

by
12/14/2001

Published on ()

 if you're having trouble printing code examples

The O'Reilly Network http://www.oreillynet.com/
http://www.oreillynet.com/pub/a/mac/2001/12/14/terminal_one.html
See this

Learning the Mac OS X Terminal: Part 1
Chris Stone

Editor's note -- After reading the chapters Chris Stone contributed to , I
asked him to write a couple of articles for the Mac DevCenter because I believe that understanding the
Terminal application adds value to Mac OS X. These tutorials give you a preview of what Chris has covered
in the book.

Mac OS X: The Missing Manual

Mac OS X’s Terminal application. There it sits in your Utilities folder, foreign and mysterious. You’ve heard that it's
a portal to the new world of the Unix command line, a world where your flurries of mouse clicks can be replaced
with a just few keystrokes.

But you’ve been wary of rushing into this new territory where the keyboard is king, concerned that without enough
knowledge you might get lost, or stuck, or worse. Or maybe you're an adventurer who is just waiting to dive into
uncharted waters.

This article is for you. Regardless of why you've previously avoided , I'll show you
how to take your first steps with the Terminal application. Then, I'll walk you through a tutorial that will accelerate
your understanding of the Unix command line.

[localhost:~] yourname%

In Part 1 of this series, you’ll learn more about what Terminal does and get an overview of the tutorial procedure.
You’ll then jump into the tutorial itself to learn the fundamental Unix commands you’ll need to know to get started
with just about any command-line procedure.

Then, in Part 2, you’ll finish the rest of the tutorial, as well as learn a few more things you can do with the command
line.

The command-line interface

The command-line interface (CLI) displayed in Terminal's windows provides access to the Unix shell, which is really
just another way to interact with your Mac. The other method that you're probably more comfortable with is the
Aqua interface. Aqua enables you to click on icons and menus, and to launch graphical applications by telling the
Mac what to do.

The shell, on the other hand, allows you to type text commands to accomplish much of the same work. Typically,
these typed commands launch tiny, single-duty Unix applications that do specific jobs and then quit. The shell itself is
an application that plays the go-between for the commands that you enter and the Unix kernel at the core of Mac
OS X. There are in fact several shells available. By default Mac OS X uses a shell called .tcsh

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 1 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

If you're curious about why you would want to use the shell in the first place, see the article
 for more information about the CLI vs. the Aqua interface.

Why Use a Command
Line Instead of Windows?

The procedure

To help you learn the Terminal application more quickly, I'm going to
introduce you to a Unix utility built right into your Mac OS X system.
Working with this utility will help you get more comfortable with the
core Unix commands.

Installed with Mac OS X is a mechanism that performs important
fine-tuning of your system. It's called . By using this Unix
task-scheduling utility, you can have your system regularly purge itself of
outdated, space-hogging log files, update system databases so utilities
like can work effectively, and do several other maintenance
tasks that keep your system running lean and mean.

cron

locate

The utility fully automates this process, meaning that once everything is configured, the housecleaning will
happen unattended as scheduled. The good news is that Apple has done the configuration for you. The not-so-good
news is that they’ve scheduled these groups of tasks, or jobs, to run between 4:00 and 5:00 in the morning --
a time when your Mac is likely not even on! And if your Mac is never on during these times, these important tasks
will never happen.

cron

cron

In this tutorial, I'll show you first how to modify the schedule, which is read from a file called the , so
that these tasks occur at more reasonable times. I'll then explain how to configure Mac OS X’s built-in mail server
and the Mail application so that you’ll receive an emailed report every time the jobs run!

cron crontab

cron

The tutorial

For this tutorial, make sure you're running Mac OS X 10.1 or newer, and that you’re logged in with an
administrator’s account, though not the root account.

Open the Terminal program, which you'll find in the Applications_Utilities folder. Once launched, Terminal opens a
single window displaying a greeting and a second line of text that comprises the prompt. With that window active,
anything you type will enter just before the rectangular cursor that follows the prompt. After you type a command,
simply press Return or Enter to run it.

The prompt shows the name of your computer (or rather its host name, which can vary), and then identifies your
current working directory ("directory" is just the Unix term for "folder.") The current working directory is "where you
are," that is, the location in your filesystem hierarchy that your next command will act on. Your initial working
directory is always your "home" directory, which is identified in the prompt by the home directory shortcut character
"~".

