
~_TM 

'-•. , 
2 



MACINTOSH USER EDUCATION 

Macintosh Packages: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Macintosh Control Manager Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 

/PACKAGES/PACK 

Programming Macintosh Applications in Assembly Language 
The Structure of a Macintosh Application 

Modification History: First Draft (ROM 7) B. Hacker & C. Rose 2/29/84 
Second Draft Caroline Rose 5/7/84 

ABSTRACT 

Packages are sets of data structures and routines that are stored as 
resources and brought into memory only when needed. There's a package 
for presenting the standard user interface when a file is to be saved or 
opened, and others for doing more specialized operations such as 
floating-point arithmetic. This manual describes packages and the 
Package Manager, the part of the Macintosh User Interface Toolbox that 
provides access to packages. 

Summary of significant changes and additions since last draft: 

- The documentation of the International Utilities Package and the 
Binary-Decimal Conversion Package has been added. 

- There's a new feature in the Standard File Package routine 
SFGetFile, whereby the user can select a file name by pressing a 
key. 



2 Macintosh Packages Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 The Package Manager 
6 The International Utilities Package 
6 International Resources 
8 International Resource ~ 
1~ International Resource 1 
12 International String Comparison 
15 Using the International Utilities Package 
16 International Utilities Package Routines 
20 The Binary-Decimal Conversion Package 
23 The Standard File Package 
23 About the Standard File Package 
24 Using the Standard File Package 
25 ' Standard File Package Routines 
35 The Disk Initialization Package 
35 Using the Disk Initialization Package 
36 Disk Initialization Package Routines 
41 Summary of the Package Manager 
42 Summary of the International Utilities Package 
47 Summary of the Binary-Decimal Conversion Package 
48 Summary of the Standard File Package 
51 Summary of the Disk Initialization Package 
52 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes packages and the Package Manager. The Macintosh 
packages include one for presenting the standard user interface when a 
file is to be saved or opened, and others for doing more specialzed 
operations such as floating-point arithmetic. The Package Manager is 
the part of the Macintosh User Interface Toolbox that provides access 
to packages. *** Eventually, this will become part of the 
comprehensive Inside Macintosh manual. *** 
You should already be familiar with the Macintosh User Interface 
Guidelines, Lisa Pascal, the Macintosh Operating System's Memory 
Manager, and the Resource Manager. Using the various packages may 
require that you be familiar with other parts of the Toolbox and 
Operating System as well. 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with a discussion of the Package Manager and packages 
in general. This is followed by a series of sections on the individual 
packages. You'll only need to read the sections about the packages 
that interest you. Each section describes the package briefly, tells 
how its routines fit into the flow of your application program, and 
then gives detailed descriptions of the package's routines. 

Finally, there are summaries of the Package Manager and the individual 
packages, for quick reference, followed by a glossary of terms used in 
this manual. 

5/7/84 Hacker-Rose /PACKAGES/PACK.2 



4 Macintosh Packages Programmer's Guide 

THE PACKAGE MANAGER 

The Package Manager is the part of the Macintosh User Interface Toolbox 
that enables you to access packages. Packages are sets of data 
structures and routines that are stored as resources and brought into 
memory only when needed. They serve as extensions to the Macintosh 
Operating System and User Interface Toolbox, for the most part 
performing less common operations. 

The Macintosh packages, which are stored in the system resource file, 
include the following: 

- The Standard File Package, for presenting the standard user 
interface when a file is to be saved or opened. 

- The-Disk Initialization Package, for initializing and naming new 
disks. This package is called by the Standard File Package; 
you'll only need to call it in nonstandard situations. 

- The International Utilities Package, for accessing country
dependent information such as the formats for numbers, currency, 
dates, and times. 

- The Binary-Decimal Conversion Package, for converting integers to 
decimal strings and vice versa. 

- The Floating-Point Arithmetic and Transcendental Functions 
Packages. *** These packages, which occupy a total of about 8.SK 
bytes, will be documented in a future draft of this manual. *** 

Packages have the resource type 'PACK' and the following resource IDs: 

CONST dskInit = 2; {Disk Initialization} 
stdFile = 3; {Standard File} 
flPoint = 4; {Floating-Point Arithmetic} 
trFunc = 5; {Transcendental Functions} 
intUtil = 6; {International Utilities} 
bdConv = 7; {Binary-Decimal Conversion} 

Assembly-language note: All macros for calling the routines in 
a particular package expand to invoke one macro, PackN, where N 
is the resource ID of the package. The package determines which 
routine to execute from the routine selector, an integer that's 
passed to it on the stack. For example, the routine selector 
for the Standard File Package procedure SFPutFile is 1, so 
invoking the macro SFPutFile pushes 1 onto the stack and 
invokes Pack3. -

There are two Package Manager routines that you can call directly from 
Pascal: one that lets you access a specified package and one that lets 

5/7/84 Hacker-Rose /PACKAGES/PACK.2 



THE PACKAGE MANAGER 5 

you access all packages. The latter will already have been called when 
your application starts up» so normally you won't ever have to call the 
Package Manager yourself. Its procedures are described below for 
advanced programmers who may want to use them in unusual situations. 

PROCEDURE InitPack (packID: INTEGER); 

InitPack enables you to use the package specified by packID» which is 
the package's resource 10. (It gets a handle that will be used later 
to read the package into memory.) 

PROCEDURE InitAllPacks; 

InitAllPacks enables you to use all Macintosh packages (as though 
InitPack'were called for each one). It will already have been called 
when your application starts up. 

5/7/84 Hacker-Rose /PACKAGES/PACK.2 



6 Macintosh Packages Programmer's Guide 

THE INTERNATIONAL UTILITIES PACKAGE 

The International Utilities Package contains routines and data types 
that enable you to make your Macintosh application country-independent. 
Routines are provided for formatting dates and times and comparing 
strings in a way that's appropriate to the country where your 
application is being used. There's also a routine for testing whether 
to use the metric system of measurement. These routines access 
country-dependent information (stored in a resource file) that also 
tells how to format numbers and currency; you can access this 
information yourself for your own routines that may require it. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the User Interface 
Toolbox. *** 
You should already be familiar with the Resource Manager, the Package 
Manager, and packages in general. 

International Resources 

Country-dependent information is kept in the system resource file in 
two resources of type 'INTL', with the resource IDs 0 and 1: 

- International resource 0 contains the format for numbers, 
currency, and time, a short date format, and an indication of 
whether to use the metric system. 

- International resource 1 contains a longer format for dates 
(spelling out the month and possibly the day of the week, with or 
without abbreviation) and a routine for localizing string 
comparison. 

The system resource file released in each country contains the standard 
international resources for that country. Figure I-I illustrates the 
standard formats for the United States, Great Britain, Italy, Germany, 
and France. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 7 

lkaited Greet 
Stetes Britain Itely Gem.allrj FrelK:e 

tunbers 1,,234.56 1,,234.56 1.234,,56 1.234,,56 1 234.56 
List separetor . • • • " 

, , , , 
CtlTeity $0.23 £0.23 L.~23 0,23 OM 0,23 F 

($0.45) (£0.45) L -0,45 -0,45 OM -0,45 F 
$345.00 £345 L 315 325,00 OM 32SF 

Time 9:05 AM 09:05 9:05 9.05l1Y 9:05 
11:30 AM 11:XJ 11:30 11.30 lh 11:30 
11:20 PM 23:20 23:20 23.20 l.tlr 23:20 
11:20:09 PM 23:20:00 23:20:09 23.20.09lh 23:20:09 

Short dete. 

Long date 

12122./84 
21 1/84 

ltllted States 
Greet Britein 
Itely 
Germ8lry 
France 

22/12/1984 22-12-1984 22.12.1984 22.12.84 
01/02/1984 1-02-1984 1.02. 1984 1.02.84 

Unebbrevieted 

Wedlesdey, Februery 1, 1984 
WedI~, Februery 1, 1984 
mercoledl 1 Febbraio 1984 
t.Clttwoch, 1. Febn..- 1984 
t.4ercredl1 fevrler 1984 

Abbreviated 

Wed, Feb 1, 1984 
Wed, Feb 1, 1981 
mer 1 Feb 1984 
Mit.. 1. Feb 1984 
Mer 1 fev 1984 

Figure I-I. Standard International Formats 

The routines in the International Utilities Package use the information 
in these resources; for example, the routines for formatting dates and 
times yield strings that look like those shown in Figure I-I. Routines 
in other packages, in desk accessories, and in ROM also access the 
international resources when necessary, as should your own routines if 
they need such information. 

In some cases it may be appropriate to store either or both of the 
international resources in the application's or document's resource 
file, to override those in the system resource file. For example, 
suppose an application creates documents containing currency amounts 
and gets the currency format from international resource 0. Documents 
created by such an application should have their own copy of the 
international resource ~ that was used to create them, so that the unit 
of currency will be the same if the document is displayed on a 
Macintosh configured for another country. 

Information about the exact components and structure of each 
international resource follows here; you can skip this if you intend 
only to call the formatting routines in the International Utilities 
Package and won't access the resources directly yourself. 

5/7/84 Rose /PACKAGES/PACKIU 



8 Macintosh Packages Programmer's Guide 

International Resource 0 

The International Utilities Package contains the following data types 
for accessing international resource 0: 

TYPE Intl0Hndl 
Int10Ptr 
Int10Rec 

= .... Int10Ptr; *** Following "Int" is the letter "1" *** 
= .... Int10Rec; 
= PACKED RECORD 

(note) 

decimalPt: 
thousSep: 
listSep: 
currSyml: 
currSym2: 
currSym3: 
currFmt: 
dateOrder: 
shortDateFmt: 
dateSep: 
timeCycle: 
timeFmt: 
mornStr: 

eveStr: 

timeSep: 
timelSuff: 
time2Suff: 
time3Suff: 
time4Suff: 
time5Suff: 
time6Suff: 
time7 Suff: 
time8Suff: 
metricSys: 
int10Vers: 

END; 

CHAR; {decimal point character} 
CHAR; {thousands separator} 
CHAR; {list separator} 
CHAR; {currency symbol} 
CHAR; 
CHAR; 
Byte; {currency format} 
Byte; {order of short date elements} 
Byte; {short date format} 
CHAR; {date separator} 
Byte; {0 if 24-hour cycle, 255 if 12-hour} 
Byte; {time format} 
PACKED ARRAY[1 •• 4] OF CHAR; 
{trailing string for first 12-hour cycle} 

PACKED ARRAY[1 •• 4] OF CHAR,; 
{trailing string for last 12-hour cycle} 

CHAR; {time separator} 
CHAR; {trailing string for 24-hour cycle} 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
Byte; {255 if metric, 0 if not} 
INTEGER {version information} 

A NUL character (ASCII code 0) in a field of type CHAR 
means there's no such character. The currency symbol and 
the trailing string for the 24-hour cycle are separated 
into individual CHAR fields because of Pascal packing 
conventions. All strings include any required spaces. 

The decimalPt, thousSep, and listSep fields define the number format. 
The thousands separator is the character that separates every three 
digits to the left of the decimal point. The list separator is the 
character that separates numbers, as when a list of numbers is entered 
by the user; it must be different from the decimal point character. If 
it's the same as the thousands separator, the user must not include the 
latter in entered numbers. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 9 

CurrSyml through currSym3 define the currency symbol (only one 
character for the United States and Great Britain. but two for France 
and three for Italy and Germany). CurrFmt determines the rest of the 
currency format. as shown in Figure 1-2. The decimal point character 
and thousands separator for currency are the same as in the number 
format. 

7 6 S 4 3 0 

I I I I not used I Example of effect 

If 1! If 0: 

$3.00 3 F 
1 if miflU$ sign for negetive" 0 if perenthe$es - 0, 45 F ($0. 45) 

II L 1 If a.rency s),l'liool leeds, 0 if it trails 

1 if trei ling decimal zeroes, 0 If oot 
~---- 1 If leeding integer zero" 0 if not 

$32S. 00 32S F 
$0.23 $.23 

Figure 1-2. CurrFmt Field 

The following predefined constants are masks that can be used to set or 
test the bits in the currFmt field: 

(note) 

CONST currSymLead == 16; {set if currency symbol leads} 
currNegSym = 32; {set if minus sign for negative} 
currTrailingZ = 64; {set if trailing decimal zeroes} 
currLeadingZ = 128; {set if leading integer zero} 

You can also apply the currency format's leading- and 
trailing-zero indicators to the number format if desired. 

The dateOrder. shortDateFmt. and dateSep fields define the short date 
format. DateOrder indicates the order of the day. month. and year. 
with one of the following values: 

CONST mdy = 0; 
dmy = 1; 
ymd == 2; 

{month day year} 
{day month year} 
{year month day} 

ShortDateFmt determines whether to show leading zeroes in day and month 
numbers and whether to show the century. as illustrated in Figure 1-3. 
DateSep is the character that separates the different parts of the 
date. 

7 6 S 4 o 
I I I I not used 

if leading zero for dey" 0 if not 
If leading zero for month, 0 if oot 

---- 1 If centlry included, 0 If not 

Example of effect 

If 1: If 0: 

12102184 

01/31/84 
22.12. 1984· 

121 2/84 

1/31/84 
22.12.84 

Figure 1-3. ShortDateFmt Field 

5/7/84 Rose /PACKAGES/PACKIU 



I 

10 Macintosh Packages Programmer's Guide 

To set or test the bits in the shortDateFmt field, you can use the 
following predefined constants as masks: 

CONST dayLeadingZ = 32; {set if leading zero for day} 
mntLeadingZ = 64; {set if leading zero for month} 
century = 128; {set if century included} 

The next several fields define the time format: the cycle (12 or 24 
hours); whether to show leading zeroes (timeFmt, as shown in Figure 
1-4); a string to follow the time (two for 12-hour cycle, one for 
24-hour); and the time separator character. 

7 6 5 .. 0 

I I not used I EX8I"f'C)Ie of effect 

I I 1 If leading zero for secollcia, 0 If not 

If 1: If 0: 
11:16:05 11:16: S 

. 1 If leeding zero for mirut~ 0 if not 10:05 10: 5 
1 if leeding zero for holn" 0 if not 09:15 9:15 

Figure 1-4. TimeFmt Field 

The following masks are available for setting or testing bits in the 
timeFmt field: 

CONST secLeadingZ = 32; {set if leading zero for seconds} 
minLeadingZ = 64; {set if leading zero for minutes} 
hrLeadingZ = 128; {set if leading zero for hours} 

MetricSys indicates whether to use the metric system. The last field, 
int10Vers, contains a version number in its low-order byte and one of 
the following constants in its high-order byte: 

CONST verUS = 0; 
verFrance -= 1; 
verBritain - 2; 
verGermany - 3; 
verItaly - 4; 

International Resource 1 

The International Utilities Package contains the following data types 
for accessing international resource 1: 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 11 

TYPE IntllHndl -= "'IntlIPtr; *** Following "Int" is the letter "1" *** 
IntllPtr -= "'IntllRec; *** Following "Intl" is the number "I" *** 
IntllRec - PACKED RECORD 

days: 
months: 
suppressDay: 
longDateFmt: 
dayleading0: 
abbrLen: 
st0: 
stl: 
st2: 
st3: 
st4: 
intllVers: 
localRtn: 

END; 

ARRAY[l •• 7) OF STRING[15); {day names} 
ARRAY[l •• 12] OF STRING[l5); {month names} 
Byte; {0 for day name, 255 for none} 
Byte; {order of long date elementsl 
Byte; {255 for leading 0 in day number} 
Byte; {length for abbreviating names} 
PACKED ARRAY[1 •• 4) OF CHAR; {strings} 
PACKED ARRAY[1 •• 4] OF CHAR; { for} 
PACKED ARRAY[l •• 4] OF CHAR; { long} 
PACKED ARRAY[1 •• 4] OF CHAR; { date} 
PACKED ARRAY[l •• 4) OF CHAR; { format} 
INTEGER; {version information} 
INTEGER {routine for localizing string } 

{ comparison; actually may be } 
{ longer than one integer} 

All fields except the last two determine the long date format. The day 
names in the days array are ordered from Sunday to Saturday. (The 
month names are of course ordered from January to December.) As shown 
below, the longDateFmt field determines the order of the various parts 
of the date. St0 through st4 are strings (usually punctuation) that 
appear in the date. 

longDateFmt 
o 

255 

Long date format 
st0 day name stl 
st0 day name stl 

day 
month 

st2 month 
st2 day 

st3 year 
st3 year 

st4 
st4 

See Figure 1-5 for examples of how the International Utilities Package 
formats dates based on these fields. The examples assume that the 
suppress Day and dayLeading0 fields contain 0. A suppress Day value of 
255 causes the day name and stl to be omitted, and a dayLeading value 
of 255 causes a 0 to appear before day numbers less than 10. 

IcngDeteFmt stO st1 st2 at3 st4 Semple result 

0 .. I I I • I I .. t.Cittwoch, 2. Februer 1984 , . 
2SS .. • I I I I t II Wectlesdey, February 1, 1984 , , 

Figure 1-5. Long Date Formats 

AbbrLen is the number of characters to which month and day names should 
be abbreviated when abbreviation is desired. 

The intllVers field contains version information with the same format 
as the intl0Vers field of international resource 0. 

LocalRtn contains a routine that localizes the built-in character 
ordering (as described below under "International String Comparison"). 

5/7/84 Rose /PACKAGES/PACKIU 



12 Macintosh Packages Programmer's Guide 

International String Comparison 

The International Utilities Package lets you compare strings in a way 
that accounts for diacritical marks and other special characters. The 
sort order built into the package may be localized through a routine 
stored in internatiomal resource 1. 

The sort order is determined by a ranking of the entire Macintosh 
character set. The ranking can be thought of as a two-dimensional 
table. Each row of the table is a class ~f characters such as all A's 
(uppercase and lowercase, with and without diacritical marks). The 
characters are ordered within each row, but this ordering is secondary 
to the order of the rows themselves. For example, given that the rows 
for letters are ordered alphabetically, the following are all true 
under this scheme: 

'A' < 'a' 
and 'Ab' < 'ab' 
but 'Ac' > 'ab' 

Even though 'A' < 'a ,. wi thin the A row, 'Ac' > 'ab' because the order 
'c' > 'b' takes precedence over the secondary ordering of the 'a' and 
the 'A'. In effect, the secondary ordering is ignored unless the 
comparison based on the primary ordering yields equality. 

(note) 
The Pascal relational operators are used here for 
convenience only. String comparison in Pascal yields 
very different results, since it simply follows the 
ordering of the characters' ASCII codes. 

When the strings being compared are of different lengths, each 
character in the longer string that doesn't correspond to a character 
in the shorter one compares "greater"; thus 'a' < 'ab'. This takes 
precedence over secondary ordering, so 'a' < 'Ab' even though 
'A' < 'a'. 

Besides letting you compare strings as described above, the 
International Utilities Package includes a routine that compares 
strings for equality without regard for secondary ordering. The effect 
on comparing letters, for example, is that diacritical marks are 
ignored and uppercase and lowercase are not distinguished. 

Figure 1-6 on the following page shows the two-dimensional ordering of 
the character set (from least to greatest as you read from top to 
bottom or left to right). The numbers on the left are ASCII codes 
corresponding to each row; ellipses ( ••• ) designate sequences of rows 
of just one character. Some codes do not correspond to rows (such as 
$61 through $7A, because lowercase letters are included in with their 
uppercase equivalents). See the Toolbox Event Manager manual for a 
table showing all the characters and their ASCII codes. . 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 13 

$00 ASCII NUL · . . 
SlF ASCII US 
$20 space flOI aeeting space 
$21 I 
$22 II « » .. .. 
$23 # 
$24 $ 
$25 ~ 
$26 & 
$27 • , , 
$26 ( · . . 
$40 @ 

" A - A 8 a $41 A A A a 6 6 ~ a 
$42 B b 
$43, C ~ c ~ , 

e " A $45 E E e e e e 
$49 I 

, 
" 1 1 1 1 1 letters not shown 

$4E N N n n ere like -8 b-
0 - 6 "- 0 (5 s $4F 0 o ~ 0 0 0 

u 0 u "- Q U $55 U U 
$59 Y Y Y 
$5B [ 
ssc \ 
$50 ] 
$5E A 

$5F -$60 " 
$7B ( 
$7C I 
S7D } 
$7E -
$1F ASCII DEL 
$AO t · . . 
SAD * $AE 1£ ze CE re 
$80 00 
• • • 
$50 Q 
seo l 
• • • 
$C9 
$00 
$02 
$06 + 
$D7 <) 

Figure 1-6. International Character Ordering 

5/7/84 Rose /PACKAGES/PACKIU 



14 Macintosh Packages Programmer's Guide 

Characters combining two letters. as in the $AE row. are called 
ligatures. As shown in Figure 1-7. they're actually expanded to the 
corresponding two letters. in the following sense: 

- Primary ordering: The ligature is equal to the two-character 
sequence. 

- Secondary ordering: The ligature is greater than the 
two-character sequence. 

5tenderd: 

AE If.. ae 2e 

DE CE oe ce 

Germany: 

AE A 1£ ~e a te 

OE 0 CE oe 0 ce 

55 B 

UE 0 ue u 
Figure 1-7. Ordering for Special Characters 

Ligatures are ordered somewhat differently in Germany to accommodate 
umlauted characters (see Figure 1-7). This is accomplished by means of 
the routine in international resource 1 for localizing the built-in 
character ordering. In the system resource file for Germany. this 
routine expands umlauted characters to the corresponding two letters 
(for example. "AE" for A-umlaut). The secondary ordering places the 
umlauted character between the two-character sequence and the ligature. 
if any. Likewise. the German double-s character expands to "ss". 

In the system resource file for Great Britain. the localization routine 
in international resource 1 orders the pound currency sign between 
double quote and the pound weight sign (see Figure 1-8). For the 
United States. France, and Italy. the localization routine does 
nothing. 

$22 
$A3 
$23 

It 

£ 
# 

« " 

Figure 1-8. Special Ordering for Great Britain 

Assembly-language~: The null localization routine consists 
of an RTS instruction. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 15 

*** Information on how to write your own localization routine is 
forthcoming. *** 

Using the International Utilities Package 

This section discusses how the routines in the International Utilities 
package fit into the general flow of an application program, and gives 
you an idea of which routines you'll need to use. The routines 
themselves are described in detail in the next section. 

The International Utilities Package is automatically read into memory 
from the system resource file when one of its routines is called. When 
a routine needs to access an international resource, it asks the 
Resource Manager to read the resource into memory. Together, the 
package and its resources occupy about 2K bytes. 

As described in the *** not yet existing *** Operating System Utilities 
manual, you can get the date and time as a long integer from the 
utility routine ReadDateTime. If you need a string corresponding to 
the date or time, you can pass this long integer to the IUDateString or 
IUTimeString procedure in the International Utilities Package. These 
procedures determine the local format from the international resources 
read into memory by the Resource Manager (that is, resource type 'INTL' 
and resource ID 00r 1). In some situations, you may need the format 
information to come instead from an international resource that you 
specify by its handle; if so, you can use IUDatePString or 
IUTimePString. This is useful, for example, if you want to use an 
international resource in a document's resource file after you've 
closed that file. 

Applications that use measurements, such as on a ruler for setting 
margins and tabs, can call IUMetric to find out whether to use the 
metric system. This function simply returns the value of the 
corresponding field in international resource 0. To access any other 
fields in an international resource--say, the currency format in 
international resource 0--call IUGetIntl to get a handle to the 
resource. If you change any of the fields and want to write the 
changed resource to a resource file, the IUSetlntl procedure lets you· 
do this. 

To sort strings, you can use IUCompString or, if you're not dealing 
with Pascal strings, the more general IUMagString. These routines 
compare two strings and give their exact relationship, whether equal, 
less than, or greater than. Subtleties like diacritical marks and case 
differences are taken into consideration, as described above under 
"International String Comparison". If you need to know only whether 
two strings are equal, and want to ignore the subtleties, use 
IUEqualString (or the more general IUMagIDString) instead. 

(note) 
The Operating System utility routine EqualString also 
compares two Pascal strings for equality. It's less 
sophisticated than IUEqualString in that it follows ASCII 

5/7/84 Rose /PACKAGES/PACKIU 



16 Macintosh Packages Programmer's Guide 

order more strictly; for details, see the Operating 
System Utilities manual *** eventually ***. 

International Utilities Package Routines 

Assemb1y-1anguage~: The macros for calling the 
International Utilities Package routines push one of the 
following routine selectors onto the stack and then invoke 

Pack6: 

Routine 
IUDatePString 
IUDateString 
IUGetInt1 
IUMagIDString 
IUMagString 
IUMetric 
IUTimePString 
IUTimeString 
IUSetIntl 

Selector 
14 

QJ 

6 
12 
10 

4 
16 

2 
8 

PROCEDURE IUDateString (dateTime: LongInt; form: DateForm; VAR result: 
Str255) ; 

Given a date and time as returned by the Operating System Utility 
routine ReadDateTime, IUDateString returns in the result parameter a 
string that represents the corresponding date. The form parameter has 
the following data type: 

TYPE DateForm = (shortDate, longDate, abbrevDate); 

ShortDate requests the short date format, longDate the long date, and 
abbrevDate the abbreviated long date. IUDateString determines the 
exact format from international resource 0 for the short date or 1 for 
the long date. See Figure I-I above for examples of the standard 
formats. Notice that the short date contains a space in place of a 
leading zero when the format specifies "no leading zero", so the length 
of the result is always the same for short dates. 

If the abbreviated long date is requested and the abbreviation length 
in international resource 1 is greater than the actual length of the 
name being abbreviated, IUDateString fills the abbreviation with NUL 
characters; the abbreviation length should not be greater than 15, the 
maximum name length. 

5/7 /84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 17 

PROCEDURE IUDatePString (dateTime: LongInt; form: DateForm; VAR result: 
Str255; intlParam: Handle); 

IUDatePString is the same as IUDateString except that it determines the 
exact format of the date from the resource whose handle is passed in 
intlParam, overriding the resource that would otherwise be used. 

PROCEDURE IUTimeString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255); 

Given a date and time as returned by the Operating System Utility 
routine ReadDateTime, IUTimeString returns in the result parameter a 
string that represents the corresponding time of day. If wantSeconds 
is TRUE, seconds are included in the time; otherwise, only the hour and 
minute are included. IUTimeString determines the time format from 
international resource 0. See Figure 1-1 above for examples of the 
standard formats. Notice that the time contains a space in place of a 
leading zero when the format specifies "no leading zero", so the length 
of the result is always the same. 

PROCEDURE IUTimePString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255; intlParam: Handle); 

IUTimePString is the same as IUTimeString except that it determines the 
time format from the resource whose handle is passed in intlParam, 
overriding the resource that would otherwise be used. 

FUNCTION IUMetric : BOOLEAN; 

If international resource 0 specifies that the metric system is to be 
used, IUMetric returns TRUE; otherwise, it returns FALSE. 

FUNCTION IUGetIntl (theID: INTEGER) : Handle; 

IUGetlntl returns a handle to the international resource numbered theID 
(0 or 1). It calls the Resource Manager function 
GetResource('INTL',theID). For example, if you want to access 
individual fields of international resource 0, you can do the 
following: 

VAR myHndl: Handle; 
int0: Intl0Hndl; 

myHndl := IUGetIntl(0); 
int0 := POINTER(ORD(myHndl»; 

5/7/84 Rose /PACKAGES/PACKIU 



18 Macintosh Packages Programmer's Guide 

PROCEDURE IUSetIntl (refNum: INTEGER; theID: INTEGER; intlParam: 
Handle) ; 

In the resource file having the reference number refNum, IUSetIntl sets 
the international resource numbered theID (~ or 1) to the data pointed 
to by intlParam. The data may be either an existing resource or data 
that hasn't yet been written to a resource file. IUSetIntl adds the 
resource to the specified file or replaces the resource if it's already 
there. 

FUNCTION IUCompString (aStr,bStr: Str255) : INTEGER; [Pascal only] 

IUCompString compares aStr and bStr as described above under 
"International String Comparison", taking both primary and secondary 
ordering into consideration. It returns one of the values listed 
below. 

Result Meaning Example 
aStr bStr 

-1 aStr is less than bStr 'Ab' 'ab' 
~ aStr equals bStr 'Ab' 'Ab' 
1 aStr is greater than bStr 'Ac' 'ab' 

Assembly-Ianguage~: IUCompString was created for the 
convenience of Pascal programmers; there's no trap for it. It 
eventually calls IUMagString, which is what you should use from 
assembly language. 

FUNCTION IUMagString (aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 

IUMagString is the same as IUCompString (above) except that instead of 
comparing two Pascal strings, it compares the string defined by aPtr 
and aLen to the string defined by bPtr and bLen. The pointer points to 
the first character of the string (any byte in memory, not necessarily 
word-aligned), and the length specifies the number of characters in the. 
string. 

FUNCTION IUEqualString (aStr,bStr: Str255) : INTEGER; [Pascal only] 

IUEqualString compares aStr and bStr for equality without regard for 
secondary ordering, as described above under "International String 
Comparison". If the strings are equal, it returns 0; otherwise, it 
returns 1. For example, if the strings are 'Rose' and 'rose', 
IUEqualString considers them equal and returns ~. 

5/7/84 Rose /PACKAGES/PACKIU 



(note) 

THE INTERNATIONAL UTILITIES PACKAGE 19 

See also EqualString in the Operating System Utilities 
manual *** doesn't yet exist ***. 

Assembly-language~: IUEqualString was created for the 
convenience of Pascal programmers; there's no trap for it. It 
eventually calls IUMagIDString. which is what you should use 
from assembly language. 

FUNCTION IUMagIDString (aPtr.bPtr: Ptr; aLen.bLen: INTEGER) : INTEGER; 

IUMagIDString is the same as IUEqualString (above) except that instead 
of comparing two Pascal strings. it compares the string defined by aPtr 
and aLen to the string defined by bPtr and bLen. The pointer points to 
the first character of the string (any byte in memory, not necessarily 
word-aligned), and the length specifies the number of characters in the 
string. 

5/7/84 Rose /PACKAGES/PACKIU 



20 Macintosh Packages Programmer's Guide 

THE BINARY-DECIMAL CONVERSION PACKAGE 

The Binary-Decimal Conversion Package contains only two routines: one 
converts an integer from its internal (binary) form to a string that 
represents its decimal (base 10) value; the other converts a decimal 
string to the corresponding integer. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the User Interface 
Toolbox. *** 
You should already be familiar with the Package Manager, and packages 
in general. 

The Binary-Decimal Conversion Package is automatically read into memory 
when one ,of its routines is called; it occupies a total of about 2~0 
bytes. The routines are described below. They're register-based, so 
the Pascal form of each is followed by a box containing information 
needed to use the routine from assembly language. (For general 
information on using assembly language, see Programming Macintosh 
Applications in Assembly Language.) 

Assembly-language note: The macros for calling the 
Binary-Decimal Conversion Package routines push one of the 
following routine selectors onto the stack and then invoke 

Pack7 : 

Routine 
NumToString 
StringToNum 

Selector 
~ 
1 

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255); 

Trap macro 

On entry 

On exit ---

_NumToString 

A0: pointer to theString (length byte followed 
by characters) 

D0: theNum (long integer) 

A0: pointer to theString 

NumToString converts theNum to a string that represents its decimal 
value, and returns the result in theString. If the value is negative, 
the string begins with a minus sign; otherwise, the sign is omitted. 
Leading zeroes are suppressed, except that the value 0 produces '0'. 

5/7/84 Rose /PACKAGES/PACKBD 



THE BINARY-DECIMAL CONVERSION PACKAGE 21 

For example: 

theNum 
12 

-23 
o 

the String 
, 12 ' 

'-23' 
'0 ' 

PROCEDURE StringToNum (theString: Str255; VAR theNum: Longlnt); 

Trap macro _StringToNum 

On entry A0: pointer to theString (length byte followed 
by characters) 

On exit --- 00: theNum (long integer) 

Given a string representing a decimal integer, StringToNum converts it 
to the corresponding integer and returns the result in theNum. The 
string may begin with a plus or minus sign. For example: 

the String 
'12' 

'-23' 
'-0' 

'055' 

theNum 
12 

-23 
o 

55 

The magnitude of the integer is converted modulo 2A 32, and the 32-bit 
result is negated if the string begins with a minus sign; integer 
overflow occurs if the magnitude is greater than 2A 31-1. (Negation is 
done by taking the two's complement--reversing the state of each bit 
and then adding 1.) For example: 

the String 
'2147483648' (magnitude is 2A 31) 

'-2147483648 ' 
'4294967295' (magnitude is 2A 32-1) 

'-4294967295 ' 

theNum 
-2147483648 
-2147483648 
-1 

1 

StringToNum doesn't actually check whether the characters in the string 
are between '0' and '9'; instead, since the ASCII codes for '0' through 
'9' are $30 through $39, it just masks off the last four bits and uses 
them as a digit. For example, '2:' is converted to the number 30 
because the ASCII code for ':' is $3A. Leading spaces before the first 
digit are treated as zeroes, since the ASCII code for a space is $20. 
Given that the ASCII codes for 'C', 'A', and 'T' are $43, $41, and $54, 
respectively, consider the following examples: 

5/7 /84 Rose /PACKAGES/PACKBD 



22 Macintosh Packages Programmer's Guide 

theString 
'CAT' 

'+CAT' 
'-CAT' 

5/7/84 Rose 

theNum 
314 
314 

-314 

/PACKAGES/PACKBD 



THE STANDARD FILE PACKAGE 23 

THE STANDARD FILE PACKAGE 

The Standard File Package provides the standard user interface for 
specifying a file to be saved or opened. It allows the file to be on a 
disk in any drive connected to the Macintosh, and lets a currently 
inserted disk be ejected so that another one can be inserted. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the Toolbox. *** 
You should already be familiar with the following: 

- the basic concepts and structures behind QuickDraw, particularly 
points and rectangles 

- the ,Toolbox Event Manager 

- the Dialog Manager, especially the ModalDialog procedure 

- the Package Manager and packages in general 

About the Standard File Package 

Standard Macintosh applications should have a File menu from which the 
user can save and open documents, via the Save, Save As, and Open 
commands. In response to these commands, the application can call the 
Standard File Package to find out the document name and let the user 
switch disks if desired. As described below, a dialog box is presented 
for this purpose. (More details and illustrations are given later in 
the descriptions of the individual routines.) 

When the user chooses Save As, or Save when the document is untitled, 
the application needs a name for the document. The corresponding 
dialog box lets the user enter the document name and click a button 
labeled "Save" (or just click "Cancel" to abort the command). By 
convention, the dialog box comes up displaying the current document 
name, if any, so the user can edit it. 

In response to an Open command, the application needs to know which 
document to open. The corresponding dialog box displays the names of 
all documents that might be opened, and the user chooses one by 
clicking it and then clicking a button labeled "Open". A vertical 
scroll bar allows scrolling through the names if there are more than 
can be shown at once. 

Both of these dialog boxes let the user: 

- insert a disk in an external drive connected to the Macintosh 

- eject a disk from either drive and insert another 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



24 Macintosh Packages Programmer's Guide 

- initialize and name an inserted disk that's uninitialized 

- switch from one drive to another 

On the right in the dialog box, separated from the rest of the box by a 
gray line, there's a disk name with one or two buttons below it; Figure 
S-1 shows what this looks like when an external drive is connected to 
the Macintosh but currently has no disk in it. Notice that the Drive 
button is inactive (dimmed). After the user inserts a disk in the 
external drive (and, if necessary, initializes and names it), the Drive 
button becomes active. If there's no external drive, the Drive button 
isn't displayed at all. 

disk name 

( Eject ) 

( Or.up ) 

Figure S-1. Partial Dialog Box 

The disk name displayed in the dialog box is the name of the current 
disk, initially the disk you used to start up the Macintosh. The user 
can click Eject to eject the current disk and insert another, which 
then becomes the current disk. If there's an external drive, clicking 
the Drive button changes the current disk from the one in the external 
drive to the one in the internal drive or vice versa. The Drive button 
is inactive whenever there's only one disk inserted. 

If an uninitialized or otherwise unreadable disk is inserted, the 
Standard File Package calls the Disk Initialization Package to provide 
the standard user interface for initializing and naming a disk. 

Using the Standard File Package 

This section discusses how the routines in the Standard File Package 
fit into the general flow of an application program, and gives you an 
idea of which routines you'll need to use. The routines themselves are 
described in detail in the next section. 

The Standard File Package and the resources it uses are automatically 
read into memory when one of its routines is called. It in turn reads 
the Disk Initialization Package into memory if a disk is ejected; 
together they occupy about 6.5K bytes. 

Call SFPutFile when your application is to save to a file ,and needs to 
get the name of the file from the user. Standard applications should 
do this when the user chooses Save As from the File menu, or Save when 
the document is untitled. SFPutFile displays a dialog box allowing the 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 25 

user to enter a file name. 

Similarly, SFGetFile is useful whenever your application is to open a 
file and needs to know which one, such as when the user chooses the 
Open command from a standard application's File menu. SFGetFile 
displays a dialog box with a list of file names to choose from. 

You pass these routines a reply record, as shown below, and they fill 
it with information about the user's reply. 

TYPE SFReply RECORD 
good: 
copy: 
fType: 
vRefNum: 
version: 
fName: 

END; 

BOOLEAN; 
BOOLEAN; 
OSType; 
INTEGER; 
INTEGER; 
STRING[63] 

{FALSE if ignore command} 
{not used} 
{file type or not used} 
{volume reference number} 
{file's version number} 
{file name} 

The first field of this record determines whether the file operation 
should take place or the command should be ignored (because the user 
clicked the Cancel button in the dialog box). The fType field is used 
by SFGetFile to store the file's type. The vRefNum, version, and fName 
fields identify the file chosen by the user; the application passes 
their values on to the File Manager routine that does the actual file 
operation. VRefNum contains the volume reference number of the volume 
containing the file. Currently the version field always contains 0; 
the use of nonzero version numbers is not supported by this package. 
For more information on files, volumes, and file operations, see the 
File Manager manual *** doesn't yet exist ***. 

Both SFPutFile and SFGetFile allow you to use a nonstandard dialog box; 
two additional routines, SFPPutFile and SFPGetFile, provide an even 
more convenient and powerful way of doing this. 

Standard File Package Routines 

Assembly-Ianguage~: The macros for calling the Standard 
File Package routines push one of the following routine 
selectors onto the stack and then invoke Pack3: 

Routine 
SFGetFile 
SFPGetFile 
SFPPutFile 
SFPutFile 

5/7/84 Hacker-Rose 

Selector 
2 
4 
3 
1 

/PACKAGES/PACKSF 



26 Macintosh Packages Programmer's Guide 

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply); 

SFPutFile displays a dialog box allowing the user to specify a file to 
which data will be written (as during a Save or Save As command). It 
then repeatedly gets and handles events until the user either confirms 
the command after entering an appropriate file name or aborts the 
command by clicking Cancel in the dialog. It reports the user's reply 
by filling the fields of the reply record specified by the reply 
parameter. as described above; the fType field of this record isn't 
used. 

The general appearance of the standard SFPutFile dialog box is shown in 
Figure 5-2. The where parameter specifies the location of the top left 
corner of the dialog box in global coordinates. The prompt parameter 
is a line of text to be displayed as a statText item in the dialog box. 
where shown in Figure S-2. The origName parameter contains text that 
appears as an enabled. selected editText item; for the standard 
document-saving commands, it should be the current name of the 
document, or the empty string (to display an insertion point) if the 
document hasn't been named yet. 

where 

~ • .-----~--------------------~ 
prompt --....... Seueeurrent dotument as: 

ori~ l!ln!!!~!!!!I!I!!!!!!!!!!!!!!!!!!!!!!J 

( SaDe ) ( Ceneel ) 

disk name 

( 'Eject) 

( BriDe) 

Figure 5-2. Standard SFPutFile Dialog 

If you want to use the standard SFPutFile dialog box, pass NIL for 
dlgHook; otherwise, see the information for advanced programmers below. 

SFPutFile repeatedly calls the Dialog Manager procedure ModalDialog. 
When an event involving an enabled dialog item occurs, ModalDialog 
handles the event and returns the item number, and SFPutFile responds 
as follows: 

- If the Eject or Drive button is clicked, or a disk is inserted, 
SFPutFile responds as described above under "About the Standard 
File Package". 

- Text entered into the editText item is stored in the fName field 
of the reply record. (SFPutFile keeps track of whether there's 
currently any text in the item, and makes the Save button inactive 
if not.) 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 27 

- If the Save button is clicked, SFPutFile determines whether the 
file name in the fName field of the reply record is appropriate. 
If so, it returns control to the application with the first field 
of the reply record set to TRUE; otherwise, it responds 
accordingly, as described below. 

- If the Cancel button in the dialog is clicked, SFPutFile returns 
control to the application with the first field of the reply 
record set to FALSE. 

(note) 
Notice that disk insertion is one of the user actions 
listed above, even though ModalDialog normally ignores 
disk-inserted events. The reason this works is that 
SFPutFile calls ModalDialog with a filterProc function 
that checks for a disk-inserted event and returns a 
"fake", very large item number if one occurs; SFPutFile 
recognizes this item number as an indication that a disk 
was inserted. 

The situations that may cause an entered name to be inappropriate, and 
SFPutFile's response to each, are as follows: 

- If a file with the specified name already exists on the disk and 
is different from what was passed in the origName parameter, the 
alert in Figure S-3 is displayed. If the user clicks Yes, the 
file name is appropriate. 

Replace eHlsting 
• file Dame· ? 

[~: __ Y_e_s __ ~) I. ___ N_O .... J 
Figure S-3. Alert for Existing File 

- If the disk to which the file should be written is locked, the 
alert in Figure S-4 is displayed. If a system error occurs, a 
similar alert is displayed, with a corresponding message 
explaining the problem. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



28 Macintosh Packages Programmer's Guide 

(note) 

Disk is locked. 

I cancel» 

Figure S-4. Alert for Locked Disk 

The user may specify a disk name (preceding the file name 
and separated from it by a colon). If the disk isn't 
currently in a drive. an alert similar to the one in 
Figure S-4 is displayed. The ability to specify a disk 
name is supported for historical reasons only; users 
should not be encouraged to do it. 

After the user clicks No or Cancel in response to one of these alerts. 
SFPutFile dismisses the alert box and continues handling events (so a 
different name may be entered). 

Advanced programmers: You can create your own dialog box rather than 
use the standard SFPutFile dialog. To do this. you must provide your 
own dialog template and store it in your application's resource file 
with the same resource ID that the standard template has in the system 
resource file: 

(note) 

CONST putDlgID = -3999; {SFPutFile dialog template ID} 

The SFPPutFile procedure. described below. lets you use 
any resource ID for your nonstandard dialog box. 

Your dialog template must specify that the dialog window be invisible. 
and your dialog must contain all the standard items. as listed below. 
The appearance and location of these items in your dialog may be 
different. You can make an item "invisible" by giving it a display 
rectangle that's off the screen. The display rectangle for each item 
in the standard dialog box is given below. The rectangle for the 
standard dialog box itself is (0. 0. 304. 104). 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 29 

Item number 
1 

Item 
Save button 
Cancel button 

Standard display rectangle 
(12,.74,82,92) 

2 
3 
4 
5 
6 
7 
8 

(note) 

Prompt string (statText) 
User Item for disk name 
Eject button 
Drive button 
EditText item for file name 
UserItem for gray line 

(114, 74, 184, 92) 
(12, 12, 184, 28) 
(209, 16, 295, 34) 
(217,43,287,61) 
(217, 74, 287, 92) 
( 14 ~ 34, 182, 50) 
( 200, 16, 201, 88) 

Remember that the display rectangle for any "invisible" 
item must be at least about 20 pixels wide. *** This 
will be discussed in a future draft of the Dialog Manager 
manual. *** 

If your dialog has additional items beyond the the standard ones, or if 
you want to handle any of the standard items in a nonstandard manner, 
you must write your own dlgHook function and point to it with dlgHook. 
Your dlgHook function should have two parameters and return an integer 
value. For example, this is how it would be declared if it were named 
MyDlg: 

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER; 

Immediately after calling ModalDialog, SFPutFile calls your dlgHook 
function, passing it the item number returned by ModalDialog artd a 
pointer to the dialog record describing your dialog 'box. Using these 
two parameters, your dlgHook function should determine how to handle 
the event. There are predefined constants for the item numbers of 
standard enabled items, as follows: 

CONST putSave = 1 ; {Save button} 
putCancel = 2; {Cancel button} 
putEject = 5; {Eject button} 
putDrive = 6; {Drive button} 
putName = 7 ; {editText item for file name} 

ModalDialog also returns the "fake" item number 100wben a disk
inserted event occurs, as detected by its filterProc function. 

After handling the event (or, perhaps, after ignoring it) thedlgHook 
function must return an item number to SFPutFile. If the item number 
is one of those listed above , SFPutFile responds in the ,standard way; 
otherwise, it does nothing. 

(note) 
For advanced programmers who want to change the 
appearance of the alerts displayed when an inappropriate 
file name is entered, the resource IDs of those alerts in 
the system resource file are listed below. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



30 Macintosh Packages Programmer's Guide 

Alert 
Existing file 
Locked disk 
System error 
Disk not found 

Resource ID 
-3996 
-3997 
-3995 
-3994 

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: INTEGER; 
filterProc: ProcPtr)j 

SFPPutFile is an alternative to SFPutFile for advanced programmers who 
want to use a nonstandard dialog box. It's the same as SFPutFile 
except for the two additional parameters digID and filterProc. 

DlgID is·the resource ID of the dialog template to be used instead of 
the standard one (so you can use whatever ID you wish rather than the 
same one as the standard). 

The filterProc parameter determines how ModalDialog will filter events 
when called by SFPPutFile. If filterProc is NIL, ModalDialog does the 
standard filtering that it does when called by SFPutFile; otherwise, 
filterProc should point to a function for ModalDialog to execute after 
doing the standard filtering. The function must be the same as one 
you'd pass directly to ModalDialog in its filterProc parameter. (See 
the Dialog Manager manual for more information.) 

PROCEDURE SFGetFile (where: Point; prompt: Str255j fileFilter: ProcPtrj 
numTypes: INTEGER; typeList: SFTypeList; dlgHook: ProcPtr; 
VAR reply: SFReplY)j 

SFGetFile displays a dialog box listing the names of a specific group 
of files from which the user can select one to be opened (as during an 
Open command). It then repeatedly gets and handles events until the 
user either confirms the command after choosing a file name or aborts 
the command by clicking Cancel in the dialog. It reports the user's 
reply by filling the fields of the reply record specified by the reply 
parameter, as described above under "Using the Standard File Package". 

The general appearance of the standard SFGetFile dialog box is shown in 
Figure S-5. File names are sorted in order of the ASCII codes of their 
characters, ignoring diacritical marks and mapping lowercase characters 
to their uppercase equivalents. If there are more file names than can 
be displayed at one time, the scroll bar is active; otherwise, the 
scroll bar is inactive. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 31 

file 1 name 
) I ( Open disk name 

I 
I ( , Eject ) 

( Cencel ) I ( Drlue ) 
flle7name ! 

Figure S-5. Standard SFGetFile Dialog 

The where parameter specifies the location of the top left corner of 
the dialog box in global coordinates. The prompt parameter is ignored; 
it's there for historical purposes only. 

The fileFilter, numTypes, and typeList parameters determine which files 
appear in the dialog box. SFGetFile first looks at numTypes and 

.typeList to determine what types of files to display, then it executes 
the function pointed to by fileFi1ter (if any) to do additional 
filtering on which files to display. File types are discussed in the 
manual The Structure of ~ Macintosh Application. For example, if the 
application is concerned only with pictures, you won't want to display 
the names of any text files. 

Pass -1 for numTypes to display all types of files; otherwise, pass the 
number of file types you want to display, and pass the types themselves 
in typeList. The SFTypeList data type is defined as follows: 

(note) 

TYPE SFTypeList - ARRAY [0 •• 3] OF OSType; 

This array is declared for a reasonable maximum number of 
types (four). If you need to specify more than four 
types, declare your own array type with the desired 
number of entries (and use the @ operator to pass a 
pointer to it). 

If fileFilter isn't NIL, SFGetFi1e executes the function it points to 
for each file, to determine whether the file should be displayed. The 
fileFilter function has one parameter and returns a Boolean value. For 
example: 

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) : BOOLEAN; 

SFGetFile passes this function the file information it gets by calling 
the File Manager procedure PBGetFInfo (see the *** forthcoming *** File 
Manager manual for details). The function selects which files should 
appear in the dialog by returning FALSE for every file that should be 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



32 Macintosh Packages Programmer's Guide 

shown and TRUE for every file that shouldn't be shown. 

(note) 
As described in the File Manager manual, a flag can be 
set that tells the Finder not to display a particular 
file's icon on the desktop; this has no effect on whether 
SFGetFile will list the file name. 

If you want to use the standard SFGetFile dialog box, pass NIL for 
dlgHook; otherwise, see the information for advanced programmers below. 

Like SFPutFile, SFGetFile repeatedly calls the Dialog Manager procedure 
ModalDialog. When an event involving an enabled dialog item occurs, 
ModalDialog handles the event and returns the item number, and 
SFGetFile responds as follows: 

If ~he Eject or Drive button is clicked, or a disk is inserted, 
SFGetFile responds as described above under "About the Standard 
File Package". 

- If clicking or dragging occurs in the scroll bar, the contents of 
the dialog box are redrawn accordingly. 

- If a file name is clicked, it's selected and stored in the fName 
field of the reply record. (SFGetFile keeps track of whether a 
file name is currently selected, and makes the Open button 
inactive if not.) 

If the Open button is clicked, SFGetFile returns control to the 
application with the first field of the reply record set to TRUE. 

- If a file name is double-clicked, SFGetFile responds as if the 
user clicked the file name and then the Open button. 

- If the Cancel button in the dialog is clicked, SFGetFile returns 
control to the application with the first field of the reply 
record set to FALSE. 

If a key (other than a modifier key) is pressed, SFGetFile selects the 
first file name starting with the character typed. If no file name 
starts with that character, it selects the first file name starting 
with a character whose ASCII code is greater than the character typed. 

Advanced programmers: You can create your own dialog box rather than 
use the standard SFGetFile dialog. To do this, you must provide your 
own dialog template and store it in your application's resource file 
with the same resource ID that the standard template has in the system 
resource file: 

(note) 

CONST getDlgID = -4000; {SFGetFile dialog template ID} 

The SFPGetFile procedure, described below, lets you use 
any resource ID for your nonstandard dialog box. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 33 

Your dialog template must specify that the dialog window be invisible. 
and your dialog must contain all the standard items. as listed below. 
The appearance and location of these items in your dialog may be 
different. You can make an item "invisible" by giving it a display 
rectangle that's off the screen. The display rectangle for each in the 
standard dialog box is given below. The rectangle for the standard 
dialog box itself is (~. ~. 348. 136). 

Item number Item Standard disEla~ rectan&le 
1 Open button (152, 28, 232. 46) 
2 Invisible button (1152.59. 1232.77) 
3 Cancel button ( 152. 9~, 232. 1 ~8) 
4 UserItem for disk name (248. 28. 344. 46) 
5 Eject button (256.59,336,77) 
6 Drive button (256, 90, 336, 108) 
7 UserItem for file name list (12, 11, 125, 125) 
8 UserItem for scroll bar (124, 11, 140, 125) 
9 UserItem for gray line (244, 20, 245, 116) 

10 Invisible text (statText) (1044, 20, 1145, 116) 

If your dialog has additional items beyond the the standard ones, or if 
you want to handle any of the standard items in a nonstandard manner, 
you must write your own dlgHook function and point to it with dlgHook. 
Your dlgHook function should have two parameters and return an integer 
value. For example, this is how it would be declared if it were named 
MyDlg: 

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER; 

Immediately after calling ModalDialog, SFGetFile calls your dlgHook 
function, passing it the item number returned by ModalDialog and a 
pointer to the dialog record describing your dialog box. Using these 
two parameters, your dlgHook function should determine how to handle 
the event. There are predefined constants for the item numbers of 
standard enabled items, as follows: 

CONST get Open = 1 ; {Open button} 
getCancel = 3; {Cancel button} 
getEject = 5; {Eject button} 
getDrive = 6; {Drive button} 
getNmList = 7; {userItem for file name list} 
getScroll = 8; {userItem for scroll bar} 

ModalDialog also returns "fake" item numbers in the following 
situations, which are detected by its filterProc function: 

- When a disk-inserted event occurs, it returns 100. 

- When a key-down event occurs, it "returns 1000 plus the ASCII code 
of the character. 

After handling the event (or, perhaps, after ignoring it) your dlgHook 
function must return an item number ~o SFGetFile. If the item number 
is one of those listed above, SFGetFile responds in the standard way; 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



34 Macintosh Packages, Programmer's Guide 

otherwise, it does nothing. 

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter: 
ProcPtr; numTypes: INTEGER; typeList: SFTypeList; dlgHook: 
ProcPtr; VAR reply: SFReply; dlgIO: INTEGER; filterProc: 
ProcPtr); 

SFPGetFile is an alternative to SFGetFile for advanced programmers who 
want to use a nonstandard dialog box. It's the same as SFGetFile 
except for the two additional parameters dlgIO and filterProc. 

OlgIO is the resource 10 of the dialog template to be used instead of 
the standard one (so you can use whatever 10 you wish rather than the 
same one as the standard). 

The filt~rProc parameter determines how ModalOialog will filter events 
when called by SFPGetFile. If filterProc is NIL, ModalDialog does the 
standard filtering that it does when called by SFGetFile; otherwise, 
filterProc should point to a function for ModalDialog to execute after 
doing the standard filtering. Note, however, that the standard 
filtering will detect key-down events only if the dialog template 10 is 
the standard one. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE DISK INITIALIZATION PACKAGE 35 

THE DISK INITIALIZATION PACKAGE 

The Disk Initialization Package provides routines for initializing 
disks to be accessed with the Macintosh Operating System's File Manager 
and Disk Driver. A single routine lets you easily present the standard 
user interface for initializing and naming a disk; the Standard File 
Package calls this routine when the user inserts an uninitialized disk. 
You can also use the Disk Initialization Package to perform each of the 
three steps of initializing a disk separately if desired. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the Operating System. 
*** 

You should already be familiar with the following: 

- the basic concepts and structures behind QuickDraw, particularly 
points 

- the Toolbox Event Manager 

- the File Manager *** the File Manager manual doesn't yet exist *** 

- the Package Manager and packages in general 

Using the Disk Initialization Package 

This section discusses how the routines in the Disk Initialization 
package fit into the general flow of an application program, and gives 
you an idea of which routines you'll need to use. The routines 
themselves are described in detail in the next section. 

The Disk Initialization Package and the resources it uses are 
automatically read into memory from the system resource file when one 
of the routines in the package is called. Together, the package and 
its resources occupy about 2.5K bytes. If the disk containing the 
system resource file isn't currently in a Macintosh disk drive, the 
user will be asked to switch disks and so may have to remove the one to 
be initialized. To avoid this, you can use the DILoad procedure, which 
explicitly reads the necessary resources into memory and makes them 
unpurgeable. You would need to call DILoad before explicitly ejecting 
the system disk or before any situations where it may be switched with 
another disk (except for situations handled by the Standard File 
Package, which calls DILoad itself). 

(note) 
The resources used by the Disk Initialization Package 
consist of a single dialog and its associated items, even 
though the package may present what seem to be a number 
of different dialogs. A special technique was used to 
allow the single dialog to contain all possible dialog 
items with only some of them visible at one time. *** 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



36 Macintosh Packages Programmer's Guide 

This technique will be documented in the next draft of 
the Dialog Manager manual. *** 

When you no longer need to have the Disk Initialization Package in 
memory, call DIUnload. The Standard File Package calls DIUnload before 
returning. 

When a disk-inserted event occurs, the system attempts to mount the 
volume (by calling the File Manager function PBMountVol) and returns 
PBMountVol's result code in the high-order word of the event message. 
In response to such an event, your application can examine the result 
code in the event message and call DIBadMount if an error occurred 
(that is, if the volume could not be mounted). If the error is one 
that can be corrected by initializing the disk, DIBadMount presents the 
standard user interface for initializing and naming the disk, and then 
mounts the volume itself. For other errors, it justs ejects the disk; 
these errors are rare, and may reflect a problem in your program. 

(note) 
Disk-inserted events during standard file saving and 
opening are handled by the Standard File Package. You'll 
call DIBadMount only in other, less common situations 
(for example, if your program explicitly ejects disks, or 
if you want to respond to the user's inserting an 
uninitialized disk when not expected). 

Disk initialization consists of three steps, each of which can be 
performed separately by the functions DIFormat, DIVerify, and DIZero. 
Normally you won't call these in a standard application, but they may 
be useful in special utility programs that have a nonstandard 
interface. 

Disk Initialization Package Routines 

Assembly-language~: The macros for calling the Disk 
Initialization Package routines push one of the following 
routine selectors onto the stack and then invoke Pack2: 

Routine 
DIBadMount 
DIFormat 
DILoad 
DIUnload 
DIVerify 
DIZero 

5/7/84 Hacker-Rose 

Selector 
o 
6 
2 
4 
8 

10 

/PACKAGES/PACKDI 



THE DISK INITIALIZATION PACKAGE 37 

PROCEDURE DILoad; 

DILoad reads the Disk Initialization Package, and its associated dialog 
and dialog items, from the system resource file into memory and makes 
them unpurgeable. 

(note) 
DIFormat, DIVerify, and DIZero don't need the dialog, so 
if you use only these routines you can call the Resource 
Manager function GetResource to read just the package 
resource into memory (and the Memory Manager procedure 
HNoPurge to make it unpurgeable). 

PROCEDURE DIUnload; 

DIUnload makes the Disk Initialization Package (and its associated 
dialog and dialog items) purgeable. 

FUNCTION DIBadMount (where: Point; evtMessage: Longlnt) : INTEGER; 

Call DIBadMount when a disk-inserted event occurs if the result code in 
the high-order word of the associated event message indicates an error 
(that is, the result code is other than noErr). Given the event 
message in evtMessage, DIBadMount evaluates the result code and either 
ejects the disk or lets the user initialize and name it. The low-order 
word of the event message contains the driv~ number. The where 
parameter specifies the location (in global coordinates) of the top 
left corner of the dialog box displayed by DIBadMount. 

If the result code passed is extFSErr, mFulErr, nsDrvErr, paramErr, or 
volOnLinErr, DIBadMount simply ejects the disk from the drive and 
returns the result code. If the result code ioErr, badMDBErr, or 
noMacDskErr is passed, the error can be corrected by initializing the 
disk; DIBadMount displays a dialog box that describes the problem and 
asks whether the user wants to initialize the disk. For the result 
code ioErr, the dialog box shown in Figure D-l is displayed. (This 
happens if the disk is brand new.) For badMDBErr and noMacDskErr, 
DIBadMount displays a similar dialog box in which the description of 
the problem is "This disk is damaged" and "This is not a Macintosh 
diSk", respectively. 

Uti this disk Is unreadable: .-. 
I I Do you want to Initialize It? 

I Eject) II nitialize } 

Figure D-1. Disk Initialization Dialog for IOErr 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



38 Macintosh Packages Programmer's Guide 

(note) 
Before presenting the disk initialization dialog, 
DIBadMount checks whether the drive contains an already 
mounted volume; if so, it ejects the disk and returns 2 
as its result. This will happen rarely and may reflect 
an error in your program (for example, you forgot to call 
DILoad and the user had to switch to the disk containing 
the system resource file). 

If the user responds to the disk initialization dialog by clicking the 
Eject button, DIBadMount ejects the disk and returns 1 as its result. 
If the Initialize button is clicked, a box displaying the message 
"Initializing disk ••• " appears, and DIBadMount attempts to initialize 
the disk. If initialization fails, the disk is ejected and the user is 
informed as shown in Figure D-2; after the user clicks OK, DIBadMount 
returns a negative result code ranging from firstDskErr to lastDskErr, 
indicating that a low-level disk error occurred. 

[[S]::: 0-a,0 

:--i 
~ t 

Initialization falledl 

[ OK ) 

Figure D-2. Initialization Failure Dialog 

If the disk is successfully initialized, the dialog box in Figure D-3 
appears. After the user names the disk and clicks OK, DIBadMount 
mounts the volume by calling the File Manager function PBMountVol and 
returns PBMountVol's result code (noErr if no error occurs). 

Please name this dille: 

[ OK ) 

Figure D-3. Dialog for Naming a Disk 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



THE DISK INITIALIZATION PACKAGE 39 

Result codes 

Other results 

noErr 
extFSErr 
mFulErr 
nsDrvErr 
paramErr 
volOnLinErr 
firstDskErr 
through lastDskErr 

1 
2 

FUNCTION DIFormat (drvNum: INTEGER) : OSErr; 

No error 
External file system 
Memory full 
No such drive 
Bad drive number 
Volume already on-line 
Low-level disk error 

User clicked Eject 
Mounted volume in drive 

DIFormat formats the disk in the drive specified by the given drive 
number and returns a result code indicating whether the formatting was 
completed successfully or failed. Formatting a disk consists of 
writing special information onto it so that the Disk Driver can read 
from and write to the disk. 

Result codes noErr 
firstDskErr 
through lastDskErr 

FUNCTION DIVerify (drvNum: INTEGER) : OSErr; 

No error 
Low-level disk error 

DIVerify verifies the format of the disk in the drive specified by the 
given drive number; it reads each bit from the disk and returns a 
result code indicating whether all bits were read successfully or not. 

Result codes noErr 
firstDskErr 
through lastDskErr 

No error 
Low-level disk error 

FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr; 

On the unmounted volume in the drive specified by the given drive 
number, DIZero writes the volume information, a block map, and a file 
directory as for a volume with no files; the volName parameter 
specifies the volume name to be included in the volume" information. 
This is the last step in initialization (after formatting and 
verifying) and makes any files that are already on the volume 
permanently inaccessible. If the operation fails, DIZero returns a 
result code indicating that a low-level disk error occurred; otherwise, 
it mounts the volume by calling the File Manager function PBMountVol 
and returns PBMountVol's result code (noErr if no error occurs). 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



40 Macintosh Packages Programmer's Guide 

Result codes 

5/7/84 Hacker-Rose 

noErr 
badMDBErr 
extFSErr 
ioErr 
mFulErr 
noMacDskErr 
nsDrvErr 
paramErr 
volOnLinErr 
firstDskErr 
through lastDskErr 

No error 
Bad master directory block 
External file system 
Disk I/O error 
Memory full 
Not a Macintosh volume 
No such drive 
Bad drive number 
Volume already on-line 
Low-level disk error 

/PACKAGES/PACKDI 



SUMMARY OF THE PACKAGE MANAGER 41 

SUMMARY OF THE PACKAGE MANAGER 

Constants 

CONST { Resource IDs for packages } 

dskInit = 2- {Disk Initialization} , 
stdFile 3; {Standard File} 
flPoint 4; {Floating-Point Arithmetic} 
trFunc = 5; {Transcendental Functions} 
intUtil = 6; {International Utilities} 
bdConv 7 ; {Binary-Decimal Conversion} 

Routines 

PROCEDURE InitPack (packID: INTEGER); 
PROCEDURE InitAllPacks; 

Assembly-Language Information 

Constants 

; Resource IDs for packages 

dskInit 
stdFile 
flPoint 
trFunc 
intUtil 
bdConv 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

5/7/84 Hacker-Rose 

2 jDisk Initialization 
3 jStandard File 
4 ;Floating-Point Arithmetic 
5 ;Transcendental Functions 
6 ;International Utilities 
7 ;Binary-Decimal Conversion 

/PACKAGES/PACK.S 



42 Macintosh Packages Programmer's Guide 

SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 

Constants 

CONST { Masks for currency format } 

currSymLead 
currNegSym 
currTrailingZ 
currLeadingZ 

= 16; {set if currency symbol leads} 
32; {set if minus sign for negative} 

= 64; {set if trailing decimal zeroes} 
128; {set if leading integer zero} 

{ Order of short date elements } 

mdy = 0; 
dmy 1; 
ymd 2; 

{month day year} 
{day month year} 
{year month day} 

{ Masks for short date format } 

dayLeadingZ = 32; {set if leading 
mntLeadingZ = 64; {set if leading 
century = 128 ; {set if century 

{ Masks for time format } 

zero for day} 
zero for month} 
included} 

secLeadingZ 
minLeadingZ 
hrLeadingZ 

= 32; {set if leading zero for seconds} 
64; {set if leading zero for minutes} 

= 128; {set if leading zero for hours} 

{ High-order byte of version information } 

verUS = 0; 
verFrance = 1 ; 
verBritain = 2 • , 
verGermany = 3; 
verItaly = 4; 

Data Types 

TYPE Intl0Hndl 
Intl~Ptr 

= .... lntl0Ptrj 
= .... lntl0Rec; 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 43 

Int10Rec PACKED RECORD 
decimalPt: 
thousSep: 
listSep: 
currSyml: 
currSym2: 
currSym3: 
currFmt: 
dateOrder: 
shortDateFmt: 
dateSep: 
timeCycle: 
timeFmt: 
mornStr: 

eveStr: 

timeSep: 
timelSuff: 
time2Suff: 
time3Suff: 
time4Suff: 
time5Suff: 
time6Suff: 
time7Suff: 
time8Suff: 
metricSys: 
int10Vers: 

END; 

IntllHndl = ~IntllPtr; 
IntllPtr = ~IntllRec; 
IntllRec = PACKED RECORD 

days: 
months: 
suppressDay: 
longDateFmt: 
dayleading0: 
abbrLen: 
st0 : 
stl: 
st2: 
st3: 
st4: 
intllVers: 
localRtn: 

END; 

CHAR; {decimal point character} 
CHAR; {thousands separator} 
CHAR; {list separator} 
CHAR; {currency symbol} 
CHAR; 
CHAR; 
Byte; {currency format} 
Byte; {order of short date elements} 
Byte; {short date format} 
CHAR; {date separator} 
Byte; {0 if 24-hour cycle, 255 if 12-hour} 
Byte; {time format} 
PACKED ARRAY[1 •• 4] OF CHAR; 
{trailing string for first 12-hour cycle} 

PACKED ARRAY[1 •• 4] OF CHAR; 
{trailing string for last 12-hour cycle} 

CHAR; {time separator} 
CHAR; {trailing string for 24-hour cycle} 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
Byte; {255 if metric, 0 if not} 
INTEGER {version information} 

ARRAY[I •• 7] OF STRING[15]; {day names} 
ARRAY[1 •• 12] OF STRING[15]; {month names} 
Byte; {0 for day name, 255 for none} 
Byte; {order of long date elements} 
Byte; {255 for leading 0 in day number} 
Byte; {length for abbreviating names} 
PACKED ARRAY[1 •• 4] OF CHAR; {strings} 
PACKED ARRAY[1 •• 4] OF CHAR; { for} 
PACKED ARRAY[1 •• 4] OF CHAR; { long} 
PACKED ARRAY[1 •• 4] OF CHAR; { date} 
PACKED ARRAY[1 •• 4] OF CHAR; { format} 
INTEGER; {version information} 
INTEGER {routine for localizing string } 

{ comparison; actually may be } 
{ longer than one integer} 

DateForm (shortDate, longDate, abbrevDate); 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



44 Macintosh Packages Programmer's Guide 

Routines 

PROCEDURE IUDateString 

PROCEDURE IUDatePString 

PROCEDURE IUTimeString 

PROCEDURE IUTimePString 

FUNCTION IUMetric: 
FUNCTION IUGetIntl 
PROCEDURE IUSetIntl 

FUNCTION IUCompString 
FUNCTION· IUMagString 
FUNCTION IUEqua1String 
FUNCTION IUMagIDString 

(dateTime: LongInt; form: DateForm; VAR result: 
Str255) ; 

(dateTime: LongInt; form: DateForm; VAR result: 
Str255; int1Param: Handle); 

(dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255); 

(dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255; int1Param: Handle); 
BOOLEAN; 

(theID: INTEGER) : Handle; 
(refNum: INTEGER; theID: INTEGER; int1Param: 
Handle) ; 
(aStr,bStr: Str255) : INTEGER; [Pascal only] 
(aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 
(aStr,bStr: Str255) : INTEGER; [Pascal only] 
(aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 

Assembly-Language Information 

Constants 

; Currency format 

currSymLead .EQU 4 ;set if currency symbol leads 
currNegSym .EQU 5 ;set if minus sign for negative 
currTrai1ingZ .EQU 6 ;set if trailing decimal zeroes 
currLeadingZ .EQU 7 ;set if leading integer zero 

; Order of short date elements 

mdy .EQU ~ ;month day year 
dmy .EQU 1 ;day month year 
ymd .EQU 2 ;year month day 

; Short date format 

dayLeadingZ .EQU 5 ;set if leading zero for day 
mntLeadingZ .EQU 6 ;set if leading zero for month 
century .EQU 7 ;set if century included 

; Time format 

secLeadingZ .EQU 5 ;set if leading zero for seconds 
minLeadingZ .EQU 6 ;set if leading zero for minutes 
hrLeadingZ .EQU 7 ;set if leading zero for hours 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 45 

; High-order byte of version information 

verUS .EQU 0 
verFrance .EQU 1 
verBritain .EQU 2 
verGermany .EQU 3 
verItaly .EQU 4 

; Date form for IUDateString and IUDatePString 

shortDate .EQU 0 ;short form of date 
long Date .EQU 1 ;long form of date 
abbrevDate .EQU 2 ;abbreviated long form 

International Resource 0 Data Structure 

decimalPt Decimal point character 
thousSep Thousands separator 
listSep List separator 
currSym Currency symbol 
currFmt Currency format 
dateOrder Order of short date elements 
shortDateFmt Short date format 
dateSep Date separator 
timeCycle o if 24-hour cycle, 255 if 12-hour 
timeFmt Time format 
mornStr Trailing string for first 12-hour cycle 
eveStr Trailing string for last 12-hour cycle 
timeSep Time separator 
timeSuff Trailing string for 24-hour cycle 
metricSys 255 if metric, 0 if not 
intl0Vers Version information 

International Resource 1 Data Structure 

days 
months 
suppressDay 
longDateFmt 
dayleading0 
abbrLen 
st" 
stl 
st2 
st3 
st4 
intllVers 
localRtn 

5/7/84 Hacker-Rose 

Day names 
Month names 
" for day name, 255 for none 
Order of long date elements 
255 for leading " in day number 
Length for abbreviating names 
Strings for long date format 

Version information 
Comparison localization routine 

/PACKAGES/PACK.S 



46 Macintosh Packages Programmer's Guide 

Routine Selectors 

Routine 
IUDatePString 
IUDateString 
IUGetlntl 
IUMagIDString 
IUMagString 
IUMetric 
IUSetlntl 
IUTimePString 
IUTimeString 

5/7/84 Hacker-Rose 

Selector 
14 
o 
6 

12 
10 

4 
8 

16 
2 

/PACKAGES/PACK.S 



SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE 47 

SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE 

Routines 

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255); 
PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt); 

Assembly-Language Information 

Routine Selectors 

Routine 
NumToString 
StringToNum 

Selector 

5/7/84 Hacker-Rose 

o 
1 

/PACKAGES/PACK.S 



48 Macintosh Packages Programmer's Guide 

SUMMARY OF THE STANDARD FILE PACKAGE 

Constants 

CONST = putDIgID = -3999; {SFPutFile dialog template ID} 

{ Item numbers of enabled items in SFPutFile dialog } 

putSave = 1 ; {Save button} 
putCancel = 2; {Cancel button} 
putEject = 5; {Eject button} 
putDrive 6; {Drive button} 
putName = 7; {editText item for file name} 

getDIgID = -4000; {SFGetFile dialog template ID} 

{ Item numbers of enabled items in SFGetFile dialog } 

getOpen = 1 ; {Open button} 
getCancel = 3; {Cancel button} 
getEject = 5; {Eject button} 
getDrive = 6; {Drive button} 
getNmList = 7; {userItem for file name list} 
getScrol1 = 8; {userItem for scroll bar} 

Data Types 

TYPE SFReply = RECORD 
good: 
copy: 
fType: 
vRefNum: 
version: 
iName: 

BOOLEAN; 
BOOLEAN; 
OSType; 
INTEGER; 
INTEGER; 
STRING[63] 

{FALSE if ignore command} 
{not used} 

END; 

{file type or not used} 
{volume reference number} 
{file's version number} 
{file name} 

SFTypeList = ARRAY [0 •• 3] OF OSType; 

Routines 

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply); 

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: 
INTEGER; filterProc: ProcPtr)j 

PROCEDURE SFGetFile (where: Point; prompt: Str255j fileFilter: 
ProcPtrj numTypes: INTEGER; typeList: SFTypeList; 
dlgHook: ProcPtr; VAR reply: SFReply); 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE STANDARD FILE PACKAGE 49 

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter: 
ProcPtr; numTypes: INTEGER; typeList: SFTypeList; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: 
INTEGER; filterProc: ProcPtr); 

DlgHook Function 

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) INTEGER; 

FileFilter Function 

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) BOOLEAN; 

Standard.SFPutFile Items 

Item number 
1 
2 
3 
4 
5 
6 
7 
8 

Item 
Save button 
Cancel button 
Prompt string (statText) 
UserItem for disk name 
Eject button 
Drive button 
EditText item for file name 
User Item for gray line 

Resource IDs of SFPutFile Alerts 

Alert 
Existing file 
Locked disk 
System error 
Disk not found 

Resource ID 
-3996 
-3997 
-3995 
-3994 

Standard SFGetFile Items 

Item number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Item 
Open button 
Invisible button 
Cancel button 
User Item for disk name 
Eject button 
Drive button 
UserItem for file name list 
Userltem for scroll bar 
User Item for gray line 
Invisible text (statText) 

5/7/84 Hacker-Rose 

Standard display rectangle 
(12, 74, 82, 92) 
(114, 74, 184, 92) 
(12,12,184,28) 
(2~9, 16, 295, 34) 
(217,43,287,61) 
(217,74,287,92) 
(14, 34, 182, 50) 
(2~0, 16, 201, 88) 

Standard display rectangle 
(152, 28, 232, 46) 
(1152,59, 1232,77) 
(152, 90, 232, 1(8) 
(248, 28, 344, 46) 
(256, 59, 336, 77) 
(256, 90, 336, 1(8) 
(12, 11, 125, 125) 
(124, 11, 140, 125) 
(244, 20, 245, 116) 
(1044, 20, 1145, 116) 

/PACKAGES/PACK.S 



50 Macintosh Packages Programmer's Guide 

Assembly-Language Information 

Constants 

putDlgID .EQU -3999 ;SFPutFile dialog template ID 

; Item numbers of enabled items in SFPutFile dialog 

putSave .EQU 1 ;Save button 
putCancel .EQU 2 ;Cancel button 
putEject .EQU 5 ;Eject button 
putDrive .EQU 6 ;Drive button 
putName .EQU 7 jeditText item for file name 

getDlgID .EQU -4QJQJQJ ;SFGetFile dialog template ID 

; Item numbers of enabled items in SFGetFile dialog 

getOpen .EQU 1 ;Open button 
getCancel .EQU 3 ;Cancel button 
getEject .EQU 5 ;Eject button 
getDrive .EQU 6 ;Drive button 
getNmList .EQU 7 ;userItem for 
getScroll .EQU 8 ;userItem for 

Reply Record Data Structure 

rGood 
rType 
rVolume 
rVersion 
rName 

FALSE if ignore command 
File type 
Volume reference number 
File's version number 
File name 

Routine Selectors 

Routine 
SFGetFile 
SFPGetFile 
SFPPutFile 
SFPutFile 

Selector 
2 
4 
3 
1 

5/7/84 Hacker-Rose 

file name list 
scroll bar 

/PACKAGES/PACK.S 



SUMMARY OF THE DISK INITIALIZATION PACKAGE 51 

SUMMARY OF THE DISK INITIALIZATION PACKAGE 

Routines 

PROCEDURE DILoad; 
PROCEDURE DIUnload; 
FUNCTION DIBadMount (where: Point; evtMessage: LongInt) INTEGER; 
FUNCTION DIFormat (drvNum: INTEGER) : OsErr; 
FUNCTION DIVerify (drvNum: INTEGER) : OsErr; 
FUNCTION DIZero (drvNum: INTEGER; volName: Str255) OSErr; 

Assembly-Language Information 

Routine Selectors 

Routine 
DIBadMount 
DIFormat 
DILoad 
DIUnload 
DIVerify 
DIZero 

Result Codes 

Name 
badMDBErr 
extFSErr 
firstDskErr 
ioErr 
lastDskErr 
mFulErr 
noErr 
noMacDskErr 
nsDrvErr 
paramErr 
volOnLinErr 

Selector 
o 
6 
2 
4 
8 

10 

Value 
-60 
-58 
-84 
-36 
-64 
-41 

0 
-57 
-56 
-50 
-55 

5/7/84 Hacker-Rose 

Meaning 
Bad master directory block 
External file system 
First of the range of low-level disk errors 
Disk I/O error 
Last of the range of low-level disk errors 
Memory full 
No error 
Not a Macintosh disk 
No such drive 
Bad drive number 
Volume already on-line 

/PACKAGES/PACK. S 



52 Macintosh Packages Programmer's Guide 

GLOSSARY 

ligature: A character that combines two letters. 

list separator: The character that separates numbers, as when a list 
of numbers is entered by the user. 

package: A set of data structures and routines that's stored as a 
resource and brought into memory only when needed. 

routine selector: An integer that's pushed onto the stack before the 
_PackN macro is invoked, to identify which routine to execute. (N is 
the resource ID of a package; all macros for calling routines in the 
package ~xpand to invoke _PackN.) 

thousands separator: The character that separates every three digits 
to the left of the decimal point. 

5/7/84 Hacker-Rose /PACKAGES/PACK.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to. the author (Indicated on the cover 
page) at 1 0460 Bandley Drive M/S3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

Printing From Macintosh Applications 

See Also: The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Structure of a Macintosh Application 

/PRINTING/PRINT 

Programming Macintosh Applications in Assembly Language 

Modification History: First Draft S. Chernicoff & B. Hacker 6/11/84 

ABSTRACT 

Macintosh applications can print information on any variety of printer 
the user has connected to the Macintosh by calling Printing Manager 
routines. Advanced programmers can also call the Printer Driver to 
implement alternate, low-level printing techniques. This manual 
describes the Printing Manager and Printer Driver. 



2 Printing From Macintosh Applications 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Printing Manager 
6 Methods of Printing 
7 Imaging During Spool Printing 
9 Printing From the Finder 

10 Print Records and Dialogs 
12 The Printer Information Subrecord 
13 The Style Subrecord 
14 The Job Sub record 
16 The Band Information Subrecord 
16 Background Processing 
18 Using the Printing Manager 
19 Printing Manager Routines 
19 Initialization and Termination 
20 Print Records and Dialogs 
21 Draft Printing and Spooling 
22 Spool Printing 
23 Handling Errors 
24 Low-Level Driver Access 
25 The Printer Driver 
26 Bitmap Printing 
27 Text Streaming 
28 Screen Printing 
28 Font Manager Support 
29 Printing Resources 
33 Summary of the Printing Manager 
42 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 
Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

Macintosh applica~ions can print information on any variety of printer 
the user has connected to the Macintosh by calling the Printing Manager 
routines in the User Interface Toolbox. Advanced programmers can also 
call the Printer Driver to implement alternate, low-level printing 
techniques. This manual describes the Printing Manager and Printer 
Driver. *** It will eventually become part of the comprehensive Inside 
Macintosh manual. *** 

Like all Toolbox documentation, this manual assumes you're familiar 
with the Macintosh User Interface Guidelines, Lisa Pascal, and the 
Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- resources, as described in the Resource Manager manual 

- the use of QuickDraw, as described in the QuickDraw manual, 
particularly bit images, rectangles, bitMaps, and pictures 

- the use of fonts, as described in the Font Manager manual 

- the basic concepts of dialogs, as described in the Dialog Manager 
manual 

- files and volumes, as described in the File Manager manual 

- device drivers, as described in the Device Manager manual, *** 
doesn't yet exist *** if you're interested in writing your own 
Printer Driver 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an overview of the Printing Manager and what you 
can do with it. It then discusses the basics about printing: the 
various methods of printing available; the relationship between 
printing and the Finder; and the Printing Manager's use of dialogs and 
data structures, the most important of which is the print record. 

Next, a section on using the Printing Manager introduces its routines 
and tells how they fit into the flow of your application. This is 
followed by detailed des.criptions of all Printing Manager procedures 
and functions, their parameters, calling protocol, effects, side 
effects, and so on. 

Following these descriptions are sections that won't interest all 
readers. Special information is given about the Printer Driver and the 
format of resource files used when printing, for programmers interested 
in writing their own Printer Driver. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.l 



4 Printing From Macintosh Applications 

Finally, there's a summary of the Printing Manager for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE PRINTING MANAGER 

The Printing Manager is the part of the Macintosh User Interface 
Toolbox that's used to print text or graphics on a printer. It's not 
contained in the Macintosh ROM; it must be read from a resource file 
before it can be used. The Printing Manager provides your application 
with: 

- two standard printing methods, and the ability to define two more 

- a standard dialog for the user to specify the paper size and page 
orientation they're using, so you can easily implement a Page 
Setup command in your File menu 

- a standard dialog for the user to specify the method of printing, 
which pages to print, and so on, so you can easily implement a 
Print command in your File menu 

- the ability to perform background processing while the Printing 
Manager is printing 

- a way to abort printing when the user types Command-period 

The Printing Manager is designed such that an application need never be 
concerned with what kind of printer the user has connected to the 
Macintosh; an application uses the same routine calls to print with all 
varieties of printers. 

This printer independence is possible because the Printing Manager uses 
separate, printer-specific code to implement its routines for each 
different variety of printer. While the code for some Printing Manager 
routines (such as those that begin and end printing sessions), is 
contained wholly within the Printing Manager itself, the code for other 
routines (such as those that do the actual printing) depends on the 
printer being used and is contained in a separate printer resource file 
on the user's disk. The Printing Manager dispatches calls to these 
routines, first loading the code into memory if necessary. 

Although the actual routines of the Printing Manager differ for each 
variety of printer, your application uses the same Printing Manager 
calls to print on all varieties of printers. The user "installs" a new 
printer by giving the Printing Manager a new printer resource file to 
work with (Figure 1). Printer installation is transparent to you 
application, and you needn't be concerned with it. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1 



flpplicetion 

Printing 
Men8ger 

printer 'A' 
resot.rce file 

printer 'A' Installed 

ABOUT THE PRINTING MANAGER 5 

application 

Printing 
Menager 

printer 'B' 
resot.rce file 

printer 'B' 

printer 'BI installed 

Figure 1. Printer Installation 

Each printer resource file also contains a device driver that 
communicates between the Printing Manager and the printer. Because the 
actual routines of the device driver differ for each variety of 
printer, there exists a different device driver for each printer. The 
Printing Manager routines used to call a printer's device driver are 
the same, regardless of printer variety; this manual will refer to the 
device driver of the currently installed printer as the Printer Driver. 

You define the image to be printed by using a printing port~ a special 
QuickDraw grafPort customized for printing: 

TYPE TPPrPort - ATPrPort; 
TPrPort = RECORD 

gPort: GrafPort; {grafPort to draw in} 
gProcs: QDProcs; {pointers to drawing routines} 
{more fields for internal use only} 

END; 

The Printing Manager gives you a printing port when you prepare to 
print a document. You print text and graphics by drawing 
into this port with QuickDraw, just as if you were drawing on the 
screen. The Printing Manager installs its own versions of QuickDraw's 
low-level drawing routines in the printing port, causing your 
higher-level QuickDraw calls to drive the printer instead of drawing 
on the screen. GProcs contains pointers to these low-level drawing 
routines. 

(note) 
To convert a pointer to a printing port into an 
equivalent grafPtr for use with QuickDraw, you can use 
the following variant record type: 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.I 



6 Printing From Macintosh Applications 

TYPE TPPort - PACKED RECORD 
CASE INTEGER OF 

END; 

0: (pGPort: GrafPtr)j 
1: (pPrPort: TPPrPort) 

METHODS OF PRINTING 

The Printing Manager supports two different methods of printing 
documents: draft and spool. In draft printing. your QuickDraw calls 
are converted directly into command codes the printer understands. 
which are then immediately used to drive the printer. Each element of 
the image is printed as soon as you request it; as you move around to 
various coordinates within the grafPort. the print head moves to the 
corresponding positions on the printed page. Draft printing uses the 
printer's native font and graphics capabilities and ·probably won't 
produce an image matching the one on the screen. This method of 
printing is more direct than spool printing. but it can also be 
cumbersome. especially for graphics. Draft printing is most 
appropriate for making quick copies of text documents. which are 
printed straight down the page from top to bottom and left to right. 
Depending on the printer and what you're printing. draft printing may 
not even be possible; for instance, not all printers are capable of 
moving the paper backwards (toward the top of the page). 

Spooling and spool printing are complementary halves of a two-stage 
process. First you cause the Printing Manager to write out (spool) a 
representation of your document's printed image to a disk file. This 
spool file is later read back in, each page is imaged (converted into 
an array of dots at the appropriate resolution). and the result is sent 
to the printer in a single pass from top to bottom. Spool printing 
uses QuickDraw and the Font Manager's graphics and font capabilities to 
produce an image closely matching the one on the screen. 

(note) 
The internal format of spool files is private to the 
Printing Manager and may vary from one printer to 
another. This means that spool files destined for one 
printer can't necessarily be printed on another. In 
spool files for the Imagewriter printer, each page is 
stored in the form of a QuickDraw picture. It~s 
envisioned that most other printers will use this same 
approach. but there may be exceptions. 

Spooling and spool printing are two separate stages because spool 
printing a document takes a lot of space--typically from 20K to 40K for 
the printing code, buffers. and fonts, but spooling a document takes 
only about 3K. When spooling a document, large portions of your 
application's code and data may be needed in memory; when spool 
printing, most of your application's code and data are no longer 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.l 



METHODS OF PRINTING 7 

needed. Normally you'll make your printing code a separate program 
segment, so you can swap the rest of your code and data out of memory 
during printing and swap it back in after you're finished. 

If your application can't afford the space required by spool printing, 
it can just perform the spooling stage, and leave the spool file on the 
disk for the user to print later from the Finder (see next section). 
The maximum number of pages in a spool file is defined by the following 
constant *** it may increase *** 

(note) 

CONST iPFMaxPgs = 128; {maximum number of pages in a spool file} 

Advanced programmers: In addition to draft printing and 
spooling, you can define as many as two more of your own 
methods of document printing for any given printer. (No 
such additional printing methods are currently defined 
for the Imagewriter.) There are also a number of low
level printing methods available, such as bitmap 
printing, text streaming, and screen printing. These 
methods are discussed in the section "Using a Printer 
Driver". 

Imaging During Spool Printing 

The bit image for a typical page is too big to fit in memory all at 
once. For instance, at the highest resolution of the Imagewriter 
printer (160 dots per inch horizontally by 144 vertically), an 8-by-10 
1/2-inch page image contains approximately a quarter megabyte of 
information, or twice the total memory capacity of the Macintosh. So 
instead of imaging and printing the entire page at once, the page has 
to be broken into bands small enough to fit in memory. During spool 
printing the Printing Manager actually images each band individually, 
adjusting the fields of the printing port to limit the actual drawing 
to the boundaries of the band. It then prints the resulting bit image 
before imaging the next band. A page can be broken into bands 
("scanned") in any of four ways. Figure 2 shows the four possible scan 
directions of a printing port. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1 



8 Printing From Macintosh Applications 

left to right 
) 

top to bottom 1 I I I I _L_L ____________ L_L_ 

I I I I _L_L ____________ L_L_ 

I I I I 

-~-~--f~-----~-~-
I I I I T 

_~ _~ ____________ ~_L_ bottom to top 
I I I I 

< 
right to left 

Figure 2. Scan Directions 

The bands are always printed from top to bottom relative to the 
physical sheet of paper; the scan direction determines the 
correspondence between these printed bands and the dots of the image. 
If the long dimension of the paper runs vertically with respect to the 
image, the page is said to be in portrait orientation; if the long 
dimension runs horizontally, the page is in landscape orientation. In 
practice, portrait pages are normally scanned from top to bottom and 
landscape pages from left to right. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.l 



PRINTING FROM THE FINDER 9 

PRINTING FROM THE FINDER 

The Macintosh user can choose to print from the Finder as well as from 
an application. Your application should support both alternatives. 

To print a document from the Finder, the user selects the document's 
icon and chooses the Print command from the File menu. When the Print 
command is chosen, the Finder starts up the document's application, and 
passes information to the application indicating that the file is to be 
printed rather than opened. The application is then expected to print 
the document, preferably without doing its entire startup sequence. It 
may choose to do any of the following: 

- Draft-print the document. 

- Spool the document to a file and then print it immediately. 

- Spool the document to a file and leave it for the user to print 
later via the Printer program (descibed below)~ 

If your application writes spool files on a disk and then doesn't spool 
print them, it's up to the user to print them. The user simply selects 
the spool file's icon (Figure 3) and chooses the Print command from the 
File menu. When the Print command is chosen, the Finder starts up a 
special program called Printer, which spool prints spool files. It's 
provided as a utility for use with programs that don't do their own 
spool printing. Its main purpose is to read a spool file, image it. 
and print it. 

D 
Print Ft. 

Figure 3. Icons for the Printer Program and Spool Files 

Spool files can be identified by their file type and creator: 

(note) 

CONST IPfType - $5~46484C; {spool file type 'PFIL'} 
IPfSig - $5~535953; {spool file creator 'PSYS'} 

The details of the Finder interface are discussed in !h! 
Structure of ~ Macintosh Application. 

*** This method of spool printing may be temporary. Currently. the 
easiest way for your application to do printing is to leave spool files 
on the disk and rely on the user to print them via Printer. Eventually 
Printer may be eliminated and one of the following solutions will be 
employed: The process will remain the same. and the code·of Printer 
will be integrated into the Finder; or your application will be 
required to do spool printing itself. *** 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.l 



10 Printing From Macintosh Applications 

PRINT RECORDS AND DIALOGS 

For every printing operation. your application needs to determine the 
following: 

- the resolution and other characteristics of the printer being used 

- the dimensions of the printed image and of the physical sheet of 
paper 

- the printing method to be used (draft or spool) 

- the name of the spool file. if applicable 

- which pages of the document to print 

- how many copies to print 

- an optional background procedure to be run duri"ng idle times in 
the printing process (discussed later) 

This information is contained in- a data structure called a print 
record. The Printing Manager fills in most of the print record for 
you. Some values depend on the variety of printer installed in the 
Printing Manager; others are set as a result of dialogs with the user. 

(note) 

(note) 

Whenever you save a document. it's recommended that you 
write an appropriate print record in the document's file 
(see the "Printing Resources" section). This allows the 
document to "remember" its own printing parameters for 
use the next time it's printed. 

If you try to use a print record that's invalid for the 
current version of the Printing Manager or for the 
printer installed in the Printing Manager. the Printing 
Manager will correct the record by filling it with 
default values. 

The information in the print record that can vary from one printing job 
to the next is obtained from the user by means of dialogs. The 
Printing Manager uses two standard dialogs for this purpose. The style 
dialog includes the paper size and page orientation (-Figure 4). This 
dialog is conventionally associated with a Page Setup command in the 
application. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1 



PRINT RECORDS AND DIALOGS 11 

reper: • US Letter OR4Letter ( OK ) 

( Cencel ) 
oUS Legel 

Orlentetlon: • Tell 
o Intemetlonal ranfold 
o Tell RdJusted 0 Wide 

Figure 4. The Standard Style Dialog 

The job dialog. normally associated with the application's Print 
command. requests information on how to print the document tbis ti.e. 
such as the method of printing (draft or spool). the print quality (for 
printers that offer a choice of resolutions), the type of paper feed 
(such as fanfold or cut-sheet). the range of pages to be printed, and 
the number of copies (Figure 5). 

Quellty: 

Pege Renge: 
o High 
@)RII 

D 

• Standard 0 Dnlft 

o rrom: D To: D 
( OK ) 

Caples: 
'aper Feed: • Continuous QCut Sheet ( cancel) 

Figure 5. The Standard Job Dialog 

Print records are referred to by handles. Their structure is as 
follows: 

TYPE THPrint - ATPPrint; 
TPPrint - ATPrint; 
TPrint - RECORD 

iPrVersion: 
prInfo: 
rPaper: 
prStl: 
prInfoPT: 
prXInfo: . 
prJob: 
printX: 

END; 

INTEGER; {Printing Manager version} 
TPrInfo; {printer information} 
Rect; {paper rectangle} 
TPrStl; {style information} 
TPrlnfo; {copy of prInfo} 
TPrXInfo; {band information} 
TPrJob; {job information} 
ARRAY [1 •• 19) OF INTEGER 

{used internally} 

IPrVersion identifies the version of the Printing Manager that 
initialized this print record. 

Most of the other fields of the print record are "subrecords" 
containing various parts of the overall printing information; these are 
discussed in separate sections below. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2 



12 Printing From Macintosh Applications 

Assembly-language~: The global constant iPrintSize equals 
the length_in bytes of a print record. 

The Printer Information Subrecord 

The printer information subrecord (field prInfo of the print record) 
describes the characteristics of the particular printer you're using. 
Its contents are set by the Printing Manager when it initializes the 
print record. All applications will need to refer to the information 
it contains. (The prInfoPT field of the print record is a copy of the 
prInfo field and is used internally by the Printing Manager during 
printing.) 

The printer information subrecord is defined as follows: 

TYPE TPrInfo = RECORD 
iDev: INTEGER; {driver information} 
iVRes: INTEGER; {printer vertical resolution} 
iHRes: INTEGER; {printer horizontal resolution} 
rPage: Rect {page rectangle} 

END; 

The iDev field contains information used by QuickDraw and the Font 
Manager for selecting fonts for the printer. The high-order byte is 
the reference number of the Printer Driver, -3. The low-order byte 
contains device-specific information on how the printer is being used. 
For example, for the Imagewriter printer, bit 0 specifies high (1) or 
low (0) resolution and bit 1 specifies portrait (1) or landscape (0) 
orientation. 

(note) 
If you store this word into the device field of a 
grafPort, you can use the QuickDraw routines CharWidth, 
StringWidth, TextWidth, and GetFontlnfo to ask for 
information about a font drawn on that device. 

IVRes and iHRes give the vertical and horizontal resolution of the 
printer, in dots per inch. 

RPage is the ~ rectangle, representing the boundaries of the 
printable page. Its top left corner always has coordinates (0,O); the 
coordinates of the bottom right corner give the maximum page height and 
width attainable on the given printer, in dots. Typically these are 
slightly less than the physical dimensions of the paper, because of the 
printer's mechanical limitations. 

The results of the style dialog conducted with the user determine the 
values of the iVRes, iHRes, and rPage fields. For example, with the 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2 



PRINT RECORDS AND DIALOGS 13 

Imagewriter printer, the style dialog's three orientation buttons yield 
the following: 

Button 
Tall 
Tall adjusted 
Wide 

Orientation 
Portrait 
Portrait 
Landscape 

IVRes 
80 
72 
72 

IHRes 
72 
72 
72 

The physical paper size is given by the rPaper field of the print 
record. This paper rectangle is outside of the page r~ctangle: it 
defines the physical boundaries of the paper in the same coordinate 
system as rPage (see Figure 6). Thus the top left coordinates of the 
paper rectangle are typically negative and its bottom right coordinates 
are greater than those of the page rectangle. 

Peper rect8l'lgle 

Page rectangle 

(0,0) 
~---~------------, 
• I , 
• I , 
I 

L _______________ _ 

Figure 6. Page and Paper Rectang~es 

The Style Subrecord 

The style subrecord (field prStl of the print record) describes the 
type and size of paper used in the printer. The contents of the style 
subrecord are normally set by the Printing Manager after dialogs with 
the user, and only advanced programmers need be concerned with them. 

The style subrecord is defined as follows: 

6/11/84 Chernicoff-Hacker {PRINTING/PRINT. I. 2 



14 Printing From Macintosh Applications 

TYPE TPrStl·. RECORD 
wDev: 
iPageV: 
iPageR: 
bPort: 
feed: 

!Word; 
INTEGER; 
INTEGER; 
SignedByte; 
TFeed 

{used internally} 
{paper height} 
{paper width} 
{printer or modem port} 
{paper type} 

END; 

IPageV and iPageR give the physical dimensions of the paper, in 120ths 
of an inch. The user can set them by choosing a standard paper size 
(such as U.S. Letter, U.S. Legal, or European A4) from the style 
dialog. The number of units per inch is defined by the following 
constant: 

CONST iPrPgFract = 120; {units per inch of paper dimension} 

BPort designates which port on the back of the Macintosh the printer is 
connected to: 0 for the printer port, 1 for the modem port. *** 
Currently the Printing Manager ignores this value, and instead uses the 
global variable sPPrint. *** 
Feed identifies the type of paper feed being used: 

TYPE TFeed - (feedCut, {hand-fed, individually cut sheets} 
feedFanfold, {continuous-feed fanfold paper} 
feedMechCut, {mechanically fed cut sheets} 
feedOther); {other types of paper} 

The user sets this field by choosing Continuous or Cut Sheet from the 
job dialog. When Cut Sheet is chosen, the printer will pause at the 
end of each page and a dialog box will prompt the user to insert the 
next sheet. 

The Job Subrecord 

The job subrecord (field prJob of the print record) contains 
information about a particular printing job. Its contents are normally 
set by the Printing Manager as a result of a job dialog with the user. 

The job subrecord is defined as follows: 

TYPE TPrJob • RECORD 
iFstPage: 
iLstPage: 
iCopies: 
bJDocLoop: 
fFromUsr: 
pldleProc: 
pFileName: 
iFileVol: 
bFileVers: 
bJobX: 

END; 

6/11/84Chernicoff-Racker 

INTEGER; 
INTEGER; 
INTEGER; 
SignedByte; 
BOOLEAN; 
ProcPtr; 
TPStr80; 
INTEGER; 
Signed Byte; 
Signed Byte 

{first page to print} 
{last'page to print} 
{number of copies} 
{printing method} 
{TRUE if called from application} 
{background pr~cedure} 
{spool file name} 
{volume reference number} 
{version number of spool file} 
{not used} 

/PRINTING/PRINT.I.2 



PRINT RECORDS AND DIALOGS 15 

TPStr80 - ATStr80; 
TStr80 - STRING[801; 

Most programmers need only be concerned with the bJDocLoop, pFileName, 
and pIdleProc fields. BJDocLoop represents the method of printing to 
use. The user sets this field by choosing High, Standard, or Draft 
from the job dialog. BJDocLoop should be one of the following 
predefined constants: 

CONST bDraftLoop = 0; {draft printing} 
bSpoolLoop - 1; {spooling} 
bUser1Loop = 2; {printer-specific, method 1} 
bUser2Loop = 3; {printer-specific, method 2} 

If you're spool printing, it's a good idea to give each file you spool 
to the disk a different name, in the pFileName field, so that it 
doesn't overwrite any other spool files on the disk. PFileName is 
initialized to NIL, denoting the default file name found in the printer 
resource file. *** (Currently the default file name is 'Print 
File'.) *** 
IFstPage and iLstPage designate the first and last pages to be printed. 
The Printing Manager knows nothing about any page numbering placed by 
an application within a document, and always considers the first 
printable page to be page 1. For example, if iFstPage is 2, the 
Printing Manager will print the second page in the document, regardless 
of how the page is actually numbered. If you're draft printing, you'll 
need to use the value of iCopies to determine the number of copies to 
print (the Printing Manager automatically handles multiple copies for 
spooling). 

FFromUsr is TRUE when the Printing Manager is called from an 
application program, FALSE when it's called from the Printer program. 
PIdleProc is a pointer to the background procedure (explained below) 
for this printing operation. In a newly initialized print record this 
field is set to NIL, designating the default background procedure. 
This procedure just polls the keyboard and cancels further printing if 
the user types Command-period. You can install a background procedure 
of your own by storing directly into the pIdleProc field. 

For spooling operations, iFileVol and bFileVers are the volume 
reference number and version number of the spool file. IFileVol and 
bFileVers are both initialized to 0. You can override the default 
settings by storing directly into these fields. 

6/11/84Chernicoff-Hacker /PRINTING/PRINT.I.2 



16 Printing From Macintosh Applications 

The Band Information Subrecord 

The band information subrecord (field prXlnfo of the print record) 
contains information about the way a page will be imaged during spool 
printing. Its contents are set by the Printing Manager, and most 
programmers needn't be concerned with it. 

The band information subrecord is defined as follows: 

TYPE TPrXlnfo = RECORD 
iRowBytes: 
iBandV: 
iBandH: 
iDevBytes: 
iBands: 
bPatScale: 
bUlThick: 
bUlOffset: 
bUlShadow: 
scan: 
bXInfoX: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
SignedByte; 
SignedByte; 
SignedByte; 
Signed Byte; 
TScan; 
SignedByte 

{bytes per row} 
{vertical dots} 
{horizontal dots} 
{size of bit image} 
{bands per page} 
{used by QuickDraw} 
{underline thickness} 
{underline offset} 
{underline descender} 
{scan direction} 
{not used} 

IRowBytes is the number of bytes in each row of the band's bit image, 
iBandV and iVBandH are the dimensions of the band in dots, iDevBytes is 
the number of bytes of memory needed to hold the bit image, and iBands 
is the number of bands per page. 

BPatScale is used by QuickDraw when it scales patterns to the 
resolution of the printer. BUlThick, bUlOffset, and bUlShadow are used 
for underlining text; they stand for the thickness of the underline, 
its offset below the base line, and the width of the break around 
descenders, all in dots. The scan field specifies the scan direction 
for banding as a value of type TScan: 

TYPE TScan = (scanTB, {scan top to bottom} 
scanBT, {scan bottom to top} 
scanLR, {scan bottom to top} 
scanRL); {scan right to left} 

BACKGROUND PROCESSING 

As mentioned above, the job subrecord includes a pointer, pldleProc, to 
an optional background procedure to be run whenever the Printing 
Manager has directed output to the printer and is waiting for the 
printer to finish. The background procedure takes no parameters and 
returns no result; the Printing Manager simply runs it at every 
opportunity. There's no limit to the length of time that 'a background 
procedure can execute, but beyond a certain length of time printing 
will be slowed. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2 



BACKGROUND PROCESSING 17 

If you don't designate a background procedure, the Printing Manager 
will use one by default that just polls the keyboard and cancels 
further printing if the user types Command-period. In this case you 
should display an_alert box to inform the user that the Command-period 
option is available. It's suggested, however, that instead of relying 
on this method. you supply your own background procedure to give the 
user a more convenient way to cancel printing. For instance, you might 
put up a dialog box with a Cancel button the user can click with the 
mouse; or. in a background procedure that runs your application, you 
might replace the Print command with Stop Print. 

While printing from a spool file, the Printing Manager maintains a 
printer status record in which it reports on the progress of the 
printing operation: 

TYPE TPrStatus = RECORD 
iTotPages: 
iCurPage: 
iTotCopies: 
iCurCopy: 
iTotBands: 
iCurBand: 
fPgDirty: 
fImaging: 
hPrint: 
pPrPort: 
hPic: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
THPrint; 
TPPrPort; 
PicHandle 

{total number of pages} 
{page being printed} 
{number of copies} 
{copy being -printed} 
{bands per page} 
{band being printed} 
{TRUE if started printing page} 
{TRUE if imaging} 
{print record} 
{printing port} 
{used internally} 

FPgDirty is TRUE if anything has been printed yet on the current page, 
FALSE if not; fImaging is TRUE while a band is being imaged, FALSE 
while it's being printed. -HPrint is a handle to the print record for 
this printing operation; pPrPort is a pointer to the printing port. 

Your background procedure can use this information-for example, to 
display a progress report on the screen ("Now printing copy 3 ofS, 
page 7 of 12"). 

(note) 
The Printing Manager only calls your background procedure 
while it's printing. If you want your background 
procedure to execute during spooling, you'll have to·. call 
it yourself. 

Advanced programmers can use background processing in a variety of 
useful ways. For example, with a background procedure. that performs 
one pass through your main program loop, you can achieve the effect of 
concurrent printing. That is, your application can continue to run 
while the printing is taking place, although there may be some 
degradation in performance. The user is given the illusion that the 
printing is going on "in the background" behind the application. (In 
reality, of course, it's the application that's running in the 
background behind the printing task.) 

6/11/84 Chernicoff-Hacker IPRINTING/pRINT.I.2 



18 Printing From Macintosh Applications 

(warning) 
You have to be careful in the way you write your 
background procedure, to avoid a number of subtle 
concurrency. problems that may arise. For instance, if 
the background procedure uses QuickDraw, it must be sure 
to restore the printing port as the current port before 
returning. It's particularly important not to attempt 
any printing from within the background procedure: the 
Printing Manager is DOt reentrant! If you use a 
background procedure that runs your application 
concurrently with printing, it should disable all menu 
items having to do with printing, such as Page Setup and 
Print. 

USING THE PRINTING MANAGER 

This section discusses how the Printing Manager routines fit into the 
general flow of your program and gives you an idea of which routines 
you'll need to use. The routines themselves are described in detail in 
the next section. 

To use the Printing Manager, you must have previously initialized 
QuickDraw, the Font Manager, the Window Manager, the Menu Manager, 
TextEdit, and the Dialog Manager. The first Printing Manager routine 
to call is PrOpen, which opens the printer resource file. The last 
routine to call is PrClose, which closes the Printer Driver and the 
printer resource file. 

(note) 
PrOpen and PrClose are meant to be called once each, at 
the beginning and end of your application. However, if 
space is particularly critical, you may prefer to bracket 
every Printing Manager call with a PrOpen and a PrClose. 
This frees the space occupied by various Printing Manager 
data structures when they're not in use. 

Before printing a document, you need a properly filled out print 
record. You can either use an existing print record (for instance, 
from a document) or initialize one to the current default settings by 
calling PrintDefault. If you use an existing print record, you should 
call PrValidate to make sure it's valid for the current version of the 
Printing Manager and for the currently installed printer. 

When the user chooses the Page Setup commmand, call PrStlDialog to ask 
about the paper size and page orientation. From the printer 
information subrecord you can then de"termine where each page break 
occurs. 

When the user choos~s the Print commmand, call PrJobDialog to ask the 
user for specific information about that printing job. To apply the 
results of one job dialog to several documents (when printing from the 
Finder, for example), call PrJobMerge. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



USING THE PRINTING MANAGER 19 

To draft print or spool a document, begin by calling PrOpentoc, which 
returns a printing port customized for draft printing or spooling 
(depending on the bJDocLoop field of the job subrecord). You can then 
print or spool your document by "drawing" into this printing port with 
QuickDraw, using the values in the printer information subrecord to 
adjust for the parameters of the printer. Call PrOpenPage and 
PrClosePage at the beginning and end of each page, and PrCloseDoc at 
the end of the entire document. Each page is either printed 
immediately (draft printing) or written to the disk as part of a spool 
file (spooling). 

To print a spool file, swap as much of your program out of memory as 
you can, and then call PrPicFile. 

Call PrError to check for errors caused by a Printing Manager routine. 
To cancel a printing operation in progress, use PrSetError. Be sure to 
call PrCloseDoc or PrClosePage after 'you cancel printing in progress. 

PRINTING MANAGER ROUTINES 

This section describes the procedures and functions that make up the 
Printing Manager. They're presented in their Pascal form; for 
information on using them from assembly language, see Programming 
Macintosh Applications in Assembly Language. . 

Initialization and Termination 

PROCEDURE PrOpen; 

PrOpen prepares the Printing Manager for use. It opens the Printer 
Driver and the printer resource file. If either of these items is 
missing, or if the printer resource file is not properly formed, PrOp en 
will do nothing, and PrError will return a Resource Manager result 
code. 

PROCEDURE PrClose; 

PrClose releases the memory used by the Printing Manager. It closes 
the printer resource file, allowing the file's resource map to be 
removed from memory. It *** currently *** doesn't close the Printer 
Driver, however, since the driver may have been opened before the 
PrOpen call was issued. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



20 Printing From Macintosh Applications 

Print Records and Dialogs 

PROCEDURE PrintDefault (hPrint: THPrint); 

PrintDefault fills the fields of a print record with the current 
default values stored in the printer resource file. HPrint is a handle 
to the record, which may be a new print record that you've just 
allocated or an existing one (from a document, for example). 

FUNCTION PrValidate (hPrint: THPrint) : BOOLEAN; 

PrValidate checks the contents of a print record for compatibility with 
the current version of the Printing Manager and with the installed 
printer. If the record is valid, the function returns FALSE (no 
change); if invalid, the record is adjusted to the current default 
values, taken from the printer resource file, and the function returns 
TRUE. 

PrValidate also updates the print record to reflect the current 
settings in the style and job subrecords. These changes have no effect 
on the function's Boolean result. 

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN; 

PrStlDialog conducts a style dialog with the user to determine the 
paper size and paper orientation being used. The initial settings 
displayed in the dialog box are taken from the current values in the 
print record. If the user confirms the dialog, the results of the 
dialog are saved in the print record and the function returns TRUE; 
otherwise the print record is left unchanged and the function returns 
FALSE. 

(note) 
If the print record was taken from a document, you should 
update its contents in the document's file if PrStlDialog 
returns TRUE~ This makes the results of the style dialog 
"stick" to the document. 

FUNCTION PrJobDialog (hPrint! THPrint) : BOOLEAN; 

PrJobDialog conducts a job dialog with the user to determine the 
printing quality, number of pages to print, and so on. The initial 
settings displayed in the dialog box are taken from the current values 
in the print record. If the user confirms the dialog, both the print 
record and the printer resource file are updated (so that the user's 
choices "stick" to the printer) and the function returns TRUE; 
otherwise the print record and printer resource file are left unchanged 
and the function returns FALSE. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



(note) 

PRINTING MANAGER ROUTINES 21 

If the job dialog is associated with your application's 
Print command, you should proceed with the requested 
printing operation if PrJobDialog returns TRUE. If the 
print record was taken from a document, you should update 
its contenta in the document's file. 

PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPrint); 

PrJobMerge copies the job subrecord from one print record (hPrintSrc) 
to another (hPrintDst) and updates the destination record's printer 
information, band information, and paper rectangle, based on 
information in the job subrecord. This allows the information, in the 
job subrecord to be used for a group of related jobs. 

Draft Printing and Spooling 

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr) 
: TPPrPort; 

PrOpenDoc initializes a printing port for use in printing a document, 
makes it the current port, and returns a pointer to it. HPrint is a 
handle to the print record for this printing operation. The printing 
port is customized for draft printing or spooling, depending on the 
setting of the bJDocLoop field in the job subrecord. For spooling, the 
spool file's name, volume reference number, and version number are 
taken from the job subrecord. 

PPrPort is a pointer to the storage to be u~ed for the printing port. 
If this parameter is NIL, PrOpenDoc will allocate a new printing port 
for you. Similarly, pIOBuf points to an area of memory to be used as 
an input/output buffer; if it's NIL, PrOpenDoc will use the volume 
buffer for the spool file's volume. 

(note) 

(note) 

The pPrPort and plOBuf parameters are provided because 
both the printing port and the input/output buffer are 
nonrelocatable objects. To avoid cluttering the heap 
with such objects, you have the opportunity to allocate 
them yourself and pass them to PrOpenDoc. Most of the 
time you'll just set both of these_parameters to' NIL. 

Newly created printing ports use the system font (since 
they're grafPorts), but newly created windows use the 
application font. Be sure the font you use in the 
printing port is the same as the font in your application 
window if you want the text in both places to match. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



22 Printing From Macintosh Applications 

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect); 

PrOpenPage begins a new page in the document associated with the given 
printing port. Tne page is printed only if it falls within the page 
range designated in the job subrecord. 

For spooling, the pPageFrame parameter points to a rectangle that will 
be used as the QuickDraw picture frame for this page: 

TYPE TPRect • ARect; 

When the spool file is later printed, this rectangle will be scaled 
(via the QuickDraw DrawPicture procedure) to coincide with the page 
rectangle in the printer information subrecord. Unless you want the 
printout to be scaled, you should set pPageFrame to NIL--this uses the 
current page rectangle as the picture frame, and the page will be 
printed with no scaling. 

PROCEDURE PrClosePage (pPrPort: TPPrPort); 

PrClosePage finishes up the current page of the document associated 
with the given printing port. For draft printing, it ejects the page 
from the printer and, if necessary. alerts the user to insert another; 
for spooling, it closes the picture representing the current page. 

PROCEDURE PrCloseDoc (pPrPort: TPPrPort); 

PrCloseDoc finishes up the printing of the document associated with the 
given printing port. For draft printing, it issues a form feed and a 
reset command to the printer; for spooling, it closes the file if the 
spooling was successfully completed or deletes it the file if the 
spooling was unsuccessful. 

Spool Printing 

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr; 
pDevBuf: Ptr; VAR prStatus: TPrStatus); 

PrPicFile images and prints a spool file. HPrint is a handle to the 
print record for this printing operation. The name, volume reference 
number, and version number of the spool file will be taken from the job 
subrecord of this print record. After printing is successfully 
completed, the Printing Manager deletes the spool file from the disk. 

PPrPort is a pointer to the storage to be used for the printing port 
for this operation. If this parameter is NIL, PrPicFile will allocate 
its own printing port. Similarly, pIOBuf points to an area of memory 
to be used as an input/output buffer for reading the spool file; if 
it's NIL, PrPicFile will use the volume buffer for the spool file's 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



PRINTING MANAGER ROUTINES 23 

volume. PDevBuf points to a similar buffer (the "band buffer") for 
holding the bit image to be printed; if NIL, PrPicFile will allocate 
its own buffer from the heap. As for PrOpenDoc, you'll normally want 
to set all of these storage parameters to NIL. 

(note) 
If you provide your own storage for pDevBuf, it has to be 
big enough to hold the number of bytes indicated by the 
iDevBytes field of the TPrXInfo subrecord of the print
record. 

(warning) 
Be sure not to pass, in pPrPort, a pointer to the same 
printing port you received from PrOpenDoc, the one you 
originally used to spool the file. If that earlier port 
was allocated by PrOpenDoc itself (that is, if the 
pPrPort parameter to PrOpenDoc was NIL), then PrCloseDoc 
will have disposed of the port, making your pointer to it 
invalid. PrPicFile initializes a fresh printing port of 
its own; you just provide the storage (or let PrPicFile 
allocate it for itself). Of course, if you earlier 
provided your own storage to PrOpenDoc, there's no reason 
you can't use the same storage again for PrPicFile. 

The prStatus parameter is a printer status record that PrPicFile will 
use to report on its progress. Your background procedure (if any) can 
use this record to monitor the state of the printing operation. 

Handling Errors 

FUNCTION PrError : INTEGER; [Pascal only] 

PrError returns the result code returned by the last Printing Manager 
routine. The possible result codes are: 

CONST noErr = 0; {no error} 
iMemFullErr - -108; {not enough heap space} 

and any Resource Manager- result code. A result code of iMemFullErr 
means that the Memory Manager was unable to fulfill a memory allocation 
request by the Printing Manager. 

PROCEDURE PrSetError (iE.-:r: INTEGER);. [Pascal only] 

PrSetError stores the specified value into the global variable where 
the Printing Manager keeps its result code. The main *** (currently 
the only) *** use of this procedure is for canceling a printing 
operation in progress. To do this, write 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



24 Printing From Macintosh Applications 

PrSetError(iPrAbort) 

where iPrAbort is the following predefined constant: 

CONST iPrAbort - 128; {result code for halting printing} 

Assembly-language~: You can achieve the same effect as 
PrSetError by storing directly into the location specified by 
printVars+iPrErr. *** Currently you shouldn't store into this 
location if it already contains an nonzero value. *** 

Low-Level Driver Access 

The routines in this section are used for communicating directly with 
the Printer Driver; the Printer Driver itself is described in the next 
section. You'll need to be familiar with the Device Manager to use the 
information given in this section. 

