
Writing Papers with GROFF using −me

Eric P. Allman*

Project INGRES

Electronics Research Laboratory

University of California, Berkeley

Berkeley, California 94720

Modified for GROFF by James Clark

This document describes the text processing facilities available on the UNIX† operating system via GROFF and

the −me macro package. It is assumed that the reader already is generally familiar with the UNIX operating system

and a text editor such as ex. This is intended to be a casual introduction, and as such not all material is covered. In

particular, many variations and additional features of the −me macro package are not explained. For a complete dis-

cussion of this and other issues, see The −me Reference Manual and The NROFF/TROFF Reference Manual.

GROFF, a computer program that runs on the UNIX operating system, reads an input file prepared by the user

and outputs a formatted paper suitable for publication or framing. The input consists of text, or words to be printed,

and requests, which give instructions to the GROFF program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes the basic requests. Section 3 introduces

displays. Annotations, such as footnotes, are handled in section 4. The more complex requests which are not dis-

cussed in section 2 are covered in section 5. Finally, section 6 discusses things you will need to know if you want to

typeset documents. If you are a novice, you probably won’t want to read beyond section 4 until you have tried some

of the basic features out.

When you have your raw text ready, call the GROFF formatter by typing as a request to the UNIX shell:

groff −me −Ttype files

where type describes the type of output device you are using. A complete description of options to the GROFF com-

mand can be found in groff(1).

The word argument is used in this manual to mean a word or number which appears on the same line as a

request which modifies the meaning of that request. For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which says to space four lines instead of one.

Arguments are separated from the request and from each other by spaces.

*Author’s current address: Britton Lee, Inc., 1919 Addison Suite 105, Berkeley, California 94704.

†UNIX is a trademark of AT&T Bell Laboratories

USING GROFF AND −ME 1

USING GROFF AND −ME 2

1. Basics of Text Processing

The primary function of GROFF is to collect words from input lines, fill output lines with those words, jus-

tify the right hand margin by inserting extra spaces in the line, and output the result. For example, the input:

Now is the time

for all good men

to come to the aid

of their party.

Four score and seven

years ago,...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party. Four score and seven

years ago,...

Sometimes you may want to start a new output line even though the line you are on is not yet full; for example,

at the end of a paragraph. To do this you can cause a break, which starts a new output line. Some requests cause

a break automatically, as do blank input lines and input lines beginning with a space.

Not all input lines are text to be formatted. Some of the input lines are requests which describe how to for-

mat the text. Requests always have a period or an apostrophe (“ ´ ”) as the first character of the input line.

The text formatter also does more complex things, such as automatically numbering pages, skipping over

page folds, putting footnotes in the correct place, and so forth.

I can offer you a few hints for preparing text for input to GROFF. First, keep the input lines short. Short

input lines are easier to edit, and GROFF will pack words onto longer lines for you anyhow. In keeping with this,

it is helpful to begin a new line after every period, comma, or phrase, since common corrections are to add or

delete sentences or phrases. Second, do not put spaces at the end of lines, since this can sometimes confuse the

NROFF processor. Third, do not hyphenate words at the end of lines (except words that should have hyphens in

them, such as “mother-in-law”); GROFF is smart enough to hyphenate words for you as needed, but is not smart

enough to take hyphens out and join a word back together. Also, words such as “mother-in-law” should not be

broken over a line, since then you will get a space where not wanted, such as “mother- in-law”.

2. Basic Requests

2.1. Paragraphs

Paragraphs are begun by using the .pp request. For example, the input:

.pp

Now is the time for all good men

to come to the aid of their party.

Four score and seven years ago,...

produces a blank line followed by an indented first line. The result is:

Now is the time for all good men to come to the aid of their party. Four score and

seven years ago,...

Notice that the sentences of the paragraphs must not begin with a space, since blank lines and lines

beginning with spaces cause a break. For example, if I had typed:

.pp

Now is the time for all good men

to come to the aid of their party.

Four score and seven years ago,...

The output would be:

USING GROFF AND −ME 3

Now is the time for all good men

to come to the aid of their party. Four score and seven years ago,...