Related Reading
Mac OS X: The Missing
Manua l
By David Pogue
Table of Contents
Index
Full Description
Sample Chapter

 utility fully automates this process, meaning that once everything is configured, the housecleaning will
the configuration for you. The not-so-good

 jobs, to run between 4:00 and 5:00 in the morning --
is likely not even on! And if your Mac is never on during these times, these important tasks

 schedule, which is read from a file called the , so
how to configure Mac OS X’s built-in mail server

receive an emailed report every time the jobs run!

crontab

cron

For this tutorial, make sure you're running Mac OS X 10.1 or newer, and that you’re logged in with an

Open the Terminal program, which you'll find in the Applications_Utilities folder. Once launched, Terminal opens a
that comprises the prompt. With that window active,

the rectangular cursor that follows the prompt. After you type a command,

The prompt shows the name of your computer (or rather its host name, which can vary), and then identifies your
"folder.") The current working directory is "where you

filesystem hierarchy that your next command will act on. Your initial working
your "home" directory, which is identified in the prompt by the home directory shortcut character

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 2 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

To fully display the path to your working directory, use the command: Type (which means "print working
directory," though it only displays it) and press Return:

pwd pwd

[localhost:~] chris% pwd
/Users/chris
[localhost:~] chris%

As you can see, does its job by displaying the full path, or path name, to your
home directory and providing you with a new prompt when done. This path name
begins with the slash character, which represents the root or top-most directory of your
filesystem. Note that directories that reside on your system disk do not include that
disk’s name in their pathnames.

pwd

To act on a different set of files, you simply change your working directory using the
command. We’ll first be modifying the file, which exists in the directory
(normally invisible to the Finder). Enter followed by a space and the path name of
the target directory, :

cd
crontab /etc
cd

/private/etc

[localhost:/etc] chris% cd /private/etc
[localhost:/private/etc] chris% ls

Notice the change in the prompt reflecting the new working directory. If you’re curious about what your working
directory contains, use the , or list command:ls

[localhost:/private/etc] !chris%!!!!ls
afpovertcp.cfg !hosts!!!!rc.common
appletalk.cfg !hosts.equiv!!!resolv.conf
appletalk.nvram.en0 !hosts.lpd!!!rmtab
appletalk.nvram.en2 !httpd!!!!rpc
authorization !iftab!!!!services
bootstrap.conf !inetd.conf!!!shells
crontab !inetd.conf~!!!slp.regfile

As you can see, there are a lot of items -- quite a bit more than what’s shown here
-- in , including ./private/etc crontab

The crontab file

The application launches automatically at system startup and runs continuously in the background executing
commands as instructed by the files. These files tell exactly what commands to run and when to run
them. In fact, each user account can have its own file. The system found in
belongs to the super-user, or root account, and therefore can specify commands requiring the same total system
access allowed to root.

cron
crontab cron

crontab crontab /private/etc

For those of you
trying the

command line for the
first time, how's it going?
As for you experienced
Unix users, how does the
Mac OS X experience
compare?

Post your comments

about what your working

 application launches automatically at system startup and runs continuously in the background executing
exactly what commands to run and when to run

 found in
super-user, or root account, and therefore can specify commands requiring the same total system

/private/etc

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 3 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

cp

Before you modify the system , you should first make a backup copy in case you need to revert back to its
default state. You’ll use the , or copy command, to do this, which lets you copy and rename a file in one step.
Normally, to rename and copy a file into the same directory, you would type , followed by the name of the
original file, and then the name of the copy:

crontab
cp

cp

[crontab: /private/etc] chris% cp crontab crontab.bak
cp: crontab.bak: Permission denied

But hold on. It looks like you don’t have permission to write to the directory. In fact, only root
can write to . So, because you are not logged in as root, it might seem that there’s no easy way to
write to this directory. But there is....

etc
/private/etc

sudo

The utility, for "substitute-user do," allows you to gain temporary root privileges on a per-command basis. To
use , simply preface the command you wish to run as root with and a space, and will prompt you
for your password (not root’s). If you have administrator privileges, entering your password will run the ’ed
command as if root were doing it.

sudo
sudo sudo sudo

sudo

: Use with care. You can easily make mistakes with that could require complete re-installation
of the OS to get going again. If that thought makes you queasy, it would be wise for now to use only as
directed in this article.