PROCEDURE PrDrvrOpen; 

PrDrvrOpen opens the Printer Driver. 

PROCEDURE PrDrvrClose; 

PrDrvrClose closes the Printer Driver. 

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3: 
Longlnt); 

prCtlCall calls the Printer Driver's control routine. IWhichCtl 
designates the operation to be perfo~med; the rest of the parameters 
depend on the ·operation. 

FUNCTION PrDrvrDCE : Handle; 

PrDrvrDCE returns a handle to the Printer Driver's device control 
entry. 

FUNCTION PrDrvrVers : INT$GER; 

PrDrvrVers returns the version number of the Printer Driver in the 
system resource file. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U 



PRINTING MANAGER ROUTINES 25 

The version number.of the Printing Manager is available as the 
predefined constant iPrRelease. You may want to compare the result of 
PrDrvrVers with iPrRelease to see if the Printer Driver in the resource 
file is the most recent version. 

PROCEDURE PrNoPurge; 

PrNoPurge prevents the Printer Driver from being purged from the heap. 

PROCEDURE PrPurge; 

PrPurge allows the Printer Driver to be purged from the heap. 

THE PRINTER DRIVER 

This section describes the Printer Driver, the device driver that 
communicates with a printer via the printer port or the modem port. 
Only programmers interested in low-level printing or writing their own 
device driver need read this. You'll need to be familiar with the 
Device Manager manual to use most of this information and the low-level 
routines described above. 

The printer resource file for each variety of printer includes a device 
driver for that printer. When a particular printer is installed in the 
Printing Manager, the printer's device driver is copied from the 
printer resource file into the system resource file, making it the 
active Printer Driver. 

The Printer Driver responds to the standard Device Manager calls 
OpenDriver, CloseDriver, Control, and Status. You can also communicate 
with it via the Printing Manager routines PrDrvrOpen, PrDrvrClose, and 
PrCtlCall. (The Status call is normally used only by the Font 
Manager.) Its driver name and driver reference number are available as 
the following predefined constants: 

CONST sPrDrvr - '.Print'; {Printer Driver resource name} 
iPrDrvrRef - -3; {Printer Driver reference number} 

To open the Printer Driver, call PrDrvrOpen; it'll remain open until 
you call PrDrvrClose. Calling PrNoPurge will prevent the driver from 
being purged from the heap until you call PrPurge. 

You can call the PrDrvrVers function to determine whether the printing 
resources stored in the system resource file are compatible with the 
version of the Printing Manager you're using. 

To get a handle to the driver's device control entry, call PrDrvrDCE. 
By calling the driver's control routine with PrCtlCall, you can perform 
a number of low-level printing operations such as bitmap printing, 
screen printing, and direct streaming of text to the printer (described 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



26 Printing From Macintosh Applications 

below). The first-parameter to PrCtiCall, iWhichCtl, identifies the 
operation you want. The following values are predefined: 

CONST iPrB!tsCtl 
iPrIOCtl 
iPrEvtCtl 
iPrDevCtl 
iFMgrCtl 

- 4; 
- 5; 
=- 6; 
=- 7; 
&I: 8; 

{bitMap printing} 
{text streaming} 
{screen printing} 
{device control} 
{used by the Font Manager} 

The remaining parameters of PrCtlCall--lParaml, lParam2, and IParam3-
are three long integers whose meaning depends on the operation, as 
described below. 

BitMap Printing 

To send all or part of a bitMap directly to the printer, use PrCtlCal1 
with iWhichCtl - iPrBitsCtl. Parameter lParaml is a pointer to a 
QuickDraw bitMap; IParam2 is a pointer to the rectangle to be printed, 
in the coordinates of the printing port. 

LParam3 is "a printer-dependent parameter. On the Imagewriter it's used 
to control the printer's aspect ratio (the ratio of horizontal to 
vertical resolution). In low resolution, the Imagewriter normally 
prints 80 dots per inch horizontally by 72 vertically. This produces 
rectangular dots that are taller than they are wide. Since the 
Macintosh screen has square pixels (72 per inch both horizontally and 
vertically), images printed on the lmagewriter don't look exactly the 
same as they do on the scr.een. 

To address this problem, the lmagewriter has a special square-dot mode 
that alters the speed of the print head to produce 72 dots per inch 
horizontally instead of 80. Printing in this mode is slower than in 
the normal mode, but gives a more faithful reproduction of what the 
user sees on the screen. The user can choose which of the two modes to 
use by using the Printer program. 

The value of the lParam3 parameter should be one of the following 
predefined constants: 

CONST lScreenBits - 0; {configurable} 
lPaintBits - 1; {72 by 72 dots} 

LScreenBits tells the Printer Driver to honor the user's selection 
between rectangular and square dots; IPaintBits overrides the user's 
choice and forces square dots. 

Putting all this together, you can print the entire screen at the 
user's chosen aspect ratio with 

PrCtlCall(iPrBitsCtl, ORD(@screenBits), 
ORD(@screenBits.bounds), lScreenBits) 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



THE PRINTER DRIVER 27 

To print the contents of a single window in square dots, use 

PrCtICall(iPrBitsCtl, ORD(@theWindowA.portBits), 
ORD(@theWindowA.portRect), IPaintBits) 

Text Streaming 

Text streaming is useful for fast printing of text when speed is more 
important than fancy formatting or visual fidelity. It gives you full 
access to the printer's native text faCilities, such as control or 
escape sequences for boldface, italic, underlining, or condensed or 
expanded type, but makes no use of QuickDraw's elaborate formatting 
capabilities. 

(warning) 
Relying on specific printer capabilities and control 
sequences will make your application printer-dependent. 

You can send a stream of text characters directly to the printer with 
iWhichCtl = iPrIOCtl. LParaml is a pointer to the beginning of the 
text; IParam2 is the number of bytes to transfer (a long integer); 
IParam3 is a pointer to an optional background procedure, or NIL for 
none. 

IPrDevCtl is used for various printer control operations. When 
streaming text to the printer, you can use iPrDevCtl to perform these 
general operations in a printer-independent way, letting the Printer 
Driver take care of the details for a specific printer. The lParam1 
parameter specifies the operation you want: 

CONST IPrReset - $00010000; 
lPrPageEnd = $00020000; 
IPrLineFeed - $00~30000; 

{reset printer} 
{start new page} 
{start new line} 

Before starting to print a document with text streaming, use 

PrCtlCall(iPrDevCtl, IPrReset, 0, 0) 

to reset the printer to its s.tandard initial state. The parameters 
IParam2 and IParam3 are meaningless and should be set to 0. 

At the end of each printed line, 

PrCtlCall(iPrDevCtl, IPrLineFeed, 0, 0) 

adva~ces the paper one line and returns to the left margin. This 
achieves the effect of the standard "CRLF" (carriage-return-line-feed) 
sequence in a printer-independent way. It's strongly recommended that 
you use this method instead of sending carriage returns and line feeds 
directly to the printer. The IParam2 parameter tells how far to 
advance the paper; IParam3 is meaningless and should be set to 0. 
*** The exact use of IParam2 in this call hasn't yet been determined. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



28 Printing From Macintosh Applications 

A value of 0 will probably denote the printer's standard line height, 
which is usually what you'll want. *** 
At the end of each page, 

PrCtICall(iPrDevCtl, lPrPageEnd, 0, 0) 

does whatever is appropriate for the given printer, such as sending a 
form feed character and advancing past the paper fold. It's 
recommended that you use this call instead of just sending a form feed 
yourself. LParam2 and lParam3 are meaningless and should be set to 0. 

Screen Printing 

IPrEvtCtl does an immediate dump of all or part of the screen directly 
to the printer. LParam1 is one of the following codes: 

CONST iPrEvtAll - $0002FFFD; 
iPrEvtTop = $0001FFFD; 

{print whole screen} 
{print top (frontmost) window} 

The other two parameters are meaningless and should be set to 0. So, 
for example, 

PrCtlCall(iPrEvtCtl, iPrEvtAll, 0, 0) 

prints the entire screen at the user's chosen aspect ratio, and 

PrCtlCall(iPrEvtCtl, iPrEvtTop, 0, 0) 

prints just the frontmost window. 

The Operating System Event Manager uses this call to do immediate 
screen printing when the user types a special key combination 
(Command-$ for the frontmost window, the same with Caps Lock for the 
full screen). 

Font Manager Support 

The Printer Driver provides one Status and one Control call for use by 
the Font Manager in selecting fonts for a given printer. Both are 
identified by the following csCode value 

CONST iFMgrCtl = 8; 

With the Status call, the Font Manager asks for the printer's font 
characterization table. After using the information in this table to 
select a font, it issues the Control call to give the Printer Driver a 
chance to modify the choice. This process is described further in the 
Font Manager manual. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



PRINTING RESOURCES 29 

PRINTING RESOURCES 

For programmers who want to write their own device drivets for 
different printers or modify existing drivers, this section describes 
the two files that contain the resources needed to run the Printing 
Manager: the system resource file and the printer resource file (see 
Figure 7). Most of the data described in this section Is accessible 
only to assembly-language programmers. 

System re.uce file 

printer reso.rce file name ..... _ __� 

device d"iver (copy) 

driver' 8 pr ivate data 
storage (copy) 

Printer resot.ree fi Ie 

deYice d"iver (original) 

~iver'8 private date 
storage (original) 

printer-3peCific code 

default print record 

lest print recad 

default spool file neme 

dialogs end alerts 

Figure 7. Printing Resources 

The system resource file contains: 

Resource 
Name of the current printer 
resource file 

A copy of the device driver for 
the currently installed printer 

A copy of the driver's private 
data storage 

Resource type 
'STR ' 

'DRVR' 

'PREC' 

Resource ID 
$E000 

2 

2 

The printer resource file contains the following information: 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



30 Printing From Macintosh Applications 

Resource 
The device driver for this 
printer 

The driver's private storage 

Printer-specific code used to 
implement Printing Manager 
routines 

Default print record for use 
with this printer 

Print record from the previous 
printing operation 

Default spool file name 

Style dialog 

Job dialog 

Installation dialog 

Alerts 

Dialog and alert item lists 

Resource type 
'DRVR' 

'PREC' 

'PDEF' 

'PREC' 

'PREC' 

'STR ' 

'DLOG' 

'DLOG' 

'DLOG' 

'ALRT' 

'DITL' 

Resource ID 
$E00~ 

~ through 6 
(see below) 

1 

$E001 

$E000 

$E001 

$E002 

(private) 

(private) 

Notice that the Printer Driver and its private storage are kept in both 
the system and printer resource files. The copies in the system 
resource file are the ones actually used; those in the printer resource 
file are there just to be copied into the system reaource file when a 
new printer is installed. Installing a new printer is done by copying 
the driver and its private storage from the printer resource file to 
the system resource file and placing the name of the printer resource 
file in the system resource file. (You can use this method to install 
a printer yourself, but normally it's done by the Printer program at 
the user's request.) 

You can use the following predefined constants to identify the various 
resource types and IDs in the printer resource file (they'll be 
different in the system resource file): 

6/11/84Chernicoff-Hacker /PRINTING/PRINT.D 



CONST lPrintType - $50524543; 

iPrintDef - 0; 
iPrintLst - 1; 
iPrintDrvr =- 2; 

iMyPrDrvr = $E000; 

iPStrRFil 
iPStrPFil 

iPrStlDlg 
iPrJobDlg 

= $E000; 
=- $E001; 

=- $E000; 
= $E001; 

PRINTING RESOURCES 31 

{type ('PREC') for print records and} 
{ private storage} 
{ID for default print record} 
{ID for previous print record} 
{ID for Printer Driver and its private } 
{ storage in system resource } 
{ file} 
{ID for Printer Driver and its private } 
{ storage } 

{ID for printer resource file name} 
{ID for default spool file name} 

{ID for style dialog} 
{ID for job dialog} 

The most important items in a printer resource file are the Printer 
Driver and the printer-specific code. The driver has the standard 
structure for device drivers, as described in the Device Manager 
manual, and implements the Control and Status calls as discussed above 
under "The Printer Driver". 

The printer-specific code is kept in a series of separate overlays. 
They are all of resource type 'PDEF', and their resource IDs are 
available to assembly-language programmers as the following predefined 
constants: 

iPrDraftID .EOU 0 ;draft printing 
iPrSpoolID .EOU 1 ;spooling 
iPrUserlID .EOU 2 ;printer-specific printing, method 1 
iPrUser2ID .EOU 3 ;printer-specific printing, method 2 
iPrDlgsID .EOU 4 ;print records and dialogs 
iPrPicID .EOU 5 ; spool printing 

Overlays 0 and 1 do draft printing and spooling, respectively; overlays 
2 and 3, if present, provide additional printing methods for a 
particular printer. All four overlays include the same routines, but 
implement them in different ways for the different printing methods. 
When one of the routines is called, the Printing Manager uses the 
bJDocLoop field in the job subrecord to decide which overlay to use. 
Each overlay begins with a list of offsets to the locations of the 
routines within that overlay. 

IOpenDoc 
ICloseDoc 
lOpenPage 
lClosePage 

.EOU 

.EOU 
.EOU 
.EOU 

$000C0000 
$00048004 
$00080008 
$0004000c 

;PrOpenDoc 
;PrCloseDoc 
;PrOpenPage 
;PrClosePage 

This list is followed by the code of the routines themselves. 

Overlay 4 contains the Printing Manager's routines for manipulating 
print records and dialogs: 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D 



32 Printing From Macintosh Applications 

lDefault 
IStlDialog 
IJobDialog 
lStllnit 
lJoblnit 
IDlgMain 
lValidate 
IJobMerge 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

$~004800~ 
$00048004 
$000480~8 
$~004000c 
$00040010 
$00048014 
$00048018 
$0008801C 

jPrintDefault 
jPrStlDialog 
;PrJobDialog 
;PrStllnit 
jPrJoblnit 
jPrDlgHain 
;PrValidate 
;PrJobMerge 

*** PrStllnit, PrJoblnit, and PrDlgMain are used in customizing the 
dialogs, and will be covered in a later draft of this manual. *** 
Overlays 5 contains just the spool-printing routine PrPicFile (it's 
still preceded by an offset, however): 

IPrPicFile .EQU jPrPicFile 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



SUMMARY OF THE PRINTING MANAGER 33 

SUMMARY OF THE PRINTING MANAGER 

Constants 

CONST { Result codes } 

iMemFullErr = -108; {not enough heap space} 
noErr a 0; {no error} 

{ Printing methods } 

bDraftLoop = 0; 
bSpoolLoop = 1; 
bUserlLoop = 2; 
bUser2Loop = 3; 

{draft printing} 
{spooling} 
{printer-specific. method I} 
{printer-specific. method 2} 

{ Printer Driver Control call parameters } 

iPrBitsCtl = 4; 
IScreenBits = 0; 
IPaintBits = 1 ; 
iPrIOCtl - 5; 
iPrEvtCtl = 6; 
iPrEvtA11 = $0002FFFD; 
iPrEvtTop = $0001FFFD; 
iPrDevCtl = 7; 
lPrReset = $00010000; 
IPrPageEnd = $00020000; 
IPrLineFeed = $00030000; 
iFMgrCtl = 8; 

{ Miscellaneous } 

iPFMaxPgs a 128; 
iPrPgFract = 120; 
iPrAbort = 128; 
iPrRelease - 2; 

IPfType 
IPfSig 

- $5046484C; 
= $50535953; 

{ Printing resources } 

sPrDrvr = '.Print'; 
iPrDrvrRef - -3; 
IPrintType = $50524543; 

iPrintDef - 0; 
iPrintLst = 1; 
iPrintDrvr = 2; 

6/11/84 Chernicoff-Hacker 

{bitMap printing} 
{configurable} 
{72 by 72 dots} 

{text streaming} 
{screen printing} 

{print whole screen} 
{print top (frontmost) window} 

{device control} 
{reset printer} 
{start new page} 
{start new line} 

{used by the Font Manager} 

{maximum number of pages in a spool file} 
{units per inch of paper dimension} 
{result code for halting printing} 
{current version number of Printing } 
{ Manager} 
{spool file type 'PFIL'} 
{spool file creator 'PSYS'} 

{Printer Driver resource name} 
{Printer Driver reference number} 
{type ('PREC') fo~ pri~t,records } 
{ and private storage} 
{ID for default print record} 
{ID for previous print record} 
{ID for Printer Driver and its } 
{ private storage in system } 

- /PRINTING!PRINT.S 



34 Printing From Macintosh Applications 

iMyPrDrvr • $E000; 

iPStrRFil - $E000; 
iPStrPFil - $E001; 
iPrStlDlg = $E000; 
iPrJobDlg = $E001; 

Data Types 

TYPE TPStr80 - ATStr80; 
TStr80 - STRING[80]j 

TPRect - ARectj 

TPPrPort - ATPrPortj 
TPrPort - RECORD 

{ resource file} 
{ID for Printer Driver and its } 
{ private storage in printer } 
{ resource file} 
{ID for printer resource file name} 
{ID for default spool file name} 
{ID for style dialog} 
{ID for job dialog} 

gPort: GrafPortj {grafPort to draw in} 
gProcs: QDProcsj {pointers to drawing routines} 
{more fields for internal use only} 

ENDj 

TPPort - PACKED RECORD 
CASE INTEGER OF 

0: (pGPort: GrafPtr)j 
1: (pPrPort: TPPrPort) 

END; 

THPrint - ATPPrintj 
TPPrint - ATPrintj 
TPrint - RECORD 

iPrVersion: 
prlnfo: 
rPaper: 
prStl: 
prlnfoPT: 
prXlnfo: 
prJob: 
printX: 

ENDj 

TPrlnfo - RECORD 

INTEGER; {Printing Manager version} 
TPrlnfoj {printer information} 
Rectj {paper rectangle} 
TPrStlj {style information} 
TPrlnfoj {copy of Prlnfo} 
TPrXlnfo; {band information} 
TPrJobj {job information} 
ARRAY [1 •• 19] OF INTEGER 

{used internally} 

iDev: INTEGERj {driver information} 
iVRes: INTEGER; {printer vertical resolution} 
iHRes: INTEGERj {printer horizontal resolution} 
rPage: Rect {page rectangle} 

END; 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



SUMMARY OF rHE PRINTING MANAGER 35 

TPrStl - RECORD 
wDev: 
i~ageV: 

iPageH: 
bPort: 
feed: 

TWord; 
INTEGER; 
INTEGERj 
SignedByte j 
TFeed 

{used internally} 
{paper height} 
{paper width} 
{printer or modem port} 
{paper type} 

END; 

TFeed = (feedCut, {hand-fed, individually cut sheets} 
feedFanfold, {continuous-feed fanfold paper} 
feedMechCut, {mechanically fed cut sheets} 
feedOther); {other types of paper} 

TPrJob = RECORD 
iFstPage: 
iLstPage: 
iCopies: 
bJDocLoop: 
fFromUsr: 
pIdleProc: 
pFileName: 
iFileVol: 
bFileVers: 
bJobX: 

END; 

TPrXInfo = RECORD 
iRowBytes: 
iBandV: 
iBandH: 
iDevBytes: 
iBands: 
bPatScale: 
bUlThick: 
bUlOffset: 
bUlShadow: 
scan: 
bXInfoX: 

ENDj 

INTEGERj {first page to print} 
INTEGER; {last page to print} 
INTEGERj {number of copies} 
SignedByte; {printing method} 
BOOLEAN; {TRUE if called from application} 
ProcPtr; {background procedure} 
TPStr80; {spool file name} 
INTEGER; {volume reference number} 
SignedBytej {version number of spool file} 
SignedByte {not used} 

INTEGERj 
INTEGER; 
INTEGER; 
INTEGERj 
INTEGER; 
SignedBytej 
Signed Byte j 
SignedByte; 
SignedBytej 
TScan; 
Signed Byte 

{bytes per row} 
{vertical dots} 
{horizontal dots} 
{size of bit image} 
{bands per page} 
{used by QuickDraw} 
{underline thickness} 
{underline offset} 
{underline descender} 
{scan direction} 
{not used} 

TScan - (scanTB, {scan top to bottom} 
scanBT, {scan bottom to top} 
scanLR, {scan bottom to top} 
scanRL)j {scan right to left} 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



36 Printing From Macintosh Applications 

{total number of pages} 
{page being printed} 
{number of copies} 
{copy being printed} 
{bands per page} 
{band beIng printed} 

TPrStatus a RECORD 
iTotPages: 
iCurPage: 
iTotCopies: 
iCurCopy: 
iTotBands: 
iCurBand: 
fPgDirty: 
fImaging: 
hPrint: 
pPrPort: 
hPic: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
BOOLEANj 
BOOLEAN; 
THPrint; 
TPPrPort; 
PicHand1e 

{TRUE if started printing page} 
{TRUE if imaging} 
{print record} 
{printing port} 
{used internally} 

END; 

Routines 

Initialization and Termination 

PROCEDURE PrOpen; 
PROCEDURE PrC10se; 

Print Records and Dialogs 

PROCEDURE PrintDefau1t (hPrint: THPrint); 
FUNCTION PrValidate (hPrint: THPrint) BOOLEAN; 
FUNCTION PrSt1Dialog (hPrint: THPrint) . BOOLEAN; . 
FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN; 
PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPrint); 

Document Printing 

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: 
TPPrPort; 

PROCEDURE PrCloseDoc (pPrPort: TPPrPort); 
PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect) ; 
PROCEDURE PrC10sePage (pPrPort: TPPrPort); 

Spool Printing 

Ptr) 

PROCEDURE PrPicFile (hPrint: THPrintj pPrPort: TPPrPort; pIOBuf: Ptr; 
pDevBuf: Ptrj VAR prStatus: TPrStatus)j 

Handling Errors [Pascal only] 

FUNCTION PrError: INTEGER; 
PROCEDURE PrSetError (iErr: INTEGER)j 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



Low-Level Driver Access 

PROCEDURE PrDrvrOpen; 
PROCEDURE PrDrvrClose; 

SUMMARY OF THE PRINTING MANAGER 37 

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3: 
Longlnt) ; 

FUNCTION PrDrvrDCE Handle; 
FUNCTION PrDrvrVers INTEGER; 
PROCEDURE PrNoPurge; 
PROCEDURE PrPurge; 

Resource File Contents 

System Resource File 

Resource 
Name of the current printer 
resource file 

A copy of the device driver for 
the currently installed printer 

A copy of the driver's private 
data storage 

6/11/84 Chernicoff-Hacker 

Resource type 
'STR ' 

'DRVR' 

'PREC' 

Resource ID 
-8192 

2 

2 

/PRINTING/PRINT.S 



38 Printing From Macintosh Applications 

frinter Resource File 

Resource 
Original copy of the device 
driver for this printer 

Resource type 
'DRVR' 

Resource ID 
-8192 

Original copy of the driver's 
private storage 

'PREC' -8192 

Printer-specific code used to 
implement Printing Manager 
routines 

'PDEF' o through 6 

Default print record for use 
with this printer 

Print record from the previous 
printing operation 

Default spool file name 

Style dialog 

Job dialog 

Installation dialog 

Alert definitions 

Dialog and alert item lists 

Assembly-Language Information 

Constants 

; Result codes 

iMemFullErr 
noErr 

.EQU 

.EQU 

; P~inting methods 

-108 
o 

'PREC' 

'PREC' 

'STR ' 

'DLOG' 

'DLOG' 

'DLOG' 

'ALRT' 

'DITL' 

;not enough heap space 
;no error 

bDraftLoop 
bSpoolLoop 
bUserlLoop 
bUser2Loop 

.EQU 
.EQU 
.EQU 
.EQU 

" 1 
;draft printing 

2 
3 

;spooling 
;printer-specific, method 1 
;printer-specific, method 2 

; Printer Driver Control call parameters 

iPrBitsCtl .EQU 4 ;bitMap printing 

6/11/84 Chernicoff-Hacker 

1 

-8191 

-8192 

-8191 

-819~ 

(private) 

(private) 

/PRINTING/PRINT.S 



IScreenBits 
IPaintBits 
iPrIOCtl 
iPrEvtCtl 
iPrEvtAlI 
iPrEvtTop 
iPrDevCtl 
lPrReset 
IPrPageEnd 
lPrLineFeed 
iFMgrCtl 

.EOU 

.EOU 

.EOU 
.EOU 
.EOU 
.EOU 
.EQU 
.EOU 
.EQU 
.EQU 
.EOU 

; Miscellaneous 

iPrintSize .EQU 
iPrPortSize .EOU 
iPrStatSize .EQU 
iPrAbort .EQU 
iPrRelease .EQU 

lPfType .EQU 
lPfSig .EQU 

; Printing resources 

iPrDrvrRef .EQU 
lPrintType .EQU 

iPrintDef .EQU 
iPrintLst .EQU 
iPrDrvrID .EQU 

IPStrType .EQU 

iPStrRFil .EOU 

iPStrPFil .EQU 
iPrStlDlg .EQU 
iPrJobDlg .EQU 

" 1 
5 
6 
$""FFFFFD 
$00FEFFFD 
7 
1 
2 
3 
8 

SUMMARY OF THE PRINTING MANAGER 39 

configurable 
; 72 by 72 dots 
;text streaming 
;screen printing 

print whole screen 
print top (frontmost) window 

jdevice control 
reset printer 
start new page 
start new line 

;used by the Font Manager 

120 ;length of print record 
178 ;length of printing port 
26 ;length of printer status record 
128 ;result code for halting printing 
2 ;current version number of Printing 

; Manager 
$5046484C ;file type ('PFIL') for spool files 
$50535953 ;signature ('PSYS') of Printer program 

-3 jPrinter Driver reference number 
$50524543 jtype ('PREC') for print records 

; and private storage 
0 ;ID for default print record 
1 ;ID for previous print record 
2 jID for Printer Driver and its 

; private storage in system 
; resource file 

$53545220 jtype 'STR • for file name 
; resources. 

$E000 jID for printer resource file 
; name 

$E001 ;ID for default spool file name 
$E000 jID for style dialog 
$E""1 ;ID for job dialog 

j Resource IDs for code overlays 

iPrDraftID .EQU " ;draft printing 
iPrSpoolID .EOU 1 ;spooling 
iPrUserlID .EOU 2 ;printer-specific printing. method 1 
iPrUser2ID .EQU 3 ;printer-specific printing. method 2 
iPrDlgsID .EOU 4 ;print records and dialogs 
iPrPicID .EQU 5 ;spool printing 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



40 Printing From Macintosh Applications 

j Offsets to document printing code overlays 

lOpenDoc .EQU $000C0000 ;PrOpenDoc 
lCloseDoc .EQU $00048004 jPrCloseDoc 
lOpenPage .EQU $00080008 jPrOpenPage 
lClosePage .EQU $0004000C ;PrClosePage 

; Offsets to print record and dialog code overlays 

lDefault .EQU $00048000 jPrintDefault 
lStlDialog .EQU $00048004 ;PrStlDialog 
lJobDialog .EQU $00048008 jPrJobDialog 
lStllnit .EQU $0004000C ;PrStllnit 
lJoblnit .EQU $00040010 ;PrJoblnit 
lDlgMain .EQU $00048014 ;PrDlgMain 
lValidate .EQU $00048018 ;PrValidate 
IJobMerge .EQU $0008801C jPrJobMerge 

; Offset to spool printing code overlay 

lPrPicFile 

Printing Port 

gPort 
gProcs 

Print Record 

iPrVersion 
prlnfo 
rPaper 
prStl 
prJob 

.EQU $00148000 ;PrPicFile 

GrafPort to draw in 
Pointers to drawing routines 

Printing Manager version 
Printer information 
Paper rectangle 
Style information 
Job information 

Printer Information Subrecord 

iDev 
iVRes 
iHRes 
rPage 

Driver information 
Printer vertical resolution 
Printer horizontal resolution 
Page rectangle 

Style Subrecord 

iPageV 
iPageH 
bPort 
feed 

Paper height 
Paper width 
Printer or modem port 
Paper type 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



SUMMARY OF THE PRINTING MANAGER 41 

Job Subrecord 

iFstPage 
iLstPage 
iCopies 
bJDocLoop 
fFromApp 
pIdleProc 
pFileName 
iFileVol 
bFileVers 

Fir~t page to print 
Last page to print 
Number of copies 
Printing method 
Nonzero if called from application 
Pointer to background procedure 
Spool file name 
Volume reference number 
Version number spool file 

Band Information Subrecord 

iRowBytes 
iBandV 
iBandH 
iDevBytes 
iBands 
bPatScale 
bUlThick 
bUIOffset 
bUlShadow 
scan 

Bytes per row 
Vertical dots 
Horizontal dots 
Size of bit image 
Bands per page 
Used by QuickDraw 
Underline thickness 
Underline offset 
Underline descender 
Scan direction 

Printer Status Record 

iTotPages 
iCurPage 
iTotCopies 
iCurCopy 
iTotBands 
iCurBand 
fPgDirty 
fImaging 
hPrint 
pPrPort 

Variables 

Total number of pages 
Page being printed 
Number of copies 
Copy being printed 
Bands per page 
Band being printed 
Nonzero if started printing page 
Nonzero if imaging 
Print record 
Printing port 

Name 
printVars+iPrErr 

Size 
2 bytes 

Contents 
Current result code 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S 



42 Printing From Macintosh Applications 

GLOSSARY 

background procedure: A procedure passed to the Printing Manager to be 
run during idle times in the printing process. 

band: One of the sections into which a page is divided for imaging and 
printing. 

draft printing: Printing a document by using QuickDraw calls to drive 
the printer's character generator directly. 

imaging: The process of converting an application's description of an 
image (such as a QuickDraw picture) into an actual array of bits to be 
displayed or printed. 

job dialog: A dialog pertaining to one particular printing job; 
conventionally associated with the application's Print command. 

landscape orientation: The positioning of a document in a printer with 
the long dimension of the paper running horizontally. 

'page rectangle: The rectangle marking the boundaries of a printed page 
image. 

paper rectangle: The rectangle marking the boundaries of the physical 
sheet of paper on which a page is printed. 

portrait orientation: The positioning of a document in a printer with 
the long dimension of the paper running vertically. 

Printer: A special application program for printing spool files from a 
disk and configuring different printers. 

Printer Driver: The device driver for the currently installed printer. 

printer resource file: A file containing all the resources needed to 
run the Printing Manager with a particular printer. 

printer status record: A record used by the Printing Manager to report 
on the progress of printing operations. 

printing port: A special grafPort customized for printing instead of 
drawing on the screen. 

print record: A record containing all the information needed by the 
Printing Manager to perform a particular printing job. 

spool file: A disk file created as the result of spooling. 

spooling: Writing a representation of a document's printed image to a 
disk file. rather than directly to the printer. 

6/11/84Chernicoff-Hacker /PRINTING/PRINT.G 



GLOSSARY 43 

spool printing: Ptinting the image contained in a spool file. 

style dialog: A dialog pertaining to the use of the printer for a 
particular document; conventionally associated with the application's 
Page Setup command. 

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.G 



MACINTOSH USER EDUCATION 

The Memory Manager: A Programmer's Guide /MEM.MGR/MEMORY 

See Also: The Resource Manager: A Programmer's Guide 

Modification History: First Draft (ROM 7) S. Chernicoff 10/10/83 

ABSTRACT 

This manual describes the Memory Manager, the part of the Macintosh 
Operating System that controls the dynamic allocation of memory space 
on the heap. 



2 Memory Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Memory Manager 
7 Pointers and Handles 
8 How Heap Space Is Allocated 

12 The Stack and the Heap 
13 Utility Data Types 
15 Memory Manager Data Structures 
15 Structure of Heap Zones 
18 Structure of Blocks 
2~ Structure of Master Pointers 
21 Result Codes 
22 Using the Memory Manager 
24 Memory Manager Routines 
25 Initialization and Allocation 
29 . Heap Zone Access 
3~ Allocating and Releasing Relocatable Blocks 
35 Allocating and Releasing Nonrelocatable Blocks 
38 Freeing Space on the Heap 
42 Properties of Relocatable Blocks 
44 Grow Zone Functions 
47 Utility Routines 
48 Special Techniques 
48 Dereferencing a Handle 
5~ Subdividing the Application Heap Zone 
53 Creating a Heap Zone on the Stack 
54 Notes for Assembly-Language Programmers 
54 Constants 
55 Global Variables 
55 Trap Macros 
56 Result Codes 
56 Offsets and Masks 
58 Handy Tricks 
59 Summary of the Memory Manager 
62 Glossary 

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. 
Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Memory Manager, the part of the Macintosh 
Operating System that controls the dynamic allocation of memory space 
on the heap. • •• Eventually it will become part of a larger manual 
describing the entire Operating System. • •• 

(eye) 
This manual describes version 7, the final, "frozen" 
version of the Macintosh ROM. Earlier versions may not 
work exactly as described here. • •• There may someday be 
one or more special, RAM-based versions of the Memory 
Manager for software development purposes, doing more 
extensive error checking or gathering statistics on a 
program's memory usage. This manual describes the ROM
bas~d version only. • •• 

Like all Operating System documentation, this manual is intended for 
both Pascal and assembly-language programmers. All readers are assumed 
to be "familiar with Lisa Pascal; information of interest only to 
assembly-language programmers is isolated and labeled so that Pascal 
programmers can conveniently skip it. Whichever is your preferred 
language, please bear with occasional remarks addressed solely to the 
other group. 

The manual begins with an introduction to the Memory Manager and what 
it's used for. It then discusses some basic concepts behind the Memory 
Manager's operation: how blocks of memory are allocated within the 
heap and how the allocated blocks are referred to by programs that use 
them. Following this is a discussion of the internal data structures 
that the Memory Manager uses to find its way around in the heap. 

A section on using the Memory Manager introduces its routines and tells 
how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Memory Manager procedures 'and 
functions, their parameters, calling protocol, effects, side effects, 
and so on. 

Following these descriptions are sections that will not be of interest 
to all readers. Special information is given on unusual techniques 
that you may find useful in working with the Memory Manager and on how 
to use it from assembly-language programs. 

Finally, there is a quick-reference summary of the Memory Manager's 
data structures and routines, along with a glossary of terms used in 
this manual. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



4 Memory Manager Programmer's Guide 

ABOUT THE MEMORY MANAGER 

Using the Memory Manager, your program can maintain one or more 
independent areas of heap memory (called heap zones) and use them to 
allocate blocks of memory of any desired size. Unlike stack space, 
which is always allocated and released in strict LIFO (last-in-first
out) order, blocks on the heap can be allocated and released in any 
order, according to your program's needs. So instead of growing and 
shrinking in an orderly way like the stack, the heap tends to become 
fragmented into a patchwork of allocated and free blocks, as shown in 
Figure 1. The Memory Manager does all the necessary "housekeeping" to 
keep track of the blocks as it allocates and releases them. 

Heep zone 

f::=:=J Relocatable b'ocb 

• Ncnelocateble blocks 

o Free blocks 

Figure 1. A Fragmented Heap 

All memory allocation is performed within a particular heap zone. The 
Memory Manager always maintains at least two heap zones: a system heap 
~, reserved for the system's own use, and an application heap ~ 
for use by your program. The system heap zone is initialized to 16K 
bytes when the system is started up. Objects in this zone remain 
allocated even when one application terminates and another is launched. 
The application heap zone is automatically reinitialized at the start 
of each new application program, and the contents of any previous 
application zone are lost. The initial size of the application zone is 
6K bytes, but it can grow as needed to create more heap space while the 
program is running. Your program can create additional heap zones if 
it chooses, either by subdividing this original application zone or by 
allocating space on the stack for more heap zones. 

(hand) 
ln this manual, unless otherwise stated, the term 
"application heap zone" (or just "application zone") 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



ABOUT THE MEMORY MANAGER 5 

always refers to the original application heap zone 
provided by the system t before any subdivision. 

Various parts of the Macintosh Operating System and Toolbox also use 
space in the application heap zone. For instance t the actual machirte
language code of your program resides in the application zone t in space 
reserved for it at the request of the Segment Loader. Similarly, the 
Resource Manager requests space in the application zone to hold 
resources it has read into memory from a resource file. Toolbox 
routines that create new entities of various kinds, such as NewWindow, 
NewControl, and NewMenu, implicitly call the Memory Manager to allocate 
the space they need. 

At any given time, there is exactly one current heap ~, to which 
most Memory Manager operations implicitly apply. You can control which 
heap zone is current by calling a Memory Manager procedure. Whenever 
the system needs to access its own (system) heap zone, it saves the 
setting of the current heap zone and restores it later, so that the 
operation is transparent to your program. 

Space within a heap zone is divided up into contiguous pieces called 
blocks. The blocks in a zone fill it completely: every byte in the 
zone is part of exactly one block, which may be either allocated 
(reserved for use by your program or by the system) or free (available 
for allocation). Each block has a block header containing information 
for the Memory Manager's own use, followed by the block's contents, the 
area availa~le for use (see Figure 2). There may also be some unused 
bytes at the end of the hlock, beyond the end of the contents. 

Assembly-language~: Blocks are always aligned on even word 
boundaries, so you can access them with word (.W) and long-word 
(.L) instructions. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



6 Memory Manager Programmer's Guide 

Block header 

Contents --------

Lhused bytes ~ 

---- ~11!illl!I!!!11111111!!1111111111!ililill!l!i!lli!I!1!~ 
Figure 2. A Block 

A block can be of any size, limited only by the size of the heap zone 
itself. What's inside the block is of no concern to the Memory 
Manager: it may contain data being used by your program, executable 
code forming part of the program itself, resource information read from 
a resource file, or anything else that may be appropriate. To the 
Memory Manager, it's just a block of a certain size. 

(hand) 
Don't confuse the blocks manipulated by the Memory 
Manager with disk blocks, which are always 512 bytes 
long. 

An allocated block may be relocatable or nonrelocatable; if 
relocatable, it may be locked or unlocked; if unlocked, it may be 
purgeable or unpurgeable. Relocatable blocks can be moved around 
within the heap zone to create space for other blocks; nonrelocatable 
blocks can never be moved. These are permanent properties of a block 
that can never be changed once the block is allocated. The remaining 
attributes (locked and unlocked, purgeable and unpurgeable) can be set 
and changed as necessary. Locking a relocatable block prevents it from 
being moved, but only temporarily: you can unlock the block at any 
time, again allowing the Memory Manager to move it. Making a block 
purgeable allows the Memory Manager to remove it from the heap zone, if 
necessary, to make room for another block. (Purging of blocks is 
discussed further below under "How Heap Space Is Allocated".) A newly 
allocated block is initially unlocked and unpurgeable. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



POINTERS AND HANDLES 7 

POINTERS AND HANDLES 

Relocatable and nonrelocatable blocks are referred to in different 
ways: nonrelocatable blocks by pointers. relocatable blocks by handles 
(discussed below). When the Memory Manager allocates a new 
nonrelocatable block, it returns a pointer to the block. Thereafter. 
whenever you need to refer to the block. you use this pointer. Like 
any other pointer, it's simply a memory address: that of the first 
byte in the block's contents (see Figure 3). You can make as many 
copies of this pointer as you like. Since the block they point to can 
never be moved within its heap zone, you can rely on all copies of the 
pointer to remain correct. They will continue to point to the block 
for as long as the block remains allocated. 

Heep zone 

/ '--I 
Pointer ... ----.. I~~~~~~~ 
Nonrelocateble block -,.---,.----) ~~~~l~l~lfll\lltlJmJ~tIllIl~ 

Figure 3. A Pointer to a Nonrelocatable Block 

Relocatable blocks don't share this property, however. If necessary to 
make room for some other block. the Memory Manager can move a 
relocatable block at any time to a new location in its heap zone. This 
would leave any pointers you might have to the block pointing to the 
wrong place in memory. or "dangling". Dangling pointers can be very 
difficult to diagnose and correct, since their effects typically aren't 
discovered until long after the pointer is left dangling. 

To help avoid dangling pointers. the Memory Manager maintains a single 
master pointer to each relocatable block. allocated from within the 
same heap zone as the block itself. The master pointer is created at 
the same time as the block and set to point to it. What you get back 
from the Memory Manager when you allocate a relocatable block is a 
pointer to the master pointer, called a handle to the block (see Figure 
4). From then on, you always use this handle to refer to the block. 
If the Memory Manager later has to move the block, it has only to 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



8 Memory Manager Programmer's Guide 

update the master pointer to point to the block's new location; the 
master pointer itself is never moved. Since all copies of the handle 
point to the block by double indirection through this same master 
pointer, they can be relied on not to dangle, even after the block has 
been moved. 

(eye) 

Heap zone 

Hlllndle/I--I ... --... )t--------t 

Mester pointer 

Relocatable bloct 

--------- 'IrrrmttIIfl1tl~· ~ 

Figure 4. A Handle to a Relocatable Block 

To maintain the integrity of the memory allocation 
system, always use the Memory Manager routines provided 
(or other Operating System or Toolbox routines that call 
them) to allocate and release space on the heap. Don't 
use the Pascal standard procedures NEW and DISPOSE. 
*** Eventually the versions of these routines in the 
Pascal Library will be changed to work through the Memory 
Manager. *** 

HOW HEAP SPACE IS ALLOCATED 

The Memory Manager allocates space in a heap zone according to a "first 
fit" strategy. When you ask to allocate a block of a certain size, the 
Memory Manager scans the current heap zone looking for a place to put 
the new block. For relocatable blocks, it looks for a free block of at 
least the requested size, scanning forward from the end of the last 
block allocated and "wrapping around" if necessary from the end of the 
zone to the beginning. (Nonrelocatable blocks are handled a bit 
differently, as described below.) As soon as it finds a free block big 
enough, it allocates the requested number of bytes from that block. 
That is, it uses the first free block it finds that's big enough to 
satisfy the request, instead of continuing to search for a better fit. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



HOW HEAP SPACE IS ALLOCATED 9 

If a single free block can't be found that's big enough, the Memory 
Manager tries to create one by compacting the heap zone: moving 
allocated blocks together in order to collect the free space into a 
single larger free block (see Figure 5). Only relocatable,unlocked 
blocks can be moved. The compaction continues until either a free 
block of at least the requested size has been created or the entire 
heap zone has been compacted. 

Heap zone Heap zone 

[oJ AeI0C8teble blocks 

• Nonreloceteble blodes 

o Free blocks 

Before After 

Figure 5. Heap Compaction 

Notice that nonrelocatable blocks (and relocatable ones that are 
temporarily locked) tend to int~rfere with the compaction process by 
forming immovable "islands" in the heap. This can prevent free blo'cks 
from being collected together and lead to fragmentation of the 
available free space, as shown in Figure 6. To minimize this problem, 
the Memory Manager tries to keep all the nonrelocatable blocks together 
at the beginning of the heap zone. When you allocate a nonrelocatable 
block, the Memory Manager will do everything in its power to make room 
for the new block at the lowest available position in the zone, 
including moving other blocks upward, expanding the zone, or purging 
blocks from it (see below). 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



10 Memory Manager Programmer's Guide 

Heap zone Heap zone 

f.:.J Relocatable bloclcs 

• Horreloceteble blocb 

o Free blocks 

Before An. 

Figure 6. Fragmentation of Free Space 

If the Memory Manager still can't satisfy the allocation request after 
compacting the entire heap zone, it next tries expanding the zone by 
the requested number of bytes, rounded upward to the nearest IK. Only 
the original application zone can be expanded, and only up to a certain 
limit (discussed more fully under "The Stack and the Heap", below). If 
any other zone is current, or if the application zone has already 
reached or exceeded its limit, this step is skipped. 

Next the Memory Manager tries to free space by purging blocks from the 
zone. Only relocatable blocks can be purged, and then only if they're 
explicitly marked as unlocked and purgeable. Purging a block removes 
it from its heap zone and frees the space it occupies. The block's 
master pointer is set to NIL, but the space occupied by the master 
pointer itself remains allocated. Any handles to the block now point 
to a NIL master pointer, and are said to be empty. If your program 
later needs to refer to the purged block, it can detect that the handle 
has become empty and ask the Memory Manager to reallocate the block. 
This operation updates the original master pointer, so that all handles 
to the block are left referring correctly to its new location (see 
Figure 7). 

(eye) 
Reallocating a block only recovers the space it occupies, 
not its contents. Any information the block contains is 
lost when the block is purged. It's up to your program 
to reconstitute the block's contents after reallocating 
it. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



HOW HEAP SPACE IS ALLOCATED 11 

Heep zone 

Handle / ,--I --I'--__ ~)I "___ ___ ___, 

t.4aster pointer-
L 

Before purging 

Heap zone 

I I ) 
NIL 

~ 

/,--1 _ 
Handle./' 

M8$ter pointer---

Alter purging 

Heap zone 

Mester pointer 

Alter reallocating 

Figure 7. Purging and Reallocating a Block 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



12 Memory Manager Programmer's Guide 

Finally, if all else fails, the Memory Manager calls the grow ~ 
function, if any, for the current heap zone. This is an optional 
routine that you can provide to take any last-ditch measures your 
program may have at its disposal to try to free some space ,in the zone. 
The term "grow zone function" is misleading, since the function doesn't 
actually attempt to "grow" (expand) the zone. Rather, its purpose is 
to try to create additional free space within the existing zone (such 
as by purging blocks that were previously marked unpurgeable) or reduce 
the fragmentation of existing free space (such as by unlocking 
previously locked blocks). The Memory Manager will call the grow zone 
function repeatedly, compacting the heap again after each call, until 
either it finds the space it's looking for or the grow zone function 
reports that it can offer no further help. In the latter case, the 
Memory Manager will give up and report that it's unable to satisfy your 
allocation request. 

THE STACK AND THE HEAP 

The application heap zone and the application stack share the same area 
in memory, growing toward each other from opposite ends (see Figure 8). 
Naturally it would be disastrous for either to grow so far that it 
collides with and overwrites the other. To help prevent such 
collisions, the Memory Manager enforces a limit on how far the 
application heap zone can grow toward the stack. Your program can set 
this application heap limit to control the allotment of available space 
betwen the stack and the heap. 

Low meuoy 

~Ii~im ~ ~ -I:I-!:I!!!I!!!I!!:I!!:!!!!I!I!I!I!!!!!!!I!I!I!!!!!-:· 
Free space ---_________ ---. __ 

stacie 

HI~ memory 

Figure 8. The Stack and the Heap 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



THE STACK AND THE HEAP 13 

The application heap limit marks the boundary between the space 
available for the application heap zone and that reserved exclusively 
for the stack. At the start of each application program, the limit is 
initialized to allow 8K bytes for the stack. Depending on ,your 
program's needs, you can then adjust the limit to allow more heap space 
at the expense of the stack or vice versa. 

Notice, however, that the limit applies only to expansion of the beap; 
it has no effect on how far the stack can expand. That is, although 
the heap can never expand beyond the limit into space reserved for the 
stack, there's nothing to prevent the stack from crossing the boundary 
and encroaching on space allotted for heap expansion--or even from 
overwriting part of the heap itself. It's up to you to set the limit 
low enough to allow for the maximum stack depth your program will ever 
need. 

(hand) 
Regardless of the limit setting, the application zone is 
never allowed to grow to within lK of the current end of 
the stack. This gives a little extra protection in case 
the stack is approaching the boundary or has crossed over 
onto the heap's side, and allows some safety margin for 
the stack to expand even further. 

To help detect collisions between the stack and the heap, a "stack 
sniffer" routine is run sixty times a second, during the Macintosh's 
vertical retrace interrupt. This routine compares the current ends of 
the stack and the heap and opens an alert box on the screen in case of 
a collision. The stack sniffer can't prevent collisions, only detect 
them after the fact: a lot of computation can take place in a sixtieth 
of a second. In fact, the stack can easily expand into the heap, 
overwrite it, and then shrink back again before the next activation of 
the stack sniffer, escaping detection completely. The stack sniffer is 
useful mainly during software development; the alert box it displays 
can be confusing to your program's end user. Its purpose is to warn 
you, the programmer, that your program's stack and heap are colliding, 
so that you can adjust the heap limit to correct the problem before the 
user ever encounters it. 

UTILITY DATA TYPES 

The Memory Manager includes a number of type definitions for general
purpose use. For working with pointers and handles to allocated 
blocks, there are the following definitions: 

TYPE SignedByte 
Byte 
Ptr 
Handle 

= -128 •• 127; 
a 0 •• 255; 
a ASignedByte; 
a APtr; 

SignedByte stands for an arbitrary byte in memory, just to give Ptr and 
Handle something to point to. You can define a buffer of bufSize 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



14 Memory Manager Programmer's Guide 

untyped memory bytes as a PACKED ARRAY [l •• bufSize] OF SignedByte. 
Byte is an alternative definition that treats byte-length data as 
unsigned rather that signed quantities. 

Because of Pascal's strong typing rules, you can't directly assign a 
value of type Ptr to a variable of some other pointer type. Instead, 
you have to use the Lisa Pascal functions ORO and POINTER to convert 
the pointer to an integer address and then back to a pointer. For 
example, after the declarations 

VAR aPtr: Ptr; 
somethingElse: AThing; 

you can make somethingElse point to the same object as aPtr with the 
assignment 

som~thingElse := POINTER(ORO(aPtr» 

This works because POINTER returns a generalized "pointer to anything" 
(like the Pascal pointer constant NIL) that can be assigned to any 
variable of pointer type or supplied as an argument value for any 
routine parameter of pointer type. 

Type ProcPtr, defined as 

TYPE ProcPtr = Ptr; 

is useful for treating procedures and functions as data objects. If 
aProcPtr is a variable of type ProcPtr and myProc is a procedure (or 
function) defined in your program, you can make aProcPtr pOint to 
myProc by using Lisa Pascal's @ operator: 

aProcPtr := @myProc 

Like the POINTER function, the @ operator produces a "pointer to 
anything". Using it, you can assign procedures and functions to 
variables of type ProcPtr, embed them in data structures, and pass them 
as arguments to other routines. Notice, however, that a ProcPtr 
technically points to a SignedByte, not an actual routine. As a 
result, there's no way in Pascal to access the underlying routine in 
order to call it. Only routines written in assembly language (such as 
those in the Operating System and the Toolbox) can actually call the 
routine designated by a ProcPtr. 

For specifying the sizes of blocks on the heap, the Memory Manager 
defines a special type called Size: 

TYPE Size = LongInt; 

All Memory Manager routines that deal with block sizes expect 
parameters of type Size or return them as results. To specify a size 
bigger than any existing block, you can use the constant maxSize: 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2 



UTILITY DATA TYPES 15 

CONST maxSize = $800000; 

This is an enormous value, equivalent to 8 megabytes or 8,388,608 bytes 
--more than forty times the Macintosh's total memory capacity! 

MEMORY MANAGER DATA STRUCTURES 

This section contains detailed information on the Memory Manager's 
internal data structures. You won't need this information if you're 
just using the Memory Manager routinely to allocate and release blocks 
of memory from the application heap zone. The details are included 
here for programmers with unusual needs (or who are just curious about 
how the Memory Manager works). 

Structure of Heap Zones 

Each heap zone begins with a 52-byte zone header and ends with a 12-
byte ~ trailer (see Figure 9). The header contains all the 
information the Memory Manager needs about that heap zone; the trailer 
is just a minimum-size free block (described in the next section) 
placed at the end of the zone as a marker. All the remaining space 
between the header and trailer is available for allocation. 

Heap zone 

Available space --~ _______ __ 

Zone trailer ________ r. .. ~ .... I"':"! •••• ~ •••• :":" •••• ,:,,:,, •• :.,:,,:, •••• n •.•. T": ••• T": •••• ~ .••• ~.: •• ~ •••• :":".: •• :-=I. 

Figure 9. Structure of a Heap Zone 

In Pascal, a heap zone is defined as a ~ record of type Zone, 
reflecting the structure of the zone header. It's always referred to 
with a ~ pointer of type THz ("the heap zone"): 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



16 Memory Manager Programmer's Guide 

(eye) 

TYPE THz = "'Zone; 
Zone = RECORD 

bkLim: Ptr; 
purgePtr: Ptr; 
hFstFree: Ptr; 
zcbFree: LongInt; 
gZProc: ProcPtr; 
moreMast: INTEGER; 
flags: INTEGER; 
cntReI: INTEGER; 
maxRel: INTEGER; 
cntNReI: INTEGER; 
maxNRel: INTEGER; 
cntEmpty: INTEGER; 
cntHandles: INTEGER; 
minCBFree: LongInt; 
purgeProc: ProcPtr; 
sparePtr: Ptr; 
allocPtr: Ptr; 
heapData: INTEGER 

END; 

The fields of the zone header are for the Memory 
Manager's own internal use. You can examine the contents 
of the zone's fields, but in general it doesn't make 
sense for your program to try to change them. The few 
exceptions are noted below in the discussions of the 
specific fields. 

BkLim is a pointer to the zone's trailer block. Since the trailer is 
the last block in the zone, this constitutes a limit pointer to the 
memory byte following the last byte of usable space in the zone. 

PurgePtr and allocPtr are "roving pointers" into the heap zone that' the 
Memory Manager maintains for its own internal use. When scanning the 
zone for a free block to satisfy an allocation request, the Memory 
Manager begins at the block pointed to by allocPtr instead of always 
starting from the beginning of the zone. When purging blocks from the 
zone, it starts from the block pointed to by purgePtr. 

HFstFree is a pointer to the first free master pointer in the zone. 
Instead of just allocating space for one master pointer each time a 
relocatable block is created, the Memory Manager "preallocates" several 
master pointers at a time, themselves forming a nonrelocatable block 
within the zone. The moreMast field of the zone record tells the 
Memory Manager how many master pointers at a time to preallocate for 
this zone. Master pointers for the system heap zone are allocated 32 
at a time; for the application zone, 64 at a time. For other heap 
zones, you specify the value of moreMast when you create the zone. 

All master pointers that are allocated but not currently in use are 
linked together into a list beginning in the hFstFree field. When you 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



MEMORY MANAGER DATA STRUCTURES 17 

allocate a new relocatable block, the Memory Manager removes the first 
available master pointer from this list, sets it to point to the new 
block, and returns its address to you as a handle to the block. (If 
the list is empty, it allocates a fresh block of moreMast master 
pointers, uses one of them for the new relocatable block, and adds the 
rest to the list.) When you release a relocatable block, its master 
pointer isn't released, but linked onto the beginning of the list to be 
reused. Thus the amount of space devoted to master pointers can 
increase, but can never decrease unless the zone is reinitialized (for 
example, at the start of a new application program). 

The zcbFree field always contains the number of free bytes remaining in 
the zone ("zcb U stands for "zone count of bytes"). As blocks are 
allocated and released, the Memory Manager adjusts zcbFree accordingly. 
This number represents an upper limit on the size of block you can 
allocate from this heap zone. 

(eye) 
It may not actually be possible to allocate a block as 
big as zcbFree bytes. As space in a heap zone becomes 
fragmented, the free bytes typically don't remain 
contiguous but become scattered throughout the zone. 
Because nonrelocatable and locked blocks can't be moved, 
it isn't always possible to collect all the free space 
into a single block by compaction. (Even if the zone 
contains only relocatable blocks, the master pointers to 
these blocks are themselves nonrelocatable "islands" that 
can interfere with the compaction process.) So the 
maximum-size block you can actually allocate from the 
zone may be appreciably smaller than zcbFree bytes. 

The gZProc field is a pointer to the zone's grow zone function, or NIL 
if there is none. You supply this pointer when you create a new heap 
zone and can change it at any time with the SetGrowZone procedure. The 
system and application heap zones initially have no grow zone function. 

Flags contains a set of flag bits strictly for the Memory Manager's 
internal use; your program should never need to access this field. 

entRel, maxRel, cntNRel, maxNRel, cntEmpty, cntHandles, and minCBFree 
are not used by the ROM-based version of the Memory Manager. *** These 
fields are reserved for eventual use by a special RAM-based version 
that will gather statistics on a program's memory usage within each 
heap zone. CntRel and cntNRel will be used to count, respectively, the 
number of relocatable and nonrelocatable blocks currently allocated 
within the zone. MaxRel and maxNRel will record the "historical 
maximum" values attained by cntRel and cntNRel since the program was 
started. CntEmpty will count the current number of empty master 
pointers, cntHandles the total number of master pointers currently 
allocated. MinCBFree will record the historical minimum number of free 
bytes in the zone. *** 
PurgeProc is a pointer to the zone's purge warning procedure (sometimes 
called a "purge hook"), or NIL if there is none. The Memory Manager 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



18 Memory Manager Programmer's Guide 

will call this procedure whenever it purges a block from the zone. You 
can "install" a purge warning procedure in this field to do optional 
housekeeping such as writing out a block's contents to a disk file 
before it's purged. In fact, this is exactly the way the Resource 
Manager keeps the contents of resources up to date if they're changed 
by your program. If you want to install your own purge hook, you have 
to be very careful not to interfere with the one the Resource Manager 
may have installed; see "Special Techniques", later in this manual, for 
further details. 

SparePtr is an extra field included in the zone header for possible 
future expansion. 

The last field of a zone record, heapData, is a dummy field marking the 
beginning of the zone's usable memory space. HeapData nominally 
contains an integer, but this integer has no significance in itself-
it's just ~he first two bytes in the block header of the first block in 
the zone. The purpose of the heapData field is to give you a way of 

. locating the effective beginning of the zone. For example, if myZone 
is a zone pointer, then 

@(myZoneA.heapData) 

is a pointer to ,the first usable byte in the zone, just as 

myZoneA.bkLim 

is a limit pointer to the byte following the last usable byte in the 
zone. 

Structure of Blocks 

Every memory block in a heap zone, whether allocated or free, has a 
block header that the Memory Manager uses to find its way around in the 
zone. Block headers are completely transparent to your program. All 
pointers and handles to allocated blocks point to the beginning of the 
block's contents, following the end of the header. Similarly, all 
block sizes seen by your program refer to the block's logical size (the 
number of bytes in its contents) rather than its physical ~ (the 
number of bytes it actually occupies in memory, including the header 
and any unused bytes at the end of the block). 

Since your program shouldn't normally have to deal with block headers 
directly, there's no Pascal record type defining their structure. 
(It's possible to access block headers in assembly language, but be 
sure you know what you're doing!) A block header consists of 8 bytes, 
as shown in Figure 10. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



MEMORY MANAGER DATA STRUCTURES 19 

31 24 23 o 
Teg byte I Physical block size 

{ 

Aelocateble block: Relative hendle 
- Nonrelocateble block: Pointer to heap zone 

Free block: lnJsed 

Figure 10. Block Header 

The first byte of the block header is the tag byte. discussed in detail 
below. The next 3 bytes contain the block's physical size in bytes. 
Adding this number to the block's address gives the address of the next 
block in the zone. 

The contents of the second long word (4 bytes) in the block header 
depend on the type of block. For relocatable blocks, it contains the 
block's relative handle: a pointer to the block's master pointer. 
expressed as an offset relative to the start of the heap zone rather 
than as an absolute memory address. Adding the relative handle to the 
zone pointer produces a true handle for this block. For nonrelocatable 
blocks, the second long word of the header is just a pointer to the 
block's zone. For free blocks. these 4 bytes are unused. 

7 6 5 4 3 2 1 0 

I I 

I .. I --- Size COITection 

-------1bJaed 

~----------------Tag 

Figure 11. Tag Byte 

The tag byte consists of a 2-bit !!K, 2 unused bits, and a 4-bit size 
correction. as shown in Figure 11. The tag identifies the type of 
block: 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



20 Memory Manager Programmer's Guide 

Tag Block type 
00 Free 
01 Nonrelocatable 
10 Relocatable 

(A tag value of 11 is invalid.) 

The size correction is the number of unused bytes at the end of the 
block, beyond the end of the block's contents. It's equal to the 
difference between the block's logical and physical sizes, excluding 
the 8 bytes of overhead for the block header: 

sizeCorrection = physicalSize - logicalSize - 8 

There are several reasons why a block may contain such unused bytes: 

- The Memory Manager allocates space only in whole 16-bit words-
that is, in even numbers of bytes. If the block's logical size is 
odd, an extra, unused byte is added at the end to keep the 
physical size even. 

- Earlier versions of the Memory Manager used a block header of 12 
bytes instead of 8. Although the header is now only 8 bytes long, 
the Memory Manager still enforces a minimum size of 12 bytes per 
block for compatibility with these earlier versions. If the 
logical size of a block is less than 4, enough extra bytes are 
allocated at the end of the block to bring its physical size up to 
12. 

- The 12-byte minimum applies to all blocks, free as well as 
allocated. If allocating the required number of bytes from a free 
block would leave a fragment of fewer than 12 free bytes, the 
leftover bytes are included unused at the end of the newly 
allocated block instead of being returned to free storage. 

Putting all this together, the minimum overhead required for each 
allocated block is 8 bytes for the block header, plus an additional 4 
bytes for the master pointer if the block is relocatable. The maximum 
possible overhead is 26 bytes, for a relocatable block with a logical 
size of 0 being allocated from a free block of 22 bytes: 8 bytes for 
the header, 4 for the master pointer, 4 to satisfy the 12-byte minimum, 
and a leftover fragment of 10 free bytes that's too small to return to 
free storage. 

Structure of Master Pointers 

The master pointer to a relocatable block has the structure shown in 
Figure 12. The low-order 3 bytes of the long word contain the address 
of the block's contents. The high-order byte contains some flag bits 
that specify the block's current status. Bit 7 of this byte is the 
lock bit (1 if the block is locked, 0 if it's unlocked); bit 6 is the 
~e bit (1 if the block is purgeable, 0 if it's unpurgeable). Bit 5 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



MEMORY MANAGER DATA STRUCTURES 21 

is used by the Resource Manager to identify blocks containing resource 
information for special treatment; such resource blocks are marked by a 
1 in this bit. 

(eye) 

~ 

7 

I 

Before attempting to compare one master pointer with 
another or perform any arithmetic operation on it, don't 
forget to strip off the flag bits in the high-order byte. 

I 
.. 

V' 
II 

I ) To block 

~ , 
6,5 4 3 2 1 0 

i I 

I 
~ 

~ 
, 

I l.hJsed 

Reaou-ce bit 
fUtge bit 
Lock bit 

Figure 12. Structure of a Master Pointer 

RESULT CODES 

Like most other Operating System routines, Memory Manager routines 
generally return a result code in addition to their normal results. 
This is an integer code indicating whether the routine completed its 
task successfully or was prevented by some error condition. The type 
definition for result codes is 

TYPE MemErr = INTEGER; 

In the normal case that no error is detected, the result code is 0; a 
nonzero result code signals an error: 

CONST noErr 
memFullErr 
nilHandleErr 
memWZErr 
memPurErr 

10/10/83 Chernicoff 

= 0; 
= -108; 
= -109; 
== -111; 
= -112; 

{no error} 
{not enough 
{NIL master 
{attempt to 
{attempt to 

CONFIDENTIAL 

room in zone} 
pointer} 
operate on a free block} 
purge a locked block} 

/MEM.MGR/MEHORY.3 



22 Memory Manager Programmer's Guide 

To inspect a result code from Pascal, call the Memory Manager function 
MemError. This function always returns the result code from the last 
Memory Manager call. 

Assembly-language~: When called from assembly language via 
the trap mechanism, not all Memory Manager routines return a 
result code. Those that do always leave it as a word-length 
quantity in the low-order half of register n0 on return from the 
trap. However, some routines leave something else there 
instead: see the descriptions of individual routines for 
details. Just before returning, the trap dispatcher tests the 
lower half of n0 with a TST.W instruction, so that on return 
from the trap the condition codes reflect the status of the 
result code, if any. 

The'stack-based interface routines called from Pascal always 
produce a result code. If the underlying trap doesn't return 
one, the interface routine "manufactures" a result code of noErr 
and stores it where it can later be accessed with MemError. 

The ROM-based version of the Memory Manager does only limited error 
checking. This manual describes only the result codes reported by the 
ROM version. *** There may eventually be a special RAM-based version 
that will do more extensive error checking. If so, any additional 
result codes reported by the RAM version will be documented at that 
time. *** 

USING THE MEMORY MANAGER 

This section discusses how the Memory Manager routines fit into the' 
general flow of your program and gives you an idea of which routines 
you'll need to use. The routines themselves are described in detail in 
the next section. 

Assembly-language~: If you're writing code that will be 
executed via a hardware interrupt, you can't use the Memory 
Manager. This is because an interrupt can occur unpredictably 
at any time. In particular, it can occur while the Memory 
Manager is in the middle of a heap compaction or in some other 
inconsistent internal state. To prevent catastrophes, interrupt 
routines are not allowed to allocate space from the heap. 

There's ordinarily no need to initialize the Memory Manager before 
using it. The system heap zone is automatically initialized each time 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



USING THE MEMORY MANAGER 23 

the system is started up, and the application heap zone each time an 
application program is launched. In the unlikely event that you need 
to reinitialize the application zone while your program is running, you 
can use InitApplZone. 

You can create additional heap zones for your program's own use, either 
from within the original application zone or from the stack, with 
InitZone. If you do maintain more than one heap zone, you can find out 
which zone is current at any given time with GetZone and switch from 
one to another with SetZone. Almost all Memory Manager operations 
implicitly apply to the current heap zone. To refer to the system heap 
zone or the (original) application heap zone, use the Memory Manager 
function SystemZone or ApplicZone. To find out which zone a particular 
block resides in, use HandleZone (if the block is relocatable) or 
PtrZone (if it's nonrelocatable). 

(hand) 
Most applications will just use the original application 
heap zone and never have to worry about which zone is 
current. 

The main work of the Memory Manager is allocating and releasing blocks 
of memory. To allocate a new relocatable block, use NewHandle; for a 
nonrelocatable block, use NewPtr. These functions return a handle or a 
pointer, as the case may be, to the newly allocated block. You then 
use that handle or pointer whenever you need to refer to the block. 

To release a block when you're finished with it, use DisposHandle or 
DisposPtr. You can also change the size of an already allocated block 
with SetHandleSize or SetPtrSize, and find out its current size with 
GetHandleSize or GetPtrSize. Use HLock and HUnlock to lock and unlock 
relocatable blocks. 

(hand) 

(hand) 

In general, you should use relocatable blocks whenever 
possible, to avoid unnecessary fragmentation of free 
space. Use nonrelocatable blocks only for things like 
I/O buffers, queues, and other objects that must have a 
fixed location in memory. For most applications, the 
only Memory Manager routines you'll ever need will be 
NewHandle, DisposRandle, and SetHandleSize. 

If you must lock a relocatable block, try to unlock it 
again at the earliest possible opportunity. Before 
allocating a block that you know will be locked for long 
periods of time, call ReservMem to make room for the 
block as near as possible to the beginning of the zone. 

To speed up your program, you may sometimes want to convert the handle 
to a relocatable block into a copy of the master pointer it points to. 
This is called dereferencing the handle, and allows you to refer to the 
block by single instead of double indirection. Dereferencing a handle 
can be dangerous if you aren't careful; see "Special Techniques" for 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3 



24 Memory Manager Programmer's Guide 

further information. If you ever need to convert a dereferenced master 
pointer back into the original handle, use RecoverHandle. 

Ordinarily, you shouldn't have to worry about compacting the heap or 
purging blocks from it; the Memory Manager automatically takes care of 
these chores for you. You can control which blocks are purgeable with 
HPurge and HNoPurge. If for some reason you want to compact or purge 
the heap explicitly, you can do so with CompactMem or PurgeMem. To 
explicitly purge a specific block, use EmptyHandle. 

(eye) 
If you're working with purgeable blocks, be careful! 
Such blocks may be removed from the heap zone at any time 
in order to satisfy a memory allocation request. So 
before attempting to access any purgeable block, always 
check its handle to make sure the block is still 
allocated. If the handle is empty (that is, if h A = NIL, 
where h is the handle), then the block has been purged: 
before accessing it, you have to reallocate it and update 
its master pointer by calling ReallocHandle. (If it's a 
resource block, use the Resource Manager procedure 
LoadResource instead.) 

You can find out how much free space is left in a heap zone by calling 
FreeMem (to get the total number of free bytes) or MaxMem (to get the 
size of the largest single free block and the maximum amount by which 
the zone can grow). Beware, however: MaxMem also compacts and purges 
the entire zone before returning this information. To limit the growth 
of the application zone, use SetApplLimit; to install a grow zone 
function to help the Memory Manager allocate space in a zone, use 
SetGrowZone. 

After calling any Memory Manager routine, you can examine its result 
code with MemError. 

MEMORY MANAGER ROUTINES 

This section describes all the Memory Manager procedures and functions. 
Each routine is presented first in its Pascal form (if there is one). 
For most routines, this is followed by a box containing information 
needed to use the routine from assembly language. Most Pascal 
programmers can just skip this box, although the list of result codes 
may be of interest to some. For general information on using the 
Memory Manager from assembly language, see "Using the Operating System 
from Assembly Language" *** (to be written) *** and also "Notes for 
Assembly-Language Programmers" in this manual. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



MEMORY MANAGER ROUTINES 25 

Initialization and Allocation 

PROCEDURE InitApplZonej 

Trap macro _ Ini tApplZone 

D0: result code (integer) On exit ---
Result codes o $0000 noErr No error 

InitApplZone initializes the application heap zone and makes it the 
current zone. The contents of any previous application zone are 
completely wiped out; all previously existing blocks in that zone are 
discarded. InitApplZone is called by the Segment Loader when launching 
an application program; you shouldn't normally need to call it from 
within your own program. 

(eye) 
Reinitializing the application zone from within a running 
program is tricky. since the program's code itself 
resides in the application zone. To do it safely. you 
have to move the code of the running program into the 
syste. heap zone. jump to it there. reinitialize the 
application zone. move the code back into the application 
zone. and jump to it again. Don't attempt this operation 
unless you're sure you know what you're doing. 

The application zone has a standard initial size of 6K bytes. 
immediately following the end of the system heap zone, and can be 
expanded as needed in lK increments. Space is initially allocated for 
64 master pointers; should more be needed later. they will be added 64 
at a time. The zone's grow zone function is set to NIL. After a call 
to InitApplZone. MemError will always return noErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



26 Memory Manager Programmer's Guide 

PROCEDURE SetApplBase (startPtr: Ptr); 

Trap macro _SetApplBase 

On entry A0: startPtr (pointer) 

On exit --- D0: result code (integer) 

Result codes o $0000 noErr No error 

SetApplBase changes the starting address of the application heap zone 
to the address designated by startPtr, reinitializes the zone, and 
makes it the current zone. The contents of any previous application 
zone are completely wiped out; all previously existing blocks in that 
zone are discarded. SetApplBase is normally called only by the system 
itself; you should never need to call this procedure from within your 
own program. 

Since the application heap zone begins immediately following the end of 
the system zone, changing its starting address has the effect of 
changing the size of the system zone. The system zone can be made 
larger, but never smaller; if startPtr points to an address lower than 
the current end of the system zone, it's ignored and the application 
zone's starting address is left unchanged. 

In any case, SetApplBase reinitializes the application zone to its 
standard initial size of 6K bytes, which can later be expanded as 
needed in lK increments. Space is initially allocated for 64 master 
pointers; should more be needed later, they will be added 64 at a time. 
The zone's grow zone function is set to NIL. After a call to 
SetApplBase, MemError will always return noErr. 

(eye) 
Like InitApplZone, SetApplBase is a tricky operation, 
because the code of the program itself resides in the 
application heap zone. The recommended procedure for 
doing it safely is the same as for InitApplZone (see 
above); again, don't attempt it unless you know what 
you're doing. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



MEMORY MANAGER ROUTINES 27 

PROCEDURE InitZone (growProc: ProcPtr; masterCount: INTEGER; limitPtr, 
startPtr: Ptr); 

Trap macro InitZone 

On entry A0: pointer to parameter block 

startPtr (4-byte pointer) 

limitPtr (4-byte pointer) 

masterCount (2-byte integer) 

growProc (4-byte pointer) 

On exit --- D0: result code (integer) 

Result codes o $0000 noErr No error 

InitZone creates a new heap zone, initializes its header and trailer, 
and makes it the current zone. The startPtr parameter is a pointer to 
the first byte of the new zone; limitPtr points to the byte 
following the end of the zone. That is, the new zone will occupy 
memory addresses from ORD(startPtr) to ORD(limitPtr) - 1. 

MasterCount tells how many master pointers should be allocated at a 
time for the new zone. The specified number of master pointers are 
created initially; should more be needed later, they will be added in 
increments of this same number. For the system heap zone, masterCount 
is 32; for the application heap zone, it's 64. 

The growProc parameter is a pointer to the grow zone function for the 
new zone, if any. If you're not defining a grow zone function for this 
one, supply a NIL value for growProc. 

The new zone includes a 52-byte header and a 12-byte trailer, so its 
actual usable space runs from ORD(startPtr) + 52 through ORD(limitPtr) 
- 13. In addition, each master pointer occupies 4 bytes within this 
usable area. Thus the total available space in the zone, in bytes, is 
initially 

ORD(limitPtr) - ORD(startPtr) - 64 - 4*masterCount 

This number must not be less than 0. Note that the amount of available 
space in the zone may decrease as more master pointers are allocated. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



28 Memory Manager Programmer's Guide 

After a call to InitZone, MemError will always return noErr. 

PROCEDURE SetApplLimit (zoneLimit: Ptr); 

Trap macro _SetApplLimit 

On entry A0: zoneLimit (pointer) 

On exit --- D0: result code (integer) 

Result codes o $0000 noErr No error 

SetApplLimit sets the application heap limit, beyond which the 
application heap zone can't be expanded. The actual expansion isn't 
under your program's control, but is done automatically by the Memory 
Manager when necessary in order to satisfy an allocation request. Only 
the original application zone can be expanded. 

ZoneLimit is a limit pointer to a byte in memory beyond which the zone 
will not be allowed to grow. That is, the zone can grow to include the 
byte preceding zoneLimit in memory, but no farther. If the zone 
already extends beyond the specified limit it won't be cut back, but it 
will be prevented from growing any more. 

(eye) 
Notice that zoneLimit is not a byte count. To limit the 
application zone to a particular size (say 8K bytes), you 
have to write something like 

SetApplLimit(POINTER(ORD(ApplicZone) + 8192)) 

After a call to SetApplLimit, MemError will always return noErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



MEMORY MANAGER ROUTINES 29 

Heap Zone Access 

FUNCTION GetZone THz; 

Trap macro GetZone 

On exit A0: function result (pointer) 
0: result code (integer) 

Result codes o $0000 "noErr No error 

GetZone returns a pointer to the current heap zone. After the call, 
MemError will always return noErr. 

PROCEDURE SetZone (hz: THz)j 

Trap macro SetZone 

On entry A0: hz (pointer) 

On exit --- D0: result code (integer) 

Result codes o $0000 noErr No error 

SetZone sets the current heap zone to the zone pointed to by hz. After 
the call, MemError will always return noErr. 

FUNCTION SystemZone THz; [Pascal only] 

Trap macro None 

Result codes o $0000 noErr No error 

SystemZone returns a pointer to the system heap zone. After the call, 
MemError will always return noEr1". 

Assembly-Ianguage~: SystemZone is part of the Pascal 
interface to the Memory Manager, not part of the Memory Manager 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



30 Memory Manager Programmer's Guide 

itself. It doesn't reside in ROM and can't be called via a 
trap. To get a pointer to the system heap zone from assembly 
language, use the global variable sysZone. 

FUNCTION ApplicZone THz; [Pascal only] 

Trap macro None 

Result codes o $0000 noErr No error 

ApplicZone returns a pointer to the original application heap zone. 
After the call, MemError will always return noErr. 

Assembly-language~: ApplicZone is part of the Pascal 
interface to the Memory Manager, not part of the Memory Manager 
itself. It doesn't reside in ROM and can't be called via a 
trap. To get a pointer to the application heap zone from 
assembly language, use the global variable applZone. 

Allocating and Releasing Relocatable Blocks 

FUNCTION NewHandle (logicalSize: Size) Handle; 

Trap macro 

On entry 

On exit ---

Result codes 

NewHandle 

D0: logical Size (long integer) 

A0: function result (handle) 
0: result code (integer) 

o 
-108 

$0000 
$FF94 

noErr 
memFullErr 

No error 
Not enough room in zone 

NewHandle allocates a new relocatable block from the current heap zone 
and returns a handle to it (or NIL if a block of that size can't be 
created). The new block will have a logical size of logicalSize bytes 
and will initially be marked unlocked and unpurgeable. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



MEMORY MANAGER ROUTINES 31 

NewHandle will pursue all avenues open to it in order to create a free 
block of the requested size, including compacting the heap zone, 
increasing its size, purging blocks from it, and calling its grow zone 
function, if any. If all such attempts fail, or if the zone has run 
out of free master pointers and there's no room to allocate more, 
NewHandle returns NIL and MemError will return memFullErr after the 
call. If a new block was successfully allocated, NewHandle returns a 
handle to the new block and MemError will return noErr. 

PROCEDURE DisposHandle (h: Handle); 

Trap macro 

On ~ntry 

On exit ---
Result codes 

_DisposHandle 

A0: h (handle) 

A0: 0 
D0: result code (integer) 

o 
-111 

$0000 
$FF91 

noErr 
memWZErr 

No error 
Attempt to operate 
on a free block 

DisposHandle releases the space occupied by the relocatable block whose 
handle is h. If the block is already free, MemError will return 
memWZErr after the call; otherwise it will return noErr. 

(eye) 
After a call to DisposHandle, all handles to the released 
block become invalid and should not be used again. 

FUNCTION GetHandleSize (h: Handle) Size; 

Trap macro 

On entry 

On exit ---

Result codes 

GetHandleSize 

A0: h (handle) 

D0: if)= 0, function result (long integer) 
if < 0, result code (integer) 

o 
-109 
-Ill 

$0000 
$FF93 
$FF91 

noErr 
nilHandleErr 
memWZErr 

No error [Pascal only] 
NIL master pointer 
Attempt to operate 
on a free block 

GetHandleSize returns the logical size, in bytes, of the relocatable 
block whose handle is h. After the call, MemError will return 

10/10/83· Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



32 Memory Manager Programmer's Guide 

nilHandleErr if h points to a NIL master pointer, memWZErr if h is the 
handle of a free block, and noErr otherwise. In case of an error, 
GetHandleSize returns a result of 0. 

Assembly-language note: Recall that the trap dispatcher sets 
the condition codes before returning from a trap by testing the 
low-order half of register 00 with a TST.W instruction. Since 
the block size returned in 00 by _GetHandleSize is a full 32-bit 
long word, the word-length test sets the condition codes 
incorrectly in this case. To branch on the contents of 00, use 
your own TST.L instruction on return from the trap to test the 
full 32 bits of the register. 

PROCEDURE SetHandleSize (h: Handle; newSize: Size); 

Trap macro SetHandleSize 

On entry A0: h (handle) 
00: newSize (long integer) 

On exit --- 00: result code (integer) 

Result codes 0 $0000 noErr No error 
-108 $FF94 memFullErr Not enough room to grow 
-109 $FF93 nilHandleErr NIL master pointer 
-111 $FF91 memWZErr Attempt to operate 

on a free block 

SetHandleSize changes the logical ,size of the relocatable block whose 
handle is h to newSize bytes. After the call, MemError will return 
memFullErr if newSize is greater than the block's current size and 
enough room can't be found for the block to grow, nilHandleErr if h 
points to a NIL master pointer, memWZErr if h is the handle of a free 
block, and noErr otherwise. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



MEMORY MANAGER ROUTINES 33 

FUNCTION HandleZone (h: Handle) THz; 

Trap macro 

On entry 

On exit ---

Result codes 

HandleZone 

A0: h (handle) 

A0: function result (pointer) 
D0: result code (integer) 

~ 
-Ill 

$~000 
$FF91 

noErr 
memWZErr 

No error 
Attempt to operate 
on a free block 

HandleZone returns a pointer to the heap zone containing the 
relocatable block whose handle is h. 

If handle h is empty (points to a NIL master pointer). HandleZone 
returns a pointer to the current heap zone and doesn't report an error: 
after the call. MemError will return noErr. If h is the handle of a 
free block. MemError will return memWZErr; in this case. the result 
returned by HandleZone is meaningless and should be ignored. 

FUNCTION RecoverHandle (p: Ptr) Handle; 

Trap macro RecoverHandle 

On entry A0: p (pointer) 

On exit A0: function result (handle) --- D0: unchanged (!) 

Result codes ~ $~00~ noErr No error [Pascal only] 

RecoverHandle returns a handle to the relocatable block pointed to by 
p. If you've "dereferenced" a handle (converted it to a simple 
pointer) for efficiency. you can use this function to get back the 
original handle. After the call. MemError will always return noErr. 

Assembly-language~: Through a minor oversight. the trap 
RecoverHandle neglects to return a result code in register D0; 

the previous contents of D0 are preserved unchanged. The stack
based interface routine called from Pascal always produces a 
result code of noErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.4 



34 Memory Manager Programmer's Guide 

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size); 

Trap macro ReallocHandle 

On entry A0: h (handle) 
D0: logicalSize (long integer) 

On exit --- A0: original h or NIL 
D0: result code (integer) 

Result codes 0 $0000 noErr No error 
-108 $FF94 memFullErr Not enough room in zone 
-Ill $FF91 memWZErr Attempt to operate 

on a free block 
-112 $FF90 memPurErr Block is locked 

ReallocHandle allocates a new relocatable block with a logical size of 
logical Size bytes. It then updates handle h by setting its master 
pointer to pOint to the new block. The main use of this procedure is 
to reallocate space for a block that has been purged. Normally h is an 
empty handle, but it need not be: if it points to an existing block, 
that block is released before the new block is created. 

After the call, MemError will return noErr if ReallocHandle succeeds in 
allocating a block of the requested size; if room can't be made for the 
requested block, it will return memFullErr. If h is the handle of an 
existing block, MemError will return memPurErr if the block is locked 
and memWZErr if it's already free. In case of an error, no new block 
is allocated and handle h is left unchanged. 

Assembly-language~: On return from ReallocHandle, regi'ster 
A0 contains the original handle h, or 0 (NIL) if no room could 
be found for the requested block. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 3S 

Allocating and Releasing Nonrelocatable Blocks 

FUNCTION NewPtr (logicalSize: Size) Ptr; 

Trap macro 

On entry 

On exit ---
Result codes 

NewPtr 

D0: logical Size (long integer) 

A0: function result (pointer) 
D0: result code (integer) 

o 
-108 

$0000 
$FF94 

noErr 
memFullErr 

No error 
Not enough room in zone 

NewPtr allocates a new nonrelocatable block from the current heap 
zone and returns a pointer to it (or NIL if a block of that size can't 
be created). The new block will have a logical size of logical Size 
bytes. 

NewPtr will pursue all avenues open to it in order to create a free 
block of the requested size, including compacting the heap zone, 
increasing its size, purging blocks from it, and calling its grow zone 
function, if any. If all such attempts fail, NewPtr returns NIL and 
MemError will return memFullErr after the call. If a new block was 
successfully allocated, NewPtr returns a pointer to the new block and 
MemError will return noErr. 

PROCEDURE DisposPtr (p: Ptr); 

Trap macro 

On entry 

On exit ---
Result codes 

_DisposPtr 

A0: p (pointer) 

A'I: 0 
D'I: result code (integer) 

'I 
-111 

$0000 
$FF91 

noErr 
memWZErr 

No error 
Attempt to operate 
on a free block 

DisposPtr releases the space occupied by the nonrelocatable block 
pointed to by p. If the block is already free, HemError will return 
memWZErr after the call; otherwise it will return noErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.S 



36 Memory Manager Programmer's Guide 

(eye) 
After a call to OisposPtr, all pointers to the released 
block become invalid and should not be used again. 

FUNCTION GetPtrSize (p: Ptr) Size; 

Trap macro 

.Q!!. entry 

On exit ---

GetPtrSize 

A0: p (pointer) 

00: if >- 0, function result (long integer) 
if < 0, result code (integer) 

Result codes 0 $0000 noErr 
$FF91 memWZErr 

No error [Pascal only] 
Attempt to operate -Ill 
on a free block 

GetPtrSize returns the logical size, in bytes, of the nonrelocatable 
block pointed to by p. After the call, HemError will return memWZErr 
if p points to a free block and noErr otherwise. In case of an error, 
GetPtrSize returns a result of 0. 

Assembly-language~: Recall that the trap dispatcher sets 
the condition codes before returning from a trap by testing the 
low-order half of register 00 with a TST.W instruction. Since 
the block size returned in 00 by GetPtrSize is a full 32-bit 
long word, the word-length test sets the condition codes 
incorrectly in this case. To branch on the contents of 00, use 
your own TST.L instruction on return from the trap to test the 
full 32 bits of the register. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 37 

PROCEDURE SetPtrSize (p: Ptr; newSize: Size); 

Trap macro 

On entry 

On exit ---
Result codes 

SetPtrSize 

A0: p (pointer) 
D0: newSize (long integer) 

00: result code (integer) 

o 
-108 
-Ill 

$0000 
$FF94 
$FF91 

noErr 
memFullErr 
memWZErr 

No error 
Not enough room to grow 
Attempt to operate 
on a free block 

SetPtrSize changes the logical size of the nonrelocatable block pointed 
to by p to newSize bytes. After the call, MemError will return 
memFullErr if newSize is greater than the block's current size and 
enough room can't be found for the block to grow, memWZErr if p points 
to a free block, and noErr otherwise. 

FUNCTION PtrZone (p: Ptr) THZj 

Trap macro 

On entry 

On exit ---
Result codes 

PtrZone 

A0: p (pointer) 

A0: function result (pointer) 
D0: result code (integer) 

o 
-Ill 

$0000 
$FF91 

noErr 
memWZErr 

No error 
Attempt to operate 
on a free block 

PtrZone returns a pointer to the heap zone containing the 
nonrelocatable block pointed to by p. If P points to a free block, 
MemError will return memWZErr after the call; in this case, the result 
returned by PtrZone is meaningless and should be ignored. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



38 Memory Manager Programmer's Guide 

Freeing Space on the Heap 

FUNCTION FreeMem LongInt; 

Trap macro FreeMem 

On exit 00: function result (long integer) ---
Result codes o $0000 noErr No error [Pascal only] 

FreeMem returns the total amount of free space in the current heap 
zone, in bytes. Notice that it may not actually be possible to 
allocate a block of this size, because of fragmentation due to 
nonrelocatable or locked blocks. After a call to FreeMem, MemError 
will always return noErr. 

FUNCTION MaxMem (VAR grow: Size) Size; 

Trap macro 

On exit 

Result codes 

MaxMem 

D0: function result (long integer) 
A0: grow (long integer) 

o $0000 noErr No error [Pascal only] 

MaxMem compacts the current heap zone and purges all purgeable blocks 
from the zone. It returns as its result the size in bytes of the 
largest contiguous free block in the zone after the compaction. If the 
current zone is the original application heap zone, the variable 
parameter grow is set to the maximum number of bytes by which the zone 
can grow. For any other heap zone, grow is set to 0. MaxMem doesn't 
actually expand the zone or call its grow zone function. After the 
call, MemError will always return noErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 39 

FUNCTION CompactMem (cbNeeded: Size) Size; 

Trap macro 

On entry 

On exit ---
Result codes 

_CompactMem 

D0: cbNeeded (long integer) 

D0: function result (long integer) 
A0: pointer to desired block or NIL 

o $0000 noErr No error [Pascal only] 

CompactMem compacts the current heap zone by moving relocatable blocks 
forward and collecting free space together until a contiguous block of 
at least cbNeeded free bytes is found or the entire zone is compacted. 
For each block that's moved. the master pointer is updated so that all 
handles to the block remain valid. CompactMem returns the size in 
bytes of the largest contiguous free block it finds t but doesn't 
actually allocate the block. After the call, MemError will always 
return noErr. 

(hand) 
To force a compaction of the entire heap zone t set 
cbNeeded equal to maxSize. 

Assembly-language note: On return from CompactMem t register A0 
contains a pointer to a free block of at-least cbNeeded bytes, 
or 0 (NIL) if no such block could be found. 

FUNCTION ResrvMem (cbNeeded: Size); 

Trap macro 

On entry 

On exit ---

Result codes 

ResrvHem 

00: cbNeeded (long integer) 

A0: pointer to desired block or NIL 
D0: result code (integer) 

o 
-108 

$0000 
$FF94 

noErr 
memFullErr 

No error 
Not enough room in zone 

ResrvMem creates free space for a block of cbNeeded contiguous bytes at 
the lowest possible position in the current heap zone. It will try 
every available means to place the block as close as possible to the 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



40 Memory Manager Programmer's Guide 

beginning of the zone, including moving other blocks upward, expanding 
the zone, or purging blocks from it. If a free block of at least the 
requested size can't be created, MemError will return memFullErr after 
the call; otherwise it will return noErr. Notice that ResrvMem doesn't 
actually allocate the block. 

(hand) 
When you allocate a relocatable block that you know will 
be locked for long periods of time, call ResrvMem first. 
This reserves space for the block near the beginning of 
the heap zone, where it will interfere with compaction as 
little as possible. It isn't necessary to call ResrvMem 
for a nonrelocatable block; NewPtr calls it 
automatically. 

Assembly-language~: On return from _ResrvMem, register A0 
contains a pointer to the desired free block of at least 
cbNeeded bytes, or 0 (NIL) if no such block could be created. 

FUNCTION PurgeMem (cbNeeded: Size); 

Trap macro 

.2!!. entry 

On exit ---
Result codes 

_PurgeMem 

D0: cbNeeded (long integer) 

A0: pointer to desired block or NIL 
D0: result code (integer) 

o 
-108 

$0000 
$FF94 

noErr 
memFullErr 

No error 
Not enough room in zone 

PurgeMem purges blocks from the current heap zone until a contiguous 
block of at least cbNeeded free bytes is created or the entire zone is 
purged. Only relocatable, unlocked, purge able blocks can be purged. 
If a free block of at least the requested size is found, MemError will 
return noErr after the call; if not, it will return memFullErr. Notice 
that PurgeMem doesn't actually allocate the block. 

(hand) 
To force a purge of the entire heap zone, set cbNeeded 
equal to maxSize. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 41 

Assembly-language note: On return from PurgeMem, register A0 
contains a pointer to a free block of at-least cbNeeded bytes, 
or 0 (NIL) if no such block could be found. 

PROCEDURE EmptyHandle (h: Handle); 

Trap macro _EmptyHandle 

On entry A0: h (handle) 

On exit A0: h (handle) --- 00: result code (integer) 

Result codes 0 $0000 noErr No error 
-Ill $FF91 memWZErr Attempt to operate 

on a free block 
-112 $FF90 memPurErr Block is locked 

EmptyHandle empties handle h: that is, it purges the relocatable block 
whose handle is h from its heap zone and sets its master pointer to 
NIL. If h is already empty, EmptyHandle does nothing. 

(hand) 
The main use of this procedure is to release the space a 
block occupies without having to update every existing 
handle to the block. Since the space occupied by the 
master pointer itself remains allocated, all handles 
pointing to it remain valid but become empty. When you 
later reallocate space for the block with ReallocHandle, 
the master pointer will be updated, causing all existing 
handles to point correctly to the new block. 

The block whose handle is h must be unlocked, but need not be 
purgeable: if you ask to purge an unpurgeable block, EmptyHandle 
assumes you know what you're doing and purges the block as requested. 
If the block is locked, EmptyHandle doesn't purge it; after the call, 
MemError will return memPurErr. If the block is already free, MemError 
will return memWZErr. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



42 Memory Manager Programmer's Guide 

Properties of Relocatable Blocks 

PROCEDURE HLock (h: Handle); 

Trap macro 

On entry 

On exit 

Result codes 

HLock 

A0: h (handle) 

D0: result code (integer) 

o 
-109 
-111 

$0000 
$FF93 
$FF91 

noErr 
nilHandleErr 
memWZErr 

No error 
NIL master pointer 
Attempt to operate 
on a free block 

HLock locks a relocatable block, preventing it from being moved within 
its heap zone. After the call, MemError will return nilHandleErr if 
handle h is empty or memWZErr if it points to a free block, otherwise 
noErr. If the block is already locked, HLock does nothing. 

PROCEDURE HUnlock (h: Handle); 

Trap macro 

On entry. 

On exit ---
Result codes 

HUnlock 

A0: h (handle) 

D0: result code (integer) 

" -109 
-Ill 

$0000 
$FF93 
$FF91 

noErr 
nilHandleErr 
memWZErr 

No error 
NIL master pointer 
Attempt to operate 
on a free block 

HUnlock unlocks a relocatable block, allowing it to be moved within its 
heap zone. After the call, MemError will return nilHandleErr if handle 
h is empty or memWZErr if it points to a free block, otherwise noErr. 
If the block is already unlocked, HUnlock does nothing. 

.10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 43 

PROCEDURE HPurge (h: Handle); 

Trap macro _HPurge 

On entry A0: h (handle) 

On exit D0: result code (integer) ---
Result codes 0 $0000 noErr 

-109 $FF93 nil Handle Err 
-Ill $FF91 memWZErr 

No error 
NIL master pointer 
Attempt to operate 
on a free block 

HPurge marks a relocatable block as purgeable. After the call, 
MemError will return nilHandleErr if handle h is empty or memWZErr if 
it points to a free block, otherwise noErr. If the block is already 
purgeable, HPurge does nothing. 

PROCEDURE HNoPurge (h: Handle); 

Trap macro _HNoPurge 

On entry A0: h (handle) 

On exit D0: result code (integer) ---
Result codes 0 $0000 noErr 

-109 $FF93 nilHandleErr 
-111 $FF91 memWZErr 

No error 
NIL master pointer 
Attempt to operate 
on a free block 

HNoPurge marks a relocatable block as unpurgeable. After the call, 
MemError will return nilHandleErr if handle h is empty or memWZErr if 
it points to a free block, otherwise noErr. If the block is already 
unpurgeable, HNoPurge does nothing. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



44 Memory Manager Programmer's Guide 

Grow Zone Functions 

PROCEDURE SetGrowZone (growZone: ProcPtr); 

Trap macro SetGrowZone 

On entry A0: growZone (pointer) 

On exit D0: result code (integer) 

Result codes o $0000 noErr No error 

SetGrowZone sets the current heap zone's grow zone function as 
designated by the growZone parameter. A NIL parameter value removes 
any grow zone function the zone may previously have had. After the 
call, MemError will always return noErr. 

(hand) 
If your program presses the limits of the available heap 
space, it's a good idea to have a grow zone function of 
some sort. At the very least, the grow zone function 
should detect when the Memory Manager is about to run out 
of space at a critical time (see GZCritical, below) and 
take some graceful action--such as displaying an alert 
box with the message "Out of memory"--instead of just 
failing unpredictably. *** There may eventually be a 
default grow zone function that does this. *** 

The Memory Manager calls the grow zone function as a last resort when 
trying to allocate space, after failing to create a block of the needed 
size by compacting the zone, increasing its size (in the case of the 
original application zone), or purging blocks from it. Memory Manager 
routines that may cause the grow zone function to be called are 
NewHandle, NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, and 
ResrvMem. 

The grow zone function should be of the form 

FUNCTION GrowTheZone (cbNeeded: Size) : Size; 

(Of course, the name GrowTheZone is only an example; you can give the 
function any name you like.) The cbNeeded parameter gives the physical 
size of the needed block in bytes, including the block header. The 
grow zone function should attempt to create a free block of at least 
this size. It should return as its result the number of additional 
bytes it has freed within the zone, but this number need not.be 
accurate. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 45 

If the grow zone function returns 0, the Memory Manager will give up 
trying to allocate the needed block and will signal failure with the 
result code memFu11Err. Otherwise it will compact the heap zone and 
try again to allocate the block. If still unsuccessful, it will 
continue to call the grow zone function repeatedly, compactlng the zone 
again after each call, until it either succeeds in allocating the 
needed block or receives a zero result and gives up. 

The usual way for the grow zone function to free more space is to call 
EmptyHand1e to purge blocks that were previously marked unpurgeable. 
Another possibility is to unlock blocks that were previously locked, in 
order to eliminate immovable "islands" that may have been interfering 
with the compaction process and fragmenting the existing free space. 

(hand) 

(eye) 

Although just unlocking blocks doesn't actually free any 
additional space in the zone, the grow zone function 
should still return a nonzero result in this case. This 
signals the Memory Manager to compact the heap and try 
again to allocate the needed block. 

Depending on the circumstances in which the grow zone 
function is called, there may be particular blocks within 
the heap zone that must not be purged or released. For 
instance, if your program is attempting to increase the 
size of a relocatab1e block with SetHandleSize, it would 
be disastrous to release the block being expanded. To 
deal with such cases safely, it's essential to understand 
the use of the functions GZCritica1 and GZSaveHnd (see 
below). 

FUNCTION GZCritical BOOLEAN; [Pascal only] 

Trap macro None 

Result codes None 

GZCritica1 returns TRUE if the Memory Manager critically needs the 
requested space: for example, to create a new relocatable or 
nonrelocatable block or to reallocate a handle. It returns FALSE in 
less critical cases, such as ResrvMem trying to move a block in order 
to reserve space as low as possible in the heap zone or SetHandleSize 
trying to increase the size of a relocatable block by moving the block 
above it. 

(eye) 
If you're writing a grow zone function in Pascal, you. 
should always call GZCritica1 and proceed only if the 
result is TRUE. All the information you need to handle 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



46 Memory Manager Programmer's Guide 

the critical cases safely is the value of GZSaveHnd (see 
below). The noncritical cases require additional 
information that isn't available from Pascal, so your 
grow zone function should just return 0 and not attempt 
to free any space. 

Assembly-language~: GZCritical is part of the Pascal 
interface to the Memory Manager, not part of the Memory Manager 
itself. It doesn't reside in ROM and can't be called via a 
trap. To find out whether a given grow zone call is critical, 
use the following magical incantation: 

Critical 

MOVE.L 
BEQ.S 
CMP.L 
BEQ.S 

CLR.L 
RTS 

. . . 

gzMoveHnd,D0 
Critical 
gzRootHnd,D0 
Critical 

4(SP) ;If noncritical, just return 0 

;Handle critical case 

To handle the critical cases safely (and the noncritical ones if 
you choose to do more than just return 0), see the note below 
under GZSaveHnd. 

FUNCTION GZSaveHnd Handle; [Pascal only] 

Trap macro None 

Result codes None 

GZSaveHnd returns a handle to a relocatable block that mustn't be 
purged or released by the grow zone function, or NIL if there is no 
such block. The grow zone function will be safe if it avoids purging 
or releasing this block, provided that the grow zone call was 
critical. To handle noncritical cases safely, further information is 
needed that isn't available from Pascal. 

Assembly-language~: GZSaveHnd is part of the Pascal 
interface to the Memory Manager, not part of the Memory Manager 
itself. It doesn't reside in ROM and can't be called via a 
trap. You can find the handle it returns in the global variable 
gzRootHnd. The "further information" that isn't available from 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



MEMORY MANAGER ROUTINES 47 

Pascal is the contents of two other global variables, gzRootPtr 
and gzMoveHnd, which may be nonzero in noncritical cases. If 
gzRootPtr is nonzero, it's a pointer to a nonrelocatable block 
that must not be released; gzMoveHnd is a handle to a 
relocatable block that must not be released but may be purged. 

Utility Routines 

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size); 

Trap macro BlockMove 

On entry A0: sourcePtr (pointer) 
AI: destPtr (pointer) 
D0: byteCount (long integer) 

On exit D0: result code (integer) ---
Result codes 0 $0000 noErr No error 

BlockMove moves a block of byteCount consecutive bytes from the address 
designated by sourcePtr to that designated by destPtr. No checking of 
any kind is done on the addresses; no pointers are updated. After the 
call, MemError will always return noErr. 

FUNCTION TopMem Ptr; [Pascal only] 

Trap macro None 

Result codes o $0000 noErr No error 

TopMem returns a pointer to the address following the last byte of 
physical memory. After the call, MemError will always return noErr. 

Assembly-language~: TopMem is part of the Pascal interface 
to the Memory Manager, not part of the Memory Manager itself. 
It doesn't reside in ROM and can't be called via a trap. To get 
a pointer to the end of physical memory from assembly language, 
use the global variable memTop. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5 



48 Memory Manager Programmer's Guide 

FUNCTION MemError MemErr; [Pascal only] 

Trap macro None 

Result codes None 

MemError returns the result code produced by the last Memory Manager 
routine to be called. 

Assembly-language note: MemError is part of the Pascal 
interface to the Memory Manager, not part of the Memory Manager 
itself. It doesn't reside in ROM and can't be called via a 
trap. To get the a routine's result code from assembly 
language, look in register D0 on return from the routine. 

SPECIAL TECHNIQUES 

This section describes some special or unusual techniques that you may 
find useful. 

Dereferencing a Handle 

Accessing a block by double indirection, through a handle instead of a 
simple pointer, requires an extra memory reference. For efficiency, 
you may sometimes want to dereference the handle--that is, convert it 
to a copy of the master pointer, then use that pointer to access the 
block by single indirection. But be carefull Any operation that 
allocates space from the heap may cause the underlying block to be 
moved or purged. In that event, the master pointer itself will be 
correctly updated, but your copy of it will be left dangling. 

One way to avoid this common type of program bug is to lock the block 
before dereferencing its handle: for example, 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.6 



TABLE OF CONTENTS 49 

VAR aPointer: Ptr; 
aHandle: Handle; · . . 

BEGIN 

END 

· · . . , 
aHandle := NewHandle( ••• ); 

· · . . , 
HLock(aHandle); 
aPointer := aHandle"'; 

WHILE • • • DO 
BEGIN 

••• aPointer"' ••• 
END; 

HUnlock(aHandle); 

{create a relocatable block} 

{lock block before dereferencing} 
{convert handle to simple pointer} 

{use simple pointer inside loop} 

{unlock block when finished} 

Assembly-language~: To dereference a handle in assembly 
language, just copy the master pointer into an address register 
and use it to access the block by single indirection. Remember 
that the master pointer points to the block's contents, not its 
header! 

LOOP 

MOVE.L IblockSize,D0 ;set up block size for NewHandle 
NewHandle ;create relocatable block 

MOVE.L A0,aHandle ;save handle for later use · . . 
MOVE.L 
MOVE.L 
_HLack 

MOVE.L 

· . . 
MOVE · . . 
Bcc.S 

aHandle,AI 
AI,A0 

(AI) ,A2 

••• (A2) ••• 

LOOP 

MOVE.L Al,A0 
HUnlock · . . 

;get back handle 
;lock block before dereferencing 

;convert handle to simple pointer 

;use simple pointer inside loop 

;loop back on some condition 

;unlock block when finished 

Remember, however, that when you lock a block it becomes an "island" in 
the heap that may interfere with compaction and cause free space to 
become fragmented. It's recommended that you use this techn-ique only 
in parts of your program where efficiency is critical, such as inside 
tight inner loops that are executed many times. 



50 Memory Manager Programmer's Guide 

(eye) 
Don't forget to unlock the block again when you're 
through with the dereferenced handle! 

Instead of locking the block, you can update your copy of the master 
pointer after any "dangerous" operation (one that can invalidate the 
pointer by moving or purging the block it points to). Memory Manager 
routines that can move or purge blocks in the heap are NewHandle, 
NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, ResrvMem, CompactMem, 
PurgeMem, and MaxMem. Since these routines can be called indirectly 
from other Operating System or Toolbox routines, you should assume that 
any call to the OS or Toolbox can potentially leave your dereferenced 
pointer dangling. *** Eventually there will be a technical note 
listing which OS and Toolbox routines are dangerous and which 
aren't. *** 
(hand) 

If you aren't performing any dangerous operations, you 
needn't worry about updating the pointer (or locking the 
block either, for that matter). 

Subdividing the Application Heap Zone 

In some applications, you may want to subdivide the original 
application heap zone into two or more independent zones to be used for 
different purposes. In doing this, it's important not to destroy any 
existing blocks in the original zone (such as those containing the code 
of your program). The recommended procedure is to allocate space for 
the subzones as nonrelocatable blocks within the original zone, then 
use InitZone to initialize them as independent zones. For example, to 
divide the available space in the application zone in half, you might 
write something like the following: 



TABLE OF CONTENTS 51 

CONST minSize = 52 + 12 + 32*(12 + 4); {zone header, zone trailer,} 
{ and 32 minimum-size blocks} 
{ with master pointers} 

VAR myZonel, myZone2: THz; 
start, limit: Ptr; 
availSpace, zoneSize: Size; 

BEGIN 

END 

, 
SetZone(ApplicZone); 
availSpace := CompactMem(maxSize); 
zoneSize := 2 * (availSpace DIV 4); 

IF zoneSize < (minSize + 8) 

~N ••• 
ELSE 

BEGIN 
zoneSize := zoneSize - 8; 

{size of largest free block} 
{force new zone size to an} 
{ even number of bytes} 
{need 8 bytes for} 
{ block header} 
{error--not enough room} 

{adjust for block header} 

start := NewPtr(zoneSize); {allocate a nonrel. block} 
limit := POINTER(ORD(start) + zoneSize); 
InitZone(NIL, 32, limit, start); 
my Zone 1 :- POINTER(ORD(start»; {convert Ptr to THz} 

start := NewPtr(zoneSize); {allocate a nonrel. block} 
limit :- POINTER(ORD(start) + zoneSize); 
InitZone(NIL, 32, limit, start); 
my Zone 2 :- POINTER(ORD(start» {convert Ptr to THz} 

E~; 



52 Memory Manager Programmer's Guide 

Assembly-language note: The equivalent assembly code might be 

minSize .EQU 52+12+<32*<12+4» ;zone header and trailer, plus 
32 minimum-size blocks 
with master pointers 

MOVE.L applZone,A0 
SetZone 

MOVE.L #maxSize,00 
_CompactMem 

;get original application zone 
;make it current 

;compact entire zone 
;D0 has size of largest free block 

ASR.L 
ASL.L 
CMP.L 
BLO 

#2,D0 ;force new zone size to an 
#1,D0 ; even number of bytes 
#minSize+8,00 ;need 8 bytes for block header 
NoRoom ;error if < minimum size 

SUBQ.L 118,D0 
MOVE.L D0,D1 

NewPtr 
MOVE.L A0,myZonel 

CLR.L -(SP) 
MOVE.W #32,-(SP) 
MOVE.L A0,-(SP) 
ADD.L D1,(SP) 
MOVE.L A0,-(SP) 

MOVE.L SP,A0 
InitZone 

MOVE.L 
NewPtr 

MOVE.L 

MOVE.L 
ADD.L 
MOVE.L 

Dl,D0 

A0,myZone2 

A0,4(SP) 
Dl,(SP) 
A0,(SP) 

MOVE.L SP,A0 
InitZone 

AnD.W #14,SP 

;adjust for block header 
;save zone size 
;allocate nonrelocatable block 
;store zone pointer 

;NIL grow zone function 
;allocate 32 master pointers 
;A0 has zone pointer 
;convert to limit pointer 
;push as start pointer 

;point to argument block 
;create zone 1 

;get back zone size 
;allocate nonrelocatable block 
;store zone pointer 

;move zone pointer to stack 
;convert to limit pointer 
;move to stack as start pointer 

;point to argument block 
;create zone 2 
;pop arguments off stack 



TABLE OF CONTENTS 53 

Creating a Heap Zone on the Stack 

Another place you can get the space for a new heap zone is from the 
stack. For example, 

CONST zoneSize = 2048; 
VAR zoneArea: PACKED ARRAY [l •• zoneSize) OF SignedBytej 

stackZone: THz; 
limit: Ptr; . . . 

BEGIN 
· , 

stackZone :~ @zoneArea; 
limit := POINTER(ORD(stackZone) + zoneSize); 
InitZone(NIL, 16, limit, @zoneArea); 

END 

Assembly-language~: Here's how you might do the same thing 
in assembly language: 

zoneSize .EQU 2048 
· . . 
MOVE.L 
SUB.W 
MOVE.L 
MOVE.L 

CLR.L 
MOVE.W 
MOVE.L 
MOVE.L 

SP,A2 
f/zoneSize, SP 
SP,AI 
Al,stackZone 

-(SP) 
f/16,-(SP) 
A2,-(SP) 
Al,-(SP) 

MOVE.L SP,A0 
InitZone 

ADD. W 1114, SP 
· . . 

;save stack pointer for limit 
;make room on stack 
;save stack pointer for start 
;store as zone pointer 

;NIL grow zone function 
;allocate 16 master pointers 
;push limit pointer 
;push start pointer 

;point to argument block 
;create new zone 
;pop arguments off stack 



54 Memory Manager Programmer's Guide 

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 

General information about how to use the Macintosh Operating System 
from assembly language is *** (will be) *** given elsewhere. This 
section contains special notes of interest to programmers who will be 
using the Memory Manager from assembly language. 

The primary aids to assembly-language programmers are files named 
SYSEQU.TEXT, SYSMACS.TEXT, SYSERR.TEXT, and HEAPDEFS.TEXT. If you use 
.INCLUDE to include these files when you assemble your program, all the 
Memory Manager constants, addresses of global variables, trap macros, 
error codes, and masks and offsets into fields of structured types will 
be available in symbolic form. 

Constants, 

The file HEAPDEFS.TEXT defines a number of useful constants that you 
can use in your program as immediate data values. For example, to push 
the default master-point count onto the stack as an argument for 
_InitZone, you might write 

(hand) 

MOVE.W #dfltMasters,-(SP) 

It's a good idea to refer to these constants in your 
program by name instead of using the numeric value 
directly, since some of the values shown may be subject 
to change. Some of the constants are based on an 
eventual S12K memory configuration; the present Macintosh 
has 128K of RAM. 

The following constants are defined in HEAPDEFS.TEXT: 

minFree .EQU 12 ; minimum block size 
maxSize .EQU $7FFFF ; maximum block size (SI2K - 1) 
minAddr .EQU 0 ; minimum legal address 
maxAddr .EQU $80000 ;maximum legal address (SI2K) 
dfltMasters .EQU 32 ;default master-pointer count 
maxMasters .EQU $1000 ;maximum master-pointer count (4K) 
sysZoneSize .EQU $4000 ;size of system heap zone (16K) 
applZoneSize .EQU $1800 ;initial size of application zone (6K) 
minZone 

dfltStackSize 

tybkFree 
tybkNRel 
tybkRel 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

heapData+<4*minFree>+<8*dfltMasters> 

$00002000 

o 
1 
2 

;minimum size of application zone 
;initial space allotment for stack 

;tag value for free block 
;tag value for nonrelocatable block 
;tag value for relocatable block 

(8K) 



NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 55 

One global constant pertinent to the Memory Manager is defined in 
SYSEQU.TEXT: 

heapStart .EQU $0B00 ;start address of 
system heap zone (2816) 

Global Variables 

The Memory Manager's global variables are located in the system 
communication area and defined in the file SYSEQU.TEXT. To access a 
global variable, just refer to it by name as an absolute address. For 
example, to load a pointer to the current heap zone into register A2, 
write 

MOVE.L theZone,A2 

The following global variables are used by the Memory Manager: 

Variable 
memTop 
bufPtr 
minStack 
defltStack 
heap End 
applLimit 
sysZone 
applZone 
the Zone 

Trap Macros 

Contents 
Limit address (end plus one) of physical memory 
Base address of stack (grows downward from here) 
Minimum space allotment for stack (lK) 
Default space allotment for stack (8K) 
Current limit address of application heap zone 
Application heap limit 
Address of system heap zone 
Address of application heap zone 
Address of current heap zone 

All assembly-language trap macros for the Memory Manager (as well as 
the rest of the Operating System) are defined in the file SYSMACS.TEXT. 
To call a Memory Manager routine from assembly language via the trap 
mechanism, just use the name of the trap macro as the operation code of 
an instruction. For example, to find out the number of free bytes in 
the current heap zone, use the instruction 

FreeMem 

As stated in the description of FreeMem above, the number of free bytes 
will be in register D0 on return from the trap. 



56 Memory Manager Programmer's Guide 

Result Codes 

The file SYSERR.TEXT contains constant definitions for all result codes 
returned by Operating System routines. You can use them in your 
program as immediate data values. For example, to test for the error 
code memFullErr on return from a trap, you might write 

CMP.W 
BEQ 

#memFullErr,D0 
No Room 

The Memory Manager uses the following error codes: 

no Err .EQU 0 ;no error 
memFullErr .EQU -108 jnot enough room in zone 
nilHandleErr .EQU -109 jNIL master pointer 
memWZErr .EQU -Ill jattempt to operate on a free block 
memPurErr .EQU -112 jattempt to purge a locked block 

Offsets and Masks 

Offsets to the fields of zone and block headers are defined as 
constants in the file HEAPDEFS.TEXT. To access a field, use the name 
of the offset constant as a displacement relative to an address 
register pointing to the first byte of the header. For example, if 
register A2 contains a pointer to a zone header, you can load the 
number of free bytes in the zone into D3 with the instruction 

(eye) 

MOVE.L gzProc(A2),D3 

Generally speaking, the offset and mask constants 
discussed here are intended for the Memory Manager's 
internal use. You shouldn't ordinarily be prowling 
around in a zone or block header unless you know what 
you're doing. 

