
MWJ: Mac OS 9
The Weekly Journal for Serious Macintosh™ Users
❝ Top of the Special Issue ❞

� Our Mac OS 9 coverage begins with “Getting
Started,” a quick look at Mac OS 9’s requirements,
sensible precautions, where to find software updates
you might need, and a couple of cautions that might
save you time and trouble, plus a look at “error 119,”
the most notable of the potential compatibility prob-
lems in the new release. The Mac OS 9 Basics, Page 2.

� We next look at the release’s marquee feature.
Sherlock 2 is an outstanding addition to the Mac OS
in almost every important way. Sherlock’s original mas-
terstroke was in both expanding file searching to
include indexed contents, and in describing Internet
search engines with simple text files. Sherlock 2 goes
even further, breaking down artificial barriers in
Sherlock’s file searching and grouping Internet search
sites into thematic channels. The channels are slightly
more restrictive than in original Sherlock—but they’re
self-repairing, self-updating, and you can make your
own. The program has a few bumps—most notably the
atrocious interface and a bad advertising policy—but
if you like Sherlock, you’ll positively drool for its suc-
cessor. Sherlock 2 The Next Level, Page 5.

� Then comes our look at three of Apple’s “Nine
Internet Power Tools”—the three that relate the least to
the Internet. Multiple Users doesn’t turn the Macintosh
into a multi-user operating system, but it’s a surprisingly
elegant way to share customized environments on one
computer with reasonable—though not foolproof—
security. Voice Verification is a nice password alternate
that may foreshadow even more powerful methods in
the future. Apple File Security’s encryption of files
looks great at first, but sadly, fails to withstand scrutiny.
Ironically, the only Internet part of any of these three
features is the one that Apple’s not talking about: digi-
tal signatures for downloaded files with thorough
Macintosh support, painting enticing possibilities for
future self-updating software with reasonable security.
Sharing Your Personal Space, Page 17.

� We consider the remaining five of Apple’s Nine
Internet Power Tools: the Keychain, Network Browser
2.0, Software Update, AppleShare over IP, and
AppleScript over IP. As usual, the stories behind these
technologies may not be quite what you’re imagining,
but lots has changed since Mac OS 8.6. The “major
features” in that revision were sometimes no more
than text files. Now we get the real deal, done the
right way (though poorly documented at times), and
thoroughly integrated into the Macintosh. Join us as
we explore exciting new ways to merge the Internet
with your desktop. Living in a Wired World, Page 31

� We next provide examination of features beyond
the most heavily marketed. In Watch This Space, we
look at five key technologies that you can’t really see
today, but they’ll become the foundation for new fea-
tures and greater productivity in the future as Mac OS
9 becomes more of a baseline system. We examine new
File Manager APIs granting access to advanced fea-
tures of the HFS Plus File System, and the quiet but
extremely exciting addition of real font management
to the Mac OS (yes, it’s the real deal), a new
Multilingual Text Editor, the HTML Rendering
Library, plus an overview of the Carbon and Core
Foundation technologies that preview Mac OS X. Join
us as we look deep under the hood for signs of future
software. Features of the Future, Page 44.

� The Nitty-Gritty is the home stretch—a look at all
those tiny changes in the new version that affect your
daily use but aren’t comprehensively documented.
The Control Panels section is the largest with three
fairly major changes—ColorSync 3.0, FontSync 1.0,
and the changes that make all control panels work as
separate applications. We also track the splitting of
“Monitors & Sound,” lots of extensions including the
frustratingly-vague Open Transport 2.5, Finder
changes, “Package First Aid,” and even System file
goodies like the Notification Manager QuickDraw
enhancements. There’s too much in here to summa-
rize—it gets technical at times, so don’t be afraid to
read it more than once. If you want to know what’s
really in Mac OS 9, this is your source. The Nitties and
Gritties, Page 57.

� The Weekly Attitudinal, our right-by-definition opin-
ion feature, wraps it all up with a short (no, really!)
analysis of Mac OS 9 answering the question in the
Ricky Martin song: do you really want it? Unguarded
Opinion, Page 75.

Page 2 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
Mac OS 9

Getting Started
The Basics of “The Best Internet OS Ever”
When Steve Jobs talks about Mac OS 9 at trade
shows or in public speeches, he uses the same glib
marketing phrase he used a year ago for Mac OS 8.5:
“It’s a whole new Macintosh for US$99.” It was a bit of
an exaggeration then, and it remains so now. However,
like Mac OS 8.5, today’s US release of Mac OS 9 brings
hundreds of small, under-the-hood changes to the
guts of your Macintosh. Characterizing a large and
wide-ranging OS release is always a challenge, and
Apple Computer rarely picks the same emphases we at
MWJ would. We’re stoked about font and text
improvements, a long-awaited overhauling of how the
Mac OS deals with files and disks, the precursors for
Mac OS X support, and all kinds of tiny changes that
make the Macintosh a better solution for personal
productivity. Apple’s new slogan? “The Best Internet
OS Ever.” Don’t repeat that around UNIX advocates.

Apple, however, long ago learned the danger of
marketing to technical wonks like us. Instead, the
company’s presentations on the new operating system
focus on large, user-level features—stuff you could
explain to your grandma if need be. We’d hate to try
to explain to Granny that “it can now create and
manipulate files larger than two gigabytes when using
alternate APIs in revised software,” but we’d have no
trouble at all explaining “it knows who you are when
you speak to it.”

Before you upgrade, however, you should prepare.

Is It Shipping?
Mac OS 9 is available now in the US. Suggested

retail price is US$99; current owners of Mac OS 8.5 or
later are eligible for a US$20 mail-in rebate with
details in the product box. All owners of Power
Macintosh G4 and iBook computers, as well as anyone
who purchased a Macintosh computer on or after
October 5 can get Mac OS 9 for US$20 shipping and
handling through the Mac OS Up-To-Date program.
Note that this is different from earlier offers: purchas-
es of the retail Mac OS 8.6 product are not covered,
just new computer purchases.

Make sure you have the proper equipment: a
PowerPC-based Mac OS computer with at least 40MB
of addressable RAM. You can use virtual memory to
boost your addressable RAM, but the system must have
at least 32MB of physical RAM. Virtual memory
requires more hard disk activity, and iBook computers
ship with only 32MB of RAM, so iBook owners should
be prepared for somewhat shorter battery lives. As
with other recent Mac OS releases, Apple is only sup-
porting the release on Apple-brand computers, but we
know of no reason it should fail on authorized clones.

Is It Compatible?
Oh, yah, you betcha. Pretty much. There’s only

one major problem, and it was exacerbated by early
reports from people (violating non-disclosure agree-
ments) more eager to talk about the problem than to
learn what’s really going on. It led to uninformed
speculation and semi-panicked compatibility reports
in the weeks preceding release. Here’s the real deal.

As MacWEEK.com correctly reported, you’ll need
new versions of some applications. Some, like
SoundJam MP 1.1.1, are already available; others are
coming shortly. The most significant problems occur
with Aladdin Systems’s StuffIt product family, and with
Adobe Systems’s type products Adobe Type Manager
and Adobe Type Reunion.

Type Reunion is a luxury, but most applications
require ATM to display PostScript Type 1 fonts proper-
ly—and such fonts are in widespread use. Some
reports have obscured this by commenting on a “Type
1 font scaler” reportedly present in Mac OS 9. True
enough, one exists—but it’s an Open Font
Architecture scaler and only works for OFA-savvy font
clients (see “The Nitty-Gritty” in this issue). Right now,
that means Apple Type Services for Unicode Imaging
(ATSUI), the successor to QuickDraw GX Typography.
Plain old (non-GX) QuickDraw, used by literally every
Macintosh application you’re ever likely to run, does
not use OFA and will only use Type 1 outline fonts
with Adobe Type Manager. The only way around this is
to use applications with built-in Type 1 rendering
code—like all of Adobe’s current high-end applica-
tions (Photoshop, InDesign, Illustrator, Acrobat—but
not PageMaker). In short, you still need ATM to use
Type 1 fonts except in very limited circumstances.

What Is The Problem?

The major issue is a new fatal system error, #119.
ATM, ATR, StuffIt Engine 5.1.2, DropStuff 5.1, StuffIt

http://www.apple.com/pr/library/1999/oct/22macos9.html
http://www.apple.com/pr/library/1999/oct/22macos9.html
http://macweek.zdnet.com/1999/10/03/developers2.html
http://www.soundjam.com/
http://www.aladdinsys.com/faqs/macos9.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 3
Expander 5.1.3, and several other programs stop cold
with error 119, returning you to the Finder just like an
error of type 10 or type 1 would do. With error 119,
however, the Finder helpfully informs you that you
need an updated version of your application.

This past spring, we discussed why the Mac OS is
limited to 348 open files at once—each open file
comes with a 94-byte file control block (FCB) that, for
backward compatibility reasons, has to fit within a
measly 32K table. A partial control block is no good;
only entire 94-byte chunks are valid. Only 348 of those
fit within the 32,768 allowed bytes (MWJ 1999.05.02).

Apple has planned for a long time to fix this in
Mac OS 9, but has run into huge compatibility prob-
lems. Not the least of these is glue code, provided by
Apple and built into thousands of third-party applica-
tions, that assumes way more about FCB structure
than it should (MWJ 1999.06.19). Even so, historically
Apple has handled this careful compatibility dance
fairly well: the old glue code works. Unfortunately,
some third-party applications don’t use Apple’s glue
code, and they may wind up reading FCBs directly in a
no-longer-supported way. That means reading invalid
data and acting on it as if it were valid.

These are the worst kinds of bugs to diagnose and
fix. It’s like picking up the salmonella virus from a sin-
gle undercooked chicken nugget. You may or may not
get sick, and if you do, it may or may not be severe
enough for you to seek medical attention. If you do
see a doctor, a mild case may not be diagnosed as food
poisoning—and even if it is, there is almost zero
chance you’ll ever trace the infection back to one
chicken nugget (out of six, nine, or twenty) that you
ate a few days earlier with who knows what other food.
You have a problem, but the cause is elusive.

The same thing happens when programs act on
invalid data. If the bad data happens to be so wacky
that it triggers a bus error, you crash quickly. If not,
the program may start wandering through the weeds
and eventually crash in a completely unrelated fash-
ion. Or it might not crash at all—it might just corrupt
data or a disk. Since the 32K table of control blocks is
different with every set of files you open and close,
these bugs can be nearly impossible to reproduce.
Even if you can, there’s no guarantee the developer
could reproduce it on his system with the same steps
unless every file was exactly the same. It’s maddening.

Apple’s engineers knew that applications using
the 32K table of FCBs without Apple’s glue code would
fail—the only way they wouldn’t is if they were exactly
imitating the glue code, and programs just don’t do
that. Through most of Mac OS 9 development the
engineers tried to make it work, but too many applica-
tions were using the table. So in August they surren-
dered—they changed the PowerPC code in the System
file for finding the table’s address to stop the system
with error 119 instead.

If the salmonella virus reacted with a chicken
nugget such that it grew to three feet in diameter and
turned it shocking pink, you’d know not to eat it.
Similarly, error 119 forces the control block issue—
when you see it, it’s immediately clear that a very sub-
tle error was about to happen. The philosophy—and
it’s correct—is that it’s better to stop everything than
allow nasty bugs a developer might never find. (This is
the same concept behind protected memory, by the
way: any code touching memory it’s not authorized to
use halts the application with a fatal error. Developers
and users alike have been clamoring for protected
memory for years exactly so major problems will show
up sooner rather than later.)

Whose Fault Is It?

If you insist on assigning blame, we say it belongs
with developers. Apple has warned since 1986 not to
directly depend on the 32K control block table or its
format. Unfortunately, developers tended ti ignore the
warnings, because Apple’s glue code did exactly what
the warnings said not to do.

The Mac OS has included supported routines for
legitimately accessing control blocks since 1994’s
release of System 7.5. There are only two excuses for
not using them—a program might have to work with
Mac OS releases earlier than System 7.5, or it’s a very
low-level program that can’t access control blocks
through a system routine that might not be available at
the time. The low-level developers are in their own
world that’s not relevant here. Applications, on the
other hand, tended to include code to walk the 32K
table, and the programmers tended to leave it in place
because it worked on all versions of the Mac OS back
to 1986.

Apple continued to warn developers against using
the FCB table directly—last November, engineer Jim
Luther wrote a developer Q&A noting that direct
access to the FCB table would soon break (MWJ
1998.11.07). We grant that Apple could have taken
more drastic steps. For one, they could have stated flat-
ly that direct FCB access will break in Mac OS 9 instead
of talking about the indefinite future—but if compati-
bility had worked better, developers would have seen
that the warning didn’t come true and paid even less
attention to future warnings. Apple could also have
punted on compatibility and introduced error 119
from the beginning—but that’s not the attitude Mac
OS users and developers have come to expect. But this
sort of talk is really beside the point: such extraordi-
nary measures shouldn’t have been necessary.

(see “Getting Started,” page 4)

http://developer.apple.com/qa/fl/fl10.html

Page 4 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
Most developers are forthright in that they’ve
been caught with their hands in the FCB table, but
some want to point fingers anywhere but at them-
selves. In late September, Adobe’s Chris Holm posted
a note to an Adobe forum, sent as well to several lead-
ing Mac-oriented Web sites, confirming that Adobe
Type Manager and Adobe Type Reunion would not
work under Mac OS 9. We know the problem is direct
access to the FCB table, but Holm instead pointed the
finger at Apple, saying the company “removed an API”
that ATM needed. As you’ve seen, Apple did no such
thing. In fact, the problem is that Adobe’s products do
not use APIs added in 1994; direct access to the FCB
table is a hack to work around the pre-1994 lack of
said APIs, and Adobe never removed the hack and
embraced the APIs. Claiming Apple “removed” APIs is
almost completely disingenuous.

We had thought this an aberration—the statement
was removed from the Adobe online forum, and other
executives had not stood by it when interviewed on
the topic (because, we reasoned, they knew it was not
true). Yet late last week, Holm reposted the accusation
with a permanent Adobe Forum URL and only slightly
changed language. This time, he says “The final
release of Mac OS 9 does not include application pro-
gram interfaces (APIs) required by ATM.” This is com-
pletely false. Mac OS 9 includes all the APIs ATM
needs—the problem is that Adobe isn’t using them
and has passed on every opportunity since 1994 to cor-
rect that shortcoming. The only thing Mac OS 9 is
missing is the “let’s restrict everyone to only 348 open
files until the end of time so Adobe doesn’t have to fix
its broken code” module. We sympathize with develop-
ers who thought they had more time to fix their code,
especially since Apple made it clear they would keep
direct FCB access from breaking if at all possible. But
it wasn’t possible, and blaming Apple for “removing”
support for a technique Adobe should have ditched
five years ago is unsupportable buck-passing.

When you see error 119 in Mac OS 9 and later,
you’ll know why—nothing else creates error 119, nor
will any other condition use that fatal error number.
Adobe is not promising new versions of its type utili-
ties before Mac OS 9 ships; Aladdin’s replacement util-
ities will ship with Mac OS 9. Prepare in advance: the
changes in Mac OS 9, particularly File Manager
changes that increase the number of possible simulta-
neously open files to 8169 from 348 but also eliminate
an old and unsupported method for finding informa-
tion about open files (MWJ 1999.10.09, 1999.10.16),
are prompting more OS-related software updates than
usual. You’ve probably already heard ad nauseam that
Adobe Type Manager and Adobe Type Reunion aren’t

Getting Started
(continued from page 3)
compatible with Mac OS 9; the Installer moves them
to the appropriate “disabled” folders in the System
Folder. You also need StuffIt Expander 5.1.4 or later,
and StuffIt Engine 5.1.3 or later; both are part of Mac
OS 9’s “Internet Access” package and are part of the
normal installation. Aladdin Systems has instructions
for reinstalling the updates if your system didn’t get
them.

Preparing To The Nines
Be sure to check for updates and incompatibilities

in products key to your daily use. We recommend a
two-stop information tour: VersionTracker’s Mac OS 9
Updates page lists updates for software known to be
incompatible with Mac OS 9, updated frequently. And
for troubleshooting, the gold-star source is still
MacFixIt, where the Troubleshooting Mac OS 9
Report already has lots of reports—but, as is usual with
troubleshooting, many are unverified, so read critical-
ly. Alsoft has released the Mac OS 9 File Manager
Compatibility Checker, a handy utility that attempts to
find FCB-related problems in existing applications. It’s
not foolproof—the utility checks for telltale code
sequences that might represent PowerPC instructions
to touch the now-forbidden FCB table. It can’t detect
all problems, and it doesn’t even try from 68K code
(where problem-finding is trickier), but it’s a reason-
able first defense.

We’re also quite fond of Insider Software’s
UpdateAgent 3, a utility that scans all the programs on
your system and compares them against a database at
Insider Software to identify old and outdated versions.
The program offers to download any available
updaters for you; it also downloads “Read Me” files for
commercial upgrades that aren’t free online.
UpdateAgent is sold via subscription, with an online-
only version starting at US$50 per year (with other
options including CD-ROM delivery and site licenses).
But you can run the program once on one machine
for a US$10 fee. That option could save lots of time in
identifying and downloading necessary compatibility
updates, and could be well worth the US$10 in saved
time.

And, of course, always always always have a full
backup of your system before performing major Mac
OS upgrades. This time you could be the one person
in 300,000 for whom something goes tragically wrong,
and reconstructing an older System Folder is a chore
we wouldn’t wish on our enemies.

Startup Significance
Apple has long recommended that you boot the

new Mac OS CD before installing the system software.
You can still do “live installations” over your active

http://discussions.wellengaged.com/we/adobe/atmmac/ATMOS9
http://www.apple.com/pr/library/1999/oct/22macos9.html
http://www.versiontracker.com/systems/system9.shtml
http://www.versiontracker.com/systems/system9.shtml
http://www.macfixit.com/reports/macos9.shtml
http://www.macfixit.com/reports/macos9.shtml
http://www.alsoft.com/AskAl/askalreport-9comp.html
http://www.alsoft.com/AskAl/askalreport-9comp.html
http://www.insidersoftware.com/updateagent/index_bod.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 5
System Folder, but it’s a more complicated procedure
for the Installer, increasing the odds of problems.
Owners of the original Power Macintosh machines
(6100, 7100, and 8100 models), however, must boot
from the Mac OS 9 CD to install the new version.
Apple Computer says those machines contain an
unspecified ROM bug that prevents installation from
working unless you’re already running Mac OS 9.
Other systems, including the newest ones, have no
such requirement.

Don’t panic, but the CD might not boot. We con-
firmed several reports on our own systems: the Mac
OS 9 CD may freeze during startup if various USB
devices are connected. The exact nature of the prob-
lem has so far eluded us, but this advice fits both our
experience and what we’ve seen reported elsewhere:
unplug USB devices other than the keyboard and
mouse before booting the Mac OS 9 CD. You probably
won’t need printers, scanners, tape drives, or most of
the other whatnot during installation anyway.
Once Mac OS 9 is installed, all seems to work well.
We suspect the problem is in the new USB software as
burned into the CD-ROM’s active System Folder, and
probably not as simple as “the CD-ROM doesn’t have
the USB drivers your peripherals need,” so we doubt
you’ll see the same problem even after a “clean instal-
lation.” In fact, the Software Updates Control Panel
has a pleasant surprise for you the next time you plug
in a USB device for which you have no driver installed
(see “Living in a Wired World,” this issue). In our test-
ing, unplugging a USB hub solved a freezing problem.
Installation proceeded normally, and the newly-updat-
ed iMac in question has been happily plugging along
with Mac OS 9 ever since. Well, ever since we remem-
bered to update incompatible software. We recom-
mend you do that first because we didn’t and it wasn’t
fun.

With a little patience and a minimum of planning,
you’ll be using those Nine Internet Power Tools in no
time flat—so let’s commence examining them. ❖
Mac OS 9

Sherlock 2 The Next Level
Great New Features With Questionable Interface
No feature of Mac OS 9 is more highly marketed
and demonstrated than Sherlock 2, the revision to Mac
OS 8.5’s signature file and Internet searching utility.
Credit Apple with realizing what a powerful tool this
little program is—late in Mac OS 8.5’s development
cycle, the executives mandated a name change from
“Find 2.0” to “Sherlock” for easier marketing, even
though the program’s version number (and many of
its messages) retained the “Find 2.0” designation. The
evolution of “Find”, now officially version 3.0.1 in Mac
OS 9, has its major revision built into its name: the
program’s title, evidenced in the “About…” box and
title bar, is “Sherlock 2.” Rename the file if you want,
but the name sticks.

The program retains the same basic features—
searching file attributes and the contents of indexed
files, or querying a set of Internet sites for specified
text and returning all the results at once. On the one
hand, Sherlock 2 combines some of these familiar fea-
tures in outstanding ways to make it far more useful—
even in the human interface. On the other hand,
Apple’s hell-bent determination to move its marquee
software programs to the “burnished metal” interface
seen in QuickTime 4 seriously compromises those new
features, as well as old ones people have grown to love.
Sherlock was an elegant expression of simple con-
cepts, criticized mainly for interface limitations in the
“Search Internet” section. Sherlock 2 overcomes some
of those and needlessly adds others, even as it extends
the feature set in equally elegant ways.

Files, Inside and Outside
Sherlock’s ancestry in System 7.5’s “Find File” pro-

gram (originally written by Bill Monk as “Find Pro
III”) showed in its three-tabbed interface (MWJ
1998.10.19). The first tab, “Find File,” was virtually
identical to the previous utility. The second tab, “Find
by Content,” allowed searching the contents of files as
indexed by Sherlock’s companion program, “Find by
Content Indexing,” controlled from Sherlock’s win-
dow. In Mac OS 8.6, Apple gave Sherlock the power to
use plug-in indexing modules to properly read file for-
mats that were neither built into Sherlock nor accessi-
ble through the Macintosh Translation Manager (MWJ
1999.05.12).

Figure 1| shows Sherlock 2’s main window. The
square icon wells across the top are channels. They

(see “Sherlock 2 The Next Level,” page 6)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure1

Page 6 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
work like “favorites” in QuickTime 4 Player. We’ll
explore channels more thoroughly later in this article,
but right now we’re interested in the first channel, the
selected one whose outer well is highlighted in aqua-
marine (regardless of your chosen Appearance col-
ors). This is the built-in files channel, a merging of
Sherlock’s “Find File” and “Find By Content.” It works
really well—the way Sherlock should have worked in
the first place.

Instead of separate tabs for the two functions,
they’re combined in a single view, though the
Command-F and Command-G key equivalents still
work. The editable text field contains the text for
which you search, while radio buttons determine if
you seek it in a file’s name or in its contents. The pane
of disks from “Find By Content” is now present for all
file-finding, a vast improvement on “Find File’s” pop-
up menu that let you choose individual volumes or

Sherlock 2 The Next Level
(continued from page 5)
Figure 1—Sherlock
pre-determined sets, like “all volumes except CD-
ROMs,” but not custom disk sets. “Find By Content’s”
radio buttons to search either the selected volumes or
the Finder selection are gone, but there’s now a better
way—just drag any folder you want to search to
Sherlock 2’s volume pane. Although the program
incorrectly fails to draw the colored rectangle during
dragging indicating it will accept a drag-and-drop
operation, it will, with each folder gaining its own
checkbox so you can enable or disable it as you please.
You can’t remove the built-in volumes from the list,
but you can get rid of any folder you add by pressing
Command-Delete or picking “Move to Trash” from the
“File” menu. A new “Toggle” menu item and
Command-T key equivalent unchecks all items if any
are checked and then serves as a true toggle, checking
or unchecking all items with each invocation. All of
these options, including custom folders, can be saved
in “Search Criteria” documents (as with Sherlock).

But Figure 1 has three radio buttons. After “File
Names” and “Contents,” a third radio button enables a
 2’s File Finding

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 7

 S
pop-up menu showing a “Custom…” item. If you pick
that, or click the “Edit…” button, or pick “More
Options…” from the “Find” menu (or press the
Command-M key equivalent), you see the dialog box
shown in Figure 2. Unlike “Find File’s” series of but-
tons that add extra clauses with “More Choices” and
remove them with “Fewer Choices,” Sherlock 2 lets
you set all of your options in one large but functional
dialog box. Select the checkboxes next to the parame-
ters you care about, then set their values as you need.
You no longer have to hold down the Option key
while selecting a pop-up menu to see “Advanced”
options; they’re in plain sight but set apart.

Don’t worry if the whole thing is too confusing—
you can control the dialog box by example. Drag any
file’s icon into the “More Search Options” dialog box
and Sherlock 2 sets every option (except “content
includes”) in the dialog box to match the file or folder
you dropped onto it. Just check the parts you want to
match and adjust them if necessary. Sherlock’s “Find
File” section did the same thing, but you had to drag
the file to each individual attribute; Sherlock 2 sets
them en masse.

This large dialog box doesn’t follow the “sen-
tence” metaphor of Find File. Even though the levels

Figure 2—More
of choices could be confusing, Find File’s interface
read as a complete sentence (at least until Sherlock,
when the “and” connecting clauses became implicit):
“Find items on local disk whose name contains ‘read
me’ and date modified is yesterday.” It’s a handy reali-
ty check, and Sherlock 2 preserves it. Back in Figure 1,
you see a sentence-type summary of what you’re seek-
ing in the pane underneath the list of volumes and
folders to search. Unlike Sherlock, you can’t hide or
collapse this pane in Sherlock 2.

The “More Search Options” dialog box is com-
plete—except for the disks and folders to search, it
contains all the options you could choose from the
main Sherlock window. Clicking “Save…” asks you to
name your set of search options and adds them to the
main window’s pop-up menu where you see
“Custom…” in Figure 1. Apple ships Sherlock 2 with
four pre-configured sets of file searching options:
Applications, files larger than 1MB (unfortunately,
incorrectly defined as “1,000K”), files modified today,
and files modified yesterday. You can start with any of
these and customize them in either the main window
or the “More Search Options” dialog box. For exam-

(see “Sherlock 2 The Next Level,” page 8)

earch Options

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure2

Page 8 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
ple, picking “Modified today” and typing “Personal
Journal” in the editable text field searches for all files
modified today whose names contain that text. If you
want to find files modified yesterday whose contents
contain given text, you’ll have to visit the “More
Search Options” dialog box.

The options you save are regular Search Criteria
documents, located in the “Files” folder of your
“Internet Search Sites” folder (typically in the System
Folder, but mapped to your user folder if you’re a
non-owner under Multiple Users; see “Sharing Your
Personal Space,” this issue). You can move other
Search Criteria documents to that folder; Sherlock 2
places them in the main window’s pop-up menu, but it
won’t notice changes until you quit and relaunch the
application. It notices changes made from within the

Sherlock 2 The Next Level
(continued from page 7)
Figure 3—File Fi
application immediately. Also note that the Finder
doesn’t auto-route file Search Criteria to the “Files”
channel’s folder in “Internet Search Sites”—the files
are dropped in the root of the search folder, and
you’ll have to move them into the “Files” folder by
hand to get them into the pop-up menu.

To start the search, click the button with the mag-
nifying glass or press Return or Enter. The icon button
changes to a red Stop sign (at least in the US version);
you can also halt the search with Esc or Command-
Period. Figure 3 shows the results of file searching,
presented in the same window. The item list itself is
familiar; the pane at the bottom of the window (resiz-
able by dragging the textured “grabber” in the middle
of the separator bar) shows how many items were
found. If you have exactly one found item selected,
the pane switches to show the hierarchical path to the
item. If multiple or no items are selected, the pane
shows the found item count again.
nding Results

http://www.gcsf.com/extras/mwj/mos9extras/index.html#figure3

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 9
Merging Attributes and Content

The “More Search Options” dialog box contains
fields where you can enter text to find in a file’s name
or in file contents. “Find File” had this option as well,
hidden in the pop-up menus unless you pressed
Option while clicking. When you chose “contents” in
the first tab, “Find File” did a brute-force search
through the contents of every target file that matched
other criteria. The pace was tortoise-like, and the
results usually not particularly useful. Sherlock
removed the option entirely in favor of separate index-
based content searches, but that new functional divi-
sion no longer allowed searching for files with both
arbitrary attributes and specific content.

Sherlock 2 remedies this deficiency. The “Files”
channel is a merger in more than human interface:
the “Contents” option in the “More Search Options”
dialog box uses the Find By Content indexes. For the
first time, you can efficiently search your disks for files
containing arbitrary attributes and specific content.
Sherlock gave no easy way to find all AppleWorks files
containing “1999 Budget” or all files ending with
“.html” modified this month containing a given URL.
Sherlock 2 has no trouble with such requests.

In various promotional materials, Apple
Computer has said that Sherlock 2 indexing is faster
and more robust, but such claims are extremely hard
to verify and no details about why they might be true
are yet available. As with Sherlock, indexing can be
frustrating: on hard drives of any size at all (even as
small as 4GB), the progress window may estimate
indexing to require more than 24 hours to complete.
You might as well forget about indexing a drive with
more than 6GB or so of files unless you have a long
vacation coming up—unless you apply Macintosh skills
to the problem. The solution? “Get Info” on the “Find
by Content Indexing” application (located in the
“Find” folder of your Extensions folder) and give it
huge amounts of memory. Indexing requires building
large data structures, but the indexer seems to use no
RAM outside its own partition, even though it’s often
the only program doing active work when running.
The change can be astounding—providing the pro-
gram with all the RAM it needs typically reduces esti-
mates for bottom-up indexing by twelvefold. This
works with either Sherlock or Sherlock 2 and isn’t
publicized nearly enough. If you’ve already done this,
don’t forget to do it again after installing Mac OS 9, as
the new version comes with a default partition of just
2000K.

Unfinished Business

Sherlock 2’s file-oriented improvements don’t
mesh with Apple’s “Internet Power Tools” marketing
theme, so the company isn’t emphasizing them much.
That’s a shame, because these improvements are
among our favorites in all of Mac OS 9. The merged
features are logical and consistent, and the combina-
tion of indexed content searches with the traditional
“Find File” power is a winner. Sherlock’s restrictive
choice of searching by content on either entire vol-
umes or a single Finder selection was pretty useless;
the new drag-and-drop folders options are the way it
should be done.

The “Files” channel needs just two things to make
us drop all our other search utilities, and Apple can
only implement one of them. Saved Search Criteria
behave differently depending on where you save them.
Those in the “Files” folder in the “Internet Search
Sites” special folder are templates—when you pick one
from the pop-up menu, it fills in the “More Search
Options” criteria but leaves your volume and folder
selections untouched. If you double-click a file saved
from “More Search Options,” Sherlock 2 warns you
that you need to complete your search selections. On
the other hand, Search Criteria you save with the
“Save…” command include the volume selections in
effect when you saved the search. But Sherlock 2 does-
n’t respect those settings if you drop the document
into the “Files” channel folder for use in the pop-up
menu, and double-clicking such documents opens a
new window and immediately starts searching. What’s
more, Sherlock 2 still has no concept of stationery.

In other words, Sherlock 2 still has no way to save
a complete search template. If you regularly want to
search the HTML files in your Web site folder for cus-
tom content, you can’t automate it. The criteria in the
“Files” channel don’t include your choices of folders
or non-disks, so you’d have to drag them into the win-
dow before each search. A saved Search Criteria docu-
ment contains your choices of folders, but it also
includes the text to search for and starts immediate-
ly—you’d have to double-click it, stop the search, then
retype your text. You can’t even do it with
AppleScript—Sherlock 2 supports a “search” com-
mand that can find text in a file or use saved Search
Criteria, but not both. (A third option, searching for
files whose contents are similar to one or more docu-
ments, is also mutuality exclusive with specifying text
or Search Criteria.) Sherlock 2 needs to save everything
but the text you want to find in Search Criteria.

Apple can fix that, but they can’t fix the problem
of context. Once you find a file based on its contents,
you typically want to open the document and jump
right to the found text. Sherlock introduced a new
parameter to the standard “open document” Apple
event allowing this—the extra data tells the program
what text you were searching for, so the program can

(see “Sherlock 2 The Next Level,” page 10)

http://www.apple.com/macos/feature1.html
http://developer.apple.com/technotes/tn/tn1141.html#Anchor1062
http://developer.apple.com/technotes/tn/tn1141.html#Anchor1062

Page 10 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
then do the right thing (like finding the first instance
of any word, or finding them all as closely together as
possible). It’s slightly complicated—Find By Content’s
indexing uses partial matches, so low-relevance results
may not contain any of the words in the original
search criteria. (Search a virgin Mac OS 9 disk for
“http://www.microsoft.com” in the content of files
and Sherlock 2 returns the Internet Location file for
Apple’s Web site from the Favorites folder because it
contains “http://www” and not much else, making it a
relevant partial match. Yow.)

In the year since Sherlock hit the streets, far too
few applications have changed to take advantage of
this extra information. MVP Solutions’s Retrieve It is
showing its age, but when you double-click on a file it
found, it opens a preview window and searches for the
first instance of any search term, continuing through
the document each time you press Return. Adobe
Acrobat comes with its own Search plug-in for the
indexes created by Acrobat Catalog; opening an item
from the Search plug-in’s results window opens the
PDF file to the highlighted first instance of a search
term. Acrobat could use similar logic to find the
search terms in a file opened through Sherlock or
Sherlock 2, but it doesn’t—once you get it open in
Acrobat, you then have to find what Sherlock thinks
was relevant.

From SimpleText to Nisus Writer to Acrobat to
BBEdit, no major application takes this information
and works with it. If they did, Sherlock 2 would be far
more useful—not only would it find files by content,
but would also show you what it found through a sim-
ple double-click. Without that support, the aging
Retrieve It remains more useful for finding text in
large collections of files—the convenience of moving
right to the information you want outweighs its bugs,
clunky interface, and slow searching through non-
indexed text. Apple can’t solve this problem except by
evangelizing developers to do the right thing, but they
can make templates work. A combination of those two
features, we believe, would obsolete every other Mac-
based search utility we’ve seen.

Even so, Sherlock 2’s merged file finding capabili-
ties are superb. Searching the insides and outsides of
files are no longer separate tasks kept apart by sepa-
rate code development paths. Eliminating the distinc-
tion was logical; the implementation is clear and con-
sistent, and the results are outstanding. For those of us
with tens of thousands of files, it could be the sleeper
story of Mac OS 9.

Sherlock 2 The Next Level
(continued from page 9)
Internet Searching: New Channels
Galore

The genius of Sherlock’s original design was the
“Search Internet” feature. It wasn’t the idea of a meta-
search engine, as Web sites that collect the results of
dozens of major search engines have existed for years.
Neither was it Apple’s repeated—and bogus—claim
that Sherlock parses “plain English” to find your
results: the published specifications make it quite clear
that Sherlock passes the text you type in the main win-
dow to its plug-ins without a whit of parsing or filter-
ing. It just happens that most major search engines
can handle natural-language queries, or at least ignore
the common words that might derail such a search.
Nor was it even relevance-ranked results: Sherlock
does “relevance ranking” only because the Web search
engines return their idea of relevance with their
results; Sherlock just extracts the numbers and sorts
them.

The magic came from the simple text-only design
of the plug-ins. They contain no code, so automatic
retrieval from the Web and installation onto your sys-
tem invokes no security issues. The plug-ins have no
access to anything on your system other than the text
you type into Sherlock’s main window, so no privacy
problems arise. The concept’s utter simplicity amazed
us then and now.

A quick review: Every Web search engine automat-
ically returns HTML results using regular, predefined
patterns. Within those results, found occurrences,
URLs, and relevances are bracketed with predictable
text strings. Those patterns form a recognizable struc-
ture; knowing and understanding that structure allows
you to work with the items in flexible ways. That’s
exactly what a Sherlock plug-in does: mark a search
engine’s results, allowing Sherlock to interpret them
and display them in a list in a uniform format. We
can’t believe no one thought of it earlier. (MWJ
1998.10.19)

But the implementation wasn’t perfect. Sherlock’s
original “Search Internet” feature used a fixed-size
window that quickly constrained those using dozens
(or hundreds) of plug-ins. Mac OS 8.6 revised this,
allowing the window to grow and adding an “Uncheck
All” button to more easily allow starting a search with
just a few sites. Long before that, however, third-party
developers attacked the need for more intelligent
plug-in management. Some provided AppleScript sup-
port for moving sets of plug-ins in and out of the
“Internet Search Sites” folder; Apple Computer pub-
lished a few of these. Others wrote original code, with
our favorite being Casady & Greene’s Baker Street
Assistant, renamed from “Sherlock Assistant” after a
letter from Apple’s legal counsel. Most people clearly
wanted the capability built into Sherlock.

http://www.mvpsolutions.com/
http://www.conflictcatcher.com/bakerstreetassistant/default.html
http://www.conflictcatcher.com/bakerstreetassistant/default.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 11

Figure 4—Sherlock 2’s Internet Channel
Channel Expansion

Taking a page from their own QuickTime play-
book, Apple decided to look upon Sherlock 2 as some
kind of Internet viewer, so they call their sets channels.
Figure 4 shows the “Internet” channel in Sherlock 2,
with several “built-in” Internet Search Sites and one
(CNET’s Download.com) “custom” site. Pressing
Command-H brings you to this channel—even in the
Finder, which has adopted Sherlock’s “Search
Internet” key equivalent for the same item in its own
“File” menu. After you type the text you want to find
on the Net, click the magnifying glass (or press Return
or Enter) and Sherlock 2 goes out and searches as it
did before. The list continues to show all results
ranked by your choice of criteria; the pane below that
shows a brief description of each item, and the space
below that holds a banner advertisement. The main
window animates when you switch between files and
Internet searches—a small ad pane rises from the bot-
tom, then the list and the ad pane both grow, squeez-
ing the other pane smaller. You can grow the list, but
the ad pane can’t grow or shrink.