A new line begins after the word “men” because the second line began with a space character.

There are many fancier types of paragraphs, which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Tw o requests of the form

.he title and .fo title define the titles to put at the head and the foot of every page, respectively. The titles are

called three-part titles, that is, there is a left-justified part, a centered part, and a right-justified part. To sepa-

rate these three parts the first character of title (whatever it may be) is used as a delimiter. Any character may

be used, but backslash and double quote marks should be avoided. The percent sign is replaced by the cur-

rent page number whenever found in the title. For example, the input:

.he ´´%´´

.fo ´Jane Jones´´My Book´

results in the page number centered at the top of each page, “Jane Jones” in the lower left corner, and “My

Book” in the lower right corner.

2.3. Double Spacing

GROFF will double space output text automatically if you use the request .ls 2, as is done in this sec-

tion. You can revert to single spaced mode by typing .ls 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks, sometimes called the layout

of the output page. Most of these requests adjust the placing of “white space” (blank lines or spaces). In

these explanations, characters in italics should be replaced with values you wish to use; bold characters rep-

resent characters which should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a single line) or can

be of the form Ni (for N inches) or Nc (for N centimeters). For example, the input:

.sp 1.5i

My thoughts on the subject

.sp

leaves one and a half inches of space, followed by the line “My thoughts on the subject”, followed by a sin-

gle blank line.

The .in +N request changes the amount of white space on the left of the page (the indent). The argu-

ment N can be of the form +N (meaning leave N spaces more than you are already leaving), −N (meaning

leave less than you do now), or just N (meaning leave exactly N spaces). N can be of the form Ni or Nc also.

For example, the input:

initial text

.in 5

some text

.in +1i

more text

.in −2c

final text

produces “some text” indented exactly five spaces from the left margin, “more text” indented five spaces plus

one inch from the left margin (fifteen spaces on a pica typewriter), and “final text” indented five spaces plus

USING GROFF AND −ME 4

one inch minus two centimeters from the margin. That is, the output is:

initial text

some text

more text

final text

The .ti +N (temporary indent) request is used like .in +N when the indent should apply to one line

only, after which it should revert to the previous indent. For example, the input:

.in 1i

.ti 0

Ware, James R. The Best of Confucius,

Halcyon House, 1950.

An excellent book containing translations of

most of Confucius´ most delightful sayings.

A definite must for anyone interested in the early foundations

of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing translations of

most of Confucius’ most delightful sayings. A definite must for anyone interested in the

early foundations of Chinese philosophy.

Te xt lines can be centered by using the .ce request. The line after the .ce is centered (horizontally) on

the page. To center more than one line, use .ce N (where N is the number of lines to center), followed by the

N lines. If you want to center many lines but don’t want to count them, type:

.ce 1000

lines to center

.ce 0

The .ce 0 request tells GROFF to center zero more lines, in other words, stop centering.

All of these requests cause a break; that is, they always start a new line. If you want to start a new line

without performing any other action, use .br.

3. Displays

Displays are sections of text to be set off from the body of the paper. Major quotes, tables, and figures are

types of displays, as are all the examples used in this document. All displays except centered blocks are output

single spaced.

3.1. Major Quotes

Major quotes are quotes which are several lines long, and hence are set in from the rest of the text

without quote marks around them. These can be generated using the commands .(q and .)q to surround the

quote. For example, the input:

As Weizenbaum points out:

.(q

It is said that to explain is to explain away.

This maxim is nowhere so well fulfilled

as in the areas of computer programming,...

.)q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in the areas of comput-

er programming,...

USING GROFF AND −ME 5

3.2. Lists

A list is an indented, single spaced, unfilled display. Lists should be used when the material to be

printed should not be filled and justified like normal text, such as columns of figures or the examples used in

this paper. Lists are surrounded by the requests .(l and .)l. For example, type:

Alternatives to avoid deadlock are:

.(l

Lock in a specified order

Detect deadlock and back out one process

Lock all resources needed before proceeding

.)l

will produce:

Alternatives to avoid deadlock are:

Lock in a specified order

Detect deadlock and back out one process

Lock all resources needed before proceeding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example of where you

would use a keep might be a diagram. Keeps differ from lists in that lists may be broken over a page bound-

ary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b and end with the request .)b. If

there is not room on the current page for everything in the block, a new page is begun. This has the unpleas-

ant effect of leaving blank space at the bottom of the page. When this is not appropriate, you can use the

alternative, called floating keeps.

