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Multitasking in Unix

e Heavy-weight processes spawned with
fork

— Preemptive and priority-based scheduling

e Usually do not share common address
Space
— Sharing data can be cumbersome
— Synchronization is complicated by preemption
— Resources can be exhausted quickly
— Application doesn't scale well with load




Processes

e Unix process requires:

— program code, program counter, heap memory,
stack memory, stack pointer, file descriptors,
virtual memory table, signal table, etc.

e Process embodies two characteristics

— Unit of Resource Ownership
— Unit of Dispatching




Processes & Threads

e Can these characteristics be dealt with

separately?
— Recent thought says ‘YES'

o Unit of Resource Ownership is PROCESS

e Unit of Dispatching is THREAD




Threads

e Fach thread is a separate execution
stream

— private program counter, stack memory, stack
pointer, signal table

e Multiple threads may exist within a single
process

e Sometimes called “lightweight processes”

e Other thread libraries:

— Solaris threads, Linux threads, DCE threads, Win32
and OS/2 threads, GNU Portable threads




What is Pthreads?

e POSIX.1c standard
e C language interface

e All threads exist within same Unix
Drocess

e All threads are peers

— No explicit parent-child model

— Exception: “main thread” holds process
information




Advantages of Multithreading

As opposed to multiple processes
e Resource use

e Shared memory
e | ow overhead; context switch




Resource Use

e Threads share all resources of process
— (virtual) memory,
— files,
— I/O channels, etc.

e Smaller memory usage for thread

control structures
— Fields default to process control structure




Shared Memory

e Not swapped out for thread context
switch

e Threads read/write to shared variables
for communication
— cost of two memory accesses

e Process to process must go through
external sharing mechanisms
— system calls, sockets, network wires




Low Overhead

e Solaris process vs. Solaris thread:
— 30 times longer to create a process
— 10 time slower for synchronizing variables
— 5 times slower for context switch




Pthreads vs. OpenMP

e Pthreads

— any thread may create new threads
— computations can be dynamically parallel
— thus, nested parallelism is possible

e OpenMP

— nested parallelism not yet supported

— often implemented as high-level interface to
Pthreads




Parallelism or Concurrency?

e Parallelism: two or more threads are
executing at the same time
— multiple processors

e Concurrency: two or more threads are

In progress at the same time

— single or multiple processors

— preemption of thread due to blocking or timeslice
expiration




Thread Considerations

e Shared memory for communication
e Explicit synchronization needed

e Single processor model for development

e Race conditions

— Read/Write, Write/Write conflicts

— Models: Monitors, Rendezvous,
Producer/Consumer, Readers/Writer




Parallel Communication

e Some parallel tasks
wish to share data

e Messages become
synchronization
send  points between

Processes
— implicitly synchronized




Thread Communication

e T1 stores value in
global memory location

e T2 reads value out of
global memory location

Ldread o EXplicit synchronization
needed to ensure read
occurs after store




Race Condition

e Concurrent access of same variable by

multiple threads

— Read/Write conflict
— Write/Write conflict

e Cause of other errors:
— Execution order is assumed but is not guaranteed




Concurrent Execution

e Must consider all possible execution
interleavings of thread operations

— may be running on same processor
— may be running on different processors
— processors may have different speeds

o [F different output between separate

runs.
— THEN use some form of synchronization
— may not show up 99 +/.,,% of the time




Concurrent Programming

e Concurrent programming requires skill

e "Standard” programming models

available
— Monitors
— Rendezvous

— Producer/Consumer
— Readers/Writer




Traditional Thread Applications

e Operating Systems
e ATM (Cash Machine) Network

— transactions at different locations are independent
but act on shared data

e Database Search

— threads can search different portions of data
— each thread can satisfy a different query
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Overview of Core Functions

e Thread Data Types

e Thread Management

e Mutual Exclusion

e Condition Variables

e Attributes and error codes




“"The Life of a Thread”

taken from Programming with POSIX Threads, David R. Butenhof

wait satisfied
blocked
'\\preempted e

wait for resource

scheduled™

‘ done, or cancelled

terminated




Thread Management

e pthread_create
— create a thread
— start execution of function mapped to thread

e pthread_join
— wait for thread to finish
— retrieve exit code from joined thread

e pthread_detach

— thread can no longer be joined or canceled
— reclaim thread resources upon termination