Sherlock 2 comes with seven pre-configured chan-
nels:

� The Internet channel has built-in plug-ins for
AltaVista, CNET, Direct Hit, Excite, GoTo.com,
HotBot, Infoseek, LookSmart, and Lycos

� The People channel contains new LDAP plug-ins
for Bigfoot, Four11, and Yahoo (more on these new
kinds of Internet Search Sites later in this article)

� The Shopping channel holds four built-in
Amazon.com plug-ins (Auctions, Books, Music, and
Video), plus Barnes & Noble and eBay (we’ll also dis-
cuss Shopping plug-ins later)

(see “Sherlock 2 The Next Level,” page 12)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure4

Page 12 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
� The News channel holds the plug-ins for CNET
News.com, CNN Interactive, ESPN, Motley Fool, and
Quicken.com

� The Apple channel’s built-in sites are for the
Macintosh Products Guide, Apple Software Updates
(English-North American, at least in the US release of
Mac OS 9), the Apple Tech Info Library, and
Apple.com itself

� The sparse Reference channel hosts
Dictionary.com, Encyclopedia.com, and Roget’s
Thesaurus

� And a default empty channel named “My
Channel” becomes your plug-in drop box

You might be tempted to refer to channels as
“sets” of plug-ins. Resist that temptation. When
Macintosh users think of “sets,” they usually invoke an
image of Conflict Catcher or Extensions Manager,
where a “set” of files enables or disables a specific
group out of a large set. Baker Street Assistant works
that way, telling Sherlock which plug-ins to use in a
search based on a set you choose in the add-on pro-
gram. Channels aren’t that way—once you select a
channel, only the plug-ins in that channel are available
for the search. You can enable or disable individual
Internet Search Sites within that channel with each
plug-in’s checkbox, but you can’t search all installed
plug-ins at once. If you want to search both
Amazon.com and AltaVista, you’ll have to do some
plug-in management on your own.

Channel Management

Fortunately, Sherlock 2 doesn’t make this too diffi-
cult. When you drop a plug-in on the closed system
folder, the Folder Manager and magic routing still
direct it to the Internet Search Sites folder, be that in
the System Folder or mapped to a user’s folder with
Multiple Users. Each channel, including the “Files”
channel, has its own folder within the Internet Search
Sites folder. Opening Sherlock 2 forces it to scan that
folder, and it routes all new plug-ins to “My Channel.”
(You can change this if you’re willing to hack on text
files, as you’ll see later in this article.)

Managing channels is easy—just grab a plug-in
from any channel’s list and drag it to another chan-
nel’s icon well. Sherlock 2 does the work for you.
Removing a site from a channel should be as easy as
removing a folder from Sherlock 2’s file-finding dis-

Sherlock 2 The Next Level
(continued from page 11)
play (Command-Delete or “Move to Trash” from the
“File” menu), but it’s not—you have to drag the plug-
in from the list to the Trash icon on the desktop.

Making new channels is easy, too: pick “New
Channel” from the “Channels” menu. You’re asked to
name the channel, pick one of four types (Searching,
People, Shopping, or News), select an icon to repre-
sent the channel in the main window, and enter an
optional description. That’s it—your new channel is
listed in the “Channels” menu and gets the next chan-
nel well. You can grow the window if there isn’t
enough room to see all your channels, or use the top-
most “grabber” to slide the list downward to reveal
more channel wells.

If you want to rearrange plug-ins manually, in the
Finder, just copy the plug-ins from one channel folder
to another. We say “copy” and not “move” deliberately:
if you try to remove a “built-in” plug-in from its intend-
ed channel, Sherlock 2 notices it, connects to Apple’s
Web site, and replaces the plug-in where it should go.
You’ll save download time by copying the files you
wish duplicated in other channels; you can’t (easily)
remove “built-in” plug-ins from their channels. (“My
Channel” has no plug-ins by default, nor do any chan-
nels you create, so whack on them to your heart’s con-
tent.)

Specialized Channels

Those four kinds of channels aren’t just eye
candy; a channel’s type determines how Sherlock 2
displays the results of its plug-ins. Both the searching
channel type (also called the Internet type in some con-
texts) and the reference type are like the Sherlock plug-
ins Mac OS 8.5 users already know—they display
columns for the item’s name, its relevance, and its site
(URL). A shopping channel, however, displays different
columns: name, price, availability, and site. By default,
shopping channels sort by price, so the cheapest items
matching your query text (numerical value only—
US$1.40 sorts ahead of £1.50) rise to the top. A news
channel has columns for name, relevance, date, and
site; the default sort is by date so you get the most
recent news first. The new people channels are the most
different of all with three new columns: name (mean-
ing a person’s name), E-mail address, and phone num-
ber.

You can mismatch plug-ins—Sherlock 2 doesn’t
stop you from placing a news plug-in on a shopping
channel, for example, but it serves little purpose.
Display is based on channel type, not plug-in type: a
news plug-in is unlikely to find “price” or “availability”
in its results, so any matches for the query text will be
mostly empty in a shopping channel’s display. News
and searching plug-ins and channels are close enough
to mix well.

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 13
Internet Search Site Changes

These new features require changes to the famil-
iar Sherlock plug-in specification, but nothing radical.
The basic gist of Internet Search Sites is unchanged:
search engines return regularly-formatted pages and
plug-ins describe how to find the content within them.
They’re still just text files.

The first addition is the routeType inside the
SEARCH block. Sherlock 2 wants to route plug-in files
to the appropriate channel, but the Folder Manager’s
magic routing would require a new file type to each
kind of plug-in. That’s far too unwieldy and it’s not
backwards compatible. Instead, Internet Search Sites
have the same file type (‘issp’) as before and they’re
still routed to the same folder. As noted, Sherlock 2
then places the plug-ins with the appropriate channel
the next time it’s run. It does this by opening the file
and reading the “routeType” field. If it’s present, it
should contain one of the six standard channel types:
“internet”, “people”, “apple”, “reference”, “news”, or
“shopping”. Any plug-in without one is routed to the
“miscellaneous” channel—”My Channel.”

The new columns in the new channel types
require plug-ins to describe how to find that informa-
tion. Sherlock 2 recognizes new delimiters to identify
price, availability, date, and a name (in case Sherlock
2’s default parsing isn’t good enough for the “name”
column). Plug-ins can also tell Sherlock 2 how to find
the ISO language and country code for results; the
program uses that to help interpret the “price” infor-
mation where digits might use different text encod-
ings.

Plug-ins have one additional option. Each
Internet Search Site file has a block named “INTER-
PRET” containing all the delimiters Sherlock 2 uses to
interpret results. Sherlock only allows one of these
blocks, but Sherlock 2 allows as many as a plug-in
author wants to write. One set of delimiters per item
might not work in all cases; multiple INTERPRET
blocks allow the same plug-in to describe alternate
ways a search engine might return its information to
Sherlock 2.

That’s it—other than these changes, plug-in files
work just as before. All existing plug-in files are
instantly compatible with Sherlock 2, with the caveat
that, absent a routeType field, they’ll all get put in “My
Channel” when you drop them on the System Folder.

People Plug-Ins

Well, there’s one exception to this. The new “peo-
ple” plug-ins are substantially different because they’re
not based on HTML. Sherlock 2’s people searching
uses LDAP, the Internet-standard Lightweight
Directory Access Protocol. Instead of parsing results
returned as text through the HTTP protocol, Sherlock
2 takes your typed text and forms an LDAP URL, send-
ing it to the specified LDAP server and waiting for
results. LDAP returns pre-defined fields, kind of like a
database, so “parsing” isn’t necessary.

Sherlock 2 cares about LDAP fields that map to
the person channel type: the cn field (“complete
name”), the mail field (E-mail address), and the
telephoneNumber field. A people plug-in needs only to
form the right LDAP URL from the text you type and
send it to the server; Sherlock 2 does the rest of the
work. People plug-ins tend to be short. Before writing
one, you should have a passing familiarity with LDAP
and know the format and capabilities of the server
you’re targeting. If you need interactive help, try play-
ing around with the LDAP URL in your Web browser.
Both Netscape Communicator 4.7 and Microsoft
Internet Explorer 4.5 have built-in LDAP clients that
will format and display results from any valid LDAP
URL, giving those writing people plug-ins a good way
to debug their attempts. Hopefully Apple will release
official people plug-in specifications soon—colleges
around the world would love to provide this capability
to faculty and students using existing LDAP servers.
It’s a wonderful idea.

Inside Sherlock Channels

So how do channels themselves work? Very simi-
larly. Plug-ins are written in an HTML-like language
called “Internet Search Interface Language,” or ISIL.
Apple has been kicking itself for this—the best way to
go would have been XML. Unfortunately, ISIL isn’t a
subset of XML, and backwards compatibility doesn’t
allow Apple to change the rules now without breaking
existing Sherlock plug-ins.

The company didn’t repeat the mistake with chan-
nels. Apple Computer has released no official specifi-
cations for channels—and may not, because Sherlock
2 creates them for you on demand, reducing the need
for external tools—but you can look at the existing
ones and learn a great deal. The XML definition of
each channel is found in the file “Channel Data”
inside the channel’s folder. Start small, with the data
for a channel you created in Sherlock 2. There’s not
much data there: the file contains a single “channel”
element with one attribute, a type of “internet”. In
XML syntax, it looks like this:

<channel type=”internet”>

</channel>

Now try one of Apple’s default channels. More
information, but nothing too complicated. Apple’s

(see “Sherlock 2 The Next Level,” page 14)

http://developer.apple.com/technotes/tn/tn1141.html
http://www.ldap.com/ldapworld/v3core.html
http://www.ldap.com//ldapworld/rfc2255.txt

Page 14 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
channels contain a routeType field, just like plug-ins
may now have, helping Sherlock 2 route plug-ins to
the right channels. Each of Apple’s channels also con-
tains one sourceUpdate element for each plug-in the
channel should have by default. The sourceUpdate
element has two attributes: the plug-in’s file name and
the URL where the channel can find that plug-in. (In
XML parlance, these elements contain no content, just
attributes, so they’re formatted like empty elements—
a slash appears before the closing angle bracket, elimi-
nating the need for a closing “</sourceUpdate>” tag.)

This is how Sherlock 2 manages its magic “built-in”
plug-ins. When the program opens a channel, it makes
sure the folder contains plug-in files with all the speci-
fied file names. If any are missing, it uses the URL to go
fetch the missing plug-in and install it in the channel.
You can’t get rid of the built-in plug-ins except by edit-
ing the “Channel Data” files themselves.

Copies of the default channels, by the way, are
found in ‘TEXT’ resources inside Sherlock 2’s resource
fork—if you delete one of the default channels,
Sherlock 2 warns you of your carelessness and recreates
it. This works well for Multiple Users, as it turns out.
Sherlock 2 doesn’t deal with plug-in aliases, and
Multiple Users doesn’t want to copy every plug-in for
every user you might create. So it creates an empty
Internet Search Sites folder. When each user first opens
Sherlock 2’s “Search Internet” feature, Sherlock realizes
there are no channels and no plug-ins, so it uses the
default information to recreate all the channels and
download all the plug-ins. Pretty nifty. (Owners can
avoid the delays by manually copying the system’s
Internet Search Sites folder to each user folder.)

The channel element also has its own
sourceUpdate attribute, containing a URL that points
to the channel data file’s home on the Internet. Just as
with plug-ins, Sherlock 2 checks channels at specified
intervals for updates. If the channel file on the Net is
newer, the program downloads and installs it.
Consequently, if that newer channel file specifies new
plug-ins that you don’t have, Sherlock 2 uses the URLs
of the plug-ins in the channel file to find them and
install them. Voila! Self-programming channels (and a
reason to be careful about modifying Apple’s channel
files—newer versions will wipe out your hand-entered
changes).

Without a formal definition, it’s impossible to say
if Sherlock 2 recognizes other elements or attributes
in channels, but just understanding this much shows
how to make your own self-repairing and self-updating
channels. Apple Computer doesn’t guarantee any of
this, but we know of no reason it wouldn’t work. As
always, proceed with caution—if you depend on

Sherlock 2 The Next Level
(continued from page 13)
undocumented features like channels, be prepared to
switch strategies on a dime if necessary.

Advertising Problems

Unfortunately, not all is well with Sherlock 2’s
Internet philosophy. Geoff Duncan noticed in TidBITS
about Sherlock 2 advertising. Duncan discovered that
Sherlock 2 does not display banner advertisements
from any search sites except those that come with Mac
OS 9. He notes that many were appalled that Sherlock
allowed sexually-explicit banner ads to pop up on
screens that might be in use by children, and Sherlock
2 fixes that problem. “I don’t know whether Apple
made this change to address issues of objectionable
content or whether it simply regards Sherlock’s ban-
ner area as prime advertising space available only to
partners. In any case, Sherlock does not display ban-
ner graphics from other sites, instead substituting an
Apple banner. This move may help Apple in schools
and homes, but may dissuade many sites from develop-
ing or supporting Sherlock plug-ins. After all, such
sites’ banner advertising apparently won’t be dis-
played—even if it’s perfectly innocuous—unless they
can somehow become an ‘approved’ site. This could
reduce Sherlock’s Internet searching capability to a
mere bundling opportunity for large Internet services
and retailers.” After reading this, we confirmed it on
our own system.

Our requests to Apple for comment on this issue
went unanswered. As advertising-averse as we are, we
do think this is a big issue.

First, the technical details. You can reverse this
procedure on your own system. The key is the
“Sherlock Default” file, stored in the “Sherlock Prefs”
folder of your Preferences folder (or of any user’s
Preferences folder if Multiple Users is active). Despite
its preferences file type, this is yet another text file,
using Apple’s Internet Search Interface Language.
After some housekeeping information, you’ll see a
long list of XML-like empty “type1Source” elements,
each with a “name” attribute corresponding to an
installed Sherlock plug-in. If you add your favorite site
as a “type1Source,” Sherlock 2 will display that plug-
in’s advertising banners. We do not know what the
similar “type3Source” attributes mean. We know that
internally, Sherlock also understands a “type2Source,”
but we’re not sure how Sherlock 2 interprets that,
either.

If you change the file, you might want to change
the “update” interval at the top of the file. Otherwise,
if Apple updates the “Sherlock Default” file (to
include more “type1Source” sites, perhaps), Sherlock
2 will download a new version and overwrite your
changes. If you lose the file altogether, Sherlock 2

http://www.tidbits.com/tb-issues/TidBITS-503.html#lnk3

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 15
recreates it from defaults stored in its ‘TEXT’ resource
of ID 1000.

The problem, of course, is that you don’t want to
update your Sherlock files to add banner advertise-
ments. Plug-in developers want to do so, and to our
knowledge, they can’t without asking you to replace
the “Sherlock Default” file. (Apple may have built in a
hidden tag in plug-ins that says “this is an approved
plug-in,” but we haven’t figured out what it is if it
exists.) Web sites use the banner ad revenue from
search sites to help pay for the search service; this was
Sherlock’s great compromise. By displaying each site’s
banner ads, the Webmasters had little to fear from
Sherlock’s use of their bandwidth (except that, with
some engines, Sherlock didn’t show you the other 57
ads placed on each page). If Sherlock 2 uses that
search engine but fails to pass through ads that gener-
ate revenue, the Webmasters are better served by forc-
ing you to their site in your Web browser. Including
Apple’s own ads instead of the ones that pay for the
server just adds insult to injury.

Web sites can block Sherlock 2 from their servers,
at the expense of blocking the entire URL Access
mechanism Sherlock uses. The “User-Agent” field in
the HTTP protocol header sent to each searched site
identifies the requestor as “URL_Access/2.0
(Macintosh; PPC)”. It’s not difficult for most heavy-
duty sites to refuse requests from such agents, locking
you, Sherlock, and even the Network Browser out of
those servers from that point onward. We predict it
won’t take long for search engines to start doing this if
the demand on their servers doesn’t produce the
advertising exposures necessary to pay for the band-
width and equipment time.

Sherlock wins over tools like Copernic (MWJ
1999.07.03) because non-programmers can create
plug-ins with little difficulty, and because the coopera-
tion in advertising banners gives Webmasters little rea-
son to be threatened. Sherlock 2 doesn’t merely upset
this delicate balance, it destroys it. If Apple isn’t care-
ful, Sherlock 2 may wind up even less useful than
Copernic because only the approved Web sites will
allow searches. That’s not what people expect from an
“upgrade.”

It hasn’t happened yet, but we see it on the hori-
zon if Apple does not resolve this issue carefully.

AppleScript Support
The new features in Sherlock 2 required changes

in the program’s scripting dictionary—what fun would
it be to have new features you couldn’t automate? The
major addition, of course, is channels. Sherlock 2’s
AppleScript dictionary revises most of the Internet
verbs to take optional channel parameters. The
“search Internet” and “select search site” verbs both
take an optional “in channel” parameter: a string with
the name of the channel to use. If you omit a channel,
Sherlock 2 defaults to the “Internet” channel, even if
another one is selected in the application’s main win-
dow.

The dictionary adds channel as a class, and the nor-
mal AppleScript verbs “count”, “exists”, “get” and “set”
all work. Both the channel and the application have
an “all search sites” property, but unfortunately nei-
ther has a “site” property. You can get all search sites
in a given channel, but you can’t get “site 2” or “first
site” of any channel. Sherlock 2 allows changing the
current channel, but not changing any channel con-
tents—sites and names are read-only. You can’t create
new channels or manage existing ones through
AppleScript, save that you can count the sites in a
channel and get their names.

Existing verbs from Sherlock still work, but the
behavior of some has changed. Sherlock allows you to
script an Internet search with a supplied list of sites to
search. Sherlock 2 does the same, but ignores any sites
in the list that aren’t in the current (or specified)
channel. The “current tab” property from Sherlock
(to change the main window to Find File, Find By
Content, or Search Internet) still works, but the
appropriate Sherlock 2 interface appears instead.
Setting the current tab to “Find By Content” opens the
“Files” channel and selects the “content” radio button
(as does pressing Command-G, just as it did in
Sherlock).

Sherlock 2 also adds a new AppleScript command
to index one or more containers in case your hard
drive is too large and ponderous to maintain a drive-
wide index (like Sherlock, Sherlock 2 lacks this option
in its human interface, although you can still do it by
Control-clicking items in the Finder). Sherlock 2
allows automated indexing of just those folders you
wish indexed. Your content-based searches will obvi-
ously be restricted to those folders, but that’s probably
what you want if you pursue this path.

Interface Inanities
All in all, Sherlock 2 is a powerful and logical evo-

lution of the meta-search utility. Yet we can almost
guarantee loud complaints from dissatisfied users
because of a key Apple blunder—the human inter-
face. Despite vocal complaints from Macintosh owners
and human factors designers, Apple has foisted the
“QuickTime 4 Player” brushed-metal interface on
Sherlock 2. It is a mistake. If the program were not so
useful, it might have been a fatal one.

As with QuickTime 4, Sherlock 2’s windows have
lots of gee-whiz animations and interesting visual

(see “Sherlock 2 The Next Level,” page 16)

Page 16 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
effects, but are lacking in standard useful elements. A
real title bar and a collapse box are both missing, so
you can’t collapse the window. The absent zoom box
means resizing the window requires growing it manu-
ally via the grow box in the lower-right corner. All
“brushed metal” areas are part of the window’s drag
region, so it moves under your mouse when you don’t
expect it.

Our nomination for “boneheaded interface move
of the year” is part of the “brushed metal” interface.
Sherlock 2 (and Sherlock) disable most functions dur-
ing a search, forcing you to stop the search before
changing anything or choosing menu commands. Fair
enough—the options for stopping are standard and
easy to find. However, the text field with search terms
is one of those areas that becomes disabled while a
search is in progress. That’s also fair. What’s dumb is

Sherlock 2 The Next Level
(continued from page 15)
Figure 5—Internet
that in the “brushed metal” interface, the disabled text
looks no different than regular text, and the disabled
field invisibly becomes part of the window’s drag
region.

Stopping is not instantaneous—it make take sever-
al seconds to abort an Internet search. During that
delay, everything is still disabled. If you don’t notice
this, you might try to change your search parameters
by clicking and dragging in the search terms field.
Oops—it’s still disabled, though it looks no different.
And like other non-content areas, it’s part of the win-
dow’s drag region, so you’ve just picked up your win-
dow and moved it halfway across the screen.

This is unfortunately the major feature of the
QuickTime 4 interface—trendy appearance triumph-
ing over the familiar ways of working with a Macintosh
we’ve all learned over the years. Nothing prohibits this
program from having a standard human interface—or
at the very least use an Appearance Manager theme
that’s visually exciting while maintaining the behaviors
 Search Results

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 17
all Macintosh owners expect. Clicking and dragging in
disabled text fields should not move the window. That
Apple would permit such shallowness in Mac OS 9’s
number-one feature is truly depressing.

Sherlock 2 takes another interesting departure
from Sherlock—results of all searches display in the
original search window. Sherlock displayed only one
“Find” window at a time but permitted as many results
windows as RAM allowed. Sherlock 2 can display as
many windows as you like (up to RAM limits), but
search information and results stay in the same win-
dow. The consequences are subtle but important. In
Sherlock, starting a new search lost the original search
terms, but they were summarized for you under the
results list in the results window (as well as in the
results window title). With Sherlock 2, the results
replace the search criteria. When finding files, the
results replace both the list of searched items and the
“sentence-like” description of the search terms. For
Internet searches, the terms remain visible in the text
field but the results replace the list of sites. Figure 5
shows the results of an Internet search.

In either case, the only way to recover your origi-
nal search terms is to double-click on the current
channel. That replaces the results with your searching
parameters—but then you have to perform the search
again if you want to see the results. With Sherlock, you
could see both the search inputs and outputs at once if
you wanted. It’s not possible in Sherlock 2.

This change is not related to the QuickTime 4
silliness. The single-window metaphor would work
exactly the same with standard windows. We see the
conceptual advantage in keeping searches and results
in a single window, but it ironically makes less informa-
tion visible than the older method. Trading that for a
slight conceptual advantage doesn’t seem worth it.
The QuickTime 4 crap certainly isn’t worth it. It should
either be retired or made optional as soon as possible.

Sherlock 2 Thrives
The most annoying aspect of the new interface’s

shortcomings is that Apple Computer may not get the
message. Sherlock 2 is a great improvement on a great
feature. People will use it, people will love it—and
Apple may therefore incorrectly think the interface
isn’t an issue. We think Sherlock 2 will succeed not
because of its interface, but in spite of it.

Sherlock 2 is everything we’d hope for from an
evolutionary upgrade to Sherlock. Its strengths are so
robust that the few holes it still has look even more
glaring, like small splotches of red paint on an other-
wise pristine canvas. Breaking down the wall between
“Find File” and “Find By Content” makes both features
immeasurably more useful. Logically distinct, self-
repairing and updating channels are inspired, and will
be even more so when developers can provide their
own with full support. People, shopping, and news
plug-ins logically extend a great idea and make it even
better.

Sherlock 2 will be part of your daily information
arsenal regardless of the QuickTime 4 appearance.
Lots of people still use MoviePlayer 3 instead of
QuickTime 4 Player to avoid the insipid human factors
choices, but we don’t see anyone sticking with
Sherlock instead of Sherlock 2. The best testimonial
the program could hope for is true: it overcomes its
own defective interface. ❖
Mac OS 9

Sharing Your Personal Space
Making One Macintosh Personal and Secure for Several
Apple has a large customer base in education, par-
ticularly K-12 schools, and it’s rare to find a school at
which every child has his or her own computer every-
where one is needed. The same is now often true of
home computers as well—as kids and adults become
more computer-literate, the home computer is not the
sole domain of one family member who performs
tasks on the machine for the rest of his unanointed
household. Offices are a different story, but often
many people share school and home computers, two
of Apple’s key current markets.
This has always been something of a problem for
the customizable Macintosh. You find the perfect
desktop picture, the perfect system font, the perfect
set of obnoxious sounds from Monty Python’s latest. You
position all your windows exactly perfectly, with the
tabs on the pop-up windows aligned just so and the
window positions of your five busiest folders neatly
tiling when they’re all open. You go to bed quite satis-
fied with your impending increases in personal pro-

(see “Sharing Your Personal Space,” page 18)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure5

Page 18 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
ductivity—and get up the next morning just to discov-
er that your eight-year-old daughter got up first,
replaced the desktop picture with Pokemon, moved all
your windows, and reset the resolution to play
Nanosaur. Before you can even say a word, she says,
“Eww, daddy, you should have seen the ugly things
someone did to your computer, but I fixed it for you!”
So much for that head of steam.

Three of Apple’s nine “Internet Power Tools”—
Multiple Users, Voice Verification, and Apple File
Security—although having little to do with the
Internet itself, can help you share your computing
experience in a much narrower sense by making it eas-
ier and more secure for other persons to use your
Macintosh. A fourth new but unhyped feature—file
signing—combines with Apple File Security to provide
Mac OS 9’s beefed-up security capabilities. Let’s look
at how Apple has made it easier for even the stingiest
and most secretive among us to share and share alike.

A Shared History
Apple has been trying to address this problem for

some time in schools through optional add-on soft-
ware like At Ease and Macintosh Manager. A work-
group leader (called a “teacher” by people who aren’t
writing computer documentation) sets up individual
users (students) and workgroups (classes or study
groups) on a centrally-administrated server. When the
kids sit down at a Macintosh, they boot into a login
program where they identify themselves. The server
then provides their applications, files, and some per-
sonal preferences to whichever computer they hap-
pened to pick. The students don’t have to save their
files on floppy disks or sit down at the same computer
every time to get to their work on the hard drive. In
fact, teachers can prohibit students from writing to or
reading from the hard drive. Teachers can also force
new documents into a specific folder on the server,
make “drop boxes” for submitting homework (you can
put a file in but can’t take it back out), limit which
applications students can run, and even control
whether students can see removable media like floppy
disks or CD-ROMs, just to keep them from sticking in
a disk from home with a malicious application on it
and wreaking havoc.

At Ease was originally consumer-level software,
included as a Finder replacement on Performa sys-
tems to make the system easier for beginning
Macintosh users. The interface presented two big,
friendly panels—one for applications, and one for
documents, hiding the complexity of the big ugly
Finder from novices. Of course, you can’t do much

Sharing Your Personal Space
(continued from page 17)
with At Ease, but schools loved it—a way to keep kids
from doing much other than what they were supposed
to be doing was most welcome. Starting with version
3.0, At Ease pretty much morphed into “At Ease for
Workgroups,” where it continued to grow and
improve, eventually adding such features as Web
access and sophisticated user tracking—not only the
file management described earlier, but also tools like
printer quotas (so kids don’t print 6,000 copies of
“You Suck” in 255-point Charcoal), and application-
specific preferences for each user.

With Mac OS X Server, however, came a new chal-
lenge—NetBooting. At Ease wasn’t up to this, so Apple
replaced it with the Macintosh Manager. The newer
program includes most, though not all, of At Ease
5.0’s features, and works with both NetBoot and local-
ly-booted computers. (Unfortunately, it removes At
Ease’s capability to prevent kids from booting a system
from a local floppy or CD-ROM disk, a topic we’ll
come back to later.)

While the multiple-user capability of networked
Macs has continued to evolve, the home version evap-
orated. At Ease’s transition to a schools-only product
left home-oriented Mac OS machines without much to
soften the Finder learning curve. The “Launcher” con-
trol panel helped somewhat, as did the Mac OS 8
Finder additions of “Simple Finder” and button views,
but that’s been about it. At the same time, Apple has
clearly been moving towards including functionality in
the Mac OS that was previously provided by add-on
software, from language kits to menu bar clocks.

Making It Personal
Enter the Multiple Users Control Panel, one of

Apple’s “Internet Power Tools” and the successor to
both At Ease and the Macintosh Manager. Multiple
Users stores preferences and restrictions for each of
up to forty users on a single computer. When Multiple
User Accounts are turned on in the Multiple Users
Control Panel, the system changes in subtle but impor-
tant and highly useful ways.

First and most noticeable is that system startup
stops before you reach the Finder with a large
“Welcome to Mac OS” dialog box. Depending on the
global Multiple Users options, you may see a list of
approved users with names and representative icons
(the Control Panel comes with several you can use, or
you can paste in your own) and three options: shut-
down, change password, or log in. If the list isn’t pre-
sent, you see a simple text field where you must type a
user name. Once you type or choose the right user
name, you’re asked for a password. Typing it is always
an option, but another choice is one of Apple’s other
“Nine Internet Power Tools” that we’ll get to shortly. If
you mistype your password, the dialog box shakes

http://til.info.apple.com/techinfo.nsf/artnum/n31060
http://til.info.apple.com/techinfo.nsf/artnum/n60084
http://www.apple.com/macos/feature2.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 19

Figure 2—Configuring Limited Users
from left to right as if it’s shaking its head “no,” a cute
interface gimmick lifted from NextStep.

If you log in as the owner, the Macintosh is the
same as it always was, with one exception—the bottom
of the “Special” menu now contains a “Logout” item
with key equivalent Command-Q. If you log out, you
must first confirm your intent (including acknowledg-
ing that logging out always empties your trash, a warn-
ing you see only if there’s anything in the trash).
Multiple Users then sends ‘quit’ Apple events to every
visible application on the system, repeated every few
seconds until they actually quit. (There’s no way to
stop this; once you say you want to log out, you’re
going to log out.) Faceless background applications
continue to work. When all visible applications have
quit, the Finder goes away as well, and you’re returned
to the “Welcome to Mac OS” dialog box. You can log
in again, or pick a different user, or shut down the
computer (including a dialog box that gives you fif-
teen seconds to cancel or shut down before it shuts
down for you). Pressing the Power key or button gives
you the option to restart, cancel, or shut down.

Three Degrees Of Freedom
Things aren’t much different than before for the

owner. Other users, however, are now grouped into
three new categories, with the system now working a
little differently for each. The owner specifies what
privileges other users have on the computer, mostly by
assigning them to one of three user environments:

Normal Users

A normal user sees the system much as the owner
does, with a few notable differences. The desktop con-

(see “Sharing Your Personal Space,” page 20)

Page 20 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
tains an alias to a folder titled after that user name,
and by default all of the normal user’s documents are
saved in that folder; it’s the starting place for both
Standard File and Navigation Services. There’s a simi-
lar folder for every user who is not the owner. (We’ll
explore another folder, entitled “Items for” that user
name, presently.)

By default, normal users cannot access any docu-
ments belonging to other users—though the owner
can explicitly permit normal users to read, write, or
read and write documents in other user folders. You
need to read the checkbox allowing this carefully,
though—when you check it for a given user, it permits
other users access to that user’s information, not the
other way around. You can’t make a normal user into
a “super-normal user” who can see into anyone else’s
documents; you can only grant permissions for others
to see into any given user’s folder.

Sharing Your Personal Space
(continued from page 19)
Figure 7—The Pa
They’re called “normal” users because most things
seem normal, but subtle restrictions are in place. Only
the owner can access certain control panels that affect
some system-wide settings. The list isn’t documented,
but it includes all Open Transport Control Panels as
well as the Memory Control Panel. Those that affect
how you use the computer are accessible—including
Web Sharing, Date & Time, Keyboard, Mouse, and
even Startup Disk. The owner can even let a normal
user manage the Multiple Users Control Panel, allow-
ing that person to change anything about any user
(including decreasing his or her own privileges)
except the owner. Only the owner may change the
owner’s user information, a logical precaution.

Limited Users

A limited user also logs into a familiar Finder envi-
ronment but is not allowed access to many parts of the
system. Figure 6 shows the setup panel for a limited
user with user name “Christopher.” The options are
quite restricting: limited users can be prohibited from
nels Interface

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure6

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 21
accessing CD-ROM or DVD-ROM discs (or all remov-
able media). They can be kept out of the Chooser and
the Network Browser (improved in Mac OS 9), out of
all Control Panels, out of all the other Apple Menu
Items, and even out of the “Shared Folder,” a special
folder all users can read and write to so they can share
documents without running into access problems.
Limited users can be prevented from printing, also, or
at least restricted to specific desktop printers (the
restriction doesn’t apply to printer drivers that don’t
create desktop printers, giving printer driver authors
yet another nudge to update to the specification
Apple released in February 1997 and implemented in
Mac OS 8.5, MWJ 1998.08.17).

The “Applications” tab holds a scrolling list of
items (each with checkboxes) that, by default, con-
tains every application available on the system. A limit-
ed user can only open checked items—any application
not checked in the list is visible, but if you’re a limited
user and you try to open it, the Finder tells you it
“could not be opened, because you do not have
enough access privileges.” It doesn’t suggest where you
could get more. An “Add Other…” button allows
adding non-application items to the list, like Control
Panels or documents. The Multiple Users Control
Panel has built-in capability to screen out AppleScript
applications so you don’t have to walk the list and
uncheck all of them. Aliases to all of the allowed items
are in the “Items for “ user name folder, an alias to
which is maintained on the desktop for each normal
or limited user.

Unfortunately, we found potential holes in the
application screening feature. If a limited user tries to
open a document belonging to a disallowed applica-
tion, he’s usually prohibited by the Finder. However,
even though we tried disallowing SimpleText for a lim-
ited user, the program still launched for that user nor-
mally. Other disallowed programs behaved as they
should have; perhaps Mac OS 9 exempts SimpleText
from the restriction. Use caution, as we couldn’t test
all programs, and since we don’t know why the screen-
ing fails on SimpleText, it may for other programs too.

The other serious restriction for limited users is
that they can’t save files outside of their own folders.
They can read files anywhere, but they can only write
files within the folder bearing their user name (or, if
allowed, within the Shared Folder that all users may
access). This prevents common Mac vandalism—trash-
ing folders, making dozens of copies of large folders,
throwing away your sister’s science project, and so
forth. Mounted server volumes are unaffected by this
restriction, but AppleShare volumes have their own
comprehensive set of access privileges; Multiple Users
does not interfere with that, except that limited users
may not open applications on servers unless they’re
explicitly permitted.
Panels Users

A panels user is the most restricted of all. The
interface, as shown in Figure 7, is a combination of
the former At Ease display and the NeXT File
Browser—a group of very large panes with very large
icons and text in them, thankfully configurable to be
somewhat smaller in case you’re not disablingly near-
sighted. If you open a folder in one of the panes, a
new pane opens up alongside the others. There is no
overlapping; our iMac screen held four panes before
extra ones started collapsing to tabs at the bottom of
the screen. The top of each pane holds a left-pointing
arrow that’s darkened (enabled) if you can click on it
to go “back” to the previous view. Like the Finder,
each pane has separate view options, explaining why
the “Items” pane uses smaller icons with Geneva 12
text while the other panes use very large icons with
very large text. (The preferences include an option to
“smooth” very large icons, since the icons themselves
aren’t that large and would otherwise look chunky at
such magnification.)

This works in classic “At Ease” fashion by replac-
ing the Finder. As you see in the top right of Figure 7,
the application name is “Panels.” Since there’s no
Finder behind the scenes, a panels user can’t poke
around and see inside areas where he’s not permitted.
If a folder or an alias to it is not within a panels user’s
personal folder, it’s off-limits. Servers aren’t that way,
but owners can effectively eliminate this threat by
removing access to the Chooser (and Network
Browser) and to Apple Menu Items. That rules out
logging on to servers or selecting “Recent Servers”
alias items. To get to a server, an alias to the server
would have to be in the panels user’s personal folder.

Keeping Them All In Line

A machine’s owner can also set global restrictions
with the “Options” button in the Multiple Users
Control Panel. There’s an optional login message, and
instead of choosing your user name from a list you
may speak it if speech recognition is installed and
turned on. There’s a pop-up menu allowing alternate
password selection; it currently contains only one
item, as we’ll see shortly. The owner can also automati-
cally log out any user who is idle for a specified num-
ber of minutes, or just lock the screen to keep prying
eyes away. CD-ROM and DVD-ROM content can be
monitored on a disc-by-disc basis, with some discs com-
pletely disallowed, and others allowed but restricted to
pre-determined content (as with limited and panels
users, the owner specifies which content on the disk is
allowed; the rest is disallowed). The owner may allow a

(see “Sharing Your Personal Space,” page 22)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure7

Page 22 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
guest account with no password (as a normal, limited,
or panels user). The owner also determines whether
users type their names or pick from a list, with the for-
mer being less convenient but more secure. Mac OS 9
can look for user information either from Multiple
Users on the local machine, or from Macintosh
Manager on a Mac OS X Server system on the local
network. And finally, but not insignificantly, the owner
can choose to be notified every time a user installs a
new application so he may set access privileges appro-
priately.

Behind The Scenes
This probably seems like a giant kludge—folders

vanishing and reappearing, applications not launch-
ing, and customized preferences being switched in
and out. The latter, in particular, sounds like a ton of
swapping files around—not an encouraging thought,
because a crash during the middle of a swap could
leave the system pretty thrashed. But in fact, there’s
not much of that going on—even less than with
Macintosh Manager on NetBoot clients. Instead,
Multiple Users relies on a System 7-level capability of
the Mac OS, grabbing control of it behind the scenes
in a way that makes the feature both less kludgy and
extremely powerful.

Folding the Disk Space Continuum

The Folder Manager was originally a simple piece of
Macintosh software that mapped values representing
the locations of “special” folders (the System Folder,

Sharing Your Personal Space
(continued from page 21)

Figure 8—The User Folder As Owner Sees It
the Extensions folder, the Desktop folder, and so on)
to their actual locations on disk. Introduced in System
7, the Folder Manager started out very simply—it used
a resource of type ‘fld#’ to map the values to the
names of folders within the System folder. That was
enhanced in Mac OS 8 to allow tracked folders within
other tracked folders (so, for example, the Folder
Manager can track “Location Manager Modules” with-
in the “Extensions” folder).

