
The Appearance Manager 6-1

6
THE APPEARANCE MANAGER

Includes Demonstration Program Appearance

Introduction

The Appearance Manager, which was first introduced with Mac OS 8.0, had implications for the Menu
Manager, the Window Manager, the Control Manager, and the Dialog Manager. The relatively minor
implications in respect of the Menu Manager and Window Manager were incorporated into Chapter 3
— Menus and Chapter 4 — Windows. The most profound impact of the Appearance Manager,
however, has been in the area of user interface objects known as controls, which are addressed at
Chapter 7 — Introduction to Controls and at Chapter 14 — More on Controls. Accordingly, as a
preparation for what is to come, this chapter now formally introduces the Appearance Manager, a
component of the system software which represents the most significant improvement in the
Macintosh user experience since the introduction of System 7.

The Era of Themes

The Appearance Manager ushers in the era of themes. Essentially, a theme is an interface "look" that
spans all elements of the user interface and ties them together with a certain graphic design. Themes
are data-driven, that is, all the data that describes the theme interface is contained in a theme file. This
makes it easy to change themes on the fly.

Fig 1 shows three windows, each in a separate theme. If one of these themes has been selected by the
user, all elements of the user interface (menus, windows, controls, etc.) will appear in that theme.

FIG 1 - WINDOWS IN THREE THEMES

HIGH TECH
GIZMO

PLATINUM

6-2 The Appearance Manager

At the time of writing, Platinum was the only available theme; however, switchable themes are very
much part of the future of the Mac OS. Appearance was the first step towards that future.

The Appearance Manager

The Appearance Manager, whose influence is evident to a greater or lesser extent in all Macintosh C
demonstration programs and in many chapters of this book:

• Coordinates the look of the Mac OS human interface into a single theme.

• Introduced new human interface elements to the Mac OS environment.

• Allows for the adaptation of pre–Appearance Manager human interface elements, both standard
and custom, to the new, coordinated appearance and behaviour of elements of the user interface.

• Provides the underlying support for themes and theme switching.

New Definition Functions

To provide a system-wide coordination of appearance and behaviour, the Appearance Manager
introduced new Appearance-compliant definition functions to replace the old pre-Appearance
definition functions for menu bars, menus, windows, and controls. In addition, many new
Appearance-compliant control definition functions for new types of controls (slider controls, focus
rings, group boxes, etc) were introduced to obviate the necessity for developers to provide their own.
(The use of Appearance-compliant definition functions is essential to achieving a unified look within
any given theme.)

Mapping of Pre-Appearance Definition Functions

Another way in which the Appearance Manager achieved a unified look and behaviour was by
mapping the following standard pre-Appearance definition functions to their Appearance-compliant
equivalents:

• The menu bar definition function (MBDF) with resource ID 0.

• The menu definition function (MDEF) with resource ID 0.

• The window definition function (WDEF) with resource ID 0. (Document windows).

• The window definition function (WDEF) with resource ID 124. (Utility windows).

• The control definition function (CDEF) with resource ID 0. (Buttons, checkboxes, and radio
buttons).

• The control definition function (CDEF) with resource ID 1. (Scroll bars).

• The control definition function (CDEF) with resource ID 63. (Pop-up menus).

Mapping is implemented by a set of mapper definition functions which are located, along with all the
Appearance-compliant definition functions, in the Appearance extension. The mappers have the same
resource ID as the pre-Appearance definition functions to which they relate.

Mapping occurs either on a system-wide basis (if the user has not selected system-wide Appearance off
in the Appearance control panel), or on an individual-application basis if you call the function
RegisterAppearanceClient from within your application. Of course, no mapping occurs if your
application specifies the new Appearance-compliant definition functions, which means that those
definition functions will be called directly. The left side of Figure 2 shows the ways by which it is
determined how, and whether, mapping will occur for a standard definition function, in this case for

The Appearance Manager 6-3

the pre-Appearance WDEF for document windows (resource ID 0). The right side of Fig 2 shows the
Appearance-compliant control definition function being called directly.

RegisterAppearanceClient
CALLED?

NO NO

YES YES

WDEF 64 IS USED
(DIRECTLY, NO MAPPING)

APPLICATION REQUESTS
WDEF 0

WDEF 64 IS USED
(VIA MAPPING)

WDEF 0 IS USED
(NO MAPPING)

APPLICATION REQUESTS
WDEF 64

SYSTEMWIDE
APPEARANCE

ON?

FIG 2 - MAPPING A STANDARD PRE-APPEARANCE DEFINITION FUNCTION TO ITS APPEARANCE-COMPLIANT EQUIVALENT,
AND CALLING AN APPEARANCE-COMPLIANT DEFINITION FUNCTION DIRECTLY

Disadvantages of Calling a Definition
Function Via a Mapper

When an Appearance-compliant definition function is called via the mappers, the associated object may
have a slightly different look and behaviour than is the case when they are called directly. For
example:

• Since a standard pre-Appearance WDEF cannot specify the inclusion of a horizontal zoom box,
when a pre-Appearance WDEF is mapped to an Appearance-compliant WDEF, the resulting
window will not have a horizontal zoom box.

• It is never necessary to call DrawGrowIcon to have the grow icon drawn in a window's size box
when an Appearance-compliant WDEF is called directly. However, when it is called via the
mapper, DrawGrowIcon must be called once for the grow icon to be drawn.

• When the Appearance-compliant WDEF for modal and movable modal dialog boxes is called via
the mapper, the three-pixel-wide space between the content region and the structure region
created by the pre-Appearance WDEF will remain. This space created certain difficulties in the
past. When the Appearance-compliant WDEF is called directly, the three-pixel-wide space is
banished.

For these reasons, and to eliminate the overhead involved in calling an Appearance-compliant
definition function through the mappers, it is best to call the Appearance-compliant definition function
directly.

Mapping of Custom Definition Functions

Custom definition functions cannot be automatically mapped to Appearance-compliant equivalents.
However, the Appearance Manager does provide ways to coordinate custom user interface elements
with themes. For example, using DrawThemeListBoxFrame creates a theme-compliant frame for a custom
list box.

The RegisterAppearanceClient Function

The following describes the RegisterAppearanceClient function, together with its sister function
UnregisterAppearanceClient.

6-4 The Appearance Manager

Function Description
RegisterAppearanceClient This function must be called at the beginning of your application, prior

to initialising or drawing any onscreen elements or invoking any
definition functions, such as the menu bar. Applications that call this
function will continue to have a platinum look when system-wide
appearance is off. The function automatically maps standard pre-
Appearance definition functions to their Appearance-compliant
equivalents, whether or not the user has turned on system-wide
Appearance. Although they will not make use of mapping, applications
that specify Appearance-compliant definition function IDs directly
should also call this function.

