Concurrent Programming
with Pthreads

Clay Breshears
Rice University / ERDC MSRC

Henry A. Gabb

Nichols Research Corporation / ERDC MSRC

PGS HY A= i

IVIDKUWE

Acknowledgements

This work was funded by the DoD High
Performance Computing Modernization Program
US Army Engineer Research and Development
Center Major Shared Resource Center (ERDC
MSRC) through Programming Environment and
Training (PET), Contract Number: DAHC 94-96-
C0002, Nichols Research Corporation.

Outline

e \What are Threads?

e Pthreads (Core functions)
— Threading Serial Codes

e Concurrent Programming
e Numerical Computation
e Pthreads (Advanced functions)

Outline

o> What are Thnreads?

e Pthreads (Core functions)
— Threading Serial Codes

e Concurrent Programming
e Numerical Computation
e Pthreads (Advanced functions)

Multitasking in Unix

e Heavy-weight processes spawned with
fork

— Preemptive and priority-based scheduling

e Usually do not share common address
Space
— Sharing data can be cumbersome
— Synchronization is complicated by preemption
— Resources can be exhausted quickly
— Application doesn't scale well with load

Processes

e Unix process requires:

— program code, program counter, heap memory,
stack memory, stack pointer, file descriptors,
virtual memory table, signal table, etc.

e Process embodies two characteristics

— Unit of Resource Ownership
— Unit of Dispatching

Processes & Threads

e Can these characteristics be dealt with

separately?
— Recent thought says ‘YES'

o Unit of Resource Ownership is PROCESS

e Unit of Dispatching is THREAD

Threads

e Fach thread is a separate execution
stream

— private program counter, stack memory, stack
pointer, signal table

e Multiple threads may exist within a single
process

e Sometimes called “lightweight processes”

e Other thread libraries:

— Solaris threads, Linux threads, DCE threads, Win32
and OS/2 threads, GNU Portable threads

What is Pthreads?

e POSIX.1c standard
e C language interface

e All threads exist within same Unix
Drocess

e All threads are peers

— No explicit parent-child model

— Exception: “main thread” holds process
information

Advantages of Multithreading

As opposed to multiple processes
e Resource use

e Shared memory
e | ow overhead; context switch

Resource Use

e Threads share all resources of process
— (virtual) memory,
— files,
— I/O channels, etc.

e Smaller memory usage for thread

control structures
— Fields default to process control structure

Shared Memory

e Not swapped out for thread context
switch

e Threads read/write to shared variables
for communication
— cost of two memory accesses

e Process to process must go through
external sharing mechanisms
— system calls, sockets, network wires

Low Overhead

e Solaris process vs. Solaris thread:
— 30 times longer to create a process
— 10 time slower for synchronizing variables
— 5 times slower for context switch

Pthreads vs. OpenMP

e Pthreads

— any thread may create new threads
— computations can be dynamically parallel
— thus, nested parallelism is possible

e OpenMP

— nested parallelism not yet supported

— often implemented as high-level interface to
Pthreads

Parallelism or Concurrency?

e Parallelism: two or more threads are
executing at the same time
— multiple processors

e Concurrency: two or more threads are

In progress at the same time

— single or multiple processors

— preemption of thread due to blocking or timeslice
expiration

Thread Considerations

e Shared memory for communication
e Explicit synchronization needed

e Single processor model for development

e Race conditions

— Read/Write, Write/Write conflicts

— Models: Monitors, Rendezvous,
Producer/Consumer, Readers/Writer

Parallel Communication

e Some parallel tasks
wish to share data

e Messages become
synchronization
send points between

Processes
— implicitly synchronized

Thread Communication

e T1 stores value in
global memory location

e T2 reads value out of
global memory location

Ldread o EXplicit synchronization
needed to ensure read
occurs after store

Race Condition

e Concurrent access of same variable by

multiple threads

— Read/Write conflict
— Write/Write conflict

e Cause of other errors:
— Execution order is assumed but is not guaranteed

Concurrent Execution

e Must consider all possible execution
interleavings of thread operations

— may be running on same processor
— may be running on different processors
— processors may have different speeds

o [F different output between separate

runs.
— THEN use some form of synchronization
— may not show up 99 +/.,,% of the time

Concurrent Programming

e Concurrent programming requires skill

e "Standard” programming models

available
— Monitors
— Rendezvous

— Producer/Consumer
— Readers/Writer

Traditional Thread Applications

e Operating Systems
e ATM (Cash Machine) Network

— transactions at different locations are independent
but act on shared data

e Database Search

— threads can search different portions of data
— each thread can satisfy a different query

Outline

e \What are Threads?

