
[Team LiB]

• Table of Contents

• Index

Mac OS® X Advanced Development Techniques

By Joe Zobkiw

Publisher: Sams Publishing

Pub Date: April 22, 2003

ISBN: 0-672-32526-8

Pages: 456

Mac OS X Advanced Development Techniques introduces intermediate to advanced developers to a wide
range of topics they will not find so extensively detailed anywhere else.

The book concentrates on teaching Cocoa development first, and then takes that knowledge and teaches in-
depth, advanced Mac OS X development through detailed examples. Topics covered include: writing
applications in Cocoa, supporting plug-in architectures, using shell scripts as startup items, understanding
property lists, writing screen savers, implementing preference panes and storing global user preferences,
custom color pickers, components, core and non-core services, foundations, frameworks, bundles, tools,
applications and more. Source code in Objective-C, Perl, Java, shell script, and other languages are
included as appropriate.

These solutions are necessary when developing Mac OS X software, but many times are overlooked due to
their complexities and lack of documentation and examples. The project-oriented approach of Mac OS X
Advanced Development Techniques lends itself perfectly to those developers who need to learn a specific
aspect of this new OS. Stand-alone examples allow them to strike a specific topic with surgical precision.
Each chapter will be filled with snippets of deep, technical information that is difficult or impossible to find
anywhere else.

[Team LiB]

http://www.informit.com/safari/author_bio.asp@ISBN=0672325268

Brought to You by

Like the book? Buy it!

[Team LiB]

• Table of Contents

• Index

Mac OS® X Advanced Development Techniques

By Joe Zobkiw

Publisher: Sams Publishing

Pub Date: April 22, 2003

ISBN: 0-672-32526-8

Pages: 456

 Copyright

 Preface

 About the Author

 Acknowledgments

 We Want to Hear from You!

 Reader Services

 Foreword

 Introduction

 Part I: Overview

 Chapter 1. Introduction to Mac OS X

 Darwin

 UNIX

 File Systems

 Industry Standard Protocols

 Quartz

http://www.informit.com/safari/author_bio.asp@ISBN=0672325268

 OpenGL

 QuickTime

 Classic (OS 9)

 Carbon

 Cocoa

 Java

 Aqua

 Software

 Conclusion

 Chapter 2. Introduction to Programming in Mac OS X

 Programming Languages

 Tools

 Frameworks

 Conclusion

 Part II: Application Level

 Chapter 3. Cocoa Applications

 The Result

 The Project

 Try This

 Conclusion

 Chapter 4. Cocoa Plug-ins

 The Results

 The First Project: plistPlugin

 SearchWindowController

 The Second Project: MyNSBP_App and MyNSBP_Plugin

 A Word About Symbol Collisions

 Try This

 Conclusion

 Chapter 5. Carbon Plug-ins

 The Results

 The CFPlugin Project

 What Is a UUID?

 The CFPlugin Project Source Code

 The CFPluginCarbonApp Host Application Project

 The CFPluginCocoaApp Host Application Project

 Try This

 Conclusion

 Chapter 6. Frameworks

 Apple Frameworks

 Third-Party Frameworks

 The Result

 The Carbon Framework Project

 The Cocoa Framework Project

 The Cocoa Application Project

 Try This

 Conclusion

 Part III: Enhancing the System

 Chapter 7. System Services

 The Result

 The Project

 The Application Connection

 Try This

 Conclusion

 Chapter 8. System Preference Panes

 The Result

 The Project

 More NSPreferencePane

 Try This

 Conclusion

 Chapter 9. Status Items

 The Result

 The Project

 Try This

 Conclusion

 Chapter 10. Screen Effects

 The Result

 The Project

 Try This

 Conclusion

 Chapter 11. Color Pickers

 The Result

 The Project

 Try This

 Conclusion

 Part IV: Advanced Methods

 Chapter 12. Threads

 The Result

 The Project

 Serial Versus Parallel

 Thread Priority

 Thread Data

 Try This

 Conclusion

 Chapter 13. Terminal

 The Result

 The Project

 Try This

 Conclusion

 Chapter 14. XML-RPC

 The Result

 The PHP Server

 The PHP Client

 The Cocoa Client

 Try This

 Conclusion

 Chapter 15. SOAP

 The Result

 The PHP Server

 The PHP Client

 The Cocoa Client

 Try This

 Conclusion

 Chapter 16. Snippets

 Calling Carbon from Cocoa

 Drawing with QuickDraw in a Cocoa Application

 Displaying the Username

 Finding a User's Home Directory

 Finding Application Support Directories

 Display Alert Panel and Write to Log

 Updating the Application's Dock Image

 Updating the Application's Dock Menu

 Open a URL

 Get the Icon of a File

 Scrolling About Box

 Checking Network Status

 Checking for Modifier Keys

 Executing AppleScripts via URL

 Defaults

 Find

 Sample

 Localizing Your Cocoa Application

 CURLHandle

 Conclusion

 Chapter 17. Conclusion

 Part V: Appendixes

 Appendix A. Source Code

 Chapter 3—RadarWatcher

 Chapter 4—MyNSBP_App

 Chapter 4—MyNSBP_Desaturate

 Chapter 4—MyNSBP_RemoveColor

 Chapter 4—plistPlugin

 Chapter 5—CFPlugin

 Chapter 5—CFPluginCarbonApp

 Chapter 5—CFPluginCocoaApp

 Chapter 5—Shared

 Chapter 6—MyCarbonFramework

 Chapter 6—MyCocoaFramework

 Chapter 6—MyCocoaApp

 Chapter 7—MyTextService

 Chapter 8—MyPreferencePane

 Chapter 9—MyStatusItem

 Chapter 10—MyScreenEffect

 Chapter 11—MyColorPicker

 Chapter 12—MyThread

 Chapter 13—MyTerminal

 Chapter 14—MyXMLRPC

 Chapter 15—MySOAP

 Appendix B. Online Resources

 Index

[Team LiB]

[Team LiB]

Copyright

Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

Library of Congress Catalog Card Number: 2002116065

Printed in the United States of America

First Printing: May 2003

Reprinted with corrections: June 2003

05 04 03 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD or programs accompanying it.

Credits

Acquisitions Editor

Katie Purdum

Development Editor

Scott Meyers

Managing Editor

Charlotte Clapp

Project Editor

Andy Beaster

Copy Editor

Rhonda Tinch-Mize

Indexer

Chris Barrick

Proofreader

Jody Larsen

Technical Editor

Mike Trent

Team Coordinator

Vanessa Evans

Media Developer

Dan Scherf

Designer

Gary Adair

Page Layout

Kelly Maish

Dedication

This book is dedicated to all my friends and family—with a special blessing to those we've lost.

[Team LiB]

[Team LiB]

Preface

About the Author

Acknowledgments

We Want to Hear from You!

Reader Services

Foreword

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

About the Author

Joe Zobkiw is president of TripleSoft Inc., a software development firm located in Raleigh, NC. He has
been writing software for Macintosh, UNIX, and Windows operating systems since 1986. Joe has written
numerous technical articles on software development-related topics throughout his career. His experience
includes writing communication, utility, and business applications for commercial and private clients. This is
his second book on advanced Macintosh software development.

[Team LiB]

[Team LiB]

Acknowledgments

This is the section where I thank all the people who made it possible to write the book you are now holding.
Some of them introduced me to someone, some of them worked in the trenches, and some of them didn't
complain while I coded for "just a few more minutes."

Love and most thanks to Catherine—Go Bucs!

Thanks also to Carole McClendon and everyone at Waterside Productions; Kathryn Purdum, Scott Meyers,
and everyone at Sams Publishing; Mike Trent for an excellent technical review and foreword; Everyone on
the various Cocoa and Mac OS X mailing lists, chat rooms, and Web sites for keeping me in the loop; Apple
Computer for designing such great hardware and software and all the folks who work hard to put it
together. Also thanks to Jeff Dopko, Bob Levitus, Matt Manlove, Marty Wachter, the Emmi family, the
McNair family, and the Zobkiw family.

Special note to Marty: There is a hidden chapter in this book. If you read the seventh word of every third
sentence, it will tell you how to make an iTunes plug-in.

Last, but certainly not least, thanks to you for making this purchase. I know that many books are vying for
your earnings, and I'm glad you chose this one. I hope you enjoy it!

[Team LiB]

[Team LiB]

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and
want to know what we're doing right, what we could do better, what areas you'd like to see us publish in,
and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to
the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or
email address. I will carefully review your comments and share them with the author and editors who
worked on the book.

Email: feedback@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

[Team LiB]

mailto:feedback@samspublishing.com
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Reader Services

For more information about this book or others from Sams Publishing, visit our Website at www.
samspublishing.com. Type the ISBN (excluding hyphens) or the title of the book in the Search box to find
the book you're looking for.

[Team LiB]

http://www.samspublishing.com/default.htm
http://www.samspublishing.com/default.htm
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Foreword

If asked to define Mac OS X in 5 words or less, I would call it "a collection of new beginnings."

Some of these beginnings are obvious. With Mac OS X, Apple has delivered on its promise to bring a pre-
emptive multi-tasking, memory-protected operating system to the Mac-using masses. Apple has also
introduced a new user interface for Mac OS X, called Aqua, which is simple, inviting, and powerful. If you
read through Apple's Web site, you will find many more examples, some even with color pictures.

But some beginnings are more profound. Many computer users are for the first time considering using an
Apple computer, in part because of Mac OS X's power and ease of use. Many others are switching back to
the Macintosh platform from other systems, drawn by Apple's innovative hardware and software efforts.
Even IT managers are beginning to treat Mac OS X as a viable server platform.

When Mac OS X shipped in March, 2001, Apple began including developer tools with every copy—for free.
This is a serious invitation to developers to explore Mac OS X from every angle: from writing applications
using C, C++, Objective C, and Java; to writing web services using Perl, PHP, and Python. Mac OS X
demystifies the previously complex, bringing shared libraries, plug-ins, and device drivers to the
programming populace. For some, Cocoa represents the first time they really "got" object-oriented design.
And there are those who view Mac OS X's POSIX API and tools, both from the UNIX world, as a major
asset. In these ways and more Mac OS X offers something for every developer.

In the pages that follow, Joe Zobkiw will guide you through many of these stops on the Mac OS X road. Use
these stops as departure-points when you begin your own projects. And once you feel comfortable, go off
and explore the rest of Mac OS X's new beginnings on your own.

Michael Trent
Santa Clara, California
March 2003

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Introduction

Welcome to Mac OS X: Advanced Development Techniques!

I hope you enjoy what I've put together for you here. The goal of this book is to create examples that you,
as a developer, could use as jumping-off points for your own intermediate to advanced programming
projects.

The book is being written for those of you who have had some OS X programming experience and
understand basic programming concepts. Regarding experience, you should at least have created a "Hello
World" application under OS X in either Cocoa or Carbon.

It is assumed that you will read the book more or less in order. Although each chapter can stand alone,
similarities between projects are discussed in one chapter that might not be discussed in as much detail in
later chapters. If you are unsure about anything, consult the list of online resources for help.

In addition, as I discuss a topic, I might not cover every possible aspect of it. My goal in writing this book is
not to duplicate provided documentation but to show a working example of a particular project with enough
insight to allow you to take it to the next level. Like any good teacher, I will not give you all the answers,
but I will give you the tools to find them.

It is suggested that you explore the header files and Apple supplied documentation for any particular
project. In fact, you might consider having your Web browser open to the online documentation so that you
can look up unfamiliar classes that you come across in the book. The documentation provides cross-
references to other classes and methods that can be very helpful as you learn the ins and outs of
programming Mac OS X through my examples. The Cocoa Browser application, listed in Appendix B, "Online
Resources," is also a very useful tool to keep handy on your computer.

This book is filled with development examples. I attempt to show you how a technology works, yet not
precisely how you should use it. Be sure to read up on Apple's Human Interface Guidelines before you dig
in too deeply—especially if you are new to Mac OS X.

All sentences in the book could be prefaced with "As of this writing." As you know, especially in the world of
software development, things can change quite rapidly. If something isn't working properly, check the
release notes of your development software to see if something has changed. Also, keep an eye on this
book's Web site for errata and downloadable source code. You can visit the Web site at http://www.
triplesoft.com/.

So pull yourself up to the computer, crack your favorite beverage, and stay up late programming! I'll meet
you when it's over.

[Team LiB]

http://www.triplesoft.com/default.htm
http://www.triplesoft.com/default.htm
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Part I: Overview

 1 Introduction to Mac OS X

 2 Introduction to Programming in Mac OS X

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 1. Introduction to Mac OS X

"How do you describe Mac OS X? Batteries included!"

—Anonymous

Mac OS X is a Completely Redesigned implementation of the Macintosh operating system based on the BSD
UNIX operating system. UNIX is an advanced multi-platform operating system that offers advanced
features such as enhanced networking, high performance, and security. By focusing around the UNIX
environment, the Macintosh now arguably becomes the most powerful consumer computer available today.
It has so many built-in features now that you may well want for nothing more in an operating system.
Simply, your Macintosh is still a Macintosh with the added benefit of being able to do anything that UNIX
can do.

Figure 1.1. Terminal application in Mac OS X: Welcome to UNIX!

However, Apple didn't stop there. Not only is Mac OS X the most powerful Macintosh operating system to
date, but it is also the most elegant by means of the Aqua user interface. Apple based the interface on the
standard elements that Macintosh users expect and added many enhancements that make the user
interface flow like nectar. Simply, the Aqua user interface is the most stylish ever created with its awesome
three-dimensional widgets and drop shadows, as shown in Figure 1.2.

Figure 1.2. Aqua.

Mac OS X contains many pieces that make up this incredible puzzle we call our operating system. Let's look
at them briefly with a quick explanation and real-world examples of how you might take advantage of the
power they offer. Figure 1.3 shows how you might visualize the layers that make up Mac OS X.

Figure 1.3. The many pieces of X.

[Team LiB]

[Team LiB]

Darwin

Mac OS X's core OS layer, named Darwin, is based on version 4.4 of the FreeBSD (Berkeley Software
Distribution) operating system. It therefore includes all the power, flexibility, and stability of that proven
UNIX implementation. If that isn't enough, the Darwin source code is available as a free download from
Apple, as shown in Figure 1.4. Apple also just recently released its own X11 implementation. It includes the
full X11R6.6 technology, including a window server, libraries, and utilities.

Figure 1.4. Darwin Projects Directory where you can download all the Darwin
source code.

Because the Darwin source code is available, not only can you study it, but you can also change it. You can
fix any obscure bugs you might find or add new features. Apple even has a Web form that allows you to
submit your modifications for evaluation and possible inclusion in future releases.

[Team LiB]

[Team LiB]

UNIX

For those of you not familiar, UNIX is a powerful, multiuser operating system that has been in use in
various capacities since the 1970s. It was primarily intended for multiuser computing on servers. Apple has
found a delicate balance and has been able to hide much of UNIX's complexity for the novice user while still
making it 100% configurable for the geek and developer (see Figure 1.5).

Figure 1.5. Process Viewer lists current processes and resource usage.

Many different versions of UNIX are available including AT&T, BSD, Linux, and others. Some are free,
whereas some are not. Mac OS X descends from the BSD-flavor of UNIX, which dates back to the mid-70s.
At that time, the University of California at Berkeley licensed UNIX from AT&T and began to create its
custom version, which became known as BSD. Because the BSD source code was available to all, Apple

chose it as a base for Mac OS X.

If you've never used UNIX before, you are in for a real treat. UNIX servers are everywhere on the Internet
and have a habit of acting like the Energizer Bunny; they just keep going and going. UNIX servers have
some of the longest uptimes of any server on the Net. Given this penchant for few crashes and the fact that
HTTP, FTP, TELNET, and SSH servers are all built into Mac OS X, you can be running and managing a high-
powered network server in no time at all.

[Team LiB]

[Team LiB]

File Systems

Mac OS X supports compatibility with a number of file systems and protocols including the original
Macintosh HFS, HFS+, FTP, UFS, NFS, ISO 9660, MS-DOS, SMB, AFP, UDF, and WebDAV. Not only can Mac
OS X mount all these file systems, but it can also boot from many of them. Figure 1.6 shows Mac OS X
connecting to a remote Windows File Sharing server.

Figure 1.6. Connecting to a Windows File Sharing server.

With the awesome support for numerous file systems, Mac OS X allows you to easily and quickly mount
multiple file servers or shared directories on your desktop over the Internet. You can have your Windows
machine at work mounted right next to your Mac iDisk and remote UNIX server—all at the same time. You
can also make your own computer available to others as an SMB, FTP, or AFP server if you like—all at the
same time. For developers, this is probably something you've been used to in the past in other
environments; now it is finally a reality on the Macintosh without gobs of third-party programs.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Industry Standard Protocols

Mac OS X also supports a number of industry-standard network protocols including: TCP, UDP, PPP, PAP,
HTTP, FTP, DNS, SLP, DHCP, BOOTP, LDAP, NTP, SOAP, and XML-RPC. The implementation of these
protocols means that there are few, if any, limits to Mac OS X connectivity via the Internet. If you don't see
it in Mac OS X, the odds are that it can be downloaded, built, and installed in just a few steps. Chapters 14,
"XML-RPC," and 15, "SOAP," deal with network-based projects that pull data from a remote network server
using HTTP, XML-RPC, and SOAP.

Figure 1.7. Network Utility helps keep things running smoothly.

With the plethora of preinstalled software with Mac OS X, you can quickly be running the Apache Web
server with full secure connections and Perl or PHP CGI support. An FTP server is just a click away as well.
The most common servers are very simple to get up and running and monitor, so no matter what your skill
level, you can have a working Internet presence using only Mac OS X. This is a boon for Web-based
software developers who need to be able to test their code in a real UNIX environment. Running Apache on
your Macintosh desktop is a dream come true for Web developers.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Quartz

Quartz is a high-performance window server and a 2D graphical rendering library. It contains numerous
advanced features to manage multiple windows throughout the system including buffering, compositing,
and device-independent color. Its drawing library is based on the cross-platform PDF format made popular
by Adobe. It provides simplified access to PDF data within an application (on the screen) and ultimately to
hard copy (on paper).

Take the best of what you remember from QuickDraw, especially the CopyBits functionality, mix in some
steroids and caffeine, and you have the makings of Quartz. The Quartz implementation offers many useful
functions that handle everything from drawing detailed icons to anti-aliasing Bezier curves and making
shadows a snap—and did we mention transparency? Quartz is an incredible advance in 2D drawing for the
Macintosh that promises to not only make an application look better, but also make complex graphics
easier for everyone to implement. Quartz Extreme, new with Jaguar (Mac OS X 10.2), takes these advances
and makes them even faster!

Figure 1.8. The Mac OS X desktop, drawn by Quartz.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

OpenGL

Mac OS X contains the industry-standard, cross-platform OpenGL library for 3D graphics. OpenGL is a set of
high-performance drawing functions optimized for games, medical imaging, CAD/CAM, animation, and
other high-end needs. Figure 1.9 shows iTunes drawing colorful animation to a frantic piece by Dizzy
Gillespie.

Figure 1.9. Apple iTunes using OpenGL.

Need to write a game with full support for textures and 3D graphics? How about a screen saver that waves
a colorful flag in the computerized wind? 3D images of the human body that rotate and allow zooming in,
out and between individual cells? OpenGL allows all of this and more. The Mac OS X development tools
come with a lot of cool OpenGL examples that are sure to make you want more. Sure, it'll make the fan in
your PowerBook come on, but what do you expect?

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

QuickTime

QuickTime is Apple's original multimedia software allowing the recording, playback, and editing of digital
movies, sound, animation, live streaming audio and video, and more. QuickTime makes use of a plug-in
architecture to allow it to be expanded and enhanced as necessary to include support for new hardware and
software. QuickTime supports a variety of platforms including all newer Macintosh and Windows operating
systems. Figure 1.10 shows interactive QuickTime in action.

Figure 1.10. Apple QuickTime Player.

Whether you want to sit back and watch movie trailers, listen to music, or watch a streaming webcast, you
can do it with QuickTime. For that matter, using the free iMovie software, you can even create your own
QuickTime movies with music, sound, special effects, and titles. Once complete, it only takes a few minutes
to upload your creation to a Web site and make it available to the world.

From a developers point of view, you can use the QuickTime frameworks to implement movie playback,
editing, and recording from within your application. Your application can support digital video without ever
having to write a driver for any video camera—by supporting QuickTime, you have access to everything
else that supports QuickTime. QuickTime can also be a great way to implement simple animation in your
application or game. The possibilities are endless.

[Team LiB]

[Team LiB]

Classic (OS 9)

The Classic environment is a full version of Mac OS 9.2 running within Mac OS X. Classic runs in a protected
memory space and allows most Mac OS 9 compatible software to run side by side with Mac OS X software.
Figure 1.11 shows a computer booted into Mac OS X but running Mac OS 9 software side by side with its
newer cousins.

Figure 1.11. Classic software running within Mac OS X.

Apple has done a wonderful job at integrating the old with the new. Classic is really only made available to
protect the software investment that users have made in the Macintosh. If you have a few old programs
that only run under Mac OS 9, you can still run them under Mac OS X using the Classic environment. I
wouldn't make a habit of it and try to get free of the clutches of Classic as soon as you can, but if you need
the crutch, it's there. Developers, avoid writing pre-OS X software if you can.

[Team LiB]

[Team LiB]

Carbon

The Carbon APIs are based on pre-Mac OS X versions of the system software. These APIs allow developers
to take advantage of many Mac OS X features, especially protected memory and preemptive multitasking,
while still maintaining support for Mac OS 8.1 and later. The Carbon APIs bridge the gap for developers who
have legacy software that they need to move toward Mac OS X. Figure 1.12 shows a Carbon application
being developed in Project Builder, one of Apple's free developer tools. Chapters 5, "Carbon Plug-ins," and
6, "Frameworks," deal with Carbon-based projects.

Figure 1.12. Creating a Carbon application in Project Builder.

As a developer, you might be responsible for some Macintosh software that you wrote "back in the day"
that simply is not ready for Mac OS X. By using the Carbon APIs, you can "Carbonize" your application so
that it will still run under these previous OS's while also sporting the new Aqua look and feel under OS X and
—most importantly—run under OS X as if it belonged! This saves your users from having to launch the
Classic environment each time they want to run your application. I say it again: Developers, avoid writing
pre-OS X software if you can.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Cocoa

The Cocoa application environment is the native Mac OS X development environment. It allows rapid
application development by the use of tools such as Project Builder and Interface Builder. It also includes
many frameworks that make it relatively simple to put together an entire application while writing only the
code specific to the application. The Cocoa frameworks handle everything from window management to
printing to network access.

Cocoa applications can be developed in either Objective-C or Java. All new application development should
be done using Cocoa. You can also call the Carbon APIs from within a Cocoa application if necessary, which
can prove very helpful. Figure 1.13 shows a Cocoa application being developed in Project Builder and
Interface Builder—two of Apple's free developer tools. Many of the chapters in this book deal with Cocoa-
based projects.

Figure 1.13. Creating a Cocoa application in Project Builder and Interface
Builder.

The classes used throughout Cocoa development are broken up into two kits. The Application Kit (AppKit)
framework contains mostly user interface and graphics oriented classes such as windows, buttons, menus,
and drawing primitive classes. The Foundation framework contains mostly non-user interface type classes
that pertain to data storage and manipulation or provide some sort of service such as scripting, networking,
or messaging.

Cocoa is the future. Cocoa is based on the NEXTSTEP development environment and is simply a joy to use.
Using Apple's built-in developer tools gives you a rapid application development environment that still gives
you enough to sink your teeth into. This is not some poor attempt at a graphically integrated environment.
This is a professional set of tools to create the next generation of killer apps! Embrace Cocoa and live a full
life.

[Team LiB]

[Team LiB]

Java

Mac OS X users can also create 100% Pure Java applications and applets using the Java development
environment. Mac OS X supports the Java 2 Standard Edition (J2SE) version 1.4. Write it once in Java, and
it will run on a variety of platforms. Figure 1.14 shows the Java Web Start demonstration application that
allows you to download and launch full-featured applications from within a Web browser.

Figure 1.14. Java Web Start.

[Team LiB]

[Team LiB]

Aqua

Aqua is the name for the Mac OS X user interface. Apple based the interface on the standard elements that
Macintosh users expect and added many enhancements to help the novice and advanced user alike. Aqua is
the most elegant user interface for any computer yet. Figure 1.15 shows a users home directory open on
the Macintosh desktop, a hierarchical menu, and the System Preferences, as well as the dock at the bottom
of the screen.

Figure 1.15. Aqua.

When you first start implementing applications for Mac OS X, it will take some getting used to in regard to
following the new Aqua user interface guidelines. Whether you came from the Macintosh, UNIX, NeXT, or
Windows worlds, things here are different. Take the time to read Apple's Human Interface Guidelines and
practice them to give yourself and your users the best possible experience using your application. Aqua is a
fun user interface to work with, and the Interface Builder application makes it a pleasure.

[Team LiB]

[Team LiB]

Software

Mac OS X comes with tons (if software can be measured by weight) of industry-standard software
preinstalled. Try these on for size: Apache, Perl, PHP, sendmail. These programs and others like them
essentially run the Internet. You can now have a complete Web server, email server, and DNS server
running on your Macintosh serving files, streaming audio or video and database results to the world. Figure
1.16 shows some of the UNIX applications available on a default Mac OS X installation.

Figure 1.16. About 1/10th of the programs in /usr/bin.

Many utilities, command line and graphical, are included with Mac OS X. UNIX folks as well as Macintosh
folks will all feel at home. If you're a GUI person, be sure to dip your toes into the world of the command
line. Some things you can only do from the command line. Other things are just more fun to do from the
command line. Some GUI applications that come with Mac OS X actually mimic or interface directly to the
command line. Chapter 13, "Terminal," shows you how to do this. Figure 1.17 shows some of the GUI
applications available on a default Mac OS X installation.

Figure 1.17. Some of the native utilities packaged with Mac OS X.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

As you can see, there are many new layers to Mac OS X. Don't plan on learning it all. There was a day
when the entire Macintosh operating system fit on a 400K floppy disk. Those were the days when you could
know it all. Today, 400K is about the size of some of the icons that represent the software that runs our
computers. Don't be overwhelmed; it will come to you as you need it. Just keep exploring and gathering
tidbits of information and make use of the excellent Web sites and newsgroups. Macintosh developers are a
helpful lot, and you'll find excellent camaraderie with them.

[Team LiB]

[Team LiB]

Chapter 2. Introduction to Programming in Mac OS X

"Yeah! Free tools!"

—Anonymous

For those of you coming from the Mac, you might remember MPW (Macintosh Programmers Workshop).
This worksheet-style development environment allowed you extremely extensive control over your build
configuration. I still remember working on a project that had Assembly, Pascal, and C modules and an
incredibly long script that would take hours to build it all on the fastest 68020 of the day. If you ever
needed a break, you could "accidentally" touch a well-used header file.

Apple's tools today are much more advanced than MPW, and best of all they're free with Mac OS X. Apple
ships a plethora of tools for development, debugging, and exploration. You will mainly use Project Builder
and Interface Builder to create and manage your project, but we will touch on many of the available tools in
this chapter so that you have a good idea of what is available.

Project Builder (shown in Figure 2.1) is what you might refer to as an Integrated Development Environment
(IDE). It allows you to manage all the source files and resources that go into building your application and
create multiple deployment versions of your software. Project Builder allows you to create and manage one-
button builds of just about any size project written in a variety of languages including Objective-C, Java,
and others. For those of you destined for the command line, you can still use one from within Project
Builder features such as debugging. Project Builder uses gcc3 (the GNU Compiler Collection) and gdb (The
GNU Debugger).

Figure 2.1. Project Builder.

Interface Builder (shown in Figure 2.2) is the main tool you use to create your application's user interface.
Using Interface Builder, you create windows, lay out the controls within them, link your class instance
variables (outlets) and methods (actions) to your user interface elements, and more. Interface Builder is
also used to edit menu items and set the attributes of even the simplest buttons. It is extensible and
supports plug-ins, which allow you to implement your own custom objects. Interface Builder is kind of like a
much more sophisticated version of ResEdit.

Figure 2.2. Interface Builder.

Figure 2.3 shows some of the other development tools packaged with the standard development kit. These
tools are mostly small utilities used for specialized purposes. Not everyone will use every tool in this
collection, but when needed, you'll be thankful that they're there. These utilities will be looked at in more
depth later in this chapter.

Figure 2.3. More Development Tools.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Programming Languages

When developing software for Mac OS X, you have a few different development languages to choose.

Objective-C

Objective-C and the Cocoa framework should probably be your first choice for new development projects.
Objective-C is not hard to learn if you know C and even easier if you know C++ or some other object-
oriented programming language. You can also use straight C and C++ especially if you are maintaining a
Carbon-based development project. Listings 2.1 and 2.2 show a simple Objective-C class.

Listing 2.1 MyClass.h—an Objective-C Header File

#import <Foundation/Foundation.h>

@interface MyClass : NSObject {
 BOOL locked;
}

- (void)setLocked:(BOOL)new_locked;
- (BOOL)locked;

@end

Listing 2.1 defines the header file of an Objective-C class. After #importing the standard Foundation.h
header file, we define the interface for our class. The class is named MyClass and is a subclass of the
NSObject base class. MyClass has one instance variable, a BOOL named locked. It also has two methods—
one to set the value of locked and one to retrieve the value of locked. Note that Cocoa convention defines
how we name these two methods. We end with the @end.

Listing 2.2 MyClass.m—an Objective-C Source File

#import "MyClass.h"

@implementation MyClass

- (void)setLocked:(BOOL)new_locked
{
 locked = new_locked;
}

- (BOOL)locked
{
 return [self locked];
}

@end

Listing 2.2 defines the source file of the aforementioned Objective-C class. We first #import the header file
MyClass.h (see Listing 2.1) and then define the implementation of MyClass. This simply involves defining
the two methods -setLocked: and –locked. –setLocked: takes the new_locked value and sets the
instance variable locked to that value. –locked returns the current value of the locked instance variable.
Note the name of the "get" method is the same as the instance variable it is getting; this is by Cocoa
convention.

If you are new to Objective-C, once you browse some source code, it will all come together quite quickly for
you. There are also some great online and offline tutorials on learning the language, including an entire
manual in PDF format available from the Apple developer Web site, which can be found at http://developer.
apple.com/.

Java

Project Builder contains many templates for using Java as your language of choice. Java can be used to
develop Cocoa applications or Java applets and applications. Although details are sketchy, not many
developers seem to be using Java with Cocoa. However, plenty are using Java to write cross-platform Java
applets and applications. The Macintosh can now be considered a reliable platform to develop on using
Java, and it improves daily.

[Team LiB]

http://developer.apple.com/default.htm
http://developer.apple.com/default.htm

[Team LiB]

Tools

We've looked briefly at the two main tools available for development under Mac OS X—Project Builder and
Interface Builder. Now let's take a look at some of the many other faces in your development arsenal,
ranging from tabs within Project Builder to standalone utility applications.

Debugging

Figure 2.4 shows Project Builder in Debug mode. The gdb (GNU Debugger) is the debugger of choice for
use in Project Builder. Through the Debug tab, you can view the current stack frame and threads in
addition to a hierarchical list of global and local variables and method arguments as well as their values.

Figure 2.4. Debugging in Project Builder.

By using the Console tab, you can type commands directly into gdb as well as view debugging statements
from your program. Although Project Builder allows you to do many of the standard debugging practices
from the graphical user interface, such as setting breakpoints, typing commands directly into gdb allows
you to completely master the environment your program is running in. The gdb is an incredibly powerful
tool that is worth your time to learn.

Type man gdb in Terminal for more information.

Source Control

Project Builder contains built-in support for CVS, the Concurrent Versions System. CVS is a version control
system that allows developers to keep a log of who changed what file as well as when and how. CVS
supports hierarchical collections of directories and files and is especially useful when managing a project
among multiple authors. CVS works over a local or wide area network including the Internet.

In Mac OS X, you can use CVS from the command line as well as directly from within Project Builder. CVS is
very much a command line tool, especially when setting up a new repository. There are detailed
instructions packaged with the development tools that walk you through setting up a new project using CVS.

Type man cvs in Terminal for more information.

Developer Utilities

In Figure 2.3, you saw a collection of developer utilities that are made available by Apple. Let's look a bit
more closely at each of these tools.

The Apple Help Indexing Tool is used to create a search index for Help Viewer files. Help Viewer can be
seen by selecting Mac Help from the Finder's Help menu. Under Mac OS X, this is the standard way to
provide online, searchable, linked help (see Figure 2.5).

Figure 2.5. The Help Viewer main window.

FileMerge allows you to easily compare two files for differences. After selecting the two files to compare,
FileMerge will quickly locate the differences between the files and allow you to merge the changes into one.
For each difference, you can choose either the old or the new version. This can be very handy when you
receive a file back from a developer and you're not sure what he changed (or what you changed since the
file was out of your control). Figure 2.6 shows a comparison in progress.

Figure 2.6. The FileMerge differences window.

Icns Browser allows you to view the contents of any icns file. These files normally contain application or
document icons in various sizes and bit depths. Figure 2.7 shows the icns Browser in action.

Figure 2.7. The icns Browser window.

IconComposer creates the icns files that we browse with icns Browser. By importing standard formats
such as TIFF or JPG, you piece together the various sizes and bit depths to create the finished icns file (see
Figure 2.8).

Figure 2.8. The IconComposer window.

IORegistryExplorer is a tool for use by developers writing I/O drivers. This tool allows you to browse,
search, and update the I/O registry (see Figure 2.9).

Figure 2.9. The IORegistryExplorer window.

JavaBrowser allows Java developers to browse Java classes, documentation, and source files. Figure 2.10
shows an application source file being browsed.

Figure 2.10. The JavaBrowser window.

MallocDebug is a utility to help in the understanding of how an application uses memory. It can measure
and analyze all allocated memory in an application or measure the memory allocated since a given point in
time. It can also be used to detect memory leaks. Figure 2.11 shows MallocDebug in the process of
analyzing an application.

Figure 2.11. The MallocDebug window.

JarBundler is new with Java 1.4 for Mac OS X and is used by Java developers to package their program's
files and resources into single double-clickable applications. By using Mac OS X's bundle technology,
developers can make their Java applications simpler to install and use with this utility (see Figure 2.12).

Figure 2.12. The Jar Bundler window.

ObjectAlloc allows developers to observe memory allocations and deallocations in an application in almost
real-time. You can also view the history of memory use over time to help identify allocation patterns
throughout the life of an application. Figure 2.13 shows ObjectAlloc in the process of analyzing an
application being launched.

Figure 2.13. The ObjectAlloc window.

OpenGL Info displays information about the installed OpenGL extensions and is useful to developers
working with OpenGL (see Figure 2.14).

Figure 2.14. The OpenGL Info window.

OpenGL Profiler allows you to profile an application that is using OpenGL. Because OpenGL can be so
processor intensive, the more you can optimize an OpenGL application, the better. This utility is just the
right one for the job. Figure 2.15 shows the Profiler Control window, but the application also provides
charts and graphs of application activity once the profile begins.

Figure 2.15. The OpenGL Profiler window.

OpenGL Shader Builder allows real-time entry, syntax checking, debugging, and analysis of vertex/
fragment programs for use with OpenGL. You can also export your creation to a sample GLUT application in
Project Builder format. It also includes an instruction reference (see Figure 2.16).

Figure 2.16. The OpenGL Shader Builder window.

PackageMaker, brought to you by the Apple Mac OS X Installer Elves, allows you to easily create installers
for your applications. Figure 2.17 shows the Info tab of the PackageMaker application. Note that you can
require a restart if needed or authorization before allowing a package to be installed. Plenty of other
options are also available, so make sure that you read the documentation on using this powerful tool.

Figure 2.17. The PackageMaker window.

PEFViewer allows you to easily browse and search detailed information and HEX views of any Preferred
Executable Format file. Figure 2.18 shows PEFViewer looking inside the small StdCLib file.

Figure 2.18. The PEFViewer window.

Pixie is a great little application that allows you to zoom in at various levels to view the pixels underneath
the cursor. You can see the information in a variety of ways and export the selected area to a TIFF file. This
tool is great for examining your user interface in minute detail. Figure 2.19 shows Pixie in action under the
Apple icon.

Figure 2.19. The Pixie window.

Property List Editor allows you to view property list files in the true hierarchical fashion that they were
meant to be viewed. Property list files are nothing more than XML-format text files. However, if the thought
of viewing them in a text editor sends shivers up your spine, the Property List Editor is here to take some
of the shiver away. You still need to know what you're doing, but it will take you a few seconds more to
completely screw up your machine using this handy little utility as opposed to a text editor (see Figure
2.20).

Figure 2.20. The Property List Editor window.

Quartz Debug is a great utility that helps you debug the Quartz drawing in your application. This includes
window refreshes and just about any other 2D drawing you do in your program. By enabling the Flash
screen updates or Flash identical updates options, you can see exactly where the screen is being refreshed

throughout the operating system. Figure 2.21 shows the Quartz Debug palette, but there is also a view that
displays detailed information about each program's open windows.

Figure 2.21. The Quartz Debug window.

Sampler is a utility to help in the understanding of an application's behavior while it is running. Using
Sampler, you can see where an application spends most of its time executing. It can also summarize why
certain allocation routines, system calls, or other functions were called. Figure 2.22 shows Sampler in
action sampling Safari, Apple's turbo Web browser.

Figure 2.22. The Sampler window.

Thread Viewer allows you to examine thread behavior in your application. You can identify commonly
executing code and learn where your application needs optimization. Figure 2.23 shows the Thread Viewer
observing Safari.

Figure 2.23. The Thread Viewer window.

USB Prober gives you a bird's eye view of USB devices and drivers on your system as well as the tools to

debug and optimize them. Figure 2.24 shows the USB Prober in action.

Figure 2.24. The USB Prober window.

The utilities listed here are only the ones supplied by Apple; dozens, if not hundreds, more are available
from third-party developers as commercial software, shareware, or freeware. Many developers also write
their own utilities and editors to use in their development efforts. The Online Resources listing in Appendix
B is a good place to start your search for that perfect utility—and if it doesn't exist, create it! But wait…
there's more!

Command-Line Developer Utilities

Apple also includes a collection of utilities that are only available from the command line. Some are
standard to UNIX, and others are specific to Mac OS X. Many of these can be used to remotely debug an
application via Telnet. Let's introduce them one by one—you'll know if you need them.

agvtool is the Apple generic versioning tool that is used to get or set the current version of a binary.

CpMac is used to copy Macintosh files. This utility copies both the resource and data forks.

DeRez decompiles resource files into Rez language files.

fs_usage logs all file operations including virtual memory paging for one or all processes.

GetFileInfo returns detailed file information about the selected file.

heap lists all heap memory in a process.

leaks searches a process's heap memory for unreferenced buffers, also known as leaks.

malloc_history displays a history of all heap allocations by a process.

MergePef allows you to merge Preferred Executable Format files.

MvMac is used to move Macintosh files. This utility moves both the resource and data forks.

ps lists all currently running processes.

ResMerger is a resource management tool that allows you, among other things, to copy resources from
the resource fork into the data fork of another file and vice versa.

Rez compiles Rez language files into resource files.

RezWack allows you to convert a resource file into a format that can be transferred to a non-resource-fork-
friendly platform.

sample can be used to profile a process at specific intervals, similar to the Sampler application listed
earlier.

sc_usage logs all Mach system calls.

sdp converts XML files ending in .sdef into either .r files (for Carbon use) or .scriptSuite or .
scriptTerminology files (for Cocoa use).

SetFile sets Finder information for Macintosh files.

SplitForks separates the resource and data forks of a file into a UNIX-friendly format.

top displays a list of currently running processes and their resource usage. This list is continually updated.

UnRezWack allows you to convert a RezWacked file back to a standard resource file.

vmmap displays detailed information of how virtual memory is being used including where malloc memory
and libraries are stored.

WSMakeStubs generates static Objective-C stubs from WSDL files for use with WebServices

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Frameworks

Similar to libraries, frameworks are collections of code or resources that together allow your programs to
access certain features of the system and other software. By adding frameworks to your Project Builder
projects and including the appropriate header files, you can begin using them immediately. A little
documentation helps too.

The /System/Library/Frameworks directory contains dozens of frameworks—some documented, some not.
Here is a partial list as of this writing with some explanations as to what each one does.

The AddressBook.framework is used to access items in the Address Book database that is new with Mac
OS X Jaguar.

The AppKit.framework allows access to all AppKit Objective-C classes such as NSApplication, NSButton,
NSColor, NSDocument, NSImage, NSMenuItem, NSResponder, NSView, and NSWindow. We will be using
these classes throughout the book.

The AppleScriptKit.framework contains resources, AppleScript definition files, and event handlers for use
when implementing AppleScript in your applications.

The ApplicationServices.framework contains multiple frameworks including those that support
ColorSync, CoreGraphics, FindByContent, Language Analysis, and Speech Synthesis.

The Carbon.framework contains multiple frameworks including those that support Sound, Help, Human
Interface Toolbox, HTML Rendering, Navigation Services, Printing, and the Security Human Interface.

The Cocoa.framework simply contains a header file that includes the AppKit and Foundation framework's
header files for convenience.

The CoreFoundation.framework allows access to all CoreFoundation items such as CFArray, CFBundle,
CFDictionary, CFString, and so on (see Foundation.framework).

The CoreMIDI.framework allows access to the MIDI (Musical Instrument Digital Interface) capabilities
built into Mac OS X.

The CoreServices.framework contains multiple frameworks including those that support networking and
Web services.

The DiscRecording.framework allows access to the CD (Compact Disc) and DVD (Digital Video Disc) disc
burning capabilities that are built into Mac OS X.

The Foundation.framework allows access to all Foundation Objective-C classes such as NSArray,
NSBundle, NSDictionary, NSString, and so on. We will be using these classes throughout the book (see
CoreFoundation.framework).

The InterfaceBuilder.framework allows developers to build palettes and objects for use within the
Interface Builder application.

The IOBluetooth.framework and IOBluetoothUI.framework allow developers to communicate with
Bluetooth devices via capabilities built into Mac OS X.

The IOKit.framework is used to develop drivers for Mac OS X.

The Message.framework includes NSMailDelivery, which is a class that allows you to easily send an email
message from within your Cocoa application.

The PreferencePanes.framework is used to implement Preference Panes, popularized by the System
Preferences application. We will implement a Preference Pane in Chapter 8.

The ScreenSaver.framework is used to implement screen savers, now called Screen Effects, under Mac
OS X. We will implement a Screen Effect in Chapter 10.

The WebCore framework is a Mac OS X specific version of the cross-platform KHTML library. Apple's Safari
Web browser uses WebCore to implement its HTML parsing engine.

Be sure to peruse the Frameworks directory yourself for more goodies awaiting your discovery.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

That ends our brief introduction to the tools you will be using while swimming in the sea of Mac OS X
development. Although we will only use a few of these tools throughout the book, it is very important to
know what is available to you as a developer. If you didn't know about the hammer, you might try to use
your hand to pound in a nail—some of us already have! So, be sure to peruse the Developer directory to
see what else is in there including scripts, templates, and examples.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Part II: Application Level

 3 Cocoa Applications

 4 Cocoa Plug-ins

 5 Carbon Plug-ins

 6 Frameworks

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 3. Cocoa Applications

"Two nibs are better than one."

—Anonymous

Now that you know a bit about what makes Mac OS X tick, let's jump right in and create a document-based
application using Cocoa. If you're reading this book, you might have created simple non–document-based
applications in Cocoa. We'll be doing this throughout later chapters as test-bed programs are created. You
know how simple they are to put together quickly. The document-based application, however, is a bit more
complex. But once you see one examined, you will have little trouble creating your own.

Document-based applications allow a user to work with multiple documents at the same time. Whereas a
non–document-based application usually has one window and can only manage one set of data at a time,
document-based applications can have many windows open simultaneously—each accessing different
source data. One window is always the focus of the user while the other windows are ready and waiting for
input, sitting quietly in the background. When discussing sets of data, having the ability to open multiple
views simultaneously gives you the ability to work in parallel on many tasks.

Note

When I refer to a set of data, this can mean file-based data sitting on your local hard disk or
stream-based data that is transferred over a network, possibly from a database. A document-
based approach can be used to edit either of these types of data.

Mail.app, Microsoft Word, Adobe Photoshop, Project Builder, and Interface Builder are all examples of
applications that take a document-based approach. You can have multiple images open in Photoshop and
edit between them, back and forth, as much as you like.

As of this writing, iTunes and iPhoto are both examples of applications that are not truly document based.
That is, they can only operate on one item at a time. ITunes only plays one song at a time. IPhoto only
allows you to edit one image at a time. When developers refer to document-based applications, they
usually mean the ability to open multiple documents at once. Windows users know this as the multiple
document interface (MDI).

The specific requirements of your application will determine whether it should be document-based or not. If
your users want to work with more than one set of data, you probably want to use a document-based
application. Many times, this will be obvious; sometimes it will not. If you're unsure, look for other
applications that work similarly to yours and see how you might learn from their approaches. Also, be sure
to talk to potential users of your application to see what they would expect from it.

[Team LiB]

[Team LiB]

The Result

Let's discuss the document-based application that we will be examining in this chapter. RadarWatcherX,
shown in Figure 3.1, allows you to create, open, and save multiple documents that repeatedly load a
Doppler radar image and scan a "watch box" for specific colors in the image. This allows you to choose your
local radar image from any weather-related Web site and keep an eye on a specific area within the image
for storms or heavy rain that might be approaching. If the colors you choose appear in the watch box, an
alarm will sound!

Figure 3.1. A RadarWatcherX document window.

Although you might not be able to tell from the screenshot, RadarWatcherX implements many common
(and some not so common) tasks that you might need when building applications in Cocoa. Some of these
include

● Document window management

● Saving and opening XML property lists (plists)
● Custom views
● Scrolling views
● Timers
● Internet connectivity
● Image manipulation
● Application preferences

If you are not familiar with some of these items, don't worry. I will discuss them enough here to get you
started, and some (such as property lists) will be elaborated on in future chapters. Let's dive into the
project file and source code and see how this project works.

Note

Property lists (plists) are text files that are formatted in either XML format or an older ASCII
format. They are a great solution to store preference data because they support many
different data types within the text. You can store numbers, strings, even raw data such as
icons and pictures. You will see property lists used throughout your Cocoa development
experience.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Project

As you can see, this application project in Figure 3.2 consists of a fair number of classes and resources. You
should download the source code from the Web site for this book and follow along as we dissect the pieces.
This is not a step-by-step recreation of the project, but rather a detailed discussion of the major pieces of
the completed project.

Figure 3.2. The RadarWatcherX project in Project Builder.

When I began this as a new project, I made use of Project Builder's New Project Assistant, seen in Figure
3.3, by selecting New Project from the File menu and selecting Cocoa Document-based application. The
Assistant makes it easy to create a new project based on a template. There are templates for AppleScript,
Carbon, and Cocoa applications as well as other more esoteric types. Use the templates; they can be a
great time-saver and help you learn as you explore new aspects of Mac OS X programming.

Figure 3.3. The Project Builder New Project Assistant.

First Things First: Copyrights and Credits

The first thing I normally do in an application is take care of "fixing" all the little things that I know I'll have
to do eventually. This includes editing the items in the InfoPlist.strings file, as well as adding a
Credits.rtf file, if it does not already exist, to the project. The InfoPlist.strings, seen in Figure 3.4,
contains a few important localized strings such as the copyright and application version information. The
optional Credits.rtf file, seen in Figure 3.5, contains detailed information that appears in a scrolling list in
the About Box, which indicates who did what and why on this project. You can create it with TextEdit and
add it to the project as you would any other file. Once added, you can edit it directly in Project Builder.
Both of these files are saved inside the application as part of its package.

Figure 3.4. InfoPlist.strings contents.

Figure 3.5. Credits.rtf contents.

Note

These filenames are case sensitive as are many things in the UNIX environment on which Mac
OS X is based. If you ever find that something isn't working right but you know a file is in the
correct location, make sure to check the case. People have spent hours searching for bugs
caused solely by the case of a single character.

First Things First: Other Info.plist Entries

Many other entries can be added to Info.plist that are not required to be localized. I find that the easiest
way to manage these entries is by using Expert View in the Targets tab (see Figure 3.6). Entries in this list
are in outline view format and contain such information as the document types supported by the application
(including filename extensions), the help filename, the icon filename, the bundle identifier (a string that
uniquely identifies this application), the main nib filename, and the name of the principal class in the
application. Ultimately, these entries are stored in a property list file.

Figure 3.6. Info.plist entries.

Note

Although we are looking at Expert View, you can see from the screen shot that there is also a
Simple View. Simple View's contextual layout might be easier on your eyes and brain. Click on
Simple View or any one of its sub-views to see what it looks like.

One thing to note is that all of your projects that save default preferences (discussed later in this chapter)
will need to have a unique CFBundleIndentifier entry. Add this key if there isn't already a placeholder for
it. The convention is to use the reverse domain of your company with the name of the product at the end.
In my case, TripleSoft Inc. uses the domain name triplesoft.com. RadarWatcherX is the name of my
project. Therefore, my unique identifier is com.triplesoft.radarwatcherx. For your own projects, you
should change the domain name accordingly. If you do not have a domain name, you can use something
based on your email address, such as com.mac.billjones.myappname.

You can actually add your own custom keys to this list as well. Many times developers will place values in
keys in this file that they then read in to their application at runtime. These values might or might not be
editable by the user via the application's user interface. You can use NSBundle's -infoDictionary method
to access the contents of the Info.plist file. You might consider putting the names of preference files
here or the name of a server that you use to check for the latest version of your software. Any value that
you simply don't want to hard-code is a good candidate for Info.plist.

First Things First: Application and Document Icons

Next, you might choose to add an icon to your application and documents. Some folks might prefer to save
this until the end of the development cycle; that's fine too. However, any application that you plan to
release to the public should have a set of custom icons. This can be an interesting task to accomplish on
your own for a variety of reasons. Let's discuss.

First, your icons need to look good these days. Before OS X existed, you could get away with an icon that
didn't look all that professional. OS X and Aqua have changed the game, and many non-artistic types have
not been able to keep up. If you make an icon, be sure to make it look like it belongs in OS X and not
System 3.2. If you are an incredibly talented programmer but your sister got the artistic skills, let her make
the icon.

A few applications are available that can help you on your quest to make decent looking icons. There might
be more, but these are the best I've found:

● Adobe Photoshop or Photoshop Elements (http://www.adobe.com/) are excellent applications for
high-end image manipulation, but you still need some talent.

● Stick Software's AquaTint (http://www.sticksoftware.com) assists you in creating glossy, liquid
Aqua-style images with ease. AquaTint comes with very helpful documentation that can assist you
in making great looking icons. Remember, the Alpha Channel is your friend when creating OS X
icons.

● Infinity-to-the-Power-of-Infinity's Can Combine Icons (http://www.ittpoi.com/) is another excellent
application that makes it easy to layer precreated images together to make eye-catching (and
meaningful) icons. Using this in conjunction with AquaTint can be a winning proposition.

● Icon Factory (http://www.iconfactory.com/) is a great Web site that offers thousands of icons for
use on your Macintosh. You will need to check with the author of any icons before you use them
with your application, but this is a good place to locate talented artists who might help you on the
icon creation side of the equation.

Note

Apple Computer also provides some great information on Aqua icon design philosophy. Visit
http://developer.apple.com/ue/aqua/icons.html for more information.

Ultimately, you will use the IconComposer application, included with the OS X development tools and seen
in Figure 3.7,, to create a file of type icns. This file contains all the data for any particular icon. In this case,
I have created two of these files—one for the application icon and one for the document icon.

Figure 3.7. IconComposer window showing the application icon.

http://www.adobe.com/default.htm
http://www.sticksoftware.com/default.htm
http://www.ittpoi.com/default.htm
http://www.iconfactory.com/default.htm
http://developer.apple.com/ue/aqua/icons.html

After you have the icon files created, you can easily add them to the project and add the appropriate Info.
plist entries as shown previously. In this case, our CFBundleIconFile is set to the filename of our
application icon: RadarWatcherX.icns.

The document icon configuration is a bit more complex. We need to fill in the CFBundleDocumentTypes
array with information on the file extensions and icon filenames. Our documents end in .rdrw as shown in
the CFBundleTypeExtensions array, and our icon file for that file type is rdrw.icns as shown in the
CFBundleTypeIconFile entry. We also need to fill in CFBundleTypeName, CFBundleTypeOSTypes,
CFBundleTypeRole, and NSDocumentClass of our document. RadarWatcherX only supports one document
type, but it could easily manage multiple document types with multiple icons simply by adding the proper
additional array items.

Note

Whenever you alter the icons of an application, they might not always "take" right away. That
is, if you create an icon, set up all the Info.plist entries properly, the icons appear, and then
you decide to tweak the image of the icon, you might not see it in the Finder right away.
Sometimes you need to log out and log back in for the changes to take effect. The Finder
caches icons and doesn't always notice that a change has occurred. This can happen with
other data within your application as well, such as version information, and so on. If things
don't seem right, try logging out, restarting, or copying the application to another computer to
verify that it is just your environment and not your project itself causing the trouble. Restart
the computer as a last resort.

Interface Builder

The next thing I usually jump on in a project is the user interface. Assuming that you've planned your
application well enough, you probably know what the menus and document window will look like. The first
thing you will notice when working with a document-based Cocoa application is that you have two nib files:
MainMenu.nib for the application resources and MyDocument.nib for the document resources; both are
shown in Figure 3.8.

Figure 3.8. RadarWatcherX in Interface Builder.

MainMenu.nib contains the main application menus and any instances of classes that need to work at the
application level. This is where you would put your AppController, for instance. This allows you to easily
make it the delegate of the NSApplication object, which is the File's Owner. You can also set up your
menus in this file and link them to actions that you create in the First Responder. Menu items are usually
connected to the First Responder, so the actions can be routed properly to any object that responds to them
—in our case, our document object.

You can create any number of single-window applications without ever having to worry about File's Owner
or First Responder—you simply create controllers that span the life of the program, and all is well.
However, when you create document-based applications, these items become a lot more important. The
File's Owner, for example, represents what is essentially the nib's default controller. Items in the nib are
usually hooked up directly to the File's Owner's IBOutlets.

MyDocument.nib contains our main document window that is linked to actions and outlets in the File's
Owner, the MyDocument class. Our documents only have one window attached to them, but you can have
documents with multiple windows if you so desire. Our document window also contains a custom view that
we will discuss later, RadarView.

Note

If you do create a document-based application in which the documents have multiple windows
associated with them, you will want to create a separate nib file for each window. Each nib file
will be owned by an NSWindowController subclass. For example, a document with a front view
window and a back view window would include two NSWindowControllers—one for each.
There would also be two nib files—one for each. Each NSWindowController would be the File's
Owner in one of the nib files. The NSDocument can then manage the multiple controllers for
you. This approach will allow you to fully leverage the power of Cocoa's document-based
application model.

There are multiple ways to manage your nib files, source files, and the connections between them. You can
create your source files in Project Builder and drag the header files to Interface Builder to have it update
itself with the outlets and actions that you've defined in the class. You can also create the source files from
within Interface Builder using items in the Classes menu and have them automatically added to the project.
In most cases, I initially create the files in Interface Builder and then do further editing in Project Builder,
dragging the header file to Interface Builder each time I make a change so that everything is in sync. As
you tweak your user interface, you might find this approach to be useful as well. Maybe someday, Interface
Builder and Project Builder will be one application, but for now this is the way it works.

Main

The function "main" of any Cocoa application, document-based or otherwise, simply contains a call to the
NSApplicationMain function (see Listing 3.1). This function initializes your application and kicks off the
main event loop. You need not worry about anything beyond this unless your application has special needs.
Project Builder automatically generates this file for you when the project is created.

Listing 3.1 Main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

Although RadarWatcherX doesn't make use of this feature, you can set up your application to accept
arguments when it is launched. By selecting Edit Active Executable from the Project menu in Project
Builder, you can easily add environment variables and arguments. You can process these arguments in
main or by using NSProcessInfo's arguments method to examine the arguments later on. Although these
arguments won't be used when your application is launched from the Finder, you can have Project Builder
pass them when it launches your application directly, as seen in Figure 3.9.

Figure 3.9. Editing the RadarWatcherX executable.

MyDocument

The NSDocument subclass MyDocument is the centerpiece of our project. This class handles everything in our
document from saving and opening RadarWatcherX document files, keeping track of changes to the
document, and managing the automatic reloading of the radar image. Let's look at the functions in
MyDocument.

Storing Document Data via MutableDictionary

The first thing you will notice in the MyDocument.m source file is a list of global NSStrings (see Listing 3.2).
These are used to represent the key values of the key/data pairs in the property list-based document files
that MyDocument manages. Essentially, each user interface element in the document window has a key
value associated with it to allow easy saving and retrieving of the value. MyDocument.h contains the
associated extern declarations.

Listing 3.2 NSMutableDictionary Keys

NSString *keyURL = @"keyURL";
NSString *keyReloadSeconds = @"keyReloadSeconds";
NSString *keyWatchBoxRect = @"keyWatchBoxRect";
NSString *keyColors[kNumColors] = {@"keyColors1", @"keyColors2", @"keyColors3",

 @"keyColors4", @"keyColors5"};
NSString *keyIgnoreSinglePixels = @"keyIgnoreSinglePixels";
NSString *keyCloseColors = @"keyCloseColors";

The -init override method of MyDocument in Listing 3.3 creates the NSMutableDictionary instance
variable that is used to store the current key/value pairs for the document. The entries are then initialized.
Note how you can easily add numerous types of objects to a dictionary by calling the dictionary's -
setObject:forKey: method. Dictionaries are a great way to store hierarchical or flat data that needs to be
represented by a key. After this code is executed, the dictionary is filled with valid default values for the
document. Later in the -dealloc override, called when the document is closed, we will release the
NSMutableDictionary and set it to nil.

Listing 3.3 MyDocument -init

m_md = [[NSMutableDictionary dictionary] retain];
[m_md setObject:kDefaultURL forKey:keyURL];
[m_md setObject:[NSNumber numberWithInt:kDefaultReloadSeconds]
 forKey:keyReloadSeconds];
[m_md setObject:NSStringFromRect(NSMakeRect(0,0,0,0))
 forKey:keyWatchBoxRect];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[NSColor clearColor]]
 forKey:keyColors[0]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[NSColor clearColor]]
 forKey:keyColors[1]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[NSColor clearColor]]
 forKey:keyColors[2]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[NSColor clearColor]]
 forKey:keyColors[3]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[NSColor clearColor]]
 forKey:keyColors[4]];
[m_md setObject:[NSNumber numberWithInt:NSOffState]
 forKey:keyIgnoreSinglePixels];
[m_md setObject:[NSNumber numberWithInt:NSOffState]
 forKey:keyCloseColors];

Note

There are so many styles, but so little time. Through my years of programming, I've
developed my own style, as you might have as well. When I first came to Objective-C, I
noticed that a lot of the sample code I saw made it difficult to distinguish instance variables
from local variables. To remedy this, I tend to use an m_ before my instance variable names.
The m comes from the C++ term "member variable." I've seen others use only an _. Any way
you choose to do it, if you see an m_ in this book, you can be sure that you are looking at an
instance variable.

Reading and Writing Document Data via MutableDictionary

There are numerous ways to save data using a document-based application. In our case we are using an
NSMutableDictionary and the NSDocument -writeToFile:ofType: and -readFromFile:ofType:
methods. This makes a very straightforward approach to manage our data. Simply implementing these two

functions handles all the file-related items in the File menu. This is a very nice feature of the Cocoa
framework.

In order to save to a file, we override the -writeToFile:ofType: method of NSDocument as shown in
Listing 3.4. This method takes a filename and a file type as arguments and returns a BOOL YES upon
success. Because our document only saves one file type, we essentially ignore the file type argument.
Before we can write our NSMutableDictionary to the file on disk, however, we need to ensure that it is up-
to-date with the current settings of the controls on the screen.

Figure 3.10. The RadarWatcherX File menu.

We use various methods to create data in the proper format to pass to the -setObject:forKey: method of
the NSMutableDictionary. For example, we want our rectangle to be a string format so that we can easily
see the values in the file. As of this writing, NSColorWell objects don't know how to write themselves to
property lists, so we archive them as raw data. We also retrieve the current state of the check boxes. Other
user interface items, such as the text fields, are already up-to-date via the NSTextDidChangeNotification
notification that is sent to MyDocument each time the user types them in. The last thing we need to do is tell
the NSMutableDictionary to -writeToFile:atomically:. That's all there is to it!

Listing 3.4 MyDocument -writeToFile:ofType:

// NSRect are best off saved as string representations
// so the developer can edit them
[m_md setObject:NSStringFromRect([m_radarView watchBoxRect])
 forKey:keyWatchBoxRect];

// NSColor should save but do not, so we must archive
// and unarchive them to get them to work
[m_md setObject:[NSArchiver archivedDataWithRootObject:[m_colorWell1 color]]
 forKey:keyColors[0]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[m_colorWell2 color]]
 forKey:keyColors[1]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[m_colorWell3 color]]
 forKey:keyColors[2]];

[m_md setObject:[NSArchiver archivedDataWithRootObject:[m_colorWell4 color]]
 forKey:keyColors[3]];
[m_md setObject:[NSArchiver archivedDataWithRootObject:[m_colorWell5 color]]
 forKey:keyColors[4]];

// Retrieve the state of the checkbox
[m_md setObject:[NSNumber numberWithInt:[m_ignoreSinglePixelsButton state]]
 forKey:keyIgnoreSinglePixels];
[m_md setObject:[NSNumber numberWithInt:[m_closeColorsButton state]]
 forKey:keyCloseColors];

// Write the current dictionary to the file
return [m_md writeToFile:fileName atomically:YES];

Note

Atomically? When writing to a file atomically, you are telling the dictionary to write to a backup
file first; then if no errors have occurred, rename the backup file to the specified filename.
Otherwise, the file is written directly to the specified filename.

Now, to read the data back, we override the -readFromFile:ofType: method of NSDocument as shown in
Listing 3.5. This method takes the same arguments as -writeToFile:ofType:. We simply release our
current dictionary and load the dictionary from the file using the +dictionaryWithContentsOfFile:
method of NSMutableDictionary.

Listing 3.5 MyDocument -readFromFile:ofType:

// Release the current dictionary
[m_md release];
m_md = nil;

// Load the new data from the file
m_md = [[NSMutableDictionary dictionaryWithContentsOfFile:fileName] retain];
if (m_md) {
 // Update the UI in case this is a Revert
 [self updateUI];

 // Return a positive result
 return YES;
}

return NO; // Failure

If it loaded properly, we update our user interface by calling –updateUI, shown in Listing 3.6, which
handles converting the archived data back to a format we can use. That is, for example, for every call to
NSArchiver, we must have a balanced call to NSUnarchiver.

Listing 3.6 MyDocument -updateUI

// Update the UI with the data from the latest file or revert action
[m_urlTextField setStringValue:[m_md objectForKey:keyURL]];
[m_reloadSecondsTextField setStringValue:[m_md objectForKey:keyReloadSeconds]];

// NSColor should save but do not, so we must archive
// and unarchive them to get them to work
[m_colorWell1 setColor:[NSUnarchiver unarchiveObjectWithData:
 [m_md objectForKey:keyColors[0]]]];
[m_colorWell2 setColor:[NSUnarchiver unarchiveObjectWithData:
 [m_md objectForKey:keyColors[1]]]];
[m_colorWell3 setColor:[NSUnarchiver unarchiveObjectWithData:
 [m_md objectForKey:keyColors[2]]]];
[m_colorWell4 setColor:[NSUnarchiver unarchiveObjectWithData:
 [m_md objectForKey:keyColors[3]]]];
[m_colorWell5 setColor:[NSUnarchiver unarchiveObjectWithData:
 [m_md objectForKey:keyColors[4]]]];

// Set the state of the checkbox
[m_ignoreSinglePixelsButton setState:[[m_md objectForKey:keyIgnoreSinglePixels]
 intValue]];
[m_closeColorsButton setState:[[m_md objectForKey:keyCloseColors]
 intValue]];

// Tell the radar view what the current watch box
// rectangle is so it can draw it properly
[m_radarView setWatchBoxRect:NSRectFromString([m_md objectForKey:
 keyWatchBoxRect])];

One thing to note is that the -readFromFile:ofType: method is not only called when a document file is
opened, but also when the user selects Revert or Open Recent.

Now that you know how to read and write the data to the disk, let's see what it looks like saved in the file.
Listing 3.7 shows the property list file that is saved by the routines listed previously. Although the file ends
in .rdrw, it is really just a text file. You can open it in any text editor. Note that the colors are "archived" as
raw data, whereas the watch box rectangle can be edited by hand if you like.

Listing 3.7 RadarWatcherX .rdrw Data File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>keyCloseColors</key>
 <integer>0</integer>
 <key>keyColors1</key>
 <data>
 BAt0eXBlZHN0cmVhbYED6IQBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMBhARm
 ZmZmAYM/EJCRAAGG
 </data>
 <key>keyColors2</key>
 <data>
 BAt0eXBlZHN0cmVhbYED6IQBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMBhARm
 ZmZmAQAAAYY=

 </data>
 <key>keyColors3</key>
 <data>
 BAt0eXBlZHN0cmVhbYED6IQBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMBhARm
 ZmZmgz9W1tcAAAGG
 </data>
 <key>keyColors4</key>
 <data>
 BAt0eXBlZHN0cmVhbYED6IQBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMBhARm
 ZmZmgz9AwMEAAAGG
 </data>
 <key>keyColors5</key>
 <data>
 BAt0eXBlZHN0cmVhbYED6IQBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMBhARm
 ZmZmAQABAYY=
 </data>
 <key>keyIgnoreSinglePixels</key>
 <integer>1</integer>
 <key>keyReloadSeconds</key>
 <integer>300</integer>
 <key>keyURL</key>
 <string>http://weather.noaa.gov/radar/images/SI.krax/latest.gif</string>
 <key>keyWatchBoxRect</key>
 <string>{{297, 304}, {46, 38}}</string>
</dict>
</plist>

Tracking Changes

Another important task that the document must tend to is tracking changes to itself. Whenever you open a
document, it is considered clean. As soon as you make a change, it becomes dirty. If the user attempts to
close a dirty document (or quit the application while a dirty document is open), he is prompted to save the
document. It is up to the document itself to track its clean/dirty state.

You can get rather complex in tracking these changes, but we do it rather simply in RadarWatcherX.
Essentially, whenever the user makes a change to a user interface component, we call the NSDocument
method -updateChangeCount: passing NSChangeDone. This increments the change count of the document
telling us it is dirty. As long as we call this method each time a change is made, NSDocument will
automatically handle asking the user to save if needed.

Timer

MyDocument uses the value in the keyReloadSeconds key to set a timer. This timer is created and set when
the user clicks the Start button and the subsequent –startRadar: action is called. We use the NSTimer
+scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: class method to create a
repeating timer (see Listing 3.8). The timer takes an NSTimeInterval to know how often to fire, which
object contains the method to execute, and the selector (method) within the target to call. In this case, the
-refreshRadar: method is called when the timer fires. The timer is destroyed by invalidating and releasing
the timer instance variable when the user presses the Stop button.

Listing 3.8 Creating a Timer

m_timer = [[NSTimer scheduledTimerWithTimeInterval:
 (NSTimeInterval)[[m_md objectForKey:keyReloadSeconds] doubleValue]
 target:self selector:@selector(refreshRadar:) userInfo:nil repeats: YES]
 retain];

refreshRadar

The -refreshRadar: method in Listings 3.9 through 3.11 is where the most important work of
RadarWatcherX occurs. This is where the radar image is loaded and analyzed for colors. It is not only called
from the timer, but also when the user presses the Reload button. Let's look at what is going on in this
function.

