O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

O’REILlgL =
\ _' é Mac OS X. The ultimate development platform.
- P

Published on The O'Reilly Network (http://www.oreillynet.com/)
http://www.oreillynet.com/pub/a/mac/2001/12/14/terminal one.html
See this if you're having trouble printing code examples

Learning the Mac OS X Terminal: Part 1

by Chris Stone
12/14/2001

Editor's note -- After reading the chapters Chris Stone contributed to Mac OS X: The Missing Manual, 1
asked him to write a couple of articles for the Mac DevCenter because I believe that understanding the
Terminal application adds value to Mac OS X. These tutorials give you a preview of what Chris has covered
in the book.

Mac OS X’s Terminal application. There it sits in your Ultilities folder, foreign and mysterious. You’ve heard that it's
a portal to the new world of the Unix command line, a world where your flurries of mouse clicks can be replaced
with a just few keystrokes.

But you’ve been wary of rushing into this new territory where the keyboard is king, concerned that without enough
knowledge you might get lost, or stuck, or worse. Or maybe you're an adventurer who is just waiting to dive into
uncharted waters.

This article is for you. Regardless of why you've previously avoided [localhost:~] yourname$, I'll show you
how to take your first steps with the Terminal application. Then, I'll walk you through a tutorial that will accelerate
your understanding of the Unix command line.

In Part 1 of this series, you’ll learn more about what Terminal does and get an overview of the tutorial procedure.
You’ll then jump into the tutorial itself to learn the fundamental Unix commands you’ll need to know to get started
with just about any command-line procedure.

Then, in Part 2, you’ll finish the rest of the tutorial, as well as learn a few more things you can do with the command
line.

The command-line interface

The command-line interface (CLI) displayed in Terminal's windows provides access to the Unix shell, which is really
just another way to interact with your Mac. The other method that you're probably more comfortable with is the
Aqua interface. Aqua enables you to click on icons and menus, and to launch graphical applications by telling the
Mac what to do.

The shell, on the other hand, allows you to type text commands to accomplish much of the same work. Typically,
these typed commands launch tiny, single-duty Unix applications that do specific jobs and then quit. The shell itself is
an application that plays the go-between for the commands that you enter and the Unix kernel at the core of Mac
OS X. There are in fact several shells available. By default Mac OS X uses a shell called tcsh.

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 1 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

If you're curious about why you would want to use the shell in the first place, see the article Why Use a Command
Line Instead of Windows? for more information about the CLI vs. the Aqua interface.

The procedure

To help you learn the Terminal application more quickly, I'm going to

introduce you to a Unix utility built right into your Mac OS X system. Related Reading
Working with this utility will help you get more comfortable with the MacOSX &J Mac 0S X: The Missing
Manual

core Unix commands. .
By David Pogue

Table of Contents
Index

Full Description
Sample Chapter

Installed with Mac OS X is a mechanism that performs important
fine-tuning of your system. It's called cron. By using this Unix
task-scheduling utility, you can have your system regularly purge itself of
outdated, space-hogging log files, update system databases so utilities
like 1ocate can work effectively, and do several other maintenance
tasks that keep your system running lean and mean.

The cron utility fully automates this process, meaning that once everything is configured, the housecleaning will
happen unattended as scheduled. The good news is that Apple has done the configuration for you. The not-so-good
news is that they’ve scheduled these groups of tasks, or cron jobs, to run between 4:00 and 5:00 in the morning --
a time when your Mac is likely not even on! And if your Mac is never on during these times, these important tasks
will never happen.

In this tutorial, I'll show you first how to modify the cron schedule, which is read from a file called the crontab, so
that these tasks occur at more reasonable times. I'll then explain how to configure Mac OS X’s built-in mail server
and the Mail application so that you’ll receive an emailed report every time the cron jobs run!

The tutorial

For this tutorial, make sure you're running Mac OS X 10.1 or newer, and that you’re logged in with an
administrator’s account, though not the root account.

