
A TROFF Tutorial

Brian W. Kernighan

Typesetting

Te xt formatting

NROFF

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems phototypesetter

on the UNIX† and GCOS operating systems. This device is capable of producing high

quality text; this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing roman, italic

and bold letters (as on this page), a full greek alphabet, and a substantial number of spe-

cial characters and mathematical symbols. Characters can be printed in a range of sizes,

and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as well

as the usual features of a formatter — right-margin justification, automatic hyphenation,

page titling and numbering, and so on. It also provides macros, arithmetic variables and

operations, and conditional testing, for complicated formatting tasks.

This document is an introduction to the most basic use of troff. It presents just

enough information to enable the user to do simple formatting tasks like making view-

graphs, and to make incremental changes to existing packages of troff commands. In

most respects, the UNIX formatter nroff is identical to troff, so this document also serves

as a tutorial on nroff.

August 4, 1978

† UNIX is a trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Typesetting

Te xt formatting

NROFF

1. Introduction

troff [1] is a text-formatting program, written by

J. F. Ossanna, for producing high-quality printed output

from the phototypesetter on the UNIX and GCOS oper-

ating systems. This document is an example of troff

output.

The single most important rule of using troff is

not to use it directly, but through some intermediary. In

many ways, troff resembles an assembly language — a

remarkably powerful and flexible one — but nonethe-

less such that many operations must be specified at a

level of detail and in a form that is too hard for most

people to use effectively.

For two special applications, there are programs

that provide an interface to troff for the majority of

users. eqn [2] provides an easy to learn language for

typesetting mathematics; the eqn user need know no

troff whatsoever to typeset mathematics. tbl [3] pro-

vides the same convenience for producing tables of

arbitrary complexity.

For producing straight text (which may well

contain mathematics or tables), there are a number of

‘macro packages’ that define formatting rules and oper-

ations for specific styles of documents, and reduce the

amount of direct contact with troff. In particular, the

‘−ms’ [4] and PWB/MM [5] packages for Bell Labs

internal memoranda and external papers provide most

of the facilities needed for a wide range of document

preparation. (This memo was prepared with ‘−ms’.)

There are also packages for viewgraphs, for simulating

the older roff formatters on UNIX and GCOS, and for

other special applications. Typically you will find these

packages easier to use than troff once you get beyond

the most trivial operations; you should always consider

them first.

In the few cases where existing packages don’t

do the whole job, the solution is not to write an entirely

new set of troff instructions from scratch, but to make

small changes to adapt packages that already exist.

In accordance with this philosophy of letting

someone else do the work, the part of troff described

here is only a small part of the whole, although it tries

to concentrate on the more useful parts. In any case,

there is no attempt to be complete. Rather, the empha-

sis is on showing how to do simple things, and how to

make incremental changes to what already exists. The

contents of the remaining sections are:

2. Point sizes and line spacing

3. Fonts and special characters

4. Indents and line length

5. Tabs

6. Local motions: Drawing lines and characters

7. Strings

8. Introduction to macros

9. Titles, pages and numbering

10. Number registers and arithmetic

11. Macros with arguments

12. Conditionals

13. Environments

14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language version run-

ning on UNIX at Murray Hill, as documented in [1].

To use troff you have to prepare not only the

actual text you want printed, but some information that

tells how you want it printed. (Readers who use roff

will find the approach familiar.) For troff the text and

the formatting information are often intertwined quite

intimately. Most commands to troff are placed on a

line separate from the text itself, beginning with a

period (one command per line). For example,

Some text.

.ps 14

Some more text.

will change the ‘point size’, that is, the size of the let-

ters being printed, to ‘14 point’ (one point is 1/72 inch)

like this:

Some text. Some more text.

Occasionally, though, something special occurs

in the middle of a line — to produce

Area = πr2

you have to type

- 2 -

Area = \(∗ p\fIr\fR\ | \s8\u2\d\s0

(which we will explain shortly). The backslash charac-

ter \\ is used to introduce troff commands and special

characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps.ps sets the

point size. One point is 1/72 inch, so 6-point characters

are at most 1/12 inch high, and 36-point characters are
1⁄2 inch. There are 15 point sizes, listed below.

6 point: Pack my box with five dozen liquor jugs.

7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.

10 point: Pack my box with five dozen liquor

11 point: Pack my box with five dozen

12 point: Pack my box with five dozen

14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps.ps is not one of these legal

sizes, it is rounded up to the next valid value, with a

maximum of 36. If no number follows .ps.ps, troff reverts

to the previous size, whatever it was. troff begins with

point size 10, which is usually fine. This document is

in 9 point.

The point size can also be changed in the middle

of a line or even a word with the in-line command \s\s.

To produce

UNIX runs on a PDP-11/45

type

\s8UNIX\s10 runs on a \s8PDP-\s1011/45

As above, \s\s should be followed by a legal point size,

except that \s0\s0 causes the size to revert to its previous

value. Notice that \s1011\s1011 can be understood correctly

as ‘size 10, followed by an 11’, if the size is legal, but

not otherwise. Be cautious with similar constructions.

Relative size changes are also legal and useful:

\s−2UNIX\s+2

temporarily decreases the size, whatever it is, by two

points, then restores it. Relative size changes have the

advantage that the size difference is independent of the

starting size of the document. The amount of the rela-

tive change is restricted to a single digit.

The other parameter that determines what the

type looks like is the spacing between lines, which is

set independently of the point size. Vertical spacing is

measured from the bottom of one line to the bottom of

the next. The command to control vertical spacing is

.vs.vs. For running text, it is usually best to set the vertical

spacing about 20% bigger than the character size. For

example, so far in this document, we have used ‘‘9 on

11’’, that is,

.ps 9

.vs 11p

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a few lines,
you will agree it looks a little cramped. The right verti-
cal spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space,
and partly a matter of traditional printing style. By
default, troff uses 10 on 12.