UnregisterAppearanceClient This function makes your application non-Appearance-compliant and
turns off the mapping of standard pre-Appearance definition functions
to their Appearance-compliant equivalents. The function is
automatically called for you when your application terminates.
Accordingly this function does not normally need to be called.

Checking For the Presence of Appearance Manager

Before calling any functions dependent upon the Appearance Manager’s presence, your application
should check for the presence of the Appearance Manager.

The Gestalt function may be used to acquire a wide range of information about the operating
environment, and may be used to determine:

• Whether the Appearance Manager and its functions are present.

• Whether the Macintosh is currently in compatibility mode, that is, whether the user has switched
system-wide Appearance off in the Appearance control panel.

• The version of the Appearance Manager that is present.

You pass a selector in the selector parameter of Gestalt and the function returns a response in the
response parameter. The following code fragment shows how to, in sequence, check that the
Appearance Manager and its functions are present, determine whether system-wide Appearance is on,
and check that Appearance Version 1.0.1 or later is present.

OSErr osError;
SInt32 response;
Boolean appearanceFunctionsAvail = false;
Boolean version101Present = false;
Boolean inCompatibilityMode = false;

// Call Gestalt with the gestaltAppearanceAttr selector

osError = Gestalt(gestaltAppearanceAttr,&response);

// If Gestalt returns no error and the bit in response represented by the constant
// gestaltAppearanceExists is set, proceed, otherwise exit with an error message.

if(osError == noErr && (BitTst(&response,31 - gestaltAppearanceExists)))
{

// Appearance and its functions are available. Set a flag if required.

appearanceFunctionsAvail = true;

// If the bit in response represented by the constant gestaltAppearanceCompatMode
// is set, system-wide Appearance is off.

if(BitTst(&response,31 - gestaltAppearanceCompatMode))
inCompatibilityMode = true;

// Call Gestalt again with the gestaltAppearanceVersion selector.

Gestalt(gestaltAppearanceVersion,&response);

The Appearance Manager 6-5

// If the low order word in response is 0x0101, Version 1.0.1 or later is present.

if(response & 0x00000101 == 0x00000101)
version101Present = true;

}
else
{

// Nil-Appearance error alert presented here, then exit.
}

Note in the above that the function BitTst is used to determine whether a specified bit is set. Bit
numbering with BitTst is the opposite of the usual MC680x0 numbering scheme used by Gestalt.
Thus the bit to be tested in the above example must be subtracted from 31. This is illustrated in the
following:

Bit numbering as used in BitTst
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit as numbered in MC69000 CPU operations, and used by Gestalt
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gestaltAppearanceExists = 0
31 - 0 = 0
gestaltAppearanceCompatMode = 1
31 - 1 = 1

Compatibility Mode

The above code fragment makes reference to compatibility mode . When system-wide appearance is
selected off in the Appearance control panel, the machine is said to be in compatibility mode, meaning
that there will be no mapping of the pre-Appearance definition functions.

Colours, Patterns, and the Current Theme

The Appearance Manager provides drawing primitives, and the means to set the colours and patterns,
needed to draw consistently with the current theme. Using these drawing primitives, colours, and
patterns makes it easier to create visual entities and custom definition functions that are consistent with
the current theme.

Drawing Appearance Primitives

Appearance provides functions for drawing Appearance primitives. As will become apparent at
Chapter 7 — Introduction to Controls and at Chapter 14 — More on Controls, most of these primitives
relate to certain controls. The control definition functions for these controls call these primitives when
drawing the relevant control. For example, the control definition function for a primary group box
calls the primitive DrawThemePrimaryGroup to draw the two-pixel wide Appearance-compliant visual
representation of that control.

Your application might use these primitives to, for example:

• Draw an Appearance-compliant image of a placard, window header, edit text field frame, etc.,
when you don’t want to use a control.

• Assist you in making a custom list box Appearance-compliant by using DrawThemeListBoxFrame
to draw the frame and DrawThemeFocusRect to draw the focus ring.

The following functions draw Appearance primitives. Those which do not relate to controls are
DrawThemeModelessDialogFrame, DrawThemeFocusRect, and DrawThemeFocusRegion.

6-6 The Appearance Manager

Function Description
DrawThemePrimaryGroup Draws a primary group box frame consistent with the current theme.

DrawThemeSecondaryGroup Draws a secondary group box frame consistent with the current theme.
Allows you to nest a secondary group box frame within the primary
group box frame.

DrawThemeSeparator Draws a separator line consistent with the current theme. The
orientation of the rectangle determines where the separator line is
drawn. If the rectangle is wider than it is tall, the separator line is
horizontal; otherwise it is vertical.

DrawThemeWindowHeader Draws a window header consistent with the current theme. This
function draws a window header such as that used by the Finder. The
window header is drawn inside the rectangle that is passed.

DrawThemeWindowListViewHeader Draws a window list view header, such as that used by the Finder,
consistent with the current theme. The header is drawn inside the
rectangle that is passed in. A window list view header is drawn without
a line on its bottom edge, so that bevel buttons can be placed against it
without overlapping.

DrawThemePlacard Draws a placard consistent with the current theme.

DrawThemeModelessDialogFrame Draws a modeless dialog box frame, like the one drawn by the Dialog
Manager, consistent with the current theme. This function may be used
to make a custom modeless dialog box Appearance-compliant. The
purpose of the modeless dialog frame is to assist in making modeless
dialog windows visually distinguishable from normal document
windows.

DrawThemeEditTextFrame Draws an edit text field frame consistent with the current theme. The
rectangle passed in should be the same as the one passed in the function
DrawThemeFocusRect (see below) so you get the correct focus look for your
edit text field control. You should not use these frames for items other
than edit text fields.

DrawThemeListBoxFrame Draws a list box frame consistent with the current theme. The rectangle
passed in should be the same as the one passed into the function
DrawThemeFocusRect (see below) so that you get the correct focus look for
your list box.

DrawThemeGenericWell Draws an image well frame consistent with the current theme. Image
well frames are for use with custom image well controls. You can specify
that the center of the well be filled with white. Ensure that Appearance
1.0.1 or later is present before calling this function.

