Practical Programming
in Tcl and Tk

Brent Welch

DRAFT, January 13, 1995
Updated for Tcl 7.4 and Tk 4.0
THISISNOT THE PUBLISHED TEXT

THE INDEX ISINCOMPLETE
OME SECTIONS ARE MISSING

THE MANUSCIRPT HASNOT BEEN EDITED

GET THE REAL BOOK: ISBN 0-13-182007-9

An enhanced version of this text has been published by
Prentice Hall: ISBN 0-13-182007-9

Send comments via email to

welch@acm.org
with the word “book” in the subject.

http://www.sunlabs.com/~bwelch/book/index.html

The book is under copyright. Print for personal use only.

This on-line DRAFT is available curtesty the kind folks at PH.

Table of Contents

1. Tcl Fundamentalscocoveviviiiiininiiiiiininnnenne. 1
Getting Startedocveveiiiiiiiiiii e 1
Tcl Commandsoevvveiiiiiiiiiiiriir e 2
Hello WOTLd ...oevniniiiii e 3
Variableso.iuiiiiiii e 3
Command Substitutionccoceviiiiiiiiiiiiniininen. 4
Math EXPreSSiOns ...ccccviviiiiiiiiiiiiiiiiiiiiieeienenenenenenen. 4
Backslash Substitutioncccooovviiiiiiiiiniinnnn. 6
Double QUOLESooviiiiiiiiiie e 7
ProCedurescoouiiiiiiiiiiiiiii e 7
A While Loop Exampleccccoveniiiiiiiiiiiiiiiiiiiiinieeen 8
Grouping And Command Substitution 10
More About Variable Substitutionc.coooooiinii. 11
Substitution And Grouping Summaryc....ceee...... 11
Fine PoOINtS ..o 12
COMIMENTS ...iuiiiiiniiiii e 13
Command Line Argumentsc..ccocveveviieniinenennenennn.. 13
REfEIreNCe ...ouvviniiiiiiii i 14

Backslash Sequencesc.ccoceeveiiiiiiiiiiiniiinenenn.. 14
Arithmetic Operatorscccceveveiiiiiniiinineninnenene. 14
Built-in Math Functionscccociiiiiiiiinnn.. 15
Core Tcl Commandscoeeveveniniiiininiineniiinenennenenes 15
Predefined Variablescccocoeviiiiiiiiiiiiiiininininnnn, 18

2. Strings and Pattern Matching 19
The string Commandc.ccoceeieiiiiiiiiiiiiiiieieenennes 19
Strings And EXpressSionsc.ccocvvevevineniinineniinenenennen. 20
The append Commandcccceveveiiiiiiiiiiiiiiiiieienen.. 21
The format Commandccceevviviiiiiiniiiiiiiiieiieenenns. 21
The scan Commandcceoveviiiniiniieiiiniieiinreeieeennes 23
String Matchingc..oooiiiiiiiiiiiee 24
Regular EXPressionscccovevevvviieniniiinininenieinenennen. 25
The regexp Commandcc.ceeveuviviiiniiniieniineneniinenenne. 26
The regsub Commandccceeeviiiiiiiiiiiiiiiiniieenne. 28

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

3. Tcl Data StrucCtures ...cocvvvviiiiiiiiiiiiiiieiineenn. 29

More About Variablesccccoviiiiiiiiiiiiiiiiiiiiiieanes 29
The unset commandcccceeveiiieiiiiiiiiineneen.. 30
Using info to find out about variables 30

TCLLASES eniiiiiiiii e 31

Constructing Lists: list, lappend, and concat 32

Getting List Elements: llength, lindex, and lrange 33

Modifying Lists: linsert and Ireplacec.ccceenei. 34

Searching Lists: Isearchc.cooiiiiiiiiiiiiiin. 34

Sorting Lists: ISOTTocieuiiiiiiiiiiiiiieeeeeea 35

The split And join Commandscccceveviieniininennnen. 35

ATTAYS ooiniiiiiii e 36

The array Commandcceeeviiiiiniiniieiinieieeneneenen. 37

Environment Variablesc..ccocoiiiiiiiiiiiiiiiiiinninen 38

Tracing Variable Valuesc.cooiiiiiiiiiiiniiiinnn. 39

4. Control Flow Commandsc.ccceeveveienenenenenen. 41

IHThen EIS€ ..o 42

SWILCH oo 43

Foreachcoooiiiiiiiiiiiii 44

WHile ..o 45

FOT e 46

Break And Continueccooviiiiiiiiiiiiiiiiniinn 46

CatChl e 46

EITOT .oniiii 48

REtUITI ..ot 49

5. Procedures and SCOPEcceevvviviiiiinininininnnnnnne. 51

The proc Commandccocvuiiiiiiiiiiiiniiniennneneneenen. 51

Changing command names with rename 52

SCOPE ettt aaan 53

The global Commandcceoveiiiiiiiiiiiiiiiiieneane. 53

Use Arrays for Global Statec..coocoeviiiiiiiiiinin. 55

Call By Name USIing Upvarcoceeveviieniininenienenennnen. 55
Passing arrays by namec.cooceviiiiiinininn... 56

The uplevel Commandcoevviiiiiiinininininnereneenen. 57

6. Eval ..o, 59

Eval And LISt ..o 59

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Eval ANd CONCAL .oviniiieie e e 61

Double-quotes and evalcccoeveiiiiiiiiiiiiiinininn.. 62
Commands That Concat Their Arguments 62
The subst Commandccccoveiiiiiiiiiiiiiiiiiineeenee, 63

7. Working with UNIX ..., 65
Running Unix Programs With execc.ccocoeeieni. 65

2101 (o I 010 1o>; (=L A 67
Looking At The File Systemcccoooviiiiiiiiiniinennnn.e. 67
INPUt/OUtPUL ..eiiiii 70
Opening Files FOr I/Ocociiiiiiiiiiiiiiiiiiiieee e 70
Reading And WIitingc..cccoeiiiiiiiiiiiiiiiiinieeeen, 72

The puts and gets commandsc..ccoeeeeennennnnen. 72

The read commandc..cccceeiiiiiiiiiniiiiinenennnn.e. 73

Random acceSS I/ O vt 73

Closing I/O Streamscccoveveeniinininiineniiiieneneenenes 74
The Current Directory - cd And pwdc.ccveeninvinenen... 74
Matching File Names With globc...ccoiin. 74
The exit And pid commandscccoeveviiiniineneniinennn.. 75

8. Reflection and Debuggingcocoevvvvenenenen. 77
The info Commandcoeeiiiiiiiiiiiiiiiiie e, 77

Variablesccooiiiiiiiiiiiiiii 78

Proceduresccoveuiiiiiiiiiiiiii 79

The call stackcooiiiiiiiiiiiiiieeen 79

Command evaluationcc.coocevviiiiiiiiinininin... 80

Scripts and the libraryc..cocoevviiiiiiiniininenen... 80

Version NUMDErScccoiiiiiiiiiiiiiiiiiiiieieeeenes 80
Interactive Command HiStoryc..ccoceeviviiiininennnnen. 81

HisStory Syntaxcccooeieiiiiiiiiiiiiiiiii e 82

A comparision to /bin/csh history syntax 82
DEDUZZING ..euevinininiiiiii e 83
Don Libes’ debuggerccoviviiiiiiiiiiiiiiiiiiiieiieieeeane, 84

Breakpoints by pattern matching 85

Deleting break pointsccccoeviiiiiiiiiiininnnn. 86
The tkerror Commandcooveeieniiiiiiininiiniineneeneanen. 87
The tkinspect Programcccovviiiiiiiiiiiiinininiinenenne. 87
Performance TUuningccevviveviiiininiiiiniineeeeenn. 87

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

iv

9. Script Librariesc..ccccccieiiiiiiiiiiiiiiiiinn, 89
The unknown Commandc..ceveuviviieniinineniininennnnen. 89
The tellndex File ..o 90
Using A Library: auto_pathcooooiiiiii 90

Disabling the library facility: auto_noload 91
How Auto Loading Workscccoioviiiiiiiiiiiiiiininnens. 91
Interactive CONVENIeNCeScceveviiiiiiininininininininininnnn. 92

Auto EXecutecociiiiiiiiiiiiiii 92

HiStOIY ..oniniiiiiiiiiii 92

Abbreviationscccoeeiviiiiiiiiiiiii 92
Tcl Shell Library Environmentc.ccocoviiiinian.e. 93
Coding StYLecueniiiiiiiii e 93

A module prefix for procedure names 94

A global array for state variablesc.......... 94

10. Tk Fundamentalscccooviiiiiiiiiiinininninenen.. 95
Hello World In TK c.oviviiiiiiiiie e 96
Naming Tk Widgetsccocveviiiiiiiiiiiiiiiiiiiiiinnieeeens 98
Configuring TK Widgetsc.ccovuveuiiiiiiiiiiiiiiiieneeenen. 98
About The Tk Man Pagesc.ccoceeviiiiiiiiiniiinininennanen. 99
Summary Of The Tk Commandsc..coveieveieninnenns. 99

11. Tk by Examplecccoiiiiiiiiiiiiiiiiiiinenene. 103
EXECLOEZ .onininiiiiii 103

Window titlecooviviiiiiii e 105

A frame for buttons, etc.c..coiiiiiiiiiiiiin. 105

Command buttonscccovveiiiiiiiiiiinienineen.e. 106

Alabel and an entryccoovveieiiiiiiiiniiiien, 106

Key bindings and focusc..coeveiiiiiiinininiane, 106

A resizable text and scrollbarcoooeeenene. 107

The RUN PIOC ..oviniiiiiiiiiiiiii e 107

The Log procedurec.cooveveiiiiiiniiienenienenenne. 108

The Stop procedureccveviviieiiiiieiiiiiiiiieiennn. 108
The Example Browserccccccveviiviiiiiinininiinenenennen. 109

More about resizing windowsc.ccccceeenen.e. 110

Managing global statec.ccoceveiiiiiiiiininnan.. 111

Searching through filescocoiviiiiinn. 111

Cascaded MENUScceuveiiieniiiiiniiiiieiiieienieenennes 112

The Browse PrOCcoeveiiiiiiiiiniieieieneeneieenenanns 112

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

ATCLShEIL oo 113

Naming iSSUESccoeviiiiiiiiiiiiiiiiiiiiiiiieees 114
Text marks and bindingsc.ccoceviiiiiiniien.. 114

12. The Pack Geometry Managerc.c.......... 115
Packing towards a Sideccooviiiiiiiiiiiiiiiii, 116
Shrinking frames and pack propagate 116
Horizontal And Vertical Stackingccccoceevenanen. 117
The Cavity Modelccooieiiiiiiiiiiiiiiieeen 118
Packing Space and Display Spaceccceeevenennanen. 119
The -fill Optionccooviiiiiiiiii e 119
Internal padding with -ipadx and -ipady 120
External padding with -padx and -pady 123
Expand And ReSizingcccoooviviiiiiniiiiiinininineennen. 123
ANCROTING ..oniiiiiii e 125
Packing OTrdercccoouviiiniiiiiiiiiiiiei e 126
pack slaves and pack infoc.coooeiiiiin. 127
Pack the scrollbar firstcoociiiiiiiiiinnnne, 127
Choosing The Parent For Packingc....cc.coeeeenie. 128
Unpacking a Widgetccoooiiiiiiiiiiiiiiiiinen, 129
Packer SUMMATYccoveiiiiiiiiiiiiiiiieeeee 129
The pack Commandcccoeviviiiiinininininininineneneenen. 130
The Place Geometry Managerccccoceevvevenenvenenenne. 130
The place Commandcoceeveviiiiininineninenenenen. 131
Window Stacking Ordercccoeeeviiiiiiiiiniiiininnnn. 132
13. Binding Commands to X Events 133
The bind Commandc..ceveiiiiiiiiiiiiiiiiiieeeen. 133
All, Class, And Widget Bindingsc.ccccceevenianeen. 134
The bindtags commandcccceviviiiiinininnenn.. 135
break and continue in bindings 135

A note about bindings in earlier versions of Tk ... 135
Event Syntaxcocooiiiiiiii e 136
Key EVENtsooiviiiiiiiiiiiiiiiiiir 137
Button Eventscoooiiiiiiiiii 138
Other Eventscoooiiiiiiiiiiiiiiiicece 138
MOAIIET'S ..euviiiinii e 139
Events in Tk 3.6 and earlierc.oooeenenie. 141
Event SEqUenCescooeiiiiiiiiiiiiiiiiiii e 141

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Vi

Event KeyWordsScccooviiiiiiiiniiiiiiiiiiiniieeieeeeienes 142
14. Buttons and Menuscccocveveiiiiieninenenenenen.. 145
Button Commands and Scope Issuesc.cceeenenes 145
Buttons Associated with Tcl Variables 149
Button Attributesccoooiiiiiiiiiia 151
Button Operationsc.cocviviviiiniiiiiiiniiiieieneieieenanns 153
Menus and Menubuttonsc..c.ccoeeveiiiiiiiiiininiane, 153
Manipulating Menus and Menu Entries 155
A Menu by Name Packageccccovvivviiiiiiiinninian. 156
Popup Menus and Option Menusc.cceevevenvnnenenn. 159
Keyboard Traversalcccccoviveiiiiiiiiiiiiiniiiieneienes 159
Menu Attributesccooviiiiiiiiiiiiiii 160
15. Simple Tk Widgetscoeveveniiiiiiiiiniinenenenn.. 163
Frames and Top-Level Windowsc.c.cceeeveiinnninn. 163
Attributes for frames and toplevels 164
The label Widgetc.oeviiiniiiiiiiiiirirre e, 165
Label attributescccooiiiiiiiiiiiiiiiie, 166
Label width and wrapLengthc.c..cocoeeni. 166
The message Widgetccoveveiiiiiiiiiniiiiiniiiieineeane, 167
Message Attributesc..cocveiiiiiiiiiiiiiiineninn.n. 168
Arranging Labels and Messagescc.covevveninenannnn. 169
The scale Widgetoeveniiiiiiiiiiiiiiiiiiiniieeeean, 169
Scale attributesc..ooiiiiiiiiiiii 170
Programming scalesc..cccoeiiiiiiiiiiiiiininennnn.n. 171

The scrollbar Widgetcccoevviviiiiiiiiiiiiiiiinneeen, 172
Scrollbar attributescccoviiiiiiiiiiiiii. 174
Programming scrollbarsc.cooeviiiiiininininne, 175
The TK 3.6 protocolc.cceeviviiiniiniiiiiniieiinenennes 175
The bell Commandc..coveiiiiiiiiiiiiiiiieeen. 176
16. Entry and Listbox Widgetsc.c.ccceeveenenen.. 177
The entry Widgetcveviniiiiiiiiiiiiiniier e, 177
entry attributesooooiiiiiiiiii 180
Programming entry widgetsc..coooviiininiini. 181
The listbox Widgetcooviiviiiiiiiiiiiiiireee, 183
Programming listboXesc.cccceveiiiiiiiinennnn.n. 185
Listbox Bindingsc.ccoviiiiiiiiiiiiiiiiiiiieeneeeenes 189
Browse select modecccoveuiiiiiiiiiiiiiiiiin 190

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

17.