The Folder Manager originally served to track
these folders across languages (the “Extensions” folder
isn’t spelled that way in Icelandic). Mac OS 8 also
added a way for applications or extensions to add their
own “special” folders to the list (MDJ 1997.07.24). Mac
OS 8.5 expanded the list of pre-defined “special” fold-
ers by about 20, and added a mechanism for software
to tell the Folder Manager (and the Finder) that spe-
cific files should be “auto-routed” to special folders.
Before Mac OS 8.5, only the Finder decided whether
or not to divert files dropped on the System Folder
icon to subfolders within the System Folder, much less
which files went to which folders. With Mac OS 8.5
and later, other software can add to or modify this
routing list (MWJ 1998.03.23, 1998.10.19).

The clear trend is towards making the Folder
Manager more comprehensive and more useful. In
the past two years it’s expanded far beyond simple lan-
guage translations of common folder names into
becoming a system-wide repository for folders that
multiple programs might like to find and for more
complete organization of files within the System
Folder. With Multiple Users, however, the Folder
Manager takes bold steps in a direction it had previ-
ously only inched—redirecting those folders on a cur-
rently running system.

Figure 9—The User Folder As That User Sees It

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 23
The original point of the Folder Manager was to
prevent applications from hard-coding the locations of
important folders. Now that eight years have passed
and applications have taken this to heart, Multiple
Users can take advantage of it. An Installer application
might believe it’s just asking for the location of the
Apple Menu Items folder so it doesn’t have to worry
about foreign languages. Multiple Users goes one step
further, making the Folder Manager return a different
folder dependent on which user is logged in.

Private Folders, Private Files

Nothing really changes for the owner—all of the
special folders are where you’d expect to find them.
But for all other classes of users, Multiple Users redi-
rects the Folder Manager to point at similarly named
folders inside the user folder. Figure 8 shows the
owner’s view of a normal user’s folder, and Figure 9
shows the same folder as seen by that logged-in nor-
mal user. Note the contrasts: Figure 9 shows several
standard folders with their “special folder” icons;
Figure 8 shows the same folders, but without the icons.
The system is actually using these folders in the user
folder as the special folders when that user is logged
in. The Finder uses the Folder Manager to determine
which folders are “special,” and it only draws the icons
for the tracked folders. The system isn’t copying files
back and forth, nor is it somehow hacking the System
Folder to make it look right. Multiple Users has simply
told the Folder Manager that while this user is logged
in, these folders are the special folders.

It works in every significant way—if you drag a file
to the System Folder that should go into the Apple
Menu Items folder, it gets routed to the active Apple
Menu Items folder in the user’s folder, not to the
“real” one in the System Folder. When logged in as a
normal user, many of the folders in the System Folder
no longer have the special icons because they’re not
the active special folders. Note, however, that it’s not
true for every special folder—those that affect the
entire system remain mapped to the real System
Folder and therefore inaccessible to limited and pan-
els users. Unmapped special folders include Control
Panels, Extensions (including the “disabled” variants),
Appearance, ColorSync Profiles, Contextual Menu
Items, Control Strip Modules, Fonts, Language &
Region Support, Scripting Additions, Scripts, and Text
Encodings.

More important are all the folders that are
mapped—Apple Menu Items, PrintMonitor
Documents, Desktop Pictures (not the entire
Appearance folder, but the visually important part),
Documents, Favorites, Internet Search Sites, Launcher
Items, Preferences, Startup Items, and Shutdown
Items. You see one item in Figure 9 that’s not in
Figure 8—the Desktop Folder. Since the Finder asks
the Folder Manager where the Desktop Folder is,
Multiple Users can redirect it as well, giving every user
his or her own customized desktop. The normal user’s
desktop folder is itself invisible to that user when
logged in, just like your desktop folder is invisible to
you now.

Making It Work

Multiple Users changes some other portions of
the Mac OS aside from the Folder Manager to make
things work as expected. It patches into the File
Manager, the part of the Mac OS responsible for
accessing files on disks, so limited users and panels
users can’t write to any folders except their user fold-
ers. This works by copying the AppleShare security
model. Multiple Users returns errors when programs
try to write in folders where they don’t have access. It
doesn’t return the classic “file is locked” or “disk is
locked” result, however, because too many applica-
tions over the years simply throw up modal dialog
boxes and tell you to unlock the file or disk—some-
thing you can’t do. Instead, Multiple Users returns the
more complex AppleShare access results, as most pro-
grams over the years have been revised to understand
that there are read-only servers, that some folders may
have different privileges than others, and that the user
typically can’t “fix” this.

The only strangeness is a paradox involving the
“Application Support” folder, one added in Mac OS 8
for applications that need space on the startup disk
(and intended to eliminate System Folder residents
like “Eudora Folder”, the “Claris” folder, the “MS
Internet” and “MS Preference Panels” folders, and so
on). Mac OS 8.5 made it more useful by making the
Mac OS automatically search for missing shared
libraries in the Application Support folder, allowing
developers to move them out of the Extensions folder
(MWJ 1998.10.19). AppleWorks, for one, now uses this
folder as it should. The Application Support folder is
supposed to hold files that support the application
across all users (dictionaries, plug-ins, and so forth),
so it’s not redirected for each user. But applications
obviously need write permission to this folder, and lim-
ited and panels users don’t get write permission to any
folders that aren’t redirected to their user folder.

Apple’s solution is to cheat—Multiple Users
makes the File Manager pretend that limited and pan-
els users can’t write to the Application Support folder,
and all code that checks for access will believe it (the
Finder, Standard File, Navigation Services, Panels, and
other relevant code all lists the folder as read-only)—
but if a program actually tries to write to the folder, it

(see “Sharing Your Personal Space,” page 24)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure8
http://www.gcsf.com/extras/mwj/mos9special/index.html#figure9

Page 24 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
works. This is the only exception, and is noted in
Apple’s Multiple Users developer documentation.
Software can also fairly easily determine if Multiple
Users is running and which user is logged in (includ-
ing whether or not the current user is the owner),
allowing applications to tailor error messages appro-
priately. For example, we can imagine a not-too-distant
future in which installer programs accidentally
enabled for limited or panels users present clear error
messages: “Someone with more access privileges, like
this computer’s owner, needs to install this software.
You do not have permission.”

Login: Setup Tasks

Although most things just work with Multiple
Users, there are some minor revisions to the Finder
and other system components to present a more seam-
less access picture. Most of Multiple Users’s setup is
handled by “Login.” Like the Finder or the new
“Panels” application, Login is a system-level applica-
tion—the one the Mac OS launches first (instead of
the Finder) when Multiple Users features are active.

Login is responsible for making sure each user’s
folder matches the privileges granted in the Multiple
Users Control Panel. For example, owners may restrict
panels users and limited users from accessing “Other
Apple Menu Items,” meaning the owner’s Apple Menu
Items. Normal users and others without this restriction
each have their own Apple Menu Items folders, but
Login makes sure those user-specific folders also con-
tain aliases to all of the items from the Apple Menu
Items folder in the System Folder. If the owner adds
the restriction later, Login makes sure all aliases to dis-
allowed items are removed from the user-specific fold-
ers before those users get to start using the computer.
(Individual items in each user’s Apple Menu Items
folder aren’t affected by the restriction.)

As noted earlier, the owner controls whether any
user’s folder is visible to other users, and with what
permissions; the default is to disallow such access.
Each user’s folder has the user name as the folder’s
name and is located in the “Users” folder at the root
of the startup disk.

Suppose you have three users: “Christopher,”
“Debby,” and “John,” and suppose that Debby’s folder
allows the other users to see her documents, while
both Christopher’s and John’s folders prohibit such
viewing. When either Christopher or John log in,
they’ll see their own folders plus “Debby” at the root
of the “Users” folder, as well as the “Shared
Documents” folders all users have access to (unless
restricted by the owner). What’s more, their own

Sharing Your Personal Space
(continued from page 23)
“Documents” folders (in their namesake folders) will
contain a new folder, titled “Other Users,” with aliases
to Debby’s user folder. However, Christopher will not
see the “John” folder, and vice versa. In fact, inaccessi-
ble user folders are not only read-protected, but also
made invisible so other users aren’t tempted to look or
tinker.

The concept of Multiple Users requires some file
shuffling, and Login handles those tasks—but mostly
by managing aliases to existing documents and hiding
the folders of other users. Even if the system crashes at
an inopportune time, Login can reset everything
based on the proper settings the next time each affect-
ed user logs in. Other applications can learn which
user is logged in (or even if Multiple Users is active at
all) and act accordingly, but for the most part even the
Finder seems remarkably happy with each user’s set-
tings as Login creates them.

Not For James Bond
All in all, Multiple Users offers a reasonably solid

implementation to keep users out of each others’ doc-
uments. Since the Login program is the “shell” (in tra-
ditional Mac OS parlance), it’s the program you
return to when all applications quit, so even force-quit-
ting applications wouldn’t provide a malicious user
unauthorized access. Multiple Users itself is not an
application, so its protections can’t be eliminated
through such Process Manager tricks.

However, it is not foolproof. Multiple Users
encrypts each user’s password so it can’t be retrieved
except by Login or the Multiple Users Control Panel,
but the strength of the password encryption algorithm
is unknown. Also note there are no Open Firmware
updates with Mac OS 9—Multiple Users does not and
cannot prevent anyone from starting the machine
from a CD-ROM or other disk. Neither does it encrypt
the disk itself, so once the system is started without
Multiple Users’s protection, all files and folders are
just as accessible as if the owner were logged on (or
Multiple Users were turned off).

Once you’re up and running, the access restric-
tions work as you’d expect. The weakest link here is
the restriction on launching applications. We’ve
already noted that we couldn’t keep any users from
launching SimpleText, and we don’t know if other
applications are similarly exempt. The problem is that
the restrictions are not in the Mac OS’s Process
Manager, but in the Finder and Panels. Each limited
or panels users has an “Items for [user name]” folder
containing the aliases of every application that should
be allowed; applications not aliased into that folder
should be disallowed. (Limited users can open these
applications by double-clicking documents, but panels
users see only these items in their “Items” pane.) The

http://developer.apple.com/technotes/tn/tn1186.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 25

Figure 10—Voice Verification
folder is read-only so users can’t add or remove items
without permission.

Unfortunately, applications beyond the Finder
and Panels can still launch programs (a facility neces-
sary for some programs—for example, Microsoft
Office has to be able to launch Microsoft Office First
Run if it detects missing components), and Multiple
Users has no interference there. If you give a restrict-
ed user access to a program that directly launches
other applications, he’ll be able to run whatever he
wants. (DragThing and others of its ilk won’t work—
they rely on the Finder to open applications, and the
Finder respects Multiple Users’s settings.)

Apple Help notes one of the biggest implications
of this hole: if any restricted users can launch Script
Editor, they can launch any program they like: “tell
application ‘blah’ to activate”. In turn, that opens a
hole if restricted users can run any AppleScript that
might stop with an error, because the standard
AppleScript error-reporting dialog box allows editing
the script. This is probably why Multiple Users has a
built-in setting to allow access to all applications except
AppleScripts (but, again, including Script Editor).

Alternate Passwords: Speak Up
Multiple Users maintains text-based passwords for

all users, but it also allows alternate authentication meth-
ods (or “AAMs”) if the built-in capabilities aren’t
enough. Another of Apple’s “Internet Power Tools” is
simply an AAM plug-in named “Voice Verification”
that identifies users through their unique voiceprints
(it lives in the Extensions folder). For now, AAMs’ sole
purpose is assisting with the Multiple User login
process.

If the owner globally enables the “alternate pass-
word” feature, he can select from a pop-up menu to
choose any installed AAMs (right now there’s only
one: Voice Verification). AAMs get control during the
Login program’s execution once it has determined
which user is attempting to log in. Although Apple has
not yet published specifications for AAMs, a wide vari-
ety of them may become available in the future,
including ones that connect to corporate or university
servers (imagine a super version of Macintosh
Manager where you could have your customized pref-
erences on any Macintosh across an entire university
campus or company).

Voice Verification, however, is nifty enough to sat-
isfy most people for a while. You choose a phrase for
verification; the default is “My voice is my password.”
(For those who’ve seen the movie Sneakers about six
billion times, it’s hard not to say “My voice is my pass-
port.”) The phrase itself is immaterial—Voice
Verification analyzes the sound of your speech and
compares it to later repetitions of the same phrase, no
matter what the phrase is. Just avoid picking a phrase
you wouldn’t want young users to repeat. You can hide

(see “Sharing Your Personal Space,” page 26)

http://www.apple.com/macos/feature3.html

Page 26 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
the phrase in Login if you like, making it harder for
someone to guess what he should be saying.

When you create your voice password (for consis-
tency, referred to in all but a few dialog boxes as the
“alternate password” since it could be using any AAM
if more than one existed), the module asks you to
record the same phrase four times. Each time you
press a “record” button, speak the phrase normally,
pause for a moment, and then click “stop.” After it has
all four instances, Voice Verification analyzes them to
create a voiceprint that can survive minor inflections
in tone but will not match anyone else’s voice. It then
asks you to try your new voiceprint, and you speak the
phrase again. If it matches, your new voiceprint pass-
word is set. If not, you can try to match it again or re-
record it.

During login, selecting any user whose alternate
password is enabled immediately tries the alternate
password method. For Voice Verification, you instantly
get a similar multicolored sound recording dialog box
(shown in Figure 10) and are asked to repeat the
phrase. If it matches, you’re in. If you fail to match it
three times, the AAM reports failure and falls back to
the built-in typed password authentication. You can
also skip the AAM by clicking the “Cancel” button in
the voice matching dialog box. If the owner allows
users to change their passwords, they can also reset
their alternate passwords. That invokes the AAM
again, and you can re-record your voiceprint pass-
word—once you’ve authenticated by typing your text
password.

How Does It Work?

Our tests on a 333MHz iMac system were frustrat-
ed somewhat by problems with sound input—we could
not get Mac OS 9 to record any sound from the built-
in microphone using any program, including
SimpleSound or the Sound Control Panel. We had the
same problem booting into Mac OS 8.6, though, and
after that Voice Verification started reporting that no
microphone was connected—we suspect something
has come loose inside and the internal microphone is
not being recognized. We continued testing with a
PlainTalk microphone plugged into the audio input
port. That may make a difference—Mac OS Rumors,
for example, recently reported that Voice Verification
was easier to fool with an iMac internal microphone
than with an attached external microphone.

Once set up, we found that positioning and voice
inflection were key to making Voice Verification work.
We recorded a voiceprint password while holding the
microphone; it was easily recognized when we contin-

Sharing Your Personal Space
(continued from page 25)
ued to hold the microphone, but not once we placed
the microphone on the iMac. We re-recorded the
voiceprint with the microphone in the new position,
and then Voice Verification recognized it while the
microphone stayed there. But even turning slightly in
the chair and facing another direction made recogni-
tion fail.

We also found it necessary to record the voice-
print with the appropriate level of ambient noise. We
recorded early voiceprint passwords in a quiet room,
and then found Voice Verification would not recog-
nize later attempts made in a noisier environment.
However, once we recorded the voiceprint with plenty
of ambient noise, Voice Verification had no difficulty
recognizing it with the same level or noise or in the
quiet room.

How you read the phrase also matters. When
asked to read a prepared line, most people vary the
pitch of their voice somewhat during the pronuncia-
tion, lifting a little on early words and declining
towards the end (or rising towards the end if reading
it like a question). At first, we thought that varying the
inflection during verification made it fail, but later
tests refuted that. Instead, the most important aspect
seems to be pacing—making sure you read the phrase
with the same delays and speed you used to create the
voiceprint. If you hit all the words in about the same
places, Voice Verification seems to accept various
inflections. If you read it too fast or too slow, or pause
between the wrong words, it will not accept the
attempt.

Most of our testing focused on this aspect—get-
ting Voice Verification to reliably recognize the right
user. The other half is testing multiple voices to see if
any of them can trick the AAM into allowing inappro-
priate access, and we haven’t had the chance to con-
duct those tests yet. When we do, we’ll update you on
the results.

Encryption: Protecting Private Files
Yet another of Apple’s “Internet Power Tools” is

the new Apple File Security application for secure file
encryption. The application supports the new
“Encrypt” item in the Finder’s “File” menu. The pro-
gram uses a Fast Elliptical Encryption algorithm
invented by Dr. Richard Crandall (formerly of Next
Software, now of Apple Computer) to secure files with
what Apple calls “industrial-strength encryption.” In
fact, it’s the encryption technology in Mac OS 9 that
restricts how Apple can export the operating system.
Although Apple File Security is fully compliant with
current (wimpy) US export restrictions, some coun-
tries have import restrictions on software that could
hide information from governments. People in those
countries (including China, Hong Kong, and

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure10
http://www.macosrumors.com
http://www.apple.com/macos/feature6.html

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 27
Singapore) may not import Mac OS 9 without obtain-
ing a license. Perhaps this is one reason Apple
Computer closed its Singapore manufacturing facility
in the past few years. Even with 56-bit or weaker
encryption, export is forbidden to any country with
which the US has a trade embargo: Cuba, Iran, Iraq,
Libya, North Korea, Sudan, Syria, or any others.

There’s a reason this sounds vague—Apple is not
yet quite forthcoming about the nature of Apple File
Encryption. We’ll tell you how it works for users and
developers (along with some other aspects of the secu-
rity additions that aren’t immediately obvious), but we
can’t tell you much about how it works inside. Apple is
not publicly admitting to using its own Fast Elliptical
Encryption, nor has the company specified how strong
the encryption is. Even at last May’s Worldwide
Developer’s Conference, Apple’s “Security” presenta-
tions skipped over Apple File Security. The Mac OS 9
FAQ says that decryption other than on Mac OS 9
might be possible in the future with “third-party utili-
ties,” but won’t go farther. Not to raise the pun, but on
this topic, Apple Computer is quite cryptic.

What We Know

Certain parts of Apple File Security are pretty
clear. You select items in the Finder and pick
“Encrypt” from the “File” menu, or you drag the items
onto Apple File Security. (The program only accepts
files; you cannot encrypt folders or disks.) Generally
the program both encrypts and compresses to save
disk space, but it refuses to compress items in the
System Folder. The application asks you to enter and
confirm a new passphrase for every file. Each
passphrase must be at least five characters long. A
checkbox that’s checked by default asks for permission
to add the passphrase to your keychain (see “Living in
a Wired World,” this issue), and will prompt you to
unlock the keychain if it’s locked. Once that’s all taken
care of, Apple File Security encrypts both data and
resource forks into a single encrypted data stream,
stored in the data fork of a new file with file type
‘enc2’ and creator type ‘crp2’.

Even though all encrypted files share the same file
type and creator type (the generic icon is a regular
document icon in gray holding the ghosted image of a
smaller document icon with text, marked with a key in
the lower-left corner), all encrypted documents in the
Finder keep the icons they had before, adding only a
key badge in the lower-left corner. Just as aliases in Mac
OS 8.5 and later have a small overlay icon (the badge)
with an arrow indicating an alias, and locked files have
a padlock badge, encrypted files have a key badge over
their original icon. Finder 9.0 manages this through a
new resource added by Apple File Security to encrypt-
ed files. The ‘badg’ resource contains information
about the encrypted file, but it also contains the file’s
original file type and creator type. Finder 9 uses these
to grab the appropriate icon and draw it with the key
badge.

Opening any encrypted file launches Apple File
Security (all encrypted files are “Apple File Security
documents”). If the appropriate keychain is already
unlocked and the file’s key is on the keychain, Apple
File Security automatically decrypts the file and asks
the Finder to open it. If the keychain is locked and
you don’t grant access, Apple File Security prompts
you for the file’s passphrase.

At first glance, Apple File Encryption appears to
be a nice program. It’s fast and efficient and, at a
superficial level, works well.

What We Don’t Know

It’s what we don’t know that raises questions. We
don’t know the precise nature of the encryption algo-
rithm, nor how many bits each key is. We presume it
must be using 56-bit encryption or weaker to pass US
export controls, but Apple has not yet documented
the details.

We don’t know if Apple will release enough details
to allow other people to write encryption and decryp-
tion programs like Apple File Security. The risk is that
experts could find holes in either the algorithm
(though so far “FEE” has withstood scrutiny) or its
implementation that might make your files vulnerable.
The bigger risk is that such holes exist and only the
bad guys know about them.

Unless and until Apple releases full implementa-
tion information, only those using Mac OS 9 can use
Apple File Security as an “Internet” feature. If you E-
mail an encrypted file to anyone using any other OS—
including Mac OS 8.6 and earlier—they can’t access it.
There’s no chance for existing encryption technolo-
gies like PGP to work with Apple File Security because
it’s all secret. It would be nice if PGP, Highware, and
other security developers could include Apple File
Security capabilities in their own applications, giving
you more options for encryption, decryption, signing,
and E-mailing the files. Apple needs to take the lead
here, and there’s no sign the company is stepping up
to the plate.

With these questions unanswered, Apple File
Security could at best be a local security solution.
Without cross-platform capabilities or even the light of
day on the program’s innards, it’s only suitable for file
exchange with other people guaranteed to be running
Mac OS 9. If you need secure file exchange, you
undoubtedly need to work with more operating sys-

(see “Sharing Your Personal Space,” page 28)

http://www.apple.com/macos/pdf/MacOS9_FAQ-a.pdf
http://www.apple.com/macos/pdf/MacOS9_FAQ-a.pdf

Page 28 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
tems and will have to investigate a more versatile third-
party solution.

Where Apple File Security could work well today is
with Multiple Users. You might have a Macintosh set
up for several “normal” users with few restrictions—
and then run across a document you want to keep pri-
vate, like a picture of your child’s birthday present.
Suddenly restricting an older child’s computer access
by dropping him to a “limited” or “panels” user level
would not be prudent, nor would changing the system
to keep him out of your user folder if he’s had access
to it before as a matter of trust. Enter Apple File
Security—encrypt the file, put the key on your key-
chain, and put the file in an out-of-the-way place. If
your kid does find it, he’ll only know that it’s encrypt-
ed and what program it belongs to, not what’s inside
it. He won’t even know who encrypted it if there are
more than two users—keychains are part of each user
profile, and your keychain isn’t accessible to him.

Potentially, then, Apple File Security could be a
fine complement to Multiple Users. But that potential
hasn’t been reached in Mac OS 9.

A Fatal Flaw

By now you may be asking yourself an important
question: what happens to the original files once you
encrypt them? Yes, the program deletes them, but
does it do so securely? Normally, deleting a file does
nothing to erase the information it contained; it just
marks the disk space occupied by that file as “avail-
able” so other files may eventually overwrite it. Persons
with file recovery software installed, like TechTool Pro
2.5’s “Trash Cache” or Norton Utilities’s “FileSaver”
and “UnErase,” can often recover normally-deleted
files with minimal information loss. To securely delete
a file requires wiping it—overwriting the file’s contents
with patterns or garbage information, sometimes sev-
eral times, making any recovered file content-free
(and damaging anyone’s ability to recover magnetic
traces from the disk platter itself).

Unfortunately, Apple File Security falls short. It
does not wipe files that you encrypt, leaving the original
much more easy for you (or, more to the point, other
people) to resurrect. With file recovery software
installed, recovery may even be trivial. Failing to wipe
files before deleting them, a truly basic security tech-
nique, makes Apple File Security far less useful than it
otherwise would be, and until Apple remedies this
core deficiency Apple File Security is simply too out-of-
the-loop to be useful in the wide world of the Internet
or in the confines of a well-equipped Macintosh. It’s
not a real security solution, and it falls far short of

Sharing Your Personal Space
(continued from page 27)
Apple’s marketing promise as an “Internet Power
Tool.”

A Hidden Goody: File Signing

Thankfully, there’s more to security in Mac OS 9
than file encryption. Tucked away in the same folder
as the Apple File Security application (you might
never look for it since the Finder launches it automati-
cally) is another program named Apple Verifier. Open
it and you’re asked to select a file, but doing so is diffi-
cult. It’s like what you see if you’re trying to open a
JPEG file through Navigation Services when you don’t
have many JPEG images lying around—lots of folders
show up, but few actual files to select. If you find an
acceptable file in Apple Verifier and select it, the pro-
gram “verifies” the file and reports that it hasn’t been
changed since it was signed.

That’s right—digital signatures are built into Mac
OS 9. You’d hardly know it from Apple’s public state-
ments, but Mac OS 9 contains a rather complete set of
system-level routines for signing files, complete with
digital signatures in industry-standard Cryptographic
Message Syntax (CMS) format (the same one used in
the S/MIME3 specification and that house nearly all
digital certificates). The Mac OS has needed basic
cryptographic services for years; now, with digital sig-
natures (and the Keychain, explored elsewhere in this
issue), it finally gets it (MDJ 1997.04.03).

Apple isn’t exactly hiding the feature, but it’s not
intended to replace PGP. The company’s main goal
for Macintosh File Signing is for developers to sign code.
Mac OS 8.6 added URL Access, a powerful feature
that gives developers extremely easy access to file
transfers using FTP, the Web, or even local disks (MWJ
1999.05.12). Apple wants to have a very Net-savvy oper-
ating system, and they hope developers will use fea-
tures like URL Access to make auto-updating applica-
tions—programs that automatically check the Net for
updaters or new plug-ins or extra documents, down-
load them and install them (all with your permission,
of course).

This could potentially be horribly insecure—an
attacker could spoof a given IP address and replace
legitimate files with vicious ones that could damage or
destroy your data. Before you go runnings strange
code on your system, you need some way to be sure
that code really is what it’s supposed to be.

Enter Macintosh File Signing. With a set of system
routines just about as simple for developers as URL
Access itself, Macintosh File Signing implements a very
Mac-oriented signature process. Once a file is signed,
even a one-bit change in any of the “signed” portions
make the signature invalid. Apple Verifier tells you
that for files, and developers can build custom verifica-
tion into their own programs. However, most industry

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 29
digital signature standards work on a single stream of
data. That’s not very good for Macintosh files that
have both data and resource forks. It’s actually much
worse—some of the resources in Macintosh files are
supposed to change with normal use. If you give an
application a larger memory partition in the Finder,
you’ve added or modified a ‘SIZE’ resource in that
application’s resource fork. Any digital signature that
covers the entire resource fork will thereafter be
invalid.

Macintosh File Signing works around this with a
new resource type: ‘sig#’. The resource, specified for
developers in the Macintosh Security Software
Development Kit (still in pre-release), tells Macintosh
File Signing which parts of the data fork to include,
and which resources should not be included. A default
file ‘sig#’ resource includes the entire data fork but
excludes all icon resources, the ‘badg’ resource that
Apple File Security might add, and the ‘vers’ resource
with ID 2. A default application ‘sig#’ resource also
excludes ‘SIZE’ resources. A ‘sig#’ resource for a text
editor might include the data fork but exclude any
resources devoted to non-content information (win-
dow positions, scroll bar settings, and so forth). When
an application calls on Macintosh File Signing to cre-
ate a digital signature (based on the ‘sig#’ resource
settings), the result is stored in a ‘sign’ resource. That
explains which files show up in Apple Verifier’s “Verify
File” Navigation Services dialog box: the program only
looks at files containing a ‘sign’ resource, because
they’re the only signed files.

The flexibility of the ‘sig#’ resource gives great
Macintosh advantages. Without an implementation
that recognizes resources, file signing would require
turning every forked file into a single data stream, as
with StuffIt or MacBinary, both to sign and to verify
signatures. That’s impractical. By excluding volatile
resource types, the signature remains valid long after
you’ve started using the file—an extra bonus in the
view of some people, but a definite part of the
Macintosh Way (why should a program appear
“invalid” just because you’ve used it?).

At present, however, Macintosh File Signing is lim-
ited to files (no folders or volumes) and aimed at
developers. The “Apple Signer” application is only in
the Security SDK, and quite frankly, it’s remarkably
unstable on our test systems (it won’t sign anything
and it seems to damage the Desktop Database; it’s
clearly marked “pre-release”). Signing requires more
sophistication than verifying—anyone wanting to sign
files must first get a valid signing certificate from a
company like VeriSign or Thawte Consulting onto the
signing system’s keychain. Once your keychain has
both a public and private signing certificate, you can
export the public part so others can use it on their
keychains. (We’ll have more explanation in our
Keychain coverage later this week.)

Why Bother?

Macintosh File Signing has a twofold aim. First,
once the tools get in gear, Apple hopes to offer simple
file signing to all developers. When you grab a piece of
software from the Internet, you’ll at least be able to
verify that you got the version signed by the developer,
and you should be able to continue verifying it for as
long as you want. If you suspect a virus has infected an
application, you can just re-verify the digital signature.

This level of security is nice, but it’s not a real solu-
tion to Internet problems. Consider Microsoft’s
“ActiveX” technology in the Windows versions of
Internet Explorer. Web site developers embed ActiveX
components on a Web page, and the browser actually
downloads the components and executes them as part
of displaying the page. To protect against problems,
Microsoft lets users require that the components have
a valid digital signature—but if site after site after site
requires new ActiveX components, how many times do
you really want to see a dialog box prompting you to
check a signature against a developer to approve the
component? Most people eventually water down or
weaken the security out of annoyance. It’s a handy
option, but it’s too broad to answer general security
issues.

Combine this with URL Access, though, and
you’ve got something. Imagine a new version of Adobe
Photoshop that comes with an embedded Adobe pub-
lic signing certificate. Through URL Access,
Photoshop could regularly connect to Adobe’s Web
site, find new components (or plug-ins), and automati-
cally download and install them—with a twist.
Photoshop wouldn’t simply verify that the signatures
were valid—it would also insure that the files were
signed by Adobe’s own digital certificate, the public
half of which would be built into Photoshop itself. The
combination makes any deception much more diffi-
cult. An attacker would not only have to spoof Adobe’s
Web site to get Photoshop’s traffic, he would also have
to make Photoshop think his malicious files were actu-
ally signed by Adobe’s secure private certificate. The
chances of pulling this off are almost nil, giving auto-
matic updates with great security. Apple has apparent-
ly implemented something similar in the “Software
Update” Control Panel (see “Living in a Wired
World,” this issue).

Macintosh File Signing has routines built in to
sign files, opening the door for developers to add sign-
ing capabilities to their own programs. Want to sign a
file before sending it in E-mail? Developers can allow

(see “Sharing Your Personal Space,” page 30)

Page 30 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
it—and since they know their own file formats, they
can make sure the signature only covers the essential
parts of the document. Putting file signing in every-
one’s hands will require a much clearer picture of cer-
tificate creation than Mac OS 9 provides by default,
but that can come with time.

File Signing is built on top of a set of CMS rou-
tines that provide fully extensible, cross-platform,
industry-standard cryptographic messaging services.
Unfortunately, the support is only half-baked in Mac
OS 9; only those parts necessary for File Signing to
work are public at this time. Apple has discussed CMS
at several technical conferences, however, and you can
expect more robust support in future versions of the
Mac OS. Consider what you see in Mac OS 9 the base-
line support for digital signatures. It’s only getting bet-
ter from here.

Gotchas and Kudos
We think the three “Internet Power Tools” we’ve

examined here—Multiple Users, Voice Verification,
and Apple File Security—are similar in that they’re
not really Internet-related at all. Multiple Users is a
good way to share a local machine within a household
or classroom (when obtaining user information from a
server instead of locally), but aside from keeping sepa-
rate sets of Internet preferences it’s not an online fea-
ture. Voice Verification is even less related to the Net.
Apple File Security is billed as a way to securely trans-
fer files, safe from Internet eavesdroppers, but that’s
only true if everyone you need to communicate with is
using Mac OS 9. As we noted, it flat-out fails to provide
local file security. File signing, the fourth new feature
we’ve examined here, is truly a stepping stone to more
Net-based software distribution and better verification,
but the signing part is not yet in users’ hands.

Don’t let this fool you. The marketing may be mis-
directed but most of the features are solid. We were
fully prepared to hate Multiple Users, to find it an
unsupportable hack involving tremendous amounts of
disk thrashing and a minimal illusion of customized
environments. Instead, thanks to the Folder Manager,
we find it to be powerful and about as well-implement-
ed as you could expect in today’s Mac OS. Voice
Verification is a nice trick in its own limited ways, but
the alternate authentication method it demonstrates
may add tremendous value to Multiple Users in the
future. Apple File Security’s blatant shortcomings are
somewhat of a mystery, but we’re hopeful that Apple
will fix it soon.

Compatibility problems will arise as these features
come into wider use. Programs that don’t run well

Sharing Your Personal Space
(continued from page 29)
today on NetBoot clients (or from CD-ROM) will dis-
like Multiple Users just as much. Some programs don’t
take full advantage of the Folder Manager and will
therefore have problems (for example, some applica-
tions “know” that the Preferences folder is on the start-
up disk—not true under Multiple Users if obtaining
data from a Macintosh Manager server). Faceless back-
ground applications may need substantial revision
because the “special” folders change locations while
they’re running, every time a user logs in and logs out.
(Multiple Users provides ways for all faceless back-
ground applications to keep abreast of such changes so
they can respond accordingly, but some of the FBAs will
need programmer attention to use those methods.)

Apple specifically warns against extensions that
piggy-back off the Finder. Some software waits until
the Finder launches and then, assuming it will never
go away, takes up some of Finder’s memory or uses
some of its application environment to make an exten-
sion behave more like an application. These are the
kinds of programs that crash if you ever quit the
Finder, because the parts of Finder space they stole go
away when Finder goes away. This has never been what
you’d call a bright idea. With Multiple Users, the
developers won’t be able to brush it off with “Oh, just
don’t quit the Finder.” With Multiple Users active, the
first program to launch is Login, not Finder—and as
soon as you do log in, Login goes away. Similarly, every
time you log out, Finder (or Panels) goes away and
Login returns. Any extension piggybacking off the first
program launched—whether Finder or Login—will
find itself bringing down every multiple-user system.

Multiple Users and its associated friends are a
solid first implementation for an operating system
designed around the “one person, one computer”
vision. It does not make Mac OS into a true multi-user
operating system, like UNIX and Mac OS X Server are
and like Mac OS X will be. Even though HFS Plus sup-
ports it, Multiple Users does not allow you to set own-
ers and access privileges for individual local files—
users are either completely unrestricted or are
restricted in one or more broad ways based on their
user folders, and that’s it. A remote login capability is
absent. Files are not assigned owners on disk as they’re
created. As the Mac OS moves inexorably towards Mac
OS X, we wouldn’t be surprised to see the interface
and methods of Multiple Users adapted for that strong
multi-user operating system, but we’re not there today.

In the end, that probably doesn’t matter. If you
have four people and one computer, Multiple Users,
Voice Verification, and Apple File Security make it eas-
ier for you all to get along with your single piece of
technology. It’s far more elegant than any other Mac
OS solution we’ve seen, and worth your examination if
you have to share a computer. Especially if you get to
be the owner. ❖

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 31
Mac OS 9

Living in a Wired World
Merging the Internet with Your Desktop
“The Best Internet OS Ever” would certainly need
tools for managing the myriad and byzantine ways
computer owners use—or are forced to use—the
Internet. These days that means, in large part, the
Web. Apple doesn’t develop its own Web browser any-
more (R.I.P., Cyberdog), but bundles both Microsoft
Internet Explorer 4.5 and Netscape Communicator
4.61 with the Mac OS 9 CD. Both of those programs
manage bookmarks for Web sites, handle FTP file
transfers, and generally try to be one-stop shopping
centers for your Internet needs. Microsoft Internet
Explorer must be the default browser because Apple
and Microsoft agreed in August 1997 that it would be
(MWJ 1997.08.31), but from the Mac OS’s point of
view it’s a better choice anyway—it uses the settings in
the Internet Control Panel, based on the public
domain Internet Config system. Netscape
Communicator can use Internet Config, but it really
doesn’t like to and doesn’t hesitate to tell you so.
Netscape Communicator includes a built-in E-mail
client; Microsoft relies on the separate Outlook
Express 4.5 (version 5.0, released this week, was too
new to qualify for the Mac OS 9 distribution discs).

But the real question for an “Internet operating
system” is how the OS itself can make things both bet-
ter and easier for Macintosh owners and Macintosh
developers. For example, the hotly-disputed “integra-
tion” of Microsoft Internet Explorer into Windows has
had at least one undeniable effect: every Windows pro-
gram now has full access to the same browser-quality
HTML display code as does the browser itself.
Programmers who want HTML support need not rein-
vent the wheel, and users get a consistent display and
experience across all HTML-savvy programs. Whether
or not you believe Microsoft did this to eliminate a
competitor, the capability is one many applications are
happy to exploit. As we’ve noted before, Eudora Pro
for Windows relies on Microsoft’s HTML code to dis-
play HTML-formatted E-mail. Eudora Pro for
Macintosh does not, and its HTML capabilities are far
weaker.

We’ll shortly look at new features in Mac OS 9 that
bring familiar Macintosh services to the Internet: they
take parts of the Mac OS that have traditionally been
AppleTalk-only and make them work over the Net-cen-
tric TCP/IP protocol. Before we blur the lines
between AppleTalk-based LANs and the Internet
though, let’s look at two of the key new features Apple
hopes will help you organize a secure shared world.
And for the first one, we mean “key” literally.

Keychain Access:
Unlocking Your Net Life

Apple Computer’s story for the first half of this
decade was inventing great new technologies, over-
engineering them, releasing them a few years before
the hardware could handle their needs, leaving them
to twist in the Macintosh wind with little assistance
from the company, and finally cutting off their oxygen
(as well as the oxygen of developers who foolishly
trusted Apple’s promises). Every now and then,
though, an idea or two from one of those abandoned
enterprises resurfaces because it was just too good to
kill. QuickDraw GX Typography is gone, but it lives on
in spirit and truth in Apple Type Services for Unicode
Imaging, containing many of the GX features but
working with regular QuickDraw. PowerTalk’s
“Catalog” of people and services is the faint echo of
Mac OS 9’s Network Browser (coming up later in this
article). And Mac OS 9’s Keychain Access is the lineal
descendant of PowerTalk’s “Keychain,” minus the
fancy Finder manipulations that made it a desktop
icon you couldn’t move or duplicate.