The following offset constants represent the fields of a zone header: 

bkLim .EQU 0 ;address of zone trailer (long) 
purgePtr .EQU 4 ;roving purge pointer (long) 
hFstFree .EQU 8 jaddress of first free 

j master pointer (long) 
zcbFree .EQU 12 ;number of free bytes (long) 
gzProc .EQU 16 jaddress of grow zone 

function (long) 
moreMasters .EQU 20 jincrementa1 master-pointer . count (word) , 
flags .EQU 22 ;interna1 flags (word) 
cntRe1 .EQU 24 ;relocatable blocks (word) 



NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 57 

maxRe! .EaU 26 ;max. cntRel so far (word) 
cntNRel .EaU 28 ;nonrelocatable blocks (word) 
maxNRe! .Eau 30 ;max. cntNRel so far (word) 
cntEmpty .EaU 32 ;empty master pointe,rs (word) 
cntHandles .EaU 34 ;total master pointers (word) 
minCBFree .EaU 36 ;min. zcbFree so far (long) 
purgeProc .EaU 40 jaddress of purge warning 

j procedure (long) 
sparePtr .EaU 44 jspare pointer (long) 
allocPtr .EaU 48 ;roving allocation pointer (long) 
heapData • EaU 52 jfirst usable byte in zone 

The following offset constants represent the fields of a block header: 

tagBC .EQU 0 ;tag t size correction t and 
· physical byte count (long) , 

handle .EQU 4 jreloc.: relative handle (long) 
;nonreloc.: zone pointer (long) 

blkData .EaU 8 ;first byte of block contents 

HEAPDEFS.TEXT also defines the following mask constants for 
manipulating the fields of block headers and master pointers: 

(eye) 

tagMask .EQU $C0000000 ;tag field 
bcOffMask .EQU $0F000000 ;size correction 

· ("byte count offset") , 
bcMask .EQU $00FFFFFF ;physical byte count 
ptrMask .EQU $00FFFFFF ;address part of master pointer 

· or zone pointer , 
handleMask .EQU $00FFFFFF jrelative handle 
free Tag .EQU 0 jtag for free block 
nRelTag .EQU $40000000 jtag for nonrelocatable block 
relTag .EQU $80000000 ;tag for relocatable block 

Remember t the pointer or handle you get from the Memory 
Manager when you allocate a block points to the block's 
contents, not its header. To get the address of the 
header t subtract the offset constant blkData t defined 
above. For example t if you have a handle to a block in 
register A2t the following code will set A3 to point to 
the block's header: 

MOVE.L 
SUBQ.L 

(A2) ,A3 
IIblkData,A3 

;get pointer to block contents 
;offset back to header 



58 Memory Manager Programmer's Guide 

Finally, SYSEQU.TEXT defines the following constants for the bit 
numbers of the various flag bits within the high-order byte of a master 
pointer: 

lock 
purge 
resource 

.EQU 

.EQU 

.EQU 

7 
6 
5 

jlock bit 
jpurge bit 
jresource bit 

You can use these constants to ac~ess the flag bits directly, using the 
68000 instructions BSET, BCLR, and BTST. For instance, if you have a 
handle to a relocatable block in register A2, you can mark the block as 
purgeable with the instruction 

BSET.B #purge,(Al) jset purge bit in master pointer 

To branch on the current setting of the lock bit, 

Handy Tricks 

BTST.B 
B~ 

#10ck,(A2) 
ItsLocked 

;test lock bit in master pointer 
and branch on result 

To save time in critical situations, here's a quick way to convert a 
dereferenced pointer to a relocatable block back into a handle without 
paying the overhead of a RecoverHandle trap. Recall that the relative 
handle stored in the block's header is the offset of the block's master 
pointer relative to the start of its heap zone. So to convert a copy 
of the master pointer back into the original handle, find the relative 
handle and add it to the address of the zone. For example, if register 
A2 contains the master pointer of a block in the current heap zone, the 
following code will reconstruct the block's handle in A3: 

MOVE.L -4(A2),A3 

ADD.L theZone,AJ 

;relative handle is 4 bytes back 
; from start of contents 
juse as offset from start of zone 

Conversely, given a true (absolute) handle to a relocatable block, you 
can find the zone the block belongs to by subtracting the relative 
handle from the absolute handle. If the absolute handle is in register 
A2, the following instructions will convert it into a pointer to the 
block's heap zone: 

MOVE.L 
SUB.L 

(A2),A3 
-4(A3),A2 

jget pointer to block 
;subtract relative handle 

to get zone pointer 

For nonrelocatable blocks, the header contains a pointer directly back 
to the zone: 

MOVE.L -4(A2),A2 ;get zone pointer directly 



SUMMARY OF THE MEMORY MANAGER 59 

SUMMARY OF THE MEMORY MANAGER 

= 0; {no error} 
{not enough room in zone} 
{NIL master pointer} 

CONST noErr 
memFullErr 
nilHandleErr 
memWZErr 
memPurErr 

= -108; 
• -109; 
- -111; 
= -112; 

{attempt to operate on a free block} 
{attempt to purge a locked block} 

maxSize = $800000; 

TYPE Signed Byte 
Byte 

- -128 •• 127; 
= 0 •• 255; 

Ptr 
Handle 
ProcPtr 

- ASigned Byte; 
= APtr; 
= Ptr; 

Size = LongInt; 
MemErr = INTEGER; 

THz = AZone ; 
Zone = RECORD 

bkLim: 
purgePtr: 
hFstFree: 
zcbFree: 
gzProe: 
moreMast: 
flags: 
entRel: 
maxRel: 
entNRel: 
maxNRel: 
cntEmpty: 

Ptr; 
Ptr; 
Ptr; 
LongInt; 
ProePtr; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

entHandles: INTEGER; 
minCBFree: LongInt; 
purgeProe: ProePtr; 
sparePtr: Ptr; 
alloePtr: Ptr; 
heapData: INTEGER 

END; 

Initialization and Allocation 

(startPtr: Ptr); 
PROCEDURE InitApplZone; 
PROCEDURE SetApplBase 
PROCEDURE InitZone (growProe: ProePtr; masterCount: INTEGER; 

limitPtr, startPtr: Ptr); 
PROCEDURE SetApplLimit (zoneLimit: Ptr); 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/HEMORY.7 



60 Memory Manager Programmer's Guide 

Heap Zone Access 

THz; FUNCTION GetZone 
PROCEDURE SetZone 
FUNCTION SystemZone 
FUNCTION ApplicZone 

(hz: THz); 
THz; [Pascal only] 

: THz; [Pascal only] 

Allocating and Releasing Relocatable Blocks 

FUNCTION NewHandle (logicaISize: Size) 
PROCEDURE DisposHandle (h: Handle); 
FUNCTION GetHandleSize (h: Handle) Size; 
PROCEDURE SetHandleSize (h: Handle; newSize: 
FUNCTION Handle Zone (h: Handle) : THz; 
FUNCTION RecoverHandle (p: Ptr) : Handle; 

Handle; 

Size) ; 

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size) ; 

Allocating and Releasing Nonrelocatable Blocks 

FUNCTION NewPtr (logicaISize: Size) : Ptr; 
PROCEDURE DisposPtr (p: Ptr); 
FUNCTION GetPtrSize (p: Ptr) . Size; . 
PROCEDURE SetPtrSize (p: Ptr; newSize: 
FUNCTION PtrZone (p: Ptr) : THz; 

Freeing Space on the Heap 

FUNCTION FreeMem LongInt; 
FUNCTION MaxMem (VAR grow: Size) 
FUNCTION CompactMem (cbNeeded: Size) 
PROCEDURE ResrvMem (cbNeeded: Size) ; 
FUNCTION PurgeMem (cbNeeded: Size); 
PROCEDURE EmptyHandle (h: Handle); 

Properties of Relocatable Blocks 

PROCEDURE HLock (h: Handle); 
PROCEDURE HUnlock (h: Handle); 
PROCEDURE HPurge (h: Handle); 
PROCEDURE HNoPurge (h: Handle); 

Size) ; 

: Size; . Size; . 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7 



SUMMARY OF THE MEMORY MANAGER 61 

Grow Zone Functions 

PROCEDURE SetGrowZone (growZone: ProcPtr); 
FUNCTION GZCritical : BOOLEAN; [Pascal only] 
FUNCTION GZSaveHnd: Handle; [Pascal only] 

Utility Routines 

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size); 
FUNCTION TopMem: Ptr; [Pascal only] 
FUNCTION MemError : MemErr; [Pascal only] 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7 



62 Memory Manager Programmer's Guide 

GLOSSARY 

allocate: To reserve a block for use. 

application heap zone: The heap zone provided by the Memory Manager 
for use by the application program. 

block: An area of contiguous memory within a heap zone. 

block contents: The area of a block available for use. 

block header: The internal "housekeeping" information maintained by 
the Memory Manager at the beginning of each block in a heap zone. 

compaction: The process of moving allocated blocks within a heap zone 
in order to collect the free space into a single block. 

current heap zone: The heap zone currently under attention, to which 
most Memory Manager operations implicitly apply. 

dereference: To convert a pointer into whatever it points to; 
specifically, to convert a handle into a copy of its corresponding 
master pointer. 

empty handle: A handle that points to a NIL master pointer, signifying 
that the underlying relocatable block has been purged. 

free block: A block containing space available for allocation. 

grow zone function: A function supplied by the application program to 
help the Memory Manager create free space within a heap zone. 

handle: A pointer to a master pointer, which designates a relocatable 
block by double indirection. 

heap zone: An area of memory in which space can be allocated and 
released on demand, using the Memory Manager. 

limit pointer: A pointer to the byte following the last byte of an 
area in memory, such as a block or a heap zone. 

lock: To temporarily prevent a relocatable block from being moved 
during heap compaction. 

lock bit: A bit in the master pointer to a relocatableblock that 
indicates whether the block is currently locked. 

logical size: The number' of bytes in a block's contents; compare 
physical size. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7 



GLOSSARY 63 

master pointer: A single pointer to a relocatable block, maintained by 
the Memory Manager and updated whenever the block is moved, purged, or 
reallocated. All handles to a relocatable block refer to it by double 
indirection through the master pointer. 

nonrelocatable block: A block whose location in its heap zone is fixed 
and can't be moved during heap compaction. 

physical size: The actual number of bytes a block occupies within its 
heap zone. 

purge: To remove a relocatable block from its heap zone, leaving its 
master pointer allocated but set to NIL. 

purgeable block: A relocatable block that can be purged from its heap 
zone. 

purge bit: A bit in the master pointer to a relocatable block that 
indicates whether the block is currently purgeable. 

purge warning procedure: A procedure associated with a particular heap 
zone that is called whenever a block is purged from that zone. 

reallocate: To allocate new space in a heap zone for a purged block, 
updating its master pointer to point to its new location. 

relative handle: A handle to a relocatable block expressed as the 
offset of its master pointer within the heap zone, rather than as the 
absolute memory address of the master pointer. 

release: To destroy an allocated block, freeing the space it occupies. 

relocatable block: A block that can be moved within its heap zone 
during compaction. 

resul t code: An integer code produced by a Memory Manager routine 'to 
signal the success of an operation or the reason for its failure. 

size correction: The number of unused bytes included at the end of an 
allocated block; the difference between the block's logical and 
physical sizes, excluding the block header. 

·system heap zone: The heap zone provided by the Memory Manager for use 
by the Macintosh system software. 

tag: A 2-bit code in the header of a block identifying It as 
relocatable, nonrelocatable, or free. 

unlock: To allow a relocatable block to be moved during heap 
compaction. 

unpurgeable block: A relocatable block that can't be purged from its 
heap zone. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7 



64 Memory Manager Programmer's Guide 

zone header: The internal "housekeeping" information maintained by the 
Memory Manager at the beginning of each heap zone. 

zone pointer: A pointer to a zone record. 

zone record: A Pascal data structure representing the structure of a 
zone header. 

zone trailer: A minimum-size free block marking the end of a heap 
zone. 

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7 



COMME:NTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



UACINTOSH USER EDUCATION 

The Segment Loader: A Programmer's Guide 

See Also: Macintosh Operating System Reference Manual 
The Resource Manager: A Programmer's Guide 
The Macintosh Finder 

Hodification History: First Draft (ROM 4) 

/SEGLOAD/SEGMENT 

C. Rose 6/24/83 

ABSTRACT 

This manual describes the Segment Loader of the Macintosh Operating 
System, which lets you divide your application into several parts and 
have only some of them in memory at a time. 



2 Segment Loader Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Segment Loader 
4 Application Parameters 
5 Using the Segment Loader 
5 Segment Loader Routines 
7 Advanced Routines 
8 The Jump Table 
10 Specifying Segments in Your Source File 
13 Summary of the Segment Loader 
14 Glossary 



ABOUT THIS HANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Segment Loader. a new part of the Macintosh 
Operating System in ROM version 4. *** Eventually it will become part 
of a large manual describing the entire Operating System and Toolbox. 
*** The Segment Loader lets you divide your application into several 
parts and have only some of them in memory at a time. 

You should already be familiar with Lisa Pascal. the Macintosh 
Operating System's Memory ~mnager. the Finder. and the basic concepts 
behind the Resource Manager of the Macintosh User Interface Toolbox. 

The manual begins with an introduction to the Segment Loader and a 
description of the parameters that are stored in memory when an 
application is started up. Next. a section on using the Segment Loader 
introduces you to its routines and tells how they fit into the flow of 
your application. This is followed by the detailed descriptions of all 
Segment Loader routines. their parameters. calling protocol. effects. 
side effects. and so on. 

For advanced programmers. there's a section that discusses the jump 
table. explaining how the Segment Loader works internally. 

Finally. there's a summary of the Segment Loader routine calls. for 
quick reference. and a glossary of terms defined in this manual. 

ABOUT THE SEGMENT LOADER 

The Segment Loader allows you to divide the code of an application into 
several parts or segments. The Finder starts up an application by 
calling a Segment Loader routine that loads in the main segment (the 
one containing the main program). Other segments are loaded in 
automatically when they're needed. Your application can call the . 
Segment Loader to have these other segments removed from memory when 
they're no longer needed. 

The Segment Loader enables you to have programs larger than 32K bytes. 
the maximum size of a single segment. Also. any code that isn't 
executed often (such as code for printing hardcopy) need not occupy 
memory when it isn't being used, but can instead be in a separate 
segment that's brought in when needed. 

This mechanism may remind you of the resources of an application. which 
the Resource Manager of the User Interface Toolbox reads into memory 
when necessary. An application's segments are in fact themselves 
stored as resources; the~r resource type is 'CODE'. You can use the 
Resource Compiler to create these resources from your application code. 
A "loaded" segment has been read into memory by the Resource Manager 
and locked (so that it's neither relocatable nor purgeable). When a 
segment is unloaded. it's made relocatable and purgeable. 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.2 



4 Segment Loader Programmer's Guide 

Every segment has a name. If you do nothing about dividing your 
program into segments, it will consist of a single segment whose name 
is blank. Dividing your program into segments means specifying in your 
source file the beginning of each segment by name. The names are for 
your use only; they're not kept around after linking. 

( eye) 
If you do specify segment names, note that normally the 
main segment should have a blank name. The reason for 
this is that the intrinsic Pascal routines must be in the 
same segment as your main program, and the Linker puts 
those routines in the blank-named segment (so that the 
right thing will happen if you don't specify any segment 
names at all). 

APPLICATION PARAMETERS 

When an application is started up, certain parameters are stored in 32 
bytes of memory just above the application's globals, as shown in 
Figure 1; these are called the application parameters. AS points to 
the first of these parameters and may be used with positive offsets to 
access the others. 

( hand) 

32 

20 

16 

12 

8 

4 

A5~O 

high memory 

reserved for future use 

Finder information hendle 

standard output 

standard ifl)Ut 

reserved for futtre use 

reserved for QuickDraw 

appl ication globsls 

low memor y 

appl ication 
parameter 
area 

Figure 1. Application Parameters 

For brevity, we'll say "AS" where we mean "the location 
pointed to by A5". 

The "standard input" and "standard output" parameters indicate the main 
source of input and destination of output for the Macintosh. They are 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.2 



APPLICATION PARAMETERS 5 

usually 0, meaning the keyboard and the screen, respectively. 

The "Finder information handle" is a handle to information that the 
Finder provides to the application upon starting it up. For example, 
for a word processor it might be the name of the document to be worked 
on. *** The exact information will be described here when available. 
*** Pascal programmers can call the Segment Loader routine GetAppParms 
to get the Finder information handle. 

The other locations in the application parameter area are reserved for 
future use or for use by QuickDraw. 

USING THE SEGMENT LOADER 

This section introduces you to the Segment Loader routines and how they 
fit into the flow of an application program. The routines themselves 
are described in detail in the next section. 

The routine that applications will most commonly use is UnloadSeg, for 
unloading a particular segment when it's no longer needed. Another 
useful routine, GetAppParms, lets you get information about your 
application such as its name and the reference number for its 
resources. For applications started up in the usual way by the Finder, 
GetAppParms also gives the Finder information handle that's stored 16 
bytes above AS. 

The main segment can unload other segments, but it can't get rid of 
itself; using the Chain routine, however, it can do something close to 
this. Chain starts up another application without disturbing the 
application heap. Thus the current application can let another 
application take over while still keeping its data around in the heap. 

The Segment Loader also provides a quick exit to the Finder that 
doesn't touch the stack, for applications needing it in emergency 
situations: ExitToShell. 

Finally, there are two advanced routines that most applications will 
never use: Launch and LoadSeg. Launch is called by the Finder to 
start up an application; it's like Chain but doesn't retain the 
application heap. LoadSeg is called indirectly (via the jump table, as 
described later) to load segments when necessary--that is, whenever a 
routine in an unloaded segment is invoked. 

SEGMENT LOADER ROUTINES 

This section describes all the Segment Loader routines. Some of the 
routines are stack-based and so are shown in Pascal; for information on 
using them from assembly language, see "Using the Toolbox from Assembly 
Language" *** doesn't exist, but see QuickDraw manual ***. Other 
Segment Loader routines are register-based and are described similar to 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R 



6 Segment Loader Programmer's Guide 

the way the Operating System routines are described in the current 
Operating System manual. 

PROCEDURE UnloadSeg (routineAddr: Ptr); 

UnloadSeg unloads a segment, making it relocatable and purgeable; 
routineAddr is the address of any routine in the segment. The Segment 
Loader will reload the segment the next time one of the routines in it 
is called. It doesn't hurt to call UnloadSeg, because the segment 
won't actually be purged until the memory it occupies is needed. If 
you need the unloaded segment again before it's purged, the Segment 
Loader won't have to access the disk. 

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER; VAR 
apParam: Handle); 

GetAppParms returns information about the current application. It 
returns the application name in apName and the reference number for the 
application's resources in apRefNum. For applications started up in 
the usual way by the Finder, it returns the Finder information handl.e 
in apParam (as described earlier under "Application Parameters"). 

( hand) 
For applications started up with the Chain routine 
(below), the apParam parameter isn't useful. 

Chain {register-based} 

This routine starts an application up without doing anything to the 
application heap, so the current application can let another 
application take over while still keeping its data around in the heap. 
It configures memory for the sound and video buffers. A0 points to the 
following: 

A0 ---) 01 where FILENAME is a pointer to the 
1 FILENAME application's file name 
I (POINTER) 
1 and MODE tells which sound buffer 

41 and video buffer to use (0 for 
I MODE standard) • 
I 

6 

The sound and video buffers are constantly scanned by the Macintosh 
hardware to determine what sounds to emit from its speakers and what to 
display on its screen. (The video buffer is the bit image 
corresponding to the display screen.) Two of each type of buffer are 
available; Figure 2 shows where they're located. If you specify a MODE 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R 



SEGMENT LOADER ROUTINES 7 

value of 0, you get the standard or "primary" buffers; in this case, 
the application space begins where shown in Figure 2. Any positive 
MODE value causes the secondary sound buffer and primary video buffer 
to be used (which costs 1.5K of memory). Any negative MODE value 
causes the secondary sound buffer and secondary video buffer to be used 
(which costs 32K of memory). 

$2(00) 

S1A700 

$1A100 

$12700 

pr imary sound 

primary video 

secondary SCUld 

secondary video 

The epplicetion 
+- space normally 

ends here. 

Figure 2. Sound and Video Buffers 

Chain closes the resource file for any previous application and opens 
the resource file for the application being started. It also stores in 
memory the application parameters designating standard input and 
standard output. The application is started at its entry point, which 
causes the main segment to be loaded. 

PROCEDURE ExitToShell; 

ExitToShell provides an emergency exit for the application, without 
touching the stack. It simply launches the Finder (starts it up after 
freeing the storage occupied by the application heap; see Launch 
below). 

Advanced Routines 

Launch {register-based} 

This routine is called by the Finder to start up an application and 
will rarely need to be called by an application itself. It's the same 
as the Chain routine (described above) except that it frees the storage 
occupied by the application heap and restores the heap to its original 
size. Also, the Finder provides startup information needed by the 
application; a handle to the information is located in the system heap 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R 



8 Segment Loader Programmer's Guide 

and is copied (as the "Finder information handle") into the application 
parameter area in memory. 

( hand) 
Launch preserves a special handle in the application heap 
which is used for accessing the scrap between 
applications. 

PROCEDURE LoadSeg (segID: INTEGER); 

LoadSeg is called indirectly via the jump table (as described in the 
following section) when the application calls a routine in an unloaded 
segment. It loads the segment having the given ID number, which was 
assigned by the Linker. If the segment isn't in memory, LoadSeg calls 
the Resource Manager to read it in. It changes the jump table entries 
for all the routines in the segment from the "unloaded" to the "loaded" 
state and then invokes the routine that was called. 

THE JUMP TABLE 

This section describes how the Segment Loader works internally, and is 
included here for advanced programmers; you don't have to know about 
this to be able to use the common Segment Loader routines. 

The loading and unloading of segments is implemented through the 
application's jump table. Figure 3 shows the location of the jump 
table in memory for a typical application. 

(normelly) $1 A700 

AS--+ 

de grows downwerd 
to\ll8l'd heap 

eap grows up\V8I"d 
toward stack 

hI 'gh memory 

jllllP table 

application parameters 

appl ication gl0b8ls 

1 stack 

---------------------

T appl ication heap 

system he8p 

low m emory 

the 
application 
space 

Figure 3. The Application's Space in Memory 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.J 



THE JUMP TABLE 9 

When the Linker encounters a call to a routine in another segment, it 
creates a jump table entry for the routine and addresses the entry with 
a positive offset from AS. As described below, the jump table entry 
makes the connections necessary to invoke the routine. 

The jump table contains one 8-byte entry for every externally 
referenced routine in every segment; all the entries for a particular 
segment are stored contiguously. It refers to segments by ID numbers 
assigned by the Linker. When an application is started up, its jump 
table is read in from segment ~, a special segment created by the 
Linker for every executable file. Segment ~ contains the following: 

Number of bytes 
4 bytes 

4 bytes 

4 bytes 
4 bytes 
n bytes 

Contents 
"Above AS" size; size in bytes from AS 
to upper end of application space 
"Below A5" size; size in bytes of 
application globals 
Offset of jump table from AS 
Length of jump table in bytes 
Jump table 

For most applications, the offset of the jump table from AS is 32, and 
the "above AS" size is 32 plus the length of the jump table. 

All the jump table entries for a particular segment indicate whether 
that segment is currently loaded or not, as illustrated in Figure 4. 

"unloaded" state 

routine offset 
(2 bytes) 

move of segment 
10 onto stack 

(4 bytes) 

Load5eg call 
(2 bytes) 

"loaded" state 

segment 10 
(2 bytes) 

jump to address 
of routine 
(6 bytes) 

Figure 4. Format of a Jump Table "Entry 

Initially, of course, the jump table entries are all in the "unloaded" 
state, which means they contain the following: 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.J 



10 Segment Loader Programmer's Guide 

Number of bytes 
2 bytes 

4 bytes 

2 bytes 

Contents 
Offset of this routine from beginning of 
segment 
Instruction that moves the segment ID onto 
the stack for LoadSeg 
Trap that executes LoadSeg 

When a call to a routine in an unloaded segment is made, the code in 
the last six bytes of its jump table entry is executed. This code 
ca~ls LoadSeg, which loads the segment into memory, transforms all of 
its jump table entries to the "loaded" state (shown below), and invokes 
the routine. 

Number of bytes 
2 bytes 
6 bytes 

Contents 
Segment ID 
Instruction that jumps to the address of the 
routine for which this is an entry 

LoadSeg invokes the routine by executing the instruction in the last 
six bytes of the jump table entry. Subsequent calls to the routine 
also execute this instruction. If UnloadSeg is called to unload the 
segment, it restores the jump table entries to their "unloaded" state. 
Notice that ,,,hether the segment is loaded or unloaded, the last six 
bytes of the jump table entry are executed; the effect depends on the 
state of the entry at the time. 

To be able to set all the jump table entries for a segment to a 
particular state, LoadSeg and UnloadSeg need to know exactly where all 
the entries are located. They get this information from the segment 
header, four bytes at the beginning of the segment which contain the 
following: 

Number of bytes 
2 bytes 

2 bytes 

Contents 
Offset of the first routine's entry from 
the beginning of the jump table 
Number of entries for this segment 

As described above, segment ~ tells where the beginning of the jump 
table is located. 

SPECIFYING SEGMENTS IN YOUR SOURCE FILE 

*** This section will be moved into the next version of the manual 
entitled "Putting Together a Macintosh Application". *** 

You specify the beginning of a segment in your application's source 
file as follows: 

{$S segname} 

where segname is the segment name, a sequence of up to eight 
characters. Normally you should give the main segment a blank name. 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P 



SPECIFYING SEGMENTS IN YOUR SOURCE FILE 11 

For example, you might structure your program as follows: 

PROGRAM Shell; 

{ The USES statement and your LABEL, CONST, and VAR declarations 
will be here. } 

{$S Segl} 

{ The procedures and functions in Segl will be here. } 

{$S Seg2} 

{ The procedures and functions in Seg2 will be here. } 

{$S } 

BEGIN 

{ The main program will be here. } 

END. 

You can specify the same segment name more than once; the routines will 
just be accumulated into that segment. To avoid problems when moving 
routines around in the source file, some programmers follow the 
practice of putting a segment name specification before every routine. 

( eye) 
Uppercase and lowercase letters ARE distinguished in 
segment names. For example, "Segl" and "SEGl" are not 
equivalent names. 

If you don't specify a segment name before the first routine in your 
file, the blank segment name will be assumed there. 

In assembly language, you specify the beginning of a segment with the 
following directive: 

.SEG 'segname' 

( eye) 
This requires version 12.2 of the Lisa Monitor. 

You can also specify what segment the routines in a particular file 
should be in by using the ChangeSeg program. For example, suppose you 
want to give your main segment a nonblank name (say, ISegMain"); you 
can't do this without using ChangeSeg, because the Linker puts the 
intrinsic Pascal routine~ in the blank-named segment, and they must be 
in the same segment as your main program. You can use ChangeSeg as 
shown below to tell the Linker to put the intrinsic Pascal routines, 
which are in Obj:MacPasLib, in the segment named SegMain. 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P 



12 Segment Loader Programmer's Guide 

Prompt 
Monitor command line 
What file ? 
File to change: 
Map all Names ? (Y/N) 
New Seg name ? 

6/24/83 Rose 

Response 
X {for X(ecute} 
ChangeSeg <ret> 
Obj:MacPasLib <ret> 
Y {for Yes} 
SegMain <ret> 

CONFIDENTIAL /SEGLOAD/SEGMENT.P 



SUMMARY OF THE SEGHENT LOADER 13 

SUM}1ARY OF THE SEGMENT LOADER 

PROCEDURE UnloadSeg 
PROCEDURE GetAppParms 

Chain {register-based} 

(routineAddr: Ptr); 
(VAR apName: Str255; VAR apRefNum: 'INTEGER; 

VAR apParam: Handle); 

Input: A0 points to application's file name pointer followed by 
a word telling which sound and video buffers to use. 

Output: The application parameters for standard input and output. 

PROCEDURE ExitToShell; 

Advanced Routines 

Launch {register-based} 

Input: ~ points to application's file name pointer followed by 
a word telling which sound and video buffers to use. 

Output: The application parameters--standard input and output 
and the Finder information handle. 

PROCEDURE LoadSeg (segID: INTEGER); 

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.S 



14 Segment Loader Programmer's Guide 

GLOSSARY 

application parameters: Information stored in 32 bytes of memory just 
above the application globals when an application is started up. 

jump table: A table that contains one entry for every routine in an 
application and is the means by which the loading and unloading of 
segments is implemented. 

main segment: The segment containing the main program. 

segment: One of several parts into which the code of an application 
may be divided. Not all segments need to be in memory at the same 
time. 

6/24/83 Rose CONFIDENTIAL /SEGMENT/SEGMENT.G 



9-March-83 
LAK 

The as Event Manager 

The Event Manager cor. routines aanipulate event. on the .yatea 
event queue. These consi.t of functiona auch as addinl and retrieving events 
from the system event queue, polling for .. ailable events, and reaoving 
events from the queue. The systea queue is initialized to contain 30 22-byte 
el_ents. 

(ToolEvents contain the higher-level ToolBox evant handling calls EventAvail 
and GetNextEvent: thes. will be docuaented ae~rat.ly with other ToolBox 
documentation, although 80me ToolEventa-defined ... nta are briefly covered 
here. ToolEvents .. kas call. to OSEveDtAvaU aDd GetOSEvent, addina Activate 
and Update event a , aDd aupporta jourDaliq. Mo.t application prolr •• vill 
just make c~lls to ToolEvents. ) 

Four routines are associated with the event aaneaer: PostEvent, OSEventAvall, 
GetOSEvent, and FlushEventl. POltEvent .. y be called fro. an interrupt 
or completion routine; all other routine. in the event ... na.ar must be called 
from the main thread of execution. Additionally, the aystea event .. sk .. y 
be read and set via the as routinea GetSysParaa and SetSysPar ... 

The Event Manager manages its own private buffer to let atora.e for the event 
queueing elements. It does this because PostEvent rUDS at interrupt level and 
thus cannot call the standard stor .. e allocatar. 

Events 

The Macintosh operating sYltea uses the metaphor of an "event" to report 
to user programs the occurance of keyboard keypres.es, mouse button state 
changes, and other relatively slow and irregular things which the system 
detects and the user progr .. il interested in. Faster input/output, such 
as receipt of a character on one of the serial port , is handled via the 
"I/O driver" model in the I/O and File subayat .. a. 

Event Mask, Event Nuaber 

Events are poated and selected subject to event .. aka; an event mask is a word
long bitaap of all possible eventl: a 1 in the bit position of an event enables 
that event. Possible events by event number, bit poSition in event mask, 
and nae are: 

0 $0001 Null Evant 
1 $0002 Moue but ton dow 
2 $0004 Mouee button up 
3 $0008 ICey dow 
4 $0010 IC.ey up 
5 $0020 Auto-key 
6 $0040 Update event 
7 $0080 Disk Inserted 



8 
9 

10 
11 
12 
13 
14 
15 

$0100 
$0200 
$0400 
$0800 
$1000 
$2000 
$4000 
$8000 

Activate/Deactivate event 
Abort event 
Network event 
10 Driver event 
application defined 
application defined 
application defined 
application defined 

Event Queue Element, Event Record 

The basic data structure for events i. a 22-~e buffer called an EVENT QUEUE 
ELEMENT, in which event. are buffered by the Event Manager. Events are 
communicated to users via EVENT RECORDS, which are structured like event queue 
elements, ainus the .ix-byte queue link and type field.. The SYSTEK EVENT 
BUFFER has" room enough for 30 event queue elementa. 

Event Queue Element: 
(0) Queue link to next eleaent, zero for laat eleaent (32-bit) 
(4) Queue type field, set to $0004 (16-bit) 
(6) Event Record (16-byte) 

Event Record: 
(0) 
(2) 
(6) 

(10) 
(14) 

( 15) 

Event Number (16-bit) 
Event-defined ae •• age (l2-bit) 
TICKS value when event occurred (32-bit) (TICKS ia a 32-bit 

variable which is incremented every 1/60 second) 
Mouse position when event occurred (32-bit) 
Meta-key flags (8-bit) as follows (bit-I when key is down): 

bit 7-4: undefined 
3: option key 
2: alpha-lock key 

.... 1: shift key 
'.) ,i ~ 0 : c OIII1Und 

House button state (8-bit): 
bit 7: dow-o,up-l 

6-0: undefined (toolevents uses bits 0-1 to distinguish 
activate from deactivate, and sy.-appl change). 

Event-defined messages are a. follows (including ToolEvents-defined events): 

Null Event 
Mouse button down 
Mouse button up 
Key down 
Key up 
Auto-key 
Disk Inserted 
Update event
Activate/Deactivate 

none (0) 
none (0) 
none (0) 
byteO-byte1-o,byte2-raw keycode,byte3-ASCII code 
byteO-bytel-o,byte2-raw keycode,byte3-ASCII code 
byteO-bytel-o,byte2-raw keycode,byte3-ASCII code 
drive nuaber: 1 internal, 2 external 
32-bit windowPtr of window to be updated 
32-bit w1ndowPtr 

Events are generally posted as they occur and are self-explanatory; 



MACINTOSH USER EDUCATION 

The File Manager: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
Inside Macintosh: A Road Map 
Macintosh Packages: A Programmer's Guide 
The Structure of a Macintosh Application 

/OS/FS 

Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) Bradley Hacker 5/21/84 

ABSTRACT 

This manual describes the File Manager, the part of the Macintosh 
Operating System that controls the exchange of information between a 
Macintosh application and files. 



2 File Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the File Manager 
4 Volumes 
5 Accessing Volumes 
6 Files 
9 Accessing Files 
10 File Information Used by the Finder 
11 Using the File Manager 
15 High-Level File Manager Routines' 
16 Accessing Volumes 
18 Changing File Contents 
22 Changing Information About Files 
24 Low-Level File Manager Routines 
25 Routine Parameters 
27 I/O Parameters 
29 File Information Parameters 
29 Volume Information Parameters 
30 Routine Descriptions 
31 Initializing the File I/O Queue 
31 Accessing Volumes 
37 Changing File Contents 
46 Changing Information About Files 
52 Data Organization on Volumes 
53 Volume Information 
55 Volume Allocation Block Map 
55 File Directory 
56 File Tags on Volumes 
57 Data Structures in Memory 
58 The File I/O Queue 
58 Volume Control Blocks 
60 File Control Blocks 
62 File Tags in Memory 
62 The Drive Queue 
63 Using an External File System 
65 Appendix 
67 Summary of the File Manager 
78 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the File Manager, the part of the Macintosh 
Operating System that controls the exchange of information between a 
Macintosh application and files. *** Eventually it will become part of 
the comprehensive Inside Macintosh manual. *** The File Manager allows 
you to create and access any number of files containing whatever 
information you choose. 

Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal. You should also be familiar with the 
following: 

- the basic concepts behind the Macintosh Operating System's Memory 
Manager 

- devices and device drivers, as described in the Inside Macintosh 
Road Map 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the File Manager and what you 
can do with it. It then discusses some basic concepts behind the File 
Manager: what files and volumes are and how they're accessed. 

A section on using the File Manager introduces its routines and tells 
how they fit into the flow of your application. This is followed by 
sections explaining the File Manager's Simplest, "high-level" Pascal 
routines and then its more complex, "low-level" Pascal and assembly
language routines. Both sections give detailed descriptions of all the 
procedures and functions, their parameters, calling protocol, effects, 
side effects, and so on. 

Following these descriptions are sections that won't interest all 
readers. The data structures that the File Manager uses to store 
information in memory and on disks are described, and special 
information is provided for programmers who want to write their own 
file system. 

Finally, there's a summary of the File Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE FILE MANAGER 

The File Manager is the part of the Operating System that handles 
communication between an application and files on block devices such as 
disk "drives. Files are a principal means by which data is stored and 
transmitted on the Macintosh. A file is a named, ordered sequence of 

5/21/84 Hacker /OS/FS.I 



4 File Manager Programmer's Guide 

bytesa The File Manager contains routines used to read and write to 
files. 

Volumes 

A volume is a piece of storage medium, such as a disk, formatted to 
contain files. A volume can be an entire disk or only part of a disk. 
Currently, the 3 1/2-inch Macintosh disks are one volume. 

(note) 
Specialized memory devices other than disks can also 
contain volumes, but the information in this manual 
applies only to volumes on disks. 

You identify a volume by its volume name, which consists of any 
sequence of 1 to 27 printing charact~ Volume names must always be 
followed by a colon (:) to distinguish them from other names. You can 
use upperc'ase and lowercase letters when naming volumes, but the File 
Manager ignores case when comparing names (it doesn't ignore 
diacritical marks). 

(note) 
The colon <:) after a volume name should only be used 
when calling File Manager routines; it should never be 
seen by the user. 

A volume contains descriptive information about itself, including its 
name and a file directory listing information about files contained on 
the volume; it also contains files. The files are contained in 
allocation blocks, which are areas of volume space occupying multiples 
of 512 bytes. 

A volume can be mounted or unmounted. A volume becomes mounted when 
it's in a disk drive and the File Manager reads descriptive information 
about the volume into memory. Once mounted, a volume may remain in a 
drive or be ejected. Only mounted volumes are known to the File 
Manager, and an application can access information on mounted volumes 
only. A volume becomes unmounted when the File Manager releases the 
memory used to store the descriptive information. Your application 
should unmount a volume when it's finished with the volume, or when it 
needs the memory occupied by the volume. 

The File Manager assigns each mounted volume a volume reference number 
that you can use instead of its volume name to refer to it. Every 
mounted volume is also assigned a volume buffer, which is temporary 
storage space on the heap used when reading and writing ,information on 
the volume. The number of volumes that may be mounted at any time is 
limited only by the number of drives attached and available memory. 

A mounted volume can be on-line or off-line. A mounted volume is 
on-line as long as the volume buffer and all the descriptive 
information read from the volume when it was mounted remain in memory 
(about lK to l.5K bytes); it becomes off-line when all but 94 bytes of 

5/21/84 Hacker /OS/FS.I 



ABOUT THE FILE MANAGER 5 

descriptive information are released. You can access information on 
on-line volumes immediately, but off-line volumes must be placeo 
on-line before their information can be accessed. An application 
should place a volume off-line whenever it needs most of the memory the 
volume occupies. When an application ejects a volume from a drive, the 
File Manager automatically places the volume off-line. 

To prevent unauthorized writing to a volume, volumes can be locked. 
Locking a volume involves either setting a software flag on the volume 
or changing some part of the volume physically (for example, sliding a 
tab from one position to another on a disk). Locking a volume ensures 
that none of the data on the volume can be changed. 

Accessing Volumes 

You can access a mounted volume via its volume name or volume reference 
number. On-line volumes in disk drives can also be accessed via the 
drive number of the drive on which the volume is mounted (the internal 
drive is number 1, the external drive is number 2, and any additional 
drives connected via a serial port will have larger numbers). When 
accessing a mounted volume, you should always use the volume name or 
volume reference number, rather than a drive number, because the volume 
may have been ejected or placed off-line. Whenever possible, use the 
volume reference number (to avoid confusion between volumes with the 
same name). 

One volume is always the default volume. Whenever you call a routine 
to access a volume but don't specify which volume, the default volume 
is accessed. Initially, the volume used to start up the system is the 
default volume, but an application can designate any mounted volume as 
the default volume. 

Whenever the File Manager needs to access a mounted volume that's been 
ejected from its drive, the dialog box shown in Figure 1 is displayed, 
and the File Manager waits until the user inserts the volume named 
volName into a drive. 

Please insert the disk: 

LfolNGme 

Figure 1. Disk-Switch Dialog 

5/21/84 Hacker /OS/FS.I 



6 File Manager Programmer's Guide 

Files 

A file is a finite sequence of numbered bytes. Any byte or group of 
bytes in the sequence can be accessed individually. A file -is 
identified by its file name and version number. A file name consists 
of any sequence of-r-to 255 printing characters, excluding colons (:). 
You can use uppercase and lowercase letters when naming volumes, but 
the File Manager ignores case when comparing names (it doesn't ignore 
diacritical marks). The version number is any number from 0 to 255, 
and is used by the File Manager to distinguish between different files 
with the same name. A byte within a file is identified by its position 
within the ordered sequence. 

(warning) 
Your application should constrain file names to fewer 
than 64 characters, because the Finder will generate an 
error if given a longer name. You should always assign 
files a version number of 0, because the Resource Manager 
and Segment Loader won't operate on files with nonzero 
file numbers, the Finder ignores version numbers, and the 
Standard File Package clears version numbers. 

There are two parts or forks to a file: the data fork and the resource 
fork. Normally the resource fork of an application file contains the 
resources used by the application such as menus, fonts, and icons, and 
also the application code itself. The data fork can contain anything 
an application wants to store there. Information stored in resource 
forks should always be accessed via the Resource Manager. Information 
in data forks can only be accessed via the File Manager. For 
simplicity, "file" will be used instead of "data fork" in this manual. 

A file can contain anywhere from 0 to 16,777 ,216 bytes (16 megabytes). 
Each byte is numbered: the first byte is byte 0. You can read bytes 
from and write bytes to a file either singly or in sequences of 
unlimited length. Each read or write operation can start anywhere in 
the file, regardless of where the last operation began or ended. 
Figure 2 shows the structure of a file. 

current byte 

f ;rst __ ....,..."..,.,... __ - __ ~ ___ __r"--.~""I""". 

byte '--......... r-'---'-......,r-'-............... ---'---'''' 

prey i ous byte next byte 

Figure 2. A File 

lest 
byte 

A file's maximum size is defined by its physical end-of-file, which is 
1 greater than the number of the last byte in its last allocation block 
(Figure'3). The physical end-of-file is equivalent to the maximum 

5/21/84 Hacker /OS/FS.I 



ABOUT THE FILE MANAGER 7 

number of bytes the file can contain. A file's actual size is defined 
by its logical end-of-file, which is 1 greater than the number of the 
last byte in the file. The logical end-of-file is equivalent to the 
actual number of bytes in the file, since the first byte is byte number 
0. The physical end-of-file is always greater than the logical 
end-of-file. For example, an empty file (one with 0 bytes) in a 
1K-byte allocation block has a logical end-of-file of 0 and a physical 
end-of-file of 1024. A file with S0 bytes has a logical end-of-file of 
50 and a physical end-of-file of 1024. 

logical physical 
mark: end- of- f i I e end-01- f i Ie 

-r;-0 1 :''-~~''rrTI .. 1 .......... ·:.:: ~ I :x: I :x: I x I x I ,,"~..L........JL.-.-..I..---LI"'.,.L-L--J 
byte 1024 

Figure 3. End-of-File and Mark 

The current position marker, or mark, is the number of the next byte 
that will be read or written. The value of the mark can't exceed the 
value of the logical end-of-file. The mark automatically moves forward 
one byte for every byte read from or written to the file. If, during a 
write operation, the mark meets the logical end-of-file, both are moved 
forward one position for every additional byte written to the file. 
Figure 4 shows the movement of the mark and logical end-of-file. 

5/21/84 Hacker /OS/FS.I 



8 File Manager Programmer's Guide 

Beginning position 

end-Clf-fi Ie 

I I 
.1.. 

1 L. ... J 
T 

marl< 

After read i no t ... o bytes 

After writing two bytes 

Figure 4. Movement of Logical End-of-File and Mark 

If, during a write operation, the mark must move past the physical 
end-of-file, another allocation block is added to the file--the 
physical end-of-file is placed one byte beyond the end of the new 
allocation block, and the mark and logical end-of-file are placed at 
the first byte of the new allocation block. 

An application can move the logical end-of-file to anywhere· from the 
beginning of the file to the physical end-of-file (the mark is adjusted 
accordingly). If the logical end-of-file is moved to a.position more 
than one allocation block short of the current physical end-of-file, 
the unneeded allocation block will be deleted from the file. The mark 
can be placed anywhere from the first byte in the file to the logical 
end-of-file. 

5/21/84 Hacker /OS/FS.I 



ABOUT THE FILE MANAGER 9 

Accessing Files 

A file can be open or closed. An application can only perform certain 
operations, such as reading and writing, on open files; other 
operations, such as deleting, can only be performed on closed files. 

To open a file, you must identify the file and the volume containing 
it. When a file is opened, the File Manager creates an access path, a 
description of the route to be followed when accessing the file. The 
access path specifies the volume on which the file is located (by 
volume reference number, drive number, or volume name) and the location 
of the file on the volume. Every access path is assigned a unique path 
reference number used to refer to it. You should always refer to a 
file via its path reference number, so that files with the same name 
aren't confused with one another. 

A file can have one access path open for writing or for both reading 
and writing, and one or more access paths for reading only; there 
cannot be more than one access path that writes to a file. Each access 
path is separate from all other access paths to the file. A maximum of 
12 access paths can be open at one time. Each access path can move its 
own mark and read at the position it indicates. All access paths to 
the same file share common logical and physical end-of-file markers. 

The File Manager reads descriptive information about a newly opened 
file from its volume and stores it in memory. For example, each file 
has open permission information, which indicates whether data can only 
be read from it, or both read from and written to it. Each access path 
contains read/write permission information that specifies whether data 
is allowed to be read from the file, written to the file, both read and 
written, or whatever the file's open permission allows. If an 
application wants to write data to a file, both types of permission 
information must allow writing; if either type allows reading only, 
then no data can be written. 

When an application requests that data be read from a file, the File 
Manager reads the data from the file and transfers it to the 
application's data buffer. Any part of the data that can be 
transferred in entire S12-byte blocks is transferred directly. Any 
part of the data composed of fewer than 512 bytes is also read from the 
file in one 512-byte block, but placed in temporary storage space in 
memory. Then, only the bytes containing the requested data-are 
transferred to the application. 

When an application writes data to a file, the File Manager transfers 
the data from the application's data buffer and writes it to the file. 
Any part of the data that can be transferred in entire 512-byte blocks 
is written directly. Any part of the data composed of fewer than 512 
bytes is placed in temporary storage space in memory until 512 bytes 
have accumulated; then the entire block is written all at once. 

5/21/84 Hacker /OS/FS.I 



10 File Manager Programmer's Guide 

Normally the temporary space in memory used for all reading and writing 
is the volume buffer, but an application can specify that an access 
path buffer be used instead for a particular access path (Figure 5). 

r 
1/ ',j access path buffer / '\. 

" ./ " ./ 

file "A" 

appl icatioo's 
,r ./ ."'>. 

~ ./ 

/ "- volume buffer .... ./ 

1/ ....... 
data buffer '- '" ./ 

file "S-
1/ " access path buffer )<- "-

~i' ./\ ./ 

Figure 5. Buffers For Transferring Data 

(warning) 
You must lock every access path buffer you use, so its 
location doesn't change while the file is open. 

""""I 

./ 

-", 

Your application can lock a file to prevent unauthorized writing to it. 
Locking a file ensures that none of the data in it can be changed *** 
Currently, the Finder won't let you rename or delete a locked file, but 
it will let you change the data the file contains ***. 

(note) 
Advanced programmers: The File Manager can also read a 
continuous stream of characters or a line of characters. 
In the first case, you ask the File Manager to read a 
specific number of bytes: when that many have been read 
or when the mark has reached the logical end-of-file, the 
read operation terminates. In the second case, called 
newline mode, the read will terminate when either of the 
above conditions is fulfilled or when a specified 
character, the newline character, is read. The newline 
character is usually Return (ASCII code $0D), but can be 
any character whose ASCII code is between $00 and $FF, 
inclusive. Information about newline mode is associated 
with each access path to a file, and can differ from one 
access path to another. 

FILE INFORMATION USED BY THE FINDER 

A file directory on a volume lists information about all the files on 
the volume. The information used by the Finder is contained in a data 
structure of type Flnfo: 

5/21/84 Hacker /OS/FS.I 



FILE INFORMATION USED BY THE FINDER 11 

TYPE FInfo RECORD 
fdType: 
fdCreator: 
fdFlags: 
fdLocation: 
fdFldr: 

END; 

OSType; 
OSType; 
INTEGER; 
Point; 
INTEGER 

{type of file} 
{file's creator} 
{flags} 
{file's location} 
{file's window} 

Normally an application need only set the file type and creator when a 
file is created, and the Finder will manipulate the other fields. 
(File type and creator are discussed in The Structure of a Macintosh 
Application.) Advanced programmers may be interested I;~hanging the 
contents of the other fields as well. 

FdFlags indicates whether the file's icon is invisible, whether the 
file has a bundle, and other characteristics used internally by the 
Finder: 

Bit Meaning if set 
5 File has a bundle 
6 File's icon is invisible 

Masks for these two bits are available as predefined constants: 

CONST fHasBundle = 32; {set if file has a bundle} 
fInvisible = 64; {set if file's icon is invisible} 

When you first install an application, you'll need to set its "bundle 
bit", as described in The Structure of ~ Macintosh Application. 
Whenever you create a file with a bundle, you'll need to set its bundle 
bit. 

The next two fields indicate where the file's icon will appear if the 
icon is visible. FdLocation contains the location of the file's icon 
in its window, given in the local coordinate system of the window. 
FdFldr indicates the window in which the file's icon will appear, and 
may contain one of the follOWing predefined constants: 

CONST fTrash 
fDesktop 
fDisk 

= -3; {file is in trash window} 
= -2; {file is on desktop} 

0; {file is in disk window} 

If fdFldr contains a positive number, the file's icon will appear in a 
folder; the numbers that identify folders are assigned by the Finder. 
Advanced programmers can get the folder number of an existing file, and 
place additional files in that same folder. 

USING THE FILE MANAGER 

This section discusses how the File Manager routines fit into the 
general flow of an application program and gives an idea of 'what 
routines you'll need to use. The routines them~~:~c~ Q~C ~~~~Libed in 

5/21/84 Hacker /OS/FS.U 



12 File Manager Programmer's Guide 

detail in the next two sections. 

You can call File Manager routines via three different methods: 
high-level Pascal calls. low-level Pascal calls, and assembly language. 
The high-level Pascal calls are designed for Pascal programmers 
interested in using the File Manager in a simple manner; they provide 
adequate file I/O and don't require much special knowledge to use. The 
low-level Pascal and assembly-language calls are designed for advanced 
Pascal programmers and assembly-language programmers interested in 
using the File M~nager to its fullest capacity; they require some 
special knowledge to be used most effectively. 

Information for all programmers follows here. The next two sections 
contain special information for high-level Pascal programmers and for 
low-level Pascal and assembly-language programmers. 

(note) 
The names used to refer to routines here are actually the 
assembly-language macro names for the low-level routines, 
but the Pascal routine names are very similar. 

The File Manager is automatically initialized each time the system is 
started up. 

To create a new, empty file, call Create. Create allows you to set 
some of the information stored on the volume about the file. 

To open a file, call Open. The File Manager creates an access path and 
returns a path reference number that you'll use every time you want to 
refer to it. Before you open a file. you may want to call the Standard 
File Package, which presents the standard interface through which the 
user can specify the file to be opened. The Standard File Package will 
return the name of the file. the volume reference number of the volume 
containing the file, and additional information. (If the user inserts 
an unmounted volume into a drive. the Standard File Package will 
automatically call the Disk Initialization Package to attempt to mount 
it.) 

After opening a file. you can transfer data from it to an application's 
data buffer with Read, and send data from an application's data buffer 
to the file with Write. Read and Write allow you to specify a byte 
position within the data buffer. a number of bytes to transfer, and the 
location within the file. You can't use Write on a file whose open 
permission only allows reading, or on a file on a locked volume. 

Once you've completed whatever reading and writing you want to do, call 
Close to close the file. Close writes the contents of the file's 
access path buffer to the volume and deletes the access path. You can 
remove a closed file (both forks) from a volume by calling Delete. 

To protect against power loss or unexpected disk ejection. you should 
periodically call FlushVol (probably after each time you close a file), 
which writes the contents of the volume buffer and all access path 
buffers (if any) to the volume and updates the descriptive information 

5/21/84 Hacker /OS/FS.U 



USING THE FILE MANAGER 13 

contained on the volume. 

Whenever your application is finished with a disk, or the user chooses 
Eject from a menu, call Eject. Eject calls FlushVol, places the volume 
off-line, and then physically ejects the volume from its drive. 

The preceding paragraphs covered the simplest File Manager routines: 
Open, Read, Write, Close, FlushVol, Eject, and Create. The remainder 
of this section describes the less commonly used routines, some of 
which are available only to advanced programmers. Skip the remainder 
of this section if the preceding paragraphs have provided you with all 
the information you want to know about using the File Manager. 

When the Toolbox Event Manager function GetNextEvent receives a disk
inserted event, it calls the Desk Manager function SystemEvent. 
SystemEvent calls the File Manager function MountVol, which attempts to 
mount the volume on the disk. GetNextEvent then returns the disk
inserted event: the low-order word of the event message contains the 
number of the drive, and the high-order word contains the result code 
of the attempted mounting.' If the result code indicates that an error 
occurred, you'll need to call the Disk Initialization Package to allow 
the user to initialize or eject the volume. 

(note) 
Applications that rely on the Operating System Event 
Manager function GetOSEvent to learn about events (and 
don't call GetNextEvent) must explicitly call MountVol to 
mount volumes. 

After a volume has been mounted, your application can call GetVolInfo, 
which will return the name of the volume, the amount of unused space on 
the volume, and a volume reference number that you can use every time 
you refer to that volume. 

To minimize the amount of memory used by mounted volumes, an 
application can unmount or place off-line any volumes that aren't 
currently being used. To unmount a volume, call UnmountVol, which 
flushes a volume (by calling FlushVol) and releases all of the memory 
used for it (releasing'about 1 to 1.5K bytes). To place a volume 
off-line, call OffLine, which flushes a volume (by calling FlushVol) 
and releases all of the memory used for it"except for 94 bytes of 
descriptive information about the volume. Off-line volumes are placed 
on-line by the File Manager as needed, but your application must 
remount any unmounted volumes it wants to access. The File Manager 
itself may place volumes off-line during its normal operation. 

If you would like all File Manager calls to apply to one volume, you 
can specify that volume as the default. You can use SetVol to set the 
default volume to any mou?ted volume, and GetVol to learn the name and 
volume reference number of the default volume. 

Normally, volume initialization and naming is handled by the Standard 
File Package, which calls the Disk Initialization Package. If you want 
to initialize a volume explicitly or erase all files from a volume, you 

5/21/84 Hacker /OS/FS.D 



14 File Manager Programmer's Guide 

can call the Disk Initialization Package directly. When you want to 
change the name of a volume, call the File Manager function Rename. 

Applications normally will use the Resource Manager to open resource 
forks and change the information contained within, but programmers 
writing unusual applications (such as a disk-copying utility) might 
want to use the File Manager to open resource forks. This is done by 
calling OpenRF. As with Open, the File Manager creates an access path 
and returns a path reference number that you'll use every time you want 
to refer to this resource fork. 

As an alternative to specifying byte positions within a file with Read 
and Write, you can specify the byte position of the mark by calling 
SetFPos. GetFPos returns the byte position of the mark. 

Whenever a disk has been reconstructed in an attempt to salvage lost 
files (because its directory or other file-access information has been 
destroyed), the logical end-of-file of each file will probably be equal 
to each physical end-of-file, regardless of where the actual logical 
end-of-file is. The first time an application attempts to read from a 
file on a reconstructed volume, it will blindly pass the correct 
logical end-of-file and read misinformation until it reaches the new, 
incorrect logical end-of-file. To prevent this from occurring, an 
application should always maintain an independent record of the logical 
end-of-file of each file it uses. To determine the File Manager's 
conception of the length of a file, or find out how many bytes have yet 
to be read from it, call GetEOF, which returns the logical end-of-file. 
You can change the length of a file by calling SetEOF. 

Allocation blocks are automatically added to and deleted from a file as 
necessary. If this happens to a number of files alternately, each of 
the files will be contained in allocation blocks scattered throughout 
the volume, which increases the time required to access those files. 
To prevent such fragmentation of files, you can allocate a number of 
contiguous allocation blocks to an open file by calling Allocate. 

Instead of calling FlushVol, an unusual application might call 
FlushFile. FlushFile forces the contents of a file's volume buffer and 
access path buffer (if any) to be written to its volume. FlushFile 
doesn't update the descriptive information contained on the volume, so 
the volume information won't be correct until you call FlushVol. 

To get information about a file (such as its name and creation date) 
stored on a volume, call GetFilelnfo. You can change this information 
by calling SetFilelnfo. Changing the name or version number of a file 
is accomplished by calling Rename or SetFilType, respectively; they 
will have a similar effect, since both the file name and version number 
are needed to identify a file. You can lock or unlock a file by 
calling SetFilLock or RstFilLock, respectively. 

You can't use Write, Allocate, or SetEOF on a locked file, a file whose 
open permission only allows reading, or a file on a locked volume. You 
can't. use Rename or SetFilType on a file on a locked volume. 

5/21/84 Hacker /OS/FS.P 



HIGH-LEVEL FILE MANAGER ROUTINES 15 

HIGH-LEVEL FILE MANAGER ROUTINES 

This section describes all the high-level Pascal routines of the File 
Manager. Assembly-language programmers cannot call these routines. 
For information on calling the low-level Pascal and assembly-language 
routines. see the next section. 

When accessing a volume, you must identify it by its volume name, its 
volume reference number. or the drive number of its drive--or allow the 
default volume to be accessed. The parameter names used in identifying 
a volume are volName. vRefNum, and drvNum. VRefNum and drvNum are both 
integers. VolName is a pointer. of type StringPtr, to a volume name. 

The File Manager determines which volume to access by using one of the 
following: 

1. VolName. (If volName points to a zero-length name. an error is 
returned. ) 

2. If vol Name is NIL or points to an improper volume name, then 
vRefNum or drvNum (only one is given per routine). 

3. If vRefNum or drvNum is zero. the default volume. (If there isn't 
a default volume, an error is returned. ) 

(warning) 
Before you pass a parameter of type StringPtr to a File 
Manager routine such as GetVol, be sure that memory has 
been allocated for the variable. For example, the 
following statements will ensure that memory is allocated 
for the variable myStr: 

VAR myStr: Str255; 

BEGIN 
result := GetVol(@myStr, myRefNum); 

END; 

When accessing a closed file on a volume, you must identify the volume 
by the method given above. and identify the file by its name in the 
fileName parameter. (The high-level File Manager routines will work 
only with files having a version number of 0.) FileName can contain 
either the file name alone or the file name prefixed by a volume name. 

(note) 
Although fileName can include both the volume name and 
the file name. applications shouldn't encourage users to 
prefix a file name with a volume name. 

You cannoc specify an access path buffer when calling high-level Pascal 
routines. All access paths open on a volume will share the volume 
buffer. causing a slight increase in the amount of time required to 

5/21/84 Hacker /OS/FS.P 



16 File Manager Programmer's Guide 

access files. 

All File Manager routines return a result code of type OSErr as their 
function result. Each routine description lists all of the applicable 
result codes, along with a short description of what the result code 
means. Lengthier explanations of all the result codes can be found in 
the summary at the end of this manual. 

Accessing Volumes 

FUNCTION GetVInfo (drvNum: INTEGER; volName: StringPtr; VAR vRefNum: 
INTEGER; VAR freeBytes: LongInt) : OSErrj 

GetVInfo returns the name, reference number, and available space (in 
bytes), in volName, vRefNum, and freeBytes, for the volume in the 
specified drive .. 

Result codes noErr 
nsvErr 
paramErr 

No error 
No default volume 
Bad drive number 

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: INTEGER) : OSErr; 

GetVol returns the name of the default volume in volName and its volume 
reference number in vRefNum. 

Result codes noErr 
nsvErr 

No error 
No default volume 

FUNCTION SetVol (volName: StringPtr; vRefNum: INTEGER) : OSErr; 

SetVol sets the default volume to the mounted volume specified by 
vol Name or vRefNum. 

Result codes 

5/21/84 Hacker 

noErr 
bdNamErr 
nsvErr 
paramErr 

No error 
Bad volume name 
No such volume 
No default volume 

/OS/FS.P 



HIGH-LEVEL FILE MANAGER ROUTINES 17 

FUNCTION FlushVol (volName: StringPtr; vRefNum: INTEGER) : OSErrj 

On the volume specified by volName or vRefNum, FlushVol writes the 
contents of the associated volume buffer and descriptive information 
about the volume (if they've changed since the last time FlushVol was 
called). 

Result codes noErr 
bdNamErr 
extFSErr 
ioErr 
nsDrvErr 
nsvErr 
paramErr 

No error 
Bad volume name 
External file system 
Disk I/O error 
No such drive 
No such volume 
No default volume 

FUNCTION UnmountVol (volName: StringPtr; vRefNum: INTEGER) : OSErrj 

UnmountVol unmounts the volume specified by volName or vRefNum, by 
calling FlushVol to flush the volume buffer, closing all open files on 
the volume, and releasing the memory used for the volume. 

(warning) 
Don't unmount the startup volume. 

Result codes noErr No error 
bdNamErr Bad volume name 
extFSErr External file system 
ioErr Disk I/O error 
nsDrvErr No such drive 
nsvErr No such volume 
paramErr No default volume 

FUNCTION Eject (volName: StringPtr; vRefNum: INTEGER) : OSErrj 

Eject calls FlushVol to flush the volume specified by volName or 
vRefNum, places the volume offline, and then ejects the volume. 

Result codes noErr No error 
bdNamErr Bad volume name 
extFSErr External file system 
ioErr Disk I/O error 
nsDrvErr No such drive 
nsvErr No such volume 
paramErr No default volume 

5/21/84 Hacker /OS/FS.P 



18 File Manager Programmer's Guide 

Changing File Contents 

FUNCTION Create (fileName: Str255; vRefNum: INTEGER; creator: OSType; 
fileType: OSType) : OSErr; 

Create creates a new file with the specified name, file type, and 
creator, on the specified volume. (File type and creator are discussed 
in The Structure ·of ~ Macintosh Application.) The new file is unlocked 
and empty. Its modification and creation dates are set to the time of 
the system clock. 

Result codes noErr 
bdNamErr 
dupFNErr 
dirFulErr 
extFSErr 
ioErr 
nsvErr 
vLckdErr 
wPrErr 

No error 
Bad file name 
Duplicate file name 
Directory full 
External file system 
Disk I/O error 
No such volume 
Software volume lock 
Hardware volume lock 

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER; VAR refNum: 
INTEGER) : OSErr; 

FSOpen creates an access path to the file having the name fileName on 
the specified volume. A path reference number is returned in refNum. 
The access path's read/write permission is set to whatever the file's 
open permission allows. 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr. External file system 
fnfErr File not found 
ioErr Disk I/O error 
mFulErr Memory full 
nsvErr No such volume 
opWrErr File already open for writing 
tmfoErr Too many files open 

5/21/84 Hacker /OS/FS.P 



HIGH-LEVEL FILE MANAGER ROUTINES 19 

FUNCTION FSRead (refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr) 
OSErr; 

FSRead attempts to read the number of bytes specified by the count 
parameter from the open file whose access path is specified by refNum. 
and transfer them to the data buffer pointed to by buffPtr. The read 
operation begins at the mark. so you might want to precede this with a 
call to SetFPos. If you try to read past the logical end-of-file, 
FSRead moves the mark to the end-of-file and returns eofErr as its 
function result. After the read is completed, the number of bytes 
actually read is returned in the count parameter. 

Result codes noErr No error 
eofErr End-of-file 
extFSErr External file system 
fnOpnErr File not open 
ioErr Disk I/O error 
paramErr Negative count 
rfNumErr Bad reference number 

FUNCTION FSWrite (refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr) 
OSErr; 

FSWrite takes the number of bytes specified by the count parameter from 
the buffer pointed to by buffPtr and attempts to write them to the open 
file whose access path is specified by refNum. The write operation 
begins at the mark. so you might want to precede this with a call to 
SetFPos. After the write is completed. the number of bytes actually 
written is returned in the count parameter. 

Result codes 

5/21/84 Hacker 

noErr 
dskFulErr 
fLckdErr 
fnOpnErr 
ioErr 
paramErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

No error 
Disk full 
File locked 
File not open 
Disk I/O error 
Negative count 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

/OS/FS.P 



20 File Manager Programmer's Guide 

FUNCTION GetFPos (refNum: INTEGER; VAR filePos: Longlnt) : OSErr; 

GetFPos returns, in filePos, the mark of the open file whose access 
path is specified by refNum. 

Result codes noErr 
extFSErr 
fnOpnErr 
ioErr 
rfNumErr 

No error 
External file system 
File not open 
Disk I/O error 
Bad reference number 

FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff: Longlnt) 
OSErr; 

SetFPos sets the mark of the open file whose access path is specified 
by refNum, to the position specified by posMode and posOff. PosMode 
indicates whether the mark should be set relative to the beginning of 
the file, the logical end-of-file, or the mark; it must contain one of 
the following predefined constants: 

CONST fsAtMark = 0; {at current position of mark } 
{ (posOff ignored)} 

fsFromStart = 1 ; {offset relative to beginning of file} 
fsFromLEOF = 2; {offset relative to logical end-of-file} 
fsFromMark 3; {offset relative to current mark} 

PosOff specifies the byte offset (either positive or negative) relative 
to posMode where the mark should actually be set. If you try to set 
the mark past the logical end-of-file, SetFPos moves the mark to the 
end-of-file and returns eofErr as its function result. 

Result codes noErr No error 
eofErr End-of-file 
extFSErr External file system 
fnOpnErr File not open 
ioErr Disk I/O error 
posErr Tried to position before start 

of file 
rfNumErr Bad reference number 

FUNCTION GetEOF (refNum: INTEGER; VAR logEOF: LongInt) : OSErr; 

GetEOF returns, in logEOF, the logical end-of-file of the open file 
whose access path is specified by refNum. 

Result codes noErr No error 
extFSErr External file system 
fnOpnErr File not open 
ioErr Disk I/O error 
rfNumErr Bad reference number 

5/21/84 Hacker /OS/FS.P 



HIGH-LEVEL FILE MANAGER ROUTINES 21 

FUNCTION SetEOF (refNum: INTEGER; logEOF: LongInt) : OSErrj 

SetEOF sets the logical end-of-file of the open file whose access path 
is specified by refNum, to the position specified by logEOF. If you 
attempt to set the logical end-of-file beyond the physical end-of-file, 
the physical end-of-file is set to one byte beyond the end of the next 
free allocation block; if there isn't enough space on the volume, no 
change is made, and SetEOF returns dskFulErr as its function result. 
If logEOF is 0, all space on the volume occupied by the file is 
released. 

Result codes noErr 
dskFulErr 
extFSErr 
fLckdErr 
fnOpnErr 
ioErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

No error 
Disk full 
External file system 
File locked 
File not open 
Disk I/O error 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

FUNCTION Allocate (refNum: INTEGER; VAR count: LongInt) : OSErr; 

Allocate adds the number of bytes specified by the count parameter to 
the open file whose access path is specified by refNum, and sets the 
physical end-of-file to one byte beyond the last block allocated. The 
number of bytes ~llocated is always rounded up to the nearest mUltiple 
of the allocation block size, and returned in the count parameter. If 
there isn't enough empty space on the volume to satisfy the allocation 
request, the rest of the space on the volume is allocated, and Allocate 
returns dskFulErr as its function result. 

Result codes 

5/21/84 Hacker 

noErr 
dskFulErr 
fLckdErr 
fnOpnErr 
ioErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

No error 
Disk full 
File locked 
File not open 
Disk I/O error 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

/OS/FS.P 



22 File Manager Programmer's Guide 

FUNCTION FSClose (refNum: INTEGER) : OSErr; 

FSClose removes the access path specified by refNum, writes the 
contents of the volume buffer to the volume, and updates the file's 
entry in the file directory. 

( note) 
Some information stored on the volume won't be correct 
until FlushVol is called. 

Result codes noErr No error 
extFSErr External file system 
fnfErr File not found 
fnOpnErr File not open 
ioErr Disk I/O error 
nsvErr No such volume 
rfNumErr Bad reference number 

Changing Information About Files 

All of the routines described in this section affect both forks of the 
file, and don't require the file to be open. 

FUNCTION GetFlnfo (fileName: Str255; vRefNum: INTEGER; VAR fndrInfo: 
Flnfo) : OSErr; 

For the file having the name fileName on the specified volume, GetFlnfo 
returns information used by the Finder in fndrInfo (see the section 
"File Information Used by the Finder"). 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
paramErr No default volume 

FUNCTION SetFInfo (fileName: Str255; vRefNum: INTEGER; fndrInfo: Flnfo) 
: OSErr; 

For the file having the name fileName on the specified volume, SetFInfo 
sets information needed by the Finder to fndrInfo (see the section 
"File Information Used by the Finder"). 

Result codes 

5/21/84 Hacker 

noErr 
extFSErr 
fLckdErr 
fnfErr 
ioErr 
nsvErr 

No error 
External file system 
File locked 
File not found 
Disk I/O error 
No such volume 

/OS/FS.P 



HIGH-LEVEL FILE MANAGER ROUTINES 23 

vLckdErr 
wPrErr 

Software volume lock 
Hardware volume lock 

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErrj 

SetFLock locks the file having the name fileName on the specified 
volume. Access paths currently in use aren't affected. 

Result codes noErr No error 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr; 

RstFLock unlocks the file having the name fileName on the specified 
volume. Access paths currently in use aren't affected. 

Result codes noErr No error 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

FUNCTION Rename (oldName: Str25S; vRefNum: INTEGER; newName: Str255) 
OSErr j 

Given a file name in oldName, Rename changes the name of the file to 
newName. Access paths currently in use aren't affected. Given a 
volume name in oldName or a volume reference number in vRefNum, Rename 
changes the name of the specified volume to newName. 

Result codes 

5/21/84 Hacker 

noErr 
bdNamErr 
dirFulErr 
dupFNErr 
extFSErr 
fLckdErr 
fnfErr 
fsRnErr 
ioErr 
nsvErr 
paramErr 
vLckdErr 
wPrErr 

No error 
Bad file name 
Directory full 
Duplicate file name 
External file system 
File locked 
File not found 
Renaming difficulty 
Disk I/O error 
No such volume 
No default volume 
Software volume lock 
Hardware volume lock 

/OS/FS.P 



24 File Manager Programmer's Guide 

FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr; 

FSDelete removes the closed file having the name fileName from the 
specified volume. 

(note) 
This function will delete both forks of the file. 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr External file system 
fBsyErr File busy 
fLckdErr File locked 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

LOW-LEVEL FILE MANAGER ROUTINES 

This section contains special information for programmers using the 
low-level Pascal or assembly-language routines of the File Manager. and 
describes them in detail. For more information on using assembly 
language, see Programming Macintosh Applications in Assembly Language. 

You can execute most File Manager routines either synchronously 
(meaning that the application must wait until the routine is completed) 
or asynchronously (meaning that the application is free to perform 
other tasks while the routine is executing). MountVol, UnmountVol, 
Eject, and OffLine cannot be executed asynchronously. because they use 
the Memory Manager to allocate and deallocate memory. 

When an application calls a File Manager routine asynchronously, an I/O 
request is placed in the file I/O queue. and control returns to the --
calling application--even before the actual I/O is completed. Requests 
are taken from the queue one at a time (in the same order that they 
were entered), and processed. Only one request may be processed at any 
given time. 

The calling application may specify a completion routine to be executed 
as soon as the I/O operation has been completed. 

At any time, you can use the InitQueue procedure to clear all queued 
File Manager calls except the current one. InitQueue is especially 
useful when an error occ~rs and you no longer wish queued calls to be 
executed. 

Routine parameters passed by an application to the File Manager and 
returned by the File Manager to an application are contained in a 
parameter block, which is memory space in the heap or stack. Most 

5/21/84 Hacker /OS/FS.A.l 



LOW-LEVEL FILE MANAGER ROUTINES 25 

low-level Pascal calls to the File Manager are of the form 

PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

PBCallName is the name of the routine. ParamBlock points to the 
parameter block containing the parameters for the routine. If async is 
TRUE, the call will be executed asynchronously; if FALSE, it will be 
executed synchronously. Each call returns an integer result code of 
type OSErr. Each routine description lists all of the applicable 
result codes, along with a short description of what the result code 
means. Lengthier explanations of all the result codes can be found in 
the summary at the end of this manual. 

Assembly-language note: When you call a File Manager routine, 
A0 must point to a parameter block containing the parameters for 
the routine. If you want the routine to be executed 
asynchronously, set bit 10 of the routine trap word. You can do 
this by supplying the word ASYNC as the second argument to the 
routine macro. For example: 

Read paramBlock,ASYNC 

You can set or test bit 10 of a trap word by using the global 
constant asynTrpBit. 

If you want a routine to be executed immediately (bypassing the 
file I/O queue), set bit 9 of the routine trap word. This can 
be accomplished by supplying the word IMMED as the second 
argument to the routine macro. For example: 

Write paramBlock,IMMED 

You can set or test bit 9 of a trap word by using the global 
constant noQueueBit. You can specify either ASYNC or IMMED, but 
not both. 

All routines except InitQueue return a result code in 00. 

Routine Parameters 

There are three different kinds of parameter blocks you'll pass to File 
Manager routines. Each kind is used with a particular set of routine 
calls: I/O routines, file information routines, and volume information 
routines. 

The lengthy, variable-length data structure of a parameter block is 
given below. The Device Manager and File Manager use this same data 
structure, but only the parts relevant to the File Manager are shown 

5/21/84 Hacker /OS/FS.A.l 



26 File Manager Programmer's Guide 

here. Each kind of parameter block contains eight fields of standard 
information and nine to 16 fields of additional information: 

TYPE ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam)j 

ParamBlockRec = RECORD 
qLink: 
qType: 
ioTrap: 
ioCmdAddr: 
ioCompletion: 
ioResul t: 
ioNamePtr: 
ioVRefNum: 

QElemPtr; 
INTEGER; 
INTEGER; 
Ptr; 
ProcPtr; 
OSErr; 
StringPtr; 
INTEGER; 

CASE ParamBlkType OF 
ioParam: 

{next queue entry} 
{queue type} 
{routine trap} 
{routine address} 
{completion routine} 
{result code} 
{volume or file name} 
{volume reference or } 
{ drive number} 

{I/O routine parameters} 
fileParam: 

{file information routine parameters} 
volumeParam: 

{volume information routine parameters} 
cntrlParam: 

{Control and Status call parameters} 
END; 

ParmBlkPtr = AParamBlockRec; 

The first four fields in each parameter block are handled entirely by 
the File Manager, and most programmers needn't be concerned with them; 
programmers who are interested in them should see the section "Data 
Structures in Memory". 

IOCompletion contains the address of a completion routine to be 
executed at the end of an asynchronous call; it should be NIL for 
asynchronous calls with no completion routine, and is automatically set 
to NIL for all synchronous calls. For asynchronous calls, ioResult is 
positive while the routine is executing, and returns the result code. 
Your application can poll ioResult during the asynchronous execution of 
a routine to determine when the routine has completed. Completion 
routines are executed after ioResult is returned. 

IONamePtr points to either a volume name or a file name (which can be 
prefixed by a volume name). 

(note) 
Although ioNamePtr can include both the volume name and 
the file name, applications shouldn't encourage users to 
prefix a file name with a volume name. 

IOVRefNum contains either the reference number of a volume or the drive 
number of a drive containing a volume. 

5/21/84 Hacker /OS/FS. A.l 



LOW-LEVEL FILE MANAGER ROUTINES 27 

For routines that access volumes, the File Manager determines which 
volume to access by using one of the following: 

1. IONamePtr, a pointer to the volume name. 

2. If ioNamePtr is NIL, or points to an improper volume name, then 
ioVRefNum. (If ioVRefNum is negative, it's a volume reference 
number; if positive, it's a drive number.) 

3. If ioVRefNum is 0, the default volume. (If there isn't a default 
volume, an error is returned.) 

For routines that access closed files, the File Manager determines 
which file to access by using ioNamePtr, a pointer to the name of the 
file (and possibly also of the volume). 

- If the string pointed to by ioNamePtr doesn't include the volume 
name, the File Manager uses steps 2 and 3 above to determine the 
volume. 

If ioNamePtr is NIL or points to an improper file name, an error 
is returned. 

The first eight fields are adequate for a few calls, but most of the 
File Manager routines require more fields, as described below. The 
parameters used with Control and Status calls are described in the 
Device Manager manual *** doesn't yet exist ***. 

I/O Parameters 

When you call one of the I/O routines, you'll use these nine additional 
fields after the standard 8-field parameter block: 

ioParam: 
(ioRefNum: 
ioVersNum: 
ioPermssn: 
ioMisc: 
ioBuffer: 
ioReqCount: 
ioActCount: 
ioPosMode: 

INTEGER; 
Signed Byte; 
Signed Byte; 
Ptr; 
Ptr; 
LongInt; 
LongInt; 
INTEGER; 

ioPosOffset: LongInt); 

{path reference number} 
{version number} 
{read/write permission} 
{miscellaneous} 
{data buffer} 
{requested number of bytes} 
{actual number of bytes} 
{newline character and type of } 
{ positioning operation} . 
{size of positioning offset} 

For routines that access open files, the File Manager determines which 
file to access by using the path reference number in ioRefNum. 
IOPermssn requests permission to read or write via an access path, and 
must contain one of the following predefined constants: 

5/21/84 Hacker /OS/FS.A.l 



28 File Manager Programmer's Guide 

CONST fsCurPerm = 
fsRdPerm = 
fsWrPerm = 
fsRdWrPerm 

0; 
1 ; 
2; 
3; 

{whatever is currently allowed} 
{request to read only 
{request to write only} 
{request to read and write} 

This request is compared with the open permission of the file. If the 
open permission doesn't allow I/O as requested, an error will be 
returned. 

The content of ioMisc depends on the routine called; it contains either 
a pointer to an access path buffer, a new logical end-of-file, a new 
version number, or a pointer to a new volume or file name. Since 
ioMisc is of type Ptr, while end-of-file is Longlnt and version number 
is SignedByte, you'll need to perform type conversions to correctly 
interpret the value of ioMisc. 

IOBuffer points to a data buffer into which data is written by Read 
calls and from which data is read by Write calls. IOReqCount specifies 
the requested number of bytes to be read, written, or allocated. 
IOActCount contains the number of bytes actually read, written, or 
allocated. 

IOPosMode and ioPosOffset contain pOSitioning information used for 
Read, Write, and SetFPos calls. Bits 0 and 1 of ioPosMode indicate how 
to position the mark, and you can use the following predefined 
constants to set or test their value: 

CONST fsAtMark = 0; {at current position of mark} 
{ (ioPosOffset ignored)} 

fsFromStart = 1 ; {offset relative to beginning of file} 
fsFromLEOF = 2; {offset relative to logical end-of-file} 
fsFromMark = 3; {offset relative to current mark} 

IOPosOffset specifies the byte offset (either positive or negative) 
relative to ioPosMode where the operation will be performed. 

(note) 

Assembly-language~: If bit 6 of ioPosMode is set, the File 
Manager will verify that all data read into memory by a Read 
call exactly matches the data on the volume (ioErr will be 
returned if any of the data doesn't match). 

Advanced programmers: Bit 7 of ioPosMode is the newline 
flag--set if read operations should terminate at newline 
characters, and clear if reading should terminate at the 
end of the access path buffer or volume buffer. The 
high-order byte of ioPosMode contains the ASCII code of 
the newline character. 

5/21/84 Hacker /OS/FS.A.l 



LOW-LEVEL FILE MANAGER ROUTINES 29 

File Information Parameters 

When you call the PBGetFilelnfo and PBSetFilelnfo functions, you'll use 
the following 16 additional fields after the standard 8-field parameter 
block: 

fileParam: 
(ioFRefNum: 
ioFVersNum: 
filler1: 
ioFDirlndex: 
ioFIAttrib: 
ioFIVersNum: 
ioFIFndrInfo: 
ioFINum: 
ioFIStBlk: 
ioFILgLen: 
ioFIPyLen: 
ioFIRStBlk: 
ioFIRLgLen: 
ioFIRPyLen: 
ioFICrDat: 
ioFIMdDat: 

INTEGER; 
Signed Byte; 
Signed Byte; 
INTEGER; 
Signed Byte; 
Signed Byte; 
Flnfo; 
Longlnt; 
INTEGER; 
Longlnt; 
Longlnt; 
INTEGER; 
LongInt; 
LongInt; 
LongInt; 
LongInt) ; 

{path reference number} 
{version number} 
{not used} 
{file number} 
{file attributes} 
{version number} 
{information used by the Finder} 
{file number} 
{first allocation block of data fork} 
{logical end-of-file of data fork} 
{physical end-of-file of data fork} 
{first allocation block of resource fork} 
{logical end-of-file of resource fork} 
{physical end-of-file of resource fork} 
{date and time of creation} 
{date and time of last modifi~~tion} 

IOFDirIndex contains the file number, another method of referring to a 
file; most programmers needn't be concerned with file numbers, but 
those interested can read the section "Data Organization on Volumes". 

Assembly-Ianguage~: IOFIAttrib contains eight bits of file 
attributes: if bit 7 is set, the file is open; if bit 0 is set, 
the file is locked. 

IOFIStBlk and ioFIRStBlk contain 0 if the file's data or resource fork 
is empty, respectively. The date and time in the ioFICrDat and 
ioFIMdDat fields are specified in seconds since 12:00 AM, January 1, 
1904. 

Volume Information Parameters 

When you call GetVollnfo, you'll use the following 14 additional 
fields: 

5/21/84 Hacker /OS/FS.A.1 



30 File Manager Programmer's Guide 

volumeParam: 
(filler2: 
ioVolIndex: 
ioVCrDate: 
ioVLsBkUp: 
ioVAtrb: 
ioVNmFls: 
ioVDirSt: 
ioVBlLn: 
ioVNmAlBlks: 
ioVAlBlkSiz: 
ioVClpSiz: 
ioAlBlSt: 
ioVNxtFNum: 
ioVFrBlk: 

LongInt; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
LongInt; 
INTEGER) ; 

{not used} 
{volume index} 
{date and time of initializ.ation} 
{date and time of last volume backup} 
{bit 15=1 if volume locked} 
{number of files in file directory} 
{first block of file directory} 
{number of blocks in file directory} 
{number of allocation blocks on volume} 
{number of bytes per allocation block} 
{number of bytes to allocate} 
{first block in volume block map} 
{next free file number} 
{number of free allocation blocks} 

IOVolIndex contains the volume index, another method of referring to a 
volume; the first volume mounted has an index of 1, and so on. Most 
programmers needn't be concerned with the parameters providing 
information about file directories and block maps (such as ioVNmFls), 
but interested programmers can read the section "Data Organization on 
Volumes". 

Routine Descriptions 

This section describes the procedures and functions. Each routine 
description includes the low-level Pascal form of the call and the 
routine's assembly-language macro. A list of the fields in the 
parameter block affected by the call is also given. 

Assembly-language note: The field names given in these 
descriptions are those of the ParamBlockRec data type; see the 
"Summary of the· File Manager" for the equivalent assembly
language equates. 

The number next to each parameter name indicates the byte offset of the 
parameter from the start of the parameter block pointed to by A0; only 
assembly-language programmers need be concerned with it. An arrow 
drawn next to each parameter name indicates whether it's an input, 
output, or input/output parameter: 

Arrow 
--~ 

~
~-~ 

5/21/84 Hacker 

Meaning 
Parameter must be passed to the routine 
Parameter will be returned by the routine 
Parameter must be passed to and will be returned 
by the routine 

/OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 31 

Initializing the File I/O Queue 

PROCEDURE InitQueue; 

Trap macro _InitQueue 

InitQueue clears all queued File Manager calls except the current one. 
There are no parameters or result codes associated with InitQueue. 

Accessing Volumes 

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) OSErr; 

Trap macro MountVol 

Parameter block 
~-- 16 
~-~ 22 

ioResult 
ioVRefNum 

Result codes noErr 
badMDBErr 
extFSErr 
ioErr 
mFulErr 
noMacDskErr 
nsDrvErr 
paramErr 
volOnLinErr 

word 
word 

No error 
Master directory block is bad 
External file system 
Disk I/O error 
Memory full 
Not a Macintosh volume 
No such drive 
Bad drive number 
Volume already on-line 

PBMountVol mounts the volume in the drive whose number is ioVRefNum, 
and returns a volume reference number in ioVRefNum. If there are no 
volumes already mounted, this volume becomes the default volume. 
PBMountVol is always executed synchronously. 

5/21/84 Hacker /OS/FS.A.2 



32 File Manager Programmer's Guide 

FUNCTION PBGetVolInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
--~ 
~--
~-~ 

~-~ 
--~ 
~--
~--
~--
~--
~--
~--
~--
~-
~--
~--
~--
~--

Result codes 

GetVolInfo 

12 ioCompletion pointer 
16 ioResult word 
18 ioNamePtr pointer 
22 ioVRefNum word 
28 ioVolIndex word 
3~ ioVCrDate long word 
34 ioVLsBkUp long word 
38 ioVAtrb word 
40 ioVNmFls word 
42 ioVDirSt word 
44 ioVBILn word 
46 ioVNmAlBlks word 
48 ioVAlBlkSiz long word 
52 ioVClpSiz 
56 ioAlBISt 
58 ioVNxtFNum 
62 ioVFrBlk 

noErr 
nsvErr 
paramErr 

long word 
word 
long word 
word 

No error 
No such volume 
No default volume 

PBGetVolInfo returns information about the specified volume. If 
ioVolIndex is positive, the File Manager attempts to use it to find the 
volume. If ioVolIndex is negative, the File Manager uses ioNamePtr and 
ioVRefNum in the standard way to determine which volume. If ioVollndex 
is 0, the File Manager attempts to access the volume by using ioVRefNum 
only. The volume reference number is returned in ioVRefNum, and the 
volume name is returned in ioNamePtr (unless ioNamePtr is NIL). 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 33 

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro GetVol 

Parameter block 
--~ 12 
~-- 16 
~-- 18 
~-- 22 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 

pointer 
word 
pointer 
word 

Result codes noErr 
nsvErr 

No error 
No default volume 

OSErr; 

PBGetVol returns the name of the default volume in ioNamePtr and its 
volume reference number in ioVRefNum (unless ioNamePtr is NIL). 

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro SetVol 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
--~ 22 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 

pointer 
word 
pointer 
word 

Result codes noErr 
bdNamErr 
nsvErr 
paramErr 

No error 
Bad volume name 
No such volume 
No default volume 

OSErr; 

PBSetVol sets the default volume to the mounted volume specified by 
ioNamePtr or ioVRefNum. 

5/21/84 Hacker /OS/FS.A.2 



34 File Manager Programmer's Guide 

FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro FlushVol 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
--~ 22 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 

pointer 
word 
pointer 
word 

Result codes noErr No error 
bdNamErr Bad volume name 
extFSErr External file system 
ioErr Disk I/O error 
nsDrvErr No such drive 
nsvErr No such volume 
paramErr No default volume 

OSErr; 

PBFlshVol writes descriptive information, the contents of the 
associated volume buffer, and all access path buffers to the volume 
specified by ioNamePtr or ioVRefNum, to the volume (if they've changed 
since the last time PBFlshVol was called). The volume modification 
date is set to the current time. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 35 

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) OSErr; 

Trap macro UnmountVol 

Parameter block 
~-- 16 
--~ 18 

ioResult 
ioNamePtr 
ioVRefNum --~ 22 

Result codes noErr 
bdNamErr 
extFSErr 
ioErr 
nsDrvErr 
nsvErr 
paramErr 

word 
pointer 
word 

No error 
Bad volume name 
External file system 
Disk I/O error 
No such drive 
No such volume 
No default volume 

PBUnmountVol unmounts the volume specified by ioNamePtr or ioVRefNum, 
by calling PBFlshVol to flush the volume, closing all open files on the 
volume, and releasing all the memory used for the volume. PBUnmountVol 
is always executed synchronously. 

(warning) 
Don't unmount the startup volume. 

FUNCTION PBOffLine (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro OffLine 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
--~ 22 

Result codes noErr 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 

No 

pointer 
word 
pointer 
word 

error 
bdNamErr Bad volume name 
extFSErr External file system 
ioErr Disk I/O error 
nsDrvErr No such drive 
nsvErr No such volume 
paramErr No default volume 

OSErr; 

PBOffLine places off-line the volume specified by ioNamePtr or 
ioVRefNum, by calling PBFlshVol to flush the volume, and releasing all 
the memory used for the volume except for 94 bytes of descriptive 
information. 

5/21/84 Hacker /OS/FS.A.2 



36 File Manager Programmer's Guide 

FUNCTION PBEject (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Trap macro 

Parameter block 
--~ 12 
~-- 16 
--~ 10 

--~ 22 

Result codes noErr 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 

No 

pointer 
word 
pointer 
word 

error 
bdNamErr Bad volume name 
extFSErr External file system 
ioErr Disk I/O error 
nsDrvErr No such drive 
nsvErr No such volume 
paramErr No default volume 

OSErrj 

PBEject calls PBOffLine to place the volume specified by ioNamePtr or 
ioVRefNum off-line, and then ejects the volume. 

You may call PBEject asynchronously; the first part of the call is 
executed synchronously, and the actual ejection is executed 
asynchronously. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 37 

Changing File Contents 

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro Create 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
--~ 22 
--~ 26 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 
ioVersNum 

pointer 
word 
pointer 
word 
byte 

Result codes noErr 
bdNamErr 
dupFNErr 
dirFulErr 
extFSErr 
ioErr 
nsvErr 
vLckdErr 
wPrErr 

No error 
Bad file name 
Duplicate file name 
Directory full 
External file system 
Disk I/O error 
No such volume 
Software volume lock 
Hardware volume lock 

OSErr; 

PBCreate creates a new file having the name ioNamePtr and the version 
number ioVersNum, on the specified volume. The new file is unlocked 
and empty. Its modification and creation dates are set to the time of 
the system clock. The application should call PBSetFlnfo to fill in 
the information needed by the Finder. 

5/21/84 Hacker /OS/FS.A.2 



38 File Manager Programmer's Guide 

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErrj 

Trap macro _Open 

Parameter block 
--~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--~ 18 ioNamePtr pointer 
--~ 22 ioVRefNum word 
~-- 24 ioRefNum word 
--~ 26 ioVersNum byte 
--~ 27 ioPermssn byte 
--~ 28 ioMisc pointer 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
mFulErr Memory full 
nsvErr No such volume 
opWrErr File already open for writing 
tmfoErr Too many files open 

PBOpen creates an access path to the file having the name ioNamePtr and 
the version number ioVersNum, on the specified volume. A path 
reference number is returned in ioRefNum. 

IOMisc either points to a 522-byte portion of memory to be used as the 
access path's buffer, or is NIL if you want the volume buffer to be 
used instead. 

(warning) 
All access paths to a single file that's opened multiple 
times should share the same buffer so that they will read 
and write the same data. 

IOPermssn specifies the path's read/write permission. A path can be 
opened for writing even if it accesses a file on a locked volume, and 
an error won't be returned until a PBWrite, PBSetEOF, or PBAllocate 
call is made. 

If you attempt to open a locked file for writing, PBOpen will return 
opWrErr as its function result. If you attempt to open a file for 
writing and it already has an access path that allows writing, PBOpen 
will return the reference number of the existing access path in 
ioRefNum and opWrErr as its function result. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 39 

FUNCTION PBOpenRF (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErrj 

Trap macro 

Parameter block 
--~ 
~--
--~ 

--~ 
~--

--~ 
--~ 
--~ 

Result codes 

_OpenRF 

12 ioCompletion pointer 
16 ioResult 
18 ioNamePtr 
22 ioVRefNum 
24 ioRefNum 
26 ioVersNum 
27 ioPermssn 
28 ioMisc 

noErr 
bdNamErr 
extFSErr 
fnfErr 
ioErr 
mFulErr 
nsvErr 
opWrErr 
permErr 

tmfoErr 

word 
pointer 
word 
word 
byte 
byte 
pointer 

No error 
Bad file name 
External file system 
File not found 
Disk I/O error 
Memory full 
No such volume 
File already open for writing 
Open permission doesn't 
allow reading 
Too many files open 

PBOpenRF is identical to PBOpen, except that it opens the file's 
resource fork instead of its data fork. 

5/21/84 Hacker /OS/FS.A.2 



40 File Manager Programmer's Guide 

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErrj 

Trap macro 

Parameter block 
--~ 
~--
--~ 

--~ 

--~ 

~--
--~ 
~-~ 

Result codes 

Read 

12 ioCompletion pointer 
16 ioResult word 
24 ioRefNum word 
32 ioBuffer pointer 
36 ioReqCount long word 
40 ioActCount long word 
44 ioPosMode word 
46 ioPosOffset long word 

noErr 
eofErr 
extFSErr 
fnOpnErr 
ioErr 
paramErr 
rfNumErr 

No error 
End-of-file 
External file system 
File not open 
Disk I/O error 
Negative ioReqCount 
Bad reference number 

PBRead attempts to read ioReqCount bytes from the open file whose 
access path is specified by ioRefNum, and transfer them to the data 
buffer pointed to by ioBuffer. If you try to read past the logical 
end-of-file, PBRead moves the mark to the end-of-file and returns 
eofErr as its function result. After the read operation is completed, 
the mark is returned in ioPosOffset and the number of bytes actually 
read is returned in ioActCount. 

(note) 
Advanced programmers: IOPosMode contains the newline 
character (if any), and indicates whether the read should 
begin relative to the beginning of the file, the mark, or 
the end-of-file. The byte offset from the position 
indicated by ioPosMode, where the read should actually 
begin, is given by ioPosOffset. If a newline character 
is not specified, the data will be read one byte at a 
time until ioReqCount bytes have been read or the 
end-of-file is reached. If a newline character is 
specified, the data will be read one byte at a time until 
the newline character is encountered, the end-of-file is 
reached, or ioReqCount bytes have been read. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 41 

FUNCTION PBWrite (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErrj 

Trap macro 

Parameter block 
--~ 
~--
--7 
--~ 
--~ 
~--
--~ 
--~ 

Result codes 

Write 

12 ioCompletion pointer 
16 ioResult word 
24 ioRefNum word 
32 ioBuffer pointer 
36 ioReqCount long word 
40 ioActCount long word 
44 ioPosMode word 
46 ioPosOffset long word 

noErr 
dskFulErr 
fLckdErr 
fnOpnErr 
ioErr 
paramErr 
posErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

No error 
Disk full 
File locked 
File not open 
Disk I/O error 
Negative ioReqCount 
Position is beyond end-of-file 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer 
and attempts to write them to the open file whose access path is 
specified by ioRefNum. After the write operation is completed, the 
mark is returned in ioPosOffset, and the number of bytes actually 
written is returned in ioActCount. 

IOPosMode indicates whether the write should begin relative to the 
beginning of the file, the mark, or the end-of-file. The byte offset 
from the position indicated by ioPosMode, where the write should 
actually begin, is given by ioPosOffset. 

5/21/84 Hacker /OS/FS.A.2 



42 File Manager Programmer's Guide 

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro GetFPos 

Parameter block 
--~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--7 22 ioRefNum word 
~-- 36 ioReqCount long word 
.~-- 40 ioActCount long word 
~-- 44 ioPosMode word 
~-- 46 ioPosOffset long word 

Result codes noErr No error 
extFSErr External file system 
fnOpnErr File not open 
ioErr Disk I/O error 
rfNumErr Bad reference number 

PBGetFPos returns, in ioPosOffset, the mark of the open file whose 
access path is specified by ioRefNum. PBGetFPos sets ioReqCount, 
ioActCount, and ioPosMode to 0. 

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro SetFPos 

Parameter block 
--~ 12 
~-- 16 
--~ 22 
--~ 44 
--~ 46 

Result codes noErr 

ioCompletion 
ioResult 
ioRefNum 
ioPosMode 
ioPosOffset 

pointer 
word 
word 
word 
long word 

No error 
eofErr End-of-file 
extFSErr External file 
fnOpnErr File not open 
ioErr Disk I/O error 

system 

OSErr; 

posErr Tried to position before start 
of file 

rfNumErr Bad reference number 

PBSetFPos sets the mark of the open file whose access path is specified 
by ioRefNum, to the position specified by ioPosMode and ioPosOffset. 
IoPosMode indicates whether the mark should be set relative to the 
beginning of the file, the mark, or the logical end-of-file. The byte 
offset from the position given by ioPosMode, where the mark should 
actually be set, is given by ioPosOffset. If you try to see the mark 
past ~he logical end-of-file, PBSetFPos moves the mark to the 
end-of-file and returns eofErr as its function result. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 43 

FUNCTION PBGetEOF (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Trap macro GetEOF 

Parameter block 
--~ 12 
~-- 16 
--~ 22 
~-- 28 

ioCompletion 
ioResult 
ioRefNum 
ioMisc 

pointer 
word 
word 
long word 

Result codes noErr No error 
extFSErr External file system 
fnOpnErr File not open 
ioErr Disk I/O error 
rfNumErr Bad reference number 

OSErrj 

PBGetEOF returns, in ioMisc, the logical end-of-file of the open file 
whose access path is specified by ioRefNum. 

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErrj 

Trap macro 

Parameter block 
--~ 
~--
--~ 
--~ 

Result codes 

SetEOF 

12 ioCompletion pointer 
16 ioResu1t 
22 ioRefNum 
28 ioMisc 

noErr 
dskFu1Err 
extFSErr 
fLckdErr 
fnOpnErr 
ioErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

word 
word 
long 

No error 
Disk full 

word 

External file system 
File locked 
File not open 
Disk I/O error 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

PBSetEOF sets the logical end-of-file of the open file whose access 
path is specified by ioRefNum, to ioMisc. If the logical end-of-file 
is set beyond the physical end-of-file, the physical end-of-file is set 
to one byte beyond the end of the next free allocation block; if there 
isn't enough space on the volume, no change is made, and PBSetEOF 
returns dskFulErr as its function result. If ioMisc is 0, all space on 
the volume occupied by the file is released. 

5/21/84 Hacker /OS/FS.A.2 



44 File Manager Programmer's Guide 

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
--~ 
~--

--~ 
--~ 
~--

Result codes 

Allocate 

12 ioCompletion pointer 
16 ioResult 
22 ioRefNum 
36 ioReqCount 
4" ioActCount 

noErr 
dskFulErr 
fLckdErr 
fnOpnErr 
ioErr 
rfNumErr 
vLckdErr 
wPrErr 
wrPermErr 

word 
word 
long word 
long word 

No error 
Disk full 
File locked 
File not open 
Disk I/O error 
Bad reference number 
Software volume lock 
Hardware volume lock 
Read/write or open permission 
doesn't allow writing 

PBAllocate adds ioReqCount bytes to the open file whose access path is 
specified by ioRefNum, and sets the physical end-of-file to one byte 
beyond the last block allocated. The number of bytes allocated is 
always rounded up to the nearest multiple of the allocation block size, 
and returned in ioActCount. If there isn't enough empty space on the 
volume to satisfy the allocation request, PBAllocate allocates the rest 
of the space on the volume and returns dskFulErr as its function 
result. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 45 

FUNCTION PBFlshFile (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro FlushFile 

Parameter block 
--~ 12 
~-- 16 
--~ 22 

ioCompletion 
ioResult 
ioRefNum 

pointer 
word 
word 

Result codes noErr No error 
extFSErr External file system 
fnfErr File not found 
fnOpnErr File not open 
ioErr Disk I/O error 
nsvErr No such volume 
rfNumErr Bad reference number 

OSErrj 

PBFlshFile writes the contents of the access path buffer indicated by 
ioRefNum to the volume, and updates the file's entry in the file 
directory. 

(warning) 
Some information stored on the volume won't be correct 
until PBFlshVol is called. 

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro Close 

Parameter block 
--~ 12 
~-- 16 
--~ 24 

ioCompletion 
ioResult 
ioRefNum 

pointer 
word 
word 

Result codes noErr 
extFSErr 
fnfErr 
fnOpnErr 
ioErr 
nsvErr 
rfNumErr 

No error 
External file system 
File not found 
File not open 
Disk I/O error 
No such volume 
Bad reference number 

PBClose writes the contents of the access path buffer specified by 
ioRefNum to the volume and removes the access path. 

(warning) 
Some information stored on the volume won't be correct 
until PBFlshVol is called. 

5/21/84 Hacker /OS/FS.A.2 



46 File Manager Programmer's Guide 

Changing Information About Files 

All of the routines described in this section affect both forks of a 
file. 

FUNCTION PBGetFlnfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro GetFileInfo 

Parameter block 
--~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--~ 18 ioNamePtr pointer 
--~ 22 ioVRefNum word 
~-- 24 ioRefNum word 
--~ 26 ioVersNum byte 
--~ 28 ioFDirIndex word 
~-- 3~ ioFlAttrib byte 
~-- 31 ioFlVersNum byte 
~-- 32 ioFndrlnfo 16 bytes 
~-- 48 ioFlNum long word 
~-- 52 ioFlStBlk word 
~-- 54 ioFlLgLen long word 
~-- 58 ioFlPyLen long word 
~-- 62 ioFlRStBlk word 
~-- 64 ioFlRLgLen long word 
~-- 68 ioFlRPyLen long word 
~-- 72 ioFlCrDat long word 
~-- 76 ioFlMdDat long word 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
paramErr No default volume 

PBGetFInfo returns information about the specified file. If 
ioFDirIndex is positive, the File Manager returns information about the 
file whose file number is ioFDirIndex on the specified volume (see the 
section "Data Organization on Volumes" if you're interested in using 
this method). If ioFDirlndex is negative or 0, the File Manager 
returns information about the file having the name ioNamePtr and the 
version number ioVersNum, on the specified volume. Unless ioNamePtr is 
NIL, ioNamePtr returns a pointer to the name of the file. If the file 
is open, the reference number of the first access path found is 
returned in ioRefNum. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 47 

FUNCTION PBSetFlnfo (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErrj 

Trap macro SetFileInfo 

Parameter block 
--~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--~ 18 ioNamePtr pointer 
--~ 22 ioVRefNum word 
--~ 26 ioVersNum byte 
--~ 32 ioFndrlnfo 16 bytes 
--~ 72 ioFlCrDat long word 
--~ 76 ioFlMdDat long word 

Result codes noErr No error 
bdNamErr Bad file name 
extFSErr External file system 
fLckdErr File locked 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

PBSetFInfo sets information (including creation and modification dates, 
and information needed by the Finder) about the file having the name 
ioNamePtr and the version number ioVersNum on the specified volume. 
You should call PBGetFlnfo just before PBSetFlnfo, so the current 
information is present in the parameter block. 

5/21/84 Hacker /OS/FS.A.2 



48 File Manager Programmer's Guide 

FUNCTION PBSetFLock (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Trap macro SetFilLock 

Parameter block 
--, 12 
~-- 16 
--, 18 
.--' 22 
--, 26 

Result codes noErr 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 
ioVersNum 

No 

pointer 
word 
pointer 
word 
byte 

error 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

OSErr; 

PBSetFLock locks the file having the name ioNamePtr and the version 
number ioVersNum on the specified volume. Access paths currently in 
use aren't affected. 

FUNCTION PBRstFLock (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Trap macro RstFilLock 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
--~ 22 
--~ 26 

Result codes noErr 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 
ioVersNum 

No 

pointer 
word 
pointer 
word 
byte 

error 
extFSErr External file system 
fnfErr File not found 
ioErr Disk I/O error 
nsvErr No such volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

OSErrj 

PBRstFLock unlocks the file having the name ioNamePtr and the version 
number ioVersNum on the specified volume. Access paths currently in 
use aren't affected. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 49 

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro _SetFilType 

Parameter block 
-~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--~ 18 ioNamePtr pointer 
--~ 22 ioVRefNum word 
--~ 26 ioVersNum byte 
--~ 28 ioMisc byte 

Result codes noErr No error 
bdNamErr Bad file name 
dupFNErr Duplicate file name and version 
extFSErr External file system 
fLckdErr File locked 
fnfErr File not found 
nsvErr No such volume 
ioErr Disk 1/0 error 
paramErr No default volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

PBSetFVers changes the version number of the file having the name 
ioNamePtr and version number ioVersNu~ on the specified volume, to 
ioMisc. Access paths currently in use aren't affected. 

(warning) 
The Resource Manager and Segment Loader operate only on 
files with version number ~; changing the version number 
of a file to a nonzero number will prevent them from 
operating on it. 

5/21/84 Hacker /OS/FS.A.2 



50 File Manager Programmer's Guide 

FUNCTION PBRename (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro Rename 

Parameter block 
--~ 12 ioCompletion pointer 
~-- 16 ioResult word 
--~ 18 ioNamePtr pointer 
--~ 22 ioVRefNum word 
--~ 26 ioVersNum byte 
--~ 28 ioMisc pointer 

Result codes noErr No error 
bdNamErr Bad file name 
dirFulErr Directory full 
dupFNErr Duplicate file name and version 
extFSErr External file system 
fLckdErr File locked 
fnfErr File not found 
fsRnErr Renaming difficulty 
ioErr Disk I/O error 
nsvErr No such volume 
paramErr No default volume 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

Given a file name in ioNamePtr and a version number in ioVersNum, 
Rename changes the name of the specified file to ioMisc; given a volume 
name in ioNamePtr or a volume reference number in ioVRefNum, it changes 
the name of the specified volume to ioMisc. Access paths currently in 
use aren't affected. 

5/21/84 Hacker /OS/FS.A.2 



LOW-LEVEL FILE MANAGER ROUTINES 51 

FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro Delete 

Parameter block 
--~ 12 
~-- 16 
--~ 18 
-..;.~ 22 
--~ 26 

Result codes noErr 

ioCompletion 
ioResult 
ioNamePtr 
ioVRefNum 
ioVersNum 

pointer 
word 
pointer 
word 
byte 

No error 
bdNamErr Bad file name 
extFSErr External file system 
fBsyErr File busy 
fLckdErr File locked 
fnfErr File not found 
nsvErr No such volume 
ioErr Disk I/O error 
vLckdErr Software volume lock 
wPrErr Hardware volume lock 

OSErr; 

PBDelete removes the closed file having the name ioNamePtr and the 
version number ioVersNum. from the specified volume. 

(note) 
This function will delete both forks of the file. 

5/21/84 Hacker /OS/FS.A.2 



52 File Manager Programmer's Guide 

DATA ORGANIZATION ON VOLUMES 

This section explains how information is organized on volumes. Most of 
the information is accessible only through assembly language, but some 
advanced Pascal programmers may be interested. 

The File Manager communicates with device drivers that read and write 
data via block-level requests to devices containing Macintosh
initialized volumes. (Macintosh-initialized volumes are volumes 
initialized by the Disk Initialization Package.) The actual type of 
volume and device is unimportant to the File Manager; the only 
requirements are that the volume was initialized by the Disk 
Initialization Package and that the device driver is able to 
communicate via block-level requests. 

The 3 1/2-inch built-in and optional external drives are accessed via 
the Disk Driver. If you want to use the File Manager to access files 
on Macintosh-initialized volumes on other types of devices, you must 
write a device driver that can read and write data via block-level 
requests to the device on which the volume will be mounted. If you 
want to access files on nonMacintosh-initialized volumes, you must 
write your own external file system (see the section "Using an External 
File System"). 

The information on all block-formatted volumes is organized in logical 
blocks and allocation blocks. Logical blocks contain a number of bytes 
of standard information (512 bytes on Macintosh-initialized volumes), 
and an additional number of bytes of information specific to the disk 
driver (12 bytes on Macintosh-initialized volumes). Allocation blocks 
are composed of any integral number of logical blocks, and are simply a 
means of grouping logical blocks together in more convenient parcels. 

The remainder of this section applies only to Macintosh-initialized 
volumes. NonMacintosh-initialized volumes must be accessed via an 
external file system, and the information on them must be organized by 
an external initializing program. 

A Macintosh-initialized volume contains information needed to start up 
the system in logical blocks ~ and 1 (Figure 6). Logical block 2 of 
the volume begins the master directory block. The master directory 
block contains volume information and the volume allocation block map, 
which records whether each block on the volume is unused or what part 
of a file it contains data from. 

5/21/84 Hacker /OS/FS.D 



DATA ORGANIZATION ON VOLUMES 53 

logical block 0 

logical block 1 

system startup 

i nforrnat i on 

............ t---------------~ 
vo I ume i nformat ion logical block 2 .......................................................................................... . 

.. .......... ........... block map .......... . 

logical block 3 ......................................................................................... . 
unused ............ t----------;:..;.;:;:::'O;";'=---------1 

logicel bled 4 

file directory .......... . 

logical block n .......................................................................................... . 
unused ............ 1-----------------1 

logical block n +' 
fHe contents 

logical block 799 
...•........ L--_____________ ----" 

zero if not e startup d i sic 

master directory block 

ellc,cetion block 2 

allocation block m 

Figure 6. A 400K-Byte Volume With 1K-Byte Allocation Blocks 

The master directory "block" always occupies two blocks--the Disk 
Initialization Package varies the allocation block size as necessary to 
achieve this constraint. 

In the next logical block following the block map begins the file 
directory, which contains descriptions and locations of all the files 
on the volume. The rest of the logical blocks on the volume contain 
files or garbage (such as parts of deleted files). The exact format 
of the volume information, volume allocation block map, file directory, 
and files is explained in the following sections. 

Volume Information 

The volume information is contained in the first 64 bytes of the master 
directory block (Figure 7). This information is written on the volume 
when it's initialized, and modified thereafter by the File Manager. 

5/21/84 Hacker /OS/FS.D 



54 File Manager Programmer's Guide 

drSigWord (word) byte 0 131 ways $D2D 7 

2 date and time of intial izetion drCrDate (long word) 

6 date and time of last beckup drLsBkUp (Iona word) 

10 volume attributes dr.A. trb (word) 

'2 number of fi les in fi Ie directory drNmFls (word) 

14 first logical block of file directory drD i rSt (word) 

16 number of logical blocks in fi Ie directory drB I Len (word) 

18 number of allocation blocks on volume drNmAI81ks (weird) 

20 size of allocation blocks dr.A.IBlkSiz (long word) 

drC I pS i z (long word) 24 number of bytes to ellocate 

28 logical block number of first allocation block: drAI81S1 (word) 

30 next unused f i I e number drNxtFNum (long word) 

34 number of unused ell ocet i on tllocks drFreeBks (word) 

~ I ength of vo lurne name drVN (byte) 

drVN + 1 (bytes) characters of vo I ume rteme 

Figure 7. Volume Information 

DrAtrb contains the volume attributes. Its bits, if set, indicate the 
following: 

Bit Meaning 
7 Volume is locked by hardware 

15 Volume is locked by software 

DrClpSiz contains the minimum number of bytes to allocate each time the 
Allocate function is called, to minimize fragmentation of files; it's 
always a multiple of the allocation block size. DrNxtFNum contains the 
next unused file number (see the "File Directory" section below for an 
explanation of file numbers). 

5/21/84 Hacker /OS/FS.D 



DATA ORGANIZATION ON VOLUMES 55 

Volume Allocation Block Map 

The volume allocation block map represents every allocation block on 
the volume with a 12-bit entry indicating whether the block is unused 
or allocated to a file. It begins in the master directory block at the 
byte following the volume information, and continues for as many 
logical blocks as needed. For example, a 400K-byte volume with a 
10-block file directory and lK-byte allocation blocks would have a 
591-byte block map. 

The first entry in the block map is for block number 2; the block map 
doesn't contain entries for the startup blocks. Each entry specifies 
whether the block is unused, whether it's the last block in the file, 
or which allocation block is next in the file: 

Entry 
o 
1 
2 •• 4095 

Meaning 
Block is unused 
Block is the last block of the file 
Number of next block in the file 

For instance, assume that there's one file on the volume, stored in 
allocation blocks 8, 11, 12, and 17; the first 16 entries of the block 
map would read 

o 0 0 0 0 0 11 0 0 12 17 0 0 0 0 1 

The first allocation block on a volume typically follows the file 
directory. The first allocation block is number 2 because of the 
special meaning of numbers 0 and 1. 

(note) 
As explained below, it's possible to begin the allocation 
blocks immediately following the master directory block 
and place the file directory somewhere within the 
allocation blocks. In this case, the allocation blocks 
occupied by the file directory must be marked with $FFF's 
in the allocation block map. 

File Directory 

The file directory contains an entry for each file. Each entry lists 
information about one file on the volume, including its name and 
location. Each file is listed by its own unique file number, which the 
File Manager uses to distinguish it from other files on the volume. 

A file directory entry contains 51 bytes plus one byte for each 
character in the file name (Figure 8); if the file names average 20 
characters, a 4irectory can hold seven file entries per logical block. 
Entries are always an integral number of words and don't cross logical 
block boundaries. The length of a file directory depends on the 
maximum number of files the volume can contain; for example; on a 
400K-byte volume the file directory occupies 12 logical blocks. 

5/21/84 Hacker /OS/FS.D 



56 File Manager Programmer's Guide 

The file directory conventionally follows the block map and precedes 
the allocation blocks, but a volume-initializing program could actually 
place the file directory anywhere within the allocation blocks as long 
as the blocks occupied by the file directory are marked with $FFF's in 
the block map. 

flFlags (byte) 

flTyp (byte) 

flUsrWds (16 bytes) 

flFINum (long word) 

fiStBI~ (word) 

flLgLen (long word) 

flPyLen (long word) 

flRStBlk (word) 

flRLgLen (long word) 

flRPyLen (long word) 

f I CrDet (long word) 

f I MdDat (long word) 

1 I Name (byte) 

flNam + 1 (bytes) 

bit 7 = 1 if entry used; bit 0 = 1 if fi Ie locked 

versi on number 

information used by the Finder 

file number 

1 i rst all ocat ion b I oct of data 10rk: 

data fori(J slog i cal end- of- f i Ie 

data fori(J $ phys i cal end-01- f i Ie 

first all ocat i on tJ I oc~ of resource for~ 

resource fork" slog i ca I end- 01- 1 i Ie 

reS(lUrce fork" s phys i cel end- of- f i Ie 

date and time fi Ie was created 

date and time fi Ie was last modified 

length of fi Ie name 

characters (If f i I e name 

Figure 8. A File Directory Entry 

FIStBlk and flRStBlk are ~ if the data or resource fork doesn't exist. 
FICrDat and flMdDat are given in sec6nds since 12:~0 AM, January 1, 
19~4. 

Each time a new file is created, an entry for the new file is placed in 
the file directory. Each time a file is deleted, its entry in the file 
directory is cleared t and all blocks used by that file on the volume 
are released. 

File Tags on Volumes 

As mentioned previously, logical blocks contain 512 bytes of standard 
information preceded by 12 bytes of file tags (Figure 9). The file 
tags are designed to allow easy reconstruction of files from a volume 
whose directory or other file-access information has been destroyed. 

5/21/84 Hacker /OS/FS.D 



DATA ORGANIZATION ON VOLUMES 57 

by1e a f i I e number (long word) file number 

4 fork: type (byte) bit 1 =, if resource fork: 

5 fi Ie attributes (byte) bit 7 = 1 if capen; bi1 0=1 if locked 

6 f i I e seq uence (word) log i ea I b I clck seq uence number 

8 mod date (long word) date and time las1 modified 

Figure 9. File Tags on Volumes 

The file sequence indicates which relative portion of a file the block 
contains--the first logical block of a file has a sequence number of 0, 
the second a sequence number of 1, and so on. 

DATA STRUCTURES IN MEMORY 

This section describes the memory data structures used by the File 
Manager and any external file system that accesses files on 
Macintosh-initialized volumes. Most of this data is accessible only 
through assembly language, but some advanced Pascal programmers may be 
interested. 

The data structures in memory used by the· File Manager and all external 
file systems include: 

- the file I/O queue, listing the currently executing routine (if 
any), and any asynchronous routines awaiting execution 

- the volume-control-block queue, listing information about each 
mounted volume 

- copies of volume allocation block maps; one for each on-line 
volume 

- the file-control-block buffer, listing information about each 
access path 

- volume buffers; one for each on-line volume 

- optional access path buffers; one for each access path 

- the drive queue, listing information about each drive connected to 
the Macintosh 

5/21/84 Hacker /OS/FS.D 



58 File Manager Programmer's Guide 

The File I/O Queue 

The file I/O queue is a standard Operating System queue (described in 
the appendix) that contains a list of all asynchronous routines 
awaiting execution. Each time a routine is called, an entry is placed 
in the queue; each time a routine is completed, its entry is removed 
from the queue. 

The file I/O queue uses entries of type ioQType, each of which consists 
of a parameter block for the routine that was called. The structure of 
this block is shown in part below: 

TYPE ParamBlockRec = RECORD 
qLink: QElemPtr; 
qType: INTEGER; 
ioTrap: INTEGER; 
ioCmdAddr: Ptr; 

END; 

{next queue entry} 
{queue type} 
{routine trap} 
{routine address} 
{rest of block} 

QLink points to the next entry in the queue, and qType indicates the 
queue type, which must always be ORD(ioQType). IOTrap and ioCmdAddr 
contain the trap word and address of the File Manager routine that was 
called. You can get a pointer to the file I/O queue by calling the 
File Manager function GetFSQHdr. 

FUNCTION GetFSQHdr : QHdrPtr; [Pascal only] 

GetFSQHdr returns a pointer to the file I/O queue. 

Assembly-Ianguage~: To access the contents of the file I/O 
queue from assembly language, you can use offsets from the 
address of the global variable fsQHdr. Bit 7 of the queue flags 
is set if there are any entries in the queue; you can use the 
global constant qlnUse to test the value of bit 7. 

Volume Control Blocks 

Each time a volume is mounted, its volume information is read from the 
volume and used to build a new volume control block in the 
volume-control-block queue (unless an ejected or off-line volume is 
being remounted). A copy of the volume block map is also read from the 
volume and placed in the system heap, and a volume. buffer is created on 
the system heap. 