Listing 3.9 MyDocument –refreshRadar: Image Loading

// Load the current image from the URL and display
// it on the screen, releasing any previous image
// Note we must use this method and not [NSImage
// initWithContentsOfURL] because it uses the cache
NSData *data = [[NSURL URLWithString:[m_md objectForKey:keyURL]]
 resourceDataUsingCache:NO];
NSImage *image = [[NSImage alloc] initWithData:data];

Before anything, we attempt to load the current URL typed into the URL field. Using +[NSURL
URLWithString:] and –[NSURL resourceDataUsingCache:NO] we force the image to be loaded from the
server and not from our local cache. Given the data we then attempt to initialize an NSImage from it.
Because NSImage understands a variety of image formats we can easily load JPEG, GIF or PNG files, to
name a few.

Next, if we were able to create the image, we pass it immediately to our RadarView, as shown in Listing
3.10. We will look at RadarView in more detail in a moment, but for now simply know that RadarView is a
subclass of NSView and is the "owner" of the image that is displayed on the screen. MyDocument simply
manages the means to obtain the image at regular intervals. RadarView is the class that handles the details
of manipulating the image itself. Once we pass the image to RadarView, which retains it, we release it. We
also update the user interface to display the current time as the "Map last loaded" time.

Listing 3.10 MyDocument –refreshRadar: Image Loaded

// If we loaded an image...
if (image) {

 // Pass it to the RadarView for display
 [m_radarView setImage:image];

 // We no longer need the image, m_radarView
 // has "retained" it at this point
 [image release];

 // Update the current time as the last time we loaded the image
 [m_statusTextField setStringValue:[NSString localizedStringWithFormat:
 @"Map last loaded %@", [NSCalendarDate date]]];

Note

Speaking of -retain and -release, this is one of the big gotchas in Cocoa programming. It's
easy enough to understand that if a block of memory is being used by one object, you don't
want another object to free it. This is the concept of retain and release. If I retain an object, I
am essentially increasing the -retainCount of that object by 1. Releasing an object lowers the
-retainCount by 1. When the -retainCount reaches 0, the object is freed and is no longer
valid.

The problem is that it can be difficult to know when you "obtain" an object if it has already
been retained, or if you should retain it. If you retain it, you should also release it; but should
you release it if you did not retain it?

The simple rule of thumb is that if you explicitly +alloc and -init an object, you should retain
and release it as appropriate. If you obtain an object from another mechanism, it is probably
created using -autorelease. This means that if you do not explicitly retain it, it will be
released automatically at the end of the event loop. This is made possible by something called
an autorelease pool, which is discussed in subsequent chapters. Autorelease pools make it
easy for us to use NSString class methods in a function without having to worry much about
managing the memory that NSString uses. However, if no autorelease pool is being used, you
should consider your memory use carefully.

Now that RadarView has the image and has displayed it on the screen, we can check it for the colors we
are concerned about. See Listing 3.11. Essentially, we ask RadarView to see if the given color is within the
current watch box, taking into account the ignoreSinglePixels and closeColorState options. Because
we have five NSColorWells, we call the RadarView five times—each with a different color. If RadarView
returns that the color was found in the watch box, we alert the user.

Listing 3.11 MyDocument –refreshRadar: Image Checking

 // Check for colors
 BOOL ignoreSinglePixelsState =
 ([m_ignoreSinglePixelsButton state] == NSOnState);
 BOOL closeColorsState = ([m_closeColorsButton state] == NSOnState);
 if (([[m_colorWell1 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell1 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 1!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell2 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell2 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 2!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }

 if (([[m_colorWell3 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell3 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 3!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell4 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell4 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 4!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell5 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell5 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 5!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
} else {
 NSBeep();
}

For now, this summarizes MyDocument's responsibilities. Basically, it exists to manage the user interface
and the document data. You could easily break out the user interface management functions into another
window controller object if you felt it necessary. If your program needed more than one window per
document, you would do this. Also, if your document class became too big, you might consider it as well.
There is always more than one way to implement a task, especially in Cocoa! Peruse the code for more
details and error checking code.

RadarView

Let's take a look at RadarView. As you saw in Figure 3.8, RadarView is a Custom View in Interface Builder
that is of type RadarView. When the nib file is loaded, a RadarView is automatically instantiated for us. The
most important instance variables of RadarView are the radar image itself, which is passed in by
MyDocument, and the watch box rectangle, which is drawn by the user and completely managed by
RadarView. Placing the RadarView in an NSScrollView in Interface Builder makes it scrollable if the image
is larger than the view.

Note

Something you will notice right away is that when a new image is loaded in a RadarWatcherX
window, the scroll view scrolls in such a way that you see the lower-left corner of the image as
the anchor point. The reason for this is that Mac OS X has changed the positioning of the world
for "old school" Macintosh developers. It used to be that the upper-left corner was 0, 0 in the
coordinate system of an image or view. Mac OS X changes this so that the lower-left corner is
now 0, 0. There are ways of altering this for any particular view if you need to, but the odds
are once you get used to it, you'll rarely have a need to.

Watch Box

By overriding NSView's –mouseDown:, -mouseDragged:, and –mouseUp: methods, in Listing 3.12, RadarView
can completely manage the drawing and tracking of the watch box. Essentially, when the mouse button is
clicked in the view, the down point is saved. As the mouse cursor is dragged, the current point is saved and
the rectangle is drawn in the -drawRect: method. When the mouse button is released, the final point is
saved and the final rectangle drawn.

Listing 3.12 RadarView Mouse Overrides

- (void)mouseDown:(NSEvent *)event
{
 if (m_image && !m_locked) {
 NSPoint p = [event locationInWindow];
 m_downPoint = [self convertPoint:p fromView:nil];
 m_currentPoint = m_downPoint;
 [self setNeedsDisplay:YES];
 [m_document updateChangeCount:NSChangeDone];
 }
}

- (void)mouseDragged:(NSEvent *)event
{
 if (m_image && !m_locked) {
 NSPoint p = [event locationInWindow];
 m_currentPoint = [self convertPoint:p fromView:nil];
 [[self superview] autoscroll:event];
 [self setNeedsDisplay:YES];
 }
}

- (void)mouseUp:(NSEvent *)event
{
 if (m_image && !m_locked) {
 NSPoint p = [event locationInWindow];
 m_currentPoint = [self convertPoint:p fromView:nil];
 [self setNeedsDisplay:YES];
 }
}

Checking for Colors

When MyDocument asks RadarView to check for colors in Listing 3.11, the -isColorInImageInRect:
ignoreSinglePixels:closeColors: method does the work. This method walks each pixel in the watch box
in the image and compares it against the color passed from MyDocument.

If ignoreSinglePixels is YES, more than one of a color must be in the image in order for it to be
considered "found." The problem is that some radar images have "blips" or artifacts that can mislead
RadarWatcherX. If there is only one red pixel in a watch box, it probably isn't a storm, but just some sort of

ground clutter falsely interpreted by the radar itself.

If closeColors is YES, colors match if their hue component is within 10 degrees and their brightness
component is within 20%. These are arbitrary values that I found worked well with the maps I was working
with. The idea here is that some maps don't use a specific orange—for example, they might use a variety of
oranges. This helps to alleviate the problem in which you are looking for an orange that is slightly off from
the actually orange used in the map.

Listing 3.13 RadarView -isColorInImageInRect:ignoreSinglePixels:closeColors:

- (BOOL)isColorInImageInRect:(NSColor *)color
 ignoreSinglePixels:(BOOL)ignore
 closeColors:(BOOL)close
{
 int x, y;
 long found = 0;

 // Lock the image focus so we can perform direct pixel reads
 [m_image lockFocus];

 // Update the watch box rect
 m_watchBoxRect = [self currentRect];

 for (x = m_watchBoxRect.origin.x;
 x < m_watchBoxRect.origin.x + m_watchBoxRect.size.width; ++x) {
 for (y = m_watchBoxRect.origin.y;
 y < m_watchBoxRect.origin.y + m_watchBoxRect.size.height; ++y) {
 NSColor *newColor = NSReadPixel(NSMakePoint(x, y));
 if (close) {
 if ((InRange([color hueComponent],
 [newColor hueComponent], .036)) &&
 (InRange([color brightnessComponent],
 [newColor brightnessComponent], .05))) {
 found++;
 }
 } else {
 if (([color redComponent] == [newColor redComponent]) &&
 ([color greenComponent] == [newColor greenComponent]) &&
 ([color blueComponent] == [newColor blueComponent])) {
 found++;
 }
 }
 }
 }

 // Unlock the image focus and return the result of our search
 [m_image unlockFocus];
 return (ignore ? (found>1) : (found>0));
}

After looking at this code, can you think of any ways to optimize it? Try swapping the loops so that you
walk Y before you walk X. Does this speed up your program? With a small watch box, you probably won't
notice any difference, but on a large map with a large watch box, you just might. You might also consider
walking the image data directly, avoiding the use of NSReadPixel altogether. These graphics optimizations

are beyond the scope of this book but something you might consider should you write more graphics-
oriented software in the future.

Note

To use NSReadPixel to access the individual pixels of an image, you must wrap your pixel
accesses with calls to NSImage -lockFocus and NSImage -unlockFocus. This is similar to
having to use SetPort in previous Macintosh operating systems.

RadarView has it pretty easy: keep track of an image and a watch box and then use that information to
match the colors in the image. You could easily make RadarView call out to a more specialized image
analysis class to perform the color matching. It could even send the image to another computer for analysis
if it really needed to crunch numbers.

Application Preferences

The last thing I want to talk about in RadarWatcherX is the application-level preferences. RadarWatcherX
documents have plenty of settings that are document specific. Radar map URLs, colors to look for, reload
intervals, and so on. However, other settings are more global in nature that RadarWatcherX keeps track of.
These include whether to open a new window when the application starts up and how to alert the user
when a matching color is found within a watch box.

Yet Another Nib and Some Code

As you saw in Figure 3.2, there is a third nib file in the RadarWatcherX project. Preferences.nib contains
the NSWindow shown in Figure 3.11. PreferenceController, which is a subclass of NSWindowController,
is the File's Owner. PreferenceController is defined as shown in Listing 3.14. Note the extern NSStrings
used to store the preferences and the three IBOutlets and IBActions for the controls.

Listing 3.14 PreferenceController.h

#import <AppKit/AppKit.h>

extern NSString *pkeyInitialized;
extern NSString *pkeyOpenNewWindow;
extern NSString *pkeyPlaySound;
extern NSString *pkeyShowAlert;

@interface PreferenceController : NSWindowController {
 IBOutlet NSButton *m_newWindowButton;
 IBOutlet NSButton *m_playSoundButton;
 IBOutlet NSButton *m_showAlertButton;
}
- (IBAction)changeNewWindowButton:(id)sender;
- (IBAction)changePlaySoundButton:(id)sender;
- (IBAction)changeShowAlertButton:(id)sender;

@end

Figure 3.11. RadarWatcherX application-level preferences.

Before we look at the code that makes the PreferenceController work, let's see how it is accessed from
our AppController, shown in Listing 3.15. First, when the AppController is initialized, it takes a moment
to default our preferences should that be needed. By loading the +standardUserDefaults dictionary from
NSUserDefaults and seeing if they have already been initialized, we can set up our default preference
values easily. Remember the Info.plist entry for CFBundleIdentifier? This is the name of the file used
to store our preferences in ~/Library/Preferences/. The com.triplesoft.radarwatcherx.plist file is
created at this point by NSUserDefaults.

Listing 3.15 AppController +initialize

+ (void)initialize
{
 // Create the user defaults dictionary
 NSUserDefaults *defaults;
 defaults = [NSUserDefaults standardUserDefaults];

 if ([defaults integerForKey:pkeyInitialized] == 0) {
 // Save our defaults if not already initialized
 [defaults setObject:[NSNumber numberWithInt:1]
 forKey:pkeyInitialized];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyOpenNewWindow];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyPlaySound];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyShowAlert];
 }
}

Note

Note that the +initialize method is executed when the application's icon is still bouncing in
the dock. If you needed to do any time-consuming processing at application startup, you

might consider doing it in the -applicationDidFinishLaunching: delegate notification
instead. This notification is sent once the icon has stopped bouncing and can make your
application feel snappier.

Now, any portion of our application can check a preference value with a simple call to NSUserDefaults as
demonstrated when the application asks its delegate, AppController, if it should open an untitled file when
it starts up.

Listing 3.16 AppController –applicationShouldOpenUntitledFile:

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender
{
 return ([[NSUserDefaults standardUserDefaults]
 integerForKey:pkeyOpenNewWindow] == NSOnState);
}

Note

-applicationShouldOpenUntitledFile:, shown in Listing 3.16, is an example of a delegate
method. These methods are implemented by the delegate of a class and are called from the
instance of the class. For example, the delegate of NSApplication, in this case our
AppController, can implement the -applicationShouldTerminateAfterLastWindowClosed:
method to let the application know if it should terminate after the last window is closed.
Remember, we receive these delegate methods because we registered AppController as an
application delegate in the nib file.

Delegate methods are a great way to add custom behaviors to a structured framework. You
can see all the available delegate methods in the Cocoa documentation. You use Interface
Builder to set up a delegate relationship just as you connect actions and outlets. Simply
connect the delegate outlet of the class in question to the instance that is the delegate. Once
connected, implement the delegate methods you are interested in and respond accordingly.
Remember, not all objects allow delegates, and those that do differ from class to class. That is,
NSView does not use delegates at all, and the delegates implemented in NSApp are different
from those in NSWindow.

When the user selects Preferences from the application menu, the AppController -
showPreferencePanel: method is executed, as shown in Listing 3.17. At this time, if the
preferenceController instance variable has not been allocated, it is. The -showWindow: method of
NSWndowController is then called to display the preferences. Later on, when the application quits and the
AppController is deallocated, it also releases the preferenceController. The preferenceController
sticks around for the entire life of the application once it has been created.

Listing 3.17 AppController –showPreferencePanel:/-dealloc

- (IBAction)showPreferencePanel:(id)sender
{

 // Create the PreferenceController if it doesn't already exist
 if (!preferenceController)
 preferenceController = [[PreferenceController alloc] init];

 // Display it
 [preferenceController showWindow:self];
}

- (void)dealloc
{
 // We are done with the PreferenceController, release it
 [preferenceController release];
 [super dealloc];
}

PreferenceController Code

The PreferenceController code itself, shown in Listing 3.18, is rather straightforward with just a few
tricks. Upon being initialized by AppController, the PreferenceController must call its super -
initWithWindowNibName:, passing the proper nib name—in this case, Preferences.

Listing 3.18 PreferenceController.m

#import "PreferenceController.h"

NSString *pkeyInitialized = @"pkeyInitialized";
NSString *pkeyOpenNewWindow = @"pkeyOpenNewWindow";
NSString *pkeyPlaySound = @"pkeyPlaySound";
NSString *pkeyShowAlert = @"pkeyShowAlert";

@implementation PreferenceController

- (id)init
{
 // Load the Preferences.nib file
 self = [super initWithWindowNibName:@"Preferences"];
 return self;
}

- (void)windowDidLoad
{
 NSUserDefaults *defaults;

 // Load our default values and set the preference controls accordingly
 defaults = [NSUserDefaults standardUserDefaults];
 [m_newWindowButton setState:[defaults integerForKey:pkeyOpenNewWindow]];
 [m_playSoundButton setState:[defaults integerForKey:pkeyPlaySound]];
 [m_showAlertButton setState:[defaults integerForKey:pkeyShowAlert]];
}

- (IBAction)changeNewWindowButton:(id)sender
{
 // Save back the new value of this control to the defaults
 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]

 forKey:pkeyOpenNewWindow];
}

- (IBAction)changePlaySoundButton:(id)sender
{
 // Save back the new value of this control to the defaults
 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]
 forKey:pkeyPlaySound];
}

- (IBAction)changeShowAlertButton:(id)sender
{
 // Save back the new value of this control to the defaults
 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]
 forKey:pkeyShowAlert];
}

@end

Then, when -windowDidLoad is called after the nib loads our window, we can access the
+standardUserDefaults to set the initial state of the controls in the Preferences window.

Last, when each button is clicked and the state changes, we write the current value back to the
+standardUserDefaults. This means that as soon as a check box is clicked, the value is live. If another
portion of the application attempted to access the value, it would be in sync with the current state of the
check box. Note, however, that the file may not be written to disk immediately. NSUserDefaults does not
provide concurrency between two processes.

That's about all there is to it!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some ideas to expand RadarWatcherX; try these on your own.

Add slider controls to the document window to adjust the sensitivity of the closeColors option. Adding one
for hue and one for brightness sensitivity should do the trick and make the application more controllable,
depending on the maps the user chooses.

Add the ability to make more than one watch box in a document. Multiple watch boxes with their own color
selections could really expand the usefulness of the application.

Add the ability to email a user as an alert option. You can use the -deliverMessage:subject:to: method
of the NSMailDelivery class in Apple's Message framework located in /System/Library/Frameworks.
Although no formal documentation exists for this framework, extensive notes are in the header file. While
you're there, look at the header files from other frameworks you don't recognize. You can learn a lot by
poking around (read-only) in the depths of your system's directory structure!

[Team LiB]

[Team LiB]

Conclusion

You learned a lot in this chapter. The combination of looking through the source code while reading the
enhanced explanations here will help you to get a grasp on designing and implementing a document-based
Cocoa application of your own.

If you are confused, reread the chapter one section at a time and concentrate on the relationships between
the source code in Project Builder and the user interface items in Interface Builder. Cocoa allows you to
almost transparently link these items together. Through the magic of the Cocoa framework, they all
become connected at runtime.

Also, make sure to learn to use the debugger in Project Builder. It may be confusing and overwhelm you at
first, but, trust me, if you learn a few commands (that is, 'po,' also known as print object), you will be able
to understand more about what is happening in your application. Set breakpoints on all your functions,
especially delegate methods, to see when they are called and what parameters are being passed. Type
'help' in the debugger for more information.

With a little commitment and some hard work, it will all start to come together for you and you will be
poised to build the next killer app!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 4. Cocoa Plug-ins

"…the documentation doesn't specify (there is no documentation)…"

—nibs

Where would web be without plug-ins? Plug-ins are also known as plug ins, PlugIns, or whatever you want
to call them. A plug-in is usually a file or bundle that is created and compiled separately from a host
application, that follows a specific API (application programming interface) or protocol, and that is used by
the host application to extend its functionality in some way.

Adobe Photoshop uses plug-ins to allow third-party developers to extend the functionality of its image
editing capabilities. By publishing an API and making it available to the public, Adobe has essentially
"opened up" Photoshop to developers everywhere. These developers can create plug-ins that work directly
within the Photoshop application environment. In addition, they do not require access to the original
Photoshop source code, undoubtedly valuable to Adobe!

Music software also uses plug-ins to allow editing of digital audio. Plug-ins in the audio world include those
that create reverb, echo, and other effects. The same concept applies; third-party developers download an
SDK (software development kit) that provides all the information necessary to communicate with the host
application via a plug-in API. Most of the time, a plug-in accepts some type of data (audio or image data,
for example), processes it, and returns the processed version to the host. The host then displays the
alterations to the user. The user need not be concerned that the host application was written by one
company and the plug-in by another—it all just works!

Within OS X are numerous ways to provide plug-in capabilities to an application. This chapter discusses two
methods that work well within Cocoa applications. Chapter 5, "Carbon Plug-ins," discusses writing plug-ins
using a Carbon-based API for use within Carbon or Cocoa applications.

[Team LiB]

[Team LiB]

The Results

There are two results in this chapter.

First, I will discuss a plug-in architecture that uses what I refer to as "dumb" plug-ins. These plug-ins are
nothing more than text-based plist configuration files that are loaded in by the application, parsed, and
used to provide options to the user. In our case, we provide a search window that allows you to choose
from a variety of Internet search engines to query for a search term. The raw HTML results are then
displayed in a scrolling NSTextView. The contents of the search pop-up button are loaded from the
available plug-in plist files. This makes the application easily extensible without altering the underlying
source code.

Figure 4.1. PlistPlugin search engine application window.

Second, I will discuss a plug-in architecture based on the NSBundle class. The host application loads plug-
ins that, in and of themselves, are bundles and call methods within them to provide image-editing
capabilities. Each plug-in is listed in and can be selected from the Filter menu. The application and the plug-
in bundles adhere to a specific, albeit simplistic, protocol to allow quick and easy communication between
the two. The plug-ins are passed the image, alter it, and pass it back to the host application for display—
just like Photoshop, but maybe not as advanced.

Both of the projects in this chapter are simple Cocoa applications used to feature the architecture
implementations over anything else. In a real application, you may choose to implement a document-based

approach depending on your needs.

Figure 4.2. NSBundle image editing application window.

[Team LiB]

[Team LiB]

The First Project: plistPlugin

As you can see in Figure 4.3, this project is straightforward. We have an AppController, which we only use
to make a delegate of the NSApplication so that we can implement the -
applicationShouldTerminateAfterLastWindowClosed: method. By implementing this method, you can
quit the application simply by closing the main window. This convenience is used in most of our example
applications.

Figure 4.3. The plistPlugin project in Project Builder.

SearchWindowController is where all the action is. This is the class that not only controls the window
(responding to the Search button), but also loads the plug-ins. Figure 4.4 illustrates how our nib file is
arranged. Both AppController and SearchWindowController are instantiated, and connections between
the Window and SearchWindowController are as you would expect for a window with a few outlets and an
action.

Figure 4.4. The plistPlugin MainMenu.nib in Interface Builder.

Before we look at the details of how the plug-ins are loaded and called, let's talk about the plug-ins
themselves for a moment.

The Plug-ins: What

You can see that we created a Plug-ins group in the project file. In that group, we added the three plug-ins
that we created for this project—one for each of three different search engines that the program supports
(see Figure 4.5). These plug-ins are nothing more than XML format text files ending in .plist.

Figure 4.5. The Google.plist plug-in.

The files contain two keys that are used by the application. The SearchEngineName key value contains the
name of the search engine as it should be displayed in the pop-up button list. The SearchEngineURL key
value contains the URL that is used to access the search engine. The search term entered by the user is
appended to the end of the SearchEngineURL key value. In the case of Google, the SearchEngineURL key
value starts out as

http://www.google.com/search?q=

Once the host application appends the search term to it, it will look like

http://www.google.com/search?q=macintosh

If you were to type this URL in to an Internet browser, you will see that it is all Google needs to perform a
search.

Note

Google runs on a Web server. When we access the preceding URL, we are contacting Google's
Web server and asking it to perform a search of its database and return the results. You can
easily write a Web server script using PHP, or some other scripting language, and access it
remotely from your application using this same method. You need not limit this technique to
search engines alone. This is how some applications implement the "Internet Version Check"
that we will demonstrate in a later chapter.

The Plug-ins: Where

But where are these plug-ins? The plug-ins themselves live in the PlugIns directory inside the host
applications bundle. See Figure 4.6 for the hierarchical layout of the compiled application. Note that the
plug-ins are all gathered quietly together within the application itself. You can see this as well by control
clicking on the plistPlugin application and selecting Show Package Contents from the pop-up menu.

Figure 4.6. The plistPlugin application package contents.

The Plug-ins: How

How did the plug-ins get there? Figure 4.7 shows the Copy Files settings of the plistPlugin Target in the
project. By adding a Copy Files Build Phase, we are able to choose which files get copied where within the
application bundle. In our case, we chose to have the three search engine plug-ins copied to the Plug-ins
directory. (See what I mean about the many capitalization versions of plug-in—even within Apple's own
software.) If you are not familiar with Project Builder in this capacity, be sure to consult the Project Builder
documentation.

Figure 4.7. The plistPlugin Target Copy Files settings.

Note

You can actually store the plug-ins in many different locations. They do not have to be within
the application that uses them. In fact, many third-party plug-ins are more likely to be
installed in the user's ~/Library/Application Support/ directory. You might consider
placing the plug-ins in your application's Resources directory if they need to be localized (that
is, Contents/Resources/English.lproj/Google.plist).

An interesting twist on using plug-ins stored in the PlugIns directory within the application is that you can
enable and disable them easily from within the Get Info window of the application itself. Figure 4.8 shows
the plug-ins that are within the plistPlugin application. By simply turning off the ones we don't want and
restarting the application, they will be disabled. That's a nice feature!

Figure 4.8. The plistPlugin application Info window.

[Team LiB]

[Team LiB]

SearchWindowController

Now we'll move on to the source code to see how this all fits together. As mentioned previously, the
SearchWindowController is where all the action is. It has two methods that handle 99% of its work. -
awakeFromNib loads the plug-ins and is called automatically by the Cocoa framework once the main window
in the nib file is loaded. When the user clicks the Search button, the -doSearch: method appends the
search term to the search URL, initiates the search, and displays the results. Let's look at these methods.

Listing 4.1 -awakeFromNib

// Called to initialize our fields if we need to –
// this is where we will load our plugins
- (void)awakeFromNib
{
 NSString* folderPath;

 // Remove all items from the popup button
 [m_searchEnginePopUpButton removeAllItems];

 // Locate the plugins directory within our app package
 folderPath = [[NSBundle mainBundle] builtInPlugInsPath];
 if (folderPath) {
 // Enumerate through each plugin
 NSEnumerator* enumerator = [[NSBundle
 pathsForResourcesOfType:@"plist"
 inDirectory:folderPath] objectEnumerator];
 NSString* pluginPath;
 while ((pluginPath = [enumerator nextObject])) {
 // Load the plist into a dictionary for each plugin
 NSDictionary* dictionary =
 [NSDictionary dictionaryWithContentsOfFile:pluginPath];
 if (dictionary) {
 // Read the items in the plist
 NSString* searchEngineURL =
 [dictionary objectForKey:@"SearchEngineURL"];
 NSString* searchEngineName =
 [dictionary objectForKey:@"SearchEngineName"];
 if (searchEngineName && searchEngineURL) {
 // Add the string the array
 [m_searchEngineArray addObject:searchEngineURL];
 // and add a menu item (menu items and
 // array items will have the same index,
 // which makes it easy to match them up
 // when the user presses the search button)
 [m_searchEnginePopUpButton addItemWithTitle:searchEngineName];
 }
 }
 }
 }
}

Don't let Listing 4.1 scare you; once you take it apart, it isn't half as bad as it looks. After clearing out the
pop-up button, we use NSBundle to return the -builtInPlugInsPath—that is, the path to the Plugins
directory within our application bundle. We then enumerate through the PlugIns directory for all files ending
in .plist, which is how our plug-ins are named. Then we load the contents of each plug-in file into a
temporary dictionary. Have I mentioned how great property list files are for storing NSDictionary data?
After we have the file contents in the dictionary, we can easily extract the SearchEngineURL and the
SearchEngineName key values. Assuming that we get them both (that is, the file is not corrupt), we add the
URL to an array that is an instance variable of our SearchWindowController and add the name to our pop-
up button list. The index of the URL in the array will always be in sync with the index of the name in the
pop-up button, which will come in handy in the next method!

Note

If you chose to store your plug-ins in the Resource directory as mentioned earlier, you would
change the enumeration logic in Listing 4.1 to look in specific lproj-like directories for the
plugins (that is, Contents/Resources/English.lproj/Google.plist).

Listing 4.2 contains the action that is called when the user presses the Search button. As noted previously,
the array of URLs and the pop-up button items have the same array indices. Therefore, we can simply pull
the URL from the array using the index of the currently selected item in the pop-up button list. We then use
one of the Core Foundation routines to encode the search term into the proper format for URLs. This will
turn a space into a %20, for example. Once encoded, we concatenate the strings to create the complete
search URL. We then use NSURL to load the contents of the URL, and if results are returned, we display
them in the scrolling text field.

Listing 4.2 -doSearch:

// This action is called when the user clicks the Search button
- (IBAction)doSearch:(id)sender
{
 NSString *results;

 // Since the menu items and array items both
 // have the same index, we can easily load the URL
 // based on the menu item that is selected
 NSString *searchEngineURL = [m_searchEngineArray
 objectAtIndex:[m_searchEnginePopUpButton indexOfSelectedItem]];

 // We must then encode the string that the user
 // typed in (ie: replacing spaces with %20)
 NSString *encodedSearchText =
 (NSString*) CFURLCreateStringByAddingPercentEscapes(NULL,
 (CFStringRef)[m_searchTextField stringValue],
 NULL, NULL, kCFStringEncodingUTF8);

 // Once encoded, we concatenate the two strings, the URL and the search text
 NSString *completeSearchURL =
 [NSString stringWithFormat:@"%@%@", searchEngineURL,
 encodedSearchText];

 // Begin user feedback
 [m_progressIndicator startAnimation:self];
 [m_searchButton setEnabled:NO];

 // We then attempt to load the URL and save the results in a string
 results = [NSString stringWithContentsOfURL:
 [NSURL URLWithString:completeSearchURL]];
 if (results) {
 // If we have results we display them in the text view
 NSRange theFullRange = NSMakeRange(0,
 [[m_resultsTextView string] length]);
 [m_resultsTextView replaceCharactersInRange:theFullRange
 withString:results];
 } else {
 NSRunAlertPanel(@"Error",
 @"NSString stringWithContentsOfURL returned nil",
 @"OK", @"", @"");
 }

 // End user feedback
 [m_searchButton setEnabled:YES];
 [m_progressIndicator stopAnimation:self];
}

As you can see, there really isn't much to this. It's a simple way to implement a plug-in architecture that
not only allows your application to be extended easily, but also gives the user some control over which plug-
ins are enabled and disabled. You can even publish an API that would allow non-programmers to extend
your application using this mechanism. Remember, no programming is required for the plug-in creator in
this example.

Note

Many extremely useful Core Foundation routines can be used directly with Cocoa objects. All
you have to do is typecast your Cocoa NSString, for example, to the proper type as done
previously. When you can substitute a Cocoa object for a Core Foundation data type with little
more than a typecast, this is called "toll-free bridging." This also works the other way around;
some Core Foundation data types can be "toll-free bridged" to Cocoa objects. Note that not all
objects are bridgeable. NSBundle and CFBundle, for example, are not bridgeable. When in
doubt, check the Core Foundation documentation. CFURL.h and CFString.h are two header
files to begin your explorations.

[Team LiB]

[Team LiB]

The Second Project: MyNSBP_App and MyNSBP_Plugin

The second Cocoa plug-in project actually consists of multiple project files. There is a host application
project file and then a plug-in project file. In this case, the application will display the image and manage
the plug-ins. The plug-in will alter the image by removing one of the primary colors, red, green or blue, as
chosen by the user.

Let's look at the two project files in general first, and then we will delve deeper into the source code of
each. You will see many similarities between the previous plistPlugin project and this project.

The Host Application: Overview

Once again in this project, seen in Figure 4.9, we use an AppController strictly for the -
applicationShouldTerminateAfterLastWindowClosed: method—nothing else to say there. The
ImageWindowController, an override of NSObject, manages the main application window and handles
menu selections from the Filter menu. MyNSBP_Protocol.h houses the protocol that all plug-in filters follow
in order to be used by this application.

Figure 4.9. The MyNSBP_App project in Project Builder.

Note

Want another option? It seems that there are always options when programming for Mac OS
X. Instead of using a protocol, we could have chosen to implement a public class interface that
our third-party developers would override to create their custom filters. This class would be

the link between the application and the plug-in—much like our protocol is in this example.
Both mechanisms are perfectly acceptable and are many times a matter of personal taste.

On the resource side of things, the TIFF file is used as our default image in the window—a colorful photo of
Tampa Bay, Florida that was taken by esteemed photographer Ed McNair. MainMenu.nib, as seen in Figure
4.10, contains the window resource as well as instantiations of the AppController and the
ImageWindowController— standard stuff for a simple Cocoa application. InfoPlist.strings contains
what you would expect as well—our copyright and version information.

Figure 4.10. The MyNSBP_App MainMenu.nib in Interface Builder.

You will also notice that we have created a plug-ins group containing two plug-ins that are generated from
other projects—one of which will be discussed in a moment; the other is a bonus, and not discussed here.
Further, if you were to look in the Target information for the MyNSBP_App, you will see that we set up
another Copy Files Build Phase to copy the built plug-ins into the PlugIns directory within our application's
bundle. This is the same type of setup we had in the plistPlugin example; the only difference is in this case
we are copying entire bundles into the PlugIns directory and not just .plist files. Shortly, you will see how
our application loads these enhanced plug-ins as compared to loading the .plist files.

The Plugin: Overview

The plug-in project, seen in Figure 4.11, will look subtly different from the others you've seen. The most
important thing to note is that this project does not build an application. Instead, the plug-in created is a
bundle. The project was started by using the Project Builder New Project Assistant, seen in Figure 4.12, and
creating a Cocoa Bundle.

Figure 4.11. The MyNSBP_RemoveColor project in Project Builder.

Figure 4.12. The Project Builder New Project Assistant.

MyNSBP_RemoveColor is the guts of our plug-in. The MyNSBP_RemoveColor class is a subclass of NSObject
that adheres to the MyNSBP_Protocol protocol. This is also the principal class of our project. Notice that the
plug-in project includes MyNSBP_Protocol.h just as the host application does. The associated RemoveColor.
nib file, as shown in Figure 4.13, is essentially empty, containing only the default File's Owner and First
Responder. The File's Owner is set to the principal class MyNSBP_RemoveColor. You could leave this empty .
nib file out if you so desire; I left it in the project in case we needed to add something later during
development.

Figure 4.13. RemoveColor.nib in Interface Builder.

Note

A principal class is essentially a custom, named main entry point into a bundle. You can
typically access all the functionality in a bundle through its principal class. NSApplication is
usually the principal class when you are creating an application. However, in this case, the
principal class is that of our plug-in, MyNSBP_RemoveColor. Properly defining the principal class
is important, as you will see later on when our application has to call our plug-in based on this
value. The principal class typically acts as a traffic cop because it controls all other classes in a
bundle. It also manages interactions between internal classes and those outside the bundle.

Getting back to classes, the SettingsController class is an override of NSWindowController and is simply
used to manage the modal window that is displayed when you choose this particular filter as shown in
Figure 4.14. The associated Settings.nib file is used in conjunction with the SettingsController class
mentioned previously, which happens to be its File's Owner. Note also that the window is connected to the
outlet of the File's Owner—this is key.

Figure 4.14. Settings.nib in Interface Builder.

Let's look at the application and plug-in code in more detail.

The Host Application: Detail

As mentioned previously, the ImageWindowController is the meat of the host application project, shown in
Figure 4.15. It has only a few instance variables that are nothing more than outlets to the NSMenuItem
(Filter menu) and the NSImageView. It also maintains two NSMutableArrays—one for a list of plug-in
classes and the other for a list of plug-in instances. These arrays are allocated when the object is initialized
and deallocated when it is destroyed. The arrays are used when actually calling one of the plug-ins. Let's
look at the code used to load the plug-ins first in Listing 4.3.

Listing 4.3 ImageWindowController's awakeFromNib

// Called to initialize our fields if we need to –
// this is where we will load our plugins
- (void)awakeFromNib
{
 NSMenu *filterMenu = [m_filterMenuItem submenu];
 NSString *folderPath;

 // Locate the plugins directory within our app package
 folderPath = [[NSBundle mainBundle] builtInPlugInsPath];
 if (folderPath) {

 // Enumerate through each plugin
 NSEnumerator *enumerator =
 [[NSBundle pathsForResourcesOfType:@"plugin"
 inDirectory:folderPath] objectEnumerator];
 NSString *pluginPath;

 int count = 0;

 while ((pluginPath = [enumerator nextObject])) {

 // Get the bundle that goes along with the plugin
 NSBundle* pluginBundle = [NSBundle bundleWithPath:pluginPath];
 if (pluginBundle) {

 // Load the plist into a dictionary
 NSDictionary* dictionary = [pluginBundle infoDictionary];

 // Pull useful information from the plist dictionary
 NSString* pluginName = [dictionary
 objectForKey:@"NSPrincipalClass"];
 NSString* menuItemName = [dictionary
 objectForKey:@"NSMenuItemName"];

 if (pluginName && menuItemName) {

 // See if the class is already loaded, if not, load
 Class pluginClass = NSClassFromString(pluginName);

 if (!pluginClass) {
 NSObject<MyNSBP_Protocol>* thePlugin;

 // The Principal Class of the Bundle is the plugin class
 pluginClass = [pluginBundle principalClass];

 // Make sure it conforms to our protocol and attempt
 // to initialize and instantiate it
 if ([pluginClass
 conformsToProtocol:@protocol(MyNSBP_Protocol)] &&
 [pluginClass isKindOfClass:[NSObject class]] &&
 [pluginClass initializePluginClass:pluginBundle] &&
 (thePlugin = [pluginClass instantiatePlugin])) {

 // Add a menu item for this plugin
 NSMenuItem *item;
 item = [[NSMenuItem alloc] init];
 [item setTitle:menuItemName];
 [item setTag:count++];
 [item setTarget:self];
 [item setAction:@selector(doFilter:)];
 [filterMenu addItem:item];
 [item release];

 // Add the class to our array
 [m_pluginClasses addObject:pluginClass];

 // Add the instance to our array
 [m_pluginInstances addObject:thePlugin];
 }
 }
 }
 }
 }

 }

 // Update our self image
 [self doResetImage:self];
}

Figure 4.15. NSBundle image editing application window.

As you know, -awakeFromNib is called once our nib file has been completely loaded. We are guaranteed
that all of our outlets are connected at this point. Therefore, this is the perfect method to initialize our user
interface. In our case, we load our plug-ins and subsequently build the contents of the Filter menu.

Note

Where's a better place to load? Although we are loading our plug-ins in –awakeFromNib in this
example, it might be better for your application to load them in NSApplication delegate's –
applicationDidFinishLaunching: method. The reason is that during –awakeFromNib, your
application's icon is still bouncing in the dock. By loading in –
applicationDidFinishLaunching:, you have already surpassed the bouncing icon and your
application load time will seem snappier to the user. This will become very apparent if you
have many plug-ins to load at startup. You might also consider deferring the initialization and

instantiation of each plug-in until they are actually used—yet another optimization!

Also note that –awakeFromNib has a dark side. If you have more than one controller object in
your nib file, you generally can't say which one will receive –awakeFromNib first. This can
become a problem if one controller attempts to access the other for whatever reason and it is
yet to completely exist!

The first thing we do is access the submenu of the Filter menu item so that we can add more items to it
later. Then we access the main application bundle and request the -builtInPlugInsPath. Next, we
enumerate the PlugIns directory for all files ending in .plugin. Remember that in the plistPlugin project, we
enumerated for .plist files—same concept here.

For each plug-in that we find, we access its bundle using NSBundle's -bundleWithpath: method passing
the path to the plug-in. This gives us an NSBundle that we can then work with to dissect the plug-in and
access the code and resources that we are interested in. Once we load the info.plist data into a
dictionary, using the -infoDictionary method of NSBundle, we can begin to pull the key values from it.
Once again, this is very similar in concept to plistPlugin.

The main key values we are interested in are the principal class, represented by NSPrincipalClass, and
the menu item name, represented by NSMenuItemName. You will see how these are configured when I
discuss the plug-in project shortly. For now, know that they exist; this will become clear once we look at
the plug-in code in detail. Given the principal class name, MyNSBP_RemoveColor, we can access the class
object itself for the plug-in by calling NSClassFromString. If this function returns a nil class, we know that
the class has yet to be loaded from the bundle and we must load it.

To load the class, we declare an NSObject variable that conforms to the MyNSBP_Protocol—that is, a local
variable that will represent our plug-in. We then call NSBundle's -principalClass method, which returns
the plug-in's principal class after ensuring that the code containing the definition itself is loaded. Simply
put, the -principalClass method loads the code.

Note

After calling the NSBundle -principalClass method, which uses –load to load the code, the
receiver posts an NSBundleDidLoadNotification. Using this mechanism, you can perform
actions when the bundle has successfully loaded.

Now that we have the class, we want to verify that it is actually one of our plug-ins. The odds are that it
will be. But you never know when a user might accidentally drag a plug-in in to our application bundle, so it
doesn't hurt to check. We validate a few items as follows: Does the class conform to the MyNSBP_Protocol?
Is it based on NSObject? If these check out, we call the +initializePlugInClass: class method of the
plug-in to enable it to keep track of its own bundle and then the +instantiatePlugin class method to
enable it to create itself. These will be discussed in more detail later.

We add the plug-in's name to the menu, setting the target to the ImageWindowController and the action
to the -doFilter: method within it. You will also note that we set the tag value of the menu item to the
index of the menu item. This allows us to figure out which plug-in item was selected from the menu and
access the associated class and instance arrays, as in plistPlugin, by menu item index. You will see this in

detail in the -doFilter: method later. We then use -addObject: to append our plug-in class and instance
to the two arrays. Once again, we depend on the synchronization of the items in the arrays and those in
the Filter menu.

Note

You will notice that many classes throughout Cocoa have a -tag value associated with them.
This tag can be set to any value you desire. If you are a Macintosh programmer from way
back, you might have referred to a tag as a refCon.

Last, but not least, we call the -doResetImage: method of ImageWindowController (see Listing 4.4) to
make our picture appear. Essentially, this method loads the TIFF from our bundle, creates an NSImage out
of it, and sets it as the image of the NSImageView in our window. Note that we have to make a copy of the
image otherwise the image itself is "edited" when we execute our filters on it. When this happens, there is
no way to reset it without relaunching the application. That's the magic of caching!

Listing 4.4 -doResetImage:

// Called when the user pressed the Reset Image
// button, restores the image in the view
// We must make a copy otherwise the actual
// picture.tiff tends to get "edited"
- (IBAction)doResetImage:(id)sender
{
 NSImage *theImage = [[[NSImage imageNamed:@"picture.tiff"] copy] autorelease];
 [m_imageView setImage:theImage];
}

Note

If you were allowing the user to load an image from a file, instead of from your own bundle,
you would use –initWithContentsOfFile: instead of –imageNamed: to reset the image.

Okay, so now we have an image displayed in the window, a menu filled with filters, and nowhere to go. At
this point, we expect the user to select an item from the Filter menu. Once they do this, the -doFilter:
method is called in ImageWindowController. This method couldn't be simpler; let's take a look.

Listing 4.5 -doFilter:

// Called when one of the plugins is selected from the Filter menu
- (IBAction)doFilter:(id)sender
{
 NSObject<MyNSBP_Protocol>* thePlugin;

 // Get the proper plugin instance from the array based on tag value
 thePlugin = [m_pluginInstances objectAtIndex:[sender tag]];

 if (thePlugin) {
 // Pass the image to the plugin, which will alter it and pass it back
 NSImage *theAlteredImage = [thePlugin doPlugin:[m_imageView image]];

 // Set the altered image to be the current image
 [m_imageView setImage:theAlteredImage];

 // Update the view
 [m_imageView setNeedsDisplay:YES];
 }
}

Because each Filter menu item calls this method as its action, we need a way to figure out which plug-in
was selected from the menu. Remember the -tag value? By retrieving the -tag (the index) of the sender
(the menu item), we can tell which plug-in was selected. We then pull that index from the instances array,
and, like magic, we have the plug-in instance.

Now that we have the plug-in instance, we call the -doPlugin: method within it, passing the image from
the NSImageView. The plug-in will manipulate it and return it as theAlteredImage. We finish off by setting
theAlteredImage as the image of the NSImageView and forcing it to update with -setNeedsDisplay:.

One last thing to note is that when the window is about to close, we have to release the memory occupied
by our plug-in classes and instances. In Listing 4.6, we simply enumerate the arrays and release the
objects in them. The one exception is that we call the plug-in's +terminatePluginClass class method to
balance the +initializePluginClass: class method called during -awakeFromNib for the items in the
classes array.

Listing 4.6 -windowWillClose:

// Called when the window is about to close
- (void)windowWillClose:(NSNotification*)notification
{
 Class pluginClass;
 NSEnumerator *enumerator;
 NSObject<MyNSBP_Protocol> *thePlugin;

 // Enumerate through the instances and release each
 enumerator = [m_pluginInstances objectEnumerator];
 while ((thePlugin = [enumerator nextObject])) {
 [thePlugin release];
 thePlugin = nil;
 }

 // Enumerate through the classes and terminate each
 enumerator = [m_pluginClasses objectEnumerator];
 while ((pluginClass = [enumerator nextObject])) {
 [pluginClass terminatePluginClass];
 pluginClass = nil;
 }
}

Remember, you've only seen one side of the architecture up to this point. Once you later see how the plug-
in and protocol work, you might want to reread this section and then everything should become clear. Feel

free to take a break at this point if your mind is feeling numb. This is some complex stuff, especially if it is
completely new to you. Take it slow, and don't be surprised if you have to review it a few times before it
makes complete sense.

The Plug-in Protocol

Before diving into the plug-in itself, let's talk for a moment about the protocol that the plug-in conforms to.
A protocol is a list of method declarations not directly associated with any particular class definition. Any
class can adopt the protocol by implementing the methods and adding the protocol name to its interface
definition. For example, the MyNSBP_RemoveColor class is a subclass of NSObject that implements the
MyNSBP_Protocol, as you can see in Listing 4.7.

Listing 4.7 MyNSBP_RemoveColor Interface Definition

@interface MyNSBP_RemoveColor : NSObject<MyNSBP_Protocol> {

}
- (int)askUserWhatColorToRemove;
@end

So how is the protocol defined? Listing 4.8 shows the MyNSBP_Protocol definition from MyNSBP_Protocol.
h. Note that this protocol contains four methods—three class methods and one instance method. The class
methods can be called without instantiating an object. The instance method requires a valid object before it
can be called. This is standard Objective-C and shouldn't be any surprise.

Listing 4.8 MyNSBP_Protocol Definition

@protocol MyNSBP_Protocol

+ (BOOL)initializePluginClass:(NSBundle*)theBundle;
+ (void)terminatePluginClass;
+ (id)instantiatePlugin;
- (NSImage*)doPlugin:(NSImage*)theImage;

@end

At this point, MyNSBP_RemoveColor need only implement the functions in the protocol. As you saw in the
MyNSBP_App implementation, once you have a class, you can query it to see if it conforms to a protocol by
using the -conformsToProtocol: method. The protocol defined here is known as a formal protocol. There
are also informal protocols, but they do not allow the use of the -conformsToProtocol: mechanism, for
example. Protocols are useful for declaring methods for other objects to implement, to hide a class
definition yet provide an interface to an object, or to illustrate and provide for similarities between classes
from different hierarchies.

Note

You can learn more than you ever thought you wanted to know about protocols in "The
Objective-C Programming Language" publication from Apple. In fact, this is a great reference
in any case to have on hand as you program in Objective-C. A PDF version of this document is
available on the Apple Developer Web site at http://www.apple.com/developer/.

http://www.apple.com/developer/default.htm

The Plug-in: Detail

You made it to the plug-in! We need to spend a few moments in the project settings before diving into the
source code. Because this project is not standard to what we are used to seeing, there are a few things to
point out that should be edited.

First in the Build Settings (see Figure 4.16), we need to change the WRAPPER_EXTENSION key to be plugin
instead of the default bundle. This is the filename extension that will be used when our plug-in is built. In
reality, it doesn't matter what we make this extension, but plugin is simply a standard. Because we are
placing our final built plug-ins in the PlugIns directory, why not make them end in .plugin?

Figure 4.16. MyNSBP_RemoveColor build settings.

Second, in the Info.plist Entries (see Figure 4.17) we see the standard items that we have seen in the
past. However, two in particular need to be pointed out. The NSMenuItemName key is set to Remove Color.
This text is used in the Filter menu. The NSPrincipalClass is MyNSBP_RemoveColor for this project. This
class implements the MyNSBP_Protocol protocol. You saw both of these values accessed in the
MyNSBP_App's -awakeFromNib method; now you see where they were configured.

Figure 4.17. MyNSBP_RemoveColor Info.plist entries.

Let's move on to the source code!

Figures 4.18 and 4.19 show the before and after of calling the MyNSBP_RemoveColor to remove green from
the image. Note that the Remove Color window is actually within the plug-in itself and called modally from
it. You'll see how this all works in the next few pages.

Figure 4.18. About to remove green using MyNSBP_RemoveColor.

Figure 4.19. Having just removed green using MyNSBP_RemoveColor.

As you saw in the MyNSBP_App -awakeFromNib method, the plug-in class is initialized with a call to the plug-
in's +initializePluginClass: class method. The plug-in's bundle is passed to this method so that it can -
retain it for later use. But this is not necessary and is only an example of doing so. The plug-in's
+terminatePluginClass class method is called from MyNSBP_App's -windowWillClose: method to allow it
to clean up and, in our case, release its bundle before the plug-in itself is released by the host application.
See Listing 4.9 for the implementations of these methods in the plug-in.

Listing 4.9 MyNSBP_RemoveColor +initializePluginClass:/+terminatePluginClass

// Called to initialize our class, currently just to save our bundle
+ (BOOL)initializePluginClass:(NSBundle*)theBundle
{
 if (g_pluginBundle) {
 return NO;
 }
 g_pluginBundle = [theBundle retain];
 return YES;
}

// Called to terminate our class, currently just to release our bundle
+ (void)terminatePluginClass
{
 if (g_pluginBundle) {
 [g_pluginBundle release];
 g_pluginBundle = nil;

 }
}

Also in MyNSBP_App's -awakeFromNib is a call to the plug-in's +instantiatePlugin class method. This is a
class method that returns the actual plug-in object. The method simply allocates and initializes an
MyNSBP_Plugin object and loads its associated nib file, RemoveColor.nib. There is nothing in the nib file
that we are using, but if there were, we could implement -awakeFromNib in the plug-in as well to access
those items (see Listing 4.10).

Listing 4.10 MyNSBP_RemoveColor +instantiatePlugin

// Called to instantiate our plugin, currently to alloc, init and load the nib
+ (id)instantiatePlugin
{
 MyNSBP_RemoveColor* instance =
 [[[MyNSBP_RemoveColor alloc] init] autorelease];
 if (instance && [NSBundle loadNibNamed:@"RemoveColor" owner:instance]) {
 return instance;
 }
 return nil;
}

The plug-in's -doPlugin: method (see Listing 4.11) is called when the user selects the plug-in from the
Filter menu. As you remember, it is passed an NSImage and expected to alter it and return the altered
version to the host application. The first thing this plug-in does is ask the user what color to remove by
showing the window in Figure 4.18. We will look at how the -askUserWhatColorToRemove method works in
a moment, but for now know that it returns an integer of 0 if None was selected, 1 for Red, 2 for Green, or
3 for Blue.

Listing 4.11 MyNSBP_RemoveColor –doPlugin:

// Called to alter the image
- (NSImage*)doPlugin:(NSImage*)theImage
{
 int whichColor = [self askUserWhatColorToRemove];

 // If the user chose a color (other than None)
 if (whichColor) {
 NSRect theRect;

 // Calculate theRect of the image
 theRect.origin.x = theRect.origin.y = 0;
 theRect.size = [theImage size];

 // Lock the focus, draw, and unlock
 [theImage lockFocus];

 // Set the proper color
 if (whichColor == 1) { // red
 [[NSColor redColor] set];
 } else if (whichColor == 2) { // green
 [[NSColor greenColor] set];

 } else if (whichColor == 3) { // blue
 [[NSColor blueColor] set];
 }

 // Fill the rect with the NSCompositePlusDarker mode to remove the color
 NSRectFillUsingOperation(theRect, NSCompositePlusDarker);

 // Unlock the focus
 [theImage unlockFocus];
 }

 // Return the image to the caller (altered or not)
 return theImage;
}

Assuming that a color was chosen, this method prepares for the alteration by calculating the rectangle of
the image, locking the focus, and setting the proper color for drawing. Then, using the
NSRectFillUsingOperation function and the NSCompositePlusDarker drawing mode, the rectangle is
filled. This mode removes the color that is currently set from the image. This is much quicker than looking
at each pixel and removing the green component by hand. Once complete, we unlock the focus and return
the image—albeit with no green.

Note

NSRectFillUsingOperation is one of many drawing routines in NSGraphics.h. Take a look at
the contents of this header file for a lot of useful functions.

The -askUserWhatColorToRemove method (see Listing 4.12) is a handy one to have around because it
shows what it takes to display a modal window from within an application (or in this case, from within a
plug-in in an application). The first thing this method does is allocate and initialize our
SettingsController object. This causes the -initWithWindowNibName: method to be called from the
SettingsController's -init method (see Listing 4.13). At this point, the SettingsController and the
nib file associated with it are both loaded and ready to be used.

Listing 4.12 MyNSBP_RemoveColor -askUserWhatColorToRemove

// Ask the user what color to remove
- (int)askUserWhatColorToRemove
{
 int whichColor = 0;

 // Allocate our settings dialog box
 SettingsController *sc = [[SettingsController alloc] init];

 if (sc) {

 // Run the dialog box modal. The SettingsController will call
 // stopModalWithCode with the tag of the button that was pressed
 // to end the modal loop.
 [sc showWindow:self];

 whichColor = [NSApp runModalForWindow:[sc window]];

 // Deallocate the preference controller, we no longer need it
 [sc release];
 sc = nil;

 }

 // return the chosen color, or 0 (none)
 return whichColor;
}

Assuming that the SettingsController was allocated without error, we call its -showWindow: method,
which displays the modal window. This works because in Interface Builder the window is connected to the
window outlet of the File's Owner, which is the SettingsController. We then call NSApplication's -
runModalForWindow: method passing the window in question. This method will manage the window
modally until the user clicks one of the buttons in the window—all of which are connected to the -
myDoneAction: method in SettingsController (refer to Listing 4.11).

Listing 4.13 SettingsController Implementation

@implementation SettingsController

- (id)init
{
 // Load the Settings.nib file
 self = [super initWithWindowNibName:@"Settings"];
 return self;
}

- (IBAction)myDoneAction:(id)sender
{
 [NSApp stopModalWithCode:[sender tag]];
}

@end

When a button is pressed and -myDoneAction: is triggered, NSApp's -stopModalWithCode: method is
called passing the tag of the button that was clicked—either 0, 1, 2, or 3. Back in -
askUserWhatColorToRemove, the SettingsController is released and the selected value is returned. This
is one way you can implement simple modal windows in Cocoa!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

A Word About Symbol Collisions

Whenever you have more than one code base intended to work together in a way such as outlined in this
chapter, you need to be concerned with symbol collisions. Symbol collisions are when you have defined the
same symbol more than once and they cause a problem. A symbol can be a C function or variable name,
classnames, formal protocol names, and class/category name pairs. For example, if two separate plug-ins
have a class named MyController, when the second one loads, you might find that it causes problems in
the host application when the symbols collide.

You see, the Objective-C runtime dislikes symbol collisions. In the past, it would not load code from a
bundle if it defined a symbol that had already been loaded by an application, library, or another plug-in.
Since Mac OS X 10.2, this has been relaxed somewhat; the runtime will try its best to keep your program
limping along without any guarantee that it will succeed.

However, in the case of the MyController class, a host of problems might occur. The second class loaded
might not implement the same methods, causing a "doesn't respond to method" error when the class is
called. It might implement a method of the same name, but return different results. In one of the worst
cases, it might take less (or more) memory to store the instance variables of the class and might cause
your program to crash when they are read or written to.

The best way to protect C-style symbols (functions, variables, and so on) from interfering with other code
elements is to define them as static or private extern. That is, limit the scope of the symbol either to
the file in which it is defined or the file in which it is linked.

The only way to protect Objective-C symbols (classes, protocols, class/category name pairs, and so on) is
to use relatively unique symbol name prefixes. One method is to prefix your symbols with the same unique
identifier. For example, if you were writing a screen effect that displayed pictures of the beach, you might
name your classes BeachView, BeachSettings, and so on. A better way would be to use the reverse
domain prefix—such is done with property list files throughout this book, but that can be cumbersome. Can
you imagine having classes named ComTripleSoftBeachView and ComTripleSoftBeachSettings?

So, the good news is that Mac OS X 10.2 is better about these things than previous releases, but it's still
not foolproof. NSBundle-based plug-in authors need to be more aware of the risks of symbol collisions in
their bundle code and know how to protect themselves from it.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some ideas to expand the plug-in projects in this chapter; try these on your own.

Find a search engine that is not supported by the plistPlugin application and create a new plug-in for it. Add
the plug-in to the application without recompiling it.

Write a new filter plug-in for the image editing application. Try writing a plug-in that removes all the pixels
that are a specific color in the image. Use what you've learned in Chapter 3, "Cocoa Applications," to allow
the user to choose a color and to access the individual pixels in the image.

Make the Remove Color window in Figure 4.14 a sheet so that it does not lock up the application while it is
selected. You will need to pass the main application window in to the plug-in in order to accomplish this, via
–doPlug:. You might consider renaming this method -filterImage:window:.

Did you know that you could actually build multiple project pieces in the same project file? Try retrofitting
the NSBundle project in this chapter to build both the application and all the plug-ins in one single Project
Builder project file. You will essentially create multiple Targets in Project Builder. This is a good way to
implement code if you are writing all the pieces, but our example provides for third parties to write the plug-
ins while someone else, such as yourself, writes the application.

[Team LiB]

[Team LiB]

Conclusion

Congratulations! This was a very complex chapter to get through in one piece. Even if the concept of plug-
ins isn't new to you, implementing them in the ways described here might have been. Using Cocoa and
Objective-C is a new paradigm for many Macintosh developers of old. It's okay to be a little confused as
you weave through the maze that is OS X software development. The point is, in this chapter, you have
been given working examples of two plug-in architectures that you can use in your own development
projects. In the next chapter, I will show yet another plug-in architecture for those of you supporting
Carbon-based applications.

[Team LiB]

[Team LiB]

Chapter 5. Carbon Plug-ins

"I got creative and ambitious—a dangerous combination."

—Unknown (from CocoaDev Mailing List)

What did developers do before Cocoa? They ate, drank, and slept Carbon—that's what they did! Carbon is a
set of APIs that bridge the gap between previous versions of the Mac OS and Mac OS X. If you've
programmed the Macintosh in the past, many of the APIs will look familiar to you: File Manager, Memory
Manager, and Resource Manager. Both Carbon and Cocoa applications can access the Carbon APIs, which is
an advantage for developers pursuing Cocoa development.

Depending on the last time you wrote a Macintosh application, things might have changed. A nib-based
Carbon application used in Project Builder can literally be as simple as the code in Listing 5.1. It probably
looks different from what you remember in THINK C.

Listing 5.1 Carbon Application Main

int main(int argc, char* argv[])
{
 IBNibRef nibRef;
 WindowRef window;
 OSStatus err;

 // Create a Nib reference passing the name of the nib file
 // (without the .nib extension)
 // CreateNibReference only searches in the application bundle.
 err = CreateNibReference(CFSTR("main"), &nibRef);
 require_noerr(err, CantGetNibRef);

 // Once the nib reference is created, set the menu bar.
 // "MainMenu" is the name of the menu bar object.
 // This name is set in InterfaceBuilder when the nib is created.
 err = SetMenuBarFromNib(nibRef, CFSTR("MenuBar"));
 require_noerr(err, CantSetMenuBar);

 // Then create a window.
 // "MainWindow" is the name of the window object.
 // This name is set in InterfaceBuilder when the nib is created.
 err = CreateWindowFromNib(nibRef, CFSTR("MainWindow"), &window);
 require_noerr(err, CantCreateWindow);

 // We don't need the nib reference anymore.
 DisposeNibReference(nibRef);

 // The window was created hidden so show it.
 ShowWindow(window);

 // Call the plugin
 CallPlugin();

 // Call the event loop
 RunApplicationEventLoop();

CantCreateWindow:
CantSetMenuBar:
CantGetNibRef:
 return err;
}

Mind you, this application doesn't actually do anything except display a simple menu bar and an empty
window. These items are pulled from a nib file as created in Interface Builder. Figure 5.1 shows the Starting
Point choices that Interface Builder offers when creating a new nib file. Our application uses the Main
Window with Menu Bar. You'll note that once our application initializes everything, it makes a single
function call to RunApplicationEventLoop that handles everything else.

Figure 5.1. Choosing a nib file type in Interface Builder.

You've learned that Carbon applications can make use of nib files. This allows developers of these
applications to avoid having to use ResEdit (you remember ResEdit, don't you) to manage the resources of
their application. You can simply create your windows and dialogs directly in Interface Builder. The entire
project in Project Builder for our simple Carbon application is as shown in Figure 5.2. Project Builder
contains a template, Carbon Application (Nib Based), that we used to start this project.

Figure 5.2. A Carbon application project in Project Builder.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Results

You've seen one project already, but this chapter actually has three projects that come out of it. The
primary project is the CFPlugin-based Carbon plug-in itself. The other two are a Carbon application (which
you've seen previously) and a Cocoa application that call the plug-in. Both applications call the exact same
C language function that calls the exact same plug-in. The applications themselves are nothing more than
quick and dirty wrappers to demonstrate the process. We'll step through them later in this chapter.

Figures 5.3 and 5.4 show what each application looks like when calling the plug-in. The window to the left
is part of the application. The alert window to the right is called from within the plug-in itself. The "flag =
YES" display is showing the value of a Boolean value passed into the plug-in from the calling application.
Note that both applications are very similar: the only difference is that the Carbon application calls the plug-
in immediately upon launching, and the Cocoa application has a button that must be clicked to call the plug-
in. There is no reason for this other than it's easier to create a button in Cocoa than it is in Carbon, so we
decided to mix it up a bit and make sure that you were paying attention.

Figure 5.3. A Carbon application calling a Carbon plug-in.

Figure 5.4. A Cocoa application calling a Carbon plug-in.

Before we look at the plug-in project, here's a few words about how CFPlugins work at a very high level.

The basic tenants of the plug-in model are as follows:

● You define one or more plug-in types.
● Each plug-in type consists of one or more plug-in interfaces.
● Each plug-in implements all functions in all interfaces for all types that the plug-in supports.
● Each plug-in also provides factory functions that create each type it implements.
● When a host application loads a plug-in, it can call any of the factory functions within the plug-in to

instantiate any of the types that the plug-in supports. The application also receives a pointer to the
IUnknown interface to the type it instantiated.

● The host application then uses the IUnknown interface to query the implemented types for their
function tables. Once this is obtained, the host application can call the unique functions for the types
that are implemented within the plug-in.

An example might be an audio-editing plug-in. The type of plug-in is Audio Editor. We might then have two
interfaces—one for Real-Time audio processing and one for File-based audio processing. Because our plug-
in supports both interfaces, we will implement all functions that pertain to Real-Time audio processing and
File-based audio processing. We will provide one factory function to create the Audio Editor type. The host
application would then use the factory function to obtain the IUnknown interface for the type and then use
the QueryInterface function to obtain the actual interface with function pointers to the unique functions in
each implementation. The last thing to do is call the function in the plug-in—processRealTimeAudioPlease.

Keep these points in mind as we walk through the code of the plug-in and the host application, and you will
see each of them accounted for. They might seem confusing now, but when you see all the pieces fit
together, it will make much more sense.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The CFPlugin Project

The primary point of this chapter is to discuss the CFPlugin-based Carbon plug-in, so let's dive in. In
Project Builder, we started with the CFPlugin Bundle project template. This didn't really give us any default
source code, but it set up a few things in the project settings for us. Note that the project file in Figure 5.5
is not overcrowded. Let's verify a few settings before we continue.

Figure 5.5. The CFPlugin project in Project Builder.

The first item you will want to verify is the WRAPPER_EXTENSION build setting (see Figure 5.6). Although it
makes little difference what this extension is set to, "plugin" is the standard for this type of project. You will
want to make sure that this is set accordingly.

Figure 5.6. The CFPlugin project Target build settings in Project Builder.

The Info.plist entries (see Figure 5.7) are a bit more complex for this project than any other we have
worked with up to this point.

Figure 5.7. The CFPlugin project Info.plist entries in Project Builder.

You will notice the standard entries, but a few are new to you here. Let's look at the new items in the order

that they appear:

● CFPlugInDynamicRegisterFunction contains the name of a custom function to be called to perform
dynamic registration. This is only called if CFPlugInDynamicRegistration is set to YES. If
CFPlugInDynamicRegistration is set to YES and this key is not defined, a function named
CFPlugInDynamicRegister is called. This function is defined as follows: typedef void
(*CFPlugInDynamicRegisterFunction) (CFPlugInRef plugIn);.

● CFPlugInDynamicRegistration determines how the plug-in wants to be registered. If the value is
NO, static registration is used. If the value is YES, dynamic registration is used. We will be using
static registration in this project.

● CFPlugInFactories is used for static registration. Its value is a dictionary whose keys are factory
UUIDs (Universally Unique Identifiers) in string format and whose values are function names within
the plug-in. Factories are functions within the plug-in that are used to create instances of the plug-
in. A plug-in can have multiple factories that create multiple types of plug-ins; that is, a plug-in can
actually contain multiple plug-ins. This function is defined as follows: typedef void *
(*CFPlugInFactoryFunction) (CFAllocatorRef allocator, CFUUIDRef typeUUID);.

● CFPlugInTypes is used for static registration. Its value is a dictionary whose keys are type UUIDs in
string format and whose values are arrays of factory UUIDs. You are essentially linking the factories
to the types they create in this entry.

● CFPluginUnloadFunction, although not listed here, can be used to define a custom function that is
called when the plug-in's code is unloaded. If it is not defined, no function is called. This function is
defined as follows: typedef void (*CFPlugInUnloadFunction) (CFPlugInRef plugIn);.

Note

As you can see by my example, I will be using static registration to demonstrate the CFPlugin
architecture. However, you can implement dynamic registration if your plug-in has the need to
check for specific hardware configuration, and so on. Dynamic registration allows you to create
your factory/type relationships in code at runtime as opposed to in a static Info.plist entry.
The use of dynamic registration loads the code of the plug-in immediately because the
CFPlugInDynamicRegisterFunction must be called. With static registration, however, the
code doesn't need to be loaded until the host application needs to call it—which is a good thing
with regards to memory management.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

What Is a UUID?

You will notice that we are making use of something called a UUID to describe our interface, factories, and
types. A UUID is a Universally Unique Identifier, which is essentially a value that is unique across all
computers in the entire world. It is a 128-bit value that combines a value unique to the computer, usually a
hardware Ethernet address, and a value representing the number of 100-nanosecond intervals since
October 15, 1582 at 00:00:00.

You can use the UUIDCreator application (see Figure 5.8), written especially for this book, to generate
these numbers for you. You will notice that UUIDCreator creates UUIDs in both ASCII and HEX formats. You
need to use the ASCII format in your property lists, whereas in code, you will tend to use the HEX version
more. The software and source code is available on this book's Web site, along with all the source code for
every project.

Figure 5.8. The UUIDCreator application.

[Team LiB]

[Team LiB]

The CFPlugin Project Source Code

Now that the project settings are out of the way, let's dive into the source code. The good news is that
there is only one source file with less than a dozen functions in it. The bad news is that it can be very
confusing, so put on your thinking cap.

The CFPlugin architecture is based on Microsoft's COM (Component Object Model) technology. This means
that, in theory, you can write plug-ins that are cross-platform and compatible with any host that supports
COM. We are not going to worry about that right now though; we're going to concentrate on getting one
working under OS X first.

The Plug-in Interface

The first thing a plug-in needs is an interface (see Listing 5.2). The plug-in interface is used by the
application to access the plug-in's functionality. It also defines the UUIDs for the types, factories, and the
interface itself. Notice that the definitions are made using the HEX format of the UUID, beginning with a
NULL.