Point size and vertical spacing make
a substantial difference in the amount of
text per square inch. This is 12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. For example, 10 on 12 uses about twice as much
space as 7 on 8. This is 6 on 7, which is even smaller. It packs a lot more words
per line, but you can go blind trying to read it.

When used without arguments, .ps.ps and .vs.vs revert

to the previous size and vertical spacing respectively.

The command .sp.sp is used to get extra vertical

space. Unadorned, it gives you one extra blank line

(one .vs.vs, whatever that has been set to). Typically,

that’s more or less than you want, so .sp.sp can be fol-

lowed by information about how much space you want

—

.sp 2i

means ‘two inches of vertical space’.

.sp 2p

means ‘two points of vertical space’; and

.sp 2

means ‘two vertical spaces’ — two of whatever .vs.vs is

set to (this can also be made explicit with .sp 2v.sp 2v); troff

also understands decimal fractions in most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors can

be used after .vs.vs to define line spacing, and in fact after

most commands that deal with physical dimensions.

It should be noted that all size numbers are con-

verted internally to ‘machine units’, which are 1/432

inch (1/6 point). For most purposes, this is enough res-

olution that you don’t hav e to worry about the accuracy

of the representation. The situation is not quite so good

vertically, where resolution is 1/144 inch (1/2 point).

- 3 -

3. Fonts and Special Characters

troff and the typesetter allow four different fonts

at any one time. Normally three fonts (Times roman,

italic and bold) and one collection of special characters

are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of the

special font are listed in Appendix A.

troff prints in roman unless told otherwise. To

switch into bold, use the .ft.ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R.ft R; to return to the previous

font, whatever it was, use either .ft P.ft P or just .ft.ft. The

‘underline’ command

.ul

causes the next input line to print in italics. .ul.ul can be

followed by a count to indicate that more than one line

is to be italicized.

Fonts can also be changed within a line or word

with the in-line command \f\f:

boldface text

is produced by

\fBbold\fIface\fR text

If you want to do this so the previous font, whatever it

was, is left undisturbed, insert extra \fP\fP commands, like

this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is remem-

bered, you have to restore the previous font after each

change or you can lose it. The same is true of .ps.ps and

.vs.vs when used without an argument.

There are other fonts available besides the stan-

dard set, although you can still use only four at any

given time. The command .fp.fp tells troff what fonts are

physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3.

(For a complete list of fonts and what they look like,

see the troff manual.) Appropriate .fp.fp commands

should appear at the beginning of your document if you

do not use the standard fonts.

It is possible to make a document relatively

independent of the actual fonts used to print it by using

font numbers instead of names; for example, \f3\f3 and

.ft˜3.ft˜3 mean ‘whatever font is mounted at position 3’, and

thus work for any setting. Normal settings are roman

font on 1, italic on 2, bold on 3, and special on 4.

There is also a way to get ‘synthetic’ bold fonts

by overstriking letters with a slight offset. Look at the

.bd.bd command in [1].

Special characters have four-character names

beginning with \(\(, and they may be inserted anywhere.

For example,

1⁄4 + 1⁄2 = 3⁄4

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \(∗ −\(∗ −,

where −− is an upper or lower case roman letter reminis-

cent of the greek. Thus to get

Σ(α×β) → ∞

in bare troff we have to type

\(∗ S(\(∗ a\(mu\(∗ b) \(−> \(if

That line is unscrambled as follows:

\(∗ S Σ
((

\(∗ a α
\(mu ×
\(∗ b β
))

\(−> →
\(if ∞

A complete list of these special names occurs in

Appendix A.

In eqn [2] the same effect can be achieved with

the input

SIGMA (alpha times beta) −> inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a single

character as far as troff is concerned — the ‘translate’

command

.tr \(mi\(em

is perfectly clear, meaning

.tr −—

that is, to translate − into —.

Some characters are automatically translated

into others: grave ` and acute ´ accents (apostrophes)

become open and close single quotes ‘˜’; the combina-

tion of ‘‘...’’ is generally preferable to the double quotes

"...". Similarly a typed minus sign becomes a hyphen -.

- 4 -

To print an explicit − sign, use \-\-. To get a backslash

printed, use \e\e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches, too

wide for 81⁄2×11 paper. To reset the line length, use the

.ll.ll command, as in

.ll 6i

As with .sp.sp, the actual length can be specified in several

ways; inches are probably the most intuitive.

The maximum line length provided by the type-

setter is 7.5 inches, by the way. To use the full width,

you will have to reset the default physical left margin

(‘‘page offset’’), which is normally slightly less than

one inch from the left edge of the paper. This is done

by the .po.po command.

.po 0

sets the offset as far to the left as it will go.

The indent command .in.in causes the left margin

to be indented by some specified amount from the page

offset. If we use .in.in to move the left margin in, and .ll.ll

to move the right margin to the left, we can make offset

blocks of text:

.in 0.3i

.ll −0.3i

text to be set into a block

.ll +0.3i

.in −0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur

nomen tuum; adveniat regnum tuum; fiat

voluntas tua, sicut in caelo, et in terra. ...

Amen.

Notice the use of ‘+’ and ‘−’ to specify the amount of

change. These change the previous setting by the spec-

ified amount, rather than just overriding it. The distinc-

tion is quite important: .ll +1i.ll +1i makes lines one inch

longer; .ll 1i.ll 1i makes them one inch long.

With .in.in, .ll.ll and .po.po, the previous value is used if

no argument is specified.

To indent a single line, use the ‘temporary

indent’ command .ti.ti. For example, all paragraphs in

this memo effectively begin with the command

.ti 3

Three of what? The default unit for .ti.ti, as for most hor-

izontally oriented commands (.ll.ll, .in.in, .po.po), is ems; an

em is roughly the width of the letter ‘m’ in the current

point size. (Precisely, a em in size p is p points.)

Although inches are usually clearer than ems to people

who don’t set type for a living, ems have a place: they

are a measure of size that is proportional to the current

point size. If you want to make text that keeps its pro-

portions regardless of point size, you should use ems

for all dimensions. Ems can be specified as scale fac-

tors directly, as in .ti 2.5m.ti 2.5m.