Thread Management

o pthread_self

— retrieve thread handle

e pthread_exit

— halt execution of calling thread
— report exit code




Thread Management Data Types

e pthread_t
— thread handle

e pthread_attr_t

— thread attributes:
e detach state
e stack size
e stack address
e specifying NULL gives default thread attributes




pthread_create

int pthread_create(tid, attr, function, arg);
pthread_t *tid
handle of created thread
const pthread_attr_t *attr
attributes of thread to be created
void *(*function)(void *)
function to be mapped to thread
void *arg
single argument to function




pthread_create

e Spawn a thread running the function

e Thread handle returned via pthread_t
structure

o Specify NULL to use default attributes

e Single argument sent to function
— If no arguments to function, specify NULL

e Check error codes!




Error codes: pthread_create

e EAGAIN

— insufficient resources to create thread

e EINVAL

— invalid attribute




pthread_join

int pthread_join(tid, val_ptr);
pthread_t tid

handle of thread to be joined
void **val_ptr

exit code reported by joined thread




pthread_join

e Calling thread waits for thread with
handle t i d to terminate

e EXit code is returned from joined thread
if not NULL

e Threads are joinable by default




Error codes: pthread_join

o ESRCH
— thread (pthread_t) not found

e EINVAL
— thread (pthread_t) not joinable




Example: “Hello World”

#i ncl ude <stdio. h>
#i ncl ude <pthread. h>
#def i ne NUM THREADS 4
mai n()
{
pthread t tid[ NUM THREADS] ;

for (int i =0; i < NUMTHREADS; i ++)
pthread create(& id[i], NULL, hello, NULL);

for (int i =0; i < NUMTHREADS; i ++)
pthread join(&id[i], NULL);




Example: “Hello World”

hel | o()

{
printf(“Hello, Wrld\n");

}




pthread_detach

int pthread_detach(tid);
pthread_t tid
handle of thread to be detached




pthread_detach

e Detach thread tid

— thread tid can no longer be joined or canceled

e Upon termination, detached thread
resources are reclaimed by the system

e pthread_attr_{get|set}detachstate

— PTHREAD_CREATE_JOINABLE
— PTHREAD_CREATE_DETACHED




pthread_self

pthread_t pthread_self();

pthread t tid;
I nt work, ierr;
i (work) {
/* performconputation */
}
el se {
tid = pthread self();
lerr = pthread detach( tid ); /* detach thread */
/* begi n i ndependent processing */




pthread_exit

int pthread_exit(exitcode);
void *exitcode
value to be returned at join

e Terminates the calling thread

e Enables thread to report exit conditions to joining
threads

e Allows main thread to exit without terminating
process




Example: pthread_exit usage

#i ncl ude <pthread. h>
#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
main () {
Int 1err;
pthread t tid;
lerr = pthread create(&tid, NULL, task, NULL);
1 f (iterr 1= 0) { /[* failed to create thread */
fprintf(stderr, “Error %l: %\n", ierr,
strerror(ierr));
pthread exit( & err );
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Getting Started

e Identify tasks for threading

e Identify computational model
— Who does what?
— Algorithms to use

e Identify how data will be accessed
— What is global? What is local?
— How is data to be assigned to threads?