Listing 5.2 Plug-in Interface in MyCFPluginInterface.h

// Define the UUID for the type
#define kMyTypeID (CFUUIDGetConstantUUIDWithBytes(NULL, 0xDC, 0x83, 0xB5,
0xC8, 0xDD, 0x18, 0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// The UUID for the factory function
#define kMyFactoryID (CFUUIDGetConstantUUIDWithBytes(NULL, 0xDC, 0x3F, 0x0D,
0x89, 0xDD, 0x19, 0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// Define the UUID for the interface
// MyType objects must implement MyInterface
#define kMyInterfaceID (CFUUIDGetConstantUUIDWithBytes(NULL, 0x07, 0x1D, 0x88,
0x1D, 0xDD, 0x1A, 0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// The function table for the interface
typedef struct MyInterfaceStruct {
 IUNKNOWN_C_GUTS;
 void (*myPluginFunction)(void *this, Boolean flag);
} MyInterfaceStruct;

Also in the interface is a structure that defines the functions in our plug-in. In this case, we only have one
function, myPluginFunction, which returns void and accepts two parameters. The first parameter, this, is
a pointer to the interface itself. The second parameter, flag, is a Boolean that is displayed in the dialog
box that the plug-in displays. You can define as many functions as you need using whatever parameters
you require.

Also in the interface structure is something called IUNKNOWN_C_GUTS. IUNKNOWN_C_GUTS is a macro defined
in CFPluginCOM.h. It defines the bare minimum needed in the function table structure MyInterfaceStruct.
IUnknown can be considered the "base" interface that all COM objects are modeled on (the super class if
you will). This means that all COM objects are really IUnknown objects at heart and all start with the three

functions QueryInterface, AddRef, and Release as shown in Listing 5.3.

Listing 5.3 IUNKNOWN_C_GUTS in CFPluginCOM.h

#define IUNKNOWN_C_GUTS \
 void *_reserved; \
 HRESULT (STDMETHODCALLTYPE *QueryInterface) \
 (void *thisPointer, REFIID iid, LPVOID *ppv); \
 ULONG (STDMETHODCALLTYPE *AddRef)(void *thisPointer); \
 ULONG (STDMETHODCALLTYPE *Release)(void *thisPointer)

Note

To gain more insight into the magic of COM, be sure to browse the header file CFPluginCOM.h.
This is where IUnknown is defined, as well as many other useful tidbits.

The Plug-in Main Function

Let's look at the source code that is our Carbon plug-in. Everything in this section can be found in main.c in
the CFPlugin project, as shown in Figure 5.5.

You've seen the function table for our plug-in interface in Listing 5.2. The interface needs a type to
implement it. Our type could be considered an object because it contains both data and functions (via the
interface). When we ultimately allocate and initialize our type of object, we want to return a complete unit
as shown in Listing 5.4.

Listing 5.4 MyType Definition in main.c

// The layout for an instance of MyType
typedef struct _MyType {
 MyInterfaceStruct* myInterface;
 CFUUIDRef factoryID;
 UInt32 refCount;
 } MyType;

The first function that will be called in our plug-in is our factory function (see Listing 5.5). Shortly after
creating the plug-in, the host application will find all factories in the plug-in that pertain to a particular
object type that the application is interested in. The factory functions returned are directly related to the
definitions in the Info.plist entries in Figure 5.7.

Listing 5.5 myFactoryFunction in main.c

// Implementation of the factory function for this type
void *myFactoryFunction(CFAllocatorRef allocator, CFUUIDRef typeID)
{
 printf("myFactoryFunction\n");

 // If correct type is being requested,
 // allocate an instance of MyType and return the IUnknown interface
 if (CFEqual(typeID, kMyTypeID)) {
 MyType *result = _allocMyType(kMyFactoryID);
 return result;
 } else {
 // If the requested type is incorrect, return NULL
 return NULL;
 }
}

When the host application calls CFPlugInInstanceCreate and causes our factory function to be called, we
verify that the caller wants to create a type that we know about. Once validated, we create the type by
calling the private _allocMyType function and return the result, which will be a pointer to a MyType
structure as shown in Listing 5.4. Note the printf function used for debugging purposes and to help trace
our code at runtime.

Listing 5.6 _allocMyType in main.c

// Utility function that allocates a new instance
static MyType *_allocMyType(CFUUIDRef factoryID)
{
 // Allocate memory for the new instance
 MyType *newOne = (MyType*)malloc(sizeof(MyType));

 // Point to the function table
 newOne->_myInterface = &myInterfaceFtbl;

 // Retain and keep an open instance refcount for each factory
 newOne->_factoryID = CFRetain(factoryID);
 CFPlugInAddInstanceForFactory(factoryID);

 // This function returns the IUnknown interface so set the refCount to one
 newOne->_refCount = 1;
 return newOne;
}

Listing 5.6 shows the _allocMyType function that actually allocates and initializes our type structure. Note
that it fills the myInterface variable with a pointer to myInterfaceFtbl, shown in Listing 5.7.
myInterfaceFtbl is a static declaration of MyInterfaceStruct that contains a NULL pad, the "my" versions
of the standard IUnknown functions (QueryInterface, AddRef, and Release), and the pointer to our one
and only unique plug-in function, myPluginFunction. Note that this static declaration mirrors the
MyInterfaceStruct in Listing 5.2 and the IUNKNOWN_C_GUTS in Listing 5.3. We also keep track of the
factory UUID so that we can follow the usage status of our type.

Listing 5.7 myInterfaceFtbl in main.c

// The MyInterface function table
static MyInterfaceStruct myInterfaceFtbl = {
 NULL, // Required padding for COM
 myQueryInterface, // These three are the required COM functions

 myAddRef,
 myRelease,
 myPluginFunction }; // Interface implementation (specific to my plugin)

At this point, the host will have a copy of the IUnknown interface and can use the QueryInterface function
to obtain the interface that is my "subclass" of IUnknown—the "my" interface. When QueryInterface is
called, my plug-in's myQueryInterface function (see Listing 5.8) is subsequently executed.

Listing 5.8 myQueryInterface in main.c

// Implementation of the IUnknown QueryInterface function
static HRESULT myQueryInterface(void *this, REFIID iid, LPVOID *ppv)
{
 HRESULT hResult = E_NOINTERFACE;

 printf("myQueryInterface\n");

 // Create a CoreFoundation UUIDRef for the requested interface
 CFUUIDRef interfaceID = CFUUIDCreateFromUUIDBytes(NULL, iid);

 // Test the requested ID against the valid interfaces
 if (CFEqual(interfaceID, kMyInterfaceID)) {

 // If the MyInterface was requested, bump the ref count,
 // set the ppv parameter equal to the instance, and return good status
 // This calls through to myAddRef
 ((MyType*)this)->_myInterface->AddRef(this);
 *ppv = this;
 hResult = S_OK;

 } else if (CFEqual(interfaceID, IUnknownUUID)) {

 // If the IUnknown interface was requested, bump the ref count,
 // set the ppv parameter equal to the instance, and return good status
 // This calls through to myAddRef
 ((MyType*)this)->_myInterface->AddRef(this);
 *ppv = this;
 hResult = S_OK;

 } else {

 // Requested interface unknown, bail with error
 *ppv = NULL;
 hResult = E_NOINTERFACE;

 }

 // Release interface
 CFRelease(interfaceID);
 return hResult;
}

The myQueryInterface function converts the incoming interface UUID to a format that it can easily
compare against using the CFUUIDCreateFromUUIDBytes function. It then validates if the requested

interface is one that is supported here. If so, we increment the reference count by calling AddRef (which
really calls through to myAddRef in Listing 5.9) and return the this pointer, the actual plug-in interface.

Listing 5.9 myAddRef in main.c

// Implementation of reference counting for this type
// Whenever an interface is requested, bump the refCount for
// the instance NOTE: returning the refcount is a convention
// but is not required so don't rely on it
static ULONG myAddRef(void *this)
{
 printf("myAddRef\n");

 return ((MyType*)this)->_refCount++;
}

At this point, the host application will release the IUnknown interface by calling Release, which will
subsequently call our myRelease function in Listing 5.10.

Listing 5.10 myRelease in main.c

// When an interface is released, decrement the refCount
// If the refCount goes to zero, deallocate the instance
static ULONG myRelease(void *this)
{
 printf("myRelease\n");

 ((MyType*)this)->_refCount—;
 if (((MyType*)this)->_refCount == 0) {
 _deallocMyType((MyType*)this);
 return 0;
 } else
 return ((MyType*)this)->_refCount;
}

After decrementing the reference count, if it is zero, the type is deallocated by calling the private mirrored
function of _allocMyType, _deallocMyType (see Listing 5.11).

Listing 5.11 _deallocMyType in main.c

// Utility function that deallocates the instance
// when the refCount goes to zero
static void _deallocMyType(MyType *this)
{
 CFUUIDRef factoryID = this->_factoryID;
 free(this);
 if (factoryID) {
 CFPlugInRemoveInstanceForFactory(factoryID);
 CFRelease(factoryID);
 }
}

The only thing left to do at this point is actually call the function that is unique to our type and interface.
It's amazing how 95% of the source code is the setup of the mechanism to call this one simple function.
The function in Listing 5.12 is the entire reason for this chapter. When called, it will display a standard alert
with the value of the flag variable displayed as flag = YES or flag = NO. The host application will
ultimately release this interface as well when it is done with it.

Listing 5.12 myPlugInFunction in main.c

// The implementation of the MyInterface function
static void myPluginFunction(void *this, Boolean flag)
{
 SInt16 outItemHit;
 StandardAlert(kAlertNoteAlert,
 flag ? "\pCFPlugin (flag = YES)" : "\pCFPlugin (flag = NO)",
 "\pThis alert is being called from myPluginFunction in CFPlugin.",
 NULL, &outItemHit);
}

Before you move on to see how the Carbon application makes this all come together, take a short break.
Stretch, go look out a window, walk the dog, or play with the cat. When you return, we'll dive into the
application source code. It's only one function, so it should be easy enough.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The CFPluginCarbonApp Host Application Project

What good is a CFPlugin-based Carbon plug-in without an application to call it? This section shows you
how to call your plug-in from your Carbon application. Figure 5.3 shows the results of the application. There
is actually only one source file to deal with in this application; the MyCFCallPlugin.c file contains the
CallPlugin function (see Listing 5.13) that does all the work.

Listing 5.13 CallPlugin in MyCFCallPlugin.c

void CallPlugin(void)
{

 // Create a URL that points to the plug-in using a hard-coded path
 // (You will need to change this to point to the plugin)
 CFURLRef url = CFURLCreateWithFileSystemPath(NULL,
 CFSTR("/Users/zobkiw/Documents/OSXBook/_SOURCE_/
 5. Carbon Plugins/CFPlugin/build/CFPlugin.plugin"),
 kCFURLPOSIXPathStyle, TRUE);

 // Create a CFPlugin using the URL
 // This step causes the plug-in's types and factories
 // to be registered with the system
 // Note that the plug-in's code is not loaded unless
 // the plug-in is using dynamic registration
 CFPlugInRef plugin = CFPlugInCreate(NULL, url);
 if (plugin) {
 // See if this plug-in implements the "My" type
 CFArrayRef factories = CFPlugInFindFactoriesForPlugInType(kMyTypeID);

 // If there are factories for the requested type, attempt to get
 // the IUnknown interface
 if ((factories != NULL) && (CFArrayGetCount(factories) > 0)) {

 // Get the factory ID for the first location in the array of IDs
 CFUUIDRef factoryID = CFArrayGetValueAtIndex(factories, 0);

 // Use the factory ID to get an IUnknown interface
 // Here the code for the PlugIn is loaded
 // IUnknownVTbl is a struct containing the IUNKNOWN_C_GUTS
 // CFPlugin::MyFactoryFunction is called here
 IUnknownVTbl **iunknown = CFPlugInInstanceCreate(NULL,
 factoryID, kMyTypeID);

 // If this is an IUnknown interface, query for the "My" interface
 if (iunknown) {
 MyInterfaceStruct **interface = NULL;

 // CFPlugin::myQueryInterface is called here
 // CFPlugin::myAddRef is called here
 (*iunknown)->QueryInterface(iunknown,
 CFUUIDGetUUIDBytes(kMyInterfaceID),

 (LPVOID *)(&interface));

 // Done with IUnknown
 // CFPlugin::myRelease is called here
 (*iunknown)->Release(iunknown);

 // If this is a "My" interface, try to call its function
 if (interface) {
 (*interface)->myPluginFunction(interface, TRUE);
 (*interface)->myPluginFunction(interface, FALSE);

 // Done with interface
 // This causes the plug-in's code to be unloaded
 // CFPlugin::myRelease is called here
 (*interface)->Release(interface);
 } else printf("Failed to get interface.\n");
 } else printf("Failed to create instance.\n");
 } else printf("Could not find any factories.\n");

 // Release the CFPlugin memory
 CFRelease(plugin);

 } else printf("Could not create CFPluginRef.\n");

}

Note

One thing you will note in this function is that we use printf to display error messages during
development. If you want to leave these debugging statements in your code, you might
consider using fprintf and printing your errors to standard error, such as this: fprintf
(stderr, "Could not blah!").

This function finds the plug-in explicitly. There is no enumeration through directories, although you could
add that easily enough. We use a full path to the plug-in and pass it to the
CFURLCreateWithFileSystemPath function. When you run this on your computer, you will need to change
this path accordingly.

Once we have the path to the plug-in, we create a CFPlugInRef from the URL. This is really nothing more
than a bundle reference because our plug-in is really nothing more than a bundle. At this point, the plug-
in's Info.plist entries are read in, and all the factories and types are registered with the operating
system. If we were using dynamic registration, our dynamic registration function would be called at this
point.

With the plug-in reference, we use the CFPlugInFindFactoriesForPlugInType function to see if the plugin
implements the "my" type represented by the UUID kMyTypeID. If the array comes back with any items in
it, we know that there is a factory to create this type. In our case, we only have one factory, but there
might be any number. We then extract the factory UUID from the array and use it to get the IUnknown
interface for the "my" type by calling the CFPlugInInstanceCreate function. This is where our plug-ins
factory function (refer to Listing 5.5) is called. If multiple factories were returned, we would simply loop
through the array to access each of them in turn. We would then examine each one further to decide which

one to use, as follows.

After we obtain the IUnknown interface, we can further query the plug-in for the specific "my" interface by
calling the QueryInterface function. This is where our plug-in's myQueryInterface (refer to Listing 5.8) is
called. When an interface is returned, we are through with the IUnknown interface and can release it.

At this point, we have a pointer to the MyInterfaceStruct (the interface that our plug-in implements) that
we can use to call the myPluginFunction passing whatever parameters we have defined. In our case, we
pass the interface itself (this) and a Boolean value (flag). This is when you will see the alert appear from
within the plug-in (refer to Figure 5.3). After we are done with the interface, we release it as well and then
ultimately release the plug-in reference.

Let's look at a diagram that might help to solidify your understanding of how these pieces fit together (see
Figure 5.9). Note that this model allows for an extremely complex set of relationships between the plug-ins
and the host application, including the use of multiple factories for multiple types. You need not implement
every possible complexity to use the architecture successfully. Don't over engineer for the sake of over
engineering.

Figure 5.9. The CFPlugin architecture.

Note the relationships to the plug-in, the factory, the type, and the interface in Figure 5.9. Multiple

interfaces are possible as are multiple types and multiple factories at any stage of this diagram. This is a
simple example of what we have presented in this chapter.

A lot of steps and intricacies need to come together to make all this work properly. You might need to
reread both the plug-in and the application sides again for it to all fit together. Be sure to look at the source
code too.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The CFPluginCocoaApp Host Application Project

It is possible to call a CFPlugin-based Carbon plug-in from within a Cocoa application. There really isn't
much to talk about here because the same CallPlugin function in Listing 5.13 is called from within the
Cocoa application to call the same plug-in developed earlier. It's code reuse at its finest!

The CallPlugin button (as you saw in Figure 5.4) is connected to the doCallPlugin: method in Listing 5.14.
When the button is pressed, the method is called, which does nothing more than call through to the
CallPlugin function reviewed previously. This is not only an example of a Cocoa application calling a
standard C function, but also a Cocoa application calling a CFPlugin-based Carbon plug-in.

Listing 5.14 doCallPlugin in AppController.c

- (IBAction)doCallPlugin:(id)sender
{
 CallPlugin();
}

Note

So, should you use Cocoa or Carbon when it comes to plug-ins? When I asked many
professional Mac OS X developers this question, the answer came up as expected:

If you are supporting legacy code or operating systems in any way, you might need to use
CFPlugins. This gives you the advantage of compatibility with pre-Mac OS X operating
systems as well as the ability to unload unused code at the expense of a more complex
architecture.

If you are developing brand new applications for OS X only and not looking back, use
NSBundle. NSBundle provides an elegant interface to your plug-ins, but it is only compatible
with Mac OS X and does not (currently) allow code to be unloaded when no longer needed.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some ideas to expand the plug-in project in this chapter; try these on your own.

Load the Carbon plug-in from your own application bundle as in Chapter 4 using directory enumeration.
Don't forget to set up the project file to copy the plug-in into the PlugIns directory.

Choose your poison, Carbon or Cocoa, and write a useful application that makes use of the CFPlugin
mechanism. If you're brave, you might try writing the image-editing application from Chapter 4 using
CFPlugin instead of NSBundle.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

You now have a good platform to base your plug-in development on. Not only have you learned about
calling Cocoa plug-ins from Cocoa in Chapter 4, but also Carbon plugins from Carbon and Cocoa in this
chapter. Throughout the chapters of this book, you will see plug-in type code implemented in various ways,
proving that there truly are as many ways to implement something as there are programmers! Use the
examples presented here to get you started, and be sure to share your improvements with the developer
community.

[Team LiB]

[Team LiB]

Chapter 6. Frameworks

"You don't know what I know!"

—said the Framework to the Application

Frameworks provide a convenient way to distribute a library along with headers, documentation, and other
resources. Frameworks are most analogous to libraries in C. If you're a C programmer, you have
undoubtedly created or used a library. You might not have known it, but you have.

You might be familiar with libraries that come with a .lib file (the library itself) and a separate .h file (the
header, or interface, file). The library file contains all the compiled source code to perform certain tasks,
whereas the header file defines the interface to that code. By adding the library to your project and
including the header file in your source files, you can access the functionality of the library without ever
seeing its source code. Frameworks are very similar, but are much more advanced in structure and form.

Note

I know it's early in the chapter, but this is just a quick note to say that although libraries
ending in .lib are popular, there are plenty of others. Dynamic libraries end in .dylib and
static libraries end in .a.

Similar to libraries, frameworks allow you to easily hide the implementation of classes or functions while
providing an interface for others to access the hidden functionality. For example, you might have a highly
secure encryption algorithm that someone else in your company needs to use, but you don't want the
source code getting out. You can easily compile this function in a framework, release it with an interface
file, and not have to worry. You can provide updates as needed and not be concerned about someone
having old copies of your source code lying around. Frameworks can automatically handle versioning so
that the latest version executes even if multiple versions are installed.

In addition, frameworks are bundles. Therefore, they can contain compiled code, plists, resources, nib files,
documentation, and so on. You can place just about anything you like (including other frameworks) in a
framework's bundle. Framework bundle names end in .framework. Figure 6.1 shows what a framework
looks like in the Finder.

Figure 6.1. Apple's AudioUnit framework.

Note that Apple's AudioUnit framework looks just like a folder in the Finder. You can open it up and browse
the contents the same as you would any folder you create. The framework stores specific versions of its
content in a Versions directory; you can use the Current alias (actually a symbolic link) to find the
framework's current version. The Headers directory contains the public interface to the framework. To use
this framework, you would simply add it to your project and include the required header files in your source
code. The framework will work in either a Cocoa or Carbon project, as you will see shortly. Listing 6.1
shows that the AudioUnit.h header includes all the other headers defined in the framework. Therefore, in
many cases, you only need to be concerned about including the single file. Your project now has access to
all the published functions in the framework.

Listing 6.1 AudioUnit.h

#ifndef __AUDIOUNIT__
#define __AUDIOUNIT__

// This is the main AudioUnit specification
#include <AudioUnit/AUComponent.h>

#include <AudioUnit/AudioOutputUnit.h>
#include <AudioUnit/MusicDevice.h>

#include <AudioUnit/AudioUnitProperties.h>
#include <AudioUnit/AudioUnitParameters.h>

#include <AudioUnit/AudioUnitCarbonView.h>

#include <AudioUnit/AudioCodec.h>

// This file relies on AUComponent.h
// and contains the differences of Version 1 API
#include <AudioUnit/AUNTComponent.h>

#endif /* __AUDIOUNIT__ */

Note

If you've read any books in the past that discussed code fragments, you are already familiar
with the capabilities of the Code Fragment Manager. One of the nice features of this manager
was versioning. Code fragments would automatically run the most recent version of
themselves if multiple versions were installed. Frameworks are designed in such a way that
multiple versions of a framework can be made available and accessed accordingly. You can
check to see what the current version of a Framework is by using the
CFBundleGetVersionNumber function in CFBundle.h. This can be useful if you want to check
for features or implement workarounds.

Normally your application will link against a specific version of a framework: "Link against
version A of AppKit," for example. Using this mechanism, you can run older programs on
newer computers since the older version of AppKit will still exist on the new machine. This
topic is discussed in more detail in Apple's Mac OS X Overview documentation.

[Team LiB]

[Team LiB]

Apple Frameworks

Much of the functionality in Mac OS X is implemented via frameworks. The AudioUnits framework is one
such framework that implements audio-related functionality in the OS. There are plenty of others as well.
Browse the /System/Library/Frameworks directory structure for a whole bunch of frameworks available
for your use (see Figure 6.2). You can usually find documentation on Apple's Web site for each framework.

Figure 6.2. A partial look at the /System/Library/Frameworks directory.

As you can see, there are plenty of frameworks to keep you busy exploring and new ones are being made
available regularly. Most of them are documented, but every once in awhile, you might find one that has no
documentation—be careful with these. Sometimes Apple uses a framework to implement something

internally to the OS with out releasing the documentation right away, although the interface might exist.
Eventually these interfaces usually become public, but if they are not officially documented, be wary of
using them in any application you release to the public. You might find yourself with a headache later on
when the interface changes.

Other frameworks exist in the /System/Library/PrivateFrameworks directory. These are truly private to
Apple and can (and will) change at anytime without warning or concern for binary compatibility. Generally,
anything in /System/Library/Frameworks is fair game for third-party developers such as yourself. Just
because it isn't documented doesn't mean that it isn't supported. However, if you use anything in /System/
Library/PrivateFrameworks, you can be guaranteed the headache that was only a possibility in the
previous paragraph.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Third-Party Frameworks

Some very popular third-party frameworks are also available for your use. One in particular that is quite
robust is made available by The Omni Group at http://www.omnigroup.com/developer/sourcecode/. The
Omni Group provides multiple frameworks that provide varying functionality. All is available for your use
under the Omni Source License (available on their Web site), and some of it is even cross-platform. Let's
look at what it has to offer as of this writing. The following descriptions are directly from the Web site with
only a few edits.

OmniBase

OmniBase is the lowest-level framework in the Omni framework suite. It is used by virtually every
consumer product and consulting application we've written. OmniBase provides a series of debugging aids
for class allocation and initialization, an alternative assertions mechanism, several Objective-C runtime
manipulation aids, and a very reliable, cross-platform implementation of +load: (called +didLoad:).

OmniFoundation

OmniFoundation is our extension to Apple's Foundation framework. Beside several extremely useful
extensions to Apple Foundation classes, OmniFoundation provides a horde of unique and powerful classes.
Among the more interesting are

● OFStringScanner— A blindingly fast Unicode-safe alternative to NSStringScanner for when you
really need to burn through those character streams.

● OFRegularExpression— Powerful regular expression processing wrapped in an Objective-C shell.
Combine with OFStringScanner for extra fun.

● OFTrie— Implementation of the popular trie data structure. Interfaces to OFStringScanner for
rapid scanning of "longest" token elements.

● OFMessageQueue and OFQueueProcessor— Writing stable multithreaded applications is an error
prone process. These classes help de-fang the savage beast.

OmniFoundation is a veritable treasure chest of programming goodies. Look for yourself.

OmniNetworking

OmniNetworking provides a simple and extensible Objective-C wrapper to a multitude of complex
networking constructs. Communication over several Internet standard protocols is supported, including
TCP, UDP, and Multicast. Writing a simple FTP client or custom TCP/IP-based server program becomes a
trivial task using OmniNetworking.

OmniAppKit

OmniAppKit is our set of extensions to Apple's AppKit.framework—full of cool stuff to make Mac OS X
application development even easier. Some highlights are

● AppleScript— OAOSAScript makes it super easy to run AppleScripts from within a Cocoa app, and

http://www.omnigroup.com/developer/sourcecode/default.htm

companion classes introduce features such as automatically populated script menus, scripts on
toolbars, and extensions to the Text suite allowing scripters to manipulate rich text.

● OAPreferences— An architecture for building multipane Preferences windows. All you need to do is
write the individual preference panes (which is quite easy) and OAPreferences will automatically
generate an appropriate Preferences window—one such as System Preferences if you have a lot of
panes, or one such as Mail's Preferences window if you only have a few.

● OAFindPanel— Apple has a standardized architecture for Find in applications, but implementing it is
entirely up to developers. OmniAppKit provides a powerful Find and Replace panel and a protocol for
easily making widgets and documents in your app searchable.

OmniAppKit also includes a lot of extensions to Apple's classes to make creating rich user interfaces much
easier.

OWF

Perhaps the most powerful framework in our entire framework suite, OWF, otherwise known as the Omni
Web Framework, provides an advanced architecture within which to write multithreaded, Internet
applications. OWF is the work horse in OmniWeb controlling all the content fetching, HTML/SGML parsing,
FTP server manipulation, and so on. If OmniFoundation is the Objective-C programmer's Swiss Army Knife,
OWF is their double barrel, rotary laser cannon.

Want to write a quick app to fetch stock prices from www.fakestocksite.com? OWF practically already does
it. Need to fetch and parse a credit report from the credit bureau in your e-commerce site? Sprinkle in
some custom logic, and the OWF fairy does the rest. In the next version, we plan on integrating back
scratching and toast making.

OmniHTML

OmniHTML is the part of OmniWeb's architecture that actually renders parsed HTML and decoded images
for display in a view. It also provides some conveniences such as URL dragging and file downloading that
come in handy if you're writing something such as a Web browser.

As you can see, The Omni Group makes some powerful frameworks available. Be sure to check them out if
you need any of the functionality they provide. This is proven code that you wouldn't want to rewrite if you
didn't have to.

Now let's look at how to create our own framework!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

Figure 6.3 shows the resulting application in action. Our application is written in Cocoa and calls through to
both a Carbon and a Cocoa framework, depending on which button you press. The two integer values from
the fields above the buttons are passed to the framework, and the result is returned and displayed in the
alert. The application handles displaying all user interface components including the alert. In our case, the
framework has no user interface at all and simply performs the calculation.

Figure 6.3. MyCocoaApp calling a framework.

Figure 6.4 shows what the Cocoa application's package looks like. Note that there is a Frameworks
directory containing both the Carbon and Cocoa frameworks. Much like how plug-ins are copied into an
application, we copy the frameworks into our application here. This is discussed in more detail later. We
could have placed the frameworks in the ~/Library/Application Support/Our Application directory if
we rather, but in this case it's easier to build them right into the application itself—no installer required!
Mind you, by putting the frameworks directly in the application, they cannot be shared by other applications
that might also use them. This is our trade-off at this point. /Library/Frameworks is also a popular place
to store frameworks that need to be shared among multiple applications.

Figure 6.4. MyCocoaApp package contents.

Note

How do you decide if you should put a framework inside your application package or in a
friendlier place to allow sharing between other applications? If your framework is private and
no other applications (including your own) will use it, build it in to your application package.
However, if you are working with a framework that will be used in multiple applications, save
your users some drive space (and memory) and place them in a universal location to be
shared among all the applications that will use them.

Taking this one step further, frameworks can be made available as application-specific (as
noted previously), user-specific, machine-wide or across an entire local area network. Placing
your framework in ~/Library/Frameworks makes it available to only that specific user. Placing
your framework in /Library/Frameworks makes it available to all users on the machine.
Finally, if you want to use your framework over an entire network, you would place it in /
Network/Library/Frameworks.

In this chapter, we will create three projects. One is the Cocoa application that will call the frameworks and
the other two are the frameworks themselves. One of the frameworks will be implemented as a Carbon
framework; the other will be a Cocoa framework. Let's look at the projects!

[Team LiB]

[Team LiB]

The Carbon Framework Project

This project (see Figure 6.5) was started with the Carbon Framework template in Project Builder. Other
than creating the MyCarbonFramework.c and MyCarbonFramework.h files as shown, there really is nothing
more to do to have a working Carbon framework. Simply build the project, and MyCarbonFramework.
framework will be created for you.

Figure 6.5. The MyCarbonFramework project in Project Builder.

Listings 6.2 and 6.3 show that this framework has one function, doAddition. It takes two integer
parameters, a and b, and returns a single integer result. We could have added as many functions and
source files as needed to this project. We could even add resources and nibs. As long as it all compiles,
we're all set. Let's look at the Cocoa equivalent, and then we'll see how the Cocoa application makes use of
these frameworks.

Listing 6.2 MyCarbonFramework.h

#include <Carbon/Carbon.h>

int doAddition(int a, int b);

Listing 6.3 MyCarbonFramework.c

#include "MyCarbonFramework.h"

int doAddition(int a, int b)
{
 return a+b;
}

[Team LiB]

[Team LiB]

The Cocoa Framework Project

This project (see Figure 6.6) was started with the Cocoa Framework template in Project Builder. Other than
creating the MyCocoaFramework.m and MyCocoaFramework.h files as shown, there really is nothing more to
do to have a working Cocoa framework. Simply build the project, and MyCocoaFramework.framework will be
created for you.

Figure 6.6. The MyCocoaFramework project in Project Builder.

Listings 6.4 and 6.5 show that this framework has one class that has a single class method, +doAddition:
plus:. It takes two integer parameters, a and b, and returns a single integer result. We could have added
as many classes, methods, and source files as needed to this project. We could even add resources and
nibs. As long as it all compiles, we're all set. See how similar the Carbon and Cocoa frameworks are? They
both accomplish the same task with only slight differences. On disk, they both pretty much look the same
as well.

Listing 6.4 MyCocoaFramework.h

#import <Cocoa/Cocoa.h>

@interface MyCocoaObject : NSObject
{
}
+ (int)doAddition:(int)a plus:(int)b;
@end

Listing 6.5 MyCocoaFramework.m

#import "MyCocoaFramework.h"

@implementation MyCocoaObject

+ (int)doAddition:(int)a plus:(int)b
{
 return a+b;
}

@end

Note

Question: Why did we make this a class method?

Answer: Because no object state was required to satisfy the result.

This method could have easily been implemented as a C-style function as in the Carbon
example. However, I wanted to show a method as part of an object. Any framework you
implement might be more complex than this example, and you might need to implement class
and instance methods.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Cocoa Application Project

Our Cocoa application is straightforward as well. We created a basic application project (see Figure 6.7)
using our AppController to both implement the -applicationShouldTerminateAfterLastWindowClosed:
and function as our window controller by managing the NSTextFields in the application window and the -
doCarbon: and -doCocoa: action methods.

Figure 6.7. The MyCocoaApp project in Project Builder.

Note

Remember, in order for the AppController to receive the -
applicationShouldTerminateAfterLastWindowClosed: delegate message, it must be
registered as the application's delegate. One way to do this is to hook your AppController
object up to the File's Owner's (NSApplication's) delegate outlet in MainMenu.nib. Another
way is to send [NSApp setDelegate:self]; in AppController's -awakeFromNib method.

In AppController.h, the AppController object is defined as shown in Listing 6.6. Note that it has two
IBOutlets for the text fields and two IBActions for the buttons. These are connected in the standard way
using Interface Builder.

Listing 6.6 AppController Interface in AppController.h

@interface AppController : NSObject
{
 IBOutlet NSTextField *m_a;
 IBOutlet NSTextField *m_b;
}
-(IBAction)doCarbon:(id)sender;
-(IBAction)doCocoa:(id)sender;
@end

Listing 6.7 shows the AppController implementation itself. Notice that we import the header files from the
two frameworks in order to have access to the functions/methods within them. In addition, at the top of
this file, in awakeFromNib: we initialize the values of the two NSTextFields to 7 and 3. They are numbers
chosen arbitrarily—they could have just as easily been 39 and 43. Jumping to the bottom of the file, the
applicationShouldTerminateAfterLastWindowClosed: method is implemented as we've done in the
past, for convenience.

The -doCarbon: and -doCocoa: methods are the meat of this example. When the user clicks the Carbon
button, after giving her the chance to cancel, the -doCarbon: method calls the doAddition function in the
Carbon framework. It passes the integer values from the text fields and displays the result in an alert. The -
doCocoa: method works the same way with the exception that the framework that it calls contains a Cocoa
class with +doAddition:plus: implemented as a class method.

Listing 6.7 AppController Implementation in AppController.m

#import "AppController.h"
#import "../MyCocoaFramework/MyCocoaFramework.h"
#import "../MyCarbonFramework/MyCarbonFramework.h"

@implementation AppController

- (void)awakeFromNib
{
 [m_a setIntValue:7];
 [m_b setIntValue:3];
}

-(IBAction)doCarbon:(id)sender
{
 if (NSRunAlertPanel(@"Carbon",
 @"Call the Carbon framework?", @"OK", @"Cancel", @"")
 == NSAlertDefaultReturn) {
 int result = doAddition([m_a intValue], [m_b intValue]);
 NSRunAlertPanel(@"Carbon Result",
 @"The result of the computation is %d",
 @"OK", @"", @"", result);
 }
}

-(IBAction)doCocoa:(id)sender
{
 if (NSRunAlertPanel(@"Cocoa",
 @"Call the Cocoa framework?", @"OK", @"Cancel", @"")
 == NSAlertDefaultReturn) {
 int result = [MyCocoaObject doAddition:[m_a intValue]

 plus:[m_b intValue]];
 NSRunAlertPanel(@"Cocoa Result",
 @"The result of the computation is %d",
 @"OK", @"", @"", result);
 }
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

One last thing to remember is that the frameworks themselves must be copied into the application bundle.
Figure 6.8 shows the Copy Files Build Phase, as you've seen used in previous chapters. Note that we are
copying the files to the Frameworks directory as opposed to the Plug-Ins directory that we've used in the
past. If you forget this step, your application will simply quit as soon as it launches. You might see a few
bounces in the dock, but then it will fade away.

Figure 6.8. MyCocoaApp Copy Files build phase in Project Builder.

That is how you call a Cocoa or Carbon framework from within a Cocoa application.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some ideas to expand the framework project in this chapter; try these on your own.

Add another method to the Cocoa framework, but make it an instance method instead of a class method.
How would you call this method?

Create a doSubtraction implementation to each framework. Change the user interface to support addition
or subtraction of the same numbers. You might consider using a pop-up button or radio buttons to allow
the user to choose.

Instead of putting the frameworks in the application package itself, place them in a location that can be
used to share the frameworks with other applications.

[Team LiB]

[Team LiB]

Conclusion

As you can see, frameworks are a great way to manage your source code. Even if you don't need to hide
the implementation from others, packaging your tested modules as frameworks has many advantages for
code reuse and distribution—even within your organization. Think about how you might factor your
application to make it leverage the power of frameworks.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Part III: Enhancing the System

 7 System Services

 8 System Preference Panes

 9 Status Items

 10 Screen Effects

 11 Color Pickers

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 7. System Services

"Service with a smile!"

—Business slogan

System Services, hereinafter referred to as services, are applications that provide custom capabilities to
other applications. They can be found in the Services submenu of the application menu, as shown in Figure
7.1. Services are usually background-only applications and do not have a user interface as a normal
application would, although they might display a window for user input or feedback if needed. Examples of
services include spell checkers, screen grabbers, and text manipulators such as the one we will look at in
this chapter.

Figure 7.1. The Services menu.

Services are installed in either the Applications or /Library/Services folders. Those in the
Applications folder are normal applications and must be run once in order to have their items added to
the Services menu. They are then "remembered" by the operating system. Those in the /Library/
Services folder are loaded at login.

The items added to the menu can either be commands or submenus of commands. In Figure 7.1, the
Summarize application offers a single service and is listed as a single menu item: Summarize. The
MyTextService application, on the other hand, offers multiple services and therefore uses a submenu filled
with commands.

Although the contents of the Services menu are populated when an application launches, the items are
disabled by default. When the user clicks on the Services menu, the responder chain in the current
application is traversed to locate objects that can read or write the types of data provided by the services in

the menu. If any are found, those items are enabled in the menu. For example, you wouldn't have text
manipulation services enabled if you currently had an image selected in a window. Many Cocoa objects
provide default behaviors for the various clipboard types. NSTextField, for example, can automatically
handle text-based services. See the later section "The Application Connection" for more information on how
your application can make use of specific services.

[Team LiB]

[Team LiB]

The Result

In this chapter, I will discuss a service called MyTextService, as shown in Figure 7.1. MyTextService
provides three standard manipulations that can be performed on any selected text: uppercase, lowercase,
or capitalized case. Selected text will be edited in place. Figures 7.2 and 7.3 show the TextEdit application
before and after selecting Convert to Capitalized Case. Note how the lowercase and uppercase text is
converted immediately, in place, to capitalized case.

Figure 7.2. TextEdit just before selecting Convert to Capitalized Case from the
MyTextService menu.

Figure 7.3. TextEdit just after selecting Convert to Capitalized Case from the
MyTextService menu.

Let's look at the project.

[Team LiB]

[Team LiB]

The Project

Figure 7.4 shows the MyTextService project in Project Builder. You can create this project using the Cocoa
Bundle template in the New Project Assistant, although you will need to make some changes, as discussed
next. Let's look at the project settings.

Figure 7.4. The MyTextService project.

The Project Settings

The first thing you will want to verify is that in the Target settings, the WRAPPER_EXTENSION is set to
service. As mentioned previously, applications can provide services as well, but we will be implementing a
background-only version of our service that will live in the /Library/Services folder. If we do not use the
service extension, the operating system will not recognize and load our service properly (see Figure 7.5).

Figure 7.5. The MyTextService Target settings.

The next project settings to be concerned with are much more involved—the InfoPlist settings, as shown in
Figure 7.6. Many of these items will look familiar, but there are a few distinct additions and differences for
this project than you've seen previously.

Figure 7.6. The MyTextService InfoPlist entries.

First, you will want to make sure that the CFBundlePackageType entry is set to APPL and not BNDL.
Although we used the Bundle template project, we are really writing an application. You will also want to
set the NSPrincipalClass entry to NSApplication. The last application-specific item is the NSBGOnly
entry. You will need to add this entry yourself if it does not exist in your template and set its value to 1.
This tells the operating system that this application has no user interface and will therefore not appear in
the Dock. This is key to creating what can be called a faceless background application—an application that
runs silently, performing its duty unseen by the user.

Note

As you've learned in the past, there is more than one way to skin the Cocoa cat. You might
consider starting with an application template as opposed to a Bundle template. Either way,
you will have to tweak a few items in the project settings.

The next entry you will see is the NSServices array. This array is the heart and soul of the Service
mechanism. It contains an array of dictionaries that specify the services offered by MyTextService. I will
discuss item 0 in this array, but items 1 and 2 are similar with the exception of the menu item name and
user data that they pass to MyTextService.

The first thing you see in array item 0 is a dictionary item named NSMenuItem. This dictionary contains a
solitary item named default, which specifies the name of the menu item to be added to the Services
menu. You can specify a submenu name as well by using a / in this string. Because MyTextService provides
multiple services, we add a submenu named MyTextService and then the specific text of the service to be
offered; in this case, Convert to lowercase.

You can optionally add a keyboard equivalent for your menu items by adding a NSKeyEquivalent dictionary
to the plist. Similar to the NSMenuItem dictionary, the NSKeyEquivalent dictionary consists of a single item
named default. You should use keyboard equivalents sparingly because the Services menu is a
systemwide feature and you could easily use a key combination already in use elsewhere in the system or
application you are trying to serve. My suggestion is to avoid them unless necessary.

Next is the NSMessage entry. This entry is a string that represents the method name to be invoked in the
application's service provider object. The operating system will construct an Objective-C method of the
form -methodName:userData:error: and call the method in that manner. You will see this method
implemented later in this chapter.

NSPortName is the port to which the application should listen for service requests. In most cases, this is the
application name itself. Therefore, in our case, it is MyTextService.

NSReturnTypes and NSSendTypes are two array entries that list the types of data that the service is capable
of reading and writing. In this example, we only deal with text data, so we list NSStringPboardType in both
entries. You can add as many types to these arrays as required. These values are used when the operating
system looks for matches between the types of data an application has to offer and what services can
manipulate it.

Note

NSPasteboard.h defines many of the standard pasteboard types. These include Strings,

Filenames, PostScript, TIFF, RTF, RTFD, Tabular Text, Font Styles, Rulers, File Contents,
Colors, HTML, PICT, URL, PDF, Vcard, and more.

NSUserData is a string value that is passed in the userData parameter of the NSMessage-defined method
call. Although you do not have to make use of this field, I chose to implement MyTextService by using the
same NSMessage entry for all three of our services and using the NSUserData entry to specify which
formatting to apply to the incoming text: lowercase, uppercase, or capitalization. We could have just as
easily had three different NSMessage entries—one for each formatting option.

Last, the optional NSTimeout numerical string entry can be used to indicate the number of milliseconds that
the operating system should wait for a response from a service. This only applies when a response is
required. By default, if it is not specified, the NSTimeout is 30 seconds (30,000 milliseconds). If the
NSTimeout value is exceeded, the operating system aborts the service request and continues.

As you can see, you have a lot of control over the specifics of your service. Let's see what the source code
looks like that brings this all together.

The Source Code

There are only a few listings to be concerned about in this project. The application itself needs a main
function, but it's different from what you normally have seen. In fact, it's about 20 times the size of a
normal Cocoa application's main function (see Listing 7.1).

Listing 7.1 MyTextService main

#import <Foundation/Foundation.h>
#import "MyTextService.h"

int main (int argc, const char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Allocate and initialize our service provider
 MyTextService *serviceProvider = [[MyTextService alloc] init];

 // Register the service provider as such
 NSRegisterServicesProvider(serviceProvider, @"MyTextService");

 NS_DURING
 // Configure this application to run as a server
 [[NSRunLoop currentRunLoop] configureAsServer];

 // Run the application, use runUntilDate to make your
 // application auto-quit
 [[NSRunLoop currentRunLoop] run];
 NS_HANDLER
 NSLog(@"%@", localException);
 NS_ENDHANDLER

 // Release the service provider
 [serviceProvider release];

 [pool release];

 exit(0); // insure the process exit status is 0
 return 0; // ...and make main fit the ANSI spec.
}

We start out by allocating and initializing our own NSAutoReleasePool to take care of any autorelease
memory used throughout the running of our application. We then allocate and initialize our MyTextService
object. Once allocated, we call NSRegisterServicesProvider to register our provider by name with the
operating system's services mechanism. This is where the NSPortName Info.plist entry comes into play—
these strings should match exactly.

Next, you will notice a block of code that includes the macros NS_DURING, NS_HANDLER, and NS_ENDHANDLER.
These macros are defined in NSException.h and are similar to the TRY/CATCH block you might be familiar
with from the C++ programming language. This is our safety net should any exceptions occur during the
execution of the application. The NSLog function will display the exception information.

We then obtain the current NSRunLoop instance of the current thread (actually creating a new one) by
calling the NSRunLoop class method +currentRunLoop. Calling -configureAsServer makes the NSRunLoop
instance suitable for use by a server process—currently a no-op under Mac OS X, but included for historical
consistency. Calling the -run method causes the application to begin running.

Note

NSRunLoop's -runUntilDate: method could have been called instead of the -run method. This
allows us to autoquit our application after a certain amount of time. By calling -run, our
service will execute until the machine shuts down, restarts, or the user logs out.

Having said that, some programmers, including one named Mike, would consider this current
behavior a bug. Services that do not need to perform some type of background processing
(network IO, data processing, and so on) should quit as soon as they are done performing
their service. This would be especially true if the service consumed large amounts of memory
while it was idle. There's no sense in hanging around when you might no longer be needed.

Once the application has exited, we can -release our service provider object, -release the autorelease
pool, and exit the main function. You can also use the applicationWillTerminate: delegate message to
handle any cleanup.

The MyTextService class is a subclass of NSObject with one method defined, -changeCase:userData:
error:. This is where the NSMessage Info.plist entry comes into play—the name of this method and the
value of NSMessage should match exactly (see Listing 7.2).

Listing 7.2 MyTextService Interface in MyTextService.h

@interface MyTextService : NSObject {

}

- (void)changeCase:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error;
@end

The implementation of MyTextService does nothing more than implement the changeCase: method. Let's
look at Listing 7.3 in detail.

Listing 7.3 MyTextService—changeCase:userData:error: in MyTextService.m

@implementation MyTextService

- (void)changeCase:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error
{
 NSString *pboardString;
 NSString *newString;
 NSArray *types;
 Boolean success;

 // Verify the types currently on the pasteboard
 types = [pboard types];
 if (![types containsObject:NSStringPboardType]) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboard doesn't have a string.");
 return;
 }
 pboardString = [pboard stringForType:NSStringPboardType];
 if (!pboardString) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboard couldn't give string.");
 return;
 }
 // Compare the mode so we do the correct thing
 if ([userData isEqualToString:@"upper"]) {
 newString = [pboardString uppercaseString];
 } else if ([userData isEqualToString:@"lower"]) {
 newString = [pboardString lowercaseString];
 } else if ([userData isEqualToString:@"cap"]) {
 newString = [pboardString capitalizedString];
 }
 if (!newString) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboardString couldn't edit letters.");
 return;
 }
 types = [NSArray arrayWithObject:NSStringPboardType];

 // Load the value of the checkbox from the Preference Pane example
 success = CFPreferencesAppSynchronize(
 CFSTR("com.triplesoft.mypreferencepane"));
 // Force a synchronization so we get the latest "live" preference
 if (success && CFPreferencesGetAppBooleanValue(

 CFSTR("Boolean Value Key"),
 CFSTR("com.triplesoft.mypreferencepane"), NULL)) {
 // Use [NSPasteboard generalPasteboard] instead of pboard to
 // send the results to the clipboard
 [[NSPasteboard generalPasteboard] declareTypes:types owner:nil];
 [[NSPasteboard generalPasteboard] setString:newString
 forType:NSStringPboardType];
 } else {
 // Send the results directly back to the app who requested it
 // if set or if key does not exist
 [pboard declareTypes:types owner:nil];
 [pboard setString:newString forType:NSStringPboardType];
 }

 return;
}

@end

This method takes three parameters: the NSPasteboard that contains the data in a format that the service
can process, the userData NSString from the NSUserData Info.plist entry, and an error NSString. The
NSPasteboard can be edited in place, as you will see shortly. The human-readable error NSString can be
returned should there be an error within our service.

The first thing we want to verify is that there are types on the NSPasteboard that we can handle. In theory,
we should be covered here (remember our NSReturnTypes and NSSendTypes in Info.plist), but we check
anyway. Assuming that there is an NSStringPboardType, we grab it from the NSPasteboard. We then
compare the userData NSString and alter the text as appropriate using the NSString methods -
uppercaseString, -lowercaseString, or -capitalizedString. If the conversion was successful, we then
prepare to return it to the application that requested it.

You will notice that we look at the com.triplesoft.mypreferencepane preference settings using the
CFPreferencesAppSynchronize and CFPreferencesGetAppBooleanValue functions. This is called
foreshadowing. We look to a future chapter to see something that we will be adding as a feature. Actually,
in Chapter 8, "Preference Panes," we will implement a Preference Pane that will work with MyTextService
to allow us to choose whether we should return the edited text directly back to the application that
requested it or to the general (systemwide) pasteboard. Returning the text to the requesting application
places the text directly back into the application, as shown in Figures 7.2 and 7.3. Returning to the general
pasteboard places the edited text in a buffer that allows you to paste it in any application you desire
without altering the original data.

By default, the text will be pasted back into the requesting application, but the steps are the same no
matter where we return it to. First, we create an NSArray of types, reusing the types variable, which
contains one item representing the NSStringPboardType. We then call the -declareTypes:owner: method
of the NSPasteboard in question passing the array. Last, we set the newString variable as type
NSStringPboardType to the NSPasteboard by calling the -setString:forType: method. That's it!

Note

Note that in order for services to be loaded from the /Library/Services folder, you must log
out and log in again after you first place it there. However, once it is registered with the
operating system, you can replace it as many times as necessary during development, and
your latest code will always be executed properly. Note, however, that the service is left

running once you select it from the Services menu. Therefore, you might have to quit it
manually before you can replace the file for subsequent runs. Consider automatically quitting
your daemonized service once it has performed its work to avoid this problem.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Application Connection

If you're writing a Cocoa application, most of the default user interface objects automatically implement
and handle service menu functionality by default. That is, text-related objects know how to deal with the
NSStringPboardType, and so on. However, if you are writing a custom class and you want that class to
have the capability of using services, you can implement this mechanism in your class easily enough.

First, your custom class will need to be a subclass of NSResponder in order to respond to the events sent
from the Services mechanism. In your custom class's +initialize class method, you will need to call
NSApp's +registerServicesMenuSendTypes:returnTypes: class method passing the types that your object
can send and return. These lists need not be the same. For example, you might accept a TIFF file and
return an ASCII text formatted picture for use on the Internet. Your subclass can register any number of
types, public or private. See Listing 7.4 for an example of its use.

Listing 7.4 Registering Pasteboard Types

+ (void)initialize
{
 NSArray *sendTypes;
 NSArray *returnTypes;

 /* Make sure code only gets executed once. */
 static BOOL initialized = NO;
 if (initialized == YES) return;
 initialized = YES;

 sendTypes = [NSArray arrayWithObjects:NSStringPboardType, nil];
 returnTypes = [NSArray arrayWithObjects:NSStringPboardType, nil];
 [NSApp registerServicesMenuSendTypes:sendTypes returnTypes:returnTypes];
 return;
}

Your custom class will also receive calls to its -validRequestorForSendType:returnType: method
throughout its instantiation. If your object can handle the type of data requested, you return self.
Otherwise, you call through to the super class -validRequestorForSendType:returnType:. This method
can be called many times during an event loop and so should be as fast as possible—there's no dillydallying
in this method. See Listing 7.5 for an example of its use.

Listing 7.5 Validating Pasteboard Types

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString *)returnType
{
 if ((!sendType || [sendType isEqual:NSStringPboardType]) &&
 (!returnType || [returnType isEqual:NSStringPboardType])) {
 if ((!sendType || [self selection]) && (!returnType || [self isEditable]))
 {
 return self;
 }
 }

 return [super validRequestorForSendType:sendType returnType:returnType];
}

Note

Be sure to read all about the NSPasteboard class. You can do many things by putting your
data on the clipboard. Copying and pasting is one of those things that many developers try to
avoid, but it can really add a kick to your application. It can make your application much more
usable, especially if you allow data to be transferred with other applications. Just think if you
couldn't paste an image into a Photoshop document! Where would we be today?

When the user selects an item from the Services menu, your custom class's -
writeSelectionToPasteboard:types: method is called. This method must return the requested type of
data to the service, returning YES if successful. The -writeSelectionToPasteboard:types: method is part
of the NSServicesRequests protocol. See Listing 7.6 for an example of its use.

Listing 7.6 Writing Pasteboard Types

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types
{
 NSArray *typesDeclared;

 if (![types containsObject:NSStringPboardType]) {
 return NO;
 }
 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:nil];
 return [pboard setString:[self selection] forType:NSStringPboardType];
}

After the service has manipulated the data, it returns the data to the object by calling its -
readSelectionFromPasteboard: method. The object then extracts the data from the pasteboard and
displays it to the user. It should return YES if successful. The -readSelectionFromPasteboard: method is
part of the NSServicesRequests protocol. See Listing 7.7 for an example of its use.

Listing 7.7 Reading Pasteboard Types

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard
{
 NSArray *types;
 NSString *theText;

 types = [pboard types];
 if (![types containsObject:NSStringPboardType]) {
 return NO;
 }
 theText = [pboard stringForType:NSStringPboardType];
 [self replaceSelectionWithString:theText];
 return YES;

}

Note

Applications can create something called Add-on Services that are not directly in your
application's bundle. You simply create a bundle with a .service extension that contains an
Info.plist with the appropriate NSServices entries. The NSMessage and NSPortName values
are those implemented in your application. This is a nice way to implement a plug-in style
approach to services.

Here's one last thing of interest: Your application can invoke a service programmatically by calling the
NSPerformService function. Although you normally would not use this, you can easily call a service by
name, passing an NSPasteboard using this function. NSPerformService is defined in NSApplication.h.

That's about all there is to it to support Services in your application. In fact, if you only use the standard
Cocoa types of user interface objects and don't need to support any custom data types on the clipboard,
you don't even have to do this much!

[Team LiB]

[Team LiB]

Try This

Here are some ideas to expand the text service project in this chapter; try these on your own.

Add some more advanced string manipulation functionality to the -changeCase:userData:error: method.
You will add a new array item with different NSMenuItem and NSUserData entries.

Add a method other than -changeCase:userData:error: to see how the service works with different
NSMessage values.

Build a service that manipulates images instead of text. You can use some of the functionality shown in the
Cocoa plug-ins described in an earlier chapter.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

You learned a great deal in this chapter and explored your first operating system–level piece of code. We
will continue this journey in subsequent chapters and see how to extend the operating system by adding
little bits of specific code here and there. Many other projects are based on the Cocoa bundle project
template, so stay tuned!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 8. System Preference Panes

"Use other door. It's broken."

—sign on donut shop door

System Preference Panes, hereinafter referred to as preference panes, are essentially plug-ins that are
dynamically loaded by the System Preferences application. Preference panes and the System Preferences
application allow users to alter systemwide settings using a standard host application. They live in the /
Library/PreferencePanes folder in any of the standard search paths, but when you install new ones
yourself, you will most likely place them in your ~/Library/PreferencePanes folder. Figure 8.1 shows the
System Preferences application's main window with a lot of available preference panes.

Figure 8.1. The System Preferences application.

Preference panes are primarily used to control settings for applications that do not have a user interface.
This could include a background-only application or some other system-level service that is run at startup.
Software Update is a good example: The preference pane allows the user to schedule when updates may
occur, and a separate application downloads and installs the latest software. The System Preferences
application provides a logical "base of operations" for many types of system functionality, but you should
avoid doing real work in a System Preference Pane—that is usually better suited for an application.

Here is another example. Figure 8.2 shows the Dock, and Figure 8.3 shows the Dock preferences as
displayed in the System Preferences application. The Dock is the application that runs in conjunction with
the Finder, and it displays icons of frequently used and currently running applications. The Dock can
function in a variety of ways and allows the user to edit its settings via its preference pane. The Dock also
has a power-user shortcut to get to its preferences as well, by control clicking on an empty area in the
Dock.

Figure 8.2. Dock.

Figure 8.3. Dock preferences in the System Preferences application.

Note that the Dock preferences all take effect immediately. As soon as the user changes a value in the
Dock preferences pane, the change is immediately communicated to the Dock. See CFNotificationCenter.
h and the Notification Center documentation from Apple for more details about using this technique.
Because the Dock is considered a system-level feature that is always available, System Preferences is the
most logical place to store and edit its settings.

[Team LiB]

[Team LiB]

The Result

In this chapter, I will discuss a preference pane called MyPreferencePane. As I alluded to in the previous
chapter, our preference pane will control one of the settings (the only one actually) of the MyTextService
service. By default, MyTextService will paste the altered text directly into the document that has the
current selection when it is executed. Our preference allows the altered text to be placed on the global
pasteboard instead so that it can be pasted elsewhere, leaving the selected text untouched. Figure 8.4
shows the first tab of MyPreferencePane's preference pane.

Figure 8.4. The MyPreferencePane tab in the System Preferences application.

Note that although there are a few different types of controls on this tab, only the check box is used to
control the MyTextService service preference. The NSTextField is merely there to show that other types of
data can be managed as a preference as well. As this project is examined, you will see that the preferences
are stored in a file located at ~/Library/Preferences/com.triplesoft.myPreferencePane.plist, which
is updated immediately when the check box state changes. That is, there is no need to "save changes" or
close the preference pane before the changes take effect. This property list file is shown in Listing 8.1. You
can see the Boolean Value Key for the check box and the empty String Value Key for the NSTextField.
When MyTextService is called, it looks up the current value of the Boolean Value Key to decide which
pasteboard to use (refer to Listing 7.3 in Chapter 7, "System Services").

Listing 8.1 com.triplesoft.myPreferencePane.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Boolean Value Key</key>
 <true/>
 <key>String Value Key</key>
 <string></string>
 </dict>
</plist>

Note

The Mac OS X terminal contains a command named defaults that advanced users and
developers should take note of. This command allows you to quickly and easily access the Mac
OS X user defaults system to read and write user defaults. Open the Terminal and type man
defaults for more information.

Figure 8.5 shows the second tab of the MyPreferencePane preference pane. This tab serves no purpose
other than to show how simple it is to create a tabbed user interface in Interface Builder and link the items
in each tab to actions and outlets in a class. The Click To Beep button, although on a completely different
tab in the user interface, is treated no differently when connected in Interface Builder. The Cocoa
framework transparently handles all the details of switching tabs for you. You can have as many tabs as
you like with as many items in each tab—this is a huge improvement over what developers used to have to
do for a multi-tabbed interface.

Figure 8.5. The MyPreferencePane View tab in the System Preferences
application.

Note in Figure 8.1 that MyPreferencePane appears at the bottom of the System Preference application
window in the Other category. This is where any third-party preference panes appear. You simply click it to
make it active.

Let's examine the project file for MyPreferencePane!

[Team LiB]

[Team LiB]

The Project

Figure 8.6 shows the MyPreferencePane project in Project Builder. You can create this project using the
Preference Pane template in the New Project Assistant. At a glance, you will notice the
MyPreferencePanePref.h and MyPreferencePanePref.m files that contain the NSPreferencePane subclass
that is our preference pane. The project also includes a .tiff file that contains the icon used to represent
our preference pane in the System Preferences application (see Figure 8.1). The InfoPlist.strings and
MyPreferencePanePref.nib files are also present.

Figure 8.6. The MyPreferencePane project.

The Project Settings

There is probably nothing for you to change in the Target settings, depending on whether things have
changed in the project template as of this writing. One thing to note, however, is that the
WRAPPER_EXTENSION for a preference pane is prefPane. Once again, this is how the operating system will
tell that this bundle is a preference pane when searching through the PreferencePanes folder (see Figure
8.7).

Figure 8.7. The MyPreferencePane Target settings.

Let's look at the project settings.

The InfoPlist settings are relatively straightforward as well in Figure 8.8. You should note the settings of the
CFBundleExecutable being our filename, NSMainNibFile being the name of our nib file,
NSPrefPaneIconFile being the name of the icon file, and NSPrincipalClass being our classname.

Figure 8.8. The MyPreferencePane InfoPlist entries.

Note

When dealing with TIFF files, you should make sure that their names end in .tiff and not .
tif. Although many programs treat both extensions as a TIFF file, Project Builder and the
operating system do not. Mac OS X likes the extra f.

Note also that we will place our built preference pane in the ~/Library/PreferencePanes folder. You might
have to create this directory if it does not exist. Also, notice the custom icon that our preference pane has
in the Finder. This icon does not come free. The easiest way to apply this icon is to use the
MyPreferencePane.icns file, included with the source code, to copy and paste the icon into place. By
selecting Get Info on the .icns file and copying the icon, you can then easily select Get Info on the .
prefPane file and paste it. The key to remember here is that the .tiff file in our project is for use inside
the System Preferences application, not in the Finder (see Figure 8.9).

Figure 8.9. The PreferencePanes directory in our ~/Library directory.

The Nib File

Before we look at the source code, let's peek into the MyPreferencePanePref.nib file (see Figure 8.10).
This standard nib file contains an NSWindow named prefPane that contains the entire user interface of our
preference pane. The File's Owner is the MyPreferencePanePref class, which contains all the action and
outlet instance variables. By assigning the prefPane window as the _window outlet of the File's Owner, we
set up the relationship needed by the System Preferences application to find the views to display when our
preference pane is selected. Open the file in Interface Builder to peruse the relationships of the objects for
yourself.

Figure 8.10. The MyPreferencePane MyPreferencePanePref.nib file.

Note

The preference pane window in System Preferences has specific size requirements. The width
is fixed to 595 pixels; the height should not cause the window to extend beyond the bottom of
an 800x600 display. To be safe, you should not create a preference pane that is more than
approximately 500 pixels in height. Make sure that you check your work on a small screen
before you ship!

The Source Code

The MyPreferencePanePref class is a subclass of NSPreferencePane. NSPreferencePane is defined in

PreferencePanes.h and implements the default behavior of a preference pane. By overriding methods in
NSPreferencePane, you customize the behavior of your own preference pane (see Listing 8.1).

Listing 8.1a MyPreferencePanePref Interface in MyPreferencePanePref.h

#import <PreferencePanes/PreferencePanes.h>

@interface MyPreferencePanePref : NSPreferencePane
{
 CFStringRef m_appID; // application ID (this application)

 // Tab 1
 IBOutlet NSButton *m_checkBox;
 IBOutlet NSTextField *m_textField;

 // Tab 2
 IBOutlet NSButton *m_pushButton;
}

- (IBAction)checkboxClicked:(id)sender;
- (IBAction)buttonClicked:(id)sender;

@end

You will note that our subclass simply keeps track of our application ID (com.triplesoft.
mypreferencepane from our InfoPlist entries) and our outlets as far as instance variables go. We also
implement a few actions to handle our check box and button. Note that even though we have a multi-
tabbed user interface, our outlets and actions are all defined as usual—no special treatment is required.

Note

If you choose to not cache the bundle identifier, you can use [[NSBundle bundleForClass:
[self class]] bundleIdentifier] to look it up on demand. If you end up accessing this
information regularly throughout your preference pane, you might consider the cache method
shown here.

Listing 8.2 is an override of the -initWithBundle: method of NSPreferencePane. This method is called
during the initialization phase of the preference pane. Its primary goal is to keep track of our application ID
in the m_appID instance variable. You can also perform any other initialization here that does not depend on
the user interface.

Listing 8.2 MyPreferencePanePref –initWithBundle: Implementation in
MyPreferencePanePref.m

// This function is called as we are being initialized
- (id)initWithBundle:(NSBundle *)bundle
{
 // Initialize the location of our preferences
 if ((self = [super initWithBundle:bundle]) != nil) {

 m_appID = CFSTR("com.triplesoft.mypreferencepane");
 }

 return self;
}

Listing 8.3 contains the override of the -mainViewDidLoad method of NSPreferencePane. This method is
called once the Nib is loaded and the windows have been created. You would perform tasks in this method
similar to those that you would in -awakeFromNib in an application. We have two preferences to load and
set at this point. Using the CFPreferencesCopyAppValue function, we load both Boolean Value Key and
String Value Key and set the NSButton check box and NSTextField appropriately. Note that we also
verify the data coming back from this function using the CFGetTypeID function in conjunction with the
CFBooleanGetTypeID and CFStringGetTypeID functions. This provides a reliable way for us to ensure that
our data is not corrupt in any way. Last, the values of the outlets are set accordingly to display the current
state of the preferences. Remember to CFRelease the values once they are loaded!

Listing 8.3 MyPreferencePanePref -mainViewDidLoad Implementation in
MyPreferencePanePref.m

// This function is called once the Nib is loaded and our windows
// are ready to be initialized.
- (void)mainViewDidLoad
{
 CFPropertyListRef value;

 // Load the value of the checkbox as a BOOLEAN
 value = CFPreferencesCopyAppValue(CFSTR("Boolean Value Key"), m_appID);
 if (value && CFGetTypeID(value) == CFBooleanGetTypeID()) {
 [m_checkBox setState:CFBooleanGetValue(value)];
 } else {
 [m_checkBox setState:NO]; // Default value of the checkbox
 }
 if (value) CFRelease(value);

 // Load the value of the text field as a STRING
 value = CFPreferencesCopyAppValue(CFSTR("String Value Key"), m_appID);
 if (value && CFGetTypeID(value) == CFStringGetTypeID()) {
 [m_textField setStringValue:(NSString *)value];
 } else {
 [m_textField setStringValue:@""]; // Default value of the text field
 }
 if (value) CFRelease(value);
}

Note

Remember, .plist files are nothing more than plain text in XML format. These files are very
easy for a user to open up and "mess around with." It doesn't hurt to err on the side of caution
and verify that the values retrieved are the types of values we expect.

Listing 8.4 implements the override of the -didUnselect method of NSPreferencePane. This function is
called when our preference pane is being deselected. That is, either another preference pane is being
selected or the System Preferences application is shutting down. In this case, we save the contents of our
NSTextField outlet, which is not saved at any other time. You could implement a notification to tell each
time the user typed a character in the NSTextField and save then, but that would be overkill in this
situation.

Listing 8.4 MyPreferencePanePref -didUnselect Implementation in MyPreferencePanePref.m

// This function is called when our preference
// pane is being deselected. That is, either
// another preference pane is being selected
// or the System Preferences application is
// shutting down. In this case we will save our
// text field, which is not saved at any other
// time. The checkbox is saved as it is clicked
// but just as easily can be saved here.
- (void)didUnselect
{
 CFNotificationCenterRef center;

 // Save text field
 CFPreferencesSetAppValue(CFSTR("String Value Key"),
 [m_textField stringValue], m_appID);

 // Write out all the changes that have been made for this application
 CFPreferencesAppSynchronize(m_appID);

 // Post a notification that the preferences
 // for this application have changed,
 // any observers will then become the first
 // to know that this has occurred.
 center = CFNotificationCenterGetDistributedCenter();
 CFNotificationCenterPostNotification(center,
 CFSTR("Preferences Changed"), m_appID, NULL, TRUE);
}

Note that the string value of the NSTextField is saved using the CFPreferencesSetAppValue function.
Once saved, the CFPreferencesAppSynchronize function is called to flush the contents of the file and be
sure that they are written to disk. You will note from Listing 7.2 in Chapter 7 that MyTextService also calls
CFPreferenceAppSynchronize before accessing the preferences. This magic keeps everyone happy and "in
sync."

The last step is optional and is shown here as an example. We post a notification using
CFNotificationCenterPostNotification and CFNotificationCenterGetDistributedCenter to let any
observers know that the preferences have changed. Even though MyTextService does not implement this
mechanism, it is not a bad idea to get into the habit of using it should some other application in your suite
be "watching" your preferences. An application normally won't do this, but because we are working on a
globally available systemwide feature, we do. Earlier in this chapter, I discussed where to find more
information on using notifications.

Listing 8.5 contains the action that is called when the user clicks on the NSButton check box. Each time the
user clicks the check box; the value is changed and is written to the preference file. Note that the

preferences are once again synchronized after being set.

Listing 8.5 MyPreferencePanePref –checkboxClicked: Implementation in
MyPreferencePanePref.m

// This action is called when our checkbox is clicked,
// we save the value immediately
- (IBAction)checkboxClicked:(id)sender
{
 CFPreferencesSetAppValue(CFSTR("Boolean Value Key"),
 [sender state] ? kCFBooleanTrue : kCFBooleanFalse, m_appID);

 // Force a synchronization so our preference is "live"
 CFPreferencesAppSynchronize(m_appID);
}

Note

What? You've never seen that ? : thing before? I love this feature of the C programming
language and most C programming language derivatives. This mechanism is called a
conditional expression. The format is as follows:

A ? B : C;

The first expression, A, is evaluated. If A is TRUE, B is executed; otherwise C is executed. This
is equivalent to the following:

if (A) {
 B;
} else {
 C;
}

In our case, we are using the conditional operator to return one of two different values: if the -
state of the sender (the check box) is YES (also known as 1), return kCFBooleanTrue;
otherwise return kCFBooleanFalse.