Keychains survived because they’re indescribably
useful, even moreso in the Internet age. Just about
every shared resource identifies you by “user name”
and “password.” Trying to keep track of more than a
handful of such data pairs is an onerous task, especial-
ly since ideal security requires a variety of passwords
that are frequently changed. Consider these options
that Timbuktu Pro 5 can force on users at the
machine owner’s behest: passwords may not match any
of the three previous passwords, may not be any “com-
mon” passwords (including first name, last name,
common sequences of digits or letters such as “QWER-
TY”, a day of the week, a month, season, first name, or
sporting term), and passwords must contain a speci-
fied minimum number of characters. Oh, and they
can expire after a set number of days (even one day),
requiring you to change them frequently.

(see “Living in a Wired World,” page 32)

http://www.apple.com/macos/feature4.html

Page 32 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
Sure, it’s secure, but who can possibly keep up with
all that? Multiply this by two or three file servers and
add half a dozen Web sites or FTP servers and you’re
hosed. A few logical management choices exist, and
none are good. Using one password on all services is
risky because anyone who discovers it can then hijack
your identity all over the Net. If you rotate a few pass-
words through various services, an unscrupulous
administrator who can see your password on his site
could keep a list of all the passwords and try them on
other sites. Or you could write them down, but that
gives away the store to anyone who can find the paper.
You wouldn’t want to keep that in your office unless
you could lock it up, so you might take it with you—
and lose access to all your servers if you lose the paper
(or your wallet, or your purse—and let’s just hope
those passwords didn’t include anything related to
credit cards or online banking…).

Programs like Alco Blom’s US$25 Web
Confidential help a great deal—they maintain all
these various files in a single place and protect it with
very strong encryption. But it’s not a systemic solu-
tion—programs don’t have a way to access the infor-
mation in Web Confidential’s database, so the best you
can do is find them and cut and paste them. Even if

Living in a Wired World
(continued from page 31)
Figure 11—The Ma
programs could talk to Web Confidential, it opens the
possibility of an attack, where a rogue program might
try to find all your passwords. Even guarding against
that possibility, every program would have to add com-
patibility with Web Confidential—or with other pro-
grams offering similar features but slightly different
APIs. In the end, the best way to provide comprehen-
sive and secure access is to build it into the Mac OS.
That way, all programs can use it without requiring a
third-party program or juggling multiple utilities.

Using Your Keychains

Figure 11 shows a typical Mac OS 9 keychain.
Unlike PowerTalk, where the keychain was a special
entity with a desktop icon, Mac OS 9 keychains are
normal documents, typically stored in the “Keychains”
folder of your “Preferences” folder (including the
mapped version for Multiple Users, described in
“Sharing Your Personal Space,” this issue), but accessi-
ble anywhere. Feel free to keep yours on a floppy disk
and shuffle it between computers (or, with current
models, carry a disk and a USB floppy drive). Each
keychain can contain a variety of identifying items;
Figure 11 shows passwords from Apple File Security,
AppleShare, and Anarchie 3.6.1 (listed as an “Internet
password”), along with both the public and private
c OS 9 Keychain

http://www.web-confidential.com/
http://www.web-confidential.com/
http://www.gcsf.com/extras/mwj/mos9special/index.html#figure11

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 33

Figure 12—Confirming Keychain Access
certificates for signing files with Macintosh File
Signing.

The keychain is not Web Confidential—you have
only a few ways to manually add keys to any keychain
(the main way is to drag a server alias or Internet
Location file into the Keychain’s main window). The
idea is different—the keychain is a convenience for
you and for the applications that continually prompt
you for passwords. If a program needs authentication
information, it should first check any available key-
chains to see if the information it needs is securely
stored in one of them. If so, the program gets the data
from the keychain and uses it without bothering you.
If not, the program has to ask you for authentication.

Another difference is that keychain-savvy applica-
tions add a checkbox to the login dialog box that, if
checked, adds the data to the keychain as you authen-
ticate. But it’s not quite that simple, because every pro-
gram’s needs are different. AppleShare logins require
a user name, password, and optionally a volume on
the server; FTP servers typically want a user name,
password, and an optional starting directory; certifi-
cates might include an expiration date, a purpose, and
other attributes. Since only the application itself
knows what information it really needs to log you in,
only the program is in a position to tell the keychain
what data needs to be saved. The bad news is that
managing all this diversity requires keychain-savvy
applications. The good news is that several of these are
already available, including Web Confidential itself
plus the BlackWatch 1.5 password-protected screen
saver, URL Manager Pro 2.6, the Transmit 1.5.1 and
Anarchie 3.6.1 FTP clients, Netopia Timbuktu Pro
5.21, and probably several others. The better news is
that keychain support is undoubtedly slated for your
favorite Internet programs now that Mac OS 9 is out.
The best news is that with built-in program support,
you don’t have to do anything other than check the
“Add to Keychain” checkbox to make it work—no
copying, pasting, retyping, or other such inconve-
nience. Once an item is on the keychain, your work is
mostly done.

Mac OS 9 allows multiple keychain files, but each
person will typically have only one. If you have multi-
ple keychains, one of them is the default keychain to
which new items are added. Mac OS 9 prompts you to
create a keychain file if you don’t already have one the
first time any program tries to use a keychain. You do
have to remember the keychain’s password (and no,
you can’t add it to another keychain), but that’s about
it.

Your keychain is locked when you start the
Macintosh, meaning no programs (or other users) can
access the sensitive data on it until you provide the
password. If any program wants access to that data,
you’re prompted to unlock the keychain first. An
unlocked keychain is a security risk—anyone wander-
ing by your machine has access to any resource (serv-
er, FTP site, or even digital certificate) protected by
the keychain. Therefore, Keychain Access allows indi-
vidual security settings for each keychain file, accessed
through the “Edit” menu. It’s well-protected—the
menu item is only available if the keychain is
unlocked, and you must then enter your keychain
password again to change the settings. Available
changes include password, a checkbox to allow access

(see “Living in a Wired World,” page 34)

http://penumbra.apple.com/blackwatch.html
http://www.url-manager.com/
http://www.panic.com/transmit/download.html
http://www.stairways.com/
http://www.netopia.com/software/tb2/mac/5x/index.html
http://www.netopia.com/software/tb2/mac/5x/index.html

Page 34 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
to the keychain without warning, plus options to auto-
matically lock the keychain after a set number of idle
minutes, and to automatically lock the keychain when
the system goes to sleep.

You can also get information on any of the key-
chain items while it’s unlocked; server items also
include a “Go There” button that tries to take you to
the server in question (for Internet passwords, this
happens by default through the Network Browser). All
password items include a “View Password” button so
you can actually see the passwords protected by the
keychain—but, as with changing settings, you must
again enter your keychain password even though the
keychain must already be unlocked just to get that far.
These extra parameters ensure that someone who
happens to come across your machine with an
unlocked keychain won’t be able to see your passwords
or change your keychain protection.

For both protection and convenience, the key-
chain asks for your approval any time a program wants
into it. Figure 12 shows the dialog box you’ll see the
first time any program wants access to an item on the
keychain. You can grant permission on a case-by-case
basis (seeing this dialog each time), on a program-by-
program basis (so, for example, you could allow Apple
File Security into the keychain without further
prompting), or on a keychain-by-keychain basis (allow-
ing all programs unfettered access to that particular
keychain). If case-by-case approval is too much of a
headache for you, feel free to grant permissions to
specific applications, but try to avoid opening the
whole keychain to every program. The dialog box is
there to warn you about a rogue program trying to
examine your keychain items, so don’t disable it light-
ly. Even Keychain Access, the program that manages
the keychains, needs your approval to automatically
change a keychain.

An unlocked keychain with approved access clears
the way for the program to use your keychain items:
the program fetches what it wants and moves along,
and you’ll encounter no more obstacles within that
program getting to anything protected by passwords
stored on the keychain. If you deny access using any of
the cautionary dialogs, the application should prompt
you for authentication information as it would if
Keychain Access were unavailable.

Apple File Security tries to use the Keychain quite
transparently—not only does it add its keys to a key-
chain if you allow it, but it also removes them when
you decrypt the file. Once the file is unscrambled,
you’re prompted for a new passphrase if you scramble
it again, so why keep the old key around? Don’t be

Living in a Wired World
(continued from page 33)
spooked if you think file passwords are vanishing—
they are, as you no longer need them.

Keychains work well with Multiple Users, with one
caveat: Multiple Users automatically creates a keychain
for each user, named for the user name. If you’ve
already used Mac OS 9 without Multiple Users, you’ll
probably already have a keychain file active, but
Multiple Users will create a new one named after the
name of the “owner” user. Unless you choose
“Keychain” as your owner name, you’ll wind up with
two keychain files. You can keep both open at once, or
choose to use the new owner one as your primary file,
but it could surprise you if you’re not expecting the
new keychain.

Behind The Keys

Underneath the interface that you see, the inter-
nals of the Keychain Manager have a difficult task. It
must balance easy access for programs (including the
Keychain Access Control Panel) with the security
needed to protect your confidential data. The sensi-
tive parts of the keychain are protected with US
export-approved 128-bit RC2 encryption, so anyone
who happens across your keychain file won’t be able to
use it against you. The difficult part is keeping that
data encrypted while easily using any part of it.

Every item on the key chain is split into attributes
and data. Attributes describe an item; the data is the
sensitive part that only sees the light of day if you
grant permission. All items share common attributes,
such as the class of the item (AppleShare password,
Internet password, digital certificate, or generic pass-
word), a creation date, a modified date, a label,
description, and comment. Other attributes are specif-
ic to each class of item—for example, items of class
“Internet password” include a protocol (HTTP, FTP,
or others), a directory, a port number, and a security
domain. Not every attribute is filled in for every item
of a given class, but the spots are there.

The Keychain Manager finds items based on their
attributes. Apple insists that attributes are encrypted
within the keychain files, so if someone gets your key-
chain file they can’t use, say, a disk editor to find out
what it contains. “Encryption” is a strange word,
though—the Keychain Manager allows access to all of
the attributes at any time, even if the keychain is
locked. For example, the “Keychain Scripting” applica-
tion (located in the “Scripting Additions” folder),
makes it easy to find the name of every item: ‘tell
application “Keychain Scripting” to get name of every
key of current keychain’. It chugs for a while, but it
returns the entire contents of the “Name” column in
the Keychain Access window for that keychain.
Unfettered access to “encrypted” attributes means the

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure12

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 35
Keychain Manager has everything it needs to decrypt
them built-in—including the algorithm and the key.

That sounds scary, but it’s no cause for panic.
Someone, someday, somewhere will disassemble
enough of the Keychain Manager to figure out how to
decrypt those attributes, and there will be yet another
giant uninformed “scandal” about how these attributes
aren’t secure. The scandalmongers will be right, but it
won’t be important. The encrypted attributes only
specify the kinds of items on your keychain. The super-
secret part—the information you need to actually
login to a server or site—is stored in a keychain item’s
data, not in its attributes. It’s simply no big deal if
another person sees your keychain item attributes.

Item data, in contrast, is secure because it’s
encrypted, and the decryption key is made using a
password that only you know. Item data can’t be
searched, nor can any user or program retrieve an
item based on the data (even if you knew a password
stored in a keychain, there’s no way to trace it back to
a key item and figure out what the password goes to).
The Keychain Manager APIs do not allow retrieving
item data—even inside a program—without your
explicit permission (see the dialog box in Figure 12).
Finally, for items that are themselves keys (like a pub-
lic and private PGP key pair, something Network
Associates could choose to put on the keychain), the
item data for private or symmetric keys is simply not
available. We’re not sure why you’d want to keep a pri-
vate key on a keychain if no program can retrieve it,
but Apple’s 1999 WWDC presentation maintains that
you want it that way.

Item data is encrypted using a symmetric encryp-
tion algorithm derived from the keychain’s password
itself—without the keychain password, you cannot
retrieve item data. Since the decryption key is comput-
ed from the password, no keychain ever stores its own
password. Moreover, the Keychain Manager doesn’t
store passwords anywhere else on disk. The only way
into a keychain is for you to unlock it. That normally
involves you typing a password, but programs can send
a password to the Keychain Manager and ask to silent-
ly unlock a keychain. Yet even this is safe from attack—
the invisible unlocking method only works until the
first failure. If any program (including an
AppleScript) ever sends the wrong password to a key-
chain, all future attempts to silently unlock any key-
chain will fail. The only way around it is to restart.
Forcing a shutdown and restart cycle between hacking
attempts effectively eliminates brute-force attacks.

Hand-carved brute-force attacks are also difficult.
If you enter the wrong password in a keychain authen-
tication dialog box, it’s no problem. For the first few
attempts. As the failed attempts accumulate, the
Keychain Manager fights back, adding dead time after
you ask it to authenticate and before it returns a
result. The “chasing arrows” in the dialog box spin,
and the system goes on, but your only option is to wait
or cancel. The dead time remains even if you cancel
and start over. What’s more, the dead time increases
exponentially at an impressive rate. In our testing, the
first four mistakes all took less than one second to
reject. The fifth attempt took three seconds; the sixth,
twelve seconds; the seventh, eighty-five seconds. The
eighth attempt took over ten minutes. With exponen-
tial growth, the ninth attempt would probably take
well over an hour (we didn’t try). The only way
around this is a reboot, which itself thwarts automated
methods of attack.

Programmers will find the routines for working
with keychains and their items pretty easy to under-
stand and implement. The Keychain Manager
includes high-level routines for working with
AppleShare, Internet, and Certificate items, plus a
slightly more complicated one for generic password
items. There have been minor changes in Mac OS 9’s
implementation compared to the earlier Keychain
releases available only to developers, so there’s an out-
side chance some “keychain-savvy” programs will need
minor revision for Mac OS 9. Most of those programs
should already have those changes in place by now.
And thanks to “Keychain Scripting,” AppleScript
authors can perform almost every task available to the
low-level programmers.

Your New Keychain?

A new system-level service like the keychain, espe-
cially one that requires application support, can take a
while to catch on. But unlike some other technologies,
the Keychain has a jump on widespread adoption.
Apple has talked about the Keychain for a long time,
and thousands of users are familiar with it from
PowerTalk. As you’ve seen, several applications already
support the keychain, and so do the relevant parts of
Mac OS 9 itself—AppleShare client, Apple File
Security, and Network Browser all support the
Keychain out of the box. The Keychain Access Control
Panel, as well as Keychain Scripting and a Keychain
Control Strip Module for quick access to any available
keychain, add further robustness. One potential trou-
ble spot: we’ve seen reports that in AppleShare 6.2
and earlier, servers can’t be added to keychains if the
System Administrator has set AppleShare to deny local
storage of passwords. This may be fixed in version 6.3,
but we haven’t checked.

The next big step is getting Web browsers to add
keychain support, details that aren’t public yet. Once
the two main Macintosh browsers do so, the Mac OS
keychain will be as indispensable as the keychain in

(see “Living in a Wired World,” page 36)

http://arcanum.apple.com/

Page 36 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
your pocket. And it may happen soon—keychains are
file-based in Mac OS 9, but they work from read-only
media like CD-ROMs and some AppleShare servers.
Apple says that future Keychain Manager releases will
support both removable tokens and smart cards, and
the keychain file format is already based on the indus-
try-standard CDSA data storage model. With a future
Mac OS release, you could store all your private pass-
words on a single encrypted smart card (with a key-
chain file to back it up), pop it out of a FireWire card
reader, and take it with you to work or even to an ATM
machine.

The Net has been throwing keys at all of us for
years. It’s about time we got a real tool to corral them.

Software Update:
Piecemeal Installation

Many Macintosh owners use the Internet to stay
abreast of new software releases—if you just bought
that great new utility at your local Mac software store,
you might need the latest iMac Firmware Update or
Power Macintosh G4 ROM Update or Incredibly
Obscure Firmware Reburning Utility for peak—nay,
optimal performance. One way to keep up with the
changes in the Mac OS is to check the “Recent
Changes” page on Apple’s “Software Updates” Web
site. Automatically updated several times per day by a
massive WebObjects database, you can easily find the
latest releases, download them, mount the
omnipresent disk images, install them, reboot, and
feel suitably connected to Apple’s engineers.

Not many people take this approach. This irks
Apple, for the company would like to release bug-fix
updates and feel reasonably comfortable that people
are installing them and using them. The smaller the
number of different existing configurations, the easier
Apple’s engineering becomes. That saves both time
and money, commodities Apple loves to conserve. If
Mac OS 9 is the “Best Internet OS Ever,” it should
include some kind of tool to facilitate these necessary
updates, shouldn’t it?

Indeed it should, and in fact it does. The Software
Update feature in Mac OS 9, yet another of the
“Internet Power Tools”, handles this mildly onerous
task for you. When launching the Software Update
Control Panel (really an application), you get a nice
friendly, colorful “Update Now” button. Clicking the
button connects to the Internet, where Software
Update checks Apple’s hidden magic server, the same
one that holds the Sherlock plug-ins for automatic
updates, using the same URL Access feature intro-

Living in a Wired World
(continued from page 35)
duced in Mac OS 8.6 that had such great potential
(see?). The utility then sees what’s been released since
the last time you checked (or any recent changes—
Apple isn’t documenting details, but we did some spy-
ing to watch Software Update in action). After con-
necting to the database, Software Update looks to see
if you already have the current updates. If you do,
great, you’re done (right now, all Mac OS 9 pur-
chasers have all updates, so don’t expect to see this in
action instantly). You can also schedule updates on a
regular basis, as with Sherlock 2 indexing, so you don’t
even have to remember to check for updates.

The updates all come from Apple, not a third-
party Web site over which the company has no control,
so all files are digitally signed. URL Access verifies
their integrity automatically on download, and you
can repeat this yourself at any time with Apple Verifier
(see “Sharing Your Personal Space,” this issue).
Software Update refuses to install any file whose digi-
tal signature fails verification.

Driving You Sane

Programs like Insider Software’s UpdateAgent
have done this downloading trick for years. But
UpdateAgent, long a favorite of ours (MWJ
1999.05.29), can’t do one of Software Updates’ docu-
mented tricks: automatically installing new files in the
proper System Folder locations. This is hard to test at
the moment because, having installed Mac OS 9, our
test system is up-to-date (you’d hope so, wouldn’t
you?). We can and did test it with a separate part of
Software Update: device driver acquisition.

USB and FireWire both feature hot-swappable
devices, drivers that load on-the-fly, and no restart
requirement after adding a driver but before using a
new device. Software Update takes this one step fur-
ther. In Mac OS 8.6 and earlier, plugging in an unrec-
ognized USB device gave you a generic modal dialog
box warning that the driver for the named peripheral
(often “Unnamed Device”) was not present, so you
couldn’t use the thing. In Mac OS 9 with the Software
Update Engine in your Extensions folder, the same sit-
uation launches Software Update. The program tells
you, through an equally modal dialog box, “Drivers
needed for the USB device ‘Unnamed Device’ are not
available. Would you like to look for these drivers over
the Internet?” You may assent or cancel. Continuing
gives the same indefinite progress bar as Software
Update’s main function, but with text that says
“Looking for Drivers…” instead of “Looking for
Updates…”. It checks a different Apple server, passing
it the identifying information for your renegade USB
device: vendor ID, product ID, USB class, USB sub-
class, protocol, version, and USB interface reference.
If Apple’s server has an update for your file, Software

http://asu.info.apple.com/swupdates.nsf/Changes?OpenView&Count=50
http://www.apple.com/macos/feature5.html
http://si.info.apple.com/
http://www.insidersoftware.com/updateagent/index_bod.html
http://war.apple.com/

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 37

Figure 13—Network Browser 2.0
Update downloads and installs it. Otherwise you get a
dialog box expressing regret and urging you to con-
tact the manufacturer.

We had a crapshoot trying this one out. Our first
attempt to invoke automatic updating was a USB flop-
py disk drive from TEAC, whose driver we had not
installed on the Mac OS 9 test machine. Nice try—Mac
OS 9 includes built-in support for most USB floppy
drives as part of the USB Mass Storage device class.
Next we tried an Entrega USB-to-Serial converter, a
device class we know has no built-in support. Sure
enough, we got the offer to check the Internet for dri-
vers—but Software Update came up empty-handed.
The device has been out for several months, but
Apple’s server knew nothing about it. We understand
from reports and a demonstration by Phil Schiller that
the feature works quite well for input devices, especial-
ly those controlled by Apple Game Sprockets. And
although Apple has neither demonstrated nor specifi-
cally discussed the issue—nor were we able to test it—
our examination of Software Updates makes us believe
it also downloads and installs FireWire device drivers if
you wish.

Self- updating system software is a grand idea,
nicely secured with digital signatures and automatic
installation. The device driver feature is even nicer,
but it could become either a hot feature or a curiosity
based on how Apple handles its driver servers. If the
company excludes drivers other than its own or those
of the largest developers—an entirely possible choice
given Apple’s tendency not to distribute code it hasn’t
tested—people with dial-up connections may stop
looking (why occupy the phone line and wait a few
minutes to see another “Not found” dialog box?). But
if Software Update becomes the gateway to all the USB
or FireWire drivers you could want, it will redefine
“plug-and-play.” Software Update is no replacement
for UpdateAgent, for it doesn’t examine items that
aren’t part of the Mac OS itself. Yet the items Software
Update does examine are usually the trickiest to man-
age, and the program does it for you. We’d call that a
power tool.

Network Browser 2.0:
Netly Neighborhoods

One year ago we told you about Mac OS 8.5’s
Network Ser vices Location Manager (the NSL
Manager), a new system-level service that, through a
plug-in architecture, uses protocols like DNS and SLP
(service location protocol) to discover TCP/IP ser-
vices the same way the Chooser “discovers”
AppleShare file servers. Instead of having to know an

(see “Living in a Wired World,” page 38)

Page 38 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
IP address before connecting to a server, NSL could
find and display a list of all IP-based file servers in your
domain. NSL wasn’t fully baked in Mac OS 8.5: it only
included plug-ins for SLP and DNS (and those DNS
servers needed slight modification to return useful
results), and it had no way of providing a standard
human interface for choosing “discovered” services.
Network Browser 1.0 gave some inkling of a promised
TCP/IP browser, but it only worked for AppleShare
file servers.

Figure 13 shows the new and improved Network
Browser 2.0, another of the “Internet Power Tools.”
Apple promised a standard human interface for NSL,
and the company delivered in the form of Mac OS 9’s
NSL 1.1 library. Apple also promised new NSL plug-ins
for LDAP (Lightweight Directory Access Protocol, an
Internet standard for servers supplying directory infor-
mation about people) and AppleTalk’s Name Binding
Protocol; both are also included. That gives NSL all
the support it needs to completely replace its former
proprietary code with the NSL Manager, leading to
the greater functionality in Network Browser 2.0.

Living in a Wired World
(continued from page 37)
Figure 14—NSL Browser i
AppleTalk is but one neighborhood (an NSL term
for a hopefully-local network) in the new Network
Browser. Apple’s documentation is unclear on exactly
how neighborhoods are defined—for AppleTalk it’s a
zone, for SLP it’s an IP subnet. We’re not sure what it
is for DNS; Network Browser 2.0 calls our zone
“gcsf.com” even though that domain resolves to an IP
address halfway across the country, but the Network
Browser finds services on our local area network for
“gcsf.com”. If you don’t have a default domain config-
ured in the TCP/IP Control Panel, the SLP services
often show up in a neighborhood called “Local
Services” (the name is different in non-English lan-
guages). You can add new neighborhoods with a com-
mand from the “File” menu; you remove them by
pressing the “Delete” key with the neighborhood
selected, but the deletion doesn’t show up until you
quit and relaunch Network Browser.

Figure 14 shows the “Network” selection in Mac
OS 9’s Navigation Services dialog box (this one for sav-
ing Sherlock 2 criteria). It looks awfully familiar. NSL
1.1 includes the code to let any application display
and use network browsing functionality—the NSL
Browser. Network Browser 2.0 relies on this, as does
Navigation Services 2.0, presenting a consistent
n Navigation Services

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure13
http://www.apple.com/macos/feature9.html
http://www.apple.com/macos/feature9.html
http://www.gcsf.com/extras/mwj/mos9special/index.html#figure14

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 39

Figure 15—NSL Browser’s “Select Service” Dialog Box
human interface throughout the system. It’s even
more flexible than regular Navigation Services: the
NSL Browser can be part of a regular window, as in
Network Browser 2.0, and doesn’t have to be part of a
separate dialog box.

But dialog boxes are part of the game, too.
There’s a new interface for browsing network services
and obtaining a URL for the one you’ve selected,
shown in Figure 15. Again, the human interface is
consistent with both Navigation Services and Network
Browser, with one exception. The pop-up menu in the
upper-left corner lets you choose the kinds of services
that appear in the list: Web servers (with http and
https protocols), FTP servers (ftp), Telnet hosts (tel-
net), AppleShare file servers (file, afp, nfs), news
servers (nntp), directory servers (ldap), media servers
(rtsp), and remote applications (eppc, “program link-
ing,” though this didn’t really work for us, as we’ll
explain shortly).

You can see these protocol types yourself by hold-
ing the “Control” key while the dialog box opens. The
NSL Browser shows you more information, including
the plug-in used to create each neighborhood, the
number of current searches underway (while the
“chasing arrows” are moving), and the names of each
plug-in by their neighborhoods in the “Shortcuts” pop-
up menu. An easy way to play with the dialog is to
launch Script Editor and run a script with just the
command “Choose URL”. Each application defines
what protocols should show up in the dialog box; the
ones we’ve listed are the “Choose URL” defaults.

The browsers, whether in Network Browser or in
other dialog boxes, are fully Macintosh-savvy. Dragging
any icon out of the browser pane creates either an
alias (to a file server) or an Internet Location file (a
URL clipping file). The standard key equivalents all
work (with the exception of Command-T for “top” in
the non-Navigation Services dialog boxes), and the
windows are resizable and remember their positions.
And, in a nice surprise, Network Browser 2.0 is a mini-
mal FTP client, with full drag-and-drop file transfer
support. Note that this is part of the application—FTP
is not supported in the NSL Browser functionality in
Navigation Services. Trying to use an FTP URL in an
“Open” or “Save…” dialog box gives you an “unsup-
ported protocol” error dialog box.

(see “Living in a Wired World,” page 40)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure15

Page 40 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
Network Browser 2.0 is quite an evolution from
the AppleTalk-only version in Mac OS 8.5. Apple’s
press release says it “makes finding file servers, FTP
servers, and Web servers as easy as selecting a local
printer, in small workgroups or the largest organiza-
tions.” Technically, Apple could have appended “or
the Internet,” because Network Browser 2.0 could
eventually make at least parts of the Internet as easy to
use as AppleTalk-based LANs are now. But Apple was
wise not to overhype this capability at this time,
because most of the Internet still isn’t as user-friendly
as AppleTalk. The potential is certainly there—but the
delivery is still in the future.

What’s Wrong With NSL 1.1?

Nothing, really—this is a cool piece of code. The
problem is that it relies rather heavily on Service
Location Protocol (SLP). As we noted a year ago
(MWJ 1998.10.19), AppleTalk has always required
devices on the network to register their names and
broadcast their presence to the larger network.
TCP/IP never has and probably never will, and that’s
why you must know either a domain name (or a URL
based on it) or an IP address to connect to an Internet
service.

Both Apple and Open Door Networks have
bought heavily into SLP, and with little wonder: SLP is
what lets TCP/IP servers broadcast their name and
capabilities to at least the local network, giving it the
advantage AppleTalk has always held (Open Door
Networks founder Alan Oppenheimer, not coinciden-
tally, is an SLP promoter and one of the inventors of
AppleTalk).

The problem is that not many servers aside from
Apple’s and Open Door’s products support SLP at all.
The NSL Manager only has four ways to discover ser-
vices: SLP, add-ons to DNS servers, AppleTalk’s Name
Binding Protocol (NBP), and LDAP. Most networks
aren’t using the extensions to DNS that NSL Manager
needs; AppleTalk and LDAP can’t help find TCP/IP
services. That leaves SLP, and too few servers under-
stand it today. In our testing, the brand-new WebSTAR
Server Suite 4.0 didn’t show up in any NSL Browser
tests for any of the myriad services it supplies. In fact,
the only servers we could get NSL Manager to find
were from Apple and Open Door: File Sharing, File
Sharing over IP (from Open Door’s ShareWay IP),
and Mac OS 9’s Web Sharing. Apple claims to have a
Network Services Location Manager Network Administrator’s
Guide to describe how to make your servers show up in
the list, but the manual is not on Apple’s Web site
where Mac OS 9 Help says it is.

Living in a Wired World
(continued from page 39)
We also had bad luck trying to get the NSL
Browser to find “remote applications” over IP, even
though that feature is added in Mac OS 9 (see
“Program Linking: the PPC Toolbox,” this article).
Pressing Control while opening the NSL Browser
shows that it’s trying to find such applications through
(you guessed it) SLP, not by finding remote machines
and looking for applications. Mac OS 9 allows pro-
grams to talk to each other over IP, but that support
does not include SLP discovery for running applica-
tions. Right now applications may have to add that
SLP support themselves if they want to show up in the
NSL Browsers. We doubt many programmers are itch-
ing to adopt that burden.

Some will be disappointed that Network Browser
doesn’t include printers like PowerTalk’s original cata-
log services browser did. You shouldn’t be surprised
here—it’s hard to improve a printing architecture
when one doesn’t even exist. What would happen
when you try to “open” a printer icon in Network
Browser? Should it select the printer? Give you printer
information? What about dragging a printer to the
desktop—does it make a desktop printer even though
the majority of non-Apple printer drivers don’t sup-
port desktop printing? How does it all work for printer
drivers that still execute crucial routines only when
you pick them in the Chooser? Everyone wants to
dump the aging Chooser, including Steve Jobs, but a
new browser program can’t do it alone. In our opin-
ion, Network Browser is wise not to try.

Apple’s NSL Manager is caught in a chicken-and-
egg problem: servers don’t support SLP because few
programs use it, and few programs use SLP because
most servers don’t implement it. But Apple Computer
can easily be a 500-pound gorilla in the marketplace—
it was Apple’s choice to use USB in the iMac that final-
ly let that serial bus take off with peripheral manufac-
turers. NSL 1.0 in Mac OS 8.5 gave a decent reason to
investigate SLP, but not one serious enough for devel-
opers to start jumping since there was no built-in
human interface to see the results. Now there is—and
thanks to modular code, it’s in the high-profile
Network Browser, the growingly-pervasive Navigation
Services, and in a new dialog box all its own for
“choosing” a URL. It might be enough to get server
developers’ attention—or at least get Microsoft’s atten-
tion, which would have the same effect. In the mean-
time, it works well on local networks running Mac OS
9 and even serves as an FTP client in a pinch. Not
earth-shattering innovation, but a good start.

Sharing IP Freely
The last two of Apple’s Nine “Power Tools” are

rightly grouped in one topic—sharing using
TCP/IP—but examined separately: File Sharing,

http://www.cis.ohio-state.edu/htbin/rfc/rfc2165.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2165.html
http://www.opendoor.com/
http://www.info.apple.com/manuals/manuals.taf

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 41
enabling networked computers to share documents,
programs, and other files; and AppleScript, enabling
programs running on networked computers to share
data.

The Macintosh has always been a superbly net-
workable computer, with every model since January
24, 1984 featuring built-in local area networking.
Unfortunately, that advantage hasn’t survived in the
Internet age. AppleTalk is a “chatty” protocol, con-
stantly sending small packets of information over the
wire to other machines in the same zone (the neighbor-
hood in SLP or Windows parlance). The frenzy of pack-
ets is desirable in some ways; it’s what makes things
like self-discovery possible. Every time you turn on an
AppleTalk printer, it broadcasts its existence and
address to all devices on the local network; that’s how
the Chooser keeps its lists updated.

But it’s a system designed for slower wires and
smaller packets. Most AppleTalk data packets hold less
than 255 bytes. Each packet also has latency associated
with it—a fixed delay for sending and receiving a
packet regardless of the actual transmission speed. As
the standard disk drive on a Macintosh has grown to
10GB (from 400K), files have become larger. Speeding
up network transmission isn’t just a matter of faster
wires; it’s also about using larger packets with less traf-
fic to reduce latency. AppleTalk was designed for a day
when losing lots of packets made keeping them small
a good thing—it made retries faster. Today’s networks
have lower packet loss rates and faster wires; they want
a network protocol that takes advantage of these fea-
tures. The answer, of course, is TCP/IP, the Internet’s
native language.

Apple’s support for TCP/IP has grown with the
Internet. The company was early out of the gate with a
TCP implementation in MacTCP, but it didn’t get the
attention it deserved until the Net came along. Open
Transport shook things up and eventually made the
Mac’s TCP/IP implementation quite strong. Products
and peripherals from printers to servers started
adding TCP/IP support. The only thing remaining for
Apple was doing the same in its own software—migrat-
ing existing services to a dual TCP/IP and AppleTalk
networld.

File Sharing Over IP

One of the two remaining “Internet Power Tools”
brings File Sharing, the personal AppleShare server
technology added in System 7, to the TCP/IP world.
AppleShare file services are significantly faster over
TCP/IP than over AppleTalk, so this is a win for every-
one involved. It’s just not very exciting. For starters,
Apple didn’t add this to the Mac OS as much as pur-
chase it from Open Door Networks; Mac OS 9 con-
tains a limited version of that company’s ShareWay IP
Personal Edition, a product available for US$79 for
the past few years. The company also makes more
industrial-strength versions, moving up to the
“Professional” model with SLP proxies, logging, cen-
tralized administration, and the ability to place multi-
ple servers on an IP network from a single Macintosh.

The technology on the client side isn’t news,
either—Apple first changed AppleShare to work over
IP with the release of the professional AppleShare IP
5.0, announced with the “Rhapsody” OS strategy in
January 1997 (MDJ 1997.01.07) and shipping three
months later (MDJ 1997.04.22). That’s when Apple
revised the AppleShare client software to work with
either AppleTalk or IP servers, and it hasn’t changed
much since then. The most interesting change of late
is that Apple now fully supports Open Door
Networks’s “AFP URL” format, where a URL with the
protocol “afp://” describes an AppleShare server run-
ning over IP. (The AFP “helper application” is
Network Browser.) Of course, it was this way in Mac
OS 8.5 as well, so it’s not really news, but it’s close.

Apple and Open Door have integrated their tech-
nologies well. The “File Sharing” Control Panel is your
one-stop shop for all dual-protocol sharing needs.
Both File Sharing and Program Linking have added a
simple checkbox beneath the status area, allowing you
to enable clients to connect over TCP/IP. If you check
it, the IP service starts, and the Control Panel displays
a URL by which others may access your zippier serving
(protocol “afp” for File Sharing, protocol “eppc” for
Program Linking, as we’ll discuss below). File Sharing
now also displays your IP address, making it easy to
share with someone who will just type it after clicking
the Chooser’s “Server IP Address” button. You can still
see some of the piggy-backing; for example, ShareWay
IP depends on existing File Sharing strongly enough
that you can’t enable IP-based File Sharing without
also enabling the AppleTalk version. A recent Tech
Info Library article adds to this logical conclusion,
pointing out that you must have AppleTalk active to
share files via IP. These are generally exceptions rather
than typical problems, though.

We are not minimizing this. It’s truly a power fea-
ture, and many folks will find even more utility from it
once Open Door makes available their upcoming Mac
OS 9 upgrade, bringing security and logging features
to the IP File Sharing service. It’s very cool, and we’re
already using it. It’s just not news. Great features don’t
have to be exciting.

Program Linking: The PPC Toolbox

The great advantage of a modular operating sys-
tem is that adding new features to low-level compo-

(see “Living in a Wired World,” page 42)

http://db.tidbits.com/getbits.acgi?tbser=1014
http://www.apple.com/macos/feature7.html
http://www.opendoor.com/shareway/macos9.html
http://www2.opendoor.com/shareway/WhichSWIP.html
http://til.info.apple.com/techinfo.nsf/artnum/n60627
http://til.info.apple.com/techinfo.nsf/artnum/n60627

Page 42 Mac OS 9 Marquee Features MWJ Mac OS 9 Special
nents enhances the value of all the others built upon
them. You may not recognize some of the low-level
component names, but they’re still inside your
Macintosh, plugging for you day after day after day.
One of those components gets a significant IP boost in
Mac OS 9, and Apple is avoiding mentioning it
because you probably wouldn’t know what they were
talking about. They’re talking lots about the benefits of
this improvement, but not its source. For you to
understand it, we need to review the way Macintosh
programs talk to each other.

One of System 7’s most touted features was inter-
application communication. On a single system or
across networks, the Mac OS added comprehensive
capabilities for programs to share data with each
other. You may think of this as happening through
AppleScript, or even though Apple events. Beneath
both of those, however, is a technology called the
Program-to-Program Communications Toolbox, or “PPC
Toolbox.” This all happened years before PowerPC
microprocessors changed the way most Macintosh folk
think of the abbreviation “PPC,” but that hasn’t
changed the Mac OS; the term “PPC Toolbox” refers
to interapplication communication.

The PPC Toolbox handles all standard communi-
cation among applications on the Macintosh, even
between two applications on the same computer. PPC
Toolbox uses network-like terminology of ports and ses-
sions to represent the idea of opening a connection
(perhaps an authenticated one) between two pro-
grams for communication. When the two programs
are over a network, PPC Toolbox uses the AppleTalk
Data Streaming Protocol (ADSP), as well as the Name
Binding Protocol (NBP) to turn machine names into
AppleTalk node numbers. PPC Toolbox doesn’t care
what goes across its connection; it just manages the
flow and ensures that data gets from application ‘A’ to

Living in a Wired World
(continued from page 41)
Figure 16—Classic PPC Browser with IP Checkbox
application ‘B’. In the modular Mac OS design, the
next highest level is the high-level event, a part of the
Event Manager that uses PPC Toolbox to send discrete
chunks of information from program to program,
treating them when they arrive just like any other kind
of event (a keypress, a mouse click, a disk insertion, or
others). On very rare occasions, you can see PPC
Toolbox remnants peeking through the rest of the sys-
tem via data using its four-character identifying type:
‘eppc’ (extended program to program communica-
tion).

