
Concurrent Programming Concurrent Programming
with with PthreadsPthreads

Clay BreshearsClay Breshears
Rice University / ERDC MSRCRice University / ERDC MSRC

Henry A. GabbHenry A. Gabb
Nichols Research Corporation / ERDC MSRCNichols Research Corporation / ERDC MSRC

2

AcknowledgementsAcknowledgements

This work was funded by theThis work was funded by the DoDDoD High High
Performance Computing Modernization Program Performance Computing Modernization Program
US Army Engineer Research and Development US Army Engineer Research and Development
Center Major Shared Resource Center (ERDC Center Major Shared Resource Center (ERDC

MSRC) through Programming Environment and MSRC) through Programming Environment and
Training (PET), Contract Number: DAHC 94Training (PET), Contract Number: DAHC 94--9696--

C0002, Nichols Research Corporation.C0002, Nichols Research Corporation.

3

OutlineOutline

•• What are Threads?What are Threads?
•• PthreadsPthreads (Core functions) (Core functions)

–– Threading Serial CodesThreading Serial Codes

•• Concurrent ProgrammingConcurrent Programming
•• Numerical ComputationNumerical Computation
•• PthreadsPthreads (Advanced functions)(Advanced functions)

4

OutlineOutline

•• What are Threads?What are Threads?
•• PthreadsPthreads (Core functions)(Core functions)

–– Threading Serial CodesThreading Serial Codes

•• Concurrent ProgrammingConcurrent Programming
•• Numerical ComputationNumerical Computation
•• PthreadsPthreads (Advanced functions)(Advanced functions)

5

Multitasking in UnixMultitasking in Unix

•• HeavyHeavy--weight processes spawned with weight processes spawned with
forkfork
–– Preemptive and priorityPreemptive and priority--based schedulingbased scheduling

•• Usually do not share common address Usually do not share common address
spacespace
–– Sharing data can be cumbersomeSharing data can be cumbersome
–– Synchronization is complicated by preemptionSynchronization is complicated by preemption
–– Resources can be exhausted quicklyResources can be exhausted quickly
–– Application doesn’t scale well with loadApplication doesn’t scale well with load

6

ProcessesProcesses

•• Unix process requires:Unix process requires:
–– program code, program counter, heap memory, program code, program counter, heap memory,

stack memory, stack pointer, file descriptors, stack memory, stack pointer, file descriptors,
virtual memory table, signal table, etc.virtual memory table, signal table, etc.

•• Process embodies two characteristicsProcess embodies two characteristics
–– Unit of Resource OwnershipUnit of Resource Ownership
–– Unit of DispatchingUnit of Dispatching

7

Processes & ThreadsProcesses & Threads

•• Can these characteristics be dealt with Can these characteristics be dealt with
separately?separately?
–– Recent thought says ‘YES’Recent thought says ‘YES’

•• Unit of Resource Ownership is PROCESSUnit of Resource Ownership is PROCESS

•• Unit of Dispatching is THREADUnit of Dispatching is THREAD

8

ThreadsThreads

•• Each thread is a separate execution Each thread is a separate execution
streamstream
–– private program counter, stack memory, stack private program counter, stack memory, stack

pointer, signal tablepointer, signal table

•• Multiple threads may exist within a single Multiple threads may exist within a single
processprocess

•• Sometimes called “lightweight processes”Sometimes called “lightweight processes”
•• Other thread libraries:Other thread libraries:

–– Solaris threads, Linux threads, DCE threads, Win32 Solaris threads, Linux threads, DCE threads, Win32
and OS/2 threads, GNU Portable threadsand OS/2 threads, GNU Portable threads

9

What is Pthreads?What is Pthreads?

•• POSIX.1c standardPOSIX.1c standard
•• C language interfaceC language interface
•• All threads exist within same Unix All threads exist within same Unix

processprocess
•• All threads are peersAll threads are peers

–– No explicit parentNo explicit parent--child modelchild model
–– Exception: “main thread” holds process Exception: “main thread” holds process

informationinformation

10

Advantages of MultithreadingAdvantages of Multithreading

As opposed to multiple processesAs opposed to multiple processes
•• Resource useResource use
•• Shared memoryShared memory
•• Low overhead; context switchLow overhead; context switch

11

Resource UseResource Use

•• Threads share all resources of processThreads share all resources of process
–– (virtual) memory, (virtual) memory,
–– files, files,
–– I/O channels, etc.I/O channels, etc.

•• Smaller memory usage for thread Smaller memory usage for thread
control structurescontrol structures
–– Fields default to process control structureFields default to process control structure

12

Shared MemoryShared Memory

•• Not swapped out for thread context Not swapped out for thread context
switchswitch

•• Threads read/write to shared variables Threads read/write to shared variables
for communicationfor communication
–– cost of two memory accessescost of two memory accesses

•• Process to process must go through Process to process must go through
external sharing mechanismsexternal sharing mechanisms
–– system calls, sockets, network wiressystem calls, sockets, network wires

13

Low OverheadLow Overhead

•• Solaris process vs. Solaris thread:Solaris process vs. Solaris thread:
–– 30 times longer to create a process30 times longer to create a process
–– 10 time slower for synchronizing variables10 time slower for synchronizing variables
–– 5 times slower for context switch5 times slower for context switch

14

Pthreads vs. OpenMPPthreads vs. OpenMP

•• PthreadsPthreads
–– any thread may create new threadsany thread may create new threads
–– computations can be dynamically parallelcomputations can be dynamically parallel
–– thus, nested parallelism is possiblethus, nested parallelism is possible

•• OpenMPOpenMP
–– nested parallelism not yet supportednested parallelism not yet supported
–– often implemented as highoften implemented as high--level interface to level interface to

PthreadsPthreads

15

Parallelism or Concurrency?Parallelism or Concurrency?