DrawThemeFocusRect Draws or erases a focus ring around a specified rectangle consistent with
the current theme. To achieve the right look, you should first call
DrawThemeEditTextFrame or DrawThemeListBoxFrame and then call
DrawThemeFocusRect, passing the same rectangle in the inRect parameter. If
you use DrawThemeFocusRect to erase the focus ring around an edit text field
frame or list box frame, you will have to redraw the edit text field frame
or list box frame because there is typically an overlap.

DrawThemeFocusRegion Draws or erases an Appearance-compliant focus ring around a specified
region. Ensure that Appearance 1.0.1 or later is present before calling
this function.

Draw State Constants

The following constants are passed in the inState parameter of all of these functions (except
DrawThemeFocusRect and DrawThemeFocusRegion) to specify whether the primitive should be drawn in
the active or deactivated mode.1

Constant Value Description

kThemeStateDisabled 0 Draw the primitive in the inactive mode.

kThemeStateActive 1 Draw the primitive in the active mode.

1 DrawThemeFocusRect and DrawThemeFocusRegion either draw or erase the focus rectangle depending on whether true or false is passed in the
inHasFocus parameter.

The Appearance Manager 6-7

Another draw state constant (kThemeStatePressed) is available to draw certain primitives in the
pressed mode; however, the primitives listed above can only be drawn in the active and inactive
modes.

Fig 3 and Fig 4 show examples, in platinum Appearance, of images drawn in both the active and
inactive modes using the Appearance primitives.

FIG 3 - IMAGES DRAWN WITH OTHER APPEARANCE DRAWING PRIMITIVES

kThemeStateDisabled PASSED IN
inState PARAMETER

kThemeStateActive PASSED IN
inState PARAMETER

WINDOW HEADER

PRIMARY GROUP
BOX FRAME

SECONDARY GROUP
BOX FRAME

EDIT TEXT FIELD FRAME

EDIT TEXT FIELD FRAME AND
KEYBOARD FOCUS RECTANGLE

IMAGE
WELL

IMAGE WELL WITH INTERIOR
IN WHITE

LIST BOX FRAME

PLACARD

SEPARATOR LINE

SEPARATOR LINE

FIG 4 - MODELESS DIALOG FRAME DRAWN WITH APPEARANCE DRAWING PRIMITIVE

ONE-PIXEL
MODELESS

DIALOG FRAME

ONE-PIXEL
MODELESS
DIALOG
FRAME

Drawing in Colours and Patterns
Consistent With the Current Theme

The following functions are those used to draw using colours and patterns consistent with the current
theme.

6-8 The Appearance Manager

Function Description
SetThemeWindowBackground Sets the Appearance-compliant colour or pattern that the window

background will be repainted to when PaintOne is called. This function
sets the colour or pattern to which the Window Manager will erase the
window background. The constant in the inBrush parameter can
represent a colour or pattern, depending on the current theme.
See also Appearance-Compliant Brush Type Constants, below.

SetThemeBackground Sets an element’s background colour or pattern to comply with the
current theme. This function should be called each time you wish to
draw an element in a specified brush constant using Appearance
Manager draw functions. The constant in the inBrush parameter can
represent a colour or pattern, depending on the current theme.
See also Appearance-Compliant Brush Type Constants, below.

SetThemePen Sets an element’s pen pattern or colour to comply with the current
theme. This function should be called each time you wish to draw an
element in a specified brush constant using Appearance Manager draw
functions.
See also Appearance-Compliant Brush Type Constants, below.

SetThemeTextColor Sets an element’s foreground colour for drawing text to comply with the
current theme. This function is typically used inside a DeviceLoop
drawing procedure to set the foreground colour for drawing text in order
to coordinate with the current theme.
See also Appearance-Compliant Text Colour Constants, below.

IsThemeInColor Checks to see whether the current theme would draw in colour in the
given environment. This function is useful when you are drawing
elements to match the current theme and need to determine whether or
not the theme would be drawn in colour or black and white. If the
function returns true, you can draw in colour; if it returns false, you
should draw in black and white.

GetThemeAccentColors Gets a copy of the accent colours for the platinum theme. This function
returns a copy of an element’s accent colours, but only for the platinum
theme. If GetThemeAccentColors is called when another theme is current, it
returns an error.

Appearance-Compliant Brush Type Constants

The following constants, which are of type ThemeBrush, may be passed in the inBrush parameter of calls
to SetThemeWindowBackground, SetThemeBackground, and SetThemePen to specify Appearance-compliant
colours or patterns for user interface elements.

Constant Description
kThemeActiveDialogBackgroundBrush An active dialog box’s background colour or pattern.

kThemeInactiveDialogBackgroundBrush An inactive dialog box’s background colour or pattern.

kThemeActiveAlertBackgroundBrush An active alert box’s background colour or pattern.

kThemeInactiveAlertBackgroundBrush An inactive alert box’s background colour or pattern.

kThemeActiveModelessDialogBackgroundBrush An active modeless dialog box’s background colour or pattern.

kThemeInactiveModelessDialogBackgroundBrush An inactive modeless dialog box’s background colour or pattern.

kThemeActiveUtilityWindowBackgroundBrush An active utility window’s background colour or pattern.

kThemeInactiveUtilityWindowBackgroundBrush An inactive utility window’s background colour or pattern.

kThemeListViewSortColumnBackgroundBrush The background colour or pattern of the column upon which a list
view is sorted.

kThemeListViewBackgroundBrush The background colour or pattern of a list view column that is not
being sorted upon.

kThemeIconLabelBackgroundBrush An icon label’s colour or pattern.

kThemeListViewSeparatorBrush A list view separator’s colour or pattern.

kThemeChasingArrowsBrush Asynchronous arrows’ colour or pattern.

kThemeDragHiliteBrush The background colour or pattern of an element responding to a
drag and drop, indicating that the element is a valid recipient.

kThemeDocumentWindowBackgroundBrush A document window’s background colour or pattern.

kThemeFinderWindowBackgroundBrush A Finder window’s background colour or pattern. Generally, you
should not use this constant unless you are trying to create a
window that matches the Finder window.

The Appearance Manager 6-9

These constants can represent either a straight colour or a pattern, depending on the current theme.
Patterns are explained at Chapter 11 — QuickDraw Preliminaries. Chapter 12 — Drawing With
QuickDraw addresses certain measures which need to be taken consequential to the fact that both
colours and patterns can be set by the Appearance functions SetThemeWindowBackground,
SetThemeBackground, and SetThemePen.