Open the Terminal program, which you'll find in the Applications_Ultilities folder. Once launched, Terminal opens a
single window displaying a greeting and a second line of text that compriszs tihe prompt. With that window active,
anything you type will enter just before the rectangular cursor that follows the prompt. After you type a command,
simply press Return or Enter to run it.

The prompt shows the name of your computer (or rather its host name, which can vary), and then identifies your
current working directory ("directory" is just the Unix term for "folder.") The current working directory is "where you
are," that is, the location in your filesystem hierarchy that your next command will act on. Your initial working
directory is always your "home" directory, which is identified in the prompt by the home directory shortcut character

nn
~

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 2 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

868 fusr/binjlogin (ttypl)
Welcome to Darwind
[localhest:~] chrisk i

To fully display the path to your working directory, use the pwd command: Type pwd (which means "print working
directory," though it only displays it) and press Return:

[localhost:~] chris% pwd
/Users/chris
[localhost:~] chris%

For those of you
As you can see, pwd does its job by displaying the full path, or path name, to your trying the

home directory and providing you with a new prompt when done. This path name command line for the
begins with the slash character, which represents the root or top-most directory of your first time, how's it going?
filesystem. Note that directories that reside on your system disk do not include that As for you experienced

- 15 . . Unix users, how does the
disk’s name in their pathnames. Mac 0S X experience

compare?
To act on a different set of files, you simply change your working directory using the cd

command. We’ll first be modifying the crontab file, which exists in the /etc directory ~ Post your comments
(normally invisible to the Finder). Enter cd followed by a space and the path name of
the target directory, /private/etc:

[localhost:/etc] chris% cd /private/etc
[localhost:/private/etc] chris% ls

Notice the change in the prompt reflecting the new working directory. If you’re curious about what your working
directory contains, use the 1s, or list command:

[localhost:/private/etc] chris% 1s
afpovertcp.cfg hosts rc.common
appletalk.cfg hosts.equiv resolv.conf
appletalk.nvram.en0 hosts.lpd rmtab
appletalk.nvram.en2 httpd rpc
authorization iftab services
bootstrap.conf inetd.conf shells
crontab inetd.conf~ slp.regfile

As you can see, there are a lot of items -- quite a bit more than what’s shown here
-- I /private/etc, including crontab.

The crontab file

The cron application launches automatically at system startup and runs continuously in the background executing
commands as instructed by the crontab files. These files tell cron exactly what commands to run and when to run
them. In fact, each user account can have its own crontab file. The system crontab foundin /private/etc
belongs to the super-user, or root account, and therefore can specify commands requiring the same total system
access allowed to root.

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 3 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

cp

Before you modify the system crontab, you should first make a backup copy in case you need to revert back to its
default state. You’ll use the cp, or copy command, to do this, which lets you copy and rename a file in one step.
Normally, to rename and copy a file into the same directory, you would type cp, followed by the name of the
original file, and then the name of the copy:

[crontab: /private/etc] chris% cp crontab crontab.bak
cp: crontab.bak: Permission denied

But hold on. It looks like you don’t have permission to write to the etc directory. In fact, only root
can write to /private/etc. So, because you are not logged in as root, it might seem that there’s no easy way to
write to this directory. But there is....

sudo

The sudo utility, for "substitute-user do," allows you to gain temporary root privileges on a per-command basis. To
use sudo, simply preface the command you wish to run as root with sudo and a space, and sudo will prompt you
for your password (not root’s). If you have administrator privileges, entering your password will run the sudo’ed
command as if root were doing it.

Warning: Use sudo with care. You can easily make mistakes with sudo that could require complete re-installation
of the OS to get going again. If that thought makes you queasy, it would be wise for now to use sudo only as
directed in this article.

To perform the previous command successfully, preface it with sudo:

[office g4:/private/etc] chris% sudo cp crontab crontab.bak
Password:
[office g4:/private/etc] chris%

Notes about sudo:

o The first time you run sudo, you’ll see another reminder to use sudo with care.
o You’ll only need to enter your password when you haven’t already used sudo within the last 5 minutes.
o It’s not necessary to activate the root account to use sudo.