Coding Considerations

e Create function to encapsulate
computation

— may be function that already exists

— use single parameter (C structure for multiple
arguments)

— follow pthread_create template for types

Example: voi d *sol ve (void *arg)




Coding Considerations

e Recast parameter to local variable if
needed
— may be structure of several parameters

e Add code to determine task of thread
— may need access to global variable

e Add code to access data for task
— add code to protect global variables

— shared data access may need to be restricted
e Add code to synchronize thread
executions




Static Task Allocation

o Computations/Data are divided equally
— based on number of threads and thread ID

e Typically access global data

— must protect potential access overlaps
— gather results into single location




Example: Numerical Integration

#def i ne NUM THREADS 1024

#defi ne NUM | NTERVALS 65536

fl oat p_suns[ NUM THREADS] ;

mai n()

{ pthread_t tid[ NUM THREADS] ;
int i, t_nunf NUM THREADS] ;
float sum = 0.0;

for (i = 0; i < NUM_THREADS; i ++){
t nunfi] =1i;
pthread_create(&id[i], NULL, do_calc, & _nunfi]);

}

for (i = 0; i < NUM THREADS; i ++){
pthread join(&id[i], NULL);
sum += p_suns[i];

}
printf(“Sum= %\n", sum;




Example: Numerical Integration

do _cal c(void *num
{ int i, h, nyid, start, end,
float | sum= 0.0, Xx;

nyid = (int)*num
h = 1.0 / NUM | NTERVALS;
start = (NUM_ I NTERVALS / NUM THREADS) * nyi d;
end = start + (NUM. I NTERVALS / NUM THREADS) ;
for (i = start; i < end; i++){
Xx =h* ( (float)i - 0.5);
| sum += f (x);
}
p_suns[nyid] = Isum

}
float f(a) float a; { return ( 4.0/ (1.0 + a*a ) ); }




Dynamic Task Allocation

e Single thread “generates” tasks to be
worked on [Boss thread]

e Other threads request new task when
done with previous [Worker threads]

e Boss sends kill signal at end
o Workers terminate gracefully

e Good model for unequal amounts of
computation between tasks
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Critical Sections

e Critical section

— portions of program containing shared, modifiable data

— data or code that must only be used or executed by a single
thread at any time

e Example: Airline reservations

1 f (seat[nun] == “EMPTY”) then
seat [ nunl = custoner_ nane

print confirnmation nunber
endi f




Read Set / Write Set

e Read Set

— those memory locations that a thread will access,
but not modify

e Write Set

— those memory locations that a thread will access
and modify

e Applied to statements of code blocks




Access Conflicts

e Read/Write conflicts
— Thread A reads from seat[57]
— Thread B writes “Jones” to seat[57]
— What value does Thread A get?

o \Write/Write conflicts
— Thread A writes “"Smith” to seat

— Thread B writes “Jones” to seat
— What value is stored in seat[57]:




Race Conditions

e Concurrent access of same variable by

multiple threads

— Read/Write conflict
— Write/Write conflict

e Execution order is assumed but cannot
be guaranteed

e Most common error in concurrent
programs

e May not be apparent at all times




Mutual Exclusion

e Enforces single thread access to a
critical section

e Enables correct programming structures
for avoiding race conditions

e Mechanism is a lock (mutex)
— Atomic operations
— Only one thread can “hold” mutex at any time
— Lock/unlock is a paired operation




Pthread Mutual Exclusion

e pthread_mutex_init
— initialize mutex variable

e pthread_mutex_lock

ock mutex if available, else wait for mutex

e pthread_mutex_unlock
— return mutex to system or waiting thread

e pthread_mutex_destroy
— destroy mutex, unavailable w/o initialization




Mutual Exclusion Data Types

e pthread_mutex_t
— the mutex variable

e pthread_mutexattr_t

— mutex attributes
e process sharing
e scheduling protocol
e priority ceiling
e specifying NULL gives default mutex attributes




pthread_mutex_init

int pthread_mutex_init(mutex, attr);

pthread_mutex_t *mutex
mutex to be initialized

const pthread_mutexattr_t *attr
attributes to be given to mutex

e Can also use the static, default initializer
— PTHREAD_MUTEX_INITIALIZER

e Programmer must pay attention to mutex
scope o8




Error codes: pthread _mutex_init

e ENOMEM

— insufficient memory for mutex

e EAGAIN

— insufficient resources (other than memory)