18.

Single select modecooiiiiiiiiiiiiiiii 190
Extended select modecceoveiiiiiiiiiiniiiinen... 191
Multiple select modeccoeeieniiiiiiniiniieninnenn.e. 192
Scroll bindingsc.cvveiiviiiiiiiirrea 192
listbox attributescccoioiiiiiiiiiiiiiiiiineean. 193
Geometry griddingc..cocveiviiiiiiiiiiiiiieens 194
Focus, Grabs, and Dialogsc.c.ccecenenee. 195
INPUL FOCUS cenviiiiiiiiii e 195
The focus commandcceeeveiiiniiiniiniininenennen. 196
Focus follows MOUSeccceveuiiniiiiiiiniiiiininninennes 196
CliCK tO TYPE ceueniiiiiiiiiie e 197
Hybrid modelscoooiiiiiiiiiiiiiiiiiiiniieeen 197
Grabbing the FOCUSc.ccoviiiiiiiiiiiiiiinee, 197
DiIalOgs ceovniniiiiiiiie e 198
The tkwait Commandc.ccoveiiniiiiiiiinininnenen.. 198
Prompter dialogccccoviiiiiiiiiiiiiiiiiiiieeen 198
Destroying widgetscoevviiiiiiiiiiiiiieniinenen.e. 200
Focusing on buttonsccccevviviiiiiiiiiinnnn 200
Animation with the update command 200
File Selection Dialogc.ccoveiiiiiiiiiiiiiiiiiiiieeeen, 201
Creating the dialogccoceeveiiiiiiiiiiiiiiiienes 201
Listing the directorycccooeveviiiiiiiiiiiniieniinenen.e. 204
Accepting a NAmMEecoeeveveiiniiiiiiniiiiiiiiieneeaenes 205
Easy stuff ..o 207
File name completionccccoevviviieiinineniinenn.e. 207
The text Widgetcooveiiiiiiiiiiiiiiiiiiinenene. 211
Text widget taXxonomycccceeveeevineniniinenennenenes 211
Text INAICES ..uvviniiniiiiiiiiii e 212
Text Marks ..c.ouiininiiiiiiiii e 213
TEXE TAZS -euenininieiiiii e 214
Tag attributesc.ccoveiiiiiiiiiiiiiii e 215
Mixing attributes from different tags 216
Line Spacing and Justificationc.coeviiniani. 217
The Selectioncccovevviiiiiiiiiiiiii e 219
Tag Bindingscooveieiiiiiiiiiiiiiiieeeeeeeea 219
Embedded Widgetsccoeuiiiiiniiiiiiiiiiiiiiiiiieeieeene, 220
Text BINdingsocovuviviiiiiiiiiiiiieeieee e 222

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

vii

viii

Text Operationscccoviiiiiiiiiiii e 223
Text ATTIDULES .o.iuiniiiii e, 225
19. The canvas Widgetcccoveiiiiiiiiiininininenenen.. 227
Hello, World! ..o 227
The Double-Slider Examplecccooviviiiiiiinininininan.n. 229
Canvas Coordinatesceceeveiiiniiieiniinenenninenennen. 233
ATCS oo e 233
Bitmap [temsSo.oeiviiiiiii 235
IMAZES ceenininiiiii e 236
Line IteImMSouiniiiii i 236
OVal TTEIMIS ..viiiiiiiiii e 238
Polygon It€mMSccuiviiiiiiiiiiiiii e 239
Rectangle Itemscooiiiiiiiiiiniiiiini e 240
TexXt ILEMS e e 241
Window Itemscccoviiiiiiiiiiiiiii 244
Canvas Operationsccceeviiiiiiiiiiiiiiiiieeeenens 246
Generating PoStSCriptcccooviviiiiiiiiiiiiin 248
Canvas Attributescccoviiiiiiiiiiiiiiiiii 250
HINES oo 251
Large coordinate Spacesc..ccceeveveenienenennnnen. 251
Scaling and Rotationc..ccocviviiiiiiiinninn 251

X RESOUTCES ..euvniniiinininiiineiiieeeneieeeneaeeeneaeeennes 252
Objects with many pointsc.ccoceeveviiiieinenen.e. 252

20. Selections and the Clipboard 253
The selection Commandc.coevviviiiiiiniiiniininennnnen. 254
The clipboard Commandcocveviiinininininenenenenen. 255
Interoperation with OpenLookc....c.c.eeee. 255
Selection Handlerscccoeoviviiiiiiniiiiiininiiiiniieeienes 255
A canvas selection handlerc.ooalL 256

21. Callbacks and Handlersc.c.cccoeveienenn.n. 259
The after Commandcoeeveviiiiiiiiiiiiiiiieneeene. 259
The fileevent Commandccceevviviieiiinineniininennnnen. 260
The send Commandcceevviiiiiiiiiiiiiniiiieneneenen. 261
The sender SCriptccoviviiiiiiiiiiiiiiirreens 262
USING SENAET ..o.oviiiiiiniiiiiiiiiiieieeeeeeeeeee e 264
Hooking the browser to a shell 266

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

22.

23.

24.

25.

Tk Widget Attributesc.cccvviviiiiiiiiininan.n. 269
Configuring Attributesccooviiiiiiiiiiiiiiiinn, 269
SIZE et 270
Borders and Reliefccooiiiiiiiiiiiii 272
The Focus Highlightc.ccoooiiiiiiiiin, 273
Padding and Anchorscccceoviiiiiiiiiiiiiiiniineeane. 274
Putting It All Togetherc.ccoooviiiiiiiiiiiiiiiiiininn 275
Color, Images, and CUursorsc.ccceeeenenenen. 277
COlOTS et 278
Colormaps and Visualsc.ccoceviiiiiiiiiniiinininennn.n. 280
Bitmaps and Imagesc..coveiiiiiiiiiiiiiiiiieeea, 281
The image Commandc.ccoveiiiiiiiiniiienennenene. 281
bimap imagescoveiiiiiiiiiiiee 281
The bitmap attributeccoooviiiiiiiiiiiiin 282
Photo IMagescccoeniiiiiiiiiiiii e 283
The Mouse CUTSOTcuiiuiiiiniiniiiiiiiiiiiiiieiieieeeeanean. 285
The Text INSert CUTSOTc.vvviiiniiiininiiiiieniinineeeenennes 287
Fonts and Text Attributesc...ccoeeennnin. 289
FONES ..o 289
Text Layoutooeiiiiniiiii i 292
Padding and Anchorscccceoviiiiiiiiiiiiiiniineeane. 293
Gridding, Resizing, and Geometrycc.coeeveneen. 294
Selection Attributescocoveiiiiiiiiiiiiii 295
A Font Selection Applicationc.ccceeveviiiiiniiininenan.n. 295
Window Managers and Window Information 303
The wm Commandccceeeviviiiiiiniiiiniieinneeeeennes 303
Size, placement, and decoration 304
ICOMS iviiiiiiiii i 305
Session stateooovoviiiiiiiii 306
MiSCellaneousc.c.veieuiiiiiiniiiiiiiiieieieeeeenees 307
The winfo Commandc..ccoveiiiiiiiiniiiiiiinneeen. 308
Sending commands between applications 308
Family relationshipsc.cooooiiiiiiiiiiininnn.. 308
SIZE e 309
Locationcooooviiiiiiiiiiiiiiiin 310
Virtual root windowccooviiiiiiiiiiiiniien., 311

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

X Chap
Atoms and IDSccoeiiiiiiiiiiiii 311
Colormaps and visualsc.cccveveiiiiiiiiiiiininiiinan. 312

The tk Commandccoeeiiiiiiiiiiiiiiiiiii, 313
26. A User Interface to bindc..c.coeeviieinen.en. 315
A Binding User Interfacec..coooieiiiiiiiiiiinin. 315

A Pair of Listboxes Working Together 317
The Editing Interfacecccooovviiiiiiiiiiiiiinnn, 319
27. Using X RESOUICEScccevevviiiniiiiiininininnnnnn. 323
An Introduction To X Resourcesc..coeeveuvenanenn. 323
Warning: order is important!c.ooeeenil. 325
Loading Option Database Filesc.cc.cceeiiienininent. 325
Adding Individual Database Entriesc........... 326
Accessing The Databasec..cccvevviviiiiiiniiiniinineninnen. 326
User Defined Buttonscccoeeiiiiiiiiiiiiiiinninennes 327
User Defined Menusc.ccoeeeviiiiiiiiiiiiiiiininineenne. 328
28. Managing User Preferencesc......... 331
App-Defaults Filesc.ccoeviiiiiiiiiiiiiiiiieee, 331
Defining Preferencesccccoovvviiiiiiiiiiiiininennnen. 333
The Preferences User Interfacec..c..cooceeieiani. 335
Managing The Preferences Filec..c.cocoiiianis 338
Tracing Changes To Preference Variables 340
29. C Programming and Tclc.cooiiininin. 341
Using the Tcl C Librarycoocoevvviiiiiiiiiiiiiieneieenes 342
Application Structurecccoeveiiiiiiiiiiiininneninnen. 342
Tcl_Main and Tcl_AppInitcocoeveiiiiiiiiiiiiiineane. 343
The standard mainin Tcl 7.3ccocoieiienni.. 344

A C Command Procedurec..ccccoeviiiiiiiinninian. 345
Managing The Result’s Storagec.ocoevvviveninnannn. 346
Invoking Scripts From Cccooiiiiiiiiiiiiiiiiienes 347
Bypassing Tcl_Evalc.ccooooiiiiiiiiiiiiiiiinnn. 347

Putting A Tcl Program Togetherc.ccooviveininns. 349

An Overview of the Tcl C libraryc..cooiveienieniane.n. 349
Application initializationcocoeeiiiiini... 350
Creating and deleting interpreters 350
Creating and deleteing commands 350
Managing the result stringc..cocevviinini. 350

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Lists and command parsingcccceveenrenenenn.. 350
Command pipelinescccoevviviiiiiiinininininenenen. 351
Tracing the actions of the Tcl interpreter 351
Evalutating Tcl commandscccvevveveienienenen... 351
Manipulating Tcl variablesc.c.cccoeoiiinie. 352
Evalutating expressionsc..cccevevveiiiiinneniininne, 352
Converting NUMDETSc.oviiiiiiiiiiniiiiieiineeeanenes 352
Hash tablesc.coooiiiiiiiiiiii e 352
Dynamic Stringsc.coeevveiiiiiiiiiiniieiiiniieieenennes 353
Regular expressions and string matching 353
Tilde Substitutionc..coceeiiiiiiiiiiiiiiiiienes 353
Working with signalsc.cooceiiiiiiiiiiiiin. 353
30. C Programming and TKc.cooeiinie. 355
Tk_Main and Tcl_AppInitccoeeiiiiiiiiiiiiiinnene. 355
A Custom Main Programc.ccoceevviviiiiiiiininnenen.e. 357
A Custom Event LOOD ...coovviiiiiiiiiiiiiiiiiiee 360
An Overview of the Tk C library.c.ccocoeeiiiiinnennane.n. 361
Parsing command line arguments 361
The standard application setupc.ccoeeuennenene. 362
Creating windowsc.cceeveiiiiieniiiininiiienennanenes 362
Application name for sendccoceviiiiiiniinan.n. 362
Configuring windowsc.cceceeveiinineniinenenninene. 362
Window coordinatescceovieiiiiiiiiiiiininien.. 362
Window stacking orderccoccoveviiiiiiiniinianen. 363
Window informationc..coociiiiiiiiiiiiinnan.n. 363
Configuring widget attributesc..cccoeeneenen. 363
Safe handling of the widget data structure 363
The selection and clipboardccccooveviiiiinni. 363
Event bindingscccoviiiiiiiiiiiiiiiiien 364
Event loop interfaceccocooiiiiiiiiiiiinninin, 364
Handling X eventsc..cocveiviviiiiininiiiiniieiinenennen 364

File handlerscocoooieiiiiiiiiiiiiceeeen 364
TImMer eVeNtScccvevviiiiiiiiiiiiiiiiiiieeeeae, 365
Idle callbacksccceveiiiiniiiiiiiiiiii e 365
SIEEPING ..vniiiiiiiiiii e 365
Reporting SCript €rrorsc..ccveveviieniininenienenenne. 365
Handling X protocol errorscocevevevenvenenen.e. 365
Using the X resource database.c........... 365