Finally, in Listing 8.6 we have an action that is called when the button on the second tab is clicked (refer to
Figure 8.5). This action is here to show you that the same class can be used to handle actions and outlets
on multiple tabs in a multi-tabbed user interface. Clicking the Click To Beep button makes the computer
beep.

Listing 8.6 MyPreferencePanePref –buttonClicked: Implementation in
MyPreferencePanePref.m

// This action is called when the button on the second tab is clicked
- (IBAction)buttonClicked:(id)sender
{

 NSBeep();
}

[Team LiB]

[Team LiB]

More NSPreferencePane

Many other methods are defined in NSPreferencePane that can be overridden by your subclass. We only
implement a few of them in this project because that is all that was necessary. Some of the others that you
may consider overriding include

-assignMainView— This method can be overridden if your NSPreferencePane subclass
needs to dynamically choose a main view. You might need to do this to show a unique set of
preferences based on the current hardware configuration.

-willSelect/-didSelect— These methods can be overridden if you need to be called just
before or just after your NSPreferencePane subclass becomes the currently selected
preference pane. You might need to do this to load a data file or begin some task.

-willUnselect/-didUnselect— These methods can be overridden if you need to be called
just before or just after your NSPreferencePane subclass get swapped out as the currently
selected preference pane. You might need to do this to save any preferences that are not
saved as they are changed.

-shouldUnselect/-replyToShouldUnselect:— These methods allow your
NSPreferencePane subclass to postpone or cancel an unselect action. For example, if your
preference pane begins a network action and then the user attempts to choose another
pane, you might want to delay the closing of your pane until the network action completes or
can be cancelled.

-initialKeyView/-firstKeyView/-lastKeyView— This method can be overridden if your
NSPreferencePane subclass needs to dynamically determine which view should be the initial,
first, or last key view, respectively.

Be sure to look at NSPreferences.h for more details on other methods and some inside information on how
they operate.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some ideas to expand the preference pane project in this chapter; try these on your own.

Add a third tab to the preference pane and some new controls such as radio buttons and a pop-up button.
Save the settings of these controls to the preference file as appropriate. Make sure to test them to see that
they are really saving!

Add an NSTextField control below the tabs so that it is always displayed whenever the preference pane is
selected. Make use of the NSTimer class you learned about in Chapter 3, "Cocoa Applications," and have
this control display how long, in seconds, that the preference pane has been visible. Be sure to properly
dispose of any timer that has yet to "fire" when the user closes the preference pane.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

Now you see that we can add preferences to a service by creating a preference pane project to go along
with our system service project. Once you know the secrets, these are just as straightforward as
implementing any Cocoa application. All similar pieces come together with just a few differences.

In this case, I asked you to drag the .prefPane file into the PreferencePanes folder. Normally, you would
create an installer to install these items without intimate knowledge by the user. You don't want users
dragging .service and .prefPane files around; you never know when they will drop them in the wrong
location and then complain that your software isn't working.

Keep up the good work—you've learned a lot so far!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 9. Status Items

"Should? Will. Should? Will. Should? Will. Did!"

—quote based on Cocoa delegate methods

This chapter discusses those little black and white icons on the right side of the menu bar as displayed in
Figure 9.1. Before we assign these items a real name, let's make something perfectly clear: They are not
all created equal. Those created by Apple that can be command dragged to swap locations and added
simply by dropping a bundle on the menu bar are called NSMenuExtras. However, the NSMenuExtra class is
a private API, so, as developers who do not work for Apple, we need to create NSStatusItems instead.

Figure 9.1. The menu bar filled with "little black and white icons."

Also, Apple says status items are reserved for Apple's use only (see Aqua Human Interface Guidelines, page
63). Further, these items are intended to display hardware or network status/settings only. This is why you
will see iChat and Airport but not Mail.app. Having said that, third-party developers should respect this
guidance by using status items to communicate hardware or network information only. For example, a disk
light application seems acceptable, but a Web browser may not be. The example shown in this chapter is an
example of the technology, not what to do with it.

NSStatusItems aren't so bad in and of themselves. True, they are the not-so-coordinated cousins of the
NSMenuExtra, but they can get the job done. As mentioned, you can't move them around the menu bar by
command dragging. You also cannot add them to the menu bar by dropping their bundle on it. They also
don't work perfectly if you click down elsewhere in the menu bar and then drag over the NSStatusItem—
you have to click directly on the NSStatusItem to have them show their menu contents. Other than these
few idiosyncrasies, if you need an item to display status in the menu bar, this is the way to do it. For sake
of argument, I will refer to items in the menu bar as status items even though you know that this is not
completely correct.

Note

If you're in a hacking mood, there are ways of making NSMenuExtra talk. That is, some
programmers have reverse-engineered the API and used it in non-Apple products. This is risky
business because you never know when Apple will alter the API just enough to cause your
software not to work anymore. Feel free to experiment, but keep this in mind before releasing
any software that uses undocumented features of the OS.

And remember…

1. Apple claims status items are for its use only.

2. Apple says status items are for reporting hardware or network settings only. See Figure
9.2 for some examples.

Figure 9.2. The menu of the MyStatusItem status item.

3. Applications should not create/use status items for displaying globally available menu
commands. Instead, applications should use Dock menus. See Chapter 15, "SOAP," for
more information on creating and managing Dock menus.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

Figure 9.2 shows a menu bar with a variety of status items. The one on the left is the MyStatusItem status
item that we will be examining in this chapter. Note that when you click on it, its menu is displayed. The
menu contains four items—six if you count the item separators. The first two cause an alert to be shown,
the third displays the local IP address of the computer, and the fourth causes the program to quit, making
the menu and status item disappear from the menu bar. We will look at these in more detail shortly.

Other status items in the Jaguar menu bar, from left to right, include those for iChat, AirPort, Volume,
Battery, and the Date and Time. You might notice that many of these are controlled via an option in a
Preference Pane as to whether or not they appear. Figure 9.3 shows the Energy Saver Preference Pane.
Note that at the bottom of the window there is a check box entitled "Show Battery Status in the Menu Bar."
If this check box is turned on, the battery status item will display in the menu bar. If it is turned off, the
battery status item disappears.

Figure 9.3. The Energy Saver preference pane offers the option to display the
battery status in the menu bar.

Let's look at the project that makes MyStatusItem appear in the menu bar.

[Team LiB]

[Team LiB]

The Project

Figure 9.4 shows the MyStatusItem project in Project Builder. This project was created by starting with the
standard Cocoa application template in the New Project Assistant. You will notice that the only source code
files other than the standard items are AppController.m and AppController.h. All of our work is done in
our AppController class although you could easily place it somewhere else depending on the needs of your
application. We also have a TIFF file that we added to the project that contains the X image used in the
menu bar. MainMenu.nib has hardly been touched with the exception that we filled out our window with
some text that will be displayed when you run the application and linked our AppController to the File's
Owner (NSApplication) as its delegate. Any other changes to MainMenu.nib are negligible and not
pertinent to the project.

Figure 9.4. The MyStatusItem project.

The Project Settings

There isn't much to say about the Target Settings in Figure 9.5—status quo here.

Figure 9.5. The MyStatusItem Target settings.

The InfoPlist Entries in Figure 9.6 are also about as straightforward as you can get—standard for a Cocoa
application. The one possible exception is that we've added the NSBGOnly entry. This entry is currently set
to 0, so it is essentially disabled. You might remember from earlier chapters that setting this entry to 1
causes our application to become a background-only application; that is, with no user interface, per se. We
will look into this in more detail later in the chapter.

Figure 9.6. The MyStatusItem InfoPlist entries.

The Nib File

As mentioned previously, our MainMenu.nib file is also straightforward. We created a window that appears
when the application is launched. Figure 9.7 displays the window as shown in Interface Builder. If you want
to experience the literary art of foreshadowing, read the text of the window in Figure 9.7.

Figure 9.7. The MyStatusItem MainMenu.nib file.

Let's jump into the source code.

The Source Code

AppController.m is our only custom source file in this project. We have the AppController subclass of
NSObject, which is defined as shown in Listing 9.1.

Listing 9.1 AppController Interface in AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 NSStatusItem *m_item;
 NSMenu *m_menu;
}

- (void)selItemOne:(id)sender;

- (void)selItemTwo:(id)sender;
- (void)selItemIP:(id)sender;
- (void)selItemQuit:(id)sender;

@end

The only instance variables we need to manage are a pointer to the NSStatusItem, the actual item that sits
in the menu bar, and the NSMenu that is displayed when you click on the NSStatusItem. Both of these
instance variables are created at runtime in the AppController's -init method.

The -init method of AppController (see Listing 9.2) is where all things are created. Upon initializing
ourselves by calling our super class, we begin the process of creating the NSStatusItem and NSMenu. First,
we call the +systemStatusBar class method of NSStatusBar. This will return the global system
NSStatusBar to which we will attach our NSStatusItem. The system status bar is the only status bar that is
currently available to add items to, as of this writing.

Listing 9.2 AppController -init Method in AppController.m

- (id)init
{
 [super init];
 if (self) {
 // Get the system status bar
 NSStatusBar *bar = [NSStatusBar systemStatusBar];

 // Add an item to the status bar
 #ifdef USE_TEXT_TITLE
 m_item = [[bar statusItemWithLength:NSVariableStatusItemLength]
 retain];
 [m_item setTitle: NSLocalizedString(@"My",@"")];
 #else
 m_item = [[bar statusItemWithLength:NSSquareStatusItemLength]
 retain];
 [m_item setImage:[NSImage imageNamed:@"x"]];
 #endif

 [m_item setHighlightMode:YES];

 // Create a menu to be added to the item
 m_menu = [[[NSMenu alloc] init] retain];
 [m_menu setAutoenablesItems:YES];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Item One",@"")
 action:@selector(selItemOne:) keyEquivalent:@""]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Item Two",@"")
 action:@selector(selItemTwo:) keyEquivalent:@""]];
 [m_menu addItem: [NSMenuItem separatorItem]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"My IP",@"")
 action:@selector(selItemIP:) keyEquivalent:@""]];
 [m_menu addItem: [NSMenuItem separatorItem]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Quit MyStatusItem",@"")

 action:@selector(selItemQuit:) keyEquivalent:@""]];

 // And add the menu to the item
 [m_item setMenu:m_menu];
 }
 return self;
}

We then have implemented two mechanisms to create the NSStatusItem—one using text as the item title
and one using an image. In Figure 9.2, you could see that the X TIFF image represents the status item.
However, you can just as easily use text as the item title, as shown in Figure 9.8.

Figure 9.8. Using text as the title of an item.

Depending on the mechanism you choose, you will either pass the NSVariableStatusItemLength or
NSSquareStatusItemLength constant to NSStatusBar's -statusBarWithLength: method. Both of these
are defined in NSStatusBar.h. If you are using text as your title, you need to specify the variable length
because text can be any (variable) length. You should probably consider keeping your status item's title
short, however, because status bar space is at a premium. The -statusBarWithLength: method will return
a new NSStatusItem that you should -retain. Your new item will be added to the left of any preexisting
items in the status bar. You will then call either the -setTitle: or -setImage: methods of NSStatusItem
on the newly returned status item to label it properly. Before we begin to build the menu that attaches to
the status item, we call the -setHighlightMode: method to enable the user feedback highlighting of the
status item when it is clicked—some people call this inverting.

Next, we must create the menu that is attached to the status item. First we +alloc, -init, and -retain an
NSMenu item. We then call NSMenu's -setAutoEnableItems: method to enable the use of the
NSMenuValidation informal protocol. This causes our AppController's -validateMenuItem: method to be
called to determine whether a particular menu item should be enabled or not at any particular time. You
will see this method in action shortly.

The next six successive calls to the -addItem: method append items to our NSMenu instance variable. The
first call adds an item named "Item One" and sets the action of the item to our AppController's method –
selItemOne:. The key equivalent is left empty as is recommended for status items. Remember, a limited
number of keyboard equivalents are available, so system-level software should avoid them when capable.
We continue adding the other items, and some separator items as well, until our menu is built. The last
step in this function is to attach the newly created menu to the status item by calling NSStatusItem's -
setMenu: method.

The AppController's -dealloc method (see Listing 9.3) handles the -release of NSStatusItem and
NSMenu.

Listing 9.3 AppController -dealloc Method in AppController.m

- (void)dealloc
{
 [m_item release];
 [m_menu release];
 [super dealloc];
}

The AppController's -validateMenuItem: method (see Listing 9.4) is executed due to our call to NSMenu's
-setAutoEnableItems:. This method is called once for each item in the menu any time the menu is
displayed. This allows us to dynamically enable or disable our items. Returning YES causes the menu item
to be enabled; NO disables it.

Listing 9.4 AppController –validateMenuItem: Method in AppController.m

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem
{
// NSString *selectorString;
// selectorString = NSStringFromSelector([menuItem action]);
// NSLog(@"validateMenuItem called for %@", selectorString);

 if ([menuItem action] == @selector(selItemOne:))
 return YES;
 if ([menuItem action] == @selector(selItemTwo:))
 return YES;
 if ([menuItem action] == @selector(selItemIP:))
 return YES;
 if ([menuItem action] == @selector(selItemQuit:))
 return YES;

 return NO;
}

The two methods in Listing 9.5 are the actions for the first two items in the menu—Item One and Item
Two. Remember in the -init method, we designated action methods for each menu item. These actions
merely display an alert to the user to show feedback that we selected the menu item.

Listing 9.5 AppController –selItemOne: and –selItemTwo: Methods in AppController.m

- (void)selItemOne:(id)sender
{
 int result;
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Thank you for selecting menu item one.", @"OK", @"", @"");
}

- (void)selItemTwo:(id)sender
{
 int result;
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Thank you for selecting menu item two.", @"OK", @"", @"");
}

Listing 9.6 shows the action called when the My IP menu item is selected. This method merely uses the
NSHost +currentHost method and the -address and -name methods to report the current IP address and
hostname to the user. Figure 9.9 shows what this alert looks like when displayed. Note that these numbers
represent your computer on your local network and might be different from the IP address that the world
sees you as through a router.

Listing 9.6 AppController –selItemIP: Method in AppController.m

- (void)selItemIP:(id)sender
{
 int result;
 NSString *theString = [NSString localizedStringWithFormat:
 @"IP Address: %@\nDNS Name: %@",
 [[NSHost currentHost] address], [[NSHost currentHost] name]];
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem", theString, @"OK", @"", @"");
}

Figure 9.9. The My IP alert.

Finally, when the user selects Quit MyStatusItem from the status item menu, the –selItemQuit: method is
called as shown in Listing 9.7. After confirming the user's intention to quit, the NSApplication's
+sharedApplication class method is called to return the instance of your application. Subsequently calling
the -terminate: method causes the application to quit. If you need to override this mechanism, you can
implement the -applicationShouldTerminate: method to have one last chance to cancel the termination.
If you need to clean up after your application, you can implement the applicationWillTerminate:
method to perform those tasks.

Listing 9.7 AppController –selItemQuit: Method in AppController.m

- (void)selItemQuit:(id)sender
{
 int result;
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Quit the application and remove this menu?",
 @"Yes", @"No", @"");
 if (result == NSAlertDefaultReturn) {
 [[NSApplication sharedApplication] terminate:self];
 // Respond to applicationWillTerminate for cleanup
 }
}

Note

In Figure 9.7, you see the window that is displayed when this application is run. By removing
this window and setting the NSBGOnly entry in the Info.Plist entries from Figure 9.6 to a
value of 1, you can make the application "almost silent." By making these few changes, you
can launch the application at login and simply have the menu appear with no other signs of
the application running. It will not even appear in the Dock.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are a few things to try to implement using the MyStatusItem project as a start.

Remove the window and make it a background only application by setting the NSBGOnly Info.Plist entry
to 1. Then, alter the first two menu items to display useful information, such as the My IP item does.

Try adding a menu item that displays a window that allows you to paste in the URL of an image file on the
Internet. Load the image file and display it in a window with the height and width displayed as well as the
size in bytes. Save the image to a file on the desktop.

[Team LiB]

[Team LiB]

Conclusion

The ability to create status items really opens the door for your programming ideas. Keep your eyes peeled
for the publicizing of the NSMenuExtra API should it ever become so and consider using it instead of
NSStatusItem for future development. Moreover, be sure to keep in mind the rules mentioned in the
beginning of this chapter.

[Team LiB]

[Team LiB]

Chapter 10. Screen Effects

"Somebody save me."

—Remy Zero

Screensavers have been around since the first screen needed saving. Today, however, they are used more
for fun than necessity. Back in the day of monochrome monitors, if you left a command prompt (or a menu
bar) on the screen for a long period of time, you would suffer from the dreaded burn-in. The image on the
screen would be permanently burned into the monitor. Screensavers would blank the screen and display
moving objects so that you would still know the computer was running, but it wouldn't suffer from this
horrible fate.

In the early days of the Macintosh, two popular screensavers came to life: Pyro, which made great looking
fireworks and After Dark, which started the screensaver module revolution. After Dark was solely
responsible for Flying Toasters and other such impossibilities. As display technology advanced and
screensavers became more entertainment oriented, Apple decided to start calling them screen effects.

Note

Throughout this chapter, you will see some references to screensavers and some to screen
effects. Since the name change with OS 10.2, not all parts of the OS have caught up. They are
called different things in different places, at least for the time being. Eventually, this problem
will fix itself.

Figure 10.1 shows the main Screen Effects tab of the Screen Effects preference pane in the System
Preferences application. This tab allows you to choose which screen effect you would like to use for your
screen. You can configure any available options of the screen effect from this tab and test it. The small
Preview area shows you what the effect looks like with its current settings. Note that the screen effects in
the list are read from the various Screen Savers directories. During development, I install mine in ~/
Library/Screen Savers, but the root Library/Screen Savers is also another popular spot. Most of
Apple's screen effects are stored in /System/Library/Screen Savers.

Figure 10.1. The Screen Effects preference pane's Screen Effects tab in the
System Preferences application.

The Activation tab, shown in Figure 10.2, allows you to set the time of inactivity required before the screen
effect starts. You can also set a security option of whether to ask for the password when the computer
wakes from a screen effect. These settings are global to all screen effects.

Figure 10.2. The Screen Effects preference pane's Activation tab in the System
Preferences application.

Figure 10.3 shows the Hot Corners tab where you can set the "Make Active Now" and "Never Make Active"
corners. If you move the mouse into a corner with a check mark, the screen effect will come on
immediately. If you move the mouse into a corner with a minus sign, the screen effect will never come on,
effectively disabling the time setting in the Activation tab. These settings are also global to all screen
effects.

Figure 10.3. The Screen Effects preference pane's Hot Corners tab in the System
Preferences application.

Let's explore the screen effect we will be discussing in this chapter.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

Figure 10.1 shows the result of the project examined in this chapter. MyScreenSaver, which was written
just before Apple started calling them screen effects, draws the representative particles of the outer
reaches of deep space—also known as little colored dots.

Figure 10.4 shows the results of pressing the Configure button on the Screen Effects tab. Note that two
options are offered; Use Transparency and Use Color. Enabling Use Transparency draws the stars with a
transparent effect, via the alpha channel, as you will see in the source code. Enabling Use Color draws the
stars using color as opposed to grayscale only.

Figure 10.4. The MyScreenSaver screen effect configure sheet in the System
Preferences application.

Note

What is an alpha channel? When you choose a color to draw, there are many ways to do so.
The most popular way is to choose a red component, a green component, and a blue
component. The additive effect of these choices creates any color in the spectrum. However, a
fourth component is known as the alpha component or alpha channel. The alpha channel
provides transparency to the colors so that you can see through them.

An alpha channel value between 0 and 1 creates the color as if it were stained glass—you can
see through it in varying amounts depending on the value. An alpha channel value of 1 creates
the color as if it were paint on wood—you can't see through it at all. An alpha channel value of
0 creates a color that is entirely transparent—like air; whatever other color components it
might have will not be visible to mere mortals.

Let's look at the project file for MyScreenSaver.

[Team LiB]

[Team LiB]

The Project

Figure 10.5 shows the MyScreenSaver project in Project Builder. The project was started by using the
Screen Saver template in the New Project Assistant as shown in Figure 10.6.

Figure 10.5. The MyScreenSaver project.

Figure 10.6. Selecting the Screen Saver template in the New Project Assistant.

The project itself has only the MyScreenSaverView.m and MyScreenSaverView.h files to contend with, as
well as the MyScreenSaver.nib file. If your screen effect doesn't have any configuration settings, you won't
need to add a nib file to your project.

The Project Settings

The Target settings in Figure 10.7 are straightforward. Note that the WRAPPER_EXTENSION is set to saver.
As of this writing, all screen effects must end in the extension .saver.

Figure 10.7. The MyScreenSaver Target settings.

The InfoPlist entries in Figure 10.8 are also straightforward. Note that the CFBundleIdentifier is set to
com.triplesoft.myscreensaver. The screen effect saves its configuration settings in this file, as you will
see shortly. Note also that the NSPrincipalClass is MyScreenSaverView. I will discuss this class shortly as
well.

Figure 10.8. The MyScreenSaver InfoPlist entries.

The Nib File

The MyScreenSaver.nib file is shown in Interface Builder in Figure 10.9. Note that because we've set it as
the File's Owner, we do not need to create a specific MyScreenSaverView instance. How handy is that? You
can also see the NSPanel used to lay out the configuration sheet used in the screen effect (refer to Figure
10.4). The IBOutlets in MyScreenSaverView are connected, as you would expect, to the NSPanel itself and
the two check boxes within it. The Save and Cancel buttons are connected to two IBActions that you will
see in the source code. Note that we do not need an instance of MyScreenSaverView although the
MyScreenSaver.nib file knows about it, as shown in Figure 10.10.

Figure 10.9. The MyScreenSaver MyScreenSaver.nib file.

Figure 10.10. The MyScreenSaver MyScreenSaver.nib file Classes tab.

Let's look at how the code works to bring this all together.

The Source Code

The MyScreenSaverView.m and MyScreenSaverView.h files contain all the source code for our screen
effect. MyScreenSaverView is a subclass of ScreenSaverView, which is a subclass of NSView.
ScreenSaverView is defined in ScreenSaver.h. MyScreenSaverView is shown in Listing 10.1.

Listing 10.1 MyScreenSaverView Interface in MyScreenSaverView.h

#import <ScreenSaver/ScreenSaver.h>

@interface MyScreenSaverView : ScreenSaverView
{
 int m_version; // Used to tell the version of our preferences
 // (and if they loaded)
 int m_useTransparency;// Use transparency when drawing the stars
 int m_useColor; // Use color when drawing the stars

 IBOutlet id m_configureSheet;
 IBOutlet NSButton *m_useTransparencyCheckbox;
 IBOutlet NSButton *m_useColorCheckbox;
}

- (IBAction) closeSheet_save:(id) sender;
- (IBAction) closeSheet_cancel:(id) sender;

@end

Our subclass keeps track of a few instance variables that are managed during runtime to specify drawing

options, as well as the IBOutlets for our configuration sheet and the two check boxes on it. We also have
two IBActions—one for the Save button and one for the Cancel button.

Listing 10.2 contains the -initWithFrame:isPreview: method of our MyScreenSaverView class. This
method is called to initialize the screen effect. After calling through to the super class, we load the default
configuration settings for our bundle (com.triplesoft.myscreensaver) by calling the
ScreenSaverDefaults class method +defaultsForModuleWithName:. ScreenSaverDefaults is a subclass
of NSUserDefaults.

Listing 10.2 MyScreenSaverView –initWithFrame:isPreview: Method in MyScreenSaverView.m

- (id)initWithFrame:(NSRect)frame isPreview:(BOOL)isPreview
{
 // Initialize our super - the ScreenSaverView
 self = [super initWithFrame:frame isPreview:isPreview];

 if (self) { // If all went well...

 // Load the defaults for this screensaver
 ScreenSaverDefaults *defaults =
 [ScreenSaverDefaults defaultsForModuleWithName:kBundleID];

 // Try to load the version information to see if we have any
 // saved settings
 m_version = [defaults floatForKey:@"version"];
 if (!m_version) {
 // No saved setting, define our defaults
 m_version = 1;
 m_useTransparency = YES;
 m_useColor = YES;

 // Now write out the defaults to the defaults database
 [defaults setInteger:m_version forKey:@"version"];
 [defaults setInteger:m_useTransparency forKey:@"useTransparency"];
 [defaults setInteger:m_useColor forKey:@"useColor"];

 // And synchronize
 [defaults synchronize];
 }

 // Now, although this is overkill if version == 0, we load the
 // defaults from the defaults database into our member variables
 m_useTransparency = [defaults integerForKey:@"useTransparency"];
 m_useColor = [defaults integerForKey:@"useColor"];

 // And set the animation time interval (how often animateOneFrame is
 // called)
 [self setAnimationTimeInterval:1/30.0];
 }

 return self;
}

Note

Many professional screen effect module writers tend to get sick of defining something like
kBundleID as used in Listing 10.2. Instead, they use a dynamic method to find the bundle
identifier as follows:

[[NSBundle bundleForClass:[self class]] bundleIdentifier]

This mechanism will always return the proper bundle identifier and allow you to more easily
copy and paste your code from project to project.

Note

Why use ScreenSaverDefaults instead of NSUserDefaults or CFPreferences?

NSUserDefaults is great for getting and setting preferences for a specific application, such as
RadarWatcherX. NSUserDefaults isn't as good for reading arbitrary default domains, nor is it
good for per-user, per-machine settings such as screen effect settings. Because screen effects
can be loaded into a variety of applications (system preferences, third-party programs, and so
on), using an application-specific settings mechanism such as NSUserDefaults won't get you
very far.

The CFPreferences API is powerful, but a little cumbersome for people who would rather do
things in Objective C. Also, screen effects authors who use CFPreferences need to know
specifically how their defaults should be stored. I thought that screen effects were supposed to
be fun!

The ScreenSaverDefaults API gives screen effects authors a way to store per-user, per-
machine settings without having to fiddle about with CFPreferences. It can be used to safely
retrieve module settings no matter which application loaded the module. It also encourages
people to store defaults consistently (that is, per user, per machine).

We then attempt to load the m_version instance variable using the ScreenSaverDefaults method -
floatForKey:. If the value exists for this key, we know that we have saved settings. If the value does not
exist, this is the first time the screen effect has been run. In that case, we initialize our values using the -
setInteger:forKey: method of ScreenSaveDefaults and -synchronize them as well.

Note

At this point, you might consider using NSUserDefaults's registerDefaults: method. The
registerDefaults: mechanism allows you to say "If the user hasn't got a setting for XYZ, use
this setting by default." This can do away with the need to commit the preference file in the
way we are doing it here. This saves the creation of a preference file in the case in which a
user simply looks at the screen effect, doesn't make any changes, and then throws it in the
trash.

Now that we have the defaults either loaded or initialized, we can use the -integerForKey: method to get
their values. In theory, we only have to do this if we loaded them; but to test the save and load of the
defaults, we chose to do it this way during development. We could have easily added an else statement
above these two lines of code.

Last, we set the animation interval timer by calling the -setAnimationTimeInterval: method of
MyScreenSaverView. This determines how often the MyScreenSaverViews's -animateOneFrame method will
be called while the screen effect is running. The default rate is 1/30th of a second, but you can change it to
whatever you like.

Note

Did you know that you could change the frame rate of a screen effect while it's running?

Say, for example, that you have a slide show screen effect. Your user forgot to install pictures
in your Pictures directory. Instead of blinking "You forgot to install your picture
files!" 30 times a second, you can display it once and turn off the animation timer by using
the undocumented trick of setting the animation rate to a value of less than 0.

Or, say that you've written some kind of basic computer-name display screen effect. Rather
than displaying the name 30 times per second, you might want to display it once every 2
minutes.

Last, if you are an OpenGL speed freak, you might consider running the screen effect as fast
as it will possibly go. Simply set the animate rate to 0 and order another battery for your
laptop.

Listing 10.3 shows the -animateOneFrame method. This method is called periodically based on the value
passed to the -setAnimationTimeInterval: method. The first thing we do in this method is calculate the
size of the star we will be drawing between 1 and 3 pixels in diameter by calling the SSRandomIntBetween
function.

Listing 10.3 MyScreenSaverView -animateOneFrame Method in MyScreenSaverView.m

- (void)animateOneFrame
{
 NSRect rect;
 NSColor *color;
 int x;
 float r;

 // Calculate the star size
 x = SSRandomIntBetween(1, 3);

 // Make a rectangle at a random location the size of the star
 rect.origin = SSRandomPointForSizeWithinRect(NSMakeSize(x, x), [self bounds]);
 rect.size = NSMakeSize(x, x);

 // Calculate a random color (or gray), with or without transparency,
 // depending on the user preference
 r = SSRandomFloatBetween(0.0, 1.0);
 // use red
 color = [NSColor colorWithCalibratedRed:r
 // use new color or same as red if not using color
 green:m_useColor ? SSRandomFloatBetween(0.0, 1.0) : r
 // use new color or same as red if not using color
 blue:m_useColor ? SSRandomFloatBetween(0.0, 1.0) : r
 // use transparency if the user says so
 alpha:m_useTransparency ? SSRandomFloatBetween(0.0, 1.0) : 1.0];
 [color set];

 // Draw the star
 [[NSBezierPath bezierPathWithOvalInRect:rect] fill];

 return;
}

Next, we call SSRandomPointForSizeWithinRect to create a rectangle of the determined size at a random
location within the bounds of the rectangle that the screen effect will be drawn in. This will either be the
same rectangle as the entire screen or that of the preview pane as shown in Figure 10.1.

Note

What's with these random number functions?

Unlike most other system-level software, screen effects tend to compute many random
numbers. Rather than making users remember the right way to compute a random number
using the UNIX random() or POSIX rand() API, Apple created a few inline functions for doing
exactly this.

"But what about the random seed," you ask? The screen effect engine initializes the random
seed once before loading screen effects, so your module doesn't need to worry about that
itself. In fact, modules that initialize the random seed in their init() routines aren't very
interesting on multi-monitor machines—because each monitor might start with the same
image!

We then calculate our random NSColor, taking into account the transparency and the color options. The -
colorWithCalibratedRed:green:blue:alpha: method is one you will find yourself using over and over
again when doing simple drawing. Note that all the values are floats between 0.0 and 1.0. All values of 0.0
would create a completely clear color, just like +[NSColor clearColor]—remember the alpha channel. All
values of 1.0 would create white. We then -set the NSColor and draw our NSBezierPath by calling the -
bezierPathWithOvalInRect: and -fill methods. Note that the -bezierPathWithOvalInRect: method
takes into account anti-aliasing and draws a very nice, smooth oval.

Note

When you look at the source code of this project, you will see that you can use a -drawRect:
method to draw your screen effect. Depending on your needs, this might or might not be a
better approach. See the "Try This" section at the end of this chapter for a pointer on using –
drawRect:.

Listing 10.4 is a simple one. The -hasConfigureSheet method simply returns YES or NO depending on
whether our screen effect has a configure sheet. Because we do, we must override this method and return
YES.

Listing 10.4 MyScreenSaverView -hasConfigureSheet Method in MyScreenSaverView.m

- (BOOL)hasConfigureSheet
{
 return YES;
}

Listing 10.5 contains the -configureSheet method that is responsible for returning the NSWindow that is
our configure sheet. You might recall that our configure sheet is stored in the MyScreenSaver.nib file from
Figure 10.9. Because we store the configure sheet as an instance variable, we only need to load it once.
Therefore, if it is NULL, we call the NSBundle class method +loadNibNamed:owner: method to load the
MyScreenSaver.nib file. This automatically loads the configure sheet and sets the m_configureSheet
instance variable (IBOutlet) to point to the sheet itself. The check box instance variables are also set to
point to their user interface equivalents during the load. This makes it simple to set the state of the check
boxes to the current values of the screen effect settings and return the sheet. Note also that the Save and
Cancel buttons are linked to their actions during this load as well. The sheet is then displayed to the user as
shown in Figure 10.4.

Listing 10.5 MyScreenSaverView -configureSheet Method in MyScreenSaverView.m

// Display the configuration sheet for the user to choose their settings
- (NSWindow*)configureSheet
{
 // If we have yet to load our configure sheet,
 // load the nib named MyScreenSaver.nib
 if (!m_configureSheet)
 [NSBundle loadNibNamed:@"MyScreenSaver" owner:self];

 // Set the state of our UI components
 [m_useTransparencyCheckbox setState:m_useTransparency];
 [m_useColorCheckbox setState:m_useColor];

 return m_configureSheet;
}

After the user alters the settings in the sheet and he clicks the Save button, the IBAction method in Listing
10.6 is called. This method loads the current default values for the screen effect, saves the current state of
the check boxes to our instance variables, writes the new values to the defaults, synchronizes them, and
calls NSApp's +endSheet: class method to close the sheet.

Listing 10.6 MyScreenSaverView -closeSheet_save: Method in MyScreenSaverView.m

// The user clicked the SAVE button in the configuration sheet
- (IBAction) closeSheet_save:(id) sender
{
 // Get our defaults
 ScreenSaverDefaults *defaults = [ScreenSaverDefaults
 defaultsForModuleWithName:kBundleID];

 // Save the state of our UI components
 m_useTransparency = [m_useTransparencyCheckbox state];
 m_useColor = [m_useColorCheckbox state];

 // Write them to the defaults database
 [defaults setInteger:m_useTransparency forKey:@"useTransparency"];
 [defaults setInteger:m_useColor forKey:@"useColor"];

 // Synchronize
 [defaults synchronize];

 // The sheet has ended, go in peace
 [NSApp endSheet:m_configureSheet];
}

If the user had pressed the Cancel button instead of Save, there would've been nothing to do. The code in
Listing 10.7 is executed in this case and merely closes the sheet by calling NSApp's +endSheet: class
method.

Listing 10.7 MyScreenSaverView -closeSheet_cancel: Method in MyScreenSaverView.m

// The user clicked the CANCEL button in the configuration sheet
- (IBAction) closeSheet_cancel:(id) sender
{
 // Nothing to do! The sheet has ended, go in peace
 [NSApp endSheet:m_configureSheet];
}

Note

If you poke around the various Screen Saver folders, you will see some screen effects that end
in .slideSaver in OS X 10.1 or later. These screen effects have no associated source code
and are nothing more than a bundle filled with .jpg files in their Resources folder. Find one on
your drive and take it apart, and then consider creating your own with pictures of your pet,
kids, or yourself.

It wasn't that bad, huh? Ready to try some modifications on your own?

[Team LiB]

[Team LiB]

Try This

You can do so many cool things in a screen effect. Here are some to try using this project as a starting
point.

Add a control to set a maximum number of stars. When this maximum number is reached, don't create any
more than that number. You can choose to clear the screen and start over when you reach the maximum
or keep track of the stars as you create them and redraw the same ones in a different color after the limit
is reached.

Search out an image of the moon and draw it in a random location before you begin to draw the stars. You
can look back at previous chapters to see how to load an image either from a resource or via the Internet
and then draw it into a view. Notice how the transparency setting allows some of the stars to be seen
through. Make the stars that appear over the moon image draw without transparency even if the option is
set.

Try doing all of your drawing in –drawRect: and invalidate the ScreenSaverView in -animateOneFrame
using [self setNeedsDisplay:YES];.

Try using a separate NSWindowController object to manage the configure sheet. Use a delegate message
or notification to communicate to the screen effect.

Try improving performance by drawing more than one star at a time. Experiment with other drawing
methods.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

Whether you call them screensavers or screen effects, they are exciting pieces of code to implement. The
nice thing about them is that they are self-contained. Once you put together a template project (such as
the one outlined here), you can let your imagination run wild and implement any type of crazy animation
you desire. There are plenty of great examples of screen effects to use as examples—from awesome lifelike
flags waving in the wind to three-dimensional vortexes being twisted and turned. Screen effects are a great
place to explore the power of OpenGL, the high-performance 2D/3D graphics environment. For more
information on OpenGL, visit http://www.opengl.org/.

[Team LiB]

http://www.opengl.org/default.htm

[Team LiB]

Chapter 11. Color Pickers

"Yellow and blue make green."

—Basic scientific fact

I remember my first color computer; it was a Macintosh IIcx and was purchased with the help of my Uncle
David. Moving from a Macintosh Plus to a Macintosh IIcx was an incredible experience. Not only did I have
a faster computer that was truly expandable (via NuBus slots—remember those), but also I could finally
program in color!

So here I am, programming in color, making icons, color tables, simple games, and utilities. The first thing
I learned to do programmatically was how to let the user choose the color she wanted for any particular
need. The Macintosh OS has had a system color picker since Color QuickDraw, now called the color panel.
With OS X, it is better than ever although a bit light on documentation as of this writing.

Figure 11.1 shows the system color panel with the Color Wheel color picker selected. To clarify, the color
panel is the entire window that manages the individual color pickers. The color wheel is one such color
picker—one of many such color pickers.

Figure 11.1. The standard system color panel showing the Color Wheel color
picker.

The color panel is usually displayed in relation to a font choice or in a drawing program to choose the color
of a paintbrush or other such tool. Once displayed, the color panel displays all available color pickers as
icons along the top of its window. Figure 11.1 shows the following color pickers: color wheel, color sliders,
color palettes, image palettes, crayons, and MyColorPicker—the one we will examine in this chapter.
Custom color pickers live in the /Library/ColorPickers folder, whereas system color pickers (the ones
from Apple) usually live in the /System/Library/ColorPickers folder. Color picker names always end in .
colorPicker.

An application programmer need not worry about how the user chooses to pick her color in the color panel.
The application programmer merely asks the color panel for a color. The user can then move back and forth
between color pickers to get just the right color. When all is said and done, the color panel returns the
chosen color to the calling application. You can also easily limit the types of color panels that are displayed
depending on the types of colors your application supports. For example, you choose to only show color
pickers that support RGB or CMYK color modes. Refer to Apple's documentation on using color wells and
color panels for more information on using these at the application level.

Let's look at the results of this chapter.

[Team LiB]

[Team LiB]

The Result

Figure 11.2 shows MyColorPicker as the current color picker in the color panel. The window behind the color
panel is the main window of our test application. This application is a simple Cocoa application that contains
a window with a color well. There is no supporting code other than what was supplied by the Cocoa
Application project template. The color well, when clicked, automatically displays the color panel, which
displays the currently selected color in it. This application provides a quick and easy way to display the
color panel during development.

Figure 11.2. The MyColorPicker color picker being used in our test application.

MyColorPicker is very much a test bed color picker. It does not provide any remarkable way to choose a
color. What it does do, however, is track the color picker messages that it handles as the user interacts
with it. It also provides a way to choose a random color by clicking the ? button and displays it in the small

square to the right of the window. The large color box across the top and the magnifying glass tool (just
below the color picker icons) are provided by the color panel itself. This is also true for the color wells at the
bottom of the window, which are used to store your favorite colors via drag and drop.

Let's look at the project.

[Team LiB]

[Team LiB]

The Project

Figure 11.3 shows the MyColorPicker project in Project Builder. The project was started using the Cocoa
Bundle template in the New Project Assistant and then edited appropriately. Note that the project has only
a few files. ThePicker.m and ThePicker.h contain all the code for the color picker itself. ThePicker.tiff
contains the icon used to represent our color picker in the color panel. ThePicker.nib contains the user
interface elements that make up our color picker.

Figure 11.3. The MyColorPicker project.

The Project Settings

The Target settings in Figure 11.4 are straightforward. Make note that the WRAPPER_EXTENSION is set to
colorPicker. All color pickers must end in this suffix to be recognized as such. This is nothing new if
you've been following along in previous chapters.

Figure 11.4. The MyColorPicker Target settings.

The InfoPlist entries in Figure 11.5 bring a few new items to the table, however. Note the
_NSColorPickerClassPresentInAppKit entry, which is used internally to the color picker implementation.
Note also that the NSMainNibFile entry is ThePicker, which refers to ThePicker.nib. The
NSPrincipalClass is also ThePicker, which is the name of our NSColorPicker subclass that we will see
shortly.

Figure 11.5. The MyColorPicker InfoPlist entries.

The Nib File

The ThePicker.nib file is shown in Figure 11.6 as it appears in Interface Builder. The File's Owner is our
ThePicker class and the items in our NSWindow are connected to its IBOutlets accordingly. Although you
cannot see it in this picture, the ? button is also connected to an IBAction in ThePicker, -doRandomColor:.

Figure 11.6. The MyColorPicker ThePicker.nib file.

Note that the user interface layout, as shown in Figure 11.7, is straightforward, but there is one key that
you need to be aware of. The items in the user interface are encompassed by an NSBox, outlined in the
picture. This box allows us to easily refer to a group of items in the user interface in one fell swoop and
pass them to the color panel. The NSBox is the parent view of the other items; where the box goes, they go
—always as a group. This technique can be used in a variety of programs—wherever groups of controls
need to be managed, moved, or swapped in and out. The use of a tabs metaphor works similarly under the
hood.

Figure 11.7. The MyColorPicker user interface layout in ThePicker.nib file

Note

You don't have to worry too much about the size of your NSBox and items. The color panel will
resize itself to fit whatever items you have in the box.

In fact, there is another way to do this entirely without using NSBox at all.

Interface Builder now allows you to create windowless views, which are great for this type of
thing. Simply drag a view (custom or otherwise) into your nib file's main window (as if you
were dragging a window), and it will "just work."

Let's look at the source code.

The Source Code

I will admit it, once MyColorPicker got working, I looked at the pieces and it all seemed to fit together;
however, getting to that point was a difficult task. There are practically no examples or good
documentation for creating a color picker as of this writing. The only other color picker I found was a
shareware program that did not have source code available. Trial and error and a few well-placed emails
and postings got this project working.

Listing 11.1 shows the interface for ThePicker. ThePicker is a subclass of NSColorPicker and implements
the NSColorPickingCustom protocol. You might recall that a protocol is a way to create methods to be
implemented without being related to or dependent on any specific class. NSColorPicker is an abstract
super class that implements two such protocols: NSColorPickingDefault and NSColorPickingCustom. The
NSColorPickingDefault protocol provides basic, default behavior for a color picker. The
NSColorPickingCustom protocol provides custom, implementation-specific behavior. Because
NSColorPicker already adopts the NSColorPickingDefault protocol and we are a subclass of
NSColorPicker, we only need to additionally adopt the NSColorPickerCustom protocol.

Listing 11.1 ThePicker Interface in ThePicker.h

#import <Cocoa/Cocoa.h>

@interface ThePicker : NSColorPicker <NSColorPickingCustom>
{
 IBOutlet NSWindow *m_window;
 IBOutlet NSBox *m_box;
 IBOutlet NSTextView *m_textView;
 IBOutlet NSColorWell *m_colorWell;

 NSColor *m_color;
}

-(IBAction)doRandomColor:(id)sender;
-(void)logText:(NSString *)theString;

@end

Note that ThePicker contains some IBOutlets to manage our user interface elements. It also tracks the
current color being displayed as an NSColor. There is also an IBAction to handle the clicking of the ?
button to create a random color and a -logText: method to allow the tracking of the messages as they
pass through.

NSColorPickingDefault

First let's look at the methods that are implemented as part of the NSColorPickingDefault protocol. Note
that there are other NSColorPickingDefault protocol methods that we need not worry about in this
project. You can find them documented in NSColorPanel.h.

Listing 11.2 shows the -initWithPickerMask:colorPanel: method. This method is called to initialize our
picker. It allows us to check the mode in which the color panel is being displayed. If we do not support the
mode that the color panel requests, we do not initialize our super class. Also, we are not displayed as a
potential color picker in this case. Because we only support RGB mode colors—the most common—we check
for that in the mask parameter. The owningColorPanel parameter is the color panel itself. This is stored by
the NSColorPicker super class and can be accessed later, as we will do, via NSColorPicker's -colorPanel
method. Note that we also initialize the random number seed so that when we choose a random color later
on, it truly is random.

Listing 11.2 ThePicker -initWithPickerMask:colorPanel: Method in ThePicker.m

- (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)owningColorPanel
{
 if (mask & NSColorPanelRGBModeMask) { // we only support RGB mode
 [super initWithPickerMask:mask colorPanel:owningColorPanel];
 }
 srandom(time(0)); // init random number seed
 return self;
}

Listing 11.3, the -provideNewButtonImage method, is called when the color panel needs the image used to
represent our color picker to the user. This is the ThePicker.TIFF file shown in Figure 11.3. We simply
allocate a new NSImage with the contents of the TIFF file. This method contains many nested references,
but essentially—once we get the NSBundle based on our class—we can pull the image resource from it and
use that to initialize the NSImage.

Listing 11.3 ThePicker -provideNewButtonImage Method in ThePicker.m

- (NSImage *)provideNewButtonImage
{
 return [[NSImage alloc] initWithContentsOfFile:
 [[NSBundle bundleForClass:[self class]]
 pathForImageResource:@"ThePicker"]];
}

Note

Note that these methods are called before our interface has been created. Given that, there
are no calls to the -logText: method that you will see in later code.

NSColorPickingCustom

Now let's look at the methods that are implemented as part of the NSColorPickingCustom protocol. Note
that there are other NSColorPickingCustom protocol methods that we need not worry about in this project.
You can find them documented in NSColorPanel.h.

The -setColor: method in Listing 11.4 is called whenever the color panel needs to tell our color picker that
it needs to display a new color. For example, if the user uses the magnifying glass tool (shown in Figure
11.2) to choose a color from the screen, the color panel will send the -setColor: message to the currently
displayed color picker. In our case, we -retain the new color, -release the old, and copy the new to our
instance variable. We also set the color of the color well in our user interface (the small square on the
right) to the new color. It is up to the color picker to take the new color and display it in whatever way is
deemed appropriate for the user interface. For example, a color picker with sliders might set all the slider
values to designate the values other red, green, and blue components of the newly chosen color.

Listing 11.4 ThePicker setColor Method in ThePicker.m

- (void)setColor:(NSColor *)color
{

 [self logText:@"setColor\n"];
 [color retain];
 [m_color release];
 m_color = color;
 [m_colorWell setColor:m_color];
}

The -currentMode method in Listing 11.5 is used to report the mode that your color picker operates. This
should be a unique value for your color picker. We defined ThePickerMode to be 100 elsewhere in the
ThePicker.m file. You need to pick a unique number that is not the same as any of the standard color
pickers defined in NSColorPanel.h. There is no way to register your number with Apple as far as I can tell.
But it seems that color pickers aren't the most popular items to implement anyway, so you should be safe
picking an obscure number. Pick the last three digits of your phone number plus 100 to be safe!

Listing 11.5 ThePicker -currentMode Method in ThePicker.m

- (int)currentMode
{
 [self logText:@"currentMode\n"];
 return ThePickerMode;
}

The -supportsMode: method in Listing 11.6 is a corollary to -currentMode. You should return YES if you
support the mode passed in the mode parameter; otherwise return NO.

Listing 11.6 ThePicker –supportsMode: Method in ThePicker.m

- (BOOL)supportsMode:(int)mode
{
 [self logText:@"supportsMode\n"];
 return (mode == ThePickerMode);
}

The -provideNewView: method in Listing 11.7 is an important one. This method returns the NSBox that we
discussed earlier in Figure 11.7. Whenever the color panel needs the view to display for a color picker, it
calls this method. If this is the first time the method has been called, we attempt to load the nib file and
then simply return the m_box instance variable, which will be automatically initialized during the load.
Otherwise, we just return the previously initialized m_box.

Listing 11.7 ThePicker –provideNewView: Method in ThePicker.m

- (NSView *)provideNewView:(BOOL)initialRequest
{
 if (initialRequest) {
 if ([NSBundle loadNibNamed:@"ThePicker" owner:self]) {
 [self logText:@"provideNewView\n"];
 return m_box;
 } else {
 NSBeep();
 NSRunAlertPanel(@"Error", @"Couldn't load nib.",
 @"OK", @"", @"");

 }
 }
 return m_box;
}

Note

Learn from my mistake! For whatever reason, call it brain fatigue, I was returning NIL at the
end of the -provideNewView: method unless it was the initial request. I couldn't figure out for
the life of me why my color picker would not display properly most of the time. Once I realized
I needed to always return the view from this method, my problem was solved. It just goes to
show you that even simple bugs can be brutal to find.

Stragglers

Let's look at our stragglers. We have a few last methods to examine.

The -doRandomColor: method in Listing 11.8 is called when the user clicks the ? button. The first thing that
this method does is create a new NSColor object using the SSRandomFloatBetween inline static function to
generate its individual color components. Remember SSRandomFloatBetween from Chapter 10, "Screen
Effects"? Remember our initialization of the random number seed in Listing 11.2? We then call the -
setColor: method of the color panel returned by the -colorPanel method. Remember that the color panel
is saved by our NSColorPicker super class in the -initWithPickerMask: colorPanel: method in Listing
11.2. In turn, our own -setColor: method, in Listing 11.4, is called.

Listing 11.8 ThePicker –doRandomColor: Action Method in ThePicker.m

static __inline__ float SSRandomFloatBetween(float a, float b)
{
 return a + (b - a) * ((float)random() / (float) LONG_MAX);
}

-(IBAction)doRandomColor:(id)sender
{
 NSColor *theColor;
 [self logText:@"doRandomColor\n"];
 theColor = [NSColor colorWithCalibratedRed:SSRandomFloatBetween(0.0, 1.0)
 green:SSRandomFloatBetween(0.0, 1.0)
 blue:SSRandomFloatBetween(0.0, 1.0)
 alpha:SSRandomFloatBetween(0.0, 1.0)];
 [[self colorPanel] setColor:theColor];
}

The -logText: method in Listing 11.9 is a utility method used to display the name of the method being
called in the Messages display. It merely accepts an NSString parameter and appends it to the NSTextView
instance variable, m_textView.

Listing 11.9 ThePicker –logText: Method in ThePicker.m

-(void)logText:(NSString *)theString
{
 // Append the text to the end of the text view and scroll it into view
 NSRange theEnd = NSMakeRange([[m_textView string] length], 0);
 [m_textView replaceCharactersInRange:theEnd withString:theString];
 theEnd.location += [theString length];
 [m_textView scrollRangeToVisible:theEnd];
}

I told you that there wasn't much to it once you saw it all together.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

This is a simple color picker; it picks the color by choosing random values for the various color components.
Let's see how we can spruce it up a bit.

Store a colorful image in the color picker and display it in the view. If the user clicks on the image, the pixel
at the point that is clicked is sampled for the color and that color is made current. Your image can be
anything you like. In fact, Figure 11.8 shows how the Image Palettes color picker works.

Figure 11.8. The Image Palettes color picker.

Allow the user to choose a random color that weighs more toward red, green or blue. You can provide a
pop-up button to allow the choice of which direction to weigh. You can then simply multiply the value of the
chosen component (red, green, or blue) by a specific amount to make the color weigh in that direction.
Maybe even allow the user to choose the weighting amount as well.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

Well you've done great so far! Color Pickers are a fun type of code to write. You can provide all sorts of
different schemes for choosing colors. Think about it and try to come up with the next great color picking
mechanism. We have RGB, we have image palettes, and we've got color wheels; what's next? You decide!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Part IV: Advanced Methods

 12 Threads

 13 Terminal

 14 XML-RPC

 15 SOAP

 16 Snippets

 17 Conclusion

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 12. Threads

"Nice threads!"

—Some guy circa 1973

There was a time when computer programs ran from beginning to end with nary a surprise. If a program
had 100 instructions, they would run in order, with the exception of loops and branches. No two
instructions would execute at the same time. You could not be performing more than one task at the same
time. Execution was serial; each command occurred one after the other.

The Macintosh operating system introduced us to the event driven programming model. A program's
instructions would still occur in order, but this mechanism allowed the computer to spin its wheels until the
user clicked the mouse or typed on the keyboard. When an event such as this occurred, the computer
would react to it and draw text on the screen, make a window appear, and so on. However, the program
managing all these events could still only do one thing at a time.

Enter threads. Conceptually, threads are flows of execution, which can span many functions or methods.
Every process has at least one thread—every program you've seen in this book so far has used a single
thread to run your code—but a process can spawn additional threads if necessary. Threads share the same
address space as the process that spawned them; however, they are detached from the process and run
independently. Most importantly, threads execute simultaneously, or asynchronously, and can share data
with other threads in their process. Mind you, if your computer has only a single processor, only one
instruction can actually execute at a time. Threads are most useful when multiple processors are available.

Note

Cocoa applications (and all processes) are made of threads. The main thread of an application
is started when the application is launched. You can create other threads within the application
using some simple methods of the NSThread class or the pthread API. You'll see how to work
with threads using NSThread shortly.

Threads allow you to factor your application's functionality in order to provide a better user experience and
performance, especially on multi-processor systems. By creating a thread of a time-consuming task, that
task can be performed because time is available without blocking the rest of the program's execution. This
is how the Finder copies files from disk to disk while you can simultaneously drag icons around and create
folders.

Threads are also useful when you have a large task that would achieve better performance if it were
divided into smaller tasks. This enables multi-processor systems to distribute the workload to achieve
better efficiency. Because multiple threads can execute at the same time, more work can be accomplished
in less time.

Threads do not come free, however. There is overhead associated with their use. On multi-processor
systems, using threads for critical time-intensive tasks will usually yield favorable results. However, on a
single-processor system, the results might be worse than if you hadn't used threads. You should carefully

benchmark your application using threads—then you should measure the quality of your application without
them. You will see how much of a difference they actually make.

Note

If you are simply interested in deferring execution of a time-intensive task to make your
application seem faster, you might consider using an NSTimer instead of an NSThread. I
discussed NSTimers in Chapter 3, "Cocoa Applications." Sometimes, deferring execution is all
that is needed to make an application feel snappier to the user. Timers can even allow you to
perform tasks in the background while the user continues doing other things in your
application. However, if your background activity or user actions can't be broken up into quick
operations, threads might be the answer.

[Team LiB]

[Team LiB]

The Result

The project that we will be examining in this chapter shows you how to create and execute multiple
threads. In the example, a thread will wait for the previous thread to complete before performing its job by
use of an NSConditionLock. The threads will also access user interface elements during their execution.

Figure 12.1 shows the MyThread application before execution. Note the three progress indicators labeled as
Thread 1 thru 3. The Start button is enabled, and the Stop button is disabled.

Figure 12.1. MyThread before execution.

Upon pressing the Start button, the threads are created and executed in order, serially. That is, Thread 2
will not begin until Thread 1 has completed, and Thread 3 will not begin until Thread 2 has completed. The
Start button is disabled, and the Stop button is enabled. This is shown in Figure 12.2, where Thread 2 is
currently executing.

Figure 12.2. MyThread during execution.

Figure 12.3 shows the application once all threads have completed execution. The Start button is once
again enabled to allow the process to begin again.

Figure 12.3. MyThread after execution.

Let's look at the project.

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

[Team LiB]

The Project

Figure 12.4 shows the MyThread project in Project Builder. The project is a simple Cocoa application. Note
that we added an audio file to the project: done.aiff. You will see how to access that later; otherwise,
there is nothing special about this project. All the code is in the AppController files that we will look at
shortly.

Figure 12.4. The MyThread project.

The Project Settings

The Target settings in Figure 12.5 are straightforward.

Figure 12.5. The MyThread Target settings.

The InfoPlist entries in Figure 12.6 are also straightforward. Because this is a simple Cocoa application,
there are no surprises here.

Figure 12.6. The MyThread InfoPlist entries.

The Nib File

The MainMenu.nib file is shown in Interface Builder in Figure 12.7. The AppController has been
instantiated and is the NSApplication's delegate, as you would expect. We placed our controller methods
for the window in the AppController as well; although in a larger application, they would likely be in a

separate controller object. The main application window contains three NSProgressIndicators that we use
to display the status and progress of our threads. You will see that the threads do nothing more than
increment the value of their associated NSProgressIndicator—in the real world, you would do something
more exciting. The Start and Stop buttons are connected to two IBActions named -start: and -stop:,
respectively.

Figure 12.7. The MyThread MainMenu.nib file.

Let's go on to the source code!

The Source Code

The AppController.m and AppController.h files contain all the source code for your application. The
interface of the AppController is shown in Listing 12.1.

Listing 12.1 AppController Interface in AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSButton *m_startButton;
 IBOutlet NSButton *m_stopButton;
 IBOutlet NSProgressIndicator *m_indicator1;
 IBOutlet NSProgressIndicator *m_indicator2;
 IBOutlet NSProgressIndicator *m_indicator3;

 NSConditionLock *m_conditionLock;
 BOOL m_stop;
}
- (IBAction)start:(id)sender;
- (IBAction)stop:(id)sender;

- (void)thread1:(id)owner;
- (void)thread2:(id)owner;
- (void)thread3:(id)owner;

- (void)cleanupThread:(id)owner;

@end

Our AppController manages the IBOutlets in the application's main window as well as the IBActions
used to link to the Start and Stop buttons. We also define four methods that are used as thread entry
points: -thread1:, -thread2:, -thread3:, and –cleanupThread:. You will see how these are created and
executed next.

The –start: method in Listing 12.2 is called when the user presses the Start button in the main window of
the application. Assuming that we are not already in the middle of an operation, m_conditionLock is not
nil. We begin the process of creating the threads and kicking them off, which means to begin their
execution. The first thing we do is create and initialize an NSConditionLock. This class allows you to define
conditions that your threads can then adhere to such as the states of a state machine. Each thread can
then use the NSConditionLock to validate that the state machine is in the proper state before performing
its job. Note that we initialize the NSConditionLock with a condition, or state, of CONDITION_TASK_ONE,
defined later in Listing 12.4.

Listing 12.2 AppController –start: Method in AppController.m

// This action is called when the Start button is pressed, it begins everything
- (IBAction)start:(id)sender
{
 if (m_conditionLock == nil) {
 // Start out in Condition 1 so things start up right away
 m_conditionLock = [[NSConditionLock alloc]
 initWithCondition:CONDITION_TASK_ONE];

 // Set stop flag
 m_stop = NO;

 // Create all the threads that will eventually run based on Condition
 [NSThread detachNewThreadSelector:@selector(thread1:)
 toTarget:self withObject:self];

 [NSThread detachNewThreadSelector:@selector(thread2:)
 toTarget:self withObject:self];
 [NSThread detachNewThreadSelector:@selector(thread3:)
 toTarget:self withObject:self];

 // Create a final, cleanup thread
 [NSThread detachNewThreadSelector:@selector(cleanupThread:)
 toTarget:self withObject:self];

 [m_startButton setEnabled:NO];
 [m_stopButton setEnabled:YES];
 } else {
 NSRunAlertPanel(@"Error", @"m_conditionLock is not nil",
 @"OK", @"", @"");
 }
}

Note

A state machine is a way of keeping track of multiple conditions and acting on them
accordingly. An application goes through several states when it runs. First, it initializes itself, it
opens any documents that need opening, it loops waiting for user input, and eventually it quits
and cleans itself up. Each of these can be considered a state.

In many programs, especially when following a specific communications protocol, it is
important to know what state you are in at any time. For example, when transferring a file via
FTP, you must open a connection to a remote host, attempt to log in, choose a file, begin the
transfer, and so on. Although the actual FTP protocol is much more complex, you can see that
keeping track of the state is important.

Next, we initialize our stop flag to NO. We use this flag to know whether the user pressed the Stop button.
The threads, shown later, will check the value of this flag during their execution.

We then create our NSThread objects using the +detachNewThreadSelector:toTarget:withObject: class
method of NSThread. This method creates and detaches a thread selector method, which exists in the
specified target, passing a single argument to it. The thread selector method itself must be defined as
follows: -(void)aThread:(id)anArgument. We create four threads in this manner—the three that track
progress and then the last, –cleanupThread:.

Note

As the threads are created using +detachNewThreadSelector:toTarget:withObject: they
are kicked off and immediately begin their execution. When the first thread of an application is
created, the method posts the NSWillBecomeMultiThreadedNotification with a nil object
to the default notification center. This enables your application (or whatever object you desire)
to know that it is using multiple threads.

Before exiting the method, we enable and disable the Start and Stop buttons appropriately. At this point,
the job that the threads will perform has begun.

Before we look at the threads themselves, let's look at the –stop: action in Listing 12.3. If the user presses
the Stop button, we disable it and set the stop flag to YES. The threads, shown shortly, will check the value
of this flag during their execution.

Listing 12.3 AppController –stop: Method in AppController.m

// This action is called when the Stop button is pressed,
// it sets a flag that the threads check
- (IBAction)stop:(id)sender
{
 [m_stopButton setEnabled:NO];
 m_stop = YES;
}

Listing 12.4 defines our conditions. Each condition has an associated thread that executes during said
condition. When the condition is CONDITION_TASK_ONE, -thread1: in Listing 12.5 will execute. –thread2: in
Listing 12.6 will wait until the condition is CONDITION_TASK_TWO before it performs its job. This continues
for all threads in the application. Let's look at a thread method in detail.

Listing 12.4 Condition Definitions in AppController.m

#define CONDITION_TASK_ONE 1
#define CONDITION_TASK_TWO 2
#define CONDITION_TASK_THREE 3
#define CONDITION_TASK_CLEANUP 4

Listing 12.5 AppController –thread1: Method in AppController.m

// This is the first thread to run, it starts as soon
// as the Start button is pressed
- (void)thread1:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator1 setDoubleValue:0];

 // Wait until Condition 1
 [m_conditionLock lockWhenCondition:CONDITION_TASK_ONE];

 // Loop, checking the stop flag
 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator1 setDoubleValue:x];
 [NSThread sleepUntilDate:[NSDate

 dateWithTimeIntervalSinceNow:(NSTimeInterval)0.05]];
 }

 // Change to Condition 2
 [m_conditionLock unlockWithCondition:CONDITION_TASK_TWO];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

Listing 12.5 shows –thread1: which is the first thread to be executed in our application besides the
application itself. All of our threads are modeled similarly in this example. The first thing to know about a
thread is that it is responsible for its own NSAutoReleasePool. The main application thread normally
handles this for your application, allowing you to allocate memory, mark it autorelease, and not worry
about it. When you are in a custom thread, however, you are responsible for managing that memory on
your own although you are sharing memory space with the application that created you. The thread is a
guest in the application's home, but the application is not going to clean up after the thread. Therefore, we
+alloc and -init a local NSAutoReleasePool to manage this memory issue.

Note

NSApplication contains a class method +detachDrawingThread:toTarget:withObject: that
creates a new thread and automatically creates its NSAutoReleasePool for you. This is a
convenience wrapper for NSThread's +detachNewThreadSelector:toTarget:withObject:.

Next, we reset the progress indicator to zero and wait until the condition is CONDITION_TASK_ONE. Because
the condition is initialized to CONDITION_TASK_ONE, as soon as this thread is called, the condition will match
so that there will be no waiting to continue. By calling the –lockWhenCondition: method of
NSConditionLock, we are taking control and saying, "We are using this lock now because our condition has
been met—everyone else stay away!" You will see how the subsequent threads handle this situation shortly.

Note

You can also use NSLock instead of NSConditionLock if you are not concerned with multiple
conditions as shown in this example. If you have only two conditions, an NSLock might suffice—
it's locked, or it isn't.

We then loop 100 times to increment the value of our progress indicator user interface element. Note that
we check the value of the m_stop instance variable. Remember, this is set to YES if the user presses the
Stop button. In this case, we simply exit the loop and let the thread clean itself up. All subsequent threads
exhibit this same behavior. Note also that we are using the NSThread –sleepUntilDate: method to pause
the thread for a moment. If we didn't do this, the process would occur so quickly that it would make for a
boring demo. Threads performing animation or other periodic tasks traditionally put themselves to sleep in
order to conserve CPU time, battery life, and other sundries.

Note

Can you guess what thread the progress bar update is happening in? This background thread?
No. When you increment the progress bar value, the control changes its internal state and
marks itself as needing to be redisplayed. Later on, when the application is processing events
on the main thread, the application will notice that the progress bar needs to be redisplayed,
and it does so. In AppKit, most redisplay activity happens on the main thread. See the NSView
documentation for more details.

After our loop is complete, our thread must notify the next thread awaiting execution. We do this by calling
the –unlockWithCondition: method of NSConditionLock to not only unlock the lock, but also set the
condition to the next state. This is saying, "We are done with this lock now and are setting it up for the
next thread in line." Finally, we release our NSAutoReleasePool and +exit the thread to terminate
ourselves.

Note

Calling NSThread's +exit class method terminates the current thread. This is optional at the
end of a thread, but could be called if a thread needed to be aborted prematurely. In either
case, before exiting the thread, the NSThreadWillExitNotification notification is posted.
The thread being exited is passed to the default notification center. All observers will receive
this notification before the thread actually exits.

Now let's look at the next thread to execute. Listing 12.6 shows –thread2:. You will note that this method
is the same as –thread1:—with the exception that the condition it locks with is CONDITION_TASK_TWO
instead of CONDITION_TASK_ONE, and the condition it unlocks with is CONDITION_TASK_THREE instead of
CONDITION_TASK_TWO. It also updates the second progress indicator instead of the first—makes sense!

Listing 12.6 AppController –thread2: Method in AppController.m

// This is the second thread to run, it starts as soon as the Start button is
// pressed,
// then waits until the first thread is finished
- (void)thread2:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator2 setDoubleValue:0];

 // Wait until Condition 2
 [m_conditionLock lockWhenCondition:CONDITION_TASK_TWO];

 // Loop, checking the stop flag

 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator2 setDoubleValue:x];
 [NSThread sleepUntilDate:[NSDate
 dateWithTimeIntervalSinceNow:(NSTimeInterval)0.05]];
 }

 // Change to Condition 3
 [m_conditionLock unlockWithCondition:CONDITION_TASK_THREE];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

One thing to also note is that when this thread is initially created and detached, it actually executes
immediately up until the -lockWhenCondition: method call. It then is blocked at that point until the lock is
available with the chosen condition. This is the key to our state machine. Threads will get set up and ready,
but will then wait for the proper condition before they execute. When finished, they notify the next thread
by setting the next condition.

Note

Although our implementation works well, there is a way to optimize things here. We chose to
create our threads all at once, which uses kernel resources to hold the data structures for five
threads simultaneously (main, thread1, thread2, thread3, and cleanup). Imagine if we were to
spawn the next thread as each child thread terminated; you would only need data structures
for three threads (main, the current thread, and the new thread). Taking it one step further, if
you were to spawn the next thread from the main thread after the background thread
terminated, you would only need data structures for two threads (main and the new thread).
See the section on wired memory costs in "Inside Mac OS X: Performance" at http://www.
apple.com/developer/ for more information on optimizations such as this.

Note that as soon as a thread calls -unlockWithCondition:, it is possible that the next thread picks it up
and starts its work before the current thread even releases its NSAutoReleasePool.

Note

Imagine two threads attempting to read and write the same data without the benefit of locks.
NSLock and NSConditionLock enable threads to work together, as a team, staying out of each
other's way. Without them, threads accessing the same data source might step all over one
another, attempting to read data that the other one hasn't even finished writing!

By using these classes, you are able to tell other threads, "Hey! I'm working on something
here, so please let me finish unhindered. I will unlock when I'm through; then someone else
can take over."

http://www.apple.com/developer/default.htm
http://www.apple.com/developer/default.htm

Also, look at the other lock options, including NSRecursiveLock and NSDistributedLock.

Listing 12.7 is yet another thread, -thread3:. This thread is the same as –thread2:—with the exception of
the conditions it locks and unlocks with and the progress indicator that it updates. Note that the unlock
condition this time is CONDITION_TASK_CLEANUP. Let's see what the –cleanupThread: does.