•• Parallelism: two or more threads are Parallelism: two or more threads are
executingexecuting at the same timeat the same time
–– multiple processorsmultiple processors

•• Concurrency: two or more threads are Concurrency: two or more threads are
in progressin progress at the same timeat the same time
–– single or multiple processorssingle or multiple processors
–– preemption of thread due to blocking or preemption of thread due to blocking or timeslice timeslice

expirationexpiration

16

Thread ConsiderationsThread Considerations

•• Shared memory for communicationShared memory for communication
•• Explicit synchronization neededExplicit synchronization needed
•• Single processor model for developmentSingle processor model for development
•• Race conditionsRace conditions

–– Read/Write, Write/Write conflictsRead/Write, Write/Write conflicts
–– Models: Monitors, Rendezvous, Models: Monitors, Rendezvous,

Producer/Consumer, Readers/WriterProducer/Consumer, Readers/Writer

17

Parallel CommunicationParallel Communication

•• Some parallel tasks Some parallel tasks
wish to share datawish to share data

•• Messages become Messages become
synchronization synchronization
points between points between
processesprocesses
–– implicitly synchronizedimplicitly synchronized

send

recv

send

recv

18

Thread CommunicationThread Communication

store

read

T1 T2

•• T1 stores value in T1 stores value in
global memory locationglobal memory location

•• T2 reads value out of T2 reads value out of
global memory locationglobal memory location

•• Explicit synchronization Explicit synchronization
needed to ensure read needed to ensure read
occurs after storeoccurs after store

19

Race ConditionRace Condition

•• Concurrent access of same variable by Concurrent access of same variable by
multiple threadsmultiple threads
–– Read/Write conflictRead/Write conflict
–– Write/Write conflictWrite/Write conflict

•• Cause of other errors:Cause of other errors:
–– Execution order is assumed but is not guaranteedExecution order is assumed but is not guaranteed

20

Concurrent ExecutionConcurrent Execution

•• Must consider all possible execution Must consider all possible execution
interleavingsinterleavings of thread operationsof thread operations
–– may be running on same processormay be running on same processor
–– may be running on different processorsmay be running on different processors
–– processors may have different speedsprocessors may have different speeds

•• IF different output between separate IF different output between separate
runs:runs:
–– THEN use some form of synchronizationTHEN use some form of synchronization
–– may not show up 99 may not show up 99 4444//100100% of the time% of the time

21

Concurrent ProgrammingConcurrent Programming

•• Concurrent programming requires skillConcurrent programming requires skill
•• “Standard” programming models “Standard” programming models

availableavailable
–– MonitorsMonitors
–– RendezvousRendezvous
–– Producer/ConsumerProducer/Consumer
–– Readers/WriterReaders/Writer

22

Traditional Thread ApplicationsTraditional Thread Applications

•• Operating SystemsOperating Systems
•• ATM (Cash Machine) NetworkATM (Cash Machine) Network

–– transactions at different locations are independent transactions at different locations are independent
but act on shared databut act on shared data

•• Database SearchDatabase Search
–– threads can search different portions of datathreads can search different portions of data
–– each thread can satisfy a different queryeach thread can satisfy a different query

23

OutlineOutline

•• What are Threads?What are Threads?
•• PthreadsPthreads (Core functions) (Core functions)

–– Threading Serial CodesThreading Serial Codes

•• Concurrent ProgrammingConcurrent Programming
•• Numerical ComputationNumerical Computation
•• PthreadsPthreads (Advanced functions)(Advanced functions)

24

Overview of Core FunctionsOverview of Core Functions

•• Thread Data TypesThread Data Types
•• Thread ManagementThread Management
•• Mutual ExclusionMutual Exclusion
•• Condition VariablesCondition Variables
•• Attributes and error codesAttributes and error codes

25

“The Life of a Thread”“The Life of a Thread”
taken from taken from Programming with POSIX ThreadsProgramming with POSIX Threads, David R. , David R. ButenhofButenhof

created

wait satisfied

done, or cancelled

wait for resource
preempted

scheduled

ready blocked

running

terminated

26

Thread ManagementThread Management

•• pthreadpthread_create _create
–– create a threadcreate a thread
–– start execution of function mapped to threadstart execution of function mapped to thread

•• pthreadpthread_join_join
–– wait for thread to finishwait for thread to finish
–– retrieve exit code from joined threadretrieve exit code from joined thread

•• pthreadpthread_detach_detach
–– thread can no longer be joined or canceledthread can no longer be joined or canceled
–– reclaim thread resources upon terminationreclaim thread resources upon termination