» Pthreads (Core functions)
— Threading Serial Codes
e Concurrent Programming

e Numerical Computation
e Pthreads (Advanced functions)

Overview of Core Functions

e Thread Data Types

e Thread Management

e Mutual Exclusion

e Condition Variables

e Attributes and error codes

“"The Life of a Thread”

taken from Programming with POSIX Threads, David R. Butenhof

wait satisfied
blocked
'\\preempted e

wait for resource

scheduled™

‘ done, or cancelled

terminated

Thread Management

e pthread_create
— create a thread
— start execution of function mapped to thread

e pthread_join
— wait for thread to finish
— retrieve exit code from joined thread

e pthread_detach

— thread can no longer be joined or canceled
— reclaim thread resources upon termination

Thread Management

o pthread_self

— retrieve thread handle

e pthread_exit

— halt execution of calling thread
— report exit code

Thread Management Data Types

e pthread_t
— thread handle

e pthread_attr_t

— thread attributes:
e detach state
e stack size
e stack address
e specifying NULL gives default thread attributes

pthread_create

int pthread_create(tid, attr, function, arg);
pthread_t *tid
handle of created thread
const pthread_attr_t *attr
attributes of thread to be created
void *(*function)(void *)
function to be mapped to thread
void *arg
single argument to function

pthread_create

e Spawn a thread running the function

e Thread handle returned via pthread_t
structure

o Specify NULL to use default attributes

e Single argument sent to function
— If no arguments to function, specify NULL

e Check error codes!

Error codes: pthread_create

e EAGAIN

— insufficient resources to create thread

e EINVAL

— invalid attribute

pthread_join

int pthread_join(tid, val_ptr);
pthread_t tid

handle of thread to be joined
void **val_ptr

exit code reported by joined thread

pthread_join

e Calling thread waits for thread with
handle t i d to terminate

e EXit code is returned from joined thread
if not NULL

e Threads are joinable by default

Error codes: pthread_join

o ESRCH
— thread (pthread_t) not found

e EINVAL
— thread (pthread_t) not joinable

Example: “Hello World”

#i ncl ude <stdio. h>
#i ncl ude <pthread. h>
#def i ne NUM THREADS 4
mai n()
{
pthread t tid[NUM THREADS] ;

for (int i =0; i < NUMTHREADS; i ++)
pthread create(& id[i], NULL, hello, NULL);

for (int i =0; i < NUMTHREADS; i ++)
pthread join(&id[i], NULL);

Example: “Hello World”

hel | o()

{
printf(“Hello, Wrld\n");

}

pthread_detach

int pthread_detach(tid);
pthread_t tid
handle of thread to be detached

pthread_detach

e Detach thread tid

— thread tid can no longer be joined or canceled

e Upon termination, detached thread
resources are reclaimed by the system

e pthread_attr_{get|set}detachstate

— PTHREAD_CREATE_JOINABLE
— PTHREAD_CREATE_DETACHED

pthread_self

pthread_t pthread_self();

pthread t tid;
I nt work, ierr;
i (work) {
/* performconputation */
}
el se {
tid = pthread self();
lerr = pthread detach(tid); /* detach thread */
/* begi n i ndependent processing */

pthread_exit

int pthread_exit(exitcode);
void *exitcode
value to be returned at join

e Terminates the calling thread

e Enables thread to report exit conditions to joining
threads

e Allows main thread to exit without terminating
process

Example: pthread_exit usage

#i ncl ude <pthread. h>
#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
main () {
Int 1err;
pthread t tid;
lerr = pthread create(&tid, NULL, task, NULL);
1 f (iterr 1= 0) { /[* failed to create thread */
fprintf(stderr, “Error %l: %\n", ierr,
strerror(ierr));
pthread exit(& err);

Outline

e What are Threads?
e Pthreads (Core functions)

— Threading Serial Codes
e Concurrent Programming
e Numerical Computation
e Pthreads (Advanced functions)

Getting Started

e Identify tasks for threading

e Identify computational model
— Who does what?
— Algorithms to use

e Identify how data will be accessed
— What is global? What is local?
— How is data to be assigned to threads?