Lines can also be indented negatively if the

indent is already positive:

.ti −0.3i

causes the next line to be moved back three tenths of an

inch. Thus to make a decorative initial capital, we

indent the whole paragraph, then move the letter ‘P’

back with a .ti.ti command:

P
ater noster qui est in caelis sanctifice-

tur nomen tuum; adveniat regnum tu-

um; fiat voluntas tua, sicut in caelo,

et in terra. ... Amen.

Of course, there is also some trickery to make the ‘P’

bigger (just a ‘\s36P\s0’), and to move it down from its

normal position (see the section on local motions).

5. Tabs

Tabs (the ASCII ‘horizontal tab’ character) can

be used to produce output in columns, or to set the hori-

zontal position of output. Typically tabs are used only

in unfilled text. Tab stops are set by default every half

inch from the current indent, but can be changed by the

.ta.ta command. To set stops every inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified only (as

on a typewriter), so lining up columns of right-justified

numbers can be painful. If you have many numbers, or

if you need more complicated table layout, don’t use

troff directly; use the tbl program described in [3].

For a handful of numeric columns, you can do it

this way: Precede every number by enough blanks to

make it line up when typed.

.nf

.ta 1i 2i 3i

1 tab 2 tab 3

40 tab 50 tab 60

700 tab 800 tab 900

.fi

Then change each leading blank into the string \0\0. This

is a character that does not print, but that has the same

width as a digit. When printed, this will produce

1 2 3

40 50 60

700 800 900

It is also possible to fill up tabbed-over space

with some character other than blanks by setting the

‘tab replacement character’ with the .tc.tc command:

- 5 -

.ta 1.5i 2.5i

.tc \(ru (\(ru is " ")

Name tab Age tab

produces

Name Age

To reset the tab replacement character to a blank, use

.tc.tc with no argument. (Lines can also be drawn with

the \l\l command, described in Section 6.)

troff also provides a very general mechanism

called ‘fields’ for setting up complicated columns.

(This is used by tbl). We will not go into it in this

paper.

6. Local Motions: Drawing lines and characters

Remember ‘Area = πr
2

’ and the big ‘P’ in the

Paternoster. How are they done? troff provides a host

of commands for placing characters of any size at any

place. You can use them to draw special characters or

to tune your output for a particular appearance. Most

of these commands are straightforward, but messy to

read and tough to type correctly.

If you won’t use eqn, subscripts and superscripts

are most easily done with the half-line local motions \u\u

and \d\d. To go back up the page half a point-size, insert a

\u\u at the desired place; to go down, insert a \d\d. (\u\u and

\d\d should always be used in pairs, as explained below.)

Thus

Area = \(∗ pr\u2\d

produces

Area = πr
2

To make the ‘2’ smaller, bracket it with \s−2...\s0\s−2...\s0. Since

\u\u and \d\d refer to the current point size, be sure to put

them either both inside or both outside the size

changes, or you will get an unbalanced vertical motion.

Sometimes the space given by \u\u and \d\d isn’t the

right amount. The \v\v command can be used to request

an arbitrary amount of vertical motion. The in-line

command

\v´(amount)´

causes motion up or down the page by the amount

specified in ‘(amount)’. For example, to move the ‘P’

down, we used

.in +0.6i (move paragraph in)

.ll −0.3i (shorten lines)

.ti −0.3i (move P back)

\v´2´\s36P\s0\v´−2´ater noster qui est

in caelis ...

A minus sign causes upward motion, while no sign or a

plus sign means down the page. Thus \v′−2′\v′−2′ causes an

upward vertical motion of two line spaces.

There are many other ways to specify the

amount of motion —

\v´0.1i´

\v´3p´

\v´−0.5m´

and so on are all legal. Notice that the scale specifier ii

or pp or mm goes inside the quotes. Any character can be

used in place of the quotes; this is also true of all other

troff commands described in this section.

Since troff does not take within-the-line vertical

motions into account when figuring out where it is on

the page, output lines can have unexpected positions if

the left and right ends aren’t at the same vertical posi-

tion. Thus \v\v, like \u\u and \d\d, should always balance

upward vertical motion in a line with the same amount

in the downward direction.

Arbitrary horizontal motions are also available

— \h\h is quite analogous to \v\v, except that the default

scale factor is ems instead of line spaces. As an exam-

ple,

\h´−0.1i´

causes a backwards motion of a tenth of an inch. As a

practical matter, consider printing the mathematical

symbol ‘>>’. The default spacing is too wide, so eqn

replaces this by

>\h´−0.3m´>

to produce >>.

Frequently \h\h is used with the ‘width function’

\w\w to generate motions equal to the width of some char-

acter string. The construction

\w´thing´

is a number equal to the width of ‘thing’ in machine

units (1/432 inch). All troff computations are ulti-

mately done in these units. To move horizontally the

width of an ‘x’, we can say

\h´\w´x´u´

As we mentioned above, the default scale factor for all

horizontal dimensions is mm, ems, so here we must have

the uu for machine units, or the motion produced will be

far too large. troff is quite happy with the nested

quotes, by the way, so long as you don’t leave any out.

As a live example of this kind of construction,

all of the command names in the text, like .sp.sp, were

done by overstriking with a slight offset. The com-

mands for .sp.sp are

.sp\h´−\w´.sp´u´\h´1u´.sp

That is, put out ‘.sp’, move left by the width of ‘.sp’,

move right 1 unit, and print ‘.sp’ again. (Of course

there is a way to avoid typing that much input for each

command name, which we will discuss in Section 11.)

- 6 -

There are also several special-purpose troff

commands for local motion. We hav e already seen \0\0,

which is an unpaddable white space of the same width

as a digit. ‘Unpaddable’ means that it will never be

widened or split across a line by line justification and

filling. There is also \\(blank), which is an unpaddable

character the width of a space, \|\|, which is half that

width, \ˆ\ˆ, which is one quarter of the width of a space,

and \&\&, which has zero width. (This last one is useful,

for example, in entering a text line which would other-

wise begin with a ‘.’.)

