenTransport stack’s IP address through your local gateway. To
achieve this, you must manually edit the /nfs/etc/rc.local file and add an entry to the
bottom of the file that looks like this:

/sbin/route add host <OT-IP-Address> $GATEWAY 1

where <OT-IP-Address> is the OpenTransport IP “dot” address as configured
in your OpenTransport TCP/IP control panel. This tells MachTen’s TCP/IP stack
to direct all packets destined for your OpenTransport IP stack to the router. When
packets arrive at the router from either MachTen TCP/IP or OpenTransport
TCP/IP, it will take care of routing them back to the appropriate stack on your
machine.

Power MachTen User’s Guide 179

10.7.2.2 Using a Macintosh DNS Server on MachTen

If you use a Macintosh DNS server that uses OpenTransport, it will not be directly
accessible to MachTen. Aside from the more elaborate router solution presented in
section “10.7.2.1 Routing Between MachTen and OpenTransport”, a simple solution
is to configure MachTen to do DNS lookups through another DNS server (perhaps
a local ISP’s). This remote DNS server will talk to your local OpenTransport-based
DNS and will automatically pass the results back to MachTen. Since the other DNS
server is outside of the local machine, it solves the problem by being able to talk to
both TCP/IP addresses.

If you run no Macintosh TCP applications on your MachTen machine other than a
DNS server, you may alternatively enable BIND DNS under MachTen and
eliminate the Macintosh DNS server.

The DNS server MachTen queries to resolve domain names can be configured in the
MachTen Preferences. Enter the IP address of the alternate server in the “DNS IP
Address” field, and MachTen will automatically start requesting DNS information
from that IP address. If you enable BIND DNS under MachTen, duplicate the IP
address of the MachTen TCP/IP in the “DNS IP Address” field.

Power MachTen User’s Guide180

10.8 Using MachTen as a POP Mail Server

A Post Office Protocol (POP3) server is pre-configured in /etc/inetd.conf. To enable
this service, check the “Enable Incoming Connections” box in the MachTen
Networking control panel and restart MachTen.

The POP server operates in conjunction with sendmail, the
electronic mail server described in the next section.

10.9 Using Electronic Mail

MachTen provides a complete electronic mail service using user and server Simple
Mail Transfer Protocol (SMTP). SMTP is one of the most popular and most widely
used electronic mail protocols in the world. Users on a single MachTen system are
able to send electronic mail messages to one another. In addition, users logged
into a MachTen system can send electronic mail to any other system that is both
“network-accessible” and supports SMTP. There are thousands of networks and
tens of thousands of UNIX and non-UNIX hosts that support SMTP.

Electronic mail service in MachTen is provided by a number of application and
daemon programs. Users interact with front-end applications such as mail(1) to
compose, review and file messages. Routing, aliasing and forwarding activities
are handled by sendmail(8) and its delivery agents.

During the MachTen installation process, sendmail is configured to support direct
mail activities on the local Macintosh, as well as communicate with other mail
servers if the Macintosh and MachTen have network access. Subsequent changes
may be made to accommodate other strategies. (See the section entitled
“Configuring and Managing Sendmail” in the System Manager’s Manual section
of the MachTen CD-ROM.)

Power MachTen User’s Guide 181

mail(1) is a flexible interactive application for composing, reading and filing
electronic messages. During composition, mail allows editing and reviewing of
outbound messages, and the inclusion of text from files and/or received mail.
While reading messages, mail provides commands to browse, display, save, delete
and respond to messages. mail has numerous options to tailor its services to your
preferences. These options are set in the .mailrc file and are stored in your home
directory.

An example .mailrc file follows:

 # MachTen standard mail customization file. When named .mailrc and

 # found in your home directory, Mail will use these settings.
 #
 # run long messages thru more, 20 lines a pop
 set crt=20
 # tell mail to show 20 lines of headers a pop
 set screen=20
 # ask for subject line for each message
 set ask
 # always ask for cc recipients at end of each msg
 set askcc
 # when sending to an alias list, include self
 set metoo
 # set mail archive folder name
 set folder=MailFolder
 # set shell type for any ! or ~!
 set SHELL=/bin/csh
 # set editor name for ~e command
 set EDITOR=/usr/ucb/vi
 # an example personal mailing list
 # mail to goodfriends will be delivered to all in list
 alias goodfriends joe sally bill

Power MachTen User’s Guide182

If you want to experiment with mail, try typing:

mail <your_login_name>

The mail program will respond with:

Subject:

and await your input. Enter a subject, followed by a carriage return, and then type
a short message to yourself. End the message with a period on a blank line. For
example:

Subject: Test
This is a test message.
.

The message will be sent to you. You can see the message simply by typing:

mail

with no user name. A list of the messages to you will be printed out. The list will
indicate who sent the message, the date it was sent, the size of the message, and a
few words from the subject heading. The list is formatted as follows:

% mail
Mail version 8.1 6/6/93. Type ? for help.
“/var/mail/laura”: 3 messages 3 new 3 unread
U 1 jdineen@NNSC.NSF.NET Thu May 2 13:56 1025/16318 “Introduction to.. ”
U 2 laura Fri May 3 10:05 14/346 “Re: Meeting”

You can read each message simply by typing the message number or a carriage
return. After reading a message, you can delete it by typing “d” followed by a
carriage return. Or you can save the message to a file by typing “s” followed by a
file name. The mail program can be exited by typing “x” or “q”.

The “Mail Reference Manual” in the User’s Supplementary Documents section on
the MachTen CD-ROM will help you use all of the features of the Berkeley UNIX
sendmail included with MachTen. In addition, there are public domain mailers, such
as Eudora† and Pine 4, that work very well with MachTen.

† ftp://ftp.qualcomm.com/eudora

Power MachTen User’s Guide 183

10.10 Using FTP

MachTen supports both client and server File Transfer Protocol (FTP) to support the
exchange of data on a file-by-file basis with a wide variety of UNIX and non-UNIX
computers. MachTen-based Macintosh clusters, as well as other processors, can
exchange binary and text files using FTP. The FTP file exchange is controlled by
user name and password access. Given the proper authorization, remote sites can
transfer files to and retrieve files from your Macintosh. You, in turn, can transfer
and retrieve files from any connected system that supports FTP. See ftp(1).

MachTen will interoperate with Macintosh FTP applications such as Fetch.† Binary
transfers between MachTen and Macintosh FTP applications should be performed
in AppleSingle mode, the Macintosh foreign file format used by MachTen. Refer to
the section “6.7 Accessing Macintosh Files from UNIX Applications” for more
information.

10.11 Using MachTen as an Anonymous FTP
Server

A pre-configured, secure anonymous FTP directory hierarchy is in the /home/ftp
folder. The default configuration of FTP permits anonymous FTP access to the
/home/ftp directory. If you would like to disable anonymous FTP service, modify
your password database to exclude the “ftp” line, or uncheck the “Enable
Incoming Connections” box in the MachTen Networking control panel and retstart
MachTen. If you leave the anonymous FTP service in place, documents for public
consumption should be placed in the /home/ftp/pub folder.

† ftp://ftp.dartmouth.edu/pub/software/mac

Power MachTen User’s Guide184

10.12 Using Telnet

MachTen supports both user and server Telnet, enabling each MachTen system to
access remote systems and to offer timesharing services to others. Telnet allows
you to access other systems from your Macintosh via terminal emulation. This
terminal-style capability lets you access processor and memory-intensive UNIX
applications on a centralized Macintosh, eliminating the need to upgrade each
Macintosh with memory, disk and other resources. In addition, MachTen supports
terminal access to non-Macintosh UNIX systems (and non-UNIX systems
supporting Telnet) for accessing applications and data on those machines. See
telnet(1).

10.13 Using a Distributed File System (NFS)

MachTen implements client and server Network File System (NFS). NFS allows
you to create a network-wide file system. Files on one system can be accessed on
a block-by-block basis by remote systems. Server NFS allows you to configure a
MachTen system as a centralized file server for a cluster of Macintoshes or other
NFS-aware machines.

For detailed information about NFS and setting up clients and servers, see section
“7.1 Using NFS”.

Power MachTen User’s Guide 185

10.14 Using Berkeley r-series Commands

MachTen supports the Berkeley r-series communication utilities. The r-series
utilities provide a simple way for Berkeley UNIX systems to communicate. The
premise is that users in an environment with multiple Berkeley UNIX systems may
want a simple, low-overhead way to share programs and files. Each Berkeley
system has an /etc/hosts.equiv file which contains a list of hosts that have permission
to remotely log in to your host. This provides a way for others that you trust, or
that may have accounts on your system, to log in across the network without
having to face a password challenge each time they need to access your machine.

If you have an account “steve” on “hostA” and an account “steve” on
“hostB”, you can simply type:

rlogin hostB

and “hostB” will recognize you as “steve”. You can read your mail, compile a
program, or do anything you have permission to do on “hostB” and, when you
are finished, simply type:

exit

Likewise,

rcp hostB:<filename> <filename>

will copy a file from “hostB” to your “hostA”. You can look up each command
(rlogin(1), rcp(1), rsh(1)) using the online man pages.

These Berkeley protocols are more streamlined than the internet protocols, but
bear in mind that the internet protocols work across a wide range of heterogeneous
systems.

Power MachTen User’s Guide186

10.15 Using Serial Line Communications

There are two serial ports on the back of a Macintosh. These ports can be
connected to ASCII terminals, modems or other MachTen and UNIX systems.
MachTen supports traditional UNIX use of these serial ports and provides a
comprehensive set of applications for communications via these ports.†

10.15.1 Cabling and Connectors

The serial ports require a Macintosh-specific connector — a mini 8-pin connector.
Macintosh dealers carry a modem cable that adapts a mini 8-pin connector to the
traditional RS-232 DB25 connector, which can be directly connected to most
modems. Typically a null modem is also needed to cross the send and receive lines
between a Macintosh and an ASCII terminal or other UNIX systems.

10.15.2 Matching Serial Ports to UNIX Devices

MachTen has two devices for accessing serial ports — /dev/ttya (used to
communicate with the modem port) and /dev/ttyb (used to communicate with the
printer port). Two corresponding devices — /dev/ttyfa and /dev/ttyfb — are used
when your application requires hardware flow control on the modem or printer
port. Note that the printer port is usually used as the AppleTalk networking port.
If LocalTalk is being used, /dev/ttyb cannot be used. In order to use /dev/ttyb,
AppleTalk must be turned off (via the Chooser) and the Macintosh must be
rebooted.

† MachTen supports additional serial ports provided by add-on serial port multiplexer
boards. Refer to the “Additional Serial Ports” technical note in the /pub/tech_notes
directory on ftp.tenon.com for more information.

Power MachTen User’s Guide 187

10.15.3 Baud Rates Supported

UNIX systems traditionally support baud rates from 50 to 9600 baud. Macintosh
hardware does not support baud rates below 300 baud, but it does support baud
rates higher than 9600 baud†. To take advantage of these higher baud rates,
MachTen translates requests for the traditional UNIX baud rates to the more useful
set of baud rates supported by the Macintosh.

“Table 6: Baud Rates Supported” lists the actual baud rate used by MachTen when
the traditional baud rates are requested.

Table 6: Baud Rates Supported

† If Serial DMA is version 2.0.1 or later. (Serial DMA is included on the MachTen
CD-ROM.)

Requested
Baud Rate

Traditional
UNIX Name
<devtty.h>

MachTen
Baud Rate

0 B0 9600
(default)

50 B50 14400

75 B75 28800

110 B110 57600

134 B134 115200

150 B150 230400

200 B200 300

300 B300 300

600 B600 600

1200 B1200 1200

... continued on next page

Power MachTen User’s Guide188

10.15.4 General Purpose Interface (GPI) Serial Cable

MachTen supports the Macintosh General Purpose Interface (GPI) serial input.
With properly constructed cabling (see “Figure 29. General Purpose Interface
(GPI) Serial Cable”), MachTen can simultaneously support hardware flow control
and carrier detect modem control transitions.

Figure 29. General Purpose Interface (GPI) Serial Cable

1800 B1800 1800

2400 B2400 2400

4800 B4800 4800

9600 B9600 9600

19200 EXTA 19200

38400 EXTB 38400

Requested
Baud Rate

Traditional
UNIX Name
<devtty.h>

MachTen
Baud Rate

Modem Cable Pinout DIN-8 to DB-25

Male

Male

1
Shield

Shield
8

RxD+

3
RxD

5
RxD-

7
Gnd

3
TxD-

2
TxD

4
Gnd

1 13

14 25

7
GPi

8
DCD

6
TxD+

2
HSKi

5
CTS

4
RTS

20
DTR

1
HSKo

876

543

21

Power MachTen User’s Guide 189

10.15.5 Connecting a Modem to a MachTen Serial Port

For incoming calls to a modem connected to the serial port, the governing MachTen
software is getty(1). Since getty looks for ASCII text strings, a modem that uses
ASCII commands, such as a Hayes compatible modem, will normally require
some initialization to keep the responses and status messages from the modem
from being handed to getty as a login string. A sample Hayes string used for
inbound UUCP connections is “1M1L3e0q1”. This string, either typed at the
terminal console by the user or sent to the modem by the software in play mode,
instructs the modem to answer on the first ring, not to echo characters, and not to
send result codes. If you depend on the MachTen end of a connection to go onhook
first at the end of a call, a Hayes compatible modem must be configured to heed
the Data Terminal Ready (DTR) line. The Hayes default is to ignore DTR.

Outbound calls will normally be governed by a particular UNIX program, such as
uucp(1), tip(1) or cu(1), or by a Macintosh environment communications program.
These programs normally take responsibility for configuring the modem. No
special configuration action by the user is required beyond following the
instructions for the particular program.

10.15.6 Connecting a Terminal

ASCII terminals can be connected to the serial ports on the back of a Macintosh.
These terminals may be used as time-shared login ports. Note that ASCII
terminals cannot be used to execute Macintosh programs, but can execute any
UNIX program provided by MachTen.

Power MachTen User’s Guide190

10.15.7 Configuring the System to Support an ASCII
Terminal

After connecting an ASCII terminal with the proper cabling to the selected serial
port, MachTen must be properly configured to communicate with the terminal. The
/etc/ttys and /etc/gettytab files are the databases for connected terminals. The
simplest configuring case requires editing the /etc/ttys file for the selected port.
Change the string “off” to “on” and select the appropriate baud rate in the
“std.XXXX” string. This is all the configuring necessary for most “dumb” ASCII
terminals. For the more difficult ASCII terminals, see ttys(5), termcap(5), gettytab(5)
and getty(8).

In order to tell init(8) about the changes to the terminal database, execute the
command:

kill -HUP 1

Once the port is configured and the terminal connected, type several carriage
returns on the connected terminal. /etc/getty is listening on that port and looking
for a login string and password. Typing carriage returns will result in a login
prompt appearing on the screen. Log out by typing “logout” or “^D”, depending
upon what shell you are using.

10.15.8 Using PPP

The Point-to-Point Protocol (PPP) was developed to support serial
communications in a multi-protocol environment. SLIP, as its name implies, is
specifically for IP communications. PPP, on the other hand, as described in
RFC 1331, “The Point-to-Point Protocol for the Transmission of Multi-Protocol
Datagram Links”, is designed to encapsulate protocols other than just TCP/IP.
Because of its enhanced features, which include password authentication, PPP is
the standard for serial communications by internet service providers.

Power MachTen User’s Guide 191

10.15.8.1 Setting up MachTen PPP on Your Macintosh

This section describes how to configure your MachTen system to listen for PPP
connections on your Macintosh modem port (as a PPP server) and to connect to
remote PPP servers (as a PPP client).

10.15.8.2 Configuring your MachTen System as a PPP
Server

The first step in setting up a PPP server is to connect one or more modems to your
Macintosh. The recommended procedure is to use the Communications ToolBox
to handle the modem configuration. Test each modem connection by using the tip
command to dial out:

tip cm.out

To exit the tip program, press the “<return>-<~><.>” keys, and then press
“<return>” again. If you wish to access the serial ports directly, the Macintosh
“modem” port is “ttya” and the “printer” port is “ttyb”. The tip commands are:

tip ttya
or

tip ttyb

MachTen supports hardware flow control for the devices “ttyfa” and “ttyfb”.
Note that hardware flow control requires a special cable.

If you cannot dial out, no one can dial in. Once you have established that your
modem is indeed connected and accessible, it is time to configure for dial-in access.
The file /etc/ttys controls which lines are used for dial-in by the getty program. The
first few lines already have entries. You will have to add more entries if you have
more lines. Change the status flag from “off” to “on” to enable a line. Whenever
you make changes to the ttys file, you must also signal the init program to act upon
those changes. A “HUP” signal to the init process — process #1 — will accomplish
this. Use the following command to signal the init process:

kill -HUP 1

Power MachTen User’s Guide192

If you are using the Communications ToolBox, you must first dial in using the
“cm.in” line and save its parameters to create the “cm.in1” line.

1. Edit /etc/ttys and set the status for “cm.in” to “on”.

2. Signal the init process.

A Communications ToolBox dialog should appear.

3. Adjust the settings for your modem.

You should then get a “Waiting” message.

4. Dial in to your modem.

You should get a “Login:” prompt.

5. IMPORTANT: While you have the “Login:” prompt on the machine you
are dialing in with, return to the MachTen pull-down the File menu and select
the last item in the menu.

You will be presented with a standard “Save” dialog box.

Save cm.in1 into your dev folder. The file name must be seven characters or less.
Use cm.in2, cm.in3, etc., for more lines.

1. Edit /etc/ttys to break the dial-in connection.

2. Set the status for “cm.in” to “off”, and set the status for “cm.in1” to “on”.

3. Signal the init process.

At this point you should have consistant dial-in access to MachTen.

Power MachTen User’s Guide 193

The next step is to set up login accounts for your PPP clients. The user “ppp” is set
by default. If you want clients to have their own passwords or internet addresses,
use the adduser command to create more MachTen users. The key is to use
/etc/pppserver as the “shell” for PPP client accounts. The following command will
set up user ppp1:

adduser ppp1 -s /etc/pppserver

Once dial-in access has been established and the PPP accounts have been set up, it
is time to edit the /etc/pppserver script. You will probably want to print out this
script and study it a bit before making any changes. It contains complete
instructions. In a nutshell, you must set your MachTen address to the “SERVER”
variable and your client’s address to the “CLIENT” variable. There is a debugging
flag which is initially set to “DEBUG_ON”. The pppd program will send many
messages to your console when a client connects. This can be disabled by setting
the “$DEBUG_OFF” to the “DEBUG” variable.

The easiest way to choose client addresses is to use addresses from you local
subnet. The proxyarp option is used by /etc/pppserver to make this work.

To terminate a PPP connection from MachTen, first determine the process number
for the pppd program by typing the following command:

ps -ax

Terminate the pppd process by typing the following:

kill <pid>

where “<pid>” is the process number of the pppd process.

Power MachTen User’s Guide194

10.15.8.3 Configuring your MachTen System as a PPP
Client

The first step in setting up a PPP client is to connect a modem to your Macintosh.
The recommended procedure is to use the Communications ToolBox to handle the
modem configuration. Test the modem connection by using the tip command to
dial out:

tip cm.out

If you wish to access the serial ports directly, the Macintosh “modem” port is
“ttya” and the “printer” port is “ttyb”. The tip commands are:

tip ttya
or

tip ttyb

MachTen supports hardware flow control for the devices “ttyfa” and “ttyfb”.
Note that hardware flow control requires a special cable.

If you are using the Communications ToolBox, using the “cm.out” line will cause
a Communications ToolBox dialog to appear.

1. Adjust the settings for your modem and dial out.

You should then see your remote system’s prompt.

2. IMPORTANT: While you have your remote system’s prompt, pull down the
MachTen File menu and select the last item in the menu.

You will be presented with a standard “Save” dialog.

Save cm.out1 into your dev folder. Use cm.out2, cm.out3, etc., for dial-outs to other
phone numbers. To exit the tip program, press the “<return>-<~><.>” keys, and
then press “<return>” again.

The /etc/remote file controls which lines are accessible to the tip command. The first
few lines already have entries. You will have to add more entries if you have more
dial-outs. The /etc/pppclient script does not use /etc/remote.

Power MachTen User’s Guide 195

Once dial-out access has been established, it is time to edit the /etc/pppclient script.
You will probably want to print out this script and study it a bit before making any
changes. It contains complete instructions.

In a nutshell, you must set your dial-out line to the “LINE” variable and your login
account and password to the “CHAT” variable. There is a debugging flag which is
initially set to “DEBUG_ON”. The pppd program will send many messages to your
console when a client connects. This can be disabled by setting the “$DEBUG_OFF”
to the “DEBUG” variable.

You should use the tip command to manually log in to your PPP server so that you
can take exact notes on the interaction before trying to compose the chat script.

To terminate a PPP connection from MachTen, first determine the process number
for the pppd program by typing the following command:

ps -ax

Terminate the pppd process by typing the following:

kill <pid>

where “<pid>” is the process number of the pppd process.

Running the /etc/pppclient script when a PPP connection is already in place will
return status information about the connection.

Note that /etc/pppclient can be run from /etc/rc.local to start up a connection at boot
time. It can also be run from crontab to ensure that connections are re-established
if the line drops.

The default configuration is for the PPP server to supply the client with a dynamic
address. There is a “CLIENT” variable in /etc/pppclient that can be set to a static
address for the client.

Power MachTen User’s Guide196

10.15.8.4 IP Addressing Strategy for Multiple PPP
Clients

The client “ppp0” interface may be configured with the same IP address as the
“ie0” interface on the client. If the client has no interfaces other than the “ppp0”
interface, its IP address should be assigned on a different subnet than the IP
address of the PPP server.

The IP addresses for the client and server in our example are specifically chosen so
that the PPP client’s IP address is on a different subnet than the PPP server’s IP
address. With a netmask of “0xffffff00” on its Ethernet (ie0) interface, the
server is on the “128.0.2” subnet and the PPP client is on the “128.0.3” subnet.
Point-to-Point networks do not require the specification of a netmask.

Additional clients which also use the server’s dial-in PPP line should also have IP
addresses on the same subnet as this PPP client. This configuration permits a
single static route (on the server’s gateway) to handle all of the routing for the
dial-in PPP clients on the server’s network (see below).

Run the script per the instructions in the example above to establish the PPP
connection.

• On the server’s network, add a static route to the client subnet in your default
gateway machine’s /etc/rc.local file:

route add net 128.0.3 128.0.2.1 1

All other machines on the server’s network should have default routes pointing at
the gateway machine, and all PPP-connected client machines should be on the
“128.0.3” subnet.

Power MachTen User’s Guide 197

10.15.9 Using SLIP

MachTen supports internet connections over full duplex serial lines using SLIP, the
Serial Line Internet Protocol. MachTen can be configured to initiate connections to
a remote SLIP server system. MachTen can also be configured to accept connections
from hosts requesting SLIP service. MachTen’s SLIP capabilities, combined with
Macintosh hardware and any of a number of commercially available modems,
make an excellent platform for accessing large dial-up networks such as PSINet
and UUNET. Other internet access providers offer SLIP services as well. MachTen
SLIP is equally effective as a simple extension of your office network to your home
over residential telephone lines.

The information in this chapter provides information on configuring, using and
maintaining SLIP connections under MachTen.

10.15.9.1 Configuring MachTen to Dial Out to SLIP
Servers

MachTen provides a program called tip(1) to automatically establish a full-duplex
connection to another machine via a dial-out modem attached to a serial port on
your Macintosh. Once connected, tip can automatically initiate a login
authentication exchange with the remote system and, if successful, enable a SLIP
session on the line. If the remote system requires any manual intervention to start
up SLIP (as with PSINet networks), refer to section “10.15.10.5 Manual
Connections to SLIP Servers”.

During the SLIP session, the SLIP line, or “interface”, becomes an integral part of
the MachTen networking environment, running standalone or simultaneously with
other network interfaces such as Ethernet or Appletalk configured into your
Macintosh. Both MachTen and Macintosh internet applications have full access to
the SLIP network interface.

Power MachTen User’s Guide198

To enable SLIP dial-out network connections, the command:

tip -s <system name>

is used, where “<system name>” is a label for a configuration database entry
describing exactly how to contact and communicate with the remote system. The
tip configuration database is described below.

10.15.9.2 Tip Activity Log

The file /var/log/aculog is an administrative file that logs all dialing activity done by
tip. It can be used to track who is calling which numbers and for how long.

10.15.9.3 The Tip Configuration Database

The /etc/remote file (see remote(1)) is the primary database file used by tip to describe
SLIP hosts and the modem’s setup used to gain host access. MachTen is shipped
with a SLIP entry for a hypothetical system named “joeslip” in /etc/remote,
which you will need to modify depending on your system configuration:

joeslip:\

:dv=/dev/ttya:br#2400:cu=/dev/ttya:at=hayes:pn=5551212:du:\
:sa=89.0.0.2:sm=225.0.0.0:da=89.0.0.1:st=slip\
:ls=/etc/login.script.joe:

Power MachTen User’s Guide 199

Each field in the entry is delimited by colons and describes the following
characteristics:

joeslip The system name assigned to the connection. This is used
when tip is invoked to establish the connection tip -s joeslip.

br# The serial port speed (baud rate) designator for the SLIP
connection. Modify this field as necessary to match the baud
rate of your modem according to the following table:

br# entry Modem Baud Rate

50 14.4 Kbps

75 28.8 Kbps

110 57.6 Kbps

300 300 bps

600 600 bps

1200 1200 bps

1800 1800 bps

2400 2400 bps

4800 4800 bps

9600 9600 bps

19200 19.2 Kbps

38400 38.4 Kbps

Power MachTen User’s Guide200

Note that some of the very low baud rates have been mapped to the recently more
popular higher baud rates:

10.15.9.4 Hardware Flow Control

You will need to enable hardware flow control on your serial line depending on
the capabilities of your modem and your RS232 cable type. Apple Computer
makes at least two different types of RS232 cable; one lacks the “Clear To Send”
(CTS) RS232 signal necessary for flow control. To enable flow control, set the
“dv=” field in /etc/remote SLIP host entry to /dev/ttyfa or /dev/ttyfb, depending on
the serial port you have chosen for your modem. The “f” in the MachTen device
name indicates hardware flow control on that serial port.

dv The serial port with an attached or built-in modem on your Macintosh
to be used for the SLIP connection. The standard modem port
(/dev/ttya) is the default setting. You may also use the printer port
(/dev/ttyb); however, the printer port is typically reserved for AppleTalk
connections.

at A string representing the modem type.

pn The telephone number dialed to establish the connection. If no phone
number is given, tip will use the system name to look up a phone
number in the /etc/phones database. (See phones(5)).

sa The local SLIP internet address.

da The destination SLIP internet address.

sm The SLIP network mask.

st The protocol type (by default, SLIP).

ls A pathname to a special script that is run by tip after the connection is
established. The script typically communicates account name and
password information to the remote host’s login shell to authenticate
the pending SLIP session. Refer to section “10.15.9.5 Tip Login Script”
for details on the script’s command format.

Power MachTen User’s Guide 201

10.15.9.5 Tip Login Script

The tip login script is used to communicate initial login authentication information
to the remote login shell. It is a collection of commands read by a specialized
interpreter within tip after making a physical connection to the remote SLIP host.
The file /etc/sliphome/login.script.joe is provided as an example authentication
dialogue with a remote UNIX login(1) shell. The file /etc/sliphome/login.script.junc is
an example dialogue with a Cisco terminal server using Tacacs.

The basic format of the available script commands are described below:

Blank lines and lines beginning with “#” are ignored.

Use the -v option to tip to display the command exchange with a remote host as a
method of debugging special login script files.

The “label” command:
“label foo”

The “goto” command:
“goto foo”

This command says branch to label “foo”.

The “send” command:
“send \dFooBar\r”

The characters are sent to the remote host. The
backslashed characters follow the C programming
language conventions with the following
additions:

\d = delay 1 sec, \s = space, \x = break

The “recv” command:
“recv 10/error login:”

This command means “look for the string ‘login:’,
but if its not seen in 10 seconds, branch to
label ‘error’”.

The “done” command:
“done”

This command indicates a successful login.

The “fail” command:
“fail”

This command indicates an unsuccessful login.

Power MachTen User’s Guide202

10.15.9.6 Header Compression

MachTen will enable SLIP header compression for initiating SLIP sessions if a
“:hc:” field is added to the desired SLIP entry in /etc/remote:

 joeslip:\
 :hc:dv=/dev/ttyfa:br#2400:cu=/dev/ttya:at=hayes:pn=5551212:du:\
 :sa=89.0.0.2:sm=225.0.0.0:da=89.0.0.1:st=slip:ls=/etc/login.script.joe:

Header compression is disabled in the default configuration. If header
compression is enabled, a corresponding flag should be set in your SLIP dial-in
server database. The dial-in server configuration for MachTen systems is described
below.

10.15.9.7 Setting a Default Route

MachTen will make the remote host in a SLIP connection the default route if no
default route exists on your system and if a “:rt:” parameter is added to the
desired SLIP entry in /etc/remote. Refer to route(8).

 joeslip:\
 :hc:dv=/dev/ttyfa:br#2400:cu=/dev/ttya:at=hayes:pn=5551212:du:\
 :sa=89.0.0.2:sm=225.0.0.0:da=89.0.0.1:rt:st=slip:ls=/etc/login.script.joe:

All packets bound for networks unknown to your MachTen system are directed to
the default route.

Power MachTen User’s Guide 203

10.15.9.8 Setting the MTU

The MTU (Maximum Transmission Unit) in a SLIP connection is a hard limit on
the output packet size. The default MTU setting is a compromise between efficient
serial line bandwidth utilization and good interactive performance. For small
settings, relatively more bandwidth is consumed transmitting the IP protocol
headers with each data packet. Conversely, since any small interactive packets on
a connection must wait for in-progress large packets to finish, large MTU settings
adversely affect interactive response time.

The default MTU value of 296 bytes was chosen to ensure good interactive
performance while minimizing the header cost. Adjustments to the MTU can be
made in the Networking screen of the MachTen control panel. The MTU setting is
applied to all configured SLIP interfaces. The use of header compression (see
section “10.15.9.6 Header Compression”) is recommended for all MTU settings
where supported by your SLIP server.

10.15.10 Configuring MachTen as a Dial-In SLIP Server

MachTen can be configured as a dial-in server to enable SLIP connections initiated
by remote systems. The sliplogin(8) program and the database files /etc/ttys,
/etc/passwd and /etc/sliphome/slip.hosts are the primary user-configurable
components that allow dial-in SLIP service under MachTen.

10.15.10.1 Serial Port Set Up

For dial-in SLIP service, a modem must be connected to a serial port on your
Macintosh. The port labeled the “modem” port (named /dev/ttya under MachTen)
is the recommended port. The “printer” port (/dev/ttyb) is also acceptable. Note,
however, that use of the printer port is usually reserved for AppleTalk.

Power MachTen User’s Guide204

To make MachTen aware of your serial port selection, you must modify the /etc/ttys
(see ttys(5)) database file. This file contains information that is used to initialize
and control the use of the serial port selected, including port speed, type, flow
control and active status:

 #
 # name getty type status comments
 #
 ttya "/etc/getty std.9600" unknown off secure
 ttyb "/etc/getty std.9600" unknown off secure

By default, the Macintosh ports under MachTen are set to 9600 baud and disabled
(status “off”). By way of example, an entry describing a 2400 baud modem
connected to the modem port and activated would appear as follows:

 ttya "/etc/getty std.2400" unknown on secure

Refer to gettytab(5) for details on the various types of line configurations available
under MachTen. To enable flow control on the serial port, change the ttya field to
ttyfa. The “f” in the MachTen device name indicates hardware flow control on that
serial port. You must either send a “hang-up” signal (see kill(8)) to the init process
(see init(8)) or restart your MachTen system to activate any modifications made to
/etc/ttys.

10.15.10.2 Login Authentication

When a remote SLIP host initiates a connection on a configured serial port,
MachTen will start the login(1) program, which prompts the remote host for a user
name and password. Login will consult the /etc/passwd (see passwd(5)) database file
to authenticate the user. If the user is authentic, login will start up a special
program to enable SLIP on the connection. The MachTen /etc/master.passwd file
contains a default account with no password for user “Sjoe”:

 Sjoe::1000:10:Slip line from joe:/var/tmp:/usr/sbin/sliplogin

Modify this entry as necessary for your SLIP configuration.

Power MachTen User’s Guide 205

10.15.10.3 The Sliplogin Program

sliplogin(8) in /usr/sbin is the program named in /etc/passwd to run after a remote
login session is established over a potential SLIP line. sliplogin effectively turns the
terminal line into a SLIP link to the remote host. To do this, the program searches
the file /etc/sliphome/slip.hosts for an entry matching the current login name. If a
matching entry is found, the line is converted to SLIP line discipline (that is, 8-bit
transparent I/O) and configured using information from the entry. For example,
header compression is enabled or disabled for the SLIP connection at this time,
depending on the “compress” or “autocomp” fields in the entry.

sliplogin then runs a shell script to initialize the SLIP interface with the appropriate
unit number, local and remote IP address, and netmask for the connection
according to the parameters in /etc/sliphome/slip.hosts. The default initialization
script is /etc/sliphome/slip.login. However, if particular hosts need special
initialization, the file /etc/sliphome/slip.login.loginname will be executed instead (if it
exists).

The example /etc/sliphome/slip.hosts file from the distribution is shown below:

@(#)slip.hosts 8.1 (Berkeley) 6/6/93
#
login local-addr remote-addr mask opt1
(normal,compress,noicmp)
#
Schez vangogh chez 0xffffff00 compress
Sjun vangogh 128.32.130.36 0xffffff00 normal
Sleconte vangogh leconte 0xffffff00 compress
Sleeb vangogh leeb 0xffffff00 compress
Smjk vangogh pissaro-sl 0xffffff00 compress
Soxford vangogh oxford 0xffffff00 compress

10.15.10.4 SLIP Session Termination

On session termination, sliplogin will automatically remove the SLIP interface from
the list of MachTen network interfaces. MachTen will reset the serial port to the
configuration specified in /etc/ttys in preparation for a new SLIP session.

Power MachTen User’s Guide206

10.15.10.5 Manual Connections to SLIP Servers

Some SLIP servers may not support the automated functions of tip -s (dial-up
terminal servers or other non-BSD UNIX systems, for example). In this case, it may
be necessary to perform some of the SLIP setup commands manually. If it is
possible to use the -s option to tip to configure SLIP, then that method is
recommended. Otherwise, follow the manual setup steps below.

1. Configure an abbreviated entry in /etc/remote as follows:

sliphost:\

dv=/dev/ttyfa:br#2400 (Example baud rate (br#) setting)

2. Set up the tip activity log described in section “10.15.9.1 Configuring MachTen
to Dial Out to SLIP Servers” if you want a log of your session.

3. Invoke tip without the -s option

tip sliphost

4. Dial out to the remote host (this example uses a modem with an “at”
command set, dialing to a hypothetical phone number preceded by “1” and an
area code):

atdt15185551212

tip may not immediately notice if the number is busy, but will time out waiting for
a reply.

Subsequent steps in the manual SLIP connection process achieve the SLIP
configuration that would otherwise be done automatically by tip.

Power MachTen User’s Guide 207

10.15.10.6 Logging In

How you log in depends on the host to which you are making the connection.
With some terminal servers, you log in with your own name and password, and
then give the command “slip”. With BSD systems, the system administrator
usually creates a special login account which runs the sliplogin program. In this
case, the name of the special login account is used, and SLIP is invoked
automatically. In either event, once connected, log in using the appropriate
account name and password:

Username: xxx
Password:

If there are any unusual characters printed during the login process, try
responding to the “Username:” prompt with a carriage return. Repeat this until
the line settles or the autobaud feature selects the correct baud rate.

10.15.11 Starting SLIP

If you have logged in to a terminal server that supports SLIP, your IP address will
be reported back to you as part of the login. On some systems, after login
verification is complete, it is necessary to type “slip” and note the address that is
reported back. This is the IP address assigned by the server to your end of the
serial line connection being established. Break out of tip, closing the tip session, but
not hanging up the modem, by typing “~<Control-Z>”. At this point, the
message “cannot synchronize with hayes modem” may be printed, and
the DTR signal from the Macintosh to the modem will be off. This behavior is not
a problem as long as the modem does not drop the connection (that is, it stays “off
hook”). In addition, your modem should be configured to ignore the “Data
Terminal Ready” (DTR) signal from the Macintosh. Next, reserve the tty port
for SLIP using slattach(8):

/sbin/slattach /dev/ttyfa <baud rate>

Power MachTen User’s Guide208

“<baud rate>” sets the speed of the connection (2400 baud, for example).
Configure the SLIP interface using ifconfig(8). Note that a netmask is not explicitly
specified. ifconfig will default to the proper netmask in typical configurations;
however, for SLIP interfaces configured as part of a subnet implementation, a
proper subnetmask must be specified. “<src ip address>” represents the
address returned from the server when “slip” was typed (or during login). For
PSINet connections, “<src address>” and “<dest address>” are identical.
For logins that run sliplogin, “<dest address>” must match the local address
entry in the /etc/slip.hosts file on the remote system:

/sbin/ifconfig sl0 <src ip address> <dest ip address> up

Add the routing table entry for route(8). For PSINet, the default
“<gateway address>” is usually constructed by changing the last byte of the
SLIP internet address assigned by the server to “1”. Otherwise, the default
gateway address is the “<dest address>” passed as an option to ifconfig, above.
Contact your SLIP server network administrator (or your PSINet or UUNET
representative, as applicable) to verify that this is true in your case:

/sbin/route add net default <gateway address> 1

10.15.11.1 Testing Connectivity

Once SLIP is running, the MachTen host should have full internet connectivity. Test
access to another host using ping(1). If you know a nearby local gateway, ping it;
otherwise, try “nic.ddn.mil”. If this is successful, you are fully connected.

Power MachTen User’s Guide 209

10.15.11.2 Stopping SLIP

When the SLIP session is over, it is desirable to undo the configuration done to
bring SLIP up, especially if the MachTen host is connected to another network and
sessions on this network are going to be started. Also, it could save some money
if long distance charges apply.

1. Delete the routing table entry:

 /sbin/route delete net default <gateway address>

2. Bring down the SLIP interface:

 /sbin/ifconfig sl0 down

3. Kill the slattach process:

 kill -9 `ps -ax | egrep slattach | egrep -v egrep | awk '{print $1}'`

4. Hang up the phone connection by powering off the modem.

Power MachTen User’s Guide210

10.15.11.3 C-Shell Scripts to Expedite SLIP
Connections

The following script can be used to bring up SLIP once the tip connection has been
established and the internet address of this SLIP line is known. This script should
be called slipup and it takes one parameter — the internet address returned by the
server host.

Example C-Shell Script to Set Up a SLIP Connection

#!/bin/csh
#Use csh because of 'clever' substitution below
#(in route line).
#
#Connect a MachTen host to a server via slip. This
#script expects the serial connection to have been
#previously established.
#
#$1 is the internet address assigned by the SLIP
#server
#/dev/ttya is the Macintosh modem port.
#The baud rate is set to 2400

#slattach to assign the tty to SLIP

/sbin/slattach /dev/ttya 2400&

#Configure the SLIP interface. Note a netmask is
#not explicitly specified.
#Typically you won't need subnetting on the SLIP
#interface.
#ifconfig will default to the proper netmask in this
#typical configuration.

/sbin/ifconfig sl0 $1 $1 up -trailers
#Add the routing table entry. The default gateway
#address is usually constructed by changing the last
#byte of the SLIP internet address assigned by the
#SLIP server to 1. Call your network rep or consult
#a local expert to verify that this is true in your
#case.

/sbin/route add net default ${1:r}.1 1

Power MachTen User’s Guide 211

The following script can be used to bring down SLIP at the end of the SLIP session.
This script should be called slipdown and it takes one parameter — the internet
address returned by the SLIP server.

Example C-Shell Script to Bring Down a SLIP Connection

#!/bin/csh
#Use csh because of 'clever' substitution below (in
#route line).
#
#Disconnect a MachTen host from a SLIP server. Undo
#the work of slipup.
#
#$1 is the internet address assigned by SLIP server

#Delete the routing table entry.

/sbin/route delete net default ${1:r}.1

#Bring down the SLIP interface.

/sbin/ifconfig sl0 down

#Kill the slattach process

kill -9 `ps -ax | egrep slattach | egrep -v egrep | awk '{print $1}'`
#Don't forget to hang up the phone connection by
#powering off the modem.
echo “Don’t forget to hang up the phone connection by powering off
the modem.”

Power MachTen User’s Guide212

Power MachTen User’s Guide 213

11.0 MachTen Programming Environment

MachTen provides a rich UNIX software development environment. The MachTen
software tool suite has been modified to work in real memory for Macintosh
hardware. The traditional UNIX software development tools — ld, nm, ar, etc. —
have been ported to run in PowerPC native mode and produce PowerPC native
mode Code Fragments.

11.1 MachTen Development Tools

11.1.1 Programs, Libraries and Include Files

MachTen consists of a combination of programs, libraries and include files from
BSD4.4 (hereafter simply referred to as BSD), GNU, Tenon Intersystems, and other
sources. Most programs reside in /usr/bin and include files in /usr/include.
Programs, libraries and include files targeting a particular system architecture are
stored in the sub-directories bin, lib, and include of a target directory in /usr. For the
Power Macintosh, the target directory is named /usr/macppc. Support for other
target architectures is planned for future releases. The tools in the target directories
run on the host system, but produce objects and executables that run on the target
system. Environment variables and symbolic links will help determine which tools
are run.