Listing 12.7 AppController –thread3: Method in AppController.m

// This is the third thread to run, it starts as soon
// as the Start button is pressed,
// then waits until the second thread is finished
- (void)thread3:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator3 setDoubleValue:0];

 // Wait until Condition 3
 [m_conditionLock lockWhenCondition:CONDITION_TASK_THREE];

 // Loop, checking the stop flag
 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator3 setDoubleValue:x];
 [NSThread sleepUntilDate:[NSDate
 dateWithTimeIntervalSinceNow:(NSTimeInterval)0.05]];
 }

 // Change to Condition 4
 [m_conditionLock unlockWithCondition:CONDITION_TASK_CLEANUP];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

The –cleanupThread: method in Listing 12.8 is the last thread to execute in our example. Once again, the
thread is responsible for the NSAutoReleasePool. In addition, because it is the last thread, it can –unlock
and –release the NSConditionLock. Note that it does not have to -unlockWithCondition: because there
are no further conditions to set, so it can simply -unlock. We then set the m_conditionLock instance
variable to nil so that the –start: method will have an easier time of things.

Listing 12.8 AppController –cleanupThread: Method in AppController.m

// This is the cleanup thread, it starts as soon as the Start button is pressed,
// then waits until the third thread is finished
- (void)cleanupThread:(id)owner
{
 // Threads are responsible for manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Wait until Condition 4
 [m_conditionLock lockWhenCondition:CONDITION_TASK_CLEANUP];

 // Last stop, clean up
 [m_conditionLock unlock];
 [m_conditionLock release];
 m_conditionLock = nil;

 // Update the UI
 [m_stopButton setEnabled:NO];
 [m_startButton setEnabled:YES];

 // Play done sound if the user didn't stop prematurely
 if (!m_stop)
 [[NSSound soundNamed:@"done"] play];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

We then update the buttons properly so that Stop is disabled and Start is once again enabled. What is this
NSSound stuff? As a bonus to the user, if he waited for the entire process to complete, a little sound is
played. Remember the AIFF file we added to the project? The NSSound +soundNamed: class method and
the play method allow us to quickly and easily play any sound available with the given name.

Finally, we release the NSAutoReleasePool and +exit our thread.

One last notification method is –windowWillClose: in Listing 12.9. This is called when our window is about
to close (that is; the user clicked the Close box on the window). By calling our own stop method, this gives
the application a chance to clean up its threads, just as if the user clicked the Stop button first and then
closed the window!

Listing 12.9 AppController –windowWillClose Method in AppController.m

- (void)windowWillClose:(NSNotification *)aNotification
{
 [self stop:self];
}

What do you think of my threads? Let's review a couple more aspects of threads before you pass judgment!

[Team LiB]

[Team LiB]

Serial Versus Parallel

The example in this chapter shows how to use threads in a serial fashion. That is, they execute in order,
one after the other. However, threads are also very useful in situations in which you have multiple tasks
that must occur simultaneously. Consider the example of the Finder with multiple copy jobs occurring at
the same time. Figure 12.8 shows the Finder in the midst of multiple copy jobs—each one is a thread!

Figure 12.8. The Finder making multiple copies.

Figures 12.9 and 12.10 illustrate threads being used in both serial and parallel mechanisms.

Figure 12.9. Threads being used serially.

Figure 12.10. Threads being used in parallel.

In Figure 12.9, the threads are all created and then executed one after the other, serially. Well, this is not
completely true in our example. Remember, the threads are executed the moment they are created,
prepare themselves, and then wait for the right condition before actually performing the bulk of their work.
However, you get the general idea. The point of this illustration is that one thread does not perform its task
until the thread before it has finished its task.

In Figure 12.10, the threads are all created and then execute at the same time, in parallel. Note also that
although the threads are all running simultaneously, at any given time one or more of them might be
sleeping or blocking on IO and not actually doing any work. Remember, sleeping threads give other threads
a chance to work. The point of this illustration is that all threads can simultaneously perform their tasks as
needed.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Thread Priority

Although all the threads in this example were of the same priority, there are times when you might need to
set the priority of a thread above that of another in your application.

For example, assume that you have three threads running in parallel that perform certain tasks. One thread
might check for the existence of a file in a certain location and then put itself to sleep for 30 seconds using
the +sleepUntilDate: class method of NSThread. Another might run constantly waiting for specific data
input via a USB device, sleeping only for a few milliseconds at a time. The last might run constantly
processing the data input, also sleeping for only a few milliseconds at a time.

Of these last two threads, the input processor might be the most important and be given the highest priority
—you don't want to miss any input from a hardware device. By using the +setThreadPriority: class
method of NSThread, you can set the priority of any thread in relation to other threads throughout the
operating system. The range of values is 0.0 to 1.0 for the priority, where 1.0 is the highest priority. The
operating system manages the scheduling of these threads based on overall load. The +threadPriority
class method will return the priority of any particular NSThread.

Note

Note that using notifications can also curb the need for this type of polling. Notifications enable
your thread to be notified when data becomes available or some other condition is true.
Threads register themselves as observers of a notification and simply wait for the notification
to be delivered. This is similar to waiting for the phone to ring: You don't pick up the phone
every minute to see whether someone is there for you; you wait for it to ring, and then you
pick it up! See the NSNotification documentation for more information. Also see Chapter 13,
"Terminal," for more hints on using notifications.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Thread Data

The –threadDictionary instance method of NSThread returns the threads dictionary, an
NSMutableDictionary. This dictionary can be used to store any data specific to the thread. Because the
dictionary is available to anyone who has access to the NSThread instance itself, this can be a very useful
way to pass information to and from a thread. One caveat is that accessing a thread's dictionary might be
slightly slower than accessing an NSMutableDictionary that is not associated with a thread.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Try This

Here are some things to try to expand the project in this chapter:

Instead of creating all threads in the –start: method and using condition locks, try this: Create the first
thread in the –start: method and have it create the second thread when it has completed execution. Then
have the second thread create the third when it is complete, and so on. Using this mechanism, you can
avoid the use of the NSConditionLock.

Add an indeterminate progress indicator to the user interface and create a thread that runs in parallel with
the other threads running serially. This new thread should constantly call the NSProgressIndicator's -
animate: method while the others are performing their tasks.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

Congratulations for making it through this chapter. You can see that this technique isn't too complex, but it
might take a bit of time to wrap your head around it. Using simple techniques such as this can really
improve the structure and implementation of your application. Using condition locks to drive your state
machine is a great way to manage a program's work load and the individual steps of a process—especially
when they so closely depend on one another.

There is a world of threads beyond what is covered in this chapter. You should explore the documentation
supplied by Apple for other techniques that can be used with them. Using threads is a very powerful
technique that can make your application performance soar when used correctly.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 13. Terminal

"No manual entry for help."

—man help

A terminal is nothing more than a connection to a computer that allows you to type commands and have
results displayed back to you. Terminals existed before the graphical user interface took hold. UNIX was
originally a terminal-based operating system. DOS still is. Mac OS X offers the power of the terminal along
with its elegant Aqua user interface allowing you to achieve greater control over your computer than you
can with a graphical user interface alone.

Figure 13.1 shows the Terminal application packaged with Mac OS X. This application gives you all the
options you would expect from a standard UNIX terminal. Using the terminal, you can perform file
manipulation, process control, remote computer control, execute shell scripts, and more. The terminal is
your window to a world in which there is no menu bar and no cute icons. Enter if you dare, but behold and
respect the power it possesses.

Figure 13.1. Terminal application in Mac OS X at login.

Note

Mac OS X is still a terminal-based operating system. Do this: In the System Preferences'

Accounts' Login Options tab, switch to "Name and Password" and turn off auto-login in the
Users tab. Now log out. Log in as >console with no password; note the use of the greater than
sign here. You're looking at Mac OS X's console. Simply type logout to exit the console.

Let's look at some of the things you can do in the terminal.

You can easily copy files using wildcards. That is, instead of picking and choosing files one by one in the
Finder, you can choose files by name or partial name. To find all files that end in .TIFF, you would
represent that as *.TIFF in your command.

Note

In fact, you can even type multiline commands in the terminal. For example, the following
command renames all files in the current directory that end in .TIFF to end in .TIF using the
sed program.

foreach file (*.TIFF)
mv $file `echo $file | sed 's/.TIF/.TIFF/'`
end

The sed program is a stream editor that modifies its input and writes it back out. This is a very
powerful program. Grep is another powerful program that can be used on the command line as
well. Type man sed or man grep in Terminal for more information about these programs.

You can log in to a remote computer and, if you have the proper permissions, perform any task you can on
your local computer. The secure shell (ssh) is a popular mechanism to achieve an encrypted connection
from one computer to another. You would simply type ssh some.computer.com to connect. You can then
use secure copy (scp) to securely copy files between the two machines. This is a great (secure) alternative
to FTP.

You can also execute shell scripts to handle everything from backups to cache file cleanup or from
automatic Web site updating from your local computer to your Web server. These scripts can be executed
manually or on a schedule via the cron application. Running top, as shown in Figure 13.2, you can track
processor usage by application.

Figure 13.2. Terminal application in Mac OS X running top.

UNIX commands tend to be cryptic in nature and aren't written with novice users in mind. For example, the
rm command removes files without warning or comment, and it's easy to delete more than you intended. In
general, be wary of running commands without knowing what they do. You can learn what commands do
using the man command. man is short for "manual," and it contains a lot of documentation on the command
line tools and POSIX C libraries available on Mac OS X.

As you can see, the terminal is a powerful tool. There are times, however, when you might want to
leverage this power from within your Cocoa application. This chapter looks at an application that does
exactly that.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

MyTerminal, shown in Figure 13.3, accesses the power of the terminal in a few different ways using the
NSTask and NSPipe classes.

Figure 13.3. The MyTerminal application.

MyTerminal first interfaces with the uptime program. Uptime is a simple command-line application that
takes no parameters and reports the current time, the length of time the system has been up, the number
of users, and the load average of the system over the last 1, 5, and 15 minutes. In the example in Figure
13.3, it is currently 12:29 p.m., the system has been up for 16 hours and 22 minutes, 3 users are on the
system, and the load average has increased from 0.71% 15 minutes ago to 1.22% 1 minute ago. Pressing
the Uptime button calls the program and reports the results. Figure 13.4 shows what uptime looks like
running in the terminal.

Figure 13.4. Uptime running the terminal.

Second, MyTerminal interfaces with the ping program, as shown in Figure 13.3. Ping is a more complex
command-line application that takes multiple parameters—most of them optional—sends a packet to a
remote computer, and reports the response. This program is used in network debugging to tell if another
computer is reachable. Ping sends an ECHO_REQUEST packet to the remote computer; if it receives it, the
ECHO_RESPONSE packet will be returned. Ping then displays the time it took to receive the response. This
can be a key indicator to the health of a network or portion thereof. Pressing the Start Ping button calls the
program and reports the results. Figure 13.5 shows what ping looks like running in the terminal.

Figure 13.5. Ping running the terminal.

Let's look at the project to see what's going on here.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Project

Figure 13.6 shows the MyTerminal project in Project Builder. The project is a simple Cocoa application. We
use an AppController simply to implement the –applicationShouldTerminateAfterLastWindowClosed:
delegate method. We've done this in previous examples, so I won't spend time talking about it again here.
MyTerminalController is an NSObject subclass that manages the user interface objects in our main
application window.

Figure 13.6. The MyTerminal project.

The Project Settings

The Target settings in Figure 13.7 are straightforward for a simple Cocoa application.

Figure 13.7. The MyTerminal Target settings.

The InfoPlist entries in Figure 13.8 are also straightforward. Because this is a simple Cocoa application,
there are no surprises here.

Figure 13.8. The MyTerminal InfoPlist entries.

The Nib File

The MainMenu.nib file is shown in Interface Builder in Figure 13.9. The AppController has been
instantiated and is the NSApplication's delegate, as you would expect. The IBOutlets and IBActions that
control the items in our main application window are in the MyTerminalController custom class. Items
you cannot see in this picture are the NSTextField below the Uptime area of the window and the
NSProgressIndicator to the right of the Start Ping button. The Uptime and Start Ping buttons are
connected to two IBActions named –uptime: and –ping:, respectively.

Figure 13.9. The MyTerminal MainMenu.nib file.

Let's look to the source code!

The Source Code

The interface of MyTerminalController is shown in Listing 13.1.

Listing 13.1 MyTerminalController Interface in MyTerminalController.h

#import <Cocoa/Cocoa.h>

@interface MyTerminalController : NSObject
{
 IBOutlet NSTextView *m_textView;
 IBOutlet NSButton *m_pingButton;
 IBOutlet NSProgressIndicator *m_pingIndicator;

 IBOutlet NSTextField *m_textField;
 IBOutlet NSButton *m_uptimeButton;

 NSTask *m_pingTask;
 NSPipe *m_pingPipe;
 BOOL m_pingIsRunning;
}
- (IBAction)ping:(id)sender;
- (IBAction)uptime:(id)sender;

- (void)displayPingData:(NSFileHandle*) theFileHandle;

@end

The MyTerminalController manages the IBOutlets of our user interface as well as the IBActions of the
two buttons mentioned previously. We also define a method called –displayPingData: that is actually
detached and executed as a thread. If you have yet to read Chapter 12, "Threads," you might consider
doing so before continuing.

Note the NSTask and NSPipe instance variables. NSTask enables our program to run another program as a
sub process and monitor its execution. NSTask creates a separate executable entity that differs from
NSThread in that it does not share the memory space of the process that created it. The NSPipe allows us a
way to read the output of the task created with NSTask. Let's see how this all fits together.

Note

Both NSTask and NSPipe are complex classes that are documented fully by Apple. Be sure to
review the documentation for these classes to see all the possible options associated with
them.

The –init method in Listing 13.2 does little more than initialize our instance variables.

Listing 13.2 MyTerminalController –init Method in MyTerminalController.m

- (id)init
{
 [super init];
 if (self) {
 m_pingIsRunning = FALSE;

 m_pingPipe = nil;
 m_pingTask = nil;
 }
 return self;
}

The –dealloc method in Listing 13.3 merely releases those instance variables that need it. These instance
variables will be used when we discuss ping, but first, let's look at the simpler uptime.

Listing 13.3 MyTerminalController –dealloc Method in MyTerminalController.m

- (void)dealloc
{
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }
 [super dealloc];
}

Uptime

Listing 13.4 shows the –uptime: method that is called when the Uptime button is pressed in the main
application window.

Listing 13.4 MyTerminalController –uptime: Method in MyTerminalController.m

/*
 uptime is a simple, fast command. It only
 returns one line of text so we quickly
 are able to execute it and read the results
 from the pipe. No need for fancy threads
 or multiple reads here.
*/
- (IBAction)uptime:(id)sender
{
 // Allocate the task to execute and the pipe to send the output to
 NSTask *theTask = [[NSTask alloc] init];
 NSPipe *thePipe = [[NSPipe alloc] init];

 // Get the file handle from the pipe (assumes thePipe was allocated!)
 NSFileHandle *theFileHandle = [thePipe fileHandleForReading];

 // Tell the task what command (program) to execute
 [theTask setLaunchPath:@"/usr/bin/uptime"];

 // Set thePipe as the standard output so we can see the results
 [theTask setStandardOutput:thePipe];

 // Launch the task
 [theTask launch];

 // Wait until the task exits, we know uptime exits immediately
 [theTask waitUntilExit];

 // Verify that the program completed without error
 if ([theTask terminationStatus] == 0) {
 NSString *theString;

 // Extract a string from the data returned in the pipe's file handle
 theString = [[NSString alloc]
 initWithData:[theFileHandle readDataToEndOfFile]
 encoding:NSASCIIStringEncoding];

 // Set the text field to the value of the string
 [m_textField setStringValue:theString];

 // Release what we create, theFileHandle
 // is automatically released by thePipe
 [theString release];
 } else {
 // Set the text field to the value of the error
 [m_textField setIntValue:[theTask terminationStatus]];
 }

 [thePipe release];
 [theTask release];
}

The first thing you will note is that the method allocates local NSTask and NSPipe variables. Because the
uptime program is so fast and straightforward, all the work will happen within this method. There is no
need to work asynchronously with uptime. After allocating the NSPipe, we call its –fileHandleForReading
method to return an NSFileHandle that we can then use to read the data returned by uptime.

Next, we must call NSTask's –setLaunchPath: method to set the path to the executable we want to launch.
Uptime exists in /usr/bin/uptime, so we pass that string as the argument to the method. We then call
NSTask's –setStandardOutput: method to ensure that the output is written to the NSPipe allocated earlier.
At this point, we are ready to –launch the NSTask.

Note

You might also consider capturing STDERR using NSTask's –setStandardError: to catch any
reported errors.

Because uptime executes so quickly, we merely call NSTask's –waitUntilExit method to wait for the task
to finish. This method will suspend our program until uptime has terminated. Once this method returns, we
check the –terminationStatus of the NSTask to ensure that the program completed without error.
Assuming that all is well, we +alloc an NSString to display the data returned by the NSFileHandle –
readDataToEndOfFile method, and then release the NSString. If there was an error, we simply display
the –terminationStatus as an integer instead.

Note

We could have created that NSString differently. We could've made it -autorelease to avoid

the -release method call. However, if you know you are done with an object, it's better to -
release it directly than to have it be destroyed later via -autorelease.

Finally, we release both the NSPipe and the NSTask. The NSPipe will release the NSFileHandle that we
received a reference to earlier.

As you can see, it's not too complex to launch a task and read its output.

Ping

Ping is a bit more complex than uptime. Whereas uptime returned within a split second, ping accesses the
network and returns data over time. Because of this, we'll choose to use an NSThread to read the data from
the ping's NSPipe. Therefore, we have two methods to look at—one is the IBAction, -ping: that is called
when the user presses the Start Ping button. The second is the –displayPingData: thread method that is
executed to watch ping's NSPipe (NSFileHandle of the NSPipe actually) for data and ultimately cleanup
when the user presses the Stop Ping button or the ping program terminates on its own.

Note that once you press the Start Ping button, the name changes to Stop Ping while ping is running.
Figure 13.10 shows this phenomenon. If the ping task is executing, the button will read Stop Ping.

Figure 13.10. The MyTerminal application in mid ping.

Listing 13.5 shows the –ping: method. This function behaves differently depending on the state of the
m_pingIsRunning instance variable. Remember that the same physical button functions as a Stop Ping
button when ping is running. Therefore, if ping is currently running, the method simply sets
m_pingIsRunning to FALSE and disables said button. The value of m_pingIsRunning will be picked up in the
–displayPingData: thread method below as well.

Listing 13.5 MyTerminalController –ping: Method in MyTerminalController.m

/*
 ping is called when the Start Ping button is pressed.
 It is also called to a ping in progress.
 Essentially, this function sets things up for a
 separate thread that handles reading the data.
 When the users presses the Stop Ping button, the function sets a flag that
 triggers the thread to deallocate the task and stop the pinging.
*/
- (IBAction)ping:(id)sender
{
 if (m_pingIsRunning) {
 // If we are currently running and this is called, we want to stop,
 // so set a flag...
 m_pingIsRunning = FALSE;
 // ...and disable the button so it can't be clicked again until we
 // have terminated the ping
 [m_pingButton setEnabled:NO];

 } else {
 NSFileHandle *theFileHandle;

 // Otherwise we are currently not pinging so we want to start...
 // allocate a task, a pipe and the file handle
 m_pingTask = [[NSTask alloc] init];
 m_pingPipe = [[NSPipe alloc] init];
 theFileHandle = [m_pingPipe fileHandleForReading];

 if (m_pingTask && m_pingPipe && theFileHandle) {
 // If we get this far we are pretty safe so we set the
 // global flag that we are pinging...
 m_pingIsRunning = TRUE;
 // ...and begin some animation for the user to see activity
 // on the screen
 [m_pingIndicator startAnimation:self];

 // Tell the task what command (program) to execute
 [m_pingTask setLaunchPath:@"/sbin/ping"];

 // Pass some arguments to the program, in this case the domain
 // name to ping 5 times
 [m_pingTask setArguments:[NSArray
 arrayWithObjects:@"-c 5", @"triplesoft.com", nil]];

 // Set m_pingPipe as the standard output so we can see the results
 [m_pingTask setStandardOutput:m_pingPipe];

 // Launch the task
 [m_pingTask launch];

 // Clear the text we placed in the text view in awakeFromNib
 [m_textView setString:@""];

 // Create the thread that will handle reading data from ping
 // and pass theFileHandle from thePipe
 [NSThread detachNewThreadSelector:@selector(displayPingData:)
 toTarget:self withObject:theFileHandle];

 // Change the title of the button to Stop Ping to reflect the
 // change in state
 [m_pingButton setTitle:@"Stop Ping"];
 } else {
 // If there was an error, tell the user
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }
 NSRunAlertPanel(@"MyTerminal",
 @"An error occurred trying to allocate the task, pipe or file handle.",
 @"OK", @"", @"");
 }
 }
}

If ping is not currently running, this method is responsible for kicking it off. In that case, the first thing it
must do is +alloc and –init the NSTask and NSPipe instance variables of MyTerminalController. These
are made instance variables because they are used in the thread method below as well. Note that we also

access the NSPipe's –fileHandleForReading method as we did in the uptime example.

Note

Note that you could also use NSThread's –threadDictionary method to access the thread's
dictionary (that we are about to create) and store the NSTask, NSPipe, and NSFileHandle
there.

Assuming that we have everything allocated and in order, we continue by setting m_pingIsRunning to
TRUE. We also animate the progress indicator so that the user knows something is happening. NSTask's –
setLaunchPath: is called to point to /sbin/ping. We then make use of its –setArguments: method to
assign an array of arguments to be passed to ping. Although many arguments are available, we are passing
in the –c argument to tell ping to ping the host triplesoft.com five times before automatically
terminating. The user can still stop the ping before it completes, but this will limit the time the program will
run.

We then call NSTask's –setStandardOutput: method to ensure that the output is written to the NSPipe
allocated earlier. At this point, we are ready to –launch the NSTask. Just as we launch the task, we also
clear the output text in the NSTextView so that we start with a fresh slate on the user interface side of the
equation.

Next, we create and detach the thread that will read and display the output from ping to the user. Note
that we are creating the –displayPingData: method of self as the thread. Note also that the
withObject: parameter is theFileHandle. This allows easy access to the NSFileHandle written to by the
ping task. As you will see shortly, the NSFileHandle is passed directly to the thread. We then set the Start
Ping button to Stop Ping.

Note the last bit of code in this method is the else to handle the case in which the NSPipe or NSTask were
not allocated properly. Just a little cleanup and an error is displayed should anything strange happen.

Now that the task has been set up and kicked off, let's take a look at the thread that maintains it.

Listing 13.6 contains the –displayPingData: thread method. This method begins execution the moment it
is created in –ping:.

Listing 13.6 MyTerminalController –displayPingData: Method in
MyTerminalController.m

/*
 This is the thread that handles reading the data from the ping program
*/
- (void)displayPingData:(NSFileHandle*) theFileHandle
 {
 // Threads are responsible for manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // While the flag is set (the user has yet to tell us to stop pinging)
 while (m_pingIsRunning) {

 // Read in any available data from the
 // file handle passed into the thread
 NSData *theData = [theFileHandle availableData];

 // If there is data...
 if ([theData length]) {
 // Extract a string from the data
 // returned in the pipe's file handle
 NSString *theString = [[NSString alloc]
 initWithData:theData encoding:NSASCIIStringEncoding];

 // Append the text to the end of the
 // text view and scroll it into view
 NSRange theEnd = NSMakeRange([[m_textView string] length], 0);
 [m_textView replaceCharactersInRange:theEnd withString:theString];
 theEnd.location += [theString length];
 [m_textView scrollRangeToVisible:theEnd];

 // Release the string
 [theString release];
 }

 // Sleep this thread for 100ms so as
 // to allow other threads time (ie: UI)
 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:(
 NSTimeInterval)0.1]];

 // Check if the task has completed and the data is gone
 if (([m_pingTask isRunning] == NO) && ([theData length] == 0))
 m_pingIsRunning = NO;
 }

 // Once the flag has been set to FALSE, we need to clean things up...

 // Terminate the ping task and wait for it to exit
 [m_pingTask terminate];
 [m_pingTask waitUntilExit];

 // Check the termination status of ping,
 // 15 or 0 means it exited successfully
 // 15 = user cancelled, 0 = normal termination
 if (([m_pingTask terminationStatus] != 15) &&
 ([m_pingTask terminationStatus] != 0))
 NSRunAlertPanel(@"MyTerminal",
 @"An error occurred trying to quit the task. (%d)",
 @"OK", @"", @"", [m_pingTask terminationStatus]);

 // Release the pipe and task
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }

 // Update the UI
 [m_pingIndicator stopAnimation:self];
 [m_pingButton setEnabled:YES];
 [m_pingButton setTitle:@"Start Ping"];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

First, the method allocates its NSAutoReleasePool since we've learned that threads are responsible for
their own autorelease pools. Then, as long as the m_pingIsRunning flag is set, the thread loops looking
for available data being passed back from ping. If the NSFileHandle –availableData method returns
data, verified with the –length method, it is extracted into a string and appended to the NSTextView in the
main application window.

The thread is then put to sleep using NSThread's +sleepUntilDate: class method to conserve CPU usage.
When the thread wakes up, it checks to see if the ping task is still running using the NSTask method –
isRunning—this is called polling. It also checks to see if any data is waiting to be processed. This allows us
to verify whether the task completed on its own. If ping is not running and there is no data, the task
stopped on its own and we have already read in all there is to read, so we set the m_pingIsRunning flag to
NO. Otherwise, we will continue to loop to pick up any remaining data, such as the final summary that ping
outputs.

Note

Here's a few words about polling. Why do I poll? I'm originally a Macintosh programmer.
Macintosh programmers poll; it's what we've done for as long as I can remember—it's almost
all we know. However, other ways can conserve CPU resources and deserve a mention.

By using tools such as mach port messaging, NSNotifications, and delegate messages to
notify software of important state changes, you can avoid polling. NSFileHandle, for example,
implements a notification named NSFileHandleDataAvailableNotification. By choosing to
become an observer to this notification, you will be alerted when data is available to be read,
as opposed to polling for the data.

See if you can retrofit this project to support notifications; see the "Try This" section for
another hint as to how to do this.

At some point, the task will either exit on its own, after five pings, or the user will press the Stop Ping
button. Either way, the m_pingIsRunning flag will be set to NO. When this occurs, the loop will exit and the
thread will begin to clean things up. First, it will attempt to -terminate the task and –waitUntilExit. If
the task completed on its own, these two methods will return immediately because the task will have
already terminated.

Next, the –terminationStatus of the task will be checked to see how it was terminated. A value of 15
means that the user cancelled the task. A value of 0 means that the task completed on its own. Anything
other than this means that some type of error occurred. We then -release the NSPipe and NSTask, update
the user interface, -release the NSAutoReleasePool, and -exit the NSThread.

By using a thread, it's relatively easy to read the output from any command-line program that returns data
over time. Be sure to read Chapter 12 for more information on threads.

[Team LiB]

[Team LiB]

Try This

Here are some ideas to expand the project in this chapter:

Add a view that plots the server load, as a bar chart, using the data returned by uptime beyond the 15-
minute limit. Schedule an NSTimer to run the uptime program once every minute and keep track of the
data returned to plot it for the user in a simple graph.

Add the ability for the user to set various ping options within the application user interface. You can type
man ping in the terminal to see all the options and their potential values.

Pick another command-line–interface program and implement a graphical user interface for it as I've done
here. Can't think of one? Try users, date, man, cal, du, or who.

Rewrite the ping program to work asynchronously without using NSThread. (Hint: use NSFileHandle's –
readInBackgroundAndNotify method to get data out of STDERR and STDOUT as it arrives.)

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Conclusion

You've learned a lot in this chapter. Using NSTask and NSPipe, you can leverage the power of proven
applications that have existed for ages from within your Cocoa applications. Be sure to review the details of
the NSTask and NSPipe classes because many options are associated with each of them. We've only
scratched the surface in this chapter, but I hope that it has given you a spark to learn more about this
powerful technique.

[Team LiB]

[Team LiB]

Chapter 14. XML-RPC

"Does distributed computing have to be any harder than this? I don't think so."

—Byte Magazine

Every once in a while, something comes along that changes the way you think about work. XML-RPC is one
of the coolest technologies I've explored in a long time. XML-RPC is a specification to allow software on one
computer to call remote procedures (RPCs) on another computer, regardless of platform. The transport
mechanism is HTTP, and the encoding mechanism is XML.

XML-RPC was created by Dave Winer of UserLand Software, Inc. and is a simpler alternative to using SOAP,
discussed in Chapter 15, "SOAP." Both are considered "Web Services"—XML-RPC being the first. Although
both enable complex data structures to be transmitted, processed, and responded to, using XML-RPC is just
a tad simpler. XML-RPC is an excellent implementation to base your client/server project because there is
no fluff. It does what it does very well.

XML-RPC can be implemented in any of a number of programming languages on just about every available
platform. You can choose C/C++ (including Carbon), Frontier, Java, Lisp, Objective-C (including Cocoa),
Perl, PHP, Python, BASIC, Tcl, and many more. This offers a lot of flexibility to the programmer looking for
a robust solution with minimal limitations.

Both XML-RPC and SOAP are useful when you need to implement a data-based client/server architecture.
Although XML-RPC and SOAP are "Web Services", normally they will not return fully formatted HTML, but
instead just the raw data. Remember, you don't know what format your client might be—it might be a Web
browser, it might be a native application with a Mac OS X or Windows GUI, or it might be a cell phone.
Therefore, your server should return data only, leaving the formatting of the data to the client. This is a
perfect use for XML. Figure 14.1 shows this concept.

Figure 14.1. A client and server via XML-RPC.

The official XML-RPC Web site can be found at http://www.xmlrpc.org/. It has extremely detailed
information on the protocol that we will use in this chapter.

[Team LiB]

http://www.xmlrpc.org/default.htm
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

The project in this chapter is the same project we will use in Chapter 15. One thing I found while learning
about Web services is that it was very difficult to find concrete examples that accepted multiple parameters
in and delivered multiple parameters out—like the real-world. By showing a single example using XML-RPC
and SOAP as well as both PHP and Objective-C, I hope this will take some of the mystery out of these
exciting protocols.

This project shows how to create an XML-RPC server written in PHP and running under the Apache Web
server. We then create a PHP client as well as Cocoa Objective-C client. This shows that one server can
handle multiple clients using multiple implementation mechanisms. Although the Cocoa client will only run
under Mac OS X, the PHP client can be used on any computer with a Web browser.

My example is a product information system. We sell many different styles of bags in a rainbow of colors—
everything from book bags to handbags to grocery bags and more. Using one of our clients, the user simply
picks a type of bag and a color, and the server returns the price and number of bags currently in stock that
matches those criteria. For the purposes of this demo, any bag in the color brown is out of stock, whereas
all other colors return a random stock value. Normally, you would pull this information from a database, but
this is left as an exercise to the reader.

The PHP client is served via Apache and is essentially a Web form. The client accepts data from the user,
sends the request to the server, formats the resulting data appropriately, and displays it in a Web browser.

Figure 14.2 shows the PHP client running in Internet Explorer under Mac OS X although it could run in any
modern Web browser. The user is presented with a form that allows her to choose which type of bag and
which color she wants price and stock information for. Once chosen, she clicks the Get Product Information
button, which passes the form data on to the server.

Figure 14.2. The PHP XML-RPC client before submitting a query.

Once the server receives and processes the data, it returns the resulting data (or an error) to the client.
The client is then responsible for displaying the results to the user. Figure 14.3 shows our client displaying
the original XML-format query, or message, the formatted results, and then the details of the response
from the server that were parsed to produce the formatted results. Normally you wouldn't display the XML-
formatted information to the user, but it is very helpful to see the complete picture when you're learning
something new.

Figure 14.3. The PHP XML-RPC client after submitting a query and receiving the
results.

The Cocoa client, shown in Figure 14.4, works similarly in that it collects data from the user and then
contacts the server to perform the price and stock lookup. However, after it receives and parses the
response, it displays it within its own window differently than the previous Web browser example. It still
uses HTTP as the transport mechanism, which is standard for XML-RPC, but does not display the results
using HTML.

Figure 14.4. The Cocoa XML-RPC client after submitting a query and receiving
the results.

Let's look at how this is all put together.

[Team LiB]

[Team LiB]

The PHP Server

First, we will look at the server side. As mentioned, the server is written in PHP but can be written in almost
any language. We chose PHP because it is reliable, straightforward, and powerful. Our product_server.
php file is served by the Apache Web server running under Mac OS X just as any standard PHP file would
be. The client accesses it via a standard HTTP URL. In this case, we have placed the file at http://www.
triplesoft.com/xmlrpc/product_server.php. However, typing that URL into your Web browser will
simply produce an error because XML-RPC servers require specifically formatted information passed by the
client. Figure 14.5 shows the fault information returned by the server.

Figure 14.5. The PHP XML-RPC server being called directly from the Web
browser.

An important thing to note is that both the PHP server and client require the use of a third-party PHP library
by Edd Dumbill. The XML-RPC for PHP library and detailed information on its use can be found at http://
www.usefulinc.com/. This library contains two include files, xmlrpc.inc and xmlrpcs.inc, that are easily
included in your PHP source. The distribution also contains documentation and examples as well as

http://www.usefulinc.com/default.htm
http://www.usefulinc.com/default.htm

licensing information.

Let's look at the complete PHP source code of the server and then I will explain it in sections.

Listing 14.1 contains the complete PHP XML-RPC server code. This simple server offers a concrete example
of the protocol accepting multiple parameters and returning multiple parameters, which is most likely what
you will need in a real-life scenario.

Listing 14.1 product_server.php

<?php
include("xmlrpc.inc");
include("xmlrpcs.inc");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",
 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Signature of this RPC
$products_signature =
 array(array($xmlrpcArray, // Returns a product price and quantity
 $xmlrpcString, // Accepts a product name
 $xmlrpcString)); // Accepts a color

// Documentation string of this RPC
$products_docstring = "When passed valid product info, more info is returned.";

// RPC Main
function get_product_info($input)
{
 global $xmlrpcerruser, $products;
 $err = "";

 // Get the parameters
 $param0 = $input->getParam(0);
 $param1 = $input->getParam(1);

 // Verify value and type
 if ((isset($param0) && ($param0->scalartyp() == "string")) &&
 (isset($param1) && ($param1->scalartyp() == "string"))) {

 // Extract parameter values
 $product_name = $param0->scalarval();
 $product_color = $param1->scalarval();

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;

 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like
 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error
 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new xmlrpcresp(0, $xmlrpcerruser, $err);
 } else {
 // Create an array and fill it with the data to return
 $result_array = new xmlrpcval(array(), "array");
 $result_array->addScalar($product_name, "string");
 $result_array->addScalar($product_color, "string");
 $result_array->addScalar($product_price, "string");
 $result_array->addScalar($product_stock, "string");
 return new xmlrpcresp($result_array);
 }

}

// Create the server
$server = new xmlrpc_server(
 array("example.getProductInfo" =>
 array("function" => "get_product_info",
 "signature" => $products_signature,
 "docstring" => $products_docstring),
)
);
?>

Let's look at the server code by section. First, in Listing 14.2, you will notice the two include statements for
the xmlrpc.inc and xmlrpcs.inc files. Servers will make use of both of these files; however, clients will
only use xmlrpc.inc in most cases.

Listing 14.2 Initial Steps in product_server.php

include("xmlrpc.inc");
include("xmlrpcs.inc");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",
 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Signature of this RPC
$products_signature =
 array(array($xmlrpcArray, // Returns a product price and quantity
 $xmlrpcString, // Accepts a product name
 $xmlrpcString)); // Accepts a color

// Documentation string of this RPC
$products_docstring = "When passed valid product info, more info is returned.";

Next, we create an array of products with prices, appropriately named $products. In a real-life scenario,
you will most likely use some sort of database for this information. MySQL is a common choice when using
PHP and Apache, but other options exist as well.

We initialize the $products_signature variable, which contains the signature for the RPC. The signature
defines the parameters expected from and returned to the client. The signature is an array that contains a
list of the data types in question. The first entry in the array is the return type—in this case, an array of
items is returned by the server. Subsequent entries are the individual parameters expected of the client—in
this case, a string representing the product name and a string representing the product color. You could
just as easily make the second and third parameters part of an array as well.

Last, we initialize the $products_docstring variable, which contains the documentation string for the RPC.
This is used to describe the RPC to a client in human-readable terms.

The get_product_info function in Listing 14.3 is the main and only RPC of this server. Although servers
can serve multiple RPCs, only one is implemented in this example. This function does all the work—parses
the incoming parameters, performs any calculations or database lookups, and returns the results to the
client. This function is automatically called when the server receives the request based on information
within the XML-formatted data sent to the server. See Listing 14.4 for an example of the XML sent to the
server that triggers this function call.

Listing 14.3 The get_product_info Method in product_server.php

function get_product_info($input)
{
 global $xmlrpcerruser, $products;
 $err = "";

 // Get the parameters
 $param0 = $input->getParam(0);
 $param1 = $input->getParam(1);

 // Verify value and type
 if ((isset($param0) && ($param0->scalartyp() == "string")) &&

 (isset($param1) && ($param1->scalartyp() == "string"))) {

 // Extract parameter values
 $product_name = $param0->scalarval();
 $product_color = $param1->scalarval();

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;
 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like
 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error
 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new xmlrpcresp(0, $xmlrpcerruser, $err);
 } else {
 // Create an array and fill it with the data to return
 $result_array = new xmlrpcval(array(), "array");
 $result_array->addScalar($product_name, "string");
 $result_array->addScalar($product_color, "string");
 $result_array->addScalar($product_price, "string");
 $result_array->addScalar($product_stock, "string");
 return new xmlrpcresp($result_array);
 }

}

Listing 14.4 The XML-Formatted Data Sent to product_server.php

<?xml version="1.0"?>
<methodCall>
 <methodName>example.getProductInfo</methodName>
 <params>
 <param>
 <value><string>Book Bag</string></value>
 </param>

 <param>
 <value><string>Black</string></value>
 </param>
 </params>
</methodCall>

Looking at Listing 14.3 again, first we allow access to two global variables—$xmlrpcerruser from xmlrpc.
inc and the $products array we defined previously. $xmlrpcerruser will contain any error code that is
generated during the execution of the server. We also initialize the $err string to "".

Next, we verify the parameter types and extract their values using the getParam function and scalartyp
and scalarval methods. Remember, parameter 0 is the product name and parameter 1 is the color. The
parameters must be sent to the server in that order. Note that Listing 14.4 contains the parameters in the
correct (and expected) order. If both parameters do not exist or are not the correct type, we return a
human-readable error in $err.

After the parameter values have parsed properly, we can then begin to use the data they contain. The first
thing to do is peruse the $products array using foreach for the chosen product. Because we limit the
users choices in the client, we should always get a match here. Once found, we set the $product_price
variable accordingly. If the $product_price is not found, which should never happen in our simple
example, we return a human-readable error in $err a few lines further down.

Next, we figure out the number of the product in the chosen color that is in stock. Remember, for the
purposes of this demo, all products chosen in brown are out of stock. All other colors produce a random
stock value. In reality, you might pull this information from a SQL database.

Last, if an error was returned, $err is set; we return the error using the xmlrpcresp function in xmlrpc.
inc to create the XML-RPC response. You can see an example of an error returned in Figure 14.5.

However, if all is well, we create our result array. Remember, our server returns an array of data to the
client. We first initialize the $result_array variable using the xmlrpcval function in xmlrpc.inc to create
an xmlrpcval object. Once created, we simply call the addScalar method of that object to add the result
data in the expected order. You can see that we return four strings. The product name and color are the
same items passed to the server—we return them for convenience to the client because HTTP is a stateless
protocol. The product price and stock are calculated by our server. We then finish it by passing the array to
the xmlrpcresp function in xmlr pc.inc to create the XML-RPC response. Listing 14.5 shows an example
of the data returned from the server, including the parameters in the correct (and expected) order.

Listing 14.5 The XML-Formatted Data Returned from product_server.php

<methodResponse>
 <params>
 <param>
 <value><array><data>
 <value><string>Book Bag</string></value>
 <value><string>Black</string></value>
 <value><string>18.00</string></value>
 <value><string>82</string></value>
 </data></array></value>
 </param>
 </params>

</methodResponse>

The last thing to do, actually the first thing that must occur when the server is called, is to create the
server object itself. Listing 14.6 performs this task.

Listing 14.6 Creating the Server in product_server.php

// Create the server
$server = new xmlrpc_server(
 array("example.getProductInfo" =>
 array("function" => "get_product_info",
 "signature" => $products_signature,
 "docstring" => $products_docstring),
)
);

When the URL of the server is loaded, this code must run to prepare the server to accept incoming
requests. Essentially, the xmlrpc_server function in xmlrpcs.inc creates the server object. This function
takes multiple parameters that define not only the names of the RPCs that the server implements—in this
case, only getProductInfo—but also detailed information about each of those methods. In the example,
this includes the actual name of the function in code, get_product_info; the signature,
$products_signature; and the documentation string, $products_docstring.

Essentially, we register the get_product_info function as a method of the server object with the method
name example.getProductInfo. Although we name our method example.getProductInfo, you might
consider using the reverse domain method of naming your implementation—something like com.
mydomainname.myprojectname.mymethodname.

That, my friends, is the server. Now let's look at the PHP client.

[Team LiB]

[Team LiB]

The PHP Client

Our first client is also written in PHP, just as the server. As you've seen, however, it could be written in just
about any language. Later in this chapter, we will rewrite the client using Objective-C and Cocoa. The
product_client.php file is served by the Apache Web server running under Mac OS X just as any standard
PHP file would be. The client file is what the user will access via her Web browser. In this case, we have
placed the file at http://www.triplesoft.com/xmlrpc/product_client.php. Typing that URL in your Web
browser will produce the Web page shown in Figure 14.2.

When the user clicks the Get Product Information button in the Web form, the pop-up menu selections are
sent to the server as XML-formatted data. The server then processes the selections and returns the price
and stock information as previously discussed. Figure 14.3 shows what the user's Web browser looks like
after the server responds.

Listing 14.7 contains the complete PHP XML-RPC client code. This simple client offers a concrete example of
the protocol passing multiple parameters and parsing multiple parameters in return.

Listing 14.7 product_client.php

<html>
<head><title>PHP XML RPC Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

<?php
include("xmlrpc.inc");

// Show the results of the previous query
// if the parameter there are results to show
if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the message object using the RPC name, parameter and its type
 $message = new xmlrpcmsg("example.getProductInfo",
 array(new xmlrpcval($HTTP_POST_VARS["product_name"], "string"),
 new xmlrpcval($HTTP_POST_VARS["product_color"], "string")));

 // Display the message detail
 print "<pre>Message Detail:
" .
 htmlentities($message->serialize()) . "</pre>";

 // Create the client object which points to the server
 // and PHP script to contact
 $client = new xmlrpc_client("/xmlrpc/product_server.php",
 "www.triplesoft.com", 80);

 // Enable debug mode so we see all there is to see coming and going
// $client->setDebug(1);
// print "<pre>From Server:
</pre>";

 // Send the message to the server for processing
 $response = $client->send($message);

 // If no response was returned there was a fatal error
 // (no network connection, no server, etc.)
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$response->faultCode()) {

 // Extract the values from the response
 $result_array = $response->value();
 if ($result_array->arraysize() == 4) {
 $product_name = $result_array->arraymem(0);
 $product_color = $result_array->arraymem(1);
 $product_price = $result_array->arraymem(2);
 $product_stock = $result_array->arraymem(3);

 print "
";
 print "
Product: " . $product_name->scalarval() . "";
 print "
Color: " . $product_color->scalarval() . "";
 print "
Price: $" . $product_price->scalarval() . "";
 print "
In-Stock: " . $product_stock->scalarval() . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array. " .
 "Should be 4 but there are " .
 $result_array->arraysize() . ".";
 print "
";
 }

 // Display the response detail
 print "<pre>Response Detail:
" .
 htmlentities($response->serialize()) . "</pre>";

 } else {
 print "
";
 print "
Fault Code: " . $response->faultCode();
 print "
Fault String: " . $response->faultString();
 print "
";
 }

 print "<hr>";

}
?>

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag"
 value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag"
 value="Garment Bag">Garment Bag</option>

 <option label="Grocery Bag"
 value="Grocery Bag">Grocery Bag</option>
 <option label="Hand Bag"
 value="Hand Bag">Hand Bag</option>
 <option label="Old Bag"
 value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">
 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

Let's look at the client code by section. Unlike our server PHP code, our client PHP code contains both HTML
and PHP intermixed. The first section does little more than implement the standard HTML tags required for
a Web page (see Listing 14.8).

Listing 14.8 In the Beginning of product_client.php

<html>
<head><title>PHP XML RPC Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

Listing 14.9, however, gets us into the code that handles the XML-RPC meat of our client.

Listing 14.9 In the Middle of product_client.php

<?php
include("xmlrpc.inc");

// Show the results of the previous query
// if the parameter there are results to show
if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the message object using the RPC name, parameter and its type
 $message = new xmlrpcmsg("example.getProductInfo",
 array(new xmlrpcval($HTTP_POST_VARS["product_name"], "string"),
 new xmlrpcval($HTTP_POST_VARS["product_color"], "string")));

 // Display the message detail
 print "<pre>Message Detail:
" .

 htmlentities($message->serialize()) . "</pre>";

 // Create the client object which points to
 // the server and PHP script to contact
 $client = new xmlrpc_client("/xmlrpc/product_server.php",
 "www.triplesoft.com", 80);

 // Enable debug mode so we see all there is to see coming and going
// $client->setDebug(1);
// print "<pre>From Server:
</pre>";

 // Send the message to the server for processing
 $response = $client->send($message);

 // If no response was returned there was a fatal error
 // (no network connection, no server, etc.)
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$response->faultCode()) {

 // Extract the values from the response
 $result_array = $response->value();
 if ($result_array->arraysize() == 4) {
 $product_name = $result_array->arraymem(0);
 $product_color = $result_array->arraymem(1);
 $product_price = $result_array->arraymem(2);
 $product_stock = $result_array->arraymem(3);

 print "
";
 print "
Product: " . $product_name->scalarval() . "";
 print "
Color: " . $product_color->scalarval() . "";
 print "
Price: $" . $product_price->scalarval() . "";
 print "
In-Stock: " . $product_stock->scalarval() . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array. " .
 "Should be 4 but there are " .
 $result_array->arraysize() . ".";
 print "
";
 }

 // Display the response detail
 print "<pre>Response Detail:
" .
 htmlentities($response->serialize()) . "</pre>";

 } else {
 print "
";
 print "
Fault Code: " . $response->faultCode();
 print "
Fault String: " . $response->faultString();
 print "
";
 }

 print "<hr>";

}
?>

Listing 14.9 begins by including the xmlrpc.inc file. We then verify that we have values for both of the
$HTTP_POST_VARS that we are interested in. If both product_name and product_color are set, we continue
creating the XML-RPC message.

Using the xmlrpcmsg function in xmlrpc.inc, we select the name of the RPC method that we intend to call
on the remote server: example.getProductInfo. We also add the two expected parameters, in the correct
order, to the array of parameters within the message: product_name and product_color as strings. We
then display this message in its serialized form for debugging purposes. This is shown in Figure 14.3.

After our message is created, we can then put together the client object using the xmlrpc_client function
in xmlrpc.inc. This function takes multiple parameters, which ultimately make up the URL to the server—
in our case, a PHP script living at http://www.triplesoft.com/xmlrpc/product_server.php, on port 80,
the default HTTP port. It returns a client object used to send the message to the server as the variable
$client.

At this point, you can enable debug mode by uncommenting the setDebug method of the $client object.
In either case, we send the message using the send method of the $client object. This single method
handles locating the remote server, transmitting the message to the client via the HTTP protocol, and
accepting any resulting data from the server, as the $response variable. If there is no response, the
function dies with an error message; otherwise, it continues parsing the result.

If the $response object's faultCode method returns an empty result, there is no error and we can continue
with the parsing. Otherwise, we display the faultCode and faultString to the user as the error message.
These are sent from the server; faultString returns the $err string returned by the server.

Assuming that there is no error, we pull the $response object's array of parameters as $result_array by
calling its value method. If the size of the array is anything other than four, there is an error and we
display it accordingly. Remember, the server returns four values in the array of results in a specific order.
We then use the arraymem method of the $result_array and scalarval method of each array member to
display the results back to the user.

That ends the PHP portion of our file.

Listing 14.10 is nothing more than the HTML form portion of our client file. This portion appears each time
the page is displayed as seen in Figures 14.2 and 14.3. It simply contains the pop-up menus and Get
Product Information button and calls back to itself as the form action. Although this example hard-codes
the product names and colors into the form, a real-life application might query the server for the list of
products and list of available colors. See the "Try This" section of this chapter for your assignment to do
just that!

Listing 14.10 In the End of product_client.php

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag"

 value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag"
 value="Garment Bag">Garment Bag</option>
 <option label="Grocery Bag"
 value="Grocery Bag">Grocery Bag</option>
 <option label="Hand Bag"
 value="Hand Bag">Hand Bag</option>
 <option label="Old Bag"
 value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">
 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

Now let's see how we can implement this client using Objective-C.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Cocoa Client

Figure 14.6 shows the MyXMLRPCClient project in Project Builder. The project is a simple Cocoa application.
We use an AppController to implement the –applicationShouldTerminateAfterLastWindowClosed:
delegate method. For the sake of convenience, we also implement the -getProductInformation: method
in the AppController and link it to the Get Product Information button in our main application window
shown in Figure 14.4. We could have created a window controller to handle this, but decided against it for
the sake of brevity.

Figure 14.6. The MyXMLRPCClient project.

One thing to note is the addition of CoreServices.framework in the project. This framework contains
functionality that allows us to access Web Services such as XML-RPC and SOAP. You'll see more of what
this brings us when we look at the source code later.

Note

Speaking of frameworks, exploring the /System/Library/Frameworks/ directory can open the
doors to you as an informed programmer. Take a peek, and see what's in there.

The Project Settings

The Target settings in Figure 14.7 are straightforward for a simple Cocoa application.

Figure 14.7. The MyXMLRPCClient Target settings.

The InfoPlist entries in Figure 14.8 are also straightforward. Because this is a simple Cocoa application,
there are no surprises here.

Figure 14.8. The MyXMLRPCClient InfoPlist entries.

The Nib File

The MainMenu.nib file is shown in Interface Builder in Figure 14.9. The AppController has been
instantiated and is the NSApplication's delegate, as you would expect. The Get Product Information button
is linked to the AppController's -getProductInformation: action method. The AppController also
contains outlets for the appropriate items in the main window.

Figure 14.9. The MyXMLRPCClient MainMenu.nib file.

The Source Code

The interface of AppController is shown in Listing 14.11.

Listing 14.11 AppController Interface in AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSPopUpButton *m_product;
 IBOutlet NSPopUpButton *m_color;
 IBOutlet NSTextField *m_price;
 IBOutlet NSTextField *m_stock;
 IBOutlet NSTextField *m_result;
}
- (IBAction)getProductInformation:(id)sender;
@end

The AppController manages the outlets of our user interface for convenience. One action is also
connected to the Get Product Information button.

Listing 14.12 contains the –getProductInformation: method that is called when the Get Product
Information button is clicked. The user has already made her choice of product and color. This method
alone is the equivalent of our PHP version of the client.

Listing 14.12 -getProductInformation: in AppController.m

- (IBAction)getProductInformation:(id)sender

{
 WSMethodInvocationRef rpcCall;
 NSURL *rpcURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;
 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //
 // 1. Define the location of the RPC service and method
 //

 // Create the URL to the RPC service
 rpcURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/xmlrpc/product_server.php"];

 // Assign the method name to call on the RPC service
 methodName = @"example.getProductInfo";

 // Create a method invocation
 // First parameter is the URL to the RPC service
 // Second parameter is the name of the RPC method to call
 // Third parameter is a constant to specify the XML-RPC protocol
 rpcCall = WSMethodInvocationCreate((CFURLRef)rpcURL,
 (CFStringRef)methodName, kWSXMLRPCProtocol);

 //
 // 2. Set up the parameters to be passed to the RPC method
 //

 // Get the users choices
 selectedProduct = [m_product titleOfSelectedItem];
 selectedColor = [m_color titleOfSelectedItem];

 // Add the users choices to the dictionary to be passed as parameters
 params = [NSMutableDictionary dictionaryWithCapacity:2];
 [params setObject:selectedProduct forKey:selectedProduct];
 [params setObject:selectedColor forKey:selectedColor];

 // Create the array to specify the order of the parameter values
 paramsOrder = [NSArray arrayWithObjects:selectedProduct,
 selectedColor, nil];

 // Set the method invocation parameters
 // First parameter is the method invocation created above
 // Second parameter is a dictionary containing the parameters themselves
 // Third parameter is an array specifying the order of the parameters
 WSMethodInvocationSetParameters(rpcCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(rpcCall);

 // If the results are a fault, display an error to the user with the
 // fault code and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString],
 @"OK", @"", @"");
 } else {
 // Otherwise, pull the results from the dictionary as an array
 NSArray *array = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];

 // Display the entire array result from the server
 [m_result setStringValue: [array description]];

 // Display the specific fields we are interested in (price, stock)
 [m_price setStringValue: [array objectAtIndex: 2]];
 [m_stock setStringValue: [array objectAtIndex: 3]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

Let's look at the method in stages. The first thing we do in Listing 14.13 is to define all the variables we will
be using in the method. A lot are listed here, but most are straightforward: NSArrays, NSStrings, and
NSDictionarys (mutable and otherwise). However, one item is new. The WSMethodInvocationRef variable
is used to track and manage the object that handles our XML-RPC call. You'll see how this works shortly.

Listing 14.13 -getProductInformation:—Part 1 in AppController.m

- (IBAction)getProductInformation:(id)sender
{
 WSMethodInvocationRef rpcCall;
 NSURL *rpcURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;
 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //
 // 1. Define the location of the RPC service and method
 //

 // Create the URL to the RPC service
 rpcURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/xmlrpc/product_server.php"];

 // Assign the method name to call on the RPC service
 methodName = @"example.getProductInfo";

 // Create a method invocation
 // First parameter is the URL to the RPC service
 // Second parameter is the name of the RPC method to call
 // Third parameter is a constant to specify the XML-RPC protocol
 rpcCall = WSMethodInvocationCreate((CFURLRef)rpcURL,
 (CFStringRef)methodName, kWSXMLRPCProtocol);

Next, we want to create an NSURL that identifies the server that we will be calling. We also want to assign
the methodName variable to contain the name of the RPC method. Last, we create the WSMethodInvocation
by calling WSMethodInvocationCreate, part of the Web Services functionality. This method takes three
parameters. The first is the URL to the RPC service. The second is the name of the RPC method. The third is
a constant to specify which protocol to use—in our case, kWSXMLRPCProtocol. Other protocol options
include SOAP. These are all defined in WSMethodInvocation.h.

In Listing 14.14, we set up the parameters to be passed to the RPC based on the users choices. First, we
obtain the values of the pop-up buttons for product and color as strings. We then create an
NSMutableDictionary capable of storing two items using the +dictionaryWithCapacity: class method.
Then, using the –setObject:forKey: method of NSMutableDictionary, we add the strings to the
dictionary.

Listing 14.14 -getProductInformation:—Part 2 in AppController.m

//
// 2. Set up the parameters to be passed to the RPC method
//

// Get the users choices
selectedProduct = [m_product titleOfSelectedItem];
selectedColor = [m_color titleOfSelectedItem];

// Add the users choices to the dictionary to be passed as parameters
params = [NSMutableDictionary dictionaryWithCapacity:2];
[params setObject:selectedProduct forKey:selectedProduct];
[params setObject:selectedColor forKey:selectedColor];

// Create the array to specify the order of the parameter values
paramsOrder = [NSArray arrayWithObjects:selectedProduct, selectedColor, nil];

// Set the method invocation parameters
// First parameter is the method invocation created above
// Second parameter is a dictionary containing the parameters themselves
// Third parameter is an array specifying the order of the parameters
WSMethodInvocationSetParameters(rpcCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

Note

Another way to have done this would be to use an NSDictionary as opposed to an
NSMutableDictionary. I chose to use an NSMutableDictionary in case I wanted to add more
parameters later on—one less thing to change. Using an NSDictionary, you might consider
the following:

NSDictionary *d = [NSDictionary dictionaryWithObjectsAndKeys:
 selectedProduct, selectedProduct,
 selectedColor, selectedColor,
 nil];

Remember that XML-RPC requires parameters to be in the correct order; therefore, we must create an
NSArray to specify that order. We simply add the items in the proper order using the NSArray
+arrayWithObject: class method. Failure to include this parameter will cause your server to become
confused because the parameter order is unspecified.

We use the WSMethodInvocationSetParameters function to attach the parameters to the
WSMethodInvocationRef. This function takes three parameters. The first is the reference to the method
invocation created earlier. The second is the dictionary containing the parameters themselves. The third is
the array specifying the order of the parameters.

In Listing 14.15, we make the call to the RPC by calling the WSMethodInvocationInvoke function and
passing the WSMethodInvocationRef. This is equivalent to the $client->send($message) method in the
PHP client version. This single function handles locating the remote server, transmitting the message to the
client via the HTTP protocol, and accepting any resulting data from the server as an NSDictionary.

Listing 14.15 -getProductInformation:—Part 3 in AppController.m

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(rpcCall);

 // If the results are a fault, display an error to the user with the
 // fault code and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString], @"OK", @"", @"");
 } else {
 // Otherwise, pull the results from the dictionary as an array
 NSArray *array = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];

 // Display the entire array result from the server
 [m_result setStringValue: [array description]];

 // Display the specific fields we are interested in (price, stock)

 [m_price setStringValue: [array objectAtIndex: 2]];
 [m_stock setStringValue: [array objectAtIndex: 3]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

We then check the results for an error by calling the WSMethodResultIsFault function, passing the
NSDictionary typecast as a CFDictionaryRef—toll free bridging between CoreFoundation and
Foundation makes this simple. If the function returns TRUE, we pull kWSFaultCode and kWSFaultString
from the result and display them to the user. The kWSFaultString is the error returned from the server in
the $err variable.

Assuming that there are no errors, we pull the array of results from the dictionary as
kWSMethodInvocationResult. When we have the array, we know what it should contain and in what order.
The first thing we do is display the entire array (for debugging purposes) by calling the –description
method of NSArray. This allows us to quickly see all fields in the result array and display them to the user.
Next, we pull just the price and stock information as array objects 2 and 3 to display to the user as well.
Remember that array objects 0 and 1 are an echo of the product name and color that we passed to the
server.

At the end of the line, we merely clean up after ourselves and release all the memory that needs to be
released.

So, what do you think? It's not so hard to harness the power of distributed computing across languages
and platforms!

[Team LiB]

[Team LiB]

Try This

A client/server architecture is a great place to experiment with different implementations. Here are some
ideas to keep you busy with this one.

Collect the list of product names and colors used in the HTML form in the PHP client from the server itself.
Assume that the client knows nothing about what products are available. The server should implement
functions named getProductNames and getProductColors to be listed to the user. Once you get it working
in the PHP client, implement it in the Cocoa client as well.

Use MySQL (or another database) as your data source in the server. If you don't want to explore MySQL (or
another database), check out the Flat File DataBase (FFDB) PHP Library by John Papandriopoulos. John's
library offers a simple way to use database functionality quickly and easily on your server using PHP:

http://ffdb-php.sourceforge.net/

[Team LiB]

http://ffdb-php.sourceforge.net/default.htm

[Team LiB]

Conclusion

I hope that XML-RPC excites you as much as it does me. I find PHP and Web-based implementations to be
an incredible way to open up your creativity to users of all platforms via a Web browser. You can implement
so many excellent technologies using these methods. Explore the possibilities of XML-RPC and create
something new for the world to explore!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 15. SOAP

"Scrubba Dub Dub, PHP and Cocoa in the tub."

—I'll admit it; I said this one.

A note to those of you reading this book in order: This chapter is very similar to Chapter 14, "XML-RPC,"
with differences only where the XML-RPC and SOAP examples vary. The goal of these two chapters is to
show the same project implemented in both XML-RPC and SOAP and to have them both stand alone should
someone read them separately. If you already understand the concepts outlined in Chapter 14, you can
skip ahead and just look at the source code explanations in this chapter.

SOAP, the Simple Object Access Protocol, is a Web Service similar to XML-RPC in function but different in
form. Like XML-RPC, SOAP allows you to transmit complex data structures to remote computers for
processing and response and uses XML to format its data. If you have a need for a reliable client/server
architecture reaching across platforms, SOAP might be for you.

Although SOAP can, and often does, use the HTTP protocol as its transport mechanism, it need not be
bound by this limitation. HTTP is, by far, the most widely implemented protocol across multiple platforms;
however, SOAP allows you to use others as well, including SMTP. In this chapter, we will use HTTP as our
example's transport mechanism.

SOAP can be implemented in any of a number of programming languages on just about every available
platform. You can choose C/C++ (including Carbon), Java, Lisp, Objective-C (including Cocoa), Perl, PHP,
Python, BASIC, AppleScript, and many more. This offers a lot of flexibility to the programmer looking for a
robust solution with minimal limitations.

Both XML-RPC and SOAP are useful when you need to implement a data-based client/server architecture.
Although XML-RPC and SOAP are "Web Services", normally they will not return fully formatted HTML, but
instead just the raw data. Remember, you don't know what format your client might be—it might be a Web
browser, it might be a native application with a Mac OS X or Windows GUI, or it might be a cell phone.
Therefore, your server should return data only, leaving the formatting of the data to the client. This is a
perfect use for XML. Figure 15.1 shows this concept.

Figure 15.1. A client and server via SOAP.

The official SOAP specification can be found at http://www.w3.org/2000/xp/Group/. It has extremely

http://www.w3.org/2000/xp/Group/default.htm

detailed information on the protocol that we will use in this chapter.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The Result

The project in this chapter is the same project we used in Chapter 14. One thing I found while learning
about Web Services is that it was very difficult to find concrete examples that accepted multiple parameters
in and delivered multiple parameters out—like the real-world. By showing a single example using XML-RPC
and SOAP as well as both PHP and Objective-C, I hope this will take some of the mystery out of these
exciting protocols.

This project shows how to create a SOAP server written in PHP and running under the Apache Web server.
We then create a PHP client as well as Cocoa Objective-C client. This shows that one server can handle
multiple clients using multiple implementation mechanisms. Although the Cocoa client will only run under
Mac OS X, the PHP client can be used on any computer with a Web browser.

Our example is a product information system. We sell many different styles of bags in a rainbow of colors—
everything from book bags to handbags to grocery bags and more. Using one of our clients, the user simply
picks a type of bag and a color, and the server returns the price and number of bags currently in stock that
matches those criteria. For the purposes of this demo, any bag in the color brown is out of stock, whereas
all other colors return a random stock value. Normally, you would pull this information from a database, but
this is left as an exercise to the reader.

The PHP client is served via Apache and is essentially a Web form. The client accepts data from the user,
sends the request to the server, formats the resulting data appropriately, and displays it in a Web browser.

Figure 15.2 shows the PHP client running in Internet Explorer under Mac OS X although it could run in any
modern Web browser. The user is presented with a form that allows her to choose which type of bag and
which color she wants price and stock information for. Once chosen, she clicks the Get Product Information
button, which passes the form data on to the server.

Figure 15.2. The PHP SOAP client before submitting a query.

Once the server receives and processes the data, it returns the resulting data (or an error) to the client.
The client is then responsible for displaying the results to the user. Figure 15.3 shows our client displaying
the original XML-format query—also called the request or message—the formatted results, and then the
details of the response from the server that were parsed to produce the formatted results. Normally, you
wouldn't display the XML-formatted information to the user, but it is very helpful to see the complete
picture when you're learning something new. There is much more resulting data than can be shown here,
which will be covered in detail later in this chapter.

Figure 15.3. The PHP SOAP client after submitting a query and receiving the
results.

The Cocoa client, shown in Figure 15.4, works similarly in that it collects data from the user and then
contacts the server to perform the price and stock lookup. However, after it receives and parses the
response, it displays it within its own window differently than the previous Web browser example. It still
uses HTTP as the transport mechanism, but does not display the results using HTML.

Figure 15.4. The Cocoa SOAP client after submitting a query and receiving the
results.

Let's look at how this is all put together!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

The PHP Server

First, we will look at the server side. As mentioned, the server is written in PHP, but it can be written in
almost any language. We chose PHP because it is reliable, straightforward, and powerful. Our
product_server.php file is served by the Apache Web server running under Mac OS X just as any standard
PHP file would be. The client accesses it via a standard HTTP URL. In this case, we have placed the file at
http://www.triplesoft.com/soap/product_server.php. However, typing that URL into your Web
browser will simply produce an error because SOAP servers require specifically formatted information
passed by the client. Figure 15.5 shows the fault information returned by the server.

Figure 15.5. The PHP SOAP server being called directly from the Web browser.

An important thing to note is that both the PHP server and client require the use of a third-party PHP library
by Dietrich Ayala of NuSphere Corporation. The NuSOAP library and detailed information on its use can be
found at http://dietrich.ganx4.com/nusoap/. This library contains one PHP file, nusoap.php, which is easily
included in your PHP source. The distribution also contains documentation as well as licensing information.

Let's look at the complete PHP source code of the server and then I will explain it in sections.

Listing 15.1 contains the complete PHP SOAP server code. This simple server offers a concrete example of

http://dietrich.ganx4.com/nusoap/default.htm

the protocol accepting multiple parameters and returning multiple parameters as an array, which is most
likely what you will need in a real-life scenario.

Listing 15.1 product_server.php

<?php
include("nusoap.php");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",
 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Create a new SOAP server instance
$server = new soap_server;

// Enable debugging, to be echoed via client
$server->debug_flag = true;

// Register the get_product_info function for publication
$server->register("get_product_info");

// Begin the HTTP listener service and exit
$server->service($HTTP_RAW_POST_DATA);

// Our published service
function get_product_info($product_name, $product_color)
{
 global $products;
 $err = "";

 // Verify values
 if (isset($product_name) && isset($product_color)) {

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;
 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like
 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error

 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new soap_fault("Client", "product_server.php", $err, $err);
 } else {
 // Create an array and fill it with the data to return

 $result_array = array("product_name" => $product_name,
 "product_color" => $product_color,
 "product_price" => $product_price,
 "product_stock" => $product_stock);

 return $result_array;
 }

}

exit();

?>

Let's look at the server code by section. First, in listing 15.2, you will notice the include statement for the
nusoap.php file. This file is required by both clients and servers and provides much of the functionality to
interface PHP with the underlying SOAP protocol. Using NuSOAP makes life as a SOAP developer much
easier.

Listing 15.2 Initial Steps in product_server.php

<?php
include("nusoap.php");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",
 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Create a new SOAP server instance
$server = new soap_server;

// Enable debugging, to be echoed via client
$server->debug_flag = true;

// Register the get_product_info function for publication

$server->register("get_product_info");

// Begin the HTTP listener service and exit
$server->service($HTTP_RAW_POST_DATA);

Next, we create an array of products with prices, appropriately named $products. In a real-life scenario,
you will most likely use some sort of database for this information. MySQL is a common choice when using
PHP and Apache, but other options exist as well.

We now create the SOAP server instance using the PHP new function to create a soap_server object. This
functionality is provided by NuSOAP. Once the server is created, we use the $server variable to manage it.
For debugging purposes, we set the debug_flag instance variable of the server object to true. This will
provide a wealth of debug information in our Web browser when we access the server, and it is highly
recommended during development.