What you need to do next, then, is edit this system crontab file, and you’ll learn how to do it with a command-line

text editor called pico. However, if you were to first examine the privileges for /etc/crontab, you would see that
it’s owned by root, and only root has write privileges. Sounds like another job for sudo!

pico
Of the several CLI text editors included with Mac OS X, pico is the easiest to learn. To open a text file in pico,

simply enter the file name after the pico command. Used with sudo then, the command to edit the crontab file in
the /etc directory looks like this:

[localhost:/private/etc] chris% sudo pico crontab

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 4 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

And this 1s what you’ll see when you run it:

®006 Jusr/binflogin {ttyp2)

UY PICD(ERY 2.5 File: cranktch

I fMetBSD: crontab,v 1.13 199718726 15:36:31 lukem Exp 3
i

fetc/orontan - root's crantob

#

SHELL=/biny"zh

PATH=/bin s shin: Aust Moin: fusrfshin

HOME =/ var# log

Wiin hour naay nonth wday LgEr connord
Dizobled by defoult, simce it couzes dizk occess every 1@ minutes,
which 12 uzelazs unlass you use at{l). Encble oz neaoded,

#ip ¥ L hd ¥ roat fusary Libexecs ot

1 ‘1 # do dailyv/vesk |v/monthily nointendnce

15 3 . E k roat sh Jetesdaily 2=l | tes Sark
=30 4 * ® £ root s Jebofweekly =8l | tee Sark
j g 1 ® L root e Setolmnthly Z=E1 | tee .ff-:u'im
F Y
! Get Help E Writelut QY Fead File !I":rm- Fa E Cut Test [Q Cur Fos -
Exit dustify vhers iz Next Pg UrCut Tex Del Chor

The document’s text area lies between the black title bar at the top and the two rows of command prompts at the
bottom. The Terminal window’s scrollbar won’t let you scroll through the document. Instead, you use the
down-arrow to move the cursor down line by line, or use the Page commands.

All of the commands listed at the bottom are prefaced with the caret character ("""), representing the control key.
So for example, to go to the next "page" (actually screen-full) of text, press the control and "V" keys as indicated.
For brief descriptions of all the commands, read the pico help file by pressing control-G.

The numbers in the circled area specify the time cron runs the scripts (there are actually three of them), and this is
where you’ll make your changes.

Each of the three lines (numbered 1, 2, and 3) specifies one of the three scripts cron runs by default. Each script is
different, performing its own appropriate set of maintenance procedures. The "daily" script, specified on the line
labeled 1, runs once each day. The "weekly" script, specified on line 2, runs once each week. And the monthly
script, specified on line 3, runs -- you guessed it -- once each month.

The first five columns or "fields" of each line specify at exactly what interval the script will run. The fields specify
from left to right: minute, hour (on a 24-hour clock), day of the month, month, and weekday (numerically, with
Sunday as 7). Asterisks used instead of numbers in these fields mean "every."

For example, line 1 specifies a time of 3:15 a.m.:

15 3 * * * root sh /etc/daily 2>&l | tee /var$..

Since the rest of the columns contain asterisks, the daily script (which is written in a file named on that line by its path
name /etc/daily) will run at "3:15 a.m. on every day of the month, on every month, and every day of the week."
that is "every day at 3:15 a.m."

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 5 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

Line 2 specifies that the weekly script runs at 4:30 a.m. on every weekday number 6, or Saturday:

30 4 * * 6 root sh /etc/weekly 2>&l | tee /var$..

And line 3 specifies that the monthly script runs at 5:30 a.m. on day 1 (the first) of each month.

30 5 1 * * root sh /etc/monthly 2>&1 | tee /var$..

By just changing these numbers, then, you can have these scripts run at more reasonable times. Of course, what’s
"reasonable" depends on your own situation, so consider these factors when deciding:

1. Choose a time when your Mac is likely to be on (and not asleep).

2. Choose a time when a few minutes of background activity won’t disturb your work too much. On faster
machines especially, the activity is hardly noticeable, but it could cause some stuttering if, for example, you
happened to be watching a DVD at the time.