MachTen software development tools include:

Tools for Managing Software Development

Revision Control
System (RCS)

Automates the storing, retrieval, logging, identification
and merging of multiple revisions of text

Tools for Supporting Source Code Development

flex Generates lexical analysis programs

indent Formats C code

yacc “yet another compiler-compiler”

Power MachTen User’s Guide214

Tools for Building Libraries and Programs

ar Library archive utility

as PPC assembler

cpp GNU preprocessor

g++ Wrapper for calling gcc with appropriate options for
compiling and loading C++ objects

g77 Wrapper for calling gcc with appropriate options for
compiling and loading Fortran objects

gcc GNU compiler; forks the appropriate tools for compiling
and loading objects

gdb Symbolic debugger

gnatmake GNAT make program

ld Combines several object files into one, resolving external
references and searching libraries

make Executes a scripted set of commands to update one or
more target files; GNU version

nm Prints lists of symbols in object files

pmake Executes a scripted set of commands to update one or
more target files; BSD version

ranlib Converts archives to a form which ld can load more
rapidly

restool Provides access to Macintosh file resources

setstackspace Adjusts size of program stack

Power MachTen User’s Guide 215

Compiler Engines

cc1 GNU C language compiler

cc1plus GNU C++ language compiler

f771 GNU Fortran language compiler

gnat1 GNU Ada language compiler

cc1obj GNU Objective-C compiler

Libraries

libc The C library

libobjc.a The Objective-C library

libcap.a Columbia AppleTalk Protocol library

libcompat.a Contains obsolete BSD4.3 functions for compatibility

libcurses.a Old screen functions with cursor motion

libf2c.a The GNU Fortran library

libfl.a The library for flex

libg++.a The GNU C++ library; includes libio.a functions

libgdbm.a GNU database management functions

libgnat.a The GNU Ada library

libgthreads.a POSIX Threads functions

libio.a New GNU C++ iostream classes

libiostream.a Old GNU C++ iostream classes; uses libio.a instead

libkaffe-agent.a kaffe support library

libkaffe-native.a kaffe support library

libkaffe-net.a kaffe support library

libkaffe-vm.a kaffe support library

Power MachTen User’s Guide216

Libraries (continued)

libkvm.a Kernel memory interface functions

libm.a Math library

libncurses.a New screen functions with cursor motion

libresolv.a Domain name server interface functions

librpc.a Remote procedure call library

librx.a GNU regular expression functions

libstdc++.a GNU ANSI C++ library

libterm.a Terminal independent operation library package

libutil.a Daemon support functions

liby.a The library for yacc

Tools for Building X Window Programs

imake X platform independent make environment

libFS.a Font Service library for X font clients

libICE.a Inter Client Exchange library

liboldX.a X11R4 support library

libolgx.a OpenLook graphics library

libPEX5.a PHIGS Extensions to X

libSM.a X Session Management library

libX11.a Core X protocol library

libXau.a X security authorization library

libXaw.a The Athena widget set of buttons, pull-down menus,
labels, etc.

libXdmcp.a X Display Manager Control Protocol library

libXext.a X extensions library

Power MachTen User’s Guide 217

11.1.2 Documentation

MachTen documentation is available in many formats. Online documentation
includes the ubiquitous UNIX man pages in /usr/share/man, and the GNU info files
in /usr/share/info. The top level Documentation folder on the MachTen CD-ROM
provides extensive documentation in HTML and printable form. The HTML
collection includes several GNAT documents, the Lovelace Ada tutorial, many
GNU package “info” documents, and the UNIX man pages. The printable
collection includes many BSD supplementary papers in PDF format, as well as
PostScript versions of the man pages.

Tools for Building X Window Programs (continued)

libXi.a Alternative input device extension library

libXIE.a X Image Extensions library

libXmu.a X miscellaneous utilities library

libXpm.a X pixmap image library

libXt.a X Intrinsics toolkit library

libXtst.a X Test library

libXview.a X View library

Power MachTen User’s Guide218

11.1.3 Program Sources

The sources distributed with MachTen may be found in the top-level folder of the
MachTen CD-ROM in the Source_FFS fast file system file. The source modules are
organized into a number of directories indicative of their origin or use. The default
source directory is /base/src, and is mounted automatically when MachTen starts up
(see section “2.2.2 Accessing MachTen Sources from the CD-ROM”).

Other directories in /base are named after target system architectures (e.g.,
/base/macppc represents the Power Macintosh). The convention is that object files
and executables are built in the target directories, while the source directory
remains “pure”.

The BSD and GNU source trees use different make programs which have a slightly
different Makefile syntax. Rather than force one camp into the other, MachTen
provides both make programs. One key difference is that BSD Makefiles reside in the
source directory, while GNU Makefiles are created in the object directory by a
configuration script. The BSD source directories point to the target object directory
with a symbolic link named obj. The obj symbolic link refers to /var/obj, which is a
symbolic link to the desired target directory in /base. This allows for a quick change
between target architectures, but also requires you to be conscious of which target
is currently selected. The GNU Makefiles use the VPATH variable to point back to
the source directory.

When porting or developing new UNIX programs for MachTen, we recommend
that you mimic this file system organization. Following this model may actually
ease the job of porting software to the MachTen system. These strategies make good
use of the provided BSD master Makefiles in /usr/share/mk, and ease both
developing for multiple targets and sharing your work with other MachTen users.
The symbolic link /base/src/local, which points to /usr/local/src, may be used to graft
local source packages into this source-object organization.

In section “11.14 Programming Example”, the source for the UNIX game rogue is
used as an example of a program that can be compiled, debugged and run on a
Power Macintosh using MachTen. This source is in /base/src/bsd4.4/games/rogue,
which further illustrates the structure of the BSD source file hierarchy used in
MachTen.

Power MachTen User’s Guide 219

11.2 PEF and XCOFF

MachTen uses PEF (PowerPC Executable Format) as its binary executable standard.
PEF is an Apple Computer standard for defining executable programs and
executable code objects. The PEF standard is native to the PowerPC Macintosh
architecture. By generating PEF files, the MachTen development tools achieve a
large degree of synergy with other Power Macintosh development environments
and the Power Macintosh OS. PEF executable files are composed of one or more
elements called “Code Fragments”. The many advantages of Code Fragments
include the run-time dynamic linking between fragments, and automatic code and
data sharing between applications with shared libraries of Code Fragments.

PEF formatted files are developed as the last step in the MachTen software
production process. Internally, the MachTen development tools rely on an IBM
binary executable standard called XCOFF (eXtended Common Object File
Format). As the name implies, this file format extends the amount of information
kept about an application, including its structure and data. This results in a
significantly larger disk file and longer dynamic relocation overhead. For MachTen
debugging purposes, it is possible to retain an XCOFF image of a PEF executable.
See section “11.7 Linking Executables” for command line information to retain
XCOFF file images.

11.3 Shared Libraries

The MachTen development software supports the production of libraries of
software that may be shared among application programs. Using shared libraries,
a second copy of a program shares part of its memory with a first program
instance. Shared libraries result in large memory savings when families of
applications are executing at the same time. Secondarily, shared libraries also aid
in the introduction of a new version. Since shared libraries are linked during the
execution of a program, rather than the development of a program, a new version
of a shared library can be introduced simply by replacing an older version and
restarting the applications that use it. In older, non-shared organizations, each
application would have to be re-linked with the new library and then introduced
into a system.

Power MachTen User’s Guide220

11.3.1 Shared Library Production

To produce a shared library with the MachTen development system, you must
specify that you want a shared library to be produced by using the
“-Xlsharedlibrary” flag on the compile or loader command line. You must
also specify which symbols within the library you want exported for linkage with
an application. The command line flag “-Xlexpall” exports all global symbols
in the shared library. The command line flag “-Xlexport=<filename>” exports
the symbols named in the file filename. For example, if the file some_symbols
contained the following lines:

symbA
symbB
symbC

by using the command line flag “-Xlexport=some_symbols”, the three symbols
would be found in the shared library and would be set up for export and linkage
when an application program requested that the library be included in its import
file list.

11.3.2 Run-Time and Compile-Time Libraries

The specification of the “-Xlsharedlibrary” flag will create two libraries — a
run-time library and a compile-time library.

The run-time library should be put in the run-time search path of the loader that is
launching the application that requested the library for shared library import.
MachTen uses the MacOS Code Fragment loader; the MachTen Application Libraries
folder, found in the MachTen Libraries folder, is in its search path. Thus, the
run-time version of shared libraries should be put in the MachTen Application
Libraries folder for use by the MacOS Code Fragment loader.

The compile-time library should be used on the compile command line of
applications during software compilation. The run-time library serves the purpose
of providing a single copy of software to multiple applications. The compile-time
library is used to resolve compile-time references between imported symbols in an
application and exported symbols from a shared library.

Power MachTen User’s Guide 221

11.3.3 Run-Time and Compile-Time Naming
Conventions

It is important to understand the naming conventions for the run-time and
compile-time libraries. Compile-time libraries are named by adding a “.a” suffix
to the output file specified on the command line. For example, the command line:

 ld -o /hfs/pef/shrlib -Xlsharedlibrary -Xlexpall *.o

will produce a run-time shared library in the file shrlib, and will produce a
compile-time shared library in the file /hfs/pef/shrlib.a that exports all symbols.
Note that shared libraries must be created as HFS files because they require the
setting of certain Macintosh resources via the MacOS Resource Manager.

11.4 Traditional UNIX Libraries

The traditional UNIX libraries (libc.a, libm.a, etc.) are implemented as shared
libraries under MachTen. These compile-time libraries reside in /usr/macppc/lib, and
the corresponding run-time libraries reside in System Folder: Extensions: Tenon
Application Libraries.

When an application is created, the compile-time libraries must be used to satisfy
symbolic references to functions and data declared in the support libraries. When
an application is launched, the shareable run-time libraries are found by the Code
Fragment Manager, loaded into memory if they are not already in use, and
instantiated for use by the application.

Some compile-time libraries do not have a corresponding run-time library. These
libraries are not shareable; hence the loader will statically bind them into the
application execution image.

If another Power Macintosh software development environment (MPW,
Metrowerks, etc.) is used to build MachTen applications, the PEF libraries in System
Folder: Extensions: Tenon Application Libraries should be used for both the compile
time “Header Call” definitions and the run-time dynamic linking. The XCOFF
libraries in /usr/macppc/lib are usually not acceptable input to these Power
Macintosh software development tools.

Power MachTen User’s Guide222

11.5 Header Files

MachTen includes a number of header files which declare functions, data types,
values and macros for supported languages. The C include files are ANSI-
compliant. Machine-independent files are located in /usr/include. Files dependent
on a specific target architecture are located in /usr/<target>/include.
/usr/macppc/include contains the include files specific to the Power Macintosh. By
default, the preprocessor cpp scans the target-dependent tree before it scans the
generic tree.

11.5.1 Pre-Defined Names

The following macro names are used extensively in the MachTen header and source
files to conditionally include or exclude declarations, definitions and code which
are or are not applicable to MachTen:

__MACHTEN__ defined in all MachTen environments

__MACHTEN_68K__ defined when developing for the MachTen 68K
environment

__MACHTEN_PPC__ defined when developing for the MachTen PPC
environment

Definitions, declarations and code specific to MachTen should be enclosed as
follows:

#ifdef __MACHTEN__
/* Code generic to any MachTen environment */

#endif

#ifdef __MACHTEN_68K__
/* 68K specific code */

#endif

#ifdef __MACHTEN_PPC__
/* PPC specific code */

#endif

Power MachTen User’s Guide 223

Similarly, definitions, declarations and code which MachTen does not support
should be enclosed as follows:

#ifndef __MACHTEN__
/* Code that is inappropriate for MachTen */

#endif

#ifndef __MACHTEN_68K__
/* Code that is inappropriate for the 68K */

#endif

#ifndef __MACHTEN_PPC__
/* Code that is inappropriate for the PPC */

#endif

Power MachTen User’s Guide224

11.6 Compiling Sources

The GNU compiler tools are standard in MachTen. In general, the process of
creating an object file consists of:

• preprocessing the source with cpp

• performing macro substitutions

• passing the output to the appropriate backend compiler engine which
generates assembly code, and

• giving that to as, which produces the machine object file in XCOFF format.

By default, the output of each of these stages is written to a temporary disk file.
Executable programs are created by loading the appropriate XCOFF files and
needed libraries. All or part of this activity may be orchestrated with gcc, which
executes the appropriate tools in turn.

The following sections present a very brief illustration of the commands for
generating object files and executables. Optimization (“-O”) is used in the
commands that invoke the backend compiler, causing it to try to produce code that
is smaller and faster. Detailed documentation is available in various formats,
including man pages, HTML documents, and PDF and PostScript files. The
reference materials found in Appendix C of the online Power MachTen User’s
Guide may also prove useful.

11.6.1 Ada

Compiling and loading Ada source files is similar to that for C and C++; however,
it requires a binding step between compilation and loading to check consistency
and elaboration order. The backend compiler engine is /usr/macppc/bin/gnat1.

Using hello.adb as an example Ada source, the following command illustrates the
typical command for generating a PEF executable:

gnatmake hello

Power MachTen User’s Guide 225

gnatmake is a master program that invokes the tools to perform necessary
compilation, binding and linking in the proper order. Alternatively, gcc may be
used to generate an object file or assembly source as shown below:

gcc -c -O hello.adb
gcc -S -O hello.adb

These commands generate the files hello.o and hello.s, respectively. Intermediate
files from the compilation tools are discarded.

Detailed documentation may be found in “Appendix A, GNAT for the
Macintosh”, in the online Power MachTen User’s Guide.

11.6.2 C

C source files are compiled with gcc. A symbolic link from cc to gcc is provided for
compatibility with UNIX tradition. The backend compiler engine is
/usr/macppc/lib/gcc-lib/powerpc-apple-machten4/2.8.1/cc1. Files with a “.c” suffix are
assumed normal C source files, and those with “.i” are interpreted as previously
processed by cpp and passed directly to cc1. Files ending with “.s” are assembly
language files.

Using hello.c as an example C source, the following command illustrates creating
the PEF executable hello from the single source file (intermediate files are
discarded):

gcc -O -o hello hello.c

The object file is sometimes needed, or even the intermediate assembly code or
preprocessor output. Again using hello.c as our example, the following commands:

gcc -O -c hello.c
gcc -O -S hello.c
gcc -E -o hello.i hello.c

 generate the files hello.o, hello.s and hello.i, respectively.

Power MachTen User’s Guide226

11.6.3 Objective-C

Objective-C source files are compiled with gcc. A symbolic link from cc to gcc is
provided for compatibility with UNIX tradition. The backend compiler engine is
/usr/macppc/lib/gcc-lib/powerpc-apple-machten4/2.8.1/cc1obj. Files with a “.m” suffix
are assumed Objective-C source files, and those with “.i” are interpreted as
previously processed by cpp and passed directly to cc1obj. Files ending with “.s”
are assembly language files.

Using hello.m and Printer.m as example Objective-C sources, the following
command illustrates creating the PEF executable hello from the two source files
(intermediate files are discarded):

gcc -O -o hello hello.m Printer.m -lobjc

Sometimes the object file is needed, or even the intermediate assembly code or
preprocessor output. Again using hello.c as our example, the following commands:

gcc -O -c hello.m
gcc -O -S hello.m
gcc -E -o hello.i hello.m

 generate the files hello.o, hello.s and hello.i, respectively.

11.6.4 C++

C++ source files are compiled with g++. g++ is a special wrapper program that
executes gcc with options appropriate for compiling (and loading) C++ sources.
The backend compiler engine is /usr/macppc/lib/gcc-lib/powerpc-apple-
machten4/2.8.1/cc1plus. The file suffixes “.C”, “.cc”, “.cxx”, “.cpp” and “.c++”
all denote C++ source files. Files with a “.ii” suffix are interpreted as previously
processed by cpp and are passed directly to cc1plus. Files ending with “.s” are
assembly language files.

Power MachTen User’s Guide 227

Using hello.C as an example C++ source, the following command illustrates
creating the PEF executable hello from the single source file (intermediate files are
discarded):

g++ -O -o hello hello.C

Sometimes the object file is needed, or even the intermediate assembly code or
preprocessor output. Again using hello.C as our example, the following
commands:

g++ -O -c hello.C
g++ -O -S hello.C
g++ -E -o hello.ii hello.C

 generate the files hello.o, hello.s and hello.ii, respectively.

11.6.5 Fortran

Fortran files are compiled with g77. g77 is a special wrapper program that
executes gcc with options appropriate for compiling (and loading) Fortran sources.
The backend compiler engine is /usr/macppc/bin/f771. The file suffixes “.F”, “.f”
and “.for” all denote Fortran source files.

Using hello.F as an example Fortran source, the following command illustrates
creating the PEF executable hello from the single source file (intermediate files are
discarded):

g77 -O -o hello hello.F

Sometimes the object file is needed, or even the intermediate assembly code or
preprocessor output. Again using hello.F as our example, the following commands:

g77 -O -c hello.F
g77 -O -S hello.F
g77 -E -o hello.i hello.F

 generate the files hello.o, hello.s and hello.i, respectively.

Power MachTen User’s Guide228

11.6.6 Java

MachTen comes with Kaffe, a virtual machine to execute Java bytecode. Java source
files have the suffix “.java”.

The following environment variables are set for kaffe:

CLASSPATH .:/usr/share/kaffe/classes.zip
KAFFEHOME /usr/share/kaffe
LD_LIBRARY_PATH /usr/lib

The following command illustrates compiling Java source:

javac hello.java

It generates the file hello.class, which may be loaded and executed by the following
command:

kaffe hello

Note that the argument to kaffe is the class name, not the file name.

Power MachTen User’s Guide 229

11.7 Linking Executables

11.7.1 ld

MachTen uses ld — the link editor (a.k.a. the loader) — to produce executables and
shared libraries. It combines object files, searches specified libraries to resolve
external function and data references, and produces IBM binary standard format
XCOFF files. It relies on an external program called mkpef to translate XCOFF
output to Apple PEF format for use on the PowerPC. Typically, the XCOFF
version of the file is deleted after the PEF file is produced. Optionally, the XCOFF
file may be saved by adding the “-Xlxcoff” parameter to the ld execution
command. The XCOFF output is stored in a file with the same name as the target
PEF file, with a trailing “.xcoff”. For example, if the loader is producing a file
called myprog, the XCOFF version of the loader’s output will be put in myprog.xcoff.
This program is automatically called by gcc (in the default case), so typically you
will not have to execute this program or build specific rules into your Makefile
structure.

Since MachTen runs in real memory, stack sizing considerations enter into the
development of a program. MachTen provides a “-Xlstack = <stackbytes>”
parameter that provides the ability to set aside memory for the application stack.
This value has a default of 60K, which works well for most applications. However,
some applications can have stack memory requirements that approach several
megabytes and need their stack parameters set accordingly. This capability is also
provided by the setstackspace utility. See section “11.13.1.1 Stack Overrun”.

11.7.2 mkpef

The mkpef program takes the XCOFF output of the MachTen loader and produces a
PEF executable image. This program is automatically called by the MachTen loader
(in the default case), so typically you will not have to execute this program or build
mkpef rules into your Makefile structure.

Power MachTen User’s Guide230

11.8 To make or pmake

MachTen provides both the GNU (/usr/bin/make) and BSD (/usr/bin/pmake)
implementations of the make utility. Both implementations are in wide use, and
certain software packages depend upon unique features of one or the other. (See
section “11.1.3 Program Sources” for more information on make.)

GNU Makefiles are usually self-contained and reside in the object directory. GNU
software packages typically require a configuration step which determines the
capabilities and features of the host system and customizes the Makefile and
supporting include files accordingly.

BSD Makefiles reside in the source directory and usually define a few parameters
that direct included master scripts. The master scripts, located in /usr/share/mk,
define rules and default parameters for building and installing executables,
libraries, include files, man pages and support data. A symbolic link named obj is
usually created to point to the directory in which object files are built.

11.9 Symbol Information

MachTen application symbol information is obtained by using the nm program. Nm
works with XCOFF files optionally output from the compilation of an application.
Use “-Xlxcoff” on the compilation command line to produce XCOFF output.
Files containing XCOFF information are typically named with a “.xcoff” suffix.
The command:

nm -n afile.xcoff

will produce symbol information relative to location zero for application data and
text.

Power MachTen User’s Guide 231

11.10 Debugging

Since MachTen uses the Apple-defined PEF format for executable code objects
(Code Fragments), there are a number of alternatives for debugging MachTen
applications on the Power Macintosh. The traditional UNIX approach for MachTen
is gdb, but Apple and other third party debuggers are also available and will work
with MachTen PEF Code Fragments.

11.10.1 Debugging using gdb

MachTen applications can be debugged using the MachTen gdb application. This
debugger provides source and assembly level debugging, complete with data
structure display, single step code execution and source code-specified break point
specification. gdb requires access to both the PEF and XCOFF formats of an
executable program. Using the “-g” command during the production of the
application will automatically produce PEF and XCOFF files.

The command:

gcc -g -o hello hello.c

will produce the PEF output file hello and the XCOFF output file named hello.xcoff.
Note that the optimization flag “-O” has been left out to avoid confusing matches
between source code lines and the generated assembly code.

The MachTen command:

gdb hello

will start execution of the gdb application, which will automatically search for both
PEF and XCOFF files. Once both files are found, standard UNIX gdb commands
may be given to set break points, examine data, and complete the debugging
process. Further information on the gdb application can be found in the gdb man
page.

Power MachTen User’s Guide232

11.10.2 Macintosh Debugging Tools

First, determine that a debugger is not already installed on your system. If the
message “Debugger Installed” is printed when the system is booting, it
typically means that some form of debugger has already been installed on your
system. If you have a debugger, investigate its origins and usage. It is possible
that it will provide the debugging support you need.

11.10.2.1 MacsBug

MacsBug† is a Macintosh debugger that offers low-level debugging support on
Power Macintoshes. MacsBug works with MachTen, providing assembly-level
debugging, break points and PowerPC exception handling. It interprets traceback
data attached to each MachTen-generated subroutine showing routine name and
parameter information.

If you do not already have a debugger installed, it is recommended that you install
MacsBug in your System Folder. It is located in Utilities:Development
Utilities:Debuggers:MacsBug on the MachTen CD-ROM. It will provide you with a
backup if one of your applications crashes.

By using MacsBug, you can display memory as PowerPC assembler code (use the
command “ilp <addr>”. You can set a break point with the command
“brp <addr>”. The “g” command is used to resume execution of the application.
The “s” and “so” commands are used to single step and single step over (steps
over subroutine calls).

By using the “CFM” command in MacsBug when the application is executing, the
absolute addresses for both data and text areas are available. The sum of the
database address from the MacsBug “CFM” command and the offset information
from the “nm” command provide an absolute memory location for a variable.

† ftp://ftp.support.apple.com/pub/apple_sw_updates/us/mac/utils

Power MachTen User’s Guide 233

11.10.2.2 Macintosh Debugger for PowerPC

The Macintosh Debugger for PowerPC is Apple’s symbolic debugging tool for
Power Macintosh. Version 2.0.d3 works in a “single headed” mode, which
eliminates the requirement of needing two Macintoshes to debug PPC
applications. This version of the debugger consumes approximately 5MB of RAM.

Apple’s documentation describes some interesting features, including source
debugging directly from the XCOFF file (i.e., the debugger has the makesym
function built in), a flag to enter the debugger each time an application loads a
Code Fragment, a method of mapping “xSYM” files to these newly loaded Code
Fragments, and an ability to present and trace Thread Manager stacks (each
MachTen application uses a Thread Manager stack).

11.10.2.3 Metrowerks Debugger

The Metrowerks Code Warrior software development environment includes a
symbolic source code debugger for Power Macintosh applications. This debugger
would be a logical choice for debugging MachTen applications if the applications
are also being developed using the other Code Warrior tools.

Power MachTen User’s Guide234

11.10.3 Environment Variables for Debugging and
Monitoring

Each MachTen application is run with certain pre-set information known as the
“environment”. The environment is a collection of variables stored as character
strings. Each string specifies the name and value of one variable. Many
environment variables are set during login and when starting a new shell.

For csh and tcsh, the commands to set and unset environment variables are:

setenv <variable> <value>
unsetenv <variable>

For sh and bash, the commands to set and unset environment variables are:

export <variable=value>
unset <variable>

Consult the man page for your shell of choice for the complete details on setting
and unsetting environment variables, and the special shell script file(s) that are
processed during startup.

The environment variables DEBUGGERFIRST, STACKCHK and MEMSTATS direct
MachTen to perform special debugging or monitoring actions when they are set to
a non-zero value (typically “1”). Environment variables set in a given process are
only propagated to child processes. It is often convenient to establish one terminal
window with the desired “debugging environment”, and to have additional
terminal windows for editing and other activities. Unset the environment
variables to discontinue their service.

Power MachTen User’s Guide 235

11.10.3.1 DEBUGGERFIRST

When set, the environment variable DEBUGGERFIRST causes MachTen to execute a
“Debugger()” MacOS system call immediately before entering the “main”
function of the application. This allows you to set initial breakpoints and step
through initial startup actions such as C++ constructor calls. For this to work, you
must have previously installed a low-level debugger, such as MacsBug. By
default, MachTen will trap this “Debugger” call. To allow the “Debugger” call to
pass through to the MacOS and MacsBug, or other debuggers, rename the MachTen
application to MachTen.noexcept and restart MachTen.

11.10.3.2 STACKCHK

When set, the environment variable STACKCHK causes MachTen to report (on the
console terminal) the amount of stack used when a program exits. This is done by
zeroing the entire stack prior to executing the program, and scanning for the
“highest” non-zero stack entry when the program quits. Note that stacks grow
downward from a high address to a low address.

11.10.3.3 MEMSTATS

When set, the environment variable MEMSTATS causes MachTen to report memory
usage statistics when a program exits. The report includes the maximum amount
of memory allocated and the number of “buckets” in use and available. A bucket
is simply a buffer whose size is a power of 2. The report also tallies the number of
calls to malloc, free, realloc, alloca, and the sbrk and sfree system calls. This
information may help to identify inefficient memory usage.

Power MachTen User’s Guide236

11.11 Making Macintosh Applications

One of the benefits of producing PEF formatted binary images is that the MachTen
software development tools may be used to produce Apple standard application
programs. To develop Macintosh applications, the software must use standard
Apple interface libraries and Apple standard interface header definition files. It
must also specify a Macintosh-specific startup routine providing for proper
startup data definition and proper program exit, and follow Apple system
programming rules (e.g., WaitNextEvent, MoreMasters, etc.). In addition, the
software must not make UNIX system calls or calls to UNIX libraries.†

11.11.1 Macintosh OS Header Definition Files

Macintosh applications must be built with Macintosh interface header definition
files for data/code typing and parameter access. MachTen includes Apple’s
C include files in the directory /usr/include/MacOS.

A family of these files is also typically included with every native Macintosh
development program under a headers directory hierarchy. Access to these files by
MachTen development applications requires that these files have a MachTen creator
of “MUMM” and a “TEXT” type designation. The simplest method of converting
a family of header files is to select a whole directory and drag the group of files
onto the MachTen Unix<->Text application. Drop the group on the application and
let it change each of the files. The MachTen Unix<->Text application is contained in
the Utilities directory of the MachTen distribution.

Typically, MPW and other development tools do not examine the creator or type
of their constituent header or shared library interface files. This means that it is
possible to modify the creator and type of one copy of files and have them used by
both MachTen and traditional Macintosh development applications.

† If you want to create a “pure” Macintosh application that uses UNIX system calls
or standard UNIX libraries, please contact Tenon. Licensing a standard library
package from Tenon that you can incorporate into your “Macintosh application”
will let you develop hybrid applications.

Power MachTen User’s Guide 237

11.11.2 Macintosh OS Interface Libraries

To include a standard Apple interface library with MachTen application
development commands requires a few careful preparation steps. The file creator
must be modified and, potentially, a translation must be specified from the name
of the library file to the fragment name used to access the shared library by the
Macintosh system.

System interface libraries are available in all standard Apple software
development systems (e.g., MPW, Metrowerks), typically in a libraries hierarchy of
directories. Under a libraries hierarchy, there is a set of Power Macintosh interface
libraries. The Macintosh creator must be modified to incorporate one of these
libraries on a MachTen command line. Generally this has no effect on access to the
library by the native development software. Modifying a library creator to
“MUMM” will allow MachTen to access the file as a binary file. The file should
already have a Macintosh type identification of “shlb”, which is used by MachTen
development tools to determine whether shared access to the PEF interface library
is to be reflected in the final application.

File creator and type information is available by running finderinfo(1) or ResEdit
and selecting the “Get Info” function from the File menu. Creator information can
be modified under ResEdit with traditional Macintosh “point-and-click” methods.

Do not to make a copy of one of the libraries using MachTen applications until the
creator has been changed to “MUMM”. Access to a library not created by
“MUMM” will automatically create an AppleSingle version of the copied data and
make it unusable by MachTen development tools.

“Interface library fragment” names are the names of the Code Fragments that are
used by the Macintosh system to dynamically relate application programs to a
shared library. Each shared library has a fragment name, which is typically the
same as the name of the Macintosh file containing the fragment. A “shared library
Code Fragment” name is contained in the shared library’s “CFRG” resource. This
resource may be viewed and modified with the ResEdit application. If the file
name and Code Fragment name are the same, then no further action is necessary.
The MachTen development tools will place a reference in the resulting PEF output
to a Code Fragment with the same name as the Macintosh file containing the Code
Fragment.

Power MachTen User’s Guide238

However, if the library name and Code Fragment name are different, a translation
between the two must be specified during the PEF production phase of the
MachTen development tools. To specify a non-standard file name-to-Code
Fragment name mapping, the mkpef application must be run as an explicit,
separate program step with a mapping specification. To prepare for a separate
mkpef step, the “-Xlxcoff” parameter must be specified during compilation or
during the MachTen loading phase. The “-Xlxcoff” parameter preserves the
XCOFF formatted output file, which will be used as explicit input to the mkpef
application.

The mkpef application can then be run with the command:

mkpef <-lfilename:=fragmentname> -creator <xxxx> -type
shlb <inputfile.xcoff> <outputfile>

where “xxxx” is a four-character Macintosh creator.

Multiple file name-to-fragment name translations can be included on the same
command line. A creator of something other than “MUMM” must be specified
and a type of “shlb” must also be specified for a shared library or a type “APPL”
for an application. Creator types should be registered with Apple Computer at
http://www.devworld.apple.com/dev/cftype.

11.11.3 Macintosh Application Startup Routine

Standard MachTen applications use a startup routine that sets UNIX parameters
and environment variables. The startup routine then calls a subroutine called
“main” and, on return from “main”, calls the standard UNIX system call “exit”.
A standard Macintosh application has different requirements for startup
preparation. The initial routine must declare a QuickDraw variable named “qd”,
call the “main” application and, on return, call the Macintosh standard
“ExitToShell” system call. A pre-compiled file conforming to Macintosh
startup requirements has been included with the MachTen distribution under the
file name /usr/lib/MacOS/Mac_start.o. A slightly modified version that enters the
Macintosh debugger first is in /usr/lib/MacOS/Mac_debug.o.

Power MachTen User’s Guide 239

11.11.4 Macintosh Application Construction

The newly modified interface libraries and header definition files must be
specified during the compilation and linkage phases of the MachTen code
production process. This is specified using standard UNIX methods. Access to a
directory of header definition files is specified using the “-I” parameter on a
UNIX command line. The command line:

gcc -O -I/usr/include/MacOS -Dpascal=”” -c hello.c

will define (with “-D”) “pascal” to be nothing for MacOS compatibility, and will
search the /usr/include/MacOS directory for include files. It will also use “-O”
optimization as usual for a faster and more compact binary.

The command line:

ld -o /hfs/APPL/hello -Xlcreator 'MISC' -Xltype APPL \
/usr/macppc/lib/MacOS/Mac_start.o \
hello.o \
/usr/macppc/lib/MacOS/InterfaceLib.a

will create an output file hello in the /hfs/APPL folder. Note that the application
must be created as an HFS file because it requires the setting of certain Macintosh
resources via the MacOS Resource Manager.

The ld command includes the Macintosh application initialization code from
Mac_start.o, as well as the graphic user interface code from InterfaceLib.a. You must
specify the full name to both of these supplementary pieces of code. Since
InterfaceLib.a is a shared library, exported symbols from the library will be treated
as dynamic linkages to be satisfied during the run-time execution of the
application. The “Xlcreator” and “Xltype” parameters specify a “MISC”
creator and a standard Macintosh application type. The resulting
“point-and-click” Macintosh program can be executed independently of MachTen.

Power MachTen User’s Guide240

11.12 Cross-Development Tools and Targets

The macppc component of the target pathnames used in the BSD and GNU
Makefiles is for the potential use of MachTen in a cross-development environment
(i.e., /base/mac68k/bsd4.4 could be the target directory for building 68K versions of
the BSD applications). The locations of the development tools are also dictated by
the cross-development capabilities of MachTen.

Links to the machine-specific development tools are set up in the corresponding
directories.

11.12.1 Default MachTen Environment

Selection of the target in a cross-development environment is controlled by the
PATH variable and other environment variables and symbolic links. (See section
“5.4 Tailoring Your UNIX Environment” for information on environment
variables.)

Currently MachTen provides support for PowerPC targets; thus, this environment
is established as the default.

“machine-specific” development tools /usr/macppc/bin

libraries /usr/macppc/lib

header files /usr/macppc/include

non-“machine-specific” development tools /usr/bin, /usr/lib and
/usr/include

Power MachTen User’s Guide 241

11.13 Porting Software to MachTen

Where possible, every effort has been made in MachTen to provide as complete a
BSD UNIX environment as possible. However, due to the lack of memory
protection in MacOS, MachTen is a “real memory” implementation of UNIX.
Therefore, MachTen cannot possibly mimic all of the “features” of virtual memory.
Most applications are oblivious to the subtle differences between running under
virtual memory or real memory. These differences are documented here so that
the programs that do depend on virtual memory can be easily diagnosed as such,
and modified to run under MachTen.

11.13.1 Real Memory Issues

11.13.1.1 Stack Overrun

MachTen starts each process with a fixed size stack. If a subroutine defines large
amounts of storage on the stack (automatic data in C), this could cause stack
overrun, which will almost assuredly cause the system to crash. Alternatives for
large automatic variables are to redefine them as static, or to allocate them with
malloc or alloca. The default process stack size is 36K bytes. A larger process stack
size may be specified using the setstackspace utility. A larger stack may also be
specified when a program is built with the “-Xlstack” loader option (see section
“11.7 Linking Executables”).

Stack overrun is probably the number one real memory issue and should be
investigated first when a program is sporadically failing within MachTen. For
example, an application may build and run fine when filtering a single file, but
crash when filtering a large amount of files.

Power MachTen User’s Guide242

11.13.1.2 Allocating Memory in MachTen

MachTen allocates memory for its constituent applications in two ways. When an
application is loaded into the system for the first time, a Macintosh system module
called the Code Fragment Manager (CFM) is used to load and manage application
Code Fragments. The CFM handles allocation of memory for new fragments,
relocation of internal software references within a fragment, and dynamic linkage
between different but related Code Fragments. Secondary memory allocations
occur when a running application requests memory, which can obviously occur
only after an application has been properly loaded by the CFM.

The CFM uses two areas of memory to store Code Fragments — MachTen
application memory (MachTen heap), and system memory (system heap). MachTen
application data fragments are allocated from MachTen application memory.
MachTen application Code Fragments are allocated from system memory. In
addition, if virtual memory has been enabled, access to pages of code are managed
on a demand-paged basis, so that only software that has been referenced is
actually loaded into memory. This facility is called Memory Mapped files.

Once an application is under execution, the application may make subsequent
requests for memory (secondary memory allocations). These requests are allocated
from Macintosh system memory.

A dynamic bar chart of allocated system memory, as well as MachTen and other
application memory, can be displayed by selecting the “About This Computer”
entry in the Apple menu when Finder is the front application.

Sometimes, due to heavy system loads, either MachTen memory or system memory
allocations will be completely exhausted. By reallocating the size of the MachTen
memory space, it is possible to change the relative sizes of the two allocations. See
section “11.13.1.4 Setting the MachTen Heap Size” for directions on how to increase
the MachTen memory heap.

MachTen typically fails to allocate memory in two ways — the CFM fails to find
sufficient memory when loading an application (static allocation), or the
application itself fails during a secondary memory request (dynamic allocation).
Both failures print an error message. When the CFM fails to find enough memory
to load an application’s data, the error message is “CFM error -2810”. Getting
this error means that the MachTen memory space is fully allocated. One solution is
to quit MachTen, increase the MachTen heap size, and re-launch MachTen.

Power MachTen User’s Guide 243

When CFM fails to find enough memory to load an application’s code, the error
message is “Frag load err -108”. Getting this error means that the system
memory space is fully allocated. One solution is to quit MachTen, decrease the
MachTen heap size, and re-launch MachTen. It is also a good idea to quit other
applications and increase the Macintosh’s virtual memory.

A secondary memory allocation is a request by the running application to allocate
memory. This is typically achieved via the “alloc()” and “malloc()” family of
library calls. Secondary memory allocations are completely independent of the
CFM memory allocations, and can occur only after an application has been
successfully loaded by the CFM. Secondary memory allocations are allocated
from Macintosh system memory.

When a secondary memory request fails, an error code is returned to the
application and the response to a user is application-specific. When a secondary
request fails, the system memory space is fully allocated. Possible solutions
include quitting any Macintosh applications that might also be using system
memory, closing any unused Finder windows, or ultimately quitting MachTen and
reducing its heap allocation size. Note that by reducing the size of the MachTen
heap, the size of the allocatable system memory is increased, so it is possible to
iterate several times around increasing or decreasing the MachTen heap size to best
suit a particular system’s memory profile.

11.13.1.3 Calculating Memory Requirements

The Code Fragment Loader loads the code (or executable) portion of MachTen
applications in the system heap, and the data portion of MachTen applications in
the MachTen heap. Therefore, a running MachTen application consumes space in
both the system and MachTen heaps, and it is necessary to have space available in
both of these heaps in order to successfully run MachTen applications.

The “About This Computer” dialog box (under the Apple menu when Finder is the
front application) provides an easy means to approximate how much space is
available in both the system and the MachTen heaps. However, it is not easy to
predict how much more memory a particular MachTen application will require.
MachTen libraries (libc, libm, etc.) are shared libraries. MachTen applications that
reference these libraries share a single instantiation of the library’s code. The
library’s data segments are not shared. Each MachTen application allocates a

Power MachTen User’s Guide244

private copy of the data segments for each shared library it references. This
dynamic sharing of the MachTen libraries, combined with the stack and memory
allocations internal to MachTen programs, make it difficult to determine how much
additional memory a MachTen program will consume from the MachTen and system
heaps.

Examining the “About This Computer” display both before and after launching a
MachTen application provides a way to approximate memory requirements. Using
MacsBug (or another debugger) to dump the exact heap statistics provides a more
precise means for calculating memory usage.

11.13.1.4 Setting the MachTen Heap Size

Setting the size of the MachTen heap varies the sizes of the code and data allocation
pools. Increasing the size of the MachTen heap generally increases the size of the
data allocation memory area at the expense of decreasing the code allocation size.
To set the MachTen heap size, first confirm that MachTen is not running. Next, find
the MachTen application icon and highlight it with a single mouse click. Then pull
down and select “Get Info” from the Finder File menu. This will display
information about the MachTen application. The lower right-hand corner of the
display will contain a “Suggested Size” setting for MachTen. Select the box and
raise or lower the setting according to your system’s needs. Close the display by
clicking the close box. Restart MachTen. Verify the new size by opening the
dynamic memory display by selecting “About This Computer” in the Finder’s
Apple menu.

Power MachTen User’s Guide 245

11.13.1.5 Problem Areas

Not having virtual memory means that programs deal with physical addresses
and have limited available memory and a limited stack. The following real
memory problems are known to exist:

etext, edata,
end

In a virtual memory environment, a program can make
assumptions about the relative locations of the program’s
text, data and bss sections. In real memory, these
assumptions simply are not valid. Programs using the
symbols “etext”, “edata” and “end” probably require
modifications to not depend on the relative locations of these
symbols.

sbrk Some programs that call “sbrk()” make the assumption
that each successive call to “sbrk” will return memory
addresses contiguous to the previous call. This is not
possible to support in a real memory environment; thus
these programs require modifications to work with
MachTen. In MachTen, “sbrk” translates into a heap-oriented
memory allocation call.

page boundary Typical virtual memory implementations allocate memory
on page boundaries; thus requests to allocate less than some
minimum amount actually allocate this minimum. Some
programs may accidentally depend on this by accessing past
the minimum memory length requested, without causing
problems. Memory is a scarce resource in a real memory
implementation, and memory requests are typically rounded
to a much smaller size (multiples of 16 or 32 bytes).
Accidentally exceeding this real memory boundary will most
certainly cause problems to the actual owner of this space.

fragmentation In a real memory situation, it is possible to fragment memory
in such a way that, although the total free memory is
sufficient to satisfy a particular allocation request, none of
the individual memory pieces is big enough to satisfy the
request. This situation can be aggravated by use of the
realloc() call, with successively larger sizes. Quitting and
restarting MachTen will solve this.

Power MachTen User’s Guide246

out of
memory
during
compile

Both the C compiler (gcc and cc1) and the make program
require a lot of memory to run. If you are compiling large files
and have an elaborate program generation environment built
up where a Makefile causes multiple copies of make to run at
the same time, this will require large amounts of memory and
may cause either the C compiler or make to fail during some
memory allocation request, and thereby aborting the
program generation. A potential solution to this problem is to
use some of make’s more sophisticated features, such as
VPATH, and to reorganize the program generation process to
be completely controlled from one or two make invocations.

sticky bits The cc1, cc1plus, f771, cclobs and gnat1 compilers are installed
with the “sticky bit” set. Once these compilers are used, they
remain in memory until MachTen quits. This speeds
execution, but may reserve too much memory if you are
using multiple languages and have limited memory.
Removing the sticky bit will cause the programs to be loaded
into memory each time they are used. This may be done by
typing the following command (as root):

chmod 555 /usr/macppc/bin/<filename>

Power MachTen User’s Guide 247

11.14 Programming Example

11.14.1 Rogue

BSD includes a number of games, some of which have a long history in the UNIX
world. This example uses the game rogue as an example for software development
for the Power Macintosh using MachTen.