Floating keeps move relative to the text. Hence, they are good for things which will be referred to by

name, such as “See figure 3”. A floating keep will appear at the bottom of the current page if it will fit; oth-

erwise, it will appear at the top of the next page. Floating keeps begin with the line .(z and end with the line

.)z. For an example of a floating keep, see figure 1. The .hl request is used to draw a horizontal line so that

the figure stands out from the text.

.(z

.hl

Te xt of keep to be floated.

.sp

.ce

Figure 1. Example of a Floating Keep.

.hl

.)z

Figure 1. Example of a Floating Keep.

USING GROFF AND −ME 6

3.4. Fancier Displays

Keeps and lists are normally collected in nofill mode, so that they are good for tables and such. If you

want a display in fill mode (for text), type .(l F (Throughout this section, comments applied to .(l also apply

to .(b and .(z). This kind of display will be indented from both margins. For example, the input:

.(l F

And now boys and girls,

a newer, bigger, better toy than ever before!

Be the first on your block to have your own computer!

Yes kids, you too can have one of these modern

data processing devices.

You too can produce beautifully formatted papers

without even batting an eye!

.)l

will be output as:

And now boys and girls, a newer, bigger, better toy than ever before! Be the first on your

block to have your own computer! Yes kids, you too can have one of these modern data

processing devices. You too can produce beautifully formatted papers without even bat-

ting an eye!

Lists and blocks are also normally indented (floating keeps are normally left justified). To get a left-

justified list, type .(l L. To get a list centered line-for-line, type .(l C. For example, to get a filled, left justi-

fied list, enter:

.(l L F

text of block

.)l

The input:

.(l

first line of unfilled display

more lines

.)l

produces the indented text:

first line of unfilled display

more lines

Typing the character L after the .(l request produces the left justified result:

first line of unfilled display

more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display

more lines

Sometimes it may be that you want to center several lines as a group, rather than centering them one

line at a time. To do this use centered blocks, which are surrounded by the requests .(c and .)c. All the lines

are centered as a unit, such that the longest line is centered and the rest are lined up around that line. Notice

that lines do not move relative to each other using centered blocks, whereas they do using the C argument to

keeps.

Centered blocks are not keeps, and may be used in conjunction with keeps. For example, to center a

group of lines as a unit and keep them on one page, use:

USING GROFF AND −ME 7

.(b L

.(c

first line of unfilled display

more lines

.)c

.)b

to produce:

first line of unfilled display

more lines

If the block requests (.(b and .)b) had been omitted the result would have been the same, but with no guaran-

tee that the lines of the centered block would have all been on one page. Note the use of the L argument to

.(b; this causes the centered block to center within the entire line rather than within the line minus the indent.

Also, the center requests must be nested inside the keep requests.

4. Annotations

There are a number of requests to save text for later printing. Footnotes are printed at the bottom of the

current page. Delayed text is intended to be a variant form of footnote; the text is printed only when explicitly

called for, such as at the end of each chapter. Indexes are a type of delayed text having a tag (usually the page

number) attached to each entry after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request .(f and end with the request .)f. The current footnote number is main-

tained automatically, and can be used by typing **, to produce a footnote number1. The number is automat-

ically incremented after every footnote. For example, the input:

.(q

A man who is not upright

and at the same time is presumptuous;

one who is not diligent and at the same time is ignorant;

one who is untruthful and at the same time is incompetent;

such men I do not count among acquaintances.**

.(f

**James R. Ware,

.ul

The Best of Confucius,

Halcyon House, 1950.

Page 77.

.)f

.)q

generates the result:

A man who is not upright and at the same time is presumptuous; one who is not diligent and at the same time

is ignorant; one who is untruthful and at the same time is incompetent; such men I do not count among ac-

quaintances.2

It is important that the footnote appears inside the quote, so that you can be sure that the footnote will appear

on the same page as the quote.

1Like this.

2James R. Ware, The Best of Confucius, Halcyon House, 1950. Page 77.

USING GROFF AND −ME 8

4.2. Delayed Text

Delayed text is very similar to a footnote except that it is printed when called for explicitly. This

allows a list of references to appear (for example) at the end of each chapter, as is the convention in some dis-

ciplines. Use *# on delayed text instead of ** as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still use footnotes, except

that you may want to reference them with special characters* rather than numbers.

4.3. Indexes

An “index” (actually more like a table of contents, since the entries are not sorted alphabetically)

resembles delayed text, in that it is saved until called for. Howev er, each entry has the page number (or some

other tag) appended to the last line of the index entry after a row of dots.

Index entries begin with the request .(x and end with .)x. The .)x request may have a argument, which

is the value to print as the “page number”. It defaults to the current page number. If the page number given

is an underscore (“_”) no page number or line of dots is printed at all. To get the line of dots without a page

number, type .)x "", which specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

.(x

Sealing wax

.)x

.(x

Cabbages and kings

.)x _

.(x

Why the sea is boiling hot

.)x 2.5a

.(x

Whether pigs have wings

.)x ""

.(x

This is a terribly long index entry, such as might be used

for a list of illustrations, tables, or figures; I expect it to

take at least two lines.

.)x

.xp

generates:

Sealing wax .. 8

Cabbages and kings

Why the sea is boiling hot ... 2.5a

Whether pigs have wings ...

This is a terribly long index entry, such as might be used for a list of illustrations, tables, or fig-

ures; I expect it to take at least two lines. ... 8

The .(x request may have a single character argument, specifying the “name” of the index; the normal

index is x. Thus, several “indices” may be maintained simultaneously (such as a list of tables, table of con-

tents, etc.).

*Such as an asterisk.

USING GROFF AND −ME 9

Notice that the index must be printed at the end of the paper, rather than at the beginning where it will

probably appear (as a table of contents); the pages may have to be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide other sorts of paragraphs, numbered

sections of the form 1.2.3 (such as used in this document), and multicolumn output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is possible to get left-

justified block-style paragraphs by using .lp instead of .pp, as demonstrated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and the first line exdented (opposite of

indented) with a label. This can be done with the .ip request. A word specified on the same line as .ip is

printed in the margin, and the body is lined up at a prespecified position (normally five spaces). For exam-

ple, the input:

.ip one

This is the first paragraph.

Notice how the first line

of the resulting paragraph lines up

with the other lines in the paragraph.

.ip two

And here we are at the second paragraph already.

You may notice that the argument to .ip

appears

in the margin.

.lp

We can continue text...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting paragraph lines up with the other

lines in the paragraph.

two And here we are at the second paragraph already. You may notice that the argument to .ip appears in

the margin.

We can continue text without starting a new indented paragraph by using the .lp request.

If you have spaces in the label of a .ip request, you must use an “unpaddable space” instead of a regu-

lar space. This is typed as a backslash character (“\”) followed by a space. For example, to print the label

“Part 1”, enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to .ip) is longer than the space allocated for

the label, .ip will begin a new line after the label. For example, the input:

.ip longlabel

This paragraph had a long label.

The first character of text on the first line

will not line up with the text on second and subsequent lines,

although they will line up with each other.

will produce:

longlabel

This paragraph had a long label. The first character of text on the first line will not line up with the

text on second and subsequent lines, although they will line up with each other.

USING GROFF AND −ME 10

It is possible to change the size of the label by using a second argument which is the size of the label.

For example, the above example could be done correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. If you have many paragraphs to

indent all the same amount, use the number register ii. For example, to leave one inch of space for the label,

type:

.nr ii 1i

somewhere before the first call to .ip. Refer to the reference manual for more information.

If .ip is used with no argument at all no hanging tag will be printed. For example, the input:

.ip [a]

This is the first paragraph of the example.

We hav e seen this sort of example before.

.ip

This paragraph is lined up with the previous paragraph,

but it has no tag in the margin.

produces as output:

[a] This is the first paragraph of the example. We hav e seen this sort of example before.

This paragraph is lined up with the previous paragraph, but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially from 1. The num-

bering is reset at the next .pp, .lp, or .sh (to be described in the next section) request. For example, the input:

.np

This is the first point.

.np

This is the second point.

Points are just regular paragraphs

which are given sequence numbers automatically

by the .np request.

.pp

This paragraph will reset numbering by .np.

.np

For example,

we have rev erted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given sequence numbers auto-

matically by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have rev erted to numbering from one now.

The .bu request gives lists of this sort that are identified with bullets rather than numbers. The para-

graphs are also crunched together. For example, the input:

USING GROFF AND −ME 11

.bu

One egg yolk

.bu

One tablespoon cream or top milk

.bu

Salt, cayenne, and lemon juice to taste

.bu

A generous two tablespoonfuls of butter

produces3:

• One egg yolk

• One tablespoon cream or top milk

• Salt, cayenne, and lemon juice to taste

• A generous two tablespoonfuls of butter

5.2. Section Headings

Section numbers (such as the ones used in this document) can be automatically generated using the .sh

request. You must tell .sh the depth of the section number and a section title. The depth specifies how many

numbers are to appear (separated by decimal points) in the section number. For example, the section number

4.2.5 has a depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you add a number (increase the

depth), the new number starts out at one. If you subtract section numbers (or keep the same number) the

final number is incremented. For example, the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor

1.1. Basic Concepts

1.2. Control Inputs

1.2.1.

1.2.2.

2. Code Generation

2.1.1.

You can specify the section number to begin by placing the section number after the section title, using

spaces instead of dots. For example, the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sh requests will number relative to this number.

There are more complex features which will cause each section to be indented proportionally to the

depth of the section. For example, if you enter:

3By the way, if you put the first three ingredients in a a heavy, deep pan and whisk the ingredients madly over a medium flame (never tak-

ing your hand off the handle of the pot) until the mixture reaches the consistency of custard (just a minute or two), then mix in the butter off-heat,

you will have a wonderful Hollandaise sauce.

USING GROFF AND −ME 12

.nr si N

each section will be indented by an amount N. N must have a scaling factor attached, that is, it must be of the

form Nx, where x is a character telling what units N is in. Common values for x are i for inches, c for cen-

timeters, and n for ens (the width of a single character). For example, to indent each section one-half inch,

type:

.nr si 0.5i

After this, sections will be indented by one-half inch per level of depth in the section number. For example,

this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section depth.

Section headers without automatically generated numbers can be done using:

.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper

There are some requests which assist in setting up papers. The .tp request initializes for a title page.

There are no headers or footers on a title page, and unlike other pages you can space down and leave blank

space at the top. For example, a typical title page might appear as:

.tp

.sp 2i

.(l C

THE GROWTH OF TOENAILS

IN UPPER PRIMATES

.sp

by

.sp

Frank N. Furter

.)l

.bp

The .+c T request can be used to start chapters. Each chapter is automatically numbered from one, and

a heading is printed at the top of each chapter with the chapter number and the chapter name T. For example,

to begin a chapter called “Conclusions”, use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5

CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the first page of a

chapter. Although the .+c request was not designed to work only with the .th request, it is tuned for the for-

mat acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the .+c request, the result is a chapter with no heading. This

can also be used at the beginning of a paper; for example, .+c was used to generate page one of this docu-

ment.

Although papers traditionally have the abstract, table of contents, and so forth at the front of the paper,

it is more convenient to format and print them last when using GROFF. This is so that index entries can be

collected and then printed for the table of contents (or whatever). At the end of the paper, issue the .++ P

request, which begins the preliminary part of the paper. After issuing this request, the .+c request will begin

a preliminary section of the paper. Most notably, this prints the page number restarted from one in lower

USING GROFF AND −ME 13

case Roman numbers. .+c may be used repeatedly to begin different parts of the front material for example,

the abstract, the table of contents, acknowledgments, list of illustrations, etc. The request .++ B may also be

used to begin the bibliographic section at the end of the paper. For example, the paper might appear as out-

lined in figure 2. (In this figure, comments begin with the sequence \".)

.th \" set for thesis mode

.fo ´´DRAFT´´ \" define footer for each page

.tp \" begin title page

.(l C \" center a large block

THE GROWTH OF TOENAILS

IN UPPER PRIMATES

.sp

by

.sp

Frank Furter

.)l \" end centered part

.+c INTRODUCTION \" begin chapter named "INTRODUCTION"

.(x t \" make an entry into index ‘t’

Introduction

.)x \" end of index entry

text of chapter one

.+c "NEXT CHAPTER" \" begin another chapter

.(x t \" enter into index ‘t’ again

Next Chapter

.)x

text of chapter two

.+c CONCLUSIONS

.(x t

Conclusions

.)x

text of chapter three

.++ B \" begin bibliographic information

.+c BIBLIOGRAPHY \" begin another ‘chapter’

.(x t

Bibliography

.)x

text of bibliography

.++ P \" begin preliminary material

.+c "TABLE OF CONTENTS"

.xp t \" print index ‘t’ collected above

.+c PREFACE \" begin another preliminary section

text of preface

Figure 2. Outline of a Sample Paper

USING GROFF AND −ME 14

5.4. Equations and Tables

Tw o special UNIX programs exist to format special types of material. Eqn sets equations. Tbl

arranges to print extremely pretty tables in a variety of formats. This document will only describe the embel-

lishments to the standard features; consult the reference manuals for those processors for a description of

their use.

The eqn program is described fully in the document Typesetting Mathematics − User’s Guide by Brian

W. Kernighan and Lorinda L. Cherry. Equations are centered, and are kept on one page. They are intro-

duced by the .EQ request and terminated by the .EN request.

The .EQ request may take an equation number as an optional argument, which is printed vertically

centered on the right hand side of the equation. If the equation becomes too long it should be split between

two lines. To do this, type:

.EQ (eq 34)

text of equation 34

.EN C

.EQ

continuation of equation 34

.EN

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including numerous examples) in the document

Tbl − A Program to Format Tables by M. E. Lesk. Tables begin with the .TS request and end with the .TE

request. Tables are normally kept on a single page. If you have a table which is too big to fit on a single

page, so that you know it will extend to several pages, begin the table with the request .TS H and put the

request .TH after the part of the table which you want duplicated at the top of every page that the table is

printed on. For example, a table definition for a long table might look like:

.TS H

c s s

n n n.

THE TABLE TITLE

.TH

text of the table

.TE

5.5. Two Column Output

You can get two column output automatically by using the request .2c. This causes everything after it

to be output in two-column form. The request .bc will start a new column; it differs from .bp in that .bp may

leave a totally blank column when it starts a new page. To rev ert to single column output, use .1c.

5.6. Defining Macros

A macro is a collection of requests and text which may be used by stating a simple request. Macros

begin with the line .de xx (where xx is the name of the macro to be defined) and end with the line consisting

of two dots. After defining the macro, stating the line .xx is the same as stating all the other lines. For exam-

ple, to define a macro that spaces 3 lines and then centers the next input line, enter:

.de SS

.sp 3

.ce

..

and use it by typing:

USING GROFF AND −ME 15

.SS

Title Line

(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names in −me, always use

upper case letters as names. The only names to avoid are TS, TH, TE, EQ, and EN.

5.7. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For example, if you want to

maintain a “list of figures” you will want to do something like:

.(z

.(c

text of figure

.)c

.ce

Figure 5.

.(x f

Figure 5

.)x

.)z

which you may hope will give you a figure with a label and an entry in the index f (presumably a list of fig-

ures index). Unfortunately, the index entry is read and interpreted when the keep is read, not when it is

printed, so the page number in the index is likely to be wrong. The solution is to use the magic string \! at

the beginning of all the lines dealing with the index. In other words, you should use:

.(z

.(c

Te xt of figure

.)c

.ce

Figure 5.

\!.(x f

\!Figure 5

\!.)x

.)z

which will defer the processing of the index until the figure is output. This will guarantee that the page num-

ber in the index is correct. The same comments apply to blocks (with .(b and .)b) as well.

6. TROFF and the Photosetter

With a little care, you can prepare documents that will print nicely on either a regular terminal or when

phototypeset using the TROFF formatting program.

6.1. Fonts

A font is a style of type. There are three fonts that are available simultaneously, Times Roman, Times

Italic, and Times Bold, plus the special math font. The normal font is Roman.

There are ways of switching between fonts. The requests .r, .i, .b, and .bi switch to Roman, italic,

bold, and bold-italic fonts respectively. You can set a single word in some font by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text.

USING GROFF AND −ME 16

Notice that if you are setting more than one word in whatever font, you must surround that word with

double quote marks (‘ " ’) so that it will appear to the GROFF processor as a single word. The quote marks

will not appear in the formatted text. If you do want a quote mark to appear, you should quote the entire

string (even if a single word), and use two quote marks where you want one to appear. For example, if you

want to produce the text:

"Master Control "

in italics, you must type:

.i """Master Control\|"""

The \| produces a very narrow space so that the “l” does not overlap the quote sign in GROFF, like this:

"Master Control"

There are also some “pseudo-fonts” available. The input:

.(b

.u underlined

.bx "words in a box"

.)b

generates

underlined

words in a box

Notice that pseudo font requests set only the single parameter in the pseudo font; ordinary font requests will

begin setting all text in the special font if you do not provide a parameter. No more than one word should

appear with these three font requests in the middle of lines. This is because of the way GROFF justifies text.

For example, if you were to issue the requests:

.u "some bold italics"

and

.bx "words in a box"

in the middle of a line GROFF would produce some bold italics and words in a box ,

which I think you will agree does not look good.

The second parameter of all font requests is set in the original font. For example, the font request:

.b bold face

generates “bold” in bold font, but sets “face” in the font of the surrounding text, resulting in:

boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line to indicate “continue

text processing”; this allows input lines to be joined together without a space between them. For example,

the input:

.u under \c

.i italics

generates underitalics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

USING GROFF AND −ME 17

6.2. Point Sizes

The phototypesetter supports different sizes of type, measured in points. The default point size is 10

points for most text, 8 points for footnotes. To change the pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance between the bottom of most letters (the

baseline) between adjacent lines) is set to be proportional to the type size.

These pointsize changes are temporary!!! For example, to reset the pointsize of basic text to twelve

point, use:

.nr pp 12

.nr sp 12

.nr tp 12

to reset the default pointsize of paragraphs, section headers, and titles respectively. If you only want to set

the names of sections in a larger pointsize, use:

.nr sp 11

alone — this sets section titles (e.g., Point Sizes above) in a larger font than the default.

A single word or phrase can be set in a smaller pointsize than the surrounding text using the .sm

request. This is especially convenient for words that are all capitals, due to the optical illusion that makes

them look even larger than they actually are. For example:

.sm UNIX

prints as UNIX rather than UNIX.

Warning: changing point sizes on the phototypesetter is a slow mechanical operation. On laser printers

it may require loading new fonts. Size changes should be considered carefully.

6.3. Quotes

It is conventional when using the typesetter to use pairs of grave and acute accents to generate double

quotes, rather than the double quote character (‘ " ’). This is because it looks better to use grave and acute

accents; for example, compare "quote" to ‘‘quote’’.

You may use the sequences *(lq and *(rq to stand for the left and right quote respectively. For exam-

ple, use:

*(lqSome things aren´t true

ev en if they did happen.*(rq

to generate the result:

“Some things aren’t true even if they did happen.”

As a shorthand, the special font request:

.q "quoted text"

will generate “quoted text”. Notice that you must surround the material to be quoted with double quote

marks if it is more than one word.

Acknowledgments

USING GROFF AND −ME 18

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the −me macros to

produce non-trivial papers during the development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce for their

help with the documentation phase; peter kessler for numerous complaints years after I was “done” with this project,

most accompanied by fixes (hence forcing me to fix several small bugs); and the plethora of people who have con-

tributed ideas and have giv en support for the project.

This document was GROFF’ed on May 23, 2003 and applies to the version of the −me macros included with GROFF

version 1.17.2.