3. Choose a time that is unique for each script. You don’t want to schedule scripts to run at the same time.

For example, these times might be good for a machine that’s only on during normal work hours:
e Daily -- every day at 5:15 p.m.
o Weekly -- every Monday at 8:50 a.m.
o Monthly -- the first of every month at 9:30 a.m.*

*(Of course, the first of the month sometimes falls on a weekend or holiday, but for now, that’s the best you can do.
You’ll find a work around to this problem in Part 2 of the article.)

To modify the crontab file to reflect these new times, use the cursor keys (the four arrow keys) to move the cursor
to the proper field. Except for being unable to use the mouse, you’ll find that editing text with pico is similar to

doing so with any GUI text editor. Use the delete key as usual, and type in the new values.

First, change the 3 in the daily script line to 17:

15 17 * * * root sh /etc/daily 2>&1 | tee /var$..

Next, change the time in the weekly script line as shown, and the day from 6 to 2 (Saturday to Tuesday).

50 8 * * 2 root sh /etc/weekly 2>&l | tee /var$..

Finally, change the time in the monthly script line as shown:

30 9 1 * * root sh /etc/monthly 2>&l | tee /var$..

Once you’ve made the changes, save ("write out") the document by pressing control-O. You’ll then be prompted to
confirm the save. Just press Return to do so.

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 6 of 7

O'Reilly Network: Learning the Mac OS X Terminal: Part 1 3/11/02 1:10 PM

BT u - " & L S FOLLFWCCRLF £El | LT f WL P

rook zh Jetc/monthly 2581 | tes Svark

o
]
s
=
=

ile Mane &0 write : crontob

Finally, quit pico, by pressing control-X.

Once you’ve saved the crontab file, the new scheduling takes effect; there’s no need to restart. For now, you’ll not
receive notification of the completed cron jobs, but in Part 2, you’ll learn how to make that happen, as well as learn
more about the scripts themselves.

Chris Stone is a Senior Macintosh Systems Administrator for O'Reilly and contributing author to Mac OS X:
The Missing Manual, which provides over 40 pages about the Mac OS X Terminal.

O'Reilly & Associates recently released (December 2001) Mac OS X: The Missing Manual.

e Sample Chapter 2. Organizing Your Stuff, is available free online in PDF format.

¢ You can also look at the Table of Contents, the Index, and the Full Description of the book.

o For more information, or to order the book, click here.

Return to the Mac DevCenter.

oreillynet.com Copyright © 2000 O'Reilly & Associates, Inc.

http://www.oreillynet.com/Ipt/a//mac/2001/12/14/terminal one.html Page 7 of 7

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

O’REILéz
\ S 5 days in May...
Mo
T
Published on The O'Reilly Network (http://www.oreillynet.com/)

http://www.oreillynet.com/pub/a/mac/2002/01/22/terminal pt2.html
See this if you're having trouble printing code examples

Learning the Mac OS X Terminal, Part 2

by Chris Stone
01/22/2002

In Part 10of this series, you learned how to reschedule default system cron jobs by modifying the system crontab.
Here in Part 2, I'll show you how to configure cron to email you a report each time it runs one of these jobs.

First, let's take another look at the pertinent lines in /etc/crontab. Since you only want to look at the file and not
modify it, you don't need to use a text editor like pico. Instead, to only display short files like this, use the cat
utility, which dumps the entire text file into your window and exits:

[localhost:~] chris% cat /etc/crontab

Y ou might notice a couple of interesting things about this command line. First, since the permissions
for /etc/crontab allow anyone to read it (but only root to modify it), using sudo is not necessary.

Second, this command line allows you to access a file in a directory other than your working directory by specifying,
in this case, the full (or absolute) pathname to that file. (You didn't first cd to /etc to open crontab, as you did in

Part 1.) An absolute path describes the directory hierarchy from the very top of the filesystem (the root directory or

"/"), down to the file.

Finally, because some of the crontab lines might be too long for your
window, you'll need to widen the window by dragging its lower right Related Reading

comner to the right until all lines fit without wrapping. Mac 0S X: The Missing
Manual

By David Pogue

Table of Contents

Index

Full Description

Sample Chapter

Look now at the line specifying the daily cron job, which, depending
on how you configured the time segment in Part 1, begins something
like this:

15 17 * * * root sh /etc/daily ...