11.14.2 Building the Executable

First, it is necessary to build the executable binary image for the rogue program.
The Makefile has already been set up for the MachTen environment, so you need
only to execute the few steps below. (You should examine the Makefile for the
details.)

cd /base/src/bsd4.4/games/rogue
pmake objdir
pmake

The first pmake command creates the directory that the symbolic link obj points to,
if it does not already exist. In this example, it is /base/macppc/bsd4.4/games/rogue.
This is the directory in which the objects and executable will be generated.

Power MachTen User’s Guide248

11.14.3 Debugging Using MacsBug or Other
Macintosh Debuggers

The rogue sources have been modified to include a call to enter a Macintosh
debugger. This “Debugger()” call is contained within an “#ifdef DEBUG”
conditional, so this call is made only if the compile options include the “-DDEBUG”
flag (pmake COPTS=-DDEBUG). The “Debugger()” library call has been added
to libc. When this call is made, control is passed to the debugger and the debugger
indicates that the next instruction to be executed is the first line after the
“Debugger()” library call.

If you do not have a Power Macintosh debugger installed, do not use the
“Debugger()” library call. It would result in a program error (unknown trap),
and would cause MachTen to quit executing. In order to pass this “Debugger()”
call through to the MacOS, rename the MachTen application to MachTennoexcept
and restart MachTen.

Power MachTen User’s Guide 249

12.0 The X Window System

The X Window System®, also know simply as X, is a network-transparent graphics
window system originally developed at the Massachusetts Institute of
Technology. X is based on a “client/server” model, where an application program
(the “client”) communicates information to a display program (the “server”)
which then outputs the information to a bitmapped display. The server directs
user input, typically from a keyboard or mouse, to the client program for
interpretation. The client and server communicate with one another using the
“X Protocol”.

X allows multiple clients to run simultaneously, each displayed in a separate,
overlapping window on the server. Using the mouse and keyboard, the user
controls the size, appearance, and location of each window on the display, or
“X desktop”.

The MachTen X Window software supports the X client/server model under
MachTen on a Macintosh. Using the MachTen X Window software, the Macintosh
display is transformed into a high-performance X server. MachTen can be used to
create and run X client programs. Simultaneous operation of Macintosh
applications with X clients is also possible by using Finder to switch from the
X server to the Macintosh program.

This chapter provides a user with the information necessary to operate and
administer the MachTen X Window software. Related documentation on X is listed
in “Appendix C, Suggested Reading for Programming Languages”, in the online
Power MachTen User’s Guide.

The following section introduces the X environment under MachTen. It assumes a
completed installation of MachTen and the X Window software on your Macintosh.
The software installation instructions are in section “2.0 Installing MachTen”. An
overview of the X Window software components appears in section “12.3 MachTen
X Window Software Overview”.

Power MachTen User’s Guide250

12.1 The X Desktop

The MachTen X Window server runs entirely within a window in the MachTen
windows environment. For those unfamiliar with this environment, refer to
section “4.2 MachTen Windows”. When started, the X server will create an
X desktop similar in function to the Macintosh desktop on your display. The X
desktop will coexist with MachTen terminal windows, other Macintosh
applications and your Macintosh desktop, allowing you to conveniently switch
among desktops and applications. X applications that you run and display on
your Macintosh will appear on the X desktop, while MachTen terminal and other
Macintosh application windows will appear on the Macintosh desktop.

12.1.1 Starting the X Server

To launch the X server and create an X desktop, type the <Apple> key and the
letter “T” simultaneously (<Command-T>). The X desktop appears below:

Figure 30. The X Desktop

Power MachTen User’s Guide 251

The MachTen wind(8) process MUST be running in order to start the X server. Use
the command “ps -ax” to determine if wind is running (see “Figure 24. Using ps
to Show What is Running”). To execute wind, type “wind” at the prompt. See also
“12.1.3 Automatic Launch of the X Server”.

The X server desktop window differs from a MachTen terminal window in that the
familiar Macintosh title bar, close box, zoom box, scroll bar and size box are not
present when the X server is running. The entire window area below the MachTen
menu is devoted to the X desktop, or “root window”. The X desktop size
automatically conforms to the physical dimensions of your screen — larger
monitors will provide more surface area for your X desktop.

X client applications appear in windows on the X desktop. In “Figure 30. The X
Desktop”, the xconsole, xterm and olvwm applications are running. X client startup
is discussed in section “12.2.1 Starting Clients”.

12.1.2 The Menu Bar

The MachTen menu bar appears above the X server desktop (“Figure 30. The X
Desktop”) and controls the X server’s visibility on the desktop relative to other
MachTen terminal windows and Macintosh applications you may be running.
Unlike a MachTen terminal window, <Command> key shortcut menu selections
(the “hot” keys) are disabled when the X desktop is visible, since the <Command>
key is meaningful as an X <Meta> key within the X environment.

Power MachTen User’s Guide252

12.1.2.1 The File Menu

The File menu lets you create MachTen terminal windows within the MachTen
windows environment. The File menu is also used to quit the X Window server
environment.

Figure 31. The File Menu

New Window Create a new MachTen terminal window. When a terminal
window is created, the X server is hidden from view.

Close Window Close the X server window. This option quits the X server,
closing all X connections and terminating all processes
associated with the X server.

Logout Quit all MachTen windows, including the X server, and
return to the login console.

Quit Quit the MachTen application.

Power MachTen User’s Guide 253

12.1.2.2 The Window Menu

The Window menu contains a hierarchical “Order” sub-menu item, a “Save
Window Environment” item, and a list of MachTen terminal windows, including
the X server. To access a sub-menu item, slide the mouse cursor over the item and
to the right.

Figure 32. The Window Menu

The “Positions” item is disabled for all MachTen windows when the X server is
active.

Save Window
Environment

Save a description of the sizes and locations of the current
MachTen windows environment to a named file. If the X
server is running when the window environment is saved,
the X server will be started automatically the next time you
start up the MachTen windows environment.

The Window List Selecting a MachTen terminal window makes the X desktop
invisible and makes the terminal visible. Selecting
“X Server” makes the X desktop visible. The active
window is displayed in outline font.

Power MachTen User’s Guide254

12.1.2.2.1 The Order Sub-Menu

Figure 33. The Order Sub-Menu

Hide “X Server” Make the X server invisible. The X server can be made
visible using the “Show All” command or by selecting
“Server” from the window list.

Hide All Make the X server and all MachTen terminal windows
invisible.

Show All Make the X server visible.

Power MachTen User’s Guide 255

12.1.3 Automatic Launch of the X Server

The X server may be started automatically the next time you log into the MachTen
windows environment by selecting “Save Window Environment” from the
Window menu. This adds a single character lowercase “x” appearing on a line by
itself in your MachTen Window environment startup file (.windrc by default) that
indicates the X server will start up when the MachTen windows environment is
entered.

If you close all MachTen terminal windows (using the File menu) leaving the
X server desktop as the only window in the Window menu list prior to this step,
the X server will run exclusive of any MachTen terminal window in the new
environment.

12.1.4 Quitting the X Server

To quit the X server and remove the X desktop, pull down the File menu and select
“Close Window”.

12.1.5 Running the X Server Without a Menu Bar

You can configure the X server desktop to cover the entire screen, including the
area normally occupied by the menu bar. When the menu bar is hidden,
pull-down menus from the menu bar remain accessible by pressing the mouse
button while dragging the cursor along the top edge of your X desktop.

Refer to the -fs X server startup option in section “12.2.3 The X Server Program” for
more information on running the X server without a Macintosh menu bar.

12.1.5.1 Menu Bar Shortcuts

You can perform many of the menu bar functions described in this section using
the MachTen xtmenu utility program. xtmenu is particularly useful when you
configure the X server to run without a menu bar.

Power MachTen User’s Guide256

xtmenu is called from a shell command line under MachTen. Run without options,
xtmenu toggle switches the accessibility of Macintosh menu bar pull-down items
on the X desktop when the menu bar is hidden.

xtmenu also accepts the following options:

Window Manager Hot Keys. xtmenu can be very useful when bound to a
“hot key” sequence recognized by your favorite window manager. For example,
you can hide the X desktop when running olvwm using the <Shift> and <Escape>
keys by modifying the $HOME/.olvwmrc file as follows:

 Escape + Shift {
 Execute: "/usr/bin/X11/xtmenu -h"
 }

Window managers (with an emphasis on olvwm) are discussed in section
“12.2.2 The Window Manager Client”. Refer also to the olvwm, olvwmrc, afterstep,
and twm online manual pages for more information on the .olvwmrc, .steprc and
.twmrc files.

-h This option causes the visible X desktop to hide itself, exposing the
Macintosh desktop. This is equivalent to selecting “Hide” from the
“Order” item under the Window menu.

-s When MachTen is the foreground application and the X server is
running but hidden from view, this option exposes the X desktop.
This is equivalent to selecting the “X Server” item from the Window
menu.

If the X server is not running, this option will start the X server,
emulating the <Command-T> hot key server startup sequence.

-q When MachTen is the foreground application, this option closes all X
client connections, terminates the X server, and removes the X desktop
from the MachTen window list. This is equivalent to selecting
“Close Window” from the File menu.

Power MachTen User’s Guide 257

12.2 Administering the X Window Software
Environment

The MachTen X Window software is a very flexible software package that can be
tailored to your individual requirements. This section describes how to configure
and maintain the X software to create a working environment for you and your
users.

If you are unfamiliar with UNIX system administration, review section
“5.0 MachTen Administration” before proceeding. An additional useful reference
on administration of X is the “X Window System Administrator’s Guide,
Volume 8” from O’Reilly & Associates, Inc.

12.2.1 Starting Clients

When you type <Command-T> or enter the command:

xtmenu -s

the xinit X initialization program is launched by the MachTen kernel. xinit is
responsible for starting XMachTen, the X server program, and a default set of
X clients to display on your X desktop from a startup script.

xinit may only be run by the MachTen kernel.

12.2.1.1 The Startup Script

The initial X clients you choose to run on your X desktop are controlled by a shell
script file in your MachTen login directory called .xinitrc. If xinit cannot find a
.xinitrc file in your home directory, the shell script /usr/lib/X11/xinit/xinitrc is run
instead. You can copy this file to your home directory as .xinitrc and use it as the
basis for creating your own customized X desktop. Commented lines in this file
(those with a preceding pound (“#”) sign) are not executed by xinit.

Power MachTen User’s Guide258

The default X client startup script /usr/lib/X11/xinit/xinitrc is shown below:

#!/bin/sh

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap
sysresources=/usr/X11/lib/X11/xinit/.Xresources
sysmodmap=/usr/X11/lib/X11/xinit/.Xmodmap

merge in defaults and keymaps

if [-f $sysresources]; then
 xrdb -merge $sysresources
fi

if [-f $sysmodmap]; then
 xmodmap $sysmodmap
fi

if [-f $userresources]; then
 xrdb -merge $userresources
fi

if [-f $usermodmap]; then
 xmodmap $usermodmap
fi

Set the root window background

xsetroot -grey

Start a console terminal

xconsole -iconic &

Start the User's Custom Client Scripts that are selected for
autolaunch

./.client_autolaunch

Start some programs
#xterm -geometry 80x24+100+20 -ls -n `hostname` -T `hostname` &
#xclock -geometry 50x50+1-1 &

Start a window manager
#WINDOW_MANAGER=olvwm
#WINDOW_MANAGER=twm
#WINDOW_MANAGER=mwm
WINDOW_MANAGER=afterstep

Power MachTen User’s Guide 259

if [-x /usr/X11/bin/$WINDOW_MGR]; then
 if [$WINDOW_MANAGER = "afterstep"]; then
 LOW_COLOR=`xdpyinfo | grep "depth of root window:8 planes"`
 if [-n "$LOW_COLOR"]; then
 if [-r "$HOME"/.steprc.8bit]; then exec afterstep -f "\
 $HOME"/.steprc.8bit
 else exec afterstep -f\
 /usr/X11/lib/X11/afterstep/system .steprc.8bit
 fi
 fi
 fi
 exec $WINDOW_MANAGER
else
 exec /usr/X11/bin/xterm
fi

The startup script begins by calling the xrdb client which reads in any system-wide
resources defined in the file /usr/X11/lib/X11/xinit/.Xresources, if present.
Resources that you want available to all users and all clients displaying to the
server should be defined in this file. Resources will be discussed in more detail in
section “12.2.1.2 Resources — X Application Preferences”.

The script then runs the xmodmap client to load a custom keyboard mapping file
from /usr/X11/lib/X11/xinit/.Xmodmap, if present. You will have no need to change
your keyboard mapping if you are using a U.S. keyboard, as the X server is
launched by default with a U.S. keyboard mapping. If you operate the X server
using a non-U.S. keyboard, the .Xmodmap file should be linked to one of the
international keyboard map files in /usr/X11/lib/X11/xinit. Details on using the
international keyboard map files are found in section “12.2.3.3 Keyboard
Mapping”.

The startup script runs xrdb and xmodmap again using the .Xresources and
.Xmodmap files from your home directory. These files can be maintained in
individual user home directories to customize the default server resources or key
map for that user.

The startup script uses xsetroot to change the background, or root window, to a
grey color. Choose any color from the list of colors in /usr/X11/lib/X11/rgb.txt.

Next, .xinitrc starts a console X window as an icon on the X desktop. MachTen
console output is redirected to the xconsole window and is visible when the icon is
“de-iconified”, or opened with a double-click of the mouse button.

Power MachTen User’s Guide260

.xinitrc then starts the X applications and, by default, an xterm virtual terminal
window. The window’s geometry, title and icon name corresponding to the local
host name are provided as command line parameters when starting the xterm
client. You can add to the list of clients to be run at this point in the script. Note
that the xclock client is not run by default because of the comment (“#”) preceding
the command. Also, note that each application is placed in the background by the
shell (using the “&” sign) to allow the entire client list to be processed.

Finally, the startup script launches a special X application known as the “window
manager” that allows you to move, resize and iconify your X application
windows. The AfterStep Window Manager (afterstep), based on NeXTSTEP™, is
launched by default. Also available in MachTen is the OpenLook Virtual Window
Manager (olvwm), the Tab Window Manager (twm) and the Motif Window
Manager (mwm). The operation of the OpenLook Virtual Window Manager is
described in detail in section “12.2.2 The Window Manager Client”.

The startup script you create in .xinitrc in your home directory takes precedence
over the default system startup script.

12.2.1.2 Resources — X Application Preferences

Macintosh applications permit the setting of preferences to customize the
application to the individual user’s tastes, for example background color, window
title, font size, etc. Preferences are set for the application and typically stored in a
single file in the Macintosh Preferences folder.

Under X, preferences are set via application “resources”. Resources are specified
as strings that are read in from multiple source files when an application is run.
Application resources under X are inherently more flexible than Macintosh
application preferences, due to the client/server model under which X operates.
As with Macintosh programs, preferences can be specified for the individual
X application. In addition, since MachTen allows multiple simultaneous users,
X application preferences can also be specified for each individual user.

Power MachTen User’s Guide 261

Resource Files. Resource files contain the default application resources and
are commonly provided with the X application you are running. The resource file
is named after the “class nam”e of the application. By convention, the class name
of the application is the same as the program name, but with the first letter
capitalized (for example Bitmap or Emacs), although some programs that begin
with the letter “x” also capitalize the second letter. Application class names can be
discovered using the xprop utility.

Resource Syntax. In their simplest form, resources have the following syntax:

name*variable:value

For example:

XTerm*background:beige

where “name” is either the “class name” or the “instance name” of the application.
The default instance name is the name of the program; for example:

xterm*background:blue

Instance names may be changed using the “-name” command line option when
you start the application. You can use the “-name” option to distinguish more
than one instance of the same application in your resource file. As an example,
suppose you want xterm windows to have a blue background for programming C,
and a red background for Ada. Your resource file may contain the following
resources:

xterm-C*background:blue
xterm-Ada*background:red

When you start the xterm client for programming C or Ada, use the “-name”
option to match the instance name used in the resource:

xterm -name xterm-C & (xterm started for C)
xterm -name xterm-Ada & (xterm started for Ada)

“Instance name” take precedence over “class names” in resource specifications.

Power MachTen User’s Guide262

Applications written with the X Toolkit Intrinsics will have at least the following
resource variables:

Resource File Locations. Programs based on the X Toolkit Intrinsics obtain
resources from the following sources. The sources are listed in the order of
precedence from lowest to highest precedence. If the same resource specification
is located in more than one place, the resource in the source with the higher
precedence is used.

Application Level Resources.

• /usr/lib/X11/app-defaults

This directory is akin to the Macintosh Preferences folder. This is a directory of
default application resource files. Within each file (XTerm, for example),
resource variables are defined for the application. When started, the
application consults only the file in this directory corresponding to the class
name of the application.

background This resource specifies the color to use for the window
background.

foreground This resource specifies the color to use for the text and
graphics within the window.

borderWidth This resource specifies the width in pixels of the window
border.

borderColor This resource specifies the color to use for the window border.

Power MachTen User’s Guide 263

User Level Resources.

• $HOME/<application file>

The application default resource file may be copied to your home directory
and customized according to your individual preferences. The file ~/XTerm
will take precedence over /usr/X11/lib/X11/app-defaults/XTerm when xterm is
started.

• XAPPLRESDIR

This is an environment variable you can set to an alternate search path for your
application resource files. For example:

setenv XAPPLRESDIR /tmp/app-defaults

causes the X client to search for its resource file from an app-defaults
sub-directory under the /tmp directory.

• $HOME/.Xdefaults

If the X server database (described in the next section) contains no resources,
resources are read from a .Xdefaults file in your home directory when the
application starts up. This file is not specific to an application and may
contain resources from any number of different X clients.

X Server Level Resources.

• X Server Database

Any global resources that should be available to all clients can be stored in a
database residing on the X server using the xrdb program. This is typically
done when the server starts up in the .xinitrc file in the user’s home directory.
If the file /usr/X11/lib/X11/xinit/.Xresources containing server level resources is
found, the resources are loaded into the X server and automatically become
available to all client applications. The X server database is loaded using the
command:

xrdb -merge <resource file>

If any resource is loaded into the X server database via xrdb (including
non-conflicting resources), the $HOME/.Xdefaults file will not be read.

Power MachTen User’s Guide264

Host System Level Resources.

• $HOME/.Xdefaults-<hostname>

This file is associated with the host (from the hostname(1) command) on which
you are executing the X application. It is useful when you share a single
AppleShare-mounted home directory among multiple hosts. It takes
precedence over all application, user and server level resources previously
mentioned. It is not specific to an application and may contain resources for
any number of different X applications.

• XENVIRONMENT

If this environment variable is set to a named file, the file is read instead of the
.Xdefaults-<hostname> file. It takes precedence over all other previously
mentioned resource locations when starting an X application. For example:

setenv XENVIRONMENT ~/.Xdefaults-custom

The named file typically contains custom resources for all of the applications
you run.

Command Line Resource Specification.

• -xrm resourcestring

Resources can also be specified from the command line when starting your X
application. The resourcestring is a single resource name, variable and value.

For example, the xterm default background color is overridden with a red
background using the command:

xterm -xrm "XTerm*VT100.background: red"

Note that if the string contains characters interpreted by the shell (e.g., an
asterisk), they must be quoted. Any number of “-xrm” arguments may be
given on the command line.

Power MachTen User’s Guide 265

• Command Line Options

A command line option to the X application takes ultimate precedence over all
other resource locations. An xterm’s background will be blue, regardless of all
xterm background resource specifications in all locations when xterm is started
with the command:

xterm -bg blue

Recommendations for Administering Resources. Maintain unmodified
copies of application resources in the /usr/X11/lib/X11/app-defaults directory.
Customize these resources for individual users by copying the customized
variables from each resource file to a .Xdefaults file in the user’s home directory.

If in doubt as to which resources an X application will use when it is launched, use
the appres program to preview the application’s resources.

For more information on the resource variables available to an application, refer to
the online manual page for the application.

Power MachTen User’s Guide266

12.2.2 The Window Manager Client

The “window manager” is a program that runs with the X Window System and
helps you manage the windows on your screen. The window manager provides
functions for opening, closing, moving and resizing windows. It’s the window
manager that displays the three-dimensional frame around each window.
Without a window manager, your windows would not have borders and it would
be difficult, if not impossible, to perform many simple window functions.

12.2.2.1 Starting the Window Manager

Your default client startup script (.xinitrc in your home directory or
/usr/X11/lib/X11/xinit/xinitrc) launches the window manager when the X server is
started. In combination, the X server, your X applications and the window
manager comprise the X desktop.

The resources for the xterm client govern the precise size and appearance of the
terminal emulator window shown in the figures in this section.

Figure 34. The OpenLook Environment

Power MachTen User’s Guide 267

12.2.2.2 Using the Mouse

As you move the mouse on your X desktop, the pointer on the screen moves
correspondingly.

Whenever this section tells you to “point to” an item, it simply means move the
mouse until the pointer on your screen is positioned over the item.

Pointer Shapes. The location of the pointer can cause the shape of the pointer
to change. For example, when the pointer is directly over the root window (the
backdrop behind all windows), the pointer has an arrow shape. When you point
to the inside of a terminal window, the pointer changes to an “I” shape. When you
point to the corner of a window, the pointer changes to a circle shape.

Clicking, Double-Clicking and Dragging. The following terminology is
used to refer to actions involving mouse buttons:

• “Click” means press and release a button without moving the pointer.

• “Double-click” means click a button twice in rapid succession.

• “Drag” means press and hold a button while moving the pointer.

12.2.2.3 Selecting a Window

Before a window can receive input from you, it must be selected as the active
window. To select a window, point to any part of the window.

When a window is active, the window frame changes appearance. Now, when
you press on the keyboard and the pointer is in that window, the characters appear
on the command line in the active window.

There are two different models of handling the mouse focus. The first, “Focus
Follows Mouse”, is the default behavior.

This behavior can be toggled by selecting “Focus” from the OpenLook
“Workspace” menu.

Power MachTen User’s Guide268

Selecting this option changes the focus model to “Click To Focus”. With this
model, you must position the mouse over the window and then click the select
button (the select button is your mouse button or the left button on a three-button
mouse) to focus.

If no window is active, everything you type will be lost.

12.2.2.4 Moving a Window

By using the pointer, you can move a window to a new location on the screen. To
do so, grab the window’s title bar with the pointer, drag it to a new location, and
then release the window.

Step 1 — Grab the Title Bar with the Pointer

Point to the title bar of the window. The title bar is the rectangular area across the
top of the window where the word “xterm” appears. When properly positioned,
the pointer is an arrowhead as shown in “Figure 35. Grabbing the Title Bar”.

Figure 35. Grabbing the Title Bar

When the pointer is positioned, press and hold the select button.

Power MachTen User’s Guide 269

Step 2 — Drag the Window to a New Location

While still holding the select button, slide the mouse to the right across your
desktop. Now slide the mouse toward you.

As you move the mouse, the pointer on the screen drags an outline of the terminal
window as shown in “Figure 36. Repositioning the Window”. The outline shows
you where the window will be moved when you release the mouse button.

Figure 36. Repositioning the Window

Step 3 — Release the Window

Move the outline to the center of the screen. When the outline is where you want
it for now, release the mouse button. The window moves to the new position.

Power MachTen User’s Guide270

12.2.2.5 Changing the Size of a Window

You can change the size of a window by grabbing an area of the window’s frame
with the pointer, dragging the frame to the desired size, and then releasing the
frame.

Step 1 — Grab the Frame with the Pointer

Where you grab the window’s frame determines how the window will be resized.
See “Table 7: Places to Grab on the Window Frame”.

For this exercise, point to the lower right corner of the window frame. When
positioned correctly, the pointer’s shape changes to a circle around the corner of
the frame. Grab the frame by pressing and holding down the select button.

Table 7: Places to Grab on the Window Frame

If you want to stretch
or shrink the window
diagonally from the ...

Point to ...

bottom left frame’s lower left corner

top left frame’s upper left corner

top right frame’s upper right corner

bottom right frame’s lower right corner

Power MachTen User’s Guide 271

Step 2 — Enlarge or Shrink the Window

With the select button still pressed, slide the mouse so that the pointer moves away
from the window. Now slide the mouse so the pointer moves toward the window.
As you move the mouse, the pointer on the screen drags an elastic outline of the
window. The outline shows you the new size of the window.

Now, stretch the window until it reaches the lower right corner of the root window
as shown in “Figure 37. A Window and Its Elastic Outline”.

Figure 37. A Window and Its Elastic Outline

Step 3 — Release the Frame

When the elastic outline is the correct size, release the mouse button. The screen is
redrawn with the window filling the outline.

Power MachTen User’s Guide272

12.2.2.6 Changing a Window Into an Icon

As you work, your screen can become cluttered with windows. Changing a few
of those windows into icons allows you to tidy up a cluttered workspace. Icons are
small graphical images. Programs executing in a minimized window continue to
execute until they finish or halt because they require input from you.

Step 1 — Locate the Minimize Button

Slide the mouse so that you position the pointer on the minimize button — the
small square to the immediate right of the title bar on the window frame as shown
in “Figure 38. The Title Bar Minimize Button”.

Figure 38. The Title Bar Minimize Button

Step 2 — Press the Minimize Button

Press the minimize button by clicking the select button. The window changes into
an icon. olvwm displays icons in a row along the bottom of the root window,
starting on the left.

Figure 39. The OpenLook Icon

Power MachTen User’s Guide 273

12.2.2.7 Moving an Icon

To move an icon around the screen, follow these steps:

1. Point to the icon.

2. Press and hold the select button.

3. While still holding the select button, drag the pointer. An outline follows the
pointer, showing where the icon will be repositioned.

4. To position the icon, release the mouse button.

12.2.2.8 Restoring a Window from an Icon

To restore an icon (change it back into a window), point to the icon and
double-click the select button (i.e., press the button twice in rapid succession).

The icon changes back into the window it originally came from. The window
positions itself where it was before being minimized, as shown in “Figure 40.”

Figure 40. The Restored Window

Power MachTen User’s Guide274

12.2.2.9 Displaying a Window Menu and Making
Selections

Each window has a Window menu that contains functions for controlling the
window.

Step 1 — Display the Window Menu

The Window menu is attached to the window frame. Use the menu button in the
upper left corner of each window to display it.

To display the Window menu, point to the menu button and then press and hold
the third button.† The menu is displayed as long as you hold the button down —
don’t release the button yet. See “Figure 41. The OpenLook Window Menu”.

Step 2 — Choose a Function from the Menu

While still holding the select button down, drag the pointer down the menu. As
the pointer moves, it highlights the button for each available selection. Drag the
pointer until you highlight the “Full Size” function. Release the mouse button.

The “Full Size” function causes the window to expand to fill the entire screen
vertically.

Figure 41. The OpenLook Window Menu

† Please refer to section “12.2.3.2 Mouse Button Mapping”, Three Button Mouse
Configuration.

Power MachTen User’s Guide 275

Step 3 — Restore the Window to its Original Size

Display the Window menu again (point to the Window menu button in the upper
left corner of the window and press the select button). Drag the pointer down the
menu until you highlight the “Restore Size” selection. Release the mouse button.
The window is restored to its former size and location. “Table 8: Functions in the
Window Menu” lists the Window menu functions.

12.2.2.10 Summary of Window Menu Functions

When a menu function is meaningless, its name is grayed out and you cannot
select it.

Table 8: Functions in the Window Menu

To do this ... Choose ...

Restore a window from an icon or after maximizing. Restore Size

Change the location of a window. Move

Change the size of a window. Resize

Shrink a window to its icon representation. Close

Enlarge a window to be as tall as the root window. Full Size

Send a window to the back or bottom of the window
stack, the position closest to the root window.

Back

Immediately stop a window and make it disappear Quit

Power MachTen User’s Guide276

12.2.2.11 Raising a Window

With the “Focus Follows Mouse” model, you can raise a window by simply
placing the mouse over the window.

With the “Click to Focus” model, you can bring a partially concealed window to
the front of the root window by clicking on the window.

To demonstrate this with the “Click To Focus” model, create another terminal
window by typing this command in the existing terminal window:

xterm & <CR>

The new window appears in the upper left corner of the display, partially covering
the first window as shown in “Figure 42. A Partially Concealed Window”.

Step 1 — Position the Pointer

Position the pointer on any visible portion of the concealed window’s frame.

Figure 42. A Partially Concealed Window

Power MachTen User’s Guide 277

Step 2 — Press the Select Button

Click the select button on the mouse. The partially concealed window moves to
the front of all other windows as shown in “Figure 43. The Window Revealed”.

Figure 43. The Window Revealed

12.2.2.12 Quitting the Window Environment

Before exiting the window environment, exit any application programs and stop
any commands that may be running in terminal windows.

Pull down the File menu from the MachTen menu bar and select “Close Window”.
This removes all terminal windows from the screen (as well as the windows for
clocks and similar windowed programs) and terminates the X server.

Power MachTen User’s Guide278

12.2.3 The X Server Program

When the X server starts up, it takes over the display, except for the Macintosh
menu bar running horizontally along the top of the display. Use the menu bar to
suspend the X server to access the MachTen terminal window environment or other
running Macintosh applications.

The X server program is the file /usr/X11/bin/X11/XMachTen or, by its linked name,
/usr/X11/bin/X. By default, xinit will automatically run /usr/X11/bin/X.

You are prevented from running the X server program except by way of xinit
under MachTen.

12.2.3.1 X Server Startup Options

By default, xinit will automatically run /usr/X11/bin/X. If you need to start the X
server with options, edit the file named .Xparams in your home directory. This file
should contain any option flags you wish to pass to the server. Startup options
alter the default X server behavior and are useful for three-button mouse
operation, font path redirection, and menu bar configuration, among other things.

A sample Xparams file is available in /usr/X11/lib/X11/xinit/Xparams. To make
user-specific customizations, copy this file to your home directory as .Xparams if
and only if you want to start the server with different options. If no .Xparams file
is found, the X server uses the default options in /usr/X11/lib/X11/xinit/Xparams.

The following command line options for the X server may be useful on a MachTen
system:

-auth authorization-file Specifies a file which contains a collection of
authorization records used to authenticate access. See
also the xdm and Xsecurity manual pages.

bc Disables certain kinds of error checking for bug
compatibility with previous releases (e.g., to work
around bugs in R2 and R3 xterms and toolkits).

Power MachTen User’s Guide 279

-bs Disables backing store support on all screens.

-co filename Sets name of RGB color database.

-dpi resolution Sets the resolution of the screen, in dots-per-inch. To
be used when the server cannot determine the screen
size from the hardware.

-fc cursorFont Sets the default cursor font.

-fn font Sets the default font.

-fp fontPath Sets the search path for fonts. This path is a
comma-separated list of directories which the X server
searches for font databases.

-fs Starts the server in full screen mode. In this mode, the
Macintosh menu bar is hidden by the X desktop.
Pull-down menus from the Macintosh menu bar
remain accessible by pressing the mouse button while
dragging the cursor along the top edge of the desktop.

This option may not work on PCI Macintosh systems.

-help Prints a usage message.

-I Causes all remaining command line arguments to be
ignored.

-ld kilobytes Sets the data space limit of the server to the specified
number of kilobytes. A value of zero makes the data
size as large as possible. The default value of -1 leaves
the data space limit unchanged.

-ls kilobytes Sets the stack space limit of the server to the specified
number of kilobytes. A value of zero makes the stack
size as large as possible. The default value of -1 leaves
the stack space limit unchanged.

Power MachTen User’s Guide280

-mbm middle-key Changes the middle mouse button keystroke
mapping. <middle-key> is entered as a decimal value.
It represents the Macintosh virtual key code
corresponding to the desired key. Allowable values
are between 0 and 127. Refer to section
“12.2.3.2 Mouse Button Mapping” for a table of keys
and virtual key codes.

-mbr right-key Changes the right mouse button keystroke mapping.

-menu Starts the server in “dedicated” full screen mode. In
this mode, the Macintosh menu bar is hidden by the
X desktop and access to Macintosh pull-down menus
is completely disabled.

The xtmenu(n) program, run from your X window
manager menu environment, may be used to
temporarily restore access to your Macintosh desktop.
NOTE: This option locks out access to Finder and
other running Macintosh applications!

-mo Specifies that the Macintosh <Option> key will be
used in combination with the mouse button keystroke
to simulate the middle or right mouse button. When
used without the “-mbm” or “-mbr” startup options,
the default middle and right mouse button keystrokes
become <Option-Left Arrow> and <Option-Right
Arrow>, respectively. Selecting this option causes all
arrow keys, including the <Up> and <Down> arrows,
to function normally.

-static Runs the server in “StaticColor” mode, preventing X
client modification of the Macintosh color table.

-su Disables “save under” support on all screens.

-to seconds Sets the default connection time-out in seconds.

-wm Forces the default backing-store of all windows to be
“WhenMapped”; an easy way of getting backing-store
to apply to all windows. This option can be useful
when displaying X applications over slow serial links.

Power MachTen User’s Guide 281

12.2.3.2 Mouse Button Mapping

Many X clients assume the mouse has three buttons. The X server simulates the
middle and right mouse buttons with keystrokes. By default, the <Left-Arrow>
key generates middle button events and the <Right-Arrow> key generates right
button events. The real mouse button generates left button events. The
<Open-Apple> or <Command> key is the <Meta> (or when shifted, the <Alt>)
modifier; <Meta> can also be obtained by pressing the <Up-Arrow> key. The
<Down-Arrow> key duplicates the <Control> key. <Meta>, <Control> and
<Shift> are often used in combination with other keystrokes or mouse clicks. For
example, the terminal emulator xterm pops up menus in response to
<Control>-middle and <Control>-right.

The original function of the arrow keys may be obtained by holding down the
<Option> key while pressing one of the arrow keys. Normal arrow key functions
are also restored when you re-map the middle and right mouse buttons using the
“-mbm” and “-mbr” server startup options or when you configure the server to
accept the <Option-mouse key> combination using the “-mo” startup option.

Three Button Mouse Configuration. Several commercial three-button mice are
offered for the Macintosh. All operate by assigning an unused keyboard key or
key combination to the middle and right mouse buttons. The X server supports
the reconfiguration of the mouse keys from the default <Left-Arrow> and
<Right-Arrow> to any other keyboard key or <Option>-key combination. By
matching the X server mouse button configuration with your three button mouse
hardware configuration, you can shift your X three button operation entirely to the
hardware mouse.

Power MachTen User’s Guide282

The default keystrokes for the middle and right mouse buttons may be changed
via the “-mbm” and “-mbr” server startup parameters, described in the previous
section. The values to assign to the options for a given Macintosh key are as
follows:

The X server may also be configured to accept the Macintosh <Option> key in
combination with the selected button keystroke using the “-mo” startup
parameter described in the previous section. This allows keyboard keys to
function both as normal keys and, when the <Option> key is pressed, as mouse
buttons.

If the default mouse button configuration is modified or you use the Macintosh
<Option> key in combination with another key to simulate a mouse button, all
arrow keys revert to their original functions.

Key Value Key Value

F1 122 Help 114

F2 120 Home 115

F3 99 Page up 116

F4 118 Page up 116

F5 96 Page down 121

F6 97 End 119

F7 98 Left arrow 123

F8 100 Right arrow 124

F9 101 Down arrow 125

F10 109 Up arrow 126

F11 103 Clear 71

F12 111 Equal 81

F13 105

F14 107

F15 113

Power MachTen User’s Guide 283

Example Three Button Mouse Configuration. Suppose you own a Logitech
Mouse and would like to map the middle and right mouse buttons to the
<Option-F14> and <Option-F15> key combinations when running the MachTen
X server. Your Logitech MouseMan™ control panel would look something like
this:

Figure 44. Logitech MouseMan™ Control Panel

The .Xparams configuration file in your home directory would look like this:

-mo -mbm 107 -mbr 113 -cmdkey meta

Power MachTen User’s Guide284

12.2.3.3 Keyboard Mapping

The default layout for keyboard keys in the X server corresponds to the U.S.
character set under Mac OS. Special characters and symbols, including characters
with diacritical marks, are available by pressing the <Option> key in combination
with certain letter and number keys. Refer to the Macintosh User’s Guide for more
information on typing special characters.

Configuring International Keyboard Layouts. Your Keyboard control panel
indicates the keyboard layout in force for your Macintosh. If your keyboard layout
is an international (non-U.S) layout, the default U.S. X key layout must be
re-mapped to match your country’s layout when the X server is launched.

The xmodmap program is used to re-map the default U.S. character set within the
X server for use in other countries. xmodmap is run by the .xinitrc script when the
X server starts up. The script searches for a key mapping file called .Xmodmap in
the directory /usr/X11/lib/X11/xinit. If found, xmodmap configures the X server
using the contents of the mapping file.

Mapping files are named Xmodmap-XX, where “XX” represents the country code
for the desired keyboard layout:

To change the X default U.S. keyboard layout, enter the following from a MachTen
terminal window prior to starting the X server the first time:

 ln /usr/lib/X11/xinit/Xmodmap-XX /usr/lib/X11/xinit/Xmodmap

Code Country Code Country

DE Germany IT Italy

DK Denmark NO Norway

ES Spain PT Portugal

FI Finland SE Sweden

FR France FC French Canadian

GB Great Britain CA Canada

Power MachTen User’s Guide 285

This command creates a Xmodmap link file to your country’s X key map. The
Xmodmap file will be read into the server by xmodmap each time the server starts up
via the xinitrc file. To restore the X key map to the default U.S layout, delete the
link file and restart the X server.

For international X keyboard map files not listed above, contact Tenon Technical
Support.

X Meta and Alt Keys. Under the MachTen X server, hot key operation (using the
<Apple Command> key) normally associated with a MachTen terminal window is
disabled. The <Command> key functions as an X <Meta> (or when shifted, <Alt>)
key when the X server is the front window. Many applications, including the
OpenLook Virtual Window Manager, use the <Meta> and <Alt> keys as keyboard
modifiers.

Apple reserves certain keystroke combinations for special effects. All
<Command-Shift-number> sequences are not delivered to the X server and are
unavailable for use by your X applications.

The Macintosh <Option> key is not available for use as a <Meta> key.

12.2.3.4 Server Error Logging

The X server logs cumulative error messages to the file /var/adm/X0msgs. If you are
having trouble starting the X server, or if the server suddenly exits, the contents of
this file may contain helpful troubleshooting information.

If the X0msgs file does not exist, the X server will create a new one when it starts up.

You may optionally remove the X0msgs file and create a symbolic link to your
console terminal:

ln /dev/console /var/adm/X0msgs

With the symbolic link in place, errors logged by the X server will appear in the
MachTen console window.

Power MachTen User’s Guide286

12.2.3.5 X Server Performance Tuning Guide

The following tips will help you optimize the performance of the MachTen X server.

• Turn off Apple File Sharing when not in use.

• Close all open control panels on your Macintosh desktop.

• Macintosh and X screen saver client applications will conflict with one another
when run simultaneously. Hide the X server and run your favorite Macintosh
screen saver package to protect your screen during idle periods, or run an X
screen saver application (e.g., xlock) with your Macintosh screen saver
disabled.

• When using Finder to switch from the X desktop to Finder, a MachTen terminal
window, or other Macintosh applications, iconify any X clients that are
actively drawing to the display prior to hiding the X desktop.

Power MachTen User’s Guide 287

12.2.3.6 The Default Font Path

X fonts are stored locally as individual files in directories. The list of directories
and font servers an individual X server uses when trying to open a font are
controlled by the “font path”.

Some of the directories contained in the default font path for the X server are:

/usr/X11/lib/X11/fonts/Speedo This directory contains outline fonts for
Bitstream, Inc.’s Speedo rasterizer. A
single font face is provided in normal,
bold, italic and bold italic.

/usr/X11/lib/X11/fonts/100dpi This directory contains 100 dots-per-inch
versions of some of the fonts in the 75dpi
directory.

/usr/X11/lib/X11/fonts/misc This directory contains many
miscellaneous bitmap fonts that are useful
on all systems. It contains a family of
fixed-width fonts, several Kana fonts from
Sony Corporation, two JIS Kanji fonts, two
Hangul fonts from Daewoo Electronics,
two Hebrew fonts, the standard cursor
font, two cursor fonts from Digital
Equipment Corporation, and cursor and
glyph fonts from Sun Microsystems. It
also has various font name aliases for the
fonts, including fixed and variable.

/usr/X11/lib/X11/fonts/75dpi This directory contains bitmap fonts
contributed by Adobe Systems, Inc.,
Digital Equipment Corporation,
Bitstream, Inc., Bigelow and Holmes, and
Sun Microsystems, Inc., for 75
dots-per-inch displays. An integrated
selection of sizes, styles and weights are
provided for each family.

Power MachTen User’s Guide288

Font databases are created by running the mkfontdir program in the directory
containing the compiled versions of the fonts (the .pcf files). Whenever fonts are
added to a directory, mkfontdir should be re-run so that the server can find the new
fonts. If mkfontdir is not run, the server will not be able to find any fonts in the
directory.

12.2.3.7 Obtaining Fonts from a Network Font Server

By default, the X server will look for fonts from the local directories described in
the previous section. To obtain fonts from a network font server when the X server
starts up, follow these steps:

• Copy the file /usr/lib/X11/xinit/xserverrc to your home directory as .xserverrc:

cd
cp /usr/lib/X11/xinit/xserverrc .xserverrc

• Edit the .xserverrc file and find the line:

#/usr/bin/X11/X -fp tcp/gordo:7000

• Change this line to:

/usr/bin/X11/X -fp tcp/hostname:7000

where “hostname” is the name of the network host running a font server
program.