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Xi

X
Managing bitmapscceoveveveniiniieiiniieineneneanen. 366
Creating new image typesc.cccoeveviiiiiiiininnns 366
Using an image in a widgetcc.cooviienininni, 366
Photo image typescveveuviiiiiiiiiiiiiiiiiereeen, 366
Canvas object supportc..ccceevviviiiiiiiieiinenenne. 366
Geometry managmentcoevviiiiininininn, 367
String identifiers (UIDS)cccovviiiiiiiiiiiiininennnnen. 367
Colors and Colormapscoceeeeeieneneneneneenenenenennnns 367
3D BOTderscccoviuiiiiiiiiiiiiiiiiii 368
MOUSE CUTISOTS ..euiuinininininininininiiiniiiiiaieieieiaaananes 368
Font structuresc.cooeviiiiiiiiiiiiiiiiin 368
Graphics Contextsccceveviviiiiiiiiiiiiiiiiiieieiiinanns 368
Allocate a piXmapcceeveveieiiniiiiiiiireeeenes 368
Screen measurementsooooveveviiiiiiininneene. 368
Relief Styleooviiiiiiiii e 369
Text anchor positionscccceveviiiiiiiiiniiinenen... 369
Line cap Stylesccoeiiiiiiiiiiiiiiiii e 369
Line join Stylescccoviiiiiiiiiiiiiiiiiiieee, 369
Text justification stylescccoeeviviiiiiiiiniiinenen... 369
ATOINS vt 369
X resource ID managementc.ocoeeviininnn. 369
31. Writing a Tk Widget in Cc.ccoiiiiiiiiinn.n. 371
Implementing a New Widgetc.coooviiiiiiiininnnen.. 371
The Widget Data Structurec.coeeveviiiiiiininnan. 372
Specifying Widget Attributescccoooviviiiiiiiinininni. 373
The Widget Class Commandc..ccceeveiiieniinenenanen. 375
Widget Instance Commandccoceevveiiiiiiinninnanenn. 376
Configuring And Reconfiguring Attributes 378
Displaying The CIoCKccccooiiiiiiiiiiiiiiiiiiiieeeenes 380
The Window Event Procedurec.c..cccoevvviienan.n. 383
Final Cleanupccccocveiiiiiiiiiiiniiiiieie e 384
32. Tcl Extension Packagesc.c.c.ooiini. 387
Extended TCloooviniiiiiiiiiiiiiii 388
Adding tclX to your applicationc.cceeuenenne. 388
More UNIX system callsc.cceevevviiiieniiiinennnn.n. 389
File operationscccccveviiiiiiiiiiiiiiiiiiiiiiiineieeenes 389
New loop constructsc.ccoveveiiviiiiiiniiiiinneeanen. 389

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Xiii

Command line addonsc..ccocveviiiiiiiiinnennenenn. 389
Debugging and development support 389
TCP/IP QCCESS .uvuiiniininiiniiiiiiiiiiiieeieieeeeeeanen 390
File scanning (i.e., aWk)c..coveiiiiiiiiiniiininenen... 390
Math functions as commandsc..cccceeueenene. 390
List OPerationsccceveviiiiiniiiiiiiiiiieeeeenens 390
Keyed list data structurec..c.cooevviieininn... 390
String utilitiesccooiiiiiiiiiiii 391
XPG/3 message catalogc.coeeveiniiiininiinininiinent. 391
Memory debuggingcccoveveiiiininiiiniieniinenennn. 391
Expect: Controlling Interactive Programs 391
The core expect commandslc.coeveveiiniinn.. 392
Pattern matchingcocoiiviiiiiiiiiiininnn. 393
Important variablescccoviiiiiiiiiiiiiiii 393
An example expect SCriptoceevevviviiiniinininnenene. 394
Debugging expect SCriptscccoveveveiinineniinenenne. 395
Expect’s Tcl debuggeroevevviiiiiiiiiniiiiiiiiieneane. 395
The Dbg C interfaceccocoveviiviiiiiinininieninn.n. 396
Handling SIGINTccoooiiiiiiiiiiiiiieeeeeenes 397
BT e e 398
Drag and drop ...ccoeeveveniiiiiiiiiii e 398
HyperteXt ..o 399
GIaphs ..o 399
Table geometry managerc.coeeeveviinnennincnnen. 399
Bitmap supportccociiiiiii 399
Background €Xe€Cc..coieiiiiiiiiiiiiiiiiiieieen 399
Busy WindOWc.ccoieiiiiiiiiiiiiiiiee e 399
Tracing Tcl commandsccocveveviniiiiiiiinininninen.. 399
The old-fashioned cutbuffer 400
TCI-DP .o 400
Remote Procedure Callc..cooveiiiiiiiininiane, 400
Connection SEtUP ...coevviniiiiiiiiiiiiiiireeeeee 401
Sending network datacoccoeiiiiiiiiinnn 401
Using UDP ..o 401
Event processingcccooveviviiiiiiiiiiiiiiiiiniiininin 401
Replicated objectsccooviiiiiiiiiiiiiiiii 402
The [incr tcl] Object Systemcccveviviieiiiinenienenen... 402
Tcl_Applnit With Extensionsc.coceeveviiiiininininen.n. 404
Other EXtensionsccccovcvviviiiiiiiiiiiiniiiiiinnneenen, 407

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

XIv

Tcl applicationsoccvvviveiiniiniiiiiieeeeieenen 407

33. Porting to TK 4.0 ..c.oiniiiiiiiiiiiieeen, 409
WS i 409
Obsolete FEatUrescovviviiiiiiiiiiiiiiiiieieeeeneen, 409
The cget Operationc..cccvevveiiiiiiiiiiiiiiiieneeene. 410
Input Focus Highlight ... 410
BIiNdingsoooeuiiiiiiiiii e 410
Scrollbar Interfacecooviiiiiiiiiiiiii 411
Pack info ..c.oviviniiiii 411
FOCUS oo e 411
SEIIA .ot 412
Internal Button Paddingc.ccocoviiiiiiiiiininnnen.. 412
Radio BUttonsSc.cooviviiiiiiiiiiiiccccccce e 412
Entry Widgetooiniiiiiiii e 412
1Y £S5 01 B E= T P 413
LiSthOXES .ot 413
No geometry Attributec..coiiiiiiiiiiiiiiien 413
Text WIdGet ...cuinieiiiniiiiiie e 413
Canvas scrollincrementcccoveviiiiiiiiiiiiiiiinnenns. 414
The SeleCtioncooviiiiiiiii s 414
Color Attributescooviiiiniiiii 414
The bell Commandccoevviiiiiiiiiiiiiiiceeene 415

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

List of Examples

The “Hello, World!” example.ccoeuviiiiiniiniiniiniiniiniiniineicieenn, 3
TCl variables.oueeiiiiii e 3
Command subSttULION.c.viiiiiiiiiiiiii e 4
Simple arithmetiC.......o.ovuiiiiii e 5
Nested COmMIMANAS.uiuniiniiiiiiei et e e eaeaneanes 5
Built-in math functions...........ccouviiiiiiiiiiiii e 5
Controlling precision with tcl_precision.ccoceeevviiiiiiiiiiniininn., 5
Quoting special characters with backslash............c.ccccooiiiinin. 6
Continuing long lines with backslashes.............cccociiiiiiiiiiinn. 6
Grouping with double quotes allows substitutions. 7
Defining @ ProCeAUTIE.iuuiiiiii ittt et e eeeaeeaaes 8
A loop that multiplies the numbers from 1 to 10.cc..ceeenneennen 9
Embedded command and variable substitution......................... 10
Embedded variable references.........ccoeuveuiiiiiiiiiniiniiiieieiennens 11
Comparing Strings.cccoviviiiiiiiiiiiiiii e 21

Regular expression to parse the DI SPLAY environment variable. .27

Using set to return a variable value...........ccccceeuviiiiiiiiniiniininnenn.e. 30
Using i nf o to determine if a variable exists.c.ccceeuveuinnenn.e. 30
Constructing a list with the |i st command.c.ccceeunennen.e. 32
Using | append to add elements to a list.ccceuveiiiiiiiniiiininnenn.n. 32
Using concat to splice together lists.ccoeuveiviiiiiiiiiiiniininnenn.e. 33
Double quotes compared to the | i st command. 33
Modifying lists with | i nsert and I replace.....cccocveueiiiniinennennen. 34
Deleting a list element by value.ccoeuviiiiiiiiiiiiiiniiniieicinennee, 34
Sorting a list using a comparison function.c..cceeieennn.e. 35
Use split to turn input data into Tcl lists.ccveuiiiiiiiiniiinnenn.e. 35
USINE QITAYS. tuetntnenineniinti ettt et et e e teneeeneeeneeaenanen 36
What if the name of the array is in a variable.cccceeunani. 37
Converting from an array to a list..........ccoeiiiiiiiiiiiiiiniinienn.e. 38
print env prints the environment variable values. 39
Tracing variablesS........ocviviiiiiiiie et 40
Creating array elements with array traces.c..ccccvevveiinnnn.e. 40
A conditional if-then-el se command.........c.ccceeuveiiiiiiiiiinennenne. 42
Chained conditional with el seif.ccccoiiiiiiiiiiiiiiiiiiene, 42
Using swi t ch for an exact match.ccooeviiiiiiiiiiiiiniii e, 43
Using swi t ch with substitutions in the patterns.c..c........... 44
Using swi t ch with all pattern body pairs grouped with quotes. ..44
Looping with foreach.ccoveuieiiiiiii e, 44
Parsing command line arguments.c..ccccoveieiiiiiiiiennenennen. 45

Using | i st wWith foreach...c..coooiiiiiiiiiiieeen, 45

XVi

4.9

4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5

9.1
9.2

10.1

11.1
11.2
11.3

A whi | e loop to read standard input..........coooveveiiiiiiiiiiinininen... 46
A T Or LOOP. teniiii e 46
A standard cat ch Phrase.ccocoiiiiiiiiiiiiiiiir e 47
A longer cat ch PRIase.c.oviiiiiiiiiiiiii e 47
The results of error with no info argument.c...c...o.... 48
Preserving errorlnfo when calling error....c..cocoeevenieieniniennenn. 48
Specifying errorinfo with return.c..ooeiiiiiiiiniiiniiieenn, 49
Default parameter values.ccocvviiiiiiniiiiiiiiii e 52
Variable number of arguments.ccoceveiiiiiiiiiiiniininei e, 52
Variable scope and Tcl procedures.cceevveviiiniinieneeneeneennen. 53
A random nUMbET GENETrator.cviuviuiiniiiiiiiieiieieieee e, 54
Using arrays for global state.ccccoveiviiiiiiiiiiiiiiiiiiirneenn 55
Print by Name.cooviiiiiiiii e 56
Improved i NCr ProCedUTe.coveuiiiiiiiiiii e eeenee 56
Using an array to implement a stack.........cooeveviiiiiiiinininnenne. 56
Using | i st to construct commands.c..coeevenieniiienienieniennenn. 60
Using eval with $args.ccoooiiiiiiiii 61
Using exec on a process pipeline.ccccoveiviiiiiiiiiiiiiiiininninnenne. 66
A procedure to compare file modify times.c..cooceveiiiniinnannen. 68
Creating a directory recusively.c.ccoviviiiiiiiiiiininininineenns 69
Determining if pathnames reference the same file. 69
Opening a file for Writing..........ccoooviiiiiiiiiiii 70
Opening a file using the POSI X access flags.......c..covevenvinienienenns 71
A more careful use of o0pen.ooiiiiiiiiiiiiiii 71
Opening a process Pipeline.ccovviiiiiiiiiiiiiiiiii i 72
Prompting for input.ccoiiiiiiiiiii 72
A read 100D USING LS. teuiiniiiiiiiiiei et 73
A read loop using read and split....ccccoviiiiiiiiiiiiiiiniiiiieieeenen, 73
Finding a file by name.........c..ccoiviiiiiiiiiiiiiii e 74
Printing a procedure definition.............ccoeeiiiiiiiiiiiiiiininennn.e. 79
Getting a trace of the Tcl call stack.ccevveeieiiiiiiiiiiiineinnennnee. 80
Interactive hi St ory USage.c.vvviuiiiininiiiiiiiiiiiiiiie s 82
Implementing special history syntax.c..cc.coeeeveiiiniinininiennenn. 83
A DEDUZ PrOCEAUTE. ...euiniiniiiiiiiiiii et enens 83
Maintaining a tcl I ndex file.cooiiiiiiiiiiiiii 90
Loading atclIndex file.......ccooiiiiiiiiiiiiiiiiiiiii e 91
“Hello, World!” TK ProOgramml.......coeeuveuienienienienieneeneeneeneeneeneeneenenns 96
Logging the output of a UNI X program.cccceveuvenieneennennanne. 104
A browser for the code examples in the book..............c.ceeeninie 109
A Tcl shell in a text widget.coeviiiiiiiiiiiiiiiiii e 113

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Xvii

12.1 Two frames packed inside the main frame..........................o..e 116
12.2 Turning off geometry propagation..........cc..cceeeeuviieeniiinneennennnenn. 116
12.3 A horizontal stack inside a vertical stack........c..c..coocoeiininiinie 117
12.4 Even more nesting of horizontal and vertical stacks. 117
12.5 Mixing bottom and right packing sides........c..ccccovevviieniinienienn. 118
12.6 Filling the display into extra packing space.c..ccceveuvennenne 119
12.7 Using horizontal fill in a menubar.c..ccoeeiiiiiiiiiniennennn. 120
12.8 The effects of internal padding (-ipady)......c.cccoevvueereenneennennnenn. 122
12.9 Button padding vs. packer padding..........ccccoveuvenieniiienieniennenns 122
12.10 The look of a default button.cceeiieiiiiiiiiiiiiiiiiiine, 123
12.11 Resizing without the expand option..........c.ccoveiveiiiniiiiiniinienienn. 124
12.12 Resizing with expand turned on.c..coevveiiiiiiiiiniinieniinieneenss 124
12.13 More than one expanding widget.c.ocoviiiiiiiiiiinininienienns 125
12.14 Setup for anchor eXperiments.cccceuvviiviiiiiiiiiiniineennieeneenns 125
12.15 The effects of non-center anchors..........cccoceeveeiiiiieiiiineennenneenn. 126
12.16 Animating the packing anchors..........c..ccoccoviiiiiiiiiiinninienne 126
12.17 Controlling the packing Order..........ccoceveiiieiiiinieniiieieeeneenes 127
12.18 Packing into other relatives.ccccoviiiiiiiiiiiiiiii e 128
13.1 The binding hierarchy.c..ccooeiiiiiiiiiiiiiiire, 134
13.2 Output from the UNI X xmodmap program.c..ccceeeuneennennnenn. 140
13.3 Emacs-like binding convention for Meta and Escape. 141
14.1 A troublesome button command.c..coeeuveniiiiiiniiniiniiienenes 146
14.2 Fixing up the troublesome situation.........c..c.coeevveniininininian.. 147
14.3 A button associated with a Tcl procedure.c..ceeveuvenennen.n. 148
14.4 Radio and Check buttons.ccoeviiiiiiiiiiiiiiiiii e 150
14.5 Acommand on a radi obutton or checkbutton.....c..c..c..coeeieninie 151
14.6 A MENU SAMPIET.. ..ottt 154
14.7 A simple menu-by-name package.c..coeeeveiiniiiiniiiiiniinienienns 156
14.8 Adding menu entries.cooeiiiiiiiiiiiiiii e 157
14.9 A wrapper for cascade entries.ccovviiiiiiiiiiiiiiiii i 158
14.10 Using the basic menu package.c.ocoveuveniiiiiinieniiieniiieneenne 158
14.11 Keeping the accelerator display up-to-date........c..c..coeenvenienenne 158
15.1 Al abel that displays different strings.cc..ccoevviiiinne. 165
15.2 The nessage widget formats long lines of text............c.............. 167
15.3 Controlling the text layout in a message widget. 168
15.4 Ascal e WIAZEt. ..ceuirniiiniiiiiiiiiiiie e 169
15.5 Atext widget and two scrollbars.c..ccoeevviiiiniiiniiininnninnne. 173
16.1 A command, alabel and an entry.ccoceeveieiiiiiiinininieeeeennns 179
16.2 Alistbox with scrollbars.ccceeiiiiiiiiiiiiiiii e 183
16.3 Alistbox with scrollbars and better alignment. 184
16.4 Choosing items from alistbox 188
17.1 Setting focus-follows-mouse input focus model. 196