High-level events also don’t have many structure
rules; they just break a PPC Toolbox session into more
manageable chunks. Programs communicating with
each other would need to agree on all the formats in
their high-level events so they’d know how to interpret
the data they receive. Comprehensively defining such
interpretation rules is massively complex, so Apple did
it for programmers, publishing a protocol for high-
level events called the “Apple Event Interapplication
Messaging Protocol.” High-level events conforming to
this specification are (you guessed it) Apple events.

You’re probably already familiar with Apple events
as they’re thrown around from program to program,
directing your computer on its tasks. When you
“open” a URL, the Internet Control Panel launches
the appropriate helper application and sends it an
Apple event with the URL to fetch. The Finder sends
and receives Apple events constantly—every time the
Finder does something in response to another pro-
gram’s request (open a window, quit, reveal an icon),
it’s all due to Apple events. In fact, Apple events are so
useful that an entire system of controlling them
through text-based programs is included in the Mac
OS. You type English-like words, and the system turns
your instructions into Apple events and sends them.
This grand experiment is called AppleScript.

Why go through the grand event tour? You need
to understand this hierarchy to realize what’s hap-
pened in Mac OS 9. AppleScript is built on Apple
Figure 17—PPC Browser Using IP

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 43
events; Apple events are built on high-level events;
high-level events are built on the PPC Toolbox. In Mac
OS 9, Apple has changed the PPC Toolbox to allow
communications over IP as well as through AppleTalk.
Because of the modular structure, everything above it
suddenly has IP capabilities as well, including Apple
events and AppleScript.

The PPC Toolbox includes a standard human
interface to choose an application to talk to, on your
own machine or anywhere on the network. It’s called
the PPC Browser, and it’s shown in Figure 16. (You can
play with one on your own system by executing the
AppleScript command “choose application”.) If your
AppleTalk network has zones, they appear in a new list
in the lower left corner of the dialog box, just as they
do in the Chooser. New in Mac OS 9 is that little
checkbox marked “IP.” Figure 17 shows what happens
when you check it: the list of AppleTalk machines goes
away, replaced by a field where you type an Internet
address and click the “Get Applications” button. Once
you have the address right and tell the PPC Browser
so, it connects to the remote computer via IP and lists
the applications capable of communication. (This all
requires Program Linking to be enabled in the File
Sharing Control Panel; linking over IP requires
enabling Program Linking over IP.)

The difference is simple: instead of opening a
PPC connection to a remote machine by AppleTalk
specification, you do it by IP address. If PPC Toolbox
can handle IP, so can high-level events, and so can
Apple events, and so can AppleScript. That’s the real
story behind Apple’s ninth “Internet Power Tool.”

AppleScript Via IP

PPC Toolbox support for IP probably won’t affect
your daily Macintosh use much. If you regularly send
Apple events or scripts to remote computers (and are
therefore familiar with the PPC Browser shown in
Figure 16), you’ll get to start using the IP-enabled ver-
sion in Figure 17. Everything else happens transpar-
ently—just faster, and over distances. Another advan-
tage of IP is that, being the lingua franca of the
Internet, you can send IP packets all over the world.
You can now send an Apple event from your Internet-
connected machine to any other Internet-connected
Macintosh running Mac OS 9 or later (with Program
Linking enabled, natch). You’ll pick the same pro-
grams in the same dialog boxes; the system handles
the gory details.

Except in AppleScript. Since the scripting lan-
guage turns your English-like words into Apple events,
it requires a terminology telling it how to do that. The
terminology for naming a remote application involves
AppleTalk terms: ‘tell application “Finder” of machine
“Strawberry Fields” of zone “The Big Zone.”’ In Mac
OS 9, you want the option to specify a remote
machine using an IP address. AppleScript uses the
URL in the Program Linking section of the File
Sharing Control Panel as its identifier; it’s formed with
the PPC Toolbox’s internal identifier, ‘eppc’. If your
machine is on the Internet at address 38.195.223.64
with the name “fredbox.mycompany.org,” AppleScript
can address it as either <eppc://38.195.223.64/> or
<eppc://fredbox.mycompany.org/>.

Unfortunately, AppleScript 1.4 in Mac OS 9 is, at
press time, the worst-documented set of changes to
AppleScript in years. We know of at least seven note-
worthy changes in AppleScript, but they are barely
mentioned in AppleScript Help with Mac OS 9, mean-
ing scripters will have trouble using them. Neither are
they mentioned at all on the AppleScript Web site.
The Mac OS 9 Technical Note mentions the changes
but doesn’t explain how to use them in a script. And
none of the CD samples that we found use any of the
new features. In fact, the only sample we’ve seen from
Apple demonstrating any of the new features is an
online picture of a script in Apple’s marketing materi-
al for AppleScript over TCP/IP. Study it carefully; it
may be all the documentation you can get.

Here’s what we know:

� You can use an ‘eppc’ URL for the “machine”
parameter of a remote computer instead of a string
presumed to be the AppleTalk computer name

� You can allegedly include a user name and pass-
word for a remote machine in your scripts, instead of
forcing the authentication dialog always onto the
screen, but we can’t find out how (another choice
would be putting the password on the keychain and
scripting keychain access)

� A new “using terms from” block tells AppleScript
to use event terminology from one program while
sending Apple events to another, eliminating the need
for the “double-tell” block described in the Mac OS
8.6 Technical Note

� Script Editor is now a Carbon application (ready
for Mac OS X) and can save compiled script applica-
tions in Carbon-ready form also, if you wish (referred
to as “classic applet” and “Mac OS X applet” in the
“Save As…” dialog box)

� The “Info For” scripting addition now gives more
information about a file—it tells you if the file is busy
or not, so a script can check a file repeatedly until it’s
no longer in use

(see “Living in a Wired World,” page 44)

http://www.gcsf.com/extras/mwj/mos9special/index.html#figure16
http://www.gcsf.com/extras/mwj/mos9special/index.html#figure17
http://www.apple.com/macos/feature8.html
http://www.apple.com/applescript/
http://developer.apple.com/technotes/tn/tn1176.html#applescript
http://www.apple.com/macos/feature8.html
http://developer.apple.com/technotes/tn/tn1163.html#applescript
http://developer.apple.com/technotes/tn/tn1163.html#applescript

Page 44 Mac OS 9 Marquee & Hidden Features MWJ Mac OS 9 Special
� AppleScript’s long-standing error-catching mecha-
nism is a series of statements in a “try” block followed
by error-handling code in an “on error” block; the “on
error” block is now optional, so you don’t have to
include an empty one just to get the script to compile

� The new “Keychain Access” scriptable application
gives script writers almost as much access to keychain
items as machine-level programs get

� The new “Speech Listener” scripting addition
accepts a list of words and, using Speech Recognition,
returns which word in the list it heard (if any) in a
given time period

� Due to architectural changes, AppleScript no
longer loads with extensions; it loads with “compo-
nents” like QuickTime digitizers and file translators; if
your system has a strange dependency that requires
loading AppleScript after some other extension, pre-
pare for trouble (components always load first and
can’t be made to load after extensions)

Living in a Wired World
(continued from page 43)
That’s it. A nice set of features, especially given
how little change was necessary to get AppleScript
working over TCP/IP. Note, however, that any script
using new terminology features in AppleScript itself
(like URLs for remote machine names or the “using
terms from” block will neither compile nor run with
earlier versions of AppleScript or of Mac OS. All you
need to take advantage of this is the documentation
Apple has yet to supply. A Thursday phone call to
AppleScript product manager Sal Soghoian seeking
clarification was not returned by press time.

The Nine Wonders Of The Release
Unlike Mac OS 8.6, Apple’s choices for marquee

features in Mac OS 9 are surprisingly meaty. Sherlock
2, Multiple Users, the Keychain Manager, Network
Browser 2.0 (and NSL Manager 1.1 on which it is
based), and interapplication communication over
TCP/IP are all worthy additions in the best Macintosh
tradition—taking what we already know, making it
stronger, and using the Mac OS’s own design and
capabilities in the most flexible ways. ❖
Mac OS 9

Watch This Space
Hidden Technologies Promising Future Benefits
Each release of the Macintosh operating system
contains behind-the-scenes changes. Invisible to most
people sitting at a computer, they have no apparent
immediate effects. They do, however, lay the founda-
tion for the features of applications yet to come.
Sometimes it takes a while: aside from Network
Browser, for example, few programs use the Network
Services Location Manager introduced in Mac OS 8.5
(MWJ 1998.10.19, plus “Living In A Wired World,” this
issue), and the Apple Type Services for Unicode
Imaging (ATSUI)—the intellectual progeny of
QuickDraw GX Typography—is still badly needed yet
unused by most applications (MWJ 1998.10.19). On
the other hand, URL Access, introduced in Mac OS
8.6, is showing up in custom AppleScripts all around
the Macintosh community, and is now the basis for
Apple’s Software Update Control Panel (“Living In A
Wired World,” this issue).

Predicting how the new features in Mac OS 9 will
change the software landscape is no small chore, as it
depends on whether and how quickly developers
update their software. We prefer to let you draw your
own conclusions, so we’ll explain the major invisible
and structural changes in Mac OS 9 to provide a good
first step for your assessment. First are two of the
biggest “hidden” changes in Mac OS 9—access to HFS
Plus features, and the Mac OS debut of real font man-
agement support, built right in. Following that we
examine four other new “invisible” technologies: the
HTML Rendering Library, a new Multilingual Text
Editor, plus the Carbon and Core Foundation tech-
nologies that pave the way for Mac OS X.

HFS Plus: File Manager Expansions
It’s hard to believe, but Apple first released the

HFS Plus file system with Mac OS 8.1 nearly two years
ago (MWJ 1998.01.12). The revision to HFS to account
for modern file system features and much larger vol-
umes and files has been enormously successful—

MWJ Mac OS 9 Special Mac OS 9 Marquee Features Page 45
reports of trouble and disk damage have been few and
far between. The major problem has been that some
of HFS Plus’s modern features are inaccessible to
applications. Files on HFS (“Mac OS Standard”) disks
cannot grow larger than 2GB each. HFS Plus (“Mac
OS Extended”) files aren’t so limited, but all the Mac
OS routines that programmers use to access files are.
For example, programmers must be able to access
every byte of a file, so the Mac OS allows programs to
start reading or writing at any point in a file. However,
the value they pass to the OS for this purpose is
restricted to 31 bits, so there can’t be more than 2^31
bytes (two terabytes) of data in any fork (data or
resource) of any file. HFS itself has similar limitations.
HFS Plus does not, but since the only way to access the
files are through the HFS routines introduced in 1986
(and updated in 1991’s System 7), the limitation is still
effectively in place.

In Mac OS 9, Apple’s file system engineers started
adding new application program interfaces (APIs—
just like humans talk to the computer through the
“human interface,” programs talk to the OS through
the APIs) for extended HFS Plus features. In addition
to removing the limit of 348 open file forks, boosting
it to 8169 (“Mac OS 9 Basics,” this issue), Mac OS 9
adds support for reading and writing file forks larger
than 2GB, setting and preserving HFS Plus’s 255-char-
acter Unicode file names, reading directory informa-
tion as easily as reading a file, and support for more
than two forks in a single file.

Fork This

Different parts of Apple Computer seem to be
moving in different directions concerning forked files.
On the one hand, the Mac OS X people are cleaving
to the OpenStep application architecture, which
eschews resource forks. After all, OpenStep (and
NextStep) didn’t require file systems that offered
resource forks, so applications written for OpenStep
(and now for Cocoa, the OpenStep descendant pro-
gramming environment native to Mac OS X) take
what a Mac OS application would put in a resource
and keep it in a separate, small file. Special folders
located with the application hold all these files for
each language version of the application. To keep you
from diving into these folders and messing up the
moral equivalent of a resource fork, the OpenStep
Workspace Manager normally prevents you from see-
ing them—instead, the entire application folder looks
like a single application file.

These are called packages, and they’re supported
in Mac OS 9, not just for applications derived from
NeXT interfaces but for Mac OS programs as well. In
Mac OS land, a package might include plug-in folders,
scripts, configuration files—anything a developer
wants tied to his application and doesn’t want you
messing with unless you know what you’re doing. In
the Technical Note describing packages, Apple points
out that some of the files developers typically drop in
the System Folder (help files, dictionaries, and so on)
could just as easily live in packages as in the System
Folder. It’s not a bad recommendation, save that it’s
something like the fifth about-face Apple has pulled
on the “where to store application-specific files” issue
since 1991, so don’t expect developers to react as if
this is Received Wisdom.

The benefit of packages is that for most purposes
they work like folders (the Finder and Navigation
Services are two software components that treat pack-
ages like single units, not folders). They can be
archived, distributed, backed up, and otherwise
manipulated with standard file utilities. And they
don’t require resource forks, so they work even on file
systems like UFS (the UNIX File System used in Mac
OS X) that don’t offer multi-forked files.

At the same time, however, the Mac OS File
Manager team is moving in quite a different direction.
Far from giving up support for the resource fork, the
File Manager in Mac OS 9 at least theoretically
expands support to many forks in a file—maybe even
dozens. This is not as insane as it sounds. The Finder
and other applications need to track metadata about a
file—information about the file itself. File type, cre-
ator type, modification dates and times, creation dates
and times, access privileges (new in HFS Plus), and
even the backup state are all examples of metadata.

In the world as we know it, metadata is stored in a
file’s directory entry. That makes adding new kinds of
metadata rather difficult, since directory entries are
fixed-length and can’t be revised without breaking
every program that accesses disks directly (including
most disk utilities). At some point, Apple might want
to let applications like the Finder track such informa-
tion with the file but not within a directory entry.

That’s where the idea of extra forks becomes use-
ful. The forks in the Mac OS 9 File Manager are
named, not numbered, so no one has to arbiter the
use of fork #2 or #15 or #99. The data fork has no
name (the empty string), and the resource fork is
named “RESOURCE_FORK”. There might be an
“EXTRA_DATA” fork, or a “FINDER_PRIVATE” fork,
or who knows what else? Each fork would have its own
contents independent of any other forks. When you
copy or move the file, all the forks go with it, so any
metadata or other information in the other forks stays
with the file.

The downside is the same set of problems brought
by resource forks, multiplied by however many forks a
file has. The data in extra forks would regularly be lost

(see “Watch This Space,” page 46)

http://developer.apple.com/technotes/tn/tn1188.html

Page 46 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
unless all programs that copy files see revisions to copy
all forks, not just the data and resource forks.
Compression and encoding programs and standards
(StuffIt, Compact Pro, MacBinary, AppleSingle) would
need more revisions to account for multiple forks.
AppleDouble (an Apple standard that keeps all
“Macintosh” information in a second file and leaves
the data fork as one file, making both parts easy to
transfer and reassemble on a target system) might be
revised to keep all non-data forks in the second file, or
it might become obsolete. And don’t forget third-party
developers—no one knows what they would do with all
those forks. Some might try replacing every separate
file in an application with a new fork in the applica-
tion file, leading to huge single-file programs (imag-
ine Microsoft Word 2000 in one file), an idea almost
diametrically opposed to the one espoused in “pack-
ages.”

At the moment, this is an academic debate—the
APIs are present for multiple forked files, but no file
system implements them, not even HFS Plus (it has
theoretical support, but in Mac OS 9 you can’t create
files with more than two forks). HFS will never support
more than two forks per file, and most non-Apple file
systems will never support more than one. But on the
other hand, multiple forks are a direct analog to extra
file-specific information that already exists in modern
new file systems like NTFS (the Windows NT File
System) and UDF (the Universal Disk Format found
on DVD discs). Multiple named forks might be neces-
sary just to preserve those contents, regardless of
whether Macintosh information winds up in other
forks.

Extra forks could work well if they’re used only to
track extra information not intended to survive E-mail
or some kinds of disk copying,. But without significant
systemic changes, applications won’t know about extra
forks and will leave them behind when copying or
sending files. If the eventual destiny of extra forks is to
hold disposable information, that will be fine. But if
interoperability with NTFS and UDF is a priority, it will
mean more changes in how Macintosh applications
handle files.

Evolutionary Changes

Multiple forks are the biggest change in Mac OS
9’s File Manager, and as noted, they’re still largely in
the theoretical stage. The other major changes largely
serve to bring the File Manager’s APIs up to speed
with the HFS Plus file system.

Since HFS Plus’s release, the File Manager had
been “dumbing down” HFS Plus’s capabilities to fit the

Watch This Space
(continued from page 45)
older HFS model on which the File Manager’s rou-
tines have been based since 1986. Although an HFS
Plus disk can have files with names both longer than
31 characters and using Unicode characters that don’t
appear in your system’s default text encoding (for
example, a file name containing a Chinese character
on a US English Macintosh), the File Manager in Mac
OS 8.1 through Mac OS 8.6 “translated” these names
down to an acceptable 31-character single-encoding
name, embedding the file’s catalog node number in
the name if the file’s Unicode name was otherwise
unpresentable. It all worked fine—you could open,
read, write, and otherwise manipulate the file—but
you couldn’t figure out what the real Unicode name
was, nor could you change it. Similarly, HFS Plus disks
could have files larger than 2GB, but no programs
using the Mac OS File Manager could satisfactorily
manipulate them.

Mac OS 9 includes a wide range of new routines
designed for native access to all the features of HFS
Plus, eliminating these headaches and inconsistencies.
The new routines are designed to avoid future prob-
lems: like much of the Mac OS, the new capabilities
are based on opaque data structures, meaning Apple
doesn’t tell developers how to see inside them. Instead
of saying “A reference to a file contains a disk number,
a directory number, and a file name,” the new rou-
tines hide the information. They say, “Here is a refer-
ence to a file. We’re not telling you what all it con-
tains, but we’ll tell you that it contains at least as much
information as the old version. If you want any of the
information out of it, pass it to these new routines and
we’ll give you back what you want. Don’t try looking
directly inside, because it may change.”

Now, instead of “dumbing down” HFS Plus for old
routines, the new File Manager APIs get to “smarten
up” other file systems so programmers can use one
new set of routines and forget about the other ones.
The changes are designed so programmers of external
file systems can implement them if they wish, but the
File Manager will take up the slack if they do not. One
new routine, by way of example, can provide informa-
tion about all the files in a directory and in any subdi-
rectories it contains in one convenient operation. This
may be rather painless for HFS Plus because it keeps
such information handy, but it would take quite some
time to compute on other file systems (think “Get
Info” on a directory in the Finder, and the amount of
time the window says “Calculating size…”). The new
File Manager takes the fast route for file systems that
support it, but it falls back to the same manual way of
examining each file directly for file systems that don’t
(like HFS and, probably, most external file systems). If
you’re lucky you get results much faster, but in the
worst case you don’t get them any slower. That’s the
rule of thumb for the File Manager additions in Mac

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 47
OS 9. The new capabilities aren’t earth-shattering, but
they’re necessary tasks in the world of huge disk drives
and multi-lingual files.

What Mac OS 9 Doesn’t Fix

When people hear about large file and long
Unicode file name support in Mac OS 9, they’re
almost immediately discouraged because there’s no
easy way for them to use it. The Finder uses the new
calls internally to properly copy large files, to gain a lit-
tle speed, and to preserve Unicode file names wherev-
er possible. Finder, however, didn’t get a major over-
haul in Mac OS 9—its internals are still largely limited
to 27-character disk names and 31-character file
names. Finder doesn’t currently accept Unicode input
for file names.

There are far more issues involved in full human
interface support for HFS Plus than you may be con-
sidering, many revolving around the long Unicode file
names. Apple chose Unicode for HFS Plus file names
because those file names then wouldn’t be limited to a
single text encoding—you could put one or two
Katakana characters in an English file name without
difficulty. Displaying such a file name, however, is
hard. Your system might lack Japanese fonts, and then
Finder has to figure out how to display the name—and
let you edit it—without screwing up the original file
name too much. The Text Encoding Converter can
help, but it’s not magic.

And not to belabor the obvious, but 255 character
file names are long. Finder has never had to deal with
a situation where a file name on a single line might
not even fit on the screen in your chosen “views” font.
The trickiest part, however, may be deciding what hap-
pens when you copy a long file name to an HFS disk
(like a floppy disk, since HFS Plus doesn’t support
such small disks). Does it get truncated to 31 charac-
ters? What happens if a file whose name has the same
first 31 characters is already on the target disk? Should
the Finder (or the File Manager) maintain a “parallel
directory structure” with the HFS Plus information
that doesn’t fit on an HFS disk so it’s there when you
copy the file back? Adding support for these kinds of
features isn’t as easy as changing the number “31” to
“255” in some file and recompiling the Finder.

While new programming methods eliminate some
of the most complex methods programmers were
forced to use under the old File Manager APIs, the sys-
tem isn’t exactly modern: it’s still single-threaded,
meaning it can only handle one file request at a time
and can’t be interrupted. Most of the File Manager is
still in 68K assembly language because it’s complex
and it works correctly; rewriting it in PowerPC code
could create lots of bugs for little benefit. HFS Plus
and the new File Manager APIs are written in a high-
level language, so they’re already portable to
PowerPC, but they’re compiled as 68K code to avoid
the per formance penalty involved in switching
between the existing 68K File Manager code and any
new PowerPC code.

Apple’s engineers say that in normal cases, the
path through the File Manager to the device drivers
that do the actual work is pretty quick, and the device
drivers are PowerPC native. It’s the single-threading
that makes Mac OS file I/O so slow. You’ll notice that
when Apple shows off its super-fast computers at
demonstrations, it never runs disk-intensive tests—
demonstrating databases or Web servers or the like.
That’s because Windows, UNIX, and Linux can all
process multiple file requests at the same time while
the Mac OS cannot.

The File Manager additions in Mac OS 9 do not
correct this, and quite frankly, we think it’s unlikely to
ever change in classic Mac OS because it’s too big of a
compatibility risk. Look at all the gnashing of teeth
taking place over direct access to the FCB table and
imagine what would happen if Apple changed some
more substantial implementation detail to deliver mul-
tithreaded file access. Everyone professes that they
understand Apple must break some very old program-
ming techniques to deliver long overdue new fea-
tures—until it actually inconveniences them personal-
ly.

The changes are about the future—they lead to a
more robust transition to Carbon applications, pro-
vide support for HFS Plus features to developers (if
not directly to end users), and eliminate some of the
ambiguity that led to problems like error 119. You
won’t see much benefit to these changes when you
install Mac OS 9, but as programs that implement the
new features become available, you might even start
using Unicode file names—outside the Finder, at least.
It’s a building block technology. The technically curi-
ous can explore more details about the new HFS Plus
File Manager at Apple’s developer Web site.

A Real Font Manager
If you do any serious work with text on the

Macintosh, you can probably name at least four font
management utilities off the top of your head (we
came up with Adobe Type Manager Deluxe, Font
Reserve, Suitcase 8, and Master Juggler Pro).
Programs to activate and deactivate fonts, rearrange
font menus, validate fonts, repair fonts, and otherwise
boss them around are ubiquitous because the Mac OS
itself has always lacked real font management capabili-
ties. Third-party developers have just tried to take up
the slack.

(see “Watch This Space,” page 48)

http://developer.apple.com/techpubs/macos8/pdf/FileManger.pdf
http://developer.apple.com/techpubs/macos8/pdf/FileManger.pdf

Page 48 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
A History of Font Non-Management

The first Macintosh dumped all of its fonts in the
System file as resources. They weren’t large and had to
be available at all times; the Resource Manager made
that possible. (The same was true for the code that
draws windows, menus, and controls, as well as the
code for desk accessories, drivers, and even applica-
tions themselves—all stored in resources. It was the
thing to do, and on a 128K system with a 400K floppy
disk, it worked well.

For fonts, however, this design was fatally flawed.
None of the original engineers foresaw what desktop
publishing or even WYSIWYG word processing would
do to their tightly-packed system. Apple’s original
specification allowed for only 256 different fonts, a
number eclipsed within months. Apple had no plans
for stylized fonts, and outline fonts were far beyond
the computer’s capabilities. Meanwhile, developers
and typographers understood that fonts and resources
were identical—each font worked exactly like every
other resource, with no special management or other
code necessary to make extra font resources work
properly.

Apple started adding font capabilities piece by
piece, yet everything stayed based in resources for
compatibility. When the font family description
resource and “new font” bitmap font resource were
added in 1986 with the Macintosh Plus, the system
overcame the limitation of 256 fonts per language, but
at the cost of multiple resources per “font family”
instead of a single ‘FONT’ resource. TrueType, in
1991, added ‘sfnt’ resources and outline fonts. Some
of these were so large, especially for double-byte sys-
tems, that Apple had to add “partial resource” calls to
the Mac OS—the traditional “read this resource into a
chunk of RAM” paradigm fell apart on 4MB comput-
ers dealing with 2MB Kanji font resources.

Even at this stage, fonts and resources were still
synonymous. This may be hard to grasp fully without a
counterexample, so contrast it with QuickDraw pic-
tures and the ‘PICT’ file and data type. Support for
‘PICT’ data is built into QuickDraw, the Mac OS com-
ponent that draws everything you see on the screen.
Like fonts, the ‘PICT’ data type is completely docu-
mented—developers can get inside it and build their
own. But a QuickDraw picture could live in many
places—a resource of type ‘PICT’, a file of type ‘PICT’,
or just in a chunk of memory prepared by an applica-
tion. QuickDraw deals with the idea of a picture—it
will create one for you or draw one that you give it, but
it does not care how you store them.

Watch This Space
(continued from page 47)
Fonts had no such luxury. For the Mac OS to find
and use a font, it had to be stored in the right
resource type in the System file. Developers couldn’t
say “this data is a font” or “this file is a font,” or more
usefully, “Here is a font—go store it somewhere and
do what you want with it, but make it available to the
system.” Those who wanted control over fonts had to
deal with resources, period. The overlap led to some
unfortunate programming practices, as developers
learned that they could generally use resource-orient-
ed tricks with fonts. They could put resources in appli-
cation files instead of in the System file and
QuickDraw would find them—until you switched
applications. They could give resources funny names
starting with “%” and “.” to keep the Macintosh from
displaying those resources in a “Font” menu. They
could override the Mac OS fonts with their own ver-
sions in separate files, even though QuickDraw was
never prepared for the idea that the same font would
really be different for different applications.

Adobe Type Manager, for its part, came in around
1987 and sat on top of all of this, patching into the
deepest levels of font and resource interaction, waiting
to see if its outline font rendering code would be
needed for any given text. Apple had never intended
any of those areas to be open to third-party develop-
ers, but Apple documented enough about how it
worked for Adobe’s keen engineers to get in the thick
of the process and grab control where necessary. But
as both QuickDraw and PostScript fonts have grown
more complex, the Mac OS’s text-handling code has
grown to accommodate it. ATM has been stuck not
only keeping up with these changes but trying to
implement its own new features, both in font manage-
ment and for PostScript font features. It’s a nightmare.

The “Fonts” folder, added in 1993’s System 7.1,
engendered unwarranted optimism. The idea of not
keeping fonts in the System file any more was certainly
appealing, but behind the scenes, the Mac OS
stretched almost to the breaking point to make it
work. If fonts are just resources, every font has to be in
an open resource file for QuickDraw to find it.
Applications couldn’t be revised to open all the font
files every time they launched, and it wouldn’t have
worked anyway since many programs expected the
fonts to live in the System file and the System file
alone. To make the boondoggle work, Apple revised
the Resource Manager to pretend that every font file
was really part of the System file, through a horren-
dous hack that more or less merges each font file’s list-
ing of resources (the map) with the System file’s
resource map. The same code also has to resolve con-
flicts between fonts that have the same resource IDs (a
part that was broken between Mac OS 8.1 and 8.6,
according to Master Juggler Pro developer Alsoft). It
was a classic Rube Goldberg system, and still failed to

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 49
solve any of the core problems. What’s worse, in nor-
mal situations, Macintosh users could drop so many
font files in their “Fonts” folder that they took up
more than a third of all available slots for open files
(128 out of 348).

QuickDraw GX’s release in 1994 finally brought a
true font architecture to the Macintosh. GX unified all
the various font formats into the TrueType font stor-
age format (even PostScript fonts) and introduced the
Open Font Architecture (OFA). For the first time, Mac
OS text capabilities were built on a modular architec-
ture designed for expansion in every way. Developers
could not only add new fonts and completely manage
the ones already in the system, but also add entirely
new font types. TrueType or PostScript not enough?
Write your own code to render an outline font and
plug it into the Open Font Architecture; store the
fonts in the TrueType format, and everything magical-
ly works. It was the solution that desktop publishers
needed like no other, except maybe for a robust print-
ing architecture that QuickDraw GX also provided.

Of course, GX failed, for a litany of reasons we
won’t repeat here. Printing is still as big a mess as it
ever was, but the typographical model lives on in
ATSUI—including the OFA. However, one of ATSUI’s
main goals was to make QuickDraw GX’s advanced
typographical features available in the world of regular
QuickDraw. That meant working with existing fonts,
not just with brand new ATSUI-capable fonts; one of
the most frequent complaints about QuickDraw GX
was that it required “converting” PostScript fonts into
a new format that non-GX systems couldn’t use.
ATSUI eliminated this problem, but ditched the GX
style of font management with it.

Font Management in Mac OS 9

The absence of real, built-in font management has
been an intolerable situation for at least eight years,
especially with content creation the focus of so many
Macintosh customers. Mac OS 9 finally adds it: for the
first time, the Mac OS treats fonts as unique objects.
They may come from font resources, TrueType “data
fork fonts” (the “.TTF” and “.TTC” files seen on
Windows systems), Adobe Type 1 files, or even
“OpenType” fonts that put Type 1 fonts in a TrueType
wrapper as QuickDraw GX did. The Font Manager
knows about these fonts and tracks them, making
details about them available to any program that wants
to know. Before Mac OS 9, every program that wants a
font inventory had to do this work itself, usually by
directly accessing the font resources.

The Font Manager now handles the basic font
management tasks that applications have craved for
years. In Mac OS 9, the Font Manager can count fonts,
enumerate them one by one (with complete informa-
tion), and provide the TrueType-style font tables for
each font—even those not stored in TrueType format.
Since the Font Manager now abstracts various kinds of
fonts into a standard “font object,” it can rely on its
modules and the OFA scalers to convert native data
into a standard format all programs can use. We can’t
overstate how important this is—reasonable data on
all fonts can now be available to programmers who
haven’t spent months or years studying all available
font formats and how to find them on the Macintosh.
No more “do this for bitmap fonts, this other thing for
TrueType, and this third thing for ATM depending on
the version number.”

Using opaque data types (as the HFS Plus File
Manager does), the new Font Manager code still
tracks font families by a reference number—but this
time, it’s an opaque number, not transparently the ID
of a ‘FOND’ resource for that font family. Programs
use the new font family reference just as they used the
old “font number” (really a font family resource ID)
before; QuickDraw now knows how to deal with all of
it. New Font Manager routines provide all data pro-
grammers formerly had to extract by knowing how the
font subsystem worked. The font families are sets of
opaque references to actual fonts—a family might be
“Times,” while actual fonts could be “Times Roman”,
“Times Bold”, and so on. The font family references
work with QuickDraw, and the font references work
with ATSUI, unifying the two text drawing systems for
the first time.

Even though Mac OS 9 allows more than twenty-
three times as many open files as Mac OS 8.6 and ear-
lier, Apple expects that professional customers will still
want to activate and deactivate sets of fonts for particu-
lar uses and jobs. The new Font Manager has that
built-in as well, allowing for the arbitrary activation of
fonts directly from their files, with deactivation later
whenever you want. The old system can’t do that—
deactivating a font in the middle of an application
might disturb its resource chain and cause a crash.
Programs that use the new font management APIs,
however, get activation and deactivation support as
part of the conversion.

The Font Manager even steals a trick from
Suitcase circa 1990: every time Suitcase changed the
active fonts, it incremented a certain location in low
memory. Suitcase-savvy applications checked this value
every time you brought them back to the foreground
and, if it had changed, rebuilt their font menus. (Most
of the major desktop publishing applications do that
to this day.) Apple can’t exactly mimic the trick
because they’re discouraging the use of fixed-address
values, so they built it into the API. It’s called a font
generation. A program can ask for the font generation

(see “Watch This Space,” page 50)

Page 50 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
whenever it wants; it works like the old Suitcase num-
ber. When the number increments, the font collection
has changed and it’s time to rebuild font menus.

Speaking of rebuilding font menus, the new Font
Manager does that, too. It includes functions to both
create and update a “standard” font menu—a hierarchi-
cal font menu, ordered by font family, built into the
Mac OS. Applications that switch to the new font man-
agement routines get this much-admired feature with
almost zero additional programming—a developer’s
dream. The Mac OS 9 version of the Font Manager
doesn’t include a way to extend the “standard” font
menu, but it’s marked as important to consider for
future releases.

The new Font Management system has the poten-
tial to eliminate strange resource dependencies in text
drawing. Remember how Adobe Type Manager
requires you to install at least one bitmap version of
any PostScript font you want it to use? That’s because
the text drawing system is based on those pesky
resources—if no QuickDraw font is installed, no pro-
gram will see it and ATM can’t patch in to take over
drawing for it. The new Font Manager should treat
each PostScript font as its own unique entity, eliminat-
ing the “at least one bitmap” requirement.

Backwards and Future Compatibility

For Mac OS 9, the new font features are a parallel
API to the older, resource-based font system. The hun-
dreds of programs that walk through resources and
examine fonts directly still work—in fact, if we under-
stand the implementation correctly, it seems that if a
new program activates a PostScript-only font globally
(for all applications), the Font Manager will synthesize
a ‘FOND’ resource so older applications still work
properly. The API also includes ways for third-party
font management software to hook in and do its
magic; the version in Mac OS 9 incorporates develop-
ment-level comments from DiamondSoft, makers of
Font Reserve, and other font management vendors.

Apple is unfortunately ambiguous about the
future—developer documentation strongly implies
that the older system may go away in the next major
Mac OS release or in Carbon, but if that’s the case, the
company needs to be stating this much more strongly
than it is. (Failure to make perfectly clear that a for-
merly-good programming technique is really and truly
going away leads to problems like Mac OS 9’s new
error 119.)

Developers need a push—the new ways are far eas-
ier and more robust than the old ways, but the new
ways only work on Mac OS 9 and later, ruling them out

Watch This Space
(continued from page 49)
for programs that should work with Mac OS 8.6 and
earlier. The most clear language we could find said
that the older, resource-based system of text drawing
would be “deprecated” in Mac OS X—implying that it
will still work but that programmers should change
away from it as soon as possible. Other passages imply
that the older compatibility routines are to be present
only in Mac OS 9. Apple has released the technical
developer documentation on the Mac OS 9 Font
Manager, but it also fails to make the future of the
older system perfectly clear and unambiguous. Apple
should do so as soon as it can.

A Big Font Deal

In Mac OS 9, for the first time, Apple has provid-
ed a robust, supportable, backwards-compatible set of
font management routines that developers can fully
exploit without having to rewrite every part of their
text drawing code. That’s great news. It’s even better
that Mac OS 9 users see benefits like hierarchical font
menus, better integration of various font types, a con-
nection between QuickDraw applications and ATSUI
applications, and built-in real support for activating
and deactivating fonts.

The new font management system is monumental-
ly important, especially if Apple successfully migrates
developers to using it. Fonts have always been the
unwanted stepchildren of Mac OS graphics; previous
attempts at more robust font handling have always
been coupled with more industrial-strength typogra-
phy systems that developers never adopted en masse.
Apple realizes the new Font Manager won’t provide
every feature every professional customer needs, but it
also realizes that the Font Manager must be the foun-
dation on which all future font-handling tools are
built.

Early implementations may contain bugs—since
the resource-based font process is one of the most
abused parts of the Macintosh, there’s every reason to
expect problems in the most font-intensive applica-
tions. They’ll be fixed, though, and the Macintosh
world will be a better place. These features are long
overdue. When they take full effect within Macintosh
applications, you’ll see why we’re so excited.

HTML Rendering Library
Every now and then you hear about a new feature

in software and you think, “Wow, that’s really going to
help,” only to find out later that it’s not nearly as pow-
erful as you thought it was. Such is the case with Mac
OS 9’s built-in HTML Rendering Library. You’re for-
given if you thought this was something like the inte-
gration of Microsoft Internet Explorer into
Windows—suddenly all applications had the same

http://developer.apple.com/techpubs/macos8/pdf/FontManagementAPI.pdf
http://developer.apple.com/techpubs/macos8/pdf/FontManagementAPI.pdf

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 51
HTML capabilities as the Web browser itself, turning
HTML into as core a data type as text or images or
movies.

It would be nice, but it’s unfair to be disappointed
in the HTML Rendering Library because its goals
were never so lofty. Mac OS 8.5 introduced “Help
Viewer,” a new application for displaying HTML help
files. The HTML Rendering Library is the engine dri-
ving Apple Help; Mac OS 9 just makes it available to
other programs.

The HTML Rendering Library is designed to take
over a window and render HTML in that window, be it
from a file, a file URL, or data already in memory. It
can draw in a smaller area than a window, but that
area will contain scroll bars if necessary. It contains
several routines programmers can use to manipulate
URLs (finding the root URL for anchors, extracting
page titles, changing file URLs into file specifications,
and so forth). The library itself has no link-tracking
facilities—it only renders HTML, it’s not the full Help
Viewer application. However, the HTML Rendering
Library does allow programs to hook in to track URLs,
keep history buffers, and redirect URLs appropriately.