5/21/84 Hacker /OS/FS.D 



DATA STRUCTURES IN MEMORY 59 

The volume-control-block queue is a list of the volume control blocks 
for all mounted volumes, maintained on the system heap. It's a 
standard Operating System queue (described in the appendix), and each 
entry in the volume-control-block queue is a volume control block. A 
volume control block is a 94-byte nonrelocatable block that contains 
volume-specific information, including the first 64 bytes of the master 
directory block (bytes 8 to 72 of the volume control block match bytes 
o to 64 of the volume information). It has the following structure: 

TYPE VCB = RECORD 
qLink: QElemPtr; {next queue entry} 
qType: INTEGER; {not used} 
vcbFlags: INTEGER; {bit 15=1 if dirty} 
vcbSigWord: INTEGER; {always $0207} 
vcbCrOate: LongInt; {date volume was initialized} 
vcbLsBkUp: Longlnt; {date of last backup} 
vcbAtrb: INTEGER; {volume attributes} 
vcbNmFls: INTEGER; {number of files in directory} 
vcbOirSt: INTEGER; {directory's first block} 
vcbBILn: INTEGER; {length of file directory} 
vcbNmBlks: INTEGER; {number of allocation blocks} 
vcbAIBlkSiz: LongInt; {size of allocation blocks} 
vcbClpSiz: LongInt; {number of bytes to allocate} 
vcbAlBlSt: INTEGER; {first block in block map} 
vcbNxtFNum: LongInt; {next unused file number} 
vcbFreeBks: INTEGER; {number of unused blocks} 
vcbVN: STRING [27 ] ; {volume name} 
vcbOrvNum: INTEGER; {drive number} 
vcbORefNum: INTEGER; {driver reference number} 
vcbFSIO: INTEGER; {file system identifier} 
vcbVRefNum: INTEGER; {volume reference number} 
vcbMAdr: Ptr; {location of block map} 
vcbBufAdr: Ptr; {location of volume buffer} 
vcbMLen: INTEGER; {number of bytes in block map} 
vcbOirIndex: INTEGER; {used internally} 
vcbOirBlk: INTEGER {used internally} 

END; 

Bit 15 of vcbFlags is set if the volume information has been changed by 
a routine call since the volume was last affected by a FlushVol call. 
VCBAtr contains the volume attributes. Each bit, if set, indicates the 
following: 

Bit Meaning 
0-2 Inconsistencies were found between the volume information 

and the file directory when the volume was mounted 
6 Volume is busy (one or more files are open) 
7 Volume is locked by hardware 

15 Volume is locked by software 

VCBOirSt contains the number of the first logical block of the file 
directory; vcbNmBlks, the number of allocation blocks on the volume; 
vcbAlBlSt, the number of the first logical block in the block map; and 
vcbFreeBks, the number of unused allocation block.:» Ul. ~:lC y",,:'v.ille. 

5/21/84 Hacker /OS/FS.O 



60 File Manager Programmer's Guide 

VCBDrvNum contains the drive number of the drive on which the volume is 
mounted; vcbDRefNum contains the driver reference number of the driver 
used to access on volume is mounted. When a mounted volume is placed 
off-line, vcbDrvNum is cleared. When ejected, vcbDrvNum is cleared and 
vcbDRefNum is set to the negative of vcbDrvNum (becoming a positive 
number). VCBFSID identifies the file system handling the volume; it's 
~ for volumes handled by the File Manager, and nonzero for volumes 
handled by other file systems. 

When a volume is placed off-line, its buffer and block map are 
deallocated. When a volume is unmounted, its volume control block is 
removed from the volume-control-block queue. 

You can get a pointer to the volume-control-block queue by calling the 
File Manager function GetVCBQHdr. 

FUNCTION GetVCBQHdr : QHdrPtr; [Pascal only] 

GetVCBQHdr returns a pointer to the volume-control-block queue. 

Assembly-language~: To access the contents of the volume
control-block queue from assembly language, you can use offsets 
from the address of the global variable vcbQHdr. Bit 7 of the 
queue flags is set if there are any entries in the queue; you 
can use the global constant qInUse to test the value of bit 7. 
The default volume's volume control block is pointed to by the 
global variable defVCBPtr. 

File Control Blocks 

Each time a file is opened, the file's directory entry is used to build 
a 3~-byte file control block in the file-control-block buffer, which 
contains information about all access paths. The file-control-block 
buffer can contain up to 12 file control blocks (since up to 12 paths 
can be open at once), and is a 362-byte (2 + 30 bytes*12 paths) 
nonrelocatable block on the system heap (see Figure 10). 

5/21/84 Hacker /OS/FS.D 



DATA STRUCTURES IN MEMORY 61 

byte 0 

2 

32 

62 

332 

7' 

I ength (word) 

first fi Ie 
control block 

second file 
contro I block 

'7 

twelfth file 
control blocle 

Figure 10. The File-Control-Block Buffer 

You can refer to the file-control-block buffer by using the global 
variable fcbSPtr, which points to the length word. Each file control 
block contains 30 bytes of information about an access path (Figure 
11). 

byte 0 file number fcbF INurn (long word) 

4 flags fcbMdRBy1 (byte) 

5 version number fcbTypByt (byte) 

6 first allocation block of file fcbSBlk (word) 

8 logical end-of-fi Ie fcbEOF (long word) 

12 physical end-of- fi Ie fcbPLen (long word) 

16 marl!: fcbCrPs (long word) 

20 location of volume control block fcbVPtr (pointer) 

24 location of access path buffer fcbBfAdr (pointer) 

28 for interna I use of F i I e Manager fcbFlPos (word) 

Fig~re 11. A File Control Block 

Bit 7 of fcbMdRByt is set if the file has been changed since it was 
last flushed; bit 1 is set if the entry describes a resource fork; bit 
o is set if data can be written to the file. 

5/21/84 Hacker /OS/FS.D 



62 File Manager Programmer's Guide 

Files Tags in Memory 

As mentioned previously, logical blocks on Macintosh-initialized 
volumes contain 12 bytes of file tags. Normally, you'll never need to 
know about file tags, and the File Manager will let you read and write 
only the 512 bytes of standard information in each logical block. The 
File Manager automatically removes the file tags from each logical 
block it reads into memory (Figure 12) and places them at the location 
referred to by the global variable tagData + 2. It replaces the last 
four bytes of the file tags with the number of the logical block from 
which the file was read (leaving a total of ten bytes). 

by1e 0 f i I e number (long word) f i I e number 

(note) 

4 fork type (byte) bit 1 =, if resource fork 

5 f i Ie attr i butes (byte) bit 0=1 if locked 

6 f i I e seq uence (word) log i ca I block seq uence number 

8 logical bloCK number (word) logical blclck 

Figure 12. File Tags in Memory 

Access path buffers and volume buffers are 522 bytes long 
in order to contain the ten bytes of file tags and 512 
bytes of standard information. 

The Drive Queue 

Disk drives connected to the Macintosh are opened when the system 
starts up, and information describing each is placed in the drive 
queue. It's a standard Operating System queue (described in the 
appendix), and each entry in the drive queue has the following 
structure: 

TYPE DrvQEl = RECORD 
{ flags: 

qLink: 
qType: 
dQDrive: 
dQRefNum: 
dQFSID: 
dQDrvSize: 

END; 

LongInt; } 
QElemPtr; {next queue entry} 
INTEGER; {not used} 
INTEGER; {drive number} 
INTEGER; {driver reference number} 
INTEGER; {file-system identifier} 
INTEGER {optional: number of blocks} 

QDrvNum contains the drive number of the drive on which the volume is 
mounted; qDRefNum contains the driver reference number of the driver 

5/21/84 Hacker /OS/FS.D 



DATA STRUCTURES IN MEMORY 63 

controlling the device on which the volume is mounted. QFSID 
identifies the file system handling the volume in the drive; it's 0 for 
volumes handled by the File Manager, and nonzero for volumes handled by 
other file systems. If the volume isn't a 3-1/2 inch disk~ dQDrvSize 
contains the number of 512-byte blocks on the volume mounted in this 
drive; if the volume is a 3-1/2 inch disk, this field isn't used. 

Assembly-language~: The first four bytes in a drive queue 
entry are accessible only from assembly language, and contain 
the following: 

2 
3 

Contents 
Bit 7=1 if volume is locked 
o if no disk in drive; 1 or 2 if disk in drive; 
8 if nonejectable disk in drive; $FC-$FF if disk 
was ejected within last 1.5 seconds 
used internally during system startup, 
Bit 7=0 if disk is single-sided 

You can get a pointer to the drive queue by calling the File Manager 
function GetDrvQHdr: 

FUNCTION GetDrvQHdr : QHdrPtr; [Pascal only) 

GetDrvQHdr returns a pointer to the qFlags field. 

Assembly-language note: To access the contents of the drive 
queue from assembly language, you can use offsets from the 
address of the global variable drvQHdr. 

The drive queue can support any number of drives, limited only by 
memory space. 

USING AN EXTERNAL FILE SYSTEM 

The File Manager is used to access files on Macintosh-initialized 
volumes. If you want to access files on nonMacintosh-initialized 
volumes, you must write your own external file system and 
volume-initializing program. After the external file system has been 
written, it must be used in conjunction with the File Manager as 
described in this section. 

5/21/84 Hacker /OS/FS.D 



64 File Manager Programmer's Guide 

Before any File Manager routines are called, you must place the memory 
location of the external file system in the global variable toExtFS; 
and link the drive(s) accessed by your file system into the drive 
queue. As each nonMacintosh-initialized volume is mounted, you must 
create your own volume control block for each mounted volume and link 
each one into the volume-control-block queue. As each access path is 
opened, you must create your own file control block and add it to the 
file-control-block buffer. 

All SetVol, GetVol, and GetVollnfo calls then can be handled by the 
File Manager via the volume-control-block queue and drive queue; 
external file systems needn't support these calls. 

When an application calls any other File Manager routine accessing a 
nonMacintosh-initialized volume, the File Manager passes control to the 
address contained in toExtFS (if toExtFS is 0, the File Manager returns 
directly to the application with the result code extFSErr). The 
external file system must then use the information in the file I/O 
queue to handle the call as it wishes, set the result code noErr, and 
return control to the File Manager. Control is passed to an external 
file system for the following specific routine calls: 

- for MountVol if the drive queue entry for the requested drive has 
a nonzero file-system identifier 

- for Create, Open, OpenRF, GetFilelnfo, SetFilelnfo, SetFilLock, 
RstFilLock, SetFilType, Rename, Delete, FlushVol, Eject, OffLine, 
and UnmountVol, if the volume control block for the requested file 
or volume has a nonzero file-system identifier 

- for Close, Read, Write, Allocate, GetEOF, SetEOF, GetFPos, 
SetFPos, and FlushFile, if the file control block for the 
requested file points to a volume control block with a nonzero 
file-system identifier 

5/21/84 Hacker /OS/FS.D 



APPENDIX -- OPERATING SYSTEM QUEUES 65 

APPENDIX -- OPERATING SYSTEM QUEUES 

*** This appendix will eventually be part of the Operating System 
Utilities manual. *** 

Some of the information used by the Operating System is stored in data 
structures called queues. A queue is a list of identically structured 
entries linked together by pointers. Queues are used to keep track of 
vertical retrace tasks, I/O requests, disk drives, events, and mounted 
volumes. 

The structure of a standard Operating System queue is as follows: 

TYPE QHdr = RECORD 
qFlags: INTEGER; {queue flags} 
qHead: QElemPtr; {first queue entry} 
qTail: QElemPtr {last queue entry} 

END; 

QHdrPtr = AQHdr; 

QFlags contains information that's different for each queue type. 
QHead points to the first entry in the queue, and qTail points to the 
last entry in the queue. The entries within each type of queue are 
different, since each type of queue contains different information. 
The Operating System uses the following variant record to access queue 
entries: 

{vertical retrace queue} 
{I/O request queue} 
{drive queue} 

TYPE QTypes = (dummyType, 
vType, 
ioQType, 
drvQType, 
evType, 
fsQType); 

{event queue} 
{volume-control-block queue} 

QElem = RECORD 
CASE QTypes OF 

END; 

(vblQElem: VBLTask); 
(ioQElem: ParamBlockRec); 
(drvQElem: DrvQEl); 
(evQElem: EvQEl); 
(vcbQElem: VCB) 

QElemPtr = AQElem; 

The exact structure of the entries in each type of Operating System 
queue is described in the manual that discusses that queue in detail. 

Assembly-language note: The values given in the Pascal QTypes 
set are available to assembly-language programmers as the global 

5/21/84 Hacker CONFIDENTIAL lOS/APPENDIX 



66 File Manager Programmer's Guide 

constants vType, ioQType, evType, and fsQType (there is no 
global constant corresponding to drvQType). 

5/21/84 Hacker lOS/APPENDIX 



SUMMARY OF THE FILE MANAGER 67 

SUMMARY OF THE FILE MANAGER 

Constants 

CONST { Flags in file information used by the Finder } 

fHasBundle = 32; {set if file has a bundle} 
fInvisible = 64; {set if file's icon is invisible} 
fTrash = -3; {file is in trash window} 
fDesktop = -2; {file is on desktop} 
fDisk = 0; {file is in disk window} 

{ Values for posMode and ioPosMode } 

fsAtMark = 0; {at current position of mark } 
{ (posOff or ioPosOffset ignored)} 

fsFromStart = 1 ; {offset relative to beginning of file} 
fsFromLEOF = 2; {offset relative to logical end-of-file} 
fsFromMark = 3; {offset relative to current mark} 

{ Values for requesting read/write access } 

fsCurPerm = 0; {whatever is currently allowed} 
fsRdPerm = 1; {request to read only} 
fsWrPerm = 2; {request to write only} 
fsRdWrPerm = 3; {request to read and write} 

(See also the result codes at end of this summary.) 

Data Structures 

TYPE Flnfo = RECORD 
fdType: 
fdCreator: 
fdF1ags: 
fdLocation: 
fdF1dr: 

END; 

OSType; 
OSType; 
INTEGER; 
Point; 
INTEGER 

{file type} 
{file's creator} 
{flags} 
{file's location} 
{file's window} 

ParamBlkPtr = ·ParamBlockRec; 

ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam); 

5/21/84 Hacker /OS/FS.S 



68 File Manager Programmer's Guide 

ParamBlockRec 
qLink: 
qType: 
ioTrap: 
ioCmdAddr: 
ioCompletion: 
ioResult: 
ioNamePtr: 
ioVRefNum: 

= RECORD 
QElemPtr; 
INTEGER; 
INTEGER; 
Ptr; 
ProcPtr; 
OSErrj 
StringPtr; 
INTEGER; 

{next queue entry} 
{queue type} 
{routine trap} 
{routine address} 
{completion routine} 
{result code} 
{volume or file name} 
{volume reference or } 
{ drive number} 

CASE ParamBlkType OF 
ioParam: 

(ioRefNum: 
ioVersNum: 
ioPermssn: 
ioMisc: 
ioBuffer: 
ioReqCount: 
ioActCount: 
ioPosMode: 

INTEGER; 
Signed Byte; 
Signed Byte; 
Ptr; 
Ptr; 
LongInt; 
LongInt; 
INTEGER; 

{path reference number} 
{version number} 
{read/write permission} 
{miscellaneous} 
{data buffer} 
{requested number of bytes} 
{actual number of bytes} 
{newline character and type of } 
{ positioning operation} 

ioPosOffset: LongInt); {size of positioning offset} 
fileParam: 

(ioFRefNum: 
ioFVersNum: 
fillerl: 
ioFDirIndex: 
ioFlAttrib: 
ioFlVersNum: 
ioFlFndrInfo: 
ioFlNum: 
ioFlStBlk: 
ioFlLgLen: 
ioFlPyLen: 
ioFlRStBlk: 
ioFlRLgLen: 
ioFlRPyLen: 
ioFlCrDat: 
ioFlMdDat: 

volumeParam: 
(filler2: 
ioVolIndex: 
ioVCrDate: 
ioVLsBkUp: 
ioVAtrb: 
ioVNmFls: 
ioVDirSt: 
ioVBlLn: 
ioVNmAlBlks: 
ioVAlBlkSiz: 
ioVClpSiz: 
ioAlBlSt: 
ioVNxtFNum: 
ioVFrBlk: 

5/21/84 Hacker 

INTEGER; 
SignedByte; 
SignedByte; 
INTEGER; 
Signed Byte; 
SignedByte; 
Flnfo; 
LongInt; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
LongInt; 
LongInt; 
LongInt; 
LongInt) ; 

{path reference number} 
{version number} 
{not used} 
{file number} 
{file attributes} 
{version number} 
{information used by the Finder} 
{file number} 
{first allocation block of data fork} 
{logical end-of-file of data fork} 
{physical end-of-file of data fork} 
{first allocation block of resource fork} 
{logical end-of-file of resource fork} 
{physical end-of-file of resource fork} 
{date and time of creation} 
{date and time of last modification} 

LongInt; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
LongInt; 
INTEGER) ; 

{not used} 
{volume index} 
{date and time of initialization} 
{date and time of last volume backup} 
{bit 15=1 if volume locked} 
{number of files in file directory} 
{first block of file directory} 
{number of blocks in file directory} 
{number of allocation blocks on volume} 
{number of bytes per allocation block} 
{number of bytes to allocate} 
{first block in volume block map} 
{next free file number} 
{number of free allocation blocks} 

/OS/FS.S 



cntrlParam: 
{used by Device Manager} 

END; 

VCB = RECORD 
qLink: 
qType: 
vcbFlags: 
vcbSigWord: 
vcbCrDate: 
vcbLsBkUp: 
vcbAtrb: 
vcbNmFls: 
vcbDirSt: 
vcbBILn: 
vcbNmBlks: 
vcbAlBlkSiz: 
vcbClpSiz: 
vcbAlBlSt: 
vcbNxtFNum: 
vcbFreeBks: 
vcbVN: 
vcbDrvNum: 
vcbDRefNum: 
vcbFSID: 
vcbVRefNum: 
vcbMAdr: 
vcbBufAdr: 
vcbMLen: 
vcbDirIndex: 
vcbDirBlk: 

END; 

DrvQEl = RECORD 
qLink: 
qType: 
dQDrive: 
dQRefNum: 
dQFSID: 
dQDrvSize: 

END; 

QElemPtr; 
INTEGER; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
LongInt; 
INTEGER; 
STRING [27 ] ; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
Ptr; 
Ptr; 
INTEGER; 
INTEGER; 
INTEGER 

QElemPtr; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER 

SUMMARY OF THE FILE MANAGER 69 

{next queue entry} 
{not used} 
{bit 15=1 if dirty} 
{always $D2D7} 
{date volume was initialized} 
{date of last backup} 
{volume attributes} 
{number of files in directory} 
{directory's first block} 
{length of file directory} 
{number of allocation blocks} 
{size of allocation blocks} 
{number of bytes to allocate} 
{first block in block map} 
{next unused file number} 
{number of unused blocks} 
{volume name} 
{drive number} 
{driver reference number} 
{file system identifier} 
{volume reference number} 
{location of block map} 
{location of volume buffer} 
{number of bytes in block map} 
{used internally} 
{used internally} 

{next queue entry} 
{not used} 
{drive number} 
{driver reference number} 
{file-system identifier} 
{number of logical blocks} 

High-Level Routines [Pascal only] __________________________________ __ 

Accessing Volumes 

FUNCTION GetVInfo 

FUNCTION GetVol 

5/21/84 Hacker 

(drvNum: INTEGER; volName: StringPtr; VAR 
vRefNum: INTEGER; VAR freeBytes: LongInt) 
OSErr; 

(volName: StringPtr; VAR vRefNum: INTEGER) 
OSErr; 

/OS/FS.S 



70 File Manager Programmer's Guide 

FUNCTION SetVol (volName: StringPtr; vRefNum: INTEGER) 
FUNCTION FlushVol (volName: StringPtr; vRefNum: INTEGER) 
FUNCTION UnmountVol (volName: StringPtr; vRefNum: INTEGER) 
FUNCTION Eject (voIName: StringPtr; vRefNum: INTEGER) 

OSErr; 
OSErr; . 
OSErr; 
OSErr; 

Changing File Contents 

FUNCTION Create (fileName: Str255; vRefNum: INTEGER; creator: 
OSType; fileType: OSType) : OSErr; 

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER; VAR 
refNum: INTEGER) OSErr; 

FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 
: OSErr; 

FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 
: OSErr; 

FUNCTION GetFPos (refNum: INTEGER; VAR filePos: LongInt) : OSErr;, 
FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff: LongInt) 

: OSErr; 
FUNCTION GetEOF ( refNum: INTEGER; VAR logEOF: LongInt) : OSErr; 
FUNCTION SetEOF (refNum: INTEGER; logEOF: LongInt) : OSErr; 
FUNCTION Allocate (refNum: INTEGER; VAR count: LongInt) : OSErr; 
FUNCTION FSClose (refNum: INTEGER) : OSErr; 

Changing Information About Files 

FUNCTION GetFlnfo (fileName: Str255; vRefNum: INTEGER; VAR 
fndrlnfo: Flnfo) : OSErr; 

FUNCTION SetFlnfo (fileName: Str255; vRefNum: INTEGER; fndrlnfo: 

FUNCTION SetFLock 
FUNCTION RstFLock 
FUNCTION Rename 

FUNCTION FSDelete 

Low-Level Routines 

Flnfo) : OSErr; 
(fileName: Str255; vRefNum: INTEGER) : OSErr; 
(fileName: Str255; vRefNum: INTEGER) : OSErrj 
(oldName: Str255; vRefNum: INTEGER; newName: 

Str255) : OSErr; 
(fileName: Str255; vRefNum: INTEGER) : OSErr; 

Initializing the File I/O Queue 

PROCEDURE InitQueue; 

5/21/84 Hacker /OS/FS.S 



SUMMARY OF THE FILE MANAGER 7 1 

Accessing Volumes 

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr; 
FUNCTION PBGetVolInfo (paramBlock: ParmBlkPtrj async: BOOLEAN) 
FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) 
FUNCTION PBSetVol (paramBlock: ParmBlkPtrj async: BOOLEAN) 
FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN) 
FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErrj 
FUNCTION PBOffLine (paramBlock: ParmBlkPtr; async: BOOLEAN) 
FUNCTION PBEject (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Changing File Contents 

FUNCTION PBCreate (paramBlock: 
FUNCTION PBOpen (paramBlock: 
FUNCTION PBOpenRF (paramBlock: 
FUNCTION PBRead (paramBlock: 
FUNCTION PBWrite (paramBlock: 
FUNCTION PBGetFPos (paramBlock: 
FUNCTION PBSetFPos (paramBlock: 
FUNCTION PBGetEOF (paramBlock: 
FUNCTION PBSetEOF (paramBlock: 
FUNCTION PBA1locate (paramBlock: 
FUNCTION PBFIshFile (paramBlock: 
FUNCTION PBClose (paramBlock: 

Changing Information About Files 

FUNCTION PBGetFInfo (paramBlock: 
FUNCTION PBSetFInfo (paramBlock: 
FUNCTION PBSetFLock (paramBlock: 
FUNCTION PBRstFLock (paramBlock: 
FUNCTION PBSetFVers (paramBlock: 
FUNCTION PBRename (paramBlock: 
FUNCTION PBDelete (paramBlock: 

Accessing Queues [Pascal only] 

FUNCTION GetFSQHdr 
FUNCTION GetVCBQHdr 
FUNCTION GetDrvQHdr 

5/21/84 Hacker 

QHdrPtrj 
QHdrPtr; 
QHdrPtr; 

ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 

ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtrj async: BOOLEAN) 
ParmBlkPtr; async: BOOLEAN) 

OSErr; 
OSErr; 
OSErr; 
OSErr; 

OSErr; 
OSErr; 

OSErr; 
OSErr; 
OSErr; 
OSErrj 
OSErrj 
OSErr; 
OSErr; 
OSErr; 
OSErrj 
OSErr; 
OSErr; 
OSErrj 

OSErr; 
OSErrj 
OSErr; 
OSErr; 
OSErr; 
OSErrj 
OSErr; 

/OS/FS.S 



72 File Manager Programmer's Guide 

Assembly-Language Information 

Constants 

; Flags in file information used by the Finder 

fsQType 
fHasBundle 
fInvisible 

.~QU 

.EQU 

.EQU 

5 
5 
6 

;1/0 request queue entry type 
;set if file has a bundle 
;set if file's icon is invisible 

j Flag set when queue is in use 

qInUse .EQU 7 jset if queue is in use 

; Flags for testing trap words 

asnycTrpBit 
noQueueBit 

.EQU 

.EQU 
1(6 
9 

;set in trap word for an asynchronous call 
jset in trap word for immediate execution 

Structure of File Information Used by the Finder 

fdType 
fdCreator 
fdFlags 
fdLocation 
fdFldr 

File type 
File's creator 
Flags 
File's location 
File's window 

Standard Parameter Block Data Structure 

qLink 
qType 
ioTrap 
ioCmdAddr 
ioCompletion 
ioResult 
ioFileName 
ioVNPtr 
ioVRefNum 
ioDrvNum 

5/21/84 Hacker 

Next queue entry 
Queue type 
Routine trap 
Routine address 
Completion routine 
Result code 
File name (and possibly volume name) 
Volume name 
Volume reference number 
Drive number 

/OS/FS.S 



SUMMARY OF THE FILE MANAGER 73 

I/O Parameter Block Data Structure 

ioRefNum 
ioFileType 
ioPermssn 
ioNewName 
ioLEOF 
ioOwnBuf 
ioNewType 
ioBuffer 
ioReqCount 
ioActCount 
ioPosMode 
ioPosOffset 

Path reference number 
Version number 
Read/write permission 
New file or volume name for Rename 
Logical end-of-file for SetEOF 
Access path buffer 
New version number for SetFilType 
Data buffer 
Requested number of bytes 
Actual number of bytes 
Newline character and type of positioning operation 
Size of positioning offset 

File Information Parameter Block Data Structure 

ioRefNum 
ioFileType 
ioFDirlndex 
ioFlAttrib 
ioFFIType 
ioFIUsrWds 
ioFFlNum 
ioFIStBlk 
ioFlLgLen 
ioFlPyLen 
ioFlRStBlk 
ioFIRLgLen 
ioFIRPyLen 
ioFlCrDat 
ioFIMdDat 

Path reference number 
Version number 
File number 
File attributes 
Version number 
Information used by the Finder 
File number 
First allocation block of data fork 
Logical end-of-file of data fork 
Physical end-of-file of data fork 
First allocation block of resource fork 
Logical end-of-file of resource fork 
Physical end-of-file of resource fork 
Date and time file was created 
Date and time file was last modified 

Volume Information Parameter Block Data Structure 

ioVollndex 
ioVCrDate 
ioVLsBkUp 
ioVAtrb 
ioVNmFls 
ioVDirSt 
ioVBlLn 
ioVNmAlBlks 
ioVAlBlkSiz 
ioVClpSiz 
ioAlBISt 
ioVNxtFNum 
ioVFrBlk 

5/21/84 Hacker 

Volume index number 
Date and time volume was initialized 
Date and time of last volume backup 
Bit 15=1 if volume is locked 
Number of files in file directory 
First block of file directory 
Number of blocks in file directory 
Number of allocation blocks on volume 
Number of bytes per allocation block 
Number of bytes to allocate 
First block in volume block map 
Next tree file number 
Number of free allocation blocks 

/OS/FS.S 



74 File Manager Programmer's Guide 

Volume Information Data Structure 

Always $0207 
Date and time of initialization 
Date and time of last backup 
Volume attributes 
Number of files in file directory 
First logical block of file directory 
Number of logical blocks in file directory 
Number of allocation blocks on volume 
Size of allocation blocks 
Number of bytes to allocate 

drSigWord 
drCrDate 
drLsBkUp 
drAtrb 
drNmFls 
drDirSt 
drBILen 
drNmAlBlks 
drAIBlkSiz 
drClpSiz 
drAlBlSt 
drNxtFNum 
drFreeBks 
drVN 

Logical block number of first allocation block 
Next unused file number 
Number of unused allocation blocks 
Length and characters of volume name 

File Directory Entry Data Structure 

flFlags 
flTyp 
flUsrWds 
flFINum 
flStBlk 
flLgLen 
flPyLen 
flRStBlk 
flRLgLen 
flRPyLen 
flCrDat 
flMdDat 
flName 

Bit 7=1 if entry used; bit 0=1 if file locked 
Version number 
Information used by the Finder 
File number 
First allocation block of data fork 
Data fork's logical end-of-file 
Data fork's physical end-of-file 
First allocation block of resource fork 
Resource fork's logical end-of-file 
Resource fork's physical end-of-file 
Date and time file was created 
Date and time file was last modified 
Length and characters of file name 

Queue Header Data Structure 

qFlags 
qHead 
qTail 

Queue flags 
Pointer to first queue entry 
Pointer to last queue entry 

Volume Control Block Data Structure 

qLink 
qType 
vcbFlags 
vcbSigWord 
vcbCrDate 
vcbLsBkUp 
vcbAtrb 
vcbNm-Fls 
vcbDirSt 

5/21/84 Hacker 

Next queue entry 
Not used 
Bit 15=1 if volume control block is dirty 
Always $D2D7 
Date and time volume was initialized 
Date and time last backup copy was made 
Volume attributes 
Number of files in directory 
First logical block of file directory 

/OS/FS.S 



vcbBILn 
vcbNmBlks 
vcbAlBlkSiz 
vcbClpSiz 
vcbAIBISt 
vcbNxtFNum 
vcbFreeBks 
vcbVN 
vcbDrvNum 
vcbDRefNum 

vcbFSID 
vcbVRefNum 
vcbMAdr 
vcbBufAdr 
vcbMLen 
vcbDirIndex 
vcbDirBlk 

SUMMARY OF THE FILE MANAGER 75 

Length of file directory 
Number of allocation blocks on volume 
Size of allocation blocks 
Number of bytes to allocate 
First logical block in block map 
Next unused file number 
Number of unused allocation blocks 
Length and characters of volume name 
Drive number of drive in which volume is mounted 
Driver reference number of driver for drive in 
which volume is mounted 
10 for file system handling volume 
Volume reference number 
Memory location of volume block map 
Memory location of volume buffer 
Number of bytes in volume block map 
For internal File Manager use 
For internal File Manager use 

File Control Block Data Structure 

fcbFINum 
fcbMdRByt 
fcbTypByt 
fcbSBlk 
fcbEOF 
fcbPLen 
fcbCrPs 
fcbVPtr 
fcbBfAdr 
fcbFIPos 

File number 
Flags 
Version number 
First allocation block of file 
Logical end-of-file 
Physical end-of-file 
Mark 
Location of volume control block 
Location of access path buffer 
For internal use of File Manager 

File Control Block Data Structure 

qLink 
qType 
dQDrive 
dQRefNum 
dQFS1D 
dQDrvSize 

Macro Names 

Routine name 
1nitQueue 
PBMountVol 
PBGetVolInfo 
PBGetVol 
PBSetVol .. 
PBFlshVol 
PBUnmountVol 

5/21/84 Hacker 

Next queue entry 
Always drvType 
Drive number 
Driver reference number 
File system ID 
Number of logical blocks 

Macro name 
InitQueue 

-MountVol 
-GetVolInfo 

GetVol 
SetVol 

-FlushVol 
UnmountVol 

/OS/FS.S 



76 File Manager Programmer's Guide 

PBOffLine 
PBEject 
PBCreate 
PBOpen 
PBOpenRF 
PBRead 
PBWrite 
PBGetFPos 
PBSetFPos 
PBGetEOF 
PBSetEOF 
PBAllocate 
PBFlshFile 
PBClose 
PBGetFlnfo 
PBSetFlnfo 
PBSetFLock 
PBRstFLock 
PBSetFVers 
PBRename 
PBDelete 

Variables 

Name 
fsQHdr 
vcbQHdr 
defVCBPtr 
fcbSPtr 
tagData + 2 
drvQHdr 
toExtFS 

Result Codes 

OffLine 
_Eject 

Create 
_Open 
_OpenRF 

Read 
Write 
GetFPos 
SetFPos 
GetEOF 
SetEOF 
Allocate 
FlushFile 
Close 
GetFilelnfo 
SetFilelnfo 

_SetFilLock 
RstFilLock 

_SetFilType 
Rename 
Delete 

Size 
4 bytes 
4 bytes 
4 bytes 
4 bytes 
4 bytes 
4 bytes 
4 bytes 

Contents 
File I/O queue 
Volume-control-block queue 
Pointer to default volume control block 
Pointer to file-control-block buffer 
Location of file tags 
Drive queue 
Pointer to external file system 

These values are available as predefined constants in both Pascal and 
assembly language. 

Name Value 
badMDBErr -60 

bdNamErr -37 

dirFulErr -33 
dskFulErr -34 
dupFNErr -48 

eofErr -39 

extFSErr -58 

5/21/84 Hacker 

Meaning 
Master directory block is bad; must 
reinitialize volume 
Bad file name or volume name (perhaps zero
length) 
File directory full 
All allocation blocks on the volume are full 
A file with the specified name already 
exists 
Logical end-of-file reached during read 
operation 
External file system; file-system identifier 
is nonzero, or path reference number is 
greater than 1024 

/OS/FS.S 



fBsyErr 
fLckdErr 
fnfErr 
fnOpnErr 
fsRnErr 
ioErr 
mFulErr 
noErr 
nsDrvErr 

noMacDskErr 
nsvErr 
opWrErr 

paramErr 

permErr 
posErr 
rfNumErr 

tmfoErr 
volOffLinErr 
volOnLinErr 

vLckdErr 
wrPermErr 

wPrErr 

5/21/84 Hacker 

-47 
-45 
-43 
-38 
-59 
-36 
-41 

o 
-56 

-57 
-35 
-49 

-50 

-54 
-40 
-51 

-42 
-53 
-55 

-46 
-61 

-44 

SUMMARY OF THE FILE MANAGER 77 

One or more files are open 
File locked 
File not found 
File not open 
Problem during Rename 
Disk I/O error 
System heap is full 
No error 
Specified drive number doesn't match any 
number in the drive queue 
Volume lacks Macintosh-format directory 
Specified volume doesn't exist 
The read/write permission of only one 
access path to a file can allow writing 
Parameters don't specify an existing 
volume, and there's no default volume 
Read/write permission doesn't allow writing 
Attempted to position before start of file 
Reference number specifies nonexistent 
access path 
Only 12 files can be open simultaneously 
Volume not on-line 
Volume specified is already mounted and 
on-line 
Volume is locked by a software flag 
Read/write permission or open permission 
doesn't allow writing 
Volume is locked by a hardware setting 

/OS/FS.S 



78 File Manager Programmer's Guide 

GLOSSARY 

access path: A description of the route that the File Manager follows 
to access a file; created when a file is opened. 

access path buffer: Memory used by the File Manager to transfer data 
between an application and a file. 

allocation block~ Volume space composed of an integral number of 
logical blocks. 

asynchronous execution: During asynchronous execution of a File 
Manager routine, the calling application is free to perform other 
tasks. 

block map: Same as volume allocation block map. 

closed file: A file without an access path. Closed files cannot be 
read from or written to. 

completion routine: Any application-defined code to be executed when 
an asynchronous call to a File Manager routine is completed. 

data buffer: Heap space containing information to be written to a file 
or driver from an application, or read from a file or driver to an 
application. 

data fork: The part of a file that contains data accessed via the File 
Manager. 

default volume: A volume that will receive I/O during a File Manager 
routine call, whenever no other volume is specified. 

drive number: A number used to identify a disk drive. The internal 
drive is number 1, and the external drive is number 2. 

drive queue: A list of disk drives connected to the Macintosh. 

end-of-file: See logical end-of-file or physical end-of-file. 

file: A named, ordered sequence of bytes; a principal means by which 
data is stored and transmitted on the Macintosh. 

file control block: 30 bytes of system heap space in a file-control
block buffer containing information about an access path. 

file-control-block buffer: A 362-byte nonrelocatable block containing 
one file control block for each access path. 

file directory: The part of a volume that contains descriptions and 
locations of all the files on the volume. 

5/21/84 Hacker /OS/FS.G 



GLOSSARY 79 

file I/O queue: A queue containing parameter blocks for all I/O 
requests to the File Manager. 

file name: A sequence of up to 255 characters that identifies a file. 

file number: A unique number assigned to a file, which the File 
Manager uses to distinguish it from other files on the volume. A file 
number specifies the file's entry in a file directory. 

file tags: Information associated with each logical block, designed to 
allow reconstruction of files on a volume whose directory or other 
file-access information has been destroyed. 

fork: One of the two parts of a file; see data fork and resource fork. 

I/O request: A request for input from or output to a file or device 
driver; caused by calling a File Manager or Device Manager routine 
asynchronously. 

locked file: A file whose data cannot be changed. 

locked volume: A volume whose data cannot be changed. Volumes can be 
locked by either a software flag or a hardware setting. 

logical block: Volume space composed of 512 consecutive bytes of 
standard information and an additional number of bytes of disk-driver 
specific information. 

logicalend-of-file: The position of one byte past the last byte in a 
file; equal to the actual number of bytes in the file. 

mark: The position of the next byte in a file that will be read or 
written. 

master directory block: Part of the data structure of a volume; 
contains the volume information and the first 448 bytes of the block 
map. 

mounted volume: A volume that previously was inserted into a disk 
drive and had descriptive information read from it by the File Manager. 

newline character: Any ASCII character, but usually Return (ASCII code 
$00), that indicates the end of a sequence of bytes. 

newline mode: A mode of reading data where the end of the data is 
indicated by a newline character (and not by a specific byte count). 

off-line volume: A mounted volume with all but 94 bytes of its 
descriptive information released. 

on-line volume: A mounted volume with its volume buffer and 
descriptive information contained in memory. 

5/21/84 Hacker /OS/FS.G 



80 File Manager Programmer's Guide 

open file: A file with an access path. Open files can be read from 
and written to. 

open permission: Information about a file that indicates whether the 
file can be read from, written to, or both. 

parameter block: Memory space used to transfer information between 
applications and the File Manager. 

path reference number: A number that uniquely identifies an individual 
access path; assigned when the access path is created. 

physical end-of-file: The position of one byte past the last 
allocation block of a file; equal to 1 more than the maximum number of 
bytes the file can contain. 

read/write permission: Information associated with an access path that 
indicates whether the file can be read from, written to, both read from 
and written to, or whatever the file's open permission allows. 

resource fork: The part of a file that contains the resources used by 
an application (such as menus, fonts, and icons) and also the 
application code itself; usually accessed via the Resource Manager. 

synchronous execution: During synchronous execution of a File Manager 
routine, the calling application must wait until the routine is 
completed, and isn't free to perform any other task. 

unmounted volume: A volume that hasn't been inserted into a disk drive 
and had descriptive information read from it, or a volume that 
previously was mounted and has since had the memory used by it 
released. 

version number: A number from 0 to 255 used to distinguish between 
files with the same name. 

volume: A piece of storage medium formatted to contain files; usually 
a disk or part of a disk. The 3 1/2-inch Macintosh disks are one 
volume. 

volume allocation block map: A list of 12-bit entries, one for each 
allocation block, that indicate whether the block is currently 
allocated to a file, whether it's free for use, or which block is next 
in the file. Block maps exist both on volumes and in memory. 

volume attributes: Information contained on volumes and in memory 
indicating whether the volume is locked, has one or more files open (in 
memory only), and whether the volume control block matches the volume 
information (in memory only). 

volume buffer: Memory used initially to load the master directory 
block, and used thereafter for reading from files that are opened 
without an access path buffer. 

5/21/84 Hacker /OS/FS.G 



GLOSSARY 81 

volume control block: A 90-byte nonrelocatable block that contains 
volume-specific information, including the first 64 bytes of the master 
directory block. 

volume-control-block queue: A list of the volume control blocks for 
all mounted volumes. 

volume index: A number identifying a mounted volume listed in the 
volume-control-block queue. The first volume in the queue has an index 
of 1, and so on. 

volume information: Volume-specific information contained on a volume; 
includes the volume name, number of files on the volume, and so on. 

volume name: A sequence of up to 27 printing characters that 
identifies a volume; always followed by a colon <:} to distinguish it 
from a file name. 

volume reference number: A unique number assigned to a volume as it's 
mounted, used to refer to the volume. 

5/21/84 Hacker /OS/FS.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Marl< up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your help' 



MACINTOSH USER EDUCATION 

The Device Manager: A Programmer's Guide /DMGR/DEVICE 

See Also: The Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
The File Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Vertical Retrace Manager: A Programmer's Guide 
Inside Macintosh: A Road Map 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) Bradley Hacker 6/15/84 

ABSTRACT 

This manual describes the Device Manager, the part of the Macintosh 
Operating System that controls the exchange of information between a 
Macintosh application and devices. It also discusses interrupts. 



2 Device Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Device Manager 
6 Using the Device Manager 
7 Device Manager Routines 
7 High-Level Device Manager Routines 
9 Low-Level Device Manager Routines 
10 Routine Parameters 
13 Routine Descriptions 
18 The Structure of a Device Driver 
21 A Device Control Entry 
22 The Unit Table 
25 Writing Your Own Device Drivers 
26 Routines for Writing Drivers 
28 A Sample Driver 
30 Interrupts 
31 Level-1 (VIA) Interrupts 
33 Level-2 (SCC) Interrupts 
34 Writing Your Own Interrupt Handlers 
35 Summary of the Device Manager 
40 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Device Manager, the part of the Macintosh 
Operating System that controls the exchange of information between a 
Macintosh application and devices. It also discusses interrupts. *** 
Eventually it will become part of the comprehensive Inside Macintosh 
manual. *** General information about using and writing device drivers 
can be found in this manual; specific information about the standard 
Macintosh drivers is contained in separate manuals. 

Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal. You should also be familiar with the basic 
concepts behind the Macintosh Operating System's Memory Manager. 

This manual is intended to serve the needs of both Pascal ~nd assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Device Manager and what 
you can do with it. It then discusses some basic concepts behind the 
Device Manager: what devices and device drivers are and how they're 
used. 

A section on using the Device Manager introduces its routines and tells 
how they fit into the flow of your application. This is followed by 
detailed descriptions of all the commonly used Device Manager routines, 
their parameters, calling protocol, effects, side effects, and so on. 

Following these descriptions are sections that provide information for 
programmers who want to write their own drivers, including a discussion 
of interrupts and a sample device driver. 

Finally, there's a summary of the Device Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE DEVICE MANAGER 

The Device Manager is the part of the Operating System that handles 
communication between applications and devices. A device is a part of 
the Macintosh, or a piece of external equipment, that can transfer 
information into or out of the Macintosh. Macintosh devices include 
disk drives, two serial communications ports, the sound generator, and 
printers. The video screen is not a device; drawing on the screen is 
handled by QuickDraw. 

There are two kinds of devices: character devices and block devices. 
A character device reads or writes a stream of characters, one at a 
time: it can neither skip characters nor go back to a previous 
character. A character device is used to get information from or send 
information to the world outside of the Macintosh Operating System and 

6/15/84 Hacker /DMGR/DEVICE.I 



4 Device Manager Programmer's Guide 

memory: it can be an input device, an output device, or an 
input/output device. The serial ports and printers are all character 
devices. 

A block device reads and writes blocks of 512 characters at a time; it 
can read or write any accessible block on demand. A block device is 
usually used to store and retrieve information; disk drives are block 
devices. 

Applications communicate with devices through the Device Manager-
either directly, or indirectly through another Operating System or 
Toolbox "Manager". For example, an application can communicate with a 
disk drive directly via the Device Manager, or indirectly via the File 
Manager (which calls the Device Manager). The Device Manager doesn't 
manipulate devices directly; it calls device drivers that do (Figure 
1). Device drivers are programs that take data coming from the Device 
Manager and convert them into actions of devices, and convert device 
actions into data for the Device Manager to process. 

Figure 1. Communication with Devices 

The Operating System includes three standard device drivers in ROM: 
the Disk Driver, the Sound Driver, and the ROM Serial Drivers. There 
are also a number of standard RAM drivers: the Printer Driver, the RAM 
Serial Drivers, and desk accessories. RAM drivers are resources, and 
are read from the system resource file as needed. 

You can add other drivers independently or butld on top of the existing 
drivers (for example, the Printer Driver is built on top of the Serial 
Driver); the section "Writing Your Own Device Drivers" describes how to 
do this. Desk accessories are a special type of device driver, and are 
manipulated via the specialized routines of the Desk Manager~ 

6/15/84 Hacker /DMGR/DEVICE.I 



ABOUT THE DEVICE MANAGER 5 

(warning) 
Information about desk accessories covered in the Desk 
Manager manual will not be repeated here. Some 
information in this manual may not apply to desk 
accessories. 

A device driver can be either open or closed. The Sound Driver and 
Disk Driver are opened when the system starts up--the rest of the 
drivers are opened at the specific request of an application. After a 
driver has been opened, an application can read data from and write 
data to the driver. You can close device drivers that are no longer in 
use, and recover the memory used by them. Up to 32 device drivers may 
be open at anyone time. 

Before it's opened, you identify a device driver by its driver name; 
after it's opened, you identify it by its reference number. A driver 
name consists of a period (.) followed by any sequence of 1 to 254 
printing characters. A RAM driver's name is the same as its resource 
name. You can use uppercase and lowercase letters when naming drivers, 
but the Device Manager ignores case when comparing names (it doesn't 
ignore diacritical marks). 

(note) 
Although device driver names can be quite long, there's 
little reason for them to be more than a few characters 
in length. 

The Device Manager assigns each open device driver a driver reference 
number, from -1 to -32, that's used instead of its driver name to refer 
to it. 

Most communication between an application and an open device driver 
occurs by reading and writing data. Data read from a driver is placed 
in the application's data buffer, and data written to a driver is taken 
from the application'~ta bufffer. A data buffer is memory allocated 
by the application for communication with drivers. 

In addition to data that's read from or written to device drivers, 
drivers may require or provide other information. Information 
transmitted to a driver by an application is called control 
information; information provided by a driver is called status 
information. Control information may select modes of operation, start 
or stop processes, enable buffers, choose protocols, and so on. Status 
information may indicate the current mode of operation, the readiness 
of the device, the occurrence of errors, and so on. Each device driver 
may respond to a number of different types of control information and 
may provide a number of different types of status information. 

Each of the standard Macintosh drivers includes predefined calls for 
transmitting control information and receiving status information. 
Explanations of these calls can be found in the manuals describing the 
drivers. 

6/15/84 Hacker /DMGR/DEVICE.U 



6 Device Manager Programmer's Guide 

USING THE DEVICE MANAGER 

This section discusses how the Device Manager routines for calling 
device drivers fit into the general flow of an application program and 
gives an idea of what routines you'll need to use. The routines 
themselves are described in detail in the section "Device Manager 
Routines". The Device Manager routines for writing device drivers are 
described in the section "Writing Your Own Device Drivers" 

You can call Device Manager routines via three different methods: 
high-level Pascal calls, low-level Pascal calls, and assembly language. 
The high-level Pascal calls are designed for Pascal programmers 
interested in using the Device Manager in a simple manner; they provide 
adequate device I/O and don't require much special knowledge to use. 
The low-level Pascal and assembly-language calls are designed for 
advanced Pascal programmers and assembly-language programmers 
interested in using the Device Manager to its fullest capacity; they 
require some special knowledge to be used most effectively. 

(note) 
The names used to refer to routines here are actually 
assembly-language macro names for the low-level routines, 
but the Pascal routine names are very similar. 

The Device Manager is automatically initialized each time the system is 
started up. 

Before an application can exchange information with a device driver, it 
must open the driver. ROM drivers are opened when the system starts 
up; for RAM drivers, call Open. The Device Manager will return the 
driver reference number that you'll use every time you want to refer to 
that device driver. 

An application can send data from its data buffer to an open driver 
with a Write call, and transfer data from an open driver to its data 
buffer with Read. An application passes control information to a 
device driver by calling Control, and receives status information from 
a driver by calling Status. 

Whenever you want to stop a device driver from completing I/O initiated 
by a Read, Write, Control, or Status call, call K!lIIO. KillIO halts 
any current I/O and deletes any pending I/O. For example, you could 
use KillIO to implement a Cancel button that interrupts printing by 
your application. 

When you're through using a driver, call Close. Close forces the 
device driver to complete any pending I/O, and then releases all the 
memory used by the driver. 

6/15/84 Hacker /DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 7 

DEVICE MANAGER ROUTINES 

This section describes the Device Manager routines used to call 
drivers~ It's divided into two parts. The first describes all the 
high-level Pascal routines of the Device Manager, and the second 
presents information about calling the low-level Pascal and 
assembly-language routines. 

All the Device Manager routines in this section return a result code of 
type OSErr. Each routine description lists all of the applicable 
result codes, along with a short description of what the result code 
means. Lengthier explanations of all the result codes can be found in 
the summary at the end of this manual. 

High-Level Device Manager Routines 

The Pascal calls in this section cannot be invoked from assembly 
language; see the following section for equivalent calls. 

(note) 
As described in the File Manager manual, the FSRead and 
FSWrite routines are also used to read from and write to 
files. 

FUNCTION OpenDriver (name: Str255; VAR refNum: INTEGER) : OSErr; 

OpenDriver opens the device driver specified by .name and returns its 
reference number in refNum. 

Result codes noErr 
badUnitErr 
dInstErr 

openErr 

unitEmptyErr 

No error 
Bad reference number 
Couldn't find driver in resource 
file 
Driver cannot perform the 
requested reading or writing 
Bad reference number 

FUNCTION CloseDriver (refNum: INTEGER) : OSErr; 

CloseDriver closes the device driver having the reference number 
refNum. Any pending I/O is completed, and the memory used by the 
driver is released. 

Result codes 

6/15/84 Hacker 

noErr 
badUnitErr 
dRemoveErr 
unitEmptyErr 

No error 
Bad reference number 
Tried to remove an open driver 
Bad reference number 

/DMGR/DEVICE.R 



8 Device Manager Programmer's Guide 

FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 
OSErr; 

FSRead attempts to read the number of bytes specified by the count 
parameter from the device driver having the reference number refNum, 
and transfer them to the data buffer pointed to by buffPtr. After the 
read operation is completed, the number of bytes actually read is 
returned in the count parameter. 

Result codes noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
readErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to Read 
calls 

FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 
OSErr; 

FSWrite attempts to take the number of bytes specified by the count 
parameter from the buffer pointed to by buffPtr and write them to the 
open device driver having the reference number refNum. After the write 
operation is completed, the number of bytes actually written is 
returned in the count parameter. 

Result codes noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
writErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to Write 
calls 

FUNCTION Control (refNum: INTEGER; csCode: INTEGER; csParam: Ptr) 
OSErr; 

Control sends control information to the device driver having the 
reference number refNum. The type of information sent is specified by 
csCode, and the information itself is pointed to by csParam. The 
values passed in csCode and pointed to by csParam depend on the driver 
being called. 

Result codes 

6/15/84 Hacker 

noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
controlErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to this 
Control call 

/DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 9 

FUNCTION Status" (refNum: INTEGER; csCode: INTEGER; csParam: Ptr) 
OSErr; 

Status returns status information about the device driver having the 
reference number refNum. The type of information returned is specified 
by csCode, and the information itself is pointed to by csParam. The 
values passed in csCode and pointed to by csParam depend on the driver 
being called. 

Result codes noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
statusErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to this 
Status call 

FUNCTION KillIO (refNum: INTEGER) : OSErr; 

KillIO terminates all current and pending I/O with the device driver 
having the reference number refNum. 

(note) 

Result codes noErr 
badUnitErr 
unitEmptyErr 
controlErr 

No error 
Bad reference number 
Bad reference number 
Driver can't respond to KillIO 
calls 

KillIO is actually a special type of PBControl call, and 
all information about PBControl calls applies equally to 
KillIO. 

Low-Level Device Manager Routines 

This section contains special information for programmers using the 
low-level Pascal or assembly-language routines of the Device Manager, 
and then describes the routines in detail. . 

All low-level Device Manager routines can be executed either 
synchronouslY (meaning that the application cannot continue until the 
I/O is completed) or asynchronously (meaning that the application is 
free to perform other tasks while the I/O is being completed). 

When you call a Device Manager routine asynchronously, an I/O reguest 
is placed in the driver's I/O gueue, and control returns to the calling 
application--even before the actual I/O is completed. Requests are 
taken from the queue one at a time (in the same order that they were 
entered), and processed. Only one request per driver may be processed 
at any given time. 

The calling application may specify a completion routine to be executed 
as soon as the I/O operation has been completed. 

6/15/84 Hacker /DMGR/DEVICE.R 



10 Device Manager Programmer's Guide 

Routine parameters passed by an application to the Device Manager and 
returned by the Device Manager to an application are contained in a 
parameter block, which is memory space in the heap or stack. All 
low-level Pascal calls to the Device Manager are of the form 

PBCaiiName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr; 

PBCaiiName is the name of the routine. ParamBlock points to the 
parameter block containing the parameters for the routine. If async is 
TRUE, the call is executed asynchronously; if FALSE, it's executed 
synchronously. 

Assembly-Ianguage~: When you call a Device Manager routine, 
A0 must point to a parameter block containing the parameters for 
the routine. If you want the routine to be executed 
asynchronously, set bit 10 of the routine trap word. You can do 
this by supplying the word ASYNC as the second argument to the 
routine macro. For example: 

Read ,ASYNC 

You can set or test bit 10 of a trap word by using the global 
constant asynTrpBit. 

If you want a routine to be executed immediately (bypassing the 
driver's I/O queue), set bit 9 of the routine trap ,word. This 
can be accomplished by supplying the word IMMED as the second 
argument to the routine macro. (The driver must be able to 
handle immediate calls for this to work.) For example 

Write ,IMMED 

You can set or test bit 9 of a trap word by using the global 
constant noQueueBit. You can specify either ASYNC or IMMED, but 
not both. 

All routines return a resu"it code in D0. 

Routine Parameters 

The lengthy, variable-length data structure of a parameter block is 
given below. The Device Manager and File Manager use this same data 
structure, but only the' parts relevant to the Device Manager are 
discussed here. Each kind of parameter block contains eight fields of 
standard information and two to nine fields of additional information: 

6/15/84 Hacker /DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 11 

TYPE ParamBlkType - (ioParam, fileParam, volumeParam, cntrlParam); 

ParamBlockRec - RECORD 
qLink: QElemPtr; {next queue entry} 
qType: INTEGER; {queue type} 
ioTrap: INTEGER; {routine trap} 
ioCmdAddr: Ptr; {routine address} 
ioCompletion: ProcPtr; {completion routine} 
ioResult: OSErr; {result code} 
ioNamePtr: StringPtr; {driver name} 
ioVRefNum: INTEGER; {used by Disk Driver} 
CASE ParamBlkType OF 

END; 

ioParam: 
• •• {I/O routine parameters} 
fileParam: 
• •• {used by File Manager} 
volume Par am: 
• •• {used by File Manager} 
cntrlParam: 

{Control and Status call parameters} 

ParmBlkPtr = AParamBlockRec; 

The first four fields in each parameter block are handled entirely by 
the Device Manager, and most programmers needn't be concerned with 
them; programmers who are interested in them should see the section 
"The Structure of a Device Driver". 

IOCompletion contains the address of a completion routine to be 
executed at the end of an asynchronous call; it should be NIL for 
asynchronous calls with no completion routine, and is automatically set 
to NIL for all synchronous calls. For asynchronous calls, ioResult is 
positive while the routine is executing, and returns the result code. 

IONamePtr is a pointer to the name of a driver and is used only for 
calls to the PBOpen routine. IOVRefNum is used by the Disk Driver to 
identify volumes. 

An 8-field parameter block is adequate for opening a driver, but most 
of the Device Manager routines require longer parameter blocks, as 
described below. 

6/15/84 Hacker /DMGR/DEVICE.R 



12 Device Manager Programmer's Guide 

I/O routines use seven additional fields: 

ioParam: 
(ioRefNum: 
ioVersNum: 
ioPermssn: 
ioMisc: 
ioBuffer: 
ioReqCount: 
ioActCount: 
ioPosMode: 
ioPosOffset: 

INTEGER; 
SignedByte; 
SignedByte; 
Ptr; 
Ptr; 
LongInt; 
LongInt; 
INTEGER; 
LongInt); 

{driver reference number} 
{not used} 
{read/write permission} 
{not used} 
{data buffer} 
{requested number of bytes} 
{actual number of bytes} 
{type of positioning operation} 
{size of positioning offset} 

IOPermssn requests permission to read from or write to a driver when 
the driver is opened, and must contain one of the following predefined 
constants: 

fsCurPerm 
fsRdPerm 
fsWrPerm 
fsRdWrPerm 

= 0; {whatever is currently allowed} 
= 1; {request to read only} 

2; {request to write only} 
= 3; {request to read and write} 

This request is compared with the capabilities of the driver (some 
drivers are read-only, some are write-only). If the driver is 
incapable of performing as requested, an error will be returned. 

IOBuffer points to an application's data buffer into which data is 
written by Read calls and from which data is read by Write calls. 
IOReqCount specifies the requested number of bytes to be read or 
written. IOActCount contains the number of bytes actually read or 
written. 

Advanced programmers: IOPosMode and ioPosOffset contain positioning 
information used for Read and Write calls by drivers of block devices. 
Bits 0 and 1 of ioPosMode indicate a byte position from the physical 
beginning of the block-formatted medium (such as a disk); it must 
contain one of the following predefined constants: 

fsAtMark = {I; 

fsFromStart - 1; 
fsFromLEOF - 2; 
fsFromMark - 3; 

{at current position of mark } 
{ (ioPosOffset ignored)} 
{offset relative to beginning of file} 
{offset relative to logi~al end-of-file} 
{offset relative to current mark} 

IOPosOffset specifies the byte offset beyond ioPosMode where the 
operation is to be performed. Control and Status calls use two 
additional fields: 

cntrlParam: 
(csCode: INTEGER; {type of Control or Status call} 
csParam: ARRAY[0 •• 01 OF Byte); {control or status information} 

CSCode contains a number identifying the type of call. This number may 
be interpreted differently by each driver. The csParam field contains 

6/15/84 Hacker /DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 13 

the control or status information for the call; it's declared as a zero
length array because its exact contents will vary depending from one 
Control or Status call to the next. 

(note) 
Programmers who want to use the low-level Control and 
Status calls will need to declare their own data type 
that mimics all fields of the ParamBlockRec except for 
csParam. For example, if you want to pass a long integer 
in csParam, declare the following: 

TYPE MyParamBlockRec ~ RECORD 
qLink: QElemPtr; 

csCode: INTEGER; 
csParam: LongInt; 

END; 

VAR MyPBR: MyParamBlockRecj 

Then pass @MyPBR (a pointer to your variable) to the 
low-level Control and Status routines. 

Routine Descriptions 

This section describes the procedures and functions. Each routine 
description includes the low-level Pascal form of the call and the 
routine's assembly-language macro. A list of the fields in the 
parameter block affected by the call is also given. 

Assembly-language~: The field names given in these 
descriptions are those of the ParamBlockRec data type; see 
"Summary of the Device Manager" for the corresponding 
assembly-language equates. 

The number next to each parameter name indicates the byte offset of the 
parameter from the start of the parameter block pointed to by A0; only 
assembly-language programmers need be concerned with it. An arrow 
drawn next to each parameter name indicates whether it's an input, 
output, or input/output parameter: 

Arrow 
-~ 
~
~-~ 

6/15/84 Hacker 

Meaning 
Parameter is passed to the routine 
Parameter is returned by the routine 
Parameter is passed to and returned by the' routine 

/DMGR/DEVICE.R 



14 Device Manager Programmer's Guide 

(note) 
As described in the File Manager manual, the PBOpen and 
PBClose routines are also used to open and close files. 

FUNCTION PBOpen (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
--~ 12 ioCompletion pointer 
~--
--~ 

~-
--~ 

Result codes 

16 ioResult 
18 ioNamePtr 
24 ioRefNum 
27 ioPermssn 

noErr 
badUnitErr 
dInstErr 

openErr 

unitEmptyErr 

word 
pointer 
word 
byte 

No error 
Bad reference number 
Couldn't find d~iver in 
resource file 
Driver cannot perform the 
requested reading or writing 
Bad reference number 

PBOpen opens the device driver specified by ioNamePtr and returns its 
reference number in ioRefNum. IOPermssn specifies the requested 
read/write permission. 

FUNCTION PBClose (paramBlock: ParmBlkPtrj async: BOOLEAN) 

Trap macro Close 

Parameter block 
--~ 12 
~-- 16 
--~ 24 

Result codes 

ioCompletion 
ioResult 
ioRefNum 

pointer 
word 
word 

No error 

OSErrj 

noErr 
badUnitErr 
dRemoveErr 
unitEmptyErr 

Bad reference number 
Tried to remove an open driver 
Bad reference number 

PBClose closes the device driver having the reference number ioRefNum. 
Any pending I/O is completed, and the memory used by the driver is 
released. 

6/15/84 Hacker /DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 15 

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
-~ 
~-
--~ 
--~ 
--~ 
~--
-~ 
~-~ 

Result codes 

Read 

12 ioCompletion pointer 
16 ioResult word 
24 ioRefNum word 
32 ioBuffer pointer 
36 ioReqCount long word 
40 ioActCount long word 
44 ioPosMode word 
46 ioPosOffset long word 

noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
readErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to Read 
calls 

PBRead attempts to read ioReqCount bytes from the device driver having 
the reference number ioRefNum, and transfer them to the data buffer 
pointed to by ioBuffer. After the read operation is completed, the 
number of bytes actually read is returned in ioActCount. 

Advanced programmers: If the driver is reading from a block device, 
the byte offset from the position indicated by ioPosMode, where the 
read should actually begin. is given by ioPosOffset. 

6/15/84 Hacker /DMGR/DEVICE.R 



16 Device Manager Programmer's Guide 

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
-~ 
~--
--~ 

--~ 
--~ 

~--
--~ 

--~ 

Result codes 

Write 

12 ioCompletion pointer 
16 ioResult word 
24 ioRefNum word 
32 ioBuffer pointer 
36 ioReqCount long word 
4~ ioActCount long word 
44 ioPosMode word 
46 ioPosOffset long word 

noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
writErr 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to Write 
calls 

PBWrite attempts to take ioReqCount bytes from the buffer pointed to by 
ioBuffer and write them to the device driver having the reference 
number ioRefNum. After the write operation is completed. the number of 
bytes actually written is returned in ioActCount. 

Advanced programmers: If the driver is writing to a block device. 
ioPosMode indicates whether the write should begin relative to the 
beginning of the device or the current position. The byte offset from 
the position indicated by ioPosMode. where the write should actually 
begin. is given by ioPosOffset. 

6/15/84 Hacker /DMGR/DEVICE.R 



DEVICE MANAGER ROUTINES 17 

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
-~ 
~--
--~ 

--~ 
--~ 

Result codes 

Control 

12 ioCompletion pointer 
16 ioResult 
24 ioRefNum 
26 csCode 
28 csParam 

noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
controlErr 

word 
word 
word 
record 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can't respond to this 
Control call 

PBControl sends control information to the device driver having the 
reference number ioRefNum. The type of information sent is specified 
by csCode, and the information itself begins at csParam. The values 
passed in csCode and csParam depend on the driver being called. 

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Trap macro 

Parameter block 
--~ 
~--
--~ 
--~ 
--~ 

Result codes 

Status 

12 ioCompletion pointer 
16 ioResult 
24 ioRefNum 
26 csCode 
28 csParam 

noErr 
badUnitErr 
notOpenErr 
unitEmptyErr 
statusErr 

word 
word 
word 
record 

No error 
Bad reference number 
Driver isn't open 
Bad reference number 
Driver can~t respond to this 
Status call 

PBStatus returns status.information about the device driver having the 
reference number ioRefNum. The type of information returned is 
specified by csCode, and the information itself begins at csParam~ The 
values passed in csCode and csParam depend on the driver being called. 

6/15/84 Hacker /DKGR/DEVICE.R 



18 Device Manager Programmer's Guide 

FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: BOOLEAN) 

Trap macro KillIO 

Parameter block 
-~ 12 
~- 16 
--~ 24 

Result codes 

ioCompletion 
ioResult 
ioRefNum 

pointer 
word 
word 

No error 
Bad reference number 
Bad reference number 

OSErr; 

noErr 
badUnitErr 
unitEmptyErr 
controlErr Driver can't respond to KillIO 

calls 

KillIO stops any current I/O request being processed, and removes all 
pending I/O requests from the I/O queue of the device driver having the 
reference number ioRefNum. The completion routine of each pending I/O 
request is called, with ioResult equal to the following result code: 

(note) 

CONST abortErr - -27; 

KillIO is actually a special type of Control call, and 
all information about Control calls applies equally to 
KillIO. 

THE STRUCTURE OF A DEVICE DRIVER 

This section describes the structure of device drivers for programmers 
interested in writing their own driver or manipulating existing 
drivers. Most of the information presented here is accessible only 
through assembly language. 

RAM drivers are stored in resource files. The resource type for 
drivers is 'DRVR'. The resource name is the driver name. The resource 
ID for a driver is its unit number (explained below) and will be 
between ~ and 31 inclusive. Don't use the unit number of an existing 
driver unless you want the existing driver to be replaced. 

As illustrated in Figure 2, a driver begins with a few words of flags 
and other data, followed by offsets to the routines that do the work of 
the driver, an optional title, and finally the routines themselves. 

6/15/84 Hacker /DMGR/DEVICE.D 



THE STRUCTURE OF A DEVICE DRIVER 19 

drvrFl ags (word) byte 0 flags 

2 number of ticles between periodic actions drvrDeI ay (word) 

4 desk accessory event mask drvrE Mask (word) 

6 menu 10 of menu associated wi th driver drvrMenu (word) 

8 offset to open rout ine drvrOpen (word) 

10 offset to prime routine drvrPr i me (word) 

12 offset to control routine drvrC11 (word) 

14 offset to status rout ine drvrStatus (word) 

16 offset to close routi~e drvrC lose (word) 

, 8 length of dr iver name drvrName (byte) 

19 characters of dr iver name drvrName +' (bytes) 

., dr i ver rout i nes 1 
Figure 2. Driver Structure 

Every driver contains a routine to handle Open and Close calls, and may 
contain routines to handle Read, Write, Control, Status, and KillIO 
calls. The driver routines that handle Device Manager calls are as 
follows: 

Device Manager call 
Open 
Read 
Write 
Control 
KillIO 
Status 
Close 

Driver routine 
Open 
Prime 
Prime 
Control 
Control 
Status 
Close 

For example, when a KillIO call is made to a driver, the driver's 
control routine must implement the call. Each bit of the bigh-order 

6/15/84 Hacker /DMGR/DEVICE.D 



20 Device Manager Programmer's Guide 

bytes of the drvrFlags word contains a flag: 

dReadEnable .EQU 
dWritEnable .EQU 
dCtlEnable .EQU 
dStatEnable .EQU 
dNeedGoodBye .EQU 

dNeedTime .EQU 

dNeedLock .EQU 

0 
1 
2 
3 
4 

5 

6 

;set if driver can respond to Read calls 
;set if driver can respond to Write calls 
;set if driver can respond to Control calls 
;set if driver can respond to Status calls 
;set if driver needs to be called before the 
; application heap is reinitialized 
;set if driver needs time for performing a 
; periodic action 
;set if driver will be locked in memory as 
; soon as it's opened (always set for 
; ROM drivers) 

Bits 8 through 11 indicate which Device Manager calls the driver's 
routines can respond to. 

Unlocked RAM drivers that exist on the application heap will be lost 
every time the heap is reinitialized (when an application starts up, 
for example). If dNeedGoodBye is set, the control routine of the 
device driver will be called before the heap is reinitialized, and the 
driver can perform any "clean-up" actions it needs to. The driver's 
control routine identifies this "good-bye" call by checking the csCode 
parameter--it will be -1. 

Device drivers may need to perform predefined actions periodically. 
For example, a network driver may want to poll its input buffer every 
ten seconds to see if it has received any messages. If the dNeedTime 
flag is set, the driver doe. need to perform a periodic action, and the 
drvrDelay word contains a tick count indicating how often the periodic 
action should occur. A tick count of 0 means it should happen as often 
as possible, 1 means it should happen every 60th of a second, 2 means 
every 30th of a second, and so on. Whether the action actually occurs 
this frequently depends on how often you call the Desk Manager routine 
SystemTask. SystemTask calls the driver's control routine (if the time 
indicated by drvrDelay has elapsed), and the control routine must 
perform whatever predefined action is desired. The driver's control 
routine identifies the SystemTask call by checking the csCode 
parameter--it will be the global constant accRun. 

(note) 
Some drivers may not want to rely on the application to 
call SystemTask, and should install their own task in the 
vertical retrace queue to accomplish the desired action 
(see the Vertical Retrace Manager manual). 

DrvrEMask and drvrMenu are used only for desk accessories and are 
discussed in the Desk Manager manual. 

Following drvrMenu are the offsets to the driver routines, a title for 
the driver (preceded by its length in bytes), and the routines that do 
the work of the driver. 

6/15/84 Hacker /DMGR/DEVICE.D 



THE STRUCTURE OF A DEVICE DRIVER 21 

A Device Control Entry 

The first time a driver is opened, information about it is read into a 
structure in memory called a device control entry. A device control 
entry tells the Device Manager the location of the driver's routines, 
the location of the driver's I/O queue, and other information. A 
device control entry is a 4~-byte relocatable block located on the 
system heap. It's locked while the driver is open, and unlocked while 
the driver is closed. 

The structure of a device control entry is illustrated in Figure 3. 
Notice that some of the data is taken from the first four words of the 
driver. Most of the data in the device control entry is stored and 
accessed only by the Device Manager, but in some cases the driver 
itself must store into it. 

byte 0 

4 

6 

8 

12 

16 

20 

24 

26 

30 

34 

36 

38 

dCt IDr i ver (long word) 

dCtlFlegs (word) 

c:£tlQueue (word) 

cJCtlQHead (pointer) 

dCtlQTsil (pointer) 

dCt I Pas i t ion (long word) 

£tlStorege (handle) 

C£tlRefNlm (word) 

~t iCu-Ticks (long .-urU; 

C£tlWindow (pointer) 

(£t IDeI BY (word) 

c:£tIEMasIc (word) 

dCt I Menu (word) 
-

Figure 3. 

pointer to ROM dr iver or 
handle to RAM driver 
flag3 

low-order byte: dr iyerl s versi on number 

pointer to first entry in driver's 110 Queue 

pointer to last entry in driver's 110 Queue 

byte position used by Re8d and Write calls 

handle to RAM driver's private storage 

o-ivers reference runber 

lJ$ed internally by Device MeI.ager 

pointer to driver's window record (if any) 

f"l.Jmber of ticks between periodic actions 

desk accessory event mask 

menu 10 of menu 8SSOC i sted wi th driver 

Device Control Entry 

The low-order byte of the dCtlFlags word contains the following flags: 

dOpened 
dRAMBased 
drvrActive 

6/15/84 Hacker 

.EQU 

.EQU 

.EQU 

5 
6 
7 

;set if driver is open 
;set if driver is RAM-based 
;set if driver is currently executing 

/DMGR/DEVICE.D 



22 Device Manager Programmer's Guide 

The high-order byte contains information copied from the drvrFlags word 
of the driver: 

.EQU " ;set if driver can respond to Read calls 

.EQU 1 ;set if driver can respond to Write calls 
dRead Enable 
dWritEnable 
dCtlEnable 
dStatEnable 
dNeedGood~ye 

.EQU 2 ;set if driver can respond to Control calls 

.EQU 3 ;set if driver can respond to Status calls 

.EQU 4 ;set if driver needs to be called before the 
; application heap is reinitialized 

dNeedTime .EQU 5 ;set if driver needs time for performing a 
; periodic action 

dNeedLock .EQU 6 ;set if driver will be locked in memory as 
soon as it's opened (always set for 
ROM drivers) 

DCtlPosition is used only by drivers of block devices, and indicates 
the current source or destination position of a Read or Write call. 
The position is given as a number of bytes beyond the physical 
beginning of the medium used by the device. For example, if one 
logical block of data has just been read from a 3 1/2~inch disk via the 
Disk Driver, dCtlPosition will be 512. 

ROM drivers generally use locations in low memory for their local 
storage. RAM drivers may reserve memory within their code space, or 
allocate a relocatable block and keep a handle to it in dCtlStorage (if 
the block resides in the application heap, its handle will be set to 
NIL when the heap is reinitialized). 

The Unit Table 

The location of each device control entry is maintained in a list 
called the unit table. The unit table is a 128-byte nonrelocatable 
block containing 32 4-byte entries. Each entry has a number, from" to 
31, called the unit number, and contains a handle to the device control 
entry for a driver: The unit number can be used as an index into the 
unit table to locate the handle to a specific driver's device control 
entry; it's equal to 

-1 * (refNum + 1) 

where refNum is the driver's reference number. For example, the Sound 
Driver's reference number is -4 and its unit number is 3. 

Figure 4 shows the layout of the unit table just after the system 
starts up. 

(note) 
Any new drivers contained in resource files should have 
resource IDs that don't conflict with the unit numbers of 
existing drivers--unless you want an existing driver to 
be replaced. 

6/15/84 Hacker /DMGR/DEVICE.D 



byte 0 

4 

8 

12 

16 

20 

24 

28 

32 

48 

52 

56 

60 

64 

68 

n 

124 

THE STRUCTURE OF A DEVICE DRIVER 23 

reserved 

reserved 

Pr inter Dri ver 

Sot.rtd Driver 

Dislc Driver 

Serial Driver port A input 

Ser iel Dr iver port A output 

Serial Driver port B input 

Seri al Dr iver port B output 

7 not used .oil 

Celculator 

Alarm Clock 

Key Caps 

Puzzle 

Note Pad 

Scrapbook 

Control Panel 

.III" not used 

not used 

Figure 4. The Unit Table 

., 
.III 

., 
.III 

lI'lit runber 0 

1 

2 

3 

4 

5 

6 

7 

8 

12 

13 

14-

15 

16 

17 

18 

31 

Assembly-Ianguage~: The global variable uTableBase points 
to the unit table. 

Each device driver contains an I/O queue with a list of I/O requests to 
be completed by the driver. A driver I/O queue is a standard Operating 

6/15/84 Hacker /DMGR/DEVICE.D 



24 Device Manager Programmer's Guide 

System queue (described in the Operating System Utilities manual *** 
doesn't yet exist; for now, see the appendix of the File Manager manual 
***). The queue is located in the device control entry for the driver 
(Figure 5). . 

6 

8 

12 

dCtlQueue (word) 

dCt IQHead (poi nter) 

dCtlQTai I (pointer) 

10 .... -order byte: dr iver' s version number 

pointer to first entry in driver's 1/0 queue 

pointer to last entry in driver's 1/0 queue 

Figure 5. Driver I/O Queue Structure 

The three fields shown in Figure 5 are analogous to the QHdr data type 
of a standard Operating System queue. 

Each driver I/O queue uses entries of type ioQType. Each entry in the 
queue consists of a parameter block for the routine that was called. 
The structure of this block is shown in part below: 

TYPE ParamBlockRec = RECORD 
qLink: 
qType: 
ioTrap: 
ioCmdAddr: . . . 

END; 

QElemPtrj 
INTEGER; 
INTEGER; 
Ptr 

{next queue entry} 
{queue type} 
{routine trap} 
{routine address} 
{rest of block} 

QLink points to the next entry in the queue, and qType indicates the 
queue type, which must always be ORD(ioQType). IOTrap and ioCmdAddr 
contain the trap and address of the Device Manager routine that was 
called. You can use the following global constants to identify Device 
Manager traps, by comparing the global constant with the low-order byte 
of the trap: 

aRdCmd 
aWrCmd 
aCtlCmd 
aStsCmd 

.EQU 

.EQU 

.EQU 

.EQU 

2 
3 
4 
5 

jRead call (trap $A002) 
;Write call (trap $A003) 
;Control call (trap $A004) 
;Status call (trap $A005) 

You can get a pointer to a driver's I/O queue by calling the Device 
Manager function GetDCtlQHdr. 

FUNCTION GetDCtlQHdr (refNum: INTEGER) : QHdrPtr; [Pascal only] 

GetDCtlQHdr returns a pointer to the I/O queue of the device driver 
having the reference number refNum. 

6/15/84 Hacker /DMGR/DEVICE.D 



THE STRUCTURE OF A DEVICE DRIVER 25 

Assembly-language~: To access the contents of a driver's 
I/O queue from assembly language, you can use off·sets from the 
address of the global variable dCtlQueue. 

WRITING YOUR OWN DEVICE DRIVERS 

This section describes what you'll need to do to write your own device 
driver. If you aren't interested in writing your own driver,skip 
ahead to the summary. 

Drivers are usually written in assembly language. The structure of 
your driver must match that shown in the previous section. The 
routines that do the work of the driver should be written to operate 
the device in whatever way you require. Your driver must contain 
routines to handle Open and Close calls, and may choose to handle Read, 
Write, Control, Status, and KiIIIO calls as well. 

When the Device Manager executes a driver routine to handle an 
application call, it passes a pointer to the call's parameter block in 
A0 and a pointer to the driver's device control entry in AI. From this 
information, the driver can determine exactly what operations are 
required to fulfill the call's requests, and do them. 

Open and close routines must execute synchronously. They needn't 
preserve any registers that they use. Open and close routines sho~ld 
place a result code in D0 and return via an RTS instruction. *** 
Currently the Device Manager sets D0 to zero upon return from an Open 
call. *** 
The open routine must allocate any private storage required by the 
driver, store a handle to it in the device control entry (in the 
dCtlStorage field), initialize any local variables, and then be ready 
to receive a Read, Write, Status, Control, or KillIO call. It might 
also install interrupt handlers, change interrupt vectors, and store a 
pointer to the device control entry somewhere in its local storage for 
its interrupt handlers to use. The close routine must reverse the 
effects of the open routine, by releasing all used memory, removing 
interrupt handlers, and replacing changed interrupt vectors. If 
anything about the operational state of the driver should be saved 
until the next time the driver is opened, it should be kept in the 
relocatable block of memory pointed to by dCtlStorage. 

Prime, control, and status routines must be able to respond to queued 
calls and asynchronous calls, and should be interrupt-driven. 
Asynchronous portions of the routines can use registers A0 to A3 and D0 
to D3, but must preserve any other registers used; synchronous portions 
can use all registers. Prime, control, and status routines should 

6/15/84 Hacker /DMGR/DEVICE.D 



26 Device Manager Programmer's Guide 

return a result code in 00. They must return via an RTS if called 
immediately (with IHMED as the second argument to the routine macro) or 
via an RTS if the device couldn't complete the I/O request right away, 
or via a JHP to the IODone routine (explained below) if the device 
completed the request. 

(warning) 
If they can be called as the result of an interrupt, the 
prime, control, and status routines should never call 
Memory Manager routines that cause heap compactions. 

The prime routine must implement all Read and Write calls made to the 
driver. It can distinguish between Read and Write calls by checking 
the value of the ioTrap field. You may want to use the Fetch and Stash 
routines described below to read and write characters. If the driver 
is for a block device, it should update the dCtlPosition field of the 
device control entry after each read or write. The control routine 
must accept the control information passed to it, and manipulate the 
device as requested. The status routine must return requested status 
information. Since both the control and status routines may be 
subjected to Control and Status calls sending and requesting a variety 
of information, they must be prepared to respond correctly to all 
types. The control routine must handle KillIO calls; the driver 
identifies KillIO calls by checking the csCode parameter--it will be 
the global constant killCode. 

(warning) 
KillIO calls must return via an RTS, and shouldn't jump 
(via JMP) to the IODone routine. 

Routines for Writing Drivers 

The Device Manager includes th~ee routines, Fetch, Stash, and IODone, 
that provide low-level support for driver routines. Include them in 
the code of your· device driver if they're useful to you. Fetch, Stash, 
and IODone are invoked via "jump vectors" (jFetch, jStash, and jIODone) 
rather than macros (in the interest of speed). You use a jump vector 
by moving its address onto the stack: 

MOVE.L 
RIS 

j IODone , -( SP) 

Fetch and Stash don't return a result code, since the only result 
possible is dSIOCoreErr, which invokes the System Error Handler. 
IODone can return a result code. 

6/1S/84 Hacker /DMGR/DEVICE.D 



Fetch Function 

Jump vector 

On entry 

On exit ---

WRITING YOUR OWN DEVICE DRIVERS 27 

jFetch 

AI: pointer to device control entry 

D~: character fetched; bit 15-1 if it's the 
last character in the data buffer 

Fetch gets the next character from the data buffer pointed to by 
ioBuffer and places it in 00. IOActCount is incremented by 1. If 
ioActCount equals ioReqCount. bit 15 of D0 is set. After receiving the 
last byte requested. the driver should call IODone. 

Stash Function 

Jump vector 

On entry 

j Stash 

AI: pointer to device control entry 
D~: character to stash 

00: bit 15-1 if it's the last character 
requested 

Stash places the character in 00 into the data buffer pointed to by 
ioBuffer. and increments ioActCount by 1. If ioActCount equals 
ioReqCount, bit 15 of 00 is set. After stashing the last byte 
requested. the driver should call IODone. 

6/15/84 Hacker /DMGR/DEVICE.D 



28 Device Manager Programmer's Guide 

IODone Function 

Jump vector 

On entry 

On exit ---
Result codes 

jIODone 

AI: pointer to device control entry 

D0: result code 

noErr 
unitEmptyErr 

No error 
Reference number specifies NIL 
handle in unit table 

IODone removes the current I/O request from the driver's I/O queue, 
marks the driver inactive, unlocks the driver and its device control 
entry (if it's allowed to by the dNeedLock bit of the dCtlFlags word), 
and executes the completion routine (if there is one). Then it begins 
executing the next I/O request in the I/O queue. 

A Sample Driver 

Here's the skeleton of the Disk Driver, as an example of how a driver 
should be constructed. 

; Driver header 

DiskDrvr 
• WORD $4F00 

• WORD 0,0 
• WORD 0 

JRAM driver, read, write, 
j control, status, needs 
; lock 
jno delay or event mask 
;no menu 

Offsets to driver routines 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• BYTE 
.ASCII 

DiskOpen-DiskDrvr ;open 
DiskPrime-DiskDrvr jprime 
DiskControl-DiskDrvr jcontrol 
DiskStatus-DiskDrvr 
all Done-DiskDrvr 
5 
'.Disk' 

;status 
;close (just RTS) 
;length of name 
jdriver name 

Local variables and constants 

Driver routines 

Open routine 

DiskOpen MOVEQ · . . · .. . · . . 
6/15/84 Hacker 

U(DiskVarLth/2>,D0 ;get memory for variables 
;allocate variables 
jinitialize drive queue 
jinstall a vertical-

/DMGR/DEVICE.D 



DiskRTS 

DiskDone 

; Prime routine 

DiskPrime 

RTS 

MOVE.W 
MOVE.L 
CLR.B 
MOVE.L 
MOVE.L 
RTS 

ORI 

RTS 

WRITING YOUR OWN DEVICE DRIVERS 29 

1>0,DskErr 
DiskVars ,AI 
Active(A1) 
DiskUnitPtr(A1),A1 
j IODone , -( SP) 

11$0100, SR 

retrace task 

jreturn result code 
jget pointer to locals 
jdriver isn't active 
jreturn pointer to DCE 
;go to IODone 

jexclude vertical-retrace 
j interrupts 

Control routine 

DiskControl 

@1 

A0 (input): pointer to Control call's parameter block 
csCode = killCode for KillIO, ejectCode for Eject 

MOVE.W 
SUBQ.W 
BNE.S 
MOVE 
ORI 
BSR 

MOVE.B 

RTE 

SUBQ.W 
BEQ.S 
MOVEQ 
BRA.S 

BSR.S . . . 
BRA.S 

csCode (A0) ,1>0 
IIkillCode,D0 
@0 
SR,-(SP) 
1I$0100,SR 
PowerDown 

1I$20,VIER(A2) 

;get the control code 
jis it KillIO? 
jbranch if not 

jno VIA interrupts 
jstart power down, 
j get VIA address 
jremove any pending 
j timer interrupts 
jspecial for KillIO 

#<ejectCode-killCode),D0 jEject? 
@l jbranch if so 
#controlErr,1>0 jcan't handle csCode 
DiskDone ;exit 

CkDrvNum jset drive to eject 

DiskDone jexit 

Status routine 

DiskStatus 

6/15/84 Hacker 

A0 (input): pointer to Status call's parameter block 
csCode = 8 for drive status 

MOVE.Q 

CMP.W 
BNE.S 

BSR.S 
BNE.S 

.END 

IIstatusErr,1>0 ;assume status error 

#drvrStsCode,csCode(A0) jdrive status call? 
DiskDone jexit for other calls 

CkDrvNum 
DiskDone jexit on error 

/DMGR/DEVICE.D 



30 Device Manager Programmer's Guide 

Interrupts 

This section discusses interrupts: how the Macintosh uses them, and 
how you can use them if you're writing your own device driver. Only 
programmers who want to write their own interrupt-driven device drivers 
need read this section. Programmers who want to build their own driver 
on top of a built-in Macintosh driver may be interested in some of the 
information presented here. 

An interrupt is a form of exception: an error or abnormal condition 
detected by the processor in the course of program execution. 
Specifically, an interrupt is an exception that's signaled to the 
processor by a device, as distinct from a trap, which arises directly 
from the execution of an instruction. Interrupts are used by devices 
to notify the processor of a change in condition of the device, such as 
the completion of an I/O request. An interrupt causes the processor to 
suspend normal execution, save the address of the next instruction and 
the processor's internal status on the stack, and execute an interrupt 
handler. 

The MC68000 recognizes seven different levels of interrupt, each with 
its own interrupt handler. The addresses of the various handlers, 
called interrupt vectors, are kept in a vector table in the system 
communication area. Each level of interrupt has its own vector located 
in the vector table. When an interrupt occurs, the proc~ssor fetches 
the proper vector from the table, uses it to locate the interrupt 
handler for that level of interrupt, and jumps to the handler. On 
completion, the handler exits with an RTE instruction, which restores 
the internal state of the processor from the stack and resumes normal 
execution from the point of suspension. 

There are three devices that can create interrupts: the 6522 Versatile 
Interface Adapter (VIA), the 8530 Serial Communications Controller, and 
the debugging switch. They send a 3-bit number, from 0 to 7, called 
the interrupt priority level, to the processor. The interrupt level 
indicates which device is interrupting, and indicates which interrupt 
handler should be executed: 

Level 
o 
1 
2 
3 
4~ 

Interrupting device 
None 
VIA 
sec 
VIA and SCC 
Debugging button 

A level-3 interrupt occurs when both the VIA and sec interrupt at the 
same instant; the interrupt handler for a level-3 interrupt is simply 
an RTE instruction. Debugging interrupts shouldn't occur during the 
normal execution of an application. 

6/15/84 Hacker /DMGR/DEVICE.D 



WRITING YOUR OWN DEVICE DRIVERS 31 

The interrupt priority level is compared with the processor priority in 
bits 8, 9, and 10 of the status register. If the interrupt priority 
level is greater than the processor priority, the MC68000 acknowledges 
the interrupt and initiates interrupt processing. The processor 
priority determines which interrupting devices are ignored, and which 
are serviced: 

Level 
o 
1 
2 

3-6 
7 

Services 
All interrupts 
VIA and debugging interrupts only 
SCC and debugging interrupts only 
Debugging interrupts only 
No interrupts 

When an interrupt is acknowledged, the processor priority is set to the 
interrupt priority level, to prevent additional interrupts of equal or 
lower priority, until the interrupt handler has finished servicing the 
interrupt. 

The interrupt priority level is used as an index into the primary 
interrupt vector table. This table contains seven long words beginning 
at address $64. Each long word contains the starting address of an 
interrupt handler (Figure 6). 

$64 pointer 10 level-1 interrupt handler autolnt1 

auto I nt2 $68 pointer to level-2 interrupt handler 

sse pointer to level-3 interrupt handler eutolnt3 

$70 pointer to level-4 interrupt handler eutolnt4 

$74 pointer to level-S interrupt handler autolntS 

$78 pointer to level-6 int~t handler eutolntS 

$7C pointer to level-7 interrupt handler eutolnt1 

Figure 6. Primary Interrupt Vector Table 

Execution jumps to the interrupt handler at the address specified in 
the table. The interrupt handler then must identify and service the 
interrupt. Then, it must restore the processor priority, status 
register, and program counter to the values they contained before the 
interrupt occurred. 

Level-1 (VIA) Interrupts 

Level-1 interrupts are generated by the VIA. You'll need to read the 
Synertek manual describing the VIA to use most of the information 
provided in this section. The level-1 interrupt handler determines the 

6/15/84 Hacker /DMGR/DEVICE.D 



32 Device Manager Programmer's Guide 

source of the interrupt (via the VIA's IFR and IER registers) and then 
uses a table of secondary vectors in the system communication area to 
determine which interrupt handler to call (Figure 7). 

byte 0 

4 

8 

12 

16 

'20 

24 

28 

one-second interrupt 

vert icel-retr8ce interrupt 

sh i 1t-reg i ster interrupt 

not used 

not used 

T2timer: Disk Driver 

T1 timer: Sot.rad Driver 

not used 

V lA's CJ.2. control line 

VIA's CAl control line 

VIA's shift register 

VIA's timer 2 

VIA's timer 1 

Figure 7. Level-l Secondary Interrupt Vector Table 

The level-l secondary interrupt vector table begins at the address of 
the global variable lvllDT. Each vector in the table points to the 
interrupt handler for a different source of interrupt. The interrupts 
are handled in order of their entry in the table, and only one 
interrupt handler Is called per level-l interrupt (even if two or more 
sources are interrupting). This allows the level-l interrupt handler 
to be reentrant, and interrupt handlers should lower the processor 
priority as soon as possible in order to enable other pending 
interrupts to be processed. 

One-second interrupts occur every second, and simply update the system 
global variable time (explained in the Operating System Utilities 
manual *** doesn't yet exist ***) and invert menu items that are 
chosen. Vertical retrace interrupts are generated once every vertical 
retrace interval; control is passed to the Vertical Retrace Manager, 
which updates the global variable named ticks, handles changes in the 
state of the cursor, keyboard, and mouse button, and executes tasks 
installed in the vertical retrace queue. 

The shift-register interrupt is used by the Keyboard/Mouse Handler. 
Whenever the Disk Driver or Sound Driver isn't being used, you can use 
the Tl and T2 timers for your own needs. 

If the cumulative elapsed time for all tasks during a vertical retrace 
interrupt exceeds 16 milliseconds (one video frame), the vertical 
retrace interrupt may itself be interrupted by another vertical retrace 
interrupt. In this case, the second vertical retrace inte~rupt is 
ign~red. 

6/15/84 Hacker /DMGR/DEVICE.D 



WRITING YOUR OWN DEVICE DRIVERS 33 

The base address of the VIA (stored in the global variable VIA) is 
passed to each interrupt handler in AI. 

Level-2 (SCC) Interrupts 

Level-2 interrupts are generated by the SCC. You'll need to read the 
Zilog manual describing the SCC to effectively use the information 
provided in this section. The level-2 interrupt handler determines the 
source of the interrupt. and then uses a table of secondary vectors in 
the system communication area to determine which interrupt handler to 
call (Figure 8). 

byte 0 

4 

8 

12 

16 

20 

24 

28 

chalR.e1 B transmit buffer empty 

Chell .e I B external! st8tus chaI WJe 

channel B receive character 8't'8i lable 

channel B special receive condition 

chalnel A transmit buffer empty 

channel A external! status chaI ~ 

channel A receive character avai leble 

channel A spec iel receive condit ion 

mouse vert icel 

mouse horizontel 

Figure 8. Level-2 Secondary Interrupt Vector Table 

The level-2 secondary interrupt vector table begins at the address of 
the global variable IvI2DT. Each vector in the table points to the 
interrupt handler for a different source of interrupt. The interrupts 
are handled according to the following fixed priority: 

channel A receive character available and special receive 
channel A transmit buffer empty 
channel A external/status change 
channel B receive character available and special receive 
channel B transmit buffer empty 
channel B external/status change 

Only one interrupt handler is called per level-2 interrupt (even if two 
or more sources are interrupting). This allows the level-2 interrupt 
handler to be reentrant. and interrupt handlers should lower the 
processor priority as soon as possible in order to enable other pending 
interrupts to be processed. 

External/status interrupts pass through a tertiary vector table in the 
system communication area to determine which interrupt handler to call 
(Figure 9). 

6/15/84 Hacker /DMGR/DEVICE.D 



34 Device Manager Programmer's Guide 

byte 0 channel B COfMllI')ications interrupt 

4 mouse ver1ical interrupt 

8 channel A communications interrupt 

12 mouse horizontal interrupt 

Figure 9. Level-2 External/Status Interrupt Vector Table 

The external/status interrupt vector table begins at the address of the 
global variable extStsDT. Each vector in the table points to the 
interrupt handler for a different source of interrupt. Communications 
interrupts (break/abort, for example) are always handled before mouse 
interrupts. 

When a level-2 interrupt handler is called, D0 contains the address of 
the SCC read register 0 (external/status interrupts only), and Dl 
contains the bits of read register 0 that have changed since the last 
external/status interrupt. A0 points to the SCC channel A or channel B 
control read address and Al points to SCC channel A or channel B 
control write address, depending on which channel is interrupting. The 
SCC's data read address and data write address are located four bytes 
beyond A0 and AI, respectively. The following global constants can be 
used to refer to these locations: 

Global constant Value Refers to 
bCtl 0 Offset for channel B control 
aCtl 2 Offset for channel A control 
bData 4 Offset for channel B data 
aData 6 Offset for channel A data 

Writing Your Own Interrupt Handlers 

You can write your own interrupt handlers to replace any of the 
standard interrupt handlers just described. Be sure to place a vector 
that points to your interrupt handler in one of the vector tables. 

Both the level-l an-:! 1~vel-2 interrupt handlers preserve A0 through A3 
and D0 through D3. Every interrupt handler (except for external/status 
interrupt handlers) is responsible for clearing the source of the 
interrupt, and for saving and restoring any additional registers used. 
Interrupt handlers should return directly via an RTS instruction, 
unless the interrupt is handled immediately, in which case they should 
jump (via JMP) to the IODone routine. 

6/15/84 Hacker /DMGR/DEVICE.D 



SUMMARY OF THE DEVICE MANAGER 35 

SUMMARY OF THE DEVICE MANAGER 

Constants 

{ Values for posMode and ioPosMode } 

CONST fsAtHark - ~; {at current position of mark } 
{ (ioPosOffset ignored)} 

fsFromStart - 1; 
fsFromLEOF = 2; 
fsFromMark - 3; 

{offset relative to beginning of file} 
{offset relative to logical end-of-file} 
{offset relative to current mark} 

{ Values for requesting read/write access } 

fsCurPerm -~; {whatever is currently allowed} 
fsRdPerm - 1; {request to read only} 
fsWrPerm - 2; {request to write only} 
fsRdWrPerm = 3; {request to read and write} 

Data Types 

TYPE ParmBlkPtr - AParamBlockRec; 

ParamBlkType - (ioParam, fileParam, volumeParam, cntrlParam); 

ParamBloekRee - RECORD 
qLink: QElemPtr; 
q Type: INTEGER; 
ioTrap: INTEGER; 
ioCmdAddr: Ptr; 
ioCompletion: ProcPtr; 
ioResult: OSErr; 
ioNamePtr: StringPtr; 
ioVRefNum: INTEGER; 

CASE ParamBlkType OF 
ioParam: 

(ioRefNum: 
ioVersNum: 
ioPermssn: 
ioMise: 
ioBuffer: 
ioReqCount: 
ioActCount: 
ioPosMode: 
ioPosOffset: 

fileParam: 

INTEGER; 
SignedByte; 
SignedByte; 
Ptr; 
Ptr; 
LongInt; 
LongInt; 
INTEGER; 
Longlnt); 

{next queue entry} 
{queue type} 
{routine trap} 
{routine address} 
{completion routine} 
{result code} 
{driver name} 
{used by Disk Driver} 

{driver reference number} 
{not used} 
{read/write permission} 
{not used} 
{data buffer} 
{requested number of bytes} 
{actual number of bytes} 
{type of positioning operation} 
{size of positioning offset} 

••• {used by File Manager} 
volume Par am: 

••• {used by File Manager} 

6/15/84 Hacker /DMGR/DEVICE.S 



36 Device Manager Programmer's Guide 

cntrlParam: 
(csCode: INTEGER; {type of Control or Status call} 
csParam: ARRAY[0 •• 01 OF Byte); {control or status information} 

END; 

High-Level Routines 

FUNCTION OpenDriver (name: Str255; VAR refNum: INTEGER) : OSErr; 
FUNCTION CloseDriver (refNum: INTEGER) : OSErr; 
FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 

: OSErr; 
FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) 

: OSErr; 
FUNCTION Control (refNum: INTEGER; csCode: INTEGER; csParam: Ptr) 

OSErr; 
FUNCTION Status (refNum: INTEGER; csCode: INTEGER; csParam: Ptr) 

OSErr; 
FUNCTION KillIO (refNum: INTEGER) : OSErr; 

Low-Level Routines 

FUNCTION PBOpen (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErr; 
FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 
FUNCTION PBRead (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErrj 
FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 
FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 
FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 
FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr; 

Accessing a Driver's I/O Queue 

FUNCTION GetDCtlQHdr (refNum: INTEGER) QHdrPtrj 

Assembly-Language Information 

Constants 

; I/O queue type 

ioQType .EQU 2 ;1/0 request queue entry type 

; Driver flags 

dReadEnable .EOU 0 ;set if driver can respond to Read calls 
dWritEnable .EQU 1 ;set if driver can respond to Write calls 
dCt.lEnable .EQU 2 ;set if driver can respond to Control calls 
dStatEnable .EQU 3 ;set if driver can respond to Status calls 
dNeedGoodBye .EQU 4 ;set if driver needs to be called before the 

6/15/84 Hacker /DMGR/DEVICE.S 



dNeedTime .EQU 5 

dNeedLock .EQU 6 

SUMMARY OF THE DEVICE MANAGER 37 

; application heap is reinitialized 
;set if driver needs time for performing a 
; periodic action 
;set if driver will be locked in memory as 

soon as it's opened (always set for 
ROM drivers) 

; Device control entry flags 

dOpened .EQU 5 jset if driver is open 
dRAMBased .EQU 6 jset if driver is RAM-based 
drvrActive .EQU 7 ;set if driver is currently executing 

; Trap words for 

aRdCmd .EQU 
aWrCmd .EQU 
aCtlCmd .EQU 
aStsCmd .EQU 

; Offsets for SCC 

bCtl .EQU 
aCtl .EQU 
bData .EQU 
aData .EQU 

Device Manager calls 

0 
2 
4 
6 

2 
3 
4 
5 

;Read call (trap $A002) 
;Write call (trap $A003) 
;Control call (trap $A004) 
;Status call (trap $A005) 

;Offset for SCC channel B control 
jOffset for SCC channel A control 
jOffset for SCC channel B data 
jOffset for SCC channel A data 

Standard Parameter Block Data Structure 

qLink 
qType 
ioTrap 
ioCmdAddr 
ioCompletion 
ioResult 
ioFileName 
ioVNPtr 
ioVRefNum 
ioDrvNum 

Next queue entry 
Queue type 
Routine trap 
Routine address 
Completion routine 
Result code 
File name (and possibly volume ·name too) 
Volume name 
Volume reference number 
Drive number 

Control and Status Parameter Block Data Structure 

csCode 
csParam 

6/15/84 Hacker 

Type of Control or Status call 
Parameters for Control or Status call 

/DMGR/DEVICE.S 



38 Device Manager Programmer's Guide 

I/O Parameter Block Data Structure 

ioRefNum 
ioFileType 
ioPermssn 
ioBuffer 
ioReqCount 
ioActCount 
ioPosMode 
ioPosOffset 

Driver Structure 

drvrFlags 
drvrDelay 
drvrEMask 
drvrMenu 
drvrOpen 
drvrPrime 
drvrCtl 
drvrStatus 
drvrClose 
drvrName 

Driver reference number 
Not used 
Open permission 
Data buffer 
Requested number of bytes 
Actual number of bytes 
Type of positioning operation 
Size of positioning offset 

Flags 
Number of ticks between periodic actions 
Desk accessory event mask 
Menu ID of menu associated with driver 
Offset to open routine 
Offset to prime routine 
Offset to control routine 
Offset to status routine 
Offset to close routine 
Length and characters of driver name 

Device Control Entry Data Structure 

dCtlOriver 
dCtlFlags 
dCtlQueue 
dCtlQHead 
dCtlTail 
dCtlPosition 
dCtlStorage 
dCtlRefNum 
dCtlCurTicks 
dCtlWindow 
dCtlDelay 
dCtlEMask 
dCtlMenu 

Primary Interrupt 

autolnt1 
autolnt2 
autolnt3 
autoInt4 
autolnt5 
autolnt6 
autoInt7 

6/15/84 Hacker 

Pointer to ROM driver or handle to RAM driver 
Flags 
Low-order byte is driver's version number 
Pointer to first entry in driver's I/O queue 
Pointer to last entry in driver's I/O queue 
Byte position used by Read and Write calls 
Handle to RAM driver's private storage 
Driver's reference number 
Used internally by Device Manager 
Pointer to driver's window record (if any) 
Number of ticks between periodic actions 
Desk accessory event mask 
Menu 10 of menu associated with driver 

Vector Table 

Pointer to level-l interrupt handler 
Pointer to level-2 interrupt handler 
Pointer to level-3 interrupt handler 
Pointer to level-4 interrupt handler 
Pointer to level-5 interrupt handler 
Pointer to level-6 interrupt handler 
Pointer to level-7 interrupt handler 

/DMGR/DEVICE.S 



SUMMARY OF THE DEVICE MANAGER 39 

I/O Parameter Block Data Structure 

ioRefNum Driver reference number 

Macro Names 

Routine name 
PBRead 
PBWrite 
PBControl 
PBStatus 
PBKillIO 

Macro name 
Read 
Write 

-Control 
Status 

-KillIO 

Routines for Writing Drivers 

Routine 
Fetch 
Stash 
IODone 

Variables 

Name 
uTableBase 
unitNtryCnt 
lvl1DT 

lvl2DT 

extStsDT 

sccRBase 
sccWBase 
VIA 

Jump vector 
jFetch 
j Stash 
jIODone 

Size 
4 bytes 
2 bytes 
4 bytes 

4 bytes 

4 bytes 

4 bytes 
4 bytes 
4 bytes 

6/15/84 Hacker 

Contents 
Pointer to unit table 
Maximum number of entries in unit table 
Beginning of level-1 secondary 
interrupt vector table 
Beginning of level-2 secondary 
interrupt vector table 
Beginning of external/status 
interrupt vector table 
SCC base read address 
SCC base write address 
VIA base address 

/DMGR/DEVICE.S 



40 Device Manager Programmer's Guide 

Result Codes 

~ 
abortErr 
badUnitErr 
controlErr 
dlnstErr 
dRemoveErr 
noErr 
notOpenErr 
openErr 

readErr 
statusErr 
unitEmptyErr 

writErr 

6/15/84 Hacker 

Value 
-27 
-21 
-17 
-26 
-25 

0 
-28 
-23 

-19 
-18 
-22 

-20 

Meaning 
I/O request aborted by KillIO 
Reference number doesn't match unit table 
Driver can't respond to this Control call 
Couldn't find driver in resource file 
Tried to remove an open driver 
No error 
Driver isn't open 
Requested read/write permission 
doesn't match driver's open permission 
Driver can't respond to Read calls 
Driver can't respond to this Status call 
Reference number specifies NIL 
handle in unit table 
Driver can't respond to Write calls 

/DMGR/DEVICE.S 



GLOSSARY 41 

GLOSSARY 

asynchronous execution: After calling a routine asynchronously, an 
application is free to perform other tasks until the routine is 
completed. 

block device: A device that reads and writes blocks of 512 characters 
at a time; it can read or write any accessible block on demand. 

character device: A device that reads or writes a stream of 
characters, one at a time: it can neither skip characters nor go back 
to a previous character. 

closed driver: A device driver that cannot be read from or written to. 

close routine: The part of a driver's code that implements Device 
Manager Close calls. 

completion routine: Any application-defined code to be executed when 
an asynchronous call to a Device Manager routine is completed. 

control information: Information transmitted by an application to a 
device driver; it can typically select modes of operation, start or 
stop processes, enable buffers, choose protocols, and so on. 

control routine: The part of a device driver's code that implements 
Device Manager Control and KililO calls. 

data buffer: Heap space containing information to be written to a file 
or driver from an application, or read from a file or driver to an 
application. 

device: A part of the Macintosh or a piece of external equipment, that 
can transfer information into or out of the Macintosh. 

device control entry: A 40-byte relocatable block of heap space that 
tells the Device Manager the location of a driver's routines, the 
location of a driver's I/O queue, and other information. 

device driver: A program that exchanges information between an 
application and a device. 

driver name: A sequence of up to 254 printing characters used to refer 
to an open device driver; driver names always begin with a period (.). 

driver reference number: A number that uniquely identifies an 
individual device driver. 

exception: An error or abnormal condition detected by the processor in 
the course of program execution. 

interrupt: An exception that's signaled to the processor by a device, 
to notify the processor of a change in condition of the device, such as 

6/15/84 Hacker /DMGR/DEVICE.G 



42 Device Manager Programmer's Guide 

the completion of an I/O request. 

interrupt handler: A routine that services interrupts. 

interrupt priority level: A number identifying the importance of the 
interrupt. It indicates which device is interrupting, and which 
interrupt handler should be executed. 

interrupt vector: A pointer to an interrupt handler. 

I/O queue: A queue containing the parameter blocks of all I/O requests 
for one driver. 

I/O request: A request for input from or output to a file or device 
driver; caused by calling a File Manager or Device Manager routine 
asynchronously. 

open driver: A driver that can be read from and written to. 

open routine: The part of a device driver's code that implements 
Device Manager Open calls. 

parameter block: An area of heap space used to transfer information 
between applications and the Device Manager. 

prime routine: The part of a device driver's code that implements 
Device Manager Read and Write calls. 

processor priority: Bits 8, 9, and 10 of the MC68000's status 
register, that indicate which interrupts will be processed and which 
will be ignored. 

status information: Information transmitted to an application by a 
device driver; it may indicate the current mode of operation, the 
readiness of the device, the occurrence of errors, and so on. 

status routine: The part of a device driver's code that implements 
Device Manager Status calls. 

synchronous execution: After calling a routine synchronously, an 
application cannot continue execution until the routine is completed. 

unit number: The number of each device driver's entry in the unit 
table. 

unit table: A 128-byte nonrelocatable block containing a handle to the 
device control entry for each device driver. 

vector: A pointer. 

vector table: A table of vectors in the system communication area. 

6/15/84 Hacker /DMGR/DEVICE.G 



COMME:NTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3·G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



r-r.aClntDsh sony DiSk Drluer 
Programmer Documentation 
8 May 84, LRK 

This note is intended for programmers who wish to access the 
internal/external sony drives directly, bypassing the Macintosh file system. 
The sony drives are controlled by a ROM driver, surprisingly named 'the sony 
driver' or 'the sony driver in ROM'. The file system always accesses the sony 
drives via this driver, and this documentation simply documents that driver 
interface. The reader should be familiar with whatever generic driver 
documentation is currently available before reading this. This document is also 
geared toward assembly language programmers, altho a Pascal interface to 
generic driver calls is available and may be used. The reasons for accessing 
the disk driver directly instead of via the file system include writing disk copy 
software,· copy protection software, other file systems, disk test software, 
other disk drivers, special demo software, or simply for fun as an idle exercise. 

Macintosh ROM drivers include the sony driver ('Sony), the sound driver 
CSound), and the asynchronous serial communications driver CAin, .AOut, .Bln, 
.BOut)' The sony driver is opened at boot 1 time (system boot is done via a read 
call to the sony driver which reads the first two disk blocks, called the boot 
blocks, off the disk into memory) and is never closed. In fact, if a CJose call to 
the driver is made, the system wlll not function normally thereafter. Since the 
driver is opened at boot time it is not necessary to open it before using it (0Qan 
calls should not affect the driver). The remaining routines which are used to 
access the disk are B.e.ad, Wrjte, Control, and Status. 

Control caUs 

KUliO 

Eject 

Set Tag Buffer 

CSCode=l 
Current I/O is aborted (thiS call has probably never been 

used .. .) 

IODrvNum= 1 (internal drive) or 2 (external drive) 
CSCode=7 
Any diskette in the specified drive is, ejected. This ca 11 is 

made asynchronously from the file system. 

CSCode=8 
CSParam: contains a longword pOinter to a buffer to be used 

to get (writes) or put (reads) disk block tag 
information. Zero defaults to no separate tag buffer: 

Maeintolh Sony Dilt Driuer 
January 1, 1904 

Page 1 



Status 

Drive Status 

Read, Wrj te: 

the 12-byte tag infonnation for the 1ast block read or 
written is avaiJable in the low memory area 
TagData+2. Disk copy programs use this disk driver 
feature to preserve disk tag information (see below). 

IODrvNum-l (internal drive) or 2 (external drive) 
CSCode-8 
CSParam: returns 22 bytes of drive status 

(00) - current track 
(02) - bit 7 = 1 = write-protected - this is the only 

byte looked at by the Mac fi Ie system ... 
(03) - $FC-$FF = just ejected 

o - no disk-in-place, 1,2 - disk-in-place, 
(04) - 0 - may be instal1ed .. 1 - drive installed .. 

$FF = drive not instal1ed 
(05) - bit 7 = 0 • Single-sided drive 
(06) - drive Queue element 
( 18) - $FF for 2-sided format this diskette (valid 

when byte 03 = 2) 
(19) - $FF if prime routine has been called 
(20) - word soft error count 

IODrvNum= 1 (internal drive) or 2 (external drive) 
IOPosMode+ 1 =$00 - cuurent position 

$01 - abso lute 
$03 - relative to current position 
$4x - read-verify mode 

IOPosOffset= byte position (should be a 512-byte mu1tiple) 
IOBuffer=pointer to read/write buffer (may be on any byte 

boundary) 
IOByteCount- bytes to read/write (should be 512 mult) 
TagData+2- tag info for first block when writing with no 

tag buffer installed (the disk driver increments the 
file block number for multiple block reads). 

The file system always reads/writes using absolute 
addressing mode and uses TagData+2 info to preserve 
current block tags and write new ones. The file 
system supports read-verify mode using the disk 
driver's read-verify mode for whole blocks. Byte 
address 0 corresponds to sector 0 .. track 0, side O. 
A Single-Sided diskette contains 800 512-byte 
sectors. 

Meeintolh Sony Dille Oriuer 
denuerg I. 1904 

Page 2 



D!sk block tags 

Each disk block (sector) Is actual1y 524 bytes long which consists of a 
12-byte block tag and 512 bytes of data. The file system works in concert 
with the disk driver to create and preserve meaningful tags. These tags are not 
actually used by the system software but are meant to be data which a disk 
scavenge program would use to recreate the directory of a trashed disk. The 12 
bytes consist of the following fields: 

(00) - unique fi le number of fi Ie which owns this block 
(04) - file flags word (used to differentiate resource/regular fork 

blocks, and determine last file version byte used 
(06) - relative block number of this block in the file 
(08) - longword timestamp (from system global Time) set when this 

file block was written (except when a separate file tag buffer is 
being used). 

Drive Queue 

When the Sony driver is opened, it installs two drive Queue elements into 
the system drive Queue, one for both the internal and external sony drives 
controlled by this driver (the drive Queue element for the external drive is 
later dequeued if that drive is not installed). This Queue is used by the system 
to bind drives to drivers to file systems. The definition for a drive queue 
element is somewhat non-standard: 

(00) write-protect: bit 7 = 1 = write-protected 
(01) disk in place: $FC-$FF-just ejected, O=none, 1,2=disk in place, 

S-non-ejectable disk in place 
(02) installed: O=unknown, 1 =installed, $FF=no disk (sony driver only) 
(03) sides: bit 7 = 0 = Single-sided (sony driver only) 
(04) 1 ink painter 
(08) flags (unused) 
(10) drive number (1 and 2 are reserved for the int and ext drives) 
( 12) driver refnum (of driver which is used to access this drives) 
(14) file system 10 of file system owning this drive (0 for Mac FS) 
(16) number of 512-byte blocks on this drive (undefined for sony drives) 

Formattjng 

Due to ROM code size Hmitations, the current sony driver has no 
formatting capabillty (missing the crucial write address mark routine); this is 
accomplished via the disk format package which may be viewed as logically 
part of this driver. That package is documented elsewhere. 

Macintosh Sony Bisle Briuer 
denuerg 1, 1904 

Page 3 



Driver Hooks 

The sony driver accesses main Jow-Jevel routines via low-memory 
vectors; this was done to al10w access at these low levels for test programs, 
disk format packages, bug fixes, program debug and performance analysis code, 
and for certain copy-protection schemes. There are 15 such vectors,defined in 
the fi Ie SONVEQU.TEXT: 

JF i gT rkSpeed 
JDiskPrime 

JRdAddr 
JRdData 

JWrData 
JSeek 
JSetUpPol1 
JRecaJ 

JControl 
JWakeUp 
JReSeek 
JMakeSpdTbl 

JAdrDisk 
JSetSpeed 
NiblTbl 

- routine to determine current disk speed 
- all cal1s to disk prime go thru this hook (useful for 

performance measurement, debug) 
- read address mark routine 
- read data mark routine (copy protection, test hook) 

- write data mark routine (copy protection, test hook) 
- seek to a track rout ine 
- sets up for serial port po11ing 
- recal routine (currently patched in RAM) 

- aJJ caUs to disk control go thru this vector 
- disk timer wakeup routine (uses VIA timer 2) 
- another disk prime hook 
- routine which constructs speed table 

- used by external test, format programs on Iy 
- used by external test format programs only 
- used by external test format programs only 

These low-level routines will probably be documented here, eventually. 

Some Examples 

Ejecting the diskette in drive I: 

. INCLUDE SYSEQU.TEXT ; relevant equates 

MyEject MOVEQ -<IOOEISize/2>-1,DO ; first clear an 10 
<fl CLR.W -(SP) ; parameter block off 

DBRA 00,.1 ; the stack (zeroed) 
MOVE.L SP,AO ; AO pOints to it 

MOVE.W -DskRfn,IORefNum(AO) ; disk driver refnum 
MOVE.W -l,IODrvNum(AO) ; drive 1 is internal drive 
MOVE.W -EjectCode,CSCode(AO) ; eject control code 

MaCintosh Sony Disle Driuer Page 4 
January 1, 1914 



-Eject ; do it synchronous ly 

ADD -IOOE1Size,SP ; clean up the stack 
; DO contains a result code 

Reading block 4 from the diskette in drive 1, asynchronously: 

MyRead 
01 

. INCLUDE SYSEQU.TEXT ; relevant equates 

MOVEQ 
CLR.W 
DBRA 
MOVE.L 

MOVE.W 
MOVE.W 
MOVE.W 
MOVE.L 
MOVE.L 
LEA 
MOVE.L 
.-Read 

-<IOOElSize/2>-1,DO ; first clear an 10 
-(SP) ; parameter block off 
00,.1 ; the stack (zeroed) 
SP,AO ; AO points to it 

-DskRfn.IORefNum(AO) ; disk driver refnum 
-l,IODrvNum(AO) ; drive 1 is internal drive 
-l,IOPosMode(AO) ; absolute positioning 
-<512*4> ,IOPosOffset(AO) ; block 4 byte position 
-S12,IOByteCount(AO) ; read one block's worth 
MyBuffer,A 1 
A 1 ,IOBuffer(AO) 
,ASYNC 

; set up buffer address 
; do it asynchronously 

do any other processing here ... then when the block is needed: 

MOVE.W 
BGT.S 

ADD 

IOResult(AO),DO 
.2 

-, aQE 15 i ze ,SP 

; wait for completion 

; clean up the stack 
; DO contains a result code 

MyBuffer .BLOCK 512,0 ; sector buffer (should really 
; come off the heap or stack) 

1 Boot time 1S the time between when a Macintosh is powered on and the first 
application program (usually the Finder) is launched. Boot is short for 
bootstrap which is from the phrase "pulling oneself up from one's bootstraps" 
which 1s really impossible due to physical laws but seems plausible to small 
chlldren watching cartoons. The first two disK blocks contain the code 
which is needed to finishing initializing the Macintosh system software and 
start the 'first app1ication (the name of which is contained in those blocks). 