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

XViii

17.2
17.3
17.4
17.5
17.6
17.7
17.8

18.1
18.2
18.3
18.4

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14

20.1
20.2

21.1
21.2
21.3
21.4
21.5

22.1
22.2
22.3

23.1
23.2
23.3
23.4
23.5

A simple dialog.covuniiiiiiiiiii e 199
A feedbacKk ProCedUTIe........cvuuiiiiiiiiiiieiie e e e eaeanas 200
A file selection dialog.cc.oeeuriiniiiiiiiiiiiiiie e 201
Listing a directory for fileselect..........c..ccoveeiiiiiiiiiiniiniiniinenn. 204
Accepting a file name.cceviiiiiiiiiiii e 206
Simple support TOULINES.c.vuiiuiiiiiiiiiiiiei e 207
File name completion.ccoviiiiiiiiiiniiiiii e 208
Tag configurations for basic character styles...........c..ccccceeeienis 216
Line spacing and justification in the t ext widget..................... 217
An active t ext button.........c.oocoviiiiiiiiiii 219
Delayed creation of embedded widgets.c..coeevviiiiiiniinnan.e. 221
The canvas Hello, World! example.c.ccoeiiiiiiiiiiiiniiiiiniinennes 227
A double slider canvas eXample.ccoeuiiiiiiiiiiiiniiniiiiieeeeanes 229
Moving the markers for the double-slider.c..cccoceeenneenn. 231
A large scrollable canvas.c.ceuiiiiiiiiiiiiiiii e 233
Canvas ar € IteImS.ovuiiiiiiiiiiiiiii e 234
Canvas bi t Map ILeIMIS. .civiiiiiie s 235
Canvas i MRge ILEIMIS. iviiuiiiiiii i e e 236
A canvas stroke drawing example.ccceveiiiiiiiniiniiniiiiineenennes 237
Canvas oval ITeIMSocviiiiiiiiiiiiiiii 238
Canvas pol ygon IteIMS. ..i.iiiiiiiiiii e 239
Dragging out @ DOX.ccveuiiiiiiiiiiiii e 240
Simple edit bindings for canvas text items.c..ccoeeeiiinnin. 242
Using a canvas to scroll a set of widgets.ccooeevviiniieniennen. 244
Generating postscript from a canvas.ccoeeieiiiiiiiiiieineenn. 249
Paste the PRI MARY or CLI PBOARD selection.ccceeuveenennennnene. 253
A selection handler for canvas widgets...........ccooviiiiiiiiiiiniinian.. 256
A read event file handler.ccoooiiiiiiiiiiiiiii, 261
The sender appliCation.........cccviuviiiiiiiiiiiiiiii e, 262
Using the sender application..........cccvviiveiiiiiiiiiiiiniieeeeanee, 264
Hooking the browser to an eval SEIVer.c.ccoccevevenieneenennee. 266
Making the shell into an eval Se€rver.c.ccooceveiieniinienienenn.e. 267
Equal-sized 1abels.......c..ccoviuiiiiiiiiiiniiiii e 272
3D relief sampler.cooveiiiiiiiiii e 273
Borders and padding.ccooiiiiiiiiiiiiii 275
Resources for reverse video.ccoveeuiiiiiiiiiiniiiniiieiieeieeieenn. 277
Computing a darker Colorccoiuiiiiiiiiiiiiiii e, 279
Specifying an image attribute for a widget.cc..ccoeeeiinnien. 281
Specifying a bitmap for a widget........c..ccoeeeiiiiiiiiiiiiniiia. 282
The built-in bitmapsc.veiiiiii e, 282

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

XixX

24.1 FindFont matches an existing font.cccccoiiiiiiiiiiiininn.. 291
24.2 Handling missing font errors.ccoveeveiiiiiiiniiieiiieiieeennes 291
24.3 FontWidget protects against font errors...........ccccceveenveiieneenne. 292
24.4 A gridded, resizable listboX.......c..coeeiviiiiiiiiiiiii 295
24.5 A font selection application.ccoeviiviiiiiiiiiiiiiiie e 295
24.6 Menus for each font component.ccoeeviiiiiiiiiiiiiiiinninan... 296
24.7 Using variable traces to fix things up.ccoeeeveeviiiiiiiineenn.. 297
24.8 Listing available fonts.c..ccoviiiiiiiiiiiii e 297
24.9 Determining possible font components............ccceevveiniiiiiiineenn.. 298
24.10 Creating the r adi obutt on menu entries.c..coveveevenieniennenne. 298
24.11 Setting up the | abel and nessage widgets.ccoceveevenveniennenne. 299
24.12 The font selection Procedures............covvviiviiiiriieiiriieiieieeeeannes 300
25.1 Gridded geometry for a canvas.ccoceveviiviiiiiiiiii e 304
25.2 Telling other applications what your name is...........c...ccc.ceeeenee 308
26.1 A user interface to widget bindings..........ccceeveeuieiiiiiiiiiiineenne. 316
26.2 Bind_Display presents the bindings for a given widget or class.317
26.3 Related listboxes are configured to select items together.......... 318
26.4 Controlling a pair of listboxes with one scrollbar. 318
26.5 Drag-scrolling a pair of listboxes together............c..cc..ccocieenne. 319
26.6 An interface to define bindings.c..ccoveiiiiiiiiiiiniiiiiien 320
26.7 Defining and saving bindings.ccocceiiiiiiiiiiiiiiiiiiiean 321
27.1 Reading an option database file.........c..ccoceviiiiiiiiiiiiiininninn. 325
27.2 A file containing resource specifications.c..ccooeeviiininnl. 325
27.3 Using resources to specify user-defined buttons...................... 327
27.4 Defining buttons from the resource database.c..c.......... 328
27.5 Specifying menu entries via réSOUICeS.c.veuveuvenrinrenneneennennen 328
27.6 Defining menus from resource specifications..........c...cc..c........ 330
28.1 Preferences initialization.ccoeeeiiiiiiiiiiiiiiiiieean 332
28.2 Adding preference items.c.veeuiiiiiiiiiiiiiiii e 333
28.3 Setting preference variables.c.cccoviiiiiiiiiiiiiiiiieean 334
28.4 Using the preferences package.cooeeuveuniiiiiineiineinieieeieennes 334
28.5 A user interface to the preference items............ccocovvvviiviiinnann.. 335
28.6 Interface objects for different preference types........cc..ccoceuueenne. 336
28.7 Displaying the help text for an item..........c...cceeeiieiiiniiiiiininnn.. 338
28.8 Saving preferences settings to a file..........c...coeeeiiiiiiiiiiiiininn.. 338
28.9 Read settings from the preferences file.cccccoveeiiiiiiiinn.. 339
28.10 Tracing a Tcl variable in a preference item.c...ccocceeeenenne. 340
29.1 A canonical Tcl main program and Tcl_AppInit...........c...c..ccoee. 343
29.2 The RandonCnd C command procedure.ccceeuuveunernrernnennennnes 345
29.3 Calling C command procedure directly........c..ccooeeoverniiiniinnennne. 348
29.4 A Makefile for a simple Tcl C program.ccceeeuveveinreinnennennnes 349

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

XX

30.1
30.2
30.3

31.1
31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9

32.1
32.2
32.3
32.4
32.5

A canonical Tk main program and Tcl_AppInit.c..cccceeenenee 356
A custom TK main Program.coeeeeieiieiiineiei e eeeieeeenennes 357
Using Tk_DoOneEvent with TK_DONT_WAI T.ooovviiriiiiiieeennenans 361
The d ock widget data structure...........ccceevviiiiiiiiiiiiiininiininnn. 372
Configuration specs for the clock widget.ccocoveiininian.e. 373
The A ockCrd command Procedure.c.oeuueeneeniineineineineenennns 375
The d ockl nst anceCrd command procedure.cceeeeeueeneenes 377
Cl ockConfi gur e allocates resources for the widget. 378
Conput eGeonet ry figures out how big the widget is................... 380
The A ockDi spl ay ProCedUre.ccuuviniiniiniiniiiieieieieieeneanes 381
The d ockEvent Proc handles window events.cccceeeuenee 383
The A ockDest roy cleanup procedure.cceeveniiniinieneeneenennns 384
A sample eXpect SCIIPL. ...ovuiiiiiiiiiiie e 394
A SIGINT handler......cuiuuiiiiiiiiiiieii e 397
Summary of [incr tcl] commands........oveeuveeniiiniiiiiiiniiieieein. 403
Tcl_Applnit and extension packages.........cc.ccevevveiiiiinieniinienennes 404
Makefile for supertcl.coiiiiiiiiiiiiiii i 406

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

— e
|
Ol WIN =~

»hdow»—‘

CI.OC.O [l\’JNJNJ[\’J
N —

7-2
7-3
7-4
7-5

8-1
8-2
8-3
8-4

10-1
10-2

12-1
12-2
12-3
12-4

13-1
13-2
13-3

14-1
14-2
14-3
14-4
14-5
14-6

List of Tables

Backslash SEqUENCES.c.ovuiuiiiiiiiiiiiiiiiiieeee e 14
Arithmetic Operators from highest to lowest precedence............ 14
Built-in Math functions...........coeeiviiiiiiiiiniii e 15
Built-in Tcl Commandseeueeneeineinenneiiiiieieeieeeeeeeeeeneeneennens 15
Variables defined by tclsh.........ccuovieiiiiiiiiiiiiiiiiiiin e 18
The string command.........c.oeeiiiniiiiiiiiiiiiiii e eeeeenenes 20
Format CONVETrSIONS.......c.ocuviiviiviiiiiiiininiii e, 22
format flags.....ooeuiiniiiii e 22
Regular EXpression Syntaxccccveveiriiiiiniiiiineineiieineieieiennens 25
List-related commands..........cccevveuiiiniiiiiiiiiiiiiniiec e 31
The array COmMMANAc.veuiuiiuriiriiriiriieieieee et ee et eneeneennes 37
Summary of the exec syntax for I/0 redirection.c............. 66
The Tcl fil e command OpHONS.ccoceviiiiiiiiiiiiiniiiiin, 67
Tcl commands used for file aCCesS......ovevviiniiiiiiiiiiiiiiiiiieiieeene, 70
Summary of the open access arguments.c...ccceeeevuveeinreennnnenn. 71
Summary of POSI X flags for the access argument....................... 71
The i nfo command.cceeeiiiiiiiiiiiiii 78
The hi story command.c.coiuiiiiiiiiiiiiiiii e eaeans 81
Special hi StOry SYNEAX.cuuiuniiniiiiiiiieiei e e eneens 82
Debugger COMMANAS. «.ucuuienirniuniiiiiieeieieeieeieeieeneeneeneeneeneeneennens 85
Tk widget-creation commands..........cceeveviiiiiiiiiiiniiniineeneennen. 100
Tk widget-manipulation commands........c..ccocoveiviiiiiiniiniennenn.e. 100
A summary of the pack command.........c..ccoeeuiiiiiiiniiiieiieeneenne. 130
Packing options.c.oeeiiiiiiiiiiiiii e 130
A summary of the pl ace command.c..eceveuiienreinneieenneenne. 131
Placement OptionS.viuiiiiiiiiiiiie e 132
Event types. Comma-separated types are equivalent. 136
Event modifiers.cc.vviiiiiiiiiiiii e 139
A summary of the event Keywords.ccceeuviiiiiiniiiiiiiniiinnenn.. 142
Resource names of attributes for all but t on widgets. 152
Button operations.cccviiiiiiiiiiiiiiiiiiii e 153
Menu entry index KEywordscceevveiiiiiiiiiiiiniiniiniininineennen. 155
MenU OPEIratiONS.cuuiiniiniiiii ittt ettt eneens 155
Resource names of attributes for menu widgets..........c..c........... 160