Warning sudo sudo
sudo

To perform the previous command successfully, preface it with :sudo

[office_g4:/private/etc] chris% sudo cp crontab crontab.bak
Password:
[office_g4:/private/etc] chris%

Notes about :sudo

The first time you run , you’ll see another reminder to use with care.sudo sudo
You’ll only need to enter your password when you haven’t already used within the last 5 minutes.sudo
It’s not necessary to activate the root account to use .sudo

What you need to do next, then, is edit this system file, and you’ll learn how to do it with a command-line
text editor called . However, if you were to first examine the privileges for , you would see that
it’s owned by root, and only root has write privileges. Sounds like another job for !

crontab
pico /etc/crontab

sudo

pico

Of the several CLI text editors included with Mac OS X, is the easiest to learn. To open a text file in ,
simply enter the file name after the command. Used with then, the command to edit the file in
the directory looks like this:

pico pico
pico sudo crontab

/etc

[localhost:/private/etc] chris% sudo pico crontab

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 4 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

And this is what you’ll see when you run it:

The document’s text area lies between the black title bar at the top and the two rows of command prompts at the
bottom. The Terminal window’s scrollbar won’t let you scroll through the document. Instead, you use the
down-arrow to move the cursor down line by line, or use the Page commands.

All of the commands listed at the bottom are prefaced with the caret character ("^"), representing the control key.
So for example, to go to the next "page" (actually screen-full) of text, press the control and "V" keys as indicated.
For brief descriptions of all the commands, read the help file by pressing control-G.pico

The numbers in the circled area specify the time runs the scripts (there are actually three of them), and this is
where you’ll make your changes.

cron

Each of the three lines (numbered 1, 2, and 3) specifies one of the three scripts runs by default. Each script is
different, performing its own appropriate set of maintenance procedures. The "daily" script, specified on the line
labeled 1, runs once each day. The "weekly" script, specified on line 2, runs once each week. And the monthly
script, specified on line 3, runs -- you guessed it -- once each month.

cron

The first five columns or "fields" of each line specify at exactly what interval the script will run. The fields specify
from left to right: minute, hour (on a 24-hour clock), day of the month, month, and weekday (numerically, with
Sunday as 7). Asterisks used instead of numbers in these fields mean "every."

For example, line 1 specifies a time of 3:15 a.m.:

15!3!*!*!*!root!sh /etc/daily 2>&1 | tee /var$ …

Since the rest of the columns contain asterisks, the daily script (which is written in a file named on that line by its path
name) will run at "3:15 a.m. on every day of the month, on every month, and every day of the week,"
that is "every day at 3:15 a.m."

/etc/daily

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 5 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

Line 2 specifies that the weekly script runs at 4:30 a.m. on every weekday number 6, or Saturday:

30!4!*!*!6!root!sh /etc/weekly 2>&1 | tee /var$ …

And line 3 specifies that the monthly script runs at 5:30 a.m. on day 1 (the first) of each month.

30!5!1!*!*!root!sh /etc/monthly 2>&1 | tee /var$ …

By just changing these numbers, then, you can have these scripts run at more reasonable times. Of course, what’s
"reasonable" depends on your own situation, so consider these factors when deciding:

1. Choose a time when your Mac is likely to be on (and not asleep).
2. Choose a time when a few minutes of background activity won’t disturb your work too much. On faster

machines especially, the activity is hardly noticeable, but it could cause some stuttering if, for example, you
happened to be watching a DVD at the time.

3. Choose a time that is unique for each script. You don’t want to schedule scripts to run at the same time.

For example, these times might be good for a machine that’s only on during normal work hours:

Daily -- every day at 5:15 p.m.
Weekly -- every Monday at 8:50 a.m.
Monthly -- the first of every month at 9:30 a.m.*

*(Of course, the first of the month sometimes falls on a weekend or holiday, but for now, that’s the best you can do.
You’ll find a work around to this problem in Part 2 of the article.)

To modify the file to reflect these new times, use the cursor keys (the four arrow keys) to move the cursor
to the proper field. Except for being unable to use the mouse, you’ll find that editing text with is similar to
doing so with any GUI text editor. Use the delete key as usual, and type in the new values.

crontab
pico

First, change the 3 in the daily script line to 17:

15!17!*!*!*!root!sh /etc/daily 2>&1 | tee /var$ …

Next, change the time in the weekly script line as shown, and the day from 6 to 2 (Saturday to Tuesday).

