QTL Cartographer

A Reference Manual and Tutorial for QTL Mapping

Christopher J. Basten, Bruce S. Weir and Zhao-Bang Zeng

Program in Statistical Genetics Bioinformatics Research Center Department of Statistics North Carolina State University QTL Cartographer

Copyright c

Contents

List of Figures	8
List of Tables	9
1 Introduction	10

CONTENTS	QTL Cartographer
8.13 EQTL	
Bibliography	156
Index	158

List of Figures

We have also included options for more complex experimental designs, including recombinant inbred lines, general F_t lines produced by sel ng or random crossing of F_{t-1} lines, etc.

You can usually download a le by using the **get** command with a lename. On Macintoshes, using the server mode may require you to use the **put** command, as you are putting the les onto your local machine rather than getting them from the remote server. It is best to do the transfer in an empty subdirectory so that you don't inadvertently delete some important les. You will also want to download the *README* le if you don't already have a copy of it. The *README* le in the **/pub/qtlcart** subdirectory will often be more recent than the one in the archive.

The manual.pdf le is an Adobe Portable Document File of the manual and the

- ii. PC running Windows?
- iii. PowerPC based Macintosh?
- (b) What operating system is it running?
- (c) What is the version of the Operating system?
- (d) How much memory and free hard disk space do you have?

2. Programs

- (a) Which program is giving you trouble, and what parameter values were used?
- (b) Are the input les simulated or real?
- (c) Would it be possible to send me the input les, the log le and the resource le

-W MacintoshHD:qtlcart:workdir

Random Number Seed

Many of the simulation programs make use of a pseudo-random number generator that requires a seed. If none is provided, the number of seconds since some date in the past is

develops, this feature will be used more extensively. Once the stem is set in the menu, it will be remembered as long as a resource le is present.

Program	Extension	Contents	- letype
Rmap	.map	genetic linkage map	Rmap.out
Rqtl	.qtI	QTL model	Rqtl.out
Rcross	.cro	data le (markers, traits)	Rcross.out
Ostats	.qst	Ostats Analysis	Qstats.out

and other les recognized by *QTL Cartographer* are listed in Table 1.6.

CHAPTER 2. SIMULATING/REFORMATTING DATA

same concept holds for traits with option 4: Eliminate them in the order of highest to

CHAPTER 3. ANALYSIS

or a comparison of likelihoods

$$T_2 = 2 \sum_{i=1}^{X} n_i (\ln n_i - \ln np_i)$$

Both T_1 and T_2 should have a 2

$-\sigma$	I Cartoaranhar	-
$\overline{\sigma}$	L Cartographer	

				_			
1	\cap L	$1 \vee D$	TFR	2	$\Lambda \Lambda I$	Δ	/९।९
١		7 A P	1 5 5	``	Δ I N	$\overline{\mathbf{A}}$	$\overline{}$

Option	Default	Explanation
-i	qtlcart.cro	Data Input Fin47 cm/F15 tr490 Td[(ot)-3180(qtlcartIrt)-341

CHAPTER 3. ANALYSIS

- 3. Absolute position from left telomere, in Morgans.
- 4. Likelihood ratio test statistic for

inbreds). For

calculation of r^2

interval is the best position for the QTL.

The information criterion is is a function of the likelihood ratio and the number of

3.6.4 Threshold

If no penalty function is to be used, then it is important to specify the proper threshold for

Ontion	Dofault	Evalanation
Option	Delault	Explanation

Chapter 5

Tutorial Examples

CHAPTER 5. TUTORIAL EXAMPLES

lpr sends a le to the printer. You can print up to 50 sheets from your account.
alias

1. Start up Rmap. Change the working subdirectory, and then the lename stem.

Chapter 6
Input File Formats

Map block

Between the -start token and the -stop

Command	Followed by	Means		
-filetype				

4 43.2 0.95 0.0 Trai t_2 2 2 93.4 0.42 0.0 4 33.2 0.90 0.0 Trai t_3 1 1 33.4 0.84 0.2 -stop qtls

Now, consider the block

Trai t_1 4 1 9.1 0.75 0.0 1 89.1 0.5 0.0 3 68.4 0.22 0.0 4 43.2 0.95 0.0

and think of them as being numbered consecutively:

Trait_1 4

1. 1 9.1 0.75 0.0

2. 1 89.1 0.5 0.0

3. 3 68.4 0.22 0.0

4. 4 43.2 0.95 0.0

and for the second trait, the numbering starts from 1 again:

Trait_2 2

1. 2 93.4 0.42 0.0

2. 4 33.2 0.90 0.0

Aa 1 Bb aa 0 bb A- 12 Ba- 10 b--- -1 --

Chapter 7

Benchmarks

8.1 QTLCART

NAME

QTLcart | A rudimentary front end for the QTL Cartographer system.

SYNOPSIS

QTLcart [-h] [-V] [-A] [-s seed] [-W workdir] [-X

- -e This requires a lename for the log le. It will be appended to if it exists and created if not. The default is *qtlcart.log*.
- -X Give a lename stem. All output will start with this stem and have extensions indicating what is in them.

EXAMPLES

For all the following examples, assume that **QTLCart** is just a wildcard for any of the programs in the suite.

O. Continue with these parameters

3. Qstats, to summarize missing data and calculate some basic statistics on your quan-

8.2 RMAP

NAME

Rmap | Simulate or reformat a map of molecular markers

SYNOPSIS

Rmap

CHAPTER 8. UNIX MAN PIBT /F1on50 TIS

-d You can specify the type of dominance at the trait loci. If we assume inbred parental

-H

OUTPUT

Rcross can produce seven di erent types of output les. The output formats are speci ed

7. Prune the data back to one trait. Use the -t option with a trait number to select the

EXAMPLES

% Qstats -i corn.cro -m corn.map

8.7 LRMAPQTL

NAME

LRmapqtI | Single marker QTL analysis.

SYNOPSIS

LRmapqtI [-o[

MODEL

The basic linear model is

CHAPTER 8. UNIX MAN PAGES

PERMUTATION TESTS

echo "Fi ni shed"

BUGS

It is likely that we will abandon the internal permutation tests in ZmapqtI. It is more

-E Allows the user to specify the name of the le containing the genetic model for input. This le should be in the format of *Rqtl.out* and produced by **Rqtl**, **Eqtl** or **MImapqtl**. A new model will be placed in the le speci ed with the -O option. For

NOTES

-S When given an argument, Preplot

SEE ALSO

Rao, D. C., B. J. Keats, J. M. Lalouel, N. E. Morton, and S. Lee (1979). A maximum likelihood map of chromosome 1. *A. J. Hum. Genet. 31*, 680 (696.

Index

-**A**, 108 -**B** Covariance ag, 148

a., 142 additive e ect, 34 ANALYSIS, 146 ANALYSIS PHASE, 148 AUTOMATIC ACTIONS, 126

b., 142
background parameter, 57
beta distribution, 34
bootstrap, 25, 44, 58, 74
BOOTSTRAPS, JACKKNIVES AND PER-MUTATIONS, 154

bug, 19

c., 142