Attributes for menu entries.ooviiiiiiiiiiiii 161

XXii

15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9

16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13

17-1
17-2
17-3

18-1
18-2
18-3
18-4
18-5
18-6
18-7

19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11

Resource names of attributes for frane and t opl evel widgets. 164

Resource names of attributes for | abel widgets....................... 166
Resource names for attributes for nessage widgets. 168
Default bindings for scal e widgets.c..cccovveiiiiiiiiiiiiieinnnennnn. 170
Resource names for attributes for scal e widgets. 170
Operations on scal e Widgets..cocooviiiiiiiiiiiiiiiiiinnnn . 171
Default bindings for scrol | bar widgets.cccceveiviiiiiinienneenn. 174
Resource names of attributes for scrol | bar widgets. 174
Operations on scrollbar widgets.c.ccoveviiiiiiiiiiiiininininean.e. 175
Default bindings for entry widgets.ccccoveiiiiiiiiiiiinininnan.e. 178
Resource names for attributes of ent ry widgets....................... 180
Indices for entry Widgets.......coeuuviiiiiiiiiiiiiiiiii e 181
Operations on ent ry Widgets.c.ccoveiiiiiiiiiiiiiiiiiiiinecieene, 182
Indices for | i st box WIdZetsoeeuviiiiiiiiiiiiiiiii e, 186
Operations on | i st box Widgets.......c.cvveiviiiiiiiiiiiiiiiiiininieenee, 186
The values for the sel ect Mode of a i StboX......oceveveiinvinniennnene. 190
Bindings for br owse selection mode.cceveeiiiiiiiiiiiiniinnan... 190
Bindings for a | i st box in si ngl e selectMode.c...c...c....... 190
Bindings for ext ended selection mode............c.cccveiiiiiiiinienan.e. 191
Bindings for mul ti pl e selection mode............c.occveiiiiinienienan... 192
Scroll bindings common to all selection modes........................ 193
Resource names of attributes for | i st box widgets. 193
The f ocus command.cceeeviiniiiiiiiiiini e 196
The grab command.ccooeiiiiiiiiiiiieeer e 197
The tkwai t command.........cceeeuvieniiiiiiiiiiiniiiii e, 198
Forms for the indices in t ext widgets.cccoccvveniiiniieiinniennn. 212
Index modifiers for t ext Widgets.......ccooevviiiiiiiiiiiiiiiiiniien. 213
Attributes for t ext tags. ..cooevviiiiiiiiii 215
Options to the wi ndow creat e operation.c..ccceeeveeeieinnennn. 221
Bindings for the t ext Widget.ccooeeiiiiiiiiiiiiiiiiiee, 222
Operations for the t ext Widget.ccoveeviiiiiiiiiiiiiiie, 224
Resource names of attributes for t ext widgets.c.............. 226
Attributes for arc canvas items.ccceeivieiiiiiiii i, 234
Attributes for bi t map canvas it€ems.cooeeviiiiiiiiiiiieen 235
Attributes for i mage canvas it€ms.ccoviviiiiiiiiiiiiiieeae 236
Attributes for | i ne canvas items.c..ccoeeeiiiiiiiiiiiiiniee, 238
Attributes for oval canvas items.c...coeeeiiiiiiiiiiiiiiniee. 239
Attributes for pol ygon canvas items.cccooviiiiiiiiinininiennen. 240
Attributes for rectangle canvas items.c..ccoeeiiiiiiiiiinienneenn. 241
Indices for canvas t ext {temMS.......ccuveeuiiiiiiiiiiiiieirceeeee, 241
Canvas operations that apply to text items............c.ccoeeeenienee. 242
Attributes for t ext canvas items.c..ccoeeeiiiiiiiiiiinii i, 244
Operations on a canvas Widget.ccoevveiiiiiiiiiiininineneeanee. 246

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hal—DRAFT: 1/13/95

XXiii

19-12 Canvas postscript Options.ccooceviiiiiiiiiii 248
19-13 Resource names of attributes for the canvas widget. 250
20-1 The sel ection cOomMmMAand.c..cceeureuienienienieneieeeeeeeeeeeeneenees 254
20-2 The clipboard command..........ceeeeuiiiiininiiriniinineiinerieeeeaennanens 255
21-1 The after command......c...cccoeeuiiiiiiiiiiiiiiiiiiii e 260
21-2 Thefileevent command..........ccoeeuviiniiiniiiniiiiiiiiieiiinieennes 261
22-1 Size attribute reSOUIrCe NAMES.cvuviiniiniiniiiiiiieiieieeieeieennes 270
22-2 Border and relief attribute resource names.cc.coeeuvennenne. 272
22-3 Border and relief attribute resource names.c..cc.coeeuvennenne. 274
22-4 Layout attribute resource Names.cceeeveveverininennennennenne. 274
23-1 Color attribute resource Names.c..coveeveviiiiiniinieneenieneenne. 278
23-2 Visual classes for X displays. Values for the visual attribute....280
23-3 Summary of the i mage command..........co.ceeveiiiiiiiniiiiiiniinennne. 281
23-4 Bitmap image Optionsccocevviiiiiiiiiiiiiiiii 282
23-5 Photo image attributes..........c..coooiiiiiiiiiiiii 283
23-6 Photo image operations.c..cevevviiviiiiiiiiiiniiii e 284
23-7 Image cOPY OPHIONS. ..c.iiuiiniiniiiiiii i 285
23-8 Image read OPtiONS.ccuviuiiiiiiiiiiiii i 285
23-9 Image Write OPHIONS.ovuviuiiiiiiiiii e 285
23-10 Cursor attribute resource Names..........c..ceveeveviiiiniiniiniinieneenne. 287
24-1 X Font specification components.ccoceveeveiviiiiiiiiiinninnennenne. 290
24-2 Resource names for layout attributes.c...coooviiiiiiiinint. 293
24-3 Resource names for padding and anchors.c..ccoeeeieeneenne. 293
24-4 Geometry commands affected by gridding.c..ccoeeeeeieenne. 294
25-1 Size, placement and decoration window manager operations. .. 305
25-2 Window manager commands for icons.coeeevveinieiiiiineenne. 306
25-3 Session-related window manager operations.c..cceceeeunenne. 307
25-4 Miscellaneous window manager operations.cc.ceveuvennenn.. 307
25-5 Information useful with the send command.cc..ceeeuneennt. 308
25-6 Information about the window hierarchy.ccc.ccoeeiiiiiinni. 309
25-7 Information about the window Size...........c..ccceeeviiiiiiiiiiiineenne. 310
25-8 Information about the window location.c..ccoeeeveiiiiiaenns. 310
25-9 Information associated with virtual root windows. 311
25-10 Information about atoms and window ids............ccceceveiiiineenne. 312
25-11 Information about colormaps and visual classes. 312
31-1 Configuration flags and corresponding C types............ccc......... 374
33-1 Changes in color attribute names............ccocovevviiiiiiiiiniiniennen... 414

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hal—DRAFT: 1/13/95

XXiV

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hal—DRAFT: 1/13/95

Preface

I first heard about Tcl from John Ouster-
hout in 1988 while I was his Ph.D. student at Berkeley. We were designing a net-
work operating system, Sprite. While the students hacked on a new kernel, John
was writing a new editor and terminal emulator. He used Tcl as the command
language for both tools so that users could define menus and otherwise custom-
ize those programs. This was in the days of X10, and he had plans for an X tool-
kit based on Tcl that would allow programs to cooperate by communicating with
Tecl commands. To me, this cooperation among tools was the essence of the Tool
Command Language (Tcl).

That early vision imagined that applications would be large bodies of com-
piled code and a small amount of Tcl used for configuration and high-level com-
mands. John’s editor, mx, and the terminal emulator, t x, followed this model.
While this model remains valid, it has also turned out to be possible to write
entire applications in Tcl. This is because of the Tcl/Tk shell, wi sh, that provides
all the functionality of other shell languages, which includes running other pro-
grams, plus the ability to create a graphical user interface. For better or worse, it
is now common to find applications that contain thousands of lines of Tecl script.

This book came about because, while I found it enjoyable and productive to
use Tcl and Tk, there were times when I was frustrated. In addition, working at
Xerox PARC, with many experts in languages and systems, I was compelled to
understand both the strengths and weaknesses of Tcl and Tk. While many of my
colleagues adopted Tcl and Tk for their projects, they were also just as quick to
point out its flaws. In response, I have built up a set of programming techniques
that exploit the power of Tcl and Tk while avoiding troublesome areas. Thus, this
book is meant as a practical guide that will help you get the most out of Tcl and
Tk while avoiding some of the frustrations that I experienced.

Created: January 6, 1994 —Preface.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXVi

Who Should Read This Book

This books is meant to be useful to the beginner as well as the expert in Tcl.
For the beginner and expert alike I recommend careful study of the fist chapter
on Tcl. The programming model of Tcl is different from many programming lan-
guages. The model is based on string substitutions, and it is important that you
understand it properly to avoid trouble later on. The remainder of the book con-
sists of examples that should help you get started using Tcl and Tk productively.

This book assumes that you have some UNIX and X background, although
you should be able to get by even if you are a complete novice. Expertise in UNIX
shell programming will help, but it is not required. Where aspects of X are rele-
vant, I will try to provide some background information.

How To Read This Book

This book is best used in a hands-on manner, at the computer trying out the
examples. The book tries to fll the gap between the terse T cl and Tk manual
pages, which are complete but lack context and examples, and existing Tcl pro-
grams that may or may not be documented or well written.

I recommend the on-line manual pages for the Tcl and Tk commands. They
provide a detailed reference guide to each command. This book summarises some
of the information from the man pages, but it does not provide the complete
details, which can vary from release to release.

I also recommend the book by Ousterhout, Tel and the Tk Toolkit, which
provides a broad overview of all aspects of Tcl and Tk. There is some overlap with
Ousterhout’s book, although that book provides a more detailed treatment of C
programming and Tcl.

How To Review This Book

At this point I am primarily concerned with technical issues. Don’t worry
too much about spelling and other copy edits. Concentrate on the examples and
passages that are confusing. You can mark up the manuscript with a pen and
return it to me. Or, send me email at welch@parc.xerox.com with the subject “tcl
book”. This is the last major draft I will post before getting the book ready for
fnal publication. If you can return your comments by mid to late February it
would be best. Thanks, in advance!

I would like to highlight a few key spots in the manuscripts as “hot tips”. If
you could nominate one or more such paragraphs from each chapter I will add
some sort of icon to the margin to indicate the “reviewer-selected” hot tips!

Thanks

Many thanks to the patient reviewers of early drafts: Don Libes, Dan Swinehart,
Carl Hauser, Pierre David, Jim Thornton, John Maxwell, Hador Shemtov,
Charles Thayer, Ken Pier. [UPDATE] (Mention email reviews, too)

Created: January 6, 1994 —Preface.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Introduction

This introduction gives an overview of Tcl and the organization of this book.

Why Tcl? Is it just another shell lan-
guage? How can it help you?

Tel stands for Tool Command Language. Tcl is really two things: a scripting
language, and an interpreter for that language that is designed to be easy to
embed into your application. Tcl and its associated X windows toolkit, Tk, were
designed and crafted by Prof. John Ousterhout of U.C. Berkeley. These packages
can be picked up off the Internet (see below) and used in your application, even a
commercial one. The interpreter has been ported from UNIX to DOS and Macin-
tosh environments.

As a scripting language, Tcl is similar to other UNIX shell languages such
as the Bourne Shell, the C Shell, the Korn Shell, and Perl. Shell programs let
you execute other programs. They provide enough programmability (variables,
control flow, procedures) that you can build up complex scripts that assemble
existing programs into a new tool tailored for your needs. Shells are wonderful
for automating routine chores.

It is the ability to easily add a Tcl interpreter to your application that sets it
apart from other shells. Tcl fils the role of an extension language that is used to
confgure and customize applications. There is no need to invent a command lan-
guage for your new application, or struggle to provide some sort of user-program-
mability for your tool. Instead, by adding a Tcl interpreter you are encouraged to
structure your application as a set of primitive operations that can be composed
by a script to best suit the needs of your users. It also allows programmatic con-
trol over your application by other programs, leading to suites of applications
that work together well.

There are other choices for extension languages that include Scheme, Elisp,
and Python. Your choice between them is partly a matter of taste. Tcl has simple

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXViii

constructs and looks somewhat like C. It is also easy to add new Tcl primitives by
writing C procedures. By now there are a large number of Tcl commands that
have been contributed by the Tcl community. So another reason to choose Tcl is
because of what you can access from Tcl scripts “out-of-the-box”. To me, this is
more important than the details of the language.

The Tcl C library has clean interfaces and is simple to use. The library
implements the basic interpreter and a set of core scripting commands that
implement variables, flow control, fle I/O, and procedures (see page 15). In addi-
tion, your application can defne new T cl commands. These commands are associ-
ated with a C or C++ procedure that your application provides. The result is that
applications are split into a set of primitives written in a compiled language and
exported as Tcl commands. A Tel script is used to compose the primitives into the
overall application. The script layer has access to shell-like capability to run
other programs and access the fle system, as well as call directly into the appli-
cation by using the application-specift T cl commands you defne. In addition,
from the C programming level, you can call Tcl scripts, set and query Tcl vari-
ables, and even trace the execution of the Tcl interpreter.

There are many Tcl extensions freely available on the net. Most extensions
include a C library that provides some new functionality, and a Tcl interface to
the library. Examples include socket access for network programming, database
access, telephone control, MIDI controller access, and expect, which adds Tcl
commands to control interactive programs.

The most notable extension is Tk, a toolkit for X windows. Tk defnes T cl
commands that let you create and manipulate user interface widgets. The script-
based approach to Ul programming has three benefts. First, development is fast
because of the rapid turnaround - there is no waiting for long compilations. Sec-
ond, the Tcl commands provide a higher-level interface to X than most standard
C library toolkits. Simple interfaces require just a handful of commands to defne
them. At the same time, it is possible to refne the interface in order to get every
detail just so. The fast turnaround aids the refnement process. The third advan-
tage is that the user interface is clearly factored out from the rest of your appli-
cation. The developer can concentrate on the implementation of the application
core, and then fairly painlessly work up a user interface. The core set of Tk wid-
gets is often sufftient for all your Ul needs. However , it is also possible to write
custom Tk widgets in C, and again there are many contributed Tk widgets avail-
able on the network.