Coding Considerations

e Create function to encapsulate
computation

— may be function that already exists

— use single parameter (C structure for multiple
arguments)

— follow pthread_create template for types

Example: voi d *sol ve (void *arg)

Coding Considerations

e Recast parameter to local variable if
needed
— may be structure of several parameters

e Add code to determine task of thread
— may need access to global variable

e Add code to access data for task
— add code to protect global variables

— shared data access may need to be restricted
e Add code to synchronize thread
executions

Static Task Allocation

o Computations/Data are divided equally
— based on number of threads and thread ID

e Typically access global data

— must protect potential access overlaps
— gather results into single location

Example: Numerical Integration

#def i ne NUM THREADS 1024

#defi ne NUM | NTERVALS 65536

fl oat p_suns[NUM THREADS] ;

mai n()

{ pthread_t tid[NUM THREADS] ;
int i, t_nunf NUM THREADS] ;
float sum = 0.0;

for (i = 0; i < NUM_THREADS; i ++){
t nunfi] =1i;
pthread_create(&id[i], NULL, do_calc, & _nunfi]);

}

for (i = 0; i < NUM THREADS; i ++){
pthread join(&id[i], NULL);
sum += p_suns[i];

}
printf(“Sum= %\n", sum;

Example: Numerical Integration

do _cal c(void *num
{ int i, h, nyid, start, end,
float | sum= 0.0, Xx;

nyid = (int)*num
h = 1.0 / NUM | NTERVALS;
start = (NUM_ I NTERVALS / NUM THREADS) * nyi d;
end = start + (NUM. I NTERVALS / NUM THREADS) ;
for (i = start; i < end; i++){
Xx =h* ((float)i - 0.5);
| sum += f (x);
}
p_suns[nyid] = Isum

}
float f(a) float a; { return (4.0/ (1.0 + a*a)); }

Dynamic Task Allocation

e Single thread “generates” tasks to be
worked on [Boss thread]

e Other threads request new task when
done with previous [Worker threads]

e Boss sends kill signal at end
o Workers terminate gracefully

e Good model for unequal amounts of
computation between tasks

Outline

e \What are Threads?

» Pthreads (Core functions)
— Threading Serial Codes
e Concurrent Programming

e Numerical Computation
e Pthreads (Advanced functions)

Critical Sections

e Critical section

— portions of program containing shared, modifiable data

— data or code that must only be used or executed by a single
thread at any time

e Example: Airline reservations

1 f (seat[nun] == “EMPTY”) then
seat [nunl = custoner_ nane

print confirnmation nunber
endi f

Read Set / Write Set

e Read Set

— those memory locations that a thread will access,
but not modify

e Write Set

— those memory locations that a thread will access
and modify

e Applied to statements of code blocks

Access Conflicts

e Read/Write conflicts
— Thread A reads from seat[57]
— Thread B writes “Jones” to seat[57]
— What value does Thread A get?

o \Write/Write conflicts
— Thread A writes “"Smith” to seat

— Thread B writes “Jones” to seat
— What value is stored in seat[57]:

Race Conditions

e Concurrent access of same variable by

multiple threads

— Read/Write conflict
— Write/Write conflict

e Execution order is assumed but cannot
be guaranteed

e Most common error in concurrent
programs

e May not be apparent at all times

Mutual Exclusion

e Enforces single thread access to a
critical section

e Enables correct programming structures
for avoiding race conditions

e Mechanism is a lock (mutex)
— Atomic operations
— Only one thread can “hold” mutex at any time
— Lock/unlock is a paired operation

Pthread Mutual Exclusion

e pthread_mutex_init
— initialize mutex variable

e pthread_mutex_lock

ock mutex if available, else wait for mutex

e pthread_mutex_unlock
— return mutex to system or waiting thread

e pthread_mutex_destroy
— destroy mutex, unavailable w/o initialization

Mutual Exclusion Data Types

e pthread_mutex_t
— the mutex variable

e pthread_mutexattr_t

— mutex attributes
e process sharing
e scheduling protocol
e priority ceiling
e specifying NULL gives default mutex attributes

pthread_mutex_init

int pthread_mutex_init(mutex, attr);