27

Thread ManagementThread Management

•• pthreadpthread_self_self
–– retrieve thread handleretrieve thread handle

•• pthreadpthread_exit_exit
–– halt execution of calling threadhalt execution of calling thread
–– report exit codereport exit code

28

Thread Management Data TypesThread Management Data Types

•• pthreadpthread_t_t
–– thread handlethread handle

•• pthreadpthread__attrattr_t_t
–– thread attributes:thread attributes:

•• detach statedetach state
•• stack sizestack size
•• stack addressstack address
•• specifying NULL gives default thread attributesspecifying NULL gives default thread attributes

29

pthreadpthread_create_create

int pthreadint pthread_create(_create(tidtid, , attrattr, function, , function, argarg););
pthreadpthread_t *_t *tidtid

handle of created threadhandle of created thread
constconst pthreadpthread__attrattr_t *_t *attrattr

attributes of thread to be createdattributes of thread to be created
void *(*function)(void *)void *(*function)(void *)

function to be mapped to threadfunction to be mapped to thread
void *void *argarg

single argument to functionsingle argument to function

30

pthreadpthread_create_create

•• Spawn a thread running the functionSpawn a thread running the function
•• Thread handle returned viaThread handle returned via pthreadpthread_t _t

structurestructure
•• Specify NULL to use default attributesSpecify NULL to use default attributes
•• Single argument sent to functionSingle argument sent to function

–– If no arguments to function, specify NULLIf no arguments to function, specify NULL

•• Check error codes!Check error codes!

31

Error codes:Error codes: pthreadpthread_create_create

•• EAGAINEAGAIN
–– insufficient resources to create threadinsufficient resources to create thread

•• EINVALEINVAL
–– invalid attributeinvalid attribute

32

pthreadpthread_join_join

int pthreadint pthread_join(_join(tidtid, , valval__ptrptr););
pthreadpthread_t _t tidtid

handle of thread to be joinedhandle of thread to be joined
void **void **valval__ptrptr

exit code reported by joined threadexit code reported by joined thread

33

pthreadpthread_join_join

•• Calling thread waits for thread with Calling thread waits for thread with
handle handle tidtid to terminateto terminate

•• Exit code is returned from joined thread Exit code is returned from joined thread
if not NULLif not NULL

•• Threads are joinable by defaultThreads are joinable by default

34

Error codes:Error codes: pthreadpthread_join_join

•• ESRCHESRCH
–– thread (thread (pthreadpthread_t) not found_t) not found

•• EINVALEINVAL
–– thread (thread (pthreadpthread_t) not joinable_t) not joinable

35

Example: “Hello World”Example: “Hello World”

#include <#include <stdiostdio.h>.h>
#include <#include <pthreadpthread.h>.h>
#define NUM_THREADS 4#define NUM_THREADS 4
main()main()
{{

pthreadpthread_t _t tidtid[NUM_THREADS];[NUM_THREADS];

for (for (intint i = 0; i < NUM_THREADS; i++)i = 0; i < NUM_THREADS; i++)
pthreadpthread_create(&_create(&tidtid[i], NULL, hello, NULL);[i], NULL, hello, NULL);

for (for (intint i = 0; i < NUM_THREADS; i++)i = 0; i < NUM_THREADS; i++)
pthreadpthread_join(&_join(&tidtid[i], NULL);[i], NULL);

}}

36

Example: “Hello World”Example: “Hello World”

hello()hello()
{{

printfprintf(“Hello, World(“Hello, World\\n”);n”);
}}

37

pthreadpthread_detach_detach

int pthreadint pthread_detach(_detach(tidtid););
pthreadpthread_t_t tidtid

handle of thread to be detachedhandle of thread to be detached

38

pthreadpthread_detach_detach

•• Detach thread Detach thread tidtid
–– thread thread tidtid can no longer be joined or canceledcan no longer be joined or canceled

•• Upon termination, detached thread Upon termination, detached thread
resources are reclaimed by the systemresources are reclaimed by the system

•• pthreadpthread__attrattr_{get|set}_{get|set}detachstatedetachstate
–– PTHREAD_CREATE_JOINABLEPTHREAD_CREATE_JOINABLE
–– PTHREAD_CREATE_DETACHEDPTHREAD_CREATE_DETACHED

39

pthreadpthread_self_self

pthreadpthread_t_t pthreadpthread_self();_self();

pthreadpthread_t _t tidtid;;
int int work, work, ierrierr;;
if (work) {if (work) {

/* perform computation *//* perform computation */
}}
else {else {

tid tid = = pthreadpthread_self();_self();
ierr ierr == pthreadpthread_detach(_detach(tid tid); /* detach thread */); /* detach thread */
/* begin independent processing *//* begin independent processing */

}}

40

pthreadpthread_exit_exit

int pthreadint pthread_exit(_exit(exitcodeexitcode););
void *void *exitcodeexitcode

value to be returned at joinvalue to be returned at join

•• Terminates the calling threadTerminates the calling thread

•• Enables thread to report exit conditions to joining Enables thread to report exit conditions to joining
threadsthreads

•• Allows main thread to exit without terminating Allows main thread to exit without terminating
processprocess