Power MachTen User’s Guide 289

12.2.3.8 Providing Fonts Over the Network

The xfs program is a font server that runs on your MachTen system and provides
fonts to other network-based X terminals and servers.

xfs has many configuration options which are described in detail in the online
manual page. In most environments, xfs will run using the default configuration.

To run the font server, perform the follow steps:

• As the root user, start the xfs program:

/usr/bin/X11/xfs &

• To start the font server automatically when MachTen boots, add an entry to
your /etc/rc.local file:

 if [-x /usr/bin/X11/xfs]; then
 ($ECHO "Starting the font server") >/dev/console

 /usr/bin/X11/xfs &
 fi

A template /etc/rc.local file is in /usr/local/etc/httpd/tenon/etc/rc.local, and can be
modified with a Macintosh editor.

12.2.4 X Display Management Under MachTen

The xdm program manages a collection of X displays, which may only be on the local host
with MachTen. The design of xdm was guided by the needs of X terminals, as well
as the X Consortium standard XDMCP, the X Display Manager Control Protocol.
xdm provides services similar to those provided by init(1), getty(1) and login(1) on
character terminals — prompting for login name and password, authenticating
the user, and running a “session”. When your MachTen system is configured to run
the X server with xdm, your users will be presented with a friendly, uniform entry
into the X Window System. xdm has many configuration options which are
described in detail in the online xdm manual page. This section will concentrate on
configuring MachTen and the X server to be controlled by xdm.

Power MachTen User’s Guide290

12.2.4.1 The MachTen X Server and XDM

On a typical UNIX workstation, the xdm program will launch the local X server
and present an xdm login window on the local display. When the user session
completes or the X server quits, xdm is notified and restarts the server with a fresh
login window.

Because MachTen must share the X window environment with the Macintosh
window environment, xdm is prevented from arbitrarily starting the X server.
Instead, xdm is typically started at MachTen boot time via an entry in the /etc/rc file.
When the X server is subsequently launched with special XDMCP startup options,
it communicates with the xdm process via the XDMCP protocol and the login
window appears. XDMCP server parameters are described in section
“12.2.3.1 X Server Startup Options”.

Under MachTen, the X server may run only after a user logs in through the MachTen
console window and starts the wind(8) program. Thus, the xdm login window may
be displayed only after entering the MachTen windows environment via a user
account in /etc/master.passwd.

MachTen contains features to automate the process of launching the operating
system, logging in, and creating a default MachTen windows environment. Once
logged in, you can automate the launching of the X server and its management by
xdm. The combined features will allow your X server environment to be
completely controlled by the X Display Management system from the moment
your Macintosh is powered on.

Automatic Launch of an XDM Managed X Server. System managers will
typically configure xdm to start the X server and display a login window when
MachTen boots. This can be accomplished by the following configuration steps:

• Edit the /etc/rc.conf file and set the START_xdm variable to “yes”.

• Add an account to your /etc/master.passwd file. The account will serve as a
default user shell from which actual user xdm sessions are started:

adduser xdmuser -p MyXdmPass -s /bin/csh

Power MachTen User’s Guide 291

• Just prior to the invocation of the wind program, add the environment variable
WIND_RESET to the .login file in the home directory of the xdmuser account:

setenv WIND_RESET
exec /usr/bin/wind

The default X desktop environment will be taken from a .xsession file in the
home directory of the user logging in through the xdm window.

The WIND_RESET variable will cause the MachTen windows environment to
exit when the X server window is closed via the MachTen File menu.

• Create a file named /usr/local/do_console_display and add the name of the
xdmuser account:

xdmuser

• Edit the /etc/ttys file and find the line:

console "/usr/libexec/getty std.9600" vt100 on secure

Change this line to:

console "/usr/libexec/getty display std.9600" vt100 on secure

MachTen will recognize the display variable in this file at boot time and
automatically log into the account specified in /usr/local/do_console_display.

• Create a .windrc file in the home directory of the xdmuser account with a single
entry “x” in the file. This entry will cause the X server to launch automatically
when the xdmuser account starts up the MachTen windows environment.

• Follow the instructions in section “12.2.3.1 X Server Startup Options” to create
custom X server parameters for the XDM managed desktop.

• Copy /usr/lib/X11/startX/startXrc to a .startXrc file in the home directory of the
xdmuser account. Edit the .startXrc file and change the following:

1. Comment out the USE_XINIT variable.

2. Uncomment the XDM_METHOD variable.

3. Uncomment the XDM_SERVER=<hostname> variable and change
<hostname> to <localhost>.

Power MachTen User’s Guide292

When the server starts up, it will communicate with xdm to display the xdm
login window on the local display.

• You can further automate the process to display an xdm login window when
your Macintosh is powered on by using Finder to place an alias to the MachTen
application in your System Folder:Start Up Items folder.

The XDM Session. The user session is started when a user logs into the xdm login
window. The session is controlled by an executable shell script called .xsession in
the logged-in user’s home directory. If this file is not found, xdm runs a default
session from the file /usr/lib/X11/xdm/Xsession. You can copy your local .xinitrc file
to .xsession and customize it as needed. When the last client (typically the window
manager client) in the .xsession file exits, the session completes and xdm presents a
new login window.

The .xsession file must have “execute” privilege. Use the command:

chmod 755 .xsession

to make the .xsession file executable.

Power MachTen User’s Guide 293

12.2.5 X Over Serial Lines

Under MachTen, you may run X client applications over serial lines to display on
your local X server using the Serial Line Internet Protocol (SLIP), the Point-to-Point
Protocol (PPP) or, with the aid of a remote AppleTalk-to-Internet router, Apple
Remote Access.

Information on configuring PPP or SLIP for MachTen is found in sections
“10.15.8 Using PPP” and “10.15.9 Using SLIP”, and in http://www.tenon.com/
support/PPP.

The -wm backing store X server startup option is a potentially useful option when
displaying X clients over slow serial lines. This option causes the server to save a
local copy of a window’s contents when the window becomes obscured by an
overlapping window. As windows are rearranged and the obscured window’s
contents become exposed, the window is instantly redrawn by the X server. With
the option disabled, the remote X client must retransmit the window’s contents
over the serial line when the window becomes exposed.

Refer to section “12.2.3.1 X Server Startup Options” for details on how to start the
X server with the -wm option. The X server uses more system memory when
started with the -wm option.

Power MachTen User’s Guide294

12.3 MachTen X Window Software Overview

This release of the MachTen X Window software is based on the public release of
X11, release 6, from MIT. Its purpose is to provide the necessary tools to allow for
the development and display of X applications under MachTen on a Macintosh. To
that end, the release contains an X Window server, fonts, a font server,
programming libraries, configuration files, and documentation from the X11R6
release adapted for use under MachTen. Programming and server environments in
the OpenLook GUI style, based on Sun Open Look 3.1, are included. The release
also includes a suite of public X client applications in source form as a reference
aid in program development.

The main display server components provided are:

The main client development and run-time library components provided are:

XMachTen The MachTen X Window server

olvwm The OpenLook Window Manager and user
environment

fonts X11 fonts in Portable Compiled Format and a
network font server

X The X11 library containing the core of the X
protocol

Xt The X Intrinsics Toolkit library

Xaw The Athena Widget set of buttons, pull-down
menus, labels, etc.

Xmu The X Miscellaneous Utility used by the
Athena widget set

Xau The library supporting a security
authorization for client/server connections

Power MachTen User’s Guide 295

The software in this release is contained on CD-ROM. When installed, the X11
software will reside in the following directories after the installation:

Xext The library supporting the Shape,
Multi-buffering and MIT-misc. extensions

Xi The library of the Input extension to the
protocol supporting alternative input devices

xview The xview widget library

olgx The OpenLook graphics library

Phigs The Application Protocol Interface library
supporting the creation of PEX protocol,
version 5.1

PEX5 The Xlib-level C interface library to the PEX
protocol, version 5.1

Xdmcp The library of X Display Manager Control
Protocol routines

Imake The configuration system for generating
Makefiles

Clients A source distribution of MIT client and
demonstration programs

/usr/X11/lib X11 library archive files (libX*.a)

/usr/X11/lib/X11 X11 configuration files, fonts and application
default resource files

/usr/X11/bin X11 executable files

/usr/include/X11 X11 include files for application development

/usr/X11/man/mann X11 manual pages

Power MachTen User’s Guide296

12.3.1 Preparing Your Macintosh Control Panels

When launched, the X server will configure itself based on the settings in the
Monitors & Sound, Mouse, and Keyboard control panels. The X server’s
performance characteristics can be tuned in the MachTen Controls control panel.

You must visit the Monitors & Sound control panel prior to running the X server.
Open your Monitors & Sound control panel and select anything but the “4” or “16”
Colors or Grays settings.

Review the sound and intensity. X clients that ring the system bell will generate
the selected sound. The X server will also honor X client requests to change bell
duration and to turn on or off the bell. These requests will not affect your Monitors
& Sound control panel settings.

Figure 45. Monitors & Sound Control Panel

In a multi-screen or video mirroring configuration, the X server runs on the main
screen (the screen containing the menu bar).

You are prevented from changing the monitor characteristics while the X server is
running. Doing so will cause the X server to exit abruptly.

Power MachTen User’s Guide 297

Open your Mouse control panel and review your mouse tracking and double-click
rate. The X server obeys the settings in this control panel and ignores requests
from X clients to change mouse characteristics.

Figure 46. Mouse Control Panel

Open your Keyboard control panel and review your keyboard repeat rate and
delay, if any. The X server obeys the settings in this control panel and ignores
requests from X clients to change keyboard repeat frequency.

Figure 47. Keyboard Control Panel

Power MachTen User’s Guide298

If you have a Control Strip control panel, select the “Hide Control Strip” option
when running the X server.

Figure 48. Control Strip Control Panel

Open your MachTen Controls control panel. When the Scheduling Priority slide
bar is moved upward toward the “Unix” mark, the X server will draw output
faster to the screen. When the slide bar is moved downward toward the “Mac”
mark, keyboard input and window manipulation (re-positioning, re-sizing, etc.)
response will be quicker. The recommended slide bar setting that optimizes these
potentially competing demands on the X server is shown below.

Always close the MachTen Controls control panel to activate the slide bar settings.

Figure 49. MachTen Control Panel

Power MachTen User’s Guide 299

12.3.2 Getting Started With X

The following is a road map for information on starting, customizing, operating
and maintaining the X server.

• Beginning launch and use of the X server is found in section “12.1 The X
Desktop”.

• If you want to reconfigure the default X server or learn more about its
capabilities before launching it, refer to section “12.2.3 The X Server Program”.
Three-button mouse, remote font server and international (non-U.S.)
keyboard users must consult this section before launching the X server.

• The online manual pages XMachTen, XServer and X are useful and convenient
references.

• General information on the operation of MachTen is found in this User’s Guide.

12.3.3 Building X Applications

Most of the distributed X client executable files in the /usr/X11/bin directory have
been created from the source files in /base/src/X11/R6 (see section “2.2.2 Accessing
MachTen Sources from the CD-ROM”). This section discusses the general
procedure for creating X client applications under MachTen.

The Makefile in X client software is generated automatically by the imake program.
The program combines machine-independent descriptions (called Imakefiles) of
targets to be built with machine-dependent sets of parameters. The xmkmf script
in /usr/X11/bin/ invokes imake to build the Makefile from an Imakefile.

Power MachTen User’s Guide300

1. Be sure that the CD-ROM and Source_FFS are mounted.

2. Create a working area for X11 development:

mkdir /base/macppc/X11
cd /base/macppc/X11
lndir /base/src/X11

3. To build a single X client (e.g., xlogo), make the Makefile and executable:

cd /base/macppc/src/X11/R6/mit/clients/xlogo
xmkmf
make

4. To install the application(s) in /usr/X11/bin/, type:

make install

5. To install the application manual page(s) in /usr/X11/man/mann, type:

make install.man

6. If you chose to install the client(s), you may free up disk space by deleting the
extra copy of the executable image(s):

make clean

To build the entire X client suite, follow these additional steps:

7. Make the master Makefile using the xmkmf utility:

cd /base/macppc/X11/R6/mit/clients
xmkmf

8. Build the application Makefiles and executables:

make Makefiles
make

then follow steps 4 through 6, above.

Compiler warning messages are expected from some clients in the MIT
distribution. These warnings will not adversely affect the client’s operation under
MachTen.

Power MachTen User’s Guide 301

12.3.3.1 Running X Client Applications

The build process may be tested by executing an application program compiled
and installed in the previous step and instructing it to display on the local X server.
Online manual pages are available for each of the X client applications.

Make sure the X server is running (refer to the previous section). Start the client:

/usr/X11/bin/xlogo &

12.3.3.2 The X11 Application Development
Environment Under MachTen

The imake configuration utility is included to generate machine-specific Makefiles
from machine-independent Imakefiles. Another utility, called makedepend, is
provided to generate Makefile dependencies for C language files. The xmkmf shell
script in /usr/X11/bin/ is used to create Makefiles from Imakefiles. The easiest way to
construct an Imakefile is to start with one that does something similar and modify
it. The various macros that are used in an Imakefile are defined in the file
/usr/X11/lib/X11/config/Imake.rules. Examples of Imakefiles can be found under the
/base/src/X11/R6/mit/clients directory. You are strongly urged to use imake and
makedepend so that your software will work across releases.

The configuration files for imake are located in the /usr/X11/lib/X11/config/
directory. Makefiles are created from a template file named Imake.tmpl, a
machine-specific .cf file, and a site-specific site.def file. The template file should not
be modified.

The file Tenon.cf defines the specific configuration for application development
under MachTen and need not be modified.

Power MachTen User’s Guide302

The following suggestions are offered by the MIT X Consortium on writing X
applications that are portable to other hardware platforms:

1. Keep all source file names to 12 characters or less. This is the maximum
number of characters that older System V file systems allow when using a
source code control system.

2. If you absolutely must use Makefiles instead of Imakefiles, link against -lX11
instead of -lX. If you are using imake, use the symbolic names $(XAWLIB),
$(XMULIB), $(XTOOLLIB), $(EXTENSIONLIB), and $(XLIB). Xaw clients
may use the symbol XawClientLibs to refer to the appropriate libraries.

3. Include header files using the syntax <X11/file.h> instead of X11/file.h,
<X/file.h>, or X/file.h.

4. Include <X11/Xos.h> if you need types.h, string.h or strings.h (then use the
routines index and rindex instead of strchr and strrchr), file.h, time.h, or unistd.h.

5. If you need to put in System V vs. BSD dependencies, use #ifdef SYSV. If you
need SVR3 vs. SVR2, use #ifdef USG.

6. Do not assume that the root window’s “Visual” (returned by the DefaultVisual
macro) is the only one available. Some color screens may use a black and
white window for the root or could provide StaticColor as well as PseudoColor
visuals. Unfortunately, most libraries do not have adequate support for
locating visuals to use. In the meantime, use XGetVisualInfo().

7. Use “-display displayname” to specify the X server to contact. Do not
simply assume that a command line argument that has a colon in it is a
displayname. If you accept command line abbreviations, make sure that
you also accept the full “-display”.

8. Use “-geometry geomspec” to specify window geometry. Do not simply
assume that command line argument that begins with an equal sign is a
window geometry. If you accept command line abbreviations, make sure that
you also accept the full “-geometry”.

9. Use the .man suffix for program manual page sources.

Power MachTen User’s Guide 303

12.3.3.3 Programming Notes

MachTen supplies each UNIX process with a fixed 36K byte stack. Applications that
define large stack-based storage should add the following lines to the associated
Imakefile requesting a larger process stack when the program is linked:

#ifdef MachTenPPCArchitecture
LOCAL_LDFLAGS = -Xlstack=<stacksize>
#endif

To increase the application stack size to 100K bytes, use the command:

LOCAL_LDFLAGS = -Xlstack=100000

Refer to section “11.0 MachTen Programming Environment” for further
information on programming under MachTen.

Power MachTen User’s Guide304

Power MachTen User’s Guide A1-1

APPENDIX A

GNAT For The Macintosh

What is GNAT?

GNAT is a high-quality compiler for the entire Ada-95 language, including all
annexes. The compiler is integrated with the GCC compiler system. The entire
GNAT product is distributed freely, with sources, under the Copyleft policy of the
Free Software Foundation. GNAT is part of the GNU project.

What is GNAT-Mac?

GNAT-Mac is a GNAT compiler hosted on the Macintosh that produces code for
that platform. The compiler is included with MachTen. It also runs under Power
MachTen and Professional MachTen, UNIX systems that run as Macintosh
applications. The compiler runs as a UNIX program.

The GNAT-Mac Development Project

GNAT for the Macintosh is the product of a team effort. This project has been
supported in part by the Ada Technology Insertion Program – Partners (ATIP-P),
under contract C96-175929. Support was also provided through INEL, Idaho
National Engineering Laboratory. The GNAT-Mac Technical Team consisted of:

• Professor Michael Feldman
• Jim Hopper
• Dr. John Matthews
• Dr. Art Evans

This team worked with Ada Core Technologies and Tenon to develop GNAT-Mac
and the MachTen product.

Power MachTen User’s GuideA1-2

Ada Core Technologies provides commercial support for GNAT and related
software, including maintenance, porting of Ada83 applications to Ada95, porting
of GNAT to new hardware platforms, training, and consulting. ACT can be
contacted at:

Ada Core Technologies
73 Fifth Avenue, Suite 11-B
New York City, NY 10003
info@gnat.com

ACT maintains a site that holds the latest versions of the Macintosh compilers and
all documentation at:

ftp://pubmcada:@gnat-mac.com/usr/users/macada/public

or log in to: ftp://gnat-mac.com as user pubmcada, no password, and cd to
/usr/users/macada/public.

ACT provides GNAT compilers for all platforms (including the Mac) at this site:

ftp://cs.nyu.edu/pub/gnat

As of this writing, the relevant files are in directories mac68k and powermac.

For other mirror sites, see the link “FTP and Mirror Sites” on the ACT Home Page,
http://www.gnat.com.

What is Ada?

Ada is the language of choice where software engineering, reliability, cost-
effectiveness, large-scale development, and reuse matter. It is an industrial-
strength programming language for real-time systems and DSP programming.
Ada is currently used for applications in such domains as financial services,
avionics, aeronautics, air traffic control, telecommunications, medical devices,
power plants, railroads, astrophysics, satellites and defense, to name a few.

The Internet provides extensive resources for learning about all aspects of Ada.
We recommend the Ada Home Page(http://www.adahome.com) for up-to-date
links, directly or indirectly, to every Ada-related Ada resource on the Internet. For
beginners, there are links to Ada tutorial material; for more advanced users there
are links to the documentation defining the language. To learn more about HBAP,
try the “Welcome Tour” link on the HBAP Home Page.

Power MachTen User’s Guide A1-3

Documentation Supplement for GNAT

Part 1: An Introduction to Some GNAT Tools
Michael B. Feldman, The George Washington University

Copyright 1996, Michael B. Feldman. All Rights Reserved.
last revised September 1996

The document serves as an introduction to some of the tools provided with the
GNAT (GNU Ada 95) compilation system. This document does not replace
gnatinfo.txt, the “official” GNAT user manual, but rather selectively augments it
with examples of tool use and some helpful hints. All these tools have many more
options and flags than we shall cover here; please refer to gnatinfo.txt for further
details.

A1.1 Using gnatmake

gnatmake is the GNAT tool that builds an executable program from a set of source
files, typically an Ada main program and a set of library units like packages.
gnatmake has many options, including compiler, binder, and linker options to be
passed through to those tools, multidirectory compilation structures, and the like.
Here we cover some of the most frequently-used options. Throughout, our
annotations and explanations are in the typeface you are reading. Our command
line input is shown like this:

sample command line

and the output is shown like this:

sample output line

Power MachTen User’s GuideA1-4

Consider a program test_factorial.adb, a source file containing one nested
subprogram, Factorial, which recursively computes the factorial of its positive
input argument. We build an executable test_factorial with the command

gnatmake -v -g -gnatl test_factorial

We have used the three options.

-v verbose, which traces the steps in the build process
-g include debugging info, which causes symbol table information to be

included in the executable for debugging purposes. We will use this
later.

-gnatl which displays a compilation listing on the screen

Here is the screen output from this command, with our annotations:

GNATMAKE 3.05 (960607) Copyright 1995 Free Software
Foundation, Inc.

"test_factorial.ali" being checked ...
-> "test_factorial.adb" time stamp mismatch

test_factorial needs to be compiled; invoke the compiler and display the
listing.

gcc -c -g -gnatl test_factorial.adb

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Compiling: test_factorial.adb (source file time stamp: 1996-09-22
15:15:47)

 1. with Ada.Text_IO;
 2. with Ada.Integer_Text_IO;
 3. procedure Test_Factorial is
 4. --
 5. --| Demonstrates the factorial function
 6. --| Author: Michael B. Feldman, The George Washington University
 7. --| Copyright 1996, Michael B. Feldman. All Rights Reserved.
 8. --| Last Modified: August 1996
 9. --
 10.

Power MachTen User’s Guide A1-5

 11. Answer: Positive;
 12.
 13. function Factorial (N : IN Positive) return Positive is
 14.
 15. -- Computes the factorial of N (N!) recursively
 16. -- Pre : N is defined
 17. -- Post: returns N!
 18.
 19. Result : Positive;
 20.
 21. begin -- Factorial
 22.
 23. if N = 1 then
 24. Result := 1; -- stopping case
 25. else
 26. Result := N * Factorial(N-1); -- recursion
 27. end if;
 28.
 29. return Result;
 30. end Factorial;
 31.
 32. begin -- Test_Factorial
 33.
 34. Answer := Factorial(4);
 35. Ada.Text_IO.Put(Item => "The value of 4! is ");
 36. Ada.Integer_Text_IO.Put(Item => Answer, Width => 11);
 37. Ada.Text_IO.New_Line;
 38.
 39. end Test_Factorial;

 39 lines: No errors

Successful compilation; invoke the binder and linker.

gnatbind -x test_factorial.ali
gnatlink -g test_factorial.ali

Now we run the executable:

./test_factorial

The value of 4! is 24

Power MachTen User’s GuideA1-6

A1.2 Overriding the GNAT default file-naming
conventions

GNAT requires that each source file contain only one compilation unit (see
gnatchop in the GNAT User’s Guide for details on how to split multi-unit files).
GNAT prefers that each file name agree with the name of the unit in that file, e.g.,
Test_Factorial is in the file test_factorial.adb. Note that the file name is always in
lower-case, and that the file extension should be .ads for a package spec and .adb
otherwise.

These conventions are sometimes inconvenient, for example, when porting in Ada
source code from another compiler with different conventions. It is possible to
override these preferences, using a configuration file called gnat.adc. If this file is
present in the current directory, gnatmake will use it to map the file names to the
unit names. Let's look at a set of files making up a program to do rational-number
arithmetic. Here are the contents of gnat.adc.

pragma Source_File_Name
(Unit_Name => Rationals, Spec_File_Name => "prog21.ads");

pragma Source_File_Name
(Unit_Name => Rationals, Body_File_Name => "prog22.adb");

pragma Source_File_Name
(Unit_Name => Rationals.IO, Spec_File_Name =>
"prog23.ads");

pragma Source_File_Name
(Unit_Name => Rationals.IO, Body_File_Name =>
"prog24.adb");

pragma Source_File_Name
(Unit_Name => Test_Rationals_1, Body_File_Name =>
"prog25.adb");

Rationals provide a simple rational number package; Rationals.IO provides Get and
Put operations for rationals, and Test_Rationals_1 is a simple demonstration of the
package. To get a listing of the rationals spec, we type:

gnatmake -gnats -gnatl prog21.ads

(the -gnats option does syntax checking only)

gcc -c -gnats -gnatl prog21.ads

Power MachTen User’s Guide A1-7

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Checking: prog21.ads (source file time stamp: 1996-09-22 14:14:00)

 1. package Rationals is
 2. --
 3. --|
 4. --| Specification of the abstract data type for representing
 5. --| and manipulating rational numbers.
 6. --| All rational quantities in this package are initialized
 7. --| to 0/1.
 8. --|
 9. --| Author: Michael B. Feldman, The George Washington University
 10. --| Copyright 1996, Michael B. Feldman. All Rights Reserved.
 11. --| Last Modified: August 1996.
 12. --|
 13. --
 14.
 15. type Rational is private;
 16.
 17. ZeroDenominator: exception;
 18.
 19. function "/" (X : Integer; Y : Integer) return Rational;
 20. -- constructor:
 21. -- Pre : X and Y are defined
 22. -- Post: returns a rational number
 23. -- If Y > 0, returns Reduce(X,Y)
 24. -- If Y < 0, returns Reduce(-X,-Y)
 25. -- Raises: ZeroDenominator if Y = 0
 26.
 27. function "+"(R1 : Rational; R2 : Rational) return Rational;
 28. -- dyadic arithmetic constructor:
 29. -- Pre : R1 and R2 are defined
 30. -- Post: returns the rational sum of R1 and R2
 31.
 32. private
 33. -- A record of type Rational consists of a pair of Integer values
 34. -- such that the first number represents the numerator of a
 rational
 35. -- number and the second number represents the denominator.
 36.
 37. type Rational is record
 38. Numerator : Integer := 0;
 39. Denominator: Positive := 1;
 40. end record;

Power MachTen User’s GuideA1-8

 41. end Rationals;

 41 lines: No errors

We do the same for the spec of the rational input/output package:

gnatmake -gnats -gnatl prog23.ads

gcc -c -gnats -gnatl prog23.ads

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Checking: prog23.ads (source file time stamp: 1996-09-22 14:14:00)

 1. with Ada.Text_IO;
 2. package Rationals.IO is
 3. --
 4. --| Specification of the input/output child package for Rationals
 5. --|
 6. --| Author: Michael B. Feldman, The George Washington University
 7. --| Copyright 1996, Michael B. Feldman. All Rights Reserved.
 8. --
 9.
 10. procedure Get (Item : out Rational);
 11. -- Pre : None
 12. -- Post: The first integer number read is the numerator of Item;
 13. -- the second integer number is the denominator of Item.
 14. -- A "/" between the two numbers is optional.
 15. -- The Rational constructor "/" is called
 16. -- to produce a rational in reduced form.
 17.
 18. procedure Put (Item : in Rational);
 19. -- Pre : Item is defined
 20. -- Post: displays the numerator and denominator of Item.
 21.
 22. end Rationals.IO;

 22 lines: No errors

Power MachTen User’s Guide A1-9

Now we are ready to build Test_Rationals_1:

gnatmake -g -v -gnatl -f prog25.adb

GNATMAKE 3.05 (960607) Copyright 1995 Free Software Foundation, Inc.
gcc -c -g -gnatl prog25.adb

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Compiling: prog25.adb (source file time stamp: 1996-09-22 14:14:01)

 1. with Ada.Text_IO;
 2. with Rationals; use type Rationals.Rational;
 3. with Rationals.IO;
 4. procedure Test_Rationals_1 is
 5. --
 6. --| Very rudimentary test of package Rationals and Rationals.IO
 7. --|
 8. --| Author: Michael B. Feldman, The George Washington University
 9. --| Copyright 1996, Michael B. Feldman. All Rights Reserved.
 10. --| Last Modified: July 1995
 11. --
 12.
 13. A: Rationals.Rational;
 14. B: Rationals.Rational;
 15. C: Rationals.Rational;
 16. D: Rationals.Rational;
 17. E: Rationals.Rational;
 18. F: Rationals.Rational;
 19.
 20. begin -- Test_Rationals_1
 21.
 22. A := 1/3;
 23. B := 2/(-4);
 24. Ada.Text_IO.Put(Item => "A = ");
 25. Rationals.IO.Put(Item => A);
 26. Ada.Text_IO.New_Line;
 27. Ada.Text_IO.Put(Item => "B = ");
 28. Rationals.IO.Put(Item => B);
 29. Ada.Text_IO.New_Line;
 30.
 31. -- Read in rational numbers C and D.
 32. Ada.Text_IO.Put(Item => "Enter rational number C > ");
 33. Rationals.IO.Get(Item => C);

Power MachTen User’s GuideA1-10

 34. Ada.Text_IO.Put(Item => "Enter rational number D > ");
 35. Rationals.IO.Get(Item => D);
 36. Ada.Text_IO.New_Line;
 37.
 38. E := A + B;
 39. Ada.Text_IO.Put(Item => "E = A + B is ");
 40. Rationals.IO.Put(Item => E);
 41. Ada.Text_IO.New_Line;
 42.
 43. F := C + D;
 44. Ada.Text_IO.Put(Item => "F = C + D is ");
 45. Rationals.IO.Put(Item => F);
 46. Ada.Text_IO.New_Line;
 47.
 48. Ada.Text_IO.Put(Item => "A + E + F is ");
 49. Rationals.IO.Put(Item => A + E + F);
 50. Ada.Text_IO.New_Line;
 51.
 52. end Test_Rationals_1;

 52 lines: No errors

gcc -c -g -gnatl prog22.adb

gnatmake has discovered that Rationals must be compiled (no .ali or .o file was
present). Note that gnatmake goes directly to the rationals body; GNAT compiles
its spec “on the fly” and produces no listing of the spec. That is why we did the
earlier syntax-check steps, just to get the listings.

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Compiling: prog22.adb (source file time stamp: 1996-09-22 14:14:00)

 1. package body Rationals is
 2.
 3. --
 4. --| Body of the abstract data type for representing
 5. --| and manipulating rational numbers.
 6. --|
 7. --| Author: Michael B. Feldman, The George Washington University
 8. --| Copyright 1996, Michael B. Feldman
 9. --| Last Modified: August 1996
 10. --
 11.

Power MachTen User’s Guide A1-11

 12. -- local function GCD, not provided to clients
 13.
 14. function GCD(M: Positive; N: Positive) return Positive is
 15. -- finds the greatest common divisor of M and N
 16. -- Pre: M and N are defined
 17. -- Post: returns the GCD of M and N, by Euclid's Algorithm
 18.
 19. R : Natural;
 20. TempM: Positive;
 21. TempN: Positive;
 22.
 23. begin -- GCD
 24.
 25. TempM := M;
 26. TempN := N;
 27.
 28. R := TempM rem TempN;
 29.
 30. while R /= 0 loop
 31. TempM := TempN;
 32. TempN := R;
 33. R := TempM rem TempN;
 34. end loop;
 35.
 36. return TempN;
 37.
 38. end GCD;
 39.
 40. -- exported operations
 41.
 42. function "/" (X : Integer; Y : Integer) return Rational is
 43. G: Positive;
 44. begin -- "/"
 45.
 46. if Y = 0 then
 47. raise ZeroDenominator;
 48. end if;
 49.
 50. if X = 0 then
 51. return (Numerator => 0, Denominator => 1);
 52. end if;
 53.
 54. G := GCD(abs X, abs Y);
 55. if Y > 0 then
 56. return (Numerator => X/G, Denominator => Y/G);

Power MachTen User’s GuideA1-12

 57. else
 58. return (Numerator => (-X)/G, Denominator => (-Y)/G);
 59. end if;
 60.
 61. end "/";
 62.
 63. -- dyadic arithmetic operator
 64.
 65. function "+"(R1 : Rational; R2 : Rational) return Rational is
 66. N: Integer;
 67. D: Positive;
 68. begin -- "+"
 69. N := R1.Numerator * R2.Denominator + R2.Numerator *
 R1.Denominator;
 70. D := R1.Denominator * R2.Denominator;
 71. return N/D; -- compiler will use Rational constructor here!
 72. end "+";
 73.
 74. end Rationals;

 74 lines: No errors

Similarly, gnatmake invokes a compilation for Rationals.IO.

gcc -c -g -gnatl prog24.adb

GNAT 3.05 (960607) Copyright 1991-1996 Free Software Foundation, Inc.

Compiling: prog24.adb (source file time stamp: 1996-09-22 14:14:00)

 1. with Ada.Text_IO;
 2. with Ada.Integer_Text_IO;
 3. package body Rationals.IO is
 4. --
 5. --| Body of the input/output child package for Rationals
 6. --|
 7. --| Author: Michael B. Feldman, The George Washington University
 8. --| Copyright 1996, Michael B. Feldman. All Rights Reserved
 9. --| Last Modified: August 1996
 10. --
 11.
 12. -- input procedure
 13.
 14. procedure Get (Item : out Rational) is

Power MachTen User’s Guide A1-13

 15.
 16. N: Integer;
 17. D: Integer;
 18. Dummy: Character; -- dummy character to hold the "/"
 19.
 20. begin -- Get
 21.
 22. Ada.Integer_Text_IO.Get(Item => N);
 23. Ada.Text_IO.Get (Item => Dummy);
 24. Ada.Integer_Text_IO.Get(Item => D);
 25. Item := N/D;
 26.
 27. end Get;
 28.
 29. -- output procedure
 30.
 31. procedure Put (Item : in Rational) is
 32.
 33. begin -- Put
 34.
 35. Ada.Integer_Text_IO.Put(Item => Item.Numerator, Width => 1);
 36. Ada.Text_IO.Put(Item => '/');
 37. Ada.Integer_Text_IO.Put(Item => Item.Denominator, Width => 1);
 38.
 39. end Put;
 40.
 41. end Rationals.IO;

 41 lines: No errors

Finally, gnatmake invokes the binder and linker.

gnatbind -x prog25.ali
gnatlink -g prog25.ali

Now we execute the demonstration program several times:

Power MachTen User’s GuideA1-14

./prog25

A = 1/3
B = -1/2
Enter rational number C > 2/4
Enter rational number D > 9/6

E = A + B is -1/6
F = C + D is 2/1
A + E + F is 13/6

./prog25

A = 1/3
B = -1/2
Enter rational number C > 0/1
Enter rational number D > 9/6

E = A + B is -1/6
F = C + D is 3/2
A + E + F is 5/3
./prog25

A = 1/3
B = -1/2
Enter rational number C > 1/0

raised RATIONALS.ZERODENOMINATOR

Here we entered a zero for the denominator of a rational. This is not allowed
mathematically, so the exception is raised (somewhere in the rationals package)
and propagated out of the main program.

We can get a full traceback showing where the exception was raised and how it
propagated, but we need gdb for that.

Power MachTen User’s Guide A1-15

A1.3 Using gdb to get a simple traceback

GNAT does not come with its own debugger, or even a built-in traceback facility.
Instead, it depends upon the GNU debugger, gdb. Let's use gdb to get a traceback
from our rationals demonstration. We type:

gdb prog25

and we are placed in gdb's command processor. gdb's prompts are indicated by
(gdb).

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions. There is absolutely no warranty for GDB; type
"show warranty" for details.

GDB 4.15.1.gnat.1.10

Copyright 1995 Free Software Foundation, Inc.

(gdb) break __gnat_unhandled_exception

We have indicated that we wish gdb to stop the program and accept more
commands, if an unhandled exception is raised. The address of the breakpoint is
given; this will, in general, vary from machine to machine and even execution to
execution. The file a-raise.c is part of the GNAT runtime and not of concern to us
here.

Breakpoint 1 at 0x17dec: file a-raise.c, line 65

Now we tell gdb to run the program. It will run normally, unless that breakpoint
is reached.

(gdb) run

Starting program: prog25

Breakpoint 1 at 0x1fa328c: file a-raise.c, line 65.
A = 1/3
B = -1/2
Enter rational number C > 1 0
Breakpoint 1, __gnat_unhandled_exception (except=0x36abb58)
at a-raise.c:65

Power MachTen User’s GuideA1-16

a-raise.c:65: No such file or directory.
Here we stop at the breakpoint, because we entered that zero denominator. Ignore
the last line about a-raise.c. We request a traceback (which gdb calls a
backtrace):

(gdb) backtrace

#0 __gnat_unhandled_exception (except=0x36abb58) at a-
 raise.c:65
#1 0x1fa33c4 in __gnat_raise_nodefer_with_msg
 (except=0x36abb58)
 at a-raise.c:108
#2 0x1fa3438 in __gnat_raise_nodefer (except=0x36abb58) at
 a-raise.c:120
#3 0x1fa34cc in __gnat_raise (except=0x36abb58) at a-
 raise.c:130
#4 0x1fa2510 in rationals."/" (x=1, y=0) at prog22.adb:47
#5 0x1fa288c in rationals.io.get (item={numerator = 0,
 denominator = 1})
 at prog24.adb:25
#6 0x1fa2b08 in test_rationals_1 () at prog25.adb:33
#7 0x1f8b64c in main (argc=1, argv=0x1f8a3ec,
 envp=0x1f8a3f4) at b_prog25.c:40
#8 0x1f8b4e8 in __start (=0x4186001c, =0x81620008, =0x1)
#9 0x1f8b4a0 in __start (=0x1f8a59f, =0x1f8a5c6, =0x1f8a5d1)

Refer back to the listings above. The interesting part of the traceback, lines 4-6,
shows that the exception was raised in the function "/" at line 22 of Rationals,
which was called from the procedure Get at line 25 of Rationals.IO, which in turn
was called from line 33 of Test_Rationals_1. The first four traceback lines, and the
last 3 lines, give trace information from the GNAT runtime system. Normally you
can ignore these lines.

(gdb) quit

The program is running. Quit anyway (and kill it)? (y or n) y

Power MachTen User’s Guide A1-17

A1.4 Tracing a Program with gdb

We can show some more gdb commands by returning to the program test_factorial.
Here we will break not on an exception, but every time the Factorial function is
called. Since Factorial is recursive, we will stop at every new level of recursion.

gdb test_factorial

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions. There is absolutely no warranty for GDB; type
"show warranty" for details. GDB 4.15.1.gnat.1.10, Copyright
1995 Free Software Foundation, Inc.

First we stop at the first executable statement of the main program:

(gdb) break test_factorial
Breakpoint 1 at 0x16ee4: file test_factorial.adb, line 34.

Now we set a break for each time we call Factorial:

(gdb) break factorial
Breakpoint 2 at 0x16dd0: file test_factorial.adb, line 23.

(gdb) run
Starting program: test_factorial
Breakpoint 1 at 0x2f6ef24: file test_factorial.adb, line 34.
Breakpoint 2 at 0x2f6ee10: file test_factorial.adb, line 23.

Breakpoint 1, test_factorial () at test_factorial.adb:34
34 Answer := Factorial(4);

and we continue the run:

(gdb) continue
Continuing.

Breakpoint 2, test_factorial.factorial (n=4) at
test_factorial.adb:23
23 if N = 1 then

Power MachTen User’s GuideA1-18

Now we will set a watchpoint on the variable Result, so that the program will stop
every time Result acquires a new value.

(gdb) watch result
Watchpoint 3: test_factorial.factorial::result

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 57185676
New value = 57179476
0x1efec48 in test_factorial.factorial (n=32402616) at
test_factorial.adb:13
13 function Factorial (N : IN Positive) return Positive
is

The huge values (which vary from execution to execution) suggest that Result is
uninitialized at this point. This is true.

(gdb) continue
Continuing.

Breakpoint 2, test_factorial.factorial (n=3) at test_factorial.adb:23
23 if N = 1 then

(gdb) continue
Continuing.
Breakpoint 2, test_factorial.factorial (n=2) at test_factorial.adb:23
23 if N = 1 then

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 57179476
New value = 0
0x1efec48 in test_factorial.factorial (n=32402440) at
test_factorial.adb:13
13 function Factorial (N : IN Positive) return Positive is

(gdb) continue
Continuing.

Power MachTen User’s Guide A1-19

Breakpoint 2, test_factorial.factorial (n=1) at test_factorial.adb:23
23 if N = 1 then

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 0
New value = 1
0x1efec64 in test_factorial.factorial (n=1) at test_factorial.adb:24
24 Result := 1; -- stopping case

Now we've recursed all the way down, and start back up:

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 1
New value = 57179476
0x1efed18 in test_factorial.factorial (n=2) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 57179476
New value = 2
test_factorial.factorial (n=2) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 2
New value = 57179476
0x1efed18 in test_factorial.factorial (n=3) at test_factorial.adb:29
29 return Result;
(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Power MachTen User’s GuideA1-20

 Old value = 57179476
New value = 6
test_factorial.factorial (n=3) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 6
New value = 57185676
0x1efed18 in test_factorial.factorial (n=4) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
Watchpoint 3: test_factorial.factorial::result

Old value = 57185676
New value = 24
test_factorial.factorial (n=4) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
Watchpoint 3 deleted because the program has left the block in
which its expression is valid.
0x1efecf8 in test_factorial.factorial (n=4) at test_factorial.adb:29
29 return Result;

(gdb) continue
Continuing.
The value of 4! is 24

Program exited normally

Refer to the GNAT documents for a full set of documentation on gdb. gdb also
provides fairly useful on-line help:

(gdb) help

List of classes of commands:
running -- Running the program
stack -- Examining the stack

Power MachTen User’s Guide A1-21

data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features
internals -- Maintenance commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

A1.5 Using gnatf to get a cross reference

Suppose we wish to know, for a given program, all its declarations and all the
declarations it uses from the packages it WITHs, and where (which lines) these are
referenced. Looking again at our rationals demonstration, we type:

gnatf -x6 prog25.adb

gnatf stores the cross reference information in the file X.ref, so let's look at its
contents.