e EPERM

— no privilege to perform operation




pthread_mutex_lock

int pthread_mutex_lock(mutex);
pthread_mutex_t *mutex
mutex to attempt to lock




pthread_mutex_lock

e | ock mutex

e Mutex is held by calling thread until
unlocked

o Mutex lock/unlock must be paired or
deadlock occurs

o If mutex is locked by other thread,
calling thread is blocked




Error codes: pthread _mutex_lock

e EINVAL

— thread priority exceeds mutex priority ceiling

e EDEADLK

— calling thread already owns mutex




pthread_mutex_unlock

int pthread_mutex_unlock(mutex);
pthread_mutex_t *mutex
mutex to be unlocked




pthread_mutex_destroy

int pthread_mutex_destroy(mutex);

pthread_mutex_t *mutex
mutex to be uninitialized

e It is not necessary to destroy a statically
initialized mutex




Example: Hello World

#i ncl ude<pt hr ead. h>
#defi ne NUM THREADS 4

pthread nutex t printlock = PTHREAD MJUTEX | NI Tl ALI ZER
mai n()

{
pthread_t tid[ NUM THREADS] ;

for (int i =0; i < NUMTHREADS; i ++)
pthread create(& id[i], NULL, hello, NULL);

for (int i =0; i < NUMTHREADS; i ++)
pthread join(&id[i], NULL);




Example: Hello World

hel | o()
{
pt hread mut ex | ock( &pri ntl ock);
/* The printf function is not threadsafe */
printf(“Hello, Wrld\n”);
pt hread _mut ex_unl ock( &ori ntl ock);

}




Example: Numerical Integration

e Each thread updates a global variable
e The mutex variable has global scope

e The mutex lock/unlock protects critical
section from write/write conflicts

e What might happen if t_num is
replaced by the counter variable 1 in the

main thread?




Example: Numerical Integration

#def i ne NUM THREADS 1024
#def i ne NUM | NTERVALS 65536
fl oat gl obal _sum = 0.0;
pt hread nutex_t gl obal | ock;
mai n()
{ pthread_t tid[ NUM THREADS] ;
int i, t_nunf NUM THREADS] ;
pt hread nutex_init (&gl obal |ock, NULL);
for (i = 0; i < NUM THREADS; i ++){
t nunfi] =1i;
pthread create(&id[i], NULL, do_calc, & nunfi]);
}
for (i = 0; i < NUM THREADS; i ++)
pthread join(&id[i], NULL);
printf(“Sum= %\n", global sum;




Example: Numerical Integration

do _cal c(void *num
{ int i, nyid, start, end;
float x;

nmyid = (int)*num
h = 1.0 / NUM | NTERVALS;
start = (NUM I NTERVALS / NUM THREADS) * nyi d;
end = start + (NUM_|I NTERVALS / NUM THREADS) ;
for (i = start; i < end; i++){

Xx =h* ( (float)i - 0.5);

pt hread _nut ex | ock( &gl obal | ock);

gl obal _sum += f(x);

pt hread _nut ex_unl ock( &gl obal | ock);

}
float f(a) float a; { return ( 4.0/ (1.0 + a*a ) ); }




Condition Variables

e Semaphores (per Dijkstra)
— integer variable (non-negative) with queue
— wait(s): if s = 0 block, else s-- and proceed
— signal(s): increment s, wake up thread waiting
e Condition variable is associated with an
arbitrary conditional

¢ Provides mutual exclusion




Condition Variable and Mutex

e Mutex is associated with condition
variable
— protects evaluation of the conditional expression

e Prevents “Lost Signal” problem

— no sleeping thread to catch signal
— signal is not saved




Condition Variable Algorithm

e Acquire mutex
e While conditional is true, Wait

e Perform critical section computation
— somehow update conditional

e Signal sleeping thread(s)
e Release mutex




Condition Variables

e pthread_cond_init, pthread_cond_destroy
— initialize/destroy condition variable

e pthread_cond_wait
— attempt to hold condition variable

e pthread_cond_signal
— signal release of condition variable

e pthread_cond_broadcast
— broadcast release of condition variable




Condition Data Types

e pthread_cond_t

— the condition variable

e pthread_condattr_t

— condition attributes
e process sharing
e specifying NULL gives default condition attributes