41

Example: Example: pthreadpthread_exit usage_exit usage

#include <#include <pthreadpthread.h>.h>
#include <#include <stdiostdio.h>.h>
#include <#include <errnoerrno.h>.h>
main () {main () {

int ierrint ierr;;
pthreadpthread_t _t tidtid;;
ierrierr = = pthreadpthread_create(&_create(&tidtid, NULL, task, NULL);, NULL, task, NULL);
if (if (ierrierr != 0) { /* failed to create thread */!= 0) { /* failed to create thread */

fprintffprintf((stderrstderr, “Error %d: %s, “Error %d: %s\\n”, n”, ierrierr,,
strerrorstrerror((ierrierr));));

pthreadpthread_exit(&_exit(&ierrierr););
}}

}}

42

OutlineOutline

•• What are Threads?What are Threads?
•• PthreadsPthreads (Core functions) (Core functions)

–– Threading Serial CodesThreading Serial Codes

•• Concurrent ProgrammingConcurrent Programming
•• Numerical ComputationNumerical Computation
•• PthreadsPthreads (Advanced functions)(Advanced functions)

43

Getting StartedGetting Started

•• Identify tasks for threadingIdentify tasks for threading
•• Identify computational modelIdentify computational model

–– Who does what?Who does what?
–– Algorithms to useAlgorithms to use

•• Identify how data will be accessedIdentify how data will be accessed
–– What is global? What is local?What is global? What is local?
–– How is data to be assigned to threads?How is data to be assigned to threads?

44

Coding ConsiderationsCoding Considerations

•• Create function to encapsulate Create function to encapsulate
computationcomputation
–– may be function that already existsmay be function that already exists
–– use single parameter (C structure for multiple use single parameter (C structure for multiple

arguments)arguments)
–– followfollow pthreadpthread_create template for types_create template for types

Example: Example: void *solve (void *void *solve (void *argarg))

45

Coding ConsiderationsCoding Considerations

•• Recast parameter to local variable if Recast parameter to local variable if
neededneeded
–– may be structure of several parametersmay be structure of several parameters

•• Add code to determine task of threadAdd code to determine task of thread
–– may need access to global variablemay need access to global variable

•• Add code to access data for taskAdd code to access data for task
–– add code to protect global variablesadd code to protect global variables
–– shared data access may need to be restrictedshared data access may need to be restricted

•• Add code to synchronize thread Add code to synchronize thread
executionsexecutions

46

Static Task AllocationStatic Task Allocation

•• Computations/Data are divided equallyComputations/Data are divided equally
–– based on number of threads and thread IDbased on number of threads and thread ID

•• Typically access global dataTypically access global data
–– must protect potential access overlapsmust protect potential access overlaps
–– gather results into single locationgather results into single location

47

Example: Numerical IntegrationExample: Numerical Integration
#define NUM_THREADS 1024#define NUM_THREADS 1024
#define NUM_INTERVALS 65536#define NUM_INTERVALS 65536
float p_sums[NUM_THREADS];float p_sums[NUM_THREADS];
main()main()
{{ pthreadpthread_t _t tidtid[NUM_THREADS];[NUM_THREADS];

int int i, t_num[NUM_THREADS];i, t_num[NUM_THREADS];
float sum = 0.0;float sum = 0.0;
for (i = 0; i < NUM_THREADS; i++){for (i = 0; i < NUM_THREADS; i++){

t_num[i] = i;t_num[i] = i;
pthreadpthread_create(&_create(&tidtid[i], NULL, do_calc, &t_num[i]);[i], NULL, do_calc, &t_num[i]);

}}
for (i = 0; i < NUM_THREADS; i++){for (i = 0; i < NUM_THREADS; i++){

pthreadpthread_join(&_join(&tidtid[i], NULL);[i], NULL);
sum += p_sums[i];sum += p_sums[i];

}}
printfprintf(“Sum = %f(“Sum = %f\\n”, sum);n”, sum);

}}

48

Example: Numerical IntegrationExample: Numerical Integration
do_calc(void *num)do_calc(void *num)
{{ intint i, h,i, h, myidmyid, start, end;, start, end;

float float lsumlsum = 0.0, x;= 0.0, x;

myid myid = (= (intint)*num;)*num;
h = 1.0 / NUM_INTERVALS;h = 1.0 / NUM_INTERVALS;
start = (NUM_INTERVALS / NUM_THREADS) * start = (NUM_INTERVALS / NUM_THREADS) * myidmyid;;
end = start + (NUM_INTERVALS / NUM_THREADS);end = start + (NUM_INTERVALS / NUM_THREADS);
for (i = start; i < end; i++){for (i = start; i < end; i++){

x = h * ((float)i x = h * ((float)i -- 0.5);0.5);
lsumlsum += f(x);+= f(x);

}}
p_sums[p_sums[myidmyid] =] = lsumlsum;;

}}
float f(a) float a; { return (4.0 / (1.0 + a*a)); }float f(a) float a; { return (4.0 / (1.0 + a*a)); }

49

Dynamic Task AllocationDynamic Task Allocation

•• Single thread “generates” tasks to be Single thread “generates” tasks to be
worked on [Boss thread]worked on [Boss thread]