50!8!*!*!2!root!sh /etc/weekly 2>&1 | tee /var$ …

Finally, change the time in the monthly script line as shown:

30!9!1!*!*!root!sh /etc/monthly 2>&1 | tee /var$ …

Once you’ve made the changes, save ("write out") the document by pressing control-O. You’ll then be prompted to
confirm the save. Just press Return to do so.

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 6 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

Finally, quit , by pressing control-X.pico

Once you’ve saved the file, the new scheduling takes effect; there’s no need to restart. For now, you’ll not
receive notification of the completed jobs, but in Part 2, you’ll learn how to make that happen, as well as learn
more about the scripts themselves.

crontab
cron

is a Senior Macintosh Systems Administrator for O'Reilly and contributing author to
, which provides over 40 pages about the Mac OS X Terminal.

Chris Stone Mac OS X:
The Missing Manual

O'Reilly & Associates recently released (December 2001) .Mac OS X: The Missing Manual

, is available free online in PDF format. Sample Chapter 2, Organizing Your Stuff

You can also look at the , the , and the of the book. Table of Contents Index Full Description

For more information, or to order the book, . click here

Return to the .Mac DevCenter

 Copyright © 2000 O'Reilly & Associates, Inc.oreillynet.com

3/11/02 1:10 PMO'Reilly Network: Learning the Mac OS X Terminal: Part 1

Page 7 of 7http://www.oreillynet.com/lpt/a//mac/2001/12/14/terminal_one.html

by
01/22/2002

Published on ()

 if you're having trouble printing code examples

The O'Reilly Network http://www.oreillynet.com/
http://www.oreillynet.com/pub/a/mac/2002/01/22/terminal_pt2.html
See this

Learning the Mac OS X Terminal, Part 2
Chris Stone

In of this series, you learned how to reschedule default system jobs by modifying the system .
Here in Part 2, I'll show you how to configure to email you a report each time it runs one of these jobs.

Part 1 cron crontab
cron

First, let's take another look at the pertinent lines in . Since you only want to look at the file and not
modify it, you don't need to use a text editor like . Instead, to only display short files like this, use the
utility, which dumps the entire text file into your window and exits:

/etc/crontab
pico cat

[localhost:~] chris% cat /etc/crontab

You might notice a couple of interesting things about this command line. First, since the permissions
for allow anyone to read it (but only root to modify it), using is not necessary./etc/crontab sudo

Second, this command line allows you to access a file in a directory other than your working directory by specifying,
in this case, the full (or) pathname to that file. (You didn't first to to open , as you did in
Part 1.) An absolute path describes the directory hierarchy from the very top of the filesystem (the root directory or
"/"), down to the file.

absolute cd /etc crontab

Finally, because some of the lines might be too long for your
window, you'll need to widen the window by dragging its lower right
corner to the right until all lines fit without wrapping.

crontab

Look now at the line specifying the daily job, which, depending
on how you configured the time segment in Part 1, begins something
like this:

cron

15 17 * * * root sh /etc/daily ...

Following the first five time fields is the user field. In this case the user field tells to run the job as if "root" were
doing it. This is necessary here because these maintenance procedures require the full access to the system allowed
to the root account.

cron

Following the user field is the sixth and final field, which specifies the actual command for to execute. The
heart of the command, , tells to use , or the Bourne shell, to run the shell script called
"daily," found in the directory.

cron
sh /etc/daily cron sh

/etc

Related Reading
Mac OS X: The Missing
Manua l
By David Pogue
Table of Contents
Index
Full Description
Sample Chapter

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 1 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

A shell script is a file holding a series of command lines that can be batch-executed by the shell. Much like an
AppleScript, a shell script allows you to create and save long automated procedures that you can run at any time,
using a single command. The shell script was written for the Bourne shell, which uses command syntax
more apt for shell scripting than the shell you've been using.