pthread_mutex_t *mutex
mutex to be initialized

const pthread_mutexattr_t *attr
attributes to be given to mutex

e Can also use the static, default initializer
— PTHREAD_MUTEX_INITIALIZER

e Programmer must pay attention to mutex
scope o8

Error codes: pthread _mutex_init

e ENOMEM

— insufficient memory for mutex

e EAGAIN

— insufficient resources (other than memory)

e EPERM

— no privilege to perform operation

pthread_mutex_lock

int pthread_mutex_lock(mutex);
pthread_mutex_t *mutex
mutex to attempt to lock

pthread_mutex_lock

e | ock mutex

e Mutex is held by calling thread until
unlocked

o Mutex lock/unlock must be paired or
deadlock occurs

o If mutex is locked by other thread,
calling thread is blocked

Error codes: pthread _mutex_lock

e EINVAL

— thread priority exceeds mutex priority ceiling

e EDEADLK

— calling thread already owns mutex

pthread_mutex_unlock

int pthread_mutex_unlock(mutex);
pthread_mutex_t *mutex
mutex to be unlocked

pthread_mutex_destroy

int pthread_mutex_destroy(mutex);

pthread_mutex_t *mutex
mutex to be uninitialized

e It is not necessary to destroy a statically
initialized mutex

Example: Hello World

#i ncl ude<pt hr ead. h>
#defi ne NUM THREADS 4

pthread nutex t printlock = PTHREAD MJUTEX | NI Tl ALI ZER
mai n()

{
pthread_t tid[NUM THREADS] ;

for (int i =0; i < NUMTHREADS; i ++)
pthread create(& id[i], NULL, hello, NULL);

for (int i =0; i < NUMTHREADS; i ++)
pthread join(&id[i], NULL);

Example: Hello World

hel | o()
{
pt hread mut ex | ock(&pri ntl ock);
/* The printf function is not threadsafe */
printf(“Hello, Wrld\n”);
pt hread _mut ex_unl ock(&ori ntl ock);

}

Example: Numerical Integration

e Each thread updates a global variable
e The mutex variable has global scope

e The mutex lock/unlock protects critical
section from write/write conflicts

e What might happen if t_num is
replaced by the counter variable 1 in the

main thread?

Example: Numerical Integration

#def i ne NUM THREADS 1024
#def i ne NUM | NTERVALS 65536
fl oat gl obal _sum = 0.0;
pt hread nutex_t gl obal | ock;
mai n()
{ pthread_t tid[NUM THREADS] ;
int i, t_nunf NUM THREADS] ;
pt hread nutex_init (&gl obal |ock, NULL);
for (i = 0; i < NUM THREADS; i ++){
t nunfi] =1i;
pthread create(&id[i], NULL, do_calc, & nunfi]);
}
for (i = 0; i < NUM THREADS; i ++)
pthread join(&id[i], NULL);
printf(“Sum= %\n", global sum;

Example: Numerical Integration

do _cal c(void *num
{ int i, nyid, start, end;
float x;

nmyid = (int)*num
h = 1.0 / NUM | NTERVALS;
start = (NUM I NTERVALS / NUM THREADS) * nyi d;
end = start + (NUM_|I NTERVALS / NUM THREADS) ;
for (i = start; i < end; i++){

Xx =h* ((float)i - 0.5);

pt hread _nut ex | ock(&gl obal | ock);

gl obal _sum += f(x);

pt hread _nut ex_unl ock(&gl obal | ock);

}
float f(a) float a; { return (4.0/ (1.0 + a*a)); }

Condition Variables

e Semaphores (per Dijkstra)
— integer variable (non-negative) with queue
— wait(s): if s = 0 block, else s-- and proceed
— signal(s): increment s, wake up thread waiting
e Condition variable is associated with an
arbitrary conditional

¢ Provides mutual exclusion

Condition Variable and Mutex

e Mutex is associated with condition
variable
— protects evaluation of the conditional expression

e Prevents “Lost Signal” problem

— no sleeping thread to catch signal
— signal is not saved

Condition Variable Algorithm

e Acquire mutex
e While conditional is true, Wait

e Perform critical section computation
— somehow update conditional

e Signal sleeping thread(s)
e Release mutex

Condition Variables

e pthread_cond_init, pthread_cond_destroy
— initialize/destroy condition variable