The command \o\o, used like

\o´set of characters´

causes (up to 9) characters to be overstruck, centered

on the widest. This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

which makes

système té lé phonique

The accents are \(ga\(ga and \(aa\(aa, or \`\` and \´\´; remember

that each is just one character to troff.

You can make your own overstrikes with another

special convention, \z\z, the zero-motion command. \zx\zx

suppresses the normal horizontal motion after printing

the single character xx, so another character can be laid

on top of it. Although sizes can be changed within \o\o,

it centers the characters on the widest, and there can be

no horizontal or vertical motions, so \z\z may be the only

way to get what you want:

is produced by

.sp 2

\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The .sp.sp is needed to leave room for the result.

As another example, an extra-heavy semicolon

that looks like

,. instead of ; or ;
can be constructed with a big comma and a big period

above it:

\s+6\z,\v´−0.25m´.\v´0.25m´\s0

‘0.25m’ is an empirical constant.

A more ornate overstrike is giv en by the bracket-

ing function \b\b, which piles up characters vertically,

centered on the current baseline. Thus we can get big

brackets, constructing them with piled-up smaller

pieces:








x 






by typing in only this:

.sp

\b′\(lt\(lk\(lb′ \b′\(lc\(lf′ x \b′\(rc\(rf′ \b′\(rt\(rk\(rb′

troff also provides a convenient facility for

drawing horizontal and vertical lines of arbitrary length

with arbitrary characters. \l′1i′\l′1i′ draws a line one inch

long, like this: . The length can be

followed by the character to use if the isn’t appropri-

ate; \l′0.5i.′\l′0.5i.′ draws a half-inch line of dots:

The construction \L\L is entirely analogous, except that it

draws a vertical line instead of horizontal.

7. Strings

Obviously if a paper contains a large number of

occurrences of an acute accent over a letter ‘e’, typing

\o"e\´"\o"e\´" for each é would be a great nuisance.

Fortunately, troff provides a way in which you

can store an arbitrary collection of text in a ‘string’, and

thereafter use the string name as a shorthand for its

contents. Strings are one of several troff mechanisms

whose judicious use lets you type a document with less

effort and organize it so that extensive format changes

can be made with few editing changes.

A reference to a string is replaced by whatever

text the string was defined as. Strings are defined with

the command .ds.ds. The line

.ds e \o"e\´"

defines the string ee to hav e the value \o"e\´"\o"e\´"

String names may be either one or two charac-

ters long, and are referred to by \∗ x\∗ x for one character

names or \∗ (xy\∗ (xy for two character names. Thus to get

télé phone, given the definition of the string ee as above,

we can say t\∗ el\∗ ephone.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the defini-

tion. There is no trailing quote; the end of the line ter-

minates the string.

A string may actually be several lines long; if

troff encounters a \\ at the end of any line, it is thrown

aw ay and the next line added to the current one. So

you can make a long string simply by ending each line

but the last with a backslash:

.ds xx this \

is a very \

long string

Strings may be defined in terms of other strings,

or even in terms of themselves; we will discuss some of

- 7 -

these possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we need

to learn a bit about the macro facility. In its simplest

form, a macro is just a shorthand notation quite similar

to a string. Suppose we want every paragraph to start

in exactly the same way — with a space and a tempo-

rary indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse these

into one shorthand line, a troff ‘command’ like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP.PP is called a macro. The way we tell troff what .PP.PP

means is to define it with the .de.de command:

.de PP

.sp

.ti +2m

..

The first line names the macro (we used ‘.PP.PP’ for ‘para-

graph’, and upper case so it wouldn’t conflict with any

name that troff might already know about). The last

line marks the end of the definition. In between is the

text, which is simply inserted whenever troff sees the

‘command’ or macro call

.PP

A macro can contain any mixture of text and formatting

commands.

The definition of .PP.PP has to precede its first use;

undefined macros are simply ignored. Names are

restricted to one or two characters.

Using macros for commonly occurring

sequences of commands is critically important. Not

only does it save typing, but it makes later changes

much easier. Suppose we decide that the paragraph

indent is too small, the vertical space is much too big,

and roman font should be forced. Instead of changing

the whole document, we need only change the defini-

tion of .PP.PP to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

..

and the change takes effect everywhere we used .PP.PP.

\"\" is a troff command that causes the rest of the

line to be ignored. We use it here to add comments to

the macro definition (a wise idea once definitions get

complicated).

As another example of macros, consider these

two which start and end a block of offset, unfilled text,

like most of the examples in this paper:

.de BS \" start indented block

.sp

.nf

.in +0.3i

..

.de BE \" end indented block

.sp

.fi

.in −0.3i

..

Now we can surround text like

Copy to

John Doe

Richard Roberts

Stanley Smith

by the commands .BS.BS and .BE.BE, and it will come out as

it did above. Notice that we indented by .in +0.3i.in +0.3i

instead of .in 0.3i.in 0.3i. This way we can nest our uses of

.BS.BS and BEBE to get blocks within blocks.

If later on we decide that the indent should be

0.5i, then it is only necessary to change the definitions

of .BS.BS and .BE.BE, not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher, because

nothing is done for you automatically. Of necessity,

some of this section is a cookbook, to be copied liter-

ally until you get some experience.

Suppose you want a title at the top of each page,

saying just

˜˜˜˜left top center top right top˜˜˜˜

In roff, one can say

.he ´left top´center top´right top´

.fo ´left bottom´center bottom´right bottom´

to get headers and footers automatically on every page.

Alas, this doesn’t work in troff, a serious hardship for

the novice. Instead you have to do a lot of specifica-

tion.

You hav e to say what the actual title is (easy);

when to print it (easy enough); and what to do at and

around the title line (harder). Taking these in reverse

order, first we define a macro .NP.NP (for ‘new page’) to

process titles and the like at the end of one page and the

beginning of the next:

- 8 -

.de NP

′bp

′sp 0.5i

.tl ´left top´center top´right top´

′sp 0.3i

..