Following the first five time fields is the user field. In this case the user field tells cron to run the job as if "root" were
doing it. This is necessary here because these maintenance procedures require the full access to the system allowed
to the root account.

Following the user field is the sixth and final field, which specifies the actual command for cron to execute. The

heart of the command, sh /etc/daily,tells cron to use sh, or the Bourne shell, to run the shell script called
"daily," found in the /etc directory.

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal_pt2.html Page 1 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

A shell script is a file holding a series of command lines that can be batch-executed by the shell. Much like an
AppleScrlpt a shell script allows you to create and save long automated procedures that you can run at any time,
using a single command. The /etc/daily shell scnpt was written for the Bourne shell, which uses command syntax
more apt for shell scripting than the tcsh shell you've been using.

The entire daily cron command line, then, looks like this:

sh /etc/daily 2>&1 | tee /var/log/daily.out
| mail -s "“hostname™ daily output" root

cron, in fact, uses the Bourne shell by default to execute its crontab commands, so this command wouldn't work if
you ran it manually using the tcsh shell. For the purpose of this article, though, you won't need to modify this
command. You won't need to fully understand it either, but this breakdown will give you a general idea of what it
does:

sh /etc/daily 2>&l1 |

Run the /etc/daily shell script using the Bourne shell, and send its output and any of its error messages on to the
next command.

tee /var/log/daily.out |

Write the input from the previous command to a file and also pass it on to the next command. (That's right -- you
can always see the results of the latest daily cron job by viewing /var/log/daily.out.)

mail -s hostname™ daily output"” root

This is the place
for your

Using the input from the previous command as the body, create an email message with ~ questions and comments
the subject "localhost daily out" and send it to root. This, then, is the command that as you work with Mac OS

.- . . X's Terminal application.
starts the cron report's journey on its way to your mailbox.

Post your comments

The first step in getting the reports delivered is to direct them to your mailbox, instead

of root's. To do this, you could conceivably replace "root" in this command with your account name, but wouldn't it
would be simpler if you could just tell the system to redirect a// mail addressed to root to your mailbox instead? By
using a . forward file, you can do just that.

A . forward file is just a text file containing nothing but the name of the account to which you want the mail
forwarded (in this case, your account name). Once the . forward file is placed in the home directory of the original
addressee (in this case, root), the mail gets forwarded as expected.

By default, the Mac OS X root home directory already contains a . forward file, but this one redirects mail not to
another user, but into thin air. This happens because instead of an account name, root's . forward file contains the
pathname /dev/null, which is the location of a Unix black hole. Streams of data directed to /dev/nul1l, mail
messages included, simply disappear. Since OS X's designers figure most users won't be accessing root's mail, they
used this method to ensure mail doesn't pile up at the door while no one's home, eventuallly fiilimg wp your hard disk.

Let's get back to Terminal, then, to edit root's . forward file. You've probably already noticed that there is no

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 2 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

"root" directory in /Users -- so where is root's home? The easiest way to find any user's home directory is by using
the ~ shortcut (for home directory), along with the account name. Therefore, to change your working directory to
root's home directory, enter this:

[localhost:~] chris% cd ~root
[localhost:~root] chris%

Okay, so now you're in ~root, but where is that really? Remember, you can find out with pwd:

[localhost:~root] chris% pwd
/private/var/root

Next, use 1s to view the contents of ~root:

[localhost:~root] chris% 1ls
Desktop Documents Library

The contents of your ~root directory might look different, but in any case, you still won't see a . forward file.
What happened to it? One clue is the first character of the file's name, which is a dot ("."). An initial dot is the Unix
way of marking filesnames as invisible to the shell (and to the Finder as well). But it's easy enough to see such
hidden files in the CLI; just use the -a option flag with 1s.