•• Other threads request new task when Other threads request new task when
done with previous [Worker threads]done with previous [Worker threads]

•• Boss sends kill signal at endBoss sends kill signal at end
•• Workers terminate gracefullyWorkers terminate gracefully
•• Good model for unequal amounts of Good model for unequal amounts of

computation between taskscomputation between tasks

50

OutlineOutline

•• What are Threads?What are Threads?
•• PthreadsPthreads (Core functions) (Core functions)

–– Threading Serial CodesThreading Serial Codes

•• Concurrent ProgrammingConcurrent Programming
•• Numerical ComputationNumerical Computation
•• PthreadsPthreads (Advanced functions)(Advanced functions)

51

Critical SectionsCritical Sections

•• Critical sectionCritical section
–– portions of program containing shared, modifiable dataportions of program containing shared, modifiable data
–– data or code that must only be used or executed by a single data or code that must only be used or executed by a single

thread at any timethread at any time

•• Example: Airline reservationsExample: Airline reservations

if (seat[num] == “EMPTY”) thenif (seat[num] == “EMPTY”) then
seat[num] = customer_nameseat[num] = customer_name
print confirmation numberprint confirmation number

endifendif

52

Read Set / Write SetRead Set / Write Set

•• Read SetRead Set
–– those memory locations that a thread will access, those memory locations that a thread will access,

but not modifybut not modify

•• Write SetWrite Set
–– those memory locations that a thread will access those memory locations that a thread will access

and modifyand modify

•• Applied to statements of code blocksApplied to statements of code blocks

53

Access ConflictsAccess Conflicts

•• Read/Write conflictsRead/Write conflicts
–– Thread A reads from seat[57]Thread A reads from seat[57]
–– Thread B writes “Jones” to seat[57]Thread B writes “Jones” to seat[57]
–– What value does Thread A get? What value does Thread A get?

•• Write/Write conflictsWrite/Write conflicts
–– Thread A writes “Smith” to seat[57]Thread A writes “Smith” to seat[57]
–– Thread B writes “Jones” to seat[57]Thread B writes “Jones” to seat[57]
–– What value is stored in seat[57]?What value is stored in seat[57]?

54

Race ConditionsRace Conditions

•• Concurrent access of same variable by Concurrent access of same variable by
multiple threadsmultiple threads
–– Read/Write conflictRead/Write conflict
–– Write/Write conflictWrite/Write conflict

•• Execution order is assumed but cannot Execution order is assumed but cannot
be guaranteedbe guaranteed

•• Most common error in concurrent Most common error in concurrent
programsprograms

•• May not be apparent at all timesMay not be apparent at all times

55

Mutual ExclusionMutual Exclusion

•• Enforces single thread access to a Enforces single thread access to a
critical sectioncritical section

•• Enables correct programming structures Enables correct programming structures
for avoiding race conditionsfor avoiding race conditions

•• Mechanism is a lock (Mechanism is a lock (mutexmutex))
–– Atomic operationsAtomic operations
–– Only one thread can “hold” Only one thread can “hold” mutex mutex at any timeat any time
–– Lock/unlock is a paired operationLock/unlock is a paired operation

56

Pthread Pthread Mutual ExclusionMutual Exclusion

•• pthreadpthread__mutexmutex_init_init
–– initialize initialize mutex mutex variablevariable

•• pthreadpthread__mutexmutex_lock_lock
–– lock lock mutex mutex if available, else wait for if available, else wait for mutexmutex

•• pthreadpthread__mutexmutex_unlock_unlock
–– return return mutex mutex to system or waiting threadto system or waiting thread

•• pthreadpthread__mutexmutex_destroy_destroy
–– destroy destroy mutexmutex, unavailable w/o initialization, unavailable w/o initialization

57

Mutual Exclusion Data TypesMutual Exclusion Data Types

•• pthreadpthread__mutexmutex_t_t
–– the the mutex mutex variablevariable

•• pthreadpthread__mutexattrmutexattr_t_t
–– mutex mutex attributesattributes

•• process sharingprocess sharing
•• scheduling protocolscheduling protocol
•• priority ceilingpriority ceiling
•• specifying NULL gives default specifying NULL gives default mutexmutex attributesattributes

58

pthreadpthread__mutexmutex_init_init

int pthreadint pthread__mutexmutex_init(_init(mutexmutex, , attrattr););
pthreadpthread__mutexmutex_t *_t *mutexmutex

mutexmutex to be initializedto be initialized
const pthreadconst pthread__mutexattrmutexattr_t *_t *attrattr

attributes to be given to attributes to be given to mutexmutex

•• Can also use the static, default Can also use the static, default initializerinitializer
–– PTHREAD_MUTEX_INITIALIZERPTHREAD_MUTEX_INITIALIZER

•• Programmer must pay attention to Programmer must pay attention to mutex mutex
scopescope

59

Error codes: Error codes: pthreadpthread__mutexmutex_init_init

•• ENOMEMENOMEM
–– insufficient memory for insufficient memory for mutexmutex

•• EAGAINEAGAIN
–– insufficient resources (other than memory)insufficient resources (other than memory)

•• EPERMEPERM
–– no privilege to perform operationno privilege to perform operation

