Microsoft
CREF-80
CROSS
REFERENCE
FACILITY

CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Table of Contents

CREF-80, Cross Reference Facility

Overview

Using the Cross Reference Facility
Example oo 1-3

CREF-80, Cross Reference Facility 1'1

CREF-80
CROSS REFERENCE FACILITY

OVERVIEW

The following section contains reference information about the CREF-80 Cross
Reference Facility. The cross reference facility will generate a special listing that
can be an important diagnostic tool. Assume, for example, that a program uses a
field called FIELD 1, and that program testing reveals an error in the manipulat-
ing of thisfield. The crossreference listing can be used to check every instruction
that references this field.

1'2 CHAPTER ONE

USING THE CROSS REFERENCE FACILITY

The Cross Reference Facility is invoked by typing CREF80. To generate a cross
reference listing, the Assembler must output a special listing file with embedded
control characters. The MACRO-80 command string tells the assembler to output
this special listing file. /C is the cross reference switch. When the /C switch is
encountered in a MACRO-80 command string, the Assembler opens a .CRF file
instead of a .PRN file.

Example:
(NOTE: The asterisk represents the prompt from the Assembler.)

*=TEST/C Assemblefile TEST/MAC and create object file TEST/REL and
cross reference file TEST.CRF.

*T.U=TEST/C Assemble file TEST/MAC and create object file T/REL and
cross reference file U.CRF.

When the Assembler is finished, exit to CP/M with CTRL-C. Then call the Cross
Reference Facility by typing CREF.

The command string is:
*listing file=source file

The default extension for the source file is .CRF. the /L switch isignored, and any
other switch will cause an error message to be sent to the terminal.

Possible command strings are:

*=TEST Examine file TEST.CRF and generate a cross refer-
ence listing file TEST.PRN.

*T=TEST Examine file TEST.CRF and generate a cross refer-
ence listing file T.PRN.

Cross Reference listing files differ from ordinary listing files in that:
1. Each source statement is numbered with a Cross Reference number.
2. At the end of the listing, variable names appear in alphabetic order
along with the numbers of the lines on which they are referenced or

defined. Line numbers on which the symbol is defined are flagged
with ‘#°.

CREF-80, Cross Reference Facility I 1"3

The following example uses the macro assembler, M80, with the cross reference
switch. A printout of the cross reference listing is also shown.

A>TYPE TEST. MAC

ORG 100H
ABLE EQU 10
BAKER EQU 20
XRA A
LXI H,STORE
MVI B,5
LOOP: ADD M
CPI ABLE
JNC Loaop
HLT
STORE: DB 1,2.3,4.,5
END
A>MB0
*=TEST/C

No Fatal error({s)

*1C
A>CREF

*=TEST

*4C
A>TYPE TEST.PRN

MACRO-80 3 .4 26-Nov-80 PAGE 1
1 ORG 100H
2 0DoaA ABLE EQU i0
3 0014 BAKER EQU 20
4 o100 AF XRA A
5 o101 21 010D LXI H,STORE
6 0104" 06 05 MVI B,5
T 01086 86 LOOF: ADD M
8 o107 FE DA CPI ABLE
9 0109’ D2 0106 JNC LOOP
10 oioc: 76 HLT
11 010D 01 02 03 04 STORE: DB 1.2,3,4,5
12 C111r 035
13 END

1‘4 CHAPTER ONE

MACRO-80 3 .4 26-Nov-80

Macros:

Symbols:
ABLE DODA BAKER 0014 LOOP

No Fatal errori{s)

ABLE 24 8
BAKER 3#
LOOP 7# 9

STORE 5 114

PAGE

0106

STORE

010D’

APPENDIX A A'1

Appendix A

8080 Op-Codes

Mnemonic

ACI
ADC M
ADCr
ADDM
ADD r
ADI
ANA M
ANA T
ANI
CALL
cC

CM
CMA
CMC
CMP M
CMPr
CNC
CNZ

INSTRUCTION SET

Description

Add immediate to A with carry
Add memory to A with carry

Add register to A with carry
Add memory to A

Add register to A

Add immediate to A

And memory with A

And register with A

And immediate with A
Call uncaonditional

Call on carry

Call on minus

Complement A
Complement catry
Compare memory with A
Compare register with A
Call on no carry