Option flags allow you to modify the behavior of commands. The -a option flag for 1s tells 1s to display "all" items
in the working directory, including hidden ones (also known as "dot files"). Simply type the 1s command, add a
space, and then type the -a flag:

[localhost:~root] chris% 1ls -a

.forward .tcsh history Library
.- .nsmbrc Desktop
.CFUserTextEncoding .ssh Documents

[localhost:~root] chris$%

Again, your view might be different, but you will now see ~root /. forward. You'll next want to edit it using pico.
Since this file is owned by root, you'll need to use sudo as well:

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 3 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

®@006 fusr/binflogin (ttypl)

W PICO{tE) 2.3 File: .forward

Bievrmual)

&
Get Help @I WriteOut Read File Prav Pg Cut Text g8 Cur Pos L
Exit g Justify Where is Next Pg UrCit Textgh Del Char

[localhost:~root] chris% sudo pico .forward

First, delete the file's single line by pressing control + K. Next, type in your account name (the name that's just
before the "%" in the prompt; "chris" in this case):

@006 fusr/bin/login (ttypl)

e PICO{tmYy 2.3 Fila: .forward Modified

chrisl

As you learned in Part 1, save the file with control + O, press return to confirm the name, and then press control +
X to exit pico. You're done with the . forward file.

The next step in the procedure involves getting the mail transfer agent sendmail to launch successfully when
beckoned by the mail user agent mail (which, as you remember, is invoked by the cron job).

Mail user agents (MUAS) are the kinds of applications that allow you to personally send, receive, and otherwise
work with your email messages. Outlook, Eudora, and Mac OS X's Mail application are other familiar examples of
MUA:s.

Mail transfer agents (MTAs), on the other hand, are the not-so-familiar applications that receive the messages from

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 4 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

the MUA and pass them on to other users on the same machine, or to MTAs on other machines for ultimate
delivery to users elsewhere. The sendmail MTA included with OS X is one of the most popular, used on servers
large and small across the Internet.

Since you are not running your own mail server at this point, you don't need sendmail to be running at all times.
Instead, you only need to ensure that sendmail launches when invoked by mail to send the cron reports. Used
this way, sendmail quits itself once delivery is made.

For sendmail to successfully launch, however, one issue needs to be "fixed" on your system. As a security
measure, sendmail will not run with OS X's default permissions (termed "privileges" in the Finder), namely those
for the root directory.

This fix involves one simple change: eliminating write privileges for the group assigned to the root directory. The
CLI makes it very easy to view and change the various permission settings for any item, but the procedures are still
too involved to detail here. (Of course, Mac OS X: The Missing Manual does include an in-depth look at
permissions and the CLI.)

Instead, I'll zero in on the single command line required to get sendmail going:

sudo chmod g-w /

Since you're modifying the settings for a root-owned directory, the command line starts with sudo.

Next comes the chmod command, for "change (file) modes." File modes are the settings that specify whether an item
can be read or written to, for example, and by which kind of user -- the owner of the item, its group, or any user of
the machine. (These settings correspond, of course, with the Privileges settings that are accessible via Finder's
Inspector.)

Following a space are chmod's "arguments," the first of which specifies the modes to be changed (option flags are

n_n

just another kind of argument, by the way). This argument says to take the group ("g") and remove ("-") its

permission to write ("w") to the file or directory specified in the next argument (again followed by a space), which in
this case is the root directory, ("/").

Your next step, then, is to run the command line:

[localhost:~] chris% sudo chmod g-w /

Once you do, sendmail should work fine. However, you should know that Mac OS X upgrade installers and
some application installers change the root directory back to group-writable, so you'll need to run the chmod
command line whenever this happens.

To test everything so far, try sending mail from the CLI. Use the mail command to send mail to root (which, at this
point, will get forwarded on to you) like this:

[localhost:~] chris$% mail root
Subject:

You're now working inside the mai1l CLI application, so you'll see no more tcsh shell prompts until you exit mail.