60

pthreadpthread__mutexmutex_lock_lock

int pthreadint pthread__mutexmutex_lock(_lock(mutexmutex););
pthreadpthread__mutexmutex_t *_t *mutexmutex

mutex mutex to attempt to lockto attempt to lock

61

pthreadpthread__mutexmutex_lock_lock

•• Lock Lock mutexmutex
•• MutexMutex is held by calling thread until is held by calling thread until

unlockedunlocked
•• Mutex Mutex lock/unlock must be paired or lock/unlock must be paired or

deadlock occursdeadlock occurs
•• If If mutex mutex is locked by other thread, is locked by other thread,

calling thread is blockedcalling thread is blocked

62

Error codes: Error codes: pthreadpthread__mutexmutex_lock_lock

•• EINVALEINVAL
–– thread priority exceeds thread priority exceeds mutex mutex priority ceilingpriority ceiling

•• EDEADLKEDEADLK
–– calling thread already owns calling thread already owns mutexmutex

63

pthreadpthread__mutexmutex_unlock_unlock

int pthreadint pthread__mutexmutex_unlock(_unlock(mutexmutex););
pthreadpthread__mutexmutex_t *_t *mutexmutex

mutex mutex to be unlockedto be unlocked

64

pthreadpthread__mutexmutex_destroy_destroy

int pthreadint pthread__mutexmutex_destroy(_destroy(mutexmutex););
pthreadpthread__mutexmutex_t *_t *mutexmutex

mutex mutex to be to be uninitializeduninitialized

•• It is not necessary to destroy a statically It is not necessary to destroy a statically
initialized initialized mutexmutex

65

Example: Hello WorldExample: Hello World

#include<#include<pthreadpthread.h>.h>
#define NUM_THREADS 4#define NUM_THREADS 4
pthreadpthread__mutexmutex_t _t printlock printlock = PTHREAD_MUTEX_INITIALIZER;= PTHREAD_MUTEX_INITIALIZER;
main()main()
{{

pthreadpthread_t _t tidtid[NUM_THREADS];[NUM_THREADS];

for (for (intint i = 0; i < NUM_THREADS; i++)i = 0; i < NUM_THREADS; i++)
pthreadpthread_create(&_create(&tidtid[i], NULL, hello, NULL);[i], NULL, hello, NULL);

for (for (intint i = 0; i < NUM_THREADS; i++)i = 0; i < NUM_THREADS; i++)
pthreadpthread_join(&_join(&tidtid[i], NULL);[i], NULL);

}}

66

Example: Hello WorldExample: Hello World

hello()hello()
{{

pthreadpthread__mutexmutex_lock(&_lock(&printlockprintlock););
/* The /* The printf printf function is not function is not threadsafe threadsafe */*/
printfprintf(“Hello, World(“Hello, World\\n”);n”);
pthreadpthread__mutexmutex_unlock(&_unlock(&printlockprintlock););

}}

67

Example: Numerical IntegrationExample: Numerical Integration

•• Each thread updates a global variableEach thread updates a global variable
•• The The mutex mutex variable has global scopevariable has global scope
•• The The mutex mutex lock/unlock protects critical lock/unlock protects critical

section from write/write conflictssection from write/write conflicts
•• What might happen if What might happen if t_numt_num is is

replaced by the counter variable replaced by the counter variable ii in the in the
main thread?main thread?

68

Example: Numerical IntegrationExample: Numerical Integration
#define NUM_THREADS 1024#define NUM_THREADS 1024
#define NUM_INTERVALS 65536#define NUM_INTERVALS 65536
float global_sum = 0.0;float global_sum = 0.0;
pthreadpthread__mutexmutex_t global_lock;_t global_lock;
main()main()
{{ pthreadpthread_t _t tidtid[NUM_THREADS];[NUM_THREADS];

int int i, t_num[NUM_THREADS];i, t_num[NUM_THREADS];
pthreadpthread__mutexmutex_init(&global_lock, NULL);_init(&global_lock, NULL);
for (i = 0; i < NUM_THREADS; i++){for (i = 0; i < NUM_THREADS; i++){

t_num[i] = i;t_num[i] = i;
pthreadpthread_create(&_create(&tidtid[i], NULL, do_calc, &t_num[i]);[i], NULL, do_calc, &t_num[i]);

}}
for (i = 0; i < NUM_THREADS; i++)for (i = 0; i < NUM_THREADS; i++)

pthreadpthread_join(&_join(&tidtid[i], NULL);[i], NULL);
printfprintf(“Sum = %f(“Sum = %f\\n”, global_sum);n”, global_sum);

}}

69

Example: Numerical IntegrationExample: Numerical Integration
do_calc(void *num)do_calc(void *num)
{{ intint i, i, myidmyid, start, end;, start, end;

float x;float x;

myid myid = (= (intint)*num;)*num;
h = 1.0 / NUM_INTERVALS;h = 1.0 / NUM_INTERVALS;
start = (NUM_INTERVALS / NUM_THREADS) * start = (NUM_INTERVALS / NUM_THREADS) * myidmyid;;
end = start + (NUM_INTERVALS / NUM_THREADS);end = start + (NUM_INTERVALS / NUM_THREADS);
for (i = start; i < end; i++){for (i = start; i < end; i++){

x = h * ((float)i x = h * ((float)i -- 0.5);0.5);
pthreadpthread__mutexmutex_lock(&global_lock);_lock(&global_lock);
global_sum += f(x);global_sum += f(x);
pthreadpthread__mutexmutex_unlock(&global_lock);_unlock(&global_lock);