After the server has been created, we need to register the functions that our server implements for
publication. In this example, we only publish one function, get_product_info. At this stage, you need only
register the name; the expected parameters to this function are handled automatically by NuSOAP and
SOAP.

Last, we need to begin the process of listening to HTTP. By calling the service method of the server
object, we begin the process of listening for requests for our published service. In reality, when the server
is executed by means of a client, you are pretty much guaranteed that a request is forthcoming, so we
won't be waiting for long.

The get_product_info function in Listing 15.3 is the main and only published service of this server.
Although servers can publish multiple services, we only implement one in this example. This function does
all the work—verifies the incoming parameters, performs any calculations or database lookups, and returns
the results to the client. This function is automatically called when the server receives the request based on
information within the XML-formatted data sent to the server. Listing 15.4 shows an example of the XML
sent to the server that triggers this function call.

Listing 15.3 The get_product_info Method in product_server.php

// Our published service
function get_product_info($product_name, $product_color)
{
 global $products;
 $err = "";

 // Verify values
 if (isset($product_name) && isset($product_color)) {

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;
 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like

 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error
 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new soap_fault("Client", "product_server.php", $err, $err);
 } else {
 // Create an array and fill it with the data to return

 $result_array = array("product_name" => $product_name,
 "product_color" => $product_color,
 "product_price" => $product_price,
 "product_stock" => $product_stock);

 return $result_array;
 }

}

Listing 15.4 The XML-Formatted Data Sent to product_server.php

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:si="http://soapinterop.org/xsd">
 <SOAP-ENV:Body>
 <ns1:get_product_info xmlns:ns1="http://testuri.org">
 <product_name xsi:type="xsd:string">Book Bag</product_name>
 <product_color xsi:type="xsd:string">Black</product_color>
 </ns1:get_product_info>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Looking at Listing 15.3 again, we first allow access to the global $products array we defined previously.
$err will contain any error code that is generated during the execution of the server, for now we initialize it
to "".

Next, we verify that the expected variables are set. We explicitly expect the $product_name and
$product_color parameters to be passed in from the client as shown in the body of the SOAP message in
Listing 15.4. NuSOAP conveniently handles extracting the parameters from the SOAP XML message and
passing them to our PHP function. If either of these parameters is not sent, it is considered an error and
the user is alerted.

When the parameter values have parsed properly, we can then begin to use the data they contain. The first
thing to do is peruse the $products array using foreach for the chosen product. Because we limit the
users choices in the client, we should always get a match here. Once found, we set the $product_price
variable accordingly. If the $product_price is not found, which should never happen in our simple
example, we return a human-readable error in $err, which is shown a few lines further down.

Next, we figure out the number of the product in the chosen color that is in stock. For the purposes of this
demo, all products chosen in brown are out of stock. All other colors produce a random stock value. In
reality, you might pull this information from a SQL database using MySQL.

Last, if an error was returned, $err is set; we return the error by creating and returning a soap_fault
object. The soap_fault object accepts up to four parameters. The first, faultcode, is either 'client' or
'server' and tells where the fault of the error occurred. In this case, the error is always considered one
made by the client, such as passing the wrong parameters. If there were a specific server error, such as a
database lookup failure, you would pass 'server' for this parameter. The second, faultactor, is the URL of
the script that found the error. It can be helpful to fill this in when multiple actors (or servers) are involved
in a process. The third, faultstring, is the human-readable error string and the fourth, faultdetail, can
be an error code, and so on. You can see an example of an error returned in Figure 15.5.

However, if all is well, we create and return our result array. Remember, our server returns an array of
data to the client. We do this by simply creating a standard PHP array and adding the items we want to
return. The product name and color are the same items passed to the server—we return them for
convenience to the client because HTTP is a stateless protocol. The product price and stock are calculated
by our server. Listing 15.5 shows an example of the data returned from the server—note the parameters
are listed by name.

Listing 15.5 The XML-Formatted Data Returned from product_server.php

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:si="http://soapinterop.org/xsd">
 <SOAP-ENV:Body>
 <get_product_infoResponse>
 <soapVal>
 <product_name xsi:type="xsd:string">Book Bag</product_name>
 <product_color xsi:type="xsd:string">Black</product_color>
 <product_price xsi:type="xsd:string">18.00</product_price>
 <product_stock xsi:type="xsd:int">51</product_stock>
 </soapVal>
 </get_product_infoResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The very last thing to do is exit and end the PHP code. Listing 15.6 performs this task.

Listing 15.6 Last but not Least in product_server.php

exit();

?>

That is all there is to the server. Now let's look at the PHP client.

[Team LiB]

[Team LiB]

The PHP Client

Our first client is also written in PHP, just as the server. As you've seen, however, it could be written in just
about any language. Later in this chapter, we will rewrite the client using Objective-C and Cocoa. The
product_client.php file is served by the Apache Web server running under Mac OS X just as any standard
PHP file would be. The client file is what the user will access via her Web browser. In this case, we have
placed the file at http://www.triplesoft.com/soap/product_client.php. Typing that URL in your Web
browser will produce the Web page shown in Figure 15.2.

When the user clicks the Get Product Information button in the Web form, the pop-up menu selections are
sent to the server as XML-formatted data. The server then processes the selections and returns the price
and stock information as previously discussed. Figure 15.3 shows what the users Web browser looks like
after the server responds.

Listing 15.7 contains the complete PHP SOAP client code. This simple client offers a concrete example of
the protocol passing multiple parameters and parsing multiple parameters in return.

Listing 15.7 product_client.php

<html>
<head><title>PHP SOAP Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

<?php
include("nusoap.php");

// Show the results of the previous query
// if the parameter there are results to show
if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the parameters array
 $params = array("product_name" => $HTTP_POST_VARS["product_name"],
 "product_color" => $HTTP_POST_VARS["product_color"]);

 // Create a new soap client endpoint specifying the server location
 $client = new soapclient("http://www.triplesoft.com/soap/product_server.php");

 // Enable debugging
 $client->debug_flag = true;

 // Call the function, passing the parameter array
 $response = $client->call("get_product_info", $params);

 // Echo request detail
 echo "<pre>Request Detail:
<xmp>".$client->request."</xmp></pre>";

 // If no response was returned there was a fatal
 // error (no network conn, no server, etc.)

 // You might prefer to use the $client->getError()
 // method for more detailed information.
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$client->fault) {

 // Extract the values from the response
 if (count($response) == 4) {

 foreach ($response as $key => $element) {
 $$key = $element;
 }

 print "
";
 print "
Product: " . $product_name . "";
 print "
Color: " . $product_color . "";
 print "
Price: $" . $product_price . "";
 print "
In-Stock: " . $product_stock . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array.
 Should be 4 but there are "
 . count($response) . ".";
 print "
";
 }

 // Echo response detail
 echo "<pre>Response Detail:
<xmp>".
 $client->response."</xmp></pre>";

 } else {
 print "
";
 print "
Fault Code: " . $client->faultcode;
 print "
Fault Actor: " . $client->faultactor;
 print "
Fault String: " . $client->faultstring;
 print "
Fault Detail: " . $client->faultdetail; // serialized?
 print "
";
 }

 // Echo debug log at the bottom since it can be large
 echo "<pre>Debug log:
".$client->debug_str."</pre>";

 print "<hr>";

}
?>

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag" value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag" value="Garment Bag">Garment Bag</option>
 <option label="Grocery Bag" value="Grocery Bag">Grocery Bag</option>

 <option label="Hand Bag" value="Hand Bag">Hand Bag</option>
 <option label="Old Bag" value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">
 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

Let's look at the client code by section. Unlike our server PHP code, our client PHP code contains both HTML
and PHP intermixed. The first section, shown in Listing 15.8, does little more than implement the standard
HTML tags required for a Web page.

Listing 15.8 In the Beginning of product_client.php

<html>
<head><title>PHP SOAP Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

Listing 15.9, however, gets us into the code that handles the SOAP fat of our client.

Listing 15.9 In the Middle of product_client.php

<?php
include("nusoap.php");

// Show the results of the previous query
// if the parameter there are results to show
if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the parameters array
 $params = array("product_name" => $HTTP_POST_VARS["product_name"],
 "product_color" => $HTTP_POST_VARS["product_color"]);

 // Create a new soap client endpoint specifying the server location
 $client =
 new soapclient("http://www.triplesoft.com/soap/product_server.php");

 // Enable debugging
 $client->debug_flag = true;

 // Call the function, passing the parameter array
 $response = $client->call("get_product_info", $params);

 // Echo request detail
 echo "<pre>Request Detail:
<xmp>".$client->request."</xmp></pre>";

 // If no response was returned there was a
 // fatal error (no network conn, no server, etc.)
 // You might prefer to use the $client->getError()
 // method for more detailed information.
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$client->fault) {

 // Extract the values from the response
 if (count($response) == 4) {

 foreach ($response as $key => $element) {
 $$key = $element;
 }

 print "
";
 print "
Product: " . $product_name . "";
 print "
Color: " . $product_color . "";
 print "
Price: $" . $product_price . "";
 print "
In-Stock: " . $product_stock . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array.
 Should be 4 but there are "
 . count($response) . ".";
 print "
";
 }

 // Echo response detail
 echo "<pre>Response Detail:
<xmp>".
 $client->response."</xmp></pre>";

 } else {
 print "
";
 print "
Fault Code: " . $client->faultcode;
 print "
Fault Actor: " . $client->faultactor;
 print "
Fault String: " . $client->faultstring;
 print "
Fault Detail: " . $client->faultdetail; // serialized?
 print "
";
 }

 // Echo debug log at the bottom since it can be large
 echo "<pre>Debug log:
".$client->debug_str."</pre>";

 print "<hr>";

}
?>

Listing 15.9 begins by including the nusoap.php file. We then verify that we have values for both of the
$HTTP_POST_VARS that we are interested in. If both product_name and product_color are set, we continue
creating the SOAP message by first adding them to the $params array by name.

We then create the soapclient object using PHP new function. The soapclient takes one parameter, the
URL to the server—in our case, our PHP server script living at http://www.triplesoft.com/soap/
product_server.php. It returns a client object used to send the message to the server as the variable
$client.

At this point, you can enable debug mode by setting the debug_flag variable of the $client object to
true. In either case, we send the message using the send method of the client object. This method takes
two parameters, the name of the published service, get_product_info, and the parameters to pass to it. It
single-handedly locates the remote server, transmits the message to the client via the chosen protocol, and
accepts any resulting data from the server as the $response variable. For debugging purposes, we then
echo the request detail by calling the client's request method. If there is no response, the function dies
with an error message; otherwise, it continues parsing the result.

If the client object's fault method returns an empty result, there is no error and we can continue with the
parsing. Otherwise, we display the faultcode, faultactor, faultstring, and faultdetail results to the
user as the error. As you recall, these are sent from the server.

Assuming that there is no error, we verify the size of the array is four; otherwise, there is an error, and we
display it accordingly. Remember, the server returns four values in the array of results. We then use
foreach to extract the keys and elements in the array for display back to the user. For debugging
purposes, we then echo the response detail by calling the client's response method. We also show the
debug log by calling the client's debug_str method.

That ends the PHP portion of our file.

Listing 15.10 is nothing more than the HTML form portion of our client file. This portion appears each time
the page is displayed as seen in Figure 15.2. It simply contains the pop-up menus and Get Product
Information button and calls back to itself as the form action. Although this example hard-codes the
product names and colors into the form, a real-life application might query the server for the list of
products and list of available colors. See the "Try This" section of this chapter for your assignment to do
just that!

Listing 15.10 In the End of product_client.php

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag" value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag" value="Garment Bag">Garment Bag</option>
 <option label="Grocery Bag" value="Grocery Bag">Grocery Bag</option>
 <option label="Hand Bag" value="Hand Bag">Hand Bag</option>
 <option label="Old Bag" value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">

 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

Now let's see how we can implement this client using Objective-C.

[Team LiB]

[Team LiB]

The Cocoa Client

Figure 15.6 shows the MySOAPClient project in Project Builder. The project is a simple Cocoa application.
We use an AppController to implement the –applicationShouldTerminateAfterLastWindowClosed:
delegate method. For the sake of convenience, we also implement the -getProductInformation: method
in the AppController and link it to the Get Product Information button in our main application window
shown in Figure 15.4.

Figure 15.6. The MySOAPClient project.

One thing to note is the addition of the CoreServices.framework in the project. This framework contains
functionality that allows us to access Web Services such as XML-RPC and SOAP. You'll see more of what
this brings us when we look at the source code later.

The Project Settings

The Target settings in Figure 15.7 are straightforward for a simple Cocoa application.

Figure 15.7. The MySOAPClient Target settings.

The InfoPlist entries in Figure 15.8 are also straightforward. Because this is a simple Cocoa application,
there are no surprises here.

Figure 15.8. The MySOAPClient InfoPlist entries.

The Nib File

The MainMenu.nib file is shown in Interface Builder in Figure 15.9. The AppController has been
instantiated and is the NSApplication's delegate, as you would expect. The Get Product Information button
is linked to the AppController's -getProductInformation: IBAction method. The AppController also
contains IBOutlets for the appropriate items in the main window.

Figure 15.9. The MySOAPClient MainMenu.nib file.

The Source Code

The interface of AppController is shown in Listing 15.11.

Listing 15.11 AppController Interface in AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSPopUpButton *m_product;
 IBOutlet NSPopUpButton *m_color;
 IBOutlet NSTextField *m_price;
 IBOutlet NSTextField *m_stock;
 IBOutlet NSTextField *m_result;
}
- (IBAction)getProductInformation:(id)sender;
@end

The AppController manages the IBOutlets of our user interface for convenience. One IBAction is also
connected to the Get Product Information button.

Listing 15.12 contains the –getProductInformation: method that is called when the Get Product
Information button is clicked. The user has already made her choice of product and color. This method
alone is the equivalent of our PHP version of the client.

Listing 15.12 -getProductInformation: in AppController.m

- (IBAction)getProductInformation:(id)sender
{
 WSMethodInvocationRef soapCall;
 NSURL *soapURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;
 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //
 // 1. Define the location of the SOAP service and method
 //

 // Create the URL to the SOAP service
 soapURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/soap/product_server.php"];

 // Assign the method name to call on the SOAP service
 methodName = @"get_product_info";

 // Create a method invocation
 // First parameter is the URL to the SOAP service
 // Second parameter is the name of the SOAP method to call
 // Third parameter is a constant to specify the SOAP2001 protocol
 soapCall = WSMethodInvocationCreate((CFURLRef)soapURL,
 (CFStringRef)methodName, kWSSOAP2001Protocol);

 //
 // 2. Set up the parameters to be passed to the SOAP method
 //

 // Get the users choices
 selectedProduct = [m_product titleOfSelectedItem];
 selectedColor = [m_color titleOfSelectedItem];

 // Add the users choices to the dictionary to be passed as parameters
 params = [NSMutableDictionary dictionaryWithCapacity:2];
 [params setObject:selectedProduct forKey:@"product_name"];
 [params setObject:selectedColor forKey:@"product_color"];

 // Create the array to specify the order of the parameter values
 paramsOrder = [NSArray arrayWithObjects:@"product_name",
 @"product_color", nil];

 // Set the method invocation parameters
 // First parameter is the method invocation created above
 // Second parameter is a dictionary containing the parameters themselves
 // Third parameter is an array specifying the order of the parameters,
 // sometimes optional for SOAP
 WSMethodInvocationSetParameters(soapCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(soapCall);

 // If the results are a fault, display an error to the user with the fault
 // code and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString], @"OK", @"", @"");
 } else {
 // Otherwise, pull the results from the dictionary,
 // held as another dictionary named "soapVal"
 NSDictionary *dictionary = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];
 NSDictionary *soapVal = [dictionary objectForKey:@"soapVal"];

 // Display the entire dictionary result from the server
 [m_result setStringValue: [dictionary description]];

 // Display the specific fields we are interested in (price, stock)
 [m_price setStringValue: [soapVal objectForKey:@"product_price"]];
 [m_stock setStringValue: [soapVal objectForKey:@"product_stock"]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

Let's look at the method in stages.

The first thing we do in Listing 15.13 is to define all the variables we will be using in the method. A lot are
listed here, but most are straightforward: NSArrays, NSStrings, and NSDictionarys (mutable and
otherwise). However, one item is new. The WSMethodInvocationRef variable is used to track and manage
the object that handles our SOAP call itself. You'll see how this works shortly.

Listing 15.13 -getProductInformation:—Part 1 in AppController.m

- (IBAction)getProductInformation:(id)sender
{
 WSMethodInvocationRef soapCall;
 NSURL *soapURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;

 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //
 // 1. Define the location of the SOAP service and method
 //

 // Create the URL to the SOAP service
 soapURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/soap/product_server.php"];

 // Assign the method name to call on the SOAP service
 methodName = @"get_product_info";

 // Create a method invocation
 // First parameter is the URL to the SOAP service
 // Second parameter is the name of the SOAP method to call
 // Third parameter is a constant to specify the SOAP2001 protocol
 soapCall = WSMethodInvocationCreate((CFURLRef)soapURL,
 (CFStringRef)methodName, kWSSOAP2001Protocol);

Next, we want to create an NSURL that identifies the server that we will be calling. We also want to assign
the methodName variable to contain the name of the published service we are interested in,
get_product_info. Last, we create the WSMethodInvocation by calling WSMethodInvocationCreate, part
of the Web Services functionality. This method takes three parameters. The first is the URL of the server.
The second is the name of the published service. The third is a constant to specify which protocol to use—in
our case, kWSSOAP2001Protocol. Other protocol options include XML-RPC. These are all defined in
WSMethodInvocation.h.

In Listing 15.14, we set up the parameters to be passed to the published service based on the user's
choices. First, we obtain the values of the pop-up buttons for product and color as strings. We then create
an NSMutableDictionary capable of storing two items using the +dictionaryWithCapacity: class
method. Then, using the –setObject:forKey: method of NSMutableDictionary, we add the strings to the
dictionary.

Listing 15.14 -getProductInformation:—Part 2 in AppController.m

//
// 2. Set up the parameters to be passed to the SOAP method
//

// Get the users choices
selectedProduct = [m_product titleOfSelectedItem];
selectedColor = [m_color titleOfSelectedItem];

// Add the users choices to the dictionary to be passed as parameters
params = [NSMutableDictionary dictionaryWithCapacity:2];
[params setObject:selectedProduct forKey:@"product_name"];
[params setObject:selectedColor forKey:@"product_color"];

// Create the array to specify the order of the parameter values
paramsOrder = [NSArray arrayWithObjects:@"product_name",
 @"product_color", nil];

// Set the method invocation parameters
// First parameter is the method invocation created above
// Second parameter is a dictionary containing the parameters themselves
// Third parameter is an array specifying the order of the parameters,
// sometimes optional for SOAP
WSMethodInvocationSetParameters(soapCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

Although it has been said that SOAP parameters are based on names and this parameter order isn't
required, I've found that this isn't necessarily true; therefore, we must create an NSArray to specify the
parameters and their expected order. We simply add the items in the proper order using the NSArray
+arrayWithObject: class method. Failure to include this parameter will cause your server to become
confused. I am unsure at the time of this writing whether this is a NuSOAP issue or something else—for
now, include this information.

We use the WSMethodInvocationSetParameters function to attach the parameters to the
WSMethodInvocationRef. This function takes three parameters. The first is the reference to the method
invocation created earlier. The second is the dictionary containing the parameters themselves. The third is
the array specifying the order of the parameters.

In Listing 15.15, we make the call to the published service by calling the WSMethodInvocationInvoke
function and passing the WSMethodInvocationRef. This is equivalent to the $client->call
("get_product_info", $params) method in the PHP client version. This single function handles locating
the remote server, transmitting the message to the client via the HTTP protocol, and accepting any
resulting data from the server as an NSDictionary.

Listing 15.15 -getProductInformation:—Part 3 in AppController.m

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(soapCall);

 // If the results are a fault, display an error
 // to the user with the fault code
 // and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString], @"OK", @"", @"");
 } else {
 // Otherwise, pull the results from the dictionary,
 // held as another dictionary named "soapVal"
 NSDictionary *dictionary = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];
 NSDictionary *soapVal = [dictionary objectForKey:@"soapVal"];

 // Display the entire dictionary result from the server
 [m_result setStringValue: [dictionary description]];

 // Display the specific fields we are interested in (price, stock)
 [m_price setStringValue: [soapVal objectForKey:@"product_price"]];
 [m_stock setStringValue: [soapVal objectForKey:@"product_stock"]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

We then check the results for an error by calling the WSMethodResultIsFault function, passing the
NSDictionary typecast as a CFDictionaryRef. If the function returns TRUE, we pull the kWSFaultCode and
kWSFaultString from the result and display them to the user. The kWSFaultString is the error returned
from the server in the $err variable.

Assuming that there are no errors, we pull a dictionary of results from the WSMethodResultIsFault return
value using the -objectForKey: method and passing kWSMethodInvocationResult. We must then pull a
sub-dictionary of the actual parameters, named soapVal, from this dictionary, also using –objectForKey:.

After we have completely dereferenced the results, the first thing we do is display the entire dictionary (for
debugging purposes) by calling the –description method of NSMutableDictionary. This allows us to
quickly see all fields in the result and display them to the user. Next, we pull just the price and stock
information from the sub-dictionary, by name, to display to the user as well.

At the end of the line, we merely clean up after ourselves and release all the memory that needs to be
released.

So, what do you think? Using NuSOAP, SOAP isn't entirely complex after all!

[Team LiB]

[Team LiB]

Try This

A client/server architecture is a great place to experiment with different implementations. Here are some
ideas to keep you busy with this one.

Collect the list of product names and colors used in the HTML form in the PHP client from the server itself.
Assume that the client knows nothing about what products are available. The server should implement
functions named getProductNames and getProductColors to be listed to the user. Once you get it working
in the PHP client, implement it in the Cocoa client as well.

Use MySQL as your data source in the server. If you don't want to explore MySQL, check out the Flat File
DataBase (FFDB) PHP Library by John Papandriopoulos. John's library offers a simple way to use database
functionality quickly and easily on your server using PHP:

http://ffdb-php.sourceforge.net/

[Team LiB]

http://ffdb-php.sourceforge.net/default.htm

[Team LiB]

Conclusion

SOAP includes many more advanced options than the simple example shown here. If you plan to do any
serious SOAP development, be sure to review the SOAP specification online—the URL is listed earlier in this
chapter.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 16. Snippets

"Just one line of code; the hard part is figuring out which one."

—Mike Trent

This chapter is designed to offer a plethora of code snippets and tips in various forms to help you get the
most out of your Mac OS X development efforts. You will find various languages represented here. Many of
these snippets are demonstrated in the Project Builder project that goes with this chapter. Enjoy!

[Team LiB]

[Team LiB]

Calling Carbon from Cocoa

It is very easy to call traditional Carbon functionality from within your Cocoa application. Simply include the
framework Carbon.framework in your project, #import <Carbon/Carbon.h> in the source file you will be
calling from, and make the call. Cocoa and Carbon live peacefully together with nary a bad thought for one
another.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Drawing with QuickDraw in a Cocoa Application

First, use NSQuickDrawView. After the view's focus is locked, you can start calling QuickDraw functions.

Second, you won't get much in the way of clipping for free, as you would when working with Cocoa-native
drawing commands, so be sure to perform your own clipping.

Third, when you're finished drawing, you need to flush the window contents out to screen. If you have the
qdPort handy, you can simply do this:

QDFlushPortBuffer(qdPort, nil);

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Displaying the Username

The NSFullUserName() function returns the full username of the currently logged in user. You can also use
the NSUserName() function to get the short version of the name. See NSPathUtilities.h for more useful
routines.

[Team LiB]

[Team LiB]

Finding a User's Home Directory

The NSHomeDirectory() function returns the home directory of the currently logged in user. You can also
find the home directory of any username by using the NSHomeDirectoryForUser(NSString *username)
function. See NSPathUtilities.h for more useful routines.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Finding Application Support Directories

In order to find application support directories in the user's Library directory, the /Library directory, and
the /Network/Library directory without hard-coding path locations, you should use
NSSearchPathForDirectoriesInDomains with the following values. This function returns an NSArray of
results.

typedef enum {

 // supported applications (Applications)
 NSApplicationDirectory = 1,

 // unsupported applications, demonstration versions (Demos)
 NSDemoApplicationDirectory,

 // developer applications (Developer/Applications)
 NSDeveloperApplicationDirectory,

 // system and network administration applications(Administration)
 NSAdminApplicationDirectory,

 // various user-visible documentation, support, and
 // configuration files, resources (Library)
 NSLibraryDirectory,

 // developer resources (Developer)
 NSDeveloperDirectory,

 // user home directories (Users)
 NSUserDirectory,

 // documentation (Documentation)
 NSDocumentationDirectory,

#if MAC_OS_X_VERSION_10_2 <= MAC_OS_X_VERSION_MAX_ALLOWED
 // documents (Documents)
 NSDocumentDirectory,
#endif

 // all directories where applications can occur
 NSAllApplicationsDirectory = 100,

 // all directories where resources can occur
 NSAllLibrariesDirectory = 101

} NSSearchPathDirectory;

typedef enum {

 // user's home directory ---
 // place to install user's personal items (~)
 NSUserDomainMask = 1,

 // local to the current machine --- place to install items
 // available to everyone on this machine (/Local)
 NSLocalDomainMask = 2,

 // publically available location in the local area network
 // --- place to install items available on the network (/Network)
 NSNetworkDomainMask = 4,

 // provided by Apple, unmodifiable (/System)
 NSSystemDomainMask = 8,

 // all domains: all of the above and future items
 NSAllDomainsMask = 0x0ffff

} NSSearchPathDomainMask;

FOUNDATION_EXPORT NSArray *NSSearchPathForDirectoriesInDomains(
 NSSearchPathDirectory directory,
 NSSearchPathDomainMask domainMask,
 BOOL expandTilde);

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Display Alert Panel and Write to Log

The following code shows how to display an alert panel and write the message "The OK button was
pressed." if the user presses the OK button. Because these are recently deprecated, you should only use
these during debugging and choose sheets (NSBeginAlertSheet) instead for anything your users might see.

if (NSRunAlertPanel(@"Warning", @"Do you really want to blah?",
 @"OK", @"Cancel", NULL) == NSOKButton)
{
 NSLog(@"The OK button was pressed.");
}

In fact, this brings up a very good point. In the time it took to write this example and this book being
published, the NSRunAlertPanel function became deprecated. Be aware that especially now, while OS X is
young and growing, things will change rapidly. You might find an API stripped out from under you. Apple,
however, usually gives fair warning, so you have time to find an alternative if one isn't provided for you.
Keep this in mind when updating your development environment because you might be in for a surprise
now and then as things evolve.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Updating the Application's Dock Image

The following code shows how to update the image that is displayed in the Dock for your application.

// Load the default image here
myImage = [NSImage imageNamed:@"NSApplicationIcon"];
// Edit the image here (add a badge, etc.)
// ...
// Set the edited image in the Dock
[NSApp setApplicationIconImage: myImage];

This can be a useful way to show progress or status of your application. Normally you will not want to alter
the image so that it is no longer recognized as your application; instead use this technique sparingly (see
Figure 16.1 for an example).

Figure 16.1. An application after changing the dock image programmatically.

See the sample code for this chapter.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Updating the Application's Dock Menu

The following code shows how to update the menu that is displayed in the Dock for your application and
respond to the items in it. In your application's delegate, implement the –applicationDockMenu: delegate
method to return an NSMenu that contains your custom items. In this implementation, m_menu is an
NSMenu* instance variable, and we are adding two items to the menu: Beep Once and Alert Once. Don't
forget to release m_menu when the application quits.

- (NSMenu *)applicationDockMenu:(NSApplication *)sender
{
 if (m_menu == nil) {
 m_menu = [[[NSMenu alloc] init] retain];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Beep Once",@"")
 action:@selector(beepOnce:) keyEquivalent:@""]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Alert Once",@"")
 action:@selector(alertOnce:) keyEquivalent:@""]];
 }
 return m_menu;
}

You then implement the action methods as appropriate.

- (void)beepOnce:(id)sender
{
 NSBeep();
}

- (void)alertOnce:(id)sender
{
 NSRunAlertPanel(@"Warning", @"You look like blah!",
 @"OK", NULL, NULL);
}

When you control-click (or click and hold) on your application's icon in the Dock, you will see your items
appear in the menu. Selecting them calls the appropriate action (see Figure 16.2).

Figure 16.2. A custom Dock menu.

Because –applicationDockMenu: is called each time you control-click on your application's icon in the
Dock, you can alter it each time if you like. This makes for a menu that can be dynamically managed
depending on the state of your application.

See the sample code for this chapter.

[Team LiB]

[Team LiB]

Open a URL

The following code shows how to open a URL from within your application. This can be used if you have a
Web page that you would like to open in response to a menu item being selected.

BOOL success = [[NSWorkspace sharedWorkspace]
 openURL:@"http://www.triplesoft.com/"];

[Team LiB]

[Team LiB]

Get the Icon of a File

The following code will retrieve the 32x32 pixel icon of the specified file:

NSImage* theImage = [[NSWorkspace sharedWorkspace]
 iconForFile:@"/path/to/file"];

[Team LiB]

[Team LiB]

Scrolling About Box

To make your application's About box contain a scrolling list of credits, simply add an RTF file named
Credits.rtf to your project (see Figure 16.3).

Figure 16.3. A scrolling About box.

[Team LiB]

[Team LiB]

Checking Network Status

To check the reachability of a host on a network, you can use the SCNetworkCheckReachabilityByName
function. Simply replace www.apple.com with whatever host you are interested in. You can also use the
SCNetworkCheckReachabilityByAddress function if you only have an IP address. Simply add
SystemConfiguration.framework to your project and #import the SystemConfiguration.h header file.

#import <SystemConfiguration/SystemConfiguration.h>

- (BOOL)isNetworkReachable
{
 BOOL result;
 SCNetworkConnectionFlags flags;
 result = SCNetworkCheckReachabilityByName("www.apple.com", &flags);
 return (result && (flags & kSCNetworkFlagsReachable));
}

The SCNetworkConnectionFlags allow you to verify a number of settings including the following:

kSCNetworkFlagsTransientConnection— Indicates that the machine in question can be
reached via a transient (that is, PPP) connection.

kSCNetworkFlagsReachable— Indicates that the machine in question can be reached using
the current network configuration.

kSCNetworkFlagsConnectionRequired— Indicates that the machine in question can be
reached using the current network configuration, but a connection must be established first.
For example, a dial-up connection that was not currently active might return this flag.

kSCNetworkFlagsConnectionAutomatic— Indicates that the machine in question can be
reached using the current network configuration, but a connection must be established first.
Any attempt to pass data to the machine in question will initiate the connection.

kSCNetworkFlagsInterventionRequired— Indicates that the machine in question can be
reached using the current network configuration, but a connection must be established first.
In addition, some form of user intervention will be required such as typing in a password,
and so on.

[Team LiB]

[Team LiB]

Checking for Modifier Keys

You can use the following category, found posted on the Net with no author specified, to check for modifier
keys at any time during your programs execution. This category uses Carbon function calls to check the
status of the modifier keys. Simply call +isOptionKeyDown to check the status of the option key. The
method will return YES if the key is down and NO otherwise.

@interface NSEvent (ModifierKeys)
+ (BOOL) isControlKeyDown;
+ (BOOL) isOptionKeyDown;
+ (BOOL) isCommandKeyDown;
+ (BOOL) isShiftKeyDown;
@end

@implementation NSEvent (ModifierKeys)

+ (BOOL) isControlKeyDown
{
 return (GetCurrentKeyModifiers() & controlKey) != 0;
}

+ (BOOL) isOptionKeyDown
{
 return (GetCurrentKeyModifiers() & optionKey) != 0;
}

+ (BOOL) isCommandKeyDown
{
 return (GetCurrentKeyModifiers() & cmdKey) != 0;
}

+ (BOOL) isShiftKeyDown
{
 return (GetCurrentKeyModifiers() & shiftKey) != 0;
}

@end

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Executing AppleScripts via URL

Using NSAppleScript's –initWithContentsOfURL:error: and -executeAndReturnError: methods, you can
easily load and execute a text or compiled AppleScript via the Internet from within your application. Think
of the possibilities! By storing key portions of the functionality of your application on a Web server,
whenever your user executes that functionality, it will be completely up-to-date with any bug fixes you
deem necessary. Mind you, accessing code via the Net can become a speed liability, but depending on the
need, this could be a very cool application feature!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Defaults

The program named defaults is an excellent command-line utility to manipulate user default settings in
any application. The syntax is as follows:

defaults [-currentHost | -host <hostname>] <subcommand>

For example, to change "MyCompanyName" that appears at the top of every source file you create with
Project Builder, you can use the following command (all on one line) in the terminal:

defaults write com.apple.projectbuilder
'PBXCustomTemplateMacroDefinitions'
"{ORGANIZATIONNAME = 'Your Company Name Here';}"

This command writes an updated value to the ORGANIZATIONNAME key of the
PBXCustomTemplateMacroDefinitions array. Type man defaults in the Terminal for complete information.

[Team LiB]

[Team LiB]

Find

The find command is a very powerful command line for those just getting used to typing their commands.
find recursively descends the directory tree for each chosen pathname and evaluates an expression for
each item in the tree. This means you can quickly and easily search for files that match a certain pattern
and perform a task on them. Let's look at some examples:

sudo find / -name ".DS_Store" –delete

This command deletes all Finder .DS_Store files on all disks.

find / -name "*.c" –print

This command prints all filenames that end in ".c".

find . -newerct '1 minute ago' –print

This command prints all filenames that have changed at the last minute.

find /System/Library/Frameworks/Foundation.framework
-type f -name "*.h" -exec
grep NSSearchPathForDirectoriesInDomains '{}' \; -print

This command looks at all the headers in Foundation, prints every occurrence of
NSSearchPathForDirectoriesInDomains, and prints the name of the files in which the function name
appears—it should all be typed on one line.

Type man find in the Terminal for complete information on this useful tool.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Sample

The sample command-line tool allows you to profile a process for a specified time interval. Using sample,
you can gather data about the running behavior of a process. This utility stops the process at user-defined
intervals, samples the current function and the stack, and then enables the application to continue. When
all is said and done, you can view a report showing what functions were executing during the sampling.
This program is very similar to its GUI cousin, Sampler.app.

Type man sample in the Terminal for complete information on this useful debugging tool.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Localizing Your Cocoa Application

Every Cocoa application should be localizable. It's not just a good idea; it's easy!

First, you want to use the NSLocalizedString macro, or one of its related macros, in your application
whenever you reference a string. You simply pass your native language into this macro as follows:

NSLocalizedString(@"Cancel", @"Put a comment here.");

Then, you run the genstrings command-line tool to generate the .strings file for localization. The file
would contain entries similar to the following:

/* Put a comment here. */
"Cancel" = "Cancel";

Your translator would then make a copy of this file and change the right-hand side of the = sign to be in the
translated language. This entry would ultimately look like the following, for Spanish:

/* Put a comment here. */
"Cancel" = "Cancelación";

You then simply place the localized files back in your project as localizable resources. That's it! Now when
your application makes the call to NSLocalizedString as previously, the proper text for the current
localization will be returned; English, Spanish, French, and so on.

For more detailed information on localizing, you should visit the following URL:

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/International/Localizing_Strings.
html

[Team LiB]

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/International/Localizing_Strings.html
http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/International/Localizing_Strings.html

[Team LiB]

CURLHandle

CURLHandle is a public domain Cocoa class by Dan Wood that subclasses NSURLHandle and wraps the curl
command-line application. This allows you to take advantage of the power of curl from within your Cocoa
application. Using curl, you can easily access network-based data using a variety of protocols including
HTTP, HTTPS, GET, POST, FTP, TELNET, LDAP, and more. To learn more about the power of curl, type man
curl in the Terminal application. You can download CURLHandle here: http://curlhandle.sourceforge.net/

[Team LiB]

http://curlhandle.sourceforge.net/default.htm

[Team LiB]

Conclusion

I hope you've enjoyed my collection of snippets.

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 17. Conclusion

Thank you! Goodnight!

Well, maybe I can't get off that easy. Thank you for purchasing and reading this book. I hope you have
found it interesting and helpful, and that it finds a permanent home on your bookshelf. May it trigger your
interests and pull you in a direction you might not have explored otherwise. I also hope that you respect it
enough to recommend it to others who might learn from it. I can honestly say that writing it was something
I enjoyed very much. I learned a lot in the process about software development under Mac OS X, as well as
about myself as a writer.

Whenever I sign up for a project such as this there are periods of excitement, panic, and just about every
emotion in between. When you tell your publisher "500 pages? Sure! No problem!" you forget how hard it
was to write 500 pages the first time. You soon remember. However, even during those "Oh My Goodness"
times, I wouldn't give up because, for me, in writing a book, the reward is the destination and not the
journey. Seeing the book on the shelf and in people's hands—that is why I choose to write in the first place.
It's an ego boost, an accomplishment, something that took many months of hard work to put together
(even though you can do most of it in your pajamas) and finally, there it is! Any writer not on the New York
Times' bestseller list will tell you that it's not about the money.

Having said that; thank you! Goodnight!

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Part V: Appendixes

 A Source Code

 B Online Resources

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Appendix A. Source Code

Chapter 3—RadarWatcher

Chapter 4—MyNSBP_App

Chapter 4—MyNSBP_Desaturate

Chapter 4—MyNSBP_RemoveColor

Chapter 4—plistPlugin

Chapter 5—CFPlugin

Chapter 5—CFPluginCarbonApp

Chapter 5—CFPluginCocoaApp

Chapter 5—Shared

Chapter 6—MyCarbonFramework

Chapter 6—MyCocoaFramework

Chapter 6—MyCocoaApp

Chapter 7—MyTextService

Chapter 8—MyPreferencePane

Chapter 9—MyStatusItem

Chapter 10—MyScreenEffect

Chapter 11—MyColorPicker

Chapter 12—MyThread

Chapter 13—MyTerminal

Chapter 14—MyXMLRPC

Chapter 15—MySOAP

[Team LiB]

[Team LiB]

Chapter 3—RadarWatcher

AppController.h

#import <Cocoa/Cocoa.h>
@class PreferenceController;

@interface AppController : NSObject
{
 PreferenceController *preferenceController;
}
- (IBAction)showPreferencePanel:(id)sender;

@end

AppController.m

#import "AppController.h"
#import "PreferenceController.h"

@implementation AppController

+ (void)initialize
{
 // Create the user defaults dictionary
 NSUserDefaults *defaults;
 defaults = [NSUserDefaults standardUserDefaults];

 if ([defaults integerForKey:pkeyInitialized] == 0) {
 // Save our defaults if not already initialized
 [defaults setObject:[NSNumber numberWithInt:1] forKey:pkeyInitialized];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyOpenNewWindow];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyPlaySound];
 [defaults setObject:[NSNumber numberWithInt:NSOnState]
 forKey:pkeyShowAlert];
 }
}

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender
{
 return ([[NSUserDefaults standardUserDefaults]
 integerForKey:pkeyOpenNewWindow] == NSOnState);
}

- (IBAction)showPreferencePanel:(id)sender
{
 // Create the PreferenceController if it doesn't already exist
 if (!preferenceController)
 preferenceController = [[PreferenceController alloc] init];

 // Display it
 [preferenceController showWindow:self];
}

- (void)dealloc
{
 // We are done with the PreferenceController, release it
 [preferenceController release];
 [super dealloc];
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

MyDocument.h

#import <Cocoa/Cocoa.h>
#import <RadarView.h>

#define kSoundName @"Ping"
#define kDefaultURL @"http://type your weather map url here"
#define kDefaultReloadSeconds 180
#define kMinimumReloadSeconds 10
#define kMaximumReloadSeconds (60 * 60 * 24)

#define kNumColors 5

extern NSString *keyURL; // The URL to load
extern NSString *keyReloadSeconds; // The reload interval in seconds
extern NSString *keyWatchBoxRect; // The watch box rect
extern NSString *keyColors[kNumColors]; // The colors to watch for
extern NSString *keyIgnoreSinglePixels; // TRUE to ignore single pixels
 // when analyzing image
extern NSString *keyCloseColors; // TRUE to consider close colors
 // the same when analyzing image

@interface MyDocument : NSDocument
{
 NSMutableDictionary *m_md; // MutableDictionary used to read and write data
 NSTimer *m_timer; // Timer used to reload image regularly

 IBOutlet RadarView *m_radarView; // RadarView displays radar and watch box
 IBOutlet NSTextField *m_statusTextField; // "Last updated" status text
 IBOutlet NSTextField *m_urlTextField; // URL to load
 IBOutlet NSTextField *m_reloadSecondsTextField; // How many seconds to

 // reload image
 IBOutlet NSButton *m_startButton; // Start button
 IBOutlet NSButton *m_stopButton; // Stop button
 IBOutlet NSButton *m_reloadButton; // Reload button
 IBOutlet NSButton *m_resetButton; // Reset button (resets colors to
 100%
 // opaque - ie: clearColor)

 IBOutlet NSColorWell *m_colorWell1; // Color wells of colors to look for
 IBOutlet NSColorWell *m_colorWell2;
 IBOutlet NSColorWell *m_colorWell3;
 IBOutlet NSColorWell *m_colorWell4;
 IBOutlet NSColorWell *m_colorWell5;

 IBOutlet NSButton *m_ignoreSinglePixelsButton; // Ignore single pixels,
 // only look for married ones
 IBOutlet NSButton *m_closeColorsButton; // Colors that are close to one
 // another are considered the same
}

- (void)updateUI; // Called to update the UI components
- (void)destroyTimer; // Called to destroy the current NSTimer
 // before a new one is created

// Display an alert over the document window
- (void)displayAlert:(NSString*)title msg:
 (NSString*)msg defaultButton:(NSString*)defaultButton;

- (IBAction)refreshRadar:(id)sender; // Called from Reload button
- (IBAction)startRadar:(id)sender; // Called from Start button
- (IBAction)stopRadar:(id)sender; // Called from Stop button
- (IBAction)resetColors:(id)sender; // Called from Reset button
- (IBAction)changeColor:(id)sender; // Called when a color is
 // changed in the color picker
- (IBAction)ignoreSinglePixels:(id)sender; // Called when the Ignore
 // Single Pixels checkbox is pressed
- (IBAction)closeColors:(id)sender; // Called when the
 // Close Colors checkbox is pressed
@end

MyDocument.m

#import "MyDocument.h"
#import "PreferenceController.h"

// MutableDictionary keys
NSString *keyURL = @"keyURL";
NSString *keyReloadSeconds = @"keyReloadSeconds";
NSString *keyWatchBoxRect = @"keyWatchBoxRect";
NSString *keyColors[kNumColors] = {@"keyColors1", @"keyColors2",
 @"keyColors3", @"keyColors4", @"keyColors5"};
NSString *keyIgnoreSinglePixels = @"keyIgnoreSinglePixels";
NSString *keyCloseColors = @"keyCloseColors";

@implementation MyDocument

- (id)init
{
 [super init];
 if (self) {

 // Add your subclass-specific initialization here.
 // If an error occurs here, send a [self dealloc]
 // message and return nil.

 // Create the dictionary that contains our documents
 // data with default values
 m_md = [[NSMutableDictionary dictionary] retain];
 if (m_md) {
 [m_md setObject:kDefaultURL forKey:keyURL];
 [m_md setObject:[NSNumber numberWithInt:kDefaultReloadSeconds]
 forKey:keyReloadSeconds];
 [m_md setObject:NSStringFromRect(NSMakeRect(0,0,0,0))
 forKey:keyWatchBoxRect];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [NSColor clearColor]]
 forKey:keyColors[0]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [NSColor clearColor]]
 forKey:keyColors[1]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [NSColor clearColor]]
 forKey:keyColors[2]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [NSColor clearColor]]
 forKey:keyColors[3]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [NSColor clearColor]]
 forKey:keyColors[4]];
 [m_md setObject:[NSNumber numberWithInt:NSOffState]
 forKey:keyIgnoreSinglePixels];
 [m_md setObject:[NSNumber numberWithInt:NSOffState]
 forKey:keyCloseColors];
 } else {
 NSRunAlertPanel(@"Error!",
 @"There was an error allocating our NSMutableDictionary.",
 @"OK", nil, nil);
 [self dealloc];
 return nil;
 }
 }
 return self;
}

- (void)dealloc {
 // Release the memory used by the dictionary
 [m_md release];
 m_md = nil;

 // Stop the timer
 [self destroyTimer];

 // Psst? BlahBlahBlah! Pass it on.
 [super dealloc];
}

- (NSString *)windowNibName
{
 // Override returning the nib file name of the document
 // If you need to use a subclass of NSWindowController
 // or if your document supports multiple NSWindowControllers,
 // you should remove this method and override –
 // makeWindowControllers instead.
 return @"MyDocument";
}

- (void)windowControllerDidLoadNib:(NSWindowController *) aController
{
 [super windowControllerDidLoadNib:aController];
 // Add any code here that need to be executed once the windowController
 // has loaded the document's window.

 // First time through we need to tell the RadarView who is the boss
 [m_radarView setDocument:self];

 // Update the UI fields
 [self updateUI];

 // First time through we want to blank out the status text
 [m_statusTextField setStringValue:@""];
}

// Validate our Document menu items
- (BOOL)validateMenuItem:(NSMenuItem *)menuItem
{
 NSString *selectorString;
 selectorString = NSStringFromSelector([menuItem action]);

 NSLog(@"validateMenuItem called for %@", selectorString);
 if ([menuItem action] == @selector(refreshRadar:))
 return YES;
 if ([menuItem action] == @selector(startRadar:))
 return (m_timer == nil);
 if ([menuItem action] == @selector(stopRadar:))
 return (m_timer != nil);

 return [super validateMenuItem:menuItem];
}

- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)docType
{
 // Stop the current run if we are loading a new file into this document
 [NSApp sendAction:@selector(stopRadar:) to:self from:self];

 // Release the current dictionary
 [m_md release];
 m_md = nil;

 // Load the new data from the file
 m_md = [[NSMutableDictionary dictionaryWithContentsOfFile:fileName]
 retain];
 if (m_md) {
 // Update the UI in case this is a Revert
 [self updateUI];

 // Return a positive result
 return YES;
 }

 return NO; // Failure
}

- (BOOL)writeToFile:(NSString *)fileName ofType:(NSString *)type
{
 // Update data that needs special conversion

 // NSRect are best off saved as string representations
 // so the developer can edit them
 [m_md setObject:NSStringFromRect([m_radarView watchBoxRect])
 forKey:keyWatchBoxRect];

 // NSColor should save but do not, so we must archive
 // and unarchive them to get them to work
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [m_colorWell1 color]]
 forKey:keyColors[0]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [m_colorWell2 color]]
 forKey:keyColors[1]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [m_colorWell3 color]]
 forKey:keyColors[2]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [m_colorWell4 color]]
 forKey:keyColors[3]];
 [m_md setObject:[NSArchiver archivedDataWithRootObject:
 [m_colorWell5 color]]
 forKey:keyColors[4]];

 // Retrieve the state of the checkbox
 [m_md setObject:[NSNumber numberWithInt:
 [m_ignoreSinglePixelsButton state]]
 forKey:keyIgnoreSinglePixels];
 [m_md setObject:[NSNumber numberWithInt:[m_closeColorsButton state]]
 forKey:keyCloseColors];

 // Write the current dictionary to the file
 return [m_md writeToFile:fileName atomically:YES];
}

- (void)updateUI
{
 // Update the UI with the data from the latest file or revert action

 [m_urlTextField setStringValue:[m_md objectForKey:keyURL]];
 [m_reloadSecondsTextField setStringValue:
 [m_md objectForKey:keyReloadSeconds]];

 // NSColor should save but do not, so we must archive
 // and unarchive them to get them to work
 [m_colorWell1 setColor:[NSUnarchiver unarchiveObjectWithData:[m_md
 objectForKey:keyColors[0]]]];
 [m_colorWell2 setColor:[NSUnarchiver unarchiveObjectWithData:[m_md
 objectForKey:keyColors[1]]]];
 [m_colorWell3 setColor:[NSUnarchiver unarchiveObjectWithData:[m_md
 objectForKey:keyColors[2]]]];
 [m_colorWell4 setColor:[NSUnarchiver unarchiveObjectWithData:[m_md
 objectForKey:keyColors[3]]]];
 [m_colorWell5 setColor:[NSUnarchiver unarchiveObjectWithData:[m_md
 objectForKey:keyColors[4]]]];

 // Set the state of the checkbox
 [m_ignoreSinglePixelsButton setState:[[m_md objectForKey:
 keyIgnoreSinglePixels] intValue]];
 [m_closeColorsButton setState:[[m_md objectForKey:
 keyCloseColors] intValue]];

 // Tell the radar view what the current watch box
 // rectangle is so it can draw it properly
 [m_radarView setWatchBoxRect:NSRectFromString(
 [m_md objectForKey:keyWatchBoxRect])];
}

- (void)controlTextDidChange:(NSNotification*)aNotification
{
 // This function is called when the user types a character
 // in the URL or Reload Seconds text fields

 // A change has been made to the document
 [self updateChangeCount:NSChangeDone];

 // Update the proper dictionary entry depending on what changed
 id sender = [aNotification object];
 if (sender == m_urlTextField) {
 [m_md setObject:[m_urlTextField stringValue] forKey:keyURL];
 } else if (sender == m_reloadSecondsTextField) {
 [m_md setObject:[NSNumber numberWithInt:
 [m_reloadSecondsTextField intValue]]
 forKey:keyReloadSeconds];
 }
}

- (IBAction)changeColor:(id)sender
{
 // This function is called when the user changes a colorwell

 // A change has been made to the document
 [self updateChangeCount:NSChangeDone];
}

- (IBAction)refreshRadar:(id)sender
{
 // Load the current image from the URL and display it on the screen,
 // releasing any previous image
 // Note we must use this method and not [NSImage initWithContentsOfURL]
 // because it uses the cache
 NSData *data = [[NSURL URLWithString:[m_md objectForKey:keyURL]]
 resourceDataUsingCache:NO];
 NSImage *image = [[NSImage alloc] initWithData:data];

 // If we loaded an image...
 if (image) {

 // Pass it to the RadarView for display
 [m_radarView setImage:image];

 // We no longer need the image,
 // m_radarView has "retained" it at this point
 [image release];

 // Update the current time as the last time we loaded the image
 [m_statusTextField setStringValue:
 [NSString localizedStringWithFormat:@"Map last loaded %@",
 [NSCalendarDate date]]];

 // Check for colors
 BOOL ignoreSinglePixelsState =
 ([m_ignoreSinglePixelsButton state] == NSOnState);
 BOOL closeColorsState = ([m_closeColorsButton state] == NSOnState);
 if (([[m_colorWell1 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell1 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 1!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell2 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell2 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 2!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell3 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell3 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 3!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell4 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell4 color]
 ignoreSinglePixels:ignoreSinglePixelsState

 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 4!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }
 if (([[m_colorWell5 color] alphaComponent] > 0) &&
 ([m_radarView isColorInImageInRect:[m_colorWell5 color]
 ignoreSinglePixels:ignoreSinglePixelsState
 closeColors:closeColorsState] == YES)) {
 [self displayAlert:@"Found Color 5!"
 msg:@"A color was found in the watch box."
 defaultButton:@"OK"];
 }

 } else {
 NSBeep();
 }
}

// The user pressed the Start button
- (IBAction)startRadar:(id)sender
{
 [m_stopButton setEnabled:TRUE];
 [m_startButton setEnabled:FALSE];
 [m_resetButton setEnabled:FALSE];
 [m_colorWell1 setEnabled:FALSE];
 [m_colorWell2 setEnabled:FALSE];
 [m_colorWell3 setEnabled:FALSE];
 [m_colorWell4 setEnabled:FALSE];
 [m_colorWell5 setEnabled:FALSE];
 [m_urlTextField setEnabled:FALSE];
 [m_reloadSecondsTextField setEnabled:FALSE];
 [m_ignoreSinglePixelsButton setEnabled:FALSE];
 [m_closeColorsButton setEnabled:FALSE];
 [m_radarView setLocked:TRUE];

 // Verify refresh time limits
 if ([[m_md objectForKey:keyReloadSeconds] intValue] <
 kMinimumReloadSeconds) {
 [m_md setObject:[NSNumber numberWithInt:kMinimumReloadSeconds]
 forKey:keyReloadSeconds];
 [m_reloadSecondsTextField setStringValue:
 [m_md objectForKey:keyReloadSeconds]];
 NSRunAlertPanel(@"Error!",
 @"Minimum refresh time is 10 seconds; I fixed it.",
 @"OK", nil, nil);
 }
 if ([[m_md objectForKey:keyReloadSeconds] intValue] >
 kMaximumReloadSeconds) {
 [m_md setObject:[NSNumber numberWithInt:kMaximumReloadSeconds]
 forKey:keyReloadSeconds];

 [m_reloadSecondsTextField setStringValue:
 [m_md objectForKey:keyReloadSeconds]];
 NSRunAlertPanel(@"Error!",
 @"Maximum refresh time is 1 days worth of seconds; I fixed it.",

 @"OK", nil, nil);
 }

 // Stop the timer
 [self destroyTimer];

 // Refresh the image immediately
 [NSApp sendAction:@selector(refreshRadar:) to:self from:self];

 // Set up our timer to execute every keyReloadSeconds seconds
 m_timer = [[NSTimer scheduledTimerWithTimeInterval:
 (NSTimeInterval)[[m_md objectForKey:keyReloadSeconds] doubleValue]
 target:self selector:@selector(refreshRadar:)
 userInfo:nil repeats: YES] retain];
 if (m_timer == nil) {
 NSRunAlertPanel(@"Error!",
 @"There was an error allocating our NSTimer.",
 @"OK", nil, nil);
 }
}

// The user pressed the Stop button
- (IBAction)stopRadar:(id)sender
{
 [m_stopButton setEnabled:FALSE];
 [m_startButton setEnabled:TRUE];
 [m_resetButton setEnabled:TRUE];
 [m_colorWell1 setEnabled:TRUE];
 [m_colorWell2 setEnabled:TRUE];
 [m_colorWell3 setEnabled:TRUE];
 [m_colorWell4 setEnabled:TRUE];
 [m_colorWell5 setEnabled:TRUE];
 [m_urlTextField setEnabled:TRUE];
 [m_reloadSecondsTextField setEnabled:TRUE];
 [m_ignoreSinglePixelsButton setEnabled:TRUE];
 [m_closeColorsButton setEnabled:TRUE];
 [m_radarView setLocked:FALSE];

 // Stop the timer
 [self destroyTimer];
}

// The user pressed the Reset button
- (IBAction)resetColors:(id)sender
{
 int i = NSRunAlertPanel(@"Reset Colors?",
 @"Reset all the colors to their default values?", @"No", @"Yes", nil);
 if (i == NSAlertAlternateReturn) {
 // Reset colors
 [m_colorWell1 setColor:[NSColor clearColor]];
 [m_colorWell2 setColor:[NSColor clearColor]];
 [m_colorWell3 setColor:[NSColor clearColor]];
 [m_colorWell4 setColor:[NSColor clearColor]];
 [m_colorWell5 setColor:[NSColor clearColor]];

 [self updateChangeCount:NSChangeDone];

 }
}

// Called when the Ignore Single Pixels checkbox is pressed
- (IBAction)ignoreSinglePixels:(id)sender
{
 [self updateChangeCount:NSChangeDone];
}

// Called when the Close Colors checkbox is pressed
- (IBAction)closeColors:(id)sender
{
 [self updateChangeCount:NSChangeDone];
}

// Shorthand to destroy the current timer
- (void)destroyTimer
{
 if (m_timer != nil) {
 [m_timer invalidate];
 [m_timer release];
 m_timer = nil;
 }
}

// Display a generic OK alert and play a sound
- (void)displayAlert:(NSString*)title msg:
 (NSString*)msg defaultButton:(NSString*)defaultButton
{
 // Play a sound if our preferences say so
 if ([[NSUserDefaults standardUserDefaults]
 integerForKey:pkeyPlaySound] == NSOnState)
 [[NSSound soundNamed:kSoundName] play];

 // Show an alert no matter what
 if ([[NSUserDefaults standardUserDefaults]
 integerForKey:pkeyShowAlert] == NSOnState)
 NSBeginAlertSheet(title, defaultButton, nil, nil,
 [[[self windowControllers] objectAtIndex:0] window],
 self, NULL, NULL, NULL, msg);
}

@end

PreferenceController.h

#import <AppKit/AppKit.h>

extern NSString *pkeyInitialized;
extern NSString *pkeyOpenNewWindow;
extern NSString *pkeyPlaySound;
extern NSString *pkeyShowAlert;

@interface PreferenceController : NSWindowController {
 IBOutlet NSButton *m_newWindowButton;

 IBOutlet NSButton *m_playSoundButton;
 IBOutlet NSButton *m_showAlertButton;
}
- (IBAction)changeNewWindowButton:(id)sender;
- (IBAction)changePlaySoundButton:(id)sender;
- (IBAction)changeShowAlertButton:(id)sender;

@end

PreferenceController.m

#import "PreferenceController.h"

NSString *pkeyInitialized = @"pkeyInitialized";
NSString *pkeyOpenNewWindow = @"pkeyOpenNewWindow";
NSString *pkeyPlaySound = @"pkeyPlaySound";
NSString *pkeyShowAlert = @"pkeyShowAlert";

@implementation PreferenceController

- (id)init
{
 // Load the Preferences.nib file
 self = [super initWithWindowNibName:@"Preferences"];
 return self;
}

- (void)windowDidLoad
{
 NSUserDefaults *defaults;

 // Load our default values and set the preference controls accordingly
 defaults = [NSUserDefaults standardUserDefaults];
 [m_newWindowButton setState:[defaults integerForKey:pkeyOpenNewWindow]];
 [m_playSoundButton setState:[defaults integerForKey:pkeyPlaySound]];
 [m_showAlertButton setState:[defaults integerForKey:pkeyShowAlert]];
}

- (IBAction)changeNewWindowButton:(id)sender
{
 // Save back the new value of this control to the defaults
 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]
 forKey:pkeyOpenNewWindow];
}

- (IBAction)changePlaySoundButton:(id)sender
{
 // Save back the new value of this control to the defaults
 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]
 forKey:pkeyPlaySound];
}

- (IBAction)changeShowAlertButton:(id)sender
{
 // Save back the new value of this control to the defaults

 [[NSUserDefaults standardUserDefaults] setInteger:[sender state]
 forKey:pkeyShowAlert];
}

@end

RadarView.h

#import <Cocoa/Cocoa.h>

@interface RadarView : NSView
{
 NSImage *m_image; // The radar image
 NSRect m_watchBoxRect; // The watch box
 NSPoint m_downPoint; // The last mouse down-point
 NSPoint m_currentPoint; // The last mouse current-point
 NSDocument *m_document; // The document that owns us
 BOOL m_locked; // TRUE if we should disallow watch box drawing
}

- (BOOL)isColorInImageInRect:(NSColor *)color
 ignoreSinglePixels:(BOOL)ignore
 closeColors:(BOOL)close;
- (void)setDocument:(NSDocument *)document;
- (void)setImage:(NSImage *) newImage;
- (NSImage*)image;
- (void)setWatchBoxRect:(NSRect) rect;
- (NSRect)watchBoxRect;
- (void)setLocked:(BOOL)locked;
- (BOOL)locked;
@end

RadarView.m

#import "RadarView.h"

@implementation RadarView

- (id)initWithFrame:(NSRect)frameRect
{
 [super initWithFrame:frameRect];

 m_image = nil;
 m_watchBoxRect = NSMakeRect(0,0,0,0);
 m_downPoint = NSMakePoint(0, 0);
 m_currentPoint = NSMakePoint(0, 0);
 m_document = nil;
 m_locked = FALSE;

 return self;
}

- (void)dealloc
{

 [m_image release];
 [super dealloc];
}

- (void)mouseDown:(NSEvent *)event
{
 if (m_locked) {
 NSRunAlertPanel(@"Locked!",

 @"Please press the Stop button before attempting to draw the watch box.",
 @"OK", nil, nil);
 } else if (m_image) {
 NSPoint p = [event locationInWindow];
 m_downPoint = [self convertPoint:p fromView:nil];
 m_currentPoint = m_downPoint;
 [self setNeedsDisplay:YES];
 [m_document updateChangeCount:NSChangeDone];
 } else {
 NSRunAlertPanel(@"No Image!",
 @"Please press the Reload button once to load the image before
 attempting to draw the watch box.",
 @"OK", nil, nil);
 }
}

- (void)mouseDragged:(NSEvent *)event
{
 if (m_image && !m_locked) {
 NSPoint p = [event locationInWindow];
 m_currentPoint = [self convertPoint:p fromView:nil];
 [[self superview] autoscroll:event];
 [self setNeedsDisplay:YES];
 }
}

- (void)mouseUp:(NSEvent *)event
{
 if (m_image && !m_locked) {
 NSPoint p = [event locationInWindow];
 m_currentPoint = [self convertPoint:p fromView:nil];
 [self setNeedsDisplay:YES];
 }
}

- (NSRect)currentRect
{
 // Calculate the current watch box rectangle based on the mouse points
 float minX = MIN(m_downPoint.x, m_currentPoint.x);
 float maxX = MAX(m_downPoint.x, m_currentPoint.x);
 float minY = MIN(m_downPoint.y, m_currentPoint.y);
 float maxY = MAX(m_downPoint.y, m_currentPoint.y);
 return NSMakeRect(minX, minY, maxX-minX, maxY-minY);
}

- (void)drawRect:(NSRect)rect
{

 if (m_image) {
 // Resize view to be the size of the image
 // to avoid unnecessary scrolling
 [self setFrameSize:[m_image size]];

 // Draw image
 NSRect bounds = [self bounds];
 NSPoint p = bounds.origin;
 [m_image dissolveToPoint:p fraction:1.0];

 // Draw watch box
 m_watchBoxRect = [self currentRect];
 if (!NSIsEmptyRect(m_watchBoxRect)) {
 #ifdef DRAW_WITH_TINT
 [[[NSColor lightGrayColor] colorWithAlphaComponent:0.2] set];
 NSRectFillUsingOperation(m_watchBoxRect, NSCompositeSourceOver);
 #endif
 [[NSColor grayColor] set];
 NSFrameRectWithWidth(m_watchBoxRect, 2);
 [[NSColor blackColor] set];
 NSFrameRectWithWidth(m_watchBoxRect, 1);
 }

 // Force an update
 [self setNeedsDisplay:YES];
 }
}

// InRange function returns true if a and b are within r of one another
// TODO: implement "wrap" where range is 0-359 and 360=0, for example.
FOUNDATION_STATIC_INLINE BOOL InRange(float a, float b, float r) {
 return (((b <= a+r) && (b >= a-r)) &&
 ((a <= b+r) && (a >= b-r))) ;
}

- (BOOL)isColorInImageInRect:(NSColor *)color
 ignoreSinglePixels:(BOOL)ignore
 closeColors:(BOOL)close
// Walk each pixel in the watch box and see
// if the passed in color exists within it
// ignoreSinglePixels - if TRUE, must be more
// than one pixel of a color in the watch box,
// does not need to be adjacent to each other
// closeColors - if TRUE, colors match if they
// are "close" (hueComponent (0-359) within
// 10 degrees either way, brightnessComponent (0-100) within 20%)
{

 int x, y;
 long found = 0;

 // Lock the image focus so we can perform direct pixel reads
 [m_image lockFocus];

 // Update the watch box rect

 m_watchBoxRect = [self currentRect];

 // For each pixel within the watch box rect,
 // see if the color matches the color
 // we passed into this function
 for (x = m_watchBoxRect.origin.x;
 x < m_watchBoxRect.origin.x + m_watchBoxRect.size.width; ++x) {
 for (y = m_watchBoxRect.origin.y;
 y < m_watchBoxRect.origin.y + m_watchBoxRect.size.height;
 ++y) {
 NSColor *newColor = NSReadPixel(NSMakePoint(x, y));
 if (close) {
 if ((InRange([color hueComponent],
 [newColor hueComponent], .036)) &&
 (InRange([color brightnessComponent],
 [newColor brightnessComponent], .05))) {
 found++;
 }
 } else {
 if (([color redComponent] == [newColor redComponent]) &&
 ([color greenComponent] == [newColor greenComponent]) &&
 ([color blueComponent] == [newColor blueComponent])) {
 found++;
 }
 }
 }
 }

 // Unlock the image focus and return the result of our search
 [m_image unlockFocus];
 return (ignore ? (found>1) : (found>0));
}

- (void)setDocument:(NSDocument *)document
{
 m_document = document;
}

- (void)setImage:(NSImage *) newImage
{

 [newImage retain];
 [m_image release];
 m_image = newImage;
 [self setNeedsDisplay:YES];
}

- (NSImage*)image
{
 return m_image;
}

- (void)setWatchBoxRect:(NSRect) rect
{
 m_downPoint.x = rect.origin.x;
 m_downPoint.y = rect.origin.y;

 m_currentPoint.x = rect.origin.x + rect.size.width;
 m_currentPoint.y = rect.origin.y + rect.size.height;
 m_watchBoxRect = [self currentRect];
}

- (NSRect)watchBoxRect
{
 return m_watchBoxRect;
}

- (void)setLocked:(BOOL)locked
{
 m_locked = locked;
}

- (BOOL)locked
{
 return m_locked;
}

@end

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 4—MyNSBP_App

MyNSBP_Protocol.h

#import <Cocoa/Cocoa.h>

@protocol MyNSBP_Protocol

+ (BOOL)initializePluginClass:(NSBundle*)theBundle;
+ (void)terminatePluginClass;
+ (id)instantiatePlugin;
- (NSImage*)doPlugin:(NSImage*)theImage;

@end

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
}
@end

AppController.m

#import "AppController.h"

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

ImageWindowController.h

#import <Cocoa/Cocoa.h>

@interface ImageWindowController : NSObject
{
 IBOutlet NSMenuItem *m_filterMenuItem;
 IBOutlet NSImageView *m_imageView;

 NSMutableArray * m_pluginClasses;
 NSMutableArray * m_pluginInstances;

}
- (IBAction)doFilter:(id)sender;
- (IBAction)doResetImage:(id)sender;
@end

ImageWindowController.m

#import "ImageWindowController.h"
#import "MyNSBP_Protocol.h"

@implementation ImageWindowController

-(id)init
{
 self = [super init];
 if (self) {
 // Allocate our arrays
 m_pluginClasses = [[NSMutableArray alloc] init];
 m_pluginInstances = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)dealloc
{
 // Release our arrays
 [m_pluginClasses release];
 [m_pluginInstances release];
 [super dealloc];
}

// Called to initialize our fields if we need to –
// this is where we will load our plugins
- (void)awakeFromNib
{

 NSMenu *filterMenu = [m_filterMenuItem submenu];
 NSString *folderPath;

 // Locate the plugins directory within our app package

 folderPath = [[NSBundle mainBundle] builtInPlugInsPath];
 if (folderPath) {

 // Enumerate through each plugin
 NSEnumerator *enumerator =
 [[NSBundle pathsForResourcesOfType:@"plugin"
 inDirectory:folderPath] objectEnumerator];
 NSString *pluginPath;
 int count = 0;

 while ((pluginPath = [enumerator nextObject])) {

 // Get the bundle that goes along with the plugin
 NSBundle* pluginBundle = [NSBundle bundleWithPath:pluginPath];
 if (pluginBundle) {

 // Load the plist into a dictionary
 NSDictionary* dictionary = [pluginBundle infoDictionary];