Enter any subject you would like and press return. Type in your message at the cursor. To end your message, send
it, and exit mail, press return, type a period, and press return again. You'll then return to your shell prompt:

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 5 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

806 fusrfbin/login {ttyp3)

[lecalhast i=] chrisk matl root
Subject: test
Thiz iz enly a test,

EOT
[locaolhost i=] chrisk

After a few moments, check your mail by entering the mai1 command again, but this time with no arguments. Until
the message arrives, you'll only see that your box is empty when you run mail:

[localhost:~] chris% mail
No mail for chris

However, once it arrives you'll see something like this:

[[localhost:~] chris% mail

Mail version 8.1 6/6/93. Type ? for help.

"/var/mail/chris": 1 message 1 new

>N 1 chris Sat Jan 5 15:30 13/374 "Test"
&

You're back in the mail application, but this time to view your new message. Press return at the "s" prompt to have
a look:

Message 1:

From chris Sat Jan 5 15:30:01 2002

Date: Sat, 5 Jan 2002 15:30:00 -0800 (PST)
From: Chris Stone

To: root

Subject: Test

This is only a test.

& q
Saved 1 message in mbox
[localhost:~] chris%

As you can see, the test message stays in your local Unix mailbox when you quit mail. Note that this and any other
messages there will disappear as a result of the following procedure. However, if this tutorial is new to you, it's very
unlikely that you have other messages there anyway. (Of course, your POP and IMAP mail will stay safe and
sound.)

You're now ready to set up your GUI Mail application so it can access your local Unix mailbox. Since you will be

modifying the folder in which Mail stores its mail, ~/Library/Mail, you should first make a backup of it to, say,
your Documents folder:

[localhost:~] chris% cp -R Library/Mail/ Documents/Mail
Here are some important points about this command line:

o Because you are copying a directory, cp requires you to use its -r option flag (for "recursive").

o The pathnames are not absolute, but "relative" to your working directory. Instead of including the entire

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 6 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

pathname from the root directory down, with relative pathnames you can specify a shorter path that begins
from the end of your working directory. (Always remember to omit a leading / in relative pathnames.)

o The target pathname, bocuments/Mail, doesn't specify the directory in which you would
like Library/Mail/ to go, but the desired new relative pathname of the copied directory.

o Ifthis command line could talk, then, it would be telling the shell, "Please make a copy, including all contents,
of the directory indicated by the first pathname. When you're done, the pathname of the new directory is to
be the same as this line's second pathname."

Something else you should know about cp is that it does not properly copy files with resource forks, so you should
never use it for that. You'll never have a problem copying Unix and Cocoa applications and related files, which don't
contain resource forks, but if you are unsure, use the Finder to copy (or have a look at Mac OS X: The Missing
Manual for an explanation of using CpMac, which does handle resource forks reliably).

The next step is to make the directory that Mail requires before it can create a Unix mail account. The directory
must existin ~/Library/Mail/ and be named "un1x:@". To create a directory from the command line, use
the mkdir command, followed by a space and the name of the new directory.

However, if there is no Mail directory already inside ~/Library, the command will return an error. To prevent this
possibility, use mkdir's -p option flag, which will create any intermediate directories for you if they are missing.

[localhost:~] chris% mkdir -p Library/Mail/UNIX:@
Next you'll need to open Mail and create a Unix mail account, which requires just a few simple steps:
1. Open the Mail application, found in /applications.
Sure, you can just double-click its icon to open it in the Finder, but since you're in Terminal anyway, how

about opening it from there? To do so, just use the open command (don't forget to include the
normally-hidden extension at the end):

[localhost:~] chris% open /Applications/Mail.app

Mail launches immediately, just as if you had opened it from the Finder.

If you've never used Mail before and have no email account info entered in your System Preferences, you'll
be prompted to set up an initial account. At a minimum, you'll need to enter an email address, so enter

anything you would like; it won't affect the setup of your Unix mail account.

You can safely click through the other prompts for server and other info, and to import mail from other
applications. None of this is needed for the task at hand.

2. Create a new Unix mail account.

From Mail's Mail menu, select Preferences, and then click the Accounts icon. In the Accounts pane, click
Create Account. To configure the account, you'll at least need to select the account type (Unix Account),
enter a description (Local), and enter something -- anything, really -- in the SMTP Host field.