/etc/daily
tcsh

The entire daily command line, then, looks like this:cron

sh /etc/daily 2>&1 | tee /var/log/daily.out
 | mail -s "`hostname` daily output" root

, in fact, uses the Bourne shell by default to execute its commands, so this command wouldn't work if
you ran it manually using the shell. For the purpose of this article, though, you won't need to modify this
command. You won't need to fully understand it either, but this breakdown will give you a general idea of what it
does:

cron crontab
tcsh

sh /etc/daily 2>&1 |

Run the shell script using the Bourne shell, and send its output and any of its error messages on to the
next command.

/etc/daily

tee /var/log/daily.out |

Write the input from the previous command to a file and also pass it on to the next command. (That's right -- you
can always see the results of the latest daily job by viewing .)cron /var/log/daily.out

mail -s "`hostname` daily output" root

Using the input from the previous command as the body, create an email message with
the subject "localhost daily out" and send it to root. This, then, is the command that
starts the report's journey on its way to your mailbox. cron

The first step in getting the reports delivered is to direct them to mailbox, instead
of root's. To do this, you could conceivably replace "root" in this command with your account name, but wouldn't it
would be simpler if you could just tell the system to redirect mail addressed to root to your mailbox instead? By
using a file, you can do just that.

your

all
.forward

A file is just a text file containing nothing but the name of the account to which you want the mail
forwarded (in this case, your account name). Once the file is placed in the home directory of the original
addressee (in this case, root), the mail gets forwarded as expected.

.forward
.forward

By default, the Mac OS X root home directory already contains a file, but this one redirects mail not to
another user, but into thin air. This happens because instead of an account name, root's file contains the
pathname , which is the location of a Unix black hole. Streams of data directed to , mail
messages included, simply disappear. Since OS X's designers figure most users won't be accessing root's mail, they
used this method to ensure mail doesn't pile up at the door while no one's home, eventually filling up your hard disk.

.forward
.forward

/dev/null /dev/null

Let's get back to Terminal, then, to edit root's file. You've probably already noticed that there is no .forward

This is the place
for your

questions and comments
as you work with Mac OS
X's Terminal application.

Post your comments

command with your account name, but wouldn't it
 mail addressed to root to your mailbox instead? By

 file is just a text file containing nothing but the name of the account to which you want the mail
placed in the home directory of the original

 file, but this one redirects mail not to
 file contains the

location of a Unix black hole. Streams of data directed to , mail
included, simply disappear. Since OS X's designers figure most users won't be accessing root's mail, they

home, eventually filling up your hard disk.

.forward
/dev/null

noticed that there is no

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 2 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

"root" directory in -- so where is root's home? The easiest way to find any user's home directory is by using
the shortcut (for home directory), along with the account name. Therefore, to change your working directory to
root's home directory, enter this:

/Users
~

[localhost:~] chris% cd ~root
[localhost:~root] chris%

Okay, so now you're in , but where is that really? Remember, you can find out with :~root pwd

[localhost:~root] chris% pwd
/private/var/root

Next, use to view the contents of :ls ~root

[localhost:~root] chris% ls
Desktop Documents Library

The contents of directory might look different, but in any case, you still won't see a file.
What happened to it? One clue is the first character of the file's name, which is a dot ("."). An initial dot is the Unix
way of marking filesnames as invisible to the shell (and to the Finder as well). But it's easy enough to see such
hidden files in the CLI; just use the option flag with .

your ~root .forward

-a ls

Option flags allow you to modify the behavior of commands. The option flag for tells to display "all" items
in the working directory, including hidden ones (also known as "dot files"). Simply type the command, add a
space, and then type the flag:

-a ls ls
ls

-a

[localhost:~root] chris% ls -a
.!! .forward!!.tcsh_history ! Library
..!! .nsmbrc !!Desktop
.CFUserTextEncoding! .ssh!!!Documents
[localhost:~root] chris%

Again, your view might be different, but you will now see . You'll next want to edit it using .
Since this file is owned by root, you'll need to use as well:

~root/.forward pico
sudo

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 3 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

[localhost:~root] chris% sudo pico .forward

First, delete the file's single line by pressing control + K. Next, type in your account name (the name that's just
before the "%" in the prompt; "chris" in this case):

As you learned in Part 1, save the file with control + O, press return to confirm the name, and then press control +
X to exit . You're done with the file.pico .forward

The next step in the procedure involves getting the mail transfer agent to launch successfully when
beckoned by the mail user agent (which, as you remember, is invoked by the job).

sendmail
mail cron

Mail user agents (MUAs) are the kinds of applications that allow you to personally send, receive, and otherwise
work with your email messages. Outlook, Eudora, and Mac OS X's Mail application are other familiar examples of
MUAs.