Here we see the variables declared in Test_Rationals_1, and where in that program
each is used (line and character position within line).

cat X.ref

%% prog25.adb 960922141401 %%
test_rationals_1 procedure 4:11
a variable 13:3
 prog25.adb {22:3 25:28 38:8 49:28}
b variable 14:3
 prog25.adb {23:3 28:28 38:12}
c variable 15:3
 prog25.adb {33:28 43:8}
d variable 16:3
 prog25.adb {35:28 43:12}
e variable 17:3
 prog25.adb {38:3 40:28 49:32}

Power MachTen User’s GuideA1-22

f variable 18:3
 prog25.adb {43:3 45:28 49:36}

The main program calls some procedures from Ada.Text_IO

-- /usr/local/adainclude/a-textio.ads 960625050333 --
text_io package 30:13
 prog25.adb {1:10 24:7 26:7 27:7 29:7 32:7 34:7 36:7 39:7 41:7 44:7 46:7
48:7
 50:7}
text_io.new_line procedure 141:14
 prog25.adb {26:15 29:15 36:15 41:15 46:15 50:15}
text_io.put procedure 217:14
 prog25.adb {24:15 27:15 32:15 34:15 39:15 44:15 48:15}

-- /usr/local/adainclude/ada.ads 960625050300 --
ada package 18:9
 prog25.adb {24:3 26:3 27:3 29:3 32:3 34:3 36:3 39:3 41:3 44:3 46:3 48:3
50:3}
3}

and from Rationals:

-- prog21.ads 960922141400 --
rationals package 1:9
 prog25.adb {2:6 2:26 13:6 14:6 15:6 16:6 17:6 18:6 25:3 28:3 33:3 35:3
40:3 45
 :3 49:3}
rational private_type 15:8 37:8
 prog25.adb {2:36 13:16 14:16 15:16 16:16 17:16 18:16}
"/" function 19:12
 prog25.adb {22:9 23:9}
"+" function 27:12
 prog25.adb {38:10 43:10 49:34 49:30}

and from Rationals.IO:

-- prog23.ads 960922141400 --
io package 2:19
 prog25.adb {3:16 25:13 28:13 33:13 35:13 40:13 45:13 49:13}
io.get procedure 10:13
 prog25.adb {33:16 35:16}
io.put procedure 18:13
 prog25.adb {25:16 28:16 40:16 45:16 49:16}

Power MachTen User’s Guide A1-23

A1.6 Using gnatk8

We saw above how to override the GNAT file-naming conventions using a
configuration file. But suppose we prefer to follow GNAT's preferences. We must
name our files according to the units they contain. This can cause a problem if a
unit's name is longer than our computer's maximum name length. For example,
the Apple Macintosh has a file-name limit of 31 characters. Because our GNAT file
names all end with a dot and a 3-letter extension, effectively we have a 27-character
limit on the file name.

For systems with limits on file names, GNAT has an algorithm (krunch) for
"crunching" its preferred file names down to the limit. On the Mac, if we add the
flag -gnatk27 to a gnatmake invocation, GNAT will assume that all source file names
follow the krunch algorithm for 27 characters. The algorithm is a bit involved; it is
documented a bit in the GNAT Users Guide. Suffice it to say that if the file name
has 27 characters or less, it is used without change.

Suppose the file name is long. How do we determine its krunched name? The tool
gnatk8 gives us this capability. (This is an odd name; it comes from the fact that file
names in DOS or OS/2 FAT file systems are 8 characters or less; the tool was
developed originally for those systems.)

Given a unit:

Very_Long_Unit_Name.Long_Child_Package_Name

stored in a file some_file.adb. We can rename this file correctly on the Mac in two
steps. First, ask gnatk8 what the name should be:

gnatk8 Very_Long_Unit_Name.Long_Child_Package_Name 27

verlonuninamlonchilpackname

Then rename the file accordingly:

mv some_file.adb verlonuninamlonchilpackname.adb

Power MachTen User’s GuideA1-24

Power MachTen User’s Guide A2-1

APPENDIX A
Documentation Supplement for GNAT

Part 2: GNAT User’s Guide
(C) Copyright 1995-1996, Ada Core Technologies, Inc.
GNAT is free software; you can redistribute it and/or modify it under terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at
your option) any later version. GNAT is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANT ABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License along with
GNAT; see file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave.,
Cambridge, MA 02139, USA.

Part 2: GNAT User’s Guide A2-1

A2.1.0 About This Guide A2-5
A2.1.1 What This Guide Contains A2-5
A2.1.2 What You Should Know Before Reading This Guide A2-6
A2.1.3 Related Information A2-6
A2.1.4 Conventions A2-6

A2.2.0 Getting Started With GNAT A2-7
A2.2.1 Running GNAT A2-7
A2.2.2 Running a Simple Ada Program A2-7
A2.2.3 Running a Program With Multiple Units A2-9
A2.2.4 Using the gnatmake Utility A2-11

A2.3.0 The GNAT Compilation Model A2-12
A2.3.1 Source Representation A2-12
A2.3.2 Foreign Language Representation A2-13

A2.3.2.1 Latin-1 A2-13
A2.3.2.2 Other 8-Bit Codes A2-13

A2.3.3 File Naming Rules A2-16
A2.3.4 Naming of GNAT Source Files A2-17
A2.3.5 Generating Object Files A2-18
A2.3.6 Source Dependencies A2-19

Power MachTen User’s GuideA2-2

A2.3.7 The Ada Library Information Files A2-20
A2.3.8 Representation of Time Stamps A2-23
A2.3.9 Binding an Ada Program A2-24
A2.3.10 Mixed Language Programming A2-25
A2.3.11 Comparison of GNAT Model With C/C++

Compilation Model A2-25
A2.3.12 Comparison of GNAT Model With Traditional

Ada Library Model A2-26

A2.4.0 Compiling Ada Programs With gcc A2-28
A2.4.1 Compiling Programs A2-28
A2.4.2 Switches for gcc A2-29
A2.4.3 Switches for GNAT A2-31

A2.4.3.1 Error Message Control A2-32
A2.4.3.2 Debugging and Assertion Control A2-36
A2.4.3.3 Runtime Checks A2-36
A2.4.3.4 Using gcc for Syntax Checking A2-37
A2.4.3.5 Using gcc for Semantic Checking A2-38
A2.4.3.6 Compiling Ada 83 Programs A2-38
A2.4.3.7 Style Checking A2-39
A2.4.3.8 Character Set Control A2-39
A2.4.3.9 File Naming Control A2-40
A2.4.3.10 Subprogram Inlining Control A2-40
A2.4.3.11 Auxiliary Output Control A2-41
A2.4.3.12 Debugging Control A2-41

A2.4.4 Search Paths and the Run-Time Library (RTL) A2-43
A2.4.5 Order of Compilation Issues A2-44
A2.4.6 Examples A2-45

Power MachTen User’s Guide A2-3

A2.5.0 Binding Ada Programs With gnatbind A2-46
A2.5.1 Running gnatbind A2-46
A2.5.2 Consistency-Checking Modes A2-49
A2.5.3 Error-Message Control A2-50
A2.5.4 Output Control A2-51
A2.5.5 Binding for Non-Ada Main Programs A2-51
A2.5.6 Summary of Binder Switches A2-52
A2.5.7 Command-Line Access A2-53
A2.5.8 Search Paths for gnatbind A2-53
A2.5.9 Examples of gnatbind Usage A2-54

A2.6.0 Linking Ada Programs Using gnatlink A2-56
A2.6.1 Running gnatlink A2-56
A2.6.2 Switches for gnatlink A2-57

A2.7.0 The GNAT Make Program gnatmake A2-58
A2.7.1 Running gnatmake A2-59
A2.7.2 Switches for gnatmake A2-60
A2.7.3 Notes on the Command Line A2-62
A2.7.4 How gnatmake Works A2-63
A2.7.5 Examples of gnatmake Usage A2-64

A2.8.0 Handling Files With Multiple Units
With gnatchop A2-65
A2.8.1 Handling Files With Multiple Units A2-65
A2.8.2 Command Line for gnatchop A2-66
A2.8.3 Switches for gnatchop A2-66
A2.8.4 Examples of gnatchop Usage A2-67

A2.9.0 The Front-End/Cross-Reference Utility gnatf A2-68
A2.9.1 Overview of gnatf A2-68
A2.9.2 Command Line of gnatf A2-69
A2.9.3 Compilation Switches A2-69
A2.9.4 Cross-Referencing Switches A2-70
A2.9.5 Cross Reference Information and Smart

Recompilation A2-71

Power MachTen User’s GuideA2-4

A2.9.6 File Structure A2-72
A2.9.7 Example of gnatf Usage A2-73

A2.10.0 Filename Krunching With gnatk8 A2-76
A2.10.1 About gnatk8 A2-76
A2.10.2 Using gnatk8 A2-76
A2.10.3 Krunching Method A2-77
A2.10.4 Examples of gnatk8 Usage A2-78

A2.11.0 Other Utility Programs A2-79
A2.11.1 Using Other Utility Programs With GNAT A2-79
A2.11.2 The Naming Scheme of GNAT A2-79
A2.11.3 Ada Mode for Emacs A2-80

A2.12.0 Running and Debugging Ada Programs A2-81
A2.12.1 Getting Internal Debugging Information A2-81
A2.12.2 GNAT Crashes A2-81
A2.12.3 Using gdb A2-83

A2.13.0 Performance Considerations A2-84
A2.13.1 Controlling Runtime Checks A2-84
A2.13.2 Optimization Levels A2-85
A2.13.3 Inlining of Subprograms A2-86

Power MachTen User’s Guide A2-5

A2.1.0 About This Guide
This guide describes the language itself, as well as the various utilities that allow
you to manipulate GNAT code.

A2.1.1 What This Guide Contains
This guide contains the following chapters:

• Getting Started With GNAT. Describes how to get started running and
compiling with GNAT, the Ada programming environment.

• The GNAT Compilation Model. Describes the compilation model used by
GNAT.

• Compiling Ada Programs With gcc. Describes how to compile Ada programs
with gcc, the Ada compiler.

• Binding Ada Programs With gnatbind. Describes how to perform binding in
Ada programs with gnatbind, the GNAT binding utility.

• Linking Ada Programs Using gnatlink. Describes gnatlink, a program that
provides for linking using the GNAT runtime library to construct a program
consisting of a mix of Ada and C sources.

• The GNAT Make Program gnatmake. Describes gnatmake, a utility that
automatically determines and compiles the set of sources needed by an Ada
compilation unit.

• Handling Files With Multiple Units With gnatchop. Describes gnatchop, a
utility that allows you to preprocess a file and split it into several other files,
one for each compilation unit.

• The Front-end/Cross-Reference Utility gnatf. Discusses gnatf, a modified
version of the GNAT compiler.

• Filename Krunching With gnatk8. Describes the gnatk8 filename krunching
utility.

• Other Utility Programs. Discusses several other GNAT utilities, including
gnatk8 and gnatf. This chapter also contains information on cross references,
smart recompilation, and cross-reference file structure.

• Running and Debugging Ada Programs. Describes how to run and debug
Ada programs.

• Performance Considerations. Reviews the trade offs between using defaults
or options in program development.

Power MachTen User’s GuideA2-6

A2.1.2 What You Should Know Before
Reading This Guide

This user’s guide assumes that you are familiar with Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

A2.1.3 Related Information

For further information about related tools, refer to the following documents:

• GNAT Reference Manual, which contains all reference material for the Silicon
Graphics Ada programming language.

• Ada 95 Language Reference Manual, which contains all reference material for
the Ada 95 programming language.

A2.1.4 Conventions

Following are examples of the typographical and graphic conventions used in this
guide:

• Functions, utility program names, standard names, and classes.

• ‘Option flags’

• ‘Filenames,’ ‘button names’, and ‘field names’.

• Variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text and

then shown this way.

Power MachTen User’s Guide A2-7

A2.2.0 Getting Started With GNAT

This chapter describes the usual ways of using GNAT to compile Ada programs.

A2.2.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:

1. The source file must first be compiled.

2. The source file then must be bound using the GNAT binder.

3. All appropriate object files must be linked to produce an executable.

A2.2.2 Running a Simple Ada Program

Any editor may be used to prepare an Ada program. If emacs is used, the optional
Ada mode may be helpful in laying out the program. The program text is a normal
text file. We will suppose in our initial example that you have used your editor to
prepare the following file:

with Text_IO; use Text_IO;
procedure Hello is
begin
 Put_Line (“Hello WORLD!”);
end Hello;

This file should be named ‘hello.adb’. GNAT requires each file contain a single unit
whose file name corresponds to the unit name with periods replaced by hyphens
and whose extension is ‘.ads’ for a spec and ‘.adb’ for a body.

Power MachTen User’s GuideA2-8

You can compile the program using one of the following commands:

gcc -c hello.adb
gnatmake -c hello
gnatmake -c hello.adb

gcc is the command used to access the compiler. This compiler is capable of
compiling programs in several languages including Ada 95 and C. It determines
you have given it an Ada program by the extension (‘.ads’ or ‘.adb’), and will call
the GNAT compiler to compile the specified file.

The ‘-c’ switch is required. It tells gcc to do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so
the ‘-c’ switch must always be present.)

This compile command generates a file ‘hello.o’ which is the object file
corresponding to your Ada program. It also generates a file ‘hello.ali’ which
contains additional information used to check that an Ada program is consistent.
To get an executable file, either use gnatmake or use gnatbind followed by gnatlink.

gnatmake is a master program which invokes all of the required gcc tools in the
correct order and compiles all necessary Ada units when requested to do so.

gnatmake hello

or

gnatbind -x hello.ali
gnatlink -o hello hello.ali

The result is an executable program called ‘hello’, which can be run using the
normal Unix command

./hello

and, if all has gone well, you will see

Hello WORLD!

appear in response to this command.

Power MachTen User’s Guide A2-9

A2.2.3 Running a Program With Multiple
Units

Consider a slightly more complicated example that has three files, a main
program, and the spec and body of a package:

package Greetings is
 procedure Hello;
 procedure Goodbye;
end Greetings;

with Text_IO; use Text_IO;
package body Greetings is
 procedure Hello is
 begin
 Put_Line (“Hello WORLD!”);
 end Hello;
 procedure Goodbye is
 begin
 Put_Line (“Goodbye WORLD!”);
 end Goodbye;
end Greetings;

with Greetings;
procedure Gmain is
begin
 Greetings.Hello;
 Greetings.Goodbye;
end Gmain;

Following the one-unit-per-file rule, prepare this program in the following three
separate files:

‘greetings.ads’
 spec of package Greetings
‘greetings.adb’
 body of package Greetings
‘gmain.adb’
 body of main program

Power MachTen User’s GuideA2-10

Compile the program in steps: one for the package, and one for the main program.
Unlike the case in some other Ada compilers, there is no required order of
compilation and, in particular, it is fine to compile the main program first:

gcc -c gmain.adb
gcc -c greetings.adb

Notice you do not need to compile ‘greetings.ads’. GNAT does not require that you
compile library specs or library generic packages. If you want, you can submit
these units to the compiler to be checked for correctness, using the ‘-gnatc’
switch:

gcc -gnatc -c greetings.ads

Once all the necessary units have been compiled, you bind and link them as
previously, using gnatbind and gnatlink as follows:

gnatbind gmain.ali
gnatlink -o gmain gmain.ali

A better approach is to simply use gnatmake as described in the following section.

Power MachTen User’s Guide A2-11

A2.2.4 Using the gnatmake Utility

As you work on a program, you keep track of which units you modify and make
sure you not only recompile these units, but also any units that depend on units
you have modified. For example, in the preceding case, if you edit ‘gmain.adb’, you
only need recompile that file. But if you edit ‘greetings.ads’, you must recompile
both ‘greetings.adb’ and ‘gmain.adb’, since both files contain units that depend on
‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so it is never
possible to generate an inconsistent program as a result of forgetting to do a
compilation, but it can be annoying to keep track of the dependencies. One
approach would be to use a ‘Makefile’, but the trouble with make files is that the
dependencies may change as you change the program, and you must make sure
that the ‘Makefile’ is kept up to date.

The gnatmake utility takes care of these details automatically. Invoke it as follows:

gnatmake gmain.adb

The argument is the file containing the main program. gnatmake examines the
environment, automatically recompiles any files that need recompiling, and binds
and links the resulting set of object files, generating the executable file, ‘gmain’.

Power MachTen User’s GuideA2-12

A2.3.0 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to
that used by other languages, such as C and C++, this model is substantially
different from the traditional Ada compilation models, which are based on a
library. The model is initially described without reference to this traditional
model. If you have not previously used an Ada compiler, you need only read the
first part of this chapter. The last section describes and discusses the differences
between the GNAT model and the traditional Ada compiler models. If you have
used other Ada compilers, you may find this section helps you to understand those
differences.

A2.3.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding.
Latin-1 is ASCII with the additional characters used for representing foreign
languages (see section “3.2 Foreign Language Representation” for support of non-
USA character sets). The format effector characters are represented using their
standard ASCII encodings, as follows:

VT Vertical tab 16#0B#
HT Horizontal tab 16#09#
CR Carriage return 16#0D#
LF Line feed 16#0A#
FF Form feed 16#0C#

The end of physical lines is marked by any of the following sequences: LF, CR,
CR-LF, or LF-CR. Standard Unix files simply use LF to terminate physical lines.
The other combinations are recognized to provide convenient processing for files
imported from other operating systems. For example, files imported from MS-
DOS on a PC are likely to have lines ended by CR-LF.

The end of a source file is normally represented by the physical end of file.
However the control character 16#1A# (SUB) is also represented as signalling the
end of the source file. Again, this is provided for compatibility with imported MS-
DOS files where this control code is used to
represent the end of file.

Power MachTen User’s Guide A2-13

Each file contains a single Ada compilation unit, including any pragmas associated
with the unit. For example, this means you must place a package declaration (a
package spec) and the corresponding body in separate files. An Ada compilation
(which is a sequence of compilation units) is represented using a sequence of files.
Similarly, you will place each subunit or child unit in a separate file.

A2.3.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada 95:

A2.3.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard
8859, part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to
standard ASCII coding, but the upper half is used to represent additional
characters. This includes extended letters used by European
languages, such as the umlaut used in German.

For a complete list of Latin-1 codes and their encodings, see the source file of
library unit Ada.Characters.Latin_1 in file ‘a-chlat1.ads’.

You may use any of these extended characters freely in character or string literals.
In addition, the extended characters that represent letters can be used in
identifiers.

A2.3.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

Latin-2 Latin-2 letters allowed in identifiers, with uppercase and lowercase
equivalence.

Latin-3 Latin-3 letters allowed in identifiers, with uppercase and lower case
equivalence.

Latin-4 Latin-4 letters allowed in identifiers, with uppercase and lower case
equivalence.

Power MachTen User’s GuideA2-14

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and
lowercase equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lower case equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lower case equivalences
in this range.

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 95 compatibility for identifier names. For precise data on the
encodings permitted, and the uppercase and lower case equivalences that are
recognized, see the file ‘csets.adb’ in the GNAT compiler sources.

Wide Character Coding
GNAT allows wide character codes to appear in character and string literals,
and also optionally in identifiers, using the following possible encoding
schemes:

Hex Coding
In this encoding, a wide character is represented by the following five
character sequence:

ESC a b c d

Where a, b, c, d are the four hexadecimal characters (using
uppercase letters) of the wide character code. For example, ESC A345
is used to represent the wide character with code 16#A345#. This
scheme is compatible with use of the full Wide_Character set.

Power MachTen User’s Guide A2-15

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on
(in other words, “a” is in the range 8-F) is represented as two bytes,
16#ab# and 16#cd#. The second byte may never be a format control
character, but is not required to be in the upper half. This method can
be also used for shift-JIS or EUC, where the internal coding matches the
external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab#
and 16#cd#, with the restrictions described for upper-half encoding as
described above. The internal character code is the corresponding JIS
character according to the standard algorithm for Shift-JIS conversion.
Only characters defined in the JIS code set table can be used with this
encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab#
and 16#cd#, with both characters being in the upper half. The internal
character code is the corresponding JIS character according to the EUC
encoding algorithm. Only characters defined in the JIS code set table
can be used with this encoding method.

Note: These coding schemes do not permit simultaneous use of the
upper half of the Latin-1 character set.

Power MachTen User’s GuideA2-16

A2.3.3 File Naming Rules

The filename is determined by the name of the unit the file contains. The name is
formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lower case for all letters except that a hyphen in the
second character position is replaced by a plus sign.
The extension is ‘.ads’ for a spec and ‘.adb’ for a body as shown in the following
table.

‘main.ads’
Main (spec)

‘main.adb’
Main (body)

‘arith_functions.ads’
Arith_Functions (package spec)

‘arith_functions.adb’
Arith_Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’
Sub (subunit of Main)

Following these rules can result in very long filenames if corresponding unit
names are very long (for example, if child units or subunits are heavily nested). An
option is available to shorten such long filenames (called filename “krunching”).
This may be particularly useful when programs being developed with GNAT are
to be used on operating systems such as MS-DOS with limited filename lengths.
See section “A2.10.2 Using gnatk8.”

Of course, no file shortening algorithm can guarantee uniqueness over all possible
unit names; if filename krunching is used it is your responsibility to ensure no
name clashes occur.

Power MachTen User’s Guide A2-17

A2.3.4 Naming of GNAT Source Files

If you want to examine the workings of the GNAT system, the following brief
description of its organization may be helpful:

• Files with prefix ‘sc’ contain the lexical scanner.

• All files prefixed with ‘par’ are components of the parser. The numbers
correspond to chapters of the Ada standard. For example, parsing of select
statements can be found in ‘par-ch9.adb’.

• All files prefixed with ‘sem’ perform semantic analysis. The numbers
correspond to chapters of the Ada standard. For example, all issues involving
context clauses can be found in ‘sem_ch10.adb’.

• All files prefixed with ‘exp’ perform AST normalization and expansion, using
the same numbering scheme. For example, the construction of record
initialization procedures is done in ‘exp_ch3.adb’.

• The files prefixed with ‘bind’ implement the binder, which verifies the
consistency of the compilation, determines an order of elaboration, and
generates the bind file.

• The files ‘atree.ads’ and ‘atree.adb’ detail the low-level data structures used by
the front-end.

• The files ‘sinfo.ads’ and ‘sinfo.adb’ detail the structure of the abstract syntax tree
as produced by the parser.

• The files ‘einfo.ads’ and ‘einfo.adb’ detail the attributes of all entities, computed
during semantic analysis.

• Library management issues are dealt with in files with prefix ‘lib’.

• Ada files with the prefix ‘a-’ are children of Ada, as defined in Annex A.

• Files with prefix ‘i-’ are children of Interfaces, as defined in Annex B.

• Files with prefix ‘s-’ are children of System. This includes both language-
defined children and GNAT runtime routines.

• Files with prefix ‘g-’ are children of GNAT. These are useful general-purpose
packages, fully documented in their specifications. All the other ‘.c’ files are
modifications of common gcc files.

Power MachTen User’s GuideA2-18

A2.3.5 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the
program is to generate the corresponding object files. These are generated by
compiling a subset of these source files. The files you need to compile are the
following:

• If a package spec has no body, compile the package spec to produce the object
file for the package.

• If a package has both a spec and a body, compile the body to produce the
object file for the package. The source file for the package spec need not be
compiled in this case since there is only one object file, which contains the code
for both the spec and body of the package.

• For a subprogram, compile the subprogram body to produce the object file for
the subprogram. The spec, if one is present, is as usual in a separate file, and
need not be compiled.

• In the case of subunits, only compile the parent unit. A single object file is
generated for the entire subunit tree, which includes all the subunits.

• Compile child units completely independently from their parent units
(though, of course, the spec of the parent unit must be present).

• Do not compile Generic units (specs and bodies).

The preceding rules describe the set of files that must be compiled to generate the
object files for a program. Each object file has the same name as the corresponding
source file, except that the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking syntactic and
semantic correctness. For example, in the case where a package has a separate spec
and body, you would not normally compile the spec. However, it is convenient in
practice to compile the spec to make sure it is correct before compiling clients of
this spec, since such compilations will fail if there is an error in the spec.

GNAT provides the option for compiling such files purely for the purposes of
checking correctness; such compilations are not required as part of the process of
building a program.

Power MachTen User’s Guide A2-19

A2.3.6 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce
it. Here we are using depends in the sense of the Unix make utility; in other words,
an object file depends on a source file if changes to the source file require the object
file to be recompiled.

In addition to this basic dependency, a given object may depend on additional
source files as follows:

• If a file being compiled with’s a unit X, the object file depends on the file
containing the spec of unit X. This includes files that are with’ed implicitly
either because they are parents of with’ed child units or they are runtime
units required by the language constructs used in a particular unit.

• If a file being compiled instantiates a library level generic unit, the object file
depends on both the spec and body files for this generic unit.

• If a file being compiled instantiates a generic unit defined within a package,
the object file depends on the body file for the package as well as the spec file.

• If a file being compiled contains a call to a subprogram for which pragma
Inline applies and inlining is activated with the ‘-gnatn’ switch, the object
file depends on the file containing the body of this subprogram as well as on
the file containing the spec.

The object file for a parent unit depends on the body files for all subunits of the
parent unit.

These rules are applied transitively: if unit A with’s unit B, whose elaboration
calls an inlined procedure in package C, the object file for unit A will depend on the
body of C, in file ‘c.adb’.

The set of dependent files described by these rules includes all the files on which
the unit is semantically dependent, as described in the Ada 95 Language Reference
Manual. However it is larger because of the inclusion of generic, inline, and
subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if
any of the source files on which it depends are modified. For example, if the make
utility is used to control compilation, the rule for an Ada object file must mention
all the source files on which the object file

Power MachTen User’s GuideA2-20

depends.

A2.3.7 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the
normal object file with a ‘.o’ extension. The second is a text file containing the
dependency information file. It has the same name but with an ‘.ali’ extension. This
file is known as the Ada Library Information (ALI)
file.

You normally need not be concerned with the contents of this file, but this section
is included in case you want to understand how these files are being used. Each
ALI file consists of a series of lines of the form:

Key_Character parameter parameter ...

The first two lines in the file identify the library output version and Standard
version. These are required to be consistent across the entire set of compilation
units in your program.

V “xxxxxxxxxxxxxxxx”

This line indicates the library output version, as defined in ‘gnatvsn.ads’. It ensures
that separate object modules of a program are consistent. It must be changed if
anything changes that would affect successful binding of modules compiled
separately.

Examples of such changes are modifications in the format of the library
information described in this package, modifications to calling sequences, or to the
way data is represented.

S “xxxxxxxxxxxxxxxx”

This line contains information regarding types declared in packages Standard as
stored in Gnatvsn.Standard_Version.

The purpose (on systems where, for example, the size of Integer can be set by
command line switches) is to ensure that all units in a program are compiled with
a consistent set of options.

Power MachTen User’s Guide A2-21

The following line is present only for a unit that can be a main program. It has the
form:

M type [priority]

type is either P for a parameterless procedure or F for a function returning a value
of integral type. The latter is for writing a main program that returns an exit status.
priority is present only if there was a valid pragma Priority in the
corresponding unit to set the main task priority. It is an unsigned decimal integer.

Following these header lines, a set of information lines appears for each
compilation unit that appears in the corresponding object file. In particular, when
a package body or subprogram body is compiled there will be two sets of
information, one for the spec and one for the body, with the entry for the body
appearing first. This is the only case in which a single ALI file contains more than
one unit. Note that subunits do not count as compilation units for this purpose,
and generate no library information, since they are inlined.

The lines for each compilation unit have the following form:

U unit-name source-name version [attributes]

This line identifies the unit to which this section of the library information file
applies. unit-name is the unit name in internal format, as described in package
Uname, and source-file is the name of the source file containing the unit.

version is the version given as eight hexadecimal characters with lower case letters.
This value is a hash code that includes contributions from the time stamps of this
unit and all its semantically dependent units.

Power MachTen User’s GuideA2-22

The optional attributes are a series of two-letter codes indicating information about
the unit:

EB Unit has pragma Elaborate_Body.
NE Unit has no elaboration routine. All subprogram specs are in this

category, as are subprogram bodies if access before elaboration checks
are being generated. Package bodies and specs may or may not have
NE set, depending on whether or not elaboration code is required.

PK Unit is a package, rather than a subprogram.
PU Unit has pragma Pure.
PR Unit has pragma Preelaborate.
RC Unit has pragma Remote_Call_Interface.
RT Unit has pragma Remote_Types.
SP Unit has pragma Shared_Passive.
SU Unit is a subprogram, rather than a package.

The attributes may appear in any order, separated by spaces. Another line in the
ALI file has the following form:

W unit-name [source-name lib-name [E] [EA]]

One of these lines is present for each unit mentioned in an explicit with clause by
the current unit. unit-name is the unit name in internal format. source-name is the
filename of the file that must be compiled to compile that unit (usually the file for
the body, except for packages that have no body). lib-name is the filename of the
library information file that contains the results of compiling the unit. The E and
EA parameters are present if pragma Elaborate or pragma Elaborate_All,
respectively, apply to this unit. In the case of generic units, only unit-name is
present, since generic units do not need to be compiled, and generate no library
information. Note that the elaborate pragmas can be given for generic units, but
GNAT ignores them.

Following the unit information is an optional series of lines that indicate the usage
of pragma Library_Unit. For each appearance of pragma Library_Unit in
any of the units for which unit lines are present, a line of the form:

L string

appears where string is the string from the pragma enclosed in quotes. Within the
quotes, the following can occur:

Power MachTen User’s Guide A2-23

• 7-bit graphic characters other than “ or {

• "" (indicating a single “ character)

• {hh} indicating a character whose code is hex hh

For further details, see Stringt.Write_String_Table_Entry in the file
‘stringt.ads’. Note that wide characters in the form {hhhh} cannot be produced,
since pragma Linker_Option accepts only String, not Wide_String.

Finally, at the end of the ALI file is a series of lines that indicate the source files on
which the compiled units depend. This is used by the binder for consistency
checking and look like:

D source-name time-stamp [comments]

comments, if present, must be separated from the time stamp by at least one blank.
Currently this field is unused.

Blank lines are ignored when the library information is read, and separate sections
of the file are separated by blank lines to ease readability. Extra blanks between
fields are also ignored.

A2.3.8 Representation of Time Stamps

All compiled units are marked with a time stamp, which is derived from The
source file. The binder uses these time stamps to ensure consistency of the set of
units that constitutes a single program. Time stamps are twelve-character strings
of the form YYMMDDHHMMSS. Each two-character field has the following
meaning:

YY year (2 low order digits)
MM month (2 digits 01-12)
DD day (2 digits 01-31)
HH hour (2 digits 00-23)
MM minutes (2 digits 00-59)
SS seconds (2 digits 00-59)

Power MachTen User’s GuideA2-24

Time stamps may be compared lexicographically (in other words, the order of Ada
comparison operations on strings) to determine which is later or earlier. However,
in normal mode, only equality comparisons have any effect on the semantics of the
library. Later/earlier comparisons are used only for determining the most
informative error messages to be issued by the binder.

The time stamp is the actual stamp stored with the file without any adjustment
resulting from time zone comparisons. This avoids problems in using libraries
across networks with clients spread across multiple time zones, but may mean the
time stamp will differ from that displayed in a directory listing. For example, in
UNIX systems, file time stamps are stored in Greenwich Mean Time (GMT), but
the ls command displays local times.

A2.3.9 Binding an Ada Program

When using languages such as C and C++, the only remaining step in building an
executable program once the source files have been compiled is linking the object
modules together. This means it is possible to link an inconsistent version of a
program in which two units have included different versions of the same header.

The rules in Ada do not permit such an inconsistent program to be built. For
example, if two clients have different versions of the same package, it is not
possible to build a program containing these two clients. These rules are enforced
by the GNAT binder, which also determines an elaboration order consistent with
the Ada rules.

The GNAT binder is run after all the object files for a program have been compiled.
It is given the name of the main program unit, and from this it determines the set
of units required by the program, reading the corresponding ALI files. It generates
error messages if the program is inconsistent or if no valid order of elaboration
exists.

If no errors are detected, the binder produces a main program, in C, that contains
calls to the required elaboration procedures, followed by a call to the main
program. This C program is compiled using the C compiler to generate the object
file for the main program. The name of the C file is b_xxx.c where xxx is the name
of the main program unit.

Finally, the linker is used to build the resulting executable program, using the
object from the main program from the bind step as well as the object files for the
Ada units of the program.

Power MachTen User’s Guide A2-25

A2.3.10 Mixed Language Programming

You build a program that contains some Ada files and some other language files
in one of two ways, depending on whether the main program is in Ada or not.

If the main program is in Ada, you proceed as follows:

1. Compile the Ada units to produce a set of object files and ALI files.

2. Compile the other language files to generate object files.

3. Run the Ada binder on the Ada main program.

4. Compile the Ada main program.

5. Link the Ada main program, Ada objects and other language objects

If the main program is in some language other than Ada, you use a special option
of the binder to generate callable routines to initialize and finalize the Ada units.
You must insert calls to these routines in the main program, or some other
appropriate point. The call to initialize the Ada units must occur before the first
Ada subprogram is called, and the call to finalize the Ada units must occur after
the last Ada subprogram returns. You use the same procedure for building the
program as described previously. In this case, however, the binder places the
initialization and finalization subprograms into file ‘b_xxx.c’ instead of the main
program.

A2.3.11 Comparison of GNAT Model With
C/C++ Compilation Model

The GNAT model of compilation is close to the C and C++ models. You can think
of Ada specs as corresponding to header files in C. As in C, you don’t need to
compile specs; they are compiled when they are used. The Ada with is similar in
effect to the #include of a C header.

One notable difference is that, in Ada, you may compile specs separately to check
them for semantic and syntactic accuracy. This is not always possible with C
headers because they are fragments of programs that have no specific syntactic or
semantic rules.

Power MachTen User’s GuideA2-26

The other major difference is the requirement for running the binder, which
performs two important functions. First, it checks for consistency. In C or C++, the
only defense against putting together inconsistent programs is outside the
compiler, in a make file, for example. The binder satisfies the Ada requirement that
it be impossible to construct an inconsistent program when the compiler is used in
normal mode.

The other important function of the binder is to deal with elaboration issues. There
are also elaboration issues in C++ that are handled automatically. This automatic
handling has the advantage of being simpler to use, but the C++ programmer has
no control over elaboration. Where gnatbind might complain there was no valid
order of elaboration, a C++ compiler would simply construct a program that
malfunctioned at runtime.

A2.3.12 Comparison of GNAT Model With
Traditional Ada Library Model

This section is intended to be useful to Ada programmers who have previously
used an Ada compiler implementing the traditional Ada library model, as
described in the Ada 95 Languages Reference Manual. If you have not used such
a system, please go on to the next section.

In GNAT, there is no library in the normal sense. Instead, the set of source files
themselves acts as the library. Compiling Ada programs does not generate any
centralized information, but rather an object file and a ALI file, which are of
interest only to the binder and linker.

In a traditional system, the compiler reads information not only from the source
file being compiled, but also from the centralized library. This means that the effect
of a compilation depends on what has been previously compiled. In particular:

• When a unit is with’ed, the unit seen by the compiler corresponds to the
version of the unit most recently compiled into the library.

• Inlining is effective only if the necessary body has already been compiled into
the library.

• Compiling a unit may obsolete other units in the library.

Power MachTen User’s Guide A2-27

In GNAT, compiling one unit never affects the compilation of any other units since
the compiler reads only source files. Only changes to source files can affect the
results of a compilation. In particular:

• When a unit is with’ed, the unit seen by the compiler corresponds to the
source version of the unit that is currently accessible to the compiler.

• Inlining requires the appropriate source files for the package or subprogram
bodies to be available to the compiler. Inlining is always effective,
independent of the order in which units are complied.

• Compiling a unit never affects any other compilations. The editing of sources
may cause previous compilations to be out of date if they depended on the
source file being modified.

The important result of these differences are that order of compilation is never
significant in GNAT. There is no situation in which you are required to do one
compilation before another. What shows up as order of compilation requirements
in the traditional Ada library becomes, in GNAT, simple source dependencies; in
other words, it shows up as a set of rules saying what source files must be present
when a file is compiled.

Power MachTen User’s GuideA2-28

A2.4.0 Compiling Ada Programs With
gcc

This chapter discusses how to compile Ada program and the switches passed to
the compiler.

A2.4.1 Compiling Programs

The first step in creating an executable program is to compile the units of the
program using the gcc command. You must compile the following files:

• the body file (‘.adb’) for a library level subprogram

• the spec file (‘.ads’) for a library level package that has no body

• the body file (‘.adb’) for a library level package that does have a body

You need not compile the following files

• the body or spec of a generic library unit

• the spec of a library unit which has a body

• subunits

because they are compiled as part of compiling related units. GNAT compiles
generic units when a client instantiates the generic, specs when the corresponding
body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get this error message:

No code generated for unit xxx in file yyy

The basic command for compiling a file containing an Ada unit is:

gcc -c [switches] filename

where filename is the name of the Ada file (having an extension ‘.ads’ for a spec or
‘.adb’ for a body). You specify the ‘-c’ switch to tell gcc to compile, but not link, the
file. The result of a successful compilation is an object file, which has the same

Power MachTen User’s Guide A2-29

name as the source file but an extension of ‘.o’ and an Ada Library Information
(ALI) file, which also has the same name as the source file, but with ‘.ali’ as the
extension. GNAT creates these two output files in the current directory, but you
may specify a source file in any directory using an absolute or relative path
specification containing the directory information.

switches consist of standard gcc switches, as documented in the gcc manual, as well
as GNAT specific switches, which always start with ‘-gnat’. You may specify
these switches in any order, and, in particular, may mix gcc and GNAT switches
freely.

gcc is actually a driver program that looks at the extensions of the file arguments
and loads the appropriate compiler. For example, the GNU C compiler is ‘cc1’, and
the Ada compiler is ‘gnat1’. These programs are in directories known to the driver
program (in some configurations via environment variables you set), but need not
be in your path. The gcc driver also calls the assembler and any other utilities
needed to complete the generation of the required object files.

It is possible to supply several filenames on the same gcc command. This causes
gcc to call the appropriate compiler for each file. For example, the command:

gcc -c x.adb y.adb z.c

calls gnat1 (the Ada compiler) twice to compile ‘x.adb’ and ‘y.adb’, and cc1 (the C
compiler) once to compile ‘z.c’. The compiler generates three object files ‘x.o’, ‘y.o’
and ‘z.o’ and the two ALI files ‘x.ali’ and ‘y.ali’ from the Ada compilations. Any
switches apply to all the files, except for ‘-gnatx’ switches, which apply only to
Ada compilations.

A2.4.2 Switches for gcc

The gcc command accepts numerous switches. The following are the ones you will
most likely need. Note that these switches are case sensitive.

‘-b target’
Compile your program to run on target, which is the name of a system
configuration. You must have a GNAT cross-compiler built if target is not the
same as your host system.

Power MachTen User’s GuideA2-30

‘-Bdir’
Load compiler executables (for example, gnat1, the Ada compiler) from dir
instead of the default location. Only use this switch when multiple versions of
the GNAT compiler are available. See the gcc manual page for further details.
You would normally use the ‘-b’ or ‘-V’ switch instead.

‘-c’
Compile. Always use this switch when compiling Ada programs. Note that
you may not use gcc without a ‘-c’ switch to compile and link in one step.
This is because the binder must be run, and currently gcc cannot be used to
run the GNAT binder.

‘-g[options]’
Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can be
read by the debugger. You must use the ‘-g’ switch if you plan on using the
debugger. options are used to choose the debugging format if more than one
is available; see the gcc manual for more details.

‘-Idir’
Direct GNAT to search the dir directory for source files needed by the current
compilation (see section “A2.4.4 Search Paths and the Run-Time Library
(RTL)”).

‘-o file’
This switch is used in gcc to redirect the generated object file. Do not use it
with GNAT, because it causes the object file and ALI file to have different
names and locations. These files should always be kept together.

‘-O[n]’
n controls the optimization level.
n = 0 No optimization, the default setting if no ‘-O’ appears
n = 1 Normal optimization, the default if you specify ‘-O’ without an

operand.
n = 2 Extensive optimization
n = 3 Extensive optimization with automatic inlining. This applies only

to inlining within a unit. See section “A2.4.3.10 Subprogram
Inlining Control” for details on control of inter-unit inlining.

Power MachTen User’s Guide A2-31

‘-S’
Use in place of ‘-c’ to cause the assembler source file to be generated, using
‘.s’ as the extension, instead of the object file. This may be useful if you need
to examine the generated assembly code.

‘-v’
Show commands generated by the gcc driver. Normally used only for
debugging purposes or if you need to be sure what version of the compiler
you are executing.

‘-V ver’
Execute ver version of the compiler. This is the gcc version, not the GNAT
version.

‘-Wuninitialized’
Generate warnings for uninitialized variables. You must also specify the ‘-O’
switch (in other words, ‘-Wuninitialized’ works only if optimization is
turned on).

Many additional gcc switches are relevant. They are fully described in the gcc
manual.

A2.4.3 Switches for GNAT

Below is a brief summary of the switches accepted by the gcc command when
compiling GNAT programs. It is followed by a more complete description of these
switches, which has been organized functionally.

-gnata Assertions enabled. Pragma Assert and pragma Debug to be
activated.

-gnatb Generate brief messages to stderr even if verbose mode set.
-gnatc Check syntax and semantics only (no code generation attempted).
-gnate Error messages generated immediately, not saved up till end.
-gnatf Full errors. Multiple errors per line, all undefined references.
-gnatg GNAT style checks enabled.
-gnatic Identifier char set (c=1/2/3/4/8/p/f/n/w).
-gnatje Wide character encoding method (e=n/h/u/s/e).
-gnatkn Limit filenames to n (1-999) characters (‘k’ = krunch).
-gnatl Output full source listing with embedded error messages.