}}
}}
float f(a) float a; { return (4.0 / (1.0 + a*a)); }float f(a) float a; { return (4.0 / (1.0 + a*a)); }

70

Condition VariablesCondition Variables

•• Semaphores (per Semaphores (per DijkstraDijkstra))
–– integer variable (noninteger variable (non--negative) with queuenegative) with queue
–– wait(s): if s = 0 block, else swait(s): if s = 0 block, else s---- and proceedand proceed
–– signal(s): increment s, wake up thread waitingsignal(s): increment s, wake up thread waiting

•• Condition variable is associated with an Condition variable is associated with an
arbitrary conditional arbitrary conditional

•• Provides mutual exclusionProvides mutual exclusion

71

Condition Variable and Condition Variable and MutexMutex

•• Mutex Mutex is associated with condition is associated with condition
variablevariable
–– protects evaluation of the conditional expressionprotects evaluation of the conditional expression

•• Prevents “Lost Signal” problemPrevents “Lost Signal” problem
–– no sleeping thread to catch signalno sleeping thread to catch signal
–– signal is not savedsignal is not saved

72

Condition Variable AlgorithmCondition Variable Algorithm

•• Acquire Acquire mutexmutex
•• While conditional is true, WaitWhile conditional is true, Wait
•• Perform critical section computationPerform critical section computation

–– somehow update conditionalsomehow update conditional

•• Signal sleeping thread(s)Signal sleeping thread(s)
•• Release Release mutexmutex

73

Condition VariablesCondition Variables

•• pthreadpthread__condcond_init, _init, pthreadpthread__condcond_destroy_destroy
–– initialize/destroy condition variableinitialize/destroy condition variable

•• pthreadpthread__condcond_wait_wait
–– attempt to hold condition variableattempt to hold condition variable

•• pthreadpthread__condcond_signal_signal
–– signal release of condition variablesignal release of condition variable

•• pthreadpthread__condcond_broadcast_broadcast
–– broadcast release of condition variablebroadcast release of condition variable

74

Condition Data TypesCondition Data Types

•• pthreadpthread__condcond_t_t
–– the condition variablethe condition variable

•• pthreadpthread__condattrcondattr_t_t
–– condition attributescondition attributes

•• process sharingprocess sharing
•• specifying NULL gives default condition attributesspecifying NULL gives default condition attributes

75

pthreadpthread__condcond_init_init

int pthreadint pthread__condcond_init(_init(condcond, , attrattr););
pthreadpthread__condcond_t *_t *condcond

condition variable to be initializedcondition variable to be initialized
pthreadpthread__condattrcondattr_t *_t *attrattr

condition variable attributes to be usedcondition variable attributes to be used

•• Can also use the static, default Can also use the static, default initializerinitializer
–– PTHREAD_COND_INITIALIZERPTHREAD_COND_INITIALIZER

•• Programmer must pay attention to condition Programmer must pay attention to condition
scopescope

76

Error codes: Error codes: pthreadpthread__condcond_init_init

•• ENOMEMENOMEM
–– insufficient memory for condition variableinsufficient memory for condition variable

•• EAGAINEAGAIN
–– insufficient resources (other than memory)insufficient resources (other than memory)

77

pthreadpthread__condcond_destroy_destroy

int pthreadint pthread__condcond_destroy(_destroy(condcond););
pthreadpthread__condcond_t *_t *condcond

condition variable to be eliminatedcondition variable to be eliminated

•• It is not necessary to destroy a statically It is not necessary to destroy a statically
initialized condition variableinitialized condition variable

78

pthreadpthread__condcond_wait_wait

int pthreadint pthread__condcond_wait(_wait(condcond, , mutexmutex););
pthreadpthread__condcond_t *_t *condcond

condition variable attempted to be heldcondition variable attempted to be held
pthreadpthread__mutexmutex_t *_t *mutexmutex

mutex mutex associated with condition variableassociated with condition variable

79

pthreadpthread__condcond_wait_wait

•• Releases associated Releases associated mutexmutex
•• When signal is received, thread must When signal is received, thread must

reacquirereacquire mutexmutex before function returnsbefore function returns
•• Prone to spurious wakeups, thusProne to spurious wakeups, thus

–– Acquire Acquire mutexmutex
–– Evaluate associated conditional expressionEvaluate associated conditional expression

•• if true, block thread (release if true, block thread (release mutexmutex) to await signal) to await signal
on condition variableon condition variable

•• if false, releaseif false, release mutexmutex and continueand continue

80

pthreadpthread__condcond_signal_signal

int pthreadint pthread__condcond_signal(_signal(condcond););
pthreadpthread__condcond_t *_t *condcond

condition variable to be releasedcondition variable to be released

81

pthreadpthread__condcond_signal_signal

•• Signal condition variable, wake one Signal condition variable, wake one
waiting threadwaiting thread