To make sure we’re at the top of a page, we issue a

‘begin page’ command ′bp′bp, which causes a skip to top-

of-page (we’ll explain the ′′ shortly). Then we space

down half an inch, print the title (the use of .tl.tl should

be self explanatory; later we will discuss parameteriz-

ing the titles), space another 0.3 inches, and we’re

done.

To ask for .NP.NP at the bottom of each page, we

have to say something like ‘when the text is within an

inch of the bottom of the page, start the processing for a

new page.’ This is done with a ‘when’ command .wh.wh:

.wh −1i NP

(No ‘.’ is used before NP; this is simply the name of a

macro, not a macro call.) The minus sign means ‘mea-

sure up from the bottom of the page’, so ‘−1i’ means

‘one inch from the bottom’.

The .wh.wh command appears in the input outside

the definition of .NP.NP; typically the input would be

.de NP

...

..

.wh −1i NP

Now what happens? As text is actually being

output, troff keeps track of its vertical position on the

page, and after a line is printed within one inch from

the bottom, the .NP.NP macro is activated. (In the jargon,

the .wh.wh command sets a trap at the specified place,

which is ‘sprung’ when that point is passed.) .NP.NP

causes a skip to the top of the next page (that’s what the

′bp′bp was for), then prints the title with the appropriate

margins.

Why ′bp′bp and ′sp′sp instead of .bp.bp and .sp.sp? The

answer is that .sp.sp and .bp.bp, like sev eral other commands,

cause a break to take place. That is, all the input text

collected but not yet printed is flushed out as soon as

possible, and the next input line is guaranteed to start a

new line of output. If we had used .sp.sp or .bp.bp in the .NP.NP

macro, this would cause a break in the middle of the

current output line when a new page is started. The

effect would be to print the left-over part of that line at

the top of the page, followed by the next input line on a

new output line. This is not what we want. Using ′′
instead of .. for a command tells troff that no break is to

take place — the output line currently being filled

should not be forced out before the space or new page.

The list of commands that cause a break is short

and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you

use a .. or a ′′ . If you really need a break, add a .br.br com-

mand at the appropriate place.

One other thing to beware of — if you’re chang-

ing fonts or point sizes a lot, you may find that if you

cross a page boundary in an unexpected font or size,

your titles come out in that size and font instead of

what you intended. Furthermore, the length of a title is

independent of the current line length, so titles will

come out at the default length of 6.5 inches unless you

change it, which is done with the .lt.lt command.

There are several ways to fix the problems of

point sizes and fonts in titles. For the simplest applica-

tions, we can change .NP.NP to set the proper size and font

for the title, then restore the previous values, like this:

.de NP

′bp

′sp 0.5i

.ft R \" set title font to roman

.ps 10 \" and size to 10 point

.lt 6i \" and length to 6 inches

.tl ´left´center´right´

.ps \" revert to previous size

.ft P \" and to previous font

′sp 0.3i

..

This version of .NP.NP does not work if the fields in

the .tl.tl command contain size or font changes. To cope

with that requires troff’s ‘environment’ mechanism,

which we will discuss in Section 13.

To get a footer at the bottom of a page, you can

modify .NP.NP so it does some processing before the ′bp′bp

command, or split the job into a footer macro invoked

at the bottom margin and a header macro invoked at the

top of the page. These variations are left as exercises.

Output page numbers are computed automati-

cally as each page is produced (starting at 1), but no

numbers are printed unless you ask for them explicitly.

To get page numbers printed, include the character %% in

the .tl.tl line at the position where you want the number to

appear. For example

.tl ´´- % -´´

centers the page number inside hyphens, as on this

page. You can set the page number at any time with

either .bp n.bp n, which immediately starts a new page num-

bered nn, or with .pn n.pn n, which sets the page number for

the next page but doesn’t cause a skip to the new page.

Again, .bp +n.bp +n sets the page number to nn more than its

current value; .bp.bp means .bp +1.bp +1.

- 9 -

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and for

defining and using variables with numeric values,

called number registers. Number registers, like strings

and macros, can be useful in setting up a document so it

is easy to change later. And of course they serve for

any sort of arithmetic computation.

Like strings, number registers have one or two

character names. They are set by the .nr.nr command, and

are referenced anywhere by \nx\nx (one character name) or

\n(xy\n(xy (two character name).

There are quite a few pre-defined number regis-

ters maintained by troff, among them %% for the current

page number; nlnl for the current vertical position on the

page; dydy, momo and yryr for the current day, month and

year; and .s.s and .f.f for the current size and font. (The

font is a number from 1 to 4.) Any of these can be used

in computations like any other register, but some, like .s.s

and .f.f, cannot be changed with .nr.nr.

As an example of the use of number registers, in

the −ms−ms macro package [4], most significant parameters

are defined in terms of the values of a handful of num-

ber registers. These include the point size for text, the

vertical spacing, and the line and title lengths. To set

the point size and vertical spacing for the following

paragraphs, for example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP.PP is defined (roughly) as fol-

lows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp 0.5v \" half a line

.ti +3m

..

This sets the font to Roman and the point size and line

spacing to whatever values are stored in the number

registers PSPS and VSVS.

Why are there two backslashes? This is the eter-

nal problem of how to quote a quote. When troff origi-

nally reads the macro definition, it peels off one back-

slash to see what’s coming next. To ensure that another

is left in the definition when the macro is used, we have

to put in two backslashes in the definition. If only one

backslash is used, point size and vertical spacing will

be frozen at the time the macro is defined, not when it

is used.

Protecting by an extra layer of backslashes is

only needed for \n\n, \∗\∗ , \$\$ (which we haven’t come to

yet), and \\ itself. Things like \s\s, \f\f, \h\h, \v\v, and so on do

not need an extra backslash, since they are converted by

troff to an internal code immediately upon being seen.