Power MachTen User’s GuideA2-32

-gnatmn Limit number of detected errors to n (1-999).
-gnatn Activate inlining across unit boundaries.
-gnato Enable other checks, not normally enabled by default, including

numeric overflow checking, and access before elaboration checks.
-gnatp Suppress all checks.
-gnatq Don’t quit; try semantics, even if parse errors.
-gnatr Reference manual column layout required.
-gnats Syntax check only.
-gnatt Tree output file to be generated.
-gnatu List units for this compilation.
-gnatv Verbose mode. Full error output with source lines to stdout.
-gnatwm Warning mode. (m=s/e for suppress/treat as error).
-gnatzm Distribution stub generation (m=r/s for receiver/sender stubs).
-gnat83 Enforce Ada 83 restrictions.

You may combine a sequence of GNAT switches into a single switch. For example,
the specifying the switch

-gnatcfi3

is equivalent to specifying the following sequence of switches:

-gnatc -gnatf -gnati3

A2.4.3.1 Error Message Control

The standard default format for error messages is called “brief format.” Brief
format messages are written to stdout (the standard output file) and have the
following form:

e.adb:3:04: Incorrect spelling of keyword “function”
e.adb:4:20: “;” should be “is”

The first integer after the filename is the line number and the second integer is the
column number. emacs can parse the error messages and point to the referenced
character.

Power MachTen User’s Guide A2-33

The following ‘-gnat’ switches allow control over the error message format:

‘-gnatv’
The v stands for verbose. The effect is to write long-format error messages to
stdout. The same program compiled with the ‘-gnatv’ switch would
generate:

3. funcion X (Q : Integer)
 |
>>> Incorrect spelling of keyword “function”
4. return Integer;
 |
 >>> “;” should be “is”

The vertical bar indicates the location of the error, and the ‘>>>’ prefix can be
used to search for error messages. When this switch is used the only source
lines output are those with errors.

‘-gnatl’
The ‘l’ stands for list. ‘-gnatl’ causes a full listing of the file to be generated.
The output is as follows:

1. procedure E is
2. V : Integer;
3. funcion X (Q : Integer)
 |
 >>> Incorrect spelling of keyword “function”
4. return Integer;
 |
>>> “;” should be “is”
5. begin

6. return Q + Q;
7. end;
8. begin
9. V := X + X;
10.end E;

When you specify the ‘-gnatv’ or ‘-gnatl’ switches and standard output is
redirected, a brief summary is written to stderr (standard error) giving the
number of error messages and warning messages generated.

Power MachTen User’s GuideA2-34

‘-gnatb’
The ‘b’ stands for brief. This switch causes GNAT to generate the brief format
error messages to stdout as well as the verbose format message or full listing.

‘-gnatmn’
The ‘m’ stands for maximum. n is a decimal integer in the range of 1 to 999 and
limits the number of error messages to be generated. For example, using ‘-
gnatm2’ might yield

e.adb:3:04: Incorrect spelling of keyword “function”
e.adb:5:35: missing “..”
fatal error: maximum errors reached
compilation abandoned

‘-gnatf’
Normally, the compiler suppresses error messages that are likely to be
redundant. This switch, where ‘f’ stands for full, causes all error messages to
be generated. One particular effect is for the case of references to undefined
variables. If a given variable is referenced several times, the normal format of
messages is

e.adb:7:07: “V” is undefined (more references follow)

where the parenthetical comment warns that there are additional references to
the variable V. Compiling the same program with the ‘-gnatf’ switch yields:

e.adb:7:07: “V” is undefined
e.adb:8:07: “V” is undefined
e.adb:8:12: “V” is undefined
e.adb:8:16: “V” is undefined
e.adb:9:07: “V” is undefined
e.adb:9:12: “V” is undefined

‘-gnatq’
In normal operation mode the compiler first parses the program and
determines if there are any syntax errors. If there are, appropriate error
messages are generated and compilation is immediately terminated. Here ‘q’
is for quit (really “don’t quit”) and this switch tells GNAT to continue with
semantic analysis even if syntax errors have been found. This may enable the
detection of more errors in a single run. On the other hand, the semantic
analyzer is more likely to encounter some internal fatal error when given a
syntactically invalid tree.

Power MachTen User’s Guide A2-35

‘-gnate’
Normally, the compiler saves up error messages and generates them at the
end of compilation in proper sequence. This switch (the ‘e’ stands for error)
causes error messages to be generated as soon as they are detected. The use of
‘-gnate’ usually causes error messages to be generated out of sequence. Use
it when the compiler blows up due to an internal error. In this case, the error
messages may be lost. Sometimes blowups are the result of mishandled error
messages, so you may want to run with the ‘-gnate’ switch to determine
whether any error messages were generated (see section “A2.12.2 GNAT
Crashes”).

In addition to error messages, corresponding to illegalities as defined in the
reference manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning
message to alert you to a possible error. Second, if the compiler detects a situation
that is sure to raise an exception at runtime, it generates a warning message. The
following shows an example of warning messages:

e.adb:4:24: warning: creation of object of this type may raise
 Storage_Error
e.adb:10:17: warning: static value out of range
e.adb:10:17: warning: “Constraint_Error” will be raised at
runtime

Two switches are available to control the handling of warning messages:

‘-gnatwe’
The ‘w’ stands for warning and the ‘e’ stands for error. The ‘-gnatwe’ switch
causes warning messages to be treated as errors. The warning string still
appears, but the warning messages are counted as errors, and prevent the
generation of an object file.

‘-gnatws’
The ‘s’ stands for suppress. This switch completely suppress the output of all
warning messages.

Power MachTen User’s GuideA2-36

A2.4.3.2 Debugging and Assertion Control

‘-gnata’
The pragmas Assert and Debug normally have no effect and are ignored.
This switch, where ‘a’ stands for assert, causes Assert and Debug pragmas
to be activated. The pragmas have the form:

pragma Assert (Boolean-expression [, static-string-
expression])
pragma Debug (procedure)

The Assert pragma causes Boolean-expression to be tested. If the result
is True, the pragma has no effect (other than possible side effects from
evaluating the expression). If the result is False, the exception
System.Assertions.Assert_Error is raised (passing static-
string-expression, if present, as the message associated with the
exception). The Debug pragma causes procedure to be called. Note that
pragma Debug may appear within a declaration sequence, allowing
debugging procedures to be called between declarations.

A2.4.3.3 Runtime Checks

If you compile with the default options, GNAT will insert many runtime checks
into the compiled code, including code that performs range checking against
constraints, but not arithmetic overflow checking for integer operations (including
division by zero) or checks for access before elaboration on subprogram calls. All
other runtime checks, as required by the Ada 95 Reference Manual, are generated
by default.

The following two gcc switches refine this default behavior:

‘-gnatp’
Suppress all runtime checks as though you have pragma Suppress
(all_checks) in your source. Use this switch to improve the performance
of the code at the expense of safety in the presence of invalid data or program
bugs.

Power MachTen User’s Guide A2-37

‘-gnato’
Enables overflow checking for integer operations and checks for access before
elaboration on subprogram calls (‘o’ stands for “other checks”). This causes
GNAT to generate slower and larger executable programs by adding code to
check for both overflow and division by zero (resulting in raising
Constraint_Error as required by Ada semantics). Similarly, GNAT does
not generate elaboration checks by default, and you must specify the ‘-
gnato’ switch to enable them. Note that the ‘-gnato’ switch does not affect
the code generated for any floating-point operations; it applies only to integer
operations. For floating-point, GNAT has the Machine_Overflows attribute
set to False and the normal mode of operation is to generate IEEE NaN and
infinite values on overflow or invalid operations (such as dividing 0.0 by 0.0).

The setting of these switches only controls the default setting of the checks. You
may modify them using either Suppress (to remove checks) or Unsuppress (to
add back suppressed checks) pragmas in the program source.

A2.4.3.4 Using gcc for Syntax Checking

‘-gnats’
Run GNAT in syntax checking only mode (‘s’ stands for syntax). For example,
the command

gcc -c -gnats x.adb

compiles file ‘x.adb’ in syntax-check-only mode. You can check a series of files
in a single command, and can use wild cards to specify such a group of files.
Note that you must specify the ‘-c’ (compile only) flag in addition to the ‘-
gnats’ flag. You may use other switches in conjunction with ‘-gnats’. In
particular, ‘-gnatl’ and ‘-gnatv’ are useful to control the format of any
generated error messages. The output is simply the error messages, if any. No
object file or ALI file is generated by a syntax-only compilation. Also, no units
other than the one specified are accessed. For example, if a unit X with’s a unit
Y, compiling unit X in syntax check only mode does not access the source file
containing unit Y. Normally, GNAT allows only a single unit in a source file.
However, this restriction does not apply in syntax-check-only mode, and it is
possible to check a file containing multiple compilation units concatenated
together. This is primarily used by the gnatchop utility (see section “8.0
Handling Files With Multiple Units With gnatchop”).

Power MachTen User’s GuideA2-38

A2.4.3.5 Using gcc for Semantic Checking

‘-gnatc’
Cause the compiler to operate in semantic check mode (‘c’ stands for check),
with full checking for all illegalities specified in the reference manual, but
without generation of any source code (no object or ALI file generated). Since
dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

• The needed source files must be accessible (see section “A2.4.4 Search
Paths and the Run-Time Library (RTL)”).

• Each file must contain only one compilation unit.

• The filename and unit name must match (see section “A2.3.3 File Naming
Rules”).

The output consists of error messages as appropriate. No object file or ALI file
is generated. The checking corresponds exactly to the notion of legality in the
Ada reference manual. Any unit can be compiled in semantics-checking-only
mode, including units that would not normally be compiled (generic library
units, subunits, and specifications where a separate body is present).

A2.4.3.6 Compiling Ada 83 Programs

‘-gnat83’
Although GNAT is primarily an Ada 95 compiler, it accepts this switch to
specify that an Ada 83 mode program is being compiled. If you specify this
switch, GNAT rejects Ada 95 extensions and applies Ada 83 semantics. It is
not possible to guarantee this switch does a perfect job; for example, some
subtle tests of pathological cases, such as are found in ACVC tests that have
been removed from the ACVC suite for Ada 95, may not compile correctly.
However for practical purposes, using this switch should ensure that
programs that compile correctly under the ‘-gnat83’ switch can be ported
reasonably easily to an Ada 83 compiler. This is the main use of the switch.
With few exceptions (most notably the need to use <> on unconstrained
generic formal parameters), it is not necessary to use the ‘-gnat83’ switch
when compiling Ada 83 programs, because, with rare and obscure exceptions,
Ada 95 is upwardly compatible with Ada 83. This means that a correct Ada 83
program is usually also a correct Ada 95 program.

Power MachTen User’s Guide A2-39

A2.4.3.7 Style Checking

‘-gnatr’
Normally, GNAT permits any code layout consistent with the reference
manual requirements. This switch (‘r’ is for “reference manual”) enforces the
layout conventions suggested by the examples and syntax rules of the Ada
Language Reference Manual. For example, an else must line up with an if
and code in the then and else parts must be indented. The compile
considers violations of the layout rules a syntax error if you specify this
switch.

‘-gnatg’
Enforces a set of style conventions that correspond to the style used in the
GNAT source code. All compiler units are always compiled with the ‘-gnatg’
switch specified. You can find the full documentation for the style
conventions imposed by ‘-gnatg’ in the body of the package Style in the
compiler sources (in the file ‘style.adb’). You should not normally use the
‘-gnatg’ switch. However, you must use ‘-gnatg’ for compiling any
language-defined unit, or for adding children to any language-defined unit
other than Standard.

A2.4.3.8 Character Set Control

‘-gnatic’
Normally GNAT recognizes the Latin-1 character set in source program
identifiers, as described in the reference manual. This switch causes GNAT to
recognize alternate character sets in identifiers. c is a single character
indicating the character set, as follows:

‘1’ Latin-1 identifiers
‘2’ Latin-2 letters allowed in identifiers
‘3’ Latin-3 letters allowed in identifiers
‘4’ Latin-4 letters allowed in identifiers
‘p’ IBM PC letters (code page 437) allowed in identifiers
‘8’ IBM PC letters (code page 850) allowed in identifiers
‘f’ Full upper-half codes allowed in identifiers
‘n’ No upper-half codes allowed in identifiers
‘w’ Wide-character codes allowed in identifiers

Power MachTen User’s GuideA2-40

See section “A2.3.2 Foreign Language Representation” for full details on the
implementation of these character sets.

‘-gnatje’
Specify the method of encoding for wide characters. e is one of the following:

‘n’ No wide characters allowed (default setting)
‘h’ Hex encoding
‘u’ Upper half encoding
‘s’ Shift/JIS encoding
‘e’ EUC encoding

A2.4.3.9 File Naming Control

‘-gnatkn’
Activates filename “krunching”. n, a decimal integer in the range 1-999,
indicates the maximum allowable length of a filename (not including the ‘.ads’
or ‘.adb’ extension). The default is not to enable filename krunching. For the
source file naming rules, see section “A2.3.3 File Naming Rules”.

A2.4.3.10 Subprogram Inlining Control

‘-gnatn’
GNAT recognizes and processes Inline pragmas. However, for the inlining
to actually occur, optimization must be enabled. To enable inlining across unit
boundaries, this is, inlining a call in one unit of a subprogram declared in a
with’ed unit, you must also specify this switch (‘n’ suggests the first syllable
of the word “inline”). In the absence of the ‘-gnatn’ switch, GNAT does not
attempt inlining across units and does not need to access the bodies of
subprograms for which pragma Inline is specified if they are not in the
current unit. If you specify ‘-gnatn’, the compiler will access these bodies,
creating an extra source dependency for the resulting object file, and where
possible, the call will be inlined. See section “A2.13.3 Inlining of
Subprograms” for further details on when inlining is possible.

Power MachTen User’s Guide A2-41

A2.4.3.11 Auxiliary Output Control

‘-gnatt’
Cause GNAT to write the internal tree for a unit to a file (with the extension
‘.atb’ for a body or ‘.ats’ for a spec). This is not normally required, but is used
by separate analysis tools. Typically these tools do the necessary compilations
automatically, so you should never have to specify this switch in normal
operation.

‘-gnatu’
Print a list of units required by this compilation on stdout. The listing includes
all units on which the unit being compiled depends either directly or
indirectly.

A2.4.3.12 Debugging Control

‘-gnatdx’
Activate internal debugging switches. x is a letter or digit, or string of letters
or digits, which specifies the type of debugging outputs desired. Normally
these are used only for internal development or system debugging purposes.
You can find full documentation for these switches in the body of the Debug
unit in the compiler source file ‘debug.adb’. One switch you may wish to use is
‘-gnatdg,’ which causes a listing of the generated code in Ada source form.
For example, all tasking constructs are reduced to appropriate runtime library
calls. The syntax of this listing is close to normal Ada with the following
additions:

new xxx [storage_pool = yyy]
Shows the storage pool being used for an allocator.

at end procedure-name;
Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)
Conditional expression equivalent to the x?y:z construction in C.

target^(source)
A conversion with floating-point truncation instead of rounding.

Power MachTen User’s GuideA2-42

target?(source)
A conversion that bypasses normal Ada semantic checking. In
particular enumeration types and fixed-point types are treated simply
as integers.

target?^(source)
Combines the above two cases.

x #/ y
x #mod y
x #* y
x #rem y

A division or multiplication of fixed-point values which are treated as
integers without any kind of scaling.

free expr [storage_pool = xxx]
Shows the storage pool associated with a free statement.

freeze typename [actions]
Shows the point at which typename is frozen, with possible associated
actions to be performed at the freeze point.

reference itype
Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)
Intrinsic function call.

labelname : label
Declaration of label labelname.

expr && expr && expr ... && expr
A multiple concatenation (same effect as expr & expr & expr, but
handled more efficiently).

[constraint_error]
Raise the Constraint_Error exception.

expression’reference
A pointer to the result of evaluating expression.

target-type!(source-expression)
An unchecked conversion of source-expression to target-type.

[numerator/denominator]
Used to represent internal real literals (that) have no exact
representation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).

Power MachTen User’s Guide A2-43

A2.4.4 Search Paths and the Run-Time
Library (RTL)

With the GNAT source-based library system, the compiler must be able to find
source files for units that are needed by the unit being compiled. Search paths are
used to guide this process.

The compiler compiles one source file whose name must be given explicitly on the
command line. In other words, no searching is done for this file. To find all other
source files that are needed (the most common being the specs of units), the
compiler looks in the following directories, in the following order:

1. The directory containing the source file of the main unit being compiled (the
filename on the command line).

2. Each directory named by an ‘-I’ switch given on the gcc command line, in the
order given.

3. Each of the directories listed in the value of the ADA_SOURCE_PATH
environment variable. Construct this value exactly as the PATH environment
variable: a list of directory names separated by colons.

4. The default location for the GNAT Run Time Library (RTL) source files. This
is determined at the time GNAT is built and installed on your system.

The compiler outputs its object files and ALI files in the current working directory.

Caution: The object file can be redirected with the ‘-o’ switch; however, gcc and
gnat1 have not been coordinated on this so the ALI file will not go to
the right place. Therefore, you should avoid using the ‘-o’ switch.

The packages Ada, System, and Interfaces and their children make up the
GNAT RTL, together with the simple System.IO package used in the “Hello
World” example. The sources for these units are needed by the compiler and are
kept together in one directory. Not all of the bodies are needed, but all of the
sources are kept together anyway. In a normal installation, you need not
specify these directory names when compiling or binding. Either the environment
variables or the built-in defaults cause these files to be found.

Besides the assistance in using the RTL, a major use of search paths is in compiling
sources from multiple directories. This can make development environments
much more flexible.

Power MachTen User’s GuideA2-44

A2.4.5 Order of Compilation Issues

If, in our earlier example, there were a spec for the hello procedure, it would be
contained in the file ‘hello.ads’; yet this file would not need to be explicitly
compiled. This is the result of the model we chose to implement library
management. Details of the model can be found in file ‘gnote1.doc’ in the GNAT
sources. Some of the unexpected consequences of the model (unexpected from the
point of view of existing Ada compiler systems) are the following:

• There is no point in compiling generics or specs (except for package specs with
no bodies) since these are compiled as needed by clients. If you attempt a
useless compilation, you will receive an error message. It is also useless to
compile subunits since they are compiled as needed by the parent.

• There are no order of compilation requirements and performing a compilation
never obsoletes anything. The only way you can obsolete something and
require recompilations is to modify one of the dependent source files.

• There is no library as such, apart from the ALI files (see section “A2.3.7 The
Ada Library Information Files”, for information on the format of these files).
For now we find it convenient to create separate ALI files, but eventually the
information therein may be incorporated into the object file directly.

• When you compile a unit, the source files for the specs of all units that it
with’s, all its subunits, and the bodies of any generics it instantiates must be
available (findable by the search-paths mechanism described above), or you
will receive a fatal error message.

Note: The above may seem surprising. However, we are not violating the strict
Ada consistency rules; these rules are enforced instead by the binder.

Power MachTen User’s Guide A2-45

A2.4.6 Examples

The following are some typical Ada compilation command line examples:

gcc -c xyz.adb
Compile body in file ‘xyz.adb’ with all default options.

gcc -c -O2 -gnata xyz-def.adb
Compile the child unit package in file ‘xyz-def.adb’ with extensive
optimizations, and pragma Assert/Debug statements enabled.

gcc -c -gnatc abc-def.adb
Compile the subunit in file ‘abc-def.adb’ in semantic-checking-only mode.

Power MachTen User’s GuideA2-46

A2.5.0 Binding Ada Programs With
gnatbind

This chapter describes the GNAT binder, gnatbind, which is used to bind compiled
GNAT objects. The gnatbind program performs four separate functions:

1. Checks that a program is consistent, in accordance with the rules in chapter
10 of the Ada Language Reference Manual. In particular, error messages are
generated if a program uses inconsistent versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the program and
issues an error message if it cannot find an order of elaboration satisfying the
rules in Chapter 10 of the Ada Language Reference Manual.

3. Generates a main program incorporating the given elaboration order. This
program is a small C source file that must be subsequently compiled using the
C compiler. The two most important functions of this program are to call the
elaboration routines of units in an appropriate order and to call the main
program.

4. Determines the set of object files required by the given main program. This
information is output as comments in the generated C program, to be read by
the gnatlink utility used to link the Ada application.

A2.5.1 Running gnatbind

The form of the gnatbind command is:

gnatbind [switches] mainprog.ali [switches]

where mainprog.adb is the Ada file containing the main program unit body. If no
switches are specified, gnatbind constructs a C file whose name is ‘b_mainprog.c’.
For example, if given the parameter ‘hello.ali’, for a main program contained in file
‘hello.adb’, the binder output file would be ‘b_hello.c’.

When doing consistency checking, the binder takes any source files it can locate
into consideration. For example, if the binder determines that the given main

Power MachTen User’s Guide A2-47

program requires the package Pack, whose ALI file is ‘pack.ali’ and whose
corresponding source spec file is ‘pack.ads’, it attempts to locate the source file
‘pack.ads’ (using the same search path conventions as previously described for the
gcc command). If it can located this source file, the time stamps must match. In
other words, any ALI files mentioning this spec must have resulted from
compiling this version of the source file.

The effect of this consistency checking, which includes source files, is that the
binder ensures that the program is consistent with the latest version of the source
files that can be located at bind time. Editing a source file without compiling files
that depend on the source file cause error messages to be generated from the
binder.

For example, suppose you have a main program ‘hello.adb’ and a package p, from
file ‘p.ads’ and you perform the following steps:

1. Enter gcc -c hello.adb to compile the main program.

2. Enter gcc -c p.ads to compile package p.

3. Edit file ‘p.ads’.

4. Enter gnatbind hello.ali.

At this point, the file ‘p.ali’ contains an out-of-date time stamp since the file ‘p.ads’
has been edited. The attempt at binding fails, and the binder generates the
following error messages:

error: “hello.adb” must be recompiled (“p.ads” has been
modified)
error: “p.ads” has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind can succeed,
generating a main program. You need not normally be concerned with the
contents of this file, but it is similar to the following:

int
__main_priority ()
{
 return -1;
}
extern int gnat_argc;
extern char **gnat_argv;

Power MachTen User’s GuideA2-48

extern int gnat_exit_status;
void main (argc, argv)
int argc;
char **argv;
{
 gnat_argc = argc;
 gnat_argv = argv;

 __gnat_initialize();
 system__task_specific_data___elabb ();
 p___elabs ();

 _ada_hello ();
 __gnat_finalize();
 exit (gnat_exit_status);
}
unsigned helloB = 0x86c26330;
unsigned system__standard_libraryS = 0x06371136;
unsigned pS = 0x4361339a;
unsigned systemS = 0x430ca9a6;
unsigned system__storage_elementsB = 0xc925fce2;
unsigned system__storage_elementsS = 0x86195344;
unsigned system__task_specific_dataB = 0x924bf9bc;
unsigned system__task_specific_dataS = 0x86195344;
unsigned system__tasking_soft_linksB = 0x0c32a681;
unsigned system__tasking_soft_linksS = 0x86195344;
/* BEGIN Object file/option list
/usr/local/adainclude/system.o
/usr/local/adainclude/s-stoele.o
/usr/local/adainclude/s-taspda.o
/usr/local/adainclude/s-tasoli.o
/usr/local/adainclude/s-stalib.o
p.o
hello.o
END Object file/option list */

The __main_priority function records the environment task priority. A value
of -1 indicates that the main program has no pragma Priority, the normal case.

Next there is code to save the argc and argv values for later access by the
Ada.Command_Line package. The variable gnat_exit_status saves the exit
status set by calls to Ada.Command_Line.Set_Exit_Status and is used to
return an exit status to the system.

Power MachTen User’s Guide A2-49

The call to __gnat_initialize and the corresponding call at the end of
execution to __gnat_finalize allow any specialized initialization and
finalization code to be hooked in. The default versions of these routines do
nothing.

The calls to system__task_specific_data___elabb and p___elabs
perform necessary elaboration of units in the program. In our example, only the
library routine System.Task_Specific_Data (body) and P (spec) required
elaboration (the main program ‘hello.adb’ did not require any elaboration).

The call to _ada_hello is the call to the main program.

The list of unsigned constants gives the version number information. Version
numbers are computed by combining time stamps of a unit and all units on which
it depends. These values are used for implementation of the Version and
Body_Version attributes.

Finally, a set of comments gives full names of all the object files required to be
linked for the Ada component of the program. As seen in the previous example,
this list includes the files explicitly supplied and referenced by the user as well as
implicitly referenced runtime unit files. The directory names for the runtime units
depend on the system configuration.

A2.5.2 Consistency-Checking Modes

As described in the previous section, by default gnatbind checks that object files are
consistent with one another and are consistent with any source files it can locate.
The following switches can be used to modify this behavior:

‘-s’
Require source files to be present. In this mode, the binder insists on being able
to locate all source files that are referenced and checks their consistency. In
normal mode, if a source file cannot be located it is simply ignored. If you
specify the ‘-s’ switch, a missing source file is an error.

‘-x’
Exclude source files. In this mode, the binder only checks that ALI files are
consistent with one another. Source files are not accessed. The binder runs
faster in this mode, and there is still a guarantee that the resulting program is

Power MachTen User’s GuideA2-50

self-consistent. If a source file has been edited since it was last compiled and
you specify the ‘-x’ switch, the binder will not detect that the object file is out
of date with the source file.

For most purposes the default mode is appropriate, and this is the mode that is
normally used when gnatmake or gnatbind is used to do the bind operation.

A2.5.3 Error-Message Control

The following switches provide control over the generation of error messages
from the binder:

‘-v’ Verbose mode. In the normal mode, brief error messages are generated to
stderr. If the ‘-v’ switch is present, a header is written to stdout and any
error messages are directed to stdout. All that is written to stderr is a
brief summary message.

‘-b’ Generate brief error messages to stderr even if verbose mode is
specified. This is relevant only when used together with the ‘-v’ switch.

‘-mn’ Limits the number of error messages to n, a decimal integer in the range 1-
999. The binder terminates immediately if this limit is reached.

‘-ws’ Suppress all warning messages

‘-we’ Treat any warning messages as fatal errors

‘-t Ignore time stamp errors. Any time stamp error messages are treated as
warning messages. This switch essentially disconnects the normal
consistency checking, and the resulting program may have undefined
semantics if inconsistent units are present. This means that ‘-t’ should be
used only in unusual situations, with extreme care.

Power MachTen User’s Guide A2-51

A2.5.4 Output Control

The following switches allow additional control over the output generated by the
binder.

‘-e’ Output complete list of elaboration-order dependencies, showing the
reason for each dependency. This output can be rather extensive but
may be useful in diagnosing problems with elaboration order. The
output is written to stdout.

‘-l’ Output chosen elaboration order. The output is written to stdout.

‘-o file’Set name of output file to file instead of the normal ‘b_prog.c’ default.
You would normally give file an extension of ‘.c’ since it will be a C
source program.

‘-c’ Check only. Do not generate the binder output file. In this mode the
binder performs all error checks but does not generate an output file.

A2.5.5 Binding for Non-Ada Main Programs

In our description in this chapter so far we have assumed the main program is in
Ada and the task of the binder is to generate a corresponding function main to pass
control to this Ada main program. GNAT also supports the building of executable
programs where the main program is not in Ada, but some of the called routines
are written in Ada and compiled using GNAT. The following switch is used in this
situation:

‘-n’ No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of
generating a main program, the binder generates a file containing the following
callable routines:

adainit You must call this routine to initialize the Ada part of the program by
calling the necessary elaboration routines. A call to adainit is
required before the first call to an Ada subprogram.

adafinal You must call this routine to perform any library-level finalization
required by the Ada subprograms. A call to adafinal is required
after the last call to an Ada subprogram, and before the program
terminates.

Power MachTen User’s GuideA2-52

If the ‘-n’ switch is given, more than one ALI file may appear on the command line
for gnatbind. The normal closure calculation is performed for each of the specified
units. Calculating the closure means finding out the set of units involved by
tracing with references. The reason it is necessary to be able to specify more than
one ALI file is that a given program may invoke two or more quite separate groups
of Ada subprograms.

The binder takes the name of its output file from the first specified ALI file, unless
overridden by the use of the ‘-o’ switch. It will be a C source file, which must be
compiled using the C compiler.

A2.5.6 Summary of Binder Switches

The following are the switches available with gnatbind:

‘-b’ Generate brief messages to stderr even if verbose mode set.
‘-c’ Check only, no generation of binder output file.
‘-e’ Output complete list of elaboration-order dependencies.
‘-I’ Specify directory to be searched for source and ALI files.
‘-l’ Output-chosen elaboration order.
‘-mn’ Limit number of detected errors to n (1-999).
‘-n’ No main program.
‘-o file’ Name the output file (default is ‘b_xxx.c’).
‘-s’ Require all source files to be present.
‘-t’ Ignore time-stamp errors.
‘-v’ Verbose mode. Write error messages, header, summary output to

stdout.
‘-wx’ Warning mode (x=s/e for suppress/treat as error)
‘-x’ Exclude source files (check object consistency only

You may obtain this listing by running the program gnatbind with no arguments.

Power MachTen User’s Guide A2-53

A2.5.7 Command-Line Access

The package Ada.Command_Line provides access to the command-line
arguments and program name. In order for this interface to operate correctly, the
two variables

int gnat_argc;
char **gnat_argv;

are declared in one of the GNAT library routines. These variables must be set from
the actual argc and argv values passed to the main program. With no ‘-n’ switch
present, gnatbind generates the C main program to automatically set these
variables. If the ‘-n’ switch is used, there is no automatic way to set these variables.
If they are not set, the procedures in Ada.Command_Line will not be available,
and any attempt to use them will raise Constraint_Error. If command line
access is required, your main program must set gnat_argc and gnat_argv from
the argc and argv values passed to it.

A2.5.8 Search Paths for gnatbind

The binder must be able to find both the ALI files and the source files. For source
files, it follows exactly the same search rules as gcc (see section “4.4 Search Paths
and the Run-Time Library (RTL)”). Search paths are used for finding the ALI files.

The binder takes the name of an ALI file as its argument and needs to locate other
ALI files in its recursive processing. These are found in the following directories in
the following order:

1. The current working directory.

2. All directories specified by ‘-I’ switches on the gnatbind command line, in the
order given.

3. Each of the directories listed in the value of the ADA_OBJECTS_PATH
environment variable. Construct this value the same as the PATH environment
variable; a list of directory names separated by colons.

4. The default location for the GNAT Run-Time Library (RTL) files, determined
when GNAT was built and installed on your system.

Power MachTen User’s GuideA2-54

For source files accessed by the binder, the search procedure is as described above
for object files, except that in step 3 the environment variable ADA_SOURCE_PATH
is used. The binder generates the bind file (a C language source file) in the current
working directory.

The packages Ada, System, and Interfaces and their children make up the
GNAT Run-Time Library, together with the package GNAT and its children which
contain a set of useful additional library functions provided by GNAT. The sources
for these units are needed by the compiler and are kept together in one directory.
The ALI files and object files generated by compiling the RTL are needed by the
binder and the linker and are kept together in one directory, typically different
from the directory containing the sources. In a normal installation, you need not
specify these directory names when compiling or binding. Either the environment
variables or the built-in defaults cause these files to be found.

Besides the assistance in using the RTL, a major use of search paths is in compiling
sources from multiple directories. This can make development environments
much more flexible.

A2.5.9 Examples of gnatbind Usage

This section contains a number of examples of using the GNAT binding utility
gnatbind.

gnatbind hello.ali
The main program Hello (source program in ‘hello.adb’) is bound using the
standard switch settings. The generated main program is ‘b_hello.c’. This is the
normal, default use of the binder.

gnatbind main_program.ali -o mainprog.c -x -e
The main program Main_Program (source program in ‘main_program.adb’) is
bound, excluding source files from the consistency checking. A full list of
elaboration dependencies is output to stdout, and the file ‘mainprog.c’ is
generated.

gnatbind -xe main_program.ali -o mainprog.c
This command is exactly the same as the previous example. Switches may
appear anywhere in the command line, and single letter switches may be
combined into a single switch.

Power MachTen User’s Guide A2-55

gnatbind -n math.ali dbase.ali -o ada-control.c
The main program is in a language other than Ada, but calls to subprograms
in packages Math and Dbase appear. This call to gnatbind generates the file
‘ada-control.c’ containing the adainit and adafinal routines to be called
before and after accessing the Ada subprograms.

Power MachTen User’s GuideA2-56

A2.6.0 Linking Ada Programs Using
gnatlink

This chapter discusses gnatlink, a utility program used to link Ada programs and
build an executable file. This program is basically a simple process which invokes
the Unix linker (via the gcc command) with a correct list of object files and library
references. gnatlink automatically determines the list of files and references for the
Ada part of a program. It uses the binder file generated by the binder to determine
this list.

A2.6.1 Running gnatlink

The form of the gnatlink command is

gnatlink [switches] mainprog[.ali] [non-Ada objects]
[linker options]

‘mainprog.ali’ references the ALI file of the main program. The ‘.ali’ extension of
this file can be omitted. From this reference, gnatlink locates the corresponding
binder file ‘b_mainprog.c’ and, using the information in this file along with the list
of non-Ada objects and linker options, constructs a Unix linker command file to
create the executable.

The arguments following ‘mainprog.ali’ are passed to the linker uninterpreted.
They typically include the names of object files for units written in other languages
than Ada and any library references required to resolve references in any of these
foreign language units, or in pragma Import statements in any Ada units. This
list may also include linker switches.

gnatlink determines the list of objects required by the Ada program and prepends
them to the list of objects passed to the linker. gnatlink also gathers any arguments
set by the use of pragma Linker_Options and adds them to the list of
arguments presented to the linker.

Power MachTen User’s Guide A2-57

A2.6.2 Switches for gnatlink

The following switches are available with the gnatlink utility:

‘-o exec-name’ exec-name specifies an alternative name for the generated
executable program. If the ‘-o’ switch is omitted, the
executable is called the name of the main unit. So gnatlink
try.ali creates an executable called ‘try’.

‘-v’ Causes additional information to be output, including a
full list of the included object files. This switch option is
most useful when you want to see what set of object files
are being used in the link step.

‘-g’ The option to include debugging information causes the C
bind file (in other words, ‘b_mainprog.c’) to be compiled
with ‘-g’. In addition, the binder does not delete the
‘b_mainprog.c’ and ‘b_mainprog.o’ files (without ‘-g’, the
binder removes these files by default).

‘-gnatlink name’ name is the name of the linker to be invoked. You normally
omit this switch, in which case the default name for the
linker is (‘gcc’).

Power MachTen User’s GuideA2-58

A2.7.0 The GNAT Make Program
gnatmake

A typical development cycle when working on an Ada program consists of the
following steps:

1. Edit some sources to fix bugs.

2. Add enhancements.

3. Compile all sources affected.

4. Rebind and relink.

5. Test.

The third step can be tricky, because not only do the modified files have to be
compiled, but any files depending on these files must also be recompiled. The
dependency rules in Ada can be quite complex, especially in the presence of
overloading, use clauses, generics and inlined subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It
determines which sources need to be compiled, compiles them, and binds and
links the resulting object files.

Unlike some other Ada make programs, the dependencies are always accurately
recomputed from the new sources. The source based approach of the GNAT
compilation model makes this possible. This means that if changes to the source
program cause corresponding changes in dependencies, they will always be
tracked exactly correctly by gnatmake.

Power MachTen User’s Guide A2-59

A2.7.1 Running gnatmake

The gnatmake command has the form:

gnatmake [-a] [-c] [-f] [-g] [-jn] [-k] [-M] [-o exec-name]
[-n] [-q] [-v]
 [compiler_switch]
 {-Adir} {-aOdir} {-aIdir} {-Idir} {-I-} {-Ldir}
 unit_or_file_name
 {-cargs options} {-bargs options} {-largs options}

Here square brackets indicate optional components in the command, and curly
brackets indicate a construction that can occur zero or more times.

The only required argument is unit_or_file_name, which specifies the compilation
unit that is the main program. There are two ways to specify this:

• By giving the lowercase name of the compilation unit (gnatmake unit).

• By giving the name of the source containing it (gnatmake file.adb).

All gnatmake output (except when you specify ‘-M’) is to stderr. The output
produced by the ‘-M’ switch is send to stdout.

Power MachTen User’s GuideA2-60

A2.7.2 Switches for gnatmake

You may specify any of the following switches to gnatmake:

‘-a’ Consider all files in the make process, even the GNAT internal system files
(for example, the predefined Ada library files). By default, gnatmake does
not check these files (however, if there is an installation problem, it will be
caught when gnatmake binds your program). You may have to specify this
switch if you are working on GNAT itself. The vast majority of gnatmake
users never need to specify this switch. By default gnatmake -a compiles
all GNAT internal files with gcc -c -gnatg rather than gcc -c.

‘-c’ Compile only. Do not perform binding and linking. If the root unit
specified by unit_or_file_name is not a main unit, this is the default.
Otherwise gnatmake will attempt binding and linking unless all objects are
up to date and the executable is more recent than the objects.

‘-f’ Force recompilations. Recompile all sources, even though some object files
may be up to date, but don’t recompile predefined or GNAT internal files
unless the ‘-a’ switch is also specified.

‘-g’ Compile with debugging information. Same effect as -cargs -g.

‘-jn’ Use n processes to carry out the (re)compilations. If you have a
multiprocessor machine, compilations will occur in parallel. In the event
of compilation errors, messages from various compilations might get
interspersed (but gnatmake will give you the full ordered list of failing
compiles at the end). This can at times be annoying. To get a clean list of
error messages don’t use ‘-j’.

‘-k’ Keep going. Continue as much as possible after a compilation error. To
ease the programmers’s take in case of compilation errors, the list of
sources for which the compile fails is given when gnatmake terminates.

‘-M’ Check if all objects are up to date. If they are output the object
dependences to stdout in a form that can be directly exploited in a
‘Makefile’. By default, each source file is prefixed with its (relative or
absolute) directory name. This name is whatever you specified in the
various ‘-aI’ and ‘-I’ switches. If you use gnatmake -M -q (see ‘-q’
below), only the source file names, without relative paths, are output. If

Power MachTen User’s Guide A2-61

you just specify the ‘-M’ switch, dependencies of the GNAT internal
system files are omitted. This is typically what you want. If you also
specify the ‘-a’ switch, dependencies of the GNAT internal files are also
listed. Note that dependencies of the objects in external Ada libraries (see
switch ‘-aLdir’ in the following list) are never reported.

‘-n’ Don’t compile, bind, or link. Output a single command that will recompile
an out of date unit, if any. Repeated use of this option, followed by
carrying out the indicated compilation, will eventually result in
recompiling all required units. If any ALI is missing during the process,
gnatmake halts and displays an error message.

‘-o exec_name’
Output executable name. The name of the final executable program will be
exec_name. If the ‘-o’ switch is omitted the default name for the executable
will be the name of the input file without the suffix (Unix systems) or the
name of the input file with an ‘.exe’ extension (DOS and OS/2). You may
prefix exec_name with a relative or absolute directory path.

‘-q’ Quiet. When this flag is not set, the commands carried out by gnatmake are
displayed.

‘-v’ Verbose. Displays the reason for all recompilations gnatmake decides are
necessary.

‘gcc switches’
The switch ‘-g’ or any upper case switch (other than ‘-A’, or ‘-L’) or
switch that is more than one character is passed to gcc (e.g. ‘-O’, ‘-gnato,’
etc.)

Source & Library search path switches:

‘-Adir’ Equivalent to ‘-aLdir -aIdir’.

‘-aOdir’ When looking for library and object files look also in directory dir. The
order in which library files search is undertaken is described in section
“4.4 Search Paths and the Run-Time Library (RTL)”.

‘-aIdir’ When looking for source files also look in directory dir.

‘-Idir’ Equivalent to ‘-aOdir -aIdir’.
‘-I-’ Do not look for source, library or object files in the default directory.

Power MachTen User’s GuideA2-62

‘-Lvar’ Add directory dir to the list of directories in which the linker will
search for libraries. This is equivalent to ‘-largs -Ldir’.

General compiler, binder or linker switches:

‘-cargs options’
Compiler arguments. Without ‘-cargs’, gnatmake uses gcc -c to
perform compilations. Otherwise, gnatmake uses gcc -c c_opts, where
c_opts is a list of parameters including all the options encountered in the
set of ‘-cargs’ switches present on the gnatmake command line. A given
sublist of ‘-cargs’ options is terminated upon encountering another ‘-
cargs’, ‘-bargs’ or ‘-largs’. By default, gnatmake -a compiles all GNAT
internal files with gcc -c -gnatg rather than gcc -c.

‘-bargs options’
Binder arguments. Without ‘-bargs’, gnatmake uses gnatbind unit.ali
to bind. Otherwise, gnatmake uses gnatbind b_opts unit.ali. b_opts is
akin to c_opts, but is obtained from ‘-bargs’ switches. ‘-largs
options’. Similar to ‘-bargs’, but specifies the options for gnatlink.
Note that you are not allowed to use the ‘-o’ switch within a ‘-largs’.
Use the ‘-o’ switch directly to gnatmake to give a specific name to your
executable.

A2.7.3 Notes on the Command Line

Please note the following with regard to gnatmake:

• If you enter gnatmake file.adb, where ‘file.adb’ is a subunit or body of a
generic unit, gnatmake recompiles ‘file.adb’ (because it finds no ALI) and stops,
issuing a warning.

• gnatmake does not examine ‘.o’ files, only ALI files. Deleting ‘.o’ files will not
force a recompile. You can force everything to be recompiled either by deleting
the ALI files or by using the ‘-f’ switch.

• If gnatmake finds no ALI files, it recompiles the main program and all other
units required by the main program. Thus gnatmake can be used for the initial
compile, as well as during the re-edit development cycle.

Power MachTen User’s Guide A2-63

A2.7.4 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you
don’t need to worry about how it works. However, it may be useful to have some
basic understanding of the gnatmake approach and in particular to understand
how it uses the results of previous compilations without incorrectly depending on
them.