Macintosh Sony Bisle Brluer 
danuary 1, 1904 

Page 5 



MACINTOSH USER EDUCATION 

The Sound Driver: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
Macintosh Operating System Manual 
The Device Manager: A Programmer's Guide 

Modification History: First Draft (ROM 7) 

*** Preliminary Draft. Not for distribution *** 

/DEVICE/SOUND 

B. Hacker 3/nn/84 

ABSTRACT 

The Sound Driver is a set of data types and routines in the Macintosh 
Operating System for handling sound and music generation in a Macintosh 
application. This manual describes the Sound Driver in detail. 



2 Sound Driver Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About The Sound Driver 
6 Sound Driver Synthesizers 
7 Free-Form Synthesizer 
8 Square-Wave Synthesizer 
9 Four-Tone Synthesizer 

11 Using The Sound Driver 
12 Advanced Control Routine 
14 Summary of the Sound Driver 
18 Glossary 

Copyright (c) 1984-Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

The Sound Driver is a set of data structures and routines in the 
Macintosh Operating System for handling sound and music generation in a 
Macintosh application. This manual describes the Sound Driver in 
detail. *** Eventually it will become part of a larger manual 
describing the entire Toolbox and Operating System. *** 

(note) 
This manual describes the Sound Driver in version 7 of 
the ROM. If you're using a different version, the 
information presented here may not apply. 

Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal. You should also be familiar with the 
followin~: 

- the basic concepts behind the Macintosh Operating System's Memory 
Manager 

- devices and device drivers, as described in the Device Manager 
Manual *** doesn't yet exist *** 

This manual is intended to serve the needs of both Pascal and 
assembly-language programmers. Information of interest to assembly 
language programmers only is isolated and labeled so that Pascal 
programmers can conveniently skip it. *** Currently a Pascal interface 
to the Sound Driver doesn't exist *** 

The manual begins with an introduction to the Sound Driver and what you 
can do with it. It then steps back a little and looks at the 
mathematical and physical concepts that form the foundation for the 
Sound Driver: waveforms, wave frequency, wave amplitude, and wave 
periods. Once you understand these concepts, read on about how they're 
translated into sound, music, and speech. 

Next, a section on using the Sound Driver describes how you can use 
Device Manager calls in your application to produce desired sounds. 
This includes a detailed description of the Sound Driver's control 
routine--its parameters, calling protocol, effects, and so on. 

Finally, there's a summary of the Sound Driver data structures and 
routine calls, for quick reference, followed by a glossary of terms 
used in this manual. 

ABOUT THE SOUND DRIVER 

The Sound Driver is a standard Macintosh device driver used to 
synthesize sound waves. You can use the Sound Driver to generate sound 
characterized by any kind of waveform by using the three different 
sound synthesizers in the Sound Driver: 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



4 Sound Driver Programmer's Guid~ 

- The four-tone synthesizer is used to make simple harmonic tones, 
with up to four "voices" producing sound simultaneously; it 
requires about 5~% of the microprocessor's attention during any 
given time interval. 

- The sQuare-wave synthesizer is used to produce less harmonic 
sounds such as beeps. and requires about 2% of the processor's 
time. 

- The free-form synthesizer is used to make complex music and 
speech; it requires about 2~% of the processor's time. 

Figure 1 depicts the waveform of a typical sound wave. and the terms 
used to describe it. The amplitude is the vertical distance between 
any given point on the wave and the horizontal line about which the 
amplitude oscillates; you can think of the amplitude of a wave as its 
volume level. The wavelength is the horizontal extent of one complete 
cycle of'the wave. Both the amplitude and wavelength can be measured 
in any unit of distance. The period is the time elapsed during one 
complete cycle of a wave. The frequency is the reciprocal of the 
period, or the number of cycles per second (also called Hertz). The 
phase is some fraction of a wave cycle (measured from a fixed point on 
the wave). 

periodT(~) 
r--wave length 2 (bytes)----. 

frequency t (hz) := ~ 

amp I itude (byte3) 

....-.---one cycle ---~ 

Figure 1. A Waveform 

There are many different types of waveforms, three of which are 
depicted in Figure 2. Sine waves are generated by objects that 
oscillate periodically at a single frequency (such as a guitar string). 
Square waves are generated by objects that toggle instantly between two 
states at a single frequency (such as a doorbell buzzer). Free-form 
waves are the most common waves of all, and are generated by all 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



ABOUT THE SOUND DRIVER 5 

objects that vibrate at rapidly changing frequencies with rapidly 
changing amplitudes (such as your vocal cords or the instruments of an 
orchestra all playing at once). 

sine ¥ave 

- ~ - -

- - -- -

free·form wave 

Figure 2. Types of Waveforms 

Figure 3 shows the analog representation of a waveform. The Sound 
Driver represents waveforms digitally. so all waveforms must be 
converted from their analog representation to a digital representation. 
The rows of numbers at the bottom of the figure are digital 
representations of the waveform. The numbers in the upper row are the 
amplitudes relative to the horizontal zero-amplitude line. The numbers 
in the lower row all represent the same relative amplitudes. but have 
been normalized to positive numbers. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



6 Sound Driver Programmer's Guide 

time Id i stance 

+ • .. .. .. 
.~ I'" 

o .. 
Q. 

E 
o • • .,. 

.. 
• . 

•• : . 
o 3 5 6 7 6 5 3 0 -3 -5 -6 -7 -6 ·5·3 0 } d' 't Itt' Igl a represen e I ens 
7~~GWn~~742101247 

Figure 3. Analog and Digital Representations of a Waveform 

A digital representation of a waveform is simply a sequence of wave 
amplitudes measured at fixed intervals. This sequence of amplitudes is 
stored in the Sound Driver as a sequence of bytes, each one of which 
specifies an instantaneous voltage to be sent to the speaker. The 
bytes are stored in a data structure called a waveform description. 
Since a sequence of bytes can only represent a group of numbers whose 
maximum and minimum values differ by less than 256, the amplitudes of 
your waveforms must be constrained to these same limits. 

SOUND DRIVER SYNTHESIZERS 

A description of the sound to be generated by a synthesizer is 
contained in a data structure called a synthesizer buffer. A 
synthesizer buffer contains the duration, pitch, phase, and waveform of 
the sound the synthesizer will generate. The exact structure of a 
synthesizer buffer differs for each type of synthesizer being used. 

Free-Form Synthesizer 

The free-form synthesizer is used to synthesize complex music and 
speech. The sound to be produced is represented as a waveform whose 
complexity and length ,are limited only by available memory. 

A free-form synthesizer buffer consists of one integer and one long 
integer followed by a waveform description (Figure 4). The waveform 
description can contain up to 256 bytes. Each amplitude in the 
waveform description will be generated once; when the end of the 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



SOUND DRIVER SYNTHESIZERS 7 

waveform is reached, the synthesizer will stop. The integer must be ~, 
to identify the buffer as a free-form buffer. The duration long 
integer determines the length of time (in 44.93 usee increments) each 
amplitude in the waveform will be produced. The high-order word of the 
duration long integer contains the integral part and the low-order word 
contains the fractional part of the duration. (Binary fractions are 
described in the Toolbox Utilities manual under Fixed-Point Numbers.) 

The time interval specified by the duration long integer can vary 
between 44.93 usec and 2.95 sec, corresponding to the binary fractions 
1.000~ (represented by the four bytes $~0 ~1 ~~ ~~, or the long integer 
1) and 65535.9999 (represented by the four bytes $FF FF FF FF, or the 
long integer 4294967295), respectively. 

(note) 

(note) 

As a further example, the time interval 89.86 usec 
corresponds to the binary fraction 2.00~~, the four bytes 
$~~ ~2 00 00, and the long integer 131072. The time 
interval .0115 sec corresponds to the binary fraction 
25.5~00, the four ·bytes $00 19 8~ 0~, and the long 
integer 1671168. 

o 
dtration 

long inteoer 

weveform 
bytes 

Figure 4. 

integral pert fracti onal pert 

Free-Form Synthesizer Buffer 

Note that the duration long integer specifies a time 
interval, but it doesn't specify the period of a wave 
cycle. To determine the time period of a wave cycle in 
the waveform, use the following relationship: 

period - time interval * wavelength 

where the wavelength is given in bytes. For example, the 
period of a wave of 10-byte wavelength with a time 
interval of 2 usec/byte would be 900 usec (corresponding 
to 1111 Hz). 

Assembly-language~: The address of the free-form buffer 
currently in use is contained in the system global soundBase. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



8 Sound Driver Programmer's Guide 

Square-Wave Synthesizer 

The square-wave synthesizer is used to make sounds such as beeps. A 
square-wave synthesizer buffer consists of a negative integer followed 
by a sequence of integer triplets (Figure 5). The negative integer 
identifies the buffer as a square-wave buffer. Each triplet contains 
the count. amplitude. and duration of a different sound. The square
wave synthesizer doesn't require a waveform description because of the 
simple form of square waves. You can store as many triplets in a 
synthesizer buffer as there's room for. 

negative integer 

C CUlt integer 
amplitude integer 
dlrati on integer 

'1' '? 
~ ~ 

C CU'lt integer 
amplitude integer 
du"ati on integer 

} last slUld 

Figure 5. Square-Wave Synthesizer Buffer 

Each count integer can range in value from ~ to 65535; the actual 
frequency the count corresponds to is given by the relationship: 

frequency (Hz) = 78336~ / count 

A partial list of count values and corresponding frequencies for notes 
comprising Ptolemy's diatonic scale (the scale to which pianos are 
tuned) is given in the summary at the end of this manual. 

Assembly-Ianguage~: The value of count currently in use is 
contained in the system global curPitch. 

Each amplitude integer can range from ~ to 255. Each duration integer 
specifies the number of ticks the sound will be generated, ranging from 
o to 255 (corresponding to ~ to 4.25 seconds). 

The last sound triplet must be signified by a count integer of~. When 
the square-wave synthesizer is used. the sound specified by each 
triplet is generated once, and then the synthesizer stops. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



SOUND DRIVER SYNTHESIZERS 9 

Four-Tone Synthesizer 

The four-tone synthesizer is used to produce harmonic sounds such as 
music. It can simultaneously generate four different sounds, each with 
its own frequency, phase, and waveform. 

A four-tone synthesizer buffer consists of an integer and a pointer 
(Figure 6). The integer can be any positive number, and serves only to 
identify the buffer as a four-tone buffer. The pointer points to a 
data structure describing the four tones, called a four-tone record. 

Assembly-Ianguage~: The address of the four-tone record 
currently in use is stored in the system global soundPtr. 

fOLr·tone record I positive integer I 
pointer to 4· tone record t--~~ 

--------------------~ 

Figure 6. Four-Tone Synthesizer Buffer 

A four-tone record consists of a duration integer followed by 12 long 
integers that contain the rate, phase, and pointers to the waveform 
descriptions of the four sounds (see Figure 7). 

durati on integer 
sCU'ld 1 rete 
long integer rate I~ integer 

scxn:I 1 pheae not Integral I 

long integer ~d pert fractional 
I 

pert 

~ ,i.'7 ,i. 

scxn:I 4 rete 
long integer 

SOlI"Id 4 phase 
long integer weveform de~iptions 

sound 1 " 
scxn:I1 

'Wovef orm pointer 
r 256by1es 

~'7 .J.'7 7 ,i.'? 
'" sCUld 4 " ~4 

'Wovef orm poi nter 
r 2S6 bytes 

Figure 7. Four-Tone Record 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



10 Sound Driver Programmer's Guide 

The duration integer indicates the number of ticks that each sound will 
be generated, from 0 to 255 (0 to 4.25 seconds). Each phase integer 
indicates the byte within the waveform description at which the 
synthesizer should begin producing sound (the first byte is byte number 
0). Each rate long integer determines the speed at which the 
synthesizer cycles through the waveform. The low-order word of the 
rate long integer contains the fractional part of the rate, and the 
low-order byte of the high-order word contains the integral part. 
(Binary fractions are described in the Toolbox Utilities manual under 
Fixed-Point Numbers.) The rate long integer can vary between 0 and 
16777215. 

The waveform description for each tone must contain 256 bytes. The 
four-tone synthesizer creates sound by starting at the byte in the 
waveform description specified by the phase, and skipping rate bytes 
ahead every 44.93 usec; when the time specified by the duration integer 
has elapsed, the synthesizer stops. The amount of time required to 
cycle completely through the waveform is 16777216 * 44.93 usec / rate 
(11502 usec if the rate long integer is 65536--corresponding to about 
87 Hz if the waveform contains one wavelength). If the waveform 
contains one wavelength, the frequency the rate corresponds to is given 
by 

frequency (Hz) = rate / 753.795 

The maximum rate of 16777215 corresponds to 44.93 usec, or about 22.3 
kHz if the waveform contains one wavelength, and a rate of 0 produces 
no sound. A partial list of rate values and corresponding frequencies 
for notes comprising Ptolemy's diatonic scale (the scale to which 
pianos are tuned) isis given in the summary at the end of this manual. 

USING THE SOUND DRIVER 

The Sound Driver is a standard Macintosh device driver, and is 
manipulated via the Device Manager DriverOpen, DriverClose, Write, and 
Control calls. The Sound Driver doesn't support Read or Status calls. 

The Sound Driver is automatically opened when the system starts up. 
Its driver name is • Sound , and its driver reference number is -4. To 
close the Sound Driver, call DriverClose(-4); you can reopen it by 
call ing Drive rOpen (". Sound It). 

To use one of the three types of synthesizers to generate sound, use 
the Memory Manager routines NewHandle and SetHandleSize to allocate 
heap space for a synthesizer buffer. Then, fill the buffer with values 
describing the sound, and make an Write call to the Sound Driver. The 
Write parameters passed must be as follows: 

- RefNum must be -4. 

- BuffPtr must point to the synthesizer buffer. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



USING THE SOUND DRIVER 11 

- Count must contain the length of the synthesizer buffer. in bytes. 

When you use the free-form synthesizer. the amplitudes described by 
each byte in the waveform description are generated sequentially until 
the number of bytes specified by the count parameter have been written. 
When you use the square-wave synthesizer. the sounds described by each 
sound triplet are generated sequentially until either the end of the 
buffer has been reached (indicated by a count integer of 0 in the 
square-wave buffer). or the number of bytes specified by the Write 
call's count parameter have been written. When you use the four-tone 
synthesizer. all four sounds are generated for the length of time 
specified by the duration integer in the four-tone record. 

There are three different calls you can make to the Sound Driver's 
control routine: 

- KillIO is a standard control call supported by all drivers. It 
stops any sound currently being generated. and deletes all 
asynchronous I/O requests to the Sound Driver that haven't yet 
been processed. 

- SetVolume allows you to change the volume of the sound that passes 
through the Macintosh speaker. There are eight levels of volume. 
specified by the three low-order bits in the opParam parameter of 
the Control call. 0 being low. and 7 high. Applications shouldn't 
change the speaker volume. as it's really up to the user to choose 
the normal sound level via the Control Panel desk accessory. 

- Advanced Programmers: SetLevel enables you to control the 
amplitude of the sound generated by the square-wave synthesizer. 
The amplitude is contained in the opParam parameter of the Control 
call. and must be in the range 0 to 255. This call is explained'-
in more detail below. . 

When you call the Sound Driver's control routine. the parameters must 
contain the following: 

- RefNum must be -4. 

- OpCode must specify the type of call: 

Call 
Kill 10 
SetVolume 
SetLevel 

OpCode 
1 
2 
3 

- OpParam must provide the volume level for a SetVolume call. and 
the amplitude for a SetLevel call. 

(note) 
Advanced programmers using low-level Pascal or 
assembly-language Device Manager routines must pass the 
above values in a parameter block. In addition, if 
you're calling the Sound Driver asynchronously, the 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



12 Sound Driver Programmer's Guide 

ioCompletion parameter must contain either the address of 
a completion routine or NIL. 

Assembly-language~: The current speaker volume level is 
contained in the system global sdVolume. 

Advanced Control Routine 

The following paragraphs describe how the Sound Driver uses the 
Macintosh hardware to produce sound, and how you can intervene in the 
process to control the square-wave synthesizer. You can skip this 
section if it doesn't interest you, and you'll still be able to use the 
Sound Driver as described, except for the SetLevel call. 

To generate sound at the amplitude level specified by a square-wave 
synthesizer buffer, the Sound Driver places the value of the amplitude 
integer into a 740-byte buffer shared by both the Sound Driver and the 
disk-motor speed-control circuitry. Then, every 44.93 usec when the 
video beam wraps from the right edge of the screen to the left, the 
microprocessor automatically fetches an additional two bytes from this 
buffer. The high-order byte is sent to the speaker, and the low-order 
byte to the disk-motor speed-control circuitry. 

(note) 

Assembly-Ianguage~: The amplitude level in the 740-byte 
buffer is contained in the system global soundLevel. 

All the frequencies generated by the Sound Driver are 
multiples of this 44.93 usec period. The highest 
frequency the Sound Driver can physically generate 
corresponds to twice this period, 89.96 usec, or a 
frequency of 11116 Hz. 

You can cause the square-wave synthesizer to start generating sound, 
and then change the amplitude of the sound being generated any time you 
wish: 

1. Make an asynchronous Write call to the Sound Driver specifying the 
count, amplitude, and duration of the sound you want generated. 
The amplitude you specify will be placed in the 740-byte buffer, 
and the Sound Driver will begin producing sound. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



USING THE SOUND DRIVER 13 

2. Whenever you want to change the sound being generated. make a 
Set Level call with the opParam parameter specifying the amplitude 
of the new sound. The amplitude you specify will be placed in the 
740-byte buffer. and the sound will change. You can continue to 
change the sound until the time specified by the duration integer 
has elapsed. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2 



14 Sound Driver Programmer's Guide 

SUMMARY OF THE SOUND DRIVER 

Data Structures 

Free-Form Synthesizer Buffer 

o 
duration 

101"0 integer 

waveform 
bytes { 

Square-Wave Synthesizer Buffer 

negative integer 
c OU"tt integer 

Qn,llitude integer 
mration integer ., ,. 

~ 4 

C c::ult integer 
Qn,llitude integer 
ci.rati on integer 

Four-Tone Synthesizer Buffer 

dlrati on long int8Q8r 

I positive integer I 
pointer to 4-tone record iooo----->l ... __ t_Ol.r_-t_one __ recor __ d_---' 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.S 



SUMMARY OF THE SOUND DRIVER 15 

Four-Tone Record 

dl.rati on integer 
SOt.nd 1 rete 
long integer rate lone integer 

SOt.nd , phese not integral I 
fractional 

long integer ~ pert I 
pert 

i,7 i,7 

SOt.nd 4 rete 
long integer 

SOlIld 4 phese 
long integer waveform ~iptiOl'l$ 

-sound 1 '-
SO\n:I1 

'w'Q\Ief or m pOinter 
7 256 by1es 

~7 ? 7 ~7 

sOU'ld 4 "- sound 4 

'w'Ovef arm poi nter 
, 

2S6 bytes 

Sound Driver Control Calls 

Call °ECode 
KillIO 1 
SetVolume 2 
SetLevel 3 

Assembly-Language Information 

Variables 

SdVolume 
SoundPtr 
Sound Base 
SoundLevel 
CurPitch 

3/dd/84 Hacker 

jspeaker volume level 
;pointer to four-tone record 
jpointer to free-form buffer 
;amplitude in 740-byte buffer 
;value of count in square-wave synthesizer buffer 

CONFIDENTIAL /OS/SOUND.S 



16 Sound Driver Programmer's Guide 

Sound Driver Values For Notes Comprising Ptolemy's Diatonic Scale 

Rate Values for the Count Values For the 
Four-Tone SInthesizer Sguare-Wave SInthesizer 

Note (Fregency) Long Word Long Integer Word Integer 

3 octaves below middle C 
C (33) 0~00 612B 24875 5CBA 23738 
Db (35.2) 0~00 67A5 26533 56EF 22255 
D (37.125) 0~00 6D50 27984 526D 21101 
Eb (39.6) 0~00 749A 29850 4046 19782 
E (41.25) 0~00 7976 31094 4A2F 18991 
F (44) 0~00 818E 33166 458C 17804 
Gb (46.9375) 0~00 8A35 35381 4131 16689 
G (49.5) 0~00 91C0 37312 3DDI 15825 
Ab (52.~) 0000 9B78 39800 39F4 14836 
A (55) 0~~0 AIF2 41458 37A3 14243 
Bb (57.75) 0~~0 AA0B 43531 34FD 13565 
B (61.875) 0~~0 B631 46641 3174 12660 

2 octaves below middle C 
C (66) 0~00 C256 49750 2E5D 11869 
Db (70.4) ~000 CF4B 53067 2B77 11127 
D (74.25) 0~~0 DAAI 55969 2936 10550 
Eb (79.2) 0000 E934 597~0 26A3 9891 
E (82.5) 0000 F2EC 62188 2517 9495 
F (88) 0001 031D 66333 22C6 8902 
Gb (93.875) 0001 146A 70762 2099 8345 
G (99) 0~01 2381 74625 lEE9 7913 
Ab (105.6) 0001 36F0 79600 lCFA 7418 
A (110) 0~01 43E5 82917 IBDI 7121 
Bb (115.5) 0001 5417 87063 lA7E 6782 
B (123.75) 0001 6C62 93282 18BA 633~ 

1 octave below middle C 
C (132) 0001 84AC 99500 172F 5935 
Db (140.8) 0001 9E96 1~6134 15BC 5564 
D (148.5) ~0~1 B542 111938 149B 5275 
Eb (158.4) 0(101 D269 1194(11 1351 4945 
E (165) 0001 E5D8 124376 128C 4748 
F (176) ~(I(l2 ~63B 132667 1163 4451 
Gb (187.75) ~~02 28D5 141525 104C 4172 
G (198) 00(12 4703 149251 (lF74 3956 
Ab (211.2) 0002 6DEI 1592(11 ~E7D 3709 
A (220) 0002 87CA 165834 0DE9 3561 
Bb (231) 0002 A82E 174126 0D3F 3391 
B (247.5) ~002 D8C4 186564 0C5D 3165 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.S 



SUMMARY OF THE SOUND DRIVER 17 

Middle C 
C (264) 00~3 0959 199001 0B97 2967 
Db (281.6) 0003 3D2C 212268 0ADE 2782 
D (297 ) 0003 6A85 223877 0A4E 2638 
Eb (316.8) 0003 A4D2 238802 09A9 2473 
E (330) 0003 CBB0 248752 0946 2374 
F (352) 0004 0C77 265335 08B1 2225 
Gb (375.5) 0004 51AA 283050 0826 2086 
G (396) 0004 8E06 298502 07BA 1978 
Ab (422.4) 0004 DBC3 318403 073F 1855 
A (440) 0005 0F95 331669 06F4 1780 
Bb (462) 0~05 505D 348253 06A0 1696 
B (495) 0005 B188 373128 062F 1583 

1 octave above middle C 
C (528) 0006 12B3 398003 05CC 1484 
Db (563~2) 0006 7A59 424537 056F 1391 
D (594) 0006 D50A 447754 0527 1319 
Eb (633.6) 0007 49A4 477604 0404 1236 
E (660) 0007 9760 497504 04A3 1187 
F (704) 0008 18EF 530671 0459 1113 
Gb (751) 0008 A354 566100 0413 1043 
G (792) 0009 1C0D 597005 03DD 989 
Ab (844.8) 0009 B786 636806 039F 927 
A (880) 000A 1F2B 663339 037A 890 
Bb (924) 000A AQJBA 696506 0350 848 
B (990) 000B 6311 746257 0317 791 

2 octaves above middle C 
C (1056) 000C 2567 796007 02E6 742 
Db (1126.4) 000c F4B2 849074 02B7 695 
D (1188) 0000 AA14 895508 0293 659 
Eb (1267.2) 000E 9349 955209 026A 618 
E (1320) 000F 2ECI 995009 0251 593 
F (1408) 0010 31DF 1061340 022C 556 
Gb (1502) 0011 46A8 1132200 020A 522 
G (1584) 0012 381B 1194010 01EF 495 
Ab (1689.6) 0013 6F0C 1273610 0100 464 
A (1760) 0014 3E57 1326680 01BD 445 
Bb (1848) 0015 4175 1393010 01A8 424 
B (1980) 0016 C622 1492510 018C 396 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.S 



18 Sound Driver Programmer's Guide 

3 octaves above middle C 
C (2112) 0018 4ACF 
Db (2252.8) 0019 E965 
D (2376) 001B 5429 
Eb (2534.4) ~01D 2692 
E (2640) 0~1E 5D83 
F (2816) 0020 63BF 
Gb (3004) 0022 8D50 
G (3168) 0~24 7036 
Ab (3379.2) 0026 DE18 
A (3520) 0028 7CAE 
Bb (3696) 002A 82EA 
B (3960) 002D 8C44 

3/dd/84 Hacker 

1592020 
1698150 
1791020 
1910420 
1990020 
212269~ 
2264400 
238802~ 
2547220 
2653360 
2786030 
2985030 

CONFIDENTIAL 

0173 
015C 
014A 
0135 
0129 
0116 
0105 
00F7 
00E8 
00DF 
00D4 
00C6 

371 
348 
330 
309 
297 
278 
261 
247 
232 
223 
212 
198 

/OS/SOUND.S 



GLOSSARY 19 

GLOSSARY 

amplitude: The vertical distance between any given point on a wave and 
the horizontal line about which the amplitude oscillates. 

four-tone record: A data structure describing the four tones produced 
by a four-tone synthesizer. 

four-tone synthesizer: The part of the Sound Driver used to make 
simple harmonic tones, with up to four "voices" producing sound 
simultaneously. 

free-form synthesizer: The part of the Sound Driver used to make 
complex music and speech. 

frequency: The number of cycles per second (also called Hertz) at 
which a wave oscillates. 

period: The time elapsed during one complete cycle of a wave. 

phase: Some fraction of a wave cycle (measured from a fixed point on 
the wave). 

square-wave synthesizer: The part of the Sound Driver used to produce 
less harmonic sounds such as beeps. 

synthesizer buffer: A description of the sound to be generated by a 
synthesizer. 

waveform: The physical shape of a wave. 

waveform description: A sequence of bytes describing a waveform. 

wavelength: The horizontal extent of one complete cycle of a wave. 

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.G 



MACINTOSH USER EDUCATION 

Macintosh Serial Communication: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
Macintosh Operating System Manual 
The Device Manager: A Programmer's Guide 

/DRIVER/SERIAL 

Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) Bradley Hacker 5/13/84 

*** Preliminary Draft. Not for distribution *** ABSTRACT 

The Macintosh RAM Serial Driver and ROM Serial Driver are sets of data 
types and routines in the Macintosh Operating System for handling 
asynchronous serial communication between a Macintosh application and a 
serial device. This manual describes the Serial Drivers in detail. 



2 Macintosh Serial Communication 

TABLE OF CONTENTS 

3 About This Manual 
3 Serial Communication 
4 About The Serial Driver 
6 Using The Serial Driver 
8 Serial Driver Routines 

13 Summary of the Serial Driver 
16 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

The Macintosh RAM Serial Driver and ROM Serial Driver are sets of data 
types and routines in the Macintosh Operating System for handling 
asynchronous serial communication between a Macintosh application and 
serial devices. This manual describes the Serial Drivers in detail. 
*** Eventually it will become part of the comprehensive Inside 
Macintosh manual. *** 
Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal. You should also be familiar with the 
following: 

- the basic concepts behind the Macintosh Operating System's Memory 
Manager 

- interrupts and the use of devices and device drivers, as described 
in the Device Manager Manual 

- asynchronous serial data communication 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Serial Drivers and what 
you can do with them. It then describes how you can use Serial Driver 
calls in your application to communicate with serial devices. This 
includes a detailed description of the Serial Drivers' routines--their 
parameters, calling protocol, effects, and so on. 

Finally, there's a summary of the Serial Driver data structures and 
routine calls, for quick reference, followed by a glossary of terms 
used in this manual. 

SERIAL COMMUNICATION 

There are two Macintosh device drivers for serial communication: the 
RAM Serial Driver and the ROM Serial Driver. The two drivers are 
nearly identical, although the RAM driver has a few features the ROM 
driver doesn't. Both allow Macintosh applications to communicate with 
serial devices via the two RS-232/RS-422 serial ports on the back of 
the Macintosh. 

The Serial Drivers support full-duplex asynchronous serial 
communication. Serial data is transmitted over a single-path 
communication line, one bit at a time (as opposed to parallel data, 
which is transmitted over a multiple-path communication line, multiple 
bits at a time). Full-duplex means that the Macintosh and another 
serial device connected to it can transmit data simultaneously (as 

5/13/84 Hacker /OS/SERIAL.2 



4 Macintosh Serial Communication 

opposed to half-duplex operation, in which data can only be transmitted 
by one device at a time). Asynchronous communication means that the 
Macintosh and other serial devices communicating with it don't share a 
common timer, and no timing data is transmitted. The time interval 
between characters transmitted asynchronously can be of any length. 
The format of asynchronous serial data communication used by the Serial 
Drivers is shown in Figure 1. 

stert dete dete 3top stop 

mark (> + 3 volts) 

space «-3 volts) 

idle bit bit 0 bit n bit 1 

-..... ----to 0 ol~_1 ~=I =.....--.. -.-... -... bit 2 idle 

----------------~ame---------------J 

Figure 1. Asynchronous Data Transmission 

When a transmitting serial device is idle (not sending data), it 
maintains the transmission line in a continuous state ("mark" in 
Figure 1). The transmitting device may begin sending a character at 
any time by sending a start bit. The start bit tells the receiving 
device to prepare to receive a character. The transmitting device then 
transmits 5, 6, 7, or 8 data bits, optionally followed by an even or 
odd parity bit. If a parity bit is transmitted, its value is chosen 
such that the number of l's among the data bits and the parity bit is 
even or odd, depending on whether the parity is even or odd, 
respectively. Finally, the transmitting device sends 1, 1.5, or 2 stop 
bits, indicating the end of the character. 

If a parity bit is set incorrectly, the receiving device will note a 
parity error. The time elapsed from the start bit to the last stop 
bits is called a frame. If the receiving device doesn't get a stop bit 
after the data and parity bits, it will note a framing error. After 
the stop bits, the transmitting device may send another character or 
maintain the line in the mark state. If the line is held in the 
"space" state (Figure 1) for one frame or longer, a break occurs. 
Breaks are used to interrupt data transmission. 

ABOUT THE SERIAL DRIVERS 

Each Serial Driver actually consists of four drivers: one input driver 
and one output driver for the modem port, and one input driver and one 
output driver for the printer port (Figure 2). Each input driver 
receives data via a serial port and transfers it to the application. 
Each output driver takes data from the application and sends it out 
through a serial port. The input and output drivers for a port are 
closely related, and share some of the same routines. Each driver 
do"es, however, have a separate device control entry, which allows the 
Serial Drivers to support full-duplex communication. An individual 

5/13/84 Hacker /OS/SERIAL.2 



ABOUT THE SERIAL DRIVERS 5 

port can both transmit and receive data at the same time. The serial 
ports are controlled by the Macintosh's Zilog Z8530 Serial 
Communications Controller (SCC). Channel A of the SCC controls the 
modem port, and channel B controls the printer port. 

eppl icetion 

modem port printer port 

externel ser iel device externel seriel device 

Figure 2. Input and Output Drivers of a Serial Driver 

Data received via a serial port passes through a 3-character buffer in 
the SCC and then into a buffer in the input driver for the port. 
Characters are removed from the input driver's buffer each time an 
application issues a Read call to the driver. Each input driver's 
buffer can initially hold up to 64 characters, but your application can 
increase this if necessary. If the SCC buffer ever becomes full, a 
hardware overrun error occurs. If an input driver's buffer ever 
becomes full, a software overrun error occurs. 

The printer port should be used for output-only connections to devices 
such as printers, or at low baud rates (300 baud or less). The modem 
port has no such restrictions. It may be used simultaneously with disk 
accesses without fear of hardware overrun errors, because whenever the 
Disk Driver must turn off interrupts for longer than 100 usec, it 
stores any data received via the modem port and later passes the data 
to the modem port's input driver. 

All four drivers default to 9600 baud, eight data bits per character, 
no parity bit, and two stop bits. You can change any of these options. 
The Serial Drivers supports CTS hardware handshaking and XOn/XOff 
software flow control. Each driver defaults to hardware handshake 
only, your application must enable XOn/XOff flow control if needed. 

(note) 
The ROM Serial Driver doesn't support XOn/XOff input flow 
control--only output flow control. Use the RAM Serial 
Driver if you want XOn/XOff input flow control. 

5/13/84 Hacker /OS/SERIAL.2 



6 Macintosh Serial Communication 

Whenever an input driver receives a break, it terminates any pending 
Read requests, but not Write requests. You can choose to have the 
input drivers terminate Read requests whenever a parity, overrun, or 
framing error occurs. 

(note) 
The ROM Serial Driver always terminates input requests 
when an error occurs. Use the RAM Serial Driver if you 
don't want input requests to be terminated by errors. 

You can request the Serial Drivers to post device driver events 
whenever a change in the hardware handshake status or a break occurs, 
if you want your application to take some specific action upon these 
occurrences. 

USING THE SERIAL DRIVERS 

You can call the Serial Drivers via high-level Pascal, low-level 
Pascal, and assembly-language Device Manager routines. The information 
in this section is oriented toward the high-level Pascal calls, and 
advanced programmers will need to consult the Device Manager manual for 
equivalent low-level Pascal or assembly-language routines. 

Drivers are referred to by name and reference number as shown below: 

Driver Driver name Reference number 
Modem port input .AIn -6 
Modem port output .AOut -7 
Printer port input .BIn -8 
Printer port output • BOut -9 

~o~ 
Before you can send or receive data through a port, both the input and ~aA~~s9S 
output drivers for the port must be opened. All feyr ROM drivers are ~~ Jf 

~a~J~Jt~o~m~a~ti~Q~a~l~l)¥r-oo~pe8RQa8~~-'W~A&8Dg~tA~e8-8S¥y~s~tee~m~s~t~8~r~t~s~H~p~. To open the RAM Serial yo~t . 
Driver, call RAMSDOpen. 

When you open an output driver, the Serial Driver initializes local 
variables for the output driver and the associated input driver, 
allocates and locks buffer storage for both drivers, installs interrupt 
vectors for both drivers, and initializes the correct SCC channel for 
the output driver only. When you open an input driver, the Serial 
Driver only notes the location of its device control entry. You must 
open both the input and output drivers for a port before you can use 
ft, but the order in which the drivers are opened doesn't matter. 

If you would like to ~eclaim the space occupied by a driver's storage, 
you can can call DriverClose to close the ROM Serial Driver, and 
RAMSDClose to close the RAM Serial Driver. When you close an output 
driver, the Serial Driver resets the appropriate SCC channel, 
configures the driver for external/status (mouse) interrupts only, 
releases all local variable and buffer storage space, and restores any 
changed interrupt vectors. Closing an input driver has no effect. The 

5/13/84 Hacker /OS/SERIAL.2 



USING THE SERIAL DRIVERS 7 

ROM Serial Driver is automatically closed when you call RAMSDOpen. and 
opened when you call RAMSDClose. 

(warning) 
You should not close the ROM Serial Driver unless you're 
immediately going to open a RAM Serial Driver for the 
same port; otherwise mouse interrupts will be lost. 

To transmit serial data out through a port. make a Device Manager Write 
call to the output driver for the port. You must pass the following 
parameters: 

- RefNum must be -7 or -9, depending on whether you're using the 
modem port or printer port. 

- BuffPtr must point to the data you want to transmit. 

- Count must contain the number of bytes you want to transmit. 

To receive serial data from a port. make a Device Manager Read call to 
the input driver for the port. You must pass the following parameters: 

- RefNum must be -6 or -8, depending on whether you're using the 
modem port or printer port. 

- BuffPtr must point to the location where you want to receive the 
data. 

- Count must contain the number of bytes you want to receive. 

There are six different calls you can make to the Serial Driver's 
control routine: 

- KillIO causes all current I/O requests to be aborted and any bytes 
remaining in both input buffers to be discarded. KillIO is a 
Device Manager call. 

- SerReset resets and reinitializes a driver. 

- SerSetBuf allows you to specify a new input buffer. 

- SerHShake allows you to specify handshake options. 

- SerSetBrk sets break mode. 

- SerClrBrk clears break mode. 

There are two different calls you can make to the Serial Driver's 
status routine: 

- SerGetBuf returns the number of available buffered bytes. 

- SerErrFlag returns information about errors, I/O requests. and 
handshake. 

5/13/84 Hacker /OS/SERIAL.2 



8 Macintosh Serial Communication 

SERIAL DRIVER ROUTINES 

This section describes the calls that you can make to the Serial 
Driver's control and status routines. The routine names given here can 
be used only from Pascal; assembly-language programmers must make 
equivalent Control and Status calls. 

FUNCTION RAMSDOpen : OSErr; *** Not yet implemented *** 

RAMSDOpen closes the ROM Serial Driver and opens the RAM Serial Driver. 

" 
FUNCTION RAMSDClose OSErr; *** Not yet implemented *** 

RAMSDClose closes the RAM Serial Driver and opens the ROM Serial 
Driver. 

FUNCTION SerReset(refNum: INTEGER; serConfig: INTEGER) : OSErr; 

SerReset resets and reinitializes the driver having the reference 
number refNum according to the information in serConfig. Figure 3 
shows the format of serConfig. 

15 14 13 12 11 10 9 o 
I I I I baud rate 

~ 1, 2, 3 for S, 7, 6, 8 
data bits per character 

-------- 0, 1" 2, 3 for no., odd, 
no, even pari ty bi Is 

Figure 3. 

1,2, 3 far 1,1.5, 2 
stop bits 

Driver Reset Information 

Use can use the following predefined constants to test or set the value 
of various bits of serConfig: 

5/13/84 Hacker /OS/SERIAL.2 



SERIAL nRIVER ROUTINES 

CONST baud300 = 380; {300 baud} 
baud600 = 189; {600 baud} 
baud1200 = 94; {1200 baud} 
baud1800 = 62 ; {1800 baud} 
baud2400 = 46; {2400 baud} 
baud3600 = 30; {3600 baud} 
baud4800 = 22; {4800 baud} 
baud7200 = 14; {7200 baud} 
baud9600 = 10; {9600 baud} 
baud19200 = 4; {19200 baud} 
baud57600 = 0; { 57 600 baud} 
stopU~ = 16384; {set for 1 stop bit} 
stop15 = -32768; {set for 1.5 stop bits} 
stop20 ::II -16384; {set for 2 stop bits} 
noParity = 8192; {set for no parity} 
oddParity = 4096; {set for odd parity} 
evenParity = 12288; {set for even parity} 
data5 = 0; {set for 5 data bits} 
data6 = 2048; {set for 6 data bits} 
data7 = 1024; {set for 7 data bits} 
data8 = 3072; {set for 8 data bits} 

For example, the default setting of 9600 baud, eight data bits, two 
stop bits, and no parity bit is equivalent to baud9600+data8+stop2(6+ 
noParity. 

Assembly-language note: SerReset is equivalent to a Control 
call with csCode = 8. 

FUNCTION SerSetBuf(refNum: INTEGER; serBPtr: Ptr; serBLen: INTEGER) 
OSErr; 

SerSetBuf specifies a new input buffer for the driver having the 
reference number refNum. SerBPtr points to the buffer, and serBLen 
specifies the number of bytes in the buffer minus 2. 

(warning) 
You must lock this buffer while it's in use. 

Assembly-language~: SerSetBuf is equivalent to a Control 
call with csCode = 9. 

9 

5/13/84 Hacker /OS/SERIAL.2 



10 Macintosh Serial Communication 

FUNCTION SerHShake(refNum: INTEGER; flags: SerShk) : OSErr; 

SerHShake sets handshake options and other control information for the 
driver having the reference number refNum. The flags parameter is a 
record with the following data structure: 

TYPE SerShk = PACKED RECORD 
fXOn: Byte; 
fCTS: Byte; 
xOn: CHAR; 
xOff: CHAR; 
errs: Byte; 
evts: Byte; 
flnX: Byte; 
null: Byte 

END; 

{XOn/XOff output flow control enabled} 
{CTS hardware handshake enabled} 
{XOn character} 
{XOff character} 
{errors that cause abort} 
{status changes that are events} 
{XOn/XOff input flow control enabled} 
{not used} 

If fXOn is nonzero, XOn/XOff output flow control is enabled. XOn and 
xOff specify the XOn character and XOff character used for XOn/XOff 
flow control. If flnX is nonzero, XOn/XOff input flow control is 
enabled. If fCTS is nonzero, CTS hardware handshake is enabled. The 
errs field indicates which errors will cause abort of input requests; 
you can use the following predefined constants to set or test the value 
of fCTS: 

(note) 

CONST parityErr 
hwOverrunErr 

framingErr 

= 16; {set if parity error will cause abort} 
= 32; {set if hardware overrun error will} 

{ cause abort} 
= 64; {set if framing error will cause abort} 

The ROM Serial Driver doesn't support XOn/XOff input flow 
control or aborts caused by error conditions. 

The evts field indicates whether changes in the CTS or break status 
will cause the Serial Driver to post device driver events; you can use 
the following predefined constants to set or test the value of evts: 

CONST ctsEvent = 32; {set if CTS change will cause event to } 
{ be posted} 

(warning) 

breakEvent = 128; {set if break status change will cause } 
{ event to be posted}} 

Use of this option is discouraged because of the long 
time that interrupts are disabled while such an event is 
posted. 

Assembly-language~: SerHShake is equivalent to a Control 
call with csCode = 10. 

5/13/84 Hacker /OS/SERIAL.2 



SERIAL DRIVER ROUTINES 11 

FUNCTION SerSetBrk(refNum: INTEGER) : OSErr; 

SerSetBrk sets break mode in the driver having the reference number 
refNum. 

Assembly-language~: SerSetBrk is equivalent to a Control 
call with csCode = 12. 

FUNCTION SerClrBrk(refNum: INTEGER) : OSErr; 

SerClrBrk clears break mode in the driver having the reference number 
refNum, by reinitializing the appropriate SCC channel. 

Assembly-language~: SerClrBrk is equivalent to a Control 
call with csCode = 11. 

FUNCTION SerGetBuf(refNum: INTEGER; VAR count: LongInt) : OSErr; 

SerGetBuf returns the number of unread bytes, in count, in buffer of 
the input driver having the reference number refNum. 

Assembly-language~: SerGetBuf is equivalent to a Status 
call with csCode = 2. 

FUNCTION SerStatus(refNum: INTEGER; serSta: SerStaRec) : OSErr; 

SerErrFlag returns three words of status information for the driver 
having the reference number refNum. The serSta parameter is a record 
with the following data structure: 

5/13/84 Hacker /OS/SERIAL.2 



12 Macintosh Serial Communication 

TYPE SerStaRec = PACKED RECORD 
cumErrs: 
xOffSent: 
rdPend: 
wrPend: 
ctsHold: 
xOffHold: 

END; 

Byte; 
Byte; 
Byte; 
Byte; 
Byte; 
Byte 

{cumulative errors} 
{XOff sent flag} 
{read pending flag} 
{write pending flag} 
{CTS flow control hold flag} 
{XOff flow control hold flag} 

CumErrs indicates which errors have occurred since the last time 
SerStatus was called: 

CONST swOverrunErr 
parityErr 
hwOverrunErr 
framingErr 

= 
= 
= 
= 

1; {set if software overrun error occurred} 
16; {set if parity error occurred} 
32; {set if hardware overrun error occurred} 
64; {set if framing error occurred} 

If xOffSent equals 128~, then the driver has sent an XOff character. 
If rdPend is nonzero, the driver has a Read call pending. If wrPend is 
nonzero, the driver has a Write call pending. If ctsHold is nonzero, 
then output has been suspended because the hardware handshake was 
negated. If xOffHold is nonzero, then output has been suspended 
because an XOff character was received. 

Assembly-Ianguage~: SerStatus is equivalent to a Status 
call with csCode = 8. 

5/13/84 Hacker /OS/SERIAL.2 



SUMMARY OF THE SERIAL DRIVERS 13 

SUMMARY OF THE SERIAL DRIVERS 

Constants 

CONST { Driver reset information } 

baud300 = 
baud600 = 
baud1200 = 
baud1800 = 
baud2400 =
baud3600 = 
baud4800 = 
baud7200 = 
baud9600 = 
baud19200 = 
baudS7600 = 
stop10 = 
stop1S = 
stop20 = 
noParity = 
oddParity = 
evenParity -
dataS = 
data6 = 
data7 = 
data8 = 

{ Errors } 

swOverrunErr 
parityErr 
hwOverrunErr 
framingErr 

380; 
189 ; 
94; 
62; 
46; 
30; 
22; 
14; 
10; 

4; 
0; 

16384; 
-32768 ; 
-16384; 

8192; 
4096; 

12288; 
0; 

2048; 
1024; 
3072; 

{300 baud} 
{600 baud} 
{12(6(6 baud} 
{1800 baud} 
{24(60 baud} 
{36(60 baud} 
{4800 baud} 
{7200 baud} 
{9600 baud} 
{19200 baud} 
{S7600 baud} 
{set for 1 stop bit} 
{set for 1.5 stop bits} 
{set for 2 stop bits} 
{set for no parity} 
{set for odd parity} 
{set for even parity} 
{set for 5 data bits} 
{set for 6 data bits} 
{set for 7 data bits} 
{set for 8 data bits} 

= 1; {set if software overrun error} 
= 16; {set if parity error} 
= 32; {set if hardware overrun error} 
= 64; {set if framing error} 

{ Changes that cause events to be posted } 

ctsEvent = 32; {set if CTS change will cause event to } 
{ be posted} 

breakEvent = 128; {set if break status change will cause } 
{ event to be posted} 

Data Structures 

TYPE SerShk = PACKED RECORD 
fXOn: Byte; {XOn/XOff output flow control enabled} 
fCTS: Byte; {CTS hardware handshake enabled} 
xOn: CHAR; {XOn character} 
xOff: CHAR; {XOff character} 
errs: Byte; {errors that cause abort} 

5/13/84 Hacker /OS/SERIAL.S 



14 Macintosh Serial Communication 

evts: Byte; {status changes that are events} 
flnX: Byte; {XOn/XOff input flow control enabled} 
null: Byte {not used} 

END; 

SerStaRec = PACKED RECORD 
{cumulative errors} 
{XOff sent flag} 
{read pending flag} 
{write pending flag} 

cumErrs: 
xOffSent: 
rdPend: 
wrPend: 
ctsHold: 
xOffHold: 

Byte; 
Byte; 
Bytej 
Byte; 
Byte; 
Byte 

{CTS flow control hold flag} 
{XOff flow control hold flag} 

END; 

Serial Driver Routines 

Opening and Closing RAM Serial Drivers 

FUNCTION RAMSDOpen 
FUNCTION RAMS DC lose 

OSErr; 
OSErrj 

Changing Serial Driver Information 

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) : OSErr; 
FUNCTION SerSetBuf(refNum: INTEGER; serBPtr: Ptrj serBLen: INTEGER) 

OSErrj 
FUNCTION SerHShake(refNum: INTEGER; flags: SerShk) : OSErr; 
FUNCTION SerSetBrk(refNum: INTEGER) OSErr; 
FUNCTION SerClrBrk(refNum: INTEGER) : OSErr; 

Getting Serial Driver Information 

FUNCTION SerGetBuf(refNum: INTEGER; VAR count: LongInt) : OSErr; 
FUNCTION SerStatus(refNum: INTEGER; serSta: SerStaRec) : OSErr; 

Assembly-Language Information 

Structure of Control Information *" no+- y~t A..v4\,I~h\<.. ~ 

fXOn XOn/XOff output flow control enabled 
fCTS CTS hardware handshake enabled 
xOn XOn character 
xOff XOff character 
errs Errors that cause abort 
evts Status changes that are events 
flnX XOn/XOff input flow control enabled 

5/13/84 Hacker /OS/SERIAL.S 



SUMMARY OF THE SERIAL DRIVERS 15 

Structure of Status Information 

cumErrs 
xOffSent 
rdPend 
wrPend 
ctsHold 
xOffHold 

Cumulative errors 
XOff sent flag 
Read pending flag 
Write pending flag 
CTS flow control hold flag 
XOff flow control hold flag 

5/13/84 Hacker /OS/SERIAL.S 



16 Macintosh Serial Communication 

GLOSSARY 

asynchronous communication: A method of data transmission where the 
receiving and sending devices don't share a common timer, and no timing 
data is transmitted. 

break: The condition resulting when a device maintains its 
transmission line in the space state for at least one frame. 

data bits: Data communication bits that encode transmitted characters. 

frame: The time elapsed from the start bit to the last stop bit. 

framing error: The condition resulting when a device doesn't receive a 
stop bit when expected. 

full-duplex communication: A method of data transmission where two 
devices transmit data simultaneously. 

hardware overrun error: The condition that occurs when the SCC's 
buffer becomes full. 

input driver: A device driver that receives serial data via a serial 
port and transfers it to an application. 

mark state: The state of a transmission line indicating a binary '1'. 

output driver: A device driver that receives data via a serial port 
and transfers it to an application. 

overrun error: See hardware overrun error and software overrun error. 

parity bit: A data communication bit used to verify that data bits 
received by a device match the data bits transmitted by another ~evice. 

parity error: The condition resulting when the parity bit received by 
a device isn't what was expected. 

serial data: Data communicated over a single-path communication line, 
one bit at a time. 

software overrun error: The condition that occurs when an input 
driver's buffer becomes full. 

space state: The state of a transmission line indicating a binary '0'. 

start bit: A serial data communications bit that signals that the next 
bits transmitted are data bits. 

stop bit: A serial data communications bit that signals that the end 
of data bits. 

5/13/84 Hacker CONFIDENTIAL /OS/SERIAL.G 



MACINTOSH USER EDUCATION 

The Vertical Retrace Manager: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
The File Manager: A Programmer's Guide 
The Device Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
Inside Macintosh: A Road Map 

/VRMGR/TASK 

Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) Bradler Hacker 6/15/84 

ABSTRACT 

This manual describes the Vertical Retrace Manager, the part of the 
Macintosh Operating System that schedules and performs recurrent tasks 
during vertical retrace interrupts. It describes how your application 
can install and remove its own recurrent tasks. 



2 Vertical Retrace Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Vertical Retrace Manager 
5 Using the Vertical Retrace Manager 
6 Vertical Retrace Manager Routines 
8 Summary of the Vertical Retrace Manager 
10 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Vertical Retrace Manager, the part of the 
Macintosh Operating System that schedules and performs recurrent tasks 
during vertical retrace interrupts. It describes how your application 
can install and remove its own recurrent tasks. *** Eventually it will 
become part of the comprehensive Inside Macintosh manual. *** 

Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal. You should also be familiar with the 
following: 

- the Macintosh Operating System's Memory Manager 

- interrupts, as described in the Macintosh Operating System's 
Device Manager manual 

- queues t as described in the Operating System Utilities manual *** 
not yet; for now, see the appendix of the File ~nager manual. 
*** 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Vertical Retrace Manager 
and what you can do with it. It then introduces the routines of the 
Vertical Retrace Manager and tells how they fit into the flow of your 
application. This is followed by detailed descriptions of the routines 
themselves. 

Finally, there's a summary of the Vertical Retrace Manager, for quick 
reference, followed by a glossary of terms used in this manual. 

ABOUT THE VERTICAL RETRACE MANAGER 

The Macintosh video circuitry generates a vertical retrace interrupt 
(also known as the vertical blanking or VBL interrupt) 60 times a 
second while the beam of the display tube returns from the bottom of 
the screen to the top to display the next frame. The Operating System 
uses this interrupt as a convenient time to perform the following 
sequence of recurrent tasks: 

1. Increment the number of ticks since system startup (every 
interrupt). (You can get this number by calling the Toolbox Event 
Manager function TickCount.) 

2. Check whether the stack and heap have collided (every interrupt). 

6/15/84 Hacker /VRMGR/TASK.2 



4 Vertical Retrace Manager Programmer's Guide 

3. Handle cursor movement (every interrupt). 

4. Post a mouse event if the state of the mouse button changed from 
its previous state and then remained unchanged for four interrupts 
(every other interrupt). 

5. Post a disk inserted event if a disk has been inserted (every 30 
interrupts). 

These tasks must execute at regular intervals based on the "heartbeat" 
of the Macintosh, and shouldn't be changed. 

An application can add any number of its own tasks for the Vertical 
Retrace Manager to execute. Application tasks can perform any desired 
actions as long as memory is neither allocated nor released, and can be 
set to execute at any frequency (up to once per vertical retrace 
interrupt). For example, a task within an electronic-mail application 
might check every tenth of a second to see if it has received any 
messages. 

(note) 
Application tasks longer than about one-sixtieth of a 
second will affect other interrupt-driven parts of the 
Macintosh, such as the mouse position. 

Information describing each application task is contained in the 
vertical retrace queue. The vertical retrace queue is a standard 
Macintosh Operating System queue, as described in the Operating System 
Utilities manual *** doesn't yet exist; for now, see the File Manager 
manual's appendix ***. Each entry in the vertical retrace queue has 
the following structure: 

TYPE VBLTask = RECORD 
qLink: 
qType: 
vblAddr: 
vblCount: 
vblPhase: 

END; 

QElemPtr; 
INTEGER; 
ProcPtr; 
INTEGER; 
INTEGER 

{next queue entry} 
{queue type} 
{task address} . 
{task frequency} 
{task phase} 

As in all Operating System queue entries, qLink points to the next 
entry in the queue, and qType indicates the queue type. QType should 
always be ORD(vType) in the vertical retrace queue. 

VBLAddr contains the address of the task. VBLCount specifies the 
number of ticks between successive calls to the task. This value is 
decremented each sixtieth of a second until it reaches 0, at which 
point the task is called. The task must then reset vblCount, or its 
entry will be removed from the queue after it has been executed. 
VBLPhase contains an integer (smaller than vblCount) used to modify 
vblCount when the task is first added to the queue. This ensures that 
two or more routines added to the queue at the same time with the same 
vblCount value will be out of phase with each other, and won't be 
called during the same interrupt. 

6/15/84 Hacker /VRMGR/TASK.2 



ABOUT THE VERTICAL RETRACE MANAGER 5 

Assembly-language~: The Vertical Retrace Manager sets bit 6 
of the queue flags whenever a task is being executed; assembly
programmers can use the global constant inVBL to test this bit. 

USING THE VERTICAL RETRACE MANAGER 

This section discusses how the Vertical Retrace Manager routines fit 
into the general flow of an application program. The routines 
themselves are described in detail in the next section. 

The Vertical Retrace Manager is automatically initialized each time the 
system is started up. To add an application task to the vertical 
retrace queue. call VInstall. When your application no longer wants a 
task to be executed. it can remove the task from the vertical retrace 
queue by calling VRemove. An application task shouldn't call VRemove 
to remove its entry from the queue--either the application should call 
VRemove t or the task should simply not reset the vblCount field of the 
queue entry. 

An application task cannot call routines that cause memory to be . 
allocated or released. This severely limits the actions of tasks. so 
you might prefer using the Desk Manager procedure SystemTask to perform 
periodic actions. Or. since the very first thing the Vertical Retrace 
Manager does during a vertical retrace interrupt is increment the tick 
count t your application could call the Toolbox Event Manager function 
TickCount repeatedly and perform periodic actions whenever a specific 
number of ticks have elapsed. 

Assembly-language note: Application tasks may use registers D0 
through D3 and A0 through A3. and must save and restore any 
additional registers used. They must exit with an RTS 
instruction. 

If you'd like to manipulate the contents of the vertical retrace queue 
directlYt you can get a pointer to the vertical retrace queue by 
calling GetVBLQHdr. 

6/15/84 Hacker /VRMGR/TASK.2 



6 Vertical Retrace Manager Programmer's Guide 

VERTICAL RETRACE MANAGER ROUTINES 

This section describes the Vertical Retrace Manager routines. Each 
routine is presented in its Pascal form; where applicable, it's 
followed by a box containing information needed to use the routine from 
assembly language. For general information on using the Vertical 
Retrace Manager from assembly language, see the manual Programming 
Macintosh Applications in Assembly Language. 

FUNCTION VInstall (vblTaskPtr: QElemPtr) OSErr; 

Trap macro VInstall 

On entry A0: vblTaskPtr (pointer) 

On exit --- D0: result code (integer) 

VInstall adds the task described by vblTaskPtr to the vertical retrace 
queue. Your application must fill in all fields of the task except 
qLink. VInstall returns one of the result codes listed below. 

Result codes noErr 
vTypErr 

No error 
QType field isn't ORD(vType) 

FUNCTION VRemove (vblTaskPtr: QElemPtr) OSErr; 

Trap macro VRemove 

On entry A0: vblTaskPtr (pointer) 

D0: result code (integer) 

VRemove removes the task described by vblTaskPtr from the vertical 
retrace queue. It returns one of the result codes listed below. 

Result codes 

6/15/84 Hacker 

noErr 
vTypErr 
qErr 

No error 
QType field isn't ORD(vType) 
Task entry isn't in the queue 

/VRMGR/TASK.2 



VERTICAL RETRACE MANAGER ROUTINES 7 

FUNCTION GetVBLQHdr : QHdrPtr; [Pascal only] 

GetVBLQHdr returns a pointer to the vertical retrace queue. 

Assembly-language~: To access the contents of the vertical 
retrace queue from assembly language. assembly-language 
programmers can use offsets from the address of the global 
variable vblQueue. 

6/15/84 Hacker /VRMGR/TASK.2 



8 Vertical Retrace Manager Programmer's Guide 

SUMMARY OF THE VERTICAL RETRACE MANAGER 

Constants 

CONST { Result codes } 

= 0; {no error} noErr 
qErr 
vTypErr 

= -1; {task entry isn't in the queue} 
= -2; {qType field isn't ORD(vType)} 

Data Types 

TYPE VBLTask = RECORD 

Routines 

qLink: QElemPtr; 
qType: INTEGER; 
vblAddr: ProcPtr; 
vblCount: INTEGER; 
vblPhase: INTEGER 

END; 

{next queue entry} 
{queue type} 
{task address} 
{task frequency} 
{task phase} 

FUNCTION VInstall (vblTaskPtr: QElemPtr) : OSErr; 
FUNCTION VRemove (vblTaskPtr: QElemPtr) : OSErr; 
FUNCTION GetVBLQHdr : QHdrPtr; [Pascal only] 

Assembly-Language Information 

Constants 

inVBL .EQU 6 jset if Vertical Retrace Manager 
; is executing 

j Result 

qErr 
vTypErr 

Vertical 

qLink 
qType 
vblAddr 
vblCount 
vblPhase 

codes 

.EQU 

.EQU 

Retrace 

6/15/84 Hacker 

-1 
-2 

;task entry isn't in the queue 
;qType field isn't vType 

Queue EntrI 

Pointer to next queue entry 
Queue type 
Task address 
Task frequency 
Task phase 

/VRMGR/TASK.2 



Variables 

Name 
vblQueue 

6/15/84 Hacker 

Size 
4 bytes 

SUMMARY OF THE VERTICAL RETRACE MANAGER 9 

Contents 
Vertical retrace queue 

/VRMGR/TASK.2 



10 Vertical Retrace Manager Programmer's Guide 

GLOSSARY 

vertical retrace interrupt: The interrupt that occurs 6~ times a 
second while the beam of the display tube returns from the bottom of 
the screen to the top to display the next frame. 

vertical retrace queue: A list of the application tasks to be executed 
during the vertical retrace interrupt. 

6/15/84 Hacker /VRHGR/TASK.2 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to. the author (indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



14 May 1984 13: 07: 4S TLBSMlSYSERR. !EXT Page 1 r ~: 
~: 

Macintosh Syste~ Errors I~ ~: 
~: ,. 
::: 

Syste~ Trouble (bonb) alert ID definitions 
~: 

' ~~ 

Hssel'lbly Label Error ** Description 
-------------- ------- -----------
DSSysErr 32767 general syste~ error 
DSBusError 1 bus error f: DSRddressErr 2 address error ~~ DSIlllnstErr 3 illegal instruction error 

r 
DSZeroDivErr 4 zero divide error ,. 

DSChkErr 5 check trap error ~ 
DSOvFlowErr 6 overflow trap error ~; 
DSPrivErr 7 privelege violation error I DSTraceErr 8 trace node error ': 

DSLineRErr 9 line 1010 trap error 
~ 

DSLineFErr 10 line 1111 trap error I DSMiscErr 11 niscellaneous hardware exception error ~: 

DSCoreErr 12 uni~plenented core routine error 

r DSlrqErr 13 uninstalled interrupt error ,. 
'r. 

DSIOCoreErr 14 10 Core Error 
'~ 
': 

DSLoadErr 15 Segnent Loader Error ~: 

~l DSFPErr 16 Floating point error ~: 
~: 
~: 

DSNoPackErr 17 package 0 not present ~: 
,: 

DSNoPk1 18 package 1 not present ~: 
DSNoPk2 19 package 2 not present ,: 

DSNoPk3 20 package 3 not present ~ 
DSNoPk4 21 package 4 not present . ~1 
DSNoPk5 22 package 5 not present ,: 
DSNoPk6 23 package 6 not present 
DSNoPk7 24 package 7 not present 

DSMel'lfullErr 25 out of nenory! 
DSBadLaunch 26 can't launch file 

DSFSErr 27 file syste~ ~ap has been trashed 
DSStknHeap 28 stack has noved into application heap 
DSReInsert 30 request user to reinsert off-line volune 
DSNotThe1 31 not the disk I wanted 

Menory Manager trouble codes (Systen Trouble IDs) 

ntSetLog 32 Set Logical Size Error 
ntRdjFre 33 Rdjust Free Error 
ntRdjCnt 34 adjust Counters Error 
ntMkeBkf 35 Make Block Free Error 
ntSetSiz 36 Set Size Error 
ntlnitMen 37 Initialize Menory Manager Error 
ntBCerr 38 
ntCZerr 39 
ntCZ1err 40 
ntCZ2err 41 
ntCZ3err 42 
ntEqCerr 43 
ntEvCerr 44 
ntHCerr 45 
ntPCerr 46 
ntSCerr 47 
ntRC1err 48 . 
l"ltRC2err 49 
ntSBBerr 50 
ntRCerr 51 
ntIZCerr 52 

r ntPrCerr 53 
~: 
~ I: 

q:IpIcI~ 
, ~~ 



14 May 1984 13:07:45 TLRSM/SY5ERR.TEXT 

Rssel'lbly Label 

NoErr 
QErr 
VTypErr 
Cor Err 
Uni1'1pErr 

ControlErr 
StatusErr 
ReadErr 
WritErr 
BadUnitErr 
UnitE1'1ptyErr 
OpenErr 
ClosErr 
DRe1'1ovErr 
DInstErr 
HbortErr 
NotOpenErr 

DirFulErr 
DskFulErr 
NSVErr 
IOErr 
B dNal'lErr 
FNOpnErr 
EOFErr 
PosErr 
MFulErr 
TMFOErr 
FNFErr 

WPrErr 
FLckdErr 
VLckdErr 
FBsyErr 
DupFNErr 
OpWrErr 
Par al'lErr 
RFNl.ll'lErr 
GFPErr 
VolOffLinErr 
PernErr 
VolOnLinErr 
NSDrvErr 
NoMacDskErr 
ExtFSErr 
FSDSErr 

BadMDBErr 
WrPernErr 

NoDriveErr 
OffLinErr-

General Syste1'1 Errors (VBL Mgr, Queueing, Etc.) 

Error # Description 

o success is absence of errors 
-1 queue ele1'1ent not found during deletion 
-2 invalid queue ele1'1ent 
-3 core routine nUl'lber out of range 
-4 uni1'1plenented core routine 

-17 
-18 
-19 
-20 
-21 
-22 
-23 
-24 
-25 
-26 
-27 
-28 

-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 
-43 

-44 
-45 
-46 
-47 
-48 
-49 
-50 
-51 
-52 
-53 
-54 
-55 
-56 
-57 
-58 
-59 

-60 
-61 

I/O Syste1'1 Errors 

tried to re1'1ove an open driver 
DrvrInstall couldn't find driver in resources 
IO call aborted by KillIO 
Couldn't rd/wr/ctl/sts cause driver not opened 

File Syste1'1 Errors 

Directory full 
disk full 
no such volUl'le 
I/O error (bUl'll'lers) 
there 1'1ay be no bad nal'les in the final systel'l! 
File not open 
End of file 
tried to position to before start of file (r/w) 
l'lel'lory full(open) or file won't fit (load) 
too nany files open 
File not found 

diskette is write protected 
file is locked 
volUl'le is locked 
File is busy (delete) 
duplicate filenal'le (renal'le) 
file already open with with write pernission 
error in user paral'leter list 
refntm error 
get file position error 
volUl'le not on line error (was Ejected) 
perl'lissions error (on file open) 
drive voltme already on-line at MountVol 
no such drive (tried to nount a bad drive nUl'l) 
not a l'lac diskette (sig bytes are wrong) 
voltme in question belongs to an external fs 
file systel'l 'systel'l trouble' error: 
during renal'le the old entry was deleted but could 
not be restored . . . 

bad naster directory block 
write perl'lissions error 

Disk, Serial Ports, Clock Specific Errors 

-64 drive not installed 
-65 r/w requested for an off-line drive 

Page 2 



14 May 1984 13:07:45 

NoNybErr 
NoRdrMkErr 
DataVerErr 
BadCkSl'lErr 
BadBtSlpErr 
NoDtaMkErr 
BadDCkSUl'l 
BadDBtSlp 
WrUnderRun 

CantStepErr 
TkOBadErr 
lnitIWMErr 
TwoSideErr 
SpdfldjErr 
SeekErr 
SectNFErr 

ClkRdErr 
ClkWrErr 
PRWrErr 
PRlnitErr 

RcvrErr 
BreakRecd 

MeFlFullErr 
NilHandleErr 
l'lel'lWZErr 
l'lel'lPurErr 

l'lel'lRdrErr 
l'lel'lRZErr 
l'lel'lPCErr 
l'lel'lBCErr 
l'lel'l5CErr 

-66 
-67 
-68 
-69 
-70 
-71 
-72 
-73 
-74 

-75 
-76 
-77 
-78 
-79 
-80 
-81 

-85 
-86 
-87 
-88 

-89 
-90 

-108 
-109 
-111 
-112 

-110 
-113 
-114 
-115 
-116 

TLBSMlSYSERR.1'EXT 

couldn't find 5 nybbles in 200 tries 
couldn't find valid addr l'lark 
read verify conpare failed 
addr l'lark checksUl'l didn't check 
bad addr l'lark bit slip nibbles 
couldn't find a data l'lark header 
bad data l'lark checkslJll1 
bad data l'lark bit slip nibbles 
write underrun occurred 

step handshake failed 
track 0 detect doesn't change 
unable to ini tialize HlM 
tried to read 2nd side on a I-sided drive 
unable to correctly adjust disk speed 
track nUl'lber wrong on address l'lark 
sector nUMber never found on a track 

unable to read Sal'le clock value twice 
til'le written did not verify 
paral'leterral'l written didn't read-verify 
Ini tUtil found the paral'leter rem unini tialized 

sce receiver error (fral'ling, parity, OR) 
Break received (SeC) 

Mel'lory Manager Errors 

Not enough rool'l in heap zone 
Handle was NIL in HandleZone or other 
WhichZone failed (applied to free block) 
trying to purge a locked or non-purgable block 

address was odd, or out of range 
Rddress in zone check: failed 
Pointer Check failed 
Block Check failed 
Size Check failed 

Resource Manager Errors (other than File Systel'l Errors) 

ResNotFound 
ResFNotFound 
RddResFailed 
RddRefFailed 
ImvResFailed 
RlwRefFailed 

noScrapErr 
noTypeErr 

-192 
-193 
-194 
-195 
-196 
-197 

Resource not found 
Resource file not fOmld 
RddResource failed 
RddReference failed 
ImveResource failed 
RnveReference failed 

Scrap Manager Errors 

-100 No scrap exists error 
-102 No object of that type in scrap 

Rpplication Errors 

Errors -1024 to -4095 are reserved for use by the current application 

sOl'le rliscellaneous result codes 

EvtNotEnb 
NoEvtHvail 

1 
-1 

event not enabled at PostEvent 
no event available (GetOSEvent,OSEventHvail) 

Page 3 



MACINTOSH USER EDUCATION 

The Operating System Utilities: A Programmer's Guide /OSUTIL/UTIL 

See Also: The Memory Manager: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 
Macintosh Packages: A Programmer's Guide 
The Structure of a Macintosh Application 

Modification History: First Draft Brent Davis 6/5/84 

*** PRELIMINARY DRAFT 6/5/84 NOT FOR DISTRIBUTION *** ABSTRACT 

This manual describes the Operating System Utilities, a set of routines 
and data types in the Operating System that perform generally useful 
operations such as manipulating pointers and handles, comparing 
strings, and reading the date and time. 



2 Operating System Utilities Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 Operating System Utility Data Types 
3 Four-Character Sequences 
4 Result Codes 
4 Parameter RAM 

xx System Parameter Records 
xx Parameter Masks 
10 Operating System Queues 
11 Operating System Utility Routines 
12 Pointer and Handle Manipulation 
14 String Comparison 
15 Date and Time Operations 
18 Parameter RAM Operations 
21 Queue Manipulation 
22 Dispatch Table Utilities 
24 Miscellaneous Utilities 
26 Summary of the Operating System Utilities 
31 Glossary 

Copyright (c) 1984 Apple Computer Inc. All rights reserved. 
Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Operating System Utilities t a set of routines 
and data types in the Operating System that perform generally useful 
operations such as manipulating pointers and handIest comparing 
strings t and reading the date and time. *** Eventually this manual 
will become part of the comprehensive Inside Macintosh manual. *** 

You should already be familiar with Lisa Pascal. Depending on which 
Operating System Utilities you're interested in using t you may also 
need to be familiar with other parts of the Toolbox or Operating 
System; where that's necessarYt you're referred to the appropriate 
manuals. 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

This manual begins with a section on Operating System Utility data 
types; this is followed by a section describing the structure and 
function of parameter RAMt and then a description of the structure of 
Operating System queues and the data types associated with them. After 
that comes a detailed description of all Operating System Utility 
procedures and functions t their parameters t calling protocol, effects t 
side effects t and so on. FinallYt there's a summary of the Operating 
System Utilities, for quick reference, followed by a glossary of terms 
used in this manual. 

OPERATING SYSTEM UTILITY DATA TYPES 

This section describes two data types of interest to users of the 
Operating System. 

Four-Character Sequences 

There are several places in the Operating System where you must specify 
a four-character sequence for something, such as for file types and 
application signatures (as described in The Structure of a Macintosh 
Application). The Pascal data type for such sequences~s: 

TYPE OSType = PACKED ARRAY [1 •• 4] OF CHAR; 

6/5/84 Davis /OSUTIL/UTIL.2 



4 Operating System Utilities Programmer's Guide 

Result Codes 

Many Operating System Utility routines, like most other Operating 
System routines, return a result code in addition to their normal 
results. This is an integer indicating whether the routine completed 
its task successfully or was prevented by some error condition. The 
type definition for result codes is 

TYPE OSErr = INTEGER; 

In the normal case that no error is detected, the result code is 

CONST noErr = 0; {no error} 

A nonzero result code signals an error. For example: 

CONST qErr = 
clkRdErr 

-1; 
-85 ; 

{element not in specified queue} 
{unable to read same clock value twice} 

PARAMETER RAM 

Various settings, such as those specified by the user by means of the 
Control Panel desk accessory, need to remain in memory even when the 
Macintosh is off so they will still be present at the next system 
startup. This information is kept in parameter RAM, a specially 
dedicated section of RAM that's stored in the clock chip together with 
the current settings for the date and time. This chip runs on 
batteries, preserving the information whether the system is on or not. 

You may find it necessary to read the values in parameter RAM or even 
change them (especially if you create a desk accessory like the Control 
Panel). Parameter RAM, however, contains its information in a highly 
compact, hard-to-access form. To make reading or changing this 
information less difficult, then, the contents of parameter RAM are 
copied into a more accessible 20-byte section of low memory at system 
startup. The routines for reading and changing parameter RAM, as 
described in the "Operating System Utility Routines" section of this 
manual, go through this low-memory copy instead of directly accessing 
parameter RAM itself. 

(note) 
Some of the more useful values contained in the low
memory copy of parameter RAM can be accessed more easily 
by calling routines designed to return them: for 
instance, the Event Manager function DoubleTime returns 
the double-click time stored in the low-memory copy of 
parameter RAM. Each such routine is discussed in its 
appropriate manual. 

6/5/84 Davis /OSUTIL/UTIL.2 



PARAMETER RAM 5 

Assembly-language~: The low memory copy of parameter RAM 
begins at the address sysParam; the various portions of the copy 
can be accessed by means of a series of global variables. all of 
which are listed in the summary. The contents of several of the 
more useful of these variables are copied into other global 
variables at system startup for even easier access: for 
instance. the auto-key threshold and rate. which are contained 
in the low-memory variable spKbd, are copied into the variables 
keyThresh and keyRepThresh, respectively. Each such variable is 
discussed in its appropriate manual. 

At system startup. the date and time is also copied from the clock chip 
into its own low-memory location; this value is accessible by means of 
the Operating System Utility ReadDateTime. as described in the 
"Routines" section of this manual. 

Assembly-language~: This value is accessible from assembly 
language in the global variable called time. 

System Parameter Records 

The 20-byte low-memory copy of parameter RAM is represented internally 
by a system parameter record. which is defined as follows: 

TYPE SysParmType = 
RECORD 

valid: 
portA: 
portB: 
alarm: 
font: 
kbdPrint: 
volClik: 
mise: 

END; 

LongInt; 
INTEGER; 
INTEGER; 
LongInt; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER 

SysPPtr = AsysParmType; 

{validity status} 
{modem port ("port A") configuration} 
{prntr port ("port B") configuration} 
{alarm setting} 
{default application font} 
{auto-key thresh/rate; prntr's port} 
{vol level; dbl-click/caret blink} 
{mouse scaling; boot disk; 
menu blink} 

The structure of the system parameter record is illustrated in Figure 
1. 

6/5/84 Davis /OSUTIL/UTIL.2 



6 Operating System Utilities Programmer's Guide 

byte 0 3 .. S 6 1 8 11 12 13 14 15 16 11 18 19 
~1~~~lid~~I~--t~A~I-~~t8~1---8~1~--~I~f~on~t~1~~I'---'lm~i~~~1 

I 
ktxPrint 

volClik 

Figure 1. The System Parameter Record 

The contents of the system parameter record's fields are as follows: 

The low-order byte of the valid field contains the validity status of 
parameter RAM: whenever you write anything to parameter RAM, $AS is 
stored in this byte if all the values being written are valid. If this 
byte does not contain $A8 at system startup, the contents of parameter 
RAM are initialized to certain standard default values. 

Validity status 
Modem port configuration 

Printer port configuration 
Alarm setting 
Default application font 
Keyboard repeat threshold 
Keyboard repeat rate 
Printer port 
Volume control 
Double click time 
Caret blink time 
Misc2 

= $AS 
= 9600 baud 

8 data bits 
2 stop bits 
o parity 

= same as for modem port 
= Midnight, January 1, 1904 
= 2 *** meaning? *** 
= 24 ticks 
= 6 ticks 
= 0 *** meaning? *** 
= 3 *** meaning? *** 
= 32 ticks 
= 32 ticks 
= $4C = 76 = 01001100 *** meaning? *** 

The other three bytes of this field are unused. (See Figure 2.) 

6/5/84 Davis /OSUTIL/UTIL.2 



PARAMETER RAM 7 

byte~ ___ O ____ ~ ____ 1 __________________ 3 __ ~ 

I not used 

I 
validity status 

Figure 2. The Valid Field 

The portA and portB fields contain the modem port and printer port 
configurations, respectively; these configurations contain information 
on the baud rates, data bits, stop bits and parity bits for the two 
ports. Port configurations are explained more fully in the Serial 
Driver manual *** which doesn't yet exist ***. 

The alarm field contains the alarm setting in seconds since midnight, 
January 1, 1904. 

The font field contains the number of the default application font. 

Bits 0 through 3 of the low-order byte of the kbdPrint field contain 
the ~-key threshold--that is, the length of time a key must be held 
down before it begins to repeat. This value is stored in four-tick 
units. Bits 4 through 7 of this byte contain the rate of the repeat 
itself; this value is stored in two-tick units. The high-order byte of 
this field contains a number designating whether the printer is 
connected to the modem port or the printer port. (See Figure 3.) 

6/5/84 Davis /OSUTIL/UTIL.2 



8 Operating System Utilities Programmer's Guide 

byte __ ---~1~4----r__----1-5---__, I I pr inter port 
bit 7 4 3 

8uto-Icey repeat rete 
(in two-tick ooit3) 

o 7 

auto-key repeat thresho Id 
(in four-tick units) 

Figure 3. The KbdPrint Field 

o 

Bits 0 through 2 of the low-order byte of the volClik field contain the 
volume control *** in what units? ***; the remaining bits of this byte 
are unused. Bits 0 through 3 of the high-order byte of this field 
contain a number designating the greatest interval between a mouse-up 
and mouse-down that would qualify those two mouse clicks as a·double 
click; this value is stored in four-tick units. Bits 4 through 7 of 
this byte contain a number designating the interval between blinks of 
the caret; this value is stored in four-tick units. (See Figure 4.) 

byte 

bit 7 

6/5/84 Davis 

not used 

16 17 

I 
3 2 o 7 4 3 I 0 

vo fume contro I double-click time 
(ira fcu-tict units) 

ceret-bl ink time 
(in four-tick: units) 

Figure 4. The volClik Field 

/OSUTIL/UTIL.2 



PARAMETER RAM 9 

The low-order byte of the misc field is unused. Bit 1 of the high
order byte designates the degree of mouse scaling *** define *** in 
effect. Bit 3 indicates whether the disk to be used to start up the 
system is in the internal or the external drive. Bits 4 and 5 contain 
a value that determines how many times a menu will blink when something 
is chosen from it. *** How? Check w/Menu Mgr manual. *** Bits 0» 2» 6 
and 7 of the high-order byte are not used. (See Figure 5.) 

byte __ --------1-8--------~--~----1~9~--~T_~ I not used I 
bit 7 0 7 6 5 4 3 2 1 0 

Lmouse scaling 

-------boot disk 
--------menu blink 

Figure 5. The Misc Field 

Parameter Masks 

The utilities that write to and read from parameter RAM expect a 
parameter mask as one of their parameters. This mask specifies which 
portions of parameter RAM are to be written or read. If» for instance» 
you wish to write a new default application font number to parameter 
RAM» you can supply the utility with a parameter mask that will 
restrict it to writing only to that one portion of parameter RAM. 

The parameter mask is a long integer» the low-order 20 bits of which 
correspond to the 20 bytes of the system parameter record» as shown in 
Figure 6. *** Is 0-31 numbering OK» or should it be 15 max? Also» fig 
is wider than 6" .. *** (The remaining bits of the parameter mask are 
unused.) A mask specifying any given field of the record is derived by 
setting the bits of the mask corresponding to the bytes that the field 
occupies in the record.· For instance» since the font field of the 
system parameter record occupies bytes 12 and 13 of the record, it's 
specified by bits 12 and 13 of the mask. A 1 in each of those 
positions means that the parameter RAM utility routine applies to the 
portion of parameter RAM containing the number of the default 
application font. 

6/5/84 Davis /OSUTIL/UTIL.2 



10 Operating System Utilities Programmer's Guide 

~20 19 18 1716 15 1413 12 11 
~ 1IIIIII I 

8 7 6 5 .. 3 
I I I 

Obit 
I I 

I I I 
L validMa$k 

·por1AMaslc: 
.port8Me3k 
. 81 ermMesk 

fon~k 

IcbdMaslc: 
printMask 
vo ICtl Mesk: 
cl ikCaretMask 

misc2Mesk 

Figure 6. The Parameter Mask 

Where there's more than one type of information in a field, only the 
bits corresponding to the desired information are set in the parameter 
mask. Information that occupies less than a byte cannot be specified 
by itself in the mask; the entire byte must be designated. 

Each mask described so far is available as a predefined constant: 

CONST validMask = 1 ; {validity status} 
portAMask 48; {modem port configuration} 
portBMask 192; {printer port configuration} 
alarmMask 3840; {alarm setting} 
fontMask = 12288; {number of default application font} 
kbdMask = 16384; {auto-key threshold and rate} 
printMask 32768 ; {printer's port} 
volCtlMask = 65536; {volume level} 
clikCaretMask 131072; {dbl-click/caret-blink times} 
misc2Mask = 524288; {mouse scaling; boot disk; menu 

blink} *** Change to miscMask. 

There's also a predefined mask for designating all of parameter RAM: 

CONST everyParam = 1048575; {all of parameter RAM} 

You can form any mask you need by adding or subtracting these mask 
constants. For example, to specify both port A and port B 
configurations, use 

portAMask + portBMask 

For. every portion of parameter RAM except the number of the default 
application font, use 

*** 

6/5/84 Davis /OSUTIL/UTIL.2 



PARAMETER RAM 11 

everyParam - fontMask 

OPERATING SYSTEM QUEUES 

Some of the information used by the Operating System is stored in data 
structures called queues. A queue is a list of identically structured 
entries linked together by pointers. Queues are used to keep track of 
vertical retrace tasks, I/O requests, disk drives, events, and mounted 
volumes. 

The structure of a standard Operating System queue is as follows: 

TYPE QHdr RECORD 
qFlags: INTEGER; {queue flags} 
qHead: QElemPtr; {first queue entry} 
qTail: QElemPtr {last queue entry} 

END; 

QHdrPtr = AQHdr; 

QFlags contains information that's different for each queue type. 
QHead points to the first entry in the queue, and qTail points to the 
last entry in the queue. The entries within each type of queue are 
different, since each type of queue contains different information. 
The Operating System uses the following variant record to access queue 
entries: 

TYPE QTypes 

QElem 

(dummyType, 
vType, 
ioQType, 
drvQType, 
evType, 
fsQType); 

RECORD 

{vertical retrace queue type} 
{I/O request queue type} 
{drive queue type} 
{event queue type} 
{volume-control-block queue type} 

CASE QTypes OF 

END; 

(vblQElem: VBLTask); 
(ioQElem: ParamBlockRec); 
(drvQElem: DrvQEl); 
(evQElem: EvQEl); 
(vcbQElem: VCB) 

QElemPtr = AQElem; 

The exact structure of the entries in each type of Operating System 
queue is described in the manual that discusses that queue in detail. 
All entries in queues, though, regardless of the queue type, begin with 
a pointer to the next queue element and an integer designating the 
queue type. 

6/5/84 Davis /OSUTIL/UTIL.2 



12 Operating System Utilities Programmer's Guide 

Assembly-language note: The queue types are available to 
assembly-language programmers as the global constants vType, 
ioQType, evType, and fsQType. (There is no global constant 
corresponding to drvQType.) *** Check w/Roni; may have been 
fixed. *** 

OPERATING SYSTEM UTILITY ROUTINES 

This section describes all the Operating System Utility procedures and 
functions. They're presented in their Pascal form; for most routines, 
this is followed by a box containing information needed to use the 
routine from assembly language. Pascal programmers can just skip this 
box. For more information on using the Operating System utilities from 
assembly language, see Programming Macintosh Applications in Assembly 
Language. 

Pointer and Handle Manipulation 

FUNCTION HandToHand (VAR theHndl: Handle) OsErr; 

Trap macro 

On entry 

On exit ---

Hand ToHand 

A0: 

A0: 
D0: 

theHndl (handle) 

theHndl (handle) 
result code (integer) 

HandToHand copies the information to which theHndl is a handle and 
returns a new handle to the copy in theHndl. 

Result codes 

6/5/84 Davis 

noErr 
memFullErr 

No error 
Memory full *** Yes? *** 

/OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 13 

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle; size: LongInt) 
OsErr; 

Trap macro 

On entry 

On exit ---

PtrToHand 

A0: 
D0: 

AI: 
D0: 

srcPtr (pointer) 
size (long integer) 

dstHndl (handle) 
result code (integer) 

PtrToHand returns in dstHndl a newly created handle to the number of 
bytes specified by the size parameter, beginning at the location 
specified by srcPtr. *** Or does it return a new handle to a COpy of 
the info? *** 

Result codes noErr 
memFullErr 

No error 
Memory full *** Yes? *** 

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: Longlnt) 
OsErr; 

Trap macro 

On entry 

On exit ---

PtrToXHand 

A0: 
AI: 
D0 : 

D0: 

srcPtr (pointer) 
dstHndl (handle) 
size (long integer) 

result code (integer) 

PtrToXHand takes an existing handle specified by dstHndl and makes it a 
handle to the numbe.r of bytes specified by the size parameter, 
beginning at the location specified by srcPtr. *** Or does it return a 
new handle to a COpy of the info? *** 

Result codes noErr No error 
*** Other error conditions? *** 

6/5/84 Davis /OSUTIL/UTIL.R 



14 Operating System Utilities Programmer's Guide 

FUNCTION HandAndHand (aHndl,bHndl: Handle) OsErr; 

Trap macro 

On entry 

On exit ---

HandAndHand 

A0: 
Al: 

D0 : 

aHndl (handle) 
bHndl (handle) 

result code (integer) 

HandAndHand concatenates the information to which aHndl is a handle 
onto the end of the information to which bHndl is a handle. 

Result codes noErr No error 
*** Other error conditions? *** 

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LongInt) OsErr; 

Trap macro 

On entry 

On exit ---

PtrAndHand 

A0: 
AI: 
D0: 

00: 

pntr (pointer) 
hndl (handle) 
size (long integer) 

result code (integer) 

PtrAndHand takes the number of bytes specified by the size parameter, 
beginning at the location specified by pntr, and concatenates that 
information onto the end of the information to which hndl is a handle. 

Result codes noErr No error 
*** Other error conditions? *** 

String Comparison 

Assembly-language note: The trap macros for these utility 

6/5/84 Davis /OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 15 

routines have optional arguments corresponding to the Pascal 
flags associated with those routines. When present, such an 
argument sets a certain bit of the routine trap word; this is 
equivalent to setting the corresponding Pascal flag to TRUE. 
The trap macros for these routines appear with all the possible 
permutations of arguments. Whichever permutation you use, you 
must type it exactly as shown. 

FUNCTION EqualString (aStr,bStr: Str255; case,marks: BOOLEAN) 
BOOLEAN; 

Trap macro 

On entry 

On exit ---

(sets bit 9) 
(sets bit 10) 

_CmpString 
_CmpString 

CmpString 
-CmpString 

,MARKS 
,CASE 
,MARKS, CASE (sets bits 9 and 1~) 

A0: 
AI: 
D0: 

D0: 

aStr (pointer to 
bStr (pointer to 
high-order word: 

low-order word: 

string) 
string) 

length of string 
to by aStr 

length of string 
to by bStr 

o if strings equal 
1 if strings not equal 

pointed 

pointed 

EqualString compares the two given strings for equality *** on what 
basis? ASCII values? ***. If the marks parameter is TRUE, diacritical 
marks are ignored during the comparison; if the case parameter is TRUE, 
uppercase characters are distinguished from the corresponding lowercase 
characters. The function returns TRUE if the strings are equal. 

(note) 
See also the International Utilities Package function 
IUEqualString, as described in the Macintosh Packages 
manual. 

6/5/84 Davis /OSUTIL/UTIL.R 



16 Operating System Utilities Programmer's Guide 

PROCEDURE UprString (VAR theString: Str255; marks: BOOLEAN); 

Trap macro 

On entry 

_UprString 
_UprString ,MARKS (sets bit 9) 

A0: theString (pointer to string) 
D0 : length of string pointed to by the String 

UprString converts any lowercase letters in the given string to 
uppercase characters, returning the converted string in theString. 
Diacritical marks are ignored during the comparison if the marks 
parameter is TRUE. 

Date and Time Operations 

The following utilities are for reading and setting the date and time 
stored in the clock chip. Reading the date and time are fairly common 
operations; setting them is somewhat rarer, but could be necessary for 
implementing a desk accessory like the standard Control Panel. 

Date and time are represented internally by a date/time record. 
Date/time records are defined as follows: 

TYPE DateTimeRec 
RECORD 

year: INTEGER; {four-digit year} 
month: INTEGER; {1 to 12 for January to December} 
day: INTEGER; {1 to 31} 
hour: INTEGER; {0 to 23} 
minute: INTEGER; {0 to 59} 
second: INTEGER; {0 to 59} 
dayOfWeek: INTEGER; {I to 7 for Sunday to Saturday} 

END; 

FUNCTION ReadDateTime (VAR secs: LongInt) OsErr; 

Trap macro 

On exit ---

_ReadDateTime 

A0: 
00: 

secs (long integer) 
result code (integer) 

ReadDateTime returns in secs the number of seconds between midnight, 
January 1, 1904 and the time that the function was called. 

6/5/84 Davis /OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 17 

Assemb1y-language~: This value is accessible from assembly 
language in the global variable called time. 

If you wish, you can convert the value returned by ReadDateTime to a 
date/time record by calling the Operating System Utility procedure 
Secs2Date. 

(note) 
Passing the value returned by ReadDateTime to the 
International Utilities Package procedure IUDateString or 
IUTimeString will yield a string representing the 
corresponding date or time of day, respectively. 

Result codes noErr 
clkRdErr 

No error 
Unable to read same clock value 

twice *** Explain. *** 

FUNCTION SetDateTime (secs: Longlnt) OsErr; 

Trap macro SetDateTime 

On entry 00: secs (long integer) 

On exit --- D0: result code (integer) 

SetDateTime takes a number of seconds since midnight, January 1, 1904 
as specified by secs and writes it to the clock chip as the current 
date and time. 

(warning) 
Any attempt to write a time earlier than midnight, 
January 1, 1904 will result in an error. 

Assembly-language~: This procedure also updates the global 
variable called time to the value of the secs parameter. 

Result codes 

6/5/84 Davis 

noErr 
clkWrErr 

No error 
Tried to write an invalid time 

/OSUTIL/UTIL.R 



18 Operating System Utilities Programmer's Guide 

PROCEDURE Date2Secs (date: DateTimeRec; VAR sees: Longlnt); 

Trap macro Date2Secs 

On entry A0: pointer to date/time record 

On exit D0: sees (long integer) 

Date2Secs takes the given date/time record, converts it to the 
corresponding number of seconds elapsed since midnight, January 1, 
1904, and returns the result in the secs parameter. 

PROCEDURE Secs2Date (secs: Longlnt; VAR date: DateTimeRec); 

Trap macro Secs2Date 

On entry D0: secs (long integer) 

A0: pointer to date/time record 

Secs2Date takes a number of seconds elapsed since midnight, January 1, 
1904 as specified by the secs parameter, converts it to the 
corresponding date and time, and returns the corresponding date/time 
record in the date parameter. 

PROCEDURE GetTime (VAR date: DateTimeRec); [Pascal only] 

GetTime takes the number of seconds elapsed since midnight, January 1, 
1904 (obtained by calling ReadDateTime), converts that value into a 
date and time (by calling Secs2Date), and returns the result in the 
date parameter. 

Assembly-language~: From assembly language, you can just 
call ReadDateTime and Secs2Date directly. 

6/5/84 Davis /OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 19 

PROCEDURE SetTime (date: DateTimeRec); [Pascal only] 

SetTime takes the date and time specified by the date parameter» 
converts it into the corresponding number of seconds elapsed since 
midnight» January 1» 1904 (by calling Date2Secs)>> and then writes that 
value to the clock chip as the current date and time (by calling 
SetDateTime). 

Assembly-language note: From assembly language» you can just 
call Date2Secs and SetDateTime directly. 

Parameter RMI Operations 

The following three utilities are used for reading from and writing to 
parameter RAM. Figure 7 illustrates the function of these three 
utilities; further details are given below and earlier in the 
"Parameter RAM" section. 

;-t:- 2O-byte 20 bytes . . 
section of of storage . .. . 

InitUtil ReacPeram ) ) I CftII memory used for 

Clock chip system 

parameter 

record 
( Wr iteParam ( WriteParam 

Figure 7. Function of Parameter RAM Utilities 

FUNCTION InitUtil OsErrj 

Trap macro InitUtil 

6/5/84 Davis /OSUTIL/UTIL.R 



20 Operating System Utilities Programmer's Guide 

On exit --- D0 : result code (integer) 

InitUtil copies the contents of parameter RAM into 20-bytes of low 
memory; it also copies the date and time from the clock chip into the 
low-memory location accessed by ReadDateTime. 

Assembly-Ianguage~: InitUtil copies the date and time into 
the global variable called time. 

This utilitiy is called for you at system startup; you will probably 
never need to call it yourself. 

If parameter RAM contains any invalid values when this utility is 
called t then an error is returned as the result code t and the default 
values given earlier in the "Parameter RAM" section are read into the 
low-memory locations for parameter RAM and the current date and time. 

Result codes noErr 
prInitErr 

No invalid values in parameter RAM 
Invalid values in parameter RAM 

FUNCTION ReadParam (prmsToRead: SysPPtr; paramMask: LongInt) OsErr; 

Trap macro 

On entry 

On exit ---

ReadParam 

A0: 
D0: 

1)0: 

prmsToRead (pointer to system parameter record) 
paramMask (long integer) 

result code (integer) 

ReadParam is primarily used for examining portions of parameter RAM 
before changing them. It copies portions of parameter RAM into 20 
bytes of storage to be used for a system parameter record; the storage 
is pointed to by prmsToRead. 

Assembly-language~: There is no need for assembly-language 

6/5/84 Davis /OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 21 

programmers to use 20 bytes of storage in order to read from 
parameter RAM; you can directly access the global variables 
representing the various portions of the 20-byte section of low 
memory. These variables begin at the address sysParam and are 
given in the summary. 

ReadParam takes a parameter mask (paramMask) as one of its parameters; 
this mask should designate only those portions of parameter RAM that 
you wish to read, as described earlier in the "Parameter RAM" section. 

Result codes noErr No error 
*** What are the error conditions? *** 

FUNCTION WriteParam (prmsToWrite: SysPPtr; paramMask: LongInt) OsErr; 

Trap macro 

On entry 

On exit ---

WriteParam 

A0: 
D0: 

D0: 

prmsToWrite (pointer to system parameter record) 
paramMask (long integer) 

result code (integer) 

WriteParam updates the low-memory copy of parameter RAM and then goes 
on to update parameter RAM itself by writing the changes to the clock 
chip. The prmsToWrite parameter is a pointer to 20 bytes of storage 
containing a system parameter record that you create; this record 
describes what parameter RAM and its low-memory copy will look like 
after they're updated. If the system parameter record contains invalid 
values, then an error will be returned as the result code. 

Assembly-language~: There is no need for assembly-language 
programmers to use 20 bytes of storage in order to write to 
parameter RAM; simply designate as the storage area the 20-byte 
section of low memory itself, which begins at the address 
sysParam. 

WriteParam takes a parameter mask (paramMask) as one of its parameters; 
this parameter mask should designate only those portions of parameter 
RAM that will actually be changed, as described earlier in the 
"Parameter RAM" section. 

Result codes 

6/5/84 Davis 

noErr 
prWrErr 

No error 
Tried to write from an invalid 

/OSUTIL/UTIL.R 



22 Operating System Utilities Programmer's Guide 

system parameter record 

Queue Manipulation 

This section describes two utilities for adding elements to or deleting 
elements from a queue. Most programmers won't need to use these 
utilities, since Operating System or Toolbox units that deal with 
queues take care of queue manipulation for you. 

PROCEDURE Enqueue (qElement: QElemPtr; theQ: QHdrPtr); 

Trap macro 

On entry 

_Enqueue 

A0: 
AI: 

qElement (pointer) 
theQ (pointer) 

Enqueue adds the queue element pointed to by qElement to the queue 
pointed to by theQ. *** Mightn't there be errors, like maybe 
memFullErr or a queue type error? *** 

FUNCTION Dequeue (qElement: QElemPtr; theQ: QHdrPtr) OsErr; 

Trap macro 

On entry 

_Dequeue 

A0: 
AI: 

])0: 

qElement (pointer) 
theQ (pointer) 

result code (integer) 

Dequeue deletes the queue element pointed to by qElement from the queue 
pointed to by theQ. 

Result codes 

6/5/84 Davis 

noErr 
qErr 

No error 
Element not in specified queue 

/OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 23 

Dispatch Table Utilities 

This section describes a pair of utility routines for manipulating the 
dispatch table, which is described more fully in the Memory Manager 
manual. *** Currently it's described in the manual Programming 
Macintosh Applications in Assembly Language. *** 

FUNCTION GetTrapAddress (trapNum: INTEGER) LongInt; 

Trap macro _GetTrapAddress 

On entry D0: trapNum (integer) 

On exit A0: address of routine ---

GetTrapAddress returns the address of a routine currently installed in 
the dispatch table under the trap number designated by trapNum. A list 
of these numbers is given in Appendix A *** (doesn't yet exist) ***. 

Assembly-language~: On entry, only the low-order nine bits 
of D0 are used; the rest of the register is ignored. This 
allows you to use a full trap word, created with the 
corresponding trap macro, to specify the trap number. On exit, 
the contents of register D0 are not preserved. 

One use for GetTrapAddress is to save time in critical sections of your 
program by calling an OS or Toolbox routine directly, avoiding the 
overhead of a normal trap dispatch. 

Assembly-language~: When you use this technique to bypass 
the Trap Dispatcher, you don't get the extra level of register 
saving. The routine itself will follow Lisa Pascal conventions 
and preserve A2-A6 and D3-D7, but if you want any other 
registers preserved across the call you have to save and restore 
them yourself. 

You can also use GetTrapAddress when you want to intercept. calls to an 
Operating System or Toolbox routine and do some pre- or postprocessing 
of your own. Before installing your own version of the routine in the 
dispatch table, you can call GetTrapAddress to get the address of the 

6/5/84 Davis /OSUTIL/UTIL.R 



24 Operating System Utilities Programmer's Guide 

original and save it somewhere for later use. The new version of the 
routine can then use this saved address to call the original version. 

(warning) 
A number of ROM routines have already been patched with 
corrected versions in RAM; for the system to work 
properly, certain of these patched routines shouldn't be 
replaced with versions of your own. It's recommended 
that you don't replace any of the existing routines 
unless you're sure you know what you're doing. 

PROCEDURE SetTrapAddress (trapAddr: Longlnt; trapNum: INTEGER); 

Trap macro 

On entry 

_SetTrapAddress 

A0: trapAddr (address) 
D0: trapNum (integer) 

SetTrapAddress installs in the dispatch table a routine whose address 
is trapAddr; this routine is installed under the trap number designated 
by trapNum. 

Assembly-language~: On entry, only the low-order nine bits 
of D0 are used; the rest of the register is ignored. This 
allows you to use a full trap word, created with the 
corresponding trap macro, to specify the trap number. On exit, 
the contents of register D0 are not preserved. 

(warning) 
A number of ROM routines have already been patched with 
corrected versions in RAM; for the system to work 
properly, certain of these patched routines shouldn't be 
replaced with versions of your own. It's recommended 
that you don't replace any of the existing routines 
unless you're sure you know what you're doing. 

You can also use SetTrapAddress to install your own routines in unused 
slots in the dispatch table, allowing them to be called via the trap 
mechanism like Operating System and Toolbox routines. 

6/5/84 Davis /OSUTIL/UTIL.R 



OPERATING SYSTEM UTILITY ROUTINES 25 

Miscellaneous Utilities 

PROCEDURE Delay (numTicks: Longlnt; VAR finalTicks: LongInt); 

Trap macro 

On entry A0: numTicks (long integer) 

On exit --- D0: finalTicks (long integer) 

Delay simply causes the system to wait for the number of ticks 
specified by numTicks; it then returns in the finalTicks parameter the 
total number of ticks from the last system startup to the end of the 
delay. 

Assembly-language~: The current number of elapsed ticks 
since system startup is contained in the global variable called 
ticks; on exit from this procedure, register D0 contains the 
value of this global variable as measured at the end of the 
delay. Calling this procedure sends an interrupt priority level 
of 0 to the processor--that is, no interrupting devices will be 
ignored. See the Device Manager manual *** (doesn't yet 
exist) *** for further details on interrupts. 

PROCEDURE SysBeep (duration: INTEGER); 

SysBeep causes the system to beep for the number of seconds specified 
by the duration parameter. 

(note) 
Unlike all other Operating System Utilities, this 
procedure is stack-based. 

6/5/84 Davis /OSUTIL/UTIL.R 



26 Operating System Utilities Programmer's Guide 

SUMMARY OF THE OPERATING SYSTEM UTILITIES 

Constants 

CONST { Parameter masks } 

validMask = 1 ; {validity status} 
portAMask = 48; {modem port configuration} 
portBMask = 192; {printer port configuration} 
alarmMask = 384Vj; {alarm setting} 
fontMask = 12288; {number of default application font} 
kbdMask 16384; {auto-key threshold and rate} 
printMask = 32768 ; {printer's port} 
volCtlMask 65536; {volume level} 
clikCaretMask = 131 Vj7 2 ; {dbl-click/caret-blink times} 
misc2Mask = 524288; {mouse scaling; boot disk; menu 

blink} 

{ Result codes } 

noErr = 0; {no error} 
qErr = -1; {element not in specified queue} 
clkRdErr -85 ; {unable to read same clock value twice} 
clkWrErr -86; {tried to write an invalid time} 
prWrErr = -87 ; {tried to write from an invalid sysParmType} 
prInitErr = -88 ; {validity status is not $A8} 

Data Types 

TYPE OSType = PACKED ARRAY [1 •• 4] OF CHAR; 

OSErr = INTEGER; 

SysParmType = 
RECORD 

valid: 
portA: 
portB: 
alarm: 
font: 
kbdPrint: 
volClik: 
misc: 

END; 

LongInt; 
INTEGER; 
INTEGER; 
LongInt; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER 

8ysPPtr = AsysParmType; 

QHdr = RECORD 

{validity status} 
{modem port ("port A") configuration} 
{prntr port ("port B") configuration} 
{alarm setting} . 
{default application font} 
{auto-key thresh/rate; prntr's port} 
{vol level; dbl-c1ick/caret blink} 
{mouse scaling; boot disk; 
menu blink} 

qF1ags: INTEGER; {queue flags} 

6/5/84 Davis /OSUTIL/UTIL.8 



SUMMARY OF THE OPERATING SYSTEM UTILITIES 27 

qHead: 
qTail: 

END; 

QHdrPtr = .... QHdr; 

QElemPtr; {first queue entry} 
QElemPtr {last queue entry} 

{vertical retrace queue type} 
{I/O request queue type} 
{drive queue type} 

QTypes = (dummyType, 
vType, 
ioQType, 
drvQType, 
evType, 
fsQType) ; 

{event queue type} 
{volume-control-block queue type} 

QElem = RECORD 
CASE QTypes OF 

END; 

(vblQElem: VBLTask); 
(ioQElem: ParamBlockRec); 
(drvQElem: DrvQEl); 
(evQElem: EvQEl); 
(vcbQElem: VCB) 

QElemPtr = .... QElem; 

DateTimeRec 
RECORD 

{four-digit year} year: 
month: 
day: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

{1 to 12 for January to December} 
{1 to 31} 

hour: 
minute: 
second: 
dayOfWeek: 

END; 

Routines 

{0 to 23} 
{0 to 59} 
{0 to 59} 
{1 to 7 for Sunday to Saturday} 

Pointer and Handle Manipulation 

FUNCTION HandToHand 
FUNCTION PtrToHand 

FUNCTION PtrToXHand 

FUNCTION Hand And Hand 
FUNCTION PtrAndHand 

6/5/84 Davis 

(VAR theHndl: Handle) : OsErr; 
(srcPtr: Ptr; VAR dstHndl: Handle; size: 
LongInt) : OsErr; 

(srcPtr: Ptr; dstHndl: Handle; size: LongInt) 
OsErr; 

(aHndl, bHndl: Handle) OsErr; 
(ptr: Ptr; hndl: Handle; size: LongInt) OsErr; 

/OSUTIL/UTIL.S 



28 Operating System Utilities Programmer's Guide 

String Comparison 

FUNCTION EqualString (aStr,bStr: Str255; case ,marks: BOOLEAN) 
BOOLEAN; 

PROCEDURE UprString (VAR theString: Str255; marks: BOOLEAN); 

Date and Time Operations 

(VAR secs: LongInt) : OsErr; 
(secs: LongInt) : OsErr; 

FUNCTION ReadDateTime 
FUNCTION SetDateTime 
PROCEDURE Date2Secs 
PROCEDURE Secs2Date 
PROCEDURE GetTime 
PROCEDURE SetTime 

(date: DateTimeRec; VAR secs: LongInt); 
(secs: LongInt; VAR date: DateTimeRec); 
(VAR date: DateTimeRec); [Pascal only] 
(date: DateTimeRec); [Pascal only] 

Parameter RAM Operations 

InitUtil : OsErr; FUNCTION 
FUNCTION ReadParam (prmsToRead: SysPPtr; paramMask: LongInt) : 

OsErr; 
FUNCTION WriteParam (prmsToWrite: SysPPtr; paramMask: LongInt) : 

OsErr; 

Queue Manipulation 

PROCEDURE Enqueue (qElement: QElemPtrj theQ: QHdrPtr); 
FUNCTION Dequeue (qElement: QElemPtr; theQ: QHdrPtr) : OsErr; 

Dispatch Table Utilities 

PROCEDURE SetTrapAddress (trapAddr: LongInt; trapNum: INTEGER); 
FUNCTION GetTrapAddress (trapNum: INTEGER) : Longlnt; 

Miscellaneous Utilities 

PROCEDURE Delay (numTicks: LongInt; VAR finalTicks: LongInt); 
PROCEDURE SysBeep (duration: INTEGER); 

6/5/84 Davis /OSUTIL/UTIL.S 



SUMMARY OF THE OPERATING SYSTEM UTILITIES 29 

Assembly-Language Information 

Constants 

; Result codes 

noErr .EQU 
qErr .EQU 
clkRdErr .EQU 
clkWrErr .EQU 
prWrErr .EQU 
prInitErr .EQU 

; Queue types 

vType 
ioQType 
evType 
fsQType 

0 
-1 
-85 
-86 
-87 
-88 

;no error 
;element not in specified queue 
;unable to read same clock value twice 
;tried to write an invalid time 
;tried to write from an invalid sysParmType 
;validity status not $A8 

VBL queue element 
I/O queue element 
Event queue element 
File system VCB element 

Queue Data Structure 

qFlags 
qHead 
qTail 

Queue flags 
Pointer to first queue entry 
Pointer to last queue entry 

Queue Element Data Structure 

qLink 
qType 

Pointer to next queue element 
Queue type 

Date/Time Record Data Structure 

dtYear 
dtMonth 
dtDay 
dtHour 
dtMinute 
dtSecond 
dtDayOfWeek 

Variables 

Name 
spValid 
spPortA 
spPortB 

6/5/84 Davis 

Four-digit year 
1 to 12 for January to December 
1 to 31 
(6 to 23 
o to 59 
(6 to 59 
1 to 7 for Sunday to Saturday 

Size 
1 byte 
2 bytes 
2 bytes 

Contents 
Validation field ($A8) 
Port A configuration 
Port B configuration 

/OSUTIL/UTIL.S 



30 Operating System Utilities Programmer's Guide 

spAlarm 4 bytes Alarm time 
spFont 2 bytes Default font ID 
spKbd 1 bytes Keyboard repeat threshold and rate 
spPrint 1 byte Print stuff 
spVolCtl 1 byte Volume control 
spClikCaret 1 byte Double click and caret blink times 
spMisc2 1 byte Mouse scaling, boot disk, menu blink 
time 4 bytes Seconds since midnight, January 1, 1904 
ticks 4 bytes Ticks since last system startup 

6/5/84 Davis /OSUTIL/UTIL.S 



GLOSSARY 

clock chip: 

date/time record: 

dispatch table: 

parameter mask: 

parameter RAM: 

queue: 

result code: 

system parameter record: 

6/5/84 Davis 

GLOSSARY 31 

/OSUTIL/UTIL.G 



THIS SECTION 
INTENTIONALLY 

LEFT BLANK. 

WHEN A V AILABLE. 
IT WILL BE SUPPLIED 

AS PART OF THE 
MACINTOSH SUPPLEMENT. 



MACINTOSH USER EDUCATION 

The Structure of a Macintosh Application 

See Also: Macintosh User Interface Guidelines 
Inside Macintosh: A Road Map 
The Segment Loader: A Programmer's Guide 
Putting Together a Macintosh Application 

/STRUCTURE/STRUCT 

Modification History: First Draft (ROM 7) Caroline Rose 2/8/84 

ABSTRACT 

This manual describes the overall structure of a Macintosh application 
program. including its interface with the Finder. 



2 Structure of a Macintosh Application 

TABLE OF CONTENTS 

3 About This Manual 
3 Signatures and File Types 
4 Finder-Related Resources 
5 Version Data 
5 Icons and File References 
6 Bundles 
7 An Example 
8 Formats of Finder-Related Resources 
8 Opening and Printing Documents from the Finder 
11 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the overall structure of a Macintosh application 
program, including its interface with the Finder. *** Right now it 
describes only the Finder interface; the rest will be filled in later. 
Eventually it will become part of a comprehensive manual describing the 
entire Toolbox and Operating System. *** 

(hand) 
This information in this manual applies to version 7 of 
the Macintosh ROM and version l.~ of the Finder. 

You should already be familiar with the following: 

- The details of the User Interface Toolbox, the Macintosh Operating 
System, and the other routines that your application program may 
call. For a list of all the technical documentation that provides 
these details, see Inside Macintosh: ! Road Map. 

- The Finder, which is described in the Macintosh owner's guide. 

This manual doesn't cover the steps necessary to create an 
application's resources or to compile, link, and execute the 
application program. These are discussed in the manual Putting 
Together ~ Macintosh Application. 

The manual begins with sections that describe the Finder interface: 
signatures and file types, used for identification purposes; 
application resources that provide icon and file information to the 
Finder; and the mechanism that allows documents to be opened or printed 
from the Finder. 

*** more to come *** 

Finally, there's a glossary of terms used in this manual. 

SIGNATURES AND FILE TYPES 

Every application must have a unique signature by which the Finder can 
identify it. The signature can be any four-character sequence not 
being used for another application on any currently mounted volume 
(except that it can't be one of the standard resource types). To 
ensure uniqueness on all volumes, your application's signature must be 
assigned by Macintosh Technical Support. 

Signatures work together with file types to enable the user to open or 
print a document (any file created by an application) from the Finder. 
When the application creates a file, it sets the file's creator and 
file type. Normally it sets the creator to its signature and the file 
type to a four-character sequence that identifies files of that type. 
When the user asks the Finder to open or print the file, the Finder 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



4 Structure of a Macintosh Application 

starts up the application whose signature is the file's creator and 
passes the file type to the application along with other identifying 
information, such as the file name. (More information about this 
process is given below under "Opening and Printing Documents from the 
Finder".) 

An application may create its own special type or types of files. Like 
signatures, file types must be assigned by Macintosh Technical Support 
to ensure uniquenesse When the user chooses Open from an application's 
File menu, the application will display (via the Standard File Package) 
the names of all files of a given type or types, regardless of which 
application created the files. Having a unique file type for your 
application's special files ensures that only the names of those files 
will be displayed for opening. 

(hand) 
Signatures and file types may be strange, unreadable 
combinations of characters; they're never seen by end 
users of Macintosh. 

Applications may also create existing types of files. There might, for 
example, be one that merges two HacWrite documents into a single 
document. In such cases, the application should use the same file type 
as the original application uses for those files. It should also 
specify the original application's signature as the file's creator; 
that way, when the user asks the Finder to open or print the file, the 
Finder will calIon the original application to perform the operation. 
To learn the signatures and file types used by existing applications, 
check with Macintosh Technical Support. 

Files that consist only of text--a stream of characters, with Return 
characters at the ends of paragraphs or short lines--should be given 
the file type 'TEXT'. This is the type that MacWrite gives to 
text-only files it creates, for example. If your application uses this 
file type, its fi.les will be accepted by MacWrite and it in turn will 
accept MacWrite text-only files (likewise for any other application 
that deals with 'TEXT' files). Your application can give its own 
signature as the file's creator if it wants to be called to open or 
print the file when the user requests this from the Finder. 

For files that aren't to be opened or printed from the Finder, as may 
be the case for certain data files created by the application, the 
signature should be set to '??11' (and the file type to whatever is 
appropriate) • 

FINDER-RELATED RESOURCES 

To establish the proper interface with the Finder, every application's 
resource file must specify the signature of the application along with 
data that provides version information. In addition, there may be 
resources that provide information about icons and files related to the 
application. All of these Finder-related resources are described 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



FINDER-RELATED RESOURCES 5 

below, followed by a comprehensive example and (for interested 
programmers) the exact formats of the resources. 

Version Data 

Your application's resource file must contain a special resource that 
has the signature of the application as its resource type. This 
resource is called the version data of the application. The version 
data is typically a string that gives the name, version number, and 
date of the application, but it can in fact be any data at all. The 
resource ID of the version data is 0 by convention. 

As described in detail in Putting Together ~ Macintosh Application, 
part of the process of installing an application on the Macintosh is to 
set the creator of the file that contains the application. You set the 
creator to the application's signature, and the Finder copies the 
corresponding version data into a resource file named Desktop. (The 
Finder doesn't display this file on the Macintosh desktop, to ensure 
that the user won't tamper with it.) 

(hand) 
Additional, related resources may be copied into the 
Desktop file; see "Bundles" below for more information. 
The Desktop file also contains folder resources, one for 
each folder on the volume. 

Icons and File References 

For each application, the Finder needs to know: 

- The icon to be displayed for the application on the desktop, if 
different from the Finder's default icon for applications (see 
Figure 1). 

- If the application creates any files, the icon to be displayed for 
each type of file it creates, if different from the Finder's 
default icon for documents. 

- What files, if any, must accompany the application when it's 
transferred to another volume. 

D 
Appl ication Document 

Figure 1. The Finder's Default Icons 

The Finder learns this information from resources called· file 
references in the application's resource file. Each file reference 
contains a file type and an ID number, called a local ID, that 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



6 Structure of a Macintosh Application 

identifies the icon to be displayed for that type of file. (The local 
10 is mapped to an actual resource 10 as described under "Bundles" 
below.) Any file reference may also include the name of a file that 
must accompany the application when it's transferred to another volume. 

The file type for the application itself is 'APPL'. This is the file 
type in the file reference that designates the application's icon. You 
also specify it as the application's file type at the same time that 
you specify its creator--the first time you install the application on 
the Macintosh. 

The 10 number in a file reference corresponds not to a single icon but 
to an icon list in the application's resource file. The icon list 
consists of two icons: the actual icon to be displayed on the desktop, 
and a mask consisting of that icon's outline filled with black (see 
Figure 2). *** For existing types of files, there's currently no way 
to direct the Finder to use the original application's icon for that 
file type. *** 

Icon Mask 

Figure 2. Icon and Mask 

Bundles 

A bundle in the application's resource file groups together all the 
Finder-related resources. It specifies the following: 

- The application's signature and the resource 10 of its version 
data 

A mapping between the local IDs for icon lists (as specified in 
file references) and the actual resource IDs of the icon lists in 
the resource file 

- Local IDs for the file references themselves and a mapping to 
their actual resource IDs 

The first time you install the application on the Macintosh, you set 
its "bundle bit", and the Finder copies the version data, bundle, icon 
lists, and file references from the application's resource file into 
the Desktop file. *** (The setting of the bundle bit will be covered 
in the next version of Putting Together ~ Macintosh Application.) 
*** If there are any resource 10 conflicts between the icon lists and 
file references in the application's resource file and those in 
Desktop, the Finder will change those resource IDs in Desktop. The 
Finder does this same resource copying and 10 conflict resolution when 
you transfer an application to another volume. 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



FINDER-RELATED RESOURCES 7 

(hand) 
The local IDs are needed only for use by the Finder. 