Mail transfer agents (MTAs), on the other hand, are the not-so-familiar applications that receive the messages from

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 4 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

the MUA and pass them on to other users on the same machine, or to MTAs on other machines for ultimate
delivery to users elsewhere. The MTA included with OS X is one of the most popular, used on servers
large and small across the Internet.

sendmail

Since you are not running your own mail server at this point, you don't need to be running at all times.
Instead, you only need to ensure that launches when invoked by to send the reports. Used
this way, quits itself once delivery is made.

sendmail
sendmail mail cron

sendmail

For to successfully launch, however, one issue needs to be "fixed" on your system. As a security
measure, will not run with OS X's default permissions (termed "privileges" in the Finder), namely those
for the root directory.

sendmail
sendmail

This fix involves one simple change: eliminating write privileges for the group assigned to the directory. The
CLI makes it very easy to view and change the various permission settings for any item, but the procedures are still
too involved to detail here. (Of course, does include an in-depth look at
permissions and the CLI.)

root

Mac OS X: The Missing Manual

Instead, I'll zero in on the single command line required to get going:sendmail

sudo chmod g-w /

Since you're modifying the settings for a root-owned directory, the command line starts with .
Next comes the command, for "change (file) modes." File modes are the settings that specify whether an item
can be read or written to, for example, and by which kind of user -- the owner of the item, its group, or any user of
the machine. (These settings correspond, of course, with the Privileges settings that are accessible via Finder's
Inspector.)

sudo
chmod

Following a space are 's "arguments," the first of which specifies the modes to be changed (option flags are
just another kind of argument, by the way). This argument says to take the group (" ") and remove (" ") its
permission to write (" ") to the file or directory specified in the next argument (again followed by a space), which in
this case is the root directory, (" ").

chmod
g -

w
/

Your next step, then, is to run the command line:

[localhost:~] chris% sudo chmod g-w /

Once you do, should work fine. However, you should know that Mac OS X upgrade installers and
some application installers change the root directory back to group-writable, so you'll need to run the
command line whenever this happens.

sendmail
chmod

To test everything so far, try sending mail from the CLI. Use the command to send mail to root (which, at this
point, will get forwarded on to you) like this:

mail

[localhost:~] chris% mail root
Subject:

You're now working inside the CLI application, so you'll see no more shell prompts until you exit .
Enter any subject you would like and press return. Type in your message at the cursor. To end your message, send
it, and exit , press return, type a period, and press return again. You'll then return to your shell prompt:

mail tcsh mail

mail

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 5 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

After a few moments, check your mail by entering the command again, but this time with no arguments. Until
the message arrives, you'll only see that your box is empty when you run :

mail
mail

[localhost:~] chris% mail
No mail for chris

However, once it arrives you'll see something like this:

[[localhost:~] chris% mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/chris": 1 message 1 new
>N 1 chris Sat Jan 5 15:30 13/374 "Test"
&

You're back in the application, but this time to view your new message. Press return at the " " prompt to have
a look:

mail &

Message 1:
From chris Sat Jan 5 15:30:01 2002
Date: Sat, 5 Jan 2002 15:30:00 -0800 (PST)
From: Chris Stone
To: root
Subject: Test

This is only a test.

& q
Saved 1 message in mbox
[localhost:~] chris%

As you can see, the test message stays in your local Unix mailbox when you quit mail. Note that this and any other
messages there will disappear as a result of the following procedure. However, if this tutorial is new to you, it's very
unlikely that you have other messages there anyway. (Of course, your POP and IMAP mail will stay safe and
sound.)

You're now ready to set up your GUI Mail application so it can access your local Unix mailbox. Since you will be
modifying the folder in which Mail stores its mail, , you should first make a backup of it to, say,
your Documents folder:

~/Library/Mail

[localhost:~] chris% cp -R Library/Mail/ Documents/Mail

Here are some important points about this command line:

Because you are copying a directory, requires you to use its option flag (for "recursive"). cp -R

The pathnames are not absolute, but "relative" to your working directory. Instead of including the entire

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 6 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

pathname from the root directory down, with relative pathnames you can specify a shorter path that begins
from the end of your working directory. (Always remember to omit a leading in relative pathnames.)/

The target pathname, , doesn't specify the directory in which you would
like to go, but the desired new relative pathname of the copied directory.