First a definition: an object file is considered up to date if the corresponding ALI
file exists and if all the source files listed in the dependency section of this ALI file
have time stamps matching those in the ALI file. This means that neither the source
file itself nor any files that it depends on have been modified, and hence there is no
need to recompile this file.

gnatmake works by first checking if the specified main program is up to date. If so,
it is done, and no compilations are required. If not, it compiles the main program
to build a new ALI file that reflects the latest sources. It examines this ALI file to
find all the source files on which the main program depends, and recursively
applies the up to date test on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI
file if they are known to be correct. Otherwise it always recompiles to determine a
new, guaranteed accurate set of dependencies. Thus the program is compiled
“upside down” from what may be more familiar as the required order of
compilation in some other Ada systems. In particular, clients are compiled before
the units on which they depend. The ability of GNAT to compile in any order is
critical in allowing an order of compilation to be chosen that guarantees that
gnatmake will recompute a correct set of new dependencies if necessary.

Power MachTen User’s GuideA2-64

A2.7.5 Examples of gnatmake Usage

gnatmake hello.adb
Compile all files necessary to bind and link the main program ‘hello.adb’
(containing unit Hello) and bind and link the resulting object files to
generate an executable file ‘hello’.

gnatmake -q Main_Unit -cargs -O2 -bargs -l
Compile all files necessary to bind and link the main program unit
Main_Unit (from file ‘main_unit.adb’). All compilations will be done with
optimization level 2 and the order of elaboration will be listed by the
binder. gnatmake will operate in quiet mode, not displaying commands it
is executing.

Power MachTen User’s Guide A2-65

A2.8.0 Handling Files With Multiple
Units With gnatchop

This chapter discusses how to handle files with multiple units by using the
gnatchop utility.

A2.8.1 Handling Files With Multiple Units

The basic compilation model of GNAT requires a file submitted to the compiler
have only one unit and there must be a strict correspondence between the file
name and the unit name.

The gnatchop utility allows both of these rules to be relaxed, allowing GNAT to
process files which contain multiple compilation units and files with arbitrary
filenames. The approach used by gnatchop is to read the specified file and generate
one or more output files, containing one unit per file and with proper filenames as
required by GNAT.

If you want to permanently restructure a set of “foreign” files so that they match
the GNAT rules and do the remaining development using the GNAT structure,
you can simply use gnatchop once, generate the new set of files and work with them
from that point on.

Alternatively, if you want to keep your files in the “foreign” format, perhaps to
maintain compatibility with some other Ada compilation system, you can set up a
procedure where you use gnatchop each time you compile, regarding the source
files that it writes as temporary files that you throw away.

Power MachTen User’s GuideA2-66

A2.8.2 Command Line for gnatchop

The gnatchop command has the form:

gnatchop [-k] [-r] [-s] [-w] filename [directory]

The only required argument is the filename of the file to be chopped. There are no
restrictions on the form of this filename. The file itself contains one or more Ada
files, in normal GNAT format, concatenated together.

When run in default mode, gnatchop generates one output file in the current
directory for each unit in the file. For example, given a file called ‘hellofiles’
containing:

procedure hello;
with Text_IO; use Text_IO;
procedure hello is
begin
 Put_Line (“Hello”);
end hello;

the command:

gnatchop hellofiles

generates two files in the current directory, one called ‘hello.ads’ containing the
single line that is the procedure spec, and the other called ‘hello.adb’ containing the
remaining text. The original file is not affected. The generated files can be compiled
in the normal manner.

A2.8.3 Switches for gnatchop

gnatchop recognizes the following switches:

‘-k’ Limit generated filenames to eight characters. This is useful if the resulting
set of files is required to be interoperable with systems like MS-DOS which
limit the length of filenames.

Power MachTen User’s Guide A2-67

‘-r’ Generate Source_Reference pragmas. Use this switch if the output
files are regarded as temporary and development is to be done in terms of
the original unchopped file. The ‘-r’ switch causes Source_Reference
pragmas to be inserted into each of the generated files to refers back to the
original filename and line number. The result is that all error messages
refer back to the original unchopped file. In addition, the debugging
information placed into the object file (when the ‘-g’ switch of gcc or
gnatmake is specified) also refers back to this original file so that tools like
profilers and debuggers will give information in terms of the original
unchopped file.

‘-s’ Write a compilation script to standard output containing gcc commands to
compile the generated files.

‘-w’ Overwrite existing filenames. Normally gnatchop regards it as a fatal error
situation if there is already a file with the same name as a file it would
otherwise output. The ‘-w’ switch bypasses this check, and any such
existing files will be silently overwritten.

directory, if specified, gives the name of the directory to which the output files will
be written. If it is not specified, all files are written to the current directory.

A2.8.4 Examples of gnatchop Usage

gnatchop -w hello_s.ada ~gnat/ichibiah/files
Chops the source file ‘hello_s.ada’. The output files will be placed in the
directory ‘~gnat/ichibiah/files’, overwriting any files with matching names
in that directory (no files in the current directory are modified).

gnatchop -s -r collect
Chops the source file ‘collect’ into the current directory. A compilation
script is also generated, and all output files have Source_Reference
pragmas, so error messages will refer back to the file ‘collect’ with proper
line numbers.

gnatchop archive
Chops the source file ‘archive’ into the current directory. One useful
application of gnatchop is in sending sets of sources around, for example in
email messages. The required sources are simply concatenated (for
example, using a Unix cat command), and then gnatchop is used at the

Power MachTen User’s GuideA2-68

other end to reconstitute the original file names.

Power MachTen User’s Guide A2-69

A2.9.0 The Front-End/Cross-
Reference Utility gnatf

This chapter discusses gnatf, a stripped-down version of the GNAT compiler
containing only the front end. gnatf can preform full syntax and semantic checking
and also has a cross-reference analyzer built in that can perform a variety of
functions.

A2.9.1 Overview of gnatf

The GNAT system provides a stand-alone tool, gnatf, which allows for syntax and
semantics checking without any code generation. This is somewhat faster than
using gcc -gnatc.

The standard GNAT switches that do not concern code generation are still
available in gnatf. However, they should not be proceeded by ‘-gnat’, so to do
syntax only checking with gnatf, use gnatf -s file.adb, not gnatf -gnats
file.adb.

The real point of gnatf is that it contains a cross reference tool, whose goals are:

• Giving precise information about all declared entities (where they are defined
and where they are used). This is particularly useful in the Ada emacs mode
contained in the GNAT distribution.

• Emitting warnings if an entity is defined but never used or a with clause is
unnecessary, misplaced or redundant.

Power MachTen User’s GuideA2-70

A2.9.2 Command Line of gnatf

The gnatf command line is of the following form:

gnatf [switches] files

The effect is similar to a gcc command specifying the ‘-gnatc’ (no code
generation) switch, although it is somewhat faster, especially if several files are
processed at the same type.

A2.9.3 Compilation Switches

The following compilation switches are similar to the corresponding switches in
gcc, except that the names are not preceded by ‘-gnat’. For example, the gnatf
switch for syntax-only checking is ‘-s’ instead of -gnats. For full details on these
switches, see section “A2.4.2 Switches for gcc.”

‘-b’ Generate brief messages to stderr even if verbose mode set
‘-e’ Error messages generated immediately, not saved up till end
‘-f’ Full errors. Multiple errors/line, all undefined references
‘-g’ GNAT style checks enabled
‘-ic’ Identifier char set (c=1/2/3/4/8/p/f/n/w)
‘-je’ Wide character encoding method (e=n/h/u/s/e)
‘-kn’ Limit file names to n (1-999) character.
‘-l’ Output full source listing with embedded error messages
‘-mn’ Limit number of detected errors to n (1-999)
‘-q’ Don’t quit, try semantics, even if parse errors
‘-r’ Reference manual column layout required
‘-s’ Syntax check only
‘-t’ Tree output file to be generated
‘-u’ List units for this compilation
‘-v’ Verbose mode. Full error output with source lines to stdout
‘-wm’ Warning mode. (m=s/e for suppress/treat as error)
‘-83’ Enforce Ada 83 restrictions

Power MachTen User’s Guide A2-71

A2.9.4 Cross-Referencing Switches

The following list contains the descriptions of the cross-referencing flags available
with gnatf:

‘-x1’ Issues warnings for unnecessary, misplaced or redundant with clauses.
Specifically, a warning message is generated in the following cases:

• A compilation unit which is with’ed but never used (this works
with child library units as well).

• A compilation unit that is with’ed in a body (responsible subunit)
if the same with clause already appears in the specification
(responsible specification or body for subunits).

• A compilation unit that is with’ed within a specification but is used
only by the body or a subunit.

‘-x2’ Issues warnings on unused entities, that is entities that are declared but
never used. Note that no warnings are issued for unreferenced entities
such as the following:

• Record fields, since they could be referenced indirectly by an
aggregate.

• Enumeration entities, since they could be referenced indirectly by
enumeration ranges:

for i in Color’First .. Color’Last

• Loop parameters:

for I in 1 .. 80 loop
 Put (‘x’);
end loop;

‘-x[345]’Generate cross-reference information. The ‘-x3’ switch gives the most
succinct cross-referencing information, ‘-x5’ the most comprehensive.
The ‘-x4’ switch gives more information than ‘-x3’ but not as much as
‘-x5’. The information given by switches ‘-x3’ and ‘-x4’ is used in the
smart recompilation system currently under development. The ‘-x5’
switch lists all entities defined or used in the analyzed compilation
units. It gives the source location of their definition and all their uses in
the analyzed units.

Power MachTen User’s GuideA2-72

‘-x6’ The cross-reference output is the same as with ‘-x5’, except that with
‘-x6’, all cross-reference information is stored in the single file ‘X.ref’,
and the entity kind of each cross-referenced entity is also given.

A2.9.5 Cross Reference Information and
Smart Recompilation

The cross reference information gathered by the ‘-x3’ and ‘-x4’ switches is a
subset of the information specified by the ‘-x5’ switch. The former information is
specifically tailored to the smart recompilation system currently under
development. When ‘-x3’ or ‘-x4’ are specified, the cross-referencing tool gnatf
produces the following information for each compilation unit analyzed. We refer
to that unit as unit in the following list.

• The full graph of the source files, directly or indirectly loaded as a result of
compiling Unit along with their time stamp. This graph includes the with’ed
unit graph rooted at unit and also other units automatically loaded by GNAT
during code generation (generic bodies, subunits, and bodies of inlined
subprograms).

• The list of entities that can be exported from unit to other Ada sources along
with their line and column of definition and use in unit. If unit is a subprogram
or package specification, the notion of exported entity matches the set of
entities listed therein. If unit is a package body with no generics or inlined
subprograms, then no entities are exported. In general, however, the set of
entities exported from unit is the set of entities that are needed across
compilation units by gnat when generating code. Specifically inlined
subprogram bodies or generic bodies are always exported, since these are
inlined at the point of use or instantiation. The same happens for subunits,
which are inlined in the parent unit. The difference between the ‘-x3’ and ‘-
x4’ switches is that ‘-x3’ omits all generic bodies or inlined subprograms from
the exported entities, while ‘-x4’ includes them. Both ‘-x3’ and ‘-x4’ consider
subunits as exported entities. gnatf considers only outermost visible entities to
be exported. That is, a record or enumeration type may be exported, but its
inner fields or enumeration literals are never considered exported entities. It is
the same for subprogram parameters and discriminants.

Power MachTen User’s Guide A2-73

• The list of entities directly imported by unit from other Ada sources, along
with their lines and columns where they are used in unit. The idea of imported
entities is derived from the notion of exported entities (what is exported by
one unit may be imported by another).

A2.9.6 File Structure

The cross-referencing file is divided into various sections. There is one section for
each compilation unit explicitly requested. We call these units, RUs, for “requested
units.” There is also one section for each AU, (auxiliary unit); that is, those
compilation units that are implicitly loaded by the compiler, but whose
compilation has not been explicitly requested by the user. Specs of withed
packages are typical AUs.

All entities exported by RUs (the ‘-x3’ and ‘-x4’ switches) or all entities belonging
to RUs (the ‘-x5’ and ‘-x6’ switches) appear in the cross-referencing file(s).

However, only the entities defined in AUs that are imported in RUs appear in the
cross-referencing file. Their order is the order of declaration in the source files.

The sections in the cross reference referring to RUs and AUs are respectively
denoted:

%% unit.ad[sb]
 for an RU
-- unit.ad[sb]
 for an AU

Note: An entity defined inside a generic and used through a generic
instantiation is listed under the cross-referencing section of the generic
unit.

Power MachTen User’s GuideA2-74

A2.9.7 Example of gnatf Usage

‘test.adb’

 01 with Part1; -- unused
 02 with Part2; use Part2;
 03 procedure Test is
 04
 05 Thing : Number;
 06 type Client is record
 07 Number : Integer;
 08 State : Boolean;
 09 end record;
 10 type Color is (Red, Green); -- unused
 11 My_Client : Client;
 12
 13 begin
 14 My_Client.Number := 1;
 15 My_Client.State := True;
 16 Thing := 20;
 17 Thing := Thing + Thing;
 18 end;

‘part1.ads’

 01 package Part1 is
 02 type Useless is new Integer;
 03 end;

‘part2.ads’

 01 package Part2 is
 02 type Number is new Integer range 1 .. 1000;
 03 The_Number : constant := 42;
 04 end;

The result of invoking gnatf -x5 test.adb is the following (just skim the file
‘test.xrb’, explanations follow:

Power MachTen User’s Guide A2-75

Warnings on stderr (the screen):

 test.adb:1:06: warning: “Part1” withed but unused.
test.adb:3:11:
 warning: “Test” unused test.adb:10:09: warning: “Color”
unused

‘test.xrb’

 01 V “SGNAT v1.0 “
 02 test.adb 941012154746 2 3
 03 part1.ads 941012154531
 04 part2.ads 941012154620
 05
 06 %% test.adb
 07 test 3:11
 08 thing 5:4
 09 {16:4 17:4 17:13 17:21}
 10 client 6:9
 11 {11:16}
 12 client.number 7:7
 13 {14:14}
 14 client.state 8:7
 15 {15:14}
 16 color 10:9
 17 red 10:19
 18 green 10:24
 19 my_client 11:4
 20 {14:4 15:4}
 21
 22 -- part1.ads
 23 part1 1:9
 24 {1:6}
 25
 26 -- part2.ads
 27 part2 1:9
 28 {2:6 2:17}
 29 number 2:9
 30 {5:14}

Power MachTen User’s GuideA2-76

The unit Test is the only RU (requested unit). AUs (auxiliary units) are packages
Part1 and Part2. First, the graph of the loaded units with their time stamps is
given:

02 test.adb 941012154746 2 3
03 part1.ads 941012154531
04 part2.ads 941012154620

Unit Test requires the loading of units Part1 and Part2 (the second and third
units listed in the inclusion graph).

The entry

06 %% test.adb
07 [...]
08 thing 5:4
09 {16:4 17:4 17:13 17:21}

means Thing is an entity (a variable) defined in line 5 column 4; used in line 16
column 4; and in line 17 columns 4, 13, and 21; in file ‘test.adb’.

The entity Useless may be used in units other than Test, but that information is
not contained in the ‘test.xrb’ file because Test does not use Useless.

Power MachTen User’s Guide A2-77

A2.10.0 Filename Krunching With
gnatk8

This chapter discusses the gnatk8 filename krunching utility.

A2.10.1 About gnatk8

The normal rule in using GNAT is that the filename must be derived from the unit
name. The exact default rule is: Take the unit name and replace all dots by
hyphens, except that if such a replacement occurs in the second character position
of a name, replace the dot by a plus instead of a hyphen.

The ‘-gnatknn’ switch of the compiler activates a “krunching” circuit that limits
filenames to nn characters (where nn is a decimal integer). This is primarily
intended for use on MS-DOS and similar systems where nn=8, to fit in the 8+3
limitation on filenames found in these systems.

The gnatk8 utility can be used to determine the krunched name for a given file,
when krunched to a specified maximum length.

A2.10.2 Using gnatk8

The gnatk8 command has the form:

gnatk8 name [length]

name can be an Ada name with dots or the GNAT name of the unit where the dots
representing child units or subunit are replaced by hyphens. The only confusion
arises if a name ends in ‘.ads’ or ‘.adb’. gnatk8 takes this to be an extension if there
are no other dots in the name and the whole name is in lower case.

length represents the length of the krunched name. The default without any
argument given is 8 characters. A length of zero stands for unlimited, in other
words no chop except for system files which are always 8.

The output is the krunched name. The output has an extension only if the original
argument was a filename with an extension.

Power MachTen User’s GuideA2-78

A2.10.3 Krunching Method

The initial filename is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the
separating dots with hyphens and using lower case for all letter, except that a
hyphen in the second character position is replaced by a plus sign. The extension
is ‘.ads’ for a specification and ‘.adb’ for a body.

Krunching does not affect the extension, but the filename is shortened to the
specified length by following these rules:

• The name is divided into segments separated by minus or plus signs and
underscores and all hyphens, plus signs, and underscores are eliminated. If
this leaves the name short enough, we are done.

• If not the longest segment is located (left-most if there are two of equal length),
and shortened by dropping its last character. This is repeated until the name
is short enough. As an example, consider the krunch of ‘our-strings-
wide_fixed.adb’ to fit the name into 8 characters as required by MS-DOS:

 our-strings-wide_fixed 22
 our strings wide fixed 19
 our string wide fixed 18
 our stri wide fixed 17
 our stri wide fixed 16
 our stri wide fixe 14
 our str wide fixe 14
 our str wid fixe 13
 our str wid fix 12
 ou str wid fix 11
 ou st wid fix 10
 ou st wi fix 9
 ou st wi fi 8
 Final filename: oustwifi.adb

Power MachTen User’s Guide A2-79

• The filenames for all predefined units are always krunched to eight characters.
The krunching of these predefined units uses the following special prefix
replacements:

‘ada-’ replaced by ‘a-’
‘gnat-’ replaced by ‘g-’
‘interfaces-’ replaced by ‘i-’
‘system-’ replaced by ‘s-’

These system files have a hyphen in the second character position. That is why
normal user files replace such a character with a plus sign, to avoid confusion
with system filenames. As an example of this special rule, consider ‘ada-
strings-wide_fixed.adb’, which gets krunched as follows:

ada-strings-wide_fixed 22
a- strings wide fixed 18
a- string wide fixed 17
a- strin wide fixed 16
a- stri wide fixed 15
a- stri wide fixe 14
a- str wide fixe 13
a- str wid fixe 12
a- str wid fix 11
a- st wid fix 10
a- st wi fix 9
a- st wi fi 8
Final filename: a-stwifx.adb

Of course no file shortening algorithm can guarantee uniqueness over all possible
unit names, and if filename krunching is used then it is your responsibility to
ensure that no name clashes occur. The utility program gnatk8 is supplied for
conveniently determining the krunched name of a file.

A2.10.4 Examples of gnatk8 Usage

gnatk8 very_long_unit_name.ads ----> velounna.ads
gnatk8 very_long_unit_name.ads 6 ----> vlunna.ads
gnatk8 very_long_unit_name.ads 0 ----> long_unit_name.ads
gnatk8 grandparent-parent-child.ads ----> grparchi.ads
gnatk8 grandparent.parent.child ----> grparchi

Power MachTen User’s GuideA2-80

A2.11.0 Other Utility Programs

This chapter discusses some other utility programs available in the Ada
environment.

A2.11.1 Using Other Utility Programs With
GNAT

The object files generated by GNAT are in standard system format and in
particular the debugging information uses this format. This means programs
generated by GNAT can be used with existing utilities that depend on these
formats.

In general, any utility program that works with C will also work with Ada
programs generated by GNAT. This includes software utilities such as gprof (a
profiling program), gdb (the FSF debugger), and utilities such as Purify.

A2.11.2 The Naming Scheme of GNAT

In order to interpret the output from GNAT, it is necessary to understand the
conventions used to generate link names from the Ada entity names.

All names are in all lower-case letters. With the exception of library procedure
names, the mechanism used is simply to use the full expanded Ada name with
dots replaced by double underscores. For example, suppose we have the following
package spec:

package QRS is MN : Integer; end QRS;

The variable MN has a full expanded Ada name of QRS.MN, so the corresponding
link name is qrs__mn.

Power MachTen User’s Guide A2-81

Of course if a pragma Export is used this may be overridden:

package Exports is
 Var1 : Integer;
 pragma Export (Var1, C, External_Name =>
“var1_name”);
 Var2 : Integer;
 pragma Export (Var2, C, Link_Name =>
“var2_link_name”);
end Exports;

In this case, the link name for Var1 is var1_name, and the link name for Var2 is
var2_link_name.

One exception occurs for library level procedures. A potential ambiguity arises
between the required name _main for the C main program, and the name we
would otherwise assign to an Ada library level procedure called Main (which
might well not be the main program).

To avoid this ambiguity, we attach the prefix _ada_ to such names. So if we have
a library level procedure such as

procedure Hello (S : String);

the external name of this procedure will be _ada_hello.

A2.11.3 Ada Mode for Emacs

In the subdirectory ‘emacs-ada-mode’ you will find a set of files implementing
an Ada mode under GNU emacs. The mode is still under development, but a
number of features are complete.

For instance, the Ada mode has the same indenting friendliness that C
programmers get with the c-mode, you can toggle between specification and body
with a few keystrokes, etc. This mode also uses ‘gnatf’ to be able to point to an
entity with the mouse, click it and open a window with its definition. This mode is
copyrighted by Markus Heritsch and Rolf Ebert.

Power MachTen User’s GuideA2-82

A2.12.0 Running and Debugging Ada
Programs

This chapter discusses how to run and debug Ada programs.

A2.12.1 Getting Internal Debugging
Information

Most compilers have secret internal debugging switches and modes. GNAT does
also, except GNAT internal debugging switches and modes are not secret. A
summary and full description of all the compiler and binder debug flags are in the
file ‘debug.adb’. You must obtain the sources of the compiler to see the full detailed
effects of these flags.

The switches that print the source of the program (reconstructed from the internal
tree) are of general interest, as are the options to print the full internal tree, and the
entity table (that is the symbol table information).

A2.12.2 GNAT Crashes

GNAT may experience problems in operation, such as aborting with a
segmentation fault or illegal memory access, raising an internal exception, or
terminating abnormally. If such problems occur, try the solutions described in this
section.

The following strategies are presented in increasing order of difficulty,
corresponding to the user’s skill level and curiosity about the functioning of the
compiler.

Power MachTen User’s Guide A2-83

1. Run gcc with the -gnatf and -gnate switches. The first switch causes all
errors on a given line to be reported. In its absence, only the first error on a line
is displayed. The ‘-gnate’ switch causes errors to be displayed as soon as they
are encountered, rather than after compilation is terminated. Often this is
enough to identify the construct that produced the crash.

2. Run gcc with the ‘-v’ (verbose) switch. In this mode, gcc produces ongoing
information about the progress of the compilation and provides the name of
each procedure as code is generated. This switch allows you to find which Ada
procedure was being compiled when it encountered a code generation
problem.

3. Run gcc with the ‘-gnatdc’ switch. This is a GNAT specific switch that does
for the frontend what ‘-v’ does for the backend. The system prints the name
of each unit, either a compilation unit or nested unit, as it is being analyzed.

4. On systems that have gdb available (most Unix systems), start gdb directly on
the gnat1 executable. gnat1 is the front-end of GNAT, and can be run
independently (normally it is just called from gcc). You can use gdb on gnat1 as
you would on a C program (but see section “A2.12.3 Using gdb for caveats”).
The where command is the first line of attack; the variable lineno (seen by
print lineno), used by the second phase of gnat1 and by the gcc backend,
indicates the source line at which the execution stopped, and
input_filename indicates the name of the source file.

Power MachTen User’s GuideA2-84

A2.12.3 Using gdb

gdb awaits modifications to handle Ada properly, and for now can only be used as
it would be for a C program. In the meantime, the following naming conventions
allow you to find the Ada entities defined in your program:

• The names of all entities (variables, subprograms, and so on) are converted to
lowercase letters.

• Entities in library package declarations have the form
package_name__subprogram_name. Note the double underscores
separating package name from subprogram name.

See section “A2.12.3 The Naming Scheme of GNAT” for more information.

Exceptions can be caught by breaking in the __gnat_raise function and then
entering a bt or where command.

Power MachTen User’s Guide A2-85

A2.13.0 Performance Considerations

The GNAT system provides a number of options that allow a trade off between

• performance of the generated code;

• speed of compilation;

• minimization of dependencies and recompilation;

• and the degree of runtime checking.

The defaults if no options are selected are aimed at improving the speed of
compilation and minimizing dependences at the expense of performance of the
generated code:

• no optimization

• no inlining of subprogram calls

• all runtime checks enabled except overflow and elaboration checks

These options are suitable for most program development purposes. This chapter
documentation describes how you can modify these choices.

A2.13.1 Controlling Runtime Checks

By default, GNAT produces all runtime checks except arithmetic overflow
checking for integer operations (including division by zero) and checks for access
before elaboration on subprogram calls.

Two gnat switches, ‘-gnatp’ and ‘-gnato’ allow this default to be modified. See
section “A2.4.3.3 Runtime Checks.”

Our experience is that the default is suitable for most development purposes.

We treat integer overflow and elaboration checks specially because these are quite
expensive and in our experience are not as important as other runtime checks in
the development process.

Note that the setting of the switches controls the default setting of the checks. They
may be modified using either pragma Suppress (to remove checks) or pragma

Power MachTen User’s GuideA2-86

Unsuppress (to add back suppressed checks) in the program source.

A2.13.2 Optimization Levels

The default is optimization off. This results in the fastest compile times, but GNAT
makes absolutely no attempt to optimize, and the generated programs are
considerably larger and slower. You can use the ‘-On’ switch, where n is an integer
from 0 to 3, on the gcc command to control the optimization level:

‘-O0’ no optimization (the default)
‘-O1’ medium level optimization
‘-O2’ full optimization
‘-O3’ full optimization, and also attempt automatic inlining of small

subprograms within a unit (see section “A2.13.3 Inlining of
Subprograms”).

The penalty in compilation time, and the improvement in execution time, both
depend on the particular application and the hardware environment. You should
experiment to find the best level for your application.

Note: Unlike the case with some other compiler systems, gcc has been tested
extensively at all optimization levels. There are some bugs which appear
only with optimization turned on, but there have also been bugs which
show up only in unoptimized code. Selecting a lower level of optimization
does not improve the reliability of the code generator, which in practice is
highly reliable at all optimization levels.

Power MachTen User’s Guide A2-87

A2.13.3 Inlining of Subprograms

A call to a subprogram in the current unit is inlined if all the following conditions
are met:

• The optimization level is at least ‘-O1’.

• The called subprogram is suitable for inlining: It must be small enough and not
contain nested subprograms or anything else that gcc cannot support in
inlined subprograms.

• The call occurs after the definition of the body of the subprogram.

• Either pragma Inline applies to the subprogram or it is very small and
automatic inlining (optimization level ‘-O3’) is specified.

Calls to subprograms in with’ed units are normally not inlined. To achieve this
level of inlining, the following conditions must all be true:

• The optimization level is at least ‘-O1’.

• The called subprogram is suitable for inlining: It must be small enough and not
contain nested subprograms or anything else gcc cannot support in inlined
subprograms.

• The call appears in a body (not in a package spec).

• There is a pragma Inline for the subprogram.

• The ‘-gnatn’ switch is used in the gcc command line

Power MachTen User’s GuideA2-88

Note that specifying the ‘-gnatn’ switch causes additional compilation
dependencies. Consider the following:

package R is
 procedure Q;
 pragma Inline Q;
end R;
package body R is
 ...
end R;
with R;
procedure Main is
begin
 ...
 R.Q;
end Main;

With the default behavior (no ‘-gnatn’ switch specified), the compilation of the
Main procedure depends only on its own source, ‘main.adb’, and the spec of the
package in file ‘r.ads’. This means that editing the body of R does not require
recompiling Main.

On the other hand, the call R.Q is not inlined under these circumstances. If the ‘-
gnatn’ switch is present when Main is compiled, the call will be inlined if the
body of Q is small enough, but now Main depends on the body of R in ‘r.adb’ as
well as the spec. This means that if the body is edited, the main program must be
recompiled. Note that this extra dependency occurs whether or not the call is in
fact inlined by gcc.

Note: The gcc switch ‘-fno-inline’ can be used to prevent all inlining. This
switch overrides all other conditions and ensures that no inlining occurs.
The extra dependencies resulting from ‘-gnatn’ will still be active, even
if the ‘-fno-inline’ switch is used.

Power MachTen User’s Guide B-1

APPENDIX B

Resources: MachTen Application

The MachTen application includes several resources that define important
configuration values and options. The resources listed below may be viewed and
changed with ResEdit, to customize MachTen operation to your circumstances.
Changing undocumented MachTen resources may result in unexpected failures.

DMOD

The ‘DMOD’ resource, ID -8192, specifies the default UNIX access privilege
modes for Macintosh folders. The default mode of 777 (Octal) permits read,
write, and search permission by everyone. The default access modes assigned
may be overridden using the MachTen chmod(1) command. The default Macintosh
folder owner and group is fixed by MachTen at “root” and “wheel”, respectively.

Note: When modifying the DMOD resource, use the hexadecimal number
equivalent of the octal mode bits you wish to set, for example: enter mode
“755” as $1ED.

FMOD

The ‘FMOD’ resource, ID -8192, specifies the default UNIX access privilege
modes for Macintosh files. The default mode of 777 (Octal) permits read, write
and execute permission by everyone. The default access modes assigned may be
overridden using the MachTen chmod(1) command. The default Macintosh file
owner and group is fixed by MachTen at “root” and “wheel”, respectively.

Note: When modifying the FMOD resource, use the hexadecimal number
equivalent of the octal mode bits you wish to set, for example: enter mode
“755” as $1ED.

Luid

Power MachTen User’s GuideB-2

The Luid resource controls which users are permitted to launch Macintosh
applications from within MachTen. The Luid resource has resource type of ‘Luid’
and a resource ID of -8192 (or 0xE000).

The Luid resource contains a variable length list of numeric uids. A uid is defined
to be an “unsigned short”. A ResEdit template for the Luid resource is included in
MachTen.

If the Luid resource does not exist or is empty, only the user root may launch
Macintosh applications. Otherwise, each entry in the resource is compared to the
uid of the current user to check for a match. If a match is found, that user is
permitted to launch Macintosh applications. The uid 0xFFFF is a wildcard, which
matches all users, allowing any user to launch applications. This is the default for
MachTen.

ROOT

 The 'ROOT' resource, ID -8192, names the FFS file which contains the MachTen
root file system. The name is first looked for in the folder from which MachTen is
launched. The default name is “MachTen_FFS”.

Power MachTen User’s Guide C-1

 APPENDIX C

Suggested Reading for Programming Languages

The following books may be helpful in understanding and using the indicated
programming language.

Ada
Ada 95: Problem Solving and Program Design, by Michael Feldman and
Elliot Koffman. Addison-Wesley, 1996; ISBN: 0-201-87009-6.

This book is suitable as a CS1 text with Ada as the language of instruction, and
the last few chapters, combined with some language-independent algorithm
theory, cover the rest of the Ada language in sufficient depth to serve as the
language-specific basis of a CS2 course.

Note that Prof. Feldman has made available online the first eight chapters of
the Instructor’s Manual for the book, available at:
http://www.seas.gwu.edu/faculity/mfeldman/cs1-im/index.html.

Ada 95: The Lovelace Tutorial, by David A. Wheeler
Springer-Verlag; ISBN: 0-387-94801-5.

This tutorial introduces Ada to those who already know another
programming language. It is divided into a large number of small sections,
most of which end in a question, to improve understanding.

Ada 95: The Craft of Object-Oriented Programming, by John English
Prentice Hall, September 1996.

This book introduces Ada-as-a-first-language. The site contains 3 sample
chapters, a downloadable set of examples, and related bits and pieces.

Software Engineering with Ada, Third Edition, by Grady Booch, Doug Bryan,
Charles Peterson; Addison Wesley.

Power MachTen User’s GuideC-2

Ada in Action (with Practical Programming Examples), by Do-While Jones.
Available on the internet at:
ftp://owens.ridgecrest.ca.us/pub/users/d/do_while/ada_in_action
Alternative site:
ftp://lo-pan.ridgecrest.ca.us/pub/users/d/do_while/ada_in_action

Books Suitable for a First Course in Programming, suggested by Michael
Feldman, and available at the Ada Home Page, http://www.adahome.com.
These book are written especially for students without programming experience,
who are learning Ada as their first language.

Ada from the Beginning, Second Edition, by J. Skansholm
Addison-Wesley, 1994; ISBN: 0-201-62448-6.

Introduction to Programming Concepts and Methods with Ada,
by J.F. Smith and T.S. Frank,
McGraw-Hill, 1994; ISBN: 0-07-911725-2.

C
Teach Yourself the Unix C Shell in 14 Days (Unix Library), , by D. Ennis/
J. C. Armstrong, Jr.; Sams, 1994; ISBN:0672305402.

Teach Yourself Advanced C in 21 Days, by Bradley Jones/Gregory Guntle;
Sams, 1994; ISBN:0672304716.

C++
The C++ Programming Language, Second Edition, by Bjarne Stroustrup
Addison Wesley; ISBN: 0-201-53992-6.

Practical C++ Programming, by Steve Oualline
O’Reilly & Associates, Inc.; ISBN: 1-56592-139-9.

Teach Yourself C++ Programming in 21 Days, by Jesse Liberty

Power MachTen User’s Guide C-3

Objective-C

 Object Oriented Programming: An Evolutionary Approach, Brad J. Cox,
Andrew J. Novobilski Addison-Wesley, 1991; ISBN: 0-201-54834-8 (Japanese:
4-8101-8046-8).

The first book on Objective-C, which actually is a book on object oriented
system development using Objective-C.

Objective-C: Object Oriented Programming Techniques, Lewis J. Pinson,
Richard S. Wiener Addison-Wesley, 1991; ISBN 0-201-50828-1 (Japanese: 4-
8101-8054-9).

Includes many examples, discusses both Stepstone’s and NeXT’s versions of
Objective-C, and the differences between the two.

An Introduction to Object-Oriented Programming, Timothy Budd,
Addison-Wesley; ISBN 0-201-54709-0 (Japanese: 4-8101-8048-4).

 An intro to the topic of OOP, as well as a comparison of C++, Objective-C,
Smalltalk, and Object Pascal

NeXTSTEP Programming Step ONE: Object-Oriented Applications,
Simson L. Garfinkel, Michael K. Mahoney; TELOS/Springer-Verlag, 1993 (tel:
(800)SPR-INGE).

It’s updated to discuss NeXTSTEP 3.0 features (Project Builder, new
development environment) but doesn’t discuss 3DKit or DBKit.

NeXTSTEP Object Oriented Programming and the Objective C Language.
Addison-Wesley, 1993; ISBN 0-201-63251-9 (Japanese: 4-7952-9636-7).

This is also available on the World Wide Web at:
http://www.next.com/Pubs/Documents/OPENSTEP/ObjectiveC/objctoc.
htm.

This book describes the Objective-C language as it is implemented for
NeXTSTEP. While clearly targeted at NeXTSTEP, it is a good first-read to get
to learn Objective-C.

Power MachTen User’s GuideC-4

Articles

Why I need Objective-C, by Christopher Lozinski.
Journal of Object-Oriented Programming (JOOP), September 1991.
Contact info@bpg.com for a copy and subscription to the BPG
newsletter.

This article discusses the differences between C++ and Objective-C in great
detail and explains why Objective-C is a better object oriented language.

 Java
Instant Java, by John A. Pew
SunSoft Publishing

Instant Java is the easy, practical way to add Java applets to your Web pages!
The following are among the applets included in the book: Audio, Multiple
Simultaneous Animations, Image Maps, Ticker Tapes and more.

Java Manual of Style, by Nathan Gurewich/Ori Gurewich
Ziff-Davis Press; ISBN: 156276408X.

Includes: The building blocks of Java programming, how to use the Java
Developer Tool Kit, and how to create applets that will maximize the
interactivity in your site.

The Java Programming Language(The Java Series), by Ken Arnold/
James Gosling ;Addison Wesley; ISBN: 0201634554.

Co-authored by the creator of Java technology, The Java Programming
Language is the definitive resource for all serious Java programmers.

Power MachTen User’s Guide C-5

X11

The following books published by O’Reilly & Associates are recommended for
learning more about X:

Volume 1: Xlib Programming Manual

Volume 2: Xlib Reference Manual

Volume 3: X Window System User’s Guide
Details the X Window System and common X client applications.
This volume is available in an OSF/Motif Edition focusing on the Motif
user environment and mwm. (Motif is not included with MachTen.)

Volume 4: X Toolkit Intrinsics Programming Manual

Volume 5: X Toolkit Intrinsics Reference Manual
Comprehensive guides to programming with the X library and X Toolkit.

Volume 8: X Window System Administrators Guide
Comprehensive guide to administering the X Window System. This
volume is a highly recommended companion to the MachTen X Window
Software package.