Appearance-Compliant Text Colour Constants 1

Constants of type ThemeTextColor may be passed in the inColor parameter of the function
SetThemeTextColor calls to specify Appearance-compliant text colours for user interface elements in
their active, inactive, and highlighted states. Some of these constants are as follows:

Constant Description

kThemeActiveWindowHeaderTextColor Text colour for active window header.

kThemeInactiveWindowHeaderTextColor Text colour for inactive window header.

kThemeActivePlacardTextColor Text colour for active placard.

kThemeInactivePlacardTextColor Text colour for inactive placard.

kThemePressedPlacardTextColor Text colour for highlighted placard.

kThemeListViewTextColor Text colour for list view.

Window Metrics and Appearance

Prior to the introduction of the Appearance Manager, the matter of positioning windows (which is
based on the top-left corner of the content region) was quite straightforward given that window
borders were always one pixel wide, the title bar was always 19 pixels high, and the menu bar was
always a fixed height. However, as shown at Fig 1, such assumptions cannot be made under
Appearance. When switchable themes are implemented, the widths of window borders, the height of
window title bars, and the height of the menu bar, will vary by theme. Where appropriate, your
application must deal with this situation by getting the structure and content rectangles for the
window, calculating the width of the window border and title bar, and adjusting the position and size
of the window accordingly.

Things That Do Not Change

In the era of themes, where the look of the entire interface can change at any time, it may seem that
your application has to be ready for anything. In some respects, that is true. (For example, you need to
lay out your user interface elements with enough room to look good in all themes.) However, there are
some things you will always be able to rely on. These are as follows:

• Edit text field frames, group box frames and list box frames will always be a maximum of two
pixels thick.

• The menu bar height can vary, but will never be more than 24 pixels high.

• Metrics of controls will be the same across themes, though borders, which are drawn outside a
control's rectangle, can change for default rings on push button controls2 and keyboard focus
frames. That said, default rings and keyboard focus frames will never be outset more than three
pixels from their associated rectangles.

• Progress indicator3 borders will never be outset more than two pixels from their associated
rectangles.

As previously stated, window structure metrics do change and your application needs to be able to
cope with a theme switch resulting in a possible change in window frame width, title bar height, and
menu bar height.

2 See Chapter 7 — Introduction to Controls.
3 See Chapter 14 — More On Controls.

6-10 The Appearance Manager

Advising Your Application That a Theme Switch Has Occurred

You application is advised that a theme switch has occurred via an Apple event4. Your application can
then take the appropriate action, such as adjusting its window positions, to accommodate the switch.

Appearance-Compliant Applications

Making a New Application Appearance-Compliant

The following lists the actions required to make a new application Appearance-compliant:

• Call RegisterAppearanceClient early in your application code, before you draw the menu bar.

• Use the system-supplied Appearance-compliant menu and window definition functions.

• Use Appearance Manager functions and constants to get any colours and patterns you need to
draw consistently with the current theme, and to draw Appearance-compliant visual entities
such as window headers when you don't want to use a control of that type.

• As will be explained at Chapter 7 — Introduction to Controls and at Chapter 14 — More on
Controls, use the system-supplied Appearance-compliant control definition functions.

• As will be explained at Chapter 8 — Dialogs and Alerts:

• Use the new 'dlgx' and 'alrx' resources to supplement your 'DLOG' and 'ALRT'
resources.

• Enable embedding and Appearance-compliant backgrounds.

In addition, and because the Appearance Manager introduces a movable modal alert and
simplifies the handling of movable modal alert and dialog boxes, make all your alerts and
dialogs movable. Also use the StandardAlert routine, introduced with the Appearance
Manager, to create your alerts whenever possible.

Making Old Applications Appearance-Compliant

Ultimately, the task of making an old non-Appearance compliant application fully Appearance-
compliant will involve all of the steps listed at Making a New Application Appearance-Compliant,
above.

The task may be phased, however, by taking one simple initial step. That step is to simply insert a call
to RegisterAppearanceClient early in your code. This will cause the mappers to invoke the new
definition functions.

When converting an application, be sure to select system-wide Appearance off in the Appearance
control panel. This puts your system back into the old System 7 look for applications that have not
adopted Appearance, which makes it easy for you to tell where you have implemented the new look
and where you still have work to do. (If you are running with system-wide Appearance selected on,
you will not be able to distinguish the changes you’ve made from those performed automatically by the
system.)

4 See Chapter 10 — Required Apple Events.

The Appearance Manager 6-11

Main Constants, Data Types, and Functions

In the following, those items appearing on a gray background are available only with Appearance
Version 1.0.1 and later.

Constants

Checking For Appearance, Appearance Functions, and Version

gestaltAppearanceAttr = FOUR_CHAR_CODE('appr')
gestaltAppearanceExists = 0
gestaltAppearanceCompatMode = 1
gestaltAppearanceVersion = FOUR_CHAR_CODE('apvr')

Appearance-Compliant Brush Type Constants

kThemeActiveDialogBackgroundBrush = 1
kThemeInactiveDialogBackgroundBrush = 2
kThemeActiveAlertBackgroundBrush = 3
kThemeInactiveAlertBackgroundBrush = 4
kThemeActiveModelessDialogBackgroundBrush = 5
kThemeInactiveModelessDialogBackgroundBrush = 6
kThemeActiveUtilityWindowBackgroundBrush = 7
kThemeInactiveUtilityWindowBackgroundBrush = 8
kThemeListViewSortColumnBackgroundBrush = 9
kThemeListViewBackgroundBrush = 10
kThemeIconLabelBackgroundBrush = 11
kThemeListViewSeparatorBrush = 12
kThemeChasingArrowsBrush = 13
kThemeDragHiliteBrush = 14
kThemeDocumentWindowBackgroundBrush = 15
kThemeFinderWindowBackgroundBrush = 16

Appearance-Compliant Text Colour Constants

kThemeActiveWindowHeaderTextColor = 7
kThemeInactiveWindowHeaderTextColor = 8
kThemeActivePlacardTextColor = 9
kThemeInactivePlacardTextColor = 10
kThemePressedPlacardTextColor = 11

Appearance-Compliant Draw State Constants (For Primitives)

kThemeStateDisabled = 0
kThemeStateActive = 1
kThemeStatePressed = 2

Appearance Manager Apple Events

kAppearanceEventClass = FOUR_CHAR_CODE('appr')
kAEThemeSwitch = FOUR_CHAR_CODE('thme')

Data Types

typedef UInt32 ThemeDrawState;
typedef SInt16 ThemeBrush;
typedef SInt16 ThemeTextColor;