Documents/Mail
Library/Mail/

If this command line could talk, then, it would be telling the shell, "Please make a copy, including all contents,
of the directory indicated by the first pathname. When you're done, the pathname of the new directory is to
be the same as this line's second pathname."

Something else you should know about is that it does not properly copy files with resource forks, so you should
never use it for that. You'll never have a problem copying Unix and Cocoa applications and related files, which don't
contain resource forks, but if you are unsure, use the Finder to copy (or have a look at

 for an explanation of using CpMac, which does handle resource forks reliably).

cp

Mac OS X: The Missing
Manual

The next step is to make the directory that Mail requires before it can create a Unix mail account. The directory
must exist in and be named " ". To create a directory from the command line, use
the command, followed by a space and the name of the new directory.

~/Library/Mail/ UNIX:@
mkdir

However, if there is no directory already inside , the command will return an error. To prevent this
possibility, use 's option flag, which will create any intermediate directories for you if they are missing.

Mail ~/Library
mkdir -p

[localhost:~] chris% mkdir -p Library/Mail/UNIX:@

Next you'll need to open Mail and create a Unix mail account, which requires just a few simple steps:

1. Open the Mail application, found in . /Applications

Sure, you can just double-click its icon to open it in the Finder, but since you're in Terminal anyway, how
about opening it from there? To do so, just use the command (don't forget to include the
normally-hidden extension at the end):

open

[localhost:~] chris% open /Applications/Mail.app

Mail launches immediately, just as if you had opened it from the Finder.

If you've never used Mail before and have no email account info entered in your System Preferences, you'll
be prompted to set up an initial account. At a minimum, you'll need to enter an email address, so enter
anything you would like; it won't affect the setup of your Unix mail account.

You can safely click through the other prompts for server and other info, and to import mail from other
applications. None of this is needed for the task at hand.

2. Create a new Unix mail account.

From Mail's Mail menu, select Preferences, and then click the Accounts icon. In the Accounts pane, click
Create Account. To configure the account, you'll at least need to select the account type (Unix Account),
enter a description (Local), and enter something -- anything, really -- in the SMTP Host field.

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 7 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

Of course, if you need to set up a bona fide Unix account, all of these fields mean a great deal. However, for
the purpose of only accessing your local Unix mail, this is all you need to configure:

3. Click OK, close the Preferences window, and you're all set.

If you are already using Mail to check your regular POP and IMAP accounts, this additional account will not
affect those in any way, except that new mail from your Unix account will show up in your default inbox. Of
course, if you would like, you could create a new mailbox and a rule to have the incoming reports be
placed there instead.

cron

Now that everything's in place, you can perform a test. Send a new mail message to root:

[localhost:~] chris% mail root
Subject: Test 2
This is only a test, again.
.
EOT
[localhost:~] chris%

Switch to Mail, and then click Get Mail until you see the message has arrived in your Inbox:

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 8 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

If you see the test message in your inbox, then you're done. The next time runs one of the maintenance jobs,
you'll see the report in your inbox as well. For example, the daily job report will look something like this:

cron
cron

Now that these regular reports will be coming in, you'll probably want to be able to understand them. In Part 3,
you'll get a closer look at the scripts themselves to learn how to read the reports they generate.

Also in Part 3, I'll show how a Macintosh with a persistent Internet connection can send its reports to any email
address. Until then, keep checking to see that you're receiving the reports as expected, and always feel free to
submit your comments or questions to our TalkBack section.

I'd like to thank Scott Gever for his techincal help with this series.

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 9 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

is a Senior Macintosh Systems Administrator for O'Reilly and contributing author to
, which provides over 40 pages about the Mac OS X Terminal.

Chris Stone Mac OS X:
The Missing Manual

Return to the .Mac DevCenter

 Copyright © 2000 O'Reilly & Associates, Inc.oreillynet.com

3/11/02 1:13 PMO'Reilly Network: Learning the Mac OS X Terminal, Part 2

Page 10 of 10http://www.oreillynet.com/lpt/a//mac/2002/01/22/terminal_pt2.html