Power MachTen User’s GuideC-6

Power MachTen User’s Guide I-1

Symbols

$ prompt 51, 75

&, using for background processing 85

A

access permissions 89, 92

accessing

Mac files from UNIX applications 110

source files 30

Ada 1, 2, 12, 224

documentation 12

ADDRINFO_* variable 65

adduser command 75, 193

administration 63–86

file

major 106

system 115

login accounts 80

MachTen 63

AfterStep

desktop 5

X Window manager 5, 260

aliases, defined 93

allocating memory 36

allocation blocks, defined 91

Alpha 2

Apache 173

Apple

menu 53

Remote Access 293

AppleDict 159

AppleDouble 139

AppleShare access privileges (NFS) 135

AppleSingle encapsulation 110

AppleTalk 65, 124, 293

applications, hybrid 9

archiving file systems 120

AutoDoubler, disabling 16

automatic

booting of MachTen 67

mounting

Desktop NFS volumes 132

removable media 108

B

background program execution 85

backing up

file systems 120

tar command 121

baud rates 152, 187

table 187

BBEditLite 2, 12, 173

Berkeley

Internet Name Domain (BIND) 170

r-series commands 185

BINA file types 97, 98

binary file types 97, 98

BIND (Berkeley Internet Name

Domain) 170

BLK file types 99

block devices 93, 99

booting up MachTen automatically 67

Bourne shell 49, 72

broadcasting messages 81

buckets, defined 235

buffers

increasing the number of 22

UFS and NFS 22, 37

bulletin board folders 138

bwnfsd 130

INDEX

Power MachTen User’s GuideI-2

UID and GID mapping 133

C

C

compiler 1, 225

shell 49, 72

C++ compiler 1, 226

cable, GPI 188

cabling and connectors for serial ports 186

caching 21

Carnegie Mellon Mach kernel 6

case sensitivity in file names 94

cc1obj 215

cc1plus 215

CFM, See code fragment manager

characters

non-printable 95

special keyboard 83

checking file systems 116

chpass command 77

CHR file types 99

chroot command 77

CLEANUP_tmp variable 66

code fragment 6, 213, 219, 231

loader 220

manager 242

compilers

Ada 1, 224

C 1, 225

C++ 1, 226

engines

cc1 215

cc1obj 215

cc1plus 215

f771 215

gnat1 215

Fortran 1, 227

Java 1, 228

Objective-C 226

compile-time libraries 220

naming conventions 221

compiling source code 224

Ada 224

C 225

C++ 226

Fortran 227

Java 228

Objective-C 226

component separators for file names 95

configuration

DNS lookups 179

example 43

options 21

via MachTen control panel 33, 65

configuration screens 34

general 35–36

host name 35

time zone 36

memory

maximum number parameters 37

networking 35, 38–43

enable

incoming

connections 39

mail 39
IP forwarding 39

IP addresses 40–42

maximum transmission unit

settings 42

netmasks 42

connections, incoming 39

console window 19

control panels 33–43

date & time 36

file sharing 21

Power MachTen User’s Guide I-3

MachTen 18, 46, 168, 172

configuring 18, 33, 65

warning dialog box 32

map 36

memory 21, 22

networking 180, 183

sharing setup 35

TCP/IP 15, 38, 177

X Windows, configuring 296–298

cooperative sharing 6

counts, link 90

cpp 214

cron 23

daemon 47

cross-development tools and targets 240

.cshrc file 72, 76

cu command 189

cylinder group, defined 88

D

daemons 46

cron 47

getty 24

httpd 25, 47, 173

inetd 24, 47

lockd 132

lpd 25, 47

lwsrv 149

MachTen, table of 47

macmntd 47

mactcpd 47

mountd 47, 125

named 47, 171

NFS 24

nfsd 47, 125

portmap 47, 125, 143, 147

rc 47

routed 24

sendmail 24, 47

syslogd 24, 47

wind 25, 47, 69

ypbind 143, 147

data

files, MachTen 48

fork 139

databases

etc/rc 46

etc/rc.conf 46

date & time control panel 36

Debugger 248

debugging 231

Debugger 248

environment variables

DEBUGGERFIRST 235

MEMSTATS 235

STACKCHK 235

gdb 231

Macintosh debuggers 248

MacsBug 232, 248

Metrowerks debugger 233

default gateway 42

Desktop NFS 130–141

access

permissions

Make Changes 137

See Files 137

See Folders 137

privileges, strategies for 138

AppleDouble

 file support 130

storing Mac files 139

AppleSingle

 file support 130

storing Mac files 139

authentication options 133

Power MachTen User’s GuideI-4

user ID and password on

command line 135

username and password

on command line 134

prompt 134

comparison with Apple File

Sharing 139

creators and types 141

credentials of user 133

defined 130

DOS extensions 140

locked folders 138

Macintosh record locking 132

DeskWriter baud rates 152

/dev/ttya 186

/dev/ttyb 186

development tools 9, 213–248

UNIX 1

X Windows 1

Dext resource 140

df command 23

dfork 111

dfork.text 113

directory link counts 97

disabling

AutoDoubler 16

logins 82

virus protection software 16

disk

caching 21

drivers 21

footprint 8

reformatting for peformance 15

requirements 14

space limitations 23

diskless NFS clients 127

distributed file system 1, 184

DNS, See domain name server

documentation

Ada 12

GNAT 12

MachTen 12

Objective-C 12

domain name 42

requirements for installation 15

resolver 168, 172

server 42

BIND, enabling 179

boot file 171

configuring MachTen as 170

lookups, configuration 179

using MachTen as 170

domainname 144

DOS extensions 140

drop folders 138

dtmount command 130

dtnfs program 130

DTNFS, see Desktop NFS

dual stack configuration 164, 177

dump command 120, 122

dynamic

linking 7, 219

memory configuration 7

E

edata symbol 245

edit menu 54–55

editing tools 114

copy & paste 114

Macintosh editing applications 114

UNIX editors 114

editors, changing default 70

electronic mail 180

emacs 114

enable

Power MachTen User’s Guide I-5

incoming

connections 39

mail 39

IP forwarding 39

end symbol 245

environment variables

DEBUGGERFIRST 235

MEMSTATS 235

STACKCHK 235

error logging, X server 285

/etc/rc file 23

/etc/exports file 124

example 126

/etc/fstab file 48

example 127

/etc/group file 78, 79

/etc/hosts

file 48, 168, 170

example 171

table 168

/etc/hosts.equiv file 154

/etc/hosts.lpd file 154

/etc/localtime file 48

/etc/master.passwd file 77, 82

/etc/motd file 48, 82

/etc/named directory 170

/etc/named/boot file 171

example 172

/etc/net_search_rules files 168

/etc/nis.conf file 143

/etc/nis.conf file 144

/etc/nsswitch.conf file 143, 145

example 145

/etc/passwd file 78

/etc/printcap file 150, 161

modifying 151

etc/rc database 46

/etc/rc.conf file 48

etc/rc.conf database 46

/etc/rc.local file 48

/etc/remote database 198

/etc/resolv.conf file 172, 48

/etc/sendmail.cf file 48

/etc/ttys file 48

/etc/yp.conf file 143

modifying 144

etext symbol 245

Ethernet 38, 39, 65, 124, 169

EtherTalk 14

Eudora 182

execute permission 89

exporting via NFS 124

eXtended Common Object File Format

(XCOFF) 219

F

f771 215

Fast File First Aid 117

fast file system 87–93

backing up with tar command 121

defined 87

native 7, 9
overview 88

within a file 93

FFS, See fast file system

FFS_Installer 13

FIFO file types 100

file

access, memory mapped 8

contents 92

.cshrc 76

/etc/group file 78, 79

group 78

header 222

.login 72, 86

Power MachTen User’s GuideI-6

.profile 72, 86

macros 222

pre-defined names 222

linked 96

locked 97

Macintosh

dfork 111

finderinfo 111

manipulating 111

restool 111

rfork 111

Makefiles 230

manipulation of text 112

memory mapped 242

menu 53

X desktop 252

names

case sensitivity 94

component separators 95

maximum number of

characters 94

non-printable characters 95

size limitations 89, 92

open, maximum number allowed 37

password 77

PEF format 9

permissions 18, 101

example 101

sharing 3, 21

control panel 21

shell files, example 86

system

access permissions 89

administration 115

archiving 120

backing up 120

checking 116

creating 115

distributed 1

fast 87–90

MachTen 87–122

Macintosh 91–93

native 7, 9
organization 88

file counts 92

folders 91

volumes 91

overview 91

removing 118

repairing 116

root 103

security 135

AppleShare access 135

UNIX access 136

UNIX 94

unmounting 118

types

BINA 97

binary 98

BLK 99

CHR 99

FIFO 100

HLNK 100

LINK 99

MUMM 97

SHLB 100

SOCKET 99

TEXT 97, 98

File Transfer Protocol, See FTP

Finder, defined 3

finderinfo 111

flex 213

floppies, formatting 109

flow control primitives 72

FolderBolt 73

folders

Power MachTen User’s Guide I-7

drop 138

shared 138

fonts

lists for printing 159

menu 61

X server

default path 287

network font server 288

providing over network 289

xfs 289

foreign file format 183

formatting floppies 109

Fortran 1, 227

fragmentation, memory 23, 245

fsck command 116

FTP 168

anonymous 183

overview 183

G

g++ 214

g77 214

GATEWAY variable 67

gateway

default 42

defined 176

gcc 214

gdb 214, 231

General Purpose Interface (GPI) cable 188

getty 24, 189

GNAT documentation 12

gnat1 215

gnatmake 214

GNU compiler 2, 224

GPI (General Purpose Interface) cable 188

Greenwich Mean Time 36

group

cylinder, defined 88

file 78, 79

IDs 71, 75

wheel 72

H

halt command 70

hard links 90, 96, 100

hardware flow control 186, 188, 200

header

compression 202

files 222

macros 222

pre-defined names 222

heap

MachTen 243

size 244

system 243

HFS

file system 91-94

partition 14

HLNK file type 100

home

directory 71

page, default 173

host

identifier 175

name 168

defined 35

to-internet address mapping 48

translating to internet

address 170

table 170

HOSTNAME variable 65

hot keys, X window manager 256

HTML (Hypertext Markup Language 173

HTTP 168

Power MachTen User’s GuideI-8

httpd daemon 25, 47, 173

HyperText Markup Language

(HTML) 173

hypertext transfer protocol daemon

(httpd) 173

I

IFCONFIG_* variable 65

include files 213

incoming connections, enabling 39

indent 213

index.html file 12

inetd daemon 24, 39, 47

init command 46

initialization of MachTen 46

inode, defined 88

Install.conf file 45

Installation Guide 14–18

installing MachTen 11–32

international keyboards 259

configuring 284

internet

address 168

identifier 175

obtaining 168

defined 168

host, using MachTen as 168

Internet Protocol (IP) 163

IP

addresses

AppleTalk 40

default gateway 42

domain name server 42

Ethernet 41

requirements for installation 15

TokenRing 41

unique 40

datagrams 176

forwarding 24, 39

invoking 176

packets, forwarding 39

protocol 163

J

Java 1, 228

Kaffe 2

K

Kaffe 2, 228

keyboard

Alt keys 285

characters, special 83

international 259

configuring 284

mapping 259, 285

X Meta keys 285

kill command 23, 85

killing a program 85

L

launching MachTen 18, 45

ld (link editor) 214, 229

libraries

compile-time 220

naming conventions 221

MachTen 220

run-time 220

naming conventions 221

shared 6, 7, 100, 219, 243

overview 219

producing 220

software development 215–217

Power MachTen User’s Guide I-9

Tenon 27

UNIX 7

traditional 221

X Windows 216–217

link editor (ld) 229

LINK file types 99

linked files 96

links

count 90

directory counts 97

dynamic 7, 8, 219

hard 90, 96, 100

symbolic 90

loader 229

local printing 150

LocalTalk 14, 38, 39, 169

lockd daemon 132

locked

files 97

folders 138

logging in 49, 71, 74

SLIP 207

logical blocks, defined 91

login

accounts 71

administrative 80

home directory 71

user environment 71

authentication, SLIP 205

console 49, 50

directory 71

disabling 82

privileges 72

.login file 72, 86

loopback mode 169

lp program 162

lpd daemon 25, 47, 150

lpq program 162

lpr program 150

lwsrv

configuration files 158

daemon 149

diagram 158

enabling 160

M

Mach kernel 6

MachTen

administration 63–86

application 11

booting 18, 45

automatic 67

manual 67

components of 11

configuration

automatic startup of portmap and

ypbind 148

options 21

console window 18, 19

control panel 18, 33, 168, 172

configuring 18

startup files 46, 65

warning dialog box 32

daemons 46

table 47

defined 1

desktop 3

documentation 12

GNAT documents 217

HTML 217

man pages 217

PDF 217

domain name service 170

configuring 170

Power MachTen User’s GuideI-10

file systems 87–122

folder contents 17

FTP 183

heap size 244

initialization 46

Installer 11

installing 11–32

internet host 168

launching 18, 45

libraries 220

licensing information 11

login console 49, 50

menus 52

NFS 184

passwords 49, 51

performance tuning 21

POP mail service 180

porting software to 241

printing 149

programming environment 213

quitting 70

reconfiguration

automated 28

manual 29

reinstallation 26

security 73

sources, accessing 30

starting 18, 45

automatic 67

manual 67

startup environment 65

symbol information 230

system architecture 7, 8
TCP stack vs.

OpenTransport 165–166

telnet 184

terminal window 51

desktop 4

troubleshooting 31–32

user guide, online 11

utilities 12

virtual machine 6, 11

Web service 173

windows 52

tailoring 68

MachTen Conf file 45

MachTen Prefs file 45

MACHTEN variable 69

/MachTen/misc/rc.config file 48

Macintosh

applications, developing 236

construction 239

header definition files 236

interface libraries 237

startup routine 238

debuggers 248

desktop 3

DNS servers and OpenTransport 179

file system (HFS) 91–93, 94

access permissions 92

aliases 93

file contents 92

file names 92

organization 91

time stamps 93

volumes and folders 91

files, manipulating 111

dfork 111

finderinfo 111

restool 111

rfork 111

foreign file format 183

record locking 132

toolbox bindings 2

volumes

mounting 107, 118

Power MachTen User’s Guide I-11

unmounting 108

macmntd daemon 47

MacOS 6, 11

rebooting 18

MacPerl 2

MacsBug 232, 248

MacTCP applications 179

mactext 112, 113

mail

daemon 24

eletronic 180

incoming 39, 47

program

defined 181

examples 182

sending/receiving 39

.mailrc file, example 181

make program 214, 246

Makefiles 230

man pages 64

managing your system 84–86, 119

manual startup of MachTen 67

map control panel 36

mapping UIDs and GIDs via bwnfsd 133

maximum transmission unit settings 42

SLIP 203

memory

allocating 9, 36, 242–243, 245

configuration

dynamic 7

screen 36

control panel 21, 22

fragmentation 23, 245

limitations 23

manager 9

mapped files 242

access 7

page boundary 245

physical 22

real, programming issues 245–246

requirements 7, 8, 14, 243

running out during compilation 246

sbrk 245

stack overrun 241

sticky bits 246

menu bar

running X server without 255

shortcuts 255

X desktop 251

menus

Apple 53

Edit 54–55

File 53

Fonts 61

MachTen 52

Order 59–60

Positions 57

Size 58

Window 56

message of the day 48

changing 82

Metrowerks debugger 233

mkpef 229

modem

connecting to MachTen serial port 189

control translations 188

Motif Window Manager 260

mount command 124

example 127

MOUNT_REMOTE_FILES variable 66,
128

mountd daemon 47, 125

mounting

Desktop NFS volumes 131

directories, via NFS 124

FFS 117

Power MachTen User’s GuideI-12

file systems 117

MachTen CD-ROM 30

Macintosh volumes 118

NFS clients 126

permissions 107

removable media 108

mouse

button mapping 281

Logitech 283

three button 281–283

configuration 281

default keystrokes 282

example 283

X desktop 267

clicking and dragging 267

pointer shapes 267

mt utility 121, 122

MTU

defined 42

SLIP 43, 203

TokenRing 43

multi-homing 38, 169

multi-link, multihoming 164

multiple users, support for 71

multitasking, pre-emptive 6

MUMM file types 97

mwm 260

N

name server 171

named daemon 47, 171

NAMED_BOOT variable 67

native fast file system 7, 9
net_search_rules command 168

NETMASK_* variable 65

netmasks 42

network configuration screen 38

configuration

screen 38

Network File System Protocol

Specification (RFC 1094) 125

Network File System, see NFS

Network Information Service, see NIS

Network Solutions, how to contact 168

networking 163–211

configuration

example 43

multiple interfaces 169

screen 38

control panel 180, 183

overview 163

NeXT 5

NFS 123–141

authentication options 133

user credentials 133

bwnfsd UID and GID mapping 133

client

defined 123

diskless 127

mounting 126

setting up 125

daemons

mountd 125

nfsd 125

portmap 125

starting 126

defined 123

exporting directories 124

how it works 124

mounting 124

volumes on the desktop 130–132

automatic 132

overview 184

record locking 132

server

Power MachTen User’s Guide I-13

defined 123

exporting 126

setting up 125

setting up, instructions 128–129

stateless mode 124

unmounting volumes on the

desktop 131

using 124

nfsd daemon 47, 125

NIS 143–148

configuring 143–148

testing 147

database search order 145

defined 143

domainname 144

nis 145

nis+ 145

nisplus 145

nisserver 144

portmap, starting automatically 148

START_portmap 148

START_ypbind 148

testing 147

YP 143

defined 143

ypbind, starting automatically 148

ypcat application 147

ypmatch application 147

ypserver 144

nis+ 145

nisplus 145

nisserver 144

NIST, defined 143

nm development tool 214

non-printable characters 95

O

Objective-C 226

olvwm 256, 260

OpenGL 13

OpenLook

environment, illustrated 266

Virtual Window Manager 260

window menu, illustrated 274

OpenTransport

configuring 178

Macintosh DNS servers 179

networking with 15

replacing 164

using with MachTen TCP stack 164,

177

vs. MachTen TCP stack 165–166

operating system, co-resident 3

optimizing your system 22–25

order sub-menu 59–60

P

parameter passing 72

partitioning your disk 14

passwd

command 51

program, invoking 49

password

changing 77, 82

file 77

master file 77

root 74

pcnfsd 130

PEF 7, 9, 219, 229, 231

code fragments 231

performance

optimizing 21–22, 34

tuning 21

Power MachTen User’s GuideI-14

X server 286

Perl 2, 13

permissions

access 92

execute 89

file 18, 101

example 101

mounting 107

read 89

write 89

Pine4 182

pipes 100

pmake 214, 230

POP mail server, using MachTen as 180

POP3 (Post Office Protocol) 180

porting software 241

portmap

daemon 47, 125, 143, 147

starting automatically 148

positions sub-menu 57

POSIX 6

Post Office Protocol (POP3) 180

PostScript macros for printing 159

Power Macintosh 11

memory manager 9

PowerPC

binary format 2

compiler suite 1

development environment 1

Executable Format (PEF) 7, 219

PPP 38, 124, 169, 293

multiple clients 196

overview 190

setting up 190

client 194–195

server 191–193

pppd program 193

pr command 151

pre-emptive multitasking 6

PRESERVE_EDITOR_FILES variable 66

printcap program 150

printenv command 69

printing 149–162

AppleDict 159

baud rates 152

DeskWriter 151

font lists 159

ImageWriter 149, 151

job status notification 161

LaserWriters 149

local 150

lp management program 162

lpd daemon 47, 150

lpq program 162

lpr program 150

lwsrv

configuration files 158

diagram 158

enabling 160

overview 149

PostScript 149

macros 159

pr command 151

printcap 150

PRINTER shell environment

variable 156

ProcSet 159

receiving remote print jobs 155

remote spooling 1, 149, 154

configuring 154

Macintosh applications 157

selecting an alternate printer 156

sharing 3

spooler database 150

spooling 11, 149, 149–155

Power MachTen User’s Guide I-15

defined 149

to remote UNIX printer 154

status of jobs 162

text files to PostScipt LaserWriter on

AppleTalk 151

process IDs 85

ProcSet 159

.profile file 72, 86

program execution, background 85

programming 213–248

building executable binary image 248

environment 213

example 247

notes 303

real memory issues 245–246

edata symbol 245

end symbol 245

etext symbol 245

fragmentation 23, 245

page boundary 245

running out during compile 246

sbrk 245

stack overrun 241

sticky bits 246

source code 218

ps command 23, 84

purging files 23

Q

quitting

MachTen 70

X Windows environment 277

R

ranlib 214

rc daemon 47

RCS (Revision Control System) 213

read permission 89

reboot command 70

rebooting MacOS 18

reconfiguring MachTen

automated 28

manual 29

record locking on Desktop NFS

volumes 132

reinstalling MachTen 26–27

remote

print jobs, receiving 155

printer spooling 1, 149, 154

configuring 154

to UNIX printer 154

Remote Procedure Calls (RPC) 124

removing

FFS 118

file systems 118

users 82

repairing file systems 116

requirements

disk space 14

memory 7, 8, 14, 36, 243

system 11, 14

resource

fork 139

sharing, example 163

X Windows 260

restool 111, 214

restore command 120, 122

Revision Control System (RCS) 213

RFC 1094 “Network File System Protocol

Specification” 125

rfork 111

root

directory tree 103

file system layout 103

password 74

Power MachTen User’s GuideI-16

route command 175, 176

routed daemon 24

routing

IP packets 39

LocalTalk and Ethernet 39

RPC (Remote Procedure Calls) 124

RS232 cable 200

r-series commands, overview 185

run-time libraries 220

naming conventions 221

S

sbrk 245

scheduling priority slide bar 21, 33–34

SCSI tape devices 120

security 73

file system 135

sendmail 24, 48, 180

daemon 47

Serial DMA 187

serial line

communications 186

accessing serial ports 186

cabling and connectors 186

networks 14

running X over 293

serial ports

accessing 186

cabling and connectors for 186

set up, SLIP 203

servers, NFS 123

setstackspace 214

shared

folders 138

libraries 6, 7, 100, 219, 243

overview 219

producing 220

sharing

control panel 35

cooperative 6

files 3, 21

printers 3

shells

Bourne 49, 72

C 49, 72

files, example 86

UNIX 72

SHLB file type 100

Simple Mail Transfer Protocol

(SMTP) 168, 180

size sub-menu 58

SLIP 38, 65, 124, 169, 293

C-shell scripts

bringing down, example 211

expediting connections 210

setting up, example 210

default route 202

hardware flow control 200

header compression 202

logging in 207

manual connections 206

MTU (Maximum Transmission

Unit) 43, 203

overview 197

setting up

dialing in 203

dialing out 197

login authentication 204

serial port 203

sliplogin program 205

starting 207

stopping 205, 209

testing 208

tip

Power MachTen User’s Guide I-17

activity log 198

configuration database,

example 198–200

login script 201

sliplogin program 205

SMTP (Simple Mail Transfer

Protocol) 168, 180

SOCK file types 99

sockets 99, 164

software development 213–248

compiler engines

cc1 215

cc1obj 215

cc1plus 215

f771 215

gnat1 215

compiling source code 224

C 225

C++ 226

Fortran 227

Java 228

Objective-C 226

cross-development tools and

targets 240

documentation 217

include files 213

libraries 215–217

MachTen default environment 240

Macintosh applications 236

notes 303

overview 213

source code 218

tools 213–217

ar 214

as 214

building libraries and

programs 214

cpp 214

flex 213

g++ 214

g77 214

gcc 214

gdb 214

gnatmake 214

indent 213

ld 214

make 214

nm 214

pmake 214

ranlib 214

restool 214

setstackspace 214

yacc 213

under X 301

X Windows programs 216–217

source

code 218

compiling 224

files, accessing 30

Source_FFS 13, 30, 218

space management 119

special keyboard characters 83

spooling, printer 1, 11, 149

stack overrun 241

stamps, time 93, 102

START_cron variable 66

START_inetd variable 66

START_lpd variable 66

START_macmntd variable 66

START_named variable 66, 172

START_portmap 148

START_sendmail variable 66

START_syslogd variable 66

START_ypbind 148

starting

MachTen 45

Power MachTen User’s GuideI-18

automatically 67

manually 67

SLIP 207

startup environment 65

Startup Items folder 67

sticky bits 246

string substitution 72

su command 72, 73, 74

superuser 72

symbol information 230

symbolic links 90

syslogd daemon 24, 47

system

administration files 106

architecture 7, 8
limitations 25

logger daemon 24

optimization guidelines 22–25

requirements

disk space 14

memory 7, 14, 36, 243

system 11, 14

System Folder, protected 15

T

Tab Window Manager 260

tailoring

MachTen windows 68

UNIX environment 69

tape

devices 120

SCSI 120

drives, support for 120

tar command 120, 121

example 122

tcl/tk 2

TCP

applications 164

control panel 15, 38, 177

protocol 163

stack

dual 164, 177

MachTen and OpenTransport 15,
164, 177

telnet, overview 184

Tenon

libraries 27

TCP stack 164, 177

TERM variable 69

TERMCAP variable 69

terminal

connecting 189

emulation, VT100 69

supporting 189

windows 51

changing the name of 68

multiple 4

UNIX 4

xterm 260

text file manipulation 112

TEXT file types 98

three button mouse 281–283

configuration 281

default keystrokes 282

example 283

time

stamps 89, 93, 102

zones 36, 48

tip

activity log 198

command 189, 191, 194

configuration database 198–200

login script 201

TokenRing 38, 41, 65, 124, 169

MTU 43

Power MachTen User’s Guide I-19

TokenTalk 14

touch command 82

Transmission Control Protocol (TCP) 163

troubleshooting MachTen 31–32

TTY variable 69

twm 260

U

UDP (User Datagram Protocol) 124

UFS, See UNIX file system

umask 137

umount command 124

UNIX

access

permissions

Read 137

Search 137

Write 137

privileges (NFS) 136

mapping AppleShare access

to UNIX access 137

API 6

applications 1

Berkeley 6

command interpreter 49, 72

development tools 1

editors 114

environment

example 69

managing 84

tailoring 69

file system 94

defined 94

file names 94

case sensitive file names 94

component separators 95

maximum number of

characters 94

non-printable characters 95

libraries 7, 11

traditional 221

processes, maximum number

allowed 37

shell 49

terminal windows 4

virtual machine 6

Unix <-> Text 113

unixtext 113

unmounting

automatic 109

directories, via NFS 124

file systems 118

Macintosh volumes 109

NFS volumes 131

user

accounts, setting up 75

environment 71

IDs 77

removing 82

User Datagram Protocol (UDP) 124

usr directory tree 104

uucp command 189

V

var directory tree 105

/var/log/aculog file 198

/var/preserve file 23

variables

ADDRINFO_* 65

CLEANUP_tmp 66

DEBUGGERFIRST 235

GATEWAY 67

HOSTNAME 65

IFCONFIG_* 65

Power MachTen User’s GuideI-20

MACHTEN 69

MEMSTATS 235

MOUNT_REMOTE_FILES 66, 128

NAMED_BOOT 67

NETMASK_* 65

PRESERVE_EDITOR_FILES 66

PRINTER 156

STACKCHK 235

START_cron 66

START_inetd 66

START_lpd 66

START_macmntd 66

START_named 66, 172

START_sendmail 66

START_syslogd 66

TERM 69

TERMCAP 69

TTY 69

VPATH 218, 246

XENVIRONMENT 264

virus protection software, disabling 16

volume, defined 91

VPATH variable 218, 246

VT100 emulation 69

W

wall command 81

Web server, using MachTen as 173

wheel group 72

wind daemon 25, 47, 49, 69

windows

changing to and from an

icon 272–273

environment 49, 52

MachTen 52

tailoring 68

menu 56

displaying 274

functions 274–275

X desktop 253

terminal 51

X desktop 267

moving 268–269

raising 276–277

sizing 270–271

.windrc file

X Windows environment 255

creating 68

defined 68

World Wide Web (WWW) 25, 47, 173

write permission 89

writing to all users 81

WWW (World Wide Web) 25, 47, 173

X

X desktop 249

changing a window to and from an

icon 272–273

file menu 252

illustrated 250

menu bar 251

mouse

clicking and dragging 267

pointer shapes 267

moving a window 268–269

raising a window 276–277

selecting a window 267

sizing a window 270–271

using the mouse 267

window menu 253

displaying 274

functions 253–276

functions summary 275

Power MachTen User’s Guide I-21

X Display Management, See X server, XDM

X Intrinsics Toolkit 262

X server

automatic launching 255

command line options 278–281

database 263

default font path 287

error logging 285

getting started 299

menu bar shortcuts 255

network font server 288

performance tuning 286

providing fonts over network 289

quitting 255

running without a menu bar 255

starting 250

XDM 289–292

configuring 290–292

session 292

X Windows 249–303

AfterStep Window Manager 260

applications 1

building 299–300

running 301

clients

starting 257

startup script 257

example 258–259

configuring 257

control panels 296–298

defined 249

desktop 5, 250

development

environment 301

tools 1

keyboards 259

Alt keys 285

international 284

X Meta keys 285

libraries 216–217

manager 5, 260

AfterStep 5

hot keys 256

overview 266

starting 266

Motif Window Manger 260

mouse

button mapping 281

Logitech 283

three button 281–283

configuration 281

default keystrokes 282

example 283

mwm 260

olvwm 260

OpenLook

environment, illustrated 266

Virtual Window Manager 260

over serial lines 293

overview 294–296

preferences 260

quitting 277

resources 259, 260

administering 265

application level 262

class names 261

command line 264

files 261

locations 262

host system level 264

instance names 261

syntax 261

user level 263

X server level 263

screen colors 259

Power MachTen User’s GuideI-22

server 1

Tab Window Manager 260

twm 260

X desktop 249, 250

X Intrinsics Toolkit 262

XENVIRONMENT variable 264

xfs font server 289

.xinit 257

.Xmodmap file 259

xprop utility 261

xterm 260

XCOFF (eXtended Common Object File

Format) 219

xfs font server 289

.xinit program 257

.Xmodmap file 259

xprop utilitiy 261

.xtmenu program 255

Y

yacc 213

YP 143–148

ypbind

daemon 143, 147

starting automatically 148

ypcat application 147

ypmatch application 147

ypserver 144

	Cover Page
	Table of Contents
	List of Figures
	1.0 Power Mach Ten — UNIX on the Macintosh Desktop
	1.1 The Mach Ten Desktop
	1.1.1 Mach Ten Terminal Window Desktop

	1.2 The Mach Ten “UNIX Virtual Machine”
	1.3 The Mach Ten Architecture
	1.3.1 Dynamic Memory Configuration
	1.3.2 Dynamically Linked, Shared Libraries
	1.3.3 Memory Mapped File Access
	1.3.4 Integrated Software Development Tools
	1.3.5 Native Fast File System

	2.0 Installing Mach Ten
	2.1 Performance Tuning — Optimizing Mach Ten
	2.1.1 System Optimization Guidelines
	2.1.2 How Can You Tell When a System is Approaching Its Limits?

	2.2 Reinstallation
	2.2.1 Reconfiguration
	2.2.1.1 Automated Reconfiguration
	2.2.1.2 Manual Reconfiguration

	2.2.2 Accessing Mach Ten Sources from the CD-ROM

	2.3 Troubleshooting

	3.0 The Mach Ten Control Panel
	3.1 Scheduling Priority Slide Bar
	3.2 Configuration Screens
	3.2.1 General Configuration Screen
	3.2.1.1 Host Name
	3.2.1.2 Time Zone

	3.2.2 Memory Configuration Screen
	3.2.2.1 Maximum Number Parameters

	3.2.3 Networking Configuration Screen
	3.2.3.1 Enable IP Forwarding
	3.2.3.2 Enable Incoming Mail
	3.2.3.3 Enable Incoming Connections
	3.2.3.4 Internet (IP) Addresses
	3.2.3.5 Netmasks
	3.2.3.6 Maximum Transmission Unit Settings

	4.0 Launching Mach Ten
	4.1 The Mach Ten Login Console
	4.2 Mach Ten Windows
	4.2.1 The Apple Menu
	4.2.2 The File Menu
	4.2.3 The Edit Menu
	4.2.4 The Window Menu
	4.2.4.1 The Positions Sub-Menu
	4.2.4.2 The Size Sub-Menu
	4.2.4.3 The Order Sub-Menu

	4.2.5 The Fonts Menu

	5.0 Mach Ten Administration
	5.1 A Word About Man Pages
	5.2 Tailoring the Startup Environment
	5.2.1 Setting Up Mach Ten to Boot Automatically
	5.2.2 Manual Startup

	5.3 Tailoring Mach Ten Windows
	5.4 Tailoring Your UNIX Environment
	5.5 Quitting Mach Ten
	5.6 Login Accounts
	5.6.1 The Concept of a Home Directory and a User Environment
	5.6.2 The UNIX Shell
	5.6.3 Superuser and Privileges
	5.6.4 A Word About Security
	5.6.5 The Root Password
	5.6.6 Setting Up User Accounts
	5.6.7 The Password File
	5.6.8 The Group File
	5.6.9 Administrative Login Accounts
	5.6.10 Writing to All Users
	5.6.11 Disabling User Logins
	5.6.12 Removing Users
	5.6.13 Changing the Message-of-the-Day
	5.6.14 Special Characters

	5.7 Managing Your UNIX Environment
	5.7.1 What’s Running?
	5.7.2 Killing a Program
	5.7.3 Background Program Execution
	5.7.4 Shell Files

	6.0 The Mach Ten File Systems
	6.0.1 Fast File System (FFS)
	6.0.2 UNIX File System (UFS)
	6.1 UNIX Fast File System Overview
	6.1.1 File System Organization
	6.1.2 File Names
	6.1.3 Access Permissions
	6.1.4 Time Stamps
	6.1.5 Link Counts
	6.1.6 Hard Links
	6.1.7 Symbolic Links

	6.2 Macintosh Hierarchical File System Overview
	6.2.1 File System Organization
	6.2.1.1 Volumes and Folders
	6.2.1.2 File Contents

	6.2.2 File Names
	6.2.3 Access Permissions
	6.2.4 Time Stamps
	6.2.5 Aliases

	6.3 Mach Ten FFS
	6.3.1 FFS Within a File

	6.4 Mach Ten UFS
	6.4.1 File Names
	6.4.1.1 Maximum Number of Characters
	6.4.1.2 Case-Sensitive File Names
	6.4.1.3 Component Separators
	6.4.1.4 Non-Printable Characters

	6.4.2 Linked Files
	6.4.2.1 Hard Links

	6.4.3 Directory Link Counts
	6.4.4 Locked Files
	6.4.5 File Types
	6.4.6 File Permissions
	6.4.7 Time Stamps

	6.5 Mach Ten Root File System Layout
	6.5.1 The root Directory Tree
	6.5.2 The usr Directory Tree
	6.5.3 The var Directory Tree
	6.5.4 Major System Administration Files

	6.6 Mounting Macintosh Volumes
	6.6.1 Mounting Permissions
	6.6.2 Automatic Mounting of Removable Media
	6.6.3 Unmounting Macintosh Volumes
	6.6.4 Automatic Unmounting
	6.6.5 Formatting Floppies

	6.7 Accessing Macintosh Files from UNIX Applications
	6.7.1 AppleSingle Encapsulation
	6.7.2 Differentiating UNIX and Macintosh Files
	6.7.3 Utilities for Manipulating Macintosh Files
	6.7.3.1 dfork and rfork
	6.7.3.2 finderinfo
	6.7.3.3 restool

	6.8 Text File Manipulation
	6.8.1 Alternating Between Macintosh and UNIX Text
	6.8.1.1 mactext
	6.8.1.2 unixtext
	6.8.1.3 Unix <-> Text
	6.8.1.4 dfork.text

	6.8.2 Editing Tools
	6.8.2.1 UNIX Editors
	6.8.2.2 Macintosh Editing Applications

	6.8.3 UNIX to Macintosh “Copy-and-Paste”

	6.9 File System Administration
	6.9.1 Creating File Systems
	6.9.1.1 Creating an FFS Within a File

	6.9.2 Checking/Repairing File Systems
	6.9.2.1 fsck
	6.9.2.2 Fast File First Aid

	6.9.3 Mounting File Systems
	6.9.3.1 Mounting an FFS Within a File
	6.9.3.2 Mounting a Macintosh Volume

	6.9.4 Unmounting File Systems
	6.9.5 Removing File Systems
	6.9.5.1 Removing an FFS Within a File

	6.9.6 Space Management
	6.9.7 Backing Up and Archiving File Systems
	6.9.7.1 Tape Devices
	6.9.7.2 tar
	6.9.7.3 dump and restore

	7.0 The Mach Ten Network File System (NFS)
	7.1 Using NFS
	7.2 How NFS Works
	7.3 Setting Up an NFS Server or an NFS Client
	7.3.1 Server Exporting
	7.3.2 Client Mounting
	7.3.3 Set-Up Summary

	7.4 NFS Volumes on the Macintosh Desktop (Desktop NFS)
	7.4.1 Desktop NFS Volume Mounting
	7.4.1.1 Automatic Mounting of Desktop NFS Volumes

	7.4.2 Macintosh Record Locking on Desktop NFS Volumes
	7.4.2.1 Bwnfsd UID and GID Mapping
bwnfsd also provides a mapping between numeric user and group IDs to their

	7.4.3 Authentication Options
	7.4.3.1 Credentials of Current User
	7.4.3.2 Prompt for Username and Password
	7.4.3.3 Username and Password on Command Line
	7.4.3.4 User ID and Password on Command Line

	7.4.4 File System Security
	7.4.4.1 AppleShare Access Privileges
	7.4.4.2 UNIX Access Privileges
	7.4.4.3 Mapping AppleShare Access Privileges into UNIX Access Privileges
	7.4.4.4 Access Privilege Strategies
	7.4.4.5 Differences Between Apple File Sharing and Desktop NFS

	7.4.5 AppleDouble
	7.4.6 DOS Extensions

	8.0 Configuring NIS Under Mach Ten
	8.1 NIS Basic Configuration Steps
	8.2 Set YP Configuration in /etc/yp.conf
	8.3 Set NIS Configuration in /etc/nis.conf
	8.4 Set NIS Database Search Order
	8.4.1 The Default /etc/nsswitch.conf File

	8.5 Testing the Basic NIS Configuration
After /etc/nis.conf, /etc/yp.conf and /etc/nsswitch.conf have been reviewed and their
	8.6 Configure Mach Ten for Automatic Portmap and Ypbind Startup

	9.0 Printing
	9.1 Mach Ten Print Spooling
	9.1.1 The Print Spooler Database

	9.2 Local Printing
	9.2.1 Printing Text Files to a PostScript LaserWriter on AppleTalk
	9.2.2 Printing to an ImageWriter or a DeskWriter

	9.3 Remote Printing
	9.3.1 Spooled Printing to a Remote UNIX Printer
	9.3.2 Receiving Remote Print Jobs

	9.4 Selecting an Alternate Printer
	9.5 Extending Remote Printing to Macintosh Applications
	9.5.1 Lwsrv Configuration Files
	9.5.1.1 Font Lists
	9.5.1.2 PostScript Macros

	9.5.2 Enabling lwsrv

	9.6 Print Job Status Mail Notification
	9.7 Status and lp Management Programs

	10.0 Networking with Mach Ten
	10.1 Using OpenTransport or Replacing OpenTransport
	10.2 Configuring Tenon TCP or Dual Stack Networking
	10.3 Using Mach Ten as an Internet Host
	10.3.1 The Mach Ten Networking Control Panel
	10.3.2 Configuring Multiple Interfaces

	10.4 Using Mach Ten as a Domain Name Server
	10.4.1 Configuring Mach Ten as a Domain Name Server
	10.4.2 The Domain Name Resolver

	10.5 Using Mach Ten as a Web Server
	10.5.1 Importing Macintosh Image Files
	10.5.2 Multihoming Your Mach Ten Web Server

	10.6 Using Mach Ten as a Router
	10.6.1 Invoking IP Forwarding

	10.7 Dual Stack Configuration
	10.7.1 More RAM
	10.7.2 Cross Talk
	10.7.2.1 Routing Between Mach Ten and OpenTransport
	10.7.2.2 Using a Macintosh DNS Server on Mach Ten

	10.8 Using Mach Ten as a POP Mail Server
	10.9 Using Electronic Mail
	10.10 Using FTP
	10.11 Using Mach Ten as an Anonymous FTP Server
	10.12 Using Telnet
	10.13 Using a Distributed File System (NFS)
	10.14 Using Berkeley r-series Commands
	10.15 Using Serial Line Communications
	10.15.1 Cabling and Connectors
	10.15.2 Matching Serial Ports to UNIX Devices
	10.15.3 Baud Rates Supported
	10.15.4 General Purpose Interface (GPI) Serial Cable
	10.15.5 Connecting a Modem to a Mach Ten Serial Port
	10.15.6 Connecting a Terminal
	10.15.7 Configuring the System to Support an ASCII Terminal
	10.15.8 Using PPP
	10.15.8.1 Setting up Mach Ten PPP on Your Macintosh
	10.15.8.2 Configuring your Mach Ten System as a PPP Server
	10.15.8.3 Configuring your Mach Ten System as a PPP Client
	10.15.8.4 IP Addressing Strategy for Multiple PPP Clients

	10.15.9 Using SLIP
	10.15.9.1 Configuring Mach Ten to Dial Out to SLIP Servers
	10.15.9.2 Tip Activity Log
	10.15.9.3 The Tip Configuration Database
	10.15.9.4 Hardware Flow Control
	10.15.9.5 Tip Login Script
	10.15.9.6 Header Compression
	10.15.9.7 Setting a Default Route
	10.15.9.8 Setting the MTU

	10.15.10 Configuring Mach Ten as a Dial-In SLIP Server
	10.15.10.1 Serial Port Set Up
	10.15.10.2 Login Authentication
	10.15.10.3 The Sliplogin Program
	10.15.10.4 SLIP Session Termination
	10.15.10.5 Manual Connections to SLIP Servers
	10.15.10.6 Logging In

	10.15.11 Starting SLIP
	10.15.11.1 Testing Connectivity
	10.15.11.2 Stopping SLIP
	10.15.11.3 C-Shell Scripts to Expedite SLIP Connections

	11.0 Mach Ten Programming Environment
	11.1 Mach Ten Development Tools
	11.1.1 Programs, Libraries and Include Files
	11.1.2 Documentation
	11.1.3 Program Sources

	11.2 PEF and XCOFF
	11.3 Shared Libraries
	11.3.1 Shared Library Production
	11.3.2 Run-Time and Compile-Time Libraries
	11.3.3 Run-Time and Compile-Time Naming Conventions

	11.4 Traditional UNIX Libraries
	11.5 Header Files
	11.5.1 Pre-Defined Names

	11.6 Compiling Sources
	11.6.1 Ada
	11.6.2 C
	11.6.3 Objective-C
	11.6.4 C++
	11.6.5 Fortran
	11.6.6 Java

	11.7 Linking Executables
	11.7.1 ld
	11.7.2 mkpef

	11.8 To make or pmake
	11.9 Symbol Information
	11.10 Debugging
	11.10.1 Debugging using gdb
	11.10.2 Macintosh Debugging Tools
	11.10.2.1 MacsBug
	11.10.2.2 Macintosh Debugger for PowerPC
	11.10.2.3 Metrowerks Debugger

	11.10.3 Environment Variables for Debugging and Monitoring
	11.10.3.1 DEBUGGERFIRST
	11.10.3.2 STACKCHK
	11.10.3.3 MEMSTATS

	11.11 Making Macintosh Applications
	11.11.1 Macintosh OS Header Definition Files
	11.11.2 Macintosh OS Interface Libraries
	11.11.3 Macintosh Application Startup Routine
	11.11.4 Macintosh Application Construction

	11.12 Cross-Development Tools and Targets
	11.12.1 Default Mach Ten Environment

	11.13 Porting Software to Mach Ten
	11.13.1 Real Memory Issues
	11.13.1.1 Stack Overrun
	11.13.1.2 Allocating Memory in Mach Ten
	11.13.1.3 Calculating Memory Requirements
	11.13.1.4 Setting the Mach Ten Heap Size
	11.13.1.5 Problem Areas

	11.14 Programming Example
	11.14.1 Rogue
	11.14.2 Building the Executable
	11.14.3 Debugging Using MacsBug or Other Macintosh Debuggers

	12.0 The X Window System
	12.1 The X Desktop
	12.1.1 Starting the X Server
	12.1.2 The Menu Bar
	12.1.2.1 The File Menu
	12.1.2.2 The Window Menu
	12.1.2.2.1 The Order Sub-Menu

	12.1.3 Automatic Launch of the X Server
	12.1.4 Quitting the X Server
	12.1.5 Running the X Server Without a Menu Bar
	12.1.5.1 Menu Bar Shortcuts

	12.2 Administering the X Window Software Environment
	12.2.1 Starting Clients
	12.2.1.1 The Startup Script
	12.2.1.2 Resources — X Application Preferences
	12.2.2 The Window Manager Client
	12.2.2.1 Starting the Window Manager
	12.2.2.2 Using the Mouse
	12.2.2.3 Selecting a Window
	12.2.2.4 Moving a Window
	12.2.2.5 Changing the Size of a Window
	12.2.2.6 Changing a Window Into an Icon
	12.2.2.7 Moving an Icon
	12.2.2.8 Restoring a Window from an Icon
	12.2.2.9 Displaying a Window Menu and Making Selections
	12.2.2.10 Summary of Window Menu Functions
	12.2.2.11 Raising a Window
	12.2.2.12 Quitting the Window Environment

	12.2.3 The X Server Program
	12.2.3.1 X Server Startup Options
	12.2.3.2 Mouse Button Mapping
	12.2.3.3 Keyboard Mapping
	12.2.3.4 Server Error Logging
	12.2.3.5 X Server Performance Tuning Guide
	12.2.3.6 The Default Font Path
	12.2.3.7 Obtaining Fonts from a Network Font Server
	12.2.3.8 Providing Fonts Over the Network

	12.2.4 X Display Management Under Mach Ten
	12.2.4.1 The Mach Ten X Server and XDM

	12.2.5 X Over Serial Lines

	12.3 Mach Ten X Window Software Overview
	12.3.1 Preparing Your Macintosh Control Panels
	12.3.2 Getting Started With X
	12.3.3 Building X Applications
	12.3.3.1 Running X Client Applications
	12.3.3.2 The X11 Application Development Environment Under MachTen
	12.3.3.3 Programming Notes

	Appendix A - Part I
	Appendix A - Part II
	Appendix B
	Appendix C
	Index