 // Pull useful information from the plist dictionary
 NSString* pluginName =
 [dictionary objectForKey:@"NSPrincipalClass"];
 NSString* menuItemName =
 [dictionary objectForKey:@"NSMenuItemName"];

 if (pluginName && menuItemName) {

 // See if the class is already loaded, if not, load
 Class pluginClass = NSClassFromString(pluginName);

 if (!pluginClass) {
 NSObject<MyNSBP_Protocol>* thePlugin;

 // The Principal Class of the Bundle is
 // the plugin class
 pluginClass = [pluginBundle principalClass];

 // Make sure it conforms to our protocol
 // and attempt to initialize and instantiate it
 if ([pluginClass conformsToProtocol:
 @protocol(MyNSBP_Protocol)] &&
 [pluginClass isKindOfClass:[NSObject class]] &&
 [pluginClass initializePluginClass:pluginBundle] &&
 (thePlugin = [pluginClass instantiatePlugin])) {

 // Add a menu item for this plugin
 NSMenuItem *item;
 item = [[NSMenuItem alloc] init];
 [item setTitle:menuItemName];
 [item setTag:count++];
 [item setTarget:self];
 [item setAction:@selector(doFilter:)];
 [filterMenu addItem:item];
 [item release];

 // Add the class to our array

 [m_pluginClasses addObject:pluginClass];

 // Add the instance to our array
 [m_pluginInstances addObject:thePlugin];
 }
 }
 }
 }
 }
 }

 // Update our self image
 [self doResetImage:self];
}

// Called when the window is about to close
- (void)windowWillClose:(NSNotification*)notification
{
 Class pluginClass;
 NSEnumerator *enumerator;
 NSObject<MyNSBP_Protocol> *thePlugin;

 // Enumerate through the instances and release each
 enumerator = [m_pluginInstances objectEnumerator];
 while ((thePlugin = [enumerator nextObject])) {
 [thePlugin release];
 thePlugin = nil;
 }

 // Enumerate through the classes and terminate each
 enumerator = [m_pluginClasses objectEnumerator];
 while ((pluginClass = [enumerator nextObject])) {

 [pluginClass terminatePluginClass];
 pluginClass = nil;
 }
}

// Called when one of the plugins is selected from the Filter menu
- (IBAction)doFilter:(id)sender
{
 NSObject<MyNSBP_Protocol>* thePlugin;

 // Get the proper plugin instance from the array based on tag value
 thePlugin = [m_pluginInstances objectAtIndex:[sender tag]];
 if (thePlugin) {
 // Pass the image to the plugin, which will alter it and pass it back
 NSImage *theAlteredImage = [thePlugin doPlugin:[m_imageView image]];

 // Set the altered image to be the current image
 [m_imageView setImage:theAlteredImage];

 // Update the view
 [m_imageView setNeedsDisplay:YES];
 }
}

// Called when the user pressed the Reset Image
// button, restores the image in the view
// We must make a copy otherwise the actual
// picture.tiff tends to get "edited"
- (IBAction)doResetImage:(id)sender
{
 NSImage *theImage = [[[NSImage imageNamed:
 @"picture.tiff"] copy] autorelease];
 [m_imageView setImage:theImage];
// [m_imageView setNeedsDisplay:YES];
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 4—MyNSBP_Desaturate

MyNSBP_Desaturate.h

#import <Foundation/Foundation.h>
#import "MyNSBP_Protocol.h"

@interface MyNSBP_Desaturate : NSObject<MyNSBP_Protocol> {

}
@end

MyNSBP_Desaturate.m

#import <Foundation/Foundation.h>
#import "MyNSBP_Desaturate.h"

// Our bundle is kept static so it can be accessed via class methods
static NSBundle* g_pluginBundle = nil;

@implementation MyNSBP_Desaturate

// Initialize
- (id)init
{
 self = [super init];
 return self;
}

// Deallocate
- (void)dealloc
{
 [super dealloc];
}

// Called to initialize our class, currently just to save our bundle
+ (BOOL)initializePluginClass:(NSBundle*)theBundle
{
 if (g_pluginBundle) {
 return NO;
 }
 g_pluginBundle = [theBundle retain];
 return YES;
}

// Called to terminate our class, currently just to release our bundle

+ (void)terminatePluginClass
{
 if (g_pluginBundle) {
 [g_pluginBundle release];

 g_pluginBundle = nil;
 }
}

// Called to instantiate our plugin, currently to alloc, init and load the nib
+ (id)instantiatePlugin
{
 MyNSBP_Desaturate* instance =
 [[[MyNSBP_Desaturate alloc] init] autorelease];
 if (instance && [NSBundle loadNibNamed:@"Desaturate" owner:instance]) {
 return instance;
 }
 return nil;
}

// Do anything here to create UI, etc.
- (void)awakeFromNib
{
}

// Called to alter the image
- (NSImage*)doPlugin:(NSImage*)theImage
{
 NSRect theRect;

 // Calculate theRect of the image
 theRect.origin.x = theRect.origin.y = 0;
 theRect.size = [theImage size];

 // Lock the focus, draw, and unlock
 [theImage lockFocus];
 [[[NSColor lightGrayColor] colorWithAlphaComponent:0.1] set];
 NSRectFillUsingOperation(theRect, NSCompositeSourceOver);
 [theImage unlockFocus];

 // Return the image to the caller
 return theImage;
}

@end

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 4—MyNSBP_RemoveColor

MyNSBP_RemoveColor.h

#import <Foundation/Foundation.h>
#import "MyNSBP_Protocol.h"

@interface MyNSBP_RemoveColor : NSObject<MyNSBP_Protocol> {

}
- (int)askUserWhatColorToRemove;
@end

MyNSBP_RemoveColor.m

#import <Foundation/Foundation.h>
#import "MyNSBP_RemoveColor.h"
#import "SettingsController.h"

// Our bundle is kept static so it can be accessed via class methods
static NSBundle* g_pluginBundle = nil;

@implementation MyNSBP_RemoveColor

// Initialize
- (id)init
{
 self = [super init];
 return self;
}

// Deallocate
- (void)dealloc
{
 [super dealloc];
}

// Called to initialize our class, currently just to save our bundle
+ (BOOL)initializePluginClass:(NSBundle*)theBundle
{
 if (g_pluginBundle) {
 return NO;
 }
 g_pluginBundle = [theBundle retain];
 return YES;
}

// Called to terminate our class, currently just to release our bundle
+ (void)terminatePluginClass
{
 if (g_pluginBundle) {

 [g_pluginBundle release];
 g_pluginBundle = nil;
 }
}

// Called to instantiate our plugin, currently to alloc, init and load the nib
+ (id)instantiatePlugin
{
 MyNSBP_RemoveColor* instance =
 [[[MyNSBP_RemoveColor alloc] init] autorelease];
 if (instance && [NSBundle loadNibNamed:@"RemoveColor" owner:instance]) {
 return instance;
 }
 return nil;
}

// Do anything here to create UI, etc.
- (void)awakeFromNib
{
}

// Ask the user what color to remove
- (int)askUserWhatColorToRemove
{
 int whichColor = 0;

 // Allocate our settings dialog box
 SettingsController *sc = [[SettingsController alloc] init];

 if (sc) {

 // Run the dialog box modal. The SettingsController will call
 // stopModalWithCode with the tag of the button that was pressed
 // to end the modal loop.
 [sc showWindow:self];
 whichColor = [NSApp runModalForWindow:[sc window]];

 // Deallocate the preference controller, we no longer need it
 [sc release];
 sc = nil;

 }

 // return the chosen color, or 0 (none)
 return whichColor;
}

// Called to alter the image
- (NSImage*)doPlugin:(NSImage*)theImage
{
 int whichColor = [self askUserWhatColorToRemove];

 // If the user chose a color (other than None)
 if (whichColor) {
 NSRect theRect;

 // Calculate theRect of the image
 theRect.origin.x = theRect.origin.y = 0;
 theRect.size = [theImage size];

 // Lock the focus, draw, and unlock
 [theImage lockFocus];

 // Set the proper color
 if (whichColor == 1) { // red
 [[NSColor redColor] set];
 } else if (whichColor == 2) { // green
 [[NSColor greenColor] set];
 } else if (whichColor == 3) { // blue
 [[NSColor blueColor] set];
 }

 // Fill the rect with the NSCompositePlusDarker mode to remove the color
 NSRectFillUsingOperation(theRect, NSCompositePlusDarker);

 // Unlock the focus
 [theImage unlockFocus];
 }

 // Return the image to the caller (altered or not)
 return theImage;
}

@end

SettingsController.h

#import <Cocoa/Cocoa.h>

@interface SettingsController : NSWindowController
{
}
- (IBAction)myDoneAction:(id)sender;
@end

SettingsController.m

#import "SettingsController.h"

@implementation SettingsController

- (id)init
{
 // Load the Settings.nib file
 self = [super initWithWindowNibName:@"Settings"];
 return self;
}

// Do stuff here if we need to once the window has loaded
- (void)windowDidLoad

{
}

- (IBAction)myDoneAction:(id)sender
{
 [NSApp stopModalWithCode:[sender tag]];
}

@end

[Team LiB]

[Team LiB]

Chapter 4—plistPlugin

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
}
@end

AppController.m

#import "AppController.h"

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

SearchWindowController.h

#import <Cocoa/Cocoa.h>

@interface SearchWindowController : NSObject
{
 IBOutlet NSProgressIndicator *m_progressIndicator;
 IBOutlet NSTextView *m_resultsTextView;
 IBOutlet NSButton *m_searchButton;
 IBOutlet NSPopUpButton *m_searchEnginePopUpButton;
 IBOutlet NSTextField *m_searchTextField;
 NSMutableArray *m_searchEngineArray;
}
- (IBAction)doSearch:(id)sender;
@end

SearchWindowController.m

#import "SearchWindowController.h"

@implementation SearchWindowController

- (id)init
{
 [super init];
 if (self) {
 m_searchEngineArray = [[NSMutableArray alloc] init];
 }
 return self;
}

- (void)dealloc
{
 [m_searchEngineArray release];
 [super dealloc];
}

// Called to initialize our fields if we need to –
// this is where we will load our plugins
- (void)awakeFromNib
{
 NSString* folderPath;

 // Remove all items from the popup button
 [m_searchEnginePopUpButton removeAllItems];

 // Locate the plugins directory within our app package
 folderPath = [[NSBundle mainBundle] builtInPlugInsPath];
 if (folderPath) {
 // Enumerate through each plugin
 NSEnumerator* enumerator = [[NSBundle pathsForResourcesOfType:@"plist"
 inDirectory:folderPath] objectEnumerator];
 NSString* pluginPath;
 while ((pluginPath = [enumerator nextObject])) {
 // Load the plist into a dictionary for each plugin
 NSDictionary* dictionary = [NSDictionary
 dictionaryWithContentsOfFile:pluginPath];

 if (dictionary) {
 // Read the items in the plist
 NSString* searchEngineURL = [dictionary
 objectForKey:@"SearchEngineURL"];
 NSString* searchEngineName = [dictionary
 objectForKey:@"SearchEngineName"];
 if (searchEngineName && searchEngineURL) {
 // Add the string the array
 [m_searchEngineArray addObject:searchEngineURL];
 // and add a menu item (menu items and
 // array items will have the same index,
 // which makes it easy to match them up
 // when the user presses the search button)
 [m_searchEnginePopUpButton addItemWithTitle:searchEngineName];
 }
 }
 }
 }
}

// This action is called when the user clicks the Search button
- (IBAction)doSearch:(id)sender
{
 NSString *results;

 // Since the menu items and array items both
 // have the same index, we can easily load
 // the URL based on the menu item that is selected
 NSString *searchEngineURL = [m_searchEngineArray objectAtIndex:
 [m_searchEnginePopUpButton indexOfSelectedItem]];

 // We must then encode the string that the user
 // typed in (ie: replacing spaces with %20)
 NSString *encodedSearchText = (NSString*)
 CFURLCreateStringByAddingPercentEscapes(NULL,
 (CFStringRef)[m_searchTextField stringValue],
 NULL, NULL, kCFStringEncodingUTF8);

 // Once encoded, we concatenate the two strings,
 // the URL and the search text
 NSString *completeSearchURL = [NSString stringWithFormat:@"%@%@",
 searchEngineURL, encodedSearchText];

 // Begin user feedback

 [m_progressIndicator startAnimation:self];
 [m_searchButton setEnabled:NO];

 // We then attempt to load the URL and save the results in a string
 results = [NSString stringWithContentsOfURL:
 [NSURL URLWithString:completeSearchURL]];
 if (results) {
 // If we have results we display them in the text view
 NSRange theFullRange = NSMakeRange(0,
 [[m_resultsTextView string] length]);
 [m_resultsTextView replaceCharactersInRange:

 theFullRange withString:results];
 } else {
 NSRunAlertPanel(@"Error", @"NSString
 stringWithContentsOfURL returned nil",
 @"OK", @"", @"");
 }

 // End user feedback
 [m_searchButton setEnabled:YES];
 [m_progressIndicator stopAnimation:self];
}

@end

Google.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>SearchEngineName</key>
 <string>Google</string>
 <key>SearchEngineURL</key>
 <string>http://www.google.com/search?q=</string>
</dict>
</plist>

Overture.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>SearchEngineName</key>
 <string>Overture</string>
 <key>SearchEngineURL</key>
 <string>http://www.overture.com/d/search/?Keywords=</string>
</dict>
</plist>

Yahoo.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>SearchEngineName</key>
 <string>Yahoo</string>
 <key>SearchEngineURL</key>
 <string>http://google.yahoo.com/bin/query?p=</string>

</dict>
</plist>

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 5—CFPlugin

main.c

#include <Carbon/Carbon.h>
#include <CoreFoundation/CoreFoundation.h>
#include <CoreFoundation/CFPlugin.h>
#include <CoreFoundation/CFPlugInCOM.h>
#include "../MyCFPluginInterface.h"

// The layout for an instance of MyType
typedef struct _MyType {
 MyInterfaceStruct* _myInterface;
 CFUUIDRef _factoryID;
 UInt32 _refCount;
 } MyType;

//
// Forward declarations for all functions
//

// IUnknown functions
static HRESULT myQueryInterface(void *this, REFIID iid, LPVOID *ppv);
static ULONG myAddRef(void *this);
static ULONG myRelease(void *this);

// My interface functions
static void myPluginFunction(void *this, Boolean flag);

// Utility functions
static MyType *_allocMyType(CFUUIDRef factoryID);
static void _deallocMyType(MyType *this);

// My factory function
void *myFactoryFunction(CFAllocatorRef allocator, CFUUIDRef typeID);

//
// IUnknown interface functions
//

// Implementation of the IUnknown QueryInterface function
static HRESULT myQueryInterface(void *this, REFIID iid, LPVOID *ppv)
{
 HRESULT hResult = E_NOINTERFACE;

 printf("myQueryInterface\n");

 // Create a CoreFoundation UUIDRef for the requested interface
 CFUUIDRef interfaceID = CFUUIDCreateFromUUIDBytes(NULL, iid);

 // Test the requested ID against the valid interfaces
 if (CFEqual(interfaceID, kMyInterfaceID)) {

 // If the MyInterface was requested, bump the ref count,
 // set the ppv parameter equal to the instance, and return good status
 // This calls through to myAddRef
 ((MyType*)this)->_myInterface->AddRef(this);
 *ppv = this;
 hResult = S_OK;

 } else if (CFEqual(interfaceID, IUnknownUUID)) {

 // If the IUnknown interface was requested, bump the ref count,
 // set the ppv parameter equal to the instance, and return good status
 // This calls through to myAddRef
 ((MyType*)this)->_myInterface->AddRef(this);
 *ppv = this;
 hResult = S_OK;

 } else {

 // Requested interface unknown, bail with error
 *ppv = NULL;
 hResult = E_NOINTERFACE;

 }

 // Release interface
 CFRelease(interfaceID);
 return hResult;
}

// Implementation of reference counting for this type
// Whenever an interface is requested, bump the refCount for
// the instance NOTE: returning the refcount is a convention
// but is not required so don't rely on it
static ULONG myAddRef(void *this)
{
 printf("myAddRef\n");

 return ((MyType*)this)->_refCount++;
}

// When an interface is released, decrement the refCount
// If the refCount goes to zero, deallocate the instance
static ULONG myRelease(void *this)
{
 printf("myRelease\n");

 ((MyType*)this)->_refCount—;
 if (((MyType*)this)->_refCount == 0) {
 _deallocMyType((MyType*)this);
 return 0;
 } else
 return ((MyType*)this)->_refCount;
 }

//
// Functions specific to my plugin
//

// The implementation of the MyInterface function
static void myPluginFunction(void *this, Boolean flag)
{
 SInt16 outItemHit;
 StandardAlert(kAlertNoteAlert,
 flag ? "\pCFPlugin (flag = YES)" : "\pCFPlugin (flag = NO)",
 "\pThis alert is being called from myPluginFunction in CFPlugin.",
 NULL, &outItemHit);
}

//
// Static definition of the MyInterface function table
//

// The MyInterface function table
static MyInterfaceStruct myInterfaceFtbl = {
 NULL, // Required padding for COM
 myQueryInterface, // These three are the required COM functions
 myAddRef,
 myRelease,
 myPluginFunction }; // Interface implementation (specific to my plugin)

//
// Utility functions for allocation and deallocation
//

// Utility function that allocates a new instance
static MyType *_allocMyType(CFUUIDRef factoryID)
{
 // Allocate memory for the new instance
 MyType *newOne = (MyType*)malloc(sizeof(MyType));

 // Point to the function table
 newOne->_myInterface = &myInterfaceFtbl;

 // Retain and keep an open instance refcount for each factory
 newOne->_factoryID = CFRetain(factoryID);
 CFPlugInAddInstanceForFactory(factoryID);

 // This function returns the IUnknown interface so set the refCount to one
 newOne->_refCount = 1;
 return newOne;
}

// Utility function that deallocates the instance
// when the refCount goes to zero
static void _deallocMyType(MyType *this)
{
 CFUUIDRef factoryID = this->_factoryID;
 free(this);

 if (factoryID) {
 CFPlugInRemoveInstanceForFactory(factoryID);
 CFRelease(factoryID);
 }
}

//
// Factory function
//

// Implementation of the factory function for this type
void *myFactoryFunction(CFAllocatorRef allocator, CFUUIDRef typeID)
{
 printf("myFactoryFunction\n");

 // If correct type is being requested,
 // allocate an instance of MyType and return the IUnknown interface
 if (CFEqual(typeID, kMyTypeID)) {
 MyType *result = _allocMyType(kMyFactoryID);
 return result;
 } else {
 // If the requested type is incorrect, return NULL
 return NULL;
 }
}

[Team LiB]

[Team LiB]

Chapter 5—CFPluginCarbonApp

main.c

#include <Carbon/Carbon.h>
#include <CoreFoundation/CoreFoundation.h>
#include <CoreFoundation/CFPlugin.h>
#include <CoreFoundation/CFPlugInCOM.h>
#include "../MyCFPluginInterface.h"
#include "../MyCFCallPlugin.h"

int main(int argc, char* argv[])
{
 IBNibRef nibRef;
 WindowRef window;
 OSStatus err;

 // Create a Nib reference passing the name of the nib file
 // (without the .nib extension)
 // CreateNibReference only searches in the application bundle.
 err = CreateNibReference(CFSTR("main"), &nibRef);
 require_noerr(err, CantGetNibRef);

 // Once the nib reference is created, set the menu bar.
 // "MainMenu" is the name of the menu bar object.
 // This name is set in InterfaceBuilder when the nib is created.
 err = SetMenuBarFromNib(nibRef, CFSTR("MenuBar"));
 require_noerr(err, CantSetMenuBar);

 // Then create a window.
 // "MainWindow" is the name of the window object.
 // This name is set in InterfaceBuilder when the nib is created.
 err = CreateWindowFromNib(nibRef, CFSTR("MainWindow"), &window);
 require_noerr(err, CantCreateWindow);

 // We don't need the nib reference anymore.
 DisposeNibReference(nibRef);

 // The window was created hidden so show it.
 ShowWindow(window);

 // Call the plugin
 CallPlugin();

 // Call the event loop
 RunApplicationEventLoop();

CantCreateWindow:
CantSetMenuBar:
CantGetNibRef:
 return err;
}

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 5—CFPluginCocoaApp

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
}
- (IBAction)doCallPlugin:(id)sender;
@end

AppController.m

#import "AppController.h"
#import "../MyCFPluginInterface.h"
#import "../MyCFCallPlugin.h"

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

- (void)awakeFromNib
{
// CallPlugin();
}

- (IBAction)doCallPlugin:(id)sender
{
 CallPlugin();
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

[Team LiB]

[Team LiB]

Chapter 5—Shared

MyCFCallPlugin.c

#include <Carbon/Carbon.h>
#include <CoreFoundation/CoreFoundation.h>
#include <CoreFoundation/CFPlugin.h>
#include <CoreFoundation/CFPlugInCOM.h>
#include "MyCFPluginInterface.h"
#include "MyCFCallPlugin.h"

void CallPlugin(void)
{

 // Create a URL that points to the plug-in using a hard-coded path
 // (You will need to change this to point to the plugin)
 CFURLRef url = CFURLCreateWithFileSystemPath(NULL,
 CFSTR("/Users/zobkiw/Documents/OSXBook/_SOURCE_/5. Carbon
 Plugins/CFPlugin/build/CFPlugin.plugin"),
 kCFURLPOSIXPathStyle, TRUE);

 // Create a CFPlugin using the URL
 // This step causes the plug-in's types and
 // factories to be registered with the system
 // Note that the plug-in's code is not loaded
 // unless the plug-in is using dynamic registration
 CFPlugInRef plugin = CFPlugInCreate(NULL, url);
 if (plugin) {
 // See if this plug-in implements the "My" type
 CFArrayRef factories = CFPlugInFindFactoriesForPlugInType(kMyTypeID);

 // If there are factories for the requested type,
 // attempt to get the IUnknown interface
 if ((factories != NULL) && (CFArrayGetCount(factories) > 0)) {

 // Get the factory ID for the first location in the array of IDs
 CFUUIDRef factoryID = CFArrayGetValueAtIndex(factories, 0);

 // Use the factory ID to get an IUnknown interface
 // Here the code for the PlugIn is loaded
 // IUnknownVTbl is a struct containing the IUNKNOWN_C_GUTS
 // CFPlugin::MyFactoryFunction is called here
 IUnknownVTbl **iunknown =
 CFPlugInInstanceCreate(NULL, factoryID, kMyTypeID);

 // If this is an IUnknown interface, query for the "My" interface
 if (iunknown) {
 MyInterfaceStruct **interface = NULL;

 // CFPlugin::myQueryInterface is called here
 // CFPlugin::myAddRef is called here
 (*iunknown)->QueryInterface(iunknown,

 CFUUIDGetUUIDBytes(kMyInterfaceID),
 (LPVOID *)(&interface));

 // Done with IUnknown
 // CFPlugin::myRelease is called here
 (*iunknown)->Release(iunknown);

 // If this is a "My" interface, try to call its function
 if (interface) {
 (*interface)->myPluginFunction(interface, TRUE);
 (*interface)->myPluginFunction(interface, FALSE);

 // Done with interface
 // This causes the plug-in's code to be unloaded
 // CFPlugin::myRelease is called here
 (*interface)->Release(interface);
 } else printf("Failed to get interface.\n");
 } else printf("Failed to create instance.\n");
 } else printf("Could not find any factories.\n");

 // Release the CFPlugin memory
 CFRelease(plugin);

 } else printf("Could not create CFPluginRef.\n");

}

MyCFCallPlugin.h

void CallPlugin(void);

MyCFPluginInterface.h

/*
TYPE
DC83B5C8-DD18-11D6-B3D0-0003930EDB36
0xDC, 0x83, 0xB5, 0xC8, 0xDD, 0x18, 0x11, 0xD6,
0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36

FACTORY
DC3F0D89-DD19-11D6-B3D0-0003930EDB36
0xDC, 0x3F, 0x0D, 0x89, 0xDD, 0x19, 0x11, 0xD6,
0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36

INTERFACE
071D881D-DD1A-11D6-B3D0-0003930EDB36
0x07, 0x1D, 0x88, 0x1D, 0xDD, 0x1A, 0x11, 0xD6,
0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36
*/

//#include <Carbon/Carbon.h>
#include <CoreFoundation/CoreFoundation.h>
#include <CoreFoundation/CFPlugin.h>
#include <CoreFoundation/CFPlugInCOM.h>

// Define the UUID for the type
#define kMyTypeID (CFUUIDGetConstantUUIDWithBytes(
NULL, 0xDC, 0x83, 0xB5, 0xC8, 0xDD, 0x18,
0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// The UUID for the factory function
#define kMyFactoryID (CFUUIDGetConstantUUIDWithBytes(
NULL, 0xDC, 0x3F, 0x0D, 0x89, 0xDD, 0x19,
0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// Define the UUID for the interface
// MyType objects must implement MyInterface
#define kMyInterfaceID (CFUUIDGetConstantUUIDWithBytes(
NULL, 0x07, 0x1D, 0x88, 0x1D, 0xDD, 0x1A,
0x11, 0xD6, 0xB3, 0xD0, 0x00, 0x03, 0x93, 0x0E, 0xDB, 0x36))

// The function table for the interface
typedef struct MyInterfaceStruct {
 IUNKNOWN_C_GUTS;
 void (*myPluginFunction)(void *this, Boolean flag);
} MyInterfaceStruct;

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 6—MyCarbonFramework

MyCarbonFramework.c

#include "MyCarbonFramework.h"

int doAddition(int a, int b)
{
 return a+b;
}

MyCarbonFramework.h

#include <Carbon/Carbon.h>

int doAddition(int a, int b);

[Team LiB]

[Team LiB]

Chapter 6—MyCocoaFramework

MyCocoaFramework.h

#import <Cocoa/Cocoa.h>

@interface MyCocoaObject : NSObject
{
}
+ (int)doAddition:(int)a plus:(int)b;
@end

MyCocoaFramework.m

#import "MyCocoaFramework.h"

@implementation MyCocoaObject

+ (int)doAddition:(int)a plus:(int)b
{
 return a+b;
}

@end

[Team LiB]

[Team LiB]

Chapter 6—MyCocoaApp

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSTextField *m_a;
 IBOutlet NSTextField *m_b;
}
-(IBAction)doCarbon:(id)sender;
-(IBAction)doCocoa:(id)sender;
@end

AppController.m

#import "AppController.h"
#import "../MyCocoaFramework/MyCocoaFramework.h"
#import "../MyCarbonFramework/MyCarbonFramework.h"

@implementation AppController

- (void)awakeFromNib
{
 [m_a setIntValue:7];
 [m_b setIntValue:3];
}

-(IBAction)doCarbon:(id)sender
{
 if (NSRunAlertPanel(@"Carbon", @"Call the Carbon framework?",
 @"OK", @"Cancel", @"") == NSAlertDefaultReturn) {
 int result = doAddition([m_a intValue], [m_b intValue]);
 NSRunAlertPanel(@"Carbon Result",
 @"The result of the computation is %d",
 @"OK", @"", @"", result);
 }
}

-(IBAction)doCocoa:(id)sender
{
 if (NSRunAlertPanel(@"Cocoa", @"Call the Cocoa framework?",
 @"OK", @"Cancel", @"") == NSAlertDefaultReturn) {
 int result = [MyCocoaObject doAddition:
 [m_a intValue] plus:[m_b intValue]];
 NSRunAlertPanel(@"Cocoa Result",
 @"The result of the computation is %d",
 @"OK", @"", @"", result);
 }
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

[Team LiB]

[Team LiB]

Chapter 7—MyTextService

main.m

#import <Foundation/Foundation.h>
#import "MyTextService.h"

int main (int argc, const char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Allocate and initialize our service provider
 MyTextService *serviceProvider = [[MyTextService alloc] init];

 // Register the service provider as such
 NSRegisterServicesProvider(serviceProvider, @"MyTextService");

 NS_DURING
 // Configure this application to run as a server
 [[NSRunLoop currentRunLoop] configureAsServer];

 // Run the application, use runUntilDate to make your
 // application auto-quit
 [[NSRunLoop currentRunLoop] run];
 NS_HANDLER
 NSLog(@"%@", localException);
 NS_ENDHANDLER

 // Release the service provider
 [serviceProvider release];

 [pool release];

 exit(0); // insure the process exit status is 0
 return 0; // ...and make main fit the ANSI spec.
}

MyTextService.h

#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>

@interface MyTextService : NSObject {

}
- (void)changeCase:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error;
@end

MyTextService.m

#import "MyTextService.h"

@implementation MyTextService

- (void)changeCase:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error
{
 NSString *pboardString;
 NSString *newString;
 NSArray *types;
 Boolean success;

 // Verify the types currently on the pasteboard
 types = [pboard types];
 if (![types containsObject:NSStringPboardType]) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboard doesn't have a string.");
 return;
 }
 pboardString = [pboard stringForType:NSStringPboardType];
 if (!pboardString) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboard couldn't give string.");
 return;
 }

 // Compare the mode so we do the correct thing
 if ([userData isEqualToString:@"upper"]) {
 newString = [pboardString uppercaseString];
 } else if ([userData isEqualToString:@"lower"]) {
 newString = [pboardString lowercaseString];
 } else if ([userData isEqualToString:@"cap"]) {
 newString = [pboardString capitalizedString];
 }
 if (!newString) {
 *error = NSLocalizedString(@"Error: couldn't edit text.",
 @"pboardString couldn't edit letters.");
 return;
 }
 types = [NSArray arrayWithObject:NSStringPboardType];

 // Load the value of the checkbox from the Preference Pane example
 // Force a synchronization so we get the latest "live" preference
 success = CFPreferencesAppSynchronize
 (CFSTR("com.triplesoft.mypreferencepane"));
 if (success && CFPreferencesGetAppBooleanValue
 (CFSTR("Boolean Value Key"),
 CFSTR("com.triplesoft.mypreferencepane"), NULL)) {
 // Use [NSPasteboard generalPasteboard] instead of pboard
 // to send the results to the clipboard
 [[NSPasteboard generalPasteboard] declareTypes:types owner:nil];
 [[NSPasteboard generalPasteboard] setString:newString
 forType:NSStringPboardType];
 } else {

 // Send the results directly back to the app who
 // requested it if set or if key does not exist
 [pboard declareTypes:types owner:nil];
 [pboard setString:newString forType:NSStringPboardType];
 }

 return;
}

@end

[Team LiB]

[Team LiB]

Chapter 8—MyPreferencePane

MyPreferencePanePref.h

#import <PreferencePanes/PreferencePanes.h>

@interface MyPreferencePanePref : NSPreferencePane
{
 CFStringRef m_appID; // application ID (this application)

 // Tab 1
 IBOutlet NSButton *m_checkBox;
 IBOutlet NSTextField *m_textField;

 // Tab 2
 IBOutlet NSButton *m_pushButton;
}

- (IBAction)checkboxClicked:(id)sender;
- (IBAction)buttonClicked:(id)sender;

@end

MyPreferencePanePref.m

#import "MyPreferencePanePref.h"

@implementation MyPreferencePanePref

// This function is called as we are being initialized
- (id)initWithBundle:(NSBundle *)bundle
{
 // Initialize the location of our preferences
 if ((self = [super initWithBundle:bundle]) != nil) {
 m_appID = CFSTR("com.triplesoft.mypreferencepane");
 }

 return self;
}

// This function is called once the Nib is loaded
// and our windows are ready to be initialized.
- (void)mainViewDidLoad
{

 CFPropertyListRef value;

 // Load the value of the checkbox as a BOOLEAN
 value = CFPreferencesCopyAppValue(CFSTR("Boolean Value Key"), m_appID);

 if (value && CFGetTypeID(value) == CFBooleanGetTypeID()) {
 [m_checkBox setState:CFBooleanGetValue(value)];
 } else {
 [m_checkBox setState:NO]; // Default value of the checkbox
 }
 if (value) CFRelease(value);

 // Load the value of the text field as a STRING
 value = CFPreferencesCopyAppValue(CFSTR("String Value Key"), m_appID);
 if (value && CFGetTypeID(value) == CFStringGetTypeID()) {
 [m_textField setStringValue:(NSString *)value];
 } else {
 [m_textField setStringValue:@""]; // Default value of the text field
 }
 if (value) CFRelease(value);
}

// This action is called when our checkbox is
// clicked, we save the value immediately
- (IBAction)checkboxClicked:(id)sender
{
 CFPreferencesSetAppValue(CFSTR("Boolean Value Key"),
 [sender state] ? kCFBooleanTrue : kCFBooleanFalse, m_appID);

 // Force a synchronization so our preference is "live"
 CFPreferencesAppSynchronize(m_appID);
}

// This function is called when our preference
// pane is being deselected. That is, either
// another preference pane is being selected or
// the System Preferences application is
// shutting down. In this case we will save our text
// field, which is not saved at any other
// time. The checkbox is saved as it is clicked but
// just as easily can be saved here.
- (void)didUnselect
{
 CFNotificationCenterRef center;

 // Save text field
 CFPreferencesSetAppValue(CFSTR("String Value Key"),
 [m_textField stringValue], m_appID);

 // Write out all the changes that have been made for this application
 CFPreferencesAppSynchronize(m_appID);

 // Post a notification that the preferences
 // for this application have changed,
 // any observers will then become the first to know that this has occurred.
 center = CFNotificationCenterGetDistributedCenter();
 CFNotificationCenterPostNotification(center, CFSTR("Preferences Changed"),
 m_appID, NULL, TRUE);
}

// This action is called when the button on the second tab is clicked

- (IBAction)buttonClicked:(id)sender
{
 NSBeep();
}

@end

[Team LiB]

[Team LiB]

Chapter 9—MyStatusItem

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 NSStatusItem *m_item;
 NSMenu *m_menu;
}

- (void)selItemOne:(id)sender;
- (void)selItemTwo:(id)sender;
- (void)selItemIP:(id)sender;
- (void)selItemQuit:(id)sender;

@end

AppController.m

#import "AppController.h"

@implementation AppController

- (id)init
{
 [super init];
 if (self) {
 // Get the system status bar
 NSStatusBar *bar = [NSStatusBar systemStatusBar];

 // #define USE_TEXT_TITLE 1
 // Add an item to the status bar
 #ifdef USE_TEXT_TITLE
 m_item = [[bar statusItemWithLength:
 NSVariableStatusItemLength] retain];
 [m_item setTitle: NSLocalizedString(@"My",@"")];
 #else
 m_item = [[bar statusItemWithLength:NSSquareStatusItemLength] retain];
 [m_item setImage:[NSImage imageNamed:@"x"]];
 #endif

 [m_item setHighlightMode:YES];

 // Create a menu to be added to the item
 m_menu = [[[NSMenu alloc] init] retain];
 [m_menu setAutoenablesItems:YES];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Item One",@"")
 action:@selector(selItemOne:) keyEquivalent:@""]];

 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Item Two",@"")
 action:@selector(selItemTwo:) keyEquivalent:@""]];
 [m_menu addItem: [NSMenuItem separatorItem]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"My IP",@"")
 action:@selector(selItemIP:) keyEquivalent:@""]];
 [m_menu addItem: [NSMenuItem separatorItem]];
 [m_menu addItem: [[NSMenuItem alloc] initWithTitle:
 NSLocalizedString(@"Quit MyStatusItem",@"")
 action:@selector(selItemQuit:) keyEquivalent:@""]];

 // And add the menu to the item
 [m_item setMenu:m_menu];
 }
 return self;
}

- (void)dealloc
{

 [m_item release];
 [m_menu release];
 [super dealloc];
}

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem
{
 NSString *selectorString;
 selectorString = NSStringFromSelector([menuItem action]);

 NSLog(@"validateMenuItem called for %@", selectorString);
 if ([menuItem action] == @selector(selItemOne:))
 return YES;
 if ([menuItem action] == @selector(selItemTwo:))
 return YES;
 if ([menuItem action] == @selector(selItemIP:))
 return YES;
 if ([menuItem action] == @selector(selItemQuit:))
 return YES;

 return NO;
}

- (void)selItemOne:(id)sender
{
 int result;
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Thank you for selecting menu item one.",
 @"OK", @"", @"");
}

- (void)selItemTwo:(id)sender
{
 int result;

 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Thank you for selecting menu item two.",
 @"OK", @"", @"");
}

- (void)selItemIP:(id)sender
{
 int result;
 NSString *theString = [NSString
 localizedStringWithFormat:@"IP Address: %@\nDNS Name: %@",
 [[NSHost currentHost] address], [[NSHost currentHost] name]];
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem", theString, @"OK", @"", @"");
}

- (void)selItemQuit:(id)sender
{
 int result;
 NSBeep();
 result = NSRunAlertPanel(@"MyStatusItem",
 @"Quit the application and remove this menu?", @"Yes", @"No", @"");
 if (result == NSAlertDefaultReturn) {
 [[NSApplication sharedApplication] terminate:self];
 // Respond to applicationWillTerminate for cleanup
 }
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

[Team LiB]

[Team LiB]

Chapter 10—MyScreenEffect

MyScreenSaverView.h

#import <ScreenSaver/ScreenSaver.h>

@interface MyScreenSaverView : ScreenSaverView
{
 int m_version; // Used to tell the version of our
 // preferences (and if they loaded)
 int m_useTransparency;// Use transparency when drawing the stars
 int m_useColor; // Use color when drawing the stars

 IBOutlet id m_configureSheet;
 IBOutlet NSButton *m_useTransparencyCheckbox;
 IBOutlet NSButton *m_useColorCheckbox;
}

- (IBAction) closeSheet_save:(id) sender;
- (IBAction) closeSheet_cancel:(id) sender;

@end

MyScreenSaverView.m

#import "MyScreenSaverView.h"

// Define what defines our bundle, this can be done a variety of ways include
// creating a global NSString
#define kBundleID @"com.triplesoft.myscreensaver"

@implementation MyScreenSaverView

- (id)initWithFrame:(NSRect)frame isPreview:(BOOL)isPreview
{
 // Initialize our super - the ScreenSaverView
 self = [super initWithFrame:frame isPreview:isPreview];

 if (self) { // If all went well...

 // Load the defaults for this screensaver
 ScreenSaverDefaults *defaults = [ScreenSaverDefaults
 defaultsForModuleWithName:kBundleID];

 // Try to load the version information to
 // see if we have any saved settings
 m_version = [defaults floatForKey:@"version"];
 if (!m_version) {
 // No saved setting, define our defaults
 m_version = 1;
 m_useTransparency = YES;

 m_useColor = YES;

 // Now write out the defaults to the defaults database
 [defaults setInteger:m_version forKey:@"version"];
 [defaults setInteger:m_useTransparency forKey:@"useTransparency"];
 [defaults setInteger:m_useColor forKey:@"useColor"];

 // And synchronize
 [defaults synchronize];
 }

 // Now, although this is overkill if version == 0,
 // we load the defaults from the
 // defaults database into our member variables
 m_useTransparency = [defaults integerForKey:@"useTransparency"];
 m_useColor = [defaults integerForKey:@"useColor"];

 // And set the animation time interval
 // (how often animateOneFrame is called)
 [self setAnimationTimeInterval:1/30.0];
 }

 return self;
}

- (void)startAnimation
{
 [super startAnimation];
}

- (void)stopAnimation
{
 [super stopAnimation];
}

- (void)drawRect:(NSRect)rect
{
 // We could draw here, but instead we draw in animateOneFrame
 [super drawRect:rect];
}

- (void)animateOneFrame
{
 NSRect rect;
 NSColor *color;
 int x;
 float r;

 // Calculate the star size
 x = SSRandomIntBetween(1, 3);

 // Make a rectangle at a random location the size of the star
 rect.origin = SSRandomPointForSizeWithinRect
 (NSMakeSize(x, x), [self bounds]);
 rect.size = NSMakeSize(x, x);

 // Calculate a random color (or gray), with or without transparency,
 // depending on the user preference
 r = SSRandomFloatBetween(0.0, 1.0);
 color = [NSColor colorWithCalibratedRed:r // use red
 // use new color or same as red if not using color
 green:m_useColor ? SSRandomFloatBetween(0.0, 1.0) : r
 // use new color or same as red if not using color
 blue:m_useColor ? SSRandomFloatBetween(0.0, 1.0) : r
 // use transparency if the user says so
 alpha:m_useTransparency ?
 SSRandomFloatBetween(0.0, 1.0) : 1.0];
 [color set];

 // Draw the star
 [[NSBezierPath bezierPathWithOvalInRect:rect] fill];

 return;
}

- (BOOL)hasConfigureSheet
{
 return YES;
}

// Display the configuration sheet for the user to choose their settings
- (NSWindow*)configureSheet
{
 // If we have yet to load our configure sheet,
 // load the nib named MyScreenSaver.nib
 if (!m_configureSheet)
 [NSBundle loadNibNamed:@"MyScreenSaver" owner:self];

 // Set the state of our UI components
 [m_useTransparencyCheckbox setState:m_useTransparency];
 [m_useColorCheckbox setState:m_useColor];

 return m_configureSheet;
}

// The user clicked the SAVE button in the configuration sheet
- (IBAction) closeSheet_save:(id) sender
{
 // Get our defaults
 ScreenSaverDefaults *defaults =
 [ScreenSaverDefaults defaultsForModuleWithName:kBundleID];

 // Save the state of our UI components
 m_useTransparency = [m_useTransparencyCheckbox state];
 m_useColor = [m_useColorCheckbox state];

 // Write them to the defaults database
 [defaults setInteger:m_useTransparency forKey:@"useTransparency"];
 [defaults setInteger:m_useColor forKey:@"useColor"];

 // Synchronize
 [defaults synchronize];

 // The sheet has ended, go in peace
 [NSApp endSheet:m_configureSheet];
}

// The user clicked the CANCEL button in the configuration sheet
- (IBAction) closeSheet_cancel:(id) sender
{
 // Nothing to do! The sheet has ended, go in peace
 [NSApp endSheet:m_configureSheet];
}

@end

[Team LiB]

[Team LiB]

Chapter 11—MyColorPicker

ThePicker.h

#import <Cocoa/Cocoa.h>

@interface ThePicker : NSColorPicker <NSColorPickingCustom>
{
 IBOutlet NSWindow *m_window;
 IBOutlet NSBox *m_box;
 IBOutlet NSTextView *m_textView;
 IBOutlet NSColorWell *m_colorWell;

 NSColor *m_color;
}

-(IBAction)doRandomColor:(id)sender;
-(void)logText:(NSString *)theString;

@end

ThePicker.m

#import "ThePicker.h"

#define ThePickerMode 100

@implementation ThePicker

// --- NSColorPickingDefault

- (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)owningColorPanel
{
// [self logText:@"initWithPickerMask\n"];
 if (mask & NSColorPanelRGBModeMask) { // we only support RGB mode
 [super initWithPickerMask:mask colorPanel:owningColorPanel];
 }
 srandom(time(0)); // init random number seed
 return self;
}

- (NSImage *)provideNewButtonImage
{
// [self logText:@"provideNewButtonImage\n"];
 return [[NSImage alloc] initWithContentsOfFile:[[NSBundle bundleForClass:
 [self class]] pathForImageResource:@"ThePicker"]];
}

// --- NSColorPickingCustom

- (void)setColor:(NSColor *)color

{
 [self logText:@"setColor\n"];
 [color retain];
 [m_color release];
 m_color = color;
 [m_colorWell setColor:m_color];
}

- (int)currentMode
{
 [self logText:@"currentMode\n"];
 return ThePickerMode;
}

- (BOOL)supportsMode:(int)mode
{
 [self logText:@"supportsMode\n"];
 return (mode == ThePickerMode);
}

- (NSView *)provideNewView:(BOOL)initialRequest
{
 if (initialRequest) {
 if ([NSBundle loadNibNamed:@"ThePicker" owner:self]) {
 [self logText:@"provideNewView\n"];
 return m_box;
 } else {
 NSBeep();
 NSRunAlertPanel(@"Error", @"Couldn't load nib.", @"OK", @"", @"");
 }
 }
 return m_box;
}

// --- Actions

static __inline__ float SSRandomFloatBetween(float a, float b)
{
 return a + (b - a) * ((float)random() / (float) LONG_MAX);
}

-(IBAction)doRandomColor:(id)sender
{
 NSColor *theColor;
 [self logText:@"doRandomColor\n"];
 theColor = [NSColor colorWithCalibratedRed:SSRandomFloatBetween(0.0, 1.0)
 green:SSRandomFloatBetween(0.0, 1.0)
 blue:SSRandomFloatBetween(0.0, 1.0)
 alpha:SSRandomFloatBetween(0.0, 1.0)];
 [[self colorPanel] setColor:theColor];
}

-(void)logText:(NSString *)theString
{
 // Append the text to the end of the text view and scroll it into view
 NSRange theEnd = NSMakeRange([[m_textView string] length], 0);

 [m_textView replaceCharactersInRange:theEnd withString:theString];
 theEnd.location += [theString length];
 [m_textView scrollRangeToVisible:theEnd];
}

@end

[Team LiB]

[Team LiB]

Chapter 12—MyThread

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSButton *m_startButton;
 IBOutlet NSButton *m_stopButton;
 IBOutlet NSProgressIndicator *m_indicator1;
 IBOutlet NSProgressIndicator *m_indicator2;
 IBOutlet NSProgressIndicator *m_indicator3;

 NSConditionLock *m_conditionLock;
 BOOL m_stop;
}
- (IBAction)start:(id)sender;
- (IBAction)stop:(id)sender;

- (void)thread1:(id)owner;
- (void)thread2:(id)owner;
- (void)thread3:(id)owner;

- (void)cleanupThread:(id)owner;

@end

AppController.m

#import "AppController.h"

#define CONDITION_TASK_ONE 1
#define CONDITION_TASK_TWO 2
#define CONDITION_TASK_THREE 3
#define CONDITION_TASK_CLEANUP 4

@implementation AppController

// This action is called when the Start button is pressed, it begins everything
- (IBAction)start:(id)sender
{
 if (m_conditionLock == nil) {
 // Start out in Condition 1 so things start up right away
 m_conditionLock = [[NSConditionLock alloc]
 initWithCondition:CONDITION_TASK_ONE];

 // Set stop flag
 m_stop = NO;

 // Create all the threads that will eventually run based on Condition

 [NSThread detachNewThreadSelector:@selector(thread1:)
 toTarget:self withObject:self];
 [NSThread detachNewThreadSelector:@selector(thread2:)
 toTarget:self withObject:self];
 [NSThread detachNewThreadSelector:@selector(thread3:)
 toTarget:self withObject:self];

 // Create a final, cleanup thread
 [NSThread detachNewThreadSelector:@selector(cleanupThread:)
 toTarget:self withObject:self];

 [m_startButton setEnabled:NO];
 [m_stopButton setEnabled:YES];
 } else {
 NSRunAlertPanel(@"Error", @"m_conditionLock is not nil",
 @"OK", @"", @"");
 }
}

// This action is called when the Stop button is pressed,
// it sets a flag that the threads check
- (IBAction)stop:(id)sender
{
 [m_stopButton setEnabled:NO];
 m_stop = YES;
}

// This is the first thread to run, it starts as soon as
// the Start button is pressed
- (void)thread1:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator1 setDoubleValue:0];

 // Wait until Condition 1
 [m_conditionLock lockWhenCondition:CONDITION_TASK_ONE];

 // Loop, checking the stop flag
 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator1 setDoubleValue:x];
 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:
 (NSTimeInterval)0.05]];
 }

 // Change to Condition 2
 [m_conditionLock unlockWithCondition:CONDITION_TASK_TWO];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

// This is the second thread to run, it starts as soon as the Start
// button is pressed, then waits until the first thread is finished
- (void)thread2:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator2 setDoubleValue:0];

 // Wait until Condition 2
 [m_conditionLock lockWhenCondition:CONDITION_TASK_TWO];

 // Loop, checking the stop flag
 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator2 setDoubleValue:x];
 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:
 (NSTimeInterval)0.05]];
 }

 // Change to Condition 3
 [m_conditionLock unlockWithCondition:CONDITION_TASK_THREE];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

// This is the third thread to run, it starts as soon as the Start
// button is pressed, then waits until the second thread is finished
- (void)thread3:(id)owner
{
 int x;

 // Threads are responsible to manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Reset the progress indicator
 [m_indicator3 setDoubleValue:0];

 // Wait until Condition 3
 [m_conditionLock lockWhenCondition:CONDITION_TASK_THREE];

 // Loop, checking the stop flag
 for (x=1; x<=100; ++x) {
 if (m_stop) break;
 [m_indicator3 setDoubleValue:x];

 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:
 (NSTimeInterval)0.05]];
 }

 // Change to Condition 4
 [m_conditionLock unlockWithCondition:CONDITION_TASK_CLEANUP];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

// This is the cleanup thread, it starts as soon as the Start
// button is pressed, then waits until the third thread is finished
- (void)cleanupThread:(id)owner
{
 // Threads are responsible for manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // Wait until Condition 4
 [m_conditionLock lockWhenCondition:CONDITION_TASK_CLEANUP];

 // Last stop, clean up
 [m_conditionLock unlock];
 [m_conditionLock release];
 m_conditionLock = nil;

 // Update the UI
 [m_stopButton setEnabled:NO];
 [m_startButton setEnabled:YES];

 // Play done sound if the user didn't stop prematurely
 if (!m_stop)
 [[NSSound soundNamed:@"done"] play];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

- (void)windowWillClose:(NSNotification *)aNotification
{
 [self stop:self];
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

[Team LiB]

[Team LiB]

Chapter 13—MyTerminal

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
}
@end

AppController.m

#import "AppController.h"

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

MyTerminalController.h

#import <Cocoa/Cocoa.h>

@interface MyTerminalController : NSObject
{
 IBOutlet NSTextView *m_textView;
 IBOutlet NSButton *m_pingButton;
 IBOutlet NSProgressIndicator *m_pingIndicator;

 IBOutlet NSTextField *m_textField;
 IBOutlet NSButton *m_uptimeButton;

 NSTask *m_pingTask;
 NSPipe *m_pingPipe;
 BOOL m_pingIsRunning;
}
- (IBAction)ping:(id)sender;
- (IBAction)uptime:(id)sender;

- (void)displayPingData:(NSFileHandle*) theFileHandle;

@end

MyTerminalController.m

#import "MyTerminalController.h"

@implementation MyTerminalController

- (id)init
{
 [super init];
 if (self) {
 m_pingIsRunning = FALSE;
 m_pingPipe = nil;
 m_pingTask = nil;
 }
 return self;
}

- (void)dealloc
{
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }
 [super dealloc];
}

// Called to initialize our fields if we need to
- (void)awakeFromNib
{
 [m_textView setString:@"Welcome to our pingy little world!"];
}

/*
 ping is called when the Start Ping button is pressed.
 It is also called to stop a ping in progress.

 Essentially, this function sets things up for a separate
 thread that handles actually reading the data.
 When the users presses the Stop Ping button, the function
 sets a flag that triggers the thread to
 deallocate the task and stop the pinging.
*/
- (IBAction)ping:(id)sender
{
 if (m_pingIsRunning) {
 // If we are currently running and this is called,
 // we want to stop, so set a flag...
 m_pingIsRunning = FALSE;
 // ...and disable the button so it can't be clicked
 // again until we have terminated the ping
 [m_pingButton setEnabled:NO];
 } else {
 NSFileHandle *theFileHandle;

 // Otherwise we are currently not pinging so we want to start...
 // allocate a task, a pipe and the file handle
 m_pingTask = [[NSTask alloc] init];
 m_pingPipe = [[NSPipe alloc] init];
 theFileHandle = [m_pingPipe fileHandleForReading];

 if (m_pingTask && m_pingPipe && theFileHandle) {
 // If we get this far we are pretty safe so we set the global flag
 // that we are pinging...
 m_pingIsRunning = TRUE;
 // ...and begin some animation for the user to see activity
 // on the screen
 [m_pingIndicator startAnimation:self];

 // Tell the task what command (program) to execute
 [m_pingTask setLaunchPath:@"/sbin/ping"];

 // Pass some arguments to the program,
 // in this case the domain name to ping 5 times
 [m_pingTask setArguments:[NSArray arrayWithObjects:@"-c 5",
 @"triplesoft.com", nil]];

 // Set m_pingPipe as the standard output so we can see the results
 [m_pingTask setStandardOutput:m_pingPipe];

 // Launch the task
 [m_pingTask launch];

 // Clear the text we placed in the text view in awakeFromNib
 [m_textView setString:@""];

 // Create the thread that will handle reading data from
 // ping and pass theFileHandle from thePipe
 [NSThread detachNewThreadSelector:@selector(displayPingData:)
 toTarget:self withObject:theFileHandle];

 // Change the title of the button to Stop Ping to reflect
 // the change in state

 [m_pingButton setTitle:@"Stop Ping"];
 } else {
 // If there was an error, tell the user
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }
 NSRunAlertPanel(@"MyTerminal",
 @"An error occurred trying to allocate the task, pipe or file
 handle.",
 @"OK", @"", @"");
 }
 }
}

/*
 This is the thread that handles reading the data from the ping program
*/
- (void)displayPingData:(NSFileHandle*) theFileHandle
 {
 // Threads are responsible for manage their own autorelease pools
 NSAutoreleasePool *thePool = [[NSAutoreleasePool alloc] init];

 // While the flag is set (the user has yet to tell us to stop pinging)
 while (m_pingIsRunning) {
 // Read in any available data from the file handle
 // passed into the thread
 NSData *theData = [theFileHandle availableData];

 // If there is data...
 if ([theData length]) {
 // Extract a string from the data returned in
 // the pipe's file handle
 NSString *theString = [[NSString alloc]
 initWithData:theData encoding:NSASCIIStringEncoding];

 // Append the text to the end of the text view
 // and scroll it into view
 NSRange theEnd = NSMakeRange([[m_textView string] length], 0);
 [m_textView replaceCharactersInRange:theEnd withString:theString];
 theEnd.location += [theString length];
 [m_textView scrollRangeToVisible:theEnd];

 // Release the string
 [theString release];
 }

 // Sleep this thread for 100ms so as to allow
 // other threads time (ie: UI)
 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:
 (NSTimeInterval)0.1]];

 // Check if the task has completed and the data is gone
 if (([m_pingTask isRunning] == NO) && ([theData length] == 0))
 m_pingIsRunning = NO;
 }

 // Once the flag has been set to FALSE, we need to clean things up...

 // Terminate the ping task and wait for it to exit
 [m_pingTask terminate];
 [m_pingTask waitUntilExit];

 // Check the termination status of ping, 15 or 0 means it exited successfully
 // 15 = user cancelled, 0 = normal termination
 if (([m_pingTask terminationStatus] != 15) &&
 ([m_pingTask terminationStatus] != 0))
 NSRunAlertPanel(@"MyTerminal", @"An error occurred trying to quit the
 task. (%d)",
 @"OK", @"", @"", [m_pingTask terminationStatus]);

 // Release the pipe and task
 if (m_pingPipe) { [m_pingPipe release]; m_pingPipe = nil; }
 if (m_pingTask) { [m_pingTask release]; m_pingTask = nil; }

 // Update the UI
 [m_pingIndicator stopAnimation:self];
 [m_pingButton setEnabled:YES];
 [m_pingButton setTitle:@"Start Ping"];

 // Release the autoreleasepool
 [thePool release];

 // Exit this thread
 [NSThread exit];
}

/*
 uptime is a simple, fast command. It only
 returns one line of text so we quickly
 are able to execute it and read the results
 from the pipe. No need for fancy threads
 or multiple reads here.
*/
- (IBAction)uptime:(id)sender
{
 // Allocate the task to execute and the pipe to send the output to
 NSTask *theTask = [[NSTask alloc] init];
 NSPipe *thePipe = [[NSPipe alloc] init];

 // Get the file handle from the pipe (assumes thePipe was allocated!)
 NSFileHandle *theFileHandle = [thePipe fileHandleForReading];

 // Tell the task what command (program) to execute
 [theTask setLaunchPath:@"/usr/bin/uptime"];

 // Set thePipe as the standard output so we can see the results
 [theTask setStandardOutput:thePipe];

 // Launch the task
 [theTask launch];

 // Wait until the task exits, we know uptime exits immediately
 [theTask waitUntilExit];

 // Verify that the program completed without error
 if ([theTask terminationStatus] == 0) {
 NSString *theString;

 // Extract a string from the data returned in the pipe's file handle
 theString = [[NSString alloc]
 initWithData:[theFileHandle readDataToEndOfFile]
 encoding:NSASCIIStringEncoding];

 // Set the text field to the value of the string
 [m_textField setStringValue:theString];

 // Release what we create, theFileHandle is automatically
 // released by thePipe
 [theString release];
 } else {
 // Set the text field to the value of the error
 [m_textField setIntValue:[theTask terminationStatus]];
 }

 [thePipe release];
 [theTask release];
}

@end

[Team LiB]

[Team LiB]

Chapter 14—MyXMLRPC

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSPopUpButton *m_product;
 IBOutlet NSPopUpButton *m_color;
 IBOutlet NSTextField *m_price;
 IBOutlet NSTextField *m_stock;
 IBOutlet NSTextField *m_result;
}
- (IBAction)getProductInformation:(id)sender;
@end

AppController.m

#import "AppController.h"
#import <CoreServices/CoreServices.h>

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// This is the XML RPC method that does all the work
- (IBAction)getProductInformation:(id)sender
{
 WSMethodInvocationRef rpcCall;
 NSURL *rpcURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;
 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //

 // 1. Define the location of the RPC service and method
 //

 // Create the URL to the RPC service
 rpcURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/xmlrpc/product_server.php"];

 // Assign the method name to call on the RPC service
 methodName = @"example.getProductInfo";

 // Create a method invocation
 // First parameter is the URL to the RPC service
 // Second parameter is the name of the RPC method to call
 // Third parameter is a constant to specify the XML-RPC protocol
 rpcCall = WSMethodInvocationCreate((CFURLRef)rpcURL,
 (CFStringRef)methodName, kWSXMLRPCProtocol);

 //
 // 2. Set up the parameters to be passed to the RPC method
 //

 // Get the users choices
 selectedProduct = [m_product titleOfSelectedItem];
 selectedColor = [m_color titleOfSelectedItem];

 // Add the users choices to the dictionary to be passed as parameters
 params = [NSMutableDictionary dictionaryWithCapacity:2];
 [params setObject:selectedProduct forKey:selectedProduct];
 [params setObject:selectedColor forKey:selectedColor];

 // Create the array to specify the order of the parameter values
 paramsOrder = [NSArray arrayWithObjects:selectedProduct,
 selectedColor, nil];

 // Set the method invocation parameters
 // First parameter is the method invocation created above
 // Second parameter is a dictionary containing the parameters themselves
 // Third parameter is an array specifying the order of the parameters
 WSMethodInvocationSetParameters(rpcCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(rpcCall);

 // If the results are a fault, display an error to the user with the
 // fault code and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString], @"OK", @"", @"");
 } else {
 // Otherwise, pull the results from the dictionary as an array

 NSArray *array = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];

 // Display the entire array result from the server
 [m_result setStringValue: [array description]];

 // Display the specific fields we are interested in (price, stock)
 [m_price setStringValue: [array objectAtIndex: 2]];
 [m_stock setStringValue: [array objectAtIndex: 3]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

product_client.php

<html>
<head><title>PHP XML RPC Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

<?php
include("xmlrpc.inc");

// Show the results of the previous query if the
// parameter there are results to show
if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the message object using the RPC name, parameter and its type

 $message = new xmlrpcmsg("example.getProductInfo",
 array(new xmlrpcval($HTTP_POST_VARS["product_name"], "string"),
 new xmlrpcval($HTTP_POST_VARS["product_color"], "string")));

 // Display the message detail
 print "<pre>Message Detail:
" .
 htmlentities($message->serialize()) . "</pre>";

 // Create the client object which points to the server and PHP script to
 // contact
 $client = new xmlrpc_client("/xmlrpc/product_server.php",
 "www.triplesoft.com", 80);

 // Enable debug mode so we see all there is to see coming and going
// $client->setDebug(1);
// print "<pre>From Server:
</pre>";

 // Send the message to the server for processing
 $response = $client->send($message);

 // If no response was returned there was a fatal error
 // (no network connection, no server, etc.)
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$response->faultCode()) {

 // Extract the values from the response
 $result_array = $response->value();
 if ($result_array->arraysize() == 4) {
 $product_name = $result_array->arraymem(0);
 $product_color = $result_array->arraymem(1);
 $product_price = $result_array->arraymem(2);
 $product_stock = $result_array->arraymem(3);

 print "
";
 print "
Product: " . $product_name->scalarval() . "";
 print "
Color: " . $product_color->scalarval() . "";
 print "
Price: $" . $product_price->scalarval() . "";
 print "
In-Stock: " . $product_stock->scalarval() . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array.
 Should be 4 but there are "
 . $result_array->arraysize() . ".";
 print "
";
 }

 // Display the response detail
 print "<pre>Response Detail:
" .
 htmlentities($response->serialize()) . "</pre>";

 } else {

 print "
";
 print "
Fault Code: " . $response->faultCode();
 print "
Fault String: " . $response->faultString();
 print "
";
 }

 print "<hr>";

}
?>

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag"
 value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag"
 value="Garment Bag">Garment Bag</option>
 <option label="Grocery Bag"
 value="Grocery Bag">Grocery Bag</option>
 <option label="Hand Bag"
 value="Hand Bag">Hand Bag</option>
 <option label="Old Bag"
 value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">
 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

product_server.php

<?php
include("xmlrpc.inc");
include("xmlrpcs.inc");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",
 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Signature of this RPC
$products_signature = array(array($xmlrpcArray,
 // Returns a product price and quantity
 $xmlrpcString, // Accepts a product name
 $xmlrpcString)); // Accepts a color

// Documentation string of this RPC
$products_docstring = "When passed valid product info, more info is returned.";

// RPC Main
function get_product_info($input)
{
 global $xmlrpcerruser, $products;
 $err = "";

 // Get the parameters
 $param0 = $input->getParam(0);
 $param1 = $input->getParam(1);

 // Verify value and type
 if ((isset($param0) && ($param0->scalartyp() == "string")) &&
 (isset($param1) && ($param1->scalartyp() == "string"))) {

 // Extract parameter values
 $product_name = $param0->scalarval();
 $product_color = $param1->scalarval();

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;
 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like
 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error
 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new xmlrpcresp(0, $xmlrpcerruser, $err);
 } else {

 // Create an array and fill it with the data to return
 $result_array = new xmlrpcval(array(), "array");
 $result_array->addScalar($product_name, "string");
 $result_array->addScalar($product_color, "string");
 $result_array->addScalar($product_price, "string");
 $result_array->addScalar($product_stock, "string");
 return new xmlrpcresp($result_array);
 }

}

// Create the server
$server = new xmlrpc_server(
 array("example.getProductInfo" =>
 array("function" => "get_product_info",
 "signature" => $products_signature,
 "docstring" => $products_docstring),
)
);
?>

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

Chapter 15—MySOAP

AppController.h

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{
 IBOutlet NSPopUpButton *m_product;
 IBOutlet NSPopUpButton *m_color;
 IBOutlet NSTextField *m_price;
 IBOutlet NSTextField *m_stock;
 IBOutlet NSTextField *m_result;
}
- (IBAction)getProductInformation:(id)sender;
@end

AppController.m

#import "AppController.h"
#import <CoreServices/CoreServices.h>

@implementation AppController

- (id)init
{
 [super init];
 if (self) {

 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

// This is the SOAP method that does all the work
- (IBAction)getProductInformation:(id)sender
{
 WSMethodInvocationRef soapCall;
 NSURL *soapURL;
 NSString *methodName;
 NSMutableDictionary *params;
 NSArray *paramsOrder;
 NSDictionary *result;
 NSString *selectedProduct;
 NSString *selectedColor;

 //

 // 1. Define the location of the SOAP service and method
 //

 // Create the URL to the SOAP service
 soapURL = [NSURL URLWithString:
 @"http://www.triplesoft.com/soap/product_server.php"];

 // Assign the method name to call on the SOAP service
 methodName = @"get_product_info";

 // Create a method invocation
 // First parameter is the URL to the SOAP service
 // Second parameter is the name of the SOAP method to call
 // Third parameter is a constant to specify the SOAP2001 protocol
 soapCall = WSMethodInvocationCreate((CFURLRef)soapURL,
 (CFStringRef)methodName, kWSSOAP2001Protocol);

 //
 // 2. Set up the parameters to be passed to the SOAP method
 //

 // Get the users choices
 selectedProduct = [m_product titleOfSelectedItem];
 selectedColor = [m_color titleOfSelectedItem];

 // Add the users choices to the dictionary to be passed as parameters
 params = [NSMutableDictionary dictionaryWithCapacity:2];
 [params setObject:selectedProduct forKey:@"product_name"];
 [params setObject:selectedColor forKey:@"product_color"];

 // Create the array to specify the order of the parameter values
 paramsOrder = [NSArray arrayWithObjects:@"product_name",
 @"product_color", nil];

 // Set the method invocation parameters
 // First parameter is the method invocation created above
 // Second parameter is a dictionary containing the parameters themselves
 // Third parameter is an array specifying the order of the parameters,
 // sometimes optional for SOAP
 WSMethodInvocationSetParameters(soapCall, (CFDictionaryRef)params,
 (CFArrayRef)paramsOrder);

 //
 // 3. Make the call and parse the results!
 //

 // Invoke the method which returns a dictionary of results
 result = (NSDictionary*)WSMethodInvocationInvoke(soapCall);

 // If the results are a fault, display an
 // error to the user with the fault code
 // and descriptive string
 if (WSMethodResultIsFault((CFDictionaryRef)result)) {
 NSRunAlertPanel([NSString stringWithFormat:@"Error %@",
 [result objectForKey: (NSString*)kWSFaultCode]],
 [result objectForKey: (NSString*)kWSFaultString], @"OK", @"", @"");

 } else {
 // Otherwise, pull the results from the dictionary, held as another
 // dictionary named "soapVal"
 NSDictionary *dictionary = [result objectForKey:
 (NSString*)kWSMethodInvocationResult];
 NSDictionary *soapVal = [dictionary objectForKey:@"soapVal"];

 // Display the entire dictionary result from the server
 [m_result setStringValue: [dictionary description]];

 // Display the specific fields we are interested in (price, stock)
 [m_price setStringValue: [soapVal objectForKey:@"product_price"]];
 [m_stock setStringValue: [soapVal objectForKey:@"product_stock"]];
 }

 // Release those items that need to be released
 [params release];
 params = nil;
 [paramsOrder release];
 paramsOrder = nil;
 [result release];
 result = nil;
}

// Causes the application to quit when the one and only window is closed
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender
{
 return TRUE;
}

@end

main.m

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

product_client.php

<html>
<head><title>PHP SOAP Example</title></head>
<body>
<basefont size="2" face="Verdana,Arial">

<?php
include("nusoap.php");

// Show the results of the previous query if
// the parameter there are results to show

if (($HTTP_POST_VARS["product_name"] != "") &&
 ($HTTP_POST_VARS["product_color"] != "")) {

 // Create the parameters array
 $params = array("product_name" => $HTTP_POST_VARS["product_name"],
 "product_color" => $HTTP_POST_VARS["product_color"]);

 // Create a new soap client endpoint specifying the server location
 $client = new
 soapclient("http://www.triplesoft.com/soap/product_server.php");

 // Enable debugging
 $client->debug_flag = true;

 // Call the function, passing the parameter array
 $response = $client->call("get_product_info", $params);

 // Echo request detail
 echo "<pre>Request Detail:
<xmp>".
 $client->request."</xmp></pre>";

 // If no response was returned there was a fatal error
 // (no network connection, no server, etc.)
 // You might prefer to use the $client->getError() method
 // for more detailed information.
 if (!$response) { die("Send failed."); }

 // If no error, display the results
 if (!$client->fault) {

 // Extract the values from the response
 if (count($response) == 4) {

 foreach ($response as $key => $element) {
 $$key = $element;
 }

 print "
";
 print "
Product: " . $product_name . "";
 print "
Color: " . $product_color . "";
 print "
Price: $" . $product_price . "";
 print "
In-Stock: " . $product_stock . "";
 print "
";

 } else {

 print "
";
 print "
Incorrect number of items in array.
 Should be 4 but there are "
 . count($response) . ".";
 print "
";
 }

 // Echo response detail
 echo "<pre>Response Detail:
<xmp>".
 $client->response."</xmp></pre>";

 } else {
 print "
";
 print "
Fault Code: " . $client->faultcode;
 print "
Fault Actor: " . $client->faultactor;
 print "
Fault String: " . $client->faultstring;
 print "
Fault Detail: " . $client->faultdetail;
 // serialized?
 print "
";
 }

 // Echo debug log at the bottom since it can be large
 echo "<pre>Debug log:
".$client->debug_str."</pre>";

 print "<hr>";

}
?>

 <form action="<?php echo "$PHP_SELF";?>" method="POST">
 <select name="product_name">
 <option label="Book Bag"
 value="Book Bag" selected>Book Bag</option>
 <option label="Garment Bag"
 value="Garment Bag">Garment Bag</option>
 <option label="Grocery Bag"
 value="Grocery Bag">Grocery Bag</option>
 <option label="Hand Bag" value="Hand Bag">Hand Bag</option>
 <option label="Old Bag" value="Old Bag">Old Bag</option>
 </select>
 in
 <select name="product_color">
 <option label="Black" value="Black" selected>Black</option>
 <option label="Blue" value="Blue">Blue</option>
 <option label="Brown" value="Brown">Brown</option>
 <option label="Green" value="Green">Green</option>
 <option label="Red" value="Red">Red</option>
 <option label="White" value="White">White</option>
 </select>
 <button type="submit" name="Get Product Information"
 value="Get Product Information">Get Product Information</button>
 </form>

</body>
</html>

product_server.php

<?php
include("nusoap.php");

// Array of products and prices, in real-life you might use a SQL database
$products = array (
 "Grocery Bag" => "9.00",
 "Book Bag" => "18.00",

 "Hand Bag" => "32.00",
 "Garment Bag" => "48.00",
 "Old Bag" => "0.31"
);

// Create a new SOAP server instance
$server = new soap_server;

// Enable debugging, to be echoed via client
$server->debug_flag = true;

// Register the get_product_info function for publication
$server->register("get_product_info");

// Begin the HTTP listener service and exit
$server->service($HTTP_RAW_POST_DATA);

// Our published service
function get_product_info($product_name, $product_color)
{
 global $products;
 $err = "";

 // Verify values
 if (isset($product_name) && isset($product_color)) {

 // Attempt to find the product and price
 foreach ($products as $key => $element) {
 if ($key == $product_name) {
 $product_price = $element;
 }
 }

 // For this demo, all Browns are out of stock and all other colors
 // produce a random in-stock quantity - probably wouldn't work like
 // this in real-life, you would probably use a SQL database instead
 if ($product_color == "Brown") {
 $product_stock = 0;
 } else {
 $product_stock = rand(1, 100);
 }

 // If not found, report error
 if (!isset($product_price)) {
 $err = "No product named '" . $product_name . "' found.";
 }

 } else {
 $err = "Two string parameters (product name and color) are required.";
 }

 // If an error was generated, return it, otherwise return the proper data
 if ($err) {
 return new soap_fault("Client", "product_server.php", $err, $err);
 } else {
 // Create an array and fill it with the data to return

 $result_array = array("product_name" => $product_name,
 "product_color" => $product_color,
 "product_price" => $product_price,
 "product_stock" => $product_stock);

 return $result_array;
 }

}

exit();

?>

[Team LiB]

[Team LiB]

Appendix B. Online Resources

What follows is a list of excellent online resources to help you learn more about Mac OS X programming
and related topics.