An Example 

Suppose you've written an application named SampWriter. The user can 
create a unique type of document from it, and you want a distinctive 
icon for both the application and its documents. The application's 
signature, as assigned by Macintosh Technical Support, is 'SAMP'; the 
file type assigned for its documents is 'SAMF'. Furthermore, a file 
named 'TgFil' should accompany the application when it's transferred to 
another volume. You would include the following resources in the 
application's resource file: 

Resource 
Version data with 

resource type 'SAMP' 
Icon list 

Icon list 

File reference 

Fi Ie re f e rence 

Bundle 

(hand) 

Resource 10 
o 

128 

129 

128 

129 

128 

Contents 
The string 'SampWriter Version 1 

2/1/84' 
The icon for the application 
The icon's mask 
The icon for documents 
The icon's mask 
File type 'APPL' 
Local ID 0 for the icon list 
File type 'SAMF' 
Local ID 1 for the icon list 
File name ,TgFil' 
Signature 'SAMP' 
Resource 10 0 for the version data 
For icon lists, the mapping: 

local ID 0 --) resource 10 128 
local ID 1 --) resource 10 129 

For file references, the mapping: 

local ID 0 --) resource ID 128 
local ID 1 --) resource 10 129 

See the manual Putting Together ~ Macintosh Application 
for information about how to include these resources in a 
resource file. 

The file references in this example happen to have the same local IDs 
and resource IDs as the icon lists, but any of these numbers can be 
different. Different resource IDs can be given to the file references, 
and the local IDs specified in the mapping for file references can be 
whatever desired. 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



8 Structure of a Macintosh Application 

Formats of Finder-Related Resources 

The resource type for an application's version data is the signature of 
the application, and the resource ID is 0 by convention. The resource 
data can be anything at all; typically it's a string giving the name, 
version number, and date of the application. 

The resource type for an icon list is 'ICNd'. The resource data simply 
consists of the icons, 128 bytes each. 

The resource type for a file reference is 'FREF'. The resource data 
has the format shown below. 

Number of bytes 
4 bytes 
2 bytes 

Contents 
File type 
Local ID for icon list 

1 byte Length of following file name in bytes; 
o if none 

n bytes Optional file name 

The resource type' for a bundle is 'BNDL'. The resource data has the 
format shown below. The format is more general than needed for 
Finder-related purposes because bundles will be used in other ways in 
the future. 

Number of bytes Contents 
4 bytes Signature of the application 
2 bytes Resource ID of version data 
2 bytes Number of resource types in bundle minus 1 
For each resource type: 

4 bytes Resource type 
2 bytes Number of resources of this type minus 1 
For each resource: 

2 bytes Local ID 
2 bytes Actual resource ID 

A bundle used for establishing the Finder interface contains the two 
resource types 'leNd' and 'FREF'. 

OPENING AND PRINTING DOCUMENTS FROM THE FINDER 

When the user selects a document and tries to open or print it from the 
Finder, the Finder starts up the application whose signature is the 
document file's creator. An application may be selected along with one 
or more documents for opening (but not printing); in this case, the 
Finder starts up that application. If the user selects more than one 
document for opening without selecting an application, the files must 
have the same creator. If more than one document is selected for 
printing, the Finder starts up the application whose signature is the 
first file's creator (that is, the first one selected if they were 
selected by Shift-clicking, or the top left one if they were selected 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



OPENING AND PRINTING DOCUMENTS FROM THE FINDER 9 

by dragging a rectangle around them). 

Any time the Finder starts up an application, it passes along 
information via the "Finder information handle" in the application 
parameter area (as described in the Segment Loader manual). Pascal 
programmers can call the Segment Loader procedure GetAppParms to get 
the Finder information handle. For example, if applParam is declared 
as type Handle, the call 

GetAppParms(applName, applRefNum, applParam) 

returns the Finder information handle in applParam. The Finder 
information has the following format: 

Number of bytes 
2 bytes 
2 bytes 
For each file: 

2 bytes 

4 bytes 
1.- byte 
1 byte 
1 byte 
n bytes 

Contents 
o if open, 1 if print 
Number of files to open or print (0 if none) 

Volume reference number of volume containing 
the file 
File type 
File's version number (typically 0) 
Ignored 
Length of following file name in bytes 
Characters of file name (if n is even, add 
an extra byte) 

The files are listed in order of the appearance of their icons on the 
desktop, from left to right and top to bottom. The file names don't 
include a volume prefix. An extra byte is added to any name of even 
length so that the entry for the next name will begin on a word 
boundary. 

Every application that opens or prints documents should look at this 
information to determine what to do when the Finder starts it up. If 
the number of files is 0, the application should start up with an 
untitled document on the desktop. If a file or files are specified for 
opening, it should start up with those documents on the desktop. If 
only one document can be open at a time but more than one file is 
specified, the application should open the first one and ignore the 
rest. If the application doesn't recognize a file's type (which can 
happen if the user selected the application along with another 
application's document), it may want to open the file anyway and check 
its internal structure to see if it's a compatible type. The response 
to an unacceptable type of file should be an alert box that shows the 
file name and says that the document can't be opened. 

If a file or files are specified for printing, the application should 
print them in turn, preferably without doing its entire start-up 
sequence. For example, it may not be necessary to show the menu bar or 
a document window, and reading the desk scrap into memory is definitely 
not required. After successfully printing a document, the application 
should set the file type in the Finder information to 0. Upon return 
from the application, the Finder will start up other applications as 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



10 Structure of a Macintosh Application 

necessary to print any remal.ning files whose type was not set to ~. 
*** The Finder doesn't currently do this. but it may in the future. 
*** 

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2 



GLOSSARY 11 

GLOSSARY 

bundle: A resource that maps local IDs of resources to their actual 
resource IDs; used to provide mappings for file references and icon 
lists needed by the Finder. 

Desktop file: A resource file in which the Finder stores folder 
resources and the ,version data, bundle, icons, and file references for 
each application on the volume. 

file reference: A resource that provides the Finder with file and icon 
information about an application. 

file type: A four-character sequence, specified when a file is 
created, the identifies the type of file.' 

icon list: A resource consisting of a list of icons. 

local 10: A number that refers to an icon list or file reference in an 
application's resource file and is mapped to an actual resource ID by a 
bundle. 

signature: A four-character sequence that uniquely identifies an 
application to the Finder. 

version data: In an application's resource file, a resource that has 
the application's signature as its resource type; typically a string 
that gives the name, version number, and date of the application. 

2/8/84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.G 



COMME:N'TS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'li return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

Putting Together a Macintosh Application /PUTTING/TOGETHER 

See Also: Workshop User's Guide for the Lisa 
Macintosh Owner's Guide 
Inside Macintosh: A Road Map 
The Resource Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
The Structure of a Macintosh Application 

Modification History: First Draft (ROM 2.45) Caroline 
Second Draft (ROM 4.4) Caroline 
Third Draft (ROM 7) Caroline 
Fourth Draft Caroline 
Fifth Draft Caroline 

Rose 6/9/83 
Rose 7/14/83 
Rose 1/13/84 
Rose 4/9/84 
Rose 7/10/84 

ABSTRACT 

This manual discusses the fundamentals of preparing, compiling or 
assembling, and linking a Macintosh application program on the Lisa 
Workshop development system. 

Summary of significant changes and additions since last draft: 

- Additions have been made to the interface files and the files you 
link with or include in your assembly-language source. 

- The Resource Compiler has several new features: it lets you 
designate a nonstandard type of menu; it lets you specify any 
character by its ASCII code; and it recognizes the types ICND, 
FREF, and BNDL, as well as a new general type, GNRL. (See page 
7.) 

- The default type assumed by MacCom's Lisa-)Mac command has 
changed; the sample Exec file has been changed accordingly (page 
14). 



2 Putting Together a Macintosh Application 

TABLE OF CONTENTS 

3 About This Manual 
3 Conventions 
4 Getting Started 
6 The Source File 
7 The Resource Compiler Input File 
13 Defining Your Own Resource Types 
14 The Exec File 
19 Dividing Your Application Into Segments 
20 Working With Resource Files on the Macintosh 
21 Setting File Information on the Macintosh 
23 Notes for Assembly-Language Programmers 
27 Summary of Putting Together an Application 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual discusses the fundamentals of preparing, compiling or 
assembling, and linking a Macintosh application program on the Lisa 
Workshop development system. It assumes the following: 

- You know how to write a Macintosh application in Pascal or 
assembly language. Details on this may be found in the technical 
documentation; see Inside Macintosh: ! Road Map for a list of all 
such documentation. 

You're familiar with the Macintosh Finder, which is described in 
Macintosh, the owner's guide. 

- You have a Lisa 2/5 or 2/10 with a Workshop development system 
(version 2.0), and the Workshop User's Guide for the Lisa. You 
should also have the Workshop supplement for Macintosh developers, 
which consists of additional software and documentation that 
you'll need. 

After explaining some conventions it uses, this manual begins by 
presenting the first steps you should take once your Lisa has been set 
up for Macintosh application development under the Workshop. It then 
discusses each of the three files you'll create to develop your 
application: the source file, the Resource Compiler input file, and an 
exec file. 

The next section discusses how to divide an application into segments. 
Two utility programs on the Macintosh are then described, followed by 
important information for programmers who want to write all or part of 
an application in assembly language. 

Finally, there's a summary of the steps to take to put together a 
Macintosh application. 

(note) 
This manual presents a recommended scenario, not by any 
means the only possible one. Details, such as what you 
name your files, may vary. 

Conventions 

Sometimes this manual shows you what to do in a two-column table, the 
first one labeled "Prompt" and the second "Response". The first column 
shows what appears on the Lisa to "prompt" you; it might be a request 
for a file name, or just the Workshop command line. This column will 
not show all the output-you'll get from a program, only the line that 
prompts you. (There may have been a lot of output before that line.) 
The second column shows what you type as a response. The following 
notation is used: 

7/10/84 Rose /PUTTING/TOGETHER.2 



4 Putting Together a Macintosh Application 

Notation 
<ret> 
[ ] 

Meaning 
Press the RETURN key. 
Explanatory comments are enclosed in [ ]; 
you don't type them. 

A space preceding <ret> is not to be typed. It's there only for 
readability. 

[ ] in the "Prompt" column actually appear in the prompt; they enclose 
defaults. 

Except where indicated otherwise, you may type letters in any 
combination of uppercase and lowercase, regardless of how they're shown 
in this manual. 

GETTING STARTED 

Once your Lisa has been set up for Macintosh application development, 
it's a good idea to orient yourself to the files installed on it. You 
can use the List command in the File Manager to list all the file 
names. Certain subsets of related files begin with the same few 
letters followed by a slash; some typical naming conventions are as 
follows: 

(note) 

Beginning 
of file name 
Intrfc/ 
TlAsm/ 
Obj/ 
Work/ 
Back/ 
Example/ 

Description 
Text files containing the Pascal interfaces 
Text files to include when using assembly language 
Object files 
Your current working files 
Backup copies of your working files 
Examples provided by Macintosh Technical Support 

This manual assumes that your files observe the above 
naming conventions. 

You'll write your application to a Macintosh system disk, which means a 
Macintosh disk that contains the system files needed for running an 
application. The necessary system files are on the MacStuff 1 disk 
that you received as part of the Workshop supplement. Use that disk 
only to create other system disks. Here's how: 

1. Insert the MacStuff 1 disk into the Macintosh and open MacStuff 1. 

2. Copy the System Folder to a new Macintosh disk; the exact method 
you use depends on whether you have an external drive. See the 
Macintosh owner's guide for more information. 

(note) 
One of the files in the System Folder, Imagewriter, is 
needed only if you're going to print to an Imagewriter 

7/10/84 Rose /PUTTING/TOGETHER.2 



GETTING STARTED 5 

printer; to save space, you might not want to copy it if 
you don't need it. 

If you also need or want any of the other files on the MacStuff 1 disk, 
or any of the files on MacStuff 2 or 3, copy them as well. Two of 
these other files, the Resource Mover and Set File utilities in the 
Tools folder on MacStuff 1, are described later in this manual. 

As described in detail in the following sections, you'll create a 
source file, Resource Compiler input file, and exec file for your 
application, insert your Macintosh system disk into the Lisa, and run 
the exec file. The exec file will compile the source file, link the 
resulting object file with other required object files, run the 
Resource Compiler to create the application's resource file, and run a 
program called MacCom to write the application to the Macintosh disk. 
When MacCom is done, it will eject the disk; to tryout your 
application, you'll insert the ejected disk into the Macintosh and just 
open the application's icon. 

7/10/84 Rose /PUTTING/TOGETHER.2 



6 Putting Together a Macintosh Application 

THE SOURCE FILE 

Your working files will of course include the source file for your 
application. Suppose, for example, that you have an application named 
Samp. The source file would be Work/Samp.Text and would have the 
structure shown below. 

(note) 
"Samp" is used as the application name in all examples in 
this manual. You don't have to use the exact name of 
your application; any abbreviation will do. 

PROGRAM Samp; 

{ Samp -- A sample application written in Pascal } 
{ by Macintosh User Education 7/2/84 } 

List the following in the order shown. 

USES {$U Obj/MemTypes } MemTypes, 
{$U Obj/QuickDraw } QuickDraw, 
{$U Obj/OSIntf } OSIntf, 
{$U Obj/ToolIntf } ToolIntf, 
{$U Obj/MacPrint } MacPrint, [ OPTIONAL 
{$U Obj/SANE } SANE, [ OPTIONAL 
{$U Obj/Elems } Elems, [ OPTIONAL 
{$U Obj/PackIntf } PackIntf; [ OPTIONAL 

Your LABEL, CONST, TYPE, and VAR declarations will be here. 

Your application's procedures and functions will be here. ] 

BEGIN 

[ The main program will be here. ] 

END. 

Each line in the USES clause specifies first a file name and then a 
unit name (which happen to be the same in all cases here). The file 
contains the compiled Pascal interface for that unit; the corresponding 
text file name begins with "Intrfc/" rather than "Obj/". The Pascal 
interface includes the declarations of all the routines in the unit. 
It also contains any data types, predefined constants, and, in the case 
of QuickDraw, Pascal global variables. 

7/10/84 Rose /PUTTING/TOGETHER.3 



File name 
Intrfc/MemTypes.Text 
Intrfc/QuickDraw.Text 
Intrfc/OSIntf.Text 
Intrfc/Toollntf.Text 
Intrfc/MacPrint.Text 
Intrfc/SANE.Text 
Intrfc/Elems.Text 
Intrfc/PackIntf.Text 

THE SOURCE FILE 7 

Interface it contains 
Basic Memory Manager data types 
QuickDraw 
Operating System 
Toolbox, except QuickDraw 
Printing Manager 
Floating-Point Arithmetic Package 
Transcendental Functions Package 
Other packages 

You only have to include the files for the units your application uses. 
It doesn't do any harm to include them all, but it will take somewhat 
longer for your program to compile. If you're using any units of your 
own, just add their Pascal interface files at the end of the USES 
clause. 

As described in the Segment Loader manual, you can divide the code of 
an application into several segments and have only some of them in 
memory at a time. The section "Dividing Your Application Into 
Segments" tells how to specify segments in your source file. If you 
don't specify any, your program will consist of a single segment (whose 
name is blank). 

THE RESOURCE COMPILER INPUT FILE 

You'll need to create a resource file for your application. This is 
done with the Resource Compiler, and you'll have among your working 
files an input file to the Resource Compiler. *** In the future, 
you'll use the Resource Editor, which doesn't yet exist. *** One 
convention for naming this input file is to give it the name of your 
source file followed by "R" (such as Work/SampR.Text). 

The first entry in the input file specifies the name to be given to the 
output file from the Resource Compiler, the resource file itself; 
you'll enter "Work/" followed by the application name and ".Rsrc". 
Another entry tells which file the application code segments are to be 
read from. (As discussed in the Resource Manager manual, the code 
segments are actually resources of the application.) You'll enter the 
name of the Linker output file specified in the exec file for building 
your application, as described in the next section. 

7/10/84 Rose /PUTTING/TOGETHER.3 



8 Putting Together a Macintosh Application 

If you don't want to include any resources other than the code 
segments, you can have a simple input file like this: 

* SampR -- Resource input for sample application 
* Written by Macintosh User Education 7/2/84 

Work/Samp.Rsrc 

Type SAMP = STR 
,0 

Samp Version 1.0 -- July 2, 1984 

Type CODE 
Work/SampL,0 

This tells the Resource Compiler to write the resulting resource file 
to Work/Samp.Rsrc and to read the application code segments from 
Work/SampL.Obj. It also specifies the file's signature and version 
data, which the Finder needs. 

It's a good idea to begin the input file with a comment that describes 
its contents and shows its author, creation date, and other such 
information. Any line beginning with an asterisk (*) is treated as a 
comment and ignored. (You cannot have comments embedded within lines.) 
The Resource Compiler also ignores the following: 

- leading spaces (except before the text of a string resource) 

- embedded spaces (except in file names, titles, or other text 
strings) 

- blank lines (except for those indicated as required) 

The first line that isn't ignored specifies the name to be given to the 
resulting resource file. Then, for each type of resource to be 
defined, there are one or more "Type statements". A Type statement 
consists of the word "Type" followed by the resource type (without 
quotes) and, below that, an entry of following format for each 
resource: 

file name!resource name,resource ID (resource attributes) 
type-specific data 

The punctuation shown here in the first line is typed as part of the 
format. You must always provide a resource 10. Specifications other 
than the resource ID mayor may not be required, depending on the 
resource type: 

- Either there will be some type-specific data defining the resource 
or you'll give a file name indicating where the resource will be 
read from. Even in the absence of a file name, you aust include 
the comma before the resource ID. 

7/10/84 Rose /PUTTING/TOGETHER.3 



THE RESOURCE COMPILER INPUT FILE 9 

- You specify a resource name along with the file name for fonts and 
drivers. The Menu Manager procedures AddResMenu and InsertResMenu 
will put these resource names in menus. Enter the names in the 
combination of uppercase and lowercase that you want to appear in 
the menus. 

Resource attributes in parentheses are optional for all types. 
They're given as a number equal to the value of the resource 
attributes byte, and 0 is assumed if none is specified. (See the 
Resource Manager manual for details.) For example, for a resource 
that's purgeable but has no other attributes set, the input will 
be "(32)". 

If you want to enter a nonprinting or other unusual character in your 
input file, either by itself or embedded within text, just type a back 
slash (\) followed by the ASCII code of the character in hexadecimal. 
For example, the Resource Compiler interprets \0D as a Return character 
and \14 as the apple symbol. 

The formats for the different types of resources are best explained by 
example. Some examples are given below along with remarks that provide 
further explanation. Here are some points to remember: 

- Most examples list only one resource per Type statement, but you 
can include as many resources as you like in a single statement. 

- In every case, resource attributes in parentheses may be specified 
after the resource ID. 

- All numbers are base 10 except where hexadecimal is indicated. 

- The Type statements may appear in any order in the input file. 

Type WIND 
,128 
Status Report 
40 80 120 300 
Visible GoAway 
o 
o 

Type MENU 
,128 

* menu for desk accessories 
\14 

About Samp ••• 

,129 
Edit 

Cut/X 
Paste/Z 
(-
Word Wrap! 

7/10/84 Rose 

Window template 
Resource ID 
Window title 
BoundsRect (top left bottom right) 
For FALSE, use Invisible or NoGoAway 
ProcID (window definition ID) 
Ref Con (reference value) 

Menu, standard type 
Resource ID (becomes the menu ID) 

Menu title (apple symbol) 
Menu item 
Blank line required at end of menu 
Resource ID 
Menu title 
Menu items, one per line, with meta

characters, ! alone for check mark 
You cannot specify a blank item; use (

for a disabled continuous line. 
Blank line required at end of menu 

/PUTTING/TOGETHER.3 



10 Putting Together a Macintosh Application 

Type MENU 
,200 
201 
Patterns 

Type CNTL 
,128 
Help 
55 20 75 90 
Visible 
o 
1 
000 

Type ALRT 
,128 
120 100 190 250 
300 
F721 

Type DLOG 
,128 

'Ie modal dialog 
100 100 190 250 
Visible 1 NoGoAway 0 
200 

,129 
'Ie mode less dialog 

100 100 190 250 
Visible 0 GoAway 0 
300 
Find and Replace 

Type DITL 
,200 
5 
BtnItem Enabled 
60 10 80 70 
Start 

ResCltem Enabled 
60 30 80 100 
128 

StatText Disabled 
10 93 26 130 
Seed 

IconItem Disabled 
10 24 42 56 
128 

7/10/84 Rose 

Menu, nonstandard type 
Resource ID [SEE NOTE 1 BELOW ] 
Resource ID of menu definition procedure 
Menu title (may be followed by items) 
Blank line required at end of menu 
Control template 
Resource ID 
Control title 
BoundsRect 
For FALSE, use Invisible 
ProcID (control definition ID) 
Ref Con (reference value) 
Value minimum maximum 

Alert template 
Resource ID 
BoundsRect 
Resource ID of item list 
Stages word in hexadecimal 

Dialog template 
Resource ID 

BoundsRect 
1 is procID, 0 is ref Con 
Resource ID of item list 
Title (none in this case) 

BoundsRect 
o procID, 0 ref Con 
Resource ID of item list 
Title 

Item list in dialog or alert 
Resource ID 
Number of items 
Also: ChkItem, RadioItem 
Display rectangle 
Title 
Blank line required between items 
Control defined in control template 
Display rectangle 
Resource ID of control template 

Also: EditText 
Display rectangle 
The text (may be blank if EditText) 

Also: PicItem 
Display rectangle 
Resource ID of icon 

/PUTTING/TOGETHER.3 



UserItem Disabled 
20 50 60 85 

Type ICON 
,128 
0380 0000 

1EC0 3180 

Type ICNI! 
,128 
2 
0001 0000 

0002 8000 

Type CURS 
,300 
7FFC 
0FC0 
0008 0008 

Type PAT 

• 287F 
• 1FF8 

,200 
AADDAA66AADDAA66 

Type PATI! 
,136 
2 
5522552255225522 
FFEEDDCCFFEEDDCC 

Type STR 
,128 

This is your string 

Type STRI! 
,129 

First string 
Second string 
* note Return in next string 
Third string\0Dcontinued 

Type DRVR 
Obj/Monkey!Monkey,17 (32) 

Type FREF 
,128 
APPL 0 TgFil 

7/10/84 Rose 

THE RESOURCE COMPILER INPUT FILE 11 

Application-defined item 
Display rectangle 

Icon 
Resource ID 
The icon in hexadecimal (32 such lines 
altogether) 

Icon list 
Resource ID 
Number of icons 
The icons in hexadecimal (32 such lines 

altogether for each icon) 

Cursor 
Resource ID 
The data: 64 hex digits on one line 
The mask: 64 hex digits on one line 
The hotSpot in hexadecimal (v h) 

Pattern 
Resource ID 
The pattern in hexadecimal 

Pattern list 
Resource ID 
Number of patterns 
The patterns in hexadecimal, one per 
line 

String 
Resource ID 
The string on one line (leading spaces 

not ignored) 
String list 
Resource ID 
The strings 

Blank line required after last string 
Desk accessory or other device driver 
File name!resource name,resource ID 

[ SEE NOTE 2 BELOW ] 
File reference 
Resource ID 
File type local ID of icon file name 

(omit file name if none) 

/PUTTING/TOGETHER.3 



12 Putting Together a Macintosh Application 

Type BNDL 
,128 
SAMP 0 
2 
ICNII 1 
o 128 
FREF 1 
o 128 

Type FONT 
Obj/Griffin!Griffin,400@0 
Obj/Griffin10,400@10 
Obj/Griffin12,400@12 

Type CODE 
Obj/SampL,0 

Notes: 

Bundle 
Resource ID 
Bundle owner 
Number of types in bundle 
Type and number of resources 
Local ID 0 maps to resource ID 128 
Type and number of resources 
Local ID 0 maps to resource ID 128 

Font (or FWID for font widths) 
File name!resource name,resource ID 
File name, resource ID SEE NOTE 3 
File name,resource ID BELOW 

Application code segments 
Linker output file name,resource ID 

[ SEE NOTE 4 BELOW ] 

1. Notice that the input for a nonstandard menu has one extra line in 
it: the resource ID of the menu definition procedure, just 
following the resource ID of the menu. If that line is omitted 
(that is, if the menu's resource ID is followed by a line 
containing text rather than a number), the resource ID of the 
standard menu definition procedure (0) is assumed. 

2. The Resource Compiler adds a NUL character (ASCII code 0) at the 
beginning of the name you specify for a 'DRVR' type of resource. 
This inclusion of a nonprinting character avoids conflict with 
file names that are the same as the names of desk accessories. 

3. The resource ID for a font resource has a special format: 

font number @ size 

The actual resource ID that the Resource Compiler assigns to the 
font is 

(128 * font number) + size 

Three font resources are listed in the example above. Size 0 is 
used to provide only the name of the font (Griffin in this case); 
a file name must also be specified but is ignored. The two 
remaining font resources define the Griffin font in two sizes, 10 
and 12. 

4. For a 'CODE' type of resource, ".Obj" is appended to the given 
file name, and the resource ID you specify is ignored. The 
Resource Compiler always creates two resources of this type, with 
ID numbers 0 and 1, and will create additional ones'numbered 
sequentially from 2 if your program is divided into segments. 

7/10/84 Rose /PUTTING/TOGETHER.3 



THE RESOURCE COMPILER INPUT FILE 13 

The Type statement for a resource of type 'WDEF', 'MDEF', 'CDEF', 
'FKEY' *** function key code ***, 'KEYC', 'PACK', or 'PICT' has the 
same format as for 'CODE': only a file name and a resource ID are 
specified. For the 'PICT' type, the file contains the picture; for the 
other types, it contains the compiled code of the resource, and the 
Resource Compiler appends ".Obj" to the file name. 

(note) 
The 'MBAR' resource type is not recognized by the 
Resource Compiler. 

If your application is going to write to the resulting resource file as 
well as read it, you should place the Type statement for the code 
segments at the end of the input file. In general, any resources that 
the application might change and write out to the resource file should 
be listed first in the input file, and any resources that won't be 
changed (like the code segments) should be listed last. The reason for 
this is that the Resource Compiler stores resources in the reverse of 
the order that they're listed, and it's more efficient for the Resource 
Manager to do file compaction if the changed resources are at the end 
of the resource file. 

Defining Your Own Resource Types 

You can use one of the three types GNRL, HEXA, and ANYB to define your 
own types of resources in the Resource Compiler input file. GNRL 
allows you to specify your resource data in the manner best suited to 
your particular data format; you specify the data as you want it to 
appear in the resource. A code (beginning with a period) tells the 
Resource Compiler how to interpret what you enter on the next line or 
lines (up to the next code or the end of the Type statement). The 
following illustrates all the codes: 

Type GNRL 
,128 
.P 

A Pascal string 
Another Pascal string 

.S 
A string 

.1 
o 
1 
.L 
5438 
.H 
526FEEC942E78EA4 
0F4C 
.B 
MyData 36 256 

General type 
Resource ID 
Pascal strings (with length byte), one 
per line 

Strings without length byte, one per 
line 

Integers (decimal), one per line 

Long integers (decimal), one per line 

Bytes in hexadecimal, any number 
total, any number per line 

Bytes from a file 
File name number of bytes offset 
Blank line required at end of statement 

You can use an equal sign (=) along with the GNRL type to define a 

7/10/84 Rose /PUTTING/TOGETHER.3 



14 Putting Together a Macintosh Application 

resource of any desired format and with any four-character resource 
type; for example, to define a resource of type 'MINE' consisting of 
the integer 57 followed by the Pascal string 'Finance charges', you 
could enter this: 

Type MINE = GNRL 
,400 
.1 
57 
.P 

Finance charges 

The Resource Manager call GetResource('MINE',400) would return a handle 
to this resource. 

The types HEXA and ANYB simply offer alternatives to the .H and .B 
options (respectively) of the GNRL type, as shown below. 

Type HEXA 
,201 
526FEEC942E78EA4 
0F4C 

Type ANYB 
MyData,200 
36 256 

Bytes in hexadecimal 
Resource ID 
The bytes (any number total, any 
number per line) 

Blank line required at end 
Bytes from a file 
File name,resource ID 
Number of bytes offset in file 

You can also define a new resource type that inherits the properties of 
a standard type. For example, 

Type XDEF = WDEF 

defines the new type 'XDEF', which the Resource Compiler treats exactly 
like 'WDEF'. The next line would contain a file name and resource ID 
just as for a 'WDEF' resource. 

THE EXEC FILE 

It's useful for each application to have an exec file that does 
everything necessary to build the application, including compiling, 
linking, creating the resource file, and writing to a Macintosh disk. 
The name of the exec file might, for example, be the source file name 
followed by "X" (for "eXec"). Work/SampX.Text, the exec file for the 
Samp application, is shown below. 

7/10/84 Rose /PUTTING/TOGETHER.3 



$EXEC 
P{ascal}Work/Samp 
{no list file} 
{default I-code file} 
G{enerate}Work/Samp 
{default output file} 
L{ink}? 
+X 
{no more options} 
Work/Samp 
Obj/QuickDraw 
Obj/OSTraps 
Obj/ToolTraps 
Obj/PrLink 
Obj/PrScreen 
Obj/ElemsAsm 
Obj /SANE 
Obj/SANEAsm 
Obj/PackTraps 
Obj/MacPasLib 

[ OPTIONAL 
[ OPTIONAL 
[ OPTIONAL 
[ OPTIONAL 
[ OPTIONAL 
[ OPTIONAL 

{end of input files} 
{listing to console} 
Work/SampL 
R{un}RMaker 
Work/SampR 
R{un}MacCom 
F{inder info}Y{es}L{isa->Mac}Work/Samp.Rsrc 
Samp 
APPL 
SAMP 
{no bundle bit} 
E{ject}Q{uit} 
$ENDEXEC 

THE EXEC FILE 15 

The file begins with $EXEC and ends with $ENDEXEC. Everything in 
between (except for comments in braces) is exactly what you would type 
on your Lisa if you were not using an exec file. To show what the 
various entries in this file accomplish, the table below indicates what 
each of them is a response to, and shows your response as it is in the 
exec file or as it would be if you were using the keyboard. The 
numbers on the left are given for reference in the explanation that 
follows the table. 

[ 1 ] 

[2] 

Prompt 
Workshop command line 
Input file - [.TEXT] 
List file - [.TEXT] 
I-code file - [Work/Samp][.I] 
Workshop command line 
Input file - [.1] 
Output file - [Work/Samp][.OBJ] 

7/10/84 Rose 

Response 
P [for Pascal] 
Work/Samp <ret> 
<ret> [for none] 
<ret> [for Work/Samp.I] 
G [for Generate] 
Work/Samp <ret> 
<ret> [for Work/Samp.Obj] 

/PUTTING/TOGETHER.3 



16 Putting Together a Macintosh Application 

[3] 

[4] 

[5 ] 

Workshop command line 
Input file [.OBJ] ? 
Options ? 
Options ? 
Input file [.OBJ] ? 
Input file [.OBJ] ? 
Input file [.OBJ] ? 

Input file [.OBJ] ? 
Input file [.OBJ] ? 
Listing file [-CONSOLE] / [.TEXT] 
Output file? [OBJ.] 
Workshop command line 
Run what program? 
Input file [sysResDef][.TEXT] -
Workshop command line 
Run what program? 
MacCom command line 
Always set Finder info yourself 
when writing a Mac file? (Y or N) 

MacCom command line 
Lisa files to write to Mac disk? 
Copy to what Mac file? 
Type? [????] 
Creator? [????] 
Set the Bundle Bit? (Y or N) [No] 
MacCom command line 
MacCom command line 

L [for Link] 
? <ret> [for options] 
+X <ret> 
<ret> [no more options] 
Work/Samp <ret> 
Obj/QuickDraw <ret> 
Obj/OSTraps <ret> 
[other input files] 
Obj/MacPasLib <ret> 
<ret> [end of input files] 
<ret> [for -CONSOLE] 
Work/SampL <ret> 
R [for Run] 
RMaker <ret> 
Work/SampR <ret> 
R [for Run] 
MacCom <ret> 
F [for Finder info] 

Y [for Yes] 
L [for Lisa->Mac] 
Work/Samp.Rsrc <ret> 
Samp <ret> 
APPL <ret> 
SAMP <ret> 
<ret> [for No] 
E [for Eject] 
Q [for Quit] 

Here's what you accomplish at each of the steps: 

1. You perform the first part of the compilation process, translating 
the Pascal source code (Work/Samp.Text) into I-code (Work/Samp.I). 

2. You perform the second part of the compilation process, generating 
an object file (Work/Samp.Obj) from the I-code. 

3. You link the application's object file with other object files 
(resulting in the output file Work/SampL.Obj). 

4. You run the Resource Compiler to create the application's resource 
file (Work/Samp.Rsrc, as specified in Work/SampR.Text, the input 
file to the Resource Compiler). Included in the resources are the 
application's code segments, which are read from the Linker output 
file. 

s. You use the MacCom program to write the resource file to the 
Macintosh disk, giving the file the exact name you want your 
application to have. You set its file type to 'APPL' and its 
creator to the signature specified in the resource file. Since 
there's no bundle in Samp's resource file, you don't set the 
bundle bit. (See The Structure of ~ Macintosh Application for 
more information.) Finally, you ask MacCom to eject the disk. 

7/10/84 Rose /PUTTING/TOGETHER.3 



THE EXEC FILE 17 

The files linked with the application's object file in step 3 are 
described below. Most of them contain a trap interface, which is a set 
of small assembly-language routines that make it possible to call the 
corresponding unit or units from Pascal. The files should be listed in 
the order shown. Specify the optional files only if your application 
uses the routines they apply to. 

File name 
Obj /MemTypes. Obj 
Obj/QuickDraw.Obj 

Obj /OSTraps.Obj 
Obj/ToolTraps.Obj 

Obj /PrLink.Obj 
Obj/PrScreen.Obj 

Obj /ElemsAsm. Obj 

Obj/SANE.Obj 

Obj / SANEAsm. Obj 

Obj/PackTraps.Obj 
Obj/MacPasLib.Obj 

Description 
Basic Memory Manager data types 
Pascal interface to QuickDraw, needed so 
the Linker will know how many QuickDraw 
globals there are 
Trap interface for the Operating System 
Trap interface for the Toolbox (except 
QuickDraw) 
Trap interface for the Printing Manager 
Trap interface for low-level printing 
routines 
Trap interface for the Transcendental 
Functions Package 
First part of the trap interface for the 
Floating-Point Arithmetic Package 
Second part of the trap interface for the 
Floating-Point Arithmetic Package 
Trap interface for other packages 
Intrinsic Pascal routines, such as }lod and 
Concat 

Before running the Exec file, insert a Macintosh system disk into the 
Lisa. Run the exec file as follows: 

Prompt 
Workshop command line 
Run what program? 

Response 
R [for Run] 
(Work/SampX <ret> 

When the disk is ejected, remove it and insert it into the Macintosh. 
To tryout your application, just open its icon. 

(warning) 
If you don't set your application's file type and 
creator, either you won't be able to open its icon in the 
usual way, or a different application may start up when 
you do open it! 

Notice that if you change the application's signature or the setting of 
its bundle bit, step 5 of the above exec file will have to be edited 
accordingly. Furthermore, if you modify one of the resources related 
to the Finder interface and the change doesn't seem to have taken 
effect, try holding down the Option and Command keys when you start up 
the system disk on the Macintosh. This is necessary, for example, if 
you change only the application's icon. 

7/10/84 Rose /PUTTING/TOGETHER.3 



18 Putting Together a Macintosh Application 

(note) 
An unfortunate side effect of pressing Option-Command 
during startup is that all folders will be lost--but 
they're easy enough to recreate, and you shouldn't have 
to do this too often. 

Before making major changes to your application, it's a good idea to 
back it up. You can use the Backup command in the File Manager to back 
up all files beginning with "Work/" to files beginning with "Back/" 
(Work/=,Back/=). Also, you might want to periodically back up your 
working files onto 3 I/2-inch disks. 

There are several ways you could refine the exec file illustrated here; 
exactly what you do will depend on your particular situation. Some 
possibilities are listed below. 

- You can set up the exec file to compile or link only if actually 
necessary. For more information, see your Workshop documentation 
or the sample general-purpose exec file provided in the Workshop 
supplement. 

- To save disk space, you can add commands to the exec file to make 
it delete the three intermediate files: the I-code and object 
files for the application and the Linker output file. 

- If you want to keep the intermediate files around but are working 
on more than one application, you can save disk space by giving 
the intermediate files the same name for all applications (say, 
"Work/Temp"). 

- You can embed the exec file in your program's source file. To do 
this, you must use "(*" and u*)" around the exec part of the file 
and use the I invocation option. See your Workshop documentation 
for details. 

7/10/84 Rose /PUTTING/TOGETHER.3 



DIVIDING YOUR APPLICATION INTO SEGMENTS 19 

DIVIDING YOUR APPLICATION INTO SEGMENTS 

You can specify the beginning of a segment in your application's source 
file as follows: 

{$S segname} 

where segname is the segment name, a sequence of up to eight 
characters. Normally you should give the main segment a blank name. 
For example, you might structure your program as follows: 

PROGRAM Samp; 

The USES clause and your LABEL, CONST, and VAR declarations 
will be here. ] 

{$S Segl} 

[ The procedures and functions in Segl will be here. ] 

{$S Seg2} 

[ The procedures and functions in Seg2 will be here. ] 

{$S } 

BEGIN 

[ The main program will be here. ] 

END. 

You can specify the same segment name more than once; the routines will 
just be accumulated into that segment. To avoid problems when moving 
routines around in the source file, some programmers follow the 
practice of putting a segment name specification before every routine. 

(warning) 
Uppercase and lowercase letters are distinguished in 
segment names. For example, "Segl" and "SEGl" are not 
equivalent names. 

If you don't specify a segment name before the first routine in your 
file, the blank segment name will be assumed there. 

You can also specify what segment the routines in a particular file 
should be in by using the Lisa utility program ChangeSeg. For example, 
suppose you want to give your main segment a nonblank name (say, 
"SegMain"); you can't do this without using ChangeSeg, because the 
Linker puts the intrinsic Pascal routines in the blank-named segment, 
and they must be in the same segment as your main program. You can use 
ChangeSeg as shown below to tell the Linker to put the intrinsic Pascal 
routines, which are in Obj/MacPasLib, in the segment named SegMain. 

7/10/84 Rose /PUTTING/TOGETHER.4 



20 Putting Together a Macintosh Application 

(note) 

Prompt 
Workshop command line 
Run what program? 
File to change: 
Map all Names ? (Y/N) 
New Seg name ? 

Response 
R [for Run] 
ChangeSeg <ret> 
Obj/MacPasLib <ret> 
Y [for Yes] 
SegMain <ret> 

This changes the segment name for all programs you might 
be developing. 

WORKING WITH RESOURCE FILES ON THE MACINTOSH 

The Resource Mover utility (RMover for short) lets you examine and 
manipulate resources on the Macintosh. It's especially useful for 
working with the system resource file, such as to see what resources it 
contains. You can work with any of the resource files on the disk 
that's in the Macintosh. Resources can be copied, moved, or removed, 
and their attributes can be changed. RMover also enables you to store 
a QuickDraw picture in a resource file. 

To get a copy of RMover on a Macintosh system disk, just copy it from 
the Tools folder on the MacStuff 1 disk. 

To use RMover, open its icon. You'll see a window whose title shows 
the name of the disk RMover is on. Inside the window will be a list of 
the names and sizes of all the resource files on the disk. To look at 
one of the resource files, select it by clicking its entry in the list 
and then choosing Open from the File menu. A window will appear that 
contains a list of "Type" entries representing the resources in that 
file. For each resource type in the file, there's a bold entry 
consisting of the word "Type" followed by the resource type. Under the 
bold entry, there's an indented entry for each resource of that type, 
showing the resource ID and the resource name, if any, for that 
resource. 

To select a particular resource that you want to examine or manipulate, 
just click its entry in the resource file windowo You can select 
several successive resources by dragging through their entries, or 
extend or shorten a selection by pressing Shift while clicking or 
dragging. To select every resource of a particular type, click the 
bold entry for that type. 

If you want more information about the selected resource or resources, 
choose Open from the File menu. For each resource, a window will 
appear that also shows the resource's size, attributes that you can 
change by clicking them (such as purgeable and protected), and, where 
possible, a depiction of the resource itself. For example, an icon or 
picture resource will be displayed in the resource window; for a font 
resource, a line of text will appear in that font and size· and tell the 
name and size of the font. 

7/10/84 Rose /PUTTING/TOGETHER.4 



WORKING WITH RESOURCE FILES ON THE MACINTOSH 21 

Use the Cut t COPYt Paste t and Clear commands in RMOver's Edit menu to 
manipulate resources. They perform the same functions as in text 
editing except that they apply to the resource itself. For example t 
Cut will remove a selected resource from the resource file and place it 
on the Clipboard *** (currently called the Scrap in RMover) ***. You 
can then activate another resource file window and use Paste to copy 
the resource on the Clipboard into that file. If there's already a 
resource with the ID number of the resource being pasted, it's 
replaced; otherwise, the resource being pasted is added to the file. 

(note) 
You can't use RMover to paste something that you cut or 
copied in a previous application. You can only paste 
resources cut or copied within RMover itself. 

The Set ID and Set Name commands in the Edit menu let you change a 
resource's ID number or name. They operate on the selected resource 
or, if more than one is selected, on the first selected resource. 

You can get a QuickDraw picture into a resource file as follows: draw 
the picture in MacPaint; cut or copy it, to put it on the Clipboard; 
open the Scrapbook desk accessory; copy the picture into the Scrapbook 
by choosing Paste from the Edit menu; return to the Finder and use 
RMover to move or copy the picture from the Scrapbook resource file 
into your resource file. 

SETTING FILE INFORMATION ON THE MACINTOSH 

Normally you'll set your application's file type and creator from the 
MacCom program on the Lisa, as described earlier. You don't have to 
set this information for the files you copy from the MacStuff disks, 
because it gets copied along with them. Still, situations may arise 
that require setting the file type and creator on the Macintosh rather 
than the Lisa; if so, you can do this with the Set File utility on the 
MacStuff 1 disk. Set File is also useful for examining the types and 
creators of existing files that you've received. 

Set File displays a list of the file names on your disk (including 
DeskTop, which you can't see on the desktop and should just ignore). 
Select a file name from this list by clicking it. Enter the file type 
in the Type box and the creator in the Creator box. Click the Bundle 
check box if you want the bundle bit set. Click "Set it" to make your 
settings take effect. Do this for as many files as you like; when 
you're done, click "Quit". 

*** To type an entry in the Type or Creator box, you should always 
press the Tab key to select the current contents of the box and then 
replace it with what you type. Don't just click or drag to select in 
the box; -due to a temporary quirk in Set File, this may not work. *** 

7/10/84 Rose /PUTTING/TOGETHER.4 



22 Putting Together a Macintosh Application 

(warning) 
Remember, uppercase and lowercase characters are 
distinguished in what you enter for file types and 
creators .• 

If you don't know the creator and type for a particular application 
file, you can just set the type to APPL and leave the Creator box 
blank; the Finder will use its default icon for application programs 
(rather than the program's distinctive icon, if any) but will still let 
you open the icon as usual. 

If you ever get into a situation where Set File's own file type and 
creator aren't set (preventing you from opening it in the usual way), 
you can "trick" the Finder by holding down the Option and Command keys 
while double-clicking Set File's icon; this bypasses the Finder's 
requirement that the file type and creator be set. 

(warning) 
Option-Command-double-clicking an icon that doesn't 
belong to an application will cause a fatal system error. 

7/10/84 Rose /PUTTING/TOGETHER.4 



NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS· 23 

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 

You can write all or part of your Macintosh application in assembly 
language. Supp·ose, for example, that you write most of it in Pascal 
but have some utility routines written in assembly language. Your 
working files will include a source file and object file for the 
assembly-language routines (say, Work/SampA.Text and Work/SampA.Obj). 
The source file will have the structure shown below. 

(note) 

SampA -- Assembly-language routines for Samp 
Written by Macintosh User Education 7/2/84 

List the following in the order shown. ] 

.INCLUDE TIAsm/SysEqu.Text 

.INCLUDE TlAsm/SysMacs.Text 

.INCLUDE TIAsm/SysErr.Text 

.INCLUDE TIAsm/GrafEqu.Text 

.INCLUDE TIAsm/GrafTypes.Text 

.INCLUDE TIAsm/QuickMacs.Text 

.INCLUDE TIAsm/TooIMacs.Text 

.INCLUDE TIAsm/TooIEqu.Text 

.INCLUDE TIAsm/ResEqu.Text 

.INCLUDE TIAsm/PrEqu.Text 

.INCLUDE TIAsm/SANEMacs.Text 

.INCLUDE TIAsm/PackMacs.Text 

.INCLUDE TIAsm/PackEqu.Text 

.INCLUDE TIAsm/HeapDefs.Text 

.INCLUDE TIAsm/FSEqu.Text 

OPTIONAL 
OPTIONAL 
OPTIONAL 
OPTIONAL 
OPTIONAL 
OPTIONAL 

Here there will be a· • PROC or • FUNC directive for each routine, 
followed by the routine itself. Two examples follow. ] 

PROCEDURE MyRoutine (count: INTEGER); 

.PROC MyRoutine 

MyRoutine 
[ the code of MyRoutine ] 

FUNCTION MyOtherRoutine : ·LongInt; 

.FUNC MyOtherRoutine 

MyOtherRoutine 
[ the code of MyOtherRoutine ] 

• END 

The .PROC or .FUNC directive clears the symbol table, so 
symbols defined in one routine can't be referred to in 
another (without an explicit reference using .REF). If 

7/10/84 Rose /PUTTING/TOGETHER.4 



24 Putting Together a Macintosh Application 

you want to share code between routines, you can instead 
have a single .PROe directive for SampA followed by a 
.DEF directive for each routine name. 

Including unneeded files with .INCLUDE directives will do no harm 
except make your program take longer to assemble. The files marked as 
optional above are the least commonly needed; even some of the others 
may not be required. Here's what the files contain: 

File name 
TIAsm/SysEqu.Text 

TIAsm/SysMacs.Text 
TIAsmlSysErr.Text 
TIAsm/GrafEqu.Text 
TIAsm/GrafTypes.Text 

TIAsm/QuickMacs.Text 
TIAsm/TooIMacs.Text 
TIAsm/TooIEqu.Text 

TlAsm/ResEqu.Text 

TIAsm/PrEqu.Text 
TlAsm/SANEMacs.Text 

TIAsm/PackMacs.Text 
TlAsm/PackEqu.Text 
TIAsm/HeapDefs.Text 
TIAsm/FSEqu.Text 

Description 
System equates (memory layout and system 
data structures) 
System macros 
System error equates 
System graphics equates (cursor-related) 
QuickDraw equates (constants, offsets to 
locations of global variables, and 
offsets into structures) 
QuickDraw macros 
Toolbox macros, except QuickDraw 
Toolbox equates, except QuickDraw 
(constants, locations of system globals, 
and offsets into structures) 
Equates for resources (resource types, 
standard resource IDs) 
Equates for Printing Manager 
Macros and equates for Floating-Point 
Arithmetic and Transcendental Functions 
Packages 
Macros for other packages 
Equates for other packages 
Memory Manager equates 
File system equates 

If you've created any similar files for units of your own, just add 
.INCLUDE directives for them after the last .INCLUDE directive shown 
above. 

To specify the beginning of a segment in assembly language, you can use 
the directive 

.SEG 'segname' 

where segname is the segment name, a sequence of up to eight 
characters. 

For each assembly-language routine invoked from Pascal, the Pascal 
source file for your application will include an external declaration. 
For example: 

PROCEDURE MyRoutine (count: INTEGER); EXTERNAL; 
FUNCTION MyOtherRoutine : LongInt; EXTERNAL; 

7/10/84 Rose /PUTTING/TOGETHER.4 



NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 25 

If the routines form a unit that may be used by other applications, you 
should instead prepare a Pascal interface file for the unit and include 
it in the USES clause in the application's source file. 

You'll assemble the Work/SampA.Text file as shown below. 

Prompt Response 
Workshop command line 
Input file - [.TEXT] 

A [for Assemble] 
Work/SampA <ret> 
<ret> [for none] Listing file «CR> for none) - [.TEXT] 

Output file - [Work/SampA] [.OBJ ] <ret> [for Work/SampA.Obj] 

(note) 
If you do want a listing file, you may want to put a 
.NOLIST directive before your first .INCLUDE and a .LIST 
after your last one, so the contents of all the included 
files won't appear in the listing. 

You can assemble the code manually and then, after you've created or 
changed the Pascal source file, use the exec file for the application 
as illustrated earlier (adding the name of the assembly-language object 
file to the list of Linker input files). You may also want to set up 
an exec file that just assembles the assembly-language routines and 
links the resulting object file with everything else, for when you've 
changed only those routines and not the Pascal program. This exec file 
would begin with the responses listed above and then continue with step 
3 of the exec file illustrated earlier. 

If the entire application is written in assembly language, the source 
file will have the same structure as the one shown above, but you'll 
also need to have a "dummy" Pascal program (in Work/Samp.Text): 

PROGRAM Samp; 

{ Samp -- A sample application written in assembly language } 
{ by Macintosh User Education 7/2/84 } 

PROCEDURE SampA; EXTERNAL; 

BEGIN 

SampA 

END. 

If the application has its own globals, you'll need to reserve space 
for them after QuickDraw's globals. You can do this by adding the 
following at the beginning of the dummy program: 

USES {$U Obj/QuickDraw } QuickDraw; 

VAR globalSpace: ARRAY [1 •• x] OF INTEGER; 

7/10/84 Rose /PUTTING/TOGETHER.4 



26 Putting Together a Macintosh Application 

where x is the number of words (not bytes) occupied by your globals. 
To know where to access the globals, your assembly-language program 
must store the address of the globalSpace array somewhere 
(conventionally at 28(A5), the end of the application parameter area). 
You could set the program up to receive this address as a parameter; 
the EXTERNAL declaration in the dummy program would be 

PROCEDURE SampA (globaIPtr: Ptr); EXTERNAL; 

and the call to SampA would be 

SampA(@globaISpace[l]) 

Furthermore, you can save about 6K of memory if you're programming 
entirely in assembly language, by removing Obj/MacPasLib from the list 
of files to link with and instead including TIAsm/MocPasLib.Text in 
your source file. 

7/10/84 Rose /PUTTING/TOGETHER.4 



SUMMARY OF PUTTING TOGETHER AN APPLICATION 27 

SUMMARY OF PUTTING TOGETHER AN APPLICATION 

This summary assumes the file-naming conventions presented in the 
"Getting Started" section. Page numbers indicate where details may be 
found. 

ONE TIME ONLY: 

- Prepare a Macintosh system disk by copying the System Folder from 
the MacStuff 1 disk to a new Macintosh disk (page 4). 

- On the Lisa, use the Editor (via the Edit command) to create the 
exec file (page 14). 

ONCE PER VERSION OF YOUR APPLICATION'S SOURCE/RESOURCES: 

- On the Lisa, use the Editor to create or edit the application 
source file (page 6) or the Resource Compiler input file for your 
application's resources (page 7). 

- Insert the Macintosh system disk into the Lisa. 

- On the Lisa, run the exec file (page 17). It will eject the 
Macintosh disk when done. 

- To tryout your application, remove the disk from the Lisa, insert 
it into the Macintosh, and open the application's icon. 

- When appropriate, back up your working files by using the Backup 
command in the File Manager to copy Work/= to Back/=, or onto a 
3 1/2-inch disk (with, for example, Backup Work/= to -lower-=). 

7/10/84 Rose /PUTTING/TOGETHER.S 



COMMENTS? 
Macintosh User Education encourages. your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to. the author (indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3·G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



14 May 1984 13:36:41 

{sx-} 
PROGRAM Edi t; 

EXBHPLE/EDIT.TEXl' 

{ Edit -- R SMall SaMple application written in Pascal } 
{ by Macintosh User Education } 

USES {su-} 
{SU Obj/QuickDraw 
{SU Obj/OSIntf 
{SU Obj/ToolIntf 

} OuickDraw, 
} OSIntf, 
} ToolIntf; 

CONST 
lastMenu = 3; { nUMber of Menus } 
appleMenu = 1; { Menu ID for desk accessory Menu } 
fileMenu = 256; { Menu ID for File Menu } 
editMenu = 257; {Menu ID for Edit Menu} 

VRR 
nyMenus: RRRRY [1 .. 1astMenu] OF MenuHandle; 
screenRect,dragRect,pRect: Rect; 
doneFlag,tenp: BOOLERN; 
nyEvent: EventRecord; 
code,refNuM: INTEGER; 
wRecbrd: WindowRecord; 
nyWindow,whichWindow: WindowPtr; 
theMenu,theIteM: INTEGER; 
hIE: TEHandle; 

PROCEDURE SetUpMenus; 
{ Once-only initialization for Menus } 

VRR 
i: INTEGER; 
appleTitle: STRING[l]; 

BEGIN 
lnitMenus; { initialize Menu Manager} 
appleTitle := ' '; appleTitle[1] := CHR(appleSynhol); 
nyMenus[1] := NewHenu(appleMenu,appleTitle); 
RddResMenu(MyMenus[1], 'DRVR'); { desk accessories} 
RYMenus[2] := GetMenu(fileMenu); 
nyMenus[3] := GetMenu(editMenu); 
FOR i := 1 TO lastMenu DO InsertMenu(nyMenus[i],O); 
Dr awMenuBar; 

END; { of SetUpMenus } 

PROCEDURE DoComand(l'lResul t: LongInt); 

VRR 
naMe: STR255; 

BEGIN 
theMenu := HiWord(l'lResult); theIteM := LoWord(MResult); 
CRSE the Menu OF 

appleMenu: 
BEGIN 
GetIteM(MyMenus[1],theIteM,naMe); 
refNllt'l : = OpenDeskAcc(naMe); 
END; 

fileMenu: doneFlag := TRUE; { Quit } 

editMenu: 
BEGIN 
IF NOT SysteMEdit(thelteM-1) THEN 

BEGIN 
SetPort(MyWindow); 

Page 1 



14 Hay 1984 13:36:41 

CASE theItel'l OF 

1: TECut(hIE); 

2: TECopy (hIE); 

3: TEPaste(hIE); 

END; { of itel'l case} 
END; 

END; { of editMenu } 

END; { of Menu case } 
Hili teMenu(o); 

END; { of DoComand } 

BEGIN { nain progrCIl'l } 
lnitGraf(~thePort); 
lnitFonts; 
FIushEvents(everyEvent,o); 
Ini tWindows; 
SetUpHenus; 
IEInit; 
InitDialogs(NIL); 
Ini tCursor; 

EXRMPLE/EDH. !EXT 

screenRect := screenBits.bounds; 
SetRect(dragRect,4,24,screenRect.right-4,screenRect.bottol'l-4); 
doneFIag : = FRLSE; 

nyWindow := GetNewWindow(256,~Record,POINTER(-1»; 
SetPort(nyWindow); 

pRect := thePortA.portRect; 
InsetRect(pRect, 4, 0); 
hIE := TENew(pRect,pRect); 
REFER! 

Systel'lTask; 
IEI dIe (hTE); 
te~ := GetNextEvent(everyEvent,MyEvent); 
CASE nyEvent.what OF 

PJOuseDown: 
BEGIN 
code := FindWindow(MyEvent.where,whichWindow); 
CRSE code OF 

inMenuBar: DoCoMMand(HenuSelect(l'lyEvent.where»; 

inSysWindow: Systel'lClick(nyEvent,whichWindow); 

inDrag: DragWindow(wbichWindow,MyEvent.where,dragRect); 

inGrow,inContent: 
BEGIN 
IF whichWindow<>FrontWindow THEN 

SelectWindow(whichWindow) 
ELSE . 

BEGIN 
GIobalToLocal(MyEvent.where); 
TECIick(MyEvent. where,FRLSE, hIE); 
END; 

END; 

END; { of code case } 
END; { of nouseDown } 

Page 2 



14 May 1984 13:36:41 EXRHPLE/EDI!. TEXT 

keyDown,autoKey: 
IF ftyWindow=FrontWindow THEN 

TEKey(CHR(ftyEvent.ftessage HOD 2S6),hTE); 

act i vat eEvt : 
IF ODD(ftyEvent.~odifiers) { window is beco~ng active} 

THEN 
TERctivate(hTE) 

ELSE 
TEDeactivate(hTE); 

updateEvt: 
BEGIN 
SetPort(~yWindow); 
BeginUpdate(~yWindow); 
TEUpdate(thePort-.portRect,hTE); 
EndUpdate(~yWindow); 
END; { of updateEvt } 

END; { of event case } 

UNTIL doneFlag; 
END. 

Page 3 



14 Hay 1984 13:37:30 EXBHPLE/EDITR. TEXT 

• EditResDef -- Resource input for sMall saMple application 
• Written by Macintosh User Education 

Exanple/Edit.Rsrc 

Type MENU 
,256 
File 

Quit 

,257 
Edit 

Cut 
Copy 
Paste 

Type WIND 
,256 
8 SaMple 
50 40 300 450 
Visible NoGoRway 
o 
o 

Type EDIT = STR 
,0 
Edit Version 1.0 

Type CODE 
EXaMple/ edi tL, 0 

- 12 DeceMber 83 

Page 1 



14 May 1984 13:08:59 SCROLL. TEXT 

{sx-} 
{SR-} 
PROGRAM Scroll; 
{------------------------------------------------------------------------------------

This is a sil'lple progrCD'l to deMonstrate how to use scroll bars. 
You can scroll text or graphics or both. 
You can scroll horizontally or vertically. 
By Cary Clark, Macintosh Technical Support Apple CO"Puter Inc., 1984 

------------------------------------------------------------------------------------} 
USES 

CONST 

TYPE 

VRR 

{SU-} 
{SU Obj/QuickDraw } QuickDraw, 
{SU Obj/OSlntf } OSIntf, 
{SU Obj/Toollntf } Toollntf; 

Horizontal = 1; {These are the choices in the l'lenu 'Scroll Bar'} 
Vertical = 2; 
Textltel'l = 4; 
Graphics = 5; 

FileMenu = 1; {Resource nUMbers and position in the Menu bar} 
ScrollMenu = 2; 

NunOfRects = 30; {quantity of rectangles and strings to scroll around} 
NunOfStrings = 55; 

MyRectData = Array [l .. NUl'lOfRects] of Rect; {Graphics structure; } 
HyRectPtr = -HyRectData; { an array of rectangles} 
HyRectHdl = -HyRectPtr; 

hTE: TEHandle; 
hScroll, 
vScroll: ControlHandle; 
HyWindow: WindowPtr; 
hdlScrollHenu: HenuHandle; 
HyRect: HyRectHdl; 
originalPart: INTEGER; 
PageCorner, 
EventPoint: Point; 
MyViewRect: Rect; 
doneFlag, 
showText, 
showGr aphi cs : BOOLEAN; 

{TextEdi t handle} 
{Horizontal scroll bar} 

&
ertiCal scroll bar} 
OCUl'lent window} 

Handle to the l'lenu i tel'lS} 
{Handle to array of rectangles} 
{1st part of the scroll bar hit} 
{Location of the upper left hand page corner} 

I
Where an event took place} 
display rectangle containing scrollable data} 
Set TRUE when the user selects 'Quit'} 

{Set TRUE when text can be scrolled} 
{Set TRUE when graphics can be scrolled} 

{------------------------------------------------------------------------------------} 
PROCEDURE SetUpData; 

{This procedure initializes two data structures; a TextEdit record and an array of 
rectangles. Initially, only text and the vertical scrollbar will be displayed.} 

Var MyString : StringHandle; {TeMporary container for a string in the resource fork} 
counter : INTEGER; {Counters l'lust be local to the procedure} 
destRect : rect; {Rectangle containing the larger-than-the-screen page} 

BEGIN 
{The TextEdit record is initialized by reading in a string frOM the application's 
resource fork and then inserting it a nUMber of tiMes into the TextEdit record.} 

HyString := GetString (256); {Get SOMe text to play around with} 

{Set the view as the portrect less the vertical scrollbar area. The TextEdit 
destRect will be set to the current window width plus an arbitrary value.} 

HyViewRect := MyWindowA.portrect; 
destRect := HyViewRect; 
destRect.right := destRect.right + 300; 
PageCorner.h := -destRect.left; 

Page 1 



14 Hay 1984 13:08:S9 SCROU.. TEXT 

PageCorner.v := -destRect.top; 
HyViewRect.right := MyViewRect.right - 16; {I6 = width of scro1lbar} 
hIE := TENew (destRect, MyViewRect); 

HLock (Pointer (MyString»; {Can't nove if we are going to point to the text} 
For counter := 1 to NunOfStrings DO {Create a TextEdit record full of the string} 

IEInsert (Pointer(Ord4(MyStringA)+1),{nove past the string's length byte} 
Length(KyStringA A), hIE); 

HUnLock (Pointer (MyString»;{Free to ftOve again} 

{Now, create a structure of rectangles.} 
MyRect := Pointer( NewHand1e (Sizeof (MyRectData»); {240 bytes} 
For counter := I to NuMOfRects DO 

SetRect (MyRectAA[counter], counter*23, counter*20, counter *23+50, counter-20+50); 

sho\lrt ext : = TRUE; 
showgraphics : = FALSE; 

. ShowWindow (MyWindow); {Display the window and the text it contains} 

VScro11 := GetNewControl (256, HyWindow); {vertical scro1lbar} 
HScro11 := GetNewControl (257, MyWindow); {horizontal scro1lbar, not shown} 

CheckIten (hdlScro1lKenu, vertical, TRUE); 
CheckItern (hdlScro1lMenu, textIteM, TRUE) 

END; {of SetUpData} 

{------------------------------------------------------------------------------------} 
PROCEDURE GrafUpdate(whatpart : rect); 
{This is roughly the equivalent of what TEUpdate does with text. The upper left hand 
corner of the page is Moved up and to the left to siMUlate a view further down and 
to the right. To More accurately reseMble a Toolbox routine like TEUpdate, this 
procedure should also preserve the current clip region and origin.} 
vcr count : INTEGER; 

dunMyrect : rect; 
BEGIN 

SetOrigin (PageCorner.h, PageCorner.v); {negative Moves the origin left, up} 
OffsetRect (whatpart, PageCorner.h, PageCorner.v); {also ftOve the update rectangle} 
C1ipRect (whatpart); {only redraw the portion that the user requests} 
FOR count := I to NuROfRects DO 

{Redraw the object if it intersects the update rectangle} 
IF SectRect (MyRectAA[count], whatpart, dunnyRect) 
THEN FraMeRect(MyRectAA[count]); 

SetOrigin (0,0); {reset the origin back to the upper left hand corner} 
C1ipRect (HyWindowA.PortRect); {reset the clip region to the entire window} 

END; {of GrafUpdate} 

{~-----------------------------------------------------------------------------------} 
PROCEDURE Scro11Bits; 
{This routine scrolls horizontally and vertically both graphics and text. If you are 
only scrolling text, only the TEScro1l is required. If you are only scrolling 
graphics, then only the Scro11Rect and GrafUpDate is needed.} 

VRR vChange, hChange, vScrollValue, hScro11Value: INTEGER; 
AnUpdateRgn: RgnHandle; 

BEGIN 
vScro11Value := GetCtlValue (vScro11); {these values will be used a lot so they are 
hScro11Value := GetCtlValue (hScro1l); {read into local (tenporary) variables} 

{find the vertical and horizontal change} 
vChange := PageCorner.v - vScro11Value; {the vertical difference} 
hChange := PageCorner.h - hScro1lValue; {the horizontal difference} 

{record the values for next tiMe} 
PageCorner.v := vScrollValue; 
PageCorner.h := hScrollValue; 

Page 2 



14 Hay 1984 13:08:59 5CROLL. TEXT 

{for pure text, only a IEScroll is required} 
If showText AND NOT showGraphics 1liEN TEScroll (hChange, vChange, hIE); 

{for graphics, a ScrollRect will nove the visible bits on the screen. The 
region returned by ScrollRect indicates what part of the window needs to 
be updated.} 
If showGr aphi cs THEN 
BEGIN 

RnUpdat eRgn : = NewRgn; 
ScrollRect (HyViewRect, hChange, vChange, RnUpdateRgn); 

{This draws the new text. The clipping is necessary because nol1'lally 
TextEdi t redraws the entire character height and perhaps only a partial 
character scroll was done. Since TextEdit erases before it draws, the text, 
if any, is drawn before the graphics.} 

If showText THEN WITH hIEA-.destrect DO 
BEGIN 

left := -hScrollValue; 
top := -vScrollValue; 
ClipRect (RnUpdateRgn--.rgnbbox); 
TEUpdate (RnUpdateRgn- -. rgnbbox, hIE); 
ClipRect (HyWindow-.portrect) 

END; {of showText} 

GrafUpdate (RnUpdateRgn- -. rgnbbox); {This fills in the newly exposed region} 
DisposeRgn (RnUpdateRgn) 

END {of showGraphics} 
END; {of ScrollBits} 

{------------------------------------------------------------------------------------} 
PROCEDURE TrackScroll(theControl: ControlHandle; partCode: INTEGER); 
{This routine adjusts the value of the scrollbar. R reasonable change would 
be to adjust the I'lininUl'l scroll CD'lount to equal the text's lineheight.} 

Var CIl'IOunt, StartValue : INTEGER; 
up : BOOLEAN; 

BEGIN 
up : = part code IN [inUpButton, inPageUp]; {TRUE if scrolling page up} 
StartValue := GetCtlValue (theControl); {the initial control value} 

If {the scrollbar value is decreased, and it is not already at the l'linil'lUI'l} 
«up AND (StartValue > GetCtlHin (theControl))) 

OR {the scrollbar value is increased, and it is not already at the l'laxil'lUI'l} 
«NOT up) AND (StartValue < GetCtlHax (theControl)))) 

AND {to prevent tracking as the page up or down area disappears} 
(originalPart = partCode) 

THEN 
BEGIN 

If up THEN CD'lOunt : = -1 ELSE CD'lount : = 1; {set the direction} 
If part Code IN [inPageUp, inPageDown] THEN 
BEGIN 

{change the l'lOvenent to a full page} 
WITH MyViewRect DO 
If theControl = VScroll 
THEN CD'lount := CD'lount • (botton - top) 
ELSE CD'lount : = CD'lount • (right - left) 

END; {of partCode} 
SetCtlValue(theControl, StartValue+CD'lount); 
ScrollBits 

END 
END; {of TrackScroll} 

{------------------------------------------------------------------------------------} 
PROCEDURE HyControls; {respond to a l'lOuse down event in one of the controls} 
Var c:luImy: INTEGER; 

theControl: ControlHandle; 
BEGIN 

Page 3 

originalPart := findControl (EventPoint, HyWindow, theControl); {returns control and part} 
IF originalPart = inThUl'lb THEN 



14 Hay 1984 13:08:59 5cm..L. TEXT 

BEGIN 
{ThUMb is tracked until it is released; then the bits are scrolled} 
duMMy := TrackControl (theControl, EventPoint, NIL); 
ScrollBits 

END {of whichpart} 
{for the arrows and the page changes, scroll while the l'lOuse is held down} 
ELSE duMMy := TrackControl (theControl, EventPoint, ~TrackScroll) 

END; {of Hycontrols} 

{------------------------------------------------------------------------------------} 

Page 4 

PROCEDURE MainEventLoop; {respond to Menu selections, the scrollbars, and update events} 
VRR MyEvent: EventRecord; {All of the infOrMation about the event} 

MenuStuff: RECORD CASE INTEGER OF 
1 : (MenuResult : LONGINT); {InfOrMation returned by MenuSelect} 

{Which Menu was selected} 2 : (theMenu, 
theIteM : INTEGER) 

END; {of MenuStuff} 
checked : BOOLE.RN; 
MarkOlar : Olar; 
teMpWindow: WindowPtr; 
teMpRect : Rect; 

{Which iteM wi thin the I'lenu} 

{Is the I'lenu iteM checked} 
{The checkl'lark character} 

BEGIN 
REPER! " 

checked := GetNextEvent(everyEvent,nyEvent); {checked here is ignored} 
CASE I'lYEvent.what OF 
l'1OuseDown: 

BEGIN {the user pressed or is holding the l'1Ouse button down} 
CASE FindWindow(MyEvent.where,teMpWindow) OF 

inMenuBar: WIlli l'lenuStuf f DO 
BEGIN {the l'louseDown was in the I'lenu bar} 

l'lenuResult := MenuSelect (MyEvent.where); 
CASE theMenu OF 

FileMenu: doneFlag := TRUE; { Quit } 
ScrollMenu: 
BEGIN 

{The i teAS in the Menu are used to keep track of the user has chosen thus far. These 
lines toggle the checlO'lark in the Menu and leave the result in the variable checked.} 

GetIteMMark (hdlScrollMenu, theIten, l'1arkChar); 
checked : = l'larkOlar <> Chr(checlCl'lark); 
OleckIteM (hdlScrollMenu, theIten, checked); 

{Any selection will cause sone part of the screen to be redrawn. The selection that 
the user Makes causes sone part of the screen to beCOMe invalid.} 

IF (theIten = textIten) OR (theIten = graphicsIteM) 
THEN InvalRect (HyViewRect); 

CASE theIten OF 

horizontal: 
BEGIN 

InvalRect (HScroll--.contrlrect); 
IF checked THEN 
BEGIN 

ShowControl(HScroll); 
HyViewRect.bottoM := HScroIIAA.contrlrect.top 

END {checked} 
ELSE 
BEGIN {not checked} 

Hi deControl (HScroll); 
HyViewRect.bottoM := HScroIIAA.contrlrect.bottDM 

END {not checked} 
END; {horizontal} 

vertical: 
BEGIN 

InvalRect (VScroll--.contrlrect); 



14 Hay 1984 13:08:59 5CROLL. TEXT 

IF checked mEN 
BEGIN 

ShowControl(VScroll); 
HyViewRect.right := VScrolIAA.contrlrect.left 

END {checked} 
ELSE 
BEGIN {not checked} 

HideControl(VScroll); 
HyViewRect.right := VScrollAA.contrlrect.right 

END {not checked} 
END; {vertical} 

textIteM: WITH hIE--.destrect DO 
{since we have dereferenced the destrect, no calls in the scope of this WITH should 
cause a MeMory cOMpaction} 

BEGIN 
showText : = checked; 
IF checked then 
BEGIN 

top := -GetCtIValue(vScroll); 
left := -GetCtIValue(hScroll); 
hIEAA.viewrect := HyViewRect 

END {of checked} 
END; {of textIteM} 

GraphicsIteM: showGraphics : = checked; 

END {of CRSE} 
END {of inMenuBar} 

END; {of FindWindow CASE} 
HiliteMenu(O) 

END; {of 1'1OuseDown} 

inContent: 
{The rectangles Making up the controls are the part of the window outside the 'view'} 

BEGIN 
EventPoint := HyEvent.where; 
GlobalToLocal (EventPoint); 
IF NOT PtInRect (EventPoint, HyViewrect) THEN MyControls 

END {in Content} 
END {of casE} 

END; {of 1'1OuseDown} 

updat eEvent : 
{In response to InvalRects, the appropriate text or graphics is erased and redrawn. 
The BeginUpdate causes the VisRgn to be replaced by the intersection of the VisRgn 
and the UpdateRgn.} 

BEGIN 
BeginUpdate (HyWindow); 
EraseRect (HyWindowA.portrect); {start with a clean slate} 
If showText THEN TEUpdate (HyWindowA. VisRgnAA . Rgnbbox, hIE); 

{Call GrafUpdate with the intersection, if any, of the VisRgn and the view} 
IF showGraphics AND SectRect (HyWindowA.VisRgnAA.Rgnbbox, HyViewRect, 

tenpRect) THEN GrafUpdate (teMpRect); 
EndUpdate (HyWindow) 

END {of updateEvent} 

END {of event CRSE} 
UNTIL doneflag 

END; 

{------------------------------------------------------------------------------------} 
BEGIN 

InitGraf (mThePort); {initialize OuickDraw} 
InitWindows; {initialize Window Manager; clear desktop and Aenubar} 
InitFonts; {initialize Font Manager} 
flushEvents (everyEvent, 0); {throwaway any stray events} 
TEInit; {initialize TextEdit} 

Page 5 



14 Hay 1984 13:08:S9 SCROL.l.. TEXT 

lnitMenus; {initialize Menu Manager} 
hdlScrollHenu := GetMenu(FileMenu); {(hdlScrollHenu is ignored)} 
InsertMenu (hdlScrollHenu,O); 
hdlScrollHenu := GetMenu(ScrollHenu); 
InsertMenu (hdlScrollHenu,O); 
DrawMenuBar ; 
DoneFlag := FALSE; {user 'Ouit' flag} 
MyWindow := GetNewWindow (256, NIL, Pointer (-1»; {get window to work within} 
SetPort (MyWindow); {point to window} 
TextFont (applFont); {select default application font} 
SetUpData; {initialize user data and controls} 
lnitCursor; {change the watch into an arrow} 
MainEventLoop {handle events until we are through} 

END. 

Page 6 



14 Hay 1984 13:37:48 EXBMPLE/FILE. TEXT 

{ file -- EXaMple code for printing, reading and writing files, and Text Edit} 
{ -- by Cary Clark, Macintosh Technical Support } 

PROGRRM Myfile; 
{ Please read 'More about file,' included on the Mac Master disk. } 

{SOECL BUG} 
{SSETC BUG := 1} 
{One good way of debugging code is to write status infOrMation to one of the 
serial ports. Even while debugging code which uses one of the ports, the other 
can be used for transMitting infOrMation to an external terMinal. 

In this prograM, the COMpile tiMe variable BUG is set to either -1, 0 or 1 
according to the extent of the debugging inforMation required. Since COMpile 
tiMe variables or constants are used, setting a single flag should cause the 
resul ting prograM to have no l'lOre code than is required by the debugging level 
requested. 

If BUG is set equal to -1, then no debugging infOrMation appears; this is as you 
would want, the end user to see your product. 

BUG set to 0 provides an additional Menu bar called 'debug' that can display the 
aMount of Menory available, COMpact MeMory, and discard segMents and resources 
resident in MeMOry. You can do SOMething simlar to display SOMe debugging 
infOrMation on the Mac itself if you do not have a terMinal, but the penalty here 
is that you May spend Much of your tiMe debugging the code which is intended to 
debug SOMe other part of the prograM. Obviously, creating and Maintaining a 
window on a screen full of other windows in untested code is a difficult thing to 
do. 

BUG set to 1 adds an additional iteM to the 'debug' Menu that writes various runtiMe 
inforMation to an external terMinal. This is the preferred Method of debugging, 
since it does not interfere with the Macintosh display. Even if you do not have 
a separate terMinal, you can use the LISR terMinal prograM to act as one. Since 
writing a lot of debugging inforMation to a serial port can slow the prograM down, 
I would reCOMMend a way of turning the infOrMation on and off. In this prograM, 
the variable DEBUG is set to true or false in the beginning of one of the first 
procedures executed, SETUP, to provide debugging infOrMation. The DEBUG variable 
May also be set by the bOttOM iteM on the rightMost Menu.} 

{SU-} {Turn off the Lisa Libraries. This is required by Workshop.} 
{SX-} {Tum off stack expansion. This is a Lisa concept, not needed on Mac.} 

{SIfC BUG > -1} 
{SD+} {Put the procedures naMe just after it in the code, to help in debugging} 
{SR+} {Turn on range checking. Violating the range at runtiMe will produce a 

check exception.} 
{SELSEC} 

{SD-} {Do not include the procedure naMe in the 'production' code} 
{SR-} {Turn off range checking.} 

{SENne} 

USES {SU Obj/QuickDraw 
{SU Obj/OSlntf 
{SU Obj/Toollntf 
{SU Obj/Packlntf 
{SU Obj/MacPrint 

CONS! 
app.1eMenu '= 1; 
fileMenu = 2; 
Edi tMenu = 3; 
DebugMenu = 4; 

} Qui ckDraw, 
} OSIntf, 
} Toollntf, 
} Packlntf, 
} MacPrint; 

{These constants are declared for this application to distinguish between the 



14 May 1984 13:37:48 EXRMPI..E/FILE. TEXT 

various types of windows that it can create. The nUMber is stored in the window 
field windowkind.} 

HyDocUJ'lent = 8; 
Clipboard = 9; 
FreeMel'lory = 10; 

{See the file Misc:Fileas~ about the constants below. 
In this exemple progrem, I only use the first two.} 

TEScrpLength = 0; {the length of the private TextEdi t scrap} 
TEScrpHandle = 1; {the handle to the private TextEdit } 
dlgFont = 2; {the font used inside alerts and dialogs} 
ScrVRes = 3; {screen vertical resolution (dots/inch)} 
ScrHRes = 4; {screen horizontal resolution (dots/inch)} 
doubleTil'le = 5; {double click til'le in 4/60's of a second} 
caretTil'le = 6; {caret blink til'le in 4/60's of a second} 
RNuMber = 7; {the active alert} 
HCount = 8; {the alert stage level} 

{SIFC BUG = -I} 
lastMenu = 3; 

{SELSEC} 
lastMenu = 4; 

{SENnC} 

{ nUMber of l'lenus wlo debug} 

{ nUMber of l'lenus w/ debug} 

{SIFC BUG < I} 
debug = FHLSE; 

{SENDe} 
{col'lpiler will discard code after 'If debug ... '} 

TYPE ProcOrFunc = (proc, func, neither); 
edset = set of 1 .. 9; 
appPCIl'l'lS = RECORD 

I'lessage: 
count: 
vRefNun: 
fTYPE: 
vByte: 
fNeme: 

END; 
pRppParl'lS = -appParI'ls; 

INTEGER; 
INTEGER; 
INTEGER; 
resType; 
INTEGER; 
Str255; 

{ parems set up by Finder at launch } 

{ how l'lany icons did the user select} 
{ for each, the volURe reference #, } 

{ the file type, } 
{ the version nuMber (should be 0) } 
{ and the neme. See SetUp for use. } 

MyData = RECORD {each docUJ'lent window keeps a handle to this in WRefCon} 
TERecord: TEHandle; Ithe text associated with this dOCUMent} 
FileVolUJ'le: Integer; which volUl'le, if loaded frol'l disk} 
changed: Boolean; the docunent is 'dirty'} 
ti tIed: Boolean; the doCUMent has never been saved to disk} 

END; 
MyDataPointer = -MyData; 
MyDataHandle = -MyDataPointer; 

Page 2 



14 Hay 1984 13:37:48 EXRHPl.E/FILE. TEXT 

{«< this little beauty does a forM feed when you print this out. 
Copy and Paste it to Move it to your source code} 

{Here are a ton of global variables. This is not a good prograMMing eXaMple. 
You professionals~ of course~ will keep the nUMber of globals in your own 
prograns to a Much sMaller nUMber than shown here.} 

{these first six values are changed as windows are activated} 
VRR MyWindow: WindowPtr; 

MyPeek: WindowPeek; 
WindowData: MyDataHandle; 
hIE: TEHandle; 
vScroll: ControlHandle; 
topline: integer; 

printhdl: THPrint; 
nyMenus: RRRRY 

[l .. lastMenu] OF MenuHandle; 
growRect~ 
dragRect: Rect; 
teMpwindow: WindowPtr; 
the Char : 0iBR; 
I'IYPoint: Point; 
laststate: integer; 
doneFlag: BOOLEAN; 
MyEvent: EventRecord; 
scrapwind: WindowPtr; 
iBetlI'lHdl: Cur sHandle; 
watchHdl: CursHandle; 
windownUM: LongInt; 
windowpos: Longlnt; 
HyFileTypes: SfTypeList; 
firstchar: Integer; 
printflag: boolean; 
finderprint: boolean; 
Dlogptr: DialogPtr; 
printing: boolean; 
printport: grafptr; 
nUMfiles: integer; 

{SIFC BUG > -l} 
FreeWind: WindowPtr; 
oldMeM: Longlnt; 

{SENnC} 

{SIFC BUG = l} 
debug: boolean; 

{SENnC} 
debugger: text; 
extdebughdl: StringHandle; 
If: char; 

{HyPeek is the scme as MyWindow} 
{this record is pointed to by the WRefCon.} 
{The active text edit handle} 
{The active vertical scroll bar.} 
{the value of VScroll, also the visible top line.} 

{ini tialized in SetUp, used by MyPrint} 

{Handles to all of the nenus} 
{contains how big and sMall the window can grow} 
{contains where the window can be dragged} 
{window referenced by GetNextEvent (bad pgMMing.)} 

{

keyboard input goes here} 
the point where an event took place} 
last scrap state, to see if it has changed} 

{set when the user quits the progrcm} 
{returned by GetNextEvent} 
{the ClipBoard window, which contains the scrap} 
{the text editing cursor} 
{the wait cursor} 
{the # of untitled windows opened} 
{the # of windows opened} . 
{scme as txtfile, in a fornat for Standard File} 
{position of first character on top visible line} 
{the user selected 'Print . frOM the File Menu} 
{the user selected 'Print' fron the Finder} 
{the dialog box used when printing fron Finder} 
{printing is currently in progress} 
{port preserved during background printing} 
{nUMber of files selected in finder} 

{the free MeMory window} 
{the last cmount of free MeMOry} 

{the external terninal file} 
{the nenu entry} 
{chr(lO), line£eed} 

Page 3 



14 Hay 1984 13:37:48 EXRHPl..E/FILE. TEXT 

{------------------------------------------------------------------------------------} 
FUNCTION GlobalRddr (routineRddr: INTEGER) : Ptr; EXTERNAL; 
FUNCTION GlobalValue (valueRddr: INTEGER) : LongInt; EXTERNAL; 
{these routines, for now, allows us to retrieve where the TextEdit private scrap 
is, and allow us to set its size. They are defined in Hisc:FileRsft.} 

PROCEDURE RutoScroll; EXTERNAL; 
{this asseMbly routine is called by the innerds of TextEdi t when the user drags 
a selection range outside of the current window. Needs work.} 

PROCEDURE HainEventLoop; Forward; {this is declared forward so the printing can 
take the Main event loop as a procedure to execute while it is idleing} 

FUNCTION HyGrowZone (cbNeeded: Size) : Size; Forward; {this is declared forward so 
that it can be resident in the blank segMent, which is always loaded, and still 
be referenced by the Setup procedure} 

{S5 Utilities} 
{------------------------------------------------------------------------------------} 
PROCEDURE DebugInProc (prockind: ProcOrFunc; where: str255; location: ptr); 
{This procedure writes the executing routine's none and location in ftenory on the 
external ,teminal. The location is especially iMportant in a progrOl'1 like this 
that has s'egMents.} 

BEGIN 
{SIFC BUG = I} 

Write (debugger, 'in '); 
IF prockind = proc THEN Write (debugger, 'Procedure '); 
IF prockind = func THEN Write (debugger, 'Function '); 
Writeln (debugger, where, , m " ord4(location), If) 

{SENnC} 
END; 

PQge 4 



14 Hay 1984 13:37:48 EXAMPLE/FILE. TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE InSysteMWindow; 
VRR DScrap: PScrapstuff; 

teMpport:grafptr; 
BEGIN 
{for desk accessories, service theM with a SysteMClick. Hlso, check to see if they 
have changed the scrap. I f so, create an update event to redraw the clipboard.} 
if debug then debuginproc (proc, 'InSysteMWindow', GInSysteMWindow); 
SysteMClick(MyEvent,teMpWindow); 
DScrap : = InfoScrap; 
If (DScrap-.scrapState <> LastState) and (ScrapWind<>NIL) then 
BEGIN 

Getport (tenpport); 
Setport (scrapwind); 
InvalRect (scrapwind-.portrect); 
Setport (teMpport) 

END 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE SetScrollHax; 
Type txt= ,packed array [0 .. 32000] of 0 .. 255; 
Var cr : integer; 

txtptr : -txt; 
Max: integer; 

BEGIN 
{This adjusts the scroll value so that the scroll bar range is not allowed to exceed 
the end of the text. RIso, the scroll bar is disabled if the Max is set equal to 
the l'lin, which is zero. The forMula for detemining the range is sOMewhat cOMplex. 
Sorry.} 
if debug then debuginproc (proc, 'SetScrollMax', GSetScrolIMax); 
Vith hTE--, hTE--.viewrect DO 
BEGIN 

txtptr := pointer (htext-); 
cr : = 0; 
{SR-} {we want to be able to exceed the 32000 liMit} 
if teLength > 0 then if txtptr-[teLength-1] = 13 then cr := 1; 
{SIFC BUG > -1} 
{SR+} 
{SENnC} 
Max := nLines + cr - (bottOM - top+1) DIV lineHeight; 
if Max < 0 then Max := 0; 
SetCtlMax (VScroll, Max); 
if debug then Vriteln (debugger, 'vscrollMox =', Eox,lf); 
topline := -destrect.top DIV lineheight; 
SetCtlValue (vscroll, topline); 
if debug then Writeln (debugger, 'topline =',topline,lf) 

END; 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE ScrollText (showcaret: boolean); 
{called to either show the caret after an action like 'Copy'; 
also called to adjust the text within the window after the window is resized. The 
SCD'le fornula used in SetScrollMax is used here as well. Don't worry about how this 
works, too MUch. This possibly could be Made MUch sinpler.} 

Type txt= packed array [0 .. 32000] of 0 .. 255; {we'll defeat this liftit later} 
Var bottoMline, viewlines, SelLine, scrlRnount, nunlines, blanklines, newtop 

: integer; 
txtptr: -txt; 

BEGIN 
if debug then DebuglnProc (proc, 'ScrollText', mScroIIText); 
Wi th HrE- - DO 
BEGIN 

scrlRMount : = 0; 
txtptr := Pointer(hText-); 
nunlines := nlines; {if the last character is a carriage return, add 1 to nunlines} 

Page S 



14 Hay 1984 13:37:48 EXRHPLE/FILE. TEXT 

{SR-} {we want to be able to exceed the 32000 liMit} 
if teLength>O then if txtptr·[teLength-1] = 13 then nUMlines := nUMlines + 1; 
{SIFC BUG > -1} 
{SR+} 
{SENnC} 
With HTE··.viewrect DO 
viewlines := (bottoM - top+1) DIV lineHeight; {don't count partial lines} 

topline := -destrect.top DIV lineheight; 
bottoMline := topline + viewlines - 1; 
if debug then 
BEGIN 

Write (debugger, 'nlines=',nlines:4, '; topline=',topline:4); 
Writeln (debugger, '; nunlines=',mmlines:4, '; bottoM=',bottoMline:4,lf); 
Wri teln (debugger, 'viewlines=', viewlines: 4, '; showcaret=', showcaret, If) 

END; 
IF showcaret 
THEN 
BEGIN 

selLine : = 0; 
While (seLLine+1 < nlines) RND (selstart >=linestarts[selLine+1]) DO 
selLine := seLLine + 1; 

{if selstart = selend is m a cr, then add 1 to selstline} 
If (~elstart = selend) RND (selstart > 0) then 

{SR-} 
if (txtptr·[selstart-1] = 13) then selLine := selLine + 1; 

{SIFC BUG > -1} 
{SR+} 
{SENnC} 

if debug then 
BEGIN 

Wri te (debugger, 'selstart=', selstart: 5, '; seLLine=', selLine: 5); 
if selstart > 0 then 

{SR-} 

Page 6 

Writeln (debugger, '; txtptr·[selstart-1] = 13 is ',txtptr-[selstart-1] = 13,lf) 
{SIfC BUG > -1} 
{SR+} 
{SENDC} 

END; 
If SelLine > bottoMline THEN 
BEGIN 

scrlRnount:= bottoMline - SelLine; 
If nUMlines - SelLine > viewlines DIV 2 
THEN scrlRnount := scrlRMount - viewlines DIV 2 
ELSE ScrlRMount : = ScrlRMount - nunlines + SelLine + 1 

END; 
If SelLine < topline THEN 
BEGIN 

scrlAMount := topline - SelLine; 
If selLine > viewlines DIV 2 
THEN scrlRnount := scrlHnount + viewlines DIV 2 
ELSE ScrlSMount : = ScrlRnount + seLLine 

END 
END; 
if scrlRAount = 0 then 
BEGIN 

blanklines := viewlines - nunlines + topline; 
if blanklines < 0 then blanklines := 0; 
If (blanklines > 0) 8ND (topline > 0) THEN 
BEGIN 

scrlRnount := blanklines; 
If scrlRnount > topline THEN scrlRMount := topline 

END; 
if NOT showcaret then 
BEGIN 

newtop : = 0; 
While (newtop+l < nlines) AND (firstchar >= linestarts[newtop+l]) DO 
newtop := newtop + 1; 

if (newtop <> topline) AND (RBS(newtop - topline) > RBS(scrlRAount» then 



14 Hay 1984 13:37:48 

END 
END; 

scrlRMount := topline - newtop 

if debug then 
BEGIN 

EXRMPl.E/FlLE. TEXT 

Wri te (debugger, 'newtop=', newtop: 4, '; blanklines=', blanklines: 4); 
Writeln (debugger, '; newtop - topline=',newtop - topline,lf) 

END; 
If scrlanount <> 0 THEN 
BEGIN 

If selstart = selend then TEDeactivate (hIE); 
IEScroll (0, scrlRMount • lineheight, hIE); 
If selstart = selend then TERctivate (hIE) 

END; 
if debug then Writeln (debugger, 'scrlib'lOunt=',scrlBr1ount:4,lf); 
SetScrollMax 

END 
END; 

Page 7 



14 May 1984 13:37:48 EXRMPLE/FlLE.TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE ToggleScrap; 
Var teMppeek: windowpeek; 

getwhich: integer; 
showhidehdl: StringHandle; 

BEGIN 
{The clipboard COMes and goes, here. The last iteM in the edi tMenu is alternately 
Made to read, 'Show Clipboard' and 'Hide Clipboard'.} 
if debug then DebuglnProc (proc, 'ToggleScrap', ~ToggleScrap); 
If ScrapWind = NIL then {Make it appear} 
BEGIN 

scrapwind := GetNewWindow (257, NIL, Pointer (-1»; 
TeMppeek := pointer (scrapwind); 
TeMppeekA.windowkind := Clipboard; 
SetPort (scrapwind); 
InvalRect (scrapwindA.Portrect); 
GetWhich := 263 {hide clipboard} 

END 
else {JIlake it disappear} 
BEGIN 

DisposeWindow (scrapwind); 
Scrap~ind := NIL; 
GetWhich := 262 {show clipboard} 

END; 
showhidehdl := GetString (getwhich); 
Hlock (Pointer(showhidehdl»; 
SetIteM (MyMenus[EditMenu], 9, showhidehdl AA ); 
Hunlock (Pointer(showhidehdl» 

END; 

{SIFC BUG > -I} , 
{------------------------------------------------------------------------------------} 
PROCEDURE ToggleFree; 
Var teMppeek: windowpeek; 

getwhich: integer; 
showhidehdl: StringHandle; 

BEGIN 
{just about the SOMe as ToggleClipboard, above. This is just for debugging fun.} 

if debug then DebuglnProc (proc, 'ToggleFree', ~ToggleFree); 
If FreeWind = NIL then {Make it appear} 
BEGIN 

Fr-eewind := GetNewWindow (258, NIL, Pointer (-1»; 
Tenppeek := pointer (Freewind); 
TeMppeek-.windowkind := FreeMeMory; 
SetPort (Freewind); 
InvalRect (Freewind-.Portrect); 
GetWhich := 265; 

END 
else {!'lake it disappear} 
BEGIN 

DisposeWindow (Freewind); 
Freewind := NIL; 
GetWhich : = 264 

END; 
showhidehdl := GetString (getwhich); 
Hlock (Pointer(showhidehdl»; 
SetlteM (JIlYMenus[DebugMenu], 1, showhidehdl A-); 
HUnlock (Pointer(showhidehdl» 

END; 
{SENDC} 

{-------------------------------------------------------------------------~----------} 
PROCEDURE SetViewRect; 
BEGIN 
{text edit's view rect is inset in the content of the window, to prevent it frOM 
running into the lefthand side or the scroll bar.} 
if debug then DebugInProc (proc, 'SetViewRect', i5lSetViewRect); 

Page 8 



14 Hay 1984 13:37:48 

With hTEAA.viewrect DO 
BEGIN 

hTEAA.viewrect := HyWindow-.portRect; 
left := left +4; 
right := right -15 

END 
END; 

EXHMPLE/FlLE. r£XT Page 9 



14 Hay 1984 13:37:48 EXRHPU:/FlLE. TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE MoveScrollBar; 
BEGIN 
{When the window is resized, the scroll bar needs to be stretched to fit.} 

if debug then DebugInProc (proc, 'MoveScrollBar', ~MoveScrollBar); 
WITH MyWindowA.portRect DO 
BEGIN 

Hi deControl (vScroll); 
MoveControl(vScroll, right-15, top-I); 
SizeControl(vScroll,16,bottoM-top-13); 
ShowControl(vScroll) 

END 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE GrowWnd; 
{ Handles growing and sizing the window cmd l'lanipulating the update region. } 
VRR 10ngResul t: LongInt; 

height, width, newvert, oldstart: INTEGER; 
tRect, oldportrect: Rect; 

BEGIN 
if debug then DebugInProc (proc, 'GroWWnd', mGroWWnd); 
10ngResult := GrowWindow(MyWindow,l'lyEvent.where,growRect); 
IF 10ngResult = 0 THEN EXIT(GrowWnd); 
Setcursor (watchhdI AA ); {because the word wrap could take a second or two} 
height := HiWord(longResult); width := LoWord(longResult); 
SizeWindow(MyWindow,width,height,IRUE); {Now draw the newly sized window. } 
InvalRect (MyWindowA.portrect); 
If MyPeekA.windowkind = MyDocUMent then {it's not the clipboard} 
BEGIN 

MoveScrollBar ; 
With MyWindowA.portRect DO 
BEGIN 

width := right-Ieft-19; 
height := bottOM-top 

END; 
Wi th HfE- A DO 
BEGIN 

destrect.right := destrect.left + width; 
viewrect.right := viewrect.left + width; 
viewrect.bottoM := viewrect.top + height; 
firstchar := hTE--.linestarts [topline]; 
TECalText (hIE); ire-wrap the text to fit the new screen.} 
{if the rectangle is grown such that there is now blank space on the bOttoM 
of the screen, backpedal the screen to fill it back up, if there is enough 

Page 10 

scrolled off the screen to do so. Otherwise, the first character in the top line on 
the screen should continue to be sOl'lewhere on the top line after resizing} 
ScrollText (FALSE); 

END 
END 

END; { of GrowWnd } 

{------------------------------------------------------------------------------------} 
PROCEDURE MyRctivate; 
VRR tRect : rect; 
BEGIN 
{acti vate events occur when one window appears in front of cmother. This takes care 
of hilitin9 the scroll bar cmd·deactivating the insertion caret or the text 
selection.} 
if debug then DebugInProc (proc, 'MyRctivate', mMyRctivate); 
MyWindow := Pointer (MyEvent.Message); 
MyPeek := Pointer (HyWindow); 
If HyPeek-.windowkind in [MyDocUMent,Clipboard] then 
BEGIN {redraw the scrollbar area, if a doCUMent or the clipboard} 

SetPort (MyWindow); 
tRect := HyWindow-.portRect; tRect.left := tRect.right-16; 
InvalRect(tRect) 



14 May 1984 13:37:48 EXRHPl.E IFlLE. TEXT 

END; 
If HyPeekA.windowkind = HyDoCUMent then 
BEGIN {l'lake global variables point to the infoIl'lation associated with this window} 

WindowData := Pointer (GetWRefCon (MyWindow)); 
VScroll := Pointer (HyPeekA.ControlList); 
hIE := WindowDataAA.IERecord; 
IF ODD (l'lyEvent.l'lOdifiers) 
THEN 
BEGIN {this window is now top l'lost} 

TERctivate(hIE); 
ShowControl (VScroll); 
topline := GetCtlValue (VScroll) 

END 
ELSE 
BEGIN {this window is no longer top l'lost} 

HideControl (VScroll); 
TEOeactivate(hIE); 
hIE := NIL {a doCUMent is no longer on top} 

END 
END 

END; { of activateEvt } 

Page 11 



14 May 1984 13:37:48 EXRHPLE/FILE. !EX! 

{------------------------------------------------------------------------------------} 
PROCEDURE DialogueDeactivate; 
var tenprect: rect; 
BEGIN 
{This routine takes care of cases where, for instance, a nodal dialog is about to 
pop up in front of all the other windows. Since the Dialog Hanager handles all 
activate events for you, you do not get a chance to 'turn off' the controls associated 
with the window. This routine is called just before the dialog box Rakes its 
appearance, and takes care of the hili ting as if an activate event had occured.} 
if debug then DebugInProc (proc, 'DialogueDeactivate', ~DialogueDeactivate); 
If hIE <> NIL then {for dOCUMents, only} 
BEGIN 

TEDeactivate(hIE); 
HideControl (VScroll); 
SetCursor (arrow) 

END; 
If (frontwindow <> NIL) AND (HypeekA.windowkind in [MyDocunent, Clipboard]) then 
BEGIN {this is a little kludgy, but it works.} 

MypeekA.hilited := false; {DrawGrowIcon will now unhilite.} 
tenprect := HyWindowA.PortRect; 
teAprect.left := tenprect.right - 15; 
Cliprect (tenprect); {clipaway the horizontal scrollbar part} 
DrawGrowlcon (HyWindow); 
Cliprect (HyWindowA.PortRect); 
HypeekA.hilited := true {fix things back} 

END 
END; 

{ 

Page 12 



14 Hay 1984 13:37:48 EXRHPJ..E/FILE. TEXT 

} 
iSS RERDFILE} 
{------------------------------------------------------------------------------------} 
Function ReadFile (VrefNo: integer; FNane : str255) : boolean; 
Var ref No, io : integer; 

10gEOF: LongInt; 
errin: str255; 

{------------------------------------------------------------------------------------} 
Procedure DiskRErr (io : integer); 
Var str: str255; 

readfroMhdl, loadedhdl, strhdl: StringHandle; 
chn'U'ly: integer; 

BEGIN 
{R generic error is reported to the user if sOMething goes wrong. AMazingly little can 
go wrong, since the user does not get the chance to do things like type file nanes~ 
reMove the disk hiMSelf, and so on. About the only error that could happen is: 

an error occured while reading the disk (danaged Media or hardware) 

Can you think of anything else? R siMilar routine further down handles 
writing to disk. Note that in both reading and writing, the entire file is handled 
by a single read/write call, and no 'disk buffer' needs to be specified by the 
progrQM~r: } 

if debug then 
BEGIN 

DebugInProc (func, 'DiskRErr', mDiskRErr); 
Writeln (debugger, errin, , err = " io, If) 

END; 
readfronHdl := GetString (267); {this says 'reading frOM'} 
loadedhdl := GetString (269); {this says 'loaded'} 
Hlock (Pointer(readf~oMHdl)); 
Hlock (Pointer(loadedhdl)); 
If io = IOErr then 
BEGIN 

strhdl := GetString (279); {this says '10 error'} 
str := strhdl AA 

END else 
BEGIN 

NunToString (io, str); 
strhdl := GetString (280); {this is the generic 'ID ='} 

. str : = Concat (strhdl AA

, , " str) 
END' 
Par~text (readfroMhdI AA

, FNane, loadedhdl AA

, str); 
SetCursor (arrow); 
chn'U'ly := StopRlert (256, NIL); {discribe error to user in generic way.} 
HUnlock (Pointer(readfronHdl»; 
HUnlock (Pointer(loadedhdl»; 
Exit (readfile) 

END; 

BEGIN 
if debug then 
BEGIN 

DebugInProc (fu~c, 'ReadFile', mReadFile); 
writeln (debugger, 'volUMe = " vrefno, " file =' fnane, If) 

END; 
SetCursor (watchHdI AA

); 

ReadFile := false; 
io := FSOpen (Fnane, VRefNo, Ref No); 

{SIFC BUG = 1} {these debugging stateMents are for the external terninal, only} 
errin := 'FSOpen'; 

{SENnC} 
If io <> 0 then DiskRErr (io); 
io := GetEOF (Ref No, 10gEOF); 

{SIFC BUG = 1} 
errin := 'GetEOF'; 

Page 13 



14 M:rg 1984 13: 37: 4B EXBHPLE/FlLE.l'EXT 

{SENnC) 
If io <> 0 then DiskRErr (io); 
{add code here: if file is too large, then notify user and truncate) 
SetHandleSize (hIE--.hText, logEOF); 
if debug then if nenerror<>O then Writeln (debugger, 'nenerr = ',ftenerror:4); 
io : = FSRead (ref No, logEOF, hIE- -. hText -); 

{SIFC BUG = 1) 
errin := 'fSRead'; 

{SENDC} 
If io <> 0 then DiskRErr (io); 
io := FSClose (ref No); 

{SIFC BUG = I} 
errin := 'FSClose'; 

{SENnC} 
If io <> 0 then DiskRErr (io); 
hIE- -. teLength : = logEOF; 
if not finderprint then {if printing fron the finder, no window or editing 
infomation is needed} 

BEGIN 
IESetSelect (O,O,hIE); 
IECalText (hIE); 
Invalrect (hTE--.viewrect); 
SetScrollHax; 
WindowData--.titled := true; 
WindowData--.changed := false; 
WindowData--.FileVoIURe := VRefNo 

END; 
ReadFile := True {everything worked out OK} 

END; 

Page 14 



14 Hay 1984 13:37:48 EXRHPLE/FILE. TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE KakeRWindow (str : str255; disk : boolean); 
Vcr bounds: rect; 
BEGIN 
{R window is created here, and all associated data structures are linked to it} 

if debug then DebugInProc (proc, 'HakeRWindow', mHakeRWindow); 
windowpos := windowpos + 1; {this position it is created to on the screen} 
bounds. left := windowpos HOD 16 • 20 + 5; 
bounds. top := windowpos HOD 11 • 20 + 45; 
bounds.right := bounds. left + 200; 
bounds.botto~ := bounds. top + 100; 
HyWindow := NewWindow(Nil, bounds, str, TRUE, 0, POINTER(-l), TRUE, 0); 
SetPort (HyWindow); 
Hypeek := Pointer (HyWindow); 
TextFont (New York); 
MypeekA.windowkind := HyDocunent; {a nUAber > 8 identifies the type of window} 
hTE := TENew(HyWindowA.portRect, HyWindowA.portRect); 
WindowData := Pointer (NewHandle (8)); {1 handle, an integer, and 2 booleans} 
SetWRefCon (HyWindow, Ord4 (WindowData)); 
WindowDataAA.TERecord := hTE; 
SetViewRect; 
hIEAA.destrect := hTEAA.viewrect; 
WindowDataAA.changed := false; 
WindowData-A.titled := false; 
vScroll := GetNewControl(256,HyWindow); 
HoveScrollBar; 
topline : = 0; 
hTEAA.clikLoop := ord4(mRutoScroll) 

END; 

Page IS 



14 Hag 1984 13:37:48 EXAMPLE/FILE. TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE MyGetFile; . 
Vcr reply: SFReply; 

wher: point; 
teI'Iprect: rect; 
teApport:grafptr; 
copyIt, foundlt : boolecm; {if the nCD'le is already in use, this will be true} 
teAppeek: Windowpeek; 
teI'Ipstr, 0Idfnane:str255; 
strhdl: stringhcmdle; 
tel'lpdata: MyDataHandle; 
tel'1phdl: Hcmdle; 

BEGIN 
{This calls Stcmdard File to allow the user to choose the docunent on disk that she 
wishes to edi t. } 
if debug then DebugInProc (proc, 'MyGetFile', mMyGetFile); 
wher. h : = 90; 
wher. v : = 100; 
{ •• experiAent: the systeA appears to wcmt CDEF 1 loaded, so let's load it cmd 
Aake it nonpurgable before continuing} 

teI'Iphdl := GetResource ('COEr',!); 
HNoPurge (teAphdl); 
DialogueDeactivate; 
SFGetFile (wher, ", NIL, 1, MyFileTypes, NIL, reply); 
With Reply DO 
If good then 
BEGIN 

{check to see if this nane already resides on a docunent window. If so, change 
the title to 'Copy of 'cmd reMeAber to check it as untitled? after the readfile} 

foundit := false; 
oldfnane := fnane; 
Repeat 

tenppeek := pointer(Frontwindow); 
copyIt := false; 
if tenppeek <> NIL then 
Repeat 

GetWTitle (pointer (teMppeek), teApstr); 
if teApstr = fnCD'le then 
BEGIN 

teApdata := POinter(teAppeek-.refCon); 
if teApdataAA.FileVolUMe = vrefnUM then 
BEGIN 

copyIt : = true; 
foundIt := true 

END 
END; 
teAppeek := tenppeekA.nextwindow 

Until (teAppeek = NIL) or copyIt; 
strhdl := GetString (274); 
if copyIt then fnCD'le := Concat (strhdl--,' ',fnCD'le); 

Until not copyIt; 
if foundIt then 
BEGIN 

Parantext (fnane, , ., , ., . '); 
copyIt := (NoteRlert (258, NIL) = OK) 

END; 
if not foundIt or copyIt then 
BEGIN 

KakeRWindow (fnaMe, TRUE); 
If ReadFile (vrefnUM, oldfnane) 
then 
BEGIN 
. if foundIt then windowdata--.titled := false 

END 
else 
BEGIN 

TEDispose (hTE); 

Page 16 



14 Hay 1984 13:37:48 EXRHP1.£/FILE. TEXT Page 17 

hTE : = NIL; 
DisposHandle (Pointer (WindowData)); 
If debug then Writeln (debugger, 'dispose WindowData; nenerr = " Kenfrror, If); 
DisposeWindow (HyWindow) 

END 
END 

END; 
HPurge (tenphdl); {** the other half of the experinent (above)} 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE OpenRWindow; 
VRR s: str255; 

untitled: StringHandle; 
BEGIN 
{this creates a new window that is untitled and el'lpty.} 

if debug then DebugInProc (proc, 'OpenRWindow', mDpenRWindow); 
{see if enough nen exists to open a window} 
NunToString(windownun, s); 
windownUl'l : = windownun + 1; 
untitled := GetString (256); 
HLock (Pointer(untitled)); 
KakeRWindow (Concat (untitled .... , s), FRLSE); 
HUnlock (Pointer(untitled)) 

END; 



14 Hay 1984 13:37:48 EX8MPLE/FlLE. TEX! 

{SS WRITFILE} 
{--------------------~---------------------------------------------------------------} 
FUNCTION WriteFile (vRefNo: integer; fNaMe : str255) : Boolean; 
vcr ref No, io : integer; 

txt length : longint; 
errin : str255; 

{------------------------------------------------------------------------------------} 
PROCEDURE DiskWErr (io : integer); 
Vcr str: str255; 

writetoHdl, savedHdl, strhdl: StringHandle; 
duMMy, errstr: integer; 

BEGIN 
{This is just about the SaMe as DiskRErr (read). Since a few nore errors can 
happen during a write, the structure is just a little different} 
if debug then 
BEGIN 

DebugInProc (proc, 'DiskWErr', mDiskWErr); 
Vriteln (debugger, errin, , err = " io, If) 

END; 
{read resource for writeto} 
writetoHdl := GetString (268); 
{read resource for saved} 
savedHdl := GetString (270); 
Hlock (Pointer(writetoHdl)); 
Hlock (Pointer(savedhdl»); 
errstr : = 0; 
Case io of 

DirFulErr : errstr := 276; 
DskfulErr: errstr := 275; 
IOErr: errstr := 279; 
fLckdErr : errstr := 277; 
VLckdErr, WPrErr : errstr := 278; 
Otherwise 
BEGIN 

NunToString (io, str); 
strhdl := GetString (280); 
str := Concat (strhdl--,' ',str) 

END 
END; 
if errstr <> 0 then 
BEGIN 

strhdl := GetString (errstr); 
str := strhdl--; 
Hlock (Pointer(strhdl» 

END; 
PcraMtext (writetoHdl--,FNaMe,savedhdl--,str); 
SetCursor (arrow); 
duI'u'ly : = StopRIert (256, NIL); 
HUnlock (Pointer(writetoHdl); 
HUnlock (Pointer(savedhdl); 
HUnlock (Pointer(strhdl)); 
Exit (writefile) 

END; 

BEGIN 
{this isn't very different froM read file. The only cOMplication is finding out 
if the file exists. If it doesn't, create it. RIso, assign the inforftation that 
the finder needs to properly associate it with this application.} 
if debug then DebugInProc (proc, 'WriteFile', mWriteFile); 
SetCursor (watchHdl--); 
WriteFile := False; 
io := FSOpen(FNaMe, VRefNo, ref No); 

{SIFC BUG = 1} 
errin := 'FSOpen'; {once again, these only benefit the external debugger.} 

{SENnC} 
If debug then Vriteln (debugger, 'file RefNUI'l =', ref No, If); 

Page 18 



14 Hay 1984 13:37:48 

If io = {file not found Err} -43 then 
BEGIN 

EXAMPLE/FILE, TEXT 

io := Create (FNaMe,VRefNo, 'CARY', 'TEXT'); 
{SIFC BUG = 1} 

errin := 'Create'; 
{SENnC} 

If io <> 0 then DiskWErr (io); 
io := FSOpen(FNaMe, VRefNo, ref No); 

{SIFe BUG = 1} 
errin := 'FSOpen'; 

{SENnC} 
if debug then Writeln (debugger, 'file Ref Nun =' ref No, If); 
If io <> 0 then DiskWErr (io) 

END {Create} 
ELSE If io <> 0 then DiskWErr (io); 
Wi th hTEA A DO 
BEGIN 

txtLength := Ord4(teLength); 
Hlock (hText); 
io := FSWrite (ref No, txtLength, hText A); 
HUnlock (hText) 

END; 
if debug then Write (debugger, ','); 

{SIfC BUG = 1} 
err in := 'FSWrite'; 

{SENDC} , 
If io <> 0 then DiskWErr (io); 
io := SetEOF (ref No, txtlength); 
if debug then Write (debugger, ','); 

{SIFe BUG = 1} 
errin := 'SetEOF'; 

{SENne} 
If io <> 0 then DiskWErr (io); 
io := FSClose (ref No); 
if debug then Write (debugger, '. '); 

{SIFC BUG = 1} 
errin := 'FSClose'; 

{SENnC} 
If io <> 0 then DiskWErr (io); 
io := FlushVol (NIL, VrefNo); {this is iMportant; without it, if the prograM died 
(not possible as a result of a prograMMing ftistake, of course), the directory 
infornation on the disk would not be accurate.} 

if debug then Write (debugger, '. '); 
{SIFe BUG = 1} 

errin := 'FlushVol'; 
{SENnC} 

If io <> 0 then DiskWErr (io); 
if not windowdataAA.titled then 
BEGIN 

SetWTitle(MyWindow, FNaMe); 
WindowDataAA.filevolune := VRefNo 

END; 
WindowDataAA,titled := true; 
WindowDataAA,changed := false; 
WriteFile := True {everything is OK.} 

END; 

Page 19 



14 May 1984 13:37:48 EXRHPLE/FILE. TEXT 

{------------------------------------------------------------------------------------} 
FUNCTION HyPutFile (FilenaMe: str255): Boolean; 
Vcr reply: SFReply; 

wher: point; 
NaMeHdl: StringHandle; 
teMprect: rect; 
teMpport:grafptr; 

BEGIN 
{The user can select the naMe of the file that they wish to save the do~ent with.} 

if debug then DebugInProc (func, 'MyPutFile', ~MyPutFile); 
HyPutFile := False; 
NaMeHdl := GetString (257); 
wher.h : = 100; 
wher. v : = 100; 
Hlock (Pointer(naMehdl»; 
DialogueDeactivate; 
SFPutFile (wher, NaMeHdl--, FilenaMe, NIL, reply); 
HUnlock (Pointer(naMehdl»; 
With Reply DO 
BEGIN 

if debug then Writeln (debugger, 'reply. good = " good, If); 
If good then HyPutFile : = Wri teFile (vrefmlJll, fnaMe) 

END; 
if debug then Writeln (debugger, 'release reserror = " res error, If) 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE CloseRWindow; 
VRR itenhit: integer; 

DBoxPtr: DialogPtr; 
str,str1: str255; 
Goodwri te: Boolean; 
teMprect: rect; 
NaMeHdl: StringHandle; 
NaMePtr: -Str255; 
typ: integer; 
i tenhdl: handle; 
box: rect; 

BEGIN 
{Bll sorts of windows can be closed through this single routine, which is accessed 
by the user through the go-away box on the window, or the Close iteft in the File 
neriu, or by quitting the prograM.} 
if debug then DebugInProc (proc, 'CloseRWindow', ~loseRWindow); 
HyPeek := Pointer (FrontWindow); 
Case Mypeek-.windowkind of 
MyDocUftent : 
BEGIN 

GetWTitle (HyWindow, str); 
itewt : = 0; 
If WindowData- -. changed then {give the user the chance to save his data before 
you throw it away.} 

BEGIN 
DialogueDeactivate; 
if doneflag then 
BEGIN 

NaMeHdl := GetString (266); 
str1 := NaMeHdl--; 
if debug then Writeln (debugger, 'err = I, Reserror, If); 

END 
ELSE str1 := "; 
ParaMtext (str, str1, I " , '); 

IteftHit := CautionRlert (259, NIL) 
END; . 
if debug then Writeln (debugger, 'iteRhit =' iteRhit, If); 
Goodwrite := false; 
if not windowdata--.titled then str:= ; 
If iteRhit = OK {save} then 

Page 20 



14 Hay 1984 13:37:48 EXRHPU:/FILE. TEXT 

if WindowDataAA.titled 
then GoodWrite := WriteFile (WindowDataAA.FileVolUMe, str) 
else Goodwrite := HyPutFile (str); 

If GoodWrite or (iteMhit IN [0, 3] {discard}) then 
BEGIN 

TEDispose (hIE); 
hIE : = NIL; 
DisposHandle (Pointer (WindowData»; 
DisposeWindow (MyWindow) 

END; 
If iteMhit = Cancel then doneflag := false 

END; 
Clipboard : ToggleScrap; 

{SIFC BUG > -I} 
FreeHe~ory: ToggleFree; 

{SENnC} 
OTHERWISE CloseDeskRcc (HyPeekA.windowkind) {can't be anything else} 

END {Case} 
END; 

Page 21 



14 Hag 1984 13:37:48 EXAMPLE/FILE. !EX! 

{5S RboutMyPgI'l} 
{------------------------------------------------------------------------------------} 
PROCEDURE RboutMyEditor; 
vcr str1hdl, str2hdl : stringHandle; 

MyWindow: WindowPtr; 
width, height, counter: integer; 
newcount: longint; 
qui t: boolean; 
txtinfo: fontinfo; 
teMprect, trect1: rect; 
teMpbits: bitMap; 
sz: size; 

BEGIN 
{this bit of fluff shows a wrong Method of telling the user sOMething about 

MY prograM, but it was fun to do.} 
if debug then DebuglnProc (proc, 'AboutMyEditor', mAboutMyEditor); 
DialogueDeactivate; 
str1hdl := GetString (259); 
if debug then Writeln (debugger, 'err = " Reserror, If); 
str2hdl := GetString (260); 
if debug then Writeln (debugger, 'err = " Reserror, If); 
Hlock (~ointer(str1hdl»; 
Hlock (Pdinter(str2hdl»; 
MyWindow := GetNewWindow (256, NIL, Pointer (-1»; 
SetPort (MyWindow); 
counter := 1; 
width := MyWindowA.portrect.right - MyWindowA.portrect.left; 
height := MyWindowA.portrect.botton - MyWindowA.portrect.top; 
TextFont (New York); 
TextMode (srcCopy); 
qui t : = false; 
Repeat 

SystenTask; 
newcount := tickcount + 6; 
TextSize (counter); 
GetFontInfo (txtinfo); 
With txt info Do 
Begin 

Page 22 

MoveTo «width - StringWidth (str1hdl AA » DIV 2, height DIV 2 - descent - leading); 
DrawString (str1hdl AA ); 
MoveTo «width - StringWidth (str2hdl AA» DIV 2, height DIV 2 + ascent); 
DrawString (str2hd1 AA ) 

End; 
If EventRvail (JIlDownMask+keyDownMask, MyEvent) then quit := true; 
counter := counter + 1; 
While newcount > tickcount Do; 

Until quit or (counter = 12); 
newcount := tickcount + 300; {5 seconds} 
while not quit and (tickcount < newcoWlt) Do 
Begin 

Syst enTask; 
If EventRvail (JIlDownMask+keyDownMask, MyEvent) then quit: = true; 

End; 
tenprect := MyWindowA.portrect; 
With txtinfo Do 
Begin 

teMprect.top := height DIV 2 - ascent - descent - leading; 
tenprect.botton := height DIV 2 + ascent + descent 

End; 
trect1 := tenprect; 
OffsetRect (trect1, 0, -trect1.top); 
teMpbits.rowbytes := (width + 7) DIV 8; 
tenpbits.bounds := trect1; 
With Txtinfo Do sz := Ord4 (tenpbits.rowbytes • (ascent·2+descent*2+1eading»; 
tenpbits.baseaddr := pointer (NewPtr (sz»; 
if debug then Writeln (debugger, 'err = " Henerror, If); 
CopyBits (MyWindowA.portbits, tenpbits, tenprect, trect1, srcCopy, NIL); 



14 Hay 1984 13:37:48 

insetrect (trectl, 8, 0); 
teftprect.top := tenprect.top - 2; 
tenprect.bottoft := teMprect.bottoft + 2; 

£XRMPl.E/FlLE. TEXT 

while not quit and (trectl.right > width DIV 2) Do 
Begin 

SysteftTask; {the clock still ticks!} 
CopyBits (tenpbits, HyWindow·.portbits, trectl, teftprect, srcCopy, NIL); 
If teftprect.top > Mywindow·.portrect.top then 
Begin 

insetrect (trectl, 8, 0); 
insetrect (teftPrect, 0, -2) 

End else insetrect (trectl, 8, 2); 
If EventRvail (nDownMask+keyDownMask, MyEvent) then quit := true 

End; 
HUnlock (Pointer(strlhdl»; 
HUnlock (Pointer(strZhdl»; 
DisposPtr(Pointer(tenpbits.baseaddr»; 
if debug then Writeln (debugger, 'err = " Hefterror, If); 
DisposeWindow (nywindow) 

END; 

Page 23 



14 Hay 1984 13:37:48 EXHMPLE/FlLE. TEXT 

{SS HyPrint } 
{------------------------------------------------------------------------------------} 
PROCEDURE CheckButton; 
var boo 1 : boolean; 

i teJll : integer; 
PrinterErrPtr : A Integer; 

BEGIN 
bool := GetNextEvent (MDownMask+keyDownMask, MyEvent); 
i teJll : = 0; 
if (JIlyEvent.what = keydown) and (JIlyEvent.JIlessage MOD 256 = 13) then iteR := 1 
else 
If IsDialogEvent (I'lYEvent) then bool := DialogSelect (JIlyEvent, dlogptr, iteJll); 
If iteJll = 1 then 
BEGIN 

PrinterErrPtr := Pointer(pPrGlobals); 
PrinterErrPtr A 

:= IprRbort; 
END 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE HyPrint(finderfile:integer; filenaJlle: str255); 
Const bot10Mftargin = 20; {QMount of space on the JIlargins of the page in pixels} 

leftftargin = 30; 
rightJllargin = 10; 

Var MyPPort: TPPrPort; 
txt: handle; 
txtptr: ptr; 
pglen, start, finish, counter, count 2, loop, io, nUMpages: integer; 
teJllprect, tl'lprect2, pagerect: rect; 
status: TPrStatus; 
userOK, canceldialog: boolean; 
s: string[l]; 
str: str255; 
nunToGo, nURdone: str255; 
tel'lphdl: stringhandle; 
HyLngth: array [1 .. 99] of integer; 

Begin 
{For heavyweight prograMMers only. Rll JIlodes of printing are handled by Macprint. The 
only things you have to do are: 

iJllage each page, using OuickDraw (or sOJllething that uses QuickDraw); 
. Do it once for the nUJllber of copies the user specified in draft JIlode only. 