Arithmetic expressions can appear anywhere

that a number is expected. As a trivial example,

.nr PS \\n(PS−2

decrements PS by 2. Expressions can use the arith-

metic operators +, −, ∗ , /, % (mod), the relational oper-

ators >, >=, <, <=, =, and != (not equal), and parenthe-

ses.

Although the arithmetic we have done so far has

been straightforward, more complicated things are

somewhat tricky. First, number registers hold only

integers. troff arithmetic uses truncating integer divi-

sion, just like Fortran. Second, in the absence of paren-

theses, evaluation is done left-to-right without any

operator precedence (including relational operators).

Thus

7∗ −4+3/13

becomes ‘−1’. Number registers can occur anywhere in

an expression, and so can scale indicators like pp, ii, mm,

and so on (but no spaces). Although integer division

causes truncation, each number and its scale indicator

is converted to machine units (1/432 inch) before any

arithmetic is done, so 1i/2u evaluates to 0.5i correctly.

The scale indicator uu often has to appear when

you wouldn’t expect it — in particular, when arithmetic

is being done in a context that implies horizontal or ver-

tical dimensions. For example,

.ll 7/2i

would seem obvious enough — 31⁄2 inches. Sorry.

Remember that the default units for horizontal parame-

ters like .ll.ll are ems. That’s really ‘7 ems / 2 inches’,

and when translated into machine units, it becomes

zero. How about

.ll 7i/2

Sorry, still no good — the ‘2’ is ‘2 ems’, so ‘7i/2’ is

small, although not zero. You must use

.ll 7i/2u

So again, a safe rule is to attach a scale indicator to

ev ery number, even constants.

For arithmetic done within a .nr.nr command, there

is no implication of horizontal or vertical dimension, so

the default units are ‘units’, and 7i/2 and 7i/2u mean

the same thing. Thus

.nr ll 7i/2

.ll \\n(llu

does just what you want, so long as you don’t forget the

uu on the .ll.ll command.

11. Macros with arguments

The next step is to define macros that can change

from one use to the next according to parameters sup-

plied as arguments. To make this work, we need two

things: first, when we define the macro, we have to

- 10 -

indicate that some parts of it will be provided as argu-

ments when the macro is called. Then when the macro

is called we have to provide actual arguments to be

plugged into the definition.

Let us illustrate by defining a macro .SM.SM that

will print its argument two points smaller than the sur-

rounding text. That is, the macro call

.SM TROFF

will produce TROFF.

The definition of .SM.SM is

.de SM

\s−2\\$1\s+2

..

Within a macro definition, the symbol \\$n\\$n refers to the

nnth argument that the macro was called with. Thus \\$1\\$1

is the string to be placed in a smaller point size when

.SM.SM is called.

As a slightly more complicated version, the fol-

lowing definition of .SM.SM permits optional second and

third arguments that will be printed in the normal size:

.de SM

\\$3\s−2\\$1\s+2\\$2

..

Arguments not provided when the macro is called are

treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the order

of arguments because trailing punctuation is much

more common than leading.

By the way, the number of arguments that a

macro was called with is available in number register

.$.$.

The following macro .BD.BD is the one used to

make the ‘bold roman’ we have been using for troff

command names in text. It combines horizontal

motions, width computations, and argument rearrange-

ment.

.de BD

\&\\$3\f1\\$1\h´−\w´\\$1´u+1u´\\$1\fP\\$2

..

The \h\h and \w\w commands need no extra backslash, as

we discussed above. The \&\& is there in case the argu-

ment begins with a period.

Tw o backslashes are needed with the \\$n\\$n com-

mands, though, to protect one of them when the macro

is being defined. Perhaps a second example will make

this clearer. Consider a macro called .SH.SH which pro-

duces section headings rather like those in this paper,

with the sections numbered automatically, and the title

in bold in a smaller size. The use is

.SH "Section title ..."

(If the argument to a macro is to contain blanks, then it

must be surrounded by double quotes, unlike a string,

where only one leading quote is permitted.)

Here is the definition of the .SH.SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp 0.3i

.ft B

.nr SH \\n(SH+1 \" increment number

.ps \\n(PS−1 \" decrease PS

\\n(SH. \\$1 \" number. title

.ps \\n(PS \" restore PS

.sp 0.3i

.ft R

..

The section number is kept in number register SH,

which is incremented each time just before it is used.

(A number register may have the same name as a macro

without conflict but a string may not.)

We used \\n(SH\\n(SH instead of \n(SH\n(SH and \\n(PS\\n(PS

instead of \n(PS\n(PS. If we had used \n(SH\n(SH, we would get

the value of the register at the time the macro was

defined, not at the time it was used. If that’s what you

want, fine, but not here. Similarly, by using \\n(PS\\n(PS, we

get the point size at the time the macro is called.

As an example that does not involve numbers,

recall our .NP.NP macro which had a

.tl ´left´center´right´

We could make these into parameters by using instead

.tl ´\\∗ (LT´\\∗ (CT´\\∗ (RT´

so the title comes from three strings called LT, CT and

RT. If these are empty, then the title will be a blank

line. Normally CT would be set with something like

.ds CT - % -

to give just the page number between hyphens (as on

the top of this page), but a user could supply private

definitions for any of the strings.

12. Conditionals

Suppose we want the .SH.SH macro to leave two

extra inches of space just before section 1, but nowhere

else. The cleanest way to do that is to test inside the

.SH.SH macro whether the section number is 1, and add

some space if it is. The .if.if command provides the con-

ditional test that we can add just before the heading line

is output:

.if \\n(SH=1 .sp 2i \" first section only

- 11 -

The condition after the .if.if can be any arithmetic

or logical expression. If the condition is logically true,

or arithmetically greater than zero, the rest of the line is

treated as if it were text — here a command. If the

condition is false, or zero or negative, the rest of the

line is skipped.

It is possible to do more than one command if a

condition is true. Suppose several operations are to be

done before section 1. One possibility is to define a

macro .S1.S1 and invoke it if we are about to do section 1

(as determined by an .if.if).