● http://www.triplesoft.com/— The Web site for the book you are holding in your hands. This site
contains source code projects, updates, and more!

● http://developer.apple.com/— The Apple Developer Connection contains online documentation,
sample source code, and development tool updates to help you get the most out of your Mac OS X
development efforts.

● http://www.cocoadev.com/— This interactive Web site for Cocoa developers hosted by Steven
Frank contains a lot of great information, discussion, and sample code with explanations.

● http://cocoa.mamasam.com/— The CocoaDev and MacOSXDev mailing list archives, which are
searchable on the Web. If you are having a problem, odds are that someone has already solved it.

● http://cocoadevcentral.com/— Many useful tutorials for Cocoa newbies.
● http://www.omnigroup.com/— Developer resources, debugging utilities, and frameworks to

make your development easier.
● http://www.stepwise.com/— Numerous articles and information for developers.
● http://www.macosxhints.com/— An excellent collection of (mostly) command-line–based hints

for Mac OS X. Advanced users are encouraged to explore via the Terminal.
● http://homepage2.nifty.com/hoshi-takanori/cocoa-browser/— Cocoa Browser is a great

program by Hoshi Takanori, Max Horn, and Simon Liu that allows simple and fast browsing of the
Cocoa API reference documents. If you are a Cocoa programmer, you need this—it's free and is
released under the GNU General Public License.

[Team LiB]

http://www.triplesoft.com/default.htm
http://developer.apple.com/default.htm
http://www.cocoadev.com/default.htm
http://cocoa.mamasam.com/default.htm
http://cocoadevcentral.com/default.htm
http://www.omnigroup.com/default.htm
http://www.stepwise.com/default.htm
http://www.macosxhints.com/default.htm
http://homepage2.nifty.com/hoshi-takanori/cocoa-browser/default.htm
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_31031533.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

? conditional expression (C programming language) 2nd

2D graphics

 rendering (Quartz) 2nd

3D graphics

 OpenGL features

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

About box

 scrolling

AddressBook.framework

Adobe Photoshop Web site 2nd

After Dark screensaver program

agvtool utility (command line)

alert panels

 displaying (code snippet) 2nd

alpha channels 2nd

Apache

 Mac OS X preloaded software

APIs

 Carbon

 legacy software support

APIs (Carbon)

 function of

AppController.h code (CFPluginCocoaApp program) 2nd

AppController.h code (MyCocoaApp program)

AppController.h code (MyNSBP_App program)

AppController.h code (MySOAP program)

AppController.h code (MyStatusItem program)

AppController.h code (MyTerminal program)

AppController.h code (MyThread program) 2nd

AppController.h code (MyXMLRPC program)

AppController.h code (plistPlugin program)

AppController.h code (RadarWatcher program)

AppController.m code (CFPluginCocoaApp program)

AppController.m code (MyCocoaApp program) 2nd

AppController.m code (MyNSBP_App program) 2nd

AppController.m code (MySOAP program) 2nd 3rd

AppController.m code (MyStatusItem program) 2nd 3rd 4th

AppController.m code (MyTerminal program) 2nd

AppController.m code (MyThread program) 2nd 3rd 4th 5th

AppController.m code (MyXMLRPC program) 2nd 3rd

AppController.m code (plistPlugin program) 2nd

AppController.m code (RadarWatcher program) 2nd

AppKit.framework

Apple Developer Connection Web site

Apple Developer Web site

 Aqua icon design resources

 localization resources

 Objective-C resources

Apple Developers Web site

 Objective-C resources

Apple Help Indexing Tool

Apple Human Interface Guidelines

 application development 2nd

Apple Web site

 framework resources

AppleScript

 executing via URLs

AppleScriptKit.framework

Application Kit (AppKit) framework

 Cocoa development classes

applications

 Aqua interface guidelines 2nd

 Carbon

 construction example (Project Builder)

 creating (Project Builder)

 legacy support for pre-Mac OS X systems 2nd

 nib-based (Listing 5.1) 2nd

 Cocoa

 calling Carbon functionality (code snippet)

 creating

 localizing 2nd

 dock images

 updating 2nd

 Dock menu

 updating 2nd

 document-based 2nd 3rd

 RadarWatcherX project (Cocoa) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th

38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th 48th 49th

 execution analysis

 Sampler utility

 frameworks

 Carbon, calling through 2nd

 Cocoa, calling through 2nd

 icons

 creating 2nd 3rd

 installers

 creating (PackageMaker)

 Java

 creating

 memory allocation

 analyzing (ObjectAlloc utility)

 memory analysis

 MallocDebug utility

 plug-ins

 dumb

 NSBundle image editing plug-in application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 plistPlugin search engine application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 providing capabilities

 RadarWatcherX project

 customizing options

 services

 examples

 folder location 2nd

 function of

 pasteboard reading 2nd

 pasteboard registration 2nd

 pasteboard validation 2nd

 pasteboard writing 2nd

 support directories

 locating 2nd 3rd

 thread behavior

 viewing (Thread Viewer)

 threads

 function of 2nd

 overhead costs

 parallel 2nd

 priorities 2nd

 serial 2nd

 versus timers

 user settings

 defaults command-line utility

ApplicationServices.framework

Aqua interface

 appearance 2nd 3rd

 Apple Human Interface Guidelines 2nd

 example

AT&T

 UNIX version

AudioUnit framework

 header file (Listing 6.1) 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Berkeley Software Distribution UNIX, [See BSD UNIX]

BSD UNIX

 (Berkeley Software Distribution UNIX)

 as basis for Mac OS X

 as basis for Mac OS X system

 terminal applications

bundles (frameworks)

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_index.html#idd1e1701

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

C

 ? conditional expression 2nd

calling

 Carbon plug-ins 2nd 3rd

 via Cocoa applications 2nd 3rd

Carbon

 API software support for pre-Mac OS X systems

 APIs

 function of

 applications

 calling plug-ins 2nd 3rd

 construction example (Project Builder)

 creating (Project Builder)

 calling from Cocoa applications (code snippet)

 nib-based application example (Listing 5.1) 2nd

 plug-ins

 calling via Carbon applications 2nd 3rd

 calling via Cocoa applications 2nd 3rd

Carbon.framework

CDBundleGetVersionNumber function

 framework version checker

CFPlugin program

 source code

 main.c 2nd 3rd 4th 5th

CFPlugin project

 constructing (Project Builder) 2nd 3rd 4th

 dynamic registration (Project Builder)

 Info.plist entries (Project Builder) 2nd

 results overview 2nd 3rd

 source code

 allocMyType in main.c (Listing 5.6)

 deallocMyType in main.c (Listing 5.11)

 IUKNOWN_C_GUTS in CFPluginCOM.h (Listing 5.3)

 myAddRef in main.c (Listing 5.9)

 myFactoryFunction in main.c (Listing 5.5)

 myInterfaceFtbl in main.c (Listing 5.7)

 myPlugInFunction in main.c (Listing 5.12)

 myQueryInterface in main.c (Listing 5.8) 2nd

 myRelease in main.c (Listing 5.10)

 MyType Definition in main.c (Listing 5.4)

 Plug-in Interface in MyCFPlugInterface.h (Listing 5.2) 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 static registration (Project Builder)

 Target settings (Project Builder)

CFPluginCarbonApp program

 source code

 main.c 2nd

CFPluginCarbonApp project

 source code

 CallPlugin in MyCFCallPlugin.c (Listing 5.13) 2nd 3rd 4th 5th

 source code (Project Builder) 2nd 3rd 4th 5th

CFPluginCocoaApp program

 source code

 AppController.h 2nd

 AppController.m

 main.m

CFPluginCocoaApp project

 source code

 doCallPlugin in AppController.c (Listing 5.14)

 source code (Project Builder)

checking

 modifier key status 2nd

 network status

 SCNetworkCheckReachabilityByName() function 2nd

classes

 CURLHandle (Cocoa)

 downaloading

 OmniAppKit framework (third-party) 2nd

 OmniFoundation framework (third-party) 2nd

Classic

 (Mac OS 9) 2nd

 seamless integration with Mac OS X 2nd

 software

 running within Mac OS X 2nd

clients

 product information project (XML-RPC)

 Cocoa implementation

 Cocoa nib file

 Cocoa settings

 PHP implementation 2nd 3rd 4th 5th 6th 7th 8th 9th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 product information system project (SOAP)

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Cocoa

 application development features

 Java

 Objective-C

 applications

 calling Carbon functionality (code snippet)

 calling plug-ins 2nd 3rd

 localizing (NSLocalizedString macro) 2nd

 based on NEXTSTEP development environment

 class kits

 Application Kit (AppKit) framework

 Foundation framework

 CURLHandle class

 downloading

 document-based applications 2nd 3rd

 RadarWatcherX 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th

40th 41st 42nd 43rd 44th 45th 46th 47th 48th 49th

 plug-ins

 dumb

 function of

 NSBundle image editing plug-in 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 plistPlugin search engine application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 product information project (XML-RPC)

 client functions 2nd

 nib file

 project settings

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 product information system project (SOAP)

 client functions 2nd 3rd

 nib file

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 Target settings

 Quick functions

 using within applications

Cocoa Browser Web site

Cocoa.framework

CocoaDev.com Web site

CocoaDevCentral.com Web site

Code Fragment Manager

 versioning features

code listings

 MyClass.h-an Objective-C Header File (2.1)

 MyClass.m-an Objective-C Source File (2.2) 2nd

code snippets

 application's About box

 scrolling

 calling Carbon from Cocoa applications

 checking for modifier keys 2nd

 checking network status 2nd

 displaying alert panel 2nd

 displaying usernames

 executing AppleScripts via URL

 locating application support directories 2nd 3rd

 locating user home directory

 opening a URL

 QuickDraw

 drawing within Cocoa application

 retrieving file icons

 updating application dock image 2nd

 updating application Dock menu 2nd

color pickers

 folder location

 function of

 MyColorPicker project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th

 nib file (Interface Builder) 2nd

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 Target settings (Project Builder) 2nd

 MyScreenSaver project

 customizing options 2nd

 RGB/CMYK color code

Color Wheel color picker

 folder location

 function of

 RGB/CMYK color mode

colors

 alpha channels 2nd

command line applications

 default Mac OS X installations

command line utilities [See also utilities]

 agvtool

 CpMac

 DeRez

 fs usage

 GetFileInfo

 heap

 leaks

 malloc history

 MergePef

 MvMac

 ps

 ResMerger

 Rez

 RezWack

 sample

 sc usage

 sdp

 SetFile

 SplitForks

 top

 UnRezWack

 vmmap

 WSMakeStubs

Concurrent Versions System (CVS)

 documentation

 viewing

 file control functions

conditional expressions

 ? (C programming language) 2nd

copying

 files

 via wildcards (terminal applications)

CoreFoundation.framework

CoreMIDI.framework

CoreServices.framework

CpMac utility (command line)

curl command-line application

CURLHandle class (Cocoa)

 downloading

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Darwin

 FreeBSD version 4.4

 Projects Directory

 source code

 downloading

 X11 implementation

debugging

 applications

 gdb (GNU Debugger) 2nd

 drawings

 Quartz Debug utility

defaults command-line utility

 application user settings

DeRez utility (command line)

desktop

 windows management (Quartz) 2nd

detecting

 USB devices

 USB Prober

devices

 USB

 detecting (USB Prober)

DHCP protocol

 Mac OS X support

DiscRecording.framework

displaying

 alert panels

 NSBeginAlertSheet() function 2nd

 usernames

 NSUserName() function

DNS protocol

 Mac OS X support

Dock

 application images

 updating 2nd

 application menus

 updating 2nd

 preference pane 2nd

document-based applications 2nd 3rd

 RadarWatcherX (Cocoa) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th

39th 40th 41st 42nd 43rd 44th 45th 46th 47th 48th 49th

downloading

 Objective-C instruction manual

drawings

 debugging (Quartz Debug utility)

dumb plug-ins

dynamic libraries

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

executing

 AppleScripts via URL

 shell scripts

 terminal applications

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

file systems

 Mac OS X support

 FTP

 ISO 9660

 Macintosh HFS/HFS+

 MS-DOS

 NFS

 SMB

 UFS

 WebDAV

FileMerge utility

 file version control functions

files

 copying via wildcards (terminal applications)

 differing versions

 comparing (FileMerge)

 find command search options 2nd

 icons

 retrieving

find command

 examples 2nd

Flat File DataBase (FFDB) PHP Library

Foundation framework

 Cocoa development classes

Foundation.framework

frameworks

 AddressBook

 AppKit

 Apple Web site resources

 AppleScriptKit

 ApplicationServices

 AudioUnit

 header file (Listing 6.1) 2nd

 bundles

 Carbon

 Carbon applications

 calling through 2nd

 classes

 hiding

 Cocoa

 Cocoa applications

 calling through 2nd

 CoreFoundation

 CoreMIDI

 CoreServices

 directory structure 2nd

 DiscRecording

 Foundation

 function of 2nd

 functions

 hiding

 InterfaceBuilder

 IOBluetooth

 IOKit

 Message

 MyCarbonFramework project

 constructing (Project Builder) 2nd

 MyCocoaApp

 calling example

 package contents

 MyCocoaApp project

 constructing (Project Builder) 2nd 3rd 4th 5th

 MyCocoaFramework project

 constructing (Project Builder) 2nd

 packaging options

 application-specific

 machine-specific

 user-specific

 placement options

 application-specific

 machine-specific

 user-specific

 PreferencePanes

 ScreenSaver

 similarities to libraries 2nd

 third-party

 OmniAppKit 2nd

 OmniBase

 OmniFoundation 2nd

 OmniHTML

 OmniNetworking

 OWF (Omni Web Framework)

 version-checking

 CFBundleGetVersionNumber function

 WebCore

FreeBSD (Berkeley Software Distribution)

 as basis for Darwin

fs usage utility (command line)

FTP file system

 Mac OS X support

functions

 BeginAlertSheet() 2nd

 CFBundleGetVersionNumber

 NSHomeDirectory()

 NSSearchPathforDirectoriesInDomain() 2nd 3rd

 NSUserName()

 SCNetworkCheckReachabilityByName() 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

gdb (GNU Debugger)

 documentation

 viewing 2nd

 executing 2nd

GetFileInfo utility (command line)

Google plist.plug-in

 plistPlugin search engine application 2nd

Google.plist code (plistPlugin program)

graphics

 OpenGL.org Web site resources

 Quartz

 rendering library 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

heap utility (command line)

Help Viewer

 Indexing Tool

HTTP protocol

 Mac OS X support

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

icns Browser

 window appearance

Icon Factory Web site

IconComposer

 window appearance

icons

 Aqua design resources

 creating 2nd 3rd

 creating (IconComposer utility)

 creation applications

 Adobe Photoshop 2nd

 AquaTint

 Icon Factory

 IconComposer

 files

 retrieving

 icns Browser utility

ImageWindowController.h code (MyNSBP_App program)

ImageWindowController.m code (MyNSBP_App program) 2nd 3rd 4th

installers

 applications

 creating (PackageMaker)

Interface Builder

 Cocoa application development

 development functions

 MyColorPicker project

 nib file 2nd

 MyNSBP_App project

 nib files 2nd

 MyNSBP_RemoveColor project

 nib files 2nd

 MyScreenSaver project

 nib file

 MyStatusItem project

 nib file

 MyTerminal project

 nib file

 RadarWatcherX project

 nib files 2nd 3rd 4th 5th 6th

InterfaceBuilder.framework

interfaces

 Aqua

 appearance 2nd 3rd

 Interface Builder

 overview

 pixel views (Pixie utility)

IOBluetooth.framework

IOKit.framework

IORegistryExplorer tool

 I/O driver maintenance

ISO 9660 file system

 Mac OS X support

iTunes

 Open GL animation example

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

J2SE (Java 2 Standard Edition)

Java

 Cocoa application development

 Project Builder templates

 pure applications

 creating

Java 2 Standard Edition (J2SE)

Java Web Start application

JavaBrowser

 window appearance

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

launching

 gdb (GNU Debugger) 2nd

LDAP protocol

 Mac OS X support

leaks utility (command line)

libraries

 dynamic

 frameworks

 directory structure 2nd

 similarities to frameworks 2nd

 static

Linux

 UNIX version

localizing

 Cocoa applications

 NSLocalizedString macro 2nd

 online resources

 Apple Developer Web site

locating

 application support directories 2nd 3rd

 user home directory

 NSHomeDirectory() function

logons

 remote

 via terminal applications

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Mac OS 9

 (Classic environment) 2nd

 seamless integration with Mac OS X 2nd

Mac OS X Hints Web site

Macintosh HFS/HFS+ file system

 Mac OS X support

main.c code (CFPlugin program) 2nd 3rd 4th 5th

main.c code (CFPluginCarbonApp program) 2nd

main.m code (CFPluginCocoaApp program)

main.m code (MyCocoaApp program)

main.m code (MyNSBP_App program)

main.m code (MySOAP program)

main.m code (MyStatusItem program)

main.m code (MyTerminal program)

main.m code (MyTextService program) 2nd

main.m code (MyThread program)

main.m code (MyXMLRPC program)

main.m code (plistPlugin program)

main.m code (RadarWatcher program)

malloc history utility (command line)

MallocDebug utility

 memory analysis

man command

 terminal applications

memory

 allocation analysis

 ObjectAlloc utility

 analyzing (MallocDebug utility)

MergePef utility (command line)

merging

 files

 differing versions (FileMerge)

Message.framework

modifier keys

 status

 checking 2nd

MS-DOS file system

 Mac OS X support

multimedia

 QuickTime features 2nd

MvMac utility (command line)

MyCarbon Framework project

 source code

 MyCarbonFramework.c (Listing 6.3)

 MyCarbonFramework.h (Listing 6.2)

MyCarbonFramework program

 source code

 MyCarbonFramework.c

 MyCarbonFramework.h

MyCarbonFramework project

 constructing (Project Builder) 2nd

 source code (Project Builder) 2nd

MyCarbonFramework.c code (MyCarbonFramework program)

MyCarbonFramework.h code (MyCarbonFramework program)

MyCFCallPlugin.c code (Shared program) 2nd

MyCFPluginInterface.h code (Shared program) 2nd

MyCocoaApp

 frameworks

 calling example

 package contents

MyCocoaApp program

 source code

 AppController.h

 AppController.m 2nd

 main.m

MyCocoaApp project

 constructing (Project Builder) 2nd 3rd 4th 5th

 source code

 AppController Implementation in AppController.m (Listing 6.7) 2nd

 AppController Interface in AppController.h (Listing 6.6) 2nd

 source code (Project Builder) 2nd 3rd 4th 5th

MyCocoaFramework program

 source code

 MyCocoaFramework.h

 MyCocoaFramework.m

MyCocoaFramework project

 constructing (Project Builder) 2nd

 source code

 MyCarbonFramework.h (Listing 6.4)

 MyCarbonFramework.m (Listing 6.5)

 source code (Project Builder) 2nd

MyCocoaFramework.h code (MyCocoaFramework program)

MyCocoaFramework.m code (MyCocoaFramework program)

MyColorPicker program

 source code

 ThePicker.h

 ThePicker.m 2nd 3rd

MyColorPicker project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

 customizing options 2nd

 nib file (Interface Builder) 2nd

 results overview 2nd

 source code

 ThePicker Interface in ThePicker.h (Listing 11.1) 2nd

 ThePicker currentMode Method in ThePicker.m (Listing 11.5)

 ThePicker doRandomColorAction Method in ThePicker.m (Listing 11.8) 2nd

 ThePicker initWithPickerMaskcolorPanel Method in ThePicker.m (Listing 11.2) 2nd

 ThePicker logText Method in ThePicker.m (Listing 11.9)

 ThePicker provideNewButtonImage Method in ThePicker.m (Listing 11.3)

 ThePicker provideNewView Method in ThePicker.m (Listing 11.7)

 ThePicker setColor Method in ThePicker.m (Listing 11.4) 2nd

 ThePicker supportsMode Method in ThePicker.m (Listing 11.6)

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 Target settings (Project Builder) 2nd

MyDocument.h code (RadarWatcher program) 2nd 3rd

MyDocument.m code (RadarWatcher program) 2nd 3rd 4th 5th 6th 7th 8th 9th

MyNSBP Desaturate.h code (MyNSBP_Desaturate program)

MyNSBP Desaturate.m code (MyNSBP_Desaturate program) 2nd

MyNSBP Protocol.h code (MyNSBP_App program)

MyNSBP RemoveColor project

 source code

 MyNSBP_Protocol Defninition (Listing 4.8)

 MyNSBP_RemoveColor +initializePluginClass/+terminatePluginClass (Listing 4.9) 2nd

 MyNSBP_RemoveColor +instantiatePlugin (Listing 4.10)

 MyNSBP_RemoveColor -askUserWhatColorToRemove (Listing 4.12) 2nd

 MyNSBP_RemoveColor -doPlugin (Listing 4.11) 2nd

 MyNSBP_RemoveColor Interface Defninition (Listing 4.7)

 SettingsController Implementation (Listing 4.13)

MyNSBP RemoveColor.h code (MyNSBP_RemoveColor program)

MyNSBP RemoveColor.m code (MyNSBP_RemoveColor program) 2nd 3rd 4th

MyNSBP_App program

 source code

 AppController.h

 AppController.m 2nd

 ImageWindowController.h

 ImageWindowController.m 2nd 3rd 4th

 main.m

 MyNSBP Protocol.h

MyNSBP_App project

 constructing (Project Builder) 2nd

 nib files (Interface Builder) 2nd

MyNSBP_Desaturate program

 source code

 MyNSBP Desaturate.h

 MyNSBP Desaturate.m 2nd

MyNSBP_RemoveColor program

 source code

 MyNSBP RemoveColor.h

 MyNSBP RemoveColor.m 2nd 3rd 4th

 SettingsController.h

 SettingsController.m 2nd

MyNSBP_RemoveColor project

 building settings (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Info.plist entries (Project Builder)

 nib files (Interface Builder) 2nd

 protocol adoption (Project Builder) 2nd

MyPreferencePane program

 source code

 MyPreferencePanePref.h

 MyPreferencePanePref.m 2nd 3rd

MyPreferencePane project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 customizing options

 results overview 2nd 3rd 4th

 source code

 MyPreferencePanePref Interface in MyPreferencePanePref.h (Listing 8.1) 2nd

 MyPreferencePanePref buttonClicked Implementation in MyPreferencePanePref.m (Listing 8.6)

 MyPreferencePanePref checkboxClicked Implementation in MyPreferencePanePref.m (Listing 8.5)

 MyPreferencePanePref didUnselect Implementation in MyPreferencePanePref.m (Listing 8.4) 2nd

 MyPreferencePanePref initWithBundle Implementation in MyPreferencePanePref.m (Listing 8.2) 2nd

 MyPreferencePanePref mainViewDidLoad Implementation in MyPreferencePanePref.m (Listing 8.3) 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Target settings (Project Builder) 2nd 3rd 4th

MyPreferencePanePref.h code (MyPreferencePane program)

MyPreferencePanePref.m code (MyPreferencePane program) 2nd 3rd

MyScreenEffect program

 source code

 MyScreenSaverView.h

 MyScreenSaverView.m 2nd 3rd 4th

MyScreenSaver project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

19th 20th

 customizing options 2nd

 nib file (Interface Builder)

 results overview 2nd

 source code

 MyScreenSaverView -animateOneFrame Method in MyScreenSaverView.m (Listing 10.3) 2nd 3rd

 MyScreenSaverView -ConfigureSheet Method in MyScreenSaverView.m (Listing 10.5)

 MyScreenSaverView -hasConfigureSheet Method in MyScreenSaverView.m (Listing 10.4) 2nd

 MyScreenSaverView Interface in MyScreenSaverView.h (Listing 10.1) 2nd

 MyScreenSaverView closeSheetcancel Method in MyScreenSaverView.m (Listing 10.7) 2nd

 MyScreenSaverView closeSheetsave Method in MyScreenSaverView.m (Listing 10.6) 2nd

 MyScreenSaverView initWithFrameisPreview Method in MyScreenSaverView.m (Listing 10.2) 2nd 3rd 4th 5th

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 Target settings (Project Builder)

MyScreenSaverView.h code (MyScreenEffect program)

MyScreenSaverView.m code (MyScreenEffect program) 2nd 3rd 4th

MySOAP program

 source code

 AppController.h

 AppController.m 2nd 3rd

 main.m

 product client.php 2nd 3rd

 product server.php 2nd

MyStatusItem program

 source code

 AppController.h

 AppController.m 2nd 3rd 4th

 main.m

MyStatusItem project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 customizing options

 nib file (Interface Builder)

 results overview 2nd

 source code

 AppController Interface in AppController.h (Listing 9.1) 2nd

 AppController dealloc Method in AppController.m (Listing 9.3)

 AppController init Method in AppController.m (Listing 9.2) 2nd 3rd

 AppController selItemIP Method in AppController.m (Listing 9.6) 2nd

 AppController selItemOne and -sellItemTwo Method in AppController.m (Listing 9.5)

 AppController selItemQuit Method in AppController.m (Listing 9.7) 2nd

 AppController validateMenuItem Method in AppController.m (Listing 9.4)

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Target settings (Project Builder) 2nd

MyTerminal program

 source code

 AppController.h

 AppController.m 2nd

 main.m

 MyTerminalController.h 2nd

 MyTerminalController.m 2nd 3rd 4th 5th 6th

MyTerminal project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

 nib file (Interface Builder)

 results overview 2nd

 source code

 MyTerminalController Interface in MyTerminalController.h (Listing 13.1) 2nd

 MyTerminalController dealloc Method in MyTerminalController.m (Listing 13.3)

 MyTerminalController displayPingData Method in MyTerminalController.m (Listing 13.6) 2nd 3rd 4th

 MyTerminalController init Method in MyTerminalController.m (Listing 13.2)

 MyTerminalController ping Method in MyTerminalController.m (Listing 13.5) 2nd 3rd 4th

 MyTerminalController uptime Method in MyTerminalController.m (Listing 13.4) 2nd 3rd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 Target settings (Project Builder)

MyTerminalController.h code (MyTerminal program) 2nd

MyTerminalController.m code (MyTerminal program) 2nd 3rd 4th 5th 6th

MyTextService program

 source code

 main.m 2nd

 MyTextService.h

 MyTextService.m 2nd 3rd

MyTextService project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 customizing options 2nd

 results overview 2nd

 source code

 MyTextService Interface in MyTextService.h (Listing 7.2)

 MyTextService main (Listing 7.1) 2nd 3rd

 MyTextService changeCase userData error in MyTextService (Listing 7.3) 2nd 3rd 4th

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 Target settings (Project Builder) 2nd 3rd 4th 5th

MyTextService.h code (MyTextService program)

MyTextService.m code (MyTextService program) 2nd 3rd

MyThread program

 source code

 AppController.h 2nd

 AppController.m 2nd 3rd 4th 5th

 main.m

MyThread project

 constructing (Project Buildler) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd

 customizing options 2nd 3rd

 nib file (Project Buildler)

 results overview 2nd

 source code

 AppController Interface in AppController.h (Listing 12.1) 2nd

 AppController cleanupThread Method in AppController.m (Listing 12.8) 2nd

 AppController start Method in AppController.m (Listing 12.2) 2nd 3rd

 AppController stop Method in AppController.m (Listing 12.3)

 AppController thread1 Method in AppController.m (Listing 12.5) 2nd 3rd 4th

 AppController thread2 Method in AppController.m (Listing 12.6) 2nd 3rd

 AppController thread3 Method in AppController.m (Listing 12.7) 2nd

 AppController windowWillClose Method in AppController.m (Listing 12.9)

 Condition Definitions in AppController.m (Listing 12.4)

 source code (Project Buildler) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th

 Target settings (Project Buildler)

MyXMLRPC program

 source code

 AppController.h

 AppController.m 2nd 3rd

 main.m

 product client.php 2nd 3rd

 product server.php 2nd 3rd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

native utilities

 default Mac OS X installations

network protocols

 Mac OS X support

Network Utility

 function of

networks

 status checking 2nd

NEXTSTEP

 as basis for Cocoa development environment

NFS file system

 Mac OS X support

nib file

 MyScreenSaver project (Interface Builder)

nib files

 Carbon applications

 Listing 5.1 example 2nd

NSBeginAlertSheet() function 2nd

NSBundle image editing plug-in application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 source code

 ImageWindowController's awakeFromNib (Listing 4.3) 2nd 3rd 4th 5th

 ImageWindowController's doFilter (Listing 4.5) 2nd

 ImageWindowController's doResetImage (Listing 4.4)

 ImageWindowController's windowWillClose (Listing 4.6) 2nd

NSHomeDirectory() function

 home directory, using

NSLocalizedString macro

 Cocoa application localization 2nd

NSMenuExtras class

 versus NSStatusItems class 2nd 3rd

NSPreferencePane class

 methods

 -assignMainView

 -buttonClicked

 -checkboxClicked

 -didSelect

 -didUnselect 2nd

 -firstKeyView

 -initialKeyView

 -initWithBundle

 -lastKeyView

 -mainViewDidLoad

 -replyToShouldUnselect

 -shouldUnselect

 -willSelect

 -willUnselect

NSSearchPathForDirectoriesInDomains() function 2nd 3rd

NSStatusItem class

 methods

 -dealloc

 -init 2nd 3rd

 -selItemIP

 -selItemOne

 -selItemQuit

 -validateMenuItem

NSStatusItems class

 versus NSMenuExtras class 2nd 3rd

NSThread class

 methods

 +setThreadPriority 2nd

NSUserName() function

 username display

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ObjectAlloc utility

 memory allocation analysis

Objective-C

 Apple Developer Web site resources

 classes

 Cocoa application development

 instruction manual

 downloading

 MyClass.h-an Objective-C Header File (Listing 2.1)

 MyClass.m-an Objective-C Source File (Listing 2.2) 2nd

 symbol collisions 2nd

Omni Group

 third-party frameworks

 OmniAppKit 2nd

 OmniBase

 OmniFoundation 2nd

 OmniHTML

 OmniNetworking

 OWF (Omni Web Framework)

 Web site

Omni Web Framework (OWF)

OmniAppKit framework (third-party)

 classes 2nd

OmniBase framework (third-party)

OmniFoundation framework (third-party)

 classes 2nd

OmniGroup.com Web site

OmniHTML framework (third-party)

 classes

OmniNetworking framework (third-party)

online resources

 Apple Developer Connection

 Cocoa Browser

 CocoaDev.com

 CocoaDevCentral.com

 Mac OS X Hints

 OmniGroup.com

 StepWise.com

 TripleSoft.com

OpenGL

 3D graphics library

 Apple iTunes animation example

 drawing features

OpenGL Info utility

OpenGL Profiler

OpenGL Shader Builder

OpenGL.org Web site

 graphics resources

opening

 URLs

 code snippet example

Overture.plist code (plistPlugin program)

OWF

 (Omni Web Framework)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

PackageMaker

parallel threads 2nd

PEFViewer

 (Preferred Executable Format Viewer)

Perl

 Mac OS X preloaded software

PHP

 Flat File DataBase (FFDB)

 Mac OS X preloaded software

 product information project (XML-RPC)

 client functions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 server functions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 product information system project (SOAP)

 client functions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 server functions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 SourceForge.net Web site

 database resources

 Flat File DataBase (FFDB) PHP Library

Pixie utility

 pixel viewing functions

plistPlugin program

 source code

 AppController.h

 AppController.m 2nd

 Google.plist

 main.m

 Overture.plist

 SearchWindowController.h

 SearchWindowController.m 2nd 3rd

 Yahoo.plist

plistPlugin search engine application

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 Google.plist plug-in 2nd

 package contents

 source code

 -awakeFromNib (Listing 4.1) 2nd

 -doSearch (Listing 4.2) 2nd

 source code (Project Builder) 2nd 3rd 4th

 Target settings (Project Builder) 2nd

plists (property lists)

plug-ins

 applications

 providing capabilities

 Carbon

 calling via applications 2nd 3rd

 calling via Cocoa applications 2nd 3rd

 CFPlugin project

 constructing (Project Builder) 2nd 3rd 4th

 dynamic registration (Project Builder)

 Info.plist entries (Project Builder) 2nd

 results overview 2nd 3rd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 static registration (Project Builder)

 Target settings (Project Builder)

 CFPluginCarbonApp project

 source code (Project Builder) 2nd 3rd 4th 5th

 CFPluginCocoaApp project

 source code (Project Builder)

 dumb

 function of

 MyNSBP_App project

 constructing (Project Builder) 2nd

 nib files (Interface Builder) 2nd

 MyNSBP_RemoveColor project

 build settings (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Info.plist entries (Project Builder)

 nib files (Interface Builder) 2nd

 protocol adoption (Project Builder) 2nd

 NSBundle image editing application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 plistPlugin search engine application

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 Google.plist plug-in 2nd

 package contents

 source code (Project Builder) 2nd 3rd 4th

 Target settings (Project Builder) 2nd

 third-party development

PPP protocol

 Mac OS X support

preference panes

 Dock 2nd

 examples

 folder location

 function of 2nd

 MyPreferencePane project

 customizing options

 results overview 2nd 3rd

PreferenceController.h code (RadarWatcher program)

PreferenceController.m code (RadarWatcher program) 2nd

PreferencePanes.framework

Process Viewer (UNIX)

processes

 threads

 function of 2nd

 overhead costs

 parallel 2nd

 priorities 2nd

 serial 2nd

 versis timers

 viewing execution of (sample command-line tool)

product client.php code (MySOAP program) 2nd 3rd

product client.php code (MyXMLRPC program) 2nd 3rd

product information project (SOAP)

 Cocoa client 2nd 3rd 4th 5th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

product information project (XML-RPC)

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 results overview 2nd 3rd

 source code

 -getProductInformation in AppController.h (Listing 14.12) 2nd 3rd

 -getProductInformation Part 1 in AppController.m (Listing 14.13) 2nd

 -getProductInformation Part 2 in AppController.m (Listing 14.14) 2nd

 -getProductInformation Part 3 in AppController.m (Listing 14.14) 2nd

 AppController Interface in AppController.h (Listing 14.11)

 Creating the Server in product server.php (Listing 14.6)

 In the Beginning of product client.php (Listing 14.8)

 In the End of product client.php (Listing 14.10) 2nd

 In the Middle of product client.php (Listing 14.9) 2nd 3rd 4th

 Initial Steps in product server.php (Listing 14.2) 2nd

 product client.php (Listing 14.7) 2nd 3rd

 product server.php (Listing 14.1) 2nd 3rd

 The get product info Method in product server.php (Listing 14.3) 2nd

 The XML-Formatted Data Sent from product server.php (Listing 14.5)

 The XML-Formatted Data Sent to product server.php (Listing 14.4) 2nd

product information system project (SOAP)

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 results overview 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

21st 22nd 23rd 24th 25th 26th 27th 28th 29th

 source code

 -getProductInformation in AppController.m (Listing 15.12) 2nd 3rd

 -getProductInformation Part 1 in AppController.m (Listing 15.13) 2nd

 -getProductInformation Part 2 in AppController.m (Listing 15.14) 2nd

 -getProductInformation Part 3 in AppController.m (Listing 15.15) 2nd 3rd

 AppController Interface in AppController.h (Listing 15.11)

 In the Beginning of product client.php (Listing 15.8)

 In the End of product client.php (Listing 15.10) 2nd

 In the Middle of product client.php (Listing 15.9) 2nd 3rd 4th

 Initial Steps in product server.php (Listing 15.2) 2nd

 product client.php (Listing 15.7) 2nd 3rd 4th 5th 6th

 product server.php (Listing 15.1) 2nd 3rd

 The get product info Method in product server.php (Listing 15.3) 2nd

 The XML-Formatted Data Returned from product server.php (Listing 15.5) 2nd

 The XML-Formatted Data Sent to product server.php (Listing 15.4) 2nd

product server.php code (MySOAP program) 2nd

product server.php code (MyXMLRPC program) 2nd 3rd

programming languages

 Java

 Project Builder templates

 Objective-C

 classes

 MyClass.h-an Objective-C Header File (Listing 2.1)

 MyClass.m-an Objective-C Source File (Listing 2.2) 2nd

Project Builder

 Carbon application example

 constructing

 CFPlugin project

 constructing 2nd 3rd 4th

 dynamic registration

 Info.plist entries 2nd

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 static registration

 Target settings

 CFPluginCarbonApp project

 source code 2nd 3rd 4th 5th

 CFPluginCocoaApp project

 source code

 Cocoa application development

 Concurrent Versions System (CVSD)

 debugging utilities

 gdb 2nd 3rd 4th

 development functions

 frameworks

 AddressBook

 AppKit

 AppleScriptKit

 ApplicationServices

 Carbon

 Cocoa

 CoreFoundation

 CoreMIDI

 CoreServices

 DiscRecording

 Foundation

 InterfaceBuilder

 IOBluetooth

 IOKit

 Message

 PreferencePanes

 ScreenSaver

 WebCore

 MyCarbonFramework project

 constructing 2nd

 source code 2nd 3rd

 MyCocoaApp project

 constructing 2nd 3rd 4th 5th

 source code 2nd 3rd 4th 5th

 MyCocoaFramework project

 constructing 2nd

 source code 2nd

 MyColorPicker project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 Target settings 2nd

 MyNSBP_App project

 constructing 2nd

 MyNSBP_RemoveColor project

 building settings 2nd 3rd 4th 5th 6th 7th 8th

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Info.plist entries

 protocol adoption 2nd

 MyPreferencePane project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Target settings 2nd 3rd 4th

 MyScreenSaver project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 Target settings

 MyStatusItem project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Target settings 2nd

 MyTerminal project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 Target settings

 MyTextService project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 source code 2nd 3rd 4th 5th 6th 7th 8th

 Target settings 2nd 3rd 4th 5th

 MyThread

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

21st 22nd

 nib file

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

 Target settings

 plistPlugin search engine application

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 RadarWatcherX project

 constructing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th

41st 42nd 43rd 44th

 copyrights/credits 2nd

 icons 2nd 3rd

 Info.plist entries 2nd

 source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th

projects

 CFPlugin

 constructing (Project Builder) 2nd 3rd 4th

 dynamic registration (Project Builder)

 Info.plist entries (Project Builder) 2nd

 results overview 2nd 3rd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 static registration (Project Builder)

 Target settings (Project Builder)

 CFPluginCarbonApp

 source code (Project Builder) 2nd 3rd 4th 5th

 CFPluginCocoaApp

 source code (Project Builder)

 MyCarbonFramework

 constructing (Project Builder) 2nd

 source code (Project Builder) 2nd 3rd

 MyCocoaApp

 constructing (Project Builder) 2nd 3rd 4th 5th

 source code (Project Builder) 2nd 3rd 4th 5th

 MyCocoaFramework

 constructing (Project Builder) 2nd

 source code (Project Builder) 2nd

 MyColorPicker

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th

 nib file (Interface Builder) 2nd

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 Target settings (Project Builder) 2nd

 MyNSBP_App

 constructing (Project Builder) 2nd

 nib files (Interface Builder) 2nd

 MyNSBP_RemoveColor

 build settings (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Info.plist entries (Project Builder)

 nib files (Interface Builder) 2nd

 protocol adoption (Project Builder) 2nd

 MyPreferencePane

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 results overview 2nd 3rd 4th

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Target settings (Project Builder) 2nd 3rd 4th

 MyScreenSaver

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 Target settings (Project Builder)

 MyStatusItem

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Target settings (Project Builder) 2nd

 MyTerminal

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 Target settings (Project Builder)

 MyTextService

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 Target settings (Project Builder) 2nd 3rd 4th 5th

 MyThread

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd

 nib file (Project Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th

 Target settings (Project Builder)

 RadarWatcherX (Cocoa)

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th

38th 39th 40th 41st 42nd 43rd 44th

 copyrights/credits (Project Builder) 2nd

 icons (Project Builder) 2nd 3rd

 Info.plist entries (Project Builder) 2nd

 nib files (Interface Builder) 2nd 3rd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th

 SOAP product information system project

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 results overview 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th

 XML-RPC product information project

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 results overview 2nd 3rd

Projects Directory (Darwin)

Property List Editor

 XML text files

 viewing

ps utility (command line)

Pyro screensaver program

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Quartz

 desktop management 2nd

 drawing features 2nd

 graphics rendering library 2nd

 window management 2nd

Quartz Debug utility

QuickDraw

 drawing within Cocoa applications

QuickTime

 multimedia features 2nd

 multiple platform support 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RadarView.h code (RadarWatcher program) 2nd

RadarView.m code (RadarWatcher program) 2nd 3rd 4th 5th

RadarWatcher program

 source code

 AppController.h

 AppController.m 2nd

 main.m

 MyDocument.h 2nd 3rd

 MyDocument.m 2nd 3rd 4th 5th 6th 7th 8th 9th

 PreferenceController.h

 PreferenceController.m 2nd

 RadarView.h 2nd

 RadarView.m 2nd 3rd 4th 5th

RadarWatcherX project

 customizing options

 document data

 reading/writing (NSMutableDictionary) 2nd 3rd 4th 5th 6th 7th 8th

 storing (NSMutableDictionary) 2nd

 source code

 AppController +initialize (Listing 3.15) 2nd

 AppController applicationShoudlOpenUntitledFile (Listing 3.16) 2nd

 AppController showPreferencePanel (Listing 3.17)

 application preferences 2nd 3rd 4th 5th 6th 7th 8th 9th

 Creating a Timer (Listing 3.8)

 Main.m (Listing 3.1) 2nd 3rd

 MyDocument RadarwatcherX .rdrw Data File (Listing 3.7)

 MyDocument init (Listing 3.3)

 MyDocument RadarwatcherX .rdrw Data File (Listing 3.7)

 MyDocument refreshRadar method Image Checking (Listing 3.11) 2nd

 MyDocument refreshRadar method Image Loaded (Listing 3.10) 2nd

 MyDocument refreshRadar method Image Loading (Listing 3.9)

 MyDocument updateUI (Listing 3.6) 2nd

 MyDocument writeFromFileofType (Listing 3.5)

 MyDocument writeToFileofType (Listing 3.4) 2nd 3rd

 NSMutableDictionary Keys (Listing 3.2)

 PreferenceController.h (Listing 3.14)

 PreferenceController.m (Listing 3.18) 2nd

 RadarView -isColorInImageInRect (Listing 3.13) 2nd 3rd

 RadarView color checker 2nd 3rd

 RadarView instance variable 2nd

 RadarView Mouse Overrides (Listing 3.12) 2nd

 RadarView watch box 2nd

RadarWatcherX project (Cocoa)

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th

39th 40th 41st 42nd 43rd 44th

 copyrights/credits (Project Builder) 2nd

 document window 2nd

 icons (Project Builder) 2nd 3rd

 Info.plist entries (Project Builder) 2nd

 nib files (Interface Builder) 2nd 3rd 4th 5th 6th

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th

reading

 pasteboard types

 services 2nd

registering

 pasteboard types

 services 2nd

remote logons

 terminal applications

ResMerger utility (command line)

resources

 online

 Apple Developer Connection Web site

 Cocoa Browser Web site

 CocoaDev.com

 CocoaDevCentral.com

 Mac OS X Hints Web iste

 OmniGroup.com

 StepWise.com

 TripleSoft.com

Rez utility (command line)

RezWack utility (command line)

rm command

 terminal applications

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

sample command-line tool

 report elements

 viewing process execution

sample utility (command line)

Sampler utility

 application execution analysis

sc usage utility (command line)

SCNetworkCheckReachabilityByName() function 2nd

screen effects

 MyScreenSaver project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th

 customizing options 2nd

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 Target settings (Project Builder)

 OpenGL environment resources

 screensaver terminology

 selection options 2nd 3rd

Screen Effects pane

 (System Preferences)

 Activation tab

 Hot Corners tab

 Screen Effects tab

ScreenSaver.framework

screensavers [See also screen effects]

 After Dark

 Pyro

scrolling

 application About box

sdp utility (command line)

searching

 files

 find command options 2nd

SearchWindowController.h code (plistPlugin program)

SearchWindowController.m code (plistPlugin program) 2nd 3rd

sendmail

 Mac OS X preloaded software

serial threads 2nd

servers

 product information project (XML-RPC)

 PHP implementation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 UNIX

 stability of

services

 (System Services)

 examples

 folder location 2nd

 function of

 MyPreferencePane project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 results overview

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Target settings (Project Builder) 2nd 3rd 4th

 MyTextService project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 customizing options 2nd

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th

 Target settings (Project Builder) 2nd 3rd 4th 5th

 pasteboard types

 reading 2nd

 registering 2nd

 validating 2nd

 writing 2nd

 source code

 Reading Pasteboard Types (Listing 7.7) 2nd

 Registering Pasteboard Types (Listing 7.4) 2nd

 Validating Pasteboard Types (Listing 7.5) 2nd

 Writing Pasteboard Types (Listing 7.6) 2nd

SetFile utility (command line)

SettingsController.h code (MyNSBP_RemoveColor program)

SettingsController.m code (MyNSBP_RemoveColor program) 2nd

Shared program

 source code

 MyCFCallPlugin.c 2nd

 MyCFPluginInterface.h 2nd

shell scripts

 executing (terminal applications)

Simple Object Access Protocol, [See SOAP]

SMB file system

 Mac OS X support

snippets (code)

 calling Carbon from Cocoa applications

 checking for modifier keys 2nd

 checking network status 2nd

 displaying alert panel 2nd

 displaying usernames

 executing AppleScripts via URL

 file icons

 retrieving

 locating application support directories 2nd 3rd

 locating user home directory

 opening a URL

 QuickDraw

 drawing within Cocoa application

 scrolling application's About box

 updating application dock image 2nd

 updating application Dock menu 2nd

SOAP

 (Simple Object Access Protocol)

 features 2nd 3rd

 product information system project

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 results overview 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th

 W3C Web site specification resources

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_index.html#idd1e35047

SOAP protocol

 Mac OS X support

software

 Carbon

 legacy support for pre-Mac OS X systems

 Classic (Mac OS 9)

 running under Mac OS X system 2nd

 default Mac OS X installations

 preinstalled

source code

 AppController Implementation in AppController.m (Listing 6.7) 2nd

 AppController Interface in AppController.h (Listing 12.1) 2nd

 AppController Interface in AppController.h (Listing 6.6) 2nd

 AppController Interface in AppController.h (Listing 9.1) 2nd

 AppController cleanupThread Method in AppController.m (Listing 12.8) 2nd

 AppController dealloc Method in AppController.m (Listing 9.3)

 AppController init Method in AppController.m (Listing 9.2) 2nd 3rd

 AppController selItemIP Method in AppController.m (Listing 9.6) 2nd

 AppController selItemOne and selItemTwo Method in AppController.m (Listing 9.5)

 AppController selItemQuit Method in AppController.m (Listing 9.7) 2nd

 AppController start Method in AppController.m (Listing 12.2) 2nd 3rd

 AppController stop Method in AppController.m (Listing 12.3)

 AppController thread1 Method in AppController.m (Listing 12.5) 2nd 3rd 4th

 AppController thread2 Method in AppController.m (Listing 12.6) 2nd 3rd

 AppController thread3 Method in AppController.m (Listing 12.7) 2nd

 AppController validateMenuItem Method in AppController.m (Listing 9.4)

 AppController windowWillClose Method in AppController.m (Listing 12.9)

 AudioUnit framework header file (Listing 6.1) 2nd

 Carbon applications

 nib-based (Listing 5.1) 2nd

 CFPlugin program

 main.c 2nd 3rd 4th 5th

 CFPlugin project

 allocMyType in main.c (Listing 5.6)

 deallocMyType in main.c (Listing 5.11)

 IUKNOWN_C_GUTS in CFPluginCOM.h (Listing 5.3)

 myAddRef in main.c (Listing 5.9)

 myFactoryFunction in main.c (Listing 5.5)

 myInterfaceFtbl in main.c (Listing 5.7)

 myPlugInFunction in main.c (Listing 5.12)

 myQueryInterface in main.c (Listing 5.8) 2nd

 myRelease in main.c (Listing 5.10)

 MyType Definition in main.c (Listing 5.4)

 Plug-in Interface in MyCFPluginInterface.h (Listing 5.2) 2nd

 CFPluginCarbonApp program

 main.c 2nd

 CFPluginCarbonApp project

 CallPlugin in MyCFCallPlugin.c (Listing 5.13) 2nd 3rd 4th 5th

 CFPluginCocoaApp program

 AppController.h 2nd

 AppController.m

 main.m

 CFPluginCocoaApp project

 doCallPlugin in AppController.c (Listing 5.14)

 Condition Definitions in AppController.m (Listing 12.4)

 Darwin

 downloading

 MyCarbonFramework program

 MyCarbonFramework.c

 MyCarbonFramework.h

 MyCarbonFramework.c (Listing 6.3)

 MyCarbonFramework.h (Listing 6.2)

 MyCocoaApp program

 AppController.h

 AppController.m 2nd

 main.m

 MyCocoaFramework program

 MyCocoaFramework.h

 MyCocoaFramework.m

 MyCocoaFramework.h (Listing 6.4)

 MyCocoaFramework.m (Listing 6.5)

 MyColorPicker program

 ThePicker.h

 ThePicker.m 2nd 3rd

 MyNSBP RemoveColor project

 MyNSBP_Protocol Definition (Listing 4.8)

 MyNSBP_RemoveColor +initializePluginClass/+terminatePluginClass (Listing 4.9) 2nd

 MyNSBP_RemoveColor +instantiatePlugin (Listing 4.10)

 MyNSBP_RemoveColor -askUserWhatColorToRemove (Listing 4.12) 2nd

 MyNSBP_RemoveColor -doPlugin (Listing 4.11) 2nd

 MyNSBP_RemoveColor Interface Definition (Listing 4.7)

 SettingsController Implementation (Listing 4.13)

 MyNSBP_App program

 AppController.h

 AppController.m 2nd

 ImageWindowController.h

 ImageWindowController.m 2nd 3rd 4th

 main.m

 MyNSBP Protocol.h

 MyNSBP_Desaturate program

 MyNSBP Desaturate.h

 MyNSBP Desaturate.m 2nd

 MyNSBP_RemoveColor program

 MyNSBP RemoveColor.h

 MyNSBP RemoveColor.m 2nd 3rd 4th

 SettingsController.h

 SettingsController.m 2nd

 MyPreferencePane program

 MyPreferencePanePref.h

 MyPreferencePanePref.m 2nd 3rd

 MyPreferencePanePref Interface in MyPreferencePanePref.h (Listing 8.1) 2nd

 MyPreferencePanePref buttonClicked Implementation in MyPreferencePanePref.m (Listing 8.6)

 MyPreferencePanePref checkboxClicked Implementation in MyPreferencePanePref.m (Listing 8.5)

 MyPreferencePanePref didUnselect Implementation in MyPreferencePanePref.m (Listing 8.4) 2nd

 MyPreferencePanePref initWithBundle Implementation in MyPreferencePanePref.m (Listing 8.2) 2nd

 MyPreferencePanePref mainViewDidLoad Implementation in MyPreferencePanePref.m (Listing 8.3) 2nd

 MyScreenEffect program

 MyScreenSaverView.h

 MyScreenSaverView.m 2nd 3rd 4th

 MyScreenSaverView Interface in MyScreenSaverView.h (Listing 10.1) 2nd

 MyScreenSaverView animateOneFrame Method in MyScreenSaverView.m (Listing 10.3) 2nd 3rd

 MyScreenSaverView closeSheetcancel Method MyScreenSaverView.m (Listing 10.7) 2nd

 MyScreenSaverView closeSheetsave Method MyScreenSaverView.m (Listing 10.6) 2nd

 MyScreenSaverView ConfigureSheet Method in MyScreenSaverView.m (Listing 10.5)

 MyScreenSaverView hasConfigureSheet Method in MyScreenSaverView.m (Listing 10.4) 2nd

 MyScreenSaverView initWithFrameisPreview Method in MyScreenSaverView.m (Listing 10.2) 2nd 3rd 4th 5th

 MySOAP program

 AppController.h

 AppController.m 2nd 3rd

 main.m

 product client.php 2nd 3rd

 product server.php 2nd

 MyStatusItem program

 AppController.h

 AppController.m 2nd 3rd 4th

 main.m

 MyTerminal program

 AppController.h

 AppController.m 2nd

 main.m

 MyTerminalController.h 2nd

 MyTerminalController.m 2nd 3rd 4th 5th 6th

 MyTerminalController Interface in MyTerminalController.h (Listing 13.1) 2nd

 MyTerminalController dealloc Method in MyTerminalController.m (Listing 13.2)

 MyTerminalController displayPingData Method in MyTerminalController.m (Listing 13.6) 2nd 3rd 4th

 MyTerminalController init Method in MyTerminalController.m (Listing 13.2)

 MyTerminalController ping Method in MyTerminalController.m (Listing 13.5) 2nd 3rd 4th

 MyTerminalController uptime Method in MyTerminalController.m (Listing 13.4) 2nd 3rd

 MyTextService Interface in MyTextService.h (Listing 7.2)

 MyTextService main (Listing 7.1) 2nd 3rd

 MyTextService program

 main.m 2nd

 MyTextService.h

 MyTextService.m 2nd 3rd

 MyTextService changeCase userData error in MyTextService.m (Listing 7.3) 2nd 3rd 4th

 MyThread program

 AppController.h 2nd

 AppController.m 2nd 3rd 4th 5th

 main.m

 MyXMLRPC program

 AppController.h

 AppController.m 2nd 3rd

 main.m

 product client.php 2nd 3rd

 product server.php 2nd 3rd

 NSBundle image editing plug-in applications

 ImageWindowsController's -windowWillClose (Listing 4.6) 2nd

 ImageWindowsController's awakeFromNib (Listing 4.3) 2nd 3rd 4th 5th

 ImageWindowsController's doFilter (Listing 4.5) 2nd

 ImageWindowsController's doResetImage (Listing 4.4)

 plistPlugin application

 -awakeFromNib (Listing 4.1) 2nd

 -doSearch (Listing 4.2) 2nd

 plistPlugin program

 AppController.h

 AppController.m 2nd

 Google.plist

 main.m

 Overture.plist

 SearchWindowController.h

 SearchWindowController.m 2nd 3rd

 Yahoo.plist

 product information product (XML-RPC)

 Creating the Server in product server.php (Listing 14.6)

 Initial Steps in product server.php (Listing 14.2) 2nd

 product server.php (Listing 14.1) 2nd 3rd

 The get product info Method in product server.php (Listing 14.3) 2nd

 The XML-Formatted Data Sent from product server.php (Listing 14.5)

 The XML-Formatted Data Sent to product server.php (Listing 14.4) 2nd

 product information product (XML-RPC) project

 In the Beginning of product client.php (Listing 14.8)

 In the End of product client.php (Listing 14.10) 2nd

 In the Middle of product client.php (Listing 14.9) 2nd 3rd 4th

 product client.php (Listing 14.7) 2nd 3rd

 product information project (XML-RPC)

 -getProductInformation in AppController.h (Listing 14.12) 2nd 3rd

 -getProductInformation Part 1 in AppController.m (Listing 14.13) 2nd

 -getProductInformation Part 2 in AppController.m (Listing 14.14) 2nd

 -getProductInformation Part 3 in AppController.m (Listing 14.15) 2nd

 AppController Interface in AppController.h (Listing 14.11)

 product information system project (SOAP)

 -getProductInformation in AppController.m (Listing 15.12) 2nd 3rd

 -getProductInformation Part 1 in AppController.m (Listing 15.13) 2nd

 -getProductInformation Part 2 in AppController.m (Listing 15.14) 2nd

 -getProductInformation Part 3 in AppController.m (Listing 15.15) 2nd 3rd

 AppController Interface in AppController.h (Listing 15.11)

 In the Beginning of product client.php (Listing 15.8)

 In the End of product client.php (Listing 15.10) 2nd

 In the Middle of product client.php (Listing 15.9) 2nd 3rd 4th

 Initial Steps in product server.php (Listing 15.2) 2nd

 product client.php (Listing 15.7) 2nd 3rd 4th 5th 6th

 product server.php (Listing 15.1) 2nd 3rd

 The get product info Method in product server.php (Listing 15.3) 2nd

 The XML-Formatted Data Returned from product server.php (Listing 15.5) 2nd

 The XML-Formatted Data Sent to product server.php (Listing 15.4) 2nd

 RadarWatcher program

 AppController.h

 AppController.m 2nd

 main.m

 MyDocument.h 2nd 3rd

 MyDocument.m 2nd 3rd 4th 5th 6th 7th 8th 9th

 PreferenceController.h

 PreferenceController.m 2nd

 RadarView.h 2nd

 RadarView.m 2nd 3rd 4th 5th

 RadarWatcherX project

 AppController +initialize (Listing 3.15) 2nd

 AppController applicationShouldOpenUntitledFile (Listing 3.16) 2nd

 AppController showPreferencePanel (Listing 3.17)

 application preferences 2nd 3rd 4th 5th 6th 7th 8th 9th

 Creating a Timer (Listing 3.8)

 Main.m (Listing 3.1) 2nd 3rd

 MyDocument -init (Listing 3.3)

 MyDocument -writeFromFileofType(Listing 3.5)

 MyDocument -writeToFileofType(Listing 3.4) 2nd 3rd

 MyDocument refreshRadar method Image Checking (Listing 3.11) 2nd

 MyDocument refreshRadar method Image Loaded (Listing 3.10) 2nd

 MyDocument refreshRadar method Image Loading (Listing 3.9)

 MyDocument updateUI (Listing 3.6) 2nd

 NSMutableDictionary Keys (Listing 3.2)

 PreferenceController.h (Listing 3.14)

 PreferenceController.m (Listing 3.18) 2nd

 RadarView -isColorInImageInRect(Listing 3.13) 2nd 3rd

 RadarView color checker 2nd 3rd

 RadarView instance variable 2nd

 RadarView Mouse Overrides (Listing 3.12) 2nd

 RadarView watch box 2nd

 RadarWatcherX .rdrw Data File (Listing 3.7) 2nd

 services

 Reading Pasteboard Types (Listing 7.7) 2nd

 Registering Pasteboard Types (Listing 7.4) 2nd

 Validating Pasteboard Types (Listing 7.5) 2nd

 Writing Pasteboard Types (Listing 7.6) 2nd

 Shared program

 MyCFCallPlugin.c 2nd

 MyCFPluginInterface.h 2nd

 ThePicker Interface in ThePicker.h (Listing 11.1) 2nd

 ThePicker currentMode Method in ThePicker.m (Listing 11.5)

 ThePicker doRandomColorAction Method in ThePicker.m (Listing 11.8) 2nd

 ThePicker initWithPickerMaskcolorPanel Method in ThePicker.m (Listing 11.2) 2nd

 ThePicker logText Method in ThePicker.m (Listing 11.9)

 ThePicker provideNewButtonImage Method in ThePicker.m (Listing 11.3)

 ThePicker provideNewView Method in ThePicker.m (Listing 11.7)

 ThePicker setColor Method in ThePicker.m (Listing 11.4) 2nd

 ThePicker supportsMode Method in ThePicker.m (Listing 11.6)

SourceForge.net Web site

 Flat File DataBase (FFDB) PHP Library

 PHP database resources

SplitForks utility (command line)

state machines

static libraries

status items

 appearance of 2nd 3rd

 Apple restrictions on use 2nd 3rd

 function of 2nd 3rd

 MyStatusItem project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 customizing options

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 Target settings (Project Builder) 2nd

StepWise.com Web site

Stick Software Web site

symbol collisions (Objective-C) 2nd

system color panel

 Color Wheel color picker

 folder location

 RGB.CMYL color mode

System Preference Panes, [See preference panes]

System Preferences application

 Screen Effects pane

 Activation tab

 Hot Corners tab

 MyScreenSaver project 2nd

 Screen Effects tab

System Services, [See services]

[Team LiB]

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_index.html#idd1e19381
file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_index.html#idd1e9915

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

TCP protocol

 Mac OS X support

terminal applications

 files

 copying via wildcards

 functions

 man command

 MyTerminal project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th

 nib file (Interface Builder)

 results overview 2nd

 source code (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 Target settings (Project Builder)

 MyThread project

 customizing options 2nd

 remote logons

 rm command

 shell scripts

 executing

 top command

 UNIX

 versus GUI interface

ThePicker.h code (MyColorPicker program)

ThePicker.m code (MyColorPicker program) 2nd 3rd

third-party frameworks

 Omni Group

 OmniAppKit 2nd

 OmniBase

 OmniFoundation 2nd

 OmniHTML

 OmniNetworking

 OWF (Omni Web Framework)

Thread Viewer

 window appearance

threads

 function of 2nd

 MyThread project

 constructing (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th 20th 21st 22nd

 customizing options

 nib file (Project Builder)

 results overview 2nd

 source code(Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

18th 19th

 Target settings (Project Builder)

 overhead costs

 parallel 2nd

 priorities 2nd

 serial 2nd

 versus timers

timers

 versus threads

toll-free bridging

tools

 Interface Builder

 development functions

 Project Builder

 Concurrent Versions System (CVS)

 development functions

 gcc3 debugger (GNU Compiler Collection)

 gdb (The GNU Debugger) 2nd 3rd

top command

 terminal applications

top utility (command line)

TripleSoft.com Web site

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UDP protocol

 Mac OS X support

UFS file system

 Mac OS X support

Universally Unique Identifiers, [See UUIDs]

UNIX

 applications

 mac OS X default installations

 benefits

 BSD (Berkeley Software Distribution)

 historical background

 Process Viewer

 servers

 stability of

 terminal application

 versions

 AT&T

 BSD

 Linux

UnRezWack utility (command line)

updating

 application dock images 2nd

 application Dock menu 2nd

URLs

 AppleScript execution

 opening (code snippet)

USB Prober

usernames

 displaying (code snippet example)

users

 application defaults

 defaults command-line utility

utilities [See also command line utilities]

 Apple Help Indexing Tool

 FileMerge

file:///Users/guido/Desktop/%5B0672325268%5DSams%20-%20Mac%20OS%20X%20Advanced%20Development%20Techniques/0672325268_index.html#idd1e13977

 icns Browser

 IconComposer

 IORegistryExplorer

 JavaBrowser

 MallocDebug

 ObjectAlloc

 OpenGL Info

 OpenGL Profiler

 OpenGL Shader Builder

 PackageMaker

 PEFViewer

 Pixie

 Property List Editor

 Quartz Debug

 Sampler

 Thread Viewer

 USB Prober

UUIDCreator application

 number generator

UUIDs

 (Universally Unique Identifiers)

 ASCII format

 HEX format

 UUIDCreator application

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

validating

 pasteboard types

 services 2nd

vmmap utility (command line)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

W3C Web site

 SOAP specification resources

Web sites

 Adobe Photoshop 2nd

 Apple Developer

 localization resources

 Apple Developer Connection

 Apple Developers

 Objective-C resources

 Cocoa Browser

 CocoaDev.com

 CocoaDevCentral.com

 Icon Factory

 Mac OS X Hints

 Omni Group

 OmniGroup.com

 OpenGL.org

 SourceForge.net

 Flat File DataBase (FFDB) PHP Library

 PHP database resources

 StepWise.com

 Stick Software

 TripleSoft.com

 W3C

 SOAP specification resources

 XML-RPC.org

WebCore.framework

WebDAV file system

 Mac OS X support

writing

 pasteboard types

 services 2nd

WSMakeStubs utility (command line)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

X11 technology

 Darwin implementation

XML

 text files

 viewing (Property List Editor)

XML-RPC

 data-based client/server architecture

 development of

 features 2nd

 product information project

 Cocoa client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 PHP client 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 PHP server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 results overview 2nd 3rd

 Web site

XML-RPC protocol

 Mac OS X support

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yahoo.plist code (plistPlugin program)

[Team LiB]