You do not have to worry with: 
copies in norJllal or high res. 
which pages the user chose to print. 
tall, wide, etc. 

ReJlleJllber, these Page Setup dialog is printer specific. It will not always be the 
SQl'le, so don't write any code around it. 

The reason this prograJll is heavily se9l'1ented is that printing noma! or high-res 
on line takes gobs of nel'1ory (in this eXCll'lple, up to 25K.) You nay I'li.nil'li.ze the 
by ol'1itting 1 line below and creating a spooled file instead. 

The finderprint boolean deternines whether printing is has been selected while the 
user is running the application, or whether it was selected fron the finder. In the 
application, printing is done in the background. Frol'1 the finder, a sinple dialog 
is presented instead. Because printing takes a large QI'lount of JIlenory, up to 25K, 
background printing is only possible if the l'1eAOry required by the foreground 
process can be kept to a l'li.niJllUl'l. Since this progrQl'l does not yet have strong 
neJllory full checking, you should set the debugging cOl'1pile tine variable DEBUG 
to -1, and reAOve HacsBug froJll the Hac disk, to give the progrQl'l a realistic QI'lount 
of free JIleAOry. KacsBug, when active, can use up to 16K. 

Printing is not re~entrant. If your Rain progrQl'l loop is the print idleproc, 
as below, disable the Page Setup itel'l and change 'Print · to 'Stop Printing' 

Page 24 



14 Hay 1984 13:37:48 EXh"1?LE/FlLE. mer 

in the File ~enu.} 

if debug then DebugInProc (proc, 'HyPrint', mHyPrint); 
printflag := false; 
if debug then 
writeln (debugger, 'finderPrint =', finderprint, '; finderFile =', finderfile, If); 

userOK : = true; 
If finderfile = 1 then 
BEGIN 

SetCursor (arrow); 
userOK:= PrJobDialog (PrintHdl) 

END; 
If userOK then 
BEGIN 

{try to see if enough ~eMOry exists to 
1) duplicate the text portion of the te record 
2) allow the printing pieces to be resident 
3) allow the largest possible segMent to be loaded by the ~ain event loop 
if so, allow the printing to go on in the background. 
Otherwise, put up the 'press a button to cancel' dialog} 

SetCursor (watchhdl**); 
if not finderprint then nUMfiles := 1; 
canceldialog : = finderprint; 
if not canceldialog then 
BEGIN· . 

txt := NewHandle (hte**.telength+16000); 
{this calculation should be ~ade considering: 

the current font size 
the printing ~ode (draft, no~al, hires) 
the textstyle overhead, if any 
blank segMent overhead 
largest segMent + largest local data 
global data overhead --- 16000 is a crude, unprofessional approxi~ation} 

if txt = NIL then canceldialog := true 
else 
BEGIN 

disposHandle (txt); 
txt := hte**.hText; 
ResrvHe~ (hte**.teLength); 
io : = HancIToHand (txt); 

END 
END; 

. if canceldialog then 
BEGIN 

NunToString (finderFile, nunToGo); 
NunToString (nUMfiles, nundone); 
Parantext (filenane,nunToGo,nundone, "); 
dlogptr := GetNewDialog (257, NIL, Pointer(-1»; 
DrawDialog (dlogptr); 
printHdl**.prJob.pIdleProc := mCheckButton; 
txt := hteA*.hText 

END 
else 
BEGIN 

te~phdl := GetString (273); {change to 'Stop Printing'} 
Hlock (pointer(te~phdl»; 
SetIte~ (~yHenus[fileHenu], 8, te~phdl**); 
HUnlock (pointer(teMphdl»; 
printing := true; 
printHdl**.prJob.pIdleProc := mHainEventLoop; 
GetPort (printport); {get the port to be restored at the top of the 
~ain event loop} 

END; 
{fot now, approxi~ate a full page} 
HyPPort := PrOpenDoc (PrintHdl, NIL, NIL); 
With hIE**, printhdl**.prinfo Do 
BEGIN 

pagerect := rpage; 

Page 2S 



14 Hay 1984 13:37:48 EXRHPl..E/FILE. TEXT 

pagerect.left := pagerect.left + leftMargin; 
pagerect.right := pagerect.right - rightMargin; 
pagerect.bottOM := pagerect.bottOM - bottoMMargin 
- (pagerect.bottOM - bottoMMargin) HOD lineheight {get rid of partial line}; 
tenprect := destrect; 
destrect := pagerect; 
TECalText (hTE) 

END; {TECalText could cause the MeMory Manager to nove the hIE and PrintHdl 
handles. So, the 'With' stateMent is required below; the alternative would 
be to use 1 'With' and 'HLock' the handles. Note that 'With' is RUch More 
than a lexical convenience. It actually causes the cOMpiler to optiftize code 
about the fields of hTE-- and printhdlAA.prinfo} 

With hTE--, printhdlA-.prinfo Do 
BEGIN 

tMprect2 := viewrect; 
pglen := (rpage.bottoM - rpage.top - bottoMnargin) DIV lineheight; 
finish := nlines; 
start : = 0; 
counter := 1; 
While start < finish Do 
Begin 

IF finish - start> pglen 
THEN MyLngth[counter] := linestarts[start + pglen] - linestarts[start] 
ELSE MyLngth[counter] := teLength - linestarts[start]; 

if debug then 
BEGIN 

Page 26 

Writeln (debugger, 'MyLngth[',counter:1, 'J = " MyLngth[counter]:5, '; start = " start:5, '; pg] 
Writeln (debugger, 'finish = " finish: 5, '; teLength = " teLength:5, '; ord4(txt) = " ord~(b 

END; 
start := start + pglen; 
counter := counter + 1; 

END; {While start < finish} 
nunpages := counter - 1; 
If not finderprint then 
BEGIN 

destrect := teMprect; 
TECalText (hTE) 

END 
END; 
if debug then Writeln (debugger, 'BJDocLoop = ' PrintHdlAA.prjob.BJDocLoop,lf); 
If PrintHdl-A.prjob.BJDocLoop = BSpoolLoop 
then loop : = 1 
else loop := PrintHdl--.prjob.iCopies; 
SetPort (pointer(MyPPort)); 
TextFont (New York); 
SetCursor (arrow); 
For counter := 1 to loop DO 
BEGIN 

Hlock (txt); 
txtptr := txt"; 
For count2 := 1 to nUMpages DO 
BEGIN {if background printing, duplicate txt handle before starting} 

PrOpenPage (MyPPort, NIL); 
TextBox (txtptr, MyLngth[count2], pagerect, teJustLeft); 
PrClosePage (HyPPort); 
txtptr := Pointer (Ord4 (txtptr) + MyLngth[count2]); 
start := start + pglen 

END; {For count2 } 
HUnlock (txt); 

END; {For counter } 
PrCloseDoc (HyPPort); 
If PrintHdl--.prjob.BJDocLoop = BSpoolLoop then 

PRPicFile (Printhdl, NIL, NIL, NIL, status); {oMit this for spooled files.} 
if canceldialog then DisposDialog (dlogptr) 
else 
BEGIN 

disposHandle (txt); 
printing := false; 



14 Hay 1984 13:37:48 EXAHPLE/FILE. TEXT 

tenphdl := GetString (272); 
Hlock (pointer(teMphdl)); 
SetlteM (nyHenus[fileHenu], 8, tenphdl- A

); 

HUnlock (pointer(teMphdl)); 
SetPort (printport) 

END 
END 

End; 

{Change to 'Print '} 

Page 27 



14 Hay 1984 13:37:48 EXRHPl.E/FILE. TEXT 

{SS Edi tKenu} 
{------------------------------------------------------------------------------------} 
Procedure EditKain (theIteM: integer; cOMMandkey : boolean); 
const lDldo = 1; 

cut = 3; 
kopy = 4; {'Copy' is a Pascal string flDlction} 
paste = 5; 
clear = 6; 
selectRll = 7; 
clipbored = 9; {'ClipBoard' is already used as a windowkind constant} 

VRR DeskRccUp, duru'ly: boolean; 
Dscrap: PScrapStuff; 
off: LongInt; 
ticks: Longlnt; 
teMpport: grafptr; 
box: rect; 
i tel'lhdl, hdl: handle; 
typ, io, teMpstart, teMpend: integer; 
teMpptr: ptr; 
Text Scrap: handle; 
TextLength: integer; 
Ptr2Scr'apLength: .. integer; 

BEGIN 
{Since the Edit Menu does so MUch, it has been broken up into a separate procedure. 
It does not yet support undo, but does support Cutting, Copying and Pasting between 
the Desk Scrap and the TextEdi t Scrap.} 
DeskRccUp := false; 
IF theIteM < selectRll then DeskRccUp := SysteAEdit(theIteM-1); 
If «theIteM in [undo,cut,kopy]) OR DeskRccUp) AND (scrapwind <> NIL) then 
Begin {invalidate clipboard} 

GetPort (tenpport); 
SetPort (scrapwind); 
Invalrect (scrapwind-.portrect); 
SetPort (tenpport) 

End; 
if theIteM in [cut, kopy] then 
BEGIN 

tenpend := hTE--.selend; 
teMpstart := hte"".selstart 

END; 
if (theIteM > Clear) OR NOT DeskRccUp then 
BEGIN 

if debug then Writeln (debugger, 'not systeM edit', If); 
{ Delay so Menu title will stay lit a little only if CONMand key} 
{ equivalent was typed. } 
If cONMandkey then 
BEGIN 

ticks := TickColDlt + 10; 
REPEAT UNIIL ticks <= TickCount 

END; 
{-- see if enough neMory exists for Move} 
CASE theIteM OF 
undo: ; { no Undo/Z in this eXaMple } 
cut: TECut(hTE); { Cut/X} 
kopy: TECopy(hTE); { Copy/C } 
paste: BEGIN { Paste/V } 

DScrap := InfoScrap; 
If DScrap-. scrapState <> LastState then 
BEGIN 

LastState := DScrap".scrapState; 
hdl : = NewHandle (0); 
io : =GetScrap (hdl, '!EXT', off); 
if debug then Writeln (debugger, 'io = " io); 
If io > 0 then 
BEGIN 

TextScrap := Pointer (GlobalValue (TEScrpHandle)); 

Page 28 



14 May 1984 13:37:48 EXBHPLE/FlLE. TEXT 

SetHandleSize (TextScrap, io); 
Ptr2ScrapLength : = Pointer (GlobalRddr (lEScrpLength»; 
Ptr2ScrapLengthA 

:= io; 
Hlock (hdl ); 
Hlock (TextScrap); 
BlockMove (hdlA, TextScrapA, io); 
HUnlock (hdl ); 
HUnlock (TextScrap) 

END; 
DisposHandle (hdl) 

END; 
TEPaste(hlE); 

END; 
clear: TEOelete(hlE); 
selectall: TeSetSelect(O,65535,hlE); 
clipbored: ToggleScrap 
END; { of iten case} 
If theIten in [cut,kopy] then 
BEGIN 

io := ZeroScrap; 

{ Clear } 
{ Select AllIS } 
{ Show, Hide Clipboard} 

If debug then Writeln (debugger, 'zero scrap err =', io, If); 
TextScrap := Pointer (GlobalValue (lEScrpHandle»; 
TextLength := GetHandleSize (TextScrap); 
if debug then 

Writeln (debugger, 'TextScrap ~',ord4(textscrapA), '; TextLength = ',textlength,lf); 
Hlock (TextScrap); 
io : = PutScrap (TextLength, '!EXT', TextScrapA); 
If debug then Writeln (debugger, 'put scrap err =', io, If); 
HUnlock (TextScrap) 

END; 
If theIten in [cut,clear,paste] then WindowdataA-.changed := True; 
If (theIten in [cut .. clear]) then ScrollText (TRUE) 

END {not systenedit} 
END; {of edi tHain } 

Page 29 



14 Hay 1984 13:37:48 EXAMPLE/FILE. TEXT 

{SS Comand } 
{------------------------------------------------------------------------------------} 
PROCEDURE MyDisable; 

const newiten = 1; 
openi t en = 2; 
closeiten = 3; 
savei ten = 4; 
saveasiten = 5; 
revertiten = 6; 
pagesetupiten = 7; 
printi ten = 8; 
qui ti ten = 9; 

lmdoi ten = 1; 
cutiten = 3; 
copyi ten = 4; 
pastei ten = 5; 
cleariten = 6; 
selectalliten = 7; 
clipborediten = 9; 

var COlmter: integer; 
DScrap: PScrapStuff; 
tenppeek: windowpeek; 
stycount: styleiten; 

{------------------------------------------------------------------------------------} 
PROCEDURE KillFE (fileiiens, edititens : edset); 
var counter: integer; 
BEGIN 

{This guy disables the i tens in the File and Eeli t nenus. This approach has a real 
disadvantage: If an entire Menu should be disabled at sone given tine, there is 
no convenient way to do a DrawMenuBar here to disable the i ten in the bar itself.} 

If debug then 
Begin 

DebugInProc (proc, IKillFE', mKillFE); 
Write (debugger, 'file: '); 
For counter := newiten to quititen Do 

IF counter in fileitens THEN Write (debugger, counter:2, " '); 
Write (debugger, '; edit: '); 
For counter := lmdoiten to clipborediten Do 

IF counter in edititens THEN Write (debugger, counter:2, " '); 
Writeln (debugger, If) 

End; 
For counter := 1 to 9 Do 
BEGIN 

If counter in fileitens then DisableIten (nyMenus[FileMenu], counter); 
If counter in edititens then DisableIten (nyMenus[EditMenu], counter); 

END 
END; 

BEGIN 
{This part goes through all of the applicable elenents of the frontnost window, if any 
and fron that decides what operations are allowable at this tine.} 
if debug then DebuglnProc (proc, IMyDisable ', mMyDisable); 
For counter := 1 to 9 DO 
BEGIN 

EnableIten (nyMenus[FileMenu], counter); 
If counter in [UndoIten,CutIten .. SelectAlllten,ClipboredIten] 

then EnableIten (nyMenus[EditMenu], counter) 
END; 
if printing then KillFE ([PageSetupIten], []); {page setup, if printing} 
IF Frontwindow = Nil 
THEN KillFE ([CloseIten .. Printlten], [UndoIten .. -SelectRllIten]) 
ELSE 
BEGIN 

Hypeek := Pointer (FrontWindow); 

Page 30 



14 May 1984 13:37:48 

Case HypeekA.windowkind of 
HyDocunent: BEGIN 

EXRHPl.E/FILE. TEXT 

KillfE ([], [UndoItel'l]); 
If NOT WindowDataAA.titled THEN KillfE ([SaveItel'l,RevertItel'l], []); 
If NOT WindowDataAA.changed THEN KillFE ([SaveItel'l,RevertItel'l], []); 
If hTEAA.teLength = 0 THEN 

KillfE ([SaveItel'l,SaveRsItel'l,PageSetupItel'l,PrintItel'l], [SelectAllItel'l]); 
If hTEAA.selstart = hTEAA.selend THEN 

KillFE ([], [CutItel'l, CopyItel'l, ClearItel'l]); 
DScrap := InfoScrap; 
If DScrapA.scrapSize = 0 then KillFE ([], [PasteItel'l]); 

END; 

Page 31 

Clipboard, FreeMel'lory: KillFE ([SaveItel'l .. PrintIten], [UndoItel'l, CutItel'l .. SelectRllItel'l]); 
OTHERWISE KillfE ([Saveltel'l .. Printltel'l], [SelectRllltel'l]) {systel'l window} 

END {Case} 
END; 
if printing then EnableItel'l (MyKenus[filel'lenu], PrintItel'l) {stop printing} 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE DoCol'll'land (col'll'landkey: bool ean); 
VRR nOl'le, s, str: str255; 

bstr:string[5]; 
dul'lny: 'size; 
err : boolean; 
nUl'l, refnUl'l, theMenu, theltel'l: integer; 
tel'lpPeek: WindowPeek; 
nresult, ticks: longint; 
dipeek: DialogPeek; 
box: rect; 
i teMhdl: handle; 
typ: integer; 
PrinterErrPtr : AInteger; 

BEGIN 
{This handles the actions that are initiated through the Menu Manager} 

if debug then DebuglnProc (proc, 'DoCol'll'land', mDoCol'lnand); 
HyDisable; 
If COl'll'landkey 
then nResult := MenuKey(theChar) 
else nResult := MenuSelect (l'lyEvent.where); 
theMenu := HiWord(nResult); theltel'l := LoWord(l'lResult); 
CRSE theMenu OF 

appleMenu: {enough l'lel'lory to allow desk accessory to open} 
BEGIN 

IF theltel'l = 1 
THEN HboutHyEditor 
ELSE 
BEGIN 

GetItel'l(l'lYMenus[appleMenu],theltel'l,nOl'le); 
refNul'l : = OpenDeskRcc(nOl'le) 

END 
END; 
FileMenu: 
BEGIN 

If FrontWindow <> Nil then 
If HyPeekA.WindowKind = HyDoCUl'lent then 

if windowdataAA.titled 
then GetWTitle (FrontWindow, str) 
else str := "; , 

Case TheItel'l of 
1: OpenRWindow; { New } 
2: HyGetFile; {Open } 
3: CloseHWindow; { Close } 
4: err: = { Save } 

WriteFile (windowdataAA.FileVoIUMe, str); 
5: err:= HyPutFile (str); { Save As } 
6: BEGIN { Revert to Saved} 

If CautionRlert(257, NIL)=OK then 



14 May 1984 13:37:48 EXAMPLE/FILE. TEXT 

err := ReadFile (windowdataAA.FileVolUMe, str); 
ScrollText (FRLSE) {which is the user interfacy thing to do? 

display the top of the file, or display 

END; 

the position in the file the user was looking ~ 
when he said revert. Should I also l'laintain the 
flashing caret position?} 

7: If PrStlDialog (PrintHdl) {Page Setup } 
then ; 
{eventually, store info in docunent resource fork} 

8: if not printing { Print } 
then Printflag := true 
else 
BEGIN 

PrinterErrPtr := Pointer(pPrGlobals); 
PrinterErrPtr A 

:= IprRhort 
END; 

9: doneFlag: = TRUE; { Qui t } 
END 

END; 
EditHenu: EditHain (theltel'l, cOl'll'landkey); 

{SIFC BUG > -l} 
100: , ' 

Case theltel'l OF 
1: ToggleFree; 
2: duJtutry: = HaxHel'l (ciurJrly); 

{SIFC.BUG = 1} 
3: BEGIN 

{SENnC} 

debug := not debug; 
CheckItel'l (HyKenus[DebugMenu], 3, debug) 

END 

END {of debug } 
{SENIlC} 

END; { of l'lenu case } 
HiliteHenu(O) 

END; {of DoComand } 

Page 32 



14 Hay 1984 13:37:48 EXRHPLE/FILE.TEXT 

{------------------------------------------------------------------------------------} 
PROCEDURE DrawWindow; 
VRR tenpPort : GrafPtr; 

tel'lpscrap: handle; 
scraplength, off: longint; 
teMprect, rectToErase: rect; 
str: str255; 
tenpPeek: WindowPeek; 
whichwindow: windowptr; 
tenphTE: TEHandle; 
teMpdata: P1Ydatahandle; 

BEGIN 
{ Draws the content region of the given window, after erasing whatever 

was there before. } 
if debug then DebugInProc (proc, 'DrawWindow', GDrawWindow); 
WhichWindow := Pointer (MyEvent.Message); 
BeginUpdat e (Whi chWindow); 
GetPort (tel'lpPort); 
SetPort (WhichWindow); 
tenpPeek := Pointer (WhichWindow); 
Case teMpPeek". windowkind of 
MyDocUl'lent : 

Begin 
teMprect := WhichWindow".portrect; 
tel'lpData := Pointer (GetWRefCon (WhichWindow)); 
tenphTE := tel'lpData ..... TERecord; 
If tenpPeek".hilited then tenprect.top := tenprect.botton - 15; 
tel'lprect.left := teMprect.right - 15; 
ClipRect (tenprect); 
DrawGrowIcon(WhichWindow); 
Cliprect (WhichWindow".portrect); 
DrawControls (WhichWindow); 
{this only erases the window past the end of text, if any} 
wi th t el'lphTE .... DO 
If nlines - topline < (viewrect.botton - viewrect.top + lineheight) 
DIV lineheight then 

BEGIN 
rectToErase := viewrect; 
rectToErase.top := (nlines - topline) • lineheight; 
EraseRect (rectToErase) 

END; 
TEUpdate(WhichWindow ... visRgn ..... rgnBBox, tel'lphTE) 

End; 
ClipBoard: 
BEGIN 

teMpscrap := NewHandle (0); 
ScrapLength := GetScrap (tenpscrap, 'TEXT', off); 
EraseRect (WhichWindow".portrect); 
tenprect := Whichwindow-.portrect; 
tenprect.left := tel'lprect.left + 4; 
tel'lprect.right := tenprect.right-15; 
If ScrapLength > 0 THEN 
BEGIN 

HLock (tenpScrap); 
Textbox (tel'lpscrap", scrapLength, tenprect, teJustLeft); 
HUnlock (tenpScrap) 

End; 
DisposHandle (tenpscrap); 
tenprect := WhichWindow".portrect; 
tenprect.left := tenprect.right - 15; 
ClipRect (tel'lprect); 
DrawGrowIcon (WhichWindow); 
Cliprect (whichwindow".portrect) 

END; 
{SIFC BUG > -I} 

FreeMenory: BEGIN 
EraseRect(WhichWindow".portRect); 

Page 33 



14 Hay 1984 13:37:48 

MoveTo (5, 12); 
NuAToString (FreeMen, str); 
DrawString (str) 

End-
{SENnC} , 

END; {Case} 
SetPort (tenpPort); 
EndUpdate(WhichWindow) 

END; . {of DrawWindow } 

EXRHPLE/FILE. TEXT Page 34 



14 May 1984 13:37:48 EXAMPLE/FILE. TEXT 

{SS CONTROL} 
{------------------------------------------------------------------------------------} 
PROCEDURE ScrollBits; 
VRR oldvert: INTEGER; 
BEGIN 
{If the visible inforMation has changed, scroll the window here.} 

if debug then DebugInProc (proc, 'ScrollBits', mScrollBits); 
oldvert := topline; 
topline := GetCtlValue(vScroll); 
TEScroll (0, (oldvert - topline)·hTEAA.lineheight, hIE) 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE ScrollUp(theControl: ControLHandle; partCode: INTEGER); 
BEGIN 
{This function is called by TrackControl in the Up button} 

if debug then DebugInProc (proc, 'ScrollUp', ~ScrollUp); 
IF partCode = inUpButton THEN 
BEGIN 

SetCtlValue(theControl, GetCtlValue(theControl)-l); {VScroll} 
ScrollB~ts 

END 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE ScrollDown(theControl: ControLHandle; partCode: INTEGER); 
BEGIN 
{This function is called by TrackControl in the Down button} 

if debug then DebugInProc (proc, 'ScrollDown', mScrollDown); 
IF partCode = inDownButton THEN 
BEGIN 

SetCtlValue(theControl, GetCtlValue(theControl) + 1); {VScroll} 
ScrollBits 

END 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE PageScroll(which: INTEGER); 
VRR nyPt: Point; 

QIIlount: Integer; 
BEGIN 
{This function is called by TrackControl in the Grey part of the scrollbar} 

if debug then DebuglnProc (proc, 'PageScroll', mPageScroll); 
if which = InPageUp 
then anount := -1 
elseanount := 1; 
REPEHT 

GetHouse(nyPt); 
IF TestControl(VScroll,nyPt) = which THEN 

BEGIN 
With HTEAA.viewrect DO 

SetCtlValue(VScroll, GetCtlValue(VScroll) + cmount • 
(botton - top) DIV hTEAA.lineheight); 

ScrollBits 
END 

UNTIL NOT StillDown; 
END; 

{------------------------------------------------------------------------------------} 
PROCEDURE HyControls; 
Var t, code, whichpart: integer; 

RControl: ControLHandle; 
BEGIN {controls} 
{This routine handles the scrollbar} 

if debug then DebugInProc (proc, 'HyControls', mHyControls); 
whichPart ; = FindControl (HyPoint, HyWindow, HControl); 

If debug THEN Writeln (debugger, 'whichpart = ' .. whichpart, if); 

Page 3S 



14 May 1984 13:37:48 EXRHPLE/FILE. TEXT 

If debug THEN Writeln (debugger, 'ord( 8Control = ., Ord4 ( RControl), If); 
{adjust scrollbar range} 
If 8Control <> NIL THEN 
BEGIN 

VScroll := RControl; 
Case whichpart of 
inUpButton: t := TrackControl (VScroll, HyPoint, mscrollUp); 
inDownButton: t := TrackControl (VScroll, MyPoint, mscrollDown); 
inPageUP: PageScroll (whichpart); 
inPageDown: PageScrol1 (whichpart); 
inTIl1.lI'1b: 

BEGIN 
t := TrackControl (VScrol1, MyPoint, NIL); 
ScrollBits 

END 
END {Case HyControl} 

END {RControl <> NIL} 
END; {controls} 

Page 36 



14 Hay 1984 13:37:48 EXRHPLE/FlLE. TEXT 

{SS Initial } 
{--------------------------------------------------------------------~---------------} 
PROCEDURE SetUp; 
VAR counter, vRefNun : INTEGER; 

DScrap : PScrapStuff; 
hdl, hRppparns : handle; 
off : longint; 
apNaMe : Str255; 
NaMeHdl : Handle; 
strhdl : StringHandle; 
duMAyrect : rect; 
tel'lpptr : pRppParl'lS; 
duMMy : boolean; 
FinderFile : integer; 
nyport : GrafPtr; 

BEGIN 
{Ini tialization for a variety of things is done here. This code is · discarded' 
after it is executed by an UnLoadSeg. Rnother good way of initializing a large 
mmber of variables would be to create a custOJll resource which contains initial 
values for all globals. Then, if the globals are fields in a handle, a single 
'GetResource' would initialize all fields.} 

{SIFC BUG' '= I} {This code is only included for external terninal debugging} 
debug := false; {if you want debugging on as soon as the prograM starts, set it here} 
If := chr(10); {Ht present, inforJllation written to the external terninal needs 

its own linefeed.} 
Rewrite (debugger, '.BOUT'); {the serial port not used for downloading froJll Lisa} 

{SENnC} 

if debug then 
BEGIN 

Writeln (debugger, If, If); 
DebuglnProc (proc, 'SetUP', mSetup) 

END; 

{The prograM only executes the code when it is first nID, but it could have gotten 
here in two ways. The user JIlay have opened the application or one of its 
doCUl'lents, or the user JIlay have chosen to print a doCUl'lent. In any case, sOJlle 
cOJllJllOn initialization is needed.} 

SetGrowZone (mMyGrowZone); 
lnitGraf(mthePort); 
lni tFonts; 
lni tWindows; 
FlushEvents(everyEvent,O); 
TElnit; 
InitDialogs(NIL); 

{just in case sOJllething goes wrong .. } 
{I need OuickDraw} 
{I need fonts} 
{I need windows} 

{

start with a clean slate} 
I need TextEdit} 
and I need dialogs, even when printing froJll Finder} 

NOJIleHdl : = NewHandle (4000000); {force Kel'JMgr to allocate all . grow' to app.} 

PrintHdl := Pointer (NewHandle (120»; 
PrOpen; 
PrintDefault (PrintHdl); 
getRppParl'lS(apNaMe,vRefNUJIl,hRppParJIls); 
Hlock(hRppParJllS); 
{** sOJlletiJlle, get file info for apNOJIle, to use folder info as appropriate} 
tel'lpptr := Pointer(hRppParI'lSA); 
iBeaAHdl := GetCursor(l); 
HNoPurge (Pointer(iBeanHdl»; 
watchHdl := GetCursor(4); 
HNoPurge (Pointer(watchHdl»; 
nunfil~s := teJllpptrA.count; 
if debug then Writeln (debugger, 'nUJllfiles: ',nllRfiles, If); 
finderprint := (teJllpptrA.ftessage = 1); 
IF finderprint {User selected . print , froft the Finder} THEN 
BEGIN 

setport (thePort); 

Page 37 



14 Hay 1984 13:37:48 EXRMPl.E/FILE. TEXT 

duMnyrect := screenbits.bounds; 
dunMyrect.bottoM := duMMyrect.top + 16; 
InsetRect (duMMyrect,10,2); 
New (nyPort); 
OpenPort (MyPort); 
TextBox (pointer(ord4(wapNaMe)+1),ord4(Length(apNaMe»,duMMyrect,teJustCenter); 
For FinderFile := 1 to nunfiles Do 
With tenpptrA DO 

BEGIN 
If ftype = 'TEXT' then 
BEGIN 

SetRect (duMMyrect, 0,0,100,100); 
SetPort (MyPort); {to allow text Measure in TeCalText} 
hIE := TENew(dUMMyrect, duMMyrect); 
dunAy := ReadFile (vRefNuM, fNaMe); {asSUMe that page setup is read in as well} 
Unloadseg (~ReadFile); 
HyPrint(FinderFile, fNaMe); 
SetCursor (watchhdl-·); 
TEDispose (hIE); {dispose of text edit stuff} 
tenpptr := Pointer (Ord4 (teMpptr) + length (fNaNe) + 10 -
length (fNaMe) HOD 2) 

END 
{ELSE clear the proper bytes in the appParns hcmdle?} 

END; 
hIE : = NIL; 
ClosePort (MyPort) 

END 
ELSE 
BEGIN 

InitHenus; {initialize Henu Hcmager } 
KyHenus[appleHenu] := GetHenu(appleHenu); 
KyHenus[appleHenu]AA.nenudata[l] := CHR(Rpplesynbol); 
AddResHenu(nyHenus[1], 'DRVR'); { desk accessories} 
For counter := FileHenu to EditHenu DO KyHenus[counter] := GetHenu(counter); 

{SIFC BUG > -1} 
nyHenus[DebugMenu] := GetHenu(100); { tenporary debug nenu } 

{SENnC} 
{SIFC BUG = 1} 

extdebughdl := GetString (261); 
Hlock (Pointer(extdebughdl»; 
HppendHenu (MyHenus[DebugMenu], extdebughdl·-); 
HUnlock (Pointer(extdebughdl»; 
ReleaseResource (Pointer(extdebughdl»; 
CheckIteM (MyHenus[DebugMenu], 3, debug); 

{SENnC} 
FOR counter: =1 TO lastMenu DO InsertHenu(nyKenus[counter],O); 
DrawKenuBar ; 
dragRect : = screenbi ts. bounds; 
dragrect.top := dragrect.top + 20; {leave rOOM for nenu bar} 
growRect := dragRect; 
InsetRect (dragrect, 4, 4); {leave sone of dragged rectangle on screen} 
growrect.left := {replace this with the Max font width + constcmt} 80; 
growrect.top := 80 {IB + 16·3 + slop?}; 
doneFlag := FALSE; 
printflag := false; 
printing := false; 
windowIl\.Jl'1 : = 1; 
windowpos : = 0; 
HyFileTypes[O] := 'TEXT'; 
Laststate := 0; {eventually, init laststate to scrapstate - I?} 
For counter := 1 to nunfiles Do 
With tel'lpptr- DO 

BEGIN 
If ftype = 'TEX!' then 
BEGIN 

HakeAWindow (fNeme, TRUE); {··could async open while this is going on} 
if counter < nUAfiles then DialogueDeactivate; 
If Not ReadFile (vRefNUM, fNeme) then 

Page 38 



14 Hay 1984 13:37:48 

BEGIN 
IEDispose (hIE); 
hIE : = NIL; 

EXHHPLE/FILE. TEXT 

DisposHandle (Pointer (WindowData)); 
DisposeWindow (MyWindow) 

END; 
tenpptr := Pointer(Ord4 (tenpptr) + length(fNane) + 10 - length(fNane) HOD 2) 

END 
END; 
If Frontwindow = NIL then OpenaWindow; 
{if sonething 'TEXT' is in deskscrap then allow paste} 
DScrap := InfoScrap; 
LastState := DScrapA,scrapState; 
If DScrapA,scrapsize > 0 then LastState := LastState - 1; 
{what about when scrapsize is too big?} 
Scrapwind := NIL; 

{SIFC BUG > -I} 
Freewind := NIL 

{SENnC} 
END; 
Hunlock (happParI'lS) 

END; { of Setup} 

Page 39 



14 Hay 1984 13:37:48 EXRHPl..E IFIll. TEXT 

{SS } 
{------------------------------------------------------------------------------------} 
PROCEDURE CursorHdjust; 
VHR l'lOusePt: Point; 

teI'lpport: grafptr; 
tenppeek: Windowpeek; 

BEGIN 
{' Take care of application tasks which should be executed when the JIlachine has 

nothing else to do, like changing the cursor frOM an arrow to an I -BeCll'l when it 
is over text that can be edited. } 

{SIFC BUG >-l} 
{ If the aMount of free MeMory is being displayed in its own window, and if it has 

changed, then create an update event so that the correct value will be displayed.} 
If (FreeWind <> NIL) 
and (FreeMeM <> OldMel'l) then 
BEGIN 

OldMeJll : = FreeMeI'l; 
GetPort (teJllpport); 
SetPort (FreeWind); 
InvalRect (FreeWindA.portrect); 
SetPort (teftPport) 

END; 
{SENnC} 

GetMouse(MousePt); {where the cursor is, currently (local to the tOPI'lost window)} 
If hIE <> NIL {if text edit is currently active, (doCUMent window is tOPMOst)} 
THEN ' 
BEGIN 

IEldle (hIE); 
IF (PtInRect(I'lOusePt, hIEAA.viewrect» {In the text edit viewrect area,} 
THEN SetCursor(iBeaMHdl- A) { Make the cursor an I-beaM.} 
ELSE SetCursor(arrow) 

END 
ELSE 
BEGIN 

{let desk accessories set their own?} 
tenppeek := pointer(FrontWindow); 
If tenppeek = NIL then SetCursor (arrow) 
else if tenppeek-.windowkind > 1 then Set Cursor (Arrow) 

END 
END; 

{------------------------------------------------------------------------------------} 
FUNCTION HyGrowZone; 
BEGIN 
{This function is called by the JIlenory nanager whenever JIlOre nenory is requested than 
available. The only tine you'll see it in this prograM is when it ini tally runs 
(which is nomal) and when it is not checking neJllory availability when it should. 
Your prograM should not rely on resolving nenory problel'lS here, because it could be 
called by the ROM, where, at present, insufficient ne!'lory cases are not always 
handled gracefully.} 
if GZCritical then 
BEGIN 

if debug then Wri1eln (debugger, 'nyGrow cbneeded = " cbneeded, If); 
{Make all data stuctures, including user data, that can be safely released, 
purgable. If the user has data in nenory that has not yet been saved, and if 
you were not expecting this routine to be called, then the call cQl'le fron ROM 
and is iMportant to give the user the chance to save their work. Even if 
their data is successfully saved, it is likely that the progrQl'l will have to 
restart or quit 10 the Finder.} 

END; 
HyGrowZone := 0 {for now, the I'lenory requests fails unconditionally} 

END; 

{------------------------------------------------------------------------------------} 
PROCEDURE MainEventLoop; 
Var code: integer; {the type of nousedown event} 

dUMY: boolean; 

Page 40 



14 Hay 1984 13:37:48 EXBHPLE/FlLE. TEXT 

str : str255; 
teftPport : Grafptr; 

BEGIN 
{TIris event loop handles l'Iost of the col'D'lUI'lications between this progrcm and events 
taking place in the outside world. This procedure is also called as, the printer 
idle procedure so that the progrcm appears to be doing background printing.} 

if printing then 
BEGIN 

getport (teApport); 
setport (printport) 

END; 
REFER! 

CursorRdjust; 
Systel'lTask; 
if print flag then 
BEGIN 

GetWTitle (HyWindow, str); 
Hyprint(l, str) {mJl'lber of files to print, what to call it} 

END; 
duI'lI'ly := GetNextEvent(everyEvent,I'IYEvent); 
CASE nyEvent.what OF 
l'IOuseDown: 

BEGIN' 
code := FindWindow(I'IYEvent.where,tenpWindow); 

CASE code OF 
inMenuBar: DoCol'1l'land (FRLSE); 
inSysWindow: InSystenWindow; 
inDrag: DragWindow(teMpWindow,l'IyEvent.where,dragRect); 
inGoRway: IF TrackGoRway(teI'lpWindow,l'lyEvent.where) THEN CloseRWindow; 
inGrow: If Hypeek-.windowkind in [HyDoCUl'lent,Clipboard] then GrowWnd; 

inContent: 
BEGIN 

IF teMpWindow <) FrontWindow 
THEN SelectWindow (teI'lpWindow) 
ELSE 

IF hTE < > NIL 1lIEN 
BEGIN 

HyPoint := HyEvent.where; 
GlobalToLocal (HyPoint); 
IF PtInRect (HyPoint, hTE--.viewrect) 
THEN 
BEGIN 

If debug THEN Writeln (debugger, 'point in HIE viewrect', If); 
IF (BitBnd (I'IYEvent.ftOdifiers, ShiftKey) <> 0 ){ Shift key pressed} 
THEN TEClick (HyPoint, TRUE, hTE) 
ELSE TEClick (HyPoint, FRLSE, hTE); 

END 
ELSE HyControls 

END {hTE <> NIL} 
END {in Content} 

END { of code case } 
END; { of l'louseDown } 

keyDown, autoKey: 
BEGIN 

theChar := CHR(l'lyEvent.l'lessage HOD 256); 
IF BitBnd(RYEvent.l'IOdifiers,CI'IdKey) <> 0 
THEN DoCol'Jl'land(TRUE) 
ELSE IF hTE < > NIL THEN 
BEGIN' 

TEKey(theChar,hTE); 
windowdata-" . changed : = true; 
ScrollText (TRUE); 

END 
END; { of keyDown } 

{Hac characters use 8 bits} 
{ Col'll'land key pressed } 

Plzge 41 



14 I'tly 1984 13: 37: 48 

activateEvt: HyRctivate; 
updateEvt: DrcWWindow; 

£XRHPLE/FILE. Tm 

nulLEvent: If doneflag HND (FrontWindow <> NIL) Then CloseRWindow; 
END; { of event case } 
UnloadSeg (mInSystenWindow); Isegnent Utilities} 
UnloadSeg (mReadFile); segnent ReadFile} 
UnloadSeg (mWriteFile); segnent WritFile} 
UnloadSeg (mRboutMyEditor); segnent RboutHyPgn} 
UnloadSeg (mHyDisable); {segnent DoConnand} 
UnloadSeg (mScrollbits); {segnent Control} 
if not printing then UnloadSeg (mHyPrint); 

UNTIL (doneFlag RND (FrontWindow = NIL» or Printing; 
if doneFlag RND (FrontWindow = NIL) then clearnenubar; {prevent the user froM 
doing anything until printing is through} 

if printing then 
BEGIN 

getport (printport); 
setport (tenpport) 

END 
END; 

BEGIN { Plain progrCD'l } 
{Please doh.' t look at this prograM as the the last word in eXCD'lple prograMMing" and 
be very cautious about porting SOMe portion of this progrCD'l over to your own code.} 

SetUp; 
UnloadSeg (5Setup); 
if not finderprint then MainEventLoop; 
SetCursor (watchHdl AA

); 

PrClose 
END. 

Page 42 



14 Hay 1984 13:48:30 EXRHPLE IFILERSH. TEXT 

._------------------------------------------------------------------------------, 

; 

These routines provides the Pascal prograMMer with asseAbly-like constructs 
that Pascal can not perforM easily. 

FUNCTION GlobalRddr 

Given a low fteftory location nCfte (a constant .in the eXaMple progrQft File), 
the correct address for the routine is returned. This function should be 
declared in the first part of your progrCft as : 

FUNCTION GetGlobalRddr (GlobalConst : Integer): Ptr; External; 

Suppose a pointer in your progrQlll is declared as: 

VRR softePtr : Ptr; 

; To store a value in a global location, do the following: 

; 

; 

; 

; 

softePtr := GetGlobalRddr (RGlobal); 
softePtr- := NewGlobalValue; 

Note.that since Ptr is defined as ·signedbyte, this only writes a single byte. 

To write to softe other data type, you ftust declare a pointer to that 
data type, and then use the Pointer function to equate the result of this 
function to that data type. For eXQIIlple, to write a long word, declare a new 
variable: 

VRR bignUMptr = -LongInt; 

Then, equate the variable to the function, and assign a value to it to perforft 
the write: 

bignUMptr := Pointer (GetGlobalRddr (RGlobal»; 
bignUMptr- := softe long integer expression 

FUNCTION GlobalValue 

Given a low fteftory location nCfte (a constant in the eXaMple progrQlll File), 
the value stored at that low fteftory address is returned. This function should 
be declared in the first part of your progrCft as : 

FUNCTION GlobalValue (GlobalConst : Integer): LongInt; External; 

Just assign the function result to a long integer to return that value. 

To read softe other data type, you rrust declare a pointer to that data type, 
and then use the Pointer function to equate this result to that data type. 

For exCftple, to read a global value into your own special handle, assign: 

MyHandle := Pointer(GlobalValue (RGlobal»; 

Note that .this does not create a new or duplicate hcmdle called HyHandle. This 
only provides you with a nethod of nanipulating the existing handle contained in 
RGlobal. 

, MODIFICATION HISTORY 

06-Feb-84 CRe New Today 
--------------------------------------------------------------------------------, 

.NOLIST 

. INCLUDE TlRsniGrafTypes.Text 

. INCLUDE TlRsniOuickHacs.Text 

. INCLUDE Tlasn/SysEqu.Text 

Page 1 



14 May 1984 13:48:30 EXAMPLE/FILEHSM. TEXT 

. INCLUDE TlRsnlToolEqu.Text 

. INCLUDE TlRsn/ToolMacs.Text 

.LIST 

FUNCTION GlobalRddr (GlobalConst : Integer): Ptr; 
FUNCTION GlobalValue (GlobalConst : Integer): LongInt; 

.FtlNC GlobalRd~ 0 

.DEF GlobalVa 

MOVEQ tto~ D1 ; address entry 
BRR.S GlobStart 

GlobalValue MOVEQ ttl, D1 ; data entry 

GlobStart MOVE. L (SP)+, R1 ;preserve return address 
MOVE.W (SP)+~ DO ;the routine tt requested 
RSL tt2,DO ;nake it into a long offset 
LER TableBase, RO ; get beginning of table 
MOVE.L O(RO, DO), RO ;get the value out of the table 
TST 01 ;which entry? 
BEO.S all ;branch if address 
MOVE. L (RO),RO ;dereference if data 

iil1 MOVE.L RO, (SP) ; and put value in function return 
JMP (Rl) ;bye for now 

; These addresses were chosen because they are frequently needed by applications~ 
and are not readily available in existing globals or ToolBox calls. 
any address can be read as data or written to as an address. 

; Rddi tional globals will be added as they are requested. 

TableBase . LONG 
. LONG 
•. LONG 
. LONG 
. LONG 
. LONG 
. LONG 
. LONG 
. LONG 

n:ScrpLength 
n:ScrpHandle 
dlgfont 
ScrVRes 
ScrHRes 
doubleTine 
caretTine 
RNUl'lber 
RCount 

;the length of the private TextEdit scrap 
; the handle to the private TextEdi t scrap 
; the font used inside alerts and dialogs 
;screen vertical resolution (dots/inch) 
;screen horizontal resolution (dots/inch) 
;double click tine in 4/60's of a second 
;caret blink tine in 4/60's of a second 
;the active alert 
;the alert stage level 

------------------------------------------------------------------------------------, 
; 

Procedure RutoScroll; 
; 

; 
; 

The location of this procedure is passed to TextEdit in the clikLoop field. 
It is called by TextEdit when the user drags a selection range outside of 
the viewrect. This calls the pascal procedures ScrollUp and ScrollDown 
to cause the screen to scroll, if possible, and the selection range to be 
extended. 

-------------------------------------------.----------------------------------------, 

.PROC RutoScroll~O 

;offsets for Pascal globals 

MyWindow 
VScroll 

.EOU 

.EOU 
-4 
-20 

.REF ScrollDown 

.REF ScrollUp 

PER tenppoint 
GetMouse 

HDVE.V tenppoint,DO 

;Now see if we're in the text recto 

;offset for current application window 
;the window's vertical scroll bar 

;get local Rouse point to DO 

Page 2 



14 May 1984 13:48:30 EXRHPI..E/FILERSM. TEXT 

LEA 
CMP.W 
BLT.S 
CHP.W 
BLE.S 

Condition,RO ;a place to store the result 
TEViewRect+Top(RJ), DO ; COl'lpare vi th Top 
RS OutOfRect ; Yep, he Moved above top! 
TEViewRect+BottoM(RJ),DO ;is House < bottOM? 
RS_NoHove ; no, don't scroll. 

RS_OutOfRect HOVE SR, (RO) 
HOVE.L -4(RS),-(SP) 
SetPort 

HoVE.L -4(RS),RO 
PER PortRect(RO) 
_ClipRect 
HOVE.L -20(RS),-(SP) 
HOVE Condition,CCR 
BLT.S RS_OffTop 

;We're off the bottOM. do a scroll Down. 
HOVE.W #inDownButton,-(SP) 
JSR ScrollDown 
BRR.S RS_RestorePort 

;We're off the top. Do a scroll Up. 
RS_OffTop .' HOVE. W #inUpButton, -(SP) 
RS_OT2 JSR ScrollUp 
RS_RestorePort HOVE.L TEGrafPort(RJ),-(SP) 

SetPort 
PER TEViewRect(RJ) 
_ClipRect 

RS_NoMove HOVEQ #-1, DO 
RTS 

Condition 
tel'lppoint . LONG 0 

. END 

;save top or bottoft in Condition 
;global HyWindowPtr 
;set application's port 
;global HyWindowPtr 
;global HyWindowPtrA.portrect 
;set the application's clip 
;push handle for scroll, below 
;get back top or bottOM condition 

;get const. req'd by ScrollDown. 

; go try again. 

;get constant req'd by ScrollUp 
;go scroll the line. 

;restore TE's port 

;restore the clip 

;return non-zero! 

Page 3 



14 May 1984 13:49:25 EXRHPLE/FlLER. TEXT 

• FileResDef -- Resource input for saMple application naMed File 
• Written by Macintosh User Education 

ExanplelFile.Rsrc 

Type CRRY = sm 
,0 

File Version 1.0 February 28, 1984 

Type FREF = HEXA 
,128(32) 

4150504C 
0000 
00 

Type FREF = HEXA 
,129(32) 

54455854 
0001 
00 

Type BNDL = HEXA 
,128 

434152590000 
0001 
49434E230001 
0000 0080 
0001 0081 
465245460001 
0000 0080 
0001 0081 

Type ICWt = HEXA 
,128(32) 

00000000 
00000000 
00000000 
00020000 
00050000 
00088038 
00104044 
00202082 
00401102 
00800R82 
01000544 
02000RR8 
04001550 
08002RR0 
10005540 
2000RRRO 
40001510 
80010R08 
40000410 
20030820 
1003R040 
08038080 
04000100 
02000200 
01000400 
00800800 
00401000 
00202000 
00104000 
00088000 
00050000 
00020000 
00000000 
00000000 

Page 1 



14 May 1984 13:49:25 

00000000 
00020000 
00070000 
000F8038 
001FC07C 
003FEOFE 
007FF1FE 
OOFFFBFE 
01FFFFFC 
03FFFFF8 
07FFFFFO 
OfFFFFEO 
1FFFFFCO 
3FFfFFEO 
7FFFFFFO 
FFfFFFF8 
7FFFFFFO 
3fFFFFEO 
1FFfFFCO 
OFFFFF80 
07FFFFOO 
03FfFEOO 
01fFFCOO 
00FFF800 
007FF000 
003FEOOO 
001FCOOO 
000F8000 
00070000 
00020000 

,129 (32) 
OFFfF800 
08000400 
08000600 
08000500 
08000480 
08000438 
08000444 
08000682 
08000102 
0800.0282 
08000544 
08000RR8 
08001550 
08002RR0 
08005550 
0800RR90 
08001510 
08010R10 
08000410 
08030810 
0803R010 
08038010 
08000010 
08000010 
08000010 
08000010 
08000010 
08000010 
08000010 
08000010 
08000010 
OFFFFFFO 
OFFfF800 
OFFFFCOO 
OFFFFEOO 
OFFFFFOO 

EXRMPU:/FlLER. TEXT Page 2 



14 Hay 1984 13: 49:2S 

OFFFfF80 
0F'FFFFF8 
OF'FFFFFC 
OFFFFFFE 
OFFFFFFE 
OF'FFFFFE 
OFFFfFFC 
OFFFFFF8 
OFFFFFFO 
OFFFFFEO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OF'FFFFFO 
OFFFFFFO 
OFFFfFFO 
OFFFfFFO 
OFFFfFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OFFFFFFO 
OF'FFFFFO 
OF'FFFFFO 

Type MENU 
,1 (4) 
III 

About File 
(-

,2 (4) 
File 

New 
Open 
Close 

. Save 
Save Rs 
Revert to Saved 
Page Setup 
Print 
Quit 

,3 (4) 
Edit 

Undo/Z 
(
Cut/X 
Copy/C 
Paste/V 
Clear 
Select 81118 
(-
Show Clipboard 

,100 (4) 
Debug 

Show FreeHel'l 
COl'lpact Hel'1Ory 

• doCUl'lent window 
Type WIND 

EXRHPLE/FlLER. TEXT Page 3 



14 May 1984 13:49:25 

x 
,256 (4) 

50 40 158 472 
Visible NoGoRway 
2 
o 

,257 (32) 
Clipboard 

262 4 337 446 
Visible GoRway 
o 
o 
,258 (32) 

FreeMen 
320 442 341 511 
Visible NoGoRway 
o 
o 

• vertical scroll bar 
Type CNTI. 

x 
,256 (4) 

-1 395 236 411 
invisible 
16 
o 
000 

Type DITL 
,256 (32) 
4 

Yes 

BtnIteJll Enabled 
65 13 85 83 

BtnIteJll Enabled 
95 300 115 370 

Cancel 

No 

BtnIten Enabled 
95 13 115 83 

StatText Disabled 
8 60 60 370 

EXAMPLE/FILER. TEXT 

Do you want to save changes nade to '·0'-1? 

,257 (32) 
3 

OK 

BtnIten Enabled 
90 267 110 337 

StatText Disabled 
10 60 70 350 

An error occured while AO the disk. The file 'AI' was not A2. 

StatText Disabled 
90 10 110 260 

,258 (32) 
3 

Page 4 



14 Hay 1984 13:49:25 

Btnltel'l Enabled 
62 300 82 370 

Cancel 

StatText Disabled 
5 10 60 370 

EXRHPI..E/FlLER. TEXT 

The dOCUl'lent '~O' is being spooled to disk and printed. 

StatText Disabled 
62 10 82 270 

"1 of "2. 

OK 

,259 (32) 
3 

Btnltel'l Enabled 
90 13 110 83 

Btnltel'l Enabled 
90 267 110 337 

Cancel 

StatText Disabled 
10 60 70 350 

Page 5 

Are you sure you want to go back to the old version of this file? You will lose any changes ttat 

OK 

,260 (32) 
3 

Btnltel'l Enabled 
90 13 110 83 

Btnltel'1 Enabled 
90 267 110 337 

Cancel 

StatText Disabled 
10 60 70 350 

R file by that nOl'le is already open. '''0' will be opened instead. 

Type DLOG 
• this is the 'press cancel to stop printing' dialog 

,257 (32) 
40 66 125 446 
Visible 1 NoGoRway 0 
258 

Type ALRT 
• a stop alert - an e"rror occured while reading or wi ting the disk 

,256 (32) 
60 81 180 431 
257 
5555 

• a caution alert - a file is changed and 'Revert to Saved' is chosen 
,257 (32) 
60 81 180 431 
259 
CCCC 

• a note alert - the file selected is already on the desktop 
,258 (32) 
60 81 180 431 
260 
CCCC 



14 May 1984 13:49:25 EXRHPLE/FlLER. TEXT 

• a caution alert - the file is being closed, but has not yet been saved 
,259 (32) 
60 66 180 446 
256 
4444 

Type STR 
,256 (36) 

Untitled
,257 (32) 

Save this dOCUMent as: 
,259 (32) 

File, by Cary Clark Version 1.0 February 7, 1984 
,260 (32) 

This eXCMple was written to deMonstrate the Macintosh User Interface. 
,261 (36) 

External Debugger 
,262 (32) 

Show Clipboard 
,263 (32) 

Hide Clipboard 
,264 (32) 

Show FreeMeM 
,265 (32)' 

Hide FreeMeM 
,266 (32) 

before quitting 
,267 (32) 

reading froM 
,268 (32) 

writing to 
,269 (32) 

loaded 
,270 (32) 

saved 
,271 (32) 

nore files to go. 
,272 (32) 

Print 
,273 (32) 

Stop Printing 
,274 (32) 

Copy of 
,275 (32) 

This disk is full. 
,276 (32) 

The disk directory is full. 
,277 (32) 

This file is locked. 
,278 (32) 

The disk is locked. 
,279 (32) 

The disk is unreadable. 
,280 (32) 

ID = 

Type CODE 
EXCIJ'lple/fileL,O 

Page 6 



MACINTOSH USER EDUCATION 

Index to Technical Documentation /TOOLBOX/INDEX 

See Also: Inside Macintosh: A Road Map 
Programming Macintosh Applications in Assembly Language 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Scrap Manager: A Programmer's Guide 
Toolbox Utilities: A Programmer's Guide 
Macintosh Packages: A Programmer's Guide 
The Memory Manager: A Programer's Guide 
The Segment Loader: A Programmer's Guide 
The File Manager: A Programmer's Guide 
The Structure of a Macintosh Application 
Putting Together a Macintosh Application 

Modification History: First Draft 
Second Draft 
Third Draft 
Fourth Draft 

Caroline Rose 
Caroline Rose 
Caroline Rose 
Caroline Rose 

8/5/83 
10/5/83 
1/9/84 
6/5/84 

ABSTRACT 

This is an index to all the documentation listed under "See Also:" 
above, as of 6/5/84. It will be expanded and updated periodically. 



INDEX 1 

INDEX 

The page numbers are preceded by a two-letter designation of which 
manual the information is in: 

AL Programming Macintosh Applications in 

CM 
DL 
DS 

Assembly Language 
The Control Manager: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 

2/27 /84 
5/30/84 

11/16/83 
9/26/83 
6/20/83 
5/21/84 

EM The Event Manager: A Programmer's Guide 
FL The File Manager: A Programmer's Guide 
FM The Font Manager: A Programmer's Guide 2/7 /84 

10/10/83 MM 
MN 
PK 
PT 
QD 

The Memory Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
Macintosh Packages: A Programmer's Guide 
Putting Together a Macintosh Application 
QuickDraw: A Programmer's Guide 

11/1/83 
5/7 /84 
4/9/84 
3/2/83 

RD Inside Macintosh: A Road Map 12/22/83 
3/8/84 

6/24/83 
11/16/83 

2/8/84 
9/28/83 

2/8/84 
5/30/84 

RM 
SL 
SM 
ST 
IE 

The Resource Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
The Scrap Manager: A Programmer's Guide 
The Structure of a Macintosh Application 
TextEdit: A Programmer's Guide 

TU 
WM 

The Toolbox Utilities: A Programmer's Guide 
The Window Manager: A Programmer's Guide 

A 
abort event EM-S 
access path FL-9 
access path buffer FL-lO 
action procedure CM-lO, CM-20, 

in control definition function 
activate event EM-6, WM-17 
active 

control CM-7 
window WM-4 ,. WM-23 

AddPt procedure QD-65 
AddReference procedure RM~26 

AddResMenu procedure MN-17 
AddResource procedure RM-25 
alert box DL-5 
Alert function DL-23 
alert stages DL-15 

CM-22 
CM-30 

alert template DL-8, DL-29 , DL-31 
alert window DL-7 
AlertTemplate data type DL-29 
AlertTHndl data typeDL-29 
AlertTPtr data type DL-29 
Allocate function 

high-level FL-21 
low-level FL-44 

allocated block MM-5 
allocation block FL-4 

6/5/84 Rose 

AppendMenu procedure MN-17 
application font FM-6 
application heap AL-7, MM-4 

limit MM-12, MM-28 
subdividing MM-50 

application parameters SL-4 
application window WM-4 
ApplicZone function MM-30 
ascent FM-18 
asynchronous execution FL-24 
auto-key event EM-5 

B 
BackColor procedure QD-46 
BackPat procedure QD-39 
base line FM-I5 
BeginUpdate procedure WM-32 
Binary-Decimal Conversion Package PK-20 
bit image QD-12 
BitAnd function TU-8 
BitClr procedure TU-7 
bitMap QD-I3 
BitMap data type QD-l3 
BitNot function TU-8 
BitOr function TU-8 
BitSet procedure TU-7 

/TOOLBOX/INDEX 



2 INDEX 

Bit5hift function TU-8 
BitTst function 'TU-7 
BitXor function TU-8 
block MM-5 
block contents MM-5 
block header MM-5 

structure MM-19 
block map FL-SS 
BlockMove procedure' MM-47 
BringToFront procedure WM-25 
bundle FL-Il, 5T-6, 5T-8 
button CM-5, OL-I0 
Button function EM-19 
Byte data type MM-13 

C 
CaicMenu5ize procedure ,MN-26 
CalcVBehind procedure WM-37 
CalcVis procedure WM-36 
CalcVisBehind procedure WM-37 
caret TE-7 
CautionAlert function OL-24 
Chain routine 5L-6 
ChangedResource procedure RM-24 
character code EM-8 

table EM-2S 
character height FM-16 
character image FM-15 
character offset FM-18 
character origin FM-15 
character posi tion TE-6' 
character rectangle FM-16 
character style OD-23 

of menu items MN-12 
character width OD-44 , FM-16 
Chars data type TE-14 
CharsHandle data type TE-14 
CharsPtr data type TE-14 
CharWidth function 0D-44 
check box CM-S, DL-I0 
check mark in a menu MN-6, MN-II 
CheckItem procedure MN-23 
CheckUpdate function WM-35 
ClearMenuBar .procedure MN-19 
ClipAbove procedure WM-36 
ClipRect procedure 00-38 
clipRgn of a grafPort OD-19 
Close function 

high-level FL-22 
low-level FL-45 

closed file FL-9 
CloseDeskAcc procedure 
CloseDialog procedure 

6/5/84 Rose 

D5-7 
DL-20 

ClosePicture procedure 0D-62 
Close Poly procedure OD-63 
ClosePort procedure 0D-36 
CloseResFile procedure RM-16 
CloseRgn procedure OD-56 
CloseWindow procedure WM-22 
color drawing OD-30 
ColorBit procedure OD-46 
compaction, heap MM-9, MM-39 
CompactMem function MM-39 
completion routine FL-24 
configuration routine EM-23 
content region of a window WM-6 
control CM-4 

defining your own CM-24 
in a dialog/alert DL-I0 

control definition function eM-B, CM-26 
control definition ID CM-8, CM-24 
control list WM-I0, CM-l1 
Control Manager RD-6, CM-4 
control record CM-I0 
control template CM-9, CM-30 
ControlHandle data type CM-12 
ControlMessage data type CM-26 
ControlPtr data type CM-12 
ControlRecord data type CM-13 
coordinate plane 00-6 
CopyBits procedure 00-60 
CopyRgnprocedure OD-S5 
Could Alert procedure DL-25 
CountMItems function MN-26 
CountResources function RM-19 
CountTypes function RM-18 
Create function 

high-level FL-18 
low-level FL-37 

CreateResFile procedure RM-16 
creator of a file 5T-3 
current heap zone MM-5 
current resource file RM-7, RM-18 
CurResFile function RM-18 
CursHandle data type TU-I0 
cursor QD-15 
Cursor data type 0D-16 
CursPtr data type TU-I0 

D 
data buffer FL-9 
data fork RM-6, FL-6 
DateForm data type PK-16 
default button DL-5' 
default volume FL-5 
definition files AL-3 

/TOOLBOX/INOEX 



Delete function 
high-level FL-24 
low-level FL-51 

DeleteMenu procedure MN-18 
dereferencing a handle MM-23, MM-48 
descent FM-18 
desk accessory DS-3 

defining your own DS-10 
Desk Manager RD-7, DS-3 
desk scrap SM-3, SM-13 

data types SM-7 
desktop WM-4 
Desktop file ST-5 
destination rectangle TE-5 
DetachResource procedure RM-22 
device driver RD-8 
Device Manager RD-8 
device subclass FM-12 
dial CM-6 
dialog box DL-4 
Dialog Manager RD-7, DL-4 
dialog record DL-13 
dialog template DL-8, DL-28 , DL-30 
dialog window DL-6 
DialogPeek data type DL-13 
DialogPtr data type DL-13 
DialogRecord data type DL-14 
DialogSelect function DL-21 
DialogTemplate data type DL-28 
DialogTHndl data type DL-28 
DialogTPtr data type DL-28 
DIBadMount function PK-37 
DiffRgn procedure OD-57 
DIFormat function PK-39 
DILoad procedure PK-37 
dimmed 

control CM-7 
menu item MN-5, MN-6 
menu ti tIe MN-5 

disabled 
dialog/alert item DL-10 
menu MN-5, MN-22 
menu item MN-6, MN-13, MN-22 

Disableltem procedure MN-22 
Disk Driver RD-8 
Disk Initialization Package PK-35 
disk-inserted event EM-5 
dispatch table AL-8 
display rectangle DL-12 
DisposControl procedure CM-16 
DisposDialog procedure DL-20 
DisposeControl procedure CM-16 
DisposeMenu procedure MN-16 
DisposeRgn procedure 0D-54 

6/5/84 Rose 

INDEX 3 

DisposeWindow procedure WM-23 
DisposHandle procedure MM-31 
DisposMenu procedure MN-16 
DisposPtr procedure MM-35 
DisposWindow procedure WM-23 
DIUnload procedure PK-37 
DIVerify function PK-39 
DIZero function PK-39 
dlgHook function 

SFGetFile PK-33 
SFPutFile PK-29 

document window WM-4 
drag region of a window WM-7 
DragControl procedure CM-21 
DragGrayRgn function WM-33 
DragTheRgn function WM-35 
DragWindow procedure WM-28 
DrawChar procedure OD-44 
DrawControls procedure CM-18 
DrawDialog procedure DL-23 
DrawGrowIcon procedure WM-26 
drawing OD-27 

color OD-30 
DrawMenuBar procedure MN-18 
DrawNew procedure WM-36 
DrawPicture procedure OD-62 
DrawString procedure OD-44 
DrawText procedure OD-44 
drive number FL-5 
drive queue FL-62 
DrvQEl data type FL-62 

E 
edit record TE-4 
Eject function 

high-level FL-17 
low-level FL-36 

empty handle MM-10, MM-41 
EmptyHandle procedure MM-41 
EmptyRect function OD-48 
EmptyRgn function 0D-58 
enabled 

dialog/alert item DL-ll 
menu MN-23 
menu item MN-23 

Enableltem procedure MN-23 
end-of-file 

logical FL-7 
physical FL-6 

EndUpdate procedure WM-32 
EqualPt function QD-65 
EqualRect function 0D-48 
EqualRgn function QD-58 

/TOOLBOX/INDEX 



4 INDEX 

EraseArc procedure QD-53 
EraseOval procedure QD-50 
ErasePoly procedure QD-65 
EraseRect procedure QD-49 
EraseRgn procedure QD-59 
EraseRoundRect procedure QD-51 
ErrorSound procedure DL-18 
event EM-4 
event code EM-9 
Event Manager 

Operating System RD-7 
Toolbox RD-6, EM-4 

event mask EM-12 
event message EM-II 
event queue EM-6 
event record EM-9 
EventAvail function EM-18 
EventRecord data type EM-9 
Exec file for applications PT-12 
ExitToShel1 procedure SL-7 
external file system FL-63 
external reference AL-19 

F 
file FL-3, FL-6 
file control block FL-60 
file-control-block buffer FL-60 
file creator ST-3 

setting PT-14, PT-19 
file directory FL-4, FL-55 
file icon FL-ll, ST-5 
file I/O queue FL-24 , FL-58 
File Manager RD-8 
file name FL-6 
file number FL-55 
file reference ST-5, 8T-8 
file tags FL-56, FL-62 
file type ST-3 

setting PT-14, PT-19 
fileFilter function PK-31 
FillArc procedure QD-54 
FillOval procedure QD-50 
FillPoly procedure QD-65 
FillRect procedure QD-49 
FillRgn procedure QD-59 . 
FillRoundRect procedure QD-52 
filterProc function DL-22 
FindControl function CM-19 
Finder interface FL-I0, ST-3 
FindWindow function WM-26 
Flnfo data type FL-il 
Fixed data type TU-3 
fixed-point 

6/5/84 Rose 

arithmetic TU-4 
numbers TU-3 

fixed-width font FM-16 
FixMul function TU-4 
FixRatio function TU-4 
FixRound function TU-4 
FlashMenuBar procedure MN-26 
FlushEvents procedure EM-19 
FlushFile function FL-45 
FlushVol function 

high-level FL-17 
low-level FL-34 

FMInput data type 
FMOutPtr data type 
FMOutput data type 
folder FL-Il 
font FM-3 

FM-12 
FM-14 
FM-13 

characters FM-8 
format FM-15 
resource ID FM-24 
scaling FM-7 

font characterization table FM-13 
Font Manager RD-6, FM-4 
font number FM-4 
font record FM-19 
font rectangle FM-18 
font size FM-4, QD-25 
FontInfo data type QD-45 
FontRec data type FM-21 
ForeColor procedure QD-45 
fork FL-6 
frame pointer AL-19 
FrameArc procedure QD-52 
FrameOval procedure QD-50 
FramePoly procedure QD-64 
FrameRect procedure QD-49 
FrameRgn procedure QD-58 
FrameRoundRect procedure QD-51 
free block MM-5 
FreeAlert procedure DL-25 
FreeMem function MM-38 
FrontWindow function WM-26 
FSClosefunction FL-22 
FSDelete function FL-24 
FSOpen function FL-18 
FSRead function FL-19 
FSWrite function FL-19 

G 
GetAppParms procedure 8L-6, 8T-9 
GetClip procedure QD-38 
GetCRefCon function CM-24 
GetCTitle procedure CM-17 

/TOOLBOX/INDEX 



GetCtlAction function CM-24 
GetCtlMax function CM-23 
GetCtlMin function CM-23 
GetCtlValue function CM-23 
GetCursor function TU-9 
GetDltem procedure DL-26 
GetDrvQHdr function FL-63 
GetEOF function 

high-level FL-20 
low-level FL-43 

GetFilelnfo function 
high-level FL-22 
low-level FL-46 

GetFlnfo function FL-22 
GetFName procedure FM-IO 
GetFNum procedure FM-IO 
GetFontInfo procedure QD-45 
GetFontName procedure PM-lO 
GetFPos function 

high-level FL-20 
low-level FL-42 

GetFSQHdr function FL-58 
GetHandleSize function MM-3l 
GetIcon function TU-9 
GetIndResource function RM-l9 
GetIndType function RM-18 
GetItem procedure MN-22 
GetltemIcon procedure MN-24 
GetltemMark procedure MN-25 
GetltemStyle procedure MN-24 
GetIText procedure OL-27 
GetltmIcon procedure MN-24 
GetltmMark procedure KN-25 
GetltmStyle procedure MN-24 
GetKeys procedure EM-20 
GetMaxCtl function CM-23 
GetMenu function MN-16 
GetMenuBar function MN-19 
GetMHandle function MN-26 
GetMinCtl function CM-23 
GetMouse procedure EM-19 
GetNamedResource function RM-20 
GetNewControl function CM-l6 
GetNewOialog function OL-19 
GetNewMBar function MN-19 
GetNewWindow function WM-22 
GetNextEvent function EM-17 
GetPattern function TU-9 
GetPen procedure QD-40 
GetPenStateprocedure - QD-41 
GetPicture function TU-I0 
GetPixel function 00-68 
GetPort procedure OD-36 
GetPtrSize function HM-36 

6/5/84 Rose 

INDEX 5 

GetResAttrs function RM-22 
GetResFileAttrs function RM-29 
GetResInfo procedure RM-22 
GetResource function RM-20 
GetRMenu function MN-16 
GetScrap function SM-l2 
GetString function TU-5 
GetVCBQHdr function FL-60 
GetVInfo function FL-16 
GetVol function 

high-level FL-16 
low-level FL-33 

GetVollnfo function 
high-level FL-16 
low-level FL-32 

GetWindowPic function WM-33 
GetWMgrPort procedure WM-21 
GetWRefCon function WM-33 
GetWTitle procedure WM-23 
GetZone function MM-29 
global coordinates QO-27 
GlobalToLocal procedure QO-66 
go-away region of a window WM-7 
GrafOevice procedure QO-36 
grafPort QO-17 
GrafPort data type 00-18 
GrafPtr data type QD-18 
GrafVerb data type 00-71 
grow image of a window WM-25 
grow region of a window WM-7 
grow zone function MM-12, MM-44 
GrowWindow function WM-29 
GZCritical function MM-45 
GZSaveHnd function HM-46 

H 
handle MM-7, 00-10 

dereferencing MM-23, MM-48 
empty MM-I0 

Handle data type MM-13 
HandleZone function MM-33 
heap RO-7, MM-4 

compaction MM-9, MM-39 
creating on the stack MM-53 

HideControl procedure CM-17 
HideCursor procedure QO-39 
HidePen procedure QO-40 
HideWindow procedure WM-23 
highlighted 

control CM-6 
window WM-4 

HiliteControl procedure CM-18 
HiliteMenu procedure KN-2I 

/TOOLBOX/INOEX 



6 INOEX 

HiliteWindow procedure WM-25 
HiWord function TU-8 
HLock procedure MM-42 
HNoPurge procedure MM-43 
HomeResFile function RM-18 
HPurge procedure MM-43 
HUnlock procedure MM-42 

I 
icon 

for a file FL-ll, ST-5 
in a dialog/alert OL-I0 
in a menu MN-ll 

icon list ST-6, ST-8 
icon number MN-ll 
image width FM-15 
inactive 

control CM-7 
window WM-4 

indicator CM-6 
InfoScrap function SM-IO 
InitAIIPacks procedure PK-5 
InitApplZone procedure MM-25 
InitCursor procedure 00-39 
InitOialogs procedure OL-17 
InitFonts procedure FM-9 
InitGraf procedure 00-34 
InitMenus procedure MN-15 
InitPack procedure PK-5 
InitPort procedure 00-35 
InitOueue procedure FL-31 
InitResources function RM-15 
InitWindows procedure WM-20 
InitZone procedure MM-27 
insertion point TE-7 
InsertMenu procedure MN-18 
InsertResMenu procedure MN-18 
InsetRect procedure 00-47 
InsetRgn procedure 00-57 
interface routine AL-18 
international resources PK-6 
International Utilities Package PK-6 
Int64Bit data type TU-9 
InvalRect procedure WM-31 
InvalRgn procedure WM-32 
InvertArc procedure 00-54 
InvertOval procedure 00-50 
InvertPoly procedure 00-65 
InvertRectprocedure 00-49 
InvertRgn procedure 00-59 
InvertRoundRect procedure 00-52 
invisible 

control CM-IO 

6/5/84 Rose 

file icon FL-ll 
window WM-Il 

I/O driver OS-10 
event EM-6 

I/O request FL-24 
IsOialogEvent function OL-20 
item 

dialog/alert OL-8 
menu MN-4 

item list OL-8, OL-9, OL-32 
item number 

dialog/alert OL-12 
menu MN-14 

IUCompString function PK-18 
IUOatePString procedure PK-17 
IUOateString procedure PK-16 
IUEqualString function PK-18 
IUGetlntl function PK-17 
IUMagIOString function PK-19 
IUMagString function PK-18 
IUMetric function PK-17 
IUSetlntl procedure PK-18 
IUTimePString procedure PK-17 
IUTimeString procedure PK-17 

J 
journal EM-22 
jump table SL-8 
justification TE-8 

K 
kerning 
key code 

table 

00-23, FM-16 
EM-8 

EM-25 
key-down event EM-5 
key-up event EM-5 
keyboard configuration EM-8 
keyboard equivalent MN-6, MN-12 
keyboard event EM-5 
Keyboard/Mouse Handler RO-8 
KeyMap data type EM-20 
KillControls procedure CM-17 
KillPicture procedure 00-62 
KillPoly procedure 00-63 

L 
Launch routine SL-7 
leading FM-18 
ligatures PK-14 
limit pointer HM-16 
line height TE-9 

/TOOLBOX/INOEX 



Line procedure 00-42 
LineTo procedure 00-42 
list separator PK-8 
LoadResource procedure RM-20 
LoadScrap function SM-11 
LoadSeg procedure SL-8 
local coordinates 00-25 
local 10 ST-5 
local reference RM-10 
LocalToGlobal procedure 00-66 
location table FM-19 
lock bit MM-20 
locked block HM-6 
locked file FL-10 
locked resource RM-12 
locked volume FL-5 
locking a block MM-6, MM-42 
LodeScrap function SM-11 
logical block FL-52 
logical end-of-file FL-7 
logical operations TU-8 
logical size of a block MM-18 
LongMul procedure TU-9 
LoWord function TU-8 

M 
MapPoly procedure 00-69 
MapPt procedure 00-69 
MapRect procedure OD-69 
NapRgn procedure 00-69 
mark 

in a file FL-7 
in a menu MN-6, MN-ll 

master directory block FL-52 
master pointer MM-7 

structure MM-20 
MaxMem function MM-38 
MemErr data type MM-21 
MemError function MM-48 
Memory Manager RD-7, MM-4 
memory organization AL-4 
menu MN-4, MN-29 

defining your own MN-26 
menu bar MN-4, MN-30 
menu defini tion procedure MN-7, MN-27 
menu 10 MN-8 
menu item MN-4 
menu item number MN-14 
menu list MN-9 
Menu Manager RO-6, MN-4 
menu record MN-8 
menu title MN-4 
MenuHandle data type MN-8 

6/5/84 Rose 

INDEX 7 

MenuInfo data type MN-8 
MenuKey function MN-21 
MenuPtr data type MN-8 
MenuSelect function MN-20 
meta-characters MN-IO 
missing symbol 00-23, FM-7 
modal dialog box OL-5, DL-21 
ModalDialog procedure OL-21 
modeless dialog box DL-5, DL-20 
modifier key EM-7 
mounted volume FL-4 
MountVol function FL-31 
mouse-down event EM-5 
mouse-up event EM-5 
Move procedure QO-42 
MoveControl procedure CM-21 
MovePortTo procedure 00-37 
MoveTo procedure 00-42 
MoveWindow procedure WM-28 
Munger function TU-5 

N 
network event EM-6 
NewControl function CM-15 
NewDialog function OL-18 
NewHandle function MM-30 
newline character FL-10 
newline mode FL-10 
NewMenu function MN-15 
NewPtr function MM-35 
NewRgn function OD-54 
NewString function TU-5 
NewWindow function WM-21 
nonbreaking space TE-4 
nonrelocatable block MM-6 
NoteAlert function OL-24 
null event EM-6 
NumToString procedure PK-20 

o 
ObscureCursor procedure 00-40 
off-line volume FL-4 
OffLine function FL-35 
OffsetPoly procedure OD-63 
OffsetRect procedure 00-46 
OffsetRgn procedure 00-56 
offset/width table FM-19 
on-line volume FL-4 
open file FL-9 
Open function 

high-level FL-18 
low-level FL-38 

/TOOLBOX/INDEX 



8 INDEX 

open permission FL-9 
OpenOeskAcc function OS-7 
OpenPicture function 00-61 
OpenPoly function 00-62 
OpenPort procedure 00-35 
OpenResFile function RM-16 
OpenRF function FL-39 
OpenRgn procedure 00-55 
Operating System RD-7 

P 

Core RO-8 
Event Manager RO-7 
Utilities RO-S 

Package Manager PK-4 
packages PK-4 
PaintArc procedure 0D-53 
PaintBehind procedure WM-36 
PaintOne procedure WM-36 
PaintOval procedure 00-50 
PaintPoly procedure 00-64 
PaintRect procedure 00-49 
PaintRgn procedure 00-59 
PaintRoundRect procedure 00-51 
ParamBlkType data type FL-26 
ParamBlockRec data type FL-26 , FL-58 
parameter block AL-12 , FL-24 
ParamText procedure OL-25 
ParmBlkPtr data type FL-26 
part code CM-9 
path reference number FL-9 
PatHandle data type TU-9 
PatPtr data type TU-9 
pattern 00-14 
Pattern data type 00-14 
pattern transfer mode 00-29 
PBAllocate function FL-44 
PBClose function FL-45 
PBCreate function FL-37 
PBOelete function FL-51 
PBEject function FL-36 
PBFlshFile function FL-45 
PBFlshVol function FL-34 
PBGetEOF function FL-43 
PBGetFInfo function FL-46 
PBGetFPos function FL-42 
PBGetVol function FL-33 
PBGetVolInfo function FL-32 
PBMountVol function FL-31 
PBOffLine function FL-35 
PBOpen function FL-38 
PBOpenRF function FL-39 
PBRead function FL-40 

6/5/84 Rose 

PBRename function FL-50 
PBRstFLock function FL-48 
PBSetEOF function FL-43 
PBSetFInfo function FL-47 
PBSetFLock function FL-48 
PBSetFPos function FL-42 
PBSetFVers function FL-49 
PBSetVol function FL-33 
PBUnmountVol function FL-35 
PBWrite function FL-41 
pen characteristics 00-21 
PenMode procedure 00-41 
PenNormal procedure 00-42 
PenPat procedure 00-42 
PenSize procedure 00-41 
physical end-of-file FL-6 
physical size of a block MM-18 
PicComment procedure 00-62 
PicHandle data type 00-32 
PicPtr data type 00-32 
picture 00-31 
picture comments 00-32 
Picture data type 00-31 
picture frame 00-31 
PinRect function WM-33 
Plot Icon procedure TU-9 
point 

coordinate plane 00-7 
font size 00-25, FM-4 

Point data type 00-7 
pointer conversion MM-14 
polygon 00-32 
Polygon data type 00-33 
PolyHandle data type 00-33 
PolyPtr data type 0D-33 
portBits of a grafPort 0D-19 
portRect of a grafPort 00-19 
PortSize procedure 00-37 
PostEvent procedure EM-IS 
ProcPtr data type MM-14 
proportional font FM-16 
protected resource RM-12 
PScrapStuff data type 8M-II 
PtInRect function 0D-47 
PtInRgn function 0D-58 
Ptr data type MM-13 
PtrZone function MM-37 
PtToAngle procedure 0D-48 
Pt2Rect procedure 00-47 
purge bit MM-20 
purge hook MM-17 
purge warning procedure MM-17 
purgeable block MM-6, MM-43 
purgeable resource RM-8 

/TOOLBOX/INOEX 



PurgeMem function MM-40 
purging a block MM-I0, MM-40 
PutScrap function SM-13 

Q 

QDByte data type QD-6 
QDHandle data type QO-6 
QOProcs data type QD-71 
QDProcsPtr data type QO-71 
QDPtr data type QD-6 
QElem data type FL-65 
QElemPtr data type FL-65 
QHdr data type FL-65 
QHdrPtr data type FL-65 
QTypes data type FL-65 
queue FL-65 
QuickOraw RD-6, QO-4 
QuickDraw equates file AL-3 
QuickOraw macro file AL-4 

R 
radio button CM-5, DL-10 
Random function QO-67 
Read function 

high-level FL-19 
low-level FL-40 

read/write permission FL-9 
RealFont function FM-I0 
reallocating a block MM-IO 
ReallocHandle procedure MM-34 
RecoverHandle function MM-33 
Rect data type QO-9 
rectangle QO-8 
RectInRgn function QD-58 
RectRgn procedure QO-55 
reference number RM-7 
reference value 

control CM-ll 
window WM-l1 

region QD-9 
Region data type QD-I0 
register-based calls AL-12 
register-saving conventions AL-17 
relative handle MM-19 
ReleaseResource procedure RM-21 
relocatable block MM-6 
Rename function 

high-level FL-23 
low-level FL-50 

ResError function RM-17 
resource attributes RM-l, RM-l1 
Resource Compiler PT-7 

6/5/84 Rose 

INDEX 9 

resource data RM-8 
resource file RM-4 

attributes RM-28 
format RM-31, RM-37 

resource fork RM-6, FL-6 
resource header RM-31 
resource ID RM-9 

for fonts FM-24 
Resource Manager RD-5, RM-4 
resource map RM-8 
Resource Mover program PT-18 
resource name RM-IO 
resource reference RM-10 
resource specification RM-5, RM-8 
resource type RM-9 
resources RM-4 

within resources RM-29 
ResrvMem function MM-39 
ResType data type RM-9 
result code MM-21 
RgnHandle data type QD-I0 
RgnPtr data type QD-I0 
RMover program PT-18 
RmveReference procedure RM-26 
RmveResource procedure RM-26 
routine selector PK-4 
row width QD-12 
RsrcZoneInit procedure RM-15 
RstFilLock function 

high-level FL-23 
low-level FL-48 

RstFLock function FL-23 

S 
SaveOld procedure WM-36 
ScalePt procedure QD-68 
scaling factors FM-5 
scrap 

between applications SM-3 
in TextEdit TE-4 

scrap file SM-4 
Scrap Manager RD-7, SM-3 
ScrapStuff data type SM-il 
ScrollRect procedure QO-59 
SectRect function QD-47 
SectRgn procedure QD-57 
Segment Loader RD-7, SL-3 
segments PT-17 , SL-3 
selection range TE-6 
SelectWindow procedure WM-23 
SelIText procedure DL-27 
Send Behind procedure WM-25 
Serial Driver RD-8 

/TOOLBOX/INDEX 



10 INDEX 

Set File program PT-19 
SetApplBase procedure MM-26 
SetApplLimit procedure MM-28 
SetClip procedure QD-38 
SetCRefCon procedure CM-24 
SetCTitle procedure CM-17 
SetCtlAction procedure CM-24 
SetCtlMax procedure CM-23 
SetCtlMin procedure CM-23 
SetCtlValue procedure CM-22 
SetCursor procedure QD-39 
SetDItem procedure DL-26 
SetEmptyRgn procedure QD-55 
SetEOF function 

high-level FL-2I 
low-level FL-43 

SetEventMask procedure EM-22 
SetFileInfo function 

high-level FL-22 
low-level FL-47 

SetFilLock function 
high-level FL-23 
low-level FL-48 

SetFilType function FL-49 
SetFInfo function FL-22 
SetFLock function FL-23 
SetFontLock procedure FM-IO 
SetFPos function 

high-level FL-20 
low-level FL-42 

SetGrowZone procedure MM-44 
SetHandleSize procedure MM-32 
SetItem procedure MN-22 
SetItemIcon procedure MN-23 
SetItemMark procedure MN-25 
SetItemStyle procedure MN-24 
SetIText procedure DL-27 
SetltmIcon procedure MN-23 
SetltmMark procedure MN-25 
SetltmStyle procedure MN-24 
SetMaxCtl procedure CM-23 
SetMenuBar procedure MN-19 
SetMenuFlash procedure MN-25 
SetMFlash procedure MN-2S 
SetMinCtl procedure CM-23 
SetOrigin procedure QD-38 
SetPenState procedure QD-4I 
SetPort procedure QD-36 
SetPortBits procedure QD-37 
SetPt procedure QD-6S 
SetPtrSize procedure MM-37 
SetRect procedure QD-46 
SetRectRgn procedure QD~SS 

SetResAttrs procedure RM-24 

6/5/84 Rose 

SetResFileAttrs procedure RM-29 
SetResInfo procedure RM-23 
SetResLoad procedure RM-I9 
SetResPurge procedure RM-28 
SetStdProcs procedure QD-71 
SetString procedure TU-5 
SetVol function 

high-level FL-16 
low-level FL-33 

SetWindowPic procedure WM-33 
SetWRefCon procedure WM-33 
SetWTitle procedure WM-23 
SetZone procedure MM-29 
SFGetFile procedure PK-30 
SFPGetFile procedure PK-34 
SFPPutFile procedure PK-30 
SFPutFile procedure PK-26 
SFReply data type PK-25 
SFTypeList data type PK-31 
ShieldCursor procedure TU-I0 
ShowControl procedure CM-I7 
ShowCursor procedure QD-39 
ShowHide procedure WM-24 
ShowPen procedure QD-40 
ShowWindow procedureWM-24 
signature ST-3 
Signed Byte data type MM-13 
size correction MM-19 
Size data type MM-14 
SizeControl procedure CM-22 
SizeResource RM-I 
SizeWindow procedure WM-30 
Sound Driver RD-8 
sound procedure DL-IS 
source file for applications 

assembly language PT-21 
Pascal PT-6 

source transfer mode QD-29 
SpaceExtra procedure QD-44 
stack-based calls AL-12, AL-14 
stack frame AL-20 
StageList data type DL-29 
stages of an alert DL-IS 
Standard File Package PK-23 
StdArc procedure QD-72 
StdBits procedure QD-72 
StdComment procedure QD-73 
StdGetPic procedure QD-73 
StdLine procedure OD-7I 
StdOval procedure 0D-72 
StdPoly procedure QD-72 
StdPutPic procedu·re OD-73 
StdRect procedure QD-72 
StdRgn procedure QD-72 

/TOOLBOX/INDEX 



StdRRect procedure 00-72 
StdText procedure 0D-71 
StdTxMeas function 00-73 
StillOown function EM-19 
StopAlert function OL-24 
string comparison PK-12, PK-18 
StringHandle data type TU-4 
StringPtr data type TU-4 
StringToNum procedure PK-21 
StringWidth function 00-45 
structure region of a window WM~6 
Stuff Hex procedure 00-68 
Style data type 00-23 
StyleItem data type 00-23 
SubPt procedure 00-65 
SwapFont function FM-li 
synchronous execution FL-24 
system equates file AL-3 
system errors file AL-4 
system event mask EM-14 
system font FM-6 
system heap AL-7, MM-4 
system macro file AL-4 
system reference RM-I0 
system resource RM-4 
system resource file RM-4 
system window WM-4 
SystemClick procedure OS-7 
SystemEdit function OS-8 
SystemEvent function OS-9 
SystemMenu procedure OS-10 
SystemTask procedure OS-8 
SystemZone function MM-29 

T 
tag MM-19 
TEActivate procedure TE-18 
TECalText procedure TE-19 
TEClick procedure TE-17 
TECopy procedure TE-15 
TECut procedure TE-15 
TEDeactivate procedure TE-18 
TEDelete procedure TE-16 
TEDispose procedure TE-14 
TEGetText function TE-14 
TEHandle data type TE-5 
TEIdle procedure TE-18 
TEInit procedure TE-13 
TEInsert procedure TE-16 
TEKey procedure TE-14 
TENew function TE-13 
TEPaste procedure TE-15 
TEPtr data type TE-5 

6/5/84 Rose 

INOEX 11 

TERec data type TE-9 
TEScroll procedure TE-19 
TESetJust procedure TE-17 
TESetSelect procedure TE-17 
TESetText procedure TE-14 
TestControl function CM-18 
TEUpdate procedure TE-18 
text characteristics 0D-22 
TextBox procedure TE-19 
TextEdit RD-6, TE-4 
TextFace procedure 00-43 
TextFont procedure 00-43 
TextMode procedure 00-43 
TextSize procedure 00-43 
TextWidth function 0D-45 
thousands separator PK-8 
THz data type MM-I6 
TickCount function ,EM-22 
Toolbox RO-5 

Event Manager RO-6, EM-4 
Utilities RD-7, TU-3 

Toolbox equates file AL-3 
Toolbox macro file AL-4 
TopMem function MM~47 

TrackControl function CM-19 
TrackGoAway function WM-27 
transfer mode 00-29 
Trap Dispatcher RO-8 
trap macro AL-I0, AL-12 
trap word AL-IO 

U 
unimplemented instruction AL-IO 
UnionRect procedure 00-47 
UnionRgn procedure 00-57 
UniqueIO function RM-22 
UnloadScrap function SM-II 
UnloadSeg procedure SL-6 
unlocked block MM-6 
unlocking a block MM-6, MM-42 
UnlodeScrap function 8M-II 
unmounted volume FL-4 
UnmountVol function 

high-level FL-17 
low-level FL-35 

unpurgeable block MM-6, MM-43 
update event EM-6, WM-15 
update region of a window WM-7 
Update Res File procedure RM-23 
User Interface Toolbox RD-5 
UseResFile procedure RM-20 

/TOOLBOX/INOEX 



12 INDEX 

V 
ValidRect procedure WM-32 
ValidRgn procedure WM-32 
variation code WM-30 

control CM-24 
window WM-37 

VCB data type FL-59 
version data ST-5 
version number FL-4 
vertical retrace interrupt RD-8 
Vertical Retrace Manager RD-8 
VHSelect data type 0D-7 
view rectangle TE-5 
visible 

control CM-10 
window WM-11 

visRgn of a grafPort 00-19, WM-14 
volume FL-4 
volume allocation block map FL-55 
volume attributes FL-54 
volume buffer FL-4 
volume control block FL-58 
volume-control-block queue FL-58 
volume index FL-30 
volume information FL-53 
volume name FL-4 
volume reference number FL-4 

W 
WaitMouseUp function EM-20 
window WM-4 

defining your own WM-37 

6/5/84 Rose 

window class WM-IO 
window definition function WM-8, WM-38 
window definition ID WM-8, WM-37 
window frame WM-6 
window list WM-ll, WM-13 
Window Manager RD-6, WM-4 
Window Manager port WM-6, WM-21 
window record WM-IO 
window template WM-10, WM-42 
WindowMessage data type WM-35 
WindowPeek data type WM-12 
WindowPtr data type WM-11 
WindowRecord data type WM-12 
word TE-4 
word wrap TE-4 
Write function 

high-level FL-19 
low-level FL-41 

WriteResource procedure RM-27 

X 
XorRgn procedure QD-57 

y 

Z 
ZeroScrap function SM-12 
Zone data type MM-16 
zone header MM-15 
zone pointer MM-15 
zone record MM-15 
zone trailer MM-15 

/TOOLBOX/INDEX 



SUMMARY OF FP68K DOCUMENTS 

User's Guide -- an overview of FP68K ELEMS68K and their design philosophy. 

Programmer's Guide -- hints on how to build the packages, and 
how to modify them, if necessary; details about system 
dependencies involving the state area. Includes register 
map templates. 

1 

System Inter.face -- how FP68K and ELEMS68K affect their execution environment. 

High-Level Interface -- the SANE Pascal unit and assembly macros. 

Integer Conversion Tests 

Binary-Decimal Conversion Tests 

IEEE Tests -- a set of test vectors designed for this style of 
arithmetic and distributed through the standards 
subco~nittee 

Binary-Decimal Conversions -- what is available through the SANE 
interface, and what FP68K provides at the low level. 
A sample parser and formatter from the SANE interface 
is shown. 

P754 stuff -- papers related to the arithmetic standard. 

1 November 83 Jerome T. Coonen 



SUMMARY OF FP68K FILES 

FPxxx.TEXT -- source files for FP68K, except for binary-decimal 
conversions 

FBxxx.TEXT 

SAxxx.TEXT 

source files for binary-decimal part of FP68K 

SANE68.TEXT 
SAIMP68.TEXT 
SAASM68.TEXT 
SAMAC68.TEXT 

SANE interface section 
SANE implementation section 
SANE assembly procedures 
EQU's and MACRO's for assembly interface 

DOxxx.TEXT -- documentation using SCRIPT formatter, with 
macros in DODRIVER.TEXT 

TVxxx.TEXT IEEE test vector files, required operations 

TWxxx.TEXT IEEE test vector files, appendix funtions 

TDxxx.TEXT Test vector driver program files 

ITxxx.TEXT integer (--> extended conversion tests 

IOxxx.TEXT -- binary (--> decimal conversions tests 

Zyyyy.OBJ -- executable test programs 

ELxxx.TEXT -- elementary transcendental and financial functions 

1 November 83 

2 



Draft 1.5 FP68K and ELEMS68K System Interface 

Introduction 

The 68000 software floating-point packages. FP68K and ELEMS68K, appear 
much like simple subroutines but their interaction with the host system is 
somewhat more subtle. This document indicates possible trouble spots. It is 
intended for system implementors. rather than users of FP68K and ELEMS68K. 

The following sections describe the various issues in turn. 

Registers and stack used 

FP68K and ELEMS68K receive all of their parameters on the stack. They 
save and restore all of the CPU registers across calls, except that DO is 
modified 1;>y the REMAINDER operation. FP68K modifies the CPU Condition Code 
Register as described later. 

As detailed in the "Program Notes" document. FP68K typically uses up to 
41 words of stack beyond the input parameters. The only exceptions are the 
binary-decimal conversion and nextafter routines, which may use up to 120 
words beyond the input parameters. ELEMS68K uses at most 30 words of stack 
for temporary storage. 

Single entry point 

FP68K has just one entry point -- with the label 'FP68K'. When invoked, 
FP68K expects the return address on the stack, followed by a one-word opcode 
described in the user's guide. Beyond the opcode are up to three operand 
addresses (depending on the operation). Note that because the operands are 
passed by address, they must be in memory, NOT IN THE REGISTER FILE. 

3 

If FP68K is to be invoked by a mechanism like the A-line trap, care must 
be taken that stack is set up properly. Depending on the system, it should be 
possible to execute FP68K either as a subprogram linked to an app~ication 
program, or as system-provided utility. 

Because of the varying number of input parameters, it is impossible to 
call FP68K directly from Pascal, since the number of parameters is fixed when 
the EXTERNAL procedure is defined. In any case programmers should use the 
provided Pascal interface, called SANE (Standard Apple Numeric Environment). 

ELEMS68K has a similar design, but is configured as a separate package 
for modularity. 

Exit points 

Typically, FP68K exits by clearing all input operands from the stack and 
jumping to the return address. 

1 November 83 



Draft 1.5 FP68K and ELEMS68K System Interface 4 

However, a 'halting' mechanism is provided whereby control is transferred 
from FP68K to an address saved in the floating-point state area (see below). 
This address should refer to a subprogram in the user's code space. When the 
halt routine is invoked, the top of the stack is a word containing the number 
of bytes of parameters (including the return address) on the stack when FP68K 
was originally called. Beyond that word is the exact stack frame from when 
FP68K was originally called. 

ELEMS68K has no built-in halt mechanism, though a subsidiary FP68K 
operation may halt. 

State area 

ELEMS68K maintains no static state. FP68K maintains 3 words of static 
state across invocations. The first word contains mode and flag bits, much 
like the CPU Status Register. The next long word is the user trap address. 
There are two important issues: where is the state area and how is it 
initialized? 

The state area may be a fixed area in memory, as in MAC, or at a fixed 
offset from a register like A6, as in LISA, or in some user area if FP68K is 
linked as a subroutine. The state area may even be kept within FP68K itself, 
though this makes the code self-modifying and thus NON-REENTRANT. 

In multi-process environments, care must be taken to see that different 
state areas are kept for the different processes (again, think of the CPU 
Status Register). For example, if the state area is kept in a fixed location 
in memory, it must be swapped each time a new process is swapped in. 

The location of the state area must be known at ASSEMBLY TIME. As 
indicated in the programmer's guide document, the code must be set up for the 
particular host environment. 

When a new process is started up, the state area must be initialized. 
Fortunately, this is easy. Just clear to 0 the first word of the state area 
(i.e. the mode and flag word). 

CPU Condition Code Register 

The Comparison operation leaves the CCR in a well-defined state. After 
Comparison, the CCR is set for a conditional branch, although the flags are 
used in a way different from the integer CPU comparisons; see the "User's 
Guide" for details. 

CPU Register DO 

The Remainder operation leaves the low-order integer quotient (between 
-127 and +127) in DO.W. The high half of DO.L is undefined. This intrusion 
into the register file is extremely valuable in argument reduction -- the 
principal use of Remainder. The state of DO after an invalid remainder is 

1 November 83 



Draft 1.5 FP68K and ELEMS68K System Interface 5 

undefined. 

1 November 83 



Draft 1.1 FP68K and ELEMS68K High-Level Interface 6 

SANE 

There is a SANE (Standard Apple Numeric Environment) library of utility 
functions based on FP68K, as well as a corresponding Elems library based on 
ELEMS68K. These libraries are supported on Apple III Pascal systems as well. 
The library provides access to the package from (Lisa) Pascal. Aside from 
support of basic arithmetic and elementary functions, the utilities manipulate 
the modes and flags and provide ASCII (--) floating-point conversions. All 
applications software should use this package because of its high degree of 
portability. 

Assembly language programmers will invoke FP68K and ELEMS68K directly but 
will depend on some library for routines to convert between ASCII strings and 
the canonical decimal format which FP68K recognizes. A set of mnemonic MACROS 
has been provide to expedite assembly coding. 

Compiling Pascal programs 

A Pascal program which exploits the SANE and Elems interfaces must 
include lines such as 

uses {$U <some volume):SANE.OBJ} SANE; 
uses {$U <some volume):ELEMS.OBJ} Elems; 

in order to gain access to the types and procedures defined there. Then the 
program must be linked with SANE.OBJ and ELEMS.OBJ (the Pascal parts of the 
interface), as well as SANEASM.OBJ and ELEMSASM.OBJ (the assembly language 
parts of the interface). 

Pascal procedures 

Programmers should consult the INTERFACE section of the SANE and Elems 
interfaces (files SANE. TEXT and ELEMS.TEXT) in the following pages.' This 
interface reflects the architecture discussed in the "User's Guide". It is 
two-address, with the destination operand in the extended format except for 
format conversions conversions. 

Macros 

A set of macros provides direct contact with the arithmetic package, 
using the interface described in the "User's Guide". The macros take care of 
the opcode and the JSR, but the programmer must explicity push the required 
argument addresses. The macros do not take effective address arguments and 
push them itself because of the problems that arise if the destination operand 
is given as an offset from SP (which changes when the first operand address is 
pushed). The macros are listed after the Pascal interface. 

1 November 83 



Draft 1.1 FP68K and ELEMS68K High-Level Interface 

Sample program 

The test programs ITxxx.TEXT, IOxxx.TEXT, and TDFP.TEXT provide a 
nontrivial view of how to use the Pascal interface to FP68K and ELEMS68K. 

1 November 83 

7 



SANE Interface 8 

{Ahe "SANE Interface" } 
{Afo '28 December 1982'Page %'Apple Confidential' } 
{$C Copyright Apple Computer, 1982 } 
{MacIntosh version.} 

UNIT Sane; 

INTERFACE 

CONST 

TYPE 

{Ane 16 } 

SIGDIGLEN = 20; { Maximum length of SigDig. } 

DECSTRLEN :II 80; { Maximum length of DecStr. } 

{-----------------------------------------------------------------
** Numeric types. 
-----------------------------------------------------------------} 

Single - array [0 •• 1] of integer; 
Double :II array [0 •• 3] of integer; 
Comp :II array [0 •• 3] of integer; 
Extended :II array [0 •• 4] of integer; 

{-----------------------------------------------------------------
** Decimal string type and intermediate decimal type, 
** representing the value: 
** (-l)Asgn * 10Aexp * dig 
-----------------------------------------------------------------} 

SigDig 
DecStr 
Decimal 

= string [SIGDIGLEN]; 
:II string [DECSTRLEN1; 
= record 

sgn 0 •• 1; {Sign (0 for pos, 1 for neg). } 
exp 
sig 

end; 

integer; { Exponent. } 
SigDig {String of significant digits. } 

{----------------------------------------_._-----------------------
** Modes, flags, and selections. 
** NOTE: the values of the style element of the DecForm record 
** have different names from the PCS version to avoid name 
** conflicts. 
-----------------------------------------------------------------} 

Environ :II 

RoundDir 
RelOp = 

Exception = 

integer; 
(TONEAREST, UPWARD, DOWNWARD, TOWARDZERO); 
(GT, LT, GL, EQ, GE, LE, GEL, UNORD); 
{> < <> :II )= <_ <=>} 
(INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO, 

INEXACT) ; 

1 November 1982 Apple Confidential 



SANE Interface 

NumClass 
Dec Form 

=- (SNAN, ONAN, 
=- record 

INFINITE, ZERO, NORMAL, DENORMAL); 

style 
digits 

end; 

(FloatDecimal, FixedDecimal); 
integer 

{Ane 35 } 

{-----------------------------------------------------------------** Two address, extended-based arithmetic operations. 
-----.-----------------.- ------------------------------------------} 
procedure AddS (x Single; var y Extended) ; 
procedure AddD (x Double; var y Extended) ; 
procedure AddC (x Comp; var y Extended) ; 
procedure AddX (x Extended; var y Extended) ; 

{ y := y + x } 

procedure SubS (x Single; var y Extended) ; 
procedure SubD (x Double; var y Extended) ; 
procedure SubC (x Comp; var y Extended) ; 
procedure SubX (x Extended; var y Extended) ; 

{ y := y - x } 

procedure MulS (x Single; var y Extended) ; 
procedure MulD (x Double; var y Extended) ; 
procedure MulC (x Comp; var y Extended) ; 
procedure MulX (x Extended; var y Extended) ; 

{ y := y * x } 

procedLlre DivS (x Single; var y Extended) ; 
procedure DivD (x Double; var y Extended) ; 
procedure DivC (x Comp; var y Extended) ; 
procedure DivX (x Extended; var y Extended) ; 

{ y := y / x } 

function CmpX (x : Extended; r RelOp; 
y : Extended) boolean; 

{ x r y } 

functi.on RelX (x, y : Extended) . RelOp; . 
{ x ReIX y, where ReIX in [GT, LT, EO, UNORD] } 

{Ane 18 } 

{---------------------------------------._------------------------** Conversions between Extended and the other numeric types, 
** including the types integer and Longint. 
------------_.---------------------------------.-----------------} 
procedure 12X (x int~ger; var y 
procedure S2X (x Single; var y 
procedure D2X (x Double; var y 
procedure C2X (x Comp; var y 
procedure X2X (x Extended; var y 

{ y :- x (arithmetic assignment) 

Extended) ; 
Extended) ; 
Extended) ; 
Extended) ; 
Extended) ; 
} 

9 

1 November 1982 Apple Confidential 



SANE Interface 

procedure X21 (x Extended; var y integer) ; 
procedure X2S (x Extended; var y Single); 
procedure X2D (x Extended; var y Double) ; 
procedure X2C (x Extended; var y Comp) ; 

{ y := x (arithmetic assignment) } 

{'"'ne 9 } 
{-----------------------------------------------------------------
** These conversions apply to 68K systems only. Longint is 
** a 32-bit two's complement integer. 
----_._-----------------------------------------------------------} 
procedure L2X (x : Longintj var y : Extended); 
procedure X2L (x : Extended; var y : Longint); 

{ y := x (arithmetic assignment) } 

{'"'ne 17 } 

{-----------------------------------------------------------------
** Conversions between the numeric types and the intermediate 
** decimal type. 
------------------------------------------------------------------} 
procedure S2Dec (f DecForm; x Single; var y Decimal) ; 
procedure D2Dec (f DecForm; x Double; var y Decimal) ; 
procedure C2Dec (f DecForm; x Camp; var y Decimal) ; 
procedure X2Dec (f DecFormj x Extended; var y Decimal) ; 

{ y := x (according to the format f) } 

procedure Dec2S (x Decimal; var y Single) ; 
procedure Dec2D (x Decimal; var y Double) ; 
procedure Dec2C (x Decimal; var y Comp); 
procedure Dec2X (x Decimal; var y Extended) ; 

{ y := x } 

{Ane 18 } 

{-------------------~------------------------------------~--------
** Conversions between the numeric types and strings. 
** (These conversions have a built-in scanner/parser to convert 
** between the intermediate decimal type and a string.) 
----------------------------------------_._-----------------------} 
procedure S2Str (f DecForm; x Single j var y DecStr); 
procedure D2Str (f Dec Form; x Double; var y DecStr); 
procedure C2Str (f DecForm; x Comp; var y DecStr); 
procedure X2Str (f DecForm; x Extended; var y DecStr) ; 

{ y := x (according to the format f) } 

procedure Str2S (x DecStr; var y Single) ; 
procedure Str2D (x DecStr; var y Double) ; 
procedure Str2C (x DecStr; var y Comp) ; 
procedure Str2X (x DecStr; var y Extended) ; 

{ y := x } 

10 

1 November 1982 Apple Confidential 



{----------- ._------------------------------- ._------------- .---
** Numerical 'library' procedures and functions. 
-----------------------------------------------------------------} 
procedure RemX (x : Extended; var y : Extended; 

var quo integer); 
new y := remainder of «old y) / x), such that 

Inew yl <= Ixl / 2; 
quo := low order seven bits of integer quotient y / x, 

so that -127 <= quo <= 127. } 
procedure SqrtX (var x Extended); 

{ x : = sq rt (x) } 
procedure RintX (var x Extended); 

{ x := rounded value of x } 
procedure NegX (var x Extended); 

{ x := -x } 
procedure AbsX (var x Extended); 

{ x := Ix I } 
procedure CpySgnX (var x Extended; y Extended); 

{ x := x with the sign of y } 

procedure NextS 
procedure NextD 
procedure NextX 

(var x Single; y Single); 
(var x Double; y Double); 
(var x Extended; y Extended); 

{ x := next representable value from x toward y } 

function ClassS 
function ClassD 
function ClassC 
function ClassX 

{ sgn := sign 

(x 
ex 
(x 
(x 
of x 

Single; var sgn 
Double; var sgn 
Comp; var sgn 
Extended; var sgn 
(0 for pos, 1 for 

integer) 
integer) 
integer) 
integer) 

neg) } 

procedure ScalbX (n : integer; var y : Extended); 
{ y := y * 2-n } 

procedure LogbX (var x : Extended); 
{ returns unbiased exponent of x } 

{"'ne 16 } 

NumClass; 
NumClass; 
NumClass; 
NumClass; 

{-----------------------------------------------------------------
** Manipulations of the static numeric state. 
-----------------------------------------------------------------} 
procedure SetRnd (r 
procedure SetEnv (e 
procedure ProcExit(e 

RoundDir) ; 
Environ) ; 
Environ) ; 

function GetRnd : RoundDir; 
procedure GetEnv (var e Environ); 
procedure ProcEntry (var e : Environ); 

function TestXcp (x 
procedure SetXcp (x 
function TestHlt (x 
procedure SetHlt (x 

Exception) : boolean; 
Exception; DnDff : boolean); 
Exception) : boolean; 
Exception; DnDff : boolean); 

I I 

1 November 1982 Apple Confidential 



SANE Interface 12 

(------------------------------------------------------------------------} 
{ASp 32767 } 

{------------------------------------------------------------------------} 
IMPLEMENTATION 

{$I SANEIMP.TEXT} 

END 

{===============================~================================::=========} • 

1 November 1982 Apple Confidential 



Elems Interface 13 

{$C Copyright Apple Computer Inc., 1983 } 

UNIT Elems; 

{ Macintosh version. } 

{-------.. ----------------------------------------------------------------} 
INTERFACE 

USES 

{$U OBJ:SANE.OBJ } 

SANE { Standard Apple Numeric Environment } 

procedure Log2X (val' x : Extended); 
,{ x := log2 (x) } 

procedure LnX (val' x Extended); 
{ x := In (x) } 

procedure Ln1X (val' x Extended); 
{ x := In (1 + x) } 

procedure Exp2X (val' x : Extended); 
{ x := 2"'x } 

procedure ExpX (val' x Extended); 
{ x := e"'x } 

procedure Exp1X (val' x Extended); 
{ x := e"'x - 1 } 

procedure XpwrI (1 
{ x := x"'i } 

procedure XpwrY (y 
{ x := x"'y } 

integer; val' x Extended); 

Extended; val' x Extended); 

procedure Compound (r, n 
{ x := (1 + r)"'n } 

Extended; var x Extended) ; 

procedure Annuity (r, n : Extended; var x 
{ x := (1 - (1 + r)"'-n) / r } 

procedure S1nX (var x : Extended); 
{ x := sin(x) } 

procedure CosX (var x 
{ x := cos(x) } 

procedure TanX (val' x 
{ x := tan(x) } 

1 November 1982 

Extended) ; 

Extended) ; 

Extended) ; 

Apple Confidential 



procedure AtanX (var x 
{ x :- atan(x) } 

Elems Interface 

Extended); 

procedure NextRandom (var x : Extended); 
{ x := next random (x) } 

14 

{Sp----------------------------------------------------------------------} 
IMPLEMENTATION 

END 

procedure Log2X { (var x : Extended) } ; 
procedure LnX { (var x : Extended) } ; 
procedure LnlX { (var x : Extended) } ; 
procedure Exp2X { (var x : Extended) } ; 
procedure ExpX { (var x : Extended) } ; 
procedure ExplX { (var x : Extended) } ; 

EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 

Since Elems implementation expects pointer to integer argument, 
use this extra level of interface. 

} 
procedure XpwrIxxx(var i : integer; var x : Extended); EXTERNAL; 
procedure XpwrI { (i : integer; var x : Extended) } ; 
begin 

XpwrIxxx(i, x); 
end; 

procedure XpwrY { (y : Extended; var x : Extended) }; EXTERNAL; 
procedure Compound { (r, n : Extended; var x : Extended) }; EXTERNAL; 
procedure Annuity { (r, n : Extended; var x : Extended) } ; EXTERNAL; 
procedure SinX { (var x Extended)} EXTERNAL; 
procedure CosX { (var x Extended)} EXTERNAL; 
procedure TanX { (var x Extended)}; EXTERNAL; 
procedure AtanX { (var x : Extended) } ; EXTERNAL; 
procedure NextRandom { (var x : Extended) } EXTERNAL; 

{======================================================================~:} 
{=======:============================~===~~==============================} 
{=========================================================~=============}. 

1 November 1982 Apple Confidential 



FP68K and ELEMS68K Macros 

; ------------------------------.-----------------------------
These macros give assembly language access to the Mac 
floating-point arithmetic routines. The arithmetic has 
just one entry point. It is typically accessed through 
the tooltrap _FP68K, although a custom version of the 
package may be linked as an object file, in which case 
the entry point is the label %FP68K. 

All calls to the arithmetic take the form: 
PEA <source address> 
PEA <destination address> 
MOVE.W <opcode>,-(SP) 

FP68K 

All operands are passed by address. The <opcode) word 
specifies the instruction analogously to a 68000 machine 
instruction. Depending on the instruction, there may be 
from one to three operand addresses passed. 

This definition file specifies details of the <opcode) 
word and the floating point state word, and defines 
some handy macros. 

Modification history: 
29AUG82: WRITTEN BY JEROME COONEN 
130CT82: FB CONSTRANTS ADDED (JTC) 
28DEC82: LOGB, SCALB ADDED, INF MODES OUT (JTC). 
29APR83: ABS, NEG, CPYSGN, CLASS ADDED (JTC). 
03MAY83: NEXT, SETXCP ADDED (JTC). 
28MAY83: ELEMENTARY FUNCTIONS ADDED (JTC). 
04JUL83: SHORT BRANCHES, TRIG AND RAND ADDED (JTC). 
OlNOV83: PRECISION CONTROL MADE A MODE (JTC). 