.de S1

--- processing for section 1 ---

..

.de SH

...

.if \\n(SH=1 .S1

...

..

An alternate way is to use the extended form of

the .if.if, like this:

.if \\n(SH=1 \{--- processing

for section 1 ----\}

The braces \{\{ and \}\} must occur in the positions shown

or you will get unexpected extra lines in your output.

troff also provides an ‘if-else’ construction, which we

will not go into here.

A condition can be negated by preceding it with

!!; we get the same effect as above (but less clearly) by

using

.if !\\n(SH>1 .S1

There are a handful of other conditions that can

be tested with .if.if. For example, is the current page even

or odd?

.if e .tl ´´even page title´´

.if o .tl ´´odd page title´´

gives facing pages different titles when used inside an

appropriate new page macro.

Tw o other conditions are tt and nn, which tell you

whether the formatter is troff or nroff.

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made in an

.if.if:

.if ´string1´string2´ stuff

does ‘stuff’ if string1 is the same as string2. The char-

acter separating the strings can be anything reasonable

that is not contained in either string. The strings them-

selves can reference strings with \∗\∗ , arguments with \$\$,

and so on.

13. Environments

As we mentioned, there is a potential problem

when going across a page boundary: parameters like

size and font for a page title may well be different from

those in effect in the text when the page boundary

occurs. troff provides a very general way to deal with

this and similar situations. There are three ‘environ-

ments’, each of which has independently settable ver-

sions of many of the parameters associated with pro-

cessing, including size, font, line and title lengths,

fill/nofill mode, tab stops, and even partially collected

lines. Thus the titling problem may be readily solved

by processing the main text in one environment and

titles in a separate one with its own suitable parameters.

The command .ev n.ev n shifts to environment nn; nn

must be 0, 1 or 2. The command .ev.ev with no argument

returns to the previous environment. Environment

names are maintained in a stack, so calls for different

environments may be nested and unwound consistently.

Suppose we say that the main text is processed

in environment 0, which is where troff begins by

default. Then we can modify the new page macro .NP.NP

to process titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

.lt 6i \" set parameters here

.ft R

.ps 10

... any other processing ...

.ev \" return to previous environment

..

It is also possible to initialize the parameters for an

environment outside the .NP.NP macro, but the version

shown keeps all the processing in one place and is thus

easier to understand and change.

14. Diversions

There are numerous occasions in page layout

when it is necessary to store some text for a period of

time without actually printing it. Footnotes are the

most obvious example: the text of the footnote usually

appears in the input well before the place on the page

where it is to be printed is reached. In fact, the place

where it is output normally depends on how big it is,

which implies that there must be a way to process the

footnote at least enough to decide its size without print-

ing it.

troff provides a mechanism called a diversion

for doing this processing. Any part of the output may

be diverted into a macro instead of being printed, and

then at some convenient time the macro may be put

back into the input.

The command .di xy.di xy begins a diversion — all

subsequent output is collected into the macro xyxy until

the command .di.di with no arguments is encountered.

This terminates the diversion. The processed text is

- 12 -

available at any time thereafter, simply by giving the

command

.xy

The vertical size of the last finished diversion is con-

tained in the built-in number register dndn.

As a simple example, suppose we want to imple-

ment a ‘keep-release’ operation, so that text between

the commands .KS.KS and .KE.KE will not be split across a

page boundary (as for a figure or table). Clearly, when

a .KS.KS is encountered, we have to begin diverting the

output so we can find out how big it is. Then when a

.KE.KE is seen, we decide whether the diverted text will fit

on the current page, and print it either there if it fits, or

at the top of the next page if it doesn’t. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

..

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \\n(dn>=\\n(.t .bp \" bp if doesn´t fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

..

Recall that number register nlnl is the current position on

the output page. Since output was being diverted, this

remains at its value when the diversion started. dndn is

the amount of text in the diversion; .t.t (another built-in

register) is the distance to the next trap, which we

assume is at the bottom margin of the page. If the

diversion is large enough to go past the trap, the .if.if is

satisfied, and a .bp.bp is issued. In either case, the diverted

output is then brought back with .XX.XX. It is essential to

bring it back in no-fill mode so troff will do no further

processing on it.

This is not the most general keep-release, nor is

it robust in the face of all conceivable inputs, but it

would require more space than we have here to write it

in full generality. This section is not intended to teach

ev erything about diversions, but to sketch out enough

that you can read existing macro packages with some

comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the author

of troff, for his repeated patient explanations of fine

points, and for his continuing willingness to adapt troff

to make other uses easier. I am also grateful to Jim

Blinn, Ted Dolotta, Doug McIlroy, Mike Lesk and Joel

Sturman for helpful comments on this paper.

References

[1] J. F. Ossanna, NROFF/TROFF User’s Manual,

Bell Laboratories Computing Science Technical

Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting

Mathematics — User’s Guide (Second Edition),

Bell Laboratories Computing Science Technical

Report 17, 1977.

[3] M. E. Lesk, TBL — A Program to Format

Tables, Bell Laboratories Computing Science

Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX, Bell

Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWB/MM —

Programmer’s Workbench Memorandum

Macros, Bell Laboratories internal memoran-

dum.

- 13 -

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on the right.

ff \(ff fi \(fi fl \(fl ffi \(Fi ffl \(Fl

\(ru — \(em 1⁄4 \(14 1⁄2 \(12 3⁄4 \(34

© \(co ° \(de † \(dg ′ \(fm ¢ \(ct

® \(rg • \(bu \(sq - \(hy

(In bold, \(sq is .)