The new library does a decent job; you can try it
out by opening HTML files in the Help Viewer appli-
cation. It’s a lightweight rendering engine, handling
HTML 3.2 or earlier only. Because it’s simple, it’s
fast—significantly faster than either major Web brows-
er for the same HTML files. And it’s unencumbered
by support for plug-ins, networking code, or the other
tasks a Web browser has to manage. Most of the
HTML files we tried rendered quickly and well. It
couldn’t quite handle some of the pages on our Web
site, probably because of the intricate tables used to
place objects on the page without forcing a given page
width.

Without built-in code like the HTML Rendering
Library, HTML on the Mac OS has been restricted to
the Web browsers and to the big applications that can
justify implementing part of an engine (like Eudora
Pro). The new library is neither an integrated Web
browser nor a state-of-the-art HTML powerhouse, but
it should make HTML-based data a little more preva-
lent in Macintosh applications; it might even let you
occasionally see HTML data in documents, or lead to
simple HTML-based utilities (HTML to ‘PICT’ con-
verters or similar tools). The HTML Rendering
Library is perfect for programs like Help Viewer
where authors want the convenience of HTML and
programmers don’t want the hassle of drawing it. We
like it.

The Texty Generation
Programming a Macintosh text editor is hard.

System 7.1-level text editing features are difficult
enough: multiple fonts, styles, and sizes (meaning vari-
able line heights and variable character widths on
every line), aligning text on the left or right or both
(or centering it), mixing multiple languages in a sin-
gle document or even a single line, dealing with both
left-to-right and right-to-left text in a single line, prop-
erly accounting for font metrics including italics that
slant outside of each character’s rectangle (MDJ
1996.12.05), proper clipboard use of both text and
styles, and even full color support. We discussed the
difficulties in implementing these features when
MacCyclopedia dissected TextEdit, the built-in text edit-
ing facility of the Mac OS (MDJ 1997.04.30).
Programmers still use it, despite its annoying 32K limit
on text and lack of support for tabs or pagination,
because it makes the necessary chores easy and man-
ageable.

Routine Obsolescence

That was the state of the art eight years ago. Since
then, text has taken off in new directions, starting with
Unicode. The Unicode standard (which Apple helped
develop) attempts to make it easier to get more of the
world’s languages onto computers by encoding every
major character from every major written language
(including the thousands of Japanese and Chinese
characters), using two bytes for each character instead
of the one byte used by most existing text encodings.
TextEdit has absolutely no concept of Unicode, and its
limit of 32K bytes per record would limit it to 16K
Unicode characters even if it did.

QuickDraw GX Typography, released with
QuickDraw GX in 1994 (MDJ 1997.01.01), added
major typographic capabilities to the Mac OS—the
kind of stuff that some programs like QuarkXPress
and Adobe InDesign still don’t have. Examples
include automatic ligature formation, context-based
glyph substitution (such as substituting a real fraction
for two numbers separated by a fraction bar, or using
an em dash instead of two hyphens), access to hun-
dreds or thousands of glyphs in a given font, optical
alignment, hanging punctuation, powerful kerning
and tracking, multiple character ligatures, and dozens
more. QuickDraw GX is now truly dead; even the
smaller “GXGraphics” extension is unsupported and
unusable in Mac OS 9. ATSUI implements most of
QuickDraw GX’s typographical concepts, and we’ll
probably review those in the months ahead when
MacCyclopedia examines the current state of advanced
Mac typography.

Here, the point is that GX and ATSUI add many
powerful features regarding placement and choice of
glyphs that are totally beyond the scope of a simple

(see “Watch This Space,” page 52)

http://www.gcsf.com/pages/mwj/
http://www.gcsf.com/pages/mwj/
http://developer.apple.com/techpubs/macos8/TextIntlSvcs/ATSUI/atsui.html

Page 52 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
editor like TextEdit. These aren’t just typographical
affectations, either: languages like Arabic and
Devanagari aren’t as “simple” as English in that the
actual shapes of glyphs change depending on context
(i.e., which glyphs they’re next to on a line). Systems
like GX and ATSUI can correctly render text in these
languages without hand-tuned adjustments; TextEdit
and others based on simple character models cannot
and never will.

While both QuickDraw GX and ATSUI include
support for these features, they’re both line-based sys-
tems that have no built-in support for text that spans
more than one line. They’ll help applications figure
out where to break lines (since such decisions aren’t
always obvious in non-English languages or with com-
plex white space characters), and ATSUI even keeps
line breaks in its own structures for help in drawing
multiple lines of text, but that’s as far as it goes.
Simple-seeming tasks like selecting multiple lines of
text get complicated in these models. Managing the
human interface for the GX and ATSUI font model is
also difficult, as neither architecture is much help with
fonts (thankfully, the new Mac OS 9 Font Manager is).

The evolution of Mac OS text handling, then, has
created a gap. On one hand, the venerable TextEdit is
still around, with full support for 1991-era features,
but programmers have to glue in anything above and
beyond them—even drag-and-drop support. And
TextEdit is still limited to 32K of text, even on
machines with 1GB of RAM (for perspective, 32K is
the square root of 1GB, so a huge machine could hold
well over 30,000 TextEdit records, none of which
could overlap). On the other hand, ATSUI offers the
most advanced typography of any personal computer
operating system available today, but the Mac OS
offers no simple text editing library to go along with it.
Translation: developers must either find an alternative
to TextEdit, invent their own, or do without ATSUI.

Developers, still big on not reinventing the wheel,
have generally stuck with TextEdit. Those demanding
more than 32K of text have typically turned to
WASTE, Marco Piovanelli’s “WorldScript-Aware Styled
Text Engine.” WASTE 1.3 includes all of TextEdit’s fea-
tures, without the 32K limit. It also adds built-in undo,
drag-and-drop editing, justified text (both left and
right sides), the ability to embed objects like pictures
in the text, and customizable low-level ways to modify
how WASTE draws and measures text. Moreover, both
WASTE and its source code are free—the only “fee”
required is sending Piovanelli a full copy of any pro-
gram that uses it.

Piovanelli is working on WASTE 2.0 (the current
version is 1.3), a revision now in alpha testing to

Watch This Space
(continued from page 51)
include multiple undo and redo support, separate
rulers for each paragraph, Carbon support, built-in
routines for printing and for matching text, and
Unicode translation (though not native Unicode edit-
ing). WASTE 2.0 will still be free, except commercial
programs needing source code will have to pay a one-
time US$100 licensing fee. No version of WASTE,
however, supports ATSUI or includes anything like its
layout features.

So the Mac OS’s text-handling dilemma has
remained: an incredibly advanced typography still sits
inside, where it’s been since Mac OS 8.5, and very few
applications are using it. Apple needed to get develop-
ers on board.

The MLTE Answer

Mac OS 9 attempts to do so by including
Multilingual Text Editor 1.1, a new set of system-level
services designed to parallel TextEdit but with modern
features and programming models. Although debut-
ing with Mac OS 9, the editor (abbreviated MLTE)
works on systems as early as System 7.1, picking up
where the last major revision to TextEdit left off
(although MLTE only runs on PowerPC processors).
On such systems, MLTE uses QuickDraw and the
Script Manager to measure and draw text, just as
TextEdit and WASTE do. However, MLTE automatical-
ly finds and uses ATSUI under Mac OS 8.6 and later.
Programmers don’t have to worry about the differ-
ences unless they want to use ATSUI features—the
same code works with either architecture. It just pro-
vides better results with ATSUI’s superior typographi-
cal engine.

MLTE eliminates TextEdit’s 32K barrier. It also
supports tabs, justification, and margins, called a ruler
in classic MacWrite terms, but like TextEdit, MLTE 1.1
supports only one ruler per text record. MLTE sup-
ports 32 levels of undo and redo, including a way to
return text to a program to display in a menu to
describe what action will be undone or redone (such
as “Undo Typing,” “Undo Format Change,” and so
forth). TextEdit has no file-handling code, but MLTE
includes routines to read and write several kinds of
files: plain text files, text files with common style
resources, Unicode text, and a new MLTE-inspired for-
mat that supports text or Unicode with pictures,
movies, and sounds.

MLTE implements the full Macintosh Human
Interface Guidelines for text editing, complete with all
arrow keys and modifier equivalents, as well as the
drag-and-drop text guidelines (including copying the
selection instead of moving it if you hold down the
Option key). It provides applications with all the sup-
port they need for dragging and dropping text into
MLTE records from other applications, too. MLTE

http://www.merzwaren.com/waste/
http://developer.apple.com/techpubs/macos8/pdf/MultilingualTextEditor.pdf

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 53
provides full “Edit” and “Font” menu support (not
using the new Font Manager routines, unfortunately,
because MLTE works on earlier systems where they’re
not present), and builds separate font menus for
QuickDraw and ATSUI clients reflecting differences in
how the two architectures treat font families. (MLTE
isn’t hung up on its “Font” menu—programmers can
use the new Mac OS 9 Font Manager API instead if
they wish.) It even sports a “password” mode where all
characters are drawn with a single glyph, like a bullet
or a diamond.

MLTE has been in progress at Apple for a long
time—it was scheduled for Mac OS 8.6 but pulled
from the release shortly before the beta cycle began.

Does MLTE Solve Anything?

We think so, but developer adoption won’t be a
cakewalk. MLTE’s programmer interface is somewhat
more complicated than TextEdit’s. Like the new File
Manager and Font Manager, MLTE uses opaque data
structures. In contrast, TextEdit’s innards are com-
pletely transparent, giving developers lots of flexibility
but simultaneously tying Apple’s hands—developers
using those innards means Apple loses backwards
compatibility if it changes them. Programmers accus-
tomed to total control over the editor will probably
lean towards WASTE, where source code is still avail-
able and the API is more TextEdit-like.

Apple is understating MLTE’s real benefit: it works
equally well with QuickDraw or ATSUI, meaning
developers can write to MLTE’s features and know
they’ll get the best possible representation. Benefits in
international markets will be even better. One reason
developers use TextEdit and WASTE is because they
know their programs will automatically work with vari-
ous languages and writing systems—both TextEdit and
WASTE feature built-in support for Japanese, Chinese,
Korean, and other “difficult” script systems. However,
as we’ve noted, that simple character model is not suf-
ficient for correct visual representation of some lan-
guages. ATSUI handles this automatically, whereas
both TextEdit and WASTE 2.0 can’t—it’s just too diffi-
cult to implement. ATSUI inherits from QuickDraw
GX, which in turn inherits from the “Line Layout”
project started at Apple in 1989. It includes at least 15
programmer-years of coding from some of the most
linguistically talented programmers in the world.
Marco Piovanelli is very good but he can’t duplicate
that gargantuan effort.

But for this feature to work at all, Apple must fol-
low through, as it did with the Appearance Manager,
and release a version of MLTE that works as far back
as System 7.1. (Although the MLTE code itself works
on older versions of Mac OS, that does little good if
Apple doesn’t release it as a separate extension quali-
fied on those systems.) Until and unless they do so,
there’s a ton and a half of code in MLTE that serves
no purpose whatsoever. If MLTE is only available for
Mac OS 9 and later, all the work in it to work with
QuickDraw and the Script Manager is wasted space—
Mac OS 9 and later always contain ATSUI, so the older
compatibility code is never needed. It’s that same code
on pre-Mac OS 8.6 system that make MLTE so valu-
able, but only if Apple releases and licenses it in a
timely and inexpensive way.

Developers have already outgrown MLTE 1.1’s lim-
ited support for some features. One example is tab
support. MLTE’s idea of a “tab” is a fixed-width inter-
val that repeats across the available area. If your tab
stops are “one inch” and your MLTE editing area is
seven inches wide, you get seven tab stops (counting
one at the right edge, or left edge if using a right-to-
left language). A tab character makes the next charac-
ter draw at the next tab stop. If you then type more
characters before the tab, they fill in the white space
gap until the characters reach the tab stop; the tab
then pushes the next text out to the next tab stop. The
data structures offer future support for various types
of tabs (left, center, and right; decimal tabs aren’t
mentioned), but MLTE 1.1 supports only left tabs.
There’s no support for irregularly-positioned tabs like
those allowed by every word processor since MacWrite
1.0. And while MLTE does add printing support
(TextEdit is infamous for having none and not react-
ing well when used with printer drivers), it’s so basic
that there’s no obvious way for developers to combine
printing an MLTE text record with anything else on a
page (like a header or footer, for example). That
won’t fly very far.

Another problem isn’t really MLTE’s fault, but it
prevents the new technology from advancing the
cause of advanced typography. ATSUI, like its ancestor
QuickDraw GX, offers dozens of advanced typographi-
cal features based on intelligence built into fonts by
their designers. Since the advanced capabilities
depend on what the fonts offer, and since there are
dozens of options, building a standard human inter-
face to let you choose your favorite features is a mam-
moth task. Unfortunately, Apple has responded to this
so far by punting. QuickDraw GX included no recom-
mendations for how to present these complicated
options to Mac OS users, and neither does ATSUI.
MLTE could have taken up the gauntlet, but it didn’t.
Developers don’t want to take on that much work for
something Apple might replace with a standard in the
future. Thus, the most powerful feature of ATSUI
typography is still remarkably invisible because no one
has bitten the bullet and designed a consistent way to
present it to people who might want to use it.

(see “Watch This Space,” page 54)

Page 54 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
Apple really needs to resolve this, because ATSUI
font capabilities far exceed those of the similar
“OpenType” standard. Microsoft and Adobe,
OpenType’s creators, say OpenType’s model is superi-
or because programs aren’t “locked in” to the algo-
rithms built into the system software. ATSUI and GX
supporters say that argument is a crock—developers
can override or turn off every font feature, and leaving
the algorithms out of the OS just ensures that the
advanced features show up only in programs from
companies large enough to spend thousands of pro-
grammer hours recreating them. Which companies
might that be? Why, Microsoft and Adobe, of course
(see The Weekly Attitudinal, “Welcome to ClosedType!”,
MDJ 1997.04.25).

Proof In The Pudding

Apple can fix most of these problems—it can
release MLTE for System 7.1, fill in the holes, and add
the features that didn’t make it into the first release.
But that won’t be enough. As with Navigation Services,
Apple must start using MLTE in its own programs in
place of TextEdit. If Mac OS 8.5 had included
Navigation Services, but all of Apple’s programs still
used the older Standard File operations, how many
people would have seen the advantages of the newer
“Open” and “Save…” dialog boxes or pressed develop-
ers to adopt them? So will it be with MLTE. The
Finder, Note Pad, Scrapbook, SimpleText, Script
Editor, and other programs included with Mac OS
have to commit to MLTE before developers will both-
er doing so.

We hope Apple makes this commitment, because
MLTE’s concepts are important. Adoption of ATSUI
and Unicode will advance the Mac OS, both typo-
graphically and in worldwide markets. Apple has long
held a technological lead in these kinds of features
but has been less effective at translating that lead into
“must have” products. MLTE is another chance for the
new, improved Apple to carry through on its own
promise.

The X Files
Finally, we’ll look briefly at Mac OS 9 technologies

aimed squarely at Mac OS X. At the 1998 Worldwide
Developers’ Conference, Apple announced the Mac
OS X strategy. The new OS is to be based on a UNIX-
like core, with Next’s foundation and application envi-
ronment (now called “Cocoa”) on top of a Mach ker-
nel. The existing Mac OS, now at version 9, maintains
its traditional architecture with incremental improve-

Watch This Space
(continued from page 53)
ments like those we see in this release. For compatibili-
ty, Mac OS X will run existing Mac OS applications,
unmodified (provided they don’t directly touch hard-
ware), in a form of Mac OS “emulation” called the
“blue box.” The downside is that such applications
don’t get any of Mac OS X’s marquee features—pro-
tected memory, preemptive multitasking, and dynamic
resource allocation (where the operating system provides
what is needed when it’s needed, instead of requiring
you to figure out things like application partition sizes
in advance).

This was basically the “Rhapsody” model, and it
has a serious flaw. Only new applications get the bene-
fits of the new operating system; older applications
gain no benefits unless they’re virtually rewritten from
scratch. Very few developers were interested in that
proposition. Under Steve Jobs’s leadership, Apple
took a step it was never willing to take before—intro-
ducing a new, third application model; one heavily
based on the existing Mac OS, but discarding all the
parts of it that prevented Apple from adding the mod-
ern features to earlier efforts like Copland.

The interim layer is called Carbon. It works for
two reasons: because it lets developers bring their
existing Mac OS applications to Mac OS X with full
features and relatively minor modifications (a few
months instead of a few years of coding), and because
Apple pledged to bring Carbon’s code to the existing
Mac OS as well. It’s a sound strategy—developers who
take the time to write their applications to the Carbon
specification write one application that gets all the
advantages offered by both the classic Mac OS and by
Mac OS X. Carbon is almost entirely based on the clas-
sic Mac OS, but its lowest-level services are more based
on the Next “Foundation” classes. The reworked ver-
sion of that Next material supporting Carbon is called
Core Foundation. Both it and Carbon see first public
release in Mac OS 9. Let’s look at Carbon first.

Carbon 1.0: Slowly Starting

Today’s PowerPC applications connect to
PowerPC-native Mac OS code through shared
libraries. Some are stored as separate files; some are
built into the System file. The major portion of the
PowerPC-native Mac OS is in a library called
“InterfaceLib,” and all PowerPC-native Macintosh
applications link to it. Carbon applications bypass that
in favor of “CarbonLib,” a library stored in a file of the
same name in the Mac OS 9 extensions folder.
CarbonLib contains the Carbon 1.0 release. It’s a cau-
tious step—it loads only on Mac OS 9. It will not load
on either earlier or later versions of Mac OS, to pre-
vent people from taking this early release back to Mac
OS 8.6. Apple has promised to release Carbon for the

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 55
older 8.x versions of Mac OS, but this version doesn’t
qualify.

Carbon aims to change the existing Mac OS so
that the transparent data structures that have caused
so many compatibility headaches go away. Since pro-
grammers already have to change their programs to
gain Carbon compatibility, it’s the perfect chance to
give them new ways to perform tasks other than look-
ing directly at internal Mac OS structures Apple docu-
mented fifteen years ago. For programmers, the
changes are minor. Instead of peeking into a fixed
location in memory to find the height of the menu
bar, Carbon applications ask the system (either Mac
OS or Mac OS X) to just tell them how tall the thing
is. In just about every place where programs have pre-
viously peeked, they’ll now switch to asking. Each such
change is minor, taking mere seconds in a program’s
source code.

However, there may be thousands of them to
make in a large application. From QuickDraw on up
through the human interface tools built on it, fifteen
years’ worth of transparent data structures are being
replaced with “black box” opaque data structures.
Unfortunately, there is no real documentation on
most of these changes as Mac OS 9 hits the shelves.
Those in Apple’s developer programs have more
access to Carbon information than does the general
public, but even that information is lacking.

For example, dozens of data items in QuickDraw
drawing environments (called graphics ports) are hid-
den in Carbon, because the graphics port is an
opaque data structure—programs can’t peek into it.
To compensate, Carbon adds dozens of small func-
tions to get and set the information from the opaque
structure. Instead of looking in a graphics port for the
current font size, a programmer asks Carbon for the
font size of the given port with the new call
GetPortTextSize. Pretty simple—if there were any doc-
umentation of the new QuickDraw routines. But the
interface files that tell compilers how to work are all
that’s available right now. Most of the new QuickDraw
routines are pretty easy to understand, though, and
the more complex changes to higher-level system soft-
ware (the Window Manager, the Menu Manager, and
so forth) are covered by preliminary documentation.

Carbon’s Printing support sees some of the most
major changes, largely because the existing Mac OS
printing code is an abomination. The Macintosh lacks
a real printing architecture—programs basically pass
their printing requests almost directly to printer dri-
vers, which do all the work. Even the simplest of tasks
is convoluted in Macintosh printing because no print-
er driver is required to support more features than the
original ImageWriter driver did in 1984. Have you ever
used a program that told you to pick “Page Setup…”
and set the page orientation to landscape (sideways)?
It seems dumb, but printer drivers aren’t required to
support different page orientations, so there’s no way
for the program to tell the printer driver “use land-
scape mode.” The driver may have no clue about it.

Carbon Printing tries to fix some of these prob-
lems—like adding a way to set the page orientation.
Such changes repair some of the worst deficiencies in
the current printing non-architecture, but they stop
short of making it completely usable. Printer drivers
are still free to support—or not support—features like
arbitrary rotation, dashed lines, and polygon smooth-
ing. Embedded ColorSync profiles are still handled
through QuickDraw picture comments; a driver may
or may not support them, and applications have no
way to determine which is which. Carbon’s printing
fixes, welcome as they are, may cause problems—
either the new functions won’t work with all printer
drivers, or drivers will need updating for Carbon. We
suspect the former, since there’s been no word of new
printer driver specifications, and an explicit goal of
Carbon printing is to use Mac OS printer drivers
under Mac OS and a new Mac OS X printing system
on that platform.

Apple has also fallen short on a few Carbon
promises. The company said all new routines in Mac
OS 8.5 and later would appear in Carbon as well, but
Carbon 1.0 hasn’t quite caught up to Mac OS 9
(specifically, the new HFS Plus File Manager APIs are
not included in Carbon 1.0, though they’re promised
for a future release). There’s no word on when
Carbon will come to older versions of the Mac OS, and
other details remain decidedly sketchy.

What’s The Good News?

The good news is that it’s here, and that it works.
Apple’s commitment to Carbon is clear when examin-
ing the programming material for Mac OS 9, some of
which is now available. The “Universal Interfaces” that
Apple releases for all developers to use in building
their Macintosh applications are now thoroughly “car-
bonized,” with every Mac OS routine not available in
Carbon clearly identified. This allows programmers
building Carbon applications to find out whether
they’re using non-Carbon code sooner rather than
later. Previously, the application-building process
would fail in the final step (linking); now, non-Carbon
routines cause errors during compilation—the first
step.

Developers can build Carbon applications today.
Script Editor in Mac OS 9 is a Carbon application, and
it can also save script applications (“applets”) as
Carbon applications (although for now they’ll only
run on Mac OS 9). Programmers can not only begin

(see “Watch This Space,” page 56)

http://devworld.apple.com/macosx/carbon/index.html
http://devworld.apple.com/macosx/carbon/index.html
http://devworld.apple.com/techpubs/macosx/CarbonPrintingMgr/index.html

Page 56 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
the Carbonization process, but also test with shipping
code on shipping systems. Almost all of the new Mac
OS 9 features are included in CarbonLib, at least
according to the Universal Interfaces, making Carbon
a real option for programs that already require Mac
OS 9.

Most, if not all, of the key Carbon questions seem
decided. It’s full steam ahead from here.

Core Foundation 1.2

OpenStep, the Next-created application environ-
ment, is universally hailed as one of the easiest and
most powerful systems ever invented for programming
personal computers. Every operating system needs a
set of core services so every application doesn’t have to
duplicate them, and Next’s services are some of the
best out there. Kept in the “Foundation” classes of the
object-oriented OpenStep system, they provide useful
features in ways that make programmers smile. For
example, existing libraries and systems ask program-
mers to allocate memory for some object, then fill it
in, then manage the memory until done with whatever
is occupying it. In the Next world, programmers just
create the object they want; OpenStep takes care of
the memory allocation, even allowing programs to
share the object amongst themselves. When each pro-
gram is done, they tell OpenStep they’re done with
the object; the system automatically releases it when
no program is using it any longer.

These kinds of conveniences can, on a large pro-
ject, shave weeks off the total programming time. The
drawback is that, as object-oriented classes, they’ve
only been available to object-oriented programs writ-
ten in languages compatible with OpenStep. Carbon
changes that, bringing some of the core OpenStep
functionality to the Mac OS world through a series of
services called “Core Foundation.”

We’re not going to examine Core Foundation in
detail because it’s the kind of tool only a programmer
could love. We just note for the record that Mac OS X
developers will love them. It’ll suffice to list some of
the capabilities available though Core Foundation—
tasks common in the modern world of computing yet
not built into the Mac OS:

� Opaque types for all data, easing future compati-
bility and reducing dependence on implementa-
tion details, leaving Apple free to change Core
Foundation’s insides without breaking programs

Watch This Space
(continued from page 55)
� Sharing of data between programs through com-
mon types and the ability to discover information
about an object

� Built-in support for Unicode strings and enough
utilities to manipulate them more powerfully than
a standard “C” compiler can manipulate regular
ASCII text

� Optimized storage for Unicode text—not every
character requires two bytes for storage—allowing
compact representation of arbitrarily-long
Unicode strings (they’re not limited to a few hun-
dred characters)

� Support for the same concepts as in Mac OS 9
packages, complete with a built-in easy-to-use plug-
in architecture any application can use

� Built-in routines for easy internationalization,
allowing one application to contain several lan-
guage versions with correct run-time selection of
the appropriate one

� Standard support for the kinds of structures pro-
grammers use in their code every day—arrays, dic-
tionaries, sets, “bags,” and trees—for storing large
amounts of data and referencing it quickly

� New routines that store and retrieve Core
Foundation data in XML files, allowing programs
to use the hot standard as a native storage format

Documentation on Core Foundation, like that of
Carbon, is incomplete; the XML part apparently has
yet to be documented at all. But there’s enough pre-
sent for programmers who want to use the services to
get started. Core Foundation isn’t likely to be too
important for developers porting existing Mac OS
applications to Carbon, but it’s sure to be a big hit
with those starting new applications.

The Carbon and Core Implications

The Carbon strategy has been the “future” for
nearly a year and a half. In Mac OS 9, Apple has
released the first deliverable versions of that. The doc-
umentation isn’t complete, and some functionality is
still missing, but it’s mostly there. Most observers
expect a new Mac OS X developer release before the
end of the year. That should kick-start preparations for
the new OS; most developers have been largely uncon-
cerned about Mac OS X while so much has been
going on in Mac OS 8.5 and Mac OS 9 (and with good
reason).

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 57
New work on Mac OS X will revive its importance
for most developers, because it’s clearly the next major
revision of the Mac OS (after all, there’s not going to
be a Mac OS 10.0 before Mac OS X). Carbon and
Core Foundation in Mac OS 9 make that work much
less theoretical—if a company decides to totally go
Carbonic and prepare for the new OS, they can still
release their applications for Mac OS 9. It’s no longer
a bet on an unreleased operating system: Carbon is
here now.

When Apple fulfills its promise to bring Carbon to
older versions of the Mac OS, it will clearly be the pre-
ferred path for application development. Why use the
fifteen-year old transparent data structures when the
new Carbon methods are just as easy and work under
Mac OS X? Why reinvent the wheel with common
computing tasks when Core Foundation does it easily
and with panache? Thanks to Carbon in Mac OS 9,
the future is now.
The Invisible Benefits

These are not features you often see discussed in
detail. Installing Mac OS 9 doesn’t let your existing
applications write files larger than 2GB, or use
Unicode file names, or magically see ATSUI text edit-
ing, or overcome the limitations of the “Fonts” folder,
or even start rendering HTML in existing windows.
Everything we’ve discussed in this article requires
changes from application developers—changes you’re
not likely to see in a week or two.

They are, however, the building blocks of future
applications. There has been no ATSUI-capable text
editor before Mac OS 9; now there is, and it may
become available for older systems. Carbon was vapor-
ware until Mac OS 9; it’s now a viable alternative for
future application development. HFS Plus features
were accessible under Mac OS X Server but not under
the classic Mac OS—until Mac OS 9. Developers now
have the tools they need to bring great new features to
your applications. Watch these areas for future devel-
opments, hopefully exciting ones. ❖
Mac OS 9

The Nitty-Gritty
Everything Else We Could Find
In 1996 and 1997, Macintosh owners complained
(with some justification) that Apple Computer was
focusing all its resources on the “next great OS”—first
Copland, then Rhapsody. Mac OS 8’s release in July
1997 started to change that perception, but not com-
pletely, as it was widely known that the release was
scheduled to be “Mac OS 7.7” until Apple changed the
version number to gain leverage in Mac OS licensing
contracts (MDJ 1997.03.06). Mac OS 8.1 fixed bugs
and added HFS Plus support, but was still easy to com-
pletely grasp (MWJ 1998.02.02).

Mac OS 8.5 (MWJ 1998.10.19) substantially
changed the playing field, packing in so many changes
both visible and invisible that it was Apple’s most sig-
nificant Mac OS release since 1991’s System 7. Mac OS
8.6 (MWJ 1999.05.12), though ostensibly a minor revi-
sion, had almost as many changes as Mac OS 8.5, see-
ing revisions and improvements in almost every major
component. Each of these releases contains so many
updates that they’re almost as big as all changes from
System 7.5.3 through Mac OS 8 combined.

Mac OS 9 continues this recent pattern. We’ve so
far covered the “Nine Internet Power Tools” and basic
hardware requirements, plus six invisible technologies
that open doors for better products in the future. But
Mac OS 9 includes many more changes besides. In
fact, we haven’t even mentioned much of what you’ll
see once you start using your Mac OS 9-powered com-
puter, because so many of the visible changes are little
ones—hundreds of them, most of them requiring no
more than a sentence to mention, but each potentially
affecting how you use the computer. For example, you
may notice some applications in Mac OS 9 and later
using very large cursors where only software with “Kai”
in its name did so earlier. That’s because QuickDraw
in Mac OS 9 allows cursors larger than 16 pixels
square, but it doesn’t take more than a sentence to let
you know that.

We call these changes the “Nitty-Gritty” of a Mac
OS release, and we’ve saved them for last in our Mac
OS 9 coverage. First we’ll examine Control Panels,
then proceed to Apple Menu Items; other
Applications, Utilities, and Extras; Extensions; and
finally, the System File.

(see “The Nitty-Gritty,” page 58)

Page 58 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
Control Panels

One major change in Mac OS 9 affects all Control
Panels: they run as separate applications. The change
has its history back in the days before the Macintosh
could run multiple applications at once. In those days,
before System 5 and MultiFinder (remember then?), a
running application owned the entire machine. The
only way to run multiple programs at once was
through desk accessories—small programs like the
Calculator, Note Pad, and Scrapbook that, through
special programming rules, were actually hosted by
the running application.

MultiFinder changed that because not to do so
would have created a strange human interface—desk
accessories you opened in one application would
require that application to be frontmost to use them.
Open the Calculator in Microsoft Word (3.0, of
course) and you’d have to switch back to Word to use
the still-open Calculator. Instead, MultiFinder used a
new application, “DA Handler,” to host all desk acces-
sories. It patched the Mac OS to take over the stan-
dard ways applications opened desk accessories to
effect these changes—in fact, it’s not until Carbon 1.0
that applications can finally get rid of those older
mechanisms. For compatibility, you could open a desk
accessory while holding down the Option key and
MultiFinder would still allow the application to open
the DA in the application’s partition.

When MultiFinder became the “Process Manager”
in System 7, desk accessories became stand-alone
processes. System 7 and later create a small applica-
tion to host each desk accessory individually, allowing
each to appear in the Application menu under its own
name. The compatibility work-around was eliminat-
ed—all desk accessories open in the new way, since DA
developers had well over three years to revise their
code to work with the new method. (In fact, Apple
officially told developers to avoid writing desk acces-
sories; they should instead write small applications to
gain more capabilities and to exploit System 7’s multi-
tasking.)

Control Panels are a similar but subtly different
story. Until System 7, the Control Panel was a single
desk accessory. The left side of the window held a
scrolling list of the different “panels,” and the right
side contained the controls for each panel. As a single
DA, the Control Panel worked like any other desk
accessory. System 7 changed the model. The panels
(always stored as files of type ‘cdev’ in the System
Folder) were now hosted by the Finder itself instead of
by a stand-alone desk accessory. The Finder opened
each panel in its own window, so you could use multi-

The Nitty-Gritty
(continued from page 57)
ple “Control Panels” at once. The files also moved into
their own “Control Panels” sub-folder of the System
Folder. But since the Finder is the host, they don’t
show up separately in the Application menu, and
they’re still restricted to the old programming model
of the Control Panel desk accessory, circa 1986.

Apple has been pushing developers away from
true desk accessories and true control panels for many
years. Mac OS 8 introduced two new file types for
applications: ‘APPD’ for applications that should auto-
route to the Apple Menu Items folder when you drop
them on the System Folder, and ‘APPC’ for applica-
tions that need to work like control panels (not only
auto-routing to the Control Panels folder, but also
examining them during startup to see if they need to
load code like traditional control panels or extensions,
MDJ 1997.07.22).

Now, in Mac OS 9, Apple takes the evolution one
step further. The Process Manager now opens tradi-
tional control panels (files of type ‘cdev’) as stand-
alone applications, just as it has done for desk acces-
sories since System 7. If a control panel file is really an
application—that is, if it contains a ‘CODE’ resource
with ID 0 like a 68K application, or a ‘cfrg’ resource
identifying a PowerPC “application” type code frag-
ment—the Process Manager launches it as an applica-
tion. Otherwise, it creates a stand-alone partition of
about 200K to host the code in the ‘cdev’ resource
under the 1986 rules. If control panels need more
memory, the Process Manager will respect the parti-
tion settings in a ‘SIZE’ resource with ID -16474.

Not every control panel will behave well in this
environment—some of them have gotten used to
being hosted by the Finder and may not handle small-
er partition sizes very well, or they may have been
piggy-backing off the Finder’s ability to send Apple
events, or otherwise exploiting the Finder’s hosting
skills. As with MultiFinder in 1987, there’s a work-
around: hold down the Command and Control keys
while opening a control panel and the Process
Manager will revert to the System 7 behavior of
launching it inside the Finder’s partition. There’s
already word out that Microsoft Office control panels
require this workaround, but we note that they might
just need more memory, so a ‘SIZE’ resource might fix
the problems.

Apple has put developers on notice that they
won’t be as patient with control panels as they were
with desk accessories. Specifically, this Finder-based
workaround won’t be around for three or four years.
As Apple’s developer documentation phrases it, “This
technique only works for control panel files contain-
ing a ‘cdev’ resource. As this feature is only present for
compatibility issues in Mac OS 9, it will likely be
removed in the next system revision.”

http://developer.apple.com/technotes/tn/tn1176.html#controlpanels

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 59
Appearance 1.1.4

The Mac OS 9 version of the Appearance Control
Panel has no documented changes other than fixing a
bug where previous versions “leaked a large amount of
memory” in the system’s partition every time the con-
trol panel was opened. However, while the control
panel itself is mostly unchanged, the Mac OS 9 CD
includes several new “themes” (collections of
Appearance settings, not code-level “themes” like
“Apple Platinum”) built around custom desktop pic-
tures. To be frank, these things are gorgeous. At least
two options are built around each of the standard
iMac colors; the choices include Blueberry Oxygen,
Blueberry Union, Grape Gravity, Grape Mission, Lime
Horizon, Lime Sharp, Quantum Foam (our favorite),
Strawberry Baby, Strawberry Parabola (also cool),
Tangerine Fusion, Tangerine Melt, and the flying-
saucer inspired tangerine-like theme Roswell. The
“CD Extras” folder on the Mac OS 9 CD-ROM con-
tains alternate versions of some of these desktop pic-
tures (including a blueberry version of the “Roswell”
picture), along with the same pictures for larger reso-
lutions (though all are SVGA-type: there are 1280 X
1024 pictures, and 1024 X 768 pictures, and 800 X 600
pictures, but not 832 X 624 or 1152 X 870 versions,
both traditional Mac OS resolutions). The CD also
contains many other pictures, as well as large desktop
patterns and “Additional Desktop Patterns,” a
Scrapbook file containing all the desktop patterns
from past Mac OS releases (but the Scrapbook can’t
open files from locked media, so copy it to your hard
disk before double-clicking it).

ColorSync 3.0

IMATEC’s PR screeds and Apple’s missing cross-
platform versions notwithstanding, ColorSync 3.0 is
long overdue. Originally promised for late 1998 or
early 1999 (MWJ 1998.03.23), the new version goes
even farther towards integrating color management
with everyday computer tasks.

ColorSync is a hit with publishing professionals,
but the concepts are still a bit tricky for those without
lots of computer experience. They don’t have to be. In
essence, every color-capable device produces color
slightly differently. For example, the light-producing
colors on a monitor are brighter than the reflective
inks on paper—a monitor can display brilliant yellows,
but only special inks on glossy reflective paper can
come close to matching it. ColorSync uses profiles that
describe exactly how each device displays color. With
an accurate profile for your display and another accu-
rate profile for your color printer, ColorSync-savvy
applications can adjust their output so what you see on
the screen matches the printer’s output as closely as
possible—including flagging those colors that display
perfectly on a monitor but are too bright to print on
the printer. Such colors are called out of gamut.

ColorSync has always supported a default profile,
the one ColorSync uses when no other profile is speci-
fied (MDJ 1997.03.20). With ColorSync 2.5, Apple
expanded that to a default profile for RGB devices
and a separate default profile for CMYK devices—
effectively giving you a display default and a printer
default (MWJ 1998.03.23). Version 2.6 added a default
“gray space” profile (but omitted any way for non-pro-
grammers to set it, MWJ 1999.03.06). ColorSync 3.0
takes this concept much farther, turning profiles from
a system-specific setting into a part of regular docu-
ment work. The revised ColorSync Control Panel has
two tabs (the third “About…” tab from ColorSync 2.6
is now relegated to a proper “About…” box because
the “control panel” is now a true application). A pop-
up menu near the top of the “Profiles” panel chooses
between “Profiles for Standard Devices” and “Default
Profiles for Documents.” The former option allows
selecting a different default profile for your input
device (like a scanner), your display, your output
device (typically a printer), and a “proofer” (an inter-
mediate output device, like an inkjet printer, for cases
where final output is too expensive for multiple tries).
The latter option allows choosing default profiles
based on colorspaces for embedding in documents: an
RGB profile, a CMYK profile, a grayscale profile, and a
“Lab” profile (for the scientific Lab colorspace used in
advanced color work, something only graphics profes-
sionals typically encounter).