e pthread_cond_wait
— attempt to hold condition variable

e pthread_cond_signal
— signal release of condition variable

e pthread_cond_broadcast
— broadcast release of condition variable

Condition Data Types

e pthread_cond_t

— the condition variable

e pthread_condattr_t

— condition attributes
e process sharing
e specifying NULL gives default condition attributes

pthread_cond_init

int pthread_cond_init(cond, attr);
pthread_cond_t *cond

condition variable to be initialized
pthread_condattr_t *attr

condition variable attributes to be used

e Can also use the static, default initializer
— PTHREAD_COND_INITIALIZER

e Programmer must pay attention to condition
scope

Error codes: pthread_cond_init

e ENOMEM

— insufficient memory for condition variable

e EAGAIN

— insufficient resources (other than memory)

pthread_cond_destroy

int pthread_cond_destroy(cond);

pthread_cond_t *cond
condition variable to be eliminated

e It is not necessary to destroy a statically
initialized condition variable

pthread_cond_wait

int pthread_cond_wait(cond, mutex);
pthread_cond_t *cond

condition variable attempted to be held
pthread_mutex_t *mutex

mutex associated with condition variable

pthread_cond_wait

e Releases associated mutex

e \When signal is received, thread must
reacquire mutex before function returns

e Prone to spurious wakeups, thus

— Acquire mutex

— Evaluate associated conditional expression

o if true, block thread (release mutex) to await signal
on condition variable

o if false, release mutex and continue

pthread_cond_signal

int pthread_cond_signal(cond);
pthread_cond_t *cond
condition variable to be released

pthread_cond_signal

e Signal condition variable, wake one
waiting thread

e If no threads waiting, no action taken
— Signal is not saved for future threads

e Before signal, thread must have mutex
— If not, race condition may result

Example: Denominator

e Two threads oversee a global variable

— Thread 1 calculates a value
— Thread 2 waits for this value

e A mutex controls access to this variable
e Thread 1 signals thread 2 (waiting)

Example: Denominator (threadl)

#i ncl ude <pthread. h>

pt hread nutex t denom nt X PTHREAD MUTEX | NI Tl ALI ZER;
pt hread cond_t denom cond PTHREAD COND | NI Tl ALI ZER;
fl oat denom nator = 0.0;

threadl() {
pt hr ead_nut ex_| ock(&denomntx);

denom nator = f(); /* cal cul ate denom nator */
pt hread_signal (&enomcond); /[/* signal waiting thread */

pt hr ead_nut ex_unl ock(&denom ntx);

Example: Denominator (thread?2)

thread2() {
float | ocal denom

pt hread nutex | ock(&lenom ntx);
/* wait for non-zero denom nator */
whi | e(denom nator == 0.0)
pt hread cond wait(&Jlenom cond, &denomntx);
| ocal _denom = denom nat or;

pt hr ead_nmut ex_unl ock(&denom ntx);

/* Use | ocal copy of denom nator for division */

pthread_cond_broadcast

int pthread_cond_broadcast(cond);
pthread_cond_t *cond
condition variable to be released

pthread_cond_broadcast

o Wake all threads waiting on condition
variable

e If no threads waiting, no action taken
— Broadcast is not saved for future threads

e Before broadcast, thread must have

mutex
— If not, race condition may result

Example: Broadcast signal

e Main thread

— Creates worker threads
— Reads input data
— Signals worker threads to begin computation

e \Worker threads

— Wait for signal that data is available
— Begin work

Example: Main thread

#i ncl ude <pthread. h>

pthread t tid[N THREADS] ;

pt hread nutex t read ntx PTHREAD MUTEX | NI Tl ALI ZER;
pt hread cond t read cond PTHREAD COND | NI TI ALI ZER;
I nt ready = O;

mai n() {
for (int i = 0; I < N.THREADS; i ++)
pthread create(& id[i], NULL, worker, NULL);
/* read input data */
pt hread nutex | ock(&read ntx);
ready = 1; /* reset condition flag */
pt hread broadcast(& ead cond);
pt hread_mut ex_unl ock(&ead ntx);
pt hread _exit(); /* exit without term nating process */

Example: Worker thread

wor ker () {
pt hread_nut ex_| ock(& ead_ntx);

/* wait until flag indicates that data is ready */
while(ready == 0)

pt hread_cond_wait(& ead cond, &ead ntx);
pt hread _nutex_unl ock(& ead ntx);

/* data is available, begin work */

pt hread exit(); /* Exit when finished */