;-----------------------------------------------------------

;--------------------------~----------------------~~-------~ 
This constant determines whether the floating point unit 
is accessed via the system dispatcher after an A-line 
trap, or through a direct subroutine call to a custom 
version of the package linked directly to the application. 

;-----------------------------------------------------------
ATRAP 
BTRAP 

• MACRO 
.IF 
FP68K 

.ELSE 

.REF 
JSR 
.ENDC 
.ENDM 

1 November 83 

.EQU 

.EQU 

JSRFP 
ATRAP 

FP68K 
FP68K 

o 
o 

;0 for JSR and 1 for A-line 
;0 for JSR and 1 for A-line 

15 



• MACRO JSRELEMS 
• IF STRAP 

ELEMS68K 
.ELSE 

FP68K and ELEMS68K Macros 

.REF ELEMS68K 
JSR ELEMS68K 
.ENDC 
.ENDM 

;-----------------------------------------------------------
OPERATION MASKS: bits $OOlF of the operation word 
determine the operation. There are two rough classes of 
operations: even numbered opcodes are the usual 
arithmetic operations and odd numbered opcodes are non
arithmetic or utility operations. 

e ___________________________________________________________ 

, 
FOADD .EQU $0000 
FOSUB .EQU $0002 
FOMUL .EQU $0004 
FODIV .EQU $0006 
FOCMP .EQU $0008 
FOCPX .EQU $OOOA 
FOREM .EQU $OOOC 
FOZ2X .EQU $OOOE 
FOX2Z .EQU $0010 
FOSQRT .EQU $0012 
FORTI .EQU $0014 
FOTTI .EQU $0016 
FOSCALB .EQU $0018 
FOLOGB .EQU $OOlA 
FOCLASS .EQU $OOlC 
; UNDEFINED .EQU $OOlE 

FOSETENV .EQU $0001 
FOGETENV .EQU $0003 
FOSETTV .EQU $0005 
FOGETTV .EQU $0007 
FOD2B .EQU $0009 
FOB2D .EQU $OOOB 
FONEG .EQU $0000 
FOABS .EQU $OOOF 
FOCPYSGNX .EQU $0011 
FONEXT .EQU $0013 
FOSETXCP .EQU $0015 
fOPROCENTRY .EQU $0017 
FOPROCEXIT .EQU $0019 
FOTESTXCP .EQU $OOlB 

UNDEFINED .EQU $0010 
; UNDEFINED .EQU $OOlF 

;-----------------------------------------------------------

1 November 83 

16 



FP68K and ELEMS68K Macros 

; OPERAND FORMAT MASKS: bits $3800 determine the format of 
; any non-extended operand. 
j-----------------------------------------------------------
FFEXT .EQU $0000 extended SO-bit float 
FFDBL .EQU $0800 double 64-bit float 
FFSGL .EQU $1000 single 32-bit float 
FF[NT .EQU $2000 integer 16-bit integer 
FFLNG .EQU $2800 long int 32-bit integer 
FFCOMP .EQU $3000 accounting -- 64-bit int 

------------------------------------------------------------, 
Bit indexes for error and halt bits and rounding modes in 
the state word. The word is broken down as: 

$8000 

$6000 

unused 

rounding 
$0000 
$2000 
$4000 
$6000 

modes 
to nearest 
toward +infinity 
toward -infinity 
toward zero 

$1 FOO -- error 
$1000 
$0800 
$0400 
$0200 
$0100 

flags 
inexact 
division by zero 
overflow 
underflow 
invalid operation 

$0080 -- result of last rounding 
$0000 rounded down in magnitude 
$0080 -- rounded up in magnitude 

$0060 -- precision control 
$0000 extended 
$0020 double 
$0040 single 
$0060 ILLEGAL 

$OOlF -- halt enables, corresponding to error flags 

The bit indexes are based on the byte halves of the state 
word. 

;-----------------------------------------------------------
FBINVALID .EQU a invalid operation 
FBUFLOW .EQU 1 underflow 
FBOFLOW .EQU 2 overflow 
FBDIVZEK .EQU 3 division by zero 
FBINEXACT .EQU 4 inexact 
FBRNDLO .EQU 5 low bit of rounding mode 
FBRNDHI .EQU 6 high bit of rounding mode 
FBLSTRND .EQU 7 last round result bit 
FBDBL .EQU 5 double precision control 

1 November 83 

17 



FP68K and ELEMS68K Macros 

FBSGL .EQU 6 single precision control 

._--------------------------------------------------------~-, 
FLOATING CONDITIONAL BRANCHES: floating point comparisons 
set the CPU condition code register (the CCR) as follows: 

relation X N Z V C 

equal 
less than 
greater than 

unordered 

o 0 100 
1 100 1 
00000 
00010 

The macros below define a set of so-called floating 
branches to spare the programmer repeated refernces to the 
the table above. 

;-----------------------------------------------------------
• MACRO FBEQ 
BEQ %1 
.ENDM 

• MACRO FBLT 
BCS %1 
.ENDM 

• MACRO FBLE 
BLS %1 
.ENDM 

• MACRO FBGT 
BGT %1 
.ENDM 

• MACRO FBGE 
BGE %1 
.ENDM 

• MACRO FBULT 
BLT %1 
.ENDM 

• MACRO FBULE 
BLE %1 
.ENDM 

• MACRO FBUGT 
BHI %1 
.ENDM 

• MACRO FBUGE 
Bce %1 
.ENDM 

• MACRO FBU 
BVS %1 

1 November 83 

18 



FP68K and ELEHS68K Macros 19 

.ENOM 

• MACRO FBO 
BVC %1 
.ENOM 

• MACRO FBNE 
BNE %1 
.ENDM 

• MACRO FBUE 
BEQ %1 
BVS %1 
.ENDM 

• MACRO FBLG 
BNE %1 
BVC %1 
.ENOM 

Short branch versions. 

• MACRO FBEQS 
BEQ.S %1 
.ENOM 

• MACRO FBLTS 
BCS.S %1 
.ENDM 

• MACRO FBLES 
BLS.S %1 
.ENOM 

• MACRO FBGTS 
BGT.S %1 
.ENDM 

• MACRO FBGES 
BGE.S %1 
.ENOM 

• MACRO FBULTS 
BLT.S %1 
.ENDH 

• MACRO FBULES 
BLE.S %1 
.ENDM 

• MACRO FBUGTS 
BHI.S %1 
.ENDM 

1 November 83 



FP68K and ELEMS68K Macros 

• MACRO FBUGES 
BCC.S %1 
.ENDM 

• MACRO FBUS 
BVS.S %1 
.ENDM 

• MACRO FBOS 
BVC.S %1 
.ENDM 

• MACRO FBNES 
BNE.S %1 
.ENDM 

• MACRO FBUES 
BEQ.S %1 
BVS.S %1 
.ENDM 

• MACRO FBLGS 
BNE.S %1 
BVC.S %1 
.ENDM 

;-----------------------------------------------------------
OPERATION MACROS: 

THESE MACROS REQUIRE THAT THE OPERANDS' ADDRESSES 
FIRST BE PUSHED ON THE STACK. THE MACROS CANNOT 
THEMSELVES PUSH THE ADDRESSES SINCE THE ADDRESSES 
MAY BE SP-RELATIVE, IN WHICH CASE THEY REQUIRE 
PROGRAMMER CARE. 

OPERATION MACROS: operand addresses should already be on 
the stack, with the destination address on top. The 
suffix X, D, S, or C determines the format of the source 
operand -- extended, double, single, or computational 
respectively; the destination operand is always extended. 

;-----------------------------------------------------------

;-----------------------------------------------------------
; Addition. 
;------------------------------------------------------------

.MACRO FADDX 
MOVE.W #FFEXT+FOADD,-(SP) 
JSRFP 
.ENDM 

• MACRO FADDD 
MOVE.W #FFDBL+FOADD,-(SP) 
JSRFP 
.ENDM 

1 November 83 

20 



FP68K and ELEMS68K Macros 

.MACRO FADDS 
MOVE.W #FFSGL+FOADD,-(SP) 
JSRFP 
.ENDM 

• MACRO FADDC 
MOVE.W #FFCOMP+FOADD)-(SP) 
JSRFP 
.ENDM 

;------------------~---------------------------------- ------
; Subtraction. 
; ------------.----------------------------------.------------

• MACRO FSUBX 
MOVE.W #FFEXT+FOSUB,-(SP) 
JS.RFP 
.ENDM 

• MACRO FSUBD 
MOVE.W #FFDBL+FOSUB,-(SP) 
JSRFP 
.ENDM 

• MACRO FSUBS 
MOVE.W #FFSGL+FOSUB,-(SP) 
JSRFP 
.ENDM 

• MACRO FSUBC 
MOVE.W #FFCOMP+FOSUB,-(SP) 
JSRFP 
.ENOM 

;-----------------------------------------------------------
; Multiplication. 
;-----------------------------------------------------------

• MACRO FMULX 
MOVE.W #FFEXT+FOMUL,-(SP) 
JSRFP 
.ENDM 

• MACRO FMULD 
MOVE.W #FFDBL+FOMUL,-(SP) 
JSRFP 
.ENDM 

.l-f.ACRO FMULS 
MOVE.W #FFSGL+FOMUL,-(SP) 
JSRFP 
.ENDM 

1 November 83 

21 



FP68K and ELEMS68K Macros 

• MACRO FMULC 
MOVE.W #FFCOMP+FOMUL,-(SP) 
JSRFP 
.ENDM 

;-----------------------------------------------------------
; Division. 
"-----------------------------------------------------------, 

• MACRO FDIVX 
MOVE.W #FFEXT+FODIV,-(SP) 
JSRFP 
.ENDM 

• MACRO FDIVD 
MOVE.W #FFDBL+FODIV,-(SP) 
JSRFP 
.ENDM 

• MACRO FDIVS 
MOVE.W #FFSGL+FODIV,-(SP) 
JSRFP 
.ENDM 

• MACRO FDIVC 
MOVE.W #FFCOMP+FODIV,-(SP) 
JSRFP 
.ENDM 

;---------------------------~-------------------------------
; Compare, signaling no exceptions. 
;-----_._----------------------------------------------------

• MACRO FCMPX 
MOVE.W #FFEXT+FOCMP,-(SP) 
JSRFP 
.ENDM 

• MACRO FCMPD 
MOVE.W #FFDBL+FOCMP,-(SP) 
JSRFP 
.ENDM 

• MACRO FCMPS 
MOVE.W #FFSGL+FOCMP,-(SP) 
JSRFP 
.ENDM 

• MACRO FCMPC 
MOVE.W . #FFCOMP+FOCMP,-(SP) 
JSRFP 
.ENDM 

1 November 83 

22 



FP68K and ELEMS68K Macros 

;-----------------------------------------------------------
; Compare, signaling invalid operation if the two operands 
; are unorde red. 
;-----------------------------------------------------------

• MACRO FCPXX 
MOVE.W #FFEXT+FOCPX,-(SP) 
JSRFP 
• ENDt-l 

• MACRO FCPXD 
MOVE.W #FFDBL+FOCPX,-(SP) 
JSRFP 
.ENDM 

• MACRO FCPXS 
MOVE.W #FFSGL+FOCPX,-(SP) 
JSRFP 
.ENDM 

• MACRO FCPXC 
MOVE.W #FFCOMP+FOCPX,-(SP) 
JSRFP 
.ENDM 

;-----------------------------------------------------------
Remainder. The remainder is placed in the destination, 

; and the low bits of the integer quotient are placed in 
; the low word of register DO. 
;-----------------------------------------------------------

• MACRO FREMX 
MOVE.W #FFEXT+FOREM,-(SP) 
JSRFP 
.ENDM 

• MACRO FREMD 
MOVE.W UFFDBL+FOREM,-(SP) 
JSRFP 
.ENDM 

• MACRO FREMS 
MOVE.W #FFSGL+FOREM,-(SP) 
JSRFP 
.ENDM 

• MACRO FREMC 
MOVE.W #FFCOMP+FOREM,-(SP) 
JSRFP 
.ENDM 

;------------------------------~--------------------~------
; Compare the source operand to the extended format and 
; place in the destination. 

1 November 83 

23 



FP68K and ELEMS68K Macros 

;-----------------------------------------------------------
• MACRO FX2X 
MOVE.W #FFEXT+FOZ2X,-(SP) 
JSRFP 
.ENDM 

• MACRO FD2X 
MOVE.W #FFDBL+FOZ2X,-(SP) 
JSRFP 
.ENDM 

• MACRO FS2X 
MOVE.W #FFSGL+FOZ2X,-(SP) 
JSRFP 
.ENDM 

• MACRO FI2X 16-bit integer 
MOVE.W #FFINT+FOZ2X,-(SP) 
JSRFP 
.ENDM 

• MACRO FL2X 32-bit integer 
MOVE.W #FFLNG+FOZ2X,-(SP) 
JSRFP 
.ENDM 

• MACRO FC2X 
MOVE.W #FFCOMP+FOZ2X,-(SP) 
JSRFP 
.ENDM 

;-----------------------------------------------------------
; Convert the extended source operand to the specified 
; format and place in the destination. 
;-----------------------------------------------------------

.~1ACRO FX2D 
MOVE.W #FFDBL+FOX2Z.-(SP) 
JSRFP 
.ENDM 

• MACRO FX2S 
MOVE.W #FFSGL+FOX2Z,-(SP) 
JSRFP 
.ENDM 

• MACRO FX21 16-bit integer 
MOVE.W IIFFINT+FOX2Z.-(SP) 
JSRFP 
.ENDM 

• MACRO FX2L 32-bit integer 
MOVE.W #FFLNG+FOX2Z,-(SP) 
JSRFP 

1 November 83 

24 



.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

FP68K and ELEMS68K Macros 

FX2C 
#FFCOMP+FOX2Z.-(SP) 

;-------------------------------_._--------------------------
; Miscellaneous operations applying only to extended 
; operands. The input operand is overwritten with the 
; computed result. 
;-----------------------------------------------------------

Square root. 
• MACRO 
MOVE.W 
JSR,FP 
.ENDM 

FSQRTX 
ilFOSQRT,-(SP) 

Round to integer, according to the current rounding mode • 
• MACRO FRINTX 
MOVE.W #FORTI,-(SP) 
JSRFP 
.ENDM 

Round to integer, forcing rounding toward zero • 
• MACRO FTINTX 
MOVE.W #FOTTI.-(SP) 
JSRFP 
.ENDM 

Set the destination to the product: 
(destination) * 2A(source) 

where the source operand is a 16-bit integer • 
• MACRO FSCALBX 
MOVE.W #FFINT+FOSCALB,-(SP) 
JSRFP 
.ENDM 

Replace the destination with its exponent, converted to 
the extended format • 

• MACRO FLOGBX 
MOVE.W #FOLOGB,-(SP) 
JSRFP 
.ENDM 

;-----.--.----------------------------~---.------------------
; Non-arithmetic sign operations on extended operands. 
;-----------------------------------------------------------

Negate • 
• MACRO FNEGX 

1 November 83 

25 



FP68K and ELEMS68K Macros 

MOVE.W #FONEG,-(SP) 
JSRFP 
.ENOM 

Absolute value • 
• MACRO FABSX 
MOVE.W #FOABS,-(SP) 
JSRFP 
.ENDM 

Copy the sign of the destination operand onto the sign of 
the source operand. Note that the source operand is 
modified • 

• MACRO FCPYSGNX 
MOVE.W #FOCPYSGN,-(SP) 
JSRFP 
.ENOM 

;-----------.----------------------~-------------------------
The nextafter operation replaces the source operand with 
its nearest representable neighbor in the direction of the 
destination operand. Note that both operands are of the 
the same format, as specified by the usual suffix. 

;-----------------------------------------------------------
• MACRO 
MOVE.W 
JSRFP 
.ENOM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

FNEXTS 
#FFSGL+FONEXT,-(SP) 

FNEXTD 
#FFDBL+FONEXT,-(SP) 

FNEXTX 
#FFEXT+FONEXT,-(SP) 

;-----------------------------------------------------------
The classify operation places an integer in the 
destination. The sign of the integer is the sign of the 
source. The magnitude is determined by the value of the 
source, as indicated by the equates. 

;-----------------------------------------------------------
FCSNAN .EQU 1 signaling NAN 
FCQNAN .EQU 2 quiet NAN 
FCINF .EQU 3 infinity 
FCZERO .EQU 4 zero 
FCNORM .EQU 5 normal number 
FCDENORM .EQU 6 denormal number 

1 November 83 

26 



FP68K and ELEMS68K Macros 

• MACRO FCLASSS 
MOVE.W #FFSGL+FOCLASS,-(SP) 
JSRFP 
.ENDM 

• MACRO FCLASSD 
MOVE.W #FFDBL+FOCLASS,-(SP) 
JSRFP 
.ENDM 

• MACRO FCLASSX 
MOVE.W #FFEXT+FOCLASS,-(SP) 
JSRFP 
.ENDM 

• MACRO FCLASSC 
MOVE.W #FFCOMP+FOCLASS,-(SP) 
JSRFP 
.ENDM 

;-----------------------------------------------------------
These four operations give access to the floating point 
state (or environment) word and the halt vector address. 
The sole input operand is a pointer to the word or address 
to be placed into the arithmetic state area or read from 
it. 

;-----------------------------------------------------------
• MACRO FGETENV 
MOVE.W ItFOGETENV,-(SP) 
JSRFP 
.ENDM 

• MACRO FSETENV 
MOVE.W #FOSETENV,-(SP) 
JSRFP 
.ENDM 

• MACRO FGETTV 
MOVE.W #FOGETTV,-(SP) 
JSRFP 
.ENDM 

• MACRO FSETTV 
MOVE.W #FOSETTV,-(SP) 
JSRFP 
.ENDM 

j-----------------------------------------------------------
Both FPROCENTRY and FPROCEXIT have one operand -- a 
pointer to a word. The entry procedure saves the current 
floating point state in that word and resets the state 
to 0, that is all modes to default, flags and halts to 
OFF. The exit procedure performs the sequence: 

1 November 83 

27 



FP68K and ELEMS68K Macros 

1. Save current error flags in a temporary. 
2. Restore the state saved at the address given by 

the parameter. 
3. Signal the exceptions flagged in the temporary, 

halting if so specified by the newly 
restored state word. 

These routines serve to handle the state word dynamically 
across subroutine calls. 

j-----------------------------------------------------------
• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

FPROCENTRY 
#FOPROCENTRY,-(SP) 

FPROCEXIT 
#FOPROCEXIT,-(SP) 

;-----------------------------------------------------------
FSETXCP is a null arithmetic operation which stimulates 
the indicated exception. It may be used by library 
routines intended to behave like elementary operations. 
The operand is a pointer to an integer taking any value 
between FBINVALID and FBINEXACT. 
FTESTXCP tests the flag indicated by the integer pOinted 
to by the input address. The integer is replaced by a 
Pascal boolean (word $OOOO=false, $OlOO=true) 

;-----------------------------------------------------------
• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

FSETXCP 
#FOSETXCP,-(SP) 

FTESTXCP 
IIFOTESTXCP,-(SP) 

j-----------------------------------------------------------
WARNING: PASCAL ENUMERATED TYPES, LIKE THOSE OF THE 
DECIMAL RECORD, ARE STORED IN THE HIGH-ORDER BYTE OF THE 
ALLOCATED WORD, IF POSSIBLE. THUS THE SIGN HAS THE 
INTEGER VALUE 0 FOR PLUS AND 256 (RATHER THAN 1) 
FOR ~llNUS. 

BINARY-DECIMAL CONVERSION: The next routines convert 
between a canonical decimal format and the binary format 
specified. The decimal format is defined in Pascal as 

CONST 
SIGDIGLEN = 20; 

1 November 83 

28 



TYPE 
SigDig 
Decimal 

FP68K and ELEMS68K Macros 

= string [SIGDIGLEN]; 
record 

end; 

sgn 
exp 
sig 

o •• 1 ; 
integer; 
SigDig 

Note that Lisa Pascal stores the sgn in the high-order 
byte of the allotted word, so the two legal word values 
of sgn are 0 and 256. 

;-----------------------------------------------------------

;-----------------------------------------------------------
Decimal to binary conversion is governed by a format 
record defined in Pascal as: 

TYPE 
Dec Form record 

style 
digits 

end; 

(FloatDecimal, FixedDecimal); 
integer 

Note again that the style field is stored in the high
order byte of the allotted word. 

These are the only operations with three operands. The 
pointer to the format record is deepest in the stack, 
then the source pointer, and finally the destination 
pointer. 

;-----------------------------------------------------------
• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

• MACRO 
MOVE.W 
JSRFP 
.ENDM 

FDEC2X 
#FFEXT+FOD2B,-(SP) 

FDEC2D 
#FFDBL+FOD2B,-(SP) 

FDEC2S 
#FFSGL+FOD2B,-(SP) 

FDEC2C 
#FFCOMP+FOD2B,-(SP) 

;-----------------------------------------------------------

1 November 83 

29 



FP68K and ELEMS68K Macros 30 

; Binary to decimal conversion. 
;-----------------------------------------------------------

• MACRO FX2DEC 
MOVE.W #FFEXT+FOB2D,-(SP) 
JSRFP 
.ENDM 

• MACRO FD2DEC 
MOVE.W #FFDBL+FOB2D,-(SP) 
JSRFP 
.ENDM 

• MACRO FS2DEC 
MOVE.W #FFSGL+FOB2D,-(SP) 
JSRFP 
.ENDM 

• MACRO FC2DEC 
MOVE.W #FFCOMP+FOB2D,-(SP) 
JSRFP 
.ENDM 

;-----------------------------------------------------------
; Equates and macros for elementary functions. 
;-----------------------------------------------------------
FOLNX .EQU $0000 
FOLOG2X .EQU $0002 
FOLNlX .EQU $0004 
FOLOG21X .EQU $0006 

FOEXPX .EQU $0008 
FOEXP2X .EQU $OOOA 
FOEXPIX .EQU $OOOC 
FOEXP2lX .EQU $OOOE 

FOXPWRI .EQU $8010 
FOXPWRY .EQU $8012 
FOCOMPOUNDX .EQU $C014 
FOANNUITYX .EQU $C016 

FOSINX .EQU $0018 
FOCOSX .EQU $OOlA 
FOTANX .EQU $OOlC 
FOATANX .EQU $OOlE 
FORANDOMX .EQU $0020 

• MACRO FLNX 
MOVE.W IIFOLNX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FLOG2X 
MOVE.W #FOLOG2X,-(SP) 

1 November 83 



JSRELEMS 
.ENOM 

• MACRO FLNIX 

FP68K and ELEMS68K Macros 

MOVE.W #FOLNIX,-(SP) 
JSRELEMS 
.ENOM 

• MACRO FLOG21X 
MOVE.W #FOLOG21X,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FEXPX 
MOVE.W #FOEXPX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FEXP2X 
MOVE.W #FOEXP2X,-(SP) 
JSRELEMS 
.ENOM 

• MACRO FEXPIX 
MOVE.W #FOEXPIX,-(SP) 
JSRELEMS 
.ENOM 

• MACRO FEXP21X 
MOVE.W #FOEXP21X,-(SP) 
JSRELEMS 
.ENOM 

• MACRO FXPWRI 
MOVE.W #FOXPWRI,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FXPWRY 
MOVE.W #FOXPWRY,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FCOMPOUNDX 
MOVE.W #FOCOMPOUNDX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FANNUITYX 
MOVE.W #FOANNUITYX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FSINX 

1 November 83 

31 



FP68K and ELEMS68K Macros 

HOVE.W IIFOSINX,-(SP) 
JSRELEMS 
.. ENDM 

• MACRO FCOSX 
MOVE.W #FOCOSX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FTANX 
MOVE.W #FOTANX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FATANX 
MOVE.W #FOATANX,-(SP) 
JSRELEMS 
.ENDM 

• MACRO FRANDOMX 
MOVE.W #FORANDOMX,-(SP) 
JSRELEMS 
.ENDM 

;--------------------------------------------_._-------------
;-----------------------------------------------------------
;-----------------------------------------------------------
;----------------------------------------------------------~ 

1 November 83 

32 



Draft 1.1 FP68K Integer Conversion Tests 33 

Introduction 

FP68K provides conversions between the extended floating-point format and 
three integer formats: 

int16 
int32 
comp64 

16-bit two's complement 
32-bit two's complement 
64-bit two's complement with the reserved value 
hexadecimal 8000000000000000. 

One Pascal program, ITBATTERY.TEXT, tests all three conversions. This 
document describes how to use and, if necessary, modify the tests. 

Compiling ~ running 

ITBATTERY.TEXT uses the SANE interface (see the "High Level Interface" 
document, so it must be linked with the SANE object files, as well as with the 
usual nonarithmetic Pascal run-time libraries (e.g. *MPASLIB on Lisa). The 
program will simply run to completion, with a Pascal HALT if an error is 
found; execution time may run to 15 minutes on a Lisa system. 

What is tested 
---~---

Each of the integer formats is tested in two phases. First, a collection 
of specific extended numbers is converted to the integer format, with tests 
for correct rounding and signaling of the invalid exception when appropriate. 
Then a set of 

integer --) extended --) integer 

conversions is run, with the input and output integers compared for equality. 
In the case of int16, all 2 A 16 cases are run. However exhaustive testing of 
int32 and comp64 is infeasible so a loop is set up to do 2 A 16 tests from 
several starting points. 

5 January 83 



Draft 1.1 IEEE Tests 34 

Introduction 

The most important and rigorous set of tests of FP68K is the set of 
so-called IEEE test vectors. These tests, developed by the author while at 
Zilog, are used to test implementations of proposed standard P754. They were 
donated to the IEEE subcommittee 754 by Zilog Inc., and are now distributed by 
that subcommittee. The tests have undergone major revision within Apple, 
thanks especially to Jim Thomas of pes. 

Form of the tests -----
Each vector is an ascii string describing an operation, operands, and the 

result. For example, "lincl" is the floating-point number (of the format 
under consideration) next larger than 1. When "1" is subtracted from "lincl", 
the result is "lulpl", just one unit in the last place of 1. Written this 
way, the vectors may be applied to any floating-point format. The tests 
carefully inspect the nuances of rounding and exception handling. A document 
is under development to explain in detail the next release of the test 
vectors, scheduled for early 1983, after some last details of the standard are 
cleared up. 

Files 

The test vectors are contained in a family of files by the name of 
TVxxxx.2.TEXT and TWxxx.2.TEXT. The "2" refers to version 2 of the tests. 
(Version 1 was based on Draft 8.0 of the standard.) The file TLIST.TEXT is a 
list of the test file names to be used in any given run of the test. Pascal 
file TD68.TEXT with unit TD68FP.TEXT actually run the tests. These interface 
with FP68K exclusively through the SANE interface. 

5 January 83 



Draft 1.1 Binary-Decimal Tests 

Introduction 

Since the binary <--) conversions within FP68K approximate the 
mathematical identity operation, they lend themselves to certain types of 
self-testing. For example, if enough decimal digits are kept, then the 
conversion 

binary --) decimal --) binary 

is the identity mapping when results are rounded to nearest. The number of 
digits required turns out to be 9 for single and 17 for double. A similar 
test performs the first conversion rounding toward plus infinity and the 
second rounding toward minus infinity. In this case the final result may 
differ from the starting value by one unit in the direction of the latter 
rounding, so the program allows this discrepancy. 

35 

This document describes the test files and how they can be run. For 
details of the underlying error analysis (which is quite subtle) see the paper 
"Accurate Yet Economical Binary-Decimal Conversions" by J. Coonen. 

Test programs 

The test programs are: 

IOS.TEXT 
rOSF.TEXT 
rOD. TEXT 
rODF.TEXT 
rONAN. TEXT 
rOPSCAN.TEXT 

The letter "s" and tiD" distinguishes single and double tests. The IOS.TEXT 
and roo. TEXT tests run with both rounding to nearest and the directed 
roundings. The "F" tests use fixed-format output rather than floating-format 
output for the intermediate decimal string. The IOPSCAN test is used to check 
the preformance of the printer and scanner used by SANE68, and included from 
file SAPSCAN.TEXT. The IONAN test checks the input and output conversion of 
some 20 stock NANs, and then allows the user to enter any decimal string to be 
converted to the three formats in three rounding modes. Neither IOPSCAN nor 
IONAN are self-checking; rather, the user must monitor their output. 

The tests cover extreme intervals where the decimal numbers are sparsest 
and densest with respect to the binary numbers. Sparse intervals have the 
form [lOAN, 2An] where the endpoints are nearly equal. Dense intervals have 
the corresponding form [2 Am, lOAM}. 

Running the tests 

Each of the programs is compiled and run separately. The programs use 
the SANE interface. A test will HALT with a suitable diagnostic if the test 

5 January 83 



Draft 1.1 Binary-Decimal Tests 

fails. 

The single format cases are few enough that their tests can be run 
overnight. However, the double format cases will run essentially forever 
since the number of interesting cases is so great. A few overnight tests 
should be sufficient. 

5 January 83 

36 



Draft 1.2 SANE Binary-Decimal Conversion 37 

Background 

The so-called I/O routines for scanning and printing floating-point 
numbers in decimal form are complicated by subtle numerical issues and 
nettlesome design decisions. For example. even the simplest. stripped-down 
conversion routines require over one-third the code space (about 1.3K) of the 
rest of the FP68K binary floating-point package. With a full parser and 
formatter, the conversion routines are much larger. And it is unclear whether 
full routines would be flexible enough for use in different language systems 
and I/O-intensive applications like Visi-Calc. 

Where does the responsibility lie? This note argues that the core 
conversion routines, which are part of the arithmetic package, should be kept 
very simple. Above them -- somewhere in the system -- should be a full 
scanner and formatter available to languages and applications. but not forced 
upon them. This would lead to the most efficient use of code space and 
execution time. 

The Sad Tru t h ----
Numerical I/O can be monstrous. Since each computer language has its own 

grammar for floating-point numbers and its own conventions for output format, 
it almost necessary for each language system on a computer to provide 
significant I/O support. Unfortunately, this may be layered upon the host 
system's 1/0 system. And it is not unusual (Apple Ill, for example) for a 
language compiler to use different conversion routines than the 1/0 system the 
compiled code utili~es. 

In another case, designers of the UNIX operating system attempted to 
route all conversion through the routines atof(), ascii to floating, and the 
pair ecvt(), fcvt() for floating and fixed conversion to ascii. But even this 
fairly clean design has led to VERY complicated software shells around atof. 
ecvt. and fcvt. Numerical accuracy aside. the complexity of just the 
character hacking is forbidding. 

One problem with the UNIX design lies in its failure to properly divide 
responsibility for the distinct processes involved in conversion, namely: 

1. Recognize floating-point strings (in compilers •••• ) 
2. Translate strings to numerical values. 
3. Determine which output format (fixed or floating) is 

appropriate for a given value. 
4. Translate a numerical value to a string. 

The utilities atof() and ecvt() provide items 2 and 4. Item 3, printing a 
number in its "nicest" form is provided in rough form through ecvt(). But 
recognizing strings is left to each language compiler's lexical scanner. 
Unfortunately, after a scanner has parsed a floating decimal string, it passes 
it along to atof() where it is parsed once more. 

18 January 1983 



Draft 1.2 SANE Binary-Decimal Conversion 38 

A Proposal for Change 

(1) Support, at the arithmetic level, conversions between each of the 
available binary floating-point types and one decimal structure describable in 
Pascal as: 

{* 
** Low-level format of the floating decimal value: 
** (-1)Asgn * 10Aexp * dig 
** The constant DECSTRLEN is 20 for MAC and 28 for III, since 
** the latter uses very high precision for intermediates. 
*} 
type 

DecStr = string[DECSTRLEN] 
Decimal = record 

sgn: 0 •• 1; {O for +, 1 for -} 
exp: integer; 
sig: DecStr 

end; 

(2) Rigidly specify the format of Decimal.sig for decimal to binary 
conversions, relying upon a lexical scanner to perform the first parse. The 
decimal value would depend upon the first character of decrec.dig: 

'I' --) infinity 
'Nxxx ••• x' --) NAN. with optional ascii hex digits 0-9. A-F. a-f 
'0 ' --) zero 
'ddd ••• d ' --) string of digits stripped of leading and trailing zeros 

The digit string would never be more than 20 digits long. If present. the 
20-th digit would indicate the absence of nonzero trailing digits beyond the 
20-th (to aid in correct rounding). 

(3) Specify decimal output format through a structure like the Pascal: 

{* 
** Output format specifier. 
*} 
type 

Dec Form = record 

end; 

style: (float. fixed); 
digits: integer 

For "float" conversions. digits is the number of significant digits to be 
delivered in Decimal.sig. For "fixed" conversions, count is the number of 
fraction digits to be converted (a negative count suppresses conversion of 
low-order integer digits). 

Sometimes it is desired to print a number in the nicest form possible for 
a given field width. For example, the string "1.23456789" conveys much more 
information in 10 characters than does "1.2345e+04". Such conversions are 

18 January 1983 



Draft 1.2 SANE Binary-Decimal Conversion 39 

discussed in the next section. 

(4) Provide a scanner and formatter which, if not of most general use, 
provide models that can be tailored to a particular application. Samples are 
built into the implementation section of the SANE Pascal interface; they are 
contained in the file SAPSCAN.TEXT. 

Binary --) Decimal 

The family of routines: 

S2Dec 
D2Dec 
X2Dec 
C2Dec 

provide conversions to the Decimal record format described above. Special 
cases are keyed by the first character of Decimal.sig: 

'0' zero 
'I' infini ty 
'N' not-a-number, followed by optional ascii hex digits; if there are 

fewer than four, they are padded on the left with O's. 
'?' overflow of fixed-style format 

These must be used with a formatter to produce output strings. 

The family: 

S2Str 
D2Str 
X2Str 
C2Str 

uses the built-in formatter, Dec2Str, to generate ascii string output. 

Decimal --) Binary 

These conversions are povided by the complementary set of procedures: 
Dec2S, Dec2D, Dec2X, Dec2C, and Str2S, Str2D, Str2X, Str2C. In the case of 
the Dec2* conversions, the first character of Decimal.sig indicates special 
cases as noted above for *2Dec conversions. 

Infinity and NAN conversions 

Infinity is printed and read as a string of sign characters, "+++++" or 
tt _____ tt. 

On input, NANs have the general form NAN'xxxx:yyy ••• y'. The x's and y's 
should be ascii hex digits: 0-9, A-F, a-f. The string port{on following NAN 
may be omitted. The x's are padded on the LEFT with a's to width 4. The y's 
are padded on the RIGHT with O's to the width of the NAN's significant bit 

18 January 1983 



Draft 1.2 SANE Binary-Decimal Conversion 

field. 

On output, NANs will be printed in the same format. 
trailing y-O are omitted, but at least one x is printed. 
colon and the y field is dropped. 

Any unrecognizable string is converted to a NAN. 

18 January 1983 

40 

Leading x=-O and 
If all y=-O, then the 



Draft 1.0 Free Format Decimal Output 41 

Background 

Applications like accounting spreadsheets typically need to display 
floating-point values in decimal form within a field of fixed width. For 
maximum readability, the output should be in integer or fixed-point format if 
possible, with floating-point format as a last resort. The idea is to avoid 
listing small integers in the abominable form 0.100000000000El reminiscent of 
computing in the McCarthy era. 

The problem 

Given a binary floating-point number X and an ascii field F, display X in 
the "nicest", most informative way within F. 

A proposal, 

1. If X may be displayed in a subfield of F, pad X on the left with blanks. 

2. Display the sign of X only if it is '-'. 

3. If X is an integer and F is wide enough to accommodate X, then display X as 
an integer, without a trailing , • 

4. Else if X has nonzero integer and fraction parts and F is wide enough to 
accommodate at least the integer part of F and its trailing '.', then display 
X in the fixed-point form ZZZZ.YYYY with as many fraction digits as F will 
accommodate, up to a maximum of 17 significant digits. 

5. Else if Ixi < 1 and F is wide enough that X may be displayed in the form 
O.OOOOOZZZZZ with no more Os just to the right of the decimal point than 
digits following those Os, then display X in that fixed-point form with up to 
17 significant digits. 

6. Finally, if all the above fail, then display X in the floating-point form 
Z.ZZZZZEYYY with as many significant digits up to 17 as F will accommodate, 
taking into account the width of the exponent field, including its possible 
sign. Display the sign of the exponent field only if it is '-'. 

An implementation 

The above choices depend on detailed knowledge of the magnitude of X. 
For example, in producing floating-point output, it is necessary to know the 
number of spaces that will be occupied by the decimal exponent (with sign, it 
could be 1 to 5) in order to know how many significant digits to which to 
round X. In the worst case, this could mean several calls upon the low-level 
conversion routine until the proper output is finally obtained. 

One easy way to bypass these problems, and keep the fundamental 
conversion routine simple, is perform the binary -> decimal conversion in two 
stages. First convert the binary value X to the SANE decimal form: 

23 August 82 



Draft 1.0 

type 

Free Format Decimal Output 

DecStr = string[DECSTRLEN]; 
Decimal - record 

{ length is 20 for MAC } 

end; 

sgn: integer; 
exp: integer; 
sig: DecStr 

{O for +, nonzero for -} 
{as though decimal is at the right of ••• } 

If the conversion is performed with rounding toward 0, conversion style = 
float, and digit count = 19, and if the inexact exception flag is cleared 
before the conversion, then the 19-digit result may be correctly rounded to 
the desired width after the ultimate output format is determined. Since no 
more than 17 digits will ever be displayed (recall that 17 digits suffice to 
distinguish double format binary numbers), the 19 digits together with the 
inexact exception flag permit correct rounding. 

42 

The second step of the conversion decides, on the basis of the 
intermediate decimal form, which format is appropriate. Then the decimal 
value is rounded (in decimal!) and displayed as desired. Note that this 
scheme has as a happy byproduct the ability to round in the (time-honored?) 
"add half and chop" manner that is unavailable within Apple arithmetic itself. 

23 August 82 



Draft 2 F-P IMPLEMENTATION DETAILS 43 

In the interest of compatibility of the floating-point arithmetic on 
Apples II/Ill and Mac/(Lisa?), the following GRITTY DETAILS were discussed on 
June 29. This is an update on the decisions made then. 

1. Distinguishing signaling and quiet NANs: use the leading fraction bit, 
O-quiet and I-signaling. 

2. Explicit leading bit of extended NANs and INFs: ignore it, that is decide 
whether NAN or INF on the basis of the fraction bits only. 

3. Quiet NANs have an 8-bit "indicator field" marked by stars in the following 
extended format hex mask: XXXX XX** XXXX XXXX XXXX. This byte is the low half 
of the leading word of significant bits. The interpretation of the field is 
as given page 70 of Apple III Pascal, volume 2, subject to enhancements. 

4. When two quiet NANs are operands to the operations +, -, *, /, and REM, one 
or the other of the NANs is output. When the indicator fields differ, the NAN 
with the larger indicator field prevails; ties are broken arbitrarily. 

5. True to the standard, the sign of an output NAN is unspecified. 

6. Signaling NANs precipitate the invalid operation exception when they appear 
as operands. 

7. Underflow is tested before rounding. CHANGE: this may change depending on 
P754 deliberations in the late summer of '82 

8. Projective INF follows the same rules of signs as affine INF. The 
ABSOLUTELY ONLY differences between affine and projective modes are: the 
UNORDERED-ness of projective INF in comparisons with finite numbers, and the 
invalid operation exception that arises from the sum of two projective INFs 
with the same sign. CHANGE: projective mode may be removed from P754 in late 
summer '82. 

9. Treatment of unnormalized extended numbers may differ between systems. 68K 
implementations will normalize all such, as is expected of the Motorola and 
Zilog chips. 6502 implementations may support the ANTIQUE warning mode in 
preliminary releases, though it may never be documented for general 
consumption. 

10. The bottom of the extended exponent range is as in the Motorola and Zilog 
implementations (as opposed to Intel). That is, there is no redundancy 
between the bottom two exponent values. 

11. The exponent bias in extended is hex 3FFF, which is used by Intel, Zilog, 
and Motorola. Motorola may insert a word of garbage between the sign/exp 
fields and the significant bits in order to have a 96-bit data type. 

12. Comparisons return results according to local system convenience. 68K: 
return from the floating-point software with the CPU condition codes set 
appropriately for a conditional branch. 6502: for lack of a" rich set of 
conditional branches, let the comparison operation be a family of boolean 
tests like "Is X <= Y?" The difference between the two systems should be 

31 August 82 



Draft 2 F-P IMPLEMENTATION DETAILS 

hidden well below the high-level language interfaces. 

13. Auxiliary functions: relegate functions like nextafter() to the system 
numerical library rather than putting them in the arithmetic engine. 

44 

14. The data types specified by SANE are intl6, comp32, comp64, f32, f64, x80. 
68K systems will require int32 as well. 

15. Is the Pascal assignment: X := Y; an arithmetic operation when both X 
and Yare variables of the same floating-point format? Or is a straight byte 
copy sufficient? This is really a language issue -- one left dangling by the 
standard. The arithmetic units, if asked to perform a floating move between 
two floating entities of the same format, will perform a full-blown arithmetic 
operation. This will cause side effects if the floating value is a signaling 
NAN (invalid operation) or a denormalized number (underflow). 

16. Precision control is supported by 6502 and 68K packages, but it is 
available only through assembly language -- it is intended only for SPECIAL 
applications anyway. Precision control implies range control, too. 

17. There is no "integer overflow" exception. 

18. Traps? These are so system-dependent there is no hope for perfect 
consistency. So the issue is left as a local matter for each system. The 
question relevant to each floating-point engine is: "What information will I 
be required to spew out in case of a trap?" 

31 August 82 



Draft 1.7 FP68K -- An Overview 45 

TABLE OF CONTENTS 

1. Design Philosophy 

2. Data Types 

3. Arithmetic Operations 

4. Format Conversions 

5. Internal Architecture 

6. External Access 

7. Calling Sequence 

8. Comparisons 

9. Binary-Decimal Conversions 

10. The State Area 

11. Traps 

12. Other Pseudo-Machines 

13. Arithmetic Abuse 

14. Size and Performance 

15. Floating-Point at a Glance ••• a graphical view 

1 November 82 



Draft 1.7 FP68K -- An Overview 46 

1. Design Philosophy 

The software package FP68K provides binary floating-point arithmetic 
according to the proposed IEEE standard P754. This arithmetic is in turn the 
basis for SANE, standard Apple numeric environment. The goal is software 
compatibility between the various Apple products supporting SANE. 

The arithmetic package is reasonably small and fast. Its interface is 
very simple. And it provides just those operations needed for applications 
software. Although developed specifically for Mac, the package is designed 
for use in Lisa, if desired. 

The following sequence of examples illustrates the SANE philosophy: 

Single operation: x + y 

P754: Compute as if with unbounded range and precision, 
then coerce to destinatlon format. 

Expression evaluation: Z := (X + Y)/(U + V); 

Loop: 

SANE: Compute all anonymous intermediate subexpressions 
to extended, then coerce to destination format. 

S := 0.0; 
FOR I .- 1 TO N DO 

S := S + A[I]*B[I]; 

VERY SANE: Wise programmer uses extended variable S to 
eliminate spurious over/underflows in the inner 
loop, and to reduce the final rounding error. 

1 November 82 



Draft 1.7 FP68K -- An Overview 47 

2. Data Types 

The arithmetic supports the following data types. All are specified in 
SANE except for int32 and decimal. Int32 is included for convenience in 68K 
environments, where 32-bit integers are common. Through the decimal type the 
package provides the basis for the binary<-)decimal conversions required by 
languages and the I/O system. 

int16 16-bi t two's-complement integer 
int32 32-bit two's-complement integer 
comp64 64-bit integer, with one reserved operand value 
f32 32-bit single floating-point 
f64 64-bit double floating-point 
x80 80-bit extended floating-point 
decimal ascii digit string with integer sign and exponent 

3. Arithmetic Operations 

These operations apply to floating-point operands: 

+, -, *, /, SQRT, REMAINDER, COMPARE, 
ROUND TO INTEGER, TRUNCATE TO INTEGER, LOGB, SCALS, 
ABSOLUTE VALUE, NEGATE, COPYSIGN, NEXAFTER, CLASS 

Except for COMPARE, each produces a floating-point result. COMPARE sets the 
CPU flag bits according to the two operands. Besides its floating-point 
result, REMAINDER returns the sign and four least significant bits of its 
integer quotient in the CPU flags (a very useful trick for argument reduction 
in the transcendental functions). LOGB replaces a number by is unbiased 
exponent, in floating form; SCALB scales a number by an integer power of 2. 

4. Format Conversions 

intXX 
comp64 
floating 
decimal 

(--) 
(--) 

(-) 
(-) 

extended 
extended 
floating 
extended 

5. Internal Architecture 

(one operand must be extended) 

The package provides 2-address memory to memory arithmetic operations of 
the form 

(op) DST --) DST and 
SRC <op)DST --> DST 

where DST and SRC are the destination and source operands, re~pectively. The 
DST operand is always in the extended format. The conversions have the form: 

1 November 82 



Draft t.7 FP68K -- An Overview 

SRC --> DST 

where at least one of SRC and DST is a floating-point format. The package 
also provides a few support functions in connection with the floating:point 
error flags and modes. 

48 

Extended format results may be coerced to the PRECISION and RANGE of the 
single or double formats, on an instruction by instruction basis. Then 
subsequent operations are able to take advantage of the trailing zeros to 
improve performance. This feature is provided to expedite special-purpose 
applications such as graphics and is not intended for general use. Only under 
certain circumstances will it actually obtain a speed advantage, rather than a 
DISADVANTAGE, since the package is built to do extended arithmetic. 

6. External Access 

The package is re-entrant, position-independent code, which may be shared 
in multi-process environments. It is accessed through one entry point, 
labeled FP68K. Each user process has a static state area consisting of one 
word of mode bits and error flags, and a two-word halt vector. The package 
allows for different access to the state word in one-process (Mac) and 
multi-process (Lisa) environments. 

The package preserves all CPU registers across invokations, except that 
REMAINDER modifies DO. It modifies the CPU condition flags. Except for 
binary-decimal conversions, it uses little more stack area than is requi~ed to 
save the sixteen 32-bit CPU registers. Since the binary-decimal conversions 
themselves call the package (to perform mUltiplies and divides), they use 
about twice the space of the regular operations. 

7. Calling Sequence 

A typical invokation of the package will consist of a sequence· of four 
68K assembly instructions: 

PEA 
PEA 
MOVE.W 
JSR 

<source address> 
<destination address> 
<opword>, -(SP) 
FP68K 

;"Push Effective Address u 

;"Push Effective Address" 
;upush" operation word 
;"Call" the package 

(If FP68K resides in system memory, the JSR may be replaced by an A-line trap 
opcode.) Other calls will have more or fewer operand addresses to push onto 
the stack. The opword is the logical OR of two fields, given here in 
hexadecimal: 

"non-extended" operand format, bits 3800: 
0000 x80 
0800 f64 
1000 f32 
1800 ILLEGAL 
2000 int16 

1 November 82 



Draft 1.7 FP68K -- An Overview 

2800 int32 
3000 comp64 
3800 ILLEGAL 

arithmetic operation code, bits OOlF: 
0000 add 
0002 subtract 
0004 mUltiply 
0006 divide 
0008 compare 
OOOA -- compare and signal invalid if UNORDERED 
OOOC remainder 
OOOE floating, intxx, comp64 --> extended convert 
0010 -- extended --> intXX, comp64, floating convert 
0012 square root 
0014 round to integer in floating format 
0016 truncate to integer in floating format 
0018 scale by integer power of 2 
001A replace by unbiased exponent 
ODIC classify the floating input 
OOlE ILLEGAL 

0001 put state word 
0003 -- get state word 
0005 -- put halt vector 
0007 -- get halt vector 
0009 -- decimal --) floating convert 
OOOB -- floating --) decimal convert 
OOOD -- negate 
OOOF -- absolute value 
0011 -- copy sign 
0013 -- nextafter 
0015 -- set exception 
0017 -- procedure entry protocol 
0019 -- procedure exit protocol 
001B -- test exception 
OOlD and OOlF are ILLEGAL 

8. Comparisons 

In this arithmetic, comparisons require some extra thought. The 
trichotomy rule of the real number system -- thAt two numbers are related as 
LESS, EQUAL, or GREATER -- is violated by the NANs, which compare UNORDERED 
with everything, even themselves. So it is necessary for floating-point 
comparisons to use the CPU condition codes in a way that seems surprising at 
first blush: 

RELATION 

LESS 
EQUAL 
GREATER 
UNORDERED 

1 November 82 

FLAGS: X N Z V C 

1 100 1 
o 0 100 
o 0 000 
000 1 0 

49 



Draft 1.7 FP68K -- An Overview so 

This encoding leads to a very convenient mapping between the "floating-point 
conditional branches" and the CPU conditional branches. In the following 
table, the '1' refers to UNORDERED. The second column gives the name of the 
branch macro that provides the "floating branch" (see the "Assembler Support" 
document). 

BRANCH CONDITION MACRO NOTATION CPU BRANCH 

= FBEQ BEQ 
< FBLT BCS 
<, = FBLE BLS 
> FBGT BGT 
>, = FBGE BGE 

? < FBULT BLT · , 
? <, FBULE BLE · , 
? > FBUGT BHI · , 
? >, = FBUGE BCC · , 
1 ( unordered) FBU BVS 
<, = , > (ordered) FBD BVC 
? <, > (not equal) FBNE BNE · , 
? = FBUE BEQ / BVS · , 
<, > FBLG BNE / BVC 

Only in the last two instances, are two branches requi red. 

The variant comparison instruction, that signals the invalid operation 
exception if its operands are UNORDERED, is useful in high-level languages 
since P754 (and SANE) require that certain UNORDERED comparisons be marked 
invalid. 

Further discussion of the language issues of comparisons may be found in 
"Comparisons and Branching" by Jerome Coonen. 

9. Binary-Decimal Conversions 

The package provides conversion functions intended to be used in 
conjunction with scanners and formatters peculiar to the user environment. 
For decimal to binary conversions, the input parameters are: 

address of Pascal decimal structure: 
record 

sgn 
exp 
sig 

end; 

O •• 1 ; 
integer; 
string[20] 

address of target floating variable 

1 November 82 



Draft 1.7 FP68K -- An Overview 

The format (f32, f64, x80) of the target is given in the opword. For binary 
to decimal conversions, the input paramaters are: 

address of format structure: 
record 

end; 

style: (FloatDecimal, FixedDecimal); 
digits: integer 

address of source floating variable 

address of decimal structure: 
sign 
exponent 
ascii string of significant digits 

The interpretation of the latter format element depends on the style of the 
conversion. For fixed conversions, the digit count gives the number of 
fraction digits desired (which may be negative). For float conversions, the 
digit count gives the number of significant digits desired. 

51 

Free format binary --> decimal conversions, which display numbers in the 
"nicest" format possible within given field width constraints, are supported 
in software. using the float style of conversion. .Nice conversions are handy 
in applications like accounting spreadsheets where tables of numbers are 
displayed. See the "Binary-Decimal Conversion" document for details. The 
SANE interface gives details about the decimal format. 

10. The State Area -- ---
Each user of the package has three words of static floating-point state 

information. All accesses to the state should be made through the four state 
operations. The state consists of: 

modes and flags word: 
8000 -- unused 

6000 rounding direction: 
0000 to nearest 
2000 toward +INF 
4000 toward -INF 
6000 toward zero (chop) 

IFOO -- error flags, from high to low order: 
1000 inexact result 
0800 division by zero 
0400 floating overflow 
0200 floating underflow 
0100 invalid operation 

0080 -- rounding of last result 

1 November 82 



Draft 1.7 FP68K -- An Overview 

0000 not rounded up in magnitude 
0080 rounded up in magnitude 

0060 -- precision control: 
0000 -- extended 
0020 -- double 
0040 single 
0060 -- ILLEGAL 

OOlF -- halt enables, correspond to error flags 

halt vector: 
32-bit address of alternate exit from package 

11. Halts 

52 

When an error arises for which the corresponding halt is enabled, a trap 
is taken through the vector in the floating-point state area. The halt 
routine is called as a Pascal procedure of the form 

PROCEDURE MyHalt(VAR r: fpRegs; op3, op2, opl: fpPtr; opcode: integer); 
where 
TYPE 

fpRegs = RECORD BEGIN 
FPRCCR, 
FPRDOHI, 
FPRDOLO 

END; 
fpPtr = AExtended; 

{ 68000 CCR register } 
{ high word of register DO } 
{ low word of register DO } 

{ but may be pointer to any type } 

The only way to return to the package from a halt is to initiate a new 
floating-point operation. There is no way to resume execution of the halted 
operation. 

The state-related operations never halt. The binary-decimal conversions 
do not halt, though the individual operations they employ (such as ' 
multiplication to form lOAN for some integer N) might halt. 

12. Other Pseudo-Machines 

The package is simple and general enough to be the basis for 
pseudo-machines with register architectures like the 68881 or the Z8070 or 
with an evaluation stack like the Intel 8087. What is needed is simply the 
mechanism to compute addresses in the register file or stack (and check for 
internal consistency), and the set of functions required to manipulate that 
isolated data file (e.g. duplicate the top stack element, negate a register). 

13. Arithmetic Abuse 

The package is designed to be as robust as possible but it is not 
bullet-proof, since it is specified to modify the stack. If the user passes· 

1 November 82 



Draft 1.7 FP68K -- An Overview 53 

illegal addresses. a memory fault may arise when the package attempts to 
access the operands. And if the user passes the wrong number of address 
operands. then in general the stack will be irreparably damaged. Operation is 
undefined if ILLEGAL values are used in the opword parameter. 

14. Size and Performance ----
FP68K is about 4000 bytes long. On a 4mhz system it executes the 

simplest arithmetic operations in about O.4ms and requires just over 1.0ms for 
a full extended multiply. Divide and square root are longer yet. 

Comparative timings show that. for double format operations. FP68K is 
just faster than the AMD 9512 on Lisa and is about twice twice as fast as the 
Motorola 68341 code. For single format operations, FP68K is about half as 
fast as the Lisa single-only package, which is just slower than the 9512. 

15. Floating-Point at a Glance 

Figure 1 at the end of this document illustrates the basic control of 
flow in the execution of the floating-point package. The figure is followed 
by a list of observations on the behavior of the package. and of IEEE 
arithmetic in general. 

1 November 82 



DrAft 1.7 FPb8K -- Ar. Ovp.rvi~~ )4 

:Jovember 82 



REMARKS ON "FLOATING-POINT AT A GLANCE" 55 

1. The package has a single entry point. 

2. The package has two exit points. one for normal subroutine returns and one 
for halts through a vector. 

3. Three classes of operations are distinguished: arithmetic operations. 
binary-decimal conversions, and accesses to the state word and halt vector. 

4. The not-a-number symbols, NANs, are detected at the start of each 
operation. Of them. signaling NANs are the most virulent; they always trigger 
the invalid operation exception. Quiet NANs propagate through operations; a 
precedence rule determines which is output if two are input. 

5. Invalid operations always result in a quiet NAN output. In the case of the 
discrete types INT16, INT32. COMP64. the output value is all zero bits except 
for a leading one bit (that is, 100000 ••• ). Floating-point NANs contain an 
error code' to indicate their origin (such as 01 for square root of a negative 
number). 

6. When the input operands are unpacked, the special cases 0, FNZ (finite 
nonzero number.), and INF (infinity) are detected. This expedites special 
cases such as 

+INF + FNZ --) +INF 

7. When 0 or INF results from a trivial operation like the example above, no 
further processing is required before the value is packed. All nontrivial 
floating-point results are subject to precision and range coercion to assure 
that they fit in the intended destination. 

8. Integer results are subject to coercion to detect overflow. 

9. Floating-point NAN results are coerced by chopping them to the precision of 
the destination, and checking that a legitimate value results. 

10. Comparisons require special care, since they produce no results but rather 
modify the CPU condition-code register. Comparisons, even when NANs are 
involved, must bypass the coercion steps. 

29 August 



Draft 1.6 Mac FP Software Program Notes 56 

Introduction 

This is a brief guide to the program FP68K, a software implementation of 
proposed IEEE standard P754 (Draft 10.0) for binary floating-point arithmetic. 
This guide is intended to aid a programmer wishing to understand the workings 
of FP68K. 

The code -----
The software is in the assembly language of the Motorola MC68000. 

following the Apple "TLA" syntax of the Lisa assembler. FP68K is 
non-self-modifying, position-independent code. It has no local data area, 
that is it uses dynamically allocated stack area for all of its temporaries. 
FP68K is one large subroutine whose single entry point has the name FP6~K. 

The code is separated into the functionally distinct files: 

FPl)KIVER.TEXT 
FPEQUS.TEXT 
FPCONTROL.TEXT 
FPUNPACK.TEXT 
FPADD.TEXT 
FPMUL.TEXT 
FPDIV.TEXT 
FPREM.TEXT 
FPCMP.TEXT 
FPSQRT.TEXT 
FPCVT.TEXT 
FPSLOG.TEXT 
FPNANS.TEXT 
FPCOERCE. TEXT 
FPPACK.TEXT 
FPODDS.TEXT 
FBD2B.TEXT 
FBB2D.TEXT 
FBPTEN.TEXT 

"includes" the other files ••• 
defines set of named constants 
organi~es the flow of control 
unpack input operands to intermediate format 
add and subtract 
mUltiply 
divide 
remainder 
compare 
square root 
floating <--) floating,integer conversions 
10gb, sca Ib, and class appe rl(iix func t ions 
handle "Not A Number" symbols 
post-normalize, round, check over/underflow ••• 
pack result to storage format 
non-arithmetic operations 
decimal --) binary conversion 

--.binary --) decimal conversion 
-- computes LOAN for nonnegative integer N 

As noted, FPDRIVER.TEXT is a short file which simply includes the other files 
between the ".PROe" header and ".END" trailer. 

Assembling FP68K 

Assemble the file FPDRIVER.OBJ to produce the FP68K object file. 

The one system dependency of FP68K is its access of the floating-point 
state area, as discussed in the "System Implementor's Guide". Near the top of 
FPCONTROL.TEXT is the code which pulls the address of the the 3-word state 
area into register AO. This code will typically require modification when 
FP68K is moved to a new system. The well-marked comment within FPCONTROL.TEXT 
indicates the di.fferent access schemes systems might use. If the state area 

1 November 83 



Draft 1.6 Hac FP Software Program Notes 57 

is to be located using a constant defined in a public "include" file, then 
that file should be included within FPDRIVER.TEXT. See the comment there for 
details. 

Other than its access to the state area, FP68K is intended to 
system-independent and should not be tailored recklessly. 

Control flow 

There are three fundamentally distinct classes of operations performed by 
FP68K: basic arithmetic, binary-decimal conversions, and manipulations of the 
floating-point state area. The last of these, namely reading and writing the 
state word and the halt vector, is trivial and needs no explanation beyond the 
simple code contained in FPODDS.TEXT. 

The basic arithmetic operations are illustrated in the flow chart at the 
end of this note. The chart is marked to distinguish the function of the 
various files listed above. 

The binary-decimal conversions are quite different from the basic 
operations, and are not described by the basic flow chart. The conversions 
might better be thought of as subroutines which have been implemented within 
FP68K as a matter of architectural convenience. The conversions invoke FP68K 
itself to perform various basic operations like multiply and divide. The 
binary-decimal algorithms are described in considerable detail in the attached 
paper "Accurate, Yet Economical Binary-Decimal Conversions" by J. Coonen. 

Exponent calculations 

FP68K manipulates exponents in a way that might seem surprising at first 
glance. The P754 extended format, on which all FP68K arithmetic is based, has 
a I-bit sign, IS-bit exponent, and a 64-bit significand. However, the actual 
exponent range is not 0 to 32767 (biased by 16383) as the IS-bit exponent 
field would suggest. Rather, it is -63 to 32767 because of the presence of 
tiny denormalized numbers; this is "just a little bit" beyond the stated 
IS-bit range. (See the attached paper "Underflow and the Denormalized 
Numbers" by J. Coonen for a discussion of tiny values in P754 arithmetic.) 

Because the operations multiply and divide require the addition and 
subtraction, respectively, of operand exponents in forming their intermediate 
results, the implementor typically expects to have one extra exponent bit for 
intermediate calculations. Thus for P754 extended format calculations, there 
is need for "just a little bit" beyond 16 exponent bits. This elusive 17-th 
bit is discussed in yet another attached paper, "Are 17 Exponent Bits Too 
Many?" It is shown there that 16 bits suffice, if care is taken to perform 
some extra tests in the right places. 

On the 68000 it turns out to be convenient to perform exponent 
calculations in the ADDRESS REGISTERS -- with a full 32 bits. The address 
registers provide just the right functionality: add, subtract, and compare. 
And since floating-point arithmetic is computation-intensive on a small data 
set, only a few of the address registers are actually needed for addresses. 

I Novembe r 83 



Draft 1.6 Mac FP Software Program Notes 58 

Finally, l6-bit constants like the exponent bias may be added into the 32-bit 
exponents with a 2-word instruction, since foro "address" calculations the 
constant is first sign-extended out to a full 32 bits. 

Bit field encodings 

This section describes the various bit fields used by FP68K. Some of 
them, like the opcode and the state word, are visible to programs invoking 
FP68K. Others, like the rounding and sign bits, are local to FP68K. 

The OPCODE is the last word pushed on the stack before calling FP68K. It 
is composed of the fields: 

3800 - "non-extended" operand format: 
0000 x80 
0800 f64 
10=~ 
1800 ILLEGAL 
2000 int16 
2800 int32 
3000 comp64 
3800 ILLEGAL 

OlEO must be zero 

OOlF operation code: 
0000 add 
0002 subtract 
0004 mul tiply 
0006 divide 
0008 compare 
OOOA compare (invalid if UNORDERED) 
oooe remainder 
OOOE x80, f64, f32, int16, int32, comp64 --) x80 
0010 -- x80 --) x80, f64, f32, int16, int32, comp64 
0012 square root (in x80) 
0014 round to integer (in x80) 
0016 truncate to integer (in x80) 
OC~: ~~~:_ ~y unbiased power of 2 
OOlA replace by unbiased exponent 
OOIC classify the floating input 
OOlE ILLEGAL 

0001 
0003 
0005 
0007 
0009 
0008 
0000 
OOOF 
0011 
0013 

1 November 83 

put state word 
get state word 
put halt vector 

-- get halt vector 
-- decimal --) floating 

floating --) decimal 
negate 
absolute value 
copy sign 
nextafter 

convert 
convert 



Draft 1.6 

0015 
0017 
0019 
001B 
0010 

Hac FP Software Program Notes 

set exception 
procedure entry protocol 
procedure exit protocol 
test exception 

and 00lF are ILLEGAL 

59 

The STATE word is static data that perseveres across calls to FP68K. As 
!=iuch, it must live in an area outside FP68K, defined by the host system. 
Typically the state word (and the halt vector. which is a 32-bit address) will 
live in the system's "per-process data area". perhaps a fixed location in 
memory or a fixed offset from some reserved address register. Although the 
STATE word is directly available to the programmer. typical access will be 
through an intermediate layer of software (available, say, in a Pascal unit) 
th~t insulates the programmer from the detAils of the actual bit encodings. 
The STATE word is composed of the fields: 

8000 unused 

6000 rounding mode: 
0000 to nearest 
2000 toward +INF 
4000 toward -INF 
6000 toward a (chop) 

IFOO -- error flags: 
1000 inexact result 
0800 division by zero 
0400 floating overflow 
0200 floating underflow 
0100 invalid operation 

0080 -- rounding of last result 
0000 not rounded up in magnitude 
0080 -- rounded up in magnitude 

0060 -- precision control: 
0000 extended 
0020 double 
0040 single 
0060 ILLEGAL 

OOIF -- exception halt enables: 
(correspond to error flags above) 

After preliminary decoding in FPCONTROL.TEXT, the OPCODE is expanded out 
into the following 16-bit form: 

8000 nonzero iff result has single preci!=iion and range 

4000 nonzero iff result has double precision and range 

3800 source operand format: 

I November 83 



Dr.l ft 1.6 Mac FP Software Program Notes 60 

(same encoding as in OPCODE) 

0700 -- desti.nation operand format: 
(same encoding as i.n OPCODE) 

0080 nonzero iff destination operand u; input 

0040 nonzero iff source operand is input 

0020 nonzero iff destinati.on operand is output 

001E operation co~e: 
(same encoding a~ in OPCODE but with low bit 0) 

0001 -- nonzero iff two-address operation 

The ROUND BITS, known as "guard", "round", and "sticky" in documentation 
about P754, are kept in a I6-bit word. Roughly speaking, the guard and round 
bit~ are the two hits beyond the least significant bit of the intermediate 
result. and the sticky bit i.s the logical Or of all bits thereafter. The 
~ticky bit is necessary to implement the rounding modes of P754. The ROUND 
B[TS are kept as: 

8000 guard bit 
4000 round bit 
3FOO 6 extra round bit~ 
OUFF sticky bit8 

The reason for keeping an entire byte of sticky bits lies in the 68000 
instruction set. The archetype operation involving the sticky bit is the 
right-shift. Any time a bi.t is shifted off the low end of the sticky "byte", 
it must be logically Or-eli back into sticky. This is done with the 68UOO 
"scs" instrllction, which sets a given byte to all 1s if the carry bit is set, 
and clears the byte to 0 otherwise. Typically, a bit is shifted off to the 
right. it is SCS-ed into an auxiliary byte, and that byte is Or-ed it:lto the 
sticky byte. Although this is the typical use of the sticky byte, the 
programmer should not a~sume that the sticky hyte is always either all Os or 
all 1s. Sometimes, such as ill the right shift after a carry-out in ADO/SUB, 
the logical Or will be omitted since it is known that if a 1 was shifted out 
of the sticky byte there wi.ll necessari ly be another 1 left in sticky. 

The operands' SIGNS are kept together in a byte as follows: 

80 source operand sign 
40 destination operanJ s[gn 
20 Exclusive Or of the two operands' ~igns 

IF unused, but not necessarily zero 

If there is just one input operand, its sign is in the high order bit. The 
Exclusive Or is computed just once, at the start of every arithmetic 
operation. Not only is it required for many common operations (+, -, *, I, 
REM, CMP), but it is cC)~tly in time and space because of the int=>fficacy of the 

1 November 83 



Draft 1.6 Mac FP Software Program Notes 

68000 bit instructions, ~o i.t is worthwhile to implement the cod.! sequence 
just once. 

61 

The CCR (condition code register) bits of the 68000 are modified by every 
arithmetic operation. though only the compare instructions leav~ them in a 
well defined state. A CCR word is maintained by FP68K: 

FFEO unused, forced to 0 
0010 X Extend 
0008 N Negat i ve 
U004 Z == Zero 
0002 V Overflow 
0001 C == Carry 

The compare operations encode their results as follows: 

.Rl::LATIO~ 

Ll::SS 
EQUAL 
GRI:.ATER 
UNORDEREl.) 

FLAGS: X N Z V C 

1 1 0 {J 1 
o 0 100 
U 0 000 
00010 

See the FP68K programmer's manual for the software applications of the CCR 
fie Id • 

Register usage 

The key to the speed (such as it is) and compactness of FP6~K is that it~ 
entire working data set may be held in the 68000 register file. Immediately 
upon entry. FP68K saves registers DO-07, AO-A4 on the stack. Then thtA 
registers are loaded up as the operation proceeds. Several of the registers 
have a meaning that perseveres across nearly the entire instruction. The 
following list gives a rough idea of regi~t~r usage: 

D7 hi 
07 10 
D6 hi 
06 10 
05 
04 
o3-DO 

A 

CCR word 
round bits 
ope ode word 
error byte (hi) and sign byt~ (10) 
low 32 source (later result) si.gnificant bits 
hi~h 32 source (later result) significant bits 
scratch area 



7 SP = stack pointer 
A6 stack link pointer 
AS ~1ac globals poionter 
A4 source (l~~cr result) exponent 
A3 destination exponent 
A2 low 12 destination significant bits 
Al high 32 destination significant bits 
AO pointer to 3-word state ~rea 

1 ~ovember 83 

Draft 1.6 Mac FP Software Program ~otes 62 

Of course, the arithmetic operations may be viewed as transformations of the 
register file. Following this view, a set of register mdps are included at 
the end of this note. They are keyed to MILESTONES marked in the source code. 
The maps indicate register dependencies, and as such should ~id in any 
modification of FP68K. Some maps simply indicate the state of the register 
file at a given point, and some indicate register use in a routine, such as 
the widely used right-shift procedure RTSHIFT. 

For convenience the maps are printed on onion skin paper; a reference 
sheet slips under the map to fill in the register mask. 

Register 00 is modified by the REMAI~DER operation, in which case a 
partial integer quotient is returned in DO.W. 

Stack usage 

When called, FP68K assumes that the stack has the form: 

ADDRESS 3 used for decimal format code only 
ADDRESS 2 source pointer, if any 
ADDRESS 1 destination pointer 
OPCODE one word 
RETURN ADDRESS 

The number of address operands depends on the operation. FP68K then allocates 
3 more stack words: 

COUNT number of bytes in original call frame" 
HALT ADDRESS 

This frame is used if a halt is taken. The COUNT field allows the halt 
handler to simply pop the original operands and return, if desired. 

Above this frame, FP68K pushes registers 00-7, .AO-6. In the progress of 
an operation, up to 6 more words of stack may be used. The total stack usage, 
after the call, is then up to 3 + 32 + 6 = 41 words. The binary-decimal 
conversions may use twice this much since they invoke FP68K to perform basic 
arithmetic operations. 



Conditional assembly 

There are two instances of conditional assembly in FP6dK. The pointer Lo 

the floating-point state area is loaded into register AO at the start of 
FPCONTROL.TEXT. Since the location of this area is sy~tem-dependent, 
conditional assembly is used to locate the field. Of course, thi~ means that 
the effective address of the state area must be known at assembly time. 

Conditional assembly is also used to resolve syntactic inconsistencie~ 
between various 68000 assembly language formats. The program counter (PC) 
relative addressing modes are heavily used in the implementation of jump 
offset tables within FP68K. A typical use is the instruction sequence: 

1 November 83 

Draft 1.6 

MOVE.W 
JHP 

Hac FP Software Program Notes 

JMPTAB( 00) ,00 
JHPTOP(OO ) 

63 

Here JMPTAB is a table of address offsets from the label JMPTOP, and register 
00 contains a word index into JHPTAB. Some assemblers force the programmer to 
write: 

MOVE.W 
JMP 

JHPTAB( PC, 00).00 
JHPTOP( PC. DO) 

in order to assure PC-relative addressing. However. the Lisa assembler 
PROHIBITS this syntax, although it produces the desired code. An a~sembly 
flag is used to generate whichever of the two formats is suitable for a given 
compiler. 

Pascal enumerated types 

Lisa Pascal attempts to encode enumerated types in byte fieldS. which are 
then stored as the high byte of the target word. This affects s·tructures like 
DecForm and Decimal, defined in the Pascal interface (see that document for 
details). Although the most s~~iously affected programs are the test drivers, 
the affected files in the basic package are FBB2D.TEXT and FBD2S.TEXT. Those 
files contain explicit comments when a byte test is used where an Apple III 
programmer (for example) might expect a word test. 



File: ToolBox Names Page 1 
Report: TrapList Feb 8 t 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals AFFF 
Value/ Name: Fields: 
------ --------------- --------------------------------------------------------------
AOOO Open A030 OSEventAvail AC61 Random 
AOOl Close A031 GetOSEvent AC62 ForeColor 
AOO2 Read A032 FlushEvents AC63 BackColor 
AOO3 Write A033 VInstall AC64 ColorBit 
AOO4 Control A034 VRemove AC65 GetPixel 
AOOS Status A03S OffLine AC66 Stuff Hex 
AOO6 KillIO A036 MoreMasters AC67 LongMul 
AOO7 GetVolInfo A037 ReadParam AC68 FixHul 
AOO8 FileCreate A038 WriteParam AC69 FixRatio 
AOO9 FileDelete A039 ReadDateTime AC6A HiWord 
AOOA OpenRf A03A SetDateTime AC6B LoWord 
AOOB Rename A03B Delay AC6C FixRound 
AOOC GetFileInfo A03C CmpString AC6D InitPort 
AOOD SetFilelnfo A03D DrvrInstall AC6E InitGraf 
AOOE UnmountVol A03E DrvrRemove AC6F OpenPort 
AOOF MountVol A03F InitUtil AC70 LocalToGlobal 
AOIO FileAllocate A040 ResrvMem AC71 GlobalToLocal 
AOll GetEOF A041 SetFilLock AC72 GrafDevice 
AOl2 SetEOF A042 RstFilLock AC73 SetPort 
AOl3 FlushVol A043 SetFilType AC74 GetPort 
AOl4 GetVol A044 SetFPos AC75 SetPortBits 
AOIS SetVol A04S FlushFil AC76 PortSize 
AOl6 FlnitQueue A046 GetTrapAddress AC77 MovePortTo 
AOI7 Eject A047 SetTrapAddress AC78 SetOrigin 
AOI8 GetFPos A048 PtrZone AC79 SetClip 
AOI9 InitZone A049 HPurge AC7A GetClip 
AOIA GetZone A04A HNoPurge AC7B ClipRect 
AOIB SetZone A04B SetGrowZone AC7C BackPat 
AOIC FreeMem A04C CompactMem AC7D ClosePort 
AOID MaxMem A04D PurgeMem AC7E AddPt 
AOIE NewPtr A04E AddDrive AC7F SubPt 
AOIF DisposePtr A04F InstallRDrivers AC80 SetPt 
A020 SetPtrSize AC50 InitCursor AC81 EqualPt 
A021 GetPtrSize AC51 SetCursor AC82 StdText 
A022 NWHandle ACS2 HideCursor AC83 DrawChar 
A023 DsposeHandle AC53 ShowCursor AC84 DrawString 
A024 SetHandleSize AC54 UprString AC85 DrawText 
A02S GetHandleSize AC55 ShieldCursor AC86 TextWidth 
A026 HandleZone AC56 ObscureCursor AC87 TextFont 
A027 ReAllocHandle AC57 SetApplBase AC88 TextFace 
A028 RecoverHandIe ACS8 BitAnd AC89 TextMode 
A029 HLock AC59 BitXor AC8A TextSize 
A02A HUnlock AC5A BitNot AC8B GetFontlnfo 
A02B EmptyHandle ACSB BitOr AC8C StringWidth 
A02C InitApplZone AC5C BitShift AC8D CharWidth 
A02D SetApplLimit ACSD BitTst AC8E SpaceExtra 
A02E BlockMove ACSE BitSet AC90 StdLine 
A02F PostEvent ACSF BitClr AC91 LineTo 



File: ToolBox Names Page 2 
Report: TrapList Feb 8, 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals AFFF 
Value/ Name: Fields: 
------ --------------- -----------------------------~--------------------------------
AC92 Line ACCS StdPoly ACF6 DrawPicture 
AC93 MoveTo ACC6 FramePoly ACF8 ScalePt 
AC94 Moov ACC7 PaintPoly ACF9 MapPt 
AC96 HidePen ACC8 ErasePoly ACFA MapRect 
AC97 ShowPen ACC9 InvertPoly ACFB MapRgn 
AC98 GetPenState ACCA FillPoly ACFC MapPoly 
AC99 SetPenState ACCB OpenPoly ACFE InitFonts 
AC9A GetPen ACCC Close Poly ACFF GetFontName 
AC9B PenSize ACCD K1l1Poly ADOO GetFNum 
AC9C PenMode ACCE Offs.etPoly ADOl FMSwapFont 
AC9D PenPat ACCF PackBits AD02 RealFont 
AC9E PenNormal ACOO UnPackBits ADO 3 SetFontLock 
ACAO StdRect ACDl StdRgn AD04 DrawGrowlcon 
ACAl FrameRect ACD2 FrameRgn ADOS DragGrayRgn 
ACA2 PaintRect ACD3 PaintRgn ADO 6 NewString 
ACA3 EraseRect ACD4 EraseRgn ADO 7 SetString 
ACA4 InvertRect ACDS InvertRgn ADO 8 Show Hi de 
ACAS FillRect ACD6 FillRgn ADO 9 CalcVis 
ACA6 EqualRect ACD8 NewRgn ADOA Calc Vis Behind 
ACA7 SetRect AC09 DisposeRgn ADOB ClipAbove 
ACA8 OffsetRect ACDA OpenRgn ADOC PaintOne 
ACA9 InsetRect ACDB CloseRgn ADOD PaintBehind 
ACAA SectRect ACDC CopyRgn ADOE SaveOld 
ACAB UnionRect ACDD SetEmptyRgn ADOF DrawNew 
ACAC Pt2Rect ACOE SetRectRgn ADI0 GetWMgrPort 
ACAD PtlnRect ACOF RectRgn ADll CheckUpOate 
ACAE EmptyRect ACEO OffsetRgn AD12 InitWindows 
ACAF StdRRect ACEl InsetRgn AD13 NewWindow 
ACBO FrameRoundRect ACE2 EmptyRgn AD14 DisposeWindow 
ACBI PaintRoundRect ACE3 EqualRgn ADlS ShowWindow 
ACB2 Erase Round Rec t ACE4 SectRgn AD16 HideWindow 
ACB3 InvertRoundRect ACES UnionRgn AD17 " GetWRefCon 
ACB4 Fi 11 Round Rec t ACE6 DiffRgn AD18 SetWRefCon 
ACB6 StdOval ACE7 XOrRgn ADl9 GetWTitle 
ACB7 FrameOval ACE 8 PtlnRgn ADIA SetWTitle 
ACB8 PaintOval ACE9 RectlnRg ADIB MoveWindow 
ACB9 EraseOval ACEA SetStdProcs ADlC HiliteWindow 
ACBA InvertOval ACEB StdBits ADID SizeWindow 
ACBB FillOval ,'ACEC CopyBits ADIE TrackGoAway 
ACBC SlopeFromAngle ACED StdTxMeasure AD!F SelectWindow 
ACBD StdArc ACEE StdGetPic AD20 BringToFront 
ACBE FrameArc ACEF ScrollRect AD21 Send Behind 
ACBF PaintArc ACFO StdPutPic AD22 BeginUpdate 
ACCO EraseArc ACFl StdComment AD23 EndUpdate 
ACCI InvertArc ACF2 PicComment AD24 FrontWindow 
ACC2 FillArc ACF3 OpenPicture AD2S DragWindow 
ACC3 PtToAngle ACF4 ClosePicture AD26 OragTheRgn 
ACC4 AngleFromSlope ACFS KillPicture AD27 InvalRgn 



File: ToolBox Names Page 3 
Report: TrapList Feb 8, 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals FFFF 
Name: Value/ Fields: 
--------------- ------ -------------------~--------------------------------
OpenPort AC6F ReAllocHandle A027 SetOrigin AC78 
OpenResFile AD97 RecoverHandle A028 SetPenState AC99 
OpenRf AOOA RectlnRg ACE9 SetPort AC73 
OpenRgn ACDA RectRgn ACDF SetPortBits AC7S 
OSEventAvail A030 ReleaseResource ADA3 SetPt AC80 
PackO ADE7 Rename AOOB SetPtrSize A020 
Packl ADE8 ResError ADAF SetRect ACA7 
Pack2 ADE9 ResrvMem A040 SetRectRgn ACDE 
Pack3 ADEA RmveReference ADAE SetResAttrs ADA7 
Pack4 ADEB RmveResource ADAD SetResFileAttrs ADF7 
PackS ADEC RsrcZonelnit AD96 SetReslnfo ADA9 
Pack6 ADED RstFilLock A042 SetResLoad AD9B 
Pack7 ADEE SaveOld AOOE SetResPurge AD93 
PackBits ACCF ScalePt ACF8 SetStdProcs ACEA 
PaintArc ACBF ScrollRect ACEF SetString ADO 7 
Paint Behind ADOD SectRect ACAA SetTrapAddress A047 
PaintOne ADOC SectRgn ACE4 SetVol A01S 
PaintOval ACB8 SelectWindow ADlF SetWindowPic AD2E 
PaintPoly ACC7 Send Behind AD21 SetWRefCon ADl8 
PaintRect ACA2 SetApplBase AC57 SetWTitle ADlA 
PaintRgn ACD3 SetApplLimit A02D SetZone A01B 
PaintRoundRect ACBl SetClip AC79 ShieldCursor ACSS 
ParamText AD8B SetCRefCon ADSB ShowControl ADS7 
PenMode AC9C SetCTi tIe ADSF ShowCursor ACS3 
PenNormal AC9E SetCtlAction AD6B ShowHide ADO 8 
PenPat AC9D SetCtlMax ·AD6S ShowPen AC97 
PenSize AC9B SetCtlMin AD64 ShowWindow ADlS 
PicComment ACF2 SetCtlValue AD63 SizeControl ADSC 
PinRect AD4E SetCursor ACSI SizeRsrc ADAS 
Plotlcon AD4B SetDateTime A03A SizeWindow AD1D 
PortSize AC76 SetDltem AD8E SlopeFromAngle ACBC 
PostEvent A02F SetEmptyRgn ACDD Space Extra AC8E 
Pt2Rect ACAC SetEOF A012 Status AOOS 
PtlnRect ACAD SetFilelnfo AOOD StdArc ACBD 
PtlnRgn ACE8 SetFilLock A041 StdBits ACEB 
PtrAndHand ADEF SetFilType A043 StdComment ACFl 
PtrToHand ADE3 SetFontLock ADO 3 StdGetPic ACEE 
PtrToXHand ADE2 SetFPos A044 StdLine AC90 
PtrZone A048 SetGrowZone A04B StdOval ACB6 
PtToAngle ACC3 SetHandleSize A024 StdPoly ACCS 
PurgeMem A04D Setltem AD47 StdPutPic ACFO 
Putlcon ADCA Setltemlcon AD40 StdRect ACAO 
PutScrap ADFE SetltemMark AD44 StdRgn ACDI 
Random AC6l SetltemStyle AD42 StdRRect ACAF 
Read AOO2 SetIText AD7E StdText AC82 
ReadDateTime A039 SetIText AD8F StdTxMeasure ACED 
ReadParam A037 SetMenuBar AD3C StillDown AD73 
RealFont ADO 2 SetMenuFlash AD4A StopAlert AD86 



File: ToolBox Names 
Report: TrapList 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals FFFF 
Name: Value/ Fields: 
--------------- ------
StringWidth AC8C UprString 
Stuff Hex AC66 UseResFile 
SubPt AC7F ValidRect 
SystemBeep ADC8 ValidRgn 
SystemClick ADB3 VInstall 
SystemEdit ADC2 VRemove 
SystemError ADC9 WaitMouseUp 
SystemEvent ADB2 Write 
SystemMenu ADBS WriteParam 
SystemTask ADB4 WriteResource 
TEActivate ADD8 XOrRgn 
TECalText ADDO ZeroScrap 
TEClick ADD4 
TECopy ADDS 
TECut ADD6 
TEDeactivate ADD9 
TEDelete ADD7 
TEDispose ADCD 
TeGetText ADCB 
TEIdle ADDA 
TEIni t ADCC 
TEInsert AD DE 
TEKey ADDC 
TENew ADD2 
TEPaste ADDB 
TEScroll ADDD 
TESetJust ADDF 
TESetSelect ADDl 
TESetText ADCF 
TestControl AD66 
TEUpdate ADD3 
TextBox ADCE 
TextFace AC88 
TextFont AC87 
TextMode AC89 
TextSize AC8A 
TextWidth AC86 
TickCount AD7S 
TrackControl AD68 
TrackGoAway ADlE 
UnionRect ACAB 
UnionRgn ACES 
UniqueID ADCl 
UnloadScrap AD FA 
UnLoadSeg ADFI 
UnmountVol AOOE 
UnPackBits ACDO 
UpdateResFile AD99 

AC54 
AD98 
AD2A 
AD29 
A033 
A034 
AD77 
AOO3 
A038 
ADBO 
ACE7 
ADFC 

Page 4 
Feb 8, 1984 



File: ToolBox Names Page 1 
Report: TrapList Feb 8 t 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals FFFF 
Name: Value/ F,ields: 
------------ ----- ------------------------------------------------~---
AddDrive A04E CopyRgn ACDC EraseArc ACCO 
AddPt AC7E CouldAlert AD89 EraseOval ACB9 
AddReference ADAC CouldDialog AD79 ErasePoly ACC8 
Add ResMenu AD4D CountMltems AD50 EraseRect ACA3 
AddResource ADAB CountResources AD9C EraseRgn ACD4 
Alert AD85 CountTypes AD9E EraseRoundRect ACB2 
AngleFromSlope ACC4 Create Res File ADBI ErrorSound AD8C 
AppendMenu AD33 CurResFile AD94 EventAvail AD71 
BackColor AC63 Delay A03B ExitToShell ADF4 
BackPat AC7C DeleteMenu AD36 FileAllocate AOIO 
BeginUpdate AD22 DeltaPoint AD4F FileCreate AOO8 
BitAnd ACS8 DeQueue AD6E FileDelete AOO9 
BitClr ACSF DetachResouce AD92 FillArc ACC2 
BitNot AC5A DialogSelect AD80 FillOval ACBB 
BitOr ACSB DiffRgn ACE6 FillPoly ACCA 
BitSet ACSE Disableltem AD3A FillRect ACAS 
BitShift ACSC DisposeControl AD5S FillRgn ACD6 
BitTst ACSD DisposeDialog ADS 3 FillRoundRect ACB4 
BitXor ACS9 DisposeMenu AD32 FindControl AD6C 
BlockMove A02E DisposePtr AOIF FindWindow AD2C 
BringToFront AD20 DisposeRgn ACD9 FlnitQueue A016 
Button AD74 DisposeWindow ADl4 FixHul AC68 
CalcMenuSize AD48 DragControl AD67 FixRatio AC69 
CalcVis ADO 9 DragGrayRgn ADOS FixRound AC6C 
CalcVisBehind ADO A DragTbeRgn AD26 FlashMenuBar AD4C 
CautionAlert AD88 DragWindow AD25 FlushEvents A032 
Chain ADF3 DrawChar AC83 FlushFil A04S 
ChangedResData ADAA DrawControls AD69 FlushVol AOl3 
CharWidth AC8D DrawDialog ADS 1 FMSwapFont ADO I 
Checkltem AD45 DrawGrowlcon A004 ForeColor AC62 
CheckUpDate AD11 DrawMenuBar AD37 FrameArc ACBE 
ClearMenuBar AD34 DrawNew AOOF FrameOval ACB7 
ClipAbove ADOB DrawPicture ACF6 FramePoly ACC6 
ClipRect AC7B DrawString AC84 FrameRect ACAI 
Close AOOI DrawText AC8S FrameRgn ACD2 
CloseDeskAcc ADB7 Drvrlnstall A03D FrameRoundRect ACBO 
Close Dialog AD82 DrvrRemove A03E FreeAlert AD8A 
ClosePicture ACF4 DsposeHandle A023 FreeDialog AD7A 
ClosePoly ACCC Eject AOl7 FreeMem AOIC 
Close Port AC7D EmptyHandle A02B FrontWindow AD24 
CloseResFile AD9A EmptyRect ACAE GetAppParms ADFS 
CloseRgn ACDB EmptyRgn ACE2 GetClip AC7A 
Close Window AD2D Enableltem AD39 GetCRefCon ADS A 
CmpString A03C EndUpdate AD23 GetCTitle ADSE 
ColorBit AC64 EnQueue AD6F GetCtlAction AD6A 
CompactMem A04C EqualPt AC81 GetCtlMax AD62 
Control AOO4 EqualRect ACA6 GetCtlM:l.n AD61 
CopyBits ACEC EqualRgn ACE3 GetCtlValue AD60 



File: ToolBox Names Page 2 
Report: TrapList Feb 8. 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals FFFF 
Name: Value/ Fields: 
-------------- ------ ----------------------------------------------------
GetCursor ADB9 GetWTitle ADI9 IsDialogEvent AD7F 
GetDltem AD8D GetZone AOlA KillControls AD56 
GetEOF AOII GlobalToLocal AC71 KillIO AOO6 
GetFilelnfo AOOC GrafDevice AC72 KillPicture ACF5 
GetFNum ADOO GrowWindow AD2B KillPoly ACCD 
GetFontlnfo AC8B HandAndHand ADE4 Launch ADF2 
Ge t Fon tName ACFF HandleZone A026 Line AC92 
GetFPos AOl8 HandToHand ADEI LineTo AC91 
GetHandleSize A025 HideControl An58 LoadResource ADA2 
Get Icon ADBB HideCursor AC52 LoadScrap ADFB 
GetlndResource AD9D HidePen AC96 LoadSeg ADFO 
GetlndType AD9F HideWindow ADl6 LocalToGlobal AC70 
Getltem AD46 HiliteControl ADSD LongMul AC67 
Getltemlcon AD3F HiliteMenu AD38 LoWord AC6B 
GetltemMark AD43 HiliteWindow ADIC MapPoly ACFC 
GetltemStyle AD41 HiWord AC6A MapPt ACF9 
GetIText AD90 HLock A029 MapRect ACFA 
.GetKeys AD76 HNoPurge A04A MapRgn ACFB 
GetMenu ADBF HomeResFile ADA4 MaxMem AOID 
GetMenuBar AD3B HPurge A049 MenuKey AD3E 
GetMHandle AD49 HUnlock A02A MenuSelect AD3D 
GetMouse AD72 InfoScrap ADF9 ModalDialog AD91 
GetNamedResourc ADAI InitApplZone A02C Moov AC94 
GetNewControl ADBE InitCursor AC50 MoreMasters A036 
GetNewDialog AD7C InitDialogs AD7B MountVol AOOF 
GetNewMBar ADCO InitFonts ACFE MoveControl AD59 
GetNewWindow ADBD InttGraf AC6E MovePortTo AC77 
GetNextEvent AD70 InitMath ADE6 MoveTo AC93 
GetOSEvent A031 lnitMenus AD30 MoveWlndow ADIB 
GetPattern ADB8 InitPack ADE5 Munger ADEO 
GetPen AC9A InitPort AC6D NewControl AD54 
GetPenState AC98 InitResources AD95 NewDialog AD7D 
GetPicture ADBC lnitUtil A03F NewMenu AD31 
GetPixel AC65 InitWindows ADl2 NewPtr AOlE 
GetPort AC74 InitZone AOl9 NewRgn ACD8 
GetPtrSize A021 InsertMenu AD35 NewString AD06 
GetResAttrs ADA6 InsertResMenu AD51 NewWindow ADl3 
GetResFileAttrs ADF6 InsetRect ACA9 NoteAlert AD87 
GetReslnfo ADA8 InsetRgn ACE I NWHandle A022 
GetResource ADAO InstallRDri vers A04F ObscureCursor AC56 
GetScrap ADFD InvalRect AD28 OffLine A035 
GetString ADBA InvalRgn AD27 OffsetPoly ACCE 
GetTrapAddress A046 lnvertArc ACCI OffsetRect ACA8 
GetVol AOl4 InvertOval ACBA OffsetRgn ACEO 
GetVollnfo AOO7 lnvertPoly ACC9 Open AOOO 
GetWindowPic AD2F lnvertRect ACA4 OpenDeskAcc ADB6 
GetWMgrPort ADIO InvertRgn ACD5 OpenPicture ACF3 
GetWRefCon ADl7 lnve r tRound Rec t ACB3 OpenPoly ACCB 



File: ToolBox Names Page 3 
Report: TrapList Feb 8, 1984 
Selection: Value/Trap: equals AOOO 

through Value/Trap: equals AFFF 
Value/ Name: Fields: 
----- --------------- ---------------------------------~---------------------------
AD28 InvalRect ADSA GetCRefCon AD8D GetDltem 
AD29 ValidRgn ADSB SetCRefCon AD8E SetDltem 
AD2A ValidRect ADSC SizeControl AD8F SetIText 
AD2B GrowWindow ADSD HiliteControl AD90 GetIText 
AD2C FindWindow ADSE GetCTitle AD9l ModalDialog 
AD2D Close Window ADSF SetCTitle AD92 DetachResouce 
AD2E SetWindowPic AD60 GetCtlValue AD93 SetResPurge 
AD2F GetWindowPic AD6l GetCtlMin AD94 CurResFile 
AD30 InitMenus AD62 GetCtlHax AD9S InitResources 
AD31 NewMenu AD63 SetCtlValue AD96 RsrcZonelnit 
AD32 DisposeMenu AD64 SetCtlMin AD97 OpenResFile 
AD33 AppendMenu AD6S SetCtlMax AD98 UseResFile 
AD34 ClearMenuBar AD66 TestControl AD99 UpdateResFile 
AD3S InsertMenu AD67 DragControl AD9A Close Res Fi Ie 
AD36 DeleteMenu AD68 TrackControl AD9B SetResLoad 
AD37 DrawMenuBar AD69 DrawControls AD9C CountResources 
AD38 HiliteMenu AD6A GetCtlAction AD9D GetlndResource 
AD39 Enableltem AD6B SetCtlAction AD9E CountTypes 
AD3A Disableltem AD6C FindControl AD9F GetlndType 
AD3B GetMenuBar AD6E DeQueue ADAO GetResource 
AD3C SetMenuBar AD6F EnQueue ADAl GetNamedResourc 
AD3D MenuSelect AD70 GetNextEvent ADA2 LoadResource 
AD3E MenuKey AD7l EventAvail ADAJ ReleaseResource 
AD3F Getltemlcon AD72 GetMouse ADA4 HomeResFile 
AD40 Setltemlcon AD73 StillDown ADAS SizeRsrc 
AD41 GetltemStyle AD74 Button ADA6 GetResAttrs 
AD42 SetltemStyle AD7S TickCount ADA7 Se t Re s At t r s 
AD43 GetltemMark AD76 GetKeys ADAS GetReslnfo 
AD44 Set ItemMark AD77 WaitMouseUp ADA9 SetReslnfo 
AD4S Checkltem AD79 CouldDialog ADAA ChangedResData 
AD46 Getltem AD7A FreeDialog ADAB AddResource 
AD47 Setltem AD7B InitDialogs ADAC AddReference 
AD48 CalcMenuSize AD7C GetNewDialog ADAD RmveResource 
AD49 GetMHandle AD7D NewDialog ADAE RmveReference 
AD4A SetMenuFlash AD7E SetIText ADAF ResError 
AD4B Plotlcon AD7F ISDialogEvent ADBO WriteResource 
AD4C FlashMenuBar AD80 DialogSelect ADBl CreateResFile 
AD4D Add ResMenu AD8l DrawDialog ADB2 SystemEvent 
AD4E PinRect AD82 CloseDialog ADB3 SystemClick 
AD4F DeltaPoint AD83 DisposeDialog ADB4 SystemTask 
ADSO CountMItems AD8S Alert ADBS SystemMenu 
ADSl InsertResMenu AD86 StopAlert ADB6 OpenDeskAcc 
ADS4 NewControl AD87 NoteAlert ADB7 CloseDeskAcc 
ADSS DisposeControl AD88 CautionAlert ADB8 GetPattern 
ADS 6 KillControls AD89 CouldAlert ADB9 GetCursor 
ADS7 ShowControl AD8A FreeAlert ADBA GetString 
ADS8 HideControl AD8B ParamText ADBB Get Icon 
ADS9 MoveControl AD8C ErrorSound ADBC GetPicture 



File: ToolBox Names 
Report: TrapList 
Selection: Value/Trap: 

through Value/Trap: 
Value/ Name: 
------ --------------
ADBD GetNewWindow 
ADBE GetNewControl 
ADBF GetMenu 
ADCO GetNewMBar 
ADCl UniqueID 
ADC2 SystemEdit 
ADC8 SystemBeep 
ADC9 SystemError 
ADCA Putlcon 
ADCB TeGetText 
ADCC TElnit 
ADCD TEDispose 
ADCE TextBox 
ADCF TESetText 
ADOO TECalText 
ADDI TESetSelect 
ADD2 TENew 
ADD3 TEUpdate 
ADD4 TEClick 
ADDS TECopy 
ADD6 TECut 
ADD7 TEDelete 
ADD8 TEActivate 
ADD9 TEDeactivate 
ADDA TEldle 
ADDB TEPaste 
ADDC TEKey 
ADDD TEScroll 
ADDE TEInsert 
ADDF TESetJust 
ADEO Munger 
ADEI Hand To Hand 
ADE2 PtrToXHand 

·ADE3 PtrToHand 
ADE4 Hand And Hand 
ADES InitPack 
ADE6 InitMath 
ADE7 PackO 
ADE8 Packl 
ADE9 Pack2 
ADEA Pack3 
ADEB Pack4 
ADEC PackS 
ADED Pack6 
ADEE Pack7 
ADEF PtrAndHand 
ADFO LoadSeg 
ADFI UnLoadSeg 

equals AOOO 
equals AFFF 
Fields: 

ADF2 Launch 
ADF3 Chain 
ADF4 ExitToShell 
ADF5 GetAppParms 
ADF6 GetResFileAttrs 
ADF7 SetResFileAttrs 
ADF9 InfoScrap 
AD FA UnloadScrap 
ADFB LoadScrap 
ADFC ZeroScrap 
ADFD GetScrap 
ADFE PutScrap 

P.age 4 
Feb 8.1984 



ROM 7.0 MacsBug Summary 

To use MacsBug, include it on your Mac diskette. The system will say 'MacsBug 
installed' when the diskette is booted. You may also include the Disassembler 
in the same manner. 

The Mac's modem port should be connected to another computer or terminal 
running at 9600 baud, no parity. Press the interrupt switch after booting the 
disk. The mouse should freeze and no error message should appear. On the 
terminal, a register dump should appear, and an asterisk '*' prompt. 

Commands available: 

DM Di splay Memory DM 100 
SM Set Memory SM 0 1 

011 Display /Set data register II 
All Di'splay/Set address register II 
SR Display /Set status register 
PC Display/Set program counter 
US Display/Set user stack 
SS Display/Set supervisor stack 

BR Display/Set break points 
(up to eight) 

A Display all address registers 
D Display all data registers 
TD Display all registers 

CV Convert between base 10 and 16 
(all arithmetic is 32 bit) 

100 
23456 

(normally A7 ) 
(normally A7 ) 

To do hexidecimal addition, use CV $num1,num2 

DM RA7,-10 20 
SM 0 'ABCDE' 

DO OOOOFFFF 
AO 

BR 
BR 4Doo 552A 
BR CLEAR 

CV $FDEF 
CV &65536 

To do hexidecimal subtraction, use CV $numl,-num2 
To do hexidecimal negation, use CV $-num1 

G Go 

T Trace 

AT Trace Traps 

(continue) 
(start at 4400) 
(continue until PC = 55EA) 

(traces all traps) 
(trace GetNextEvent) 
(trace all Bit Traps) 
(trace GetNextEvent in code 
block at 5000 - 53FF) 

(trace all Bit Traps in code 
block at 5000 - 53FF) 

G 
G 4400 
G TILL 55EA 

T 17 

AT 
AT 170 
AT 158 15F 

AT 170 5000 53FF 

AT 158 15F 5000 53FF 



AB 

HD 

AD 

AX 

IL 

10 

/ 

, 
RAil 
RD/I 

AH 

Break Traps same as AT, but breaks before executing trap 

Handle Display lists all allocated handles HD 

Data Break AD 158 lSF 5000 53FF 

A simple checksum is calculated for the specified memory range. 
As each Trap is encountered, the checksum is recalculated. 
If the checksum differs, the debugger breaks. This call must 
be made with all four arguments. 

Cancel Break 

Clears the current AT, AB, AR, AC, or HS command 

Disassembler Calls 

List 
lists the next 20 instructions 

List One 
lists one instruction 

Command Separator 
Last Address 
(for OM jj SM, IL, 10) 
Offset 
Address Register 
Data Register 

Heap Break 

Debugger Notation 

Advanced Debugger Calls 

AX 

IL 4DOO 
IL 

10 4000 
10 

SM PC 4E71 

OM • 100 

/ G 

OM .,100 100 
OM RA7,-10 20 
SM RAO, RD2 

AH 158 lSF 

A heap check is made as each specified Trap is encountered. 
If $1A3E8 = a then the applzone is checked. (default) 
If $lA3E8 <> a then SysZone is checked. The trap range must 
be greater than $2E. 

An error returns: Bad Heap at Al A2 where: 
Al = the previous block pointer 
A2 = the bad block pointer 



He Heap Check HC 

This call checks the heap as described in AR. An error is 
returned if any of the following conditions are true: 

HS 

MR 

The block size is past the top of memory 
The block size is odd 
For tree blocks, the next link is negative or past the top of memory 
For tree blocks, the previous link is negative or past the top of memory 
For reI. blocks, the back pointer is odd 
The heap base + back pointer is past the top of memory 
The heap base + back pointer do not point to the right master pointer. 

Heap Scramble HS 

If the traps NewPtr, SetPtrSize, NewHandle, SetHandleSize, HandleZone or 
ReAllocHandle are encountered, the heap is scrambled before executing 
the trap. It also preforms a heap check before scrambling on all traps 
> 30. 

Magic Return MR 

This assumes the first word on the stack is a return address generated 
by a BSR or JSR. It substitutes a break point for the return address. 
The execution continues until a break occurs. Then, SR is restored. 

This is not nestable. All other break point commands are still active. 

Known Problems 

It is a good idea to initialize DM and IL. DM 0, and ID PC, for 
example. 

DM RA5, as example, intermittently generates an address error. 
To fix, explicitly type the address in register. 

SM PC 4E71, for example, makes the system respond unreliably if 
a trap or breakpoint was set at that location. 

AT, as example, returns a Line 1111 exception. To fix, reboot. 



Pascal Program Debug Strategy 

Use DM to determine where the program is in memory. Seven letters of each 
procedure and function will appear in the ASCII columns. (The first letter 
has its high bit set.) The user program usually starts about 4DDO. The 
mainline procedures and functions are first, followed by the units and 
external procedures and functions in the order that you link them. Each 
procedure or function name suceeds the procedure or function code. To make 
life easier, link your own units before linking ToolTraps, MemTraps and 
MacPasLib. 

If the program doesn't appear to work at all, find the address of the start 
of the program. It will be immediately after the name of the last procedure 
or function. 

If you disassemble at that address, you will see a LINK instruction for A6 and 
a LINK instruction for AS. These address registers are used by Pascal to 
locate all variables and procedural parameters. Global variables are 
referenced negatively off AS. Local variables are referenced negatively off 
A6. Procedural parameters are referenced with a positive offset from A6. 

ToolBox calls and other calls to unit-resident procedures and functions are 
made through JSR *+addr instructions. The table ToolTraps is linked to your 
program, and contains all of the actual calls themselves. 

If you are writing a Pascal program that uses the ToolBox, the first thing 
you probably do is: 

InitGraf (@thePort); 

This assembles into: 

LEA 
MOVE.L 
JSR 

$FF1E(AS),AO 
AO,A7 
*+addr 

You should see this shortly after the LINK instructions. This establishes 
the beginning of your program. 

To find out where this program fails, interrupt the Finder. Set G TILL addr 
where addr is the beginning of your program. Restart your program. If the 
program breaks sucessfully at that point, continue to use G TILL to selectly 
execute your program until it fails more spectacularly, or locks up. 

You will find that the 68000 code that the Pascal compiler produces is 
reasonably readable, and that the compiler produces smart code. 



To complement the debugger information, you may want to add debugging code. 
in your program itself. One easy way to do so is to do WRITE s or WRITELN s 
to the .BOUT port. This information will appear on your debugging terminal. 
The code fragments required look like: 

VAR debug : TEXT; 

REWRITE (debug, '.BOUT'); 

WRITELN (debug, chr(10) {linefeed}, 'This is a test', 12345); 

WRITE and WRITELN support strings, chars, packed array of chars, integers, 
and booleans. 



The MtJcP22int Document Form22t 
by B111 Atkinson 

MacPaint documents are easy to read and write, and have become a 
standard Interchange format for full-page bitmap Images on Macintosh. 
Their Internal format Is described here to aid program developers .In 
generating and reading MacPalnt documents. 

MacPalnt documents use only the data fork of the file system; the resource 
fork Is not used and may be Ignored. The data fork contains a 512 byte 
header and then the compressed data representing a single bitmap of 576 
pixels wide by 720 pixels tall. At 72 pixels per Inch, this bitmap occupies 
the full 8 by 10 Inch printable area of the Imagewriter printer page. 

HEADER: 

The first 512 bytes of the document form a header with a 4 byte version 
number (default • 2), then 38-8 • 304 bytes of patterns, then 204 unused 
bytes reserved for future expansion. I f the version number is zero. the 
rest of the header block is ignored and default patterns are used, so 
programs generating MacPalnt documents can simply write out 512 bytes 
of zero as the document header. Most programs which read MacPaint 
documents can simply skip over the header when reading. 

BITMAP: 

Following the header are 720 compressed scanllnes of data which form the 
576 wide by 720 taU bitmap. Without compreSSion, this bitmap would 
occupy 51840 bytes and chew up disk space pretty fast; typical MacPalnt 
documents compress to about 10 Kbytes using the PackBlts procedure In 
the Macintosh ROM to compress runs of equal bytes within each scan line. 
The bitmap part of 8 MacPalnt document Is simply 720 times the output of 
PackB Its with 72 bytes Input. 



READING SAMPLE: 

CONST srcBJocks = 2; (at least 2, bigger makes It faster) 
srcSlze - 1024; (512· srcBlocks ) 

TYPE dtskBlock· PACKED ARRAY[ 1 .. 512) OF QOByte; 
VAR srcBuf: ARRAY[ 1 .. srcBlocks] OF dtskBlock; 

srcPtr,dstPtr: aOPtr; 

( skip the header) 
ReadOata(srcFlle,osrcBuf,512); 

(prime srcBuf ) 
ReadOata(srcF I Ie, osrcBuf ,srcS Ize); 

( unpack each scanl1ne Into dstBtts, reading more source as needed) 
srcPtr :. ttsrcBuf; 
dstPtr:- dstBtts.baseAddr; 
FOR scanL Ine:- 1 to 720 00 

BEGIN 
UnPackBtts(srcPtr,dstPtr,72); ( bumps both ptrs ) 
( time to read next chunk of packed source ? J 
IF ORO(srcPtr) ) ORO(t'srcBuf) + srcSlze - 512 THEN 

BEGIN 
srcBuf[ 1] :- srcBuf[srcBJocks]; ( move up last block) 
ReadOata(srcFiJe,t'srcBuf[2],srcSlze-SI2); 
srcPtr:- Polnter(ORO(srcPtr) - srcSize + 512); 

END· , 
END-• 



WRITING SAMPLE: 

To write out a 576 by 720 bitmap which is contained in memory, the 
following fragment of code could be used: 

TYPE dlskBlock-
V AR srcPtr,dstPtr: 

dstBuf: 
dstBytes: 

PACKED ARRAY[ 1 .. 512] OF OOByte; 
OOPtr; 
diskBlock; 
INTEGER·· , 

( write the header, ai' zeros) 
FOR t :- 1 to 512 00 dstBuf[t] :- 0; 
WrtteOata(dstFi le,odstBuf,512); 

( Compress each scanltne and write it ) 
srcptr:- srcBtts.baseAddr; 
FOR scanL ine:- 1 to 720 00 

BEGIN 
dstPtr :- .dstBur; 
PackBits(srcPtr,dstPtr,72); 
dstBytes :- ORO(dstPtr) - ORD( OdstBuf); 
WrlteData(dstFtle,t'dstBur,dstBytes); 

END; 

( bumps both ptrs) 
( calc packed size) 
( wri te packed data ) 



December 8, 1983 

TO ~t~CINTOSH SOFTWARE DEVEWPERS: 

We hope that this letter finds all of yru busy at work 00 yrur applicaticn for Macintosh. 
We at Apple are very excited to have yru as a software developer and look forward to 
seeing yoor product 00 Macintosh. 

The p..1rpose of this letter is to inform yoo that with 00 incremental effort, yoor 
applicatim will also run 00. the Lisa system. We will provide a Macintosh envirmment for 
the Lisa which allows Macintosh software to run standalone al the Lisa withoo t any 
modificatim. Specifically, we will be marketing a single diskette which will boot the Lisa 
into a Macintosh environment and allow the Lisa to use the extentsive software base we 
expect to be offered for Macintosh. 

From a user's perspective, using Macintosh software 00 the Lisa wruld work as follows: 

• The user wruld boot the Lisa from a 3-1/2" microfloppy diskette using a 
microfloppy drive supplied for the Lisa. 

• By then inserting their Macintosh applicatim dis kette, they are ready to 
work. 

In additicn to just being able to run Macintosh software, the user will also be able to take 
advantage of the additirnal memory in the Lisa as well as the larger screen. At some point 
in the future we also plan to have this envirmment support Lisa's hard disk. 

So by following some simple rules in writing yoor Macintosh software (see attached), yru 
will be able to leverage your efforts over both machines. We already have a substantial 
installed base of Lisa's which is growing daily. These Lisa users are anxioos for the 
types of applicatiens which yru are developing for Macintosh and thus represent a sizable 
market to you. 

I wruld strcngly urge yoo to following the attached directicns in writing yoor Macintosh 
applicaticns. Not enly will they insure yrur current ability to sell ycur software en the 
Lisa, but will also make it much more likely that yrur software will run CJ1 future 
Macintosh products. Additicnally, I can provide yru with informatiCJ1 al cq:>y protecticn 
implementaticns which will insure that ycur software is viable al both the Lisa as well as 
Macintosh. 

If ycu have any questiens, please either ¢ve me a call or doo't hesitate to call Burt 
OJmmings in the Lisa grrup. We are both here to help yru succeed and are very excited 
aboot the prospects for the software yru have underway. 

Sincerely, 

/~I ( 1/1 
Mike Boich 
Apple Complter, Inc. 



Notes for applications concerned with LisaMac 
compatibili ty 

Date: Decemoer 5,1983 

The fOllowIng Is a compendIum of suggestions Intenaed to help guIde anyone WhO wants 
to write software tnat wIll run on OOtrl Maclntostl, and LIsa 2. 

(1) The sIze Of trle screen, or rowbytes, shOuld never be assumed. AA appl1cation can 
always determ1ne tne sIze Of tne screen by lOOKIng at tne 't>OUl"lOs" field of the 
QulcKDraw glObal vartaole "ScreenS I ts". 

In Pascal this mlgnt lOOK l1ke: 

thisSereenSlze :- ScreenBI ts.Oounos 

wtlere U11ssereenslze Is of TYPE ReeL 

In Assembly U1Is mIght looK llKe: 

MOVE.L bOUncJs(AO)AAO) 
MOVE.L(AO). AA1)· 
I'1OVE.L(AO)· AA1)· 

; get start of screenbl ts.OoundS 
; copy topLeft 
; copy oottomRlgtlt 

where AO Is the aOdress of the QulcKDraw glooal ·Screen81ts" ... and Al points to 
our screen size. 

(2) Use of souna should be limited to only the routine -SysBeep". Later on it may Oe 
possible to loosen thIs constraInt to Incluae access to tne square wave generating 
capat>ilities of the sound driver. 

(3) The size of memory should not Oe assumed. Memory size can be determineo oy 
using system routines sucn as "FreeMem". 

(4) Most, If not all, attempts to access tlarctware dlrectly (e.g. BTST #3,~tSEXXXXX to 
see if the mouse bUtton is up or down) will result in fatal system errors. 

(5) In general, access to system globals snoula be througt'", system routines. Pemaps 
later on there wUI be tlme to complle a l1st of tnose few glODal variables wtllcn, In 
fact, are not valid. 

(6) Do not use the T p.s (test and set) instruction Of the 68000. A BSET instruction is 
not that mucn slower. 

(7) me screen memory stloulC not be accessec alrecuy. All screen access Should be 
U'lrougt'l QulckDraw. 

(8) The ROM code should not be accessed (I.e. jumped into) directly. 

(9) The address of the dispatch table (used in replacing traps) should not be assumed. 
The address of inaiviaual traps can be determined by using the system routine 

Page 1 



"Get TrapAddress". 

(10) A program snoula not count on parameter memory being saved across system boots; 
"TIme" wIll be savea hOWever. In tile case of a power lass, all parameter memory 
InclucJlng TIme will be Inl U all Zed. 

(11) Serial port "S" (I.e. one of the two serial ports) wUI not support 19.21< bCU1 

(12) TImIng sensltlve parts Of programs snoula not be Implemented wltn timing loops, or 
otner appl1caUon Internal timIng methOos. Instead, use "ReaaDateTlme" for 1 
secona values or lOOk at tne "TICkSIlt glObal for • 1/60 sec~ values. 

(13) Software protection???????? 

Page 2 



Date: March 21, 1984 
To : ~le 32 Developers 
From: Jeff Parrish 
Re: Information t.pjate 

Information ~e to developers: 

Your programs need to be able to test Wlether they are 
rtIT1ing on a Macintosh or on a Lisa. 

Byte .OOOO9H FF implies Lisa 

Pos1tive number implies MacintoSh; 

SO, Tst.B $400009 

BtlI lisastuff (label of your choice) 

Beglmlng of Mac COde 



Date: 

To: 

Re: 

3 October 1983 

Mac Developers 

Mac serial connector pinout 

1 - GND 
2 - +5 (may turn into an output handshake line-don't use!) 
3 - GND 
4 - TXD+ 
5 - TXD-
6 - +12 (for detecting power on ONLY!) 
7 - HSK (CTS or TRxC, depending on 8530 mode) 
8 - RXD+ 
9 - RXD-

For more-or-less RS232, use GND, TXD-. RXD-. The TXD+ and RXD+ 
signals provide RS422/423 compatibility. 

The HSK (handshake) line (an input) connects to both CTS and to 
TRxC on the 8530. It can be used either for CTS, or for external 
clock depending on the mode the 8530 is in. As RS232 handshake, 
it usually connects to pin 20 on a DB-25. 

For the Exceedingly Curious ••• 

Signal lines go through a "deglitch" network, which is a "T" 
consisting of 25-50 ohm resistors and 200 pf to ground. 

We use 26L530 and 26LS32 interface chips between the 8530 SCC and 
the outside world. 

The 8530 Data Carrier Detect lines (*DCDA pin 19 and *ncDB pin 21) 
are used as mouse inputs and generate interrupts used to detect 
mouse motion (!!!). 

The Mouse Pinout 

1 - GND 
2 - +5 (Mouse ONLY! ) 
3 - GND 
4 - X2 (to 6522 PB4) 
5 - Xl (to 8530 *DCDA) 
6 - No connect 
7 - *SW (to 6522 PB3) 
8 - Y2 (to 6522 PBS) 
9 - Y1 (to 8530 *DCDB) 

Bob Martin 


	000
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	01-47
	01-48
	01-49
	01-50
	01-51
	01-52
	01-53
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	06-81
	06-82
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	14-01
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	17-01
	17-02
	17-03
	18-01
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	20-32
	20-33
	20-34
	20-35
	20-36
	20-37
	20-38
	20-39
	20-40
	20-41
	20-42
	21-01
	21-02
	21-03
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	25-24
	25-25
	25-26
	25-27
	25-28
	25-29
	25-30
	25-31
	25-32
	25-33
	25-34
	25-35
	25-36
	25-37
	25-38
	25-39
	25-40
	25-41
	25-42
	25-43
	25-44
	25-45
	25-46
	25-47
	25-48
	25-49
	25-50
	25-51
	25-52
	25-53
	25-54
	25-55
	25-56
	25-57
	25-58
	25-59
	25-60
	25-61
	25-62
	25-63
	26-01
	26-02
	26-03
	26-04
	27-01
	27-02
	27-03
	27-04
	28-01
	28-02
	28-03
	29-01
	29-02
	30-01
	30-02
	30-03
	31-01
	32-01
	32-02
	33-01
	34-01