ColorSync 3 allows applications to find all eight of
these default profiles, giving substantially more flexi-
bility than the former RGB and CMYK defaults. What’s
more, using an Open Transport-like interface you can
save all these settings into stand-alone documents con-
taining those profiles called workflows. You can take a
workflow with you from one system to another, or
switch between several if you regularly change devices
or production systems and need different default
behavior. The benefit to eight kinds of default profiles
(instead of two or three) is that you can now set your
preferred ColorSync behavior in the control panel.
Once applications are revised to support ColorSync 3,
they’ll pick up your choices from there, instead of
every program asking you in a different way to re-
choose the same basic profiles.

That’s the big news in ColorSync 3.0, though
we’re sure it has the usual minor enhancements and
bug fixes. AppleScript support remains about where it
was in version 2.6—the scripting dictionary is still con-
structed the same semi-awkward way, but it does have
support for all the new default profile settings. Even

(see “The Nitty-Gritty,” page 60)

Page 60 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
though the ColorSync Control Panel is now an appli-
cation, you must still target scripts at the “ColorSync
Extension,” which still employs its strange dual exten-
sion-background application nature for automated
tasks. Developers can read more about ColorSync 3.0
in Technical Note #1185, including information on a
new but malfunctioning routine to automatically open
the ColorSync Control Panel (so programmers don’t
have to implement their own human interface for pro-
file selection).

Date & Time 8.2

The two-digit year problem is eliminated from the
Date & Time Control Panel—you enter the year as a
four-digit value now. Curiously, a preliminary develop-
er document says that Apple has changed how the
hardware time is implemented. The “clock” in the
Mac OS is nothing more than a simple chip that incre-
ments a value once every second. By definition, “zero”
means midnight on 1904.01.01. The 32-bit counter
fills up at 6:28:15 AM on 2040.02.06, so the next sec-
ond it wraps around to zero. According to the prelimi-
nary hardware document, Apple has changed how the
bottom half of the possible value range is interpreted,
with zero now meaning 6:28:16 AM on 2040.02.06,
incrementing again and filling up to just under the
halfway point. The new interpretation stops at 9:43:23
AM on 2108.02.25. The new minimum time value in
this interpretation is the halfway point of the old
range—a 32-bit value of 0x80000000, or 3:14:08 AM
on 1972.01.19. The theory is that, “in the future, a
user’s machine is more likely to run with a date set
past 2040 than it is to run with a date set in the distant
past.” The new definition of this “epoch” means you
can no longer set dates in the Date & Time Control
Panel earlier than 1972.01.19.

Except that it doesn’t seem to be true. The Date &
Time Control Panel in Mac OS 9 has a 1904-2040
range, just as before. The Mac OS utilities for turning a
count of seconds into a date and time still return the
same values they always did. This is to be expected: the
proposal calls only for changing the hardware date
value so clocks now count up from 1972, not for chang-
ing any of the existing date formats. The plan is to
overcome the 32-bit limitation in the hardware, not to
change how all Mac OS dates are interpreted. But the
necessary consequence—the inability to set the clock
to a year before 1972—isn’t in force in Mac OS 9.

The new OS does include some new date and time
management routines to convert local times to UTC
(universal time coordinates, formerly Greenwich
Mean Time), including time measurement dividing a

The Nitty-Gritty
(continued from page 59)
second into 65,536 parts with “no inherent precision.”
These are part of the System file and accessible to Mac
OS 9 applications, but aren’t in the Carbon 1.0 library.

File Exchange 3.0.2

In Mac OS 8.5, this control panel combined two
others of old: PC Exchange (for accessing disks for-
matted with PC, Windows, or Apple II file systems),
and Macintosh Easy Open (the interface to the
Translation Manager allowing products like
QuickTime and MacLink Plus to convert files from
one application format to another). In Mac OS 9, the
documented changes are all to the file system side. It
now supports 120MB SuperDisk discs in PC formats
better, no longer assigns incorrect volume sizes to
discs formatted by the PC file system code, notifies the
File Manager when a volume mounted by File
Exchange has been unplugged (for example, if you
unplug a USB floppy drive with a mounted PC disk)
provided the disk’s driver supports the notification,
eliminates some problems with reformatting PC disks
into Mac OS formats, no longer allows you to name a
DOS disk “ “ (a blank space), and provides more infor-
mation when you click the “Mount Now” for PC SCSI
disks but they actually can’t be mounted. File
Exchange also supports new features of the HDI
(high-density disk driver), but those features are not
enumerated. There are also internal bug fixes, as
usual.

File Sharing 9.0

We’ve already noted the addition of File Sharing
and Program Linking via TCP/IP through Open Door
Networks’ ShareWay IP product bundled with Mac OS
9. In addition, the File Sharing Control Panel now
contains the functionality of the former Users &
Groups Control Panel—all access privileges for
AppleTalk File Sharing and any utilities based on the
same access privileges are now set in the new third tab
of the File Sharing Control Panel’s interface. Plus,
your password is now masked with bullets as you type it
instead of only after you finish typing it.

FontSync 1.0

FontSync is a new technology for Mac OS 9, one
that Apple has half-embraced. It’s included with the
OS and is partly installed by default—it ships as both a
control panel (application) and an extension; the
extension is part of the standard installation but the
application winds up in the “Font Extras” folder in the
“Apple Extras” folder at the root of your startup disk.

Figure 18 shows the FontSync control panel.
Appearances are deceiving—the technology is more

http://developer.apple.com/technotes/tn/tn1185.html
http://developer.apple.com/techpubs/macos8/pdf/DateAndTimeAPI.pdf
http://developer.apple.com/techpubs/macos8/pdf/DateAndTimeAPI.pdf
http://developer.apple.com/techpubs/macos8/pdf/DateAndTimeAPI.pdf
http://www.gcsf.com/extras/mwj/mos9special/index.html#figure18

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 61

Figure 18—FontSync Control Panel
comprehensible than it looks. We’ve already discussed
in past MacCyclopedia entries how outline fonts contain
various kinds of data—the outlines for the glyphs
themselves, the measurements for those glyphs, the
mappings between glyphs and characters (not always
one-to-one, since an ATSUI or OpenType font can
have many different glyphs for the same character—
one QuickDraw GX font has about three dozen sepa-
rate ampersand glyphs), kerning data, and so forth.

FontSync seeks to use these various points of infor-
mation to eliminate a huge problem in publishing
workflows—invisible font substitution. For years and
years, font gurus have warned against having both
TrueType and Type 1 versions of the same font
installed because you’re never sure which one you’re
going to get (the Mac OS will always pick the
TrueType version, but some graphics programs that
work directly with PostScript fonts might pick the Type
1 font without your knowledge). Many of the older
imagesetters and other high-end printing products
can’t handle the more robust TrueType fonts, and
those presses aren’t items you replace every year. Or,
just as bad, you might take a print job to a service
bureau or send it to a high-volume printer but find
out (belatedly) that the printer thinks he has the same
fonts you do, but they’re subtly different, resulting in
poor layout and character spacing problems.

This story from Apple’s FontSync developer docu-
mentation is worth repeating:

The worst example I have heard so far occurred
in an issue of the magazine Woman’s Day. One of
the designers at the magazine got tired of manually
tweaking kerning in QuarkXPress, and changed the

(see “The Nitty-Gritty,” page 62)

http://developer.apple.com/techpubs/macos8/pdf/FontSync.pdf
http://developer.apple.com/techpubs/macos8/pdf/FontSync.pdf
http://developer.apple.com/techpubs/macos8/pdf/FontSync.pdf

Page 62 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
kerning table in their fonts so that it happened auto-
matically. Of course, when the magazine was sent to
prepress, the prepress company had the unmodified
version of the font. As a result, the text reflowed,
and the last line of every article in the magazine
was cut off. The error wasn’t caught in proofs, and
in fact wasn’t caught until the magazine was on the
press and many of the subscriptions had already
been mailed. An employee at the printing plant
pulled a copy to read, and noticed the last line of the
article she was reading wasn’t there. The mailed
copies had to be recalled and the press run redone,
and the prepress company had to eat the total cost,
which was about US$1 million.

FontSync is neither part of the Font Manager nor
directly integrated into text drawing in any way.
Instead, FontSync takes a font and makes a font refer-
ence from it, containing mathematical reductions of
the various kinds of font information designed to com-
pactly but uniquely identify the font contents. You can
think of each part of a FontSync reference like a
checksum, but more complex. On request, FontSync
compares font references. If they match, the fonts are
known to be identical. The control panel shown in
Figure 1 lets you decide which portions of the font ref-
erences must match before FontSync says the fonts are
functionally equivalent. The “Don’t match fonts if
both references are missing data” checkbox tells
FontSync not to return a match if both of the font ref-
erences are missing one of the items you’ve said must
match.

Font references are more complex than check-
sums because the issues are more complex. Suppose
Adobe releases a new version of your favorite font, and
this new font contains extra glyphs (such as the euro
character or new small caps) in addition to all the exist-
ing glyphs. You can argue that if the outlines and met-
rics for all glyphs in the old version of the font are
unchanged in the new version, then the two versions
should match even though standard comparison
methods would fail. However, the finer the compar-
isons become, the larger the font references must be
to accommodate all the data. In FontSync 1.0, font ref-
erences are about 2K or 3K per font.

FontSync leaves the door open for this kind of
specialized matching in the future, but for now it’s an
all-or-nothing comparison. As Apple sees it, the more
narrow comparisons could correctly compute that two
different fonts are identical for all relevant purposes.
However, if a narrow comparison says two fonts are dif-
ferent, a broad comparison must by definition report
the same result. As Apple’s FontSync developer docu-

The Nitty-Gritty
(continued from page 61)
mentation puts it, “For the customers we are initially
targeting, however, the primary requirement is that
fonts not be misidentified. Sophisticated font substitu-
tion is not a requirement at this stage. To put it anoth-
er way, false negatives are OK, but false positives are
anathema.”

FontSync font references are abstract data types,
but the technology also works with font profiles—collec-
tions of font references stored in a file. Font profiles
are always in files; they don’t exist as resource or RAM-
based structures. Until applications add support for
FontSync’s matching capabilities, font profiles are how
you’ll interact with FontSync. The control panel itself
provides no interface for creating or matching font
references or profiles. Applications can do this, or the
FontSync Control Panel will do it through
AppleScript. The “Font Extras” folder contains two
sample scripts—one to create a font profile, and one
to match a font profile against the currently installed
fonts. If you want to use FontSync 1.0, you must study
these scripts: not only is AppleScript the only way to
do it, but the scripts also use verbs like “match against”
and “create font profile” that aren’t in the FontSync
Control Panel’s scripting dictionary.

FontSync 1.0 is a limited first implementation. It
can only create font references or profiles for installed
fonts. Since all matching is done through AppleScript
by a faceless background application, FontSync can
only work with globally visible fonts—application-spe-
cific fonts can’t be profiled or matched. FontSync
seems to know about Mac OS 9’s new font manage-
ment capabilities (see “Watch This Space,” this issue),
so it can probably keep up with newly-activated fonts
when they’re activated with those features—but we
doubt it can notice fonts activated through pre-Mac
OS 9 font managers like Suitcase 8, ATM Deluxe, or
Font Reserve. Thus, if you switch fonts around and
intend to use FontSync to profile them, you may need
to restart.

AppleScripts are thus limited, but other software is
free to profile any fonts it wishes (as long as they’re
globally installed) without restarting. We expect pub-
lishing developers to release more robust tools soon,
like regular applications that compare individual fonts
or profiles on demand, or plug-ins to embed font ref-
erences in QuarkXPress and Adobe InDesign docu-
ments. That’s when this technology will start paying
for Mac OS 9 upgrades many times over. After all, if
you’re Woman’s Day, US$1 million will upgrade a lot of
systems.

General Controls 7.7.2

Although it’s not officially documented, one of
our favorite Mac OS 9 changes eliminates a pet peeve
of ours by revising the wording of the “improper shut-

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 63
down” dialog box (the one that displays while the
built-in Disk First Aid examines your hard disk) to
shorten it and eliminate all that nasty passive voice.
The message now reads, “Your computer did not shut
down properly. Disk First Aid is checking your hard
disk and will repair any problems. If your computer is
having problems, see Mac Help for troubleshooting
information.” Much better.

Memory 8.1.1

The Memory Control Panel is now PowerPC
native and has AppleScript support for getting and set-
ting virtual memory, RAM Disk, and disk cache set-
tings from scripts. The control panel also now consid-
ers the memory used by ROM-in-RAM systems when
computing maximum values, so it won’t let you choose
settings so large there’s no room for the Mac OS ROM
image. Mac OS 9 also fixes a systemic bug that pre-
vented you from turning off a persistent RAM Disk; it’s
not part of the Memory Control Panel, but you might
have cursed at it a fair amount if you experienced the
problem. You can no longer set the RAM Disk on a
PowerBook 1400 to more than 60% of available RAM
because this makes the machine’s ROM issue the
“death chime” on startup, generally a bad thing.

Monitors 8.5.1

A remnant of the AppleVision days is finally dead
and gone—the combined “Monitors & Sound”
Control Panel has been retired, split once again into
two distinct control panels (stop us if you’ve guessed
this): “Monitors” and “Sound.” In Mac OS 9, the
Monitors Control Panel has all the functionality you’d
expect from the older combined panel—color depth,
resolution choices, plus contrast and brightness on
models with appropriate display controls (like
PowerBook and iMac machines, for example, and per-
haps some AppleVision displays), and monitor geome-
try controls for those systems whose displays can be
controlled from software (such as iMacs).

Mouse 8.0

The venerable Mouse Control Panel is now an
application as well, because it too is scriptable—script
writers can now get and set the tracking speed, the
double-click speed, the “mouse tracks” setting (the
“ghost” images that follow the cursor, useful for follow-
ing its tracks on LCD displays). Scripters can also acti-
vate or deactivate the “thick I-beam” cursor that’s easi-
er to see on the same LCD screens. The only visible
change, however, is updated graphics in the Mouse
Control Panel’s window—the pictures of the mouse
are now of the round Apple USB Mouse, not of the
older original Apple ADB mouse (circa 1988).

Sound 8.1.2

The other half of the former “Monitors & Sound”
Control Panel is now also a separate application, but,
like the new Monitors Control Panel, is not scriptable.
A list on the left of the window allows you to choose
from available services: alert sounds, input, output,
and speaker setup. The last of those includes, on
appropriate systems, separate volume controls for left
and right speakers, and a test mode of white noise that
allows you to equalize the sound to your satisfaction.

Most notable, however, is the first change to stan-
dard alert sounds since 1991. Gone are Droplet,
Quack, and Wild Eep (the voice of a former wife of a
current Apple executive, if you must know). We’ll only
provide brief descriptions of the sounds and their
titles: ChuToy (a child’s squeaky toy), Glass (a crystal
ringing), Laugh (self-explanatory), Logjam (a revving
chain saw), Pong2003 (a short electronic dual tone),
Purr (an electronic repeating sound), Submarine (a
sonar ping), Temple (a stereo brass chime), “Uh oh”
(a woman saying “uh-oh”), and Voltage (a buzzing
sound). “Simple Click” and “Whit,” introduced with
Mac OS 8.5 themes, remain.

Software Update 1.0

New to Mac OS 9, and already covered in “Living
in a Wired World.”

Undocumented But Changed

As usual, several other control panels have
changed in Mac OS 9, but the company has released
no information about what changed or why. Here are
the new version numbers of those we know changed in
a standard desktop installation:
� Apple Menu Options 1.1.6
� Energy Saver 2.5.2
� Keyboard 8.3.2
� Launcher 3.1.3
� Startup Disk 7.7.6
� TCP/IP 2.5 (part of Open Transport 2.5.2)
� Text 8.0

Apple Menu Items
At first it seems there are few changes to the

Apple Menu Items. Apple’s Mac OS 9 developer docu-
mentation lists changes to only two items: Network
Browser 2.0 and Sherlock 2. But if you look at an

(see “The Nitty-Gritty,” page 64)

http://developer.apple.com/technotes/tn/tn1176.html#applemenu
http://developer.apple.com/technotes/tn/tn1176.html#applemenu
http://developer.apple.com/technotes/tn/tn1176.html#applemenu

Page 64 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
Installer log, more is going on here. Several of the
items that formerly had standard Apple Menu Items
placement are now located in the “Applications” fold-
er at the root of the startup disk: AppleCD Audio
Player (or Apple DVD Player if your system has an
Apple-supplied DVD drive), Graphing Calculator,
Note Pad, and SimpleSound. The “Automated Tasks”
folder has moved to the “AppleScript” folder in the
“Apple Extras” folder. The “Internet Access” folder
inside Apple Menu Items is now gone; the “Browse the
Internet” and “Mail” applications that redirect to the
appropriate helper (through the Internet Control
Panel) have aliases on the desktop and are located in
the “Internet Utilities” folder of the “Internet” folder.
“Connect To…” is gone; you can now connect to a
URL from the Network Browser or from other applica-
tions using NSL Browser functionality.

The “Remote Access Setup” application is part of
Apple Remote Access, where changes are not ade-
quately specified. We’ll discuss the “Speakable Items”
folder with PlainTalk 2.0 in the “Extensions” section of
this article. Otherwise, the version numbers of all the
aforementioned applications are the same as in Mac
OS 8.6, with one exception.

AppleCD Audio Player 2.3.1

There are no release notes for this version. The
only change we can discern is one tipped to us by a
reader: on new machines with three-dimensional
sound, “3D Stereo” is now an option in the “Sound”
hierarchical menu, along with “Left”, “Right”, and
“Stereo.” (“3D Stereo” is the only of the four with no
balloon help.)

Applications, Utilities, and Extras
We won’t attempt to catalog all the extras on the

Mac OS 9 CD-ROM, for they are numerous and mostly
undescribed. The CD Extras folder alone contains
modem scripts, AOL 4.0, lots of ColorSync extras,
Eric’s Solitaire Sampler, OSA Menu, iDo Script
Scheduler (lite), HyperCard Player (and update),
Palm Desktop 2.5, firmware updates for Power
Macintosh G3 and iMac computers, and music videos
from both Barenaked Ladies (“Call And Answer”) and
Static X (“Push It”)—and lots more. Apple is not
responsible for most of these items; those that it does
create (like the “Network Extras” are mostly one-trick
ponies that are already familiar to those who need
them). We encourage you to prowl through the CD
Extras folder and read a bunch of “Read Me” files if
you want to know more about the bonus files.

The Nitty-Gritty
(continued from page 63)
As far as actually installed programs go, one is
underspecified: Disk First Aid 8.5.5 is included with
Mac OS 9 without release notes. Fortunately, most of
the other standard applications are documented
enough to give you an idea of what you’re getting into.

Finder 9.0

Changes in the stalwart of the Macintosh desktop
are minor and evolutionary, but in line with the other
features of Mac OS 9. For example, while the Finder
doesn’t have the overhauling necessary to fully sup-
port HFS Plus file system features, it does preserve
Unicode file names when copying files (though it
won’t if the name changes—if you “Duplicate” an HFS
Plus file with a Unicode name, the duplicate has only
an HFS-style altered name with “copy” appended),
and it uses the new HFS Plus File Manager routines to
accurately copy and display information about files
larger than 2GB. The theoretical HFS Plus file limit is
16.8 million terabytes, but the existing Mac OS driver
model limits that to a “mere” two terabytes, or
2048GB.

Finder 8’s invisible files, like “DesktopPrinters DB”
and “OpenFolderList DF,” used for tracking items like
what folders you have open and your desktop printer
configuration, are now themselves stored in an invisi-
ble folder named “TheVolumeSettingsFolder”. These
folders are kept in user folders when Multiple Users is
active, enabling Finder to track each user’s desktop
configuration separately. And the “Encrypt” item in
the “File” menu invokes Apple File Security, as previ-
ously noted (“Sharing Your Personal Space,” this
issue).

Finder 9’s support for packages is somewhat dif-
ferent than you might expect. The concept is inherit-
ed from Next technology, where the file systems have
no resource forks and all separate chunks of data are
stored as small individual files. Recall that a package is
a folder with its “bundle” bit set and a special kind of
alias at the top level of the folder pointing to the
“main file” of the package (see “Watch This Space,”
this issue). Finder 9 treats packages just as if they were
actually the package’s main file, complete with drag-
and-drop support and “Get Info” mechanisms for
changing memory partitions for packages built
around applications (the normal kind). There is one
major difference: when Finder tries to open any file
that’s inside a package, it sends the package’s applica-
tion a list of the files through the standard “open doc-
ument” Apple event, but places the list in a new
optional parameter called the “Finder package docu-
ment list.” This happens even for aliases to items
inside the package that the application couldn’t open
(for example, an alias to a package’s built-in shared
library file). The differences mean that applications

http://developer.apple.com/technotes/tn/tn1188.html

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 65
generally need to know they’re in packages; regular
users shouldn’t go creating packages out of existing
application folders for convenience.

Package properties are available through
AppleScript, as are new optional properties for the
LaserWriter 8.7 scriptable printing interface (see
“Extensions,” this article).

Apple Guide 2.5

Apple Guide is now a supplemental part of the
overall “Apple Help” system, given an overall version
number of 1.5 in Mac OS 9. There’s only one docu-
mented change: the internal Apple Guide routine that
returns the Apple Guide version now correctly returns
version 2.5. Version 2.3.1 and 2.4.1 in previous OS
releases both returned version 2.3.1 for the traditional
“oops, it’s a bug” reason.

Apple System Profiler 2.4.2

Apple’s standard system examination application
lacks release notes this time; it seems identical to ver-
sion 2.2 from Mac OS 8.6 upon inspection. However,
the scripting dictionary has substantial improvements,
allowing scripts to fetch almost everything the applica-
tion can display in its main window, complete with dic-
tionary explanations of what most parameters are. The
scripting dictionary only applies to the main func-
tions—it won’t return listings of extensions and con-
trol panels, for example, since you can do that yourself
by scripting the Finder.

Help Viewer 1.5

The Apple Help application no longer has HTML
rendering code built in; instead, the code that was in
Help Viewer is now in the new HTML Rendering
Library (see “Watch This Space,” this issue). Apple
says that Help Viewer also now allows searching locally
for Internet-based help and viewing it, but Apple pro-
vides no explanation of how this might work.

Package First Aid 1.0

The Mac OS 9 CD-ROM contains a new utility,
Package First Aid, that’s not installed on your hard
drive. It serves only one purpose—if you have a folder
that has been incorrectly designated as a package,
drag-and-drop it onto Package First Aid to fix it. It
does not construct packages; it only deconstructs
them. And, just like a dialog buried deep in Sherlock
2, no one looked at it very carefully after Apple decid-
ed this would be Mac OS 9: if you double-click the
application to open it, you’re told “Package First Aid is
used to repair folders that incorrectly appear as pack-
ages under Mac OS 8.7 and later.” Oops.

Drive Setup 1.8.1

Apple’s utility for managing hard disks that come
with Apple systems has been expanded to allow for-
matting partitions with UNIX File System (UFS) for-
mat, in both Mac OS X and Mac OS X Server flavors,
as well as supporting “Linux Home” and “Linux Opt”
partitions. Other reports say Drive Setup now allows
formatting and installing drivers on various brands of
third-party hard disks, but Apple has made no moves
towards officially supporting any drives not shipped by
Apple. Use Drive Setup on third-party hard drives at
your own risk.

Apple Network Assistant 4.0

Mac OS 9 includes version 4.0 of the Apple
Network Assistant client software. ANA is Apple’s
remote administration program for networks of Mac
OS computers, including screen monitoring, screen
sharing, chat, intercom, locking the screens of remote
users (to get their attention), and more. Think
“Timbuktu Pro” but less mature and not cross-plat-
form, with some classroom-specific features. Network
Assistant 4.0 is apparently needed for Mac OS 9 com-
patibility, so Apple includes it on the Mac OS 9 CD-
ROM. You must perform a custom installation to get
it, however, and it requires the not-yet-available Apple
Networking Assistant 4.0 administrator to configure. If
you use ANA, you’ll want to know about the update,
but everyone else can ignore it.

Extensions
We’ll try to group extensions into logical groups,

such as treating Open Transport and Apple Game
Sprockets as functional units despite large numbers of
files. As with all other aspects of Mac OS 9, expect to
find bugs fixed in places where they’re not document-
ed.

Apple Game Sprockets 1.7

Two and half years after Apple, as a cost-cutting
move, declared Game Sprockets development dead, a
resurgent Apple with a sharper focus on games and
entertainment has reversed that decision. Mac OS 9
provides the proof. The Game Sprockets are small
code modules designed to take common game pro-
gramming tasks out of the hands of developers and
place the burden on Apple, speeding development

(see “The Nitty-Gritty,” page 66)

http://www.apple.com/networking/ana/
http://www.apple.com/networking/ana/

Page 66 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
and allowing for standard interfaces. A famous exam-
ple is InputSprocket, a set of human interface input
routines that reads from keyboards, mice, joysticks,
gamepads, and other controllers. When game devel-
opers write using the InputSprocket routines, their
games automatically work with new game devices pro-
vided the devices have simple InputSprocket drivers.
So goes it with all of the sprockets.

� DrawSprocket 1.7 makes it easier for program-
mers to “take over the screen,” as they do on PC
games, without running into the finicky Macintosh dis-
play system. DrawSprocket can even allow for page-
flipping (rapidly switching between alternate screen
buffers) on systems that support the feature, one oth-
erwise unavailable to Mac OS programs. The new ver-
sion improves performance copying pixels to the
screen, fixes bugs, and adds program-level support for
better management of “contexts,” the term
DrawSprocket uses for a drawing environment.

� InputSprocket 1.7, as mentioned, provides a stan-
dard API for programmers to interact with all kinds of
input devices. The new version adds a universal USB
“HID” (Human Interface Device) sprocket driver, so
any USB HID-compliant device works with
InputSprockets off the shelf, no custom driver
required. There is apparently a bug in this implemen-
tation: Alessandro Levi Montalcini has already noted
that as shipping, InputSprocket 1.7 uses this new
generic driver for all devices, ignoring custom drivers
even if you have them. Aside from this problem,
InputSprocket 1.7 consolidates all of the Apple-sup-
plied drivers into a single file, adds support for devices
with more than two axes (three-dimensional input) or
more than three buttons, and includes a calibration
dialog box for all supported input devices.

� NetSprocket 1.7 includes code that makes it easy
for game developers to write networked games, pain-
lessly sharing real-time data and activities across
AppleTalk or TCP/IP networks. (NetSprocket, unfor-
tunately, is not cross-platform, so applications using it
can’t interoperate with PC games.) The update in Mac
OS 9 fixes bugs and adds features that let application
developers manage players and teams more easily. A
host game can now unilaterally drop players from a
game instead of waiting for them to quit, for example.
Developers can now set their own time-out values to
identify non-responsive clients. Further, the
NetSprocket code now resides in a single file instead
of in two files.

The Nitty-Gritty
(continued from page 65)
� SoundSprocket 1.7, the last of the sprockets, adds
pinpoint 3D sound facilities for game developers so
sounds can be rendered as if they’re coming from a
specific point in space. In this revision, the 3D sound
is “superior” to previous versions (probably by leverag-
ing the built-in 3D sound support in most current
Macintosh models, but it’s likely there are improve-
ments regardless of hardware). It also adds routines
for developers to make it easier for OpenGL applica-
tions to use SoundSprocket.

AppleScript 1.4

We covered the changes in AppleScript 1.4 when
discussing the new capability to script remote
machines via TCP/IP (“Living in a Wired World,” this
issue). We’ve also covered changes to scriptability in
other components as we’ve found them with those
components. If you’d like more information on all
AppleScript-related changes in one convenient place,
try the AppleScript Sourcebook page for AppleScript
1.4, a handy and easy-to-follow repository for all script-
related information.

AppleShare Client 3.8.5

This version of the AppleShare client software (for
logging onto, mounting, and using AppleShare file
servers, including File Sharing volumes) is required
for Mac OS 9; earlier versions will not work. Additions
include keychain support (an “Add to Keychain”
checkbox, with Command-K key equivalent, allows
inserting the server information and your password on
a keychain), DHX user authentication for encrypted
logon with Mac OS X Server machines, and support
for machines capable of waking up from “dozing” (a
light form of sleep) over network events (“Wake-on-
LAN”).

You might notice two changes in unusual ways.
Programs can tell the AppleShare client to log onto
servers and how securely to do so (sending passwords
with one-way encryption, two-way encryption, in clear
text, or whatever other methods are supported).
Before now, the client would fall back to less secure
methods than requested—if a program wanted a two-
way secure log in but only clear text authentication
was available, the client would log onto the server with
clear text authentication. It no longer does this, so if a
program asks for a secure method that’s not available,
it will not be able to log onto the server unless it
retries and asks for less secure authentication. You can
work around any such problems you see by logging
onto the server yourself.

The AppleShare client still lets you check volumes
on a server to be mounted at startup, but the method

http://www.macnn.com/reports/os9usb.shtml
http://www.AppleScriptSourcebook.com/applescript/applescript140.html

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 67
has changed. Instead of storing server information
and passwords in a relatively insecure “AppleShare
Prep” file, the security options are now to save your
name only, or save your name and password in the key-
chain. The AppleShare client places an alias to the
server in a new “Servers” folder in the System Folder,
and once you unlock the keychain on startup, you’re
automatically logged into the servers. (Note, however,
that if a password for the server is already on the key-
chain, you’ll get a cryptic “Could not add this to the
keychain” alert.) The change allows you to stop auto-
matically logging onto servers just by removing them
from your “Servers” folder. Ironically, it does not work
with Multiple Users—there are no duplicate “Servers”
folders mapped to each user’s folder, just a global one
in the System Folder. Users who cannot write to the
System Folder won’t be able to set automatic log-on
servers from the client. They’ll have to place server
aliases in their own “Startup Items” folders with the
passwords either on the keychain or entered at start-
up.

This new method requires the Keychain to work.
The same feature is present in AppleShare Client
3.8.4, shipping with Power Macintosh G4 (AGP
Graphics) systems running Mac OS 8.6. Those systems
have no keychain, so the automatic log on feature is
disabled. The workaround, according to a Tech Info
Library article, is to downgrade to AppleShare Client
3.8.3 or upgrade to Mac OS 9.

ColorSync 3.0

The ColorSync 3.0 extension, part of ColorSync
3.0, contains the background-only application that
implements the scripting interface; it also includes the
actual ColorSync code so applications can use it
(much like the QuickTime extension contains the
QuickTime code). ColorSync 3.0 was discussed earlier
in the “Control Panels” section of this article.

Find By Content 3.0.1

The Find By Content extension provides the
indexing and searching services used mostly by
Sherlock but also available to other applications (MWJ
1998.10.19). In this release, developers have access to
a new routine that was previously only part of
Sherlock’s domain—indexing a specific folder or file
on demand. Apple hopes that application developers
will adopt this as part of the “Save…” routine for docu-
ments, keeping your Sherlock indexes up-to-date with-
out requiring too many regular indexing operations.
We’ve seen no real sign that developers are intrigued
by this, but it’s an interesting idea.

In addition to Western European languages plus
Japanese and Korean, Find by Content can now index
text in any of the following languages: Afrikaans,
Arabic, Farsi, Urdu, Catalan, Croatian, Cyrillic lan-
guages, Czech, Danish, Dutch, English, Estonian,
French, German, Greek, Hebrew, Hungarian,
Icelandic, Italian, Japanese, Korean, Latvian,
Lithuanian, Norwegian, Other (using the standard
Roman alphabet), Polish, Portuguese, Romanian,
Slovak, Slovene, Spanish, Swedish, Turkish, and
Yiddish. You control how many of these languages are
in your normal indexes through the “Languages…”
button in Sherlock 2’s preferences. Once you’ve
added a language to your index, you can only remove
by recreating the index.

LaserWriter 8 version 8.7

In Mac OS 9, Apple continues to try to make up
for the lack of a real printing architecture (since the
death of QuickDraw GX and the lack of significant
improvement in Carbon) by turning the LaserWriter 8
driver into an architecture of its own. Over the past
several releases, the LaserWriter 8 driver (used for
almost all PostScript output on the Macintosh; the rest
comes from Adobe’s AdobePS driver, built from
(more or less) the same source code) has added
“hoses” so developers can redirect the driver’s output
(using Desktop Printing) over any kind of hardware
connection, a Printing Plug-Ins Manager for oversee-
ing these hoses and other additions to the driver, a
Download Manager for applications to use in sending
data directly to the printer (instead of faking print
jobs) complete with converter plug-ins for massaging
the data, a detailed job log for expert analysis of the
PostScript processes used in printing, and much more.
As a sign of how much work is happening in this area,
note that about 28% of the developer-level Technical
Notes released by Apple in the past year are about the
LaserWriter driver.

LaserWriter 8, version 8.7 continues this question-
able trend, but in ways that are hard to dispute
because they provide features professional users have
needed for more than a decade. PostScript output fil-
ters provide high-end developers with their long-time
dream—a way to view the stream of PostScript output
by the printer driver and add, modify, or remove sec-
tions of it before it’s sent to the output device or file.
It eliminates the need for a generation of hacky work-
arounds, like resources full of PostScript that get sent
to the printer before starting or bizarre font
workarounds to force specific driver behavior. Output
filters are real PowerPC-native code, living in files in
the Printing Plug-Ins folder, and they should fulfill
every PostScript modification need developers have
ever expressed.

(see “The Nitty-Gritty,” page 68)

http://til.info.apple.com/techinfo.nsf/artnum/n58496
http://til.info.apple.com/techinfo.nsf/artnum/n58496
http://developer.apple.com/technotes/tn/tn1144.html
http://developer.apple.com/technotes/tn/tn1113.html
http://developer.apple.com/technotes/tn/tn1169.html
http://developer.apple.com/technotes/tn/tn1171.html
http://developer.apple.com/technotes/tn/tn1166.html
http://developer.apple.com/technotes/tn/tn-3.html
http://developer.apple.com/technotes/tn/tn-3.html
http://developer.apple.com/technotes/tn/tn1177.html
http://developer.apple.com/technotes/tn/tn1179.html
http://developer.apple.com/technotes/tn/tn1179.html
http://developer.apple.com/technotes/tn/tn1179.html

Page 68 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
Also new in version 8.7 is scriptable printing. The
libraries associated with LaserWriter 8 version 8.7
define a new “print options” record in AppleScript
that allows setting a ton of properties: number of
copies, starting page, ending page, N-up layout, job
log settings, and more. These settings are private in
each driver, and applications do not know how to tell
any driver (including LaserWriter 8) how to modify
them—the printing non-architecture has no APIs for
fine-level control, and the settings are normally com-
pletely under your control in the “Print…” and “Page
Setup…” dialog boxes. Programs have no way to access
or interpret your choices, much less change them.
Version 8.7 works around the problem by including
Apple event code that converts the new print settings
record into a standard “print record” used by applica-
tions to control all printing processes. The driver han-
dles the conversion, so applications don’t have to
cheat by trying to control private settings. The idea is
right, but making it work requires revised applica-
tions—each program with scriptable printing has to
add the scripting terminology for the new record and
call the appropriate routines to convert it into a usable
form. Whether this happens or not is anyone’s guess—
AdobePS doesn’t have this feature yet so InDesign may
pass, and QuarkXPress tends to add such features
slowly (Quark, you may recall, told users for years not
to even use LaserWriter 8 instead of fixing its own
printing code). Plug-ins for both applications may take
up the slack.

On a more visible level, LaserWriter 8 version 8.7
has a revised “Color Matching” panel. If you choose
ColorSync Color Matching, you now have two radio
buttons for the printer profile. One lets you choose
from a menu of all available profiles, as before, but the
other one uses the “output profile” as configured in
the ColorSync Control Panel. Pick this choice and
choose “Save Settings,” and you’ll be free to manage
your profiles from the control panel instead of in
every printing application.

Minor new features include a new PostScript
query that allows PostScript spoolers to tell the printer
driver a job should print in the foreground and not
the background; spoolers often like to communicate
with the driver and ask it questions, but this is only
possible during foreground printing while the driver
has the “live” control it needs. The driver has always
synthesized QuickDraw styles for TrueType fonts when
those styles aren’t available—for example, slanting a
plain font to create an “italic” font if no drawn italic
TrueType font is installed. Until version 8.7, it didn’t
do this for double-byte fonts because they were too
large; now it does, based on font subsetting technolo-

The Nitty-Gritty
(continued from page 67)
gy introduced in version 8.6. And last, but not least,
the extensive job log now includes FontSync font IDs
for your help in diagnosing problems.

Language Kits

The Mac OS 9 CD-ROM includes, free of charge,
updated versions of all products formerly sold as
“Apple Language Kits.” These additional packages
(available through custom installation) include fonts,
keyboard scripts, and WorldScript extensions that pro-
vide the Mac OS with the code and data necessary to
allow writing, typing, and displaying non-Roman lan-
guages. The “Roman” script, built into all versions of
the Mac OS, is fine for all languages that use the
“Roman” alphabet or minor variations (for example,
Spanish adds the ñ character, French adds the ç).
Languages with substantially different textual require-
ments need different OS routines.

Mac OS 9 includes kits for the following languages
or writing systems: Arabic, Central European lan-
guages, Cyrillic languages, Devanagari, Gujarati,
Punjabi, Hebrew, Japanese, Korean, Simplified
Chinese, and Traditional Chinese. These replace the
Chinese Language Kit 1.1.1, Japanese Language Kit
1.2, Cyrillic Language Kit 1.0, Arabic Language Kit
1.0.1, Hebrew Language Kit 1.0.1, Korean Language
Kit 1.0, and Indian Language Kit 1.0. (Some Language
Kits supported more than one language or writing sys-
tem.)