•• If no threads waiting, no action takenIf no threads waiting, no action taken
–– Signal is not saved for future threadsSignal is not saved for future threads

•• Before signal, thread must have Before signal, thread must have mutexmutex
–– If not, race condition may resultIf not, race condition may result

82

Example: DenominatorExample: Denominator

•• Two threads oversee a global variableTwo threads oversee a global variable
–– Thread 1 calculates a valueThread 1 calculates a value
–– Thread 2 waits for this valueThread 2 waits for this value

•• A A mutex mutex controls access to this variablecontrols access to this variable
•• Thread 1 signals thread 2 (waiting)Thread 1 signals thread 2 (waiting)

83

Example: Denominator (thread1)Example: Denominator (thread1)

#include <#include <pthreadpthread.h>.h>

pthreadpthread__mutexmutex_t _t denomdenom__mtx mtx = PTHREAD_MUTEX_INITIALIZER;= PTHREAD_MUTEX_INITIALIZER;
pthreadpthread__condcond_t _t denomdenom__cond cond = PTHREAD_COND_INITIALIZER;= PTHREAD_COND_INITIALIZER;
float denominator = 0.0;float denominator = 0.0;

thread1() {thread1() {
pthreadpthread__mutexmutex_lock(&_lock(&denomdenom__mtx mtx););

denominator = f(); /* calculate denominator */denominator = f(); /* calculate denominator */
pthreadpthread_signal(&_signal(&denomdenom__cond cond); /* signal waiting thread */); /* signal waiting thread */

pthreadpthread__mutexmutex_unlock(&_unlock(&denomdenom__mtx mtx););
}}

84

Example: Denominator (thread2)Example: Denominator (thread2)

thread2() {thread2() {
float local_float local_denomdenom;;

pthreadpthread__mutexmutex_lock(&_lock(&denomdenom__mtxmtx););

/* wait for non/* wait for non--zero denominator */zero denominator */
while(denominator == 0.0)while(denominator == 0.0)

pthreadpthread__condcond_wait(&_wait(&denomdenom__condcond, &, &denomdenom__mtxmtx););
local_local_denom denom = denominator;= denominator;

pthreadpthread__mutexmutex_unlock(&_unlock(&denomdenom__mtx mtx););

/* Use local copy of denominator for division *//* Use local copy of denominator for division */
}}

85

pthreadpthread__condcond_broadcast_broadcast

int pthreadint pthread__condcond_broadcast(_broadcast(condcond););
pthreadpthread__condcond_t *_t *condcond

condition variable to be releasedcondition variable to be released

86

pthreadpthread__condcond_broadcast_broadcast

•• Wake all threads waiting on condition Wake all threads waiting on condition
variablevariable

•• If no threads waiting, no action takenIf no threads waiting, no action taken
–– Broadcast is not saved for future threadsBroadcast is not saved for future threads

•• Before broadcast, thread must haveBefore broadcast, thread must have
mutexmutex
–– If not, race condition may resultIf not, race condition may result

87

Example: Broadcast signalExample: Broadcast signal

•• Main threadMain thread
–– Creates worker threadsCreates worker threads
–– Reads input dataReads input data
–– Signals worker threads to begin computationSignals worker threads to begin computation

•• Worker threadsWorker threads
–– Wait for signal that data is availableWait for signal that data is available
–– Begin workBegin work

88

Example: Main threadExample: Main thread
#include <#include <pthreadpthread.h>.h>
pthreadpthread_t _t tidtid[N_THREADS];[N_THREADS];
pthreadpthread__mutexmutex_t read__t read_mtx mtx = PTHREAD_MUTEX_INITIALIZER;= PTHREAD_MUTEX_INITIALIZER;
pthreadpthread__condcond_t read__t read_cond cond = PTHREAD_COND_INITIALIZER;= PTHREAD_COND_INITIALIZER;
int int ready = 0;ready = 0;

main() {main() {
for (for (int int i = 0; i < N_THREADS; i++)i = 0; i < N_THREADS; i++)

pthreadpthread_create(&_create(&tidtid[i], NULL, worker, NULL);[i], NULL, worker, NULL);
/* read input data *//* read input data */
pthreadpthread__mutexmutex_lock(&read__lock(&read_mtx mtx););
ready = 1; /* reset condition flag */ready = 1; /* reset condition flag */
pthreadpthread_broadcast(&read__broadcast(&read_cond cond););
pthreadpthread__mutexmutex_unlock(&read__unlock(&read_mtx mtx););
pthreadpthread_exit(); /* exit without terminating process */_exit(); /* exit without terminating process */

}}

89

Example: Worker threadExample: Worker thread

worker() {worker() {
pthreadpthread__mutexmutex_lock(&read__lock(&read_mtxmtx););

/* wait until flag indicates that data is ready *//* wait until flag indicates that data is ready */
while(ready == 0)while(ready == 0)

pthreadpthread__condcond_wait(&read__wait(&read_condcond, &read_, &read_mtxmtx););

pthreadpthread__mutexmutex_unlock(&read__unlock(&read_mtx mtx););

/* data is available, begin work *//* data is available, begin work */

pthreadpthread_exit(); /* Exit when finished */_exit(); /* Exit when finished */
}}