Call on no zero

Call on positive

Call on parity even
Compare immediate with A
Call on parity odd

Call on zero

Mnemonic

DAA
DAD B
DADD
DADH
DAD SP
DCR M
DCR
DCX B
DCX D
DCX H
DCX Sp
DI

EI
HLT
IN

INR M
INRT
INX B
INX D
INX H
INX SP

M

Description

Decimal adjust A
AddB& CtoH&L
AddD&EtcH&L
AddH&toLtoH&L
Add stack pointer to H & L
Decremeni memory
Decrement register
Decrement B & C
Decrement D & E
Decrement H & L
Decrement stack pointer
Disable Interrupt

Enable Interrupts

Halt

Input

Increment memory
Increment register
Increment B & C registers
Increment D & E registers
Increment H & L registers
Increment stack pointer
Jump on carry

Jump on minus

A"2 I APPENDIX A

Mnemonic

JMP
JNC
JNZ
P
JPE
PO
iz
LDA

LDAX B
LDAX D

LHLD
LXIB

LXID
LXI H

LXI SP
MVI M
MVIr
MOV M, r
MOV r M
MOV 11, 12
NOF

ORA M
ORA T

ORI

ouT
PCHL

POP B
POP D
POP H
POP PSW
PUSH B
PUSH D
PUSH H
PUSH PSW

Description

Jump unconditional
Jump on no carry
Jump on no zero
Jump on positive
Jump on parity even
Jump on parity odd

Jump on zero

Load A direct
Load A indirect
Load A indirect

Load H & L direct

Load immediate register
Pair B & C

Load immediate register
PairD& E

Load immediate register
PairH & L

Load immediate stack pointer
Move immediate memory

Move immediate register

Move register to memory

Move memory to register

Move register to register
No-operation

Or memory with A

Or register with A

Or immediate with A

QOutput

H & L to program counter

Pop register pair B & C off stack
Pop register pair D & E off stack
Pop register pair H & L off stack
Pop A and Flags off stack

Push register B & C on stack
Push register pair D & E on stack
Push register pair H & L on stack
Push A and Flags on stack

Mnemonic

Description

Rotate A left through carry

Rotate A right through carry

Return on carry

Return

Rotate A left

Return on minus

Return on no carry

Return on no zero

Return on positive

Return on parity even

Return on parity odd

Rotate A right

Restart

Return on zero

Subtract memory from A with borrow
Subtract register from A with borrow
Subtract immediate from A with borrow
Store H & L direct

H & L to stack pointer

Store A direct

Store A indirect

Store A indirect

Set carry

Subtract memory from A

Subtract register from A

Subtract immediate from A
Exchange D & E, H & L Registers
Exclusive Or memory with A
Exclusive Or register with A
Exclusive Or immediate with A

Exchange 1op of stack, H& L

APPENDIX B I B-1

Appendix B

280 Op-Codes

Mnemonic

ADC HL, ss
ADC A, s
ADD A, n
ADD A, 1
ADDD A, (HL)

ADD A, (IX+d)
ADD A, {IY +d)

ADD HL, ss
ADD IX, pp
ADDIY, rr
AND s

BIT b, (HL)
BIT b, (IX+d)
BIT b, (IY +d)
BIT b, r
CALL cc, nn

CALL nn

CCF
CPs
CPD

CPDR

INSTRUCTION SET

Description

Add with Carry Reg. pair ss to HL.
Add with carry operand s to Acc.
Add value n to Acc.

Add Reg. r to Acc.

Add location {HL) to Acc.

Add location (I1X +d) to Acc.

Add location (IY +d) to Acc.

Add Reg. pair ss to HL

Add Reg. pair pp to IX

Add Reg. pair rr to IY

Logical 'AND’ of operand s and Acc.