Ftp Archives

The network archive site for Tcl is ft p. aud. al cat el . com Under the /tcl
directory there are subdirectories for the core Tecl distributions (sprite-nirror,
for historical reasons), contributed extensions (ext ensi ons), contributed applica-
tions (code), documentation (docs), and Tecl for non-UNIX platforms (di stri b).
Mirror sites for the archive include:

ftp://syd.dit.csiro.au/pub/tk/contrib
ftp://syd.dit.csiro.au/pub/tk/sprite

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXiX

ftp://ftp.ibp.fr/pub/tcl/distrib
ftp://ftp.ibp.fr/pub/tcl/contrib
ftp://ftp.ibp.fr/pub/tcl/expect

(ftp.ibp.fr = 132.227.60. 2)
ftp://src.doc.ic.ac. uk/ packages/tcl/tcl-archive

(src.doc.ic.ac.uk = 146.169. 2. 10)
ftp://ftp.luth.sel/pub/l anguages/tcl/
http://ftp.luth.se/ pub/l angugages/tcl/
ftp://ftp.switch.ch/mrror/tcl

(Contact address: sw tchinfo@w tch.ch)
ftp://ftp.sterling.cont progranm ng/l anguages/tcl
ftp://fpt.sunet.se/pub/lang/tcl
mailto://ftpmail @tp. sunet. se

(Contact: archive@tp. sunet. se)
ftp://ftp.cs.col unbi a. edu/ archi ves/tcl

(Contact: ftp@s.col unbia.edu)
ftp://ftp.uni-paderborn.de/ pub/unix/tcl/alcatel
ftp://sunsite.unc. edu/ pub/| anguages/tcl/
ftp://iskut.ucs.ubc.calpub/X1l/tcl/
ftp://ftp.funet.fi/pub/languages/tcl/
ftp://conma.cs.tu-berlin.de/pub/tcl/
ftp://nic.funet.fi/pub/languages/tcl/

You can verify the location of the Tcl archive by using the ar chi e service to
look for sites that contain the Tcl distributions. Archie is a service that indexes
the contents of anonymous FTP servers. Information about using ar chi e can be
obtained by sending mail to ar chi e@r chi e. sur a. net that contains the message
Hel p.

World Wide Web

There are a number of Tcl pages on the world-wide-web:
http://wwmv. sco.conl | XI/of _interest/tcl/Tcl.htm
http://web. cs. ual berta. ca/l ~wade/ Aut o/ Tcl . ht m

Typographic Conventions

The more important examples are set apart with a title and horizontal
rules, while others appear in-line as shown below. The examples use couri er for
Tcl and C code. When interesting results are returned by a Tcl command, those
are presented below in obl i que couri er, as shown below. The => is not part of
the return value.

expr 5 + 8
=> 13

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXX Chap.

The courier font is also used when naming Tcl commands and C proce-
dures within sentences.

The usage of a Tcl command is presented as shown below. The command
name and constant keywords appear in couri er. Variable values appear in cou-
ri er oblique. Optional arguments are surrounded with question marks.

set varname ?val ue?

The name of a UNIX program is in italics, e.g. xterm.

Tcl 7.4 and Tk 4.0

This book is up-to-date with Tecl version 7.4 and Tk version 4.0. There are
occasional descriptions of Tk 3.6 features. The last chapter has some notes about
porting scripts written in earlier versions of Tk.

Book Organization

The frst chapter of this book describes the fundamental mechanisms that
characterize the Tcl language. This is an important chapter that provides the
basic grounding you will need to use Tcl effectively. Even if you have pro-
grammed in Tcl already, you should review this chapter.

Chapters 2-5 cover the basic Tcl commands in more detail, including string
handling, regular expressions, data types, control flow, procedures and scoping
issues. You can skip these chapters if you already know Tcl.

Chapter 6 discusses eval and more advanced Tcl coding techniques. If you
are running into quoting problems, check out this chapter.

Chapter 7 describes the interface to UNIX and the shell-like capabilities to
run other programs and examine the fle system. The I/O commands are
described here.

Chapter 8 describes the facilities provided by the interpreter for introspec-
tion. You can fid out about all the internal state of T cl. Development aids and
debugging are also covered here.

Chapter 9 describes the script library facility. If you do much Tcl program-
ming, you will want to collect useful scripts into a library. This chapter also
describes coding conventions to support larger scale programming efforts.

Chapter10 is an introduction to Tk. It explains the relevant aspects of X
and the basic model provided by the Tk toolkit.

Chapter 11 illustrates Tk programming with a number of short examples.
One of the examples is a browser for the code examples in this book.

Chapter 12 explains geometry management, which is responsible for
arranging widgets on the screen. The chapter is primarily about the packer
geometry manager, although the simpler place geometry manager is also briefly
described.

Chapter 13 covers event binding. A binding registers a Tcl script that is exe-
cuted in response to events from the X window system.

Chapter 14 describes the but t on and menu widgets. The chapter includes a

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXX

simple menu package that hides some of details of setting up Tk menus.

Chapter 15 describes several simple Tk widgets: the frame, the t opl evel ,
the | abel , the message, the scal e, and the scrol | bar. These widgets can be
added to your interface with two or three commands. The bel | command is also
covered here.

Chapter 16 describes the entry and | i st box widgets. These are specialized
text widgets that provide a single line of text input and a scrollable list of text
items, respectively. You are likely to program specialized behavior for these wid-
gets.

Chapter 17 covers the issues related to dialog boxes. This includes input
focus and grabs for modal interactions. It includes a fle selection dialog box as
an example.

Chapter 18 describes the t ext widget. This is a general purpose text widget
with advanced features for text formatting, editting, and embedded images.

Chapter 19 describes the canvas widget that provides a general drawing
interface.

Chapter 20 explains how to use the selection mechanism for cut-and-paste.
Tk supports different selections, including the CLI PBOARD selection used by
OpenLook tools.

Chapter 21 describes the after, fil eevent, and send commands. These
commands let you create sophisticated application structures, including cooper-
ating suites of applications.

Chapter 22 is the frst of three chapters that review the attributes that are
shared among the Tk widget set. This chapter describes sizing and borders.

Chapter 23 describes colors, images and cursors. It explains how to use the
bitmap and color photo image types. The chapter includes a complete map of the
X cursor font.

Chapter 24 describes fonts and other text-related attributes. The extended
example is a font selection application.

Chapter 25 explains how to interact with the window manager using the wm
command. The chapter describes all the information available through the wi nf o
command.

Chapter 26 presents a user interface to the binding mechanism. You can
browse and edit bindings for widgets and classes with the interface.

Chapter 27 describes the X resource mechanism and how it relates to the
Tk toolkit. The extended examples show how end users can use resource specifi
cations to defne custom buttons and menus for an application.

Chapter 28 builds upon Chapter 27 to create a user preferences package
and an associated user interface. The preference package links a Tcl variable
used in your application to an X resource speciftation.

Chapter 29 provides a short introduction to using Tcl at the C programming
level. It gets you started with integrating Tcl into an existing application, and it
provides a survey the the facilities in the Tcl C library.

Chapter 30 introduces C programming with the Tk toolkit. It surveys the
Tk C library.

Chapter 31 is a sample Tk widget implementation in C. A digital clock wid-

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

XXXii Chap.

get is built.

Chapter 32 is a survey of several interesting Tcl extension packages. The
packages extend Tcl to provide access to more UNIX functionality (TclX), control
over interactive programs (Expect), network programming (Tcl-DP), more Tk
widgets (BLT), and an object system ([intr tcl]). The chapter concludes with a
program that integrates all of these extensions into one supertcl application.

Chapter33 has notes about porting your scripts to Tk 4.0.

On-line examples

The fnal version of this book will include a fbppy disk with copies of the
examples. In the meantime you will be able to fnd them via FTP.

ftp://parcftp.xerox.com pub/sprite/wel ch/ exanpl es.tar

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 1

Tcl Fundamentals

This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution
and grouping. It touches lightly on the following Tcl commands: put s,
format, set,expr,string, while,incr,andproc.

TCl is a string-based command lan-
guage. The language has only a few fundamental constructs and relatively little
syntax, which makes it easy to learn. The basic mechanisms are all related to
strings and string substitutions, so it is fairly easy to visualize what is going on
in the interpreter. The model is a little different than some other languages you
may already be familiar with, so it is worth making sure you understand the
basic concepts.

Getting Started

With any Tcl installation there are typically two Tcl shell programs that you
can use: tclsh and wish™. They are simple programs that are not much more
than a read-eval-print loop. The fist is a basic T cl shell that can be used as a
shell much like the C-shell or Bourne shell. wi sh is a Tecl interpreter that has
been extended with the Tk commands used to create and manipulate X widgets.
If you cannot fad the basic T cl shell, just run wi sh and ignore for the moment
the empty window it pops up. Both shells print a % prompt and will execute Tcl
commands interactively, printing the result of each top level command.

You may also fnd it easier to enter the longer examples into a fle using

*You may have variations on these programs that refect different extensions added to the
shells. tcl and wishx are the shells that have Extended Tcl added, for example.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

2 Tcl Fundamentals Chap.1

your favorite editor. This lets you quickly try out variations and correct mis-
takes. Taking this approach you have two options. The frst way is to use two
windows, one running the Tcl interpreter and the other running your editor.
Save your examples to a fle and then execute them with the T cl source com-
mand.
source filenane
The second way is to create a stand-alone script much like an sh or csh
script. The trick is in the frst line of the fle, which names the interpreter for the
rest of the fle. Support for this is built into the exec system call in UNIX. Begin
the fle with either of the following lines.
#! /usr/ | ocal / bin/tcl
or
#! /usr/1 ocal / bi n/wi sh
Of course, the actual pathname for these programs may be different on your
system*. Also, on most UNIX systems this pathname is limited to 32 characters,
including the #! . The 32-character limit is a limitation of the UNIX exec system
call. If you get the pathname wrong, you get a confusing “command not found”
error, and if the pathname is too long you may end up with / bi n/ sh trying to
interpret your script, giving you syntax errors.
If you have Tk version 3.6, its version of wish requires a -f argument to
make it read the contents of a fle. The -f switch is ignored in Tk 4.0.
#!'/usr/ | ocal / bi n/wi sh -f

Tcl Commands

The basic syntax for a Tcl command is:

command argl arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure.
White space is used to separate the command name and its arguments, and a
newline or semicolon is used to terminate a command.

The arguments to a command are string-valued. Except for the substitu-
tions described below, the Tcl interpreter does no interpretation of the arguments
to a command. This is just the opposite of a language like Lisp in which all iden-
tifers are bound to a value, and you have to explicitly quote things to get strings.
In Tcl, everything is a string, and you have to explicitly ask for evaluation of
variables and nested commands.

This basic model is extended with just a few pieces of syntax for grouping,
which allows multiple words in one argument, and substitution, which is used
with programming variables and nested command calls. The grouping and sub-
stitutions are the only mechanisms employed by the Tcl interpreter before it
runs a command.

* At Xerox PARC, for example, the pathnames are /import/tcl7/bin/tclsh and /import/tcl7/bin/
wish.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Hello World 3

Hello World

Example 1-1 The “Hello, World!” example.

puts stdout {Hello, Wrld!}
=> Hello, World!

In this example the command is put s, which takes two arguments: an 1I/O
stream identifer and a string . puts writes the string to the I/O stream along
with a trailing newline character. There are two points to emphasize:

e Arguments are interpreted by the command. In the example, st dout is used
to identify the standard output stream. The use of st dout as a name is a
convention employed by put s and the other I/O commands. Also, stderr is
used to identify the standard error output, and st di n is used to identify the
standard input.

e Curly braces are used to group words together into a single argument. The
braces get stripped off by the interpreter and are not part of the argument.
The put s command receives Hel | o, Worl d! as its second argument.

Variables

The set command is used to assign a value to a variable. It takes two arguments:
the fist is the name of the variable and the second is the value. V ariable names
can be any length, and case is signifeant. It is not necessary to declare T cl vari-
ables before you use them. The interpreter will create the variable when it is
frst assigned a value. The value of a variable is obtained later with the dollar -
sign syntax illustrated below.

Example 1-2 Tcl variables.

set var 5
=> 5
set b $var
= 5

The second set command above assigns to variable b the value of variable var.
The use of the dollar sign is our frst example of substitution. Y ou can imagine
that the second set command gets rewritten by substituting the value of var for
$var to obtain a new command.

set b 5

The actual implementation is a little different, but not much.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

4 Tcl Fundamentals Chap.1
Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, [and]. The Tcl interpreter takes everything
between the brackets and evaluates it as a command. It rewrites the outer com-
mand by replacing the square brackets and everything between them with the
result of the nested command. This is similar to the use of backquotes in other
shells, except that it has the additional advantage of supporting arbitrary nest-
ing of other commands.

Example 1-3 Command substitution.

set len [string | ength foobar]
=> 6

In the example, the nested command is:

string |l ength foobar

The string command performs various operations on strings Here we are
asking for the length of the string f oobar.

Command substitution causes the outer command to be rewritten as if it
were:

set len 6

If there are several cases of command substitution within a single com-
mand, the interpreter processes them from left to right. As each right bracket is
encountered the command it delimits is evaluated.

Note that the spaces in the nested command are ignored for the purposes of
grouping the arguments to set . In addition, if the result of the nested command
contains any spaces or other special characters, they are not interpreted. These
issues will be illustrated in more detail later in this chapter. The basic rule of
thumb is that the interpreter treats everything from the left bracket to the
matching right bracket as one lump of characters, and it replaces that lump with
the result of the nested command.

Math Expressions

The expr command is used to evaluate math expressions. The Tcl interpreter
itself has no particular smarts about math expressions. It treats expr just like
any other command, and it leaves the expression parsing up to the expr imple-
mentation. The math syntax supported by expr is much like the C expression
syntax, and a more complete summary of the expression syntax is given in the
reference section at the end of this chapter.

The expr command primarily deals with integer, fbating point, and boolean
values. Logical operations return either 0 (false) or 1 (true). Integer values are
promoted to fbating point values as needed. Scientift notation for fbating point
numbers is supported. There is some support for string comparisons by expr, but

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Math Expressions 5

the string conpare command described in Chapter 2 is more reliable because
expr may do conversions on strings that look like numbers.

Example 1-4 Simple arithmetic.

expr 7.2/ 3
=> 2.4

The implementation of expr takes all its arguments, concatenates them
back into a single string, and then parses the string as a math expression. After
expr computes the answer, the answer is formatted into a string and returned.

Example 1-5 Nested commands.

set len [expr [string length foobar] + 7]
=> 13

You can include variable references and nested commands in math expres-
sions. The example uses expr to add 7 to the length of the string f oobar. As a
result of the inner-most command substitution, the expr command sees 6 + 7,
and | en gets the value 13.