Functions

Initialising the Appearance Manager

OSStatus RegisterAppearanceClient (void);
OSStatus UnregisterAppearanceClient (void);

Drawing Appearance Primitives

OSStatus DrawThemeWindowHeader(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeWindowListViewHeader(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemePlacard(const Rect *inRect,ThemeDrawState inState)

6-12 The Appearance Manager

OSStatus DrawThemeEditTextFrame(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeListBoxFrame(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeFocusRect(const Rect *inRect,Boolean inHasFocus)
OSStatus DrawThemePrimaryGroup(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeSecondaryGroup(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeSeparator(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeModelessDialogFrame(const Rect *inRect,ThemeDrawState inState)
OSStatus DrawThemeGenericWell(const Rect *inRect,ThemeDrawState inState,Boolean inFillCenter)
OSStatus DrawThemeFocusRegion(RgnHandle inRegion,Boolean inHasFocus)

Drawing in Colours and Patterns Consistent With the Current Theme

OSStatus SetThemeWindowBackground(WindowPtr inWindow,ThemeBrush inBrush,Boolean inUpdate)
OSStatus SetThemeBackground(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice)
OSStatus SetThemePen(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice)
OSStatus SetThemeTextColor(ThemeTextColor inColor,SInt16 inDepth,Boolean inIsColorDevice)
OSStatus GetThemeAccentColors(CTabHandle *outColors); // Works with Platinum theme only
OSStatus IsThemeInColor(SInt16 inDepth,Boolean inIsColorDevice)

Demonstration Program

// **
// Appearance.c
// **
//
// This program opens two kWindowDocumentProc windows containing:
//
// • In the first window, an Appearance-compliant list view.
//
// • In the second window, various images drawn with Appearance primitives and window
// header text drawn in the correct theme colour.
//
// When the windows are opened, they are immediately moved to a position which accounts
// for the differing window widths and menu bar heights under different themes.
//
// Two of the images in the second window are edit text field frames and one is a list
// box frame. At any one time, one of these will have a keyboard focus frame drawn
// around it. Clicking in one of the other frames will move the keyboard focus frame
// to that frame.
//
// The program is terminated by the choosing the Quit item in the File menu.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Demonstration
// menus, and the pop-up menus (preload, non-purgeable).
//
// • Two 'WIND' resources (purgeable) (initially not visible).
//
// • 'hrct' and 'hwin' resources (both purgeable), which provide help balloons
// describing the contents of the windows.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// **

// ……… includes

#include <Appearance.h>
#include <Devices.h>
#include <Fonts.h>
#include <Gestalt.h>
#include <Menus.h>
#include <Processes.h>
#include <Sound.h>
#include <ToolUtils.h>
#include <LowMem.h>

// …… defines

#define rMenubar 128
#define rNewWindow1 128
#define rNewWindow2 129

The Appearance Manager 6-13

#define mApple 128
#define iAbout 1
#define mFile 129
#define iQuit 11

#define MAXLONG 0x7FFFFFFF
#define topLeft(r) (((Point *) &(r))[0])

// ……… global variables

Boolean gInCompatibilityMode = false;
Boolean gVersion101Present = false;
Boolean gDone;
Boolean gInBackground;
WindowPtr gWindowPtr1, gWindowPtr2;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
Rect gCurrentRect;

// …… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doUpdate (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowPtr,Boolean);
void doOSEvent (EventRecord *);
void doMoveWindowForThemes (WindowPtr,Boolean);
void doDrawThemePrimitives (ThemeDrawState);
void doDrawThemeCompliantText (WindowPtr,ThemeDrawState);
void doDrawListView (WindowPtr);
void doChangeKeyBoardFocus (Point);
void doGetDepthAndDevice (void);

// *** main

void main(void)
{

OSErr osError;
SInt32 response;
Handle menubarHdl;
MenuHandle menuHdl;
EventRecord EventStructure;

// …… initialise managers

doInitManagers();

// ……………………… check for Appearance and functions, compatibility mode, Appearance version

osError = Gestalt(gestaltAppearanceAttr,&response);

if(osError == noErr && (BitTst(&response,31 - gestaltAppearanceExists)))
{

if(BitTst(&response,31 - gestaltAppearanceCompatMode))
gInCompatibilityMode = true;

Gestalt(gestaltAppearanceVersion,&response);
if(response & 0x00000101 == 0x00000101)

gVersion101Present = true;
}
else

ExitToShell();

// …… cause the Appearance-compliant menu bar definition function to be called directly

RegisterAppearanceClient();

// …… set up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

ExitToShell();
SetMenuBar(menubarHdl);
DrawMenuBar();

6-14 The Appearance Manager

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

ExitToShell();
else

AppendResMenu(menuHdl,'DRVR');

// ………………………………………………………………………… open windows, set font size, show windows, move windows

if(!(gWindowPtr1 = GetNewCWindow(rNewWindow1,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(gWindowPtr1);
TextSize(10);
ShowWindow(gWindowPtr1);
doMoveWindowForThemes(gWindowPtr1,true);

if(!(gWindowPtr2 = GetNewCWindow(rNewWindow2,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(gWindowPtr2);
TextSize(10);
ShowWindow(gWindowPtr2);
doMoveWindowForThemes(gWindowPtr2,true);

// …………………………………………………………………… set Appearance-compliant colour/pattern for second window

SetThemeWindowBackground(gWindowPtr2,kThemeActiveDialogBackgroundBrush,true);

// ……………………… get pixel depth and whether colour device for certain Appearance functions

doGetDepthAndDevice();

// …………… set top edit text field rectangle as target for initial keyboard focus frame

SetRect(&gCurrentRect,20,141,239,162);

// …… enter eventLoop

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&EventStructure,MAXLONG,NULL))
doEvents(&EventStructure);

}
}

// *** doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

}

// *** doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8 charCode;
SInt32 menuChoice;
SInt16 menuID, menuItem;
SInt16 partCode;
WindowPtr windowPtr;
Str255 itemName;
SInt16 daDriverRefNum;

The Appearance Manager 6-15

switch(eventStrucPtr->what)
{

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

menuChoice = MenuEvent(eventStrucPtr);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);
if(menuID == mFile && menuItem == iQuit)

gDone = true;
}
break;

case mouseDown:
if(partCode = FindWindow(eventStrucPtr->where,&windowPtr))
{

switch(partCode)
{

case inMenuBar:
menuChoice = MenuSelect(eventStrucPtr->where);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)