Tast BIT b of location (HL)
Test BIT b of location (IX+d)
Test BIT b of location (IY +d)
Test BIT b of Reg. r

Call subroutine at location nn if
condition cc is true

Unconditional call subroutine at
location nn

Complement carry flag
Compare operand s with Acc.

Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC, repeat
until BC=4

Mnemonic

CPI

CPIR

DAA
DEC m
DEC IX
DEC IY
DEC ss
DI
DINZ e

Fl
EX (SP), HL
EX (SP), IX
EX (SP) IY
EX AF, AF

EX DE, HL

EXX

HALT

Description

Compare location (HL) and Acc.
increment HL and decrement BC

Compare location (HL) and Acc.
increment HL, decrement BC
repeat until BC=0

Complement Acc. (1's comp)
Decimal adjust Acc.
Decrement operand m
Decrement IX

Decrement 1Y

Decrement Reg. pair ss
Disable interrupts

Decrement B and Jump
relative if B=0

Enable interrupts

Exchange the location (SP) and HL
Exchange the location (SP) and IX
Exchange the location (SP) and 1Y
Exchange the contents of AF

and AF'

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC’, DE’, HL'
respectively

HALT (wait for interrupt or reset)

B'z APPENDIX B

Mnemonic

MO
IM 1
M2
IN A, (n)

IN T, {C)

INC (HL)
INCIX
INC (IX+d}
INCIY
INC (IY +d}
INCr

INC ss

IND

INDR

INI

INIR

JP (HL)
IP (IX)
JP (1Y)

JP cc, nn

JP nn
JPC e
JR e

JP NC, e
JRNZ, e

JRZ, e

Description

Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

Load the Reg. r with input from
device (C)

Increment location (HL)
Increment [X

Increment location (IX+d)
Increment 1Y

Increment location (1Y +d)
Increment Reg. r
Increment Reg. pair ss

Load location (HL} with input
from port (C), decrement HL
and B

Load location (HL) with input
from port (C), decrement HL and
decrement B, repeat until B=0

Load location (HL) with input
from port (C), and increment HL
and decrement B.

Load location (HL) with input
from port (C), increment HL
and decrement B, repeat until

B=0

Unconditional Jump to (HL)
Unconditional Jump to {IX)
Unconditional Jump to (1Y)

jump to location nn if
condition cc is true

Unconditional jump to location nn
Jump relative to PC+e if carry=1

Unconditional Jump relative
to PC+e

Jump relative to PC+e if carry=0

Jump relative to PC+e if non
zero (Z=0)

Jump relative to PC+e if zero (Z=1)

Mnemonic

LD A, (BC)
LD A, (DE)
LD A, I

LD A, (nn)
LD AR

LD (BC}. A
LD (DE), A
LD (HL). n
LD dd, nn
LD HL, (nn}
LD (HL). r
LI A

LF IX, nn
LD IX, (nn)
LD (IX+d). n
LD (IX+d), r
LD 1Y, nn
LD 1Y, (nn)
LD (IY +d), n
LD {IY +d). r
LD (nn), A
LD {nn), dd
LD (nn), HL
LD (nn), IX
LD (nn}, IY
IDR, A

LD r, (HL}
LD r, (IX+d)
LD r, (IY+d)
IDr,n
LDr, 1

LD SP, HL
LD SP, IX
LD SP, IY

Description

Load Acc. with location (BC)
Load Acc. with location (DE)
Load Acc. with I

Load Acc. with location nn

Load Acc. with Reg. R

Load loration (BC) with Acc.
Load location (DE) with Acc.
Load location (HL) with value n
Load Reg. pair dd with value nn
Load HL with location {nn}

Load location (HL) with Reg. r
Load I with Acc.

Load IX with value nn

Load IX with location (nn)

Load location (IX+d) with value n
Load location (IX +d) with Reg. r
Load 1Y with value nn

Load IY with location (nn)

Load location (1Y +d) with value n
Load location (1Y +d) with Reg. r
Load location (nn) with Acc.

Load location (nn) with Reg. pair dd
Load location {nn) with HL

Load location (nn) with [X

Load location (nn) with 1Y

Load R with Acc.

Load Reg. r with location (HL)
Load Reg. r with location (IX+d)
Load Reg. r with lacation (I'Y+d)
Load Reg. r with value n

Load Reg, r with Reg. r’

Load SP with HL

Load SP with IX

Load SP with IY

apenone | B-3

Mnemonic

LDD

LDDR

LDI

LDIR

NEG
NOP
OR s
OTDR

OTIR

OuUT (C), 1
OUT (n), A
OUTD

OUT1

POP IX
POP LY
POP qq
PUSH IX
PUSH Iy
PUSH gq
RES b, m
RET

Description

Load location (DE) with location
(HL}, decrement DE, HL and BC

Load location (DE) with location
(HL). decrement DE, HL and BC,
repeat until BC=0

Load location (DE) with location
(HL), increment DE, HL,
decrement BC

Load location (DE) with location
(HL), increment DE, HL,
decrement BC and repeat until
BC=0

Negate Acc. (2's complement)
No operation
Logical ‘OR’ or operand s and Acc.

Load output port (C) with location
(HL) decrement HL and B, repeat
until B=0

Load output port (C) with location
(HL), increment HL, decrement B,
repeat until B=0

Load cutput port (C) with Reg. r
Load output port (n) with Acc.

Load output port (C) with location
(HL), decrement HL and B

Load output port {C) with location
(HL). increment HL and decrement
B

Load IX with top of stack

Load 1Y with top of stack

Load Reg. pair qq with top of stack
Load IX onto stack

Load IY onto stack

Load Reg. pair qq onto stack

Reset Bit b of operand m

Return from subroutine

Mnemonic

RET cc

RETI

RETN

RL m

RLA

RLC (HL)
RLC (IX+d)
RLC (IY +d)
RLCr
RLCA

RLD

RR m
RRA
RRC m
RRCA
RRD

RST p
SBC A, s

SBC HL, ss

SCF

SET b, (HL)
SET b, (IX+d)
SET b, (IY +d)
SET b, r
SLAm

SRA m

SRL m

SUB s

XOR s

Description

Return from subroutine if condition
cc is true

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location (HL) left circular
Rotate location (IX +d) left circular
Rotate location (1Y +d} left circular
Rotate Reg. r left circular

Rotate left circular Acc.

Rotate digit left and right between
Acc. and location (HL)

Rotate right through carry operand m
Rotate right Acc. through carry
Rotate operand m right circular
Rotate right circular Acc.

Rotate digit right and left between
Acc. and location (HL)

Restart to location p

Subtract operand s from Acc. with
carry

Subtract Reg. pair ss from HL with
carry

Set varry flag (C=1)

Set Bit b of location (HL)

Set Bit b of location (IX+d)

Set Bit b of location (1Y +d)

Set Bitb of Reg. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc.

Exclusive 'OR’ operand s and Acc.

APPENDIX C | 0'1

Appendix C

ASCII Codes

o
™
[9]

16 .

17

18 .
19 .

20
21
22
23

24 .
25 .
26 .
27 .
28 .
29 .

30
31

SN U ANy = O

ocT

Qoo
001
002
003
004

-00s5

oos
oo7

010
011
D12
013
014
a1s
016
017

020
021
022
023
024
025

026 .

a27

030
031
032
033

034 .
035 .
036 .
Q37 .

HEX

. 00
.01
. 02
. 03 .
. 04
. 05 .
. 06 .
. Q7 .

. o8 .
. 09 .
. OA .
. OB .
. ac .
. 0D .
. OE .
. OF .

10
11
12
13

14 .
15 .

16

17 .

18 .
19 .
1A .
1B .
ic .
1D .
1E .
1F .

ASCII

NUL
SOH
STX
ETX
EQT
ENQ
ACK
BEL

BS
HT
LF
VT
FF
CR
S50
81

DLE
DC1
DCc2
DC3
DC4
NAK
SYN
ETB

CAN

SuB
ESC
FS
GS
RS
us

DEC

32
33

34

35
36

37 .
38 .

39

40
41
42
43

44
45 .
46 .
47 .

48 .

49
50
51
52
53

54 .

55

56 .
57 .
58 .
59 .

60
61
62
63

DECIMAL TO OCTAL TO HEX

0CcT

040
041
042
043

044 .
D45 .
046 .
047 .

050
051
052
053

054 .
055 .
056 .
057 .

060
061
o062
063

064 .
065 .
o066 .
067 .

070
071
o072

S073 .
074 .
o7s .
076 .
077 .

TO ASCII CONVERSION

I

HEX

20
21
22
23

. 28

.]9 .
24 .
2B .
2C .
2D .
2E .
2F .

. 30
.31
. 3R
.33

a7

. 38
39

3B
3C
3D

3F

24

25 .
26 .
27 .

34 .
35 .
36 .

3A .

3E .

ASCII

SPACE
!

- R 6 e

PERIOD
/

w @® e L B N S B)

oY N A e

DEC

64 .

65
66

67 .

&8

69 .

70
T1

T2

73 .
T4 .
75 .
76 .
7.
78 .
79 .

80
81
82
B3

84 .
B85 .
86 .
87 .

a8

89 .

91
92
93
94
95

acCT

100
101
102
103

104 .

1035
106
107

110
111
112

113 .
114 .
115 .
116 .

117

120
121
122

123 .
124 .
125 .

126
127

130
131
132
133
134
135
136
137

III

HEX

. 40
. 41
. 42
. 43
44
. 45
. 46
. 47

. 48

49 .

. 4A
4B

50
51
52
33
54
55
56
57

38 .
59 .
SA .
SB .
5C .
5D .
5E .
S5F .

4C .
4D .
4E .
. 4F .

ASCII

E<Cc3n™MOoD CEZECXRLHT QMETOm>®

Fo— e N

DEC

96 .
97 .
98 .
99 .

100
101
102
103

104 .

105

106 .
107 .
108 .
109 .

110
111

112
113

114 .
115 .
116 .

117

118 .
119 .

120
i21
122

123 .

124
125
126

127 .

AY

0oCT

140 .
141
142 .
143
144 .
145 .
146 .
147 .

150
151
152 .
153 .
154 .
135 .
156 .
157 .

160
161
162 .
163
164 .
165
166 .
167 .

170 .
171
172 .
173 .
174 .
175 .
176 ..
177 .

HEX ASCII

60

. 61

62

. 83 .
64 .

65
66
&7

. 68 .
. 689 .

GA
6B
6C

6D .
6E .
&F .

. T0
LT
T2

.73

T4

.75 .
76 .
Tr .

T8 .
.79 .
TA .
7B .
TC .
T .
TE .
TF .

£ 4 C W0 OT O3B +Xo T ™ - ¢ an0op

e = N M

DELETE

C-2

APPENDIX C

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
50
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
F3
GS
RS
us

CONTROL CHARACTER DEFINITIONS

Null: Tape feed,

Start of Heading; Start of Message
Start of Text; End of Address
End of Text; End of Message
End of Transmission; Shuts off TWX machines
Enguiry; WRU

Acknowledge; RU

Rings Bell

Backspace

Horizontal TAB

Line Feed or Space (New Line}
Vertical TAB

Form Feed {PAGE)

Carriage Return

Shift Out

Shift In

Data Link Escape

Device Control 1; Reader on
Device Control 2; Punch on
Device Control 3; Reader off
Device Control 4; Punch off
Negative Acknowledge; Error
Synchronous Idle (SYNC)

End of Transmission Block; Logical End of Medium
Cancel (CANCL)

End of Medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

Refer to the chart on page C-1. Note that any print control character defined
above and listed in column I of the chart can be produced from the combination
of CTRL and the alphabetical character in column III or IV which is on the same
line and to the right of the print control character. That is, DLE is CTRL-P or P,
BEL is CTRL-G or G, and so on.

APPENDIX D | D"'1

Appendix D

Error Messages

MACRO-80 ERROR MESSAGES

MACRO-80 errors are indicated by a one-character flag in column one of the
listing file. If a listing file is not being printed on the terminal, each erroneous
line is also printed or displayed on the terminal. Below is a list of the MACRO-80
Error Codes:

Error Codes

A Argument error —
Argument to pseudo-op is not in correct format or is out of range
(.PAGE 1; .RADIX 1; PUBLIC 1; STAX H; MOV M,N; INX C].

C Conditional nesting error —
ELSE without IF, ENDIF without IF, two ELSEs on one IF.

P Double Defined symbol —
Reference to a symbol which is multiply defined.

E External error —
Use of an external illegal in context (e.g., FOO SET NAME ;
MVI A,2-NAME).

M Multiply-Defined symbol —
Definition of a symbol which is multiply-defined.

N Number error —
Error in a number, usually a bad digit (e.g., 8Q).

APPENDIX D

Error Me

Bad opcode or objectionable syntax —
ENDM, LOCAL outside a block; SET, EQU or MACRO without a
name; bad syntax in an opcode (MOV A:); or bad syntax in an
expression (mismatched parenthesis, quotes, consecutive
operators, etc.).

Phase error —
Value of a label or EQU name is different on pass 2.

Questionable —
Usually means a line is not terminated properly. This is a warning
error (e.g., MOV A B,).

Relocation —
Illegal use of relocation in expression, such as abs-rel. Data, code
and COMMON areas are relocatable.

Undefined symbol —
A symbol referenced in an expression is not defined. (For certain
pseudo-ops, a V error is printed on pass 1 and a U on pass 2.)

Value error —
On pass 1 a pseudo-op which must haveits value known on pass 1
(e.g., .RADIX, .PAGE, DS, IF, IFE, etc.}, has a value which is
undefined later in the program, a U error will not appear on the
pass 2 listing.

ssages:

‘No end statement encountered on input file’

No END statement: either it is missing or it is not parsed due to being in
a false conditional, unterminated IRP/IRPC/REPT block or terminated
macro.

‘Unterminated conditional’

At least one conditional is unterminated at the end of the file.

‘Unterminated REPT/IRP/IRPC/MACRO’

[xx]

At least cne block is unterminated.

[No] Fatal error(s) [,xx warnings])
The number of fatal errors and warnings. The message is listed on the
console and in the list file.

APPENDIX D | D-3

LINK-80 ERROR MESSAGES

7No Start Address

A /G switch was issued, but no main program had been loaded.

?Loading Error

The last file given for input was not a properly formatted LINK-80 object file.
?0ut of Memory

Not enough memory to load program.

(A minimum of 40K RAM is required.)

?Command Error

Unrecognizable LINK-80 command string.

7<file> Not Found

<file>, as given in the command string, did not exist.

%2nd COMMON Larger /XXXXXX/

The first definition of COMMON block /XXX XXX/ was not the largest definition.
Re-order module loading sequence or change COMMON block definitions. (See
Chapter 9 in the FORTRAN Reference Manual for more information on the
COMMON statement.)

9% Mult. Def. Global YYYYYY

More than one definition for the global (internal) symbol YYYYYY was encoun-
tered during the loading process.

%Overlaying Program Area
Data

A /D or /P will cause already loaded data to be destroyed.

?Intersecting Program Area
Data

APPENDIX D

The program and data area intersect and an address or external chain entry is in
this intersection. The final value cannot be converted toa current value since it is
in the area intersection,

?Start Symbol — <name> — Undefined

After a /E: or /G: is given, the symbol specified was not defined.

Origin Above Loader Memory, Move Anyway (Y or N)?
Below

After a /E or /G was given, either the data or program area has an origin or top
which lies outside loader memory. If a Y <cr> is given, LINK-80 will move the
area and continue. If anything else is given, LINK-80 will exit.

In either case, if a /N was given, the image will already have been saved.

?Can’t Save Object File

A disk error occurred when the file was being saved. Usually this occurs when
there is no more room left on the disk.

?Nothing Loaded

A <filename>/8 or /E or /G was given but no object file was loaded. That is, an
attempt was made to search a library, exit the Linker, or execute a program, when
in fact nothing had been loaded.