Example 1-6 Built-in math functions.

set pi [expr 2*asin(1l.0)]
=> 3. 14159

The expression evaluator supports a number of built-in math functions. A com-
plete listing is given on page 15. The example computes the value of pi.

By default, 6 signiftant digits are used when returning a fbating point
value. This can be changed by setting the t cl _pr eci si on variable to the number
of signiftant digits desired. 17 digits of precision is enough to ensure that no
information is lost when converting back and forth between a string and an
IEEE double precision number.

Example 1-7 Controlling precision with tcl_precision.

expr 1/ 3

= 0

expr 1/ 3.0

=> 0. 333333

set tcl_precision 17
=> 17

expr 1/ 3.0

=> 0. 33333333333333331

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

6 Tcl Fundamentals Chap.1

Backslash Substitution

The fhal type of substitution done by the T cl interpreter is backslash substitu-
tion. This is used to quote characters that have special meaning to the inter-
preter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. You can also specify characters that are hard to type
directly by giving their octal or hexadecimal value.

As a rule, however, if you fid yourself using lots of backslashes, there is
probably a simpler way to achieve the effect you are striving for. For starters,
you can group things with curly braces to turn off all interpretation of special
characters. However, there are cases where backslashes are required.

Example 1-8 Quoting special characters with backslash.

set dollar \'$
=> $
set x $doll ar
= $

In the example, the value of dol | ar does not affect the substitution done in the
assignment to x. After the example, the value of x and dol | ar is the single char-
acter, $. This is a crucial property of the Tcl interpreter: only a single round of
interpretation is done. You don’t have to worry about variables with funny val-
ues.

You can also specify characters with their hex or octal value:

set escape \0x1b
set escape \033

The value of variable escape is the ASCII ESC character, which has char-
acter code 27. The table on page 14 summarizes backslash substitutions.

Another common use of backslashes is to continue long commands on multi-
ple lines. A backslash as the last character in a line is converted into a space. In
addition, all the white space at the beginning of the next line is also absorbed by
this substitution. Often line continuations can be avoided by strategic placement
of opening curly braces as will be shown in the pr oc example below. However, the
case where this does not work is with nested commands delimited by square
brackets. Inside square brackets, the rule that newline and semi-colon are com-
mand terminators still applies. The backslash in the next example is required,
otherwise the expr command would get terminated too soon, and the value of
[string I ength $two] would be used as the name of a command!”

Example 1-9 Continuing long lines with backslashes.

set total Length [expr [string |l ength $one] + \

*The reasoning for this feature of the parse is consistency. A newline terminates a command
unless an argument is being grouped. This holds for both top level and nested commands. The
square brackets used for command substitution do not provide grouping. This allows the
nested commands to be embedded as part of an argument.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Double Quotes 7

[string I ength $two]]

Double Quotes

Double quotes, like braces, are used to group words together. The difference
between double quotes and curly braces is that quotes allow substitutions to
occur in the group, while curly braces prevent substitutions.

Example 1-10 Grouping with double quotes allows substitutions.

set s Hello

puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.

puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the frst command of the example, the T cl interpreter does variable and
command substitution on the second argument to put s. In the second command,
substitutions are prevented so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the
argument need to be delayed until a later time (or never done at all). Examples
include control fbw statements and procedure declarations. Double quotes are
useful in simple cases like the put s command above.

Another common use of quotes is with the f or mat command that is similar
to the C printf function. The frst argument to format is a format specifer that
often includes special characters like newlines, tabs, and spaces. The only way to
effectively group these into a single argument to format is with quotes. The
quotes allow the Tcl interpreter to do the backslash substitutions of \n and \t
while ignoring spaces.

puts [format "ltem %\t9%. 3f" $nane $val ue]

Here f or mat is used to align a name and a value with a tab. The % and
9%. 3f indicate how the remaining arguments to f or mat are to be formatted. Note
that the trailing \ n usually found in a C pri ntf call is not needed because put s
provides one for us. More details about the f or mat command can be found in
Chapter 2.

Procedures

Tcl uses the proc command to defne procedures. The basic syntax to defne a
procedure is:
proc nane arglist body
The frst argument is the name of the procedure being defnhed. The name is
case sensitive, and in fact it can contain any characters. Procedure names and
variable names do not conflct with each other . The second argument is a list of

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

8 Tcl Fundamentals Chap.1

parameters to the procedure. The third argument is a command, or more typi-
cally a group of commands that form the procedure body. Once defned, a T cl pro-
cedure is used just like any of the built-in commands.

Example 1-11 Defining a procedure.

proc diag {a b} {
set c [expr sqrt($a * $a + $b * $b)]
return $c

The di ag procedure defned in the example computes the length of the diag-
onal side of a right triangle given the lengths of the other two sides. The sqrt
function is one of many math functions supported by the expr command. The
variable c is local to the procedure; it is only defhed during execution of di ag.
Variable scope is discussed further in Chapter 5. Use of this variable is not really
necessary in this example. The procedure body could also be written as:

return [expr sqgrt($a * $a + $b * $b)]

The return command is optional in this example because the Tcl inter-
preter will return the value of the last command in the body as the value of the
procedure. So, the procedure body could be reduced to:

expr sqrt($a * $a + $b * $b)

Note the stylized use of curly braces in this example. Braces group the
arguments a and b into a single argument list to form the second argument to
the proc command. The curly brace at the end of the frst line starts the third
argument. In this case, the Tcl interpreter sees the opening left brace, causing it
to ignore newline characters and gobble up text until a matching right brace is
found. (Double quotes have the same property. They group characters, including
newlines, until another double quote is found.) The result of the grouping is that
the third argument to pr oc is a sequence of commands. When they are evaluated
later, the embedded newlines will terminate each command. The other crucial
effect of the curly braces around the procedure body is to delay any substitutions
in the body until the time the procedure is called. For example, the variables a, b
and c are not defhed until the procedure is called, so we do not want to do vari-
able substitution at the time di ag is defned.

The proc command supports additional features such as having variable

numbers of arguments and default values for arguments. These are described in
detail in Chapter PROCS.

A While Loop Example

Let’s reinforce what we’ve learned so far with a longer example.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A While Loop Example 9

Example 1-12 A loop that multiplies the numbers from 1 to 10.

set i 1 ; set product 1

while {$i <= 10} {
set product [expr $product * $i]
incr i

set product
=> 3628800

The semi-colon is used on the frst line to remind you that it is a command
terminator just like the newline character.

The example uses the whi | e command to compute the product of a series of
numbers. The frst argument to whi | e is a boolean expression, and its second
argument is a sequence of commands, or command body, to execute. The whi | e
command will evaluate the boolean expression, and then execute the body if the
expression is true (non-zero). The whil e command will continue to test the
expression and then evaluate the command body until the expression is false
(zero).

The same math expression evaluator used by the expr command is used by
whi | e to evaluate the boolean expression. There is no need to explicitly use the
expr command in the frst argument, even if you have a much more complex
expression.

The i ncr command is used to increment the value of the loop variable i .
The i ncr command can take an additional argument, a positive or negative inte-
ger by which to change the value of the variable. This is a handy command that
saves us from the longer command:

set i [expr $i + 1]

Curly braces are used to group the two arguments to whi | e. The loop body
is grouped just like we grouped the procedure body earlier. The use of braces
around the boolean expression is also crucial because it delays variable substitu-
tion until the whi | e command implementation tests the expression. The follow-
ing example is an infhite loop:

set i 1 ; while $i<=10 {incr i}

The loop will run indefnitely . The bug is that the Tcl interpreter will substi-
tute for $i before whi | e is called, so whi | e gets a constant expression 1<=10 that
will always be true. You can avoid these kinds of errors by adopting a consistent
coding style that always groups expressions and command bodies with curly
braces.

Expressions can include variable and command substitutions and still be
grouped with curly braces because the expression parser does its own round of
substitutions.” This is needed in the example if it is to obtain the current value of

“This means that an argument to expr can be subject to two rounds of substitution: one by the
Tecl interpreter before expr is called, and a second by the implementation of expr itself. Ordi-
narily this is not a problem because math values do not contain the characters that are special
to the Tel interpreter. The fact that eXpr does substitutions on its argument internally means
that it is OK to group its argument with curly braces.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

10 Tcl Fundamentals Chap.1

$i in the boolean expression.
The last command in the example uses set with a single argument. When

used in this way the set command returns the current value of the named vari-
able.

Grouping And Command Substitution

The following example demonstrates how nested commands interact with group-
ing arguments to the main command. A nested command is treated as one lump
of characters, regardless of its internal structure, so a nested command is always
included with the surrounding group of characters when collecting arguments
for the main command.

Example 1-13 Embedded command and variable substitution.

set x 7 ; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In the example the second argument to put s is:
$x+gy=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of
grouping the argument. The Tcl interpreter makes a single pass through the
argument doing variable and command substitution. By the time it encounters
the left bracket, it has already done some variable substitutions to obtain:

7+9=

At that point it calls itself recursively to evaluate the nested command.
Again, the $x and $y are substituted before calling expr. Finally, the result of
expr is substituted for everything from the left bracket to the right bracket. The
put s command gets the following as its second argument:

7+9=16

The main point is that the grouping decision about put s’s second argument
is made before the command substitution is done. Even if the result of the nested
command contained spaces or other special characters, they would be ignored for
the purposes of grouping the arguments to the outer command. If you wanted the
output to look nicer, with spaces around the + and =, then you would use double
quotes to explicitly group the argument to put s:

puts stdout "$x + Sy = [expr $x + $y]"

In contrast, it is never necessary to explicitly group a nested command with
double quotes if it makes up the whole argument. The following is a redundant
use of double quotes:

puts stdout "[expr $x + $y]"

In general, you can place a bracketed command anywhere. The following

computes a command name:

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

More About Variable Substitution 11

[f indCommand $x] arg arg
The following concatenates the results of two commands because there is no
whitespace between the] and [.
setx[cmdl arg][cnd2 arg]

More About V ariable Substitution

Grouping and variable substitution interact in the same way that grouping and
command substitution do. Spaces or special characters in variable values do not
affect grouping decisions because these decisions are made before the variable
values are substituted. The rule of thumb is grouping before substitution.

Example 1-14 Embedded variable references

set foo filename
set object $foo.0
=> filenane.o
set a AAA

set b abc${a}def
=> abcAAAdef
set .o yuk!

set x ${.o}y

=> yuk!y

The Tcl interpreter makes some assumptions about variable names that
make it easy to embed their values into other strings. By default, it assumes that
variable names only contain letters, digits, and the underscore. The construct
$foo.0 represents a concatenation of the value of foo and the literal “.0”

If the variable reference is not delimited by punctuation or whitespace,
then you can use curly braces to explicitly delimit the variable name. This con-
struct can also be used to reference variables with funny characters in their
name (although you probably do not want variables named like that).

Substitution And Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a com-
mand:

1. A dollar sign, $, causes variable substitution. Variables names can be any
length, and case is signiftant. If variable references are embedded into
other strings, they can be distinguished with ${ var nane} syntax.

2. Square brackets,[] , cause command substitution. Everything between
the brackets is treated as a command, and everything including the brack-
ets is replaced with the result of the command. Nesting is allowed.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

12 Tcl Fundamentals Chap.1

3. The backslash character, \ , is used to quote special characters. You can
think of this as another form of substitution in which the backslash and the
next character(s) are replaced with a new character.

4. Substitutions can occur anywhere (unless prevented by curly brace group-
ing). A substitution can occur in the middle of a word. That is, part of the
word can be a constant string, and other parts of it can be the result of sub-
stitutions. Even the command name can be affected by substitutions.

5. Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right
brace in the group, including newlines, semi-colons, and nested braces. The
enclosing (i.e., outer-most) braces are not included in the group.

6. Grouping with double-quotes, " ", allows substitutions. The interpreter
groups everything until another double-quote is found, including newlines
and semi-colons. The enclosing quotes are not included in the group of char-
acters. A double-quote character can be included in the group by quoting it
with a backslash.

7. Grouping decisions are made before substitutions are performed. This
means that the values of variables or command results do not affect group-
ing.

8. A single round of substitutions is performed before command invocation.
That is, the result of a substitution is not interpreted a second time. This
rule is important if you have a variable value or a command result that con-
tains special characters such as spaces, dollar-signs, square brackets or
braces. Because only a single round of substitution is done, you don’t have
to worry about special characters in values causing extra substitutions.

Fine Points

Here are some additional tips.

1. A well-formed Tcl list has whitespace, a left curly brace, or a left square
bracket before each left curly brace. After a right curly brace you can have
either another right brace, a right square bracket, or whitespace. This is
because white space is used as the separator, while the braces only provide
grouping. One common error is to forget a space between the right curly
brace that ends one argument and the left curly brace that begins the next
one.

2. A double-quote is only interesting when it comes after white space. That is,
the interpreter only uses it for grouping in this case. As with braces, white
space, a right bracket, or a right curly brace are the only things allowed
after the closing quote.

3. Spaces are not required around the square brackets used for command sub-

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Comments 13

stitution. For the purposes of grouping, the interpreter considers every-
thing between the square brackets as part of the same group.

4. When grouping with braces or double quotes, newlines and semi-colons are
ignored for the purposes of command termination. They get included in the
group of characters just like all the others.

5. During command substitution, newlines and semi-colons are signifeant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line.

Comments

Tel uses the # character for comments. Unlike many languages, the # must occur
at the beginning of a command. (Much like REMin Basic.) An easy trick to append
a comment to the end of a command is to proceed the # with a semicolon in order
to terminate the previous command.

Here are some paraneters

set rate 7.0;# The interest rate

set nonths 60;# The |oan term

One subtle effect to watch out for is that a backslash effectively continues a

comment line onto the next line of the script. In addition, a semi-colon inside a
comment is not signifeant. Only a newline terminates comments.