SysBeep(10);
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

}
HiliteMenu(0);
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
else
{

if(FrontWindow() == gWindowPtr2)
{

SetPort(gWindowPtr2);
doChangeKeyBoardFocus(eventStrucPtr->where);

}
}
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

}
}
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

case activateEvt:
doActivate(eventStrucPtr);
break;

case osEvt:

6-16 The Appearance Manager

doOSEvent(eventStrucPtr);
HiliteMenu(0);
break;

}
}

// *** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;

windowPtr = (WindowPtr) eventStrucPtr->message;

BeginUpdate(windowPtr);

SetPort(windowPtr);

if(windowPtr == gWindowPtr2)
{

if(gWindowPtr2 == FrontWindow() && !gInBackground)
{

doDrawThemePrimitives(kThemeStateActive);
doDrawThemeCompliantText(windowPtr,kThemeStateActive);
DrawThemeFocusRect(&gCurrentRect,true);

}
else
{

doDrawThemePrimitives(kThemeStateDisabled);
doDrawThemeCompliantText(windowPtr,kThemeStateDisabled);

}
}

if(windowPtr == gWindowPtr1)
doDrawListView(windowPtr);

EndUpdate(windowPtr);
}

// *** doActivate

void doActivate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
Boolean becomingActive;

windowPtr = (WindowPtr) eventStrucPtr->message;
becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);
doActivateWindow(windowPtr,becomingActive);

}

// *** doActivateWindow

void doActivateWindow(WindowPtr windowPtr,Boolean becomingActive)
{

if(windowPtr == gWindowPtr2)
{

SetPort(gWindowPtr2);

doDrawThemePrimitives(becomingActive);
doDrawThemeCompliantText(windowPtr,becomingActive);
DrawThemeFocusRect(&gCurrentRect,becomingActive);

}
}

// ** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
doActivateWindow(FrontWindow(),!gInBackground);
break;

}
}

The Appearance Manager 6-17

// ** doMoveWindowForThemes

void doMoveWindowForThemes(WindowPtr windowPtr,Boolean bringToFront)
{

Rect portRect, structureRect, contentRect;
Point structureTopLeft, contentTopLeft;
SInt32 difference;
SInt16 contentRectTop, contentRectLeft, menuBarHeight;

portRect = windowPtr->portRect;
LocalToGlobal(&topLeft(portRect));
contentRectTop = portRect.top;
contentRectLeft = portRect.left;

structureRect = (*(((WindowPeek) windowPtr)->strucRgn))->rgnBBox;
contentRect = (*(((WindowPeek) windowPtr)->contRgn))->rgnBBox;

structureTopLeft = topLeft(structureRect);
contentTopLeft = topLeft(contentRect);
difference = DeltaPoint(contentTopLeft,structureTopLeft);

contentRectLeft += (*(Point*) &difference).h;
contentRectTop += (*(Point*) &difference).v;

menuBarHeight = LMGetMBarHeight();
contentRectTop += menuBarHeight;

MoveWindow(windowPtr,contentRectLeft,contentRectTop,bringToFront);
}

// ** doDrawThemePrimitives

void doDrawThemePrimitives(ThemeDrawState inState)
{

Rect theRect;

SetRect(&theRect,-1,-1,261,26);
DrawThemeWindowHeader(&theRect,inState);

SetRect(&theRect,20,46,119,115);
DrawThemePrimaryGroup(&theRect,inState);

SetRect(&theRect,140,46,239,115);
DrawThemeSecondaryGroup(&theRect,inState);

SetRect(&theRect,20,127,240,128);
DrawThemeSeparator(&theRect,inState);

SetRect(&theRect,20,141,239,162);
DrawThemeEditTextFrame(&theRect,inState);

SetRect(&theRect,20,169,239,190);
DrawThemeEditTextFrame(&theRect,inState);

SetRect(&theRect,20,203,62,245);
DrawThemeGenericWell(&theRect,inState,false);

SetRect(&theRect,20,258,62,300);
DrawThemeGenericWell(&theRect,inState,true);

SetRect(&theRect,75,202,76,302);
DrawThemeSeparator(&theRect,inState);

SetRect(&theRect,90,203,239,300);
DrawThemeListBoxFrame(&theRect,inState);

SetRect(&theRect,-1,321,261,337);
DrawThemePlacard(&theRect,inState);

}

// *** doDrawThemeCompliantText

void doDrawThemeCompliantText(WindowPtr windowPtr,ThemeDrawState inState)
{

SInt16 windowWidth, stringWidth;
Str255 message = "\pBalloon help is available";

6-18 The Appearance Manager

if(inState == kThemeStateActive)
SetThemeTextColor(kThemeActiveWindowHeaderTextColor,gPixelDepth,gIsColourDevice);

else
SetThemeTextColor(kThemeInactiveWindowHeaderTextColor,gPixelDepth,gIsColourDevice);

windowWidth = (windowPtr)->portRect.right - (windowPtr)->portRect.left;
stringWidth = StringWidth(message);
MoveTo((windowWidth / 2) - (stringWidth / 2), 17);
DrawString("\pBalloon help is available");

}

// *** doDrawListView

void doDrawListView(WindowPtr windowPtr)
{

Rect theRect;
SInt16 a;

theRect = windowPtr->portRect;

SetThemeBackground(kThemeListViewBackgroundBrush,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

theRect.left += 130;

SetThemeBackground(kThemeListViewSortColumnBackgroundBrush,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

SetThemePen(kThemeListViewSeparatorBrush,gPixelDepth,gIsColourDevice);

theRect = windowPtr->portRect;
for(a=theRect.top;a<=theRect.bottom;a+=18)
{

MoveTo(theRect.left,a);
LineTo(theRect.right - 1,a);

}

SetThemeTextColor(kThemeListViewTextColor,gPixelDepth,gIsColourDevice);

for(a=theRect.top;a<=theRect.bottom +18;a+=18)
{

MoveTo(theRect.left,a - 5);
DrawString("\p List View Background List View Sort Column");

}
}

// ** doChangeKeyBoardFocus

void doChangeKeyBoardFocus(Point mouseXY)
{

Rect edit1Rect, edit2Rect, listRec;

DrawThemeFocusRect(&gCurrentRect,false);
DrawThemeEditTextFrame(&gCurrentRect,kThemeStateActive);

SetRect(&edit1Rect,20,141,239,162);
SetRect(&edit2Rect,20,169,239,190);
SetRect(&listRec,90,203,239,300);

GlobalToLocal(&mouseXY);

if(PtInRect(mouseXY,&edit1Rect))
SetRect(&gCurrentRect,20,141,239,162);

else if(PtInRect(mouseXY,&edit2Rect))
SetRect(&gCurrentRect,20,169,239,190);

else if(PtInRect(mouseXY,&listRec))
SetRect(&gCurrentRect,90,203,239,300);

DrawThemeFocusRect(&gCurrentRect,true);
}

// ** doGetDepthAndDevice

void doGetDepthAndDevice(void)
{

GDHandle deviceHdl;

The Appearance Manager 6-19

deviceHdl = LMGetMainDevice();
gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
if(BitTst(&(*deviceHdl)->gdFlags,gdDevType))

gIsColourDevice = true;
}

// **

Demonstration Program Comments

When this program is run, the user should:

• First drag the top window to a position where the content of the bottom window is
visible.

• Choose Show Balloons from the Help menu and move the cursor over the frames in the
window titled "Drawing With Primitives" window (when active), and the left and right
sides of the window titled "Theme-Compliant List View" (when active), noting the
descriptions in the balloons.

• With the "Drawing With Primitives" window frontmost, click in the edit text field frame
not currently outlined with the keyboard focus frame, or in the list box frame, so as to
move the keyboard focus frame to that rectangle.

• Click on the desktop to send the application to the background and note the changed
appearance of the frames and text in the "Drawing With Primitives" window. Note also
that there is no change to the appearance of the content region of the "Theme-Compliant
List View" window. Click on the "Drawing With Primitives" window to bring the
application to the foreground with that window active, noting the changed appearance of
the frames and text.

In the following, reference is made to graphics devices and pixel depth. Graphics
devices and pixel depth are explained at Chapter 11 — QuickDraw Preliminaries.

#define

The first block establishes constants representing menu IDs, resources, and menu items, and
window and menu bar resources.

MAXLONG is defined as the maximum possible long value, and is used in the WaitNextEvent
function. The last line defines a common macro which converts the top and left fields of a
Rect structure to a Point.

Global Variables

gInCompatibilityMode will be assigned true if the machine on which the demonstration is
running is in compatibility mode. gVersion101Present will be assigned the version number of
the Appearance Manager present on the machine.

gDone, when set to true, causes the main event loop to be exited and the program to terminate.
gInBackground relates to foreground/background switching. gWindowPtr1 and gWindowPtr2 will be
assigned window pointers.

gPixelDepth will be assigned the pixel depth of the main device. gIsColourDevice will be
assigned true if the graphics device is a colour device and false if it is a monochrome
device. The values in these two variables are required by certain Appearance functions.
gCurrentRect will be assigned the rectangle which is to be the current target for the keyboard
focus frame.

main

After the system software managers are initialised, Gestalt is called to determine whether the
Appearance Manager and its functions are present. If so, bit 1 in the response is tested to
determine whether the machine on which the program is running is currently in compatibility
mode, and Gestalt is called again to determine whether the version of the Appearance Manager
present is 1.0.1 or later. If the Appearance Manager and its functions are not present, the
program simply terminates.

6-20 The Appearance Manager

Note that the assignments to the global variables gInCompatibilityMode and gVersion101Present
are for demonstration purposes only; the program does not use these variables for any purpose.
(In a real application, you might, for example, use gVersion101Present to bypass calls to
DrawThemeModelessDialogFrame, DrawThemeGenericWell, DrawThemeFocusRegion, SetThemeTextColor,
GetThemeAccentColors, and IsThemeInColor, since those functions must not be called unless
Version 1.0.1 or later is present.)

The call to RegisterAppearanceClient means that the new Appearance-compliant menu bar
definition function (resource ID 63) will be used regardless of whether system-wide Appearance
is selected on or off in the Appearance control panel.

After the menus are set up, each window is created. After each window is created, its
graphics port is set as the current port and the text size for that port is set to 10pt, the
window is shown, and an application-defined function is called to move the window to a
position which accounts for varying window frame widths and title bar heights under themes.

SetThemeWindowBackground sets an Appearance-compliant colour/pattern for the "Drawing With
Primitives" window's content area. This means that the content area will be automatically
repainted with that colour/pattern when required with no further assistance from the
application. When true is passed in the third parameter, the content region of the window is
invalidated and the content region is repainted immediately.

The call to the application-defined function doGetDepthAndDevice determines the current pixel
depth of the graphics port, and whether the current graphics device is a colour device, and
assigns the results to the global variables gPixelDepth and gIsColourDevice.

The call to SetRect establishes the initial target for the keyboard focus frame. This is the
rectangle used by the first edit text field frame.

doEvents

At the mouseDown case, the inContent case within the partCode switch is of relevance to the
demonstration.

If the mouse-down was within the content region of a window, and if that window is not the
front window, SelectWindow is called to bring that window to the front and activate it.

However, if the window is the front window, and if that window is the "Drawing With
Primitives" window, that window's graphics port is set as the current graphics port for
drawing, and the application-defined function doChangeKeyBoardFocus is called. That function
determines whether the mouse-down was within one of the edit text field frames or the list box
frame, and moves the keyboard focus if necessary.

doUpdate

Within the doUpdate function, if the window to which the update event relates is the "Drawing
With Primitives" window, and if that window is currently the front window:

• Application-defined functions are called to draw the primitives and the window header text
in the active mode.

• DrawThemeFocusRect is called to draw the keyboard focus frame using the rectangle
currently assigned to the global variable gCurrentRect.

If, however, the "Drawing With Primitives" window is not the front window, the same calls are
made but with the primitives and text being drawn in the inactive mode. Note that no call is
required to erase the keyboard focus frame because this will already have been erased when the
window was deactivated (see below).

If the window to which update event relates is the "Theme-Compliant List View" window, an
application-defined function for drawing the window's content area is called. Note that, for
this window, there is no differentiation between active and inactive modes. This is because,
for list views, the same brush type constants are used regardless of whether the window is
active or inactive.

doActivateWindow

When an activate event is received for the "Drawing With Primitives" window, the application-
defined functions for drawing the primitives and the window header text, together with the
Appearance function which draws and erases the keyboard focus rectangle, are called. To
eliminate the necessity for if/else coding, the becomingActive value is used to ensure that,
firstly, the primitives and text are drawn in the appropriate mode and, secondly, that the
keyboard focus frame is either drawn or erased, depending on whether the window is coming to
the front or being sent to the back.

The Appearance Manager 6-21

Once again, the "Theme-Compliant List View" window is treated differently because the list
view brush constants to be used are the same regardless of whether the window is activated and
deactivated.

doMoveWindowForThemes

doMoveWindowForThemes is called immediately after the windows are opened to move them to a
position which accounts for the differing widths of the frame, and the differing height of the
title bar, depending on the current theme. This function is just one of several approaches
you might take to accommodating differing window border widths under themes.

For the purposes of the demonstration, the 'WIND' resource for the "Theme-Compliant List View"
window establishes the top left of the content region at 0,0 (global coordinates), and the
'WIND' resource for the "Drawing With Primitives" window establishes the top left of the
content region at 20,20 (global coordinates). No positioning constants are used.

The first line copies the window's port rectangle (in effect, the bounding rectangle of the
content region) to a local variable of type Rect. This rectangle will be in local
coordinates, so the call to LocalToGlobal changes the values in the fields of the Rect
structure to global coordinates. The top and left fields of the Rect are then copied to two
local variables.

The next two lines copy the bounding rectangles of the window's structure region and content
region to two local Rect variables. This is for the purpose of finding the width of the
window's frame and the height of its title bar.

At the next two lines, the macro topLeft is used to extract the values in the top and left
fields of the specified Rect structures, which are then assigned to the v and h fields of two
local variables of type Point. The call to DeltaPoint calculates the distance between the two
points, returning a 32-bit value with the vertical distance in the high-order word and the
horizontal distance in the low-order word. The horizontal distance represents the width of
the window's frame and the vertical distance represents the height of its title bar.

The next two lines add these distances to the values in the two local variables previously
assigned the location of the top/left of the content region rectangle in global coordinates.
At the first line, and within the brackets, the address of difference is cast as a pointer to
a Point structure. (A Point structure comprises two 16-bit fields - h and v). This is
dereferenced to get the address of the data. Outside the brackets, the .h persuades the
program that it is now looking at the h field of a Point structure.

The call to LMGetMBarHeight gets the height of the menu bar and adds this to the value in
contentRectTop.

Finally, MoveWindow is called to move the window right by a distance equal to the width of the
window frame and down by a distance equal to the height of the title bar plus the height of
the menu bar.

doDrawThemePrimitives

doDrawThemePrimitives uses Appearance Manager functions for drawing Appearance primitives, and
is called to draw the various frames in the "Drawing With Primitives" window. The mode in
which the primitives are drawn (active or inactive) is determined by the Boolean value passed
in the inState parameter.

doDrawThemeCompliantText

doDrawThemeCompliantText is called to draw some advisory text in the window header of the
"Drawing With Primitives" window. The QuickDraw drawing function DrawString does the drawing;
however, before the drawing begins, the Appearance function SetThemeTextColor is used to set
the foreground colour for drawing text, in either the active or inactive modes, so as to
comply with the current theme.

At the first two lines, if "Drawing With Primitives" is the active window, SetThemeTextColor
is called with the kThemeActiveWindowHeaderTextColor text colour constant passed in the first
parameter. At the next two lines, if the window is inactive, SetThemeTextColor is called with
kThemeInctiveWindowHeaderTextColor passed in the first parameter. Note that SetThemeTextColor
requires the pixel depth of the graphics port, and whether the graphics device is a colour
device or a monochrome device, passed in the second and third parameters.

The next three lines simply adjust QuickDraw's pen location so that the text is drawn centered
laterally in the window header frame. The call to DrawString draws the specified text.

6-22 The Appearance Manager

doDrawListView

doDrawListView draws an Appearance-compliant list view background in the specified window.

The first line copies the window's port rectangle to a local variable of type Rect.

The call to SetThemeBackground sets the background colour/pattern to the colour/pattern
represented by the Appearance-compliant brush type constant kThemeListViewBackgroundBrush.
The QuickDraw function EraseRect fills the whole of the port rectangle with this
colour/pattern.

The next line adjusts the Rect variable's left field so that the rectangle now represents the
right half of the port rectangle. The same drawing process is then repeated, but this time
with kThemeListViewSortColumnBackgroundBrush passed in the first parameter of the
SetThemeBackground call.

SetThemePen is then called with the colour/pattern represented by the constant
kThemeListViewSeparatorBrush passed in the first parameter. The rectangle for drawing is then
expanded to equate with the port rectangle before the following five lines draw one-pixel-wide
horizontal lines, at 18-pixel intervals, from the top to the bottom of the port rectangle.

Finally, some text is drawn in the list view in the Appearance-compliant colour for list
views. SetThemeTextColour is called with the kThemeListViewTextColor passed in, following
which a for loop draws some text, at 18-pixel intervals, from the top to the bottom of the
port rectangle.

doChangeKeyBoardFocus

doChangeKeyBoardFocus is called when a mouse-down occurs in the content region of the "Drawing
With Primitives" window.

At the first two lines, Appearance functions are used to, firstly, erase the keyboard focus
frame from the rectangle around which it is currently drawn and, secondly, redraw an edit text
field frame around that rectangle.

The next three lines make three local variables of type Rect equal to the rectangles for the
two edit text field frames and the list box frame.

The call to GlobalToLocal converts the coordinates of the mouse-down to the local coordinates
required by the following calls to PtInRect. PtInRect returns true if the mouse-down is
within the rectangle passed in the second parameter. If one of the calls to PtInRect returns
true, that rectangle is made the current rectangle for keyboard focus by assigning it to the
global variable gCurrentRect.

Whatever rectangle is assigned to gCurrentRect, the call to DrawThemeFocusRect draws a Theme-
compliant keyboard focus frame around that rectangle.

doGetDepthAndDevice

doGetDepthAndDevice determines the pixel depth of the graphics port, and whether the graphics
device is a colour device or a monochrome device, and assigns the results to two global
variables. This information is required by certain Appearance functions.

	Introduction
	The Era of Themes
	The Appearance Manager
	New Definition Functions
	Mapping of Pre-Appearance Definition Functions
	Disadvantages of Calling a DefinitionFunction Via a Mapper
	Mapping of Custom Definition Functions
	The RegisterAppearanceClient Function

	Checking For the Presence of Appearance Manager
	Compatibility Mode

	Colours, Patterns, and the Current Theme
	Drawing Appearance Primitives
	Drawing in Colours and PatternsConsistent With the Current Theme

	Window Metrics and Appearance
	Things That Do Not Change
	Advising Your Application That a Theme Switch Has Occurred

	Appearance-Compliant Applications
	Making a New Application Appearance-Compliant
	Making Old Applications Appearance-Compliant

	Main Constants, Data Types, and Functions
	Demonstration Program
	Demonstration Program Comments