pthread_cond_init

int pthread_cond_init(cond, attr);
pthread_cond_t *cond

condition variable to be initialized
pthread_condattr_t *attr

condition variable attributes to be used

e Can also use the static, default initializer
— PTHREAD_COND_INITIALIZER

e Programmer must pay attention to condition
scope




Error codes: pthread_cond_init

e ENOMEM

— insufficient memory for condition variable

e EAGAIN

— insufficient resources (other than memory)




pthread_cond_destroy

int pthread_cond_destroy(cond);

pthread_cond_t *cond
condition variable to be eliminated

e It is not necessary to destroy a statically
initialized condition variable




pthread_cond_wait

int pthread_cond_wait(cond, mutex);
pthread_cond_t *cond

condition variable attempted to be held
pthread_mutex_t *mutex

mutex associated with condition variable




pthread_cond_wait

e Releases associated mutex

e \When signal is received, thread must
reacquire mutex before function returns

e Prone to spurious wakeups, thus

— Acquire mutex

— Evaluate associated conditional expression

o if true, block thread (release mutex) to await signal
on condition variable

o if false, release mutex and continue




pthread_cond_signal

int pthread_cond_signal(cond);
pthread_cond_t *cond
condition variable to be released




pthread_cond_signal

e Signal condition variable, wake one
waiting thread

e If no threads waiting, no action taken
— Signal is not saved for future threads

e Before signal, thread must have mutex
— If not, race condition may result




Example: Denominator

e Two threads oversee a global variable

— Thread 1 calculates a value
— Thread 2 waits for this value

e A mutex controls access to this variable
e Thread 1 signals thread 2 (waiting)




Example: Denominator (threadl)

#i ncl ude <pthread. h>

pt hread nutex t denom nt X PTHREAD MUTEX | NI Tl ALI ZER;
pt hread cond_t denom cond PTHREAD COND | NI Tl ALI ZER;
fl oat denom nator = 0.0;

threadl() {
pt hr ead_nut ex_| ock( &denomntx );

denom nator = f(); /* cal cul ate denom nator */
pt hread_signal ( &enomcond ); /[/* signal waiting thread */

pt hr ead_nut ex_unl ock( &denom ntx );




Example: Denominator (thread?2)

thread2() {
float | ocal denom

pt hread nutex | ock( &lenom ntx );
/* wait for non-zero denom nator */
whi | e( denom nator == 0.0 )
pt hread cond wait( &Jlenom cond, &denomntx );
| ocal _denom = denom nat or;

pt hr ead_nmut ex_unl ock( &denom ntx );

/* Use | ocal copy of denom nator for division */




pthread_cond_broadcast

int pthread_cond_broadcast(cond);
pthread_cond_t *cond
condition variable to be released




pthread_cond_broadcast

o Wake all threads waiting on condition
variable

e If no threads waiting, no action taken
— Broadcast is not saved for future threads

e Before broadcast, thread must have

mutex
— If not, race condition may result




Example: Broadcast signal

e Main thread

— Creates worker threads
— Reads input data
— Signals worker threads to begin computation

e \Worker threads

— Wait for signal that data is available
— Begin work




Example: Main thread

#i ncl ude <pthread. h>

pthread t tid[ N THREADS] ;

pt hread nutex t read ntx PTHREAD MUTEX | NI Tl ALI ZER;
pt hread cond t read cond PTHREAD COND | NI TI ALI ZER;
I nt ready = O;

mai n() {
for (int i = 0; I < N.THREADS; i ++)
pthread create(& id[i], NULL, worker, NULL);
/* read input data */
pt hread nutex | ock( &read ntx );
ready = 1; /* reset condition flag */
pt hread broadcast( & ead cond );
pt hread_mut ex_unl ock( &ead ntx );
pt hread _exit(); /* exit without term nating process */




Example: Worker thread

wor ker () {
pt hread_nut ex_| ock( & ead_ntx );

/* wait until flag indicates that data is ready */
while( ready == 0 )

pt hread_cond_wait( & ead cond, &ead ntx );
pt hread _nutex_unl ock( & ead ntx );

/* data is available, begin work */

pt hread exit(); /* Exit when finished */