Here is the start of a Tcl comment \

and sone nore of it ; still in the comment

Command Line Arguments

The Tcl shells pass the command line arguments to the script as the value of the
ar gv variable. ar gv is a list, so you use the | i ndex command described in Chap-
ter 3 to extract items from the argument list.

set first [lindex $argv 0]

set second [lindex $argv 1]

Table 1-5 on page 18 gives the complete set of pre-defned variables. Y ou
can also use the i nf o var s command to fad out what is defned.

info vars
=> tcl __interactive argvO argv auto_path argc env

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

14 Tcl Fundamentals Chap.1

Reference

Backslash Sequences

Table 1-1 Backslash sequences.

\a Bell. (0x7)

\b Backspace. (0x8)

\ f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)
\'t Tab (0x9)

\v Vertical tab. (0xb)

\ <newl i ne> Replace newline and all leading whitespace on the following line
with a single space.

\\ Backslash. (\")

\ 0oo Octal specifeation of character code. 1, 2, or 3 digits.

\ xhh Hexadecimal speciftation of character code. 1 or 2 digits.

\c Replaced with literal c if ¢ is not one of the cases listed above. In

particular,\ $,\ ",\ { and \ [are used to obtain these characters.

Arithmetic Operators

Table 1-2 Arithmetic Operators from highest to lowest precedence.

~ 1 Unary minus, bitwise NOT, logical NOT.

* | % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== I = Equal, not equal.

& Bitwise AND.

A Bitwise NOT.

| Bitwise OR.

&& Logical AND.

| Logical OR.

X?y: z If x theny else z.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Reference

15

Built-in Math Functions

Table 1-3 Built-in Math functions

acos(x)
asi n(x)
at an(x)
atan2(y, x)
ceil (x)
cos(x)
cosh(x)
exp(x)

fl oor (x)
fnod(x, y)
hypot (X, y)
I og(x)

| 0g10(x)
POW(X, y)
si n(x)

si nh(x)
sqrt(x)
tan(x)

t anh(x)
abs(x)
doubl e(x)
i nt(x)

r ound(x)

Arc-cosine of X.

Arc-sine of X.

Arc-tangent of x.

Rectangular (x, y) to polar(r, t h). atan2 gives t h
Least integral value greater than or equal to x.
Cosine of X.

Hyperbolic cosine of x.

Exponential, *

Greatest integral value less than or equal to x.
Floating point remainder of x/ y.

Returns sqrt (x*x + y*y).r part of polar coordinates.
Natural log of x.

Log base 10 of x.

X to the y power, x¥

Sine of x.

Hyperbolic sine of x.

Square root of x.

Tangent of x.

Hyperbolic tangent of x.

Absolute value of x.

Promote x to fbating point.

Truncate X to an integer.

Round x to an integer.

Core Tcl Commands

The pages given in Table 1-4 are the primary reference for the command.

Table 1-4 Built-in Tcl Commands

Conmmand

Pg. Description

append

21 Append arguments to a variable’s value. No spaces added.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

16

Tcl Fundamentals

Table 1-4 Built-in Tcl Commands

Chap.1

array
br eak
catch
cd

cl ose

concat

conti nue
error
eof

eval

exec
exit
expr
file
flush
for
foreach
f or mat
gets

gl ob

gl oba
hi story
if

i ncr
info
join

| append
I'i ndex
linsert

list

37
46
46
74
74
32

46
48
70
59

65
75
4

67
70
46
44
21
72
74
53
81
42
8

77
35
32
33
34
32

Query array state and search through elements.
Premature loop exit.

Trap errors.

Change working directory.

Close an open I/O stream.

concatenate arguments with spaces between. Splices lists
together.

Continue with next loop iteration.
Raise an error.
Check for end-of-fle.

concatenate arguments and then evaluate them as a com-
mand.

Fork and execute a UNIX program.

Terminate the process.

Evaluate a math expression.

Query the fle system.

Flush output from an I/O stream’s internal buffers.
Loop construct similar to C f or statement.

Loop construct over a list of values.

Format a string similar to C spri ntf.

Read a line of input from an I/O stream.

Expand a pattern to matching fle names.

Declare global variables.

Command-line history control.

Conditional command. Allows el se and el sei f clauses.
Increment a variable by an integer amount.

Query the state of the Tcl interpreter.

concatenate list elements with a given separator string.
Add elements to the end of a list.

Fetch an element of a list.

Insert elements into a list.

Create a list out of the arguments.

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Reference

Table 1-4 Built-in Tcl Commands

Il ength 33
| range 33
| repl ace 34
| search 34
| sort 35
open 70
pid 75
proc 51
put s 72
pwd 74
read 73
regexp 26
regsub 28
rename 52
return 49
scan 23
seek 73
set 3
source 1
split 35
string 19
switch 43
tell 73
time 87
trace 39
unknown 89
unset 30
upl evel 57
upvar 55
whi |l e 45

Return the number of elements in a list.
Return a range of list elements.

Replace elements of a list

Search for an element of a list that matches a pattern.

Sort a list.

Open a fle or process pipeline for I/O.
Return the process ID.

Defie a T cl procedure.

Output a string to an I/O stream.

Return the current working directory.

Read blocks of characters from an I/O stream.
Regular expression matching.
Substitutions based on regular expressions.
Change the name of a Tcl command.
Return a value from a procedure.

Similar to the C sscanf function.

Set the seek offset of an I/O stream.

Assign a value to a variable.

Evaluate the Tcl commands in a fle.

Chop a string up into list elements.
Operate on strings.

Multi-way branch.

Return the current seek offset of an I/O stream.
Measure the execution time of a command.
Monitor variable assignments.

Unknown command handler.

Undefne variables.

Execute a command in a different scope.
Reference a variable in a different scope.

A loop construct.

17

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

18 Tcl Fundamentals Chap.1

Predefined V ariables

Table 1-5 Variables defined by tclsh.

argc The number of command line arguments
ar gv A list of the command line arguments
argvO The name of the script being executed. If being used interac-

tively, argvO0 is the name of the shell program.
env An array of the environment variables. See page 38.

tcl _interactive True (one)ifthe tclsh is prompting for commands.

tcl _pronpt1l If defhed, this is a command that outputs the prompt. .

tcl _pronpt2 If defned, this is a command that outputs the prompt if the
current command is not yet complete.

auto_path The search path for script library directories. See page 90.

auto_index A map from command name to a Tcl command that defnes it.

auto_noload If set, the library facility is disabled.

auto_noexec If set, the auto execute facility is disabled.

geonetry (wish only). The value of the - geonet r y argument.

Note that the tcl_promptl variable is not a string to print. Its value is
invoked as a command that prints the string. This lets you be arbitrarily fancy in
how you generate prompts, but it makes the simple case harder. Try this:

set tcl_pronptl {puts -nonewl ine "yes master> "}

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER

Strings and Pattern Matching

This chapter describes string manipulation and pattern matching. Tcl
commands described: string, append, for mat regexp,
regsub, gl ob.

S trings are the basic data item in Tcl, so it
should not be surprising that there are a large number of commands to manipu-
late strings. A closely related topic is pattern matching, in which string compari-
sons are made more powerful by matching a string against a pattern. Tcl
supports two styles of pattern matching. Glob matching is a simple matching
similar to that used in many shell languages. Regular expression matching is
more complex and also more powerful.

The string Command

The general syntax of the Tecl st ri ng command is:
string operation stringval ue otherargs
That is, string’s frst argument determines what it does, its second argu-
ment is a string, and there may be additional arguments depending on the oper-
ation.
Some of the string commands involve character indices into the string.
These count from zero. The end keyword refers to the last character in a string.
string range abcd 1 end
=> bcd
The following table summarizes the string command. Most of these com-
mands are closely related to the string functions in the standard C library.

19

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

20 Strings and Pattern Matching Chap.2

Table 2-1 The string command

string compare strl str2 Compare strings lexicographically. Returns 0 if
equal, -1 if st r 1 sorts before st r 2, else 1.

stringf irst strl str2 Return the index in st r 2 of the fist occurrence of
strl,or-1ifstr1is not found.

string index string i ndex Return the character at the specifed i ndex.

string last strl str2 Return the index in st r 2 of the last occurrence of
stri,or-1lifstr1isnotfound.

string length string Return the number of characters in string.

string match pattern str Return 1ifstr matches the pattern, else 0.
Glob-style matching is used. See page 24

string range str i j Return the range of characters in str fromi toj .

string tolower string Return st ri ng in lower case.

string toupper string Return st ri ng in upper case.

string trim string Trim the characters in chars from both ends of

?chars? string. char s defaults to whitespace.

string trimleft string Trim the characters in chars from the beginning of

?chars? string. chars defaults to whitespace.

string trimright string Trim the characters in chars from the end of

?chars? string. char s defaults to whitespace.

string wordend str ix Return the index in st r of the character after the

word containing the character at index i x.

string wordstart str ix Return the index in st r of the fist character in
the word containing the character at index i x.

Strings And Expresssions

Strings can be compared with expr using the comparison operators. How-
ever, there are a number of subtle issues that can cause problems. First, you
must quote the string value so the expression parser can identify it as a string
type. Then you must quote the expression with curly braces to preserve the dou-
ble quotes from being stripped off by the main interpreter.

if {$x == “fo0”}

The killer, however, is that in spite of the quotes the expression evaluator
frst converts things to numbers if possible, and then converts them back if it
detects a case of string comparison. This can lead to unexpected conversions
between strings that look like hex or octal numbers.

if {*Oxa” == “10"} { puts stdout ack! }
=> ack!
As a result, the only bombproof way to compare strings is with the string

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

The append Command 21

conmpar e command. This command also operates quite a bit faster because the
unnecessary conversions are eliminated. Like the C library strcnp function,
string conpare returns 0 if the strings are equal, -1 if the fist string is lexico-
graphically less than the second, or 1 if the frst string is greater than the sec-
ond.

Example 2-1 Comparing strings.

if {[string conpare $sl1 $s2] == 0} {
strings are equal
}

The append Command

The append command takes a variable name as its frst argument, and then it
concatenates its remaining arguments onto the current value of the named vari-
able. The variable will be created if it did not already exist.

set xyzzy z

append xyzzy a b ¢

=> zabc

The command provides an efftient way to add things to the end of a string.

It works by exploiting the memory allocation scheme used internally by Tcl that
allocates extra space to allow for string growth.

The format Command

The f or mat command is similar to the C printf function. It formats a string
according to a format speciftation:
format spec val uel value2 ...

The spec argument includes literals and keywords. The literals are placed i
n the result as is, while each keyword indicates how to format the corresponding
argument. The keywords are introduced with a percent (%9 that is followed by
zero or more modifers and terminates with a conversion specifer . Example key-
words include % for fbating point , % for integer and % for string format. Use
9%®6to obtain a single percent character.

The following is a brief sketch of the keyword speciftation syntax. The com-
plete details can be found in the on-line manual page about f or mat. The most
general keyword speciftation for each argument contains up to 6 parts: a posi-
tion specifer , thgs, feld width, precision, word length, and conversion character .

The examples in this section use double quotes around the f or mat specifta-
tion. This is a habit because often the format contains white space, so grouping is
required, as well as backslash substitutions like \t or \ n, and the quotes allow
substitution of these special characters.

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

22 Strings and Pattern Matching Chap.2

The conversion characters are listed in the table below.

Table 2-2 Format conversions

d Signed integer

u Unsigned integer

i Signed integer. The argument may be in hex (0x) or octal (0) format.
o Unsigned octal.

x or X Unsigned hexadecimal. X’ gives lower-case results.

c Map from an integer to the character it represents in ASCII.
s A string.
f Floating point number in the format a.b

e or E Floating point number in scientifé notation, a.bE+-c

g or G Floating point number in either %f or %eformat, whichever is
shorter.

A position specifer is i $, which means take the value from argument i as
opposed to the normally corresponding argument. The position counts from 1. If
you group the format speciftation with double-quotes, you will need to quote the
$ with a backslash.

set lang 2
format “%${lang}\$s” one un uno
=> un

The position is useful for picking a string from a set, such as this simple
language-specift example. The position is also useful if the same value is
repeated in the formatted string. If a position is specifed for one format key-
word, it must be used for all of them.

The fhgs in a format are used to specify padding and justifeation. The for-
mat thg characters are summarized in the table below .

Table 2-3 format flags

- Left justify the feld.
+ Always include a sign, either + or -.
space Proceed a number with a space, unless the number has a leading

sign. Useful for packing numbers close together.
Pad with zeros.

Leading 0 for octal. Leading Ox for hex. Always include a decimal
point in fbating point. Do not remove trailing zeros (%g).

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

The scan Command 23

format “%#x” 20
=> 0x14
format “%#08x” 10
=> 0x0000000a
After the thgs you can specify a minimum feld width value. The value is
padded to this width if needed, normally with spaces, optionally with zeros if the
0 fhg is used.
format “%-20s %3d” Label 2
=> Label 2
You can compute a feld width and pass it to format as one of the arguments
by using * as the feld width specifer . In this case the next argument is used as
the feld width instead of the value, and the argument after that is the value that
gets formatted.
set max| 8
format “%-*s = %s” $maxl| Key Value
=> KeyVal ue
The precision comes next, and it is specifed with a period and a number .
For %f and %eit indicates how many digits come after the decimal point. For %git
indicates the total number of signiftant digits used. For %dand %x it indicates
how many digits will be printed, padding with zeros if necessary.
format “%6.2f %6.2d” 1 1
= 1.00 01
(The storage length part comes last, but it is rarely useful because Tcl
maintains all fbating point values in double-precision, and all integers as
words.)
If you want to preserve enough precision in a fbating point number so that
scanning in the number later will result in the same thing, use %17g (This magic
number applies to double-precision IEEE format.)

The scan Command

The scan command is like the C sscanf procedure. It parses a string according to

a format speciftation and assigns values to variables. It returns the number of

successful conversions it made. The general form of the command is given below:
scan string format var ?var?? var? ...

The format for scan is nearly the same as in the format command. There is
no %uscan format. The %cscan format converts one character to its binary value.
Unlike the C sscanf %g it does not allow a feld width.

The scan format includes a set notation. Use square brackets to delimit a
set of characters. The set matches one or more characters that are copied into the
variable. A dash is used to specify a range. The following scans a feld of all low-
ercase letters.

scan abcABC {%][a-z]} result

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

24 Strings and Pattern Matching Chