
Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

ABSTRACT

This is the user’s guide for a system for typesetting mathematics, using the phototypesetters on the

UNIX† and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people who

know neither mathematics nor typesetting. Enough of the language to set in-line expressions like

x−>π /2
lim (tan x)sin 2x = 1 or display equations like

G(z) = eln G(z) = exp

 k≥1
Σ Sk zk

k




=
k≥1
Π eSk zk /k

= 

1 + S1z +

S2
1 z2

2!
+ . . .




1 +

S2z2

2
+

S2
2 z4

22 ⋅ 2!
+ . . .


. . .

=
m≥0
Σ






k1,k2,...,km≥0

k1+2k2+...+mkm=m

Σ S
k1

1

1k1 k1!

S
k2

2

2k2 k2!
. . .

Skm
m

mkm km!






zm

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathematical expres-

sions can be embedded in the running text of a manuscript, and the entire document produced in one pro-

cess. This user’s guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical expressions on

DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

† UNIX is a trademark of Bell Laboratories.

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

1. Introduction

EQN is a program for typesetting mathemat-

ics on the Graphics Systems phototypesetters on

UNIX and GCOS. The EQN language was designed

to be easy to use by people who know neither

mathematics nor typesetting. Thus EQN knows

relatively little about mathematics. In particular,

mathematical symbols like +, −, ×, parentheses,

and so on have no special meanings. EQN is quite

happy to set garbage (but it will look good).

EQN works as a preprocessor for the type-

setter formatter, TROFF[1], so the normal mode of

operation is to prepare a document with both

mathematics and ordinary text interspersed, and

let EQN set the mathematics while TROFF does the

body of the text.

On UNIX, EQN will also produce mathemat-

ics on DASI and GSI terminals and on Model 37

teletypes. The input is identical, but you have to

use the programs NEQN and NROFF instead of EQN

and TROFF. Of course, some things won’t look as

good because terminals don’t provide the variety

of characters, sizes and fonts that a typesetter

does, but the output is usually adequate for proof-

reading.

To use EQN on UNIX,

eqn files | troff

GCOS use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical expres-

sion begins and ends, we mark it with lines begin-

ning .EQ and .EN. Thus if you type the lines

.EQ

x=y+z

.EN

your output will look like

x = y + z

The .EQ and .EN are copied through untouched;

they are not otherwise processed by EQN. This

means that you have to take care of things like

centering, numbering, and so on yourself. The

most common way is to use the TROFF and NROFF

macro package package ‘−ms’ developed by M.

E. Lesk[3], which allows you to center, indent,

left-justify and number equations.

With the ‘−ms’ package, equations are cen-

tered by default. To left-justify an equation, use

.EQ L instead of .EQ. To indent it, use .EQ I. Any

of these can be followed by an arbitrary ‘equation

number’ which will be placed at the right margin.

For example, the input

.EQ I (3.1a)

x = f(y/2) + y/2

.EN

produces the output

x = f (y/2) + y/2 (3.1a)

There is also a shorthand notation so in-line

expressions like π 2
i can be entered without .EQ

and .EN. We will talk about it in section 19.

3. Input spaces

Spaces and newlines within an expression

are thrown away by EQN. (Normal text is left

absolutely alone.) Thus between .EQ and .EN,

x=y+z

and

x = y + z

and

x = y

+ z

and so on all produce the same output

x = y + z

You should use spaces and newlines freely to

make your input equations readable and easy to

edit. In particular, very long lines are a bad idea,

since they are often hard to fix if you make a mis-

take.

- 2 -

4. Output spaces

To force extra spaces into the output, use a

tilde ‘‘ ˜ ’’ for each space you want:

x˜=˜y˜+˜z

gives

x = y + z

You can also use a circumflex ‘‘ˆ’’, which gives a

space half the width of a tilde. It is mainly useful

for fine-tuning. Tabs may also be used to position

pieces of an expression, but the tab stops must be

set by TROFF commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical symbols,

some mathematical names, and the Greek alpha-

bet. For example,

x=2 pi int sin (omega t)dt

produces

x = 2π ∫ sin(ω t)dt

Here the spaces in the input are necessary to tell

EQN that int, pi, sin and omega are separate enti-

ties that should get special treatment. The sin,

digit 2, and parentheses are set in roman type

instead of italic; pi and omega are made Greek;

and int becomes the integral sign.

When in doubt, leave spaces around sepa-

rate parts of the input. A very common error is to

type f(pi) without leaving spaces on both sides of

the pi. As a result, EQN does not recognize pi as a

special word, and it appears as f (pi) instead of

f (π).

A complete list of EQN names appears in

section 23. Knowledgeable users can also use

TROFF four-character names for anything EQN

doesn’t know about, like \(bs for the Bell System

sign .

6. Spaces, Again

The only way EQN can deduce that some

sequence of letters might be special is if that

sequence is separated from the letters on either

side of it. This can be done by surrounding a spe-

cial word by ordinary spaces (or tabs or new-

lines), as we did in the previous section.

You can also make special words stand out

by surrounding them with tildes or circumflexes:

x˜=˜2˜pi˜int˜sin˜(˜omega˜t˜)˜dt

is much the same as the last example, except that

the tildes not only separate the magic words like

sin, omega, and so on, but also add extra spaces,

one space per tilde:

x = 2 π ∫ sin (ω t) dt

Special words can also be separated by

braces { } and double quotes "...", which have

special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are obtained

with the words sub and sup.

x sup 2 + y sub k

gives

x2 + yk

EQN takes care of all the size changes and vertical

motions needed to make the output look right.

The words sub and sup must be surrounded by

spaces; x sub2 will give you xsub2 instead of x2.

Furthermore, don’t forget to leave a space (or a

tilde, etc.) to mark the end of a subscript or

superscript. A common error is to say something

like

y = (x sup 2)+1

which causes

y = (x2)+1

instead of the intended

y = (x2) + 1

Subscripted subscripts and superscripted

superscripts also work:

x sub i sub 1

is

xi1

A subscript and superscript on the same thing are

printed one above the other if the subscript comes

first:

x sub i sup 2

is

x2
i

Other than this special case, sub and sup

group to the right, so x sup y sub z means x yz , not

x y
z .

- 3 -

8. Braces for Grouping

Normally, the end of a subscript or super-

script is marked simply by a blank (or tab or tilde,

etc.) What if the subscript or superscript is some-

thing that has to be typed with blanks in it? In

that case, you can use the braces { and } to mark

the beginning and end of the subscript or super-

script:

e sup {i omega t}

is

eiω t

Rule: Braces can always be used to force EQN to

treat something as a unit, or just to make your

intent perfectly clear. Thus:

x sub {i sub 1} sup 2

is

x2
i1

with braces, but

x sub i sub 1 sup 2

is

xi2
1

which is rather different.

Braces can occur within braces if neces-

sary:

e sup {i pi sup {rho +1}}

is

eiπ ρ+1

The general rule is that anywhere you could use

some single thing like x, you can use an arbitrarily

complicated thing if you enclose it in braces. EQN

will look after all the details of positioning it and

making it the right size.

In all cases, make sure you have the right

number of braces. Leaving one out or adding an

extra will cause EQN to complain bitterly.

Occasionally you will have to print braces.

To do this, enclose them in double quotes, like

"{". Quoting is discussed in more detail in sec-

tion 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c =1

gives

a + b

2c
= 1

The line is made the right length and positioned

automatically. Braces can be used to make clear

what goes over what:

{alpha + beta} over {sin (x)}

is

α + β

sin(x)

What happens when there is both an over and a

sup in the same expression? In such an appar-

ently ambiguous case, EQN does the sup before

the over, so

−b sup 2 over pi

is
−b2

π
instead of −b

2

π The rules which decide

which operation is done first in cases like this are

summarized in section 23. When in doubt, how-

ev er, use braces to make clear what goes with

what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is

√  a + b +
1

√  ax2 + bx + c

Warning — square roots of tall quantities look

lousy, because a root-sign big enough to cover the

quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

√ a2

b2

Big square roots are generally better written as

something to the power 1⁄2:

(a2/b2)
1
2

which is

(a sup 2 /b sub 2) sup half

- 4 -

11. Summation, Integral, Etc.

Summations, integrals, and similar con-

structions are easy:

sum from i=0 to {i= inf} x sup i

produces

i=∞

i=0
Σ xi

Notice that we used braces to indicate where the

upper part i = ∞ begins and ends. No braces

were necessary for the lower part i = 0, because it

contained no blanks. The braces will never hurt,

and if the from and to parts contain any blanks,

you must use braces around them.

The from and to parts are both optional, but

if both are used, they hav e to occur in that order.

Other useful characters can replace the sum

in our example:

int prod union inter

become, respectively,

∫ Π ∪ ∩
Since the thing before the from can be anything,

ev en something in braces, from-to can often be

used in unexpected ways:

lim from {n −> inf} x sub n =0

is

n−>∞
lim xn = 0

12. Size and Font Changes

By default, equations are set in 10-point

type (the same size as this guide), with standard

mathematical conventions to determine what

characters are in roman and what in italic.

Although EQN makes a valiant attempt to use

esthetically pleasing sizes and fonts, it is not per-

fect. To change sizes and fonts, use size n and

roman, italic, bold and fat. Like sub and sup, size

and font changes affect only the thing that follows

them, and revert to the normal situation at the end

of it. Thus

bold x y

is

xy

and

size 14 bold x = y +

size 14 {alpha + beta}

gives

x = y +α + β
As always, you can use braces if you want to

affect something more complicated than a single

letter. For example, you can change the size of an

entire equation by

size 12 { ... }

Legal sizes which may follow size are 6, 7,

8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36.

You can also change the size by a giv en amount;

for example, you can say size +2 to make the size

two points bigger, or size −3 to make it three

points smaller. This has the advantage that you

don’t hav e to know what the current size is.

If you are using fonts other than roman,

italic and bold, you can say font X where X is a

one character TROFF name or number for the font.

Since EQN is tuned for roman, italic and bold,

other fonts may not give quite as good an appear-

ance.

The fat operation takes the current font and

widens it by overstriking: fat grad is ∇∇ and fat {x

sub i} is xixi .

If an entire document is to be in a non-

standard size or font, it is a severe nuisance to

have to write out a size and font change for each

equation. Accordingly, you can set a ‘‘global’’

size or font which thereafter affects all equations.

At the beginning of any equation, you might say,

for instance,

.EQ

gsize 16

gfont R

...

.EN

to set the size to 16 and the font to roman there-

after. In place of R, you can use any of the TROFF

font names. The size after gsize can be a relative

change with + or −.

Generally, gsize and gfont will appear at the

beginning of a document but they can also appear

thoughout a document: the global font and size

can be changed as often as needed. For example,

in a footnote‡ you will typically want the size of

‡Like this one, in which we have a few random expres-

sions like xi and π 2. The sizes for these were set by the

- 5 -

equations to match the size of the footnote text,

which is two points smaller than the main text.

Don’t forget to reset the global size at the end of

the footnote.

13. Diacritical Marks

To get funny marks on top of letters, there

are several words:

x dot ẋ

x dotdot ẍ

x hat x̂

x tilde x̃

x vec
→
x

x dyad
↔
x

x bar x

x under x

The diacritical mark is placed at the right height.

The bar and under are made the right length for

the entire construct, as in x + y + z; other marks

are centered.

14. Quoted Text

Any input entirely within quotes ("...") is

not subject to any of the font changes and spacing

adjustments normally done by the equation setter.

This provides a way to do your own spacing and

adjusting if needed:

italic "sin(x)" + sin (x)

is

sin(x) + sin(x)

Quotes are also used to get braces and other

EQN keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "{ size alpha }"

is

{ size alpha }

The construction "" is often used as a place-

holder when grammatically EQN needs something,

but you don’t actually want anything in your out-

put. For example, to make 2He, you can’t just

type sup 2 roman He because a sup has to be a

command gsize −2.

superscript on something. Thus you must say

"" sup 2 roman He

To get a literal quote use ‘‘\"’’. TROFF char-

acters like \(bs can appear unquoted, but more

complicated things like horizontal and vertical

motions with \h and \v should always be quoted.

(If you’ve nev er heard of \h and \v, ignore this

section.)

15. Lining Up Equations

Sometimes it’s necessary to line up a series

of equations at some horizontal position, often at

an equals sign. This is done with two operations

called mark and lineup.

The word mark may appear once at any

place in an equation. It remembers the horizontal

position where it appeared. Successive equations

can contain one occurrence of the word lineup.

The place where lineup appears is made to line up

with the place marked by the previous mark if at

all possible. Thus, for example, you can say

.EQ I

x+y mark = z

.EN

.EQ I

x lineup = 1

.EN

to produce

x + y = z

x = 1

For reasons too complicated to talk about, when

you use EQN and ‘−ms’, use either .EQ I or .EQ L.

mark and lineup don’t work with centered equa-

tions. Also bear in mind that mark doesn’t look

ahead;

x mark =1

...

x+y lineup =z

isn’t going to work, because there isn’t room for

the x+y part after the mark remembers where the

x is.

16. Big Brackets, Etc.

To get big brackets [], braces { }, parenthe-

ses (), and bars | | around things, use the left and

right commands:

− 6 −

left { a over b + 1 right }

˜=˜ left (c over d right)

+ left [e right]

is





a

b
+ 1





= 


c

d




+ [e]

The resulting brackets are made big enough to

cover whatever they enclose. Other characters

can be used besides these, but the are not likely to

look very good. One exception is the floor and

ceiling characters:

left floor x over y right floor

<= left ceiling a over b right ceiling

produces





x

y





≤ 


a

b



Several warnings about brackets are in

order. First, braces are typically bigger than

brackets and parentheses, because they are made

up of three, five, seven, etc., pieces, while brack-

ets can be made up of two, three, etc. Second, big

left and right parentheses often look poor, because

the character set is poorly designed.

The right part may be omitted: a ‘‘left

something’’ need not have a corresponding ‘‘right

something’’. If the right part is omitted, put

braces around the thing you want the left bracket

to encompass. Otherwise, the resulting brackets

may be too large.

If you want to omit the left part, things are

more complicated, because technically you can’t

have a right without a corresponding left. Instead

you have to say

left "" right)

for example. The left "" means a ‘‘left nothing’’.

This satisfies the rules without hurting your out-

put.

17. Piles

There is a general facility for making verti-

cal piles of things; it comes in several flavors. For

example:

A ˜=˜ left [

pile { a above b above c }

˜˜ pile { x above y above z }

right]

will make

A =





a

b

c

x

y

z






The elements of the pile (there can be as many as

you want) are centered one above another, at the

right height for most purposes. The keyword

above is used to separate the pieces; braces are

used around the entire list. The elements of a pile

can be as complicated as needed, even containing

more piles.

Three other forms of pile exist: lpile makes

a pile with the elements left-justified; rpile makes

a right-justified pile; and cpile makes a centered

pile, just like pile. The vertical spacing between

the pieces is somewhat larger for l-, r- and cpiles

than it is for ordinary piles.

roman sign (x)˜=˜

left {

lpile {1 above 0 above −1}

˜˜ lpile

{if˜x>0 above if˜x=0 above if˜x<0}

makes

sign(x) =







1

0

−1

if x > 0

if x = 0

if x < 0

Notice the left brace without a matching right

one.

18. Matrices

It is also possible to make matrices. For

example, to make a neat array like

xi

yi

x2

y2

you have to type

matrix {

ccol { x sub i above y sub i }

ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered

columns. The elements of the columns are then

listed just as for a pile, each element separated by

the word above. You can also use lcol or rcol to

left or right adjust columns. Each column can be

separately adjusted, and there can be as many

columns as you like.

- 7 -

The reason for using a matrix instead of

two adjacent piles, by the way, is that if the ele-

ments of the piles don’t all have the same height,

they won’t line up properly. A matrix forces them

to line up, because it looks at the entire structure

before deciding what spacing to use.

A word of warning about matrices — each

column must have the same number of elements in

it. The world will end if you get this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is necessary

to follow mathematical conventions not just in

display equations, but also in the body of the text,

for example by making variable names like x

italic. Although this could be done by surround-

ing the appropriate parts with .EQ and .EN, the

continual repetition of .EQ and .EN is a nuisance.

Furthermore, with ‘−ms’, .EQ and .EN imply a dis-

played equation.

EQN provides a shorthand for short in-line

expressions. You can define two characters to

mark the left and right ends of an in-line equation,

and then type expressions right in the middle of

text lines. To set both the left and right characters

to dollar signs, for example, add to the beginning

of your document the three lines

.EQ

delim $$

.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary vari-

able, and let $beta$ be zero. Then we

can show that $x sub 1$ is $>=0$.

This works as you might expect — spaces, new-

lines, and so on are significant in the text, but not

in the equation part itself. Multiple equations can

occur in a single input line.

Enough room is left before and after a line

that contains in-line expressions that something

like
n

i=1
Σ xi does not interfere with the lines sur-

rounding it.

To turn off the delimiters,

.EQ

delim off

.EN

Warning: don’t use braces, tildes, circumflexes, or

double quotes as delimiters — chaos will result.

20. Definitions

EQN provides a facility so you can give a

frequently-used string of characters a name, and

thereafter just type the name instead of the whole

string. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can

save re-typing it each time by defining it like this:

define xy ′x sub i sub 1 + y sub i sub 1′

This makes xy a shorthand for whatever charac-

ters occur between the single quotes in the defini-

tion. You can use any character instead of quote

to mark the ends of the definition, so long as it

doesn’t appear inside the definition.

Now you can use xy like this:

.EQ

f(x) = xy ...

.EN

and so on. Each occurrence of xy will expand

into what it was defined as. Be careful to leave

spaces or their equivalent around the name when

you actually use it, so EQN will be able to identify

it as special.

There are several things to watch out for.

First, although definitions can use previous defini-

tions, as in

.EQ

define xi ′ x sub i ′
define xi1 ′ xi sub 1 ′
.EN

don’t define something in terms of itself’ A

favorite error is to say

define X ′ roman X ′

This is a guaranteed disaster, since X is now

defined in terms of itself. If you say

define X ′ roman "X" ′

however, the quotes protect the second X, and

ev erything works fine.

EQN keywords can be redefined. You can

make / mean over by saying

define / ′ over ′

or redefine over as / with

define over ′ / ′

If you need different things to print on a ter-

minal and on the typesetter, it is sometimes worth

- 8 -

defining a symbol differently in NEQN and EQN.

This can be done with ndefine and tdefine. A defi-

nition made with ndefine only takes effect if you

are running NEQN; if you use tdefine, the defini-

tion only applies for EQN. Names defined with

plain define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things at the

right place on the paper, it isn’t perfect, and occa-

sionally you will need to tune the output to make

it just right. Small extra horizontal spaces can be

obtained with tilde and circumflex. You can also

say back n and fwd n to move small amounts hori-

zontally. n is how far to move in 1/100’s of an em

(an em is about the width of the letter ‘m’.) Thus

back 50 moves back about half the width of an m.

Similarly you can move things up or down with

up n and down n. As with sub or sup, the local

motions affect the next thing in the input, and this

can be something arbitrarily complicated if it is

enclosed in braces.

22. A Large Example

Here is the complete source for the three

display equations in the abstract of this guide.

.EQ I

G(z)˜mark =˜ e sup { ln ˜ G(z) }

˜=˜ exp left (

sum from k>=1 {S sub k z sup k} over k right)

˜=˜ prod from k>=1 e sup {S sub k z sup k /k}

.EN

.EQ I

lineup = left (1 + S sub 1 z +

{ S sub 1 sup 2 z sup 2 } over 2! + ... right)

left (1+ { S sub 2 z sup 2 } over 2

+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }

+ ... right) ...

.EN

.EQ I

lineup = sum from m>=0 left (

sum from

pile { k sub 1 ,k sub 2 ,..., k sub m >=0

above

k sub 1 +2k sub 2 + ... +mk sub m =m}

{ S sub 1 sup {k sub 1} } over {1 sup k sub 1 k sub 1 ! } ˜

{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } ˜

...

{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }

right) z sup m

.EN

23. Keywords, Precedences, Etc.

If you don’t use braces, EQN will do opera-

tions in the order shown in this list.

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation

marks, and these mathematical words are con-

verted to Roman font when encountered:

sin cos tan sinh cosh tanh arc

max min lim log ln exp

Re Im and if for det

These character sequences are recognized and

translated as shown.

>= ≥
<= ≤
== ≡
!= ≠
+− ±
−> →
<− ←
<< <<

>> >>

inf ∞
partial ∂
half 1

2

prime ′
approx ≈
nothing

cdot ⋅
times ×
del ∇
grad ∇
... . . .

,..., , . . . ,

sum Σ
int ∫
prod Π
union ∪
inter ∩

To obtain Greek letters, simply spell them

out in whatever case you want:

DELTA ∆ iota ι
GAMMA Γ kappa κ
LAMBDA Λ lambda λ

- 9 -

OMEGA Ω mu µ
PHI Φ nu ν
PI Π omega ω
PSI Ψ omicron ο
SIGMA Σ phi φ
THETA Θ pi π
UPSILON ϒ psi ψ
XI Ξ rho ρ
alpha α sigma σ
beta β tau τ
chi χ theta θ
delta δ upsilon υ
epsilon ε xi ξ
eta η zeta ζ
gamma γ

These are all the words known to EQN

(except for characters with names), together with

the section where they are discussed.

above 17, 18 lpile 17

back 21 mark 15

bar 13 matrix 18

bold 12 ndefine 20

ccol 18 over 9

col 18 pile 17

cpile 17 rcol 18

define 20 right 16

delim 19 roman 12

dot 13 rpile 17

dotdot 13 size 12

down 21 sqrt 10

dyad 13 sub 7

fat 12 sup 7

font 12 tdefine 20

from 11 tilde 13

fwd 21 to 11

gfont 12 under 13

gsize 12 up 21

hat 13 vec 13

italic 12 ˜, ˆ 4, 6

lcol 18 { } 8

left 16 "..." 8, 14

lineup 15

24. Troubleshooting

If you make a mistake in an equation, like

leaving out a brace (very common) or having one

too many (very common) or having a sup with

nothing before it (common), EQN will tell you

with the message

syntax error between lines x and y, file z

where x and y are approximately the lines

between which the trouble occurred, and z is the

name of the file in question. The line numbers are

approximate — look nearby as well. There are

also self-explanatory messages that arise if you

leave out a quote or try to run EQN on a non-

existent file.

If you want to check a document before

actually printing it (on UNIX only),

eqn files >/dev/null

will throw away the output but print the messages.

If you use something like dollar signs as

delimiters, it is easy to leave one out. This causes

very strange troubles. The program checkeq (on

GCOS, use ./checkeq instead) checks for misplaced

or missing dollar signs and similar troubles.

In-line equations can only be so big

because of an internal buffer in TROFF. If you get

a message ‘‘word overflow’’, you have exceeded

this limit. If you print the equation as a displayed

equation this message will usually go away. The

message ‘‘line overflow’’ indicates you have

exceeded an even bigger buffer. The only cure for

this is to break the equation into two separate

ones.

On a related topic, EQN does not break

equations by itself — you must split long equa-

tions up across multiple lines by yourself, mark-

ing each by a separate .EQEN sequence. EQN

does warn about equations that are too long to fit

on one line.

25. Use on UNIX

To print a document that contains mathe-

matics on the UNIX typesetter,

eqn files | troff

If there are any TROFF options, they go after the

TROFF part of the command. For example,

eqn files | troff −ms

To run the same document on the GCOS typesetter,

use

eqn files | troff −g (other options) | gcat

A compatible version of EQN can be used

on devices like teletypes and DASI and GSI termi-

nals which have half-line forward and reverse

capabilities. To print equations on a Model 37

teletype, for example, use

- 10 -

neqn files | nroff

The language for equations recognized by NEQN

is identical to that of EQN, although of course the

output is more restricted.

To use a GSI or DASI terminal as the output

device,

neqn files | nroff −Tx

where x is the terminal type you are using, such as

300 or 300S.

EQN and NEQN can be used with the TBL

program[2] for setting tables that contain mathe-

matics. Use TBL before [N]EQN, like this:

tbl files | eqn | troff

tbl files | neqn | nroff

26. Acknowledgments

We are deeply indebted to J. F. Ossanna, the

author of TROFF, for his willingness to extend

TROFF to make our task easier, and for his contin-

uous assistance during the development and

ev olution of EQN. We are also grateful to A. V.

Aho for advice on language design, to S. C. John-

son for assistance with the YA CC compiler-

compiler, and to all the EQN users who have made

helpful suggestions and criticisms.

References

[1] J. F. Ossanna, ‘‘NROFF/TROFF User’s Man-

ual’’, Bell Laboratories Computing Science

Technical Report #54, 1976.

[2] M. E. Lesk, ‘‘Typing Documents on UNIX’’,

Bell Laboratories, 1976.

[3] M. E. Lesk, ‘‘TBL — A Program for Setting

Tables’’, Bell Laboratories Computing Sci-

ence Technical Report #49, 1976.