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 7 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

Of course, if you need to set up a bona fide Unix account, all of these fields mean a great deal. However, for
the purpose of only accessing your local Unix mail, this is all you need to configure:

a Mail Preferences
F Account Information 1 Account Options]
Account Type: UNIX Account H
Description: Local . Examples: Work, Persona
Email Address: Examgle- stevedfmac com
Full Mamea: Examgple: Stewe Smith
HOsT name Exasmiple” mkil, M. Gt
US&r narmie: e
Password

SMTP Host: smtp.anysewer.mnﬂq . Examgle: smip mac.com
[Use authentication when sending mail
SMTP User: e it
SMTP Password:

7 Cancel ™ t‘-ﬂ—"jl

3. Click OK, close the Preferences window, and you're all set.

If you are already using Mail to check your regular POP and IMAP accounts, this additional account will not
affect those in any way, except that new mail from your Unix account will show up in your default inbox. Of
course, if you would like, you could create a new mailbox and a rule to have the incoming cron reports be
placed there instead.

Now that everything's in place, you can perform a test. Send a new mail message to root:

[localhost:~] chris% mail root
Subject: Test 2

This is only a test, again.
EOT

[localhost:~] chris%

Switch to Mail, and then click Get Mail until you see the message has arrived in your Inbox:

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 8 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

acae INBOX an Personal Mailboxes (=]
: @ i E -:: ;? r._'j‘ L L _:‘ | 'I'[.l"l’u:nnrjl blyiiboned
| Dplris Rerphy REoply &1 Forward Compoia Malbos Gl Ml rrarch WaEar B tbo
} mssam T Dralty
. ® from Subject Mt & Tere @ o Sent Messsges
1 Chris Saone Test X Today ot 10 T4AM
Fireamz Chss Suhe <Chiti=
| Dl Som Jan 08, 2002 103427 AM USFPacile
Tai: ol
Suabet: T 2
Thaa ia & 'ledf agan

If you see the test message in your inbox, then you're done. The next time cron runs one of the maintenance jobs,
you'll see the report in your inbox as well. For example, the daily cron job report will look something like this:

ene INBOX on Personal Mailboxes =
oMl a /@ e =
7 i FINBOK
Dalate Reply Maphy Al Forwsrd Comgass Mailban Gat Maa Srarch Wb B Custhan
HE T .|:|‘|'l.'|1
- Fm Subearn Tore & Tima i o e Mol g
1 Charia. Stone Tean J Todey a2 10 G4akd
2 System Adminisirator Iecalhost daily eutput Today at 104

From; Sysies Admingiraler ot

Db Sun Jden OF. JU0Z 100EE D6 AU g0l
T roos

Bubect: locaiast £ puipul

Sulbpert incalivdl daily ros celpul

Figrmsang soimict afel ok Be

albnng aécsunbng itikabsa
Joidaily command nol lend: i PR

Mlacking up Mednds dala

Checking subsyriem stals

&

gk
Filbwyaiem 1Wbiocks Used Avail Capacty Maumisd o

%’

Now that these regular reports will be coming in, you'll probably want to be able to understand them. In Part 3,
you'll get a closer look at the scripts themselves to learn how to read the reports they generate.

Also in Part 3, I'll show how a Macintosh with a persistent Internet connection can send its reports to any email
address. Until then, keep checking to see that you're receiving the reports as expected, and always feel free to
submit your comments or questions to our TalkBack section.

1'd like to thank Scott Gever for his techincal help with this series.

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal_pt2.html Page 9 of 10

O'Reilly Network: Learning the Mac OS X Terminal, Part 2 3/11/02 1:13 PM

Chris Stone is a Senior Macintosh Systems Administrator for O'Reilly and contributing author to Mac OS X:
The Missing Manual, which provides over 40 pages about the Mac OS X Terminal.

Return to the Mac DevCenter.

oreillynet.com Copyright © 2000 O'Reilly & Associates, Inc.

http://www.oreillynet.com/Ipt/a//mac/2002/01/22/terminal pt2.html Page 10 of 10