The following are special-font characters:

+ \(pl − \(mi × \(mu ÷ \(di

= \(eq ≡ \(== ≥ \(>= ≤ \(<=

≠ \(!= ± \(+- ¬ \(no / \(sl

∼ \(ap ≈ \(˜= ∝ \(pt ∇ \(gr

→ \(-> ← \(<- ↑ \(ua ↓ \(da

∫ \(is ∂ \(pd ∞ \(if √ \(sr

⊂ \(sb ⊃ \(sp ∪ \(cu ∩ \(ca

⊆ \(ib ⊇ \(ip ∈ \(mo ∅ \(es

´ \(aa ` \(ga \(ci \(bs

§ \(sc ‡ \(dd + \(lh ☞ \(rh

 \(lt  \(rt  \(lc  \(rc

 \(lb  \(rb  \(lf  \(rf

 \(lk  \(rk  \(bv ς \(ts

\(br \(or \(ul  \(rn

∗ \(∗∗

These four characters also have two-character names. The ´ is the apostrophe on terminals; the ` is the other quote

mark.

´ \´ ` \` − \− \

These characters exist only on the special font, but they do not have four-character names:

" { } < > ˜ ˆ \ # @

For greek, precede the roman letter by \(∗\(∗ to get the corresponding greek; for example, \(∗ a\(∗ a is α.

a b g d e z y h i k l m n c o p r s t u f x q w

α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ φ χ ψ ω

A B G D E Z Y H I K L M N C O P R S T U F X Q W

Α Β Γ ∆ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ ϒ Φ Χ Ψ Ω

- 14 -

Index

! (negating conditionals)˜17 #$ (macro argument)˜16 #∗ x,
#(xy (invoke string macro)˜14 #b (bracketing function)˜13 #d
(subscript)˜11 #f (font change)˜5 #h (horizontal motion)˜12
#nx, #n(xy (number register)˜15 #o (overstrike)˜13 #s (size
change)˜3 #u (superscript)˜11 #v (vertical motion)˜11 #w
(width function)˜12 #z (zero motion)˜13 ′command instead of
ˆcommand˜9 % (page number register)˜10,15 ˆˆ (end of macro
definition)˜7 ˆbp˜9,10 ˆbr (break)˜9 ˆce (center)˜2 ˆds (define
string macro)˜7,14 ˆfi (fill)˜2 ˆft (change font)˜5 ˆif (condi-
tional test)˜16 ˆin (indent)˜6 ˆlg (set ligatures˜5 ˆll (line
length)˜6 ˆnf (nofill)˜2 ˆnr (set number register)˜14 ˆpn (page
number)˜10 ˆps (change point size)˜1,3 ˆsp (space)˜4 ˆss (set
space size)˜10 ˆta (set tab stops)˜11 ˆtc (set tab character)˜10
ˆtl (title)˜9 ˆtr (translate characters)˜2,6 ˆul (italicize)˜6 ˆvs
(vertical spacing)˜3 ˆwh (when conditional)˜9,17 accents˜6,13
apostrophes˜6 arithmetic˜15 backslash˜1,3,5,14,16 begin page
(ˆbp)˜9 block macros (B1,B2)˜8 bold font (.ft B)˜5 boustro-
phedon˜12 bracketing function (##b)˜13 break (ˆbr)˜9 break-
causing commmands˜9 centering (ˆce)˜2 changing fonts (ˆft,
#f)˜5 changing macros˜15 character set˜4,5,19 character trans-
lation (ˆtr)˜2,6 columnated output˜10 commands˜1 commands
that cause break˜9 conditionals (ˆif)˜16 constant proportion˜7
default break list˜9 define macro (ˆde)˜7 define string macro
(ˆds)˜14 drawing lines˜11 em˜7,11 end of macro (ˆˆ)˜7 even
page test (e)˜17 fill (ˆfi)˜2 fonts (ˆft)˜4,19 Greek (#(∗ -)˜5,19
hanging indent (ˆti)˜12 hints˜20 horizontal motion (#h)˜12 hp
(horizontal position register)˜15 hyphen˜6 i scale indicator˜4
indent (ˆin)˜6 index˜21 italic font (.ft I)˜4 italicize (ˆul)˜6 legal
point sizes˜3 ligatures (ff,fi,fl; ˆlg)˜5 line length (ˆll)˜6 line
spacing (ˆvs)˜3 local motions (#u,#d,#v,#h,#w,#o,#z,#b)˜11 ff
m scale indicator˜7 machine units˜4,12 macro arguments˜15
macros˜7 macros that change˜15 multiple backslashes˜14
negating conditionals (!)˜17 new page macro (NP)˜8 nl (cur-
rent vertical position register)˜15 nofill (ˆnf)˜2 NROFF test
(n)˜17 nested quotes˜12 number registers (ˆnr,#n)˜14 num-
bered paragraphs˜12 odd page test (o)˜17 order of evalua-
tion˜14 overstrike (#o)˜13 p scale indicator˜3 page number
register (%)˜10 page numbers (ˆpn, ˆbp)˜10 paragraph macro
(PG)˜7 Paternoster˜6 point size (ˆps)˜1,3 previous font (#fP, ˆft
P)˜5 previous point size (#s0,ˆps)˜3 quotes˜6 relative change
(±)˜6 ROFF˜1 ROFF header and footer˜8 Roman font (.ft R)˜4
scale indicator i˜4 scale indicator m˜7 scale indicator p˜3 scale
indicator u˜12 scale indicators in arithmetic˜15 section head-
ing macro (SC)˜15 set space size (ˆss)˜10 size _ see point size
space (ˆsp)˜4 space between lines (ˆvs)˜3 special characters
(#(xx)˜5,19 string macros (ˆds,#∗)˜14 subscripts (#d)˜11 super-
scripts (#u)˜11 tab character (ˆtc)˜11 tabs (ˆta)˜10 temporary
indent (ˆti)˜7 titles (ˆtl)˜8 translate (ˆtr)˜2,6,12 TROFF exam-
ples˜19 TROFF test (t)˜17 truncating division˜15 type faces _
see fonts u scale indicator˜12 underline (ˆul)˜6 valid point
sizes˜3 vertical motion (#v)˜11 vertical position on page˜9 ver-
tical spacing (ˆvs)˜3 when (ˆwh)˜9,17 width function (#w)˜12
width of digits˜10 zero motion (#z)˜13