The “CD Extras” folder on the Mac OS 9 CD-ROM
includes disk images with language kit extras for each
of these languages, offering extra fonts, and some
alternate keyboard layouts. The extras also includes
more explicit support for a Unicode script, including
a programmer-level keyboard script that allows enter-
ing Unicode characters directly by their character
numbers as four hexadecimal digits.

Mac OS Runtime for Java 2.1.4

This latest version of Apple’s Java virtual machine
was released in August (MWJ 1999.08.14) and is
unchanged since then.

Multiple Users 1.1

We explored the Multiple Users system in-depth in
“Sharing Your Personal Space.”

Network Services Locator 1.1

We explored the NSL Manager, residing in the
Extensions folder, in-depth in “Living in a Wired
World.”

http://developer.apple.com/technotes/tn/tn1178.html

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 69
OpenGL 1.1.1

Apple’s developer documentation says Mac OS 9
comes with OpenGL 1.1, implementing the full
OpenGL 1.1 API as defined on multiple platforms.
This isn’t quite right—in fact, Mac OS 9 comes with
OpenGL 1.1.1, apparently a minor bug-fix release. No
further information is available.

Open Transport 2.5.2

The networking code in Mac OS 9 is, as of press
time, one of the more frustrating areas of change: the
substantial and significant revisions are sparsely docu-
mented. The only available information is in Apple’s
Mac OS 9 developer documentation, and that source
is long on Mac OS APIs and short on information
about what’s changed within the TCP/IP and
STREAMS implementations. The developer-level
Open Transport software development kits and Web
pages haven’t changed in many months; Open
Transport “Read Me” files are neither installed nor on
the Mac OS 9 CD-ROM, and the only Tech Info
Library article on the subject reprints the sparse infor-
mation available in the Technical Note.

We’ve seen first-hand that the new Mentat TCP 3.5
stack included in Open Transport 2.5.2 has a better
reverse DNS resolver; it recognizes delegated DNS
records where earlier versions did not. The Mac OS
implementation is improved by faster creation and
deletion of endpoints (the software end of a network
connection), eliminating “copy stall” problems when
moving large blocks of data over TCP/IP, allowing
protocol stacks to stay open across sleep and wake-up
cycles, and reducing the number of Open Transport
library files from six to two.

The developer documentation says Mac OS 9
includes both a client and a server version of Apple
Remote Access, but you’ll miss it if you’re not careful.
The Remote Access Control Panel now includes an
“Answering” menu item in the still-misspelled
“RemoteAccess” menu. Though the associated dialog
box, you can tell Remote Access to answer the phone
and connect to either that single computer or an
entire local area network via AppleTalk. You can also
allow TCP/IP clients to connect remotely using PPP,
and set an optional maximum connection time. If
Remote Access is installed, the Users & Groups por-
tion of the File Sharing Control Panel expands: each
user’s window gets a new “Remote Access” panel that
lets you allow or deny dialing in on a user-by-user
basis, and even allows a call-back at a predetermined
number for extra security. This new feature replaces
the separate Apple Remote Access server, priced at
around US$100. But that’s not all—dial-on-demand
performance is now improved, Apple says, and the
new release fixes some problems with third-party wire-
less modems (those are the only kind, of course—
Apple doesn’t make wireless modems).

There are still reports of some problems, but over-
all DHCP behavior should be improved in Open
Transport 2.5. DHCP is a protocol that lets your com-
puter get all its TCP/IP information from a central
server through a “lease” that expires after a set period
unless your client renews it. Internal timeout values
have been adjusted so you shouldn’t notice “pauses”
when your computer tries to negotiate a new or
renewed DHCP lease. The packets Open Transport
sends still conform to the DHCP standard, but they’re
now “more compatible” with Windows NT (and simi-
lar) servers that stretch the standard a little bit.

Open Transport isn’t your typical TCP client—
unlike those on UNIX and other systems, Open
Transport doesn’t have to load the TCP stack during
startup, and can load and unload it at will. Open
Transport 2.5 adds a way for applications or other
code to know when the stack’s status is changing (or
about to change), including ways to know if the TCP
link is running over Ethernet, 802.3, or PPP.

We’ll keep an eye out for more complete details of
changes inside Open Transport 2.5 and publish any
such information when we find it.

PlainTalk 2.0

After a few years of inactivity, Apple has revised its
speech recognition software with a flourish. In addi-
tion to Speech Recognition 2.0, Mac OS 9 includes
English Text-to-Speech 2.0.2 and Mexican Spanish
Text-to-Speech 2.0.2. There isn’t much news about
what’s revised in those components for turning text
into the spoken word, but the reverse implementation
is much expanded.

For starters, there is a new “Application Speakable
Items” hierarchy of folders within the “Speakable
Items” folder. Each folder is named for an application
it controls, but precise naming isn’t necessary—the
folders must contain an invisible alias to the applica-
tion they reference. Speakable Items uses these aliases
to recognize applications, so you can name the folders
something more convenient (like “Netscape” instead
of “Netscape Communicator 4.6”). If the frontmost
application matches any of the invisible aliases in this
folder hierarchy, all the items in that folder become
speakable items for that application only. Apple ships
four sets of application-specific speakable items: for
the Finder, Netscape Communicator, Microsoft
Internet Explorer, and Microsoft Outlook Express.
Sample Web browser speakable items include “go
back”, “go forward”, “page down”, “page to bottom”,

(see “The Nitty-Gritty,” page 70)

http://developer.apple.com/technotes/tn/tn1176.html#opentransport
http://til.info.apple.com/techinfo.nsf/artnum/n60516
http://til.info.apple.com/techinfo.nsf/artnum/n60516
http://www.mentat.com/tcp/tcp.html

Page 70 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
“make this page speakable”, and “reload this page”.
Items in the top-level Speakable Items folder remain
recognizable at all times.

Apple’s speech recognition is not continuous—it
doesn’t turn everything you say into text. Instead, it lis-
tens to your phonemes and matches them against a list
of possible matches. For Speakable Items, the list is
the names of all applications in the global and applica-
tion-specific Speakable Items folders. AppleScript
authors can now take advantage of this by asking the
“Speech Listener” application (in the “Scripting
Additions” folder) to “listen for” text, providing a list
of possible responses with an optional spoken prompt
and timeout value. Script writers can now add this
rudimentary speech recognition to scripts without hav-
ing to resort to a global speakable item, a definite
plus. The “Speakable Items” application also has a few
scripting commands, including enabling and disabling
active listening, and showing recent applications.

Of course, the supplied speakable items com-
mands have been updated for Mac OS 9 features and
compatibility. The “show me what to say” command
lists all available speakable items in a floating window,
both built-in and application-specific (also available
from the “Speakable Items” scripting interface).
Examples of new commands include “reference chan-
nel” (to activate Sherlock 2; other channel commands
are also included), “insert my E-mail address”, “shop
for books”, “take a screen picture”, and many more.
Speakable Items itself includes global commands not
stored as items in the folder, such as “listen continu-
ously”, “turn on push to talk”, “show application com-
mands”, and a great new feature that lets you choose
almost any simple button, radio button, or checkbox
just by speaking its name.

Speech recognition in Mac OS 9 is a lot beefier
than it was before. It’s a custom installation option,
but if you found previous versions of PlainTalk at all
interesting, you should check out this version.

The System File
And now, ladies and gentlemen, we come to the

nittiest and grittiest of it all—the contents of the
System file (or, in some cases, the updated “Mac OS
ROM” file, or both). Many of the longest-lived Mac OS
technologies long ago migrated from extensions into
the System file itself, and that’s where they see changes
in new OS releases. This is some of the most technical
material in our Mac OS 9 coverage, so don’t fault
yourself if it takes multiple readings to understand. We
do our best to translate from geekspeak, but you can
still detect our geek accent. Also note that some com-

The Nitty-Gritty
(continued from page 69)
ponents in the System file do not have recognizable or
meaningful version numbers.

ATSUI 2.0

You may have heard about a change in Apple Type
Services for Unicode Imaging even though ATSUI
probably has absolutely zero effect on your Mac OS
use (since we can’t think of a single ATSUI application
for general audiences). This inheritor of QuickDraw
GX Typography is more robust in almost every way: it
uses less memory, breaks lines according to Unicode’s
idea of a line break for a given language and does so
faster, now handles tab characters (something
QuickDraw GX never did), and adds a bunch of new
bug fixes and features for developers to exploit.

The noteworthy change is that ATSUI now
includes Apple’s own PostScript Type 1 font render-
er—not a version of ATM, but built-in code written
and owned by Apple. The scaler, part of the Open
Font Architecture, supports Type 1 fonts in TrueType
wrappers (either QuickDraw GX or OpenType fonts)
in CID, regular, or multiple master formats; it also sup-
ports the old-style “5-3-3” font files (but not multiple
master versions), and Adobe’s original composite font
and “naked CID” formats. Speculation about this Type
1 scaler ripped through some publishing circles, but
don’t get too excited too fast—as noted, it’s only for
Open Font Architecture clients like ATSUI.
QuickDraw, used by all non-ATSUI programs, is not an
OFA client. The scaler does not make Type 1 fonts
available to non-ATSUI applications.

CFM-68K 4.0

Although Mac OS 8.5 and later are exclusively
PowerPC releases, the system still included CFM-68K
fragments, so some parts of it were accessible to 68K
applications. That was a mistake—only programs on
68K computers can call CFM-68K routines. (PowerPC
machines don’t allow CFM-68K access; developers
were required to build “fat” applications and access
the PowerPC-native code fragments for such technolo-
gies on PowerPC machines.) Accordingly, Apple has
removed several CFM-68K code fragments from the
System file since no application can access them.

Communications Toolbox

This code, originally introduced in System 6.0.4
with support for choosing connections, modems, and
file transfer protocols, was not always correctly return-
ing the maximum allowable serial port speed. This has
been fixed.

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 71
Device Manager

The low-level software that talks directly to device
drivers has implemented changes to allow multipro-
cessing tasks (Apple’s new, recommended way for
dividing a program into separate, simultaneous tasks)
to call device driver routines synchronously (waiting
for a return event) if an asynchronous variant of the
call is available. Synchronous calls from low-level tasks
are tricky, because if the system and application don’t
carefully manage the sequence of events, the machine
can lock up while the tasks waits for the call to com-
plete and the call needs more information from
another part of the system that can’t get control. The
solution in Mac OS 9 is not perfect, but it improves
the status quo.

File Manager

The routines in the Mac OS that mediate access to
files on any disk have been significantly updated to
include HFS Plus file system features (see “Watch This
Space,” this issue). And, as noted throughout the FCB
table brouhaha, the maximum number of open files is
now 8169, way up from 348 in Mac OS 8.6 and earlier
(MWJ 1999.10.09). The File Manager follows the
Device Manager and allows multiprocessing tasks to
call it synchronously if asynchronous variants of the
same call are available; some routines have no asyn-
chronous versions and they’re still inaccessible from
MP tasks. Lastly, a new File Manager error (-503) is the
“Hardware Gone” error. Disk drivers should return
this error if they’re asked to read or write to a disk
device that has been unplugged and can’t be plugged
back in. You may see it a lot if you hot-swap USB disks.
(FireWire disks have a separate FireWire capability,
called “Wait for device replug,” that forces you to
reconnect a disk the system wasn’t done with.) One
compatibility offshoot of the new HFS Plus routines:
applications that patch the entire File Manager so they
can watch every bit of disk activity (like antiviral prod-
ucts or on-the-fly disk recovery tools) need revision so
they patch the new HFS Plus routines as well.

File System Manager

The names are similar but the purposes different:
while the File Manager arbitrates access to all files on
all disks, the File System Manager is specifically in
charge of the “plug-ins” that interpret non-Macintosh
file systems. The File Manager calls the File System
Manager when any program makes a file request to a
volume that’s not HFS or HFS Plus format (including
DOS, ProDOS, ISO 9660, UDF, and all those others
implemented through extensions). The new edition of
the File System Manager includes many new routines
making it easier for FSM plug-ins to get to file control
blocks—since they can no longer touch the FCB table,
the File System Manager gives them fast and robust
routines to get everything they need. Plug-ins can also
now check and validate file permissions for file forks.
The new HFS Plus routines add lots of capabilities,
like access to multiple forks or files larger than 2GB.
The File Manager includes a compatibility layer to
turn these new calls into old-style calls, so FSM plug-
ins need not implement these for Mac OS 9 compati-
bility (however, they will need revision to deal with the
changes to the FCB table). Any FSM plug-in authors
who want to handle the new calls directly, however,
may do so by including the code and setting a specific
flag bit in their volume control blocks.

Folder Manager

We discussed the extensive changes to the Folder
Manager for Multiple Users with that technology (see
“Sharing Your Personal Space,” this issue). Other
changes to the routines designed to help applications
find special folders include more control over the
finding operations, faster routines to identify folders, a
way to pick a special folder off a specific disk when it
might be available on multiple volumes, and the new
capability to resolve special folder aliases. Note that
this requires the code using the special folder to do
the same. For example, you can’t replace your active
Extensions folder with an alias because the Mac OS
boot code will not follow the alias during startup and
load extensions from a different location. You could,
however, replace the Preferences folder with an alias
because all code looking for that folder should be
using the Folder Manager. Be prepared for compati-
bility problems, however, if you try to use aliases to
move special folders off the startup disk. Apple has
warned developers not to assume special folders are
on the same disk as the System Folder, but not all pro-
grammers have yet heeded the warning in revised
code.

Font Manager

We discussed the extensive new Font Management
routines as one of Mac OS 9’s noteworthy invisible fea-
tures (see “Watch This Space,” this issue). Aside from
that, the major change in Mac OS 9’s Font Manager is
fixing the bug that created incorrect ‘FOND’
resources and wrote them to files. This is the same bug
fixed by Apple’s Font Manager Update 1.0 (and in a
different way by Alsoft’s Corrupt FOND Fixer and
DiamondSoft’s FONT Fixer utilities). Those are

(see “The Nitty-Gritty,” page 72)

Page 72 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
unnecessary with Mac OS 9, as the problem is repaired
at the source.

Mac OS USB 1.3

Development versions of Mac OS USB 1.3 have
been available for months (MWJ 1999.06.26). There
are many changes in the new version, shipping in final
form in Mac OS 9 (but not separately available at press
time), but to be frank, most of them are only interest-
ing to USB device driver authors. You can read about
the changes online, but you probably only care about
a few of them.

USB device drivers written for Mac OS 9 (or USB
1.3 and later) can suspend and resume operations
when the system goes to sleep. The new version dis-
plays device names when the “not enough power” dia-
log box warns you of bus problems. Performance is
better for time-sensitive bus transactions when virtual
memory is enabled. USB mice work better on USB
CardBus-equipped PowerBooks. USB 1.3 includes sup-
port for USB Audio class devices—microphones and
speakers, with mute, volume, bass, and treble adjust-
ments. There’s now built-in support for USB
Communication Class devices that support the USB
Communication Class abstract control model. All in
all, a worthy release, especially when new drivers take
advantage of the new capabilities and bug fixes.

Memory Manager

Mac OS 8.1 included new virtual memory func-
tions that mark areas of memory as unimportant. If a
program is done using a chunk of memory, it can tell
VM about it. VM will then not bother writing that
chunk of memory to the “VM Storage” file on disk
before reusing the RAM, saving disk access and valu-
able time. In Mac OS 9, the Memory Manager itself
uses these new functions. When a program is done
with any chunk of RAM and releases it back to the sys-
tem, the Memory Manager marks it as “unimportant.”
If any programmers are releasing memory and then
referring to it anyway, it’s a serious programming
error, and is now more likely to cause problems than
before. The Mac OS 9 Memory Manager also fixes a
bug so that it no longer crashes when programs, for
who knows what brain-dead reason, try to allocate a
chunk of RAM sized within 32 bytes of 4GB.

Mixed Mode Manager

The part of the Mac OS that seamlessly transitions
between PowerPC code and emulated 68K code sees a

The Nitty-Gritty
(continued from page 71)
revision in Mac OS 9 so that “accelerated code
resources” (a special format of ‘CODE’ resource con-
taining PowerPC native code) don’t crash if the
Resource Manager moves them in memory after
they’re prepared for execution.

Multiprocessing Library 2.1

Apple’s now-preferred solution for dividing tasks
into simultaneous chunks (for preemptive multitask-
ing within a single program,or in preparation for off-
loading tasks to separate chips in multiprocessor sys-
tems) now allows most File Manager and Device
Manager calls from preemptive tasks, as noted with
those technologies. The library also now supports sys-
tems with more than 1GB of RAM.

Navigation Services 2.0

Introduced with Mac OS 8.5, the new non-modal
“Open” and “Save As…” dialog boxes have caught on
with developers and most users alike, though some
remain more comfortable with the older modal
“Standard File” dialog boxes. We suspect this is
because after 15 years, people are comfortable with
Standard File and have enough patches (Default
Folder, ACTION Files) to make it workable.
Nonetheless, Navigation Services is the future—it’s
supported in Carbon, and Standard File is not.
Navigation Services 2.0 recognizes packages by
default, presenting them as an individual item instead
of as folders (though developers can override this).
Standard File does not respect packages, always show-
ing them as folders, and Apple advises that it will not
be revised to fix this.

Other changes in Navigation Services 2.0 include
the use of the new NSL Browser functionality for more
comprehensive Internet connectivity (see “Living in a
Wired World,” this issue). The rest of the changes are
for developers—easier ways to create previews and
attach them to documents, a way to turn off the
beveled frame around the custom control area, and
new methods to both automate navigation actions and
keep you from performing inappropriate ones.
Developers can now relax file filtering to display more
files in the list, and can prevent adding the files you
choose to the “Recent Items” menu. For the most part,
however, Navigation Services works like it did before,
with minor enhancements and bug fixes.

Notification Manager

Added in System 6, the Notification Manager is
the recommended way for programs to get your atten-
tion if they’re not currently the frontmost application.
Posting modal dialog boxes in their own application

http://developer.apple.com/technotes/tn/tn1176.html#macosusb

MWJ Mac OS 9 Special Mac OS 9 Hidden Features Page 73
layers isn’t productive; you may never see them if
they’re hidden behind other windows. The
Notification Manager allows three levels of attention-
getting: flashing an icon in the Application (or Apple)
menu title, placing a diamond beside the application’s
name in the Application menu, and posting an alert.
These are the wide rectangular alerts that totally block
all other activity, like the ones that say “Finder requires
your attention. Please chooser Finder from the
Application menu.”

In Mac OS 9, those blocking alerts are gone. The
Notification Manager now posts such messages as
floating windows with the appearance of a Post-It®
note; you can continue to use other programs or go
about your business with the message still on-screen.
This may cause compatibility problems for a handful
of programs that assumed (after ten years of no
changes) that as long as the message was up, the sys-
tem would not proceed. That’s no longer true.
Programs with the bad assumption may try to reuse
the memory occupied by the message before you close
the floating window. MacsBug hilarity ensues. We
doubt you’ll experience such problems, but it is
remotely possible.

Process Manager

The Mac OS code that manages and shares
processor time among multiple applications now
launches control panels as stand-alone applications (as
discussed earlier in “Control Panels,” this article). Mac
OS 9 also fixes a bug that could, in unspecified cir-
cumstances, cause slower Apple event performance.

PPC Toolbox

As noted in “Living In A Wired World,” the
Program-to-Program Communications Toolbox now
includes an “IP” checkbox, allowing your machine to
link to programs on other Macintosh systems via
TCP/IP (see “Living in a Wired World,” this issue).
Developers also gain access to a new call that can stop
a listing of ports in mid-operation (never before possi-
ble). More significantly, PPC Toolbox works with the
keychain to allow invisible program linking. There has
never been a way to open a program linking connec-
tion to another machine without PPC Toolbox asking
you for your user name and password—for security
reasons, the OS does not allow silent connection to
other systems with supplied authentication material.
That prevented background-only applications from
linking to programs on other machines—since PPC
Toolbox would insist on an authentication dialog box
if guest access was disabled, and since background-
only applications will crash if they try to draw anything
like that, no linking was possible. In Mac OS 9, PPC
Toolbox can use a password on an unlocked keychain
to silently link to remote systems. If the right password
isn’t on the keychain, or if the keychain is locked, any
such attempts silently fail because a background-only
application can’t prompt you to unlock the keychain.
It’s still overly-secure, but it’s more flexible than it was.

QuickDraw

Vital to the Mac OS since 1984, the system’s core
drawing architecture gets some much-needed
improvements in Mac OS 9. For the first time ever,
QuickDraw allows arbitrary transfer modes—rules for
how the source and destination pixels of a graphics
operation interact. If you copy a red square onto a
blue background, you could get a totally red square,
or one that’s blended with the background to show
purple, or an entirely blue result that ignores the
source, and so forth. QuickDraw has always main-
tained several useful transfer modes, but Mac OS 9
allows programmers to supply custom code that inter-
acts with source and destination pixels. Two new trans-
fer modes demonstrate the capabilities—a color exclu-
sive or mode, and an “add noise” mode that operates a
bit like a Photoshop filter.

Mac OS 9 allows cursors larger than 16 pixels
square, including hardware support for animated
color cursors—developers pass all the cursors in a
series to QuickDraw and it takes care of changing the
image on a regular basis. New routines for off-screen
drawing environments improve the performance of
some pixel-level access functions, as well as allowing
programmers to create such “graphics worlds” directly
in AGP memory on AGP systems for maximum perfor-
mance. QuickDraw in Mac OS 9 also fixes a bug that
could leave out one column of pixels when scaling
graphics for landscape printing on non-PostScript
printers.

Sound Manager

Every few years Apple rewrites the Sound Manager
to clean out the cruft and make it faster. Mac OS 9
includes such a rewrite, “featuring improved perfor-
mance and robustness.” The new implementation only
lets you have one sound input source active at a time (to
reduce confusion and complexity), and fixes a problem
that made clicking noises during sound playback on
some PowerBook systems with virtual memory enabled.
Apple doesn’t see the reimplementation as a big deal;
there are no notes to developers to check carefully for
compatibility problems or use new routines instead of
old ones, but sound changes have a way of showing up
in unexpected places. Keep your ears open.

(see “The Nitty-Gritty,” page 74)

Page 74 Mac OS 9 Hidden Features MWJ Mac OS 9 Special
StdCLib 3.5

The “Standard C Library” is to the PowerPC Mac
OS as Core Foundation is to Mac OS 9 and beyond.
This set of standard routines is commonly implemented
on every platform where the “C” programming lan-
guage is available. Apple provides a PowerPC-native
implementation of these routines in the System file for
maximum performance. The new version includes
many changes, but they’re only of interest to program-
mers, who can read about some of them online.

Thread Manager

Like the Multiprocessing Library, the Thread
Manager is an Apple-sanctioned way for applications to
split themselves into multiple parts that run simultane-
ously. It’s not as blessed for the future as the MP Library
is, but it still works well. In Mac OS 9, three routines
that should have returned errors on preemptive
threads in PowerPC applications now do (they didn’t
before). Programs can also make a stopped thread
ready from a PowerPC application, but they never
could before. Apple warns developers that this last fix
has not been applied to the 68K version of the Thread
Manager, so it behaves as before when called from
older 68K applications.

Unicode Text Utilities 1.1

Mac OS 8.6 introduced a set of new Unicode Text
Utilities, providing text comparison and sorting for the
complex Unicode encoding system (MWJ 1999.05.12).
These utilities evolve in Mac OS 9 with new routines
programmers can use to discover properties of Unicode
characters, find text boundaries, and find line breaking
points appropriate for given language areas. The rou-
tine to translate keypresses to Unicode also has some
bug fixes. Documentation for the new versions isn’t
public yet, but the pre-Mac OS 8.6 documentation may
be found online.

UTC Utilities

Although Mac OS 9’s new routines for converting
back and forth to Universal Time Coordinates and
obtaining time measurement finer than one-second res-
olution are in the System file, we discussed them with
the Date & Time Control Panel earlier in this article.

The Nitty-Gritty
(continued from page 73)
Virtual Memory Manager

VM is about as robust as it’s going to get with the
existing Mac OS. Until Mac OS X provides an industrial
strength kernel and file system, virtual memory can’t
grow beyond the limitations of the Mac OS’s single-
threaded file manager and partitioned application
memory model. Within those limits, however, it’s doing
pretty well. Mac OS 9 adds a single new call that returns
information about the disks VM uses for backing stor-
age (the call is not available in Carbon and won’t be
because it inherently assumes the classic Mac OS VM
model). Two bugs were fixed as well, both of them
obscure: VM no longer marks a page of RAM as
“recently used” (meaning it stays in RAM) when a non-
DMA disk driver tries to write that page to disk and
reuse the RAM, and it fixes a very rare bug when using
fast striping RAID arrays for VM Storage and one 4K
page falls across a stripe, locating parts of it on multiple
drives. In that bizarre case, a read of the affected 4K
chunk could cause data corruption.

Rest In Peace
Before ending, let us pause for a moment of silence

for five Apple technologies abandoned once and for all
in Mac OS 9. Their service is appreciated, and their
demise mourned by those who depend on them.

� Apple Telecom Software, for the GeoPort modems,
is officially dead.

� Color StyleWriter 4000 drivers, for the StyleWriter
printers made by Hewlett-Packard, are not supported in
Mac OS 9 and will be removed by the Installer if detected.

� The Energy Saver Control Panel is still present and
supported, but the API used by applications to control
energy settings is absent and no longer supported.

� The LaserWriter 8f driver, a version of LaserWriter
8.2 with special code resources implementing a
PostScript Fax option, crashes under Mac OS 9 and will
not be updated.

� And we bow in respect to QuickDraw GX, the graph-
ics architecture Apple released in 1994 that blew away
anything else in the industry before or since. GX
Printing went away in Mac OS 8, and per prior notices,
the QuickDraw GX Graphics and Typography engines
are no longer supported in Mac OS 9. Reports from
MultiAd Services, a company using GX in its Creator2
product, indicate that the GXGraphics extension still
works in Mac OS 9 but only if you remove ColorSync. GX
only knows about ColorSync 1.0 and can’t coexist with
the new version. Its ideas live on, and we shall miss it. ❖

http://developer.apple.com/technotes/tn/tn1176.html#stdclib
http://developer.apple.com/techpubs/macos8/TextIntlSvcs/UnicodeUtilities/unicodeutil.html
http://developer.apple.com/technotes/tn/tn1086.html

MWJ Mac OS 9 Special The Weekly Attitudinal Page 75
The Weekly Attitudinal

Do You Really Want It?
After All This, The Breakdown On Mac OS 9
After two weeks knee-deep in lubricated Mac OS 9
innards, allow the Attitudinal to be succinct: Yes, you
want Mac OS 9. You may not want it this week, and
that’s OK, but you will want it in the near future.

If you’re either a multi-lingual person or someone
who needs to connect remote computer networks
together via modem, the new bundling alone is worth
the price. The new OS includes seven former lan-
guage kit products that would have previously set you
back nearly US$1000. The former Apple Remote
Access Personal Server 3.0 would have lifted around
US$125 from your personal financial empire. If even
one of these eight bundled items is useful to you, the
US$99 upgrade price (before the US$20 rebate) is
already a bargain.

The Attitudinal is, as usual, less impressed with
Apple’s marketing focus, but the Nine Num-Nums of
Upgrading are fairly tasty this time out. Sherlock 2 has
problems but great new features, and the Attitudinal
completely disagrees with TidBITS that the new inter-
face for searching on multiple file attributes is a
{“giant step backwards”|http://db.tidbits.com/get-
bits.acgi?tbart=05625}. The Attitudinal invites any-
one to construct a search with five criteria in Sherlock
and then try to eliminate the third one. Your only
choice is to wipe out the last three and start over, or to
try to change the third item so that it’s non-restrictive.
These “More Choices” and “Fewer Choices” dialog
boxes have long outlived their usefulness due to this
awkward modification, and the Attitudinal says good
riddance. Pfft.

The Attitudinal’s main problem with the Nine
Internet Power Outlets (or whatever) is that each one
seems aimed at a different audience, and none alone
is enough to please said group. Multiple Users is a fine
add-on for folks who need to share one computer
among multiple household members. The upgraded
Network Browser fits in well for installations with
many networked Macs all running Mac OS 9. Apple
File Security keeps snoopy-noses out of sensitive files if
Multiple Users isn’t enough, but it’s unsuitable for
Internet work or heavy-duty personal security. Apple
events over IP, ColorSync 3.0, LaserWriter 8.7, and
internal font changes will tickle the publishing market
right in their color separations. None of these target
groups is likely to dance with glee at the features
intended for the other.
Yet, as when the iMac was introduced, those criti-
cizing Mac OS 9 for no single stellar feature miss the
gestalt of the overall package. Combine all these fea-
tures with the death of the archaic limit on open files,
the evolution of Sherlock 2’s Internet searching for
items sorted via price or availability, the overdue
expansion of PlainTalk 2.0, the nifty but superfluous
Voice Verification, and tons of work on the details
from the desktop themes to new alert sounds (a few
“Mac OS 8.7” alerts notwithstanding), and you have a
very nice evolution of your primary system.

Those who criticize the release for having too
many features also miss the point—who’s forcing you
to use them? If it’s your machine and yours alone,
don’t turn on Multiple Users, ya nimrod. Enjoy thou-
sands of open files and use that extra RAM you bought
the way God intended. Don’t need LaserWriter 8 fea-
tures? Try using ColorSync with your EPSON printer
and get better output. Skip AppleScript over IP and
enjoy more productivity with the dozens of tiny
changes that enable new features. Quit looking for
something to complain about.

If your favorite applications are on the “incompat-
ible” list right now, then by all means wait a few weeks.
Starting now, Apple’s new machines all ship with Mac
OS 9 installed and no guarantee earlier versions of the
OS will work; developers will not leave these lucrative
markets long untapped. You do not owe Apple an
upgrade any more than they owe you features aimed
precisely at your particular needs, but if the prepon-
derance of the changes leads towards a better experi-
ence for you, go and get it. No pressure, no guilt.

It’s not “a whole new Macintosh for US$99.” It’s
not going to take the Internet by storm. It’s not even
going to increase your absorption of essential vitamins
and nutrients. It makes your Macintosh easier and
more fun to use. Once compatibility problems are
resolved by third-party developers, it will increase your
productivity. That’s all one could ask, and Apple has
delivered.

It matters not if you are the first or last on your
block to install it. Grab it when you and your software
collection are ready. But yes, Virginia, you will want
this OS upgrade. It is thoughtfully assembled and
more encouraging than frustrating. The Attitudinal
pronounces Mac OS 9 worthy.

As if you care. ❖

Page 76 Colophon MWJ Mac OS 9 Special

MWJ
The Weekly Journal for

Serious Macintosh™ Users

is published by

Publisher............Matt Deatherage
EditorMike Opitz

Products EditorJackie Verdun
Contributing Editor .Jerry Kindall

Letters<letters@gcsf.com>
Press<pr@gcsf.com>

MWJ contains news, information,
strong opinion, parody, biting
sarcasm, and things you need to
know. Those easily offended
should seek information else-
where.

Regular issues of MWJ are digital-
ly signed using PGP technology
to verify the integrity of the trans-
mission. Our DH/DSS corporate
PGP key may be obtained online.

Copyright © 1999
GCSF, Incorporated.
All Rights Reserved.

All trademarks are the property of
their respective holders.

P.O. Box 1021
El Reno, OK 73036-1021

(405) 262-1399
(405) 262-1560 Fax
<mwj@gcsf.com>

<http://www.gcsf.com>
About MWJ

MWJ, the Weekly Journal for Serious Macintosh Users, is published
each Saturday morning with small schedule variants for holidays and
other forces of nature. Each week’s issue contains summaries of all the
week’s Macintosh-related news and product releases, complete with
detailed examinations of those areas worthy of further study. Most issues
contain one or two feature articles as well, a number that bloats signifi-
cantly when major news warrants.

The material in this Mac OS 9 Special Edition was originally pub-
lished in MWJ 1999.10.23 (the day Mac OS 9 was released) and MWJ
1999.10.30. The discussion of error 119 in “Mac OS 9 Basics” originally
appeared in MWJ 1999.10.09. This special issue combines our original
two-part coverage into a single document, and integrates follow-up mater-
ial into the source articles (for example, the discussion of Sherlock 2
advertising appeared as a follow-up in MWJ 1999.10.30, but here it’s inte-
grated with the rest of the Sherlock 2 coverage).

MWJ is available in both PDF and plain text formats, both digitally
signed each week using PGP technology. Subscriptions cost US$10 per
month. An absolutely free three-issue trial subscription is yours for the
asking at our Web site (we send one follow-up letter after your third issue,
but that’s it—we do not share your E-mail address). Our readership
includes major Macintosh developers, journalists, and executives. We
would welcome your evaluation of our journal. ❖
Here are some of our relevant
Internet addresses:

Letters to the Editor
<letters@gcsf.com>

“Ask the Staff”/”MacCyclopedia”
<ask@gcsf.com>

Subscription Changes
<subscribe@gcsf.com>

Comments Not for Publication
<mwj@gcsf.com>

Press Releases
<pr@gcsf.com>

Other Questions or Information
<info@gcsf.com>

http://www.gcsf.com/pages/mwj/
mailto:mattd@gcsf.com
mailto:mattd@gcsf.com
mailto:mattd@gcsf.com
mailto:opitz@gcsf.com
mailto:jcv@gcsf.com
mailto:jcv@gcsf.com
mailto:kindall@gcsf.com
mailto:letters@gcsf.com
mailto:letters@gcsf.com
mailto:pr@gcsf.com
http://www.gcsf.com/pages/gcsf/gcsf_keys.html#Anchor-GCSF_DSSKey
mailto:mwj@gcsf.com
http://www.gcsf.com
mailto:letters@gcsf.com
mailto:ask@gcsf.com
mailto:subscribe@gcsf.com
mailto:mwj@gcsf.com
mailto:pr@gcsf.com
mailto:info@gcsf.com

	Top of the Special Issue
	Getting Started
	Is It Shipping?
	Is It Compatible?
	What Is The Problem?
	Whose Fault Is It?

	Preparing To The Nines
	Startup Significance

	Sherlock 2 The Next Level
	Files, Inside and Outside
	Merging Attributes and Content
	Unfinished Business

	Internet Searching: New Channels Galore
	Channel Expansion
	Channel Management
	Specialized Channels
	Internet Search Site Changes
	People Plug-Ins
	Inside Sherlock Channels
	Advertising Problems

	AppleScript Support
	Interface Inanities
	Sherlock 2 Thrives

	Sharing Your Personal Space
	A Shared History
	Making It Personal
	Three Degrees Of Freedom
	Normal Users
	Limited Users
	Panels Users
	Keeping Them All In Line

	Behind The Scenes
	Folding the Disk Space Continuum
	Private Folders, Private Files
	Making It Work
	Login: Setup Tasks
	Not For James Bond

	Alternate Passwords: Speak Up
	How Does It Work?

	Encryption: Protecting Private Files
	What We Know
	What We Don't Know
	A Fatal Flaw
	A Hidden Goody: File Signing
	Why Bother?

	Gotchas and Kudos

	Living in a Wired World
	Keychain Access: Unlocking Your Net Life
	Using Your Keychains
	Behind The Keys
	Your New Keychain?

	Software Update: Piecemeal Installation
	Driving You Sane

	Network Browser 2.0: Netly Neighborhoods
	What's Wrong With NSL 1.1?

	Sharing IP Freely
	File Sharing Over IP
	Program Linking: The PPC Toolbox
	AppleScript Via IP

	The Nine Wonders Of The Release

	Watch This Space
	HFS Plus: File Manager Expansions
	Fork This
	Evolutionary Changes
	What Mac OS 9 Doesn't Fix

	A Real Font Manager
	A History of Font Non-Management
	Font Management in Mac OS 9
	Backwards and Future Compatibility
	A Big Font Deal

	HTML Rendering Library
	The Texty Generation
	Routine Obsolescence
	The MLTE Answer
	Does MLTE Solve Anything?
	Proof In The Pudding

	The X Files
	Carbon 1.0: Slowly Starting
	What's The Good News?

	Core Foundation 1.2
	The Carbon and Core Implications

	The Invisible Benefits

	The Nitty-Gritty
	Control Panels
	Appearance 1.1.4
	ColorSync 3.0
	Date & Time 8.2
	File Exchange 3.0.2
	File Sharing 9.0
	FontSync 1.0
	General Controls 7.7.2
	Memory 8.1.1
	Monitors 8.5.1
	Mouse 8.0
	Sound 8.1.2
	Software Update 1.0
	Undocumented But Changed

	Apple Menu Items
	AppleCD Audio Player 2.3.1

	Applications, Utilities, and Extras
	Finder 9.0
	Apple Guide 2.5
	Apple System Profiler 2.4.2
	Help Viewer 1.5
	Package First Aid 1.0
	Drive Setup 1.8.1
	Apple Network Assistant 4.0

	Extensions
	Apple Game Sprockets 1.7
	AppleScript 1.4
	AppleShare Client 3.8.5
	ColorSync 3.0
	Find By Content 3.0.1
	LaserWriter 8 version 8.7
	Language Kits
	Mac OS Runtime for Java 2.1.4
	Multiple Users 1.1
	Network Services Locator 1.1
	OpenGL 1.1.1
	Open Transport 2.5.2
	PlainTalk 2.0

	The System File
	ATSUI 2.0
	CFM-68K 4.0
	Communications Toolbox
	Device Manager
	File Manager
	File System Manager
	Folder Manager
	Font Manager
	Mac OS USB 1.3
	Memory Manager
	Mixed Mode Manager
	Multiprocessing Library 2.1
	Navigation Services 2.0
	Notification Manager
	Process Manager
	PPC Toolbox
	QuickDraw
	Sound Manager
	Thread Manager
	Unicode Text Utilities 1.1
	UTC Utilities
	Virtual Memory Manager

	Rest In Peace

	The Weekly Attitudinal: Do You Really Want It?
	About MWJ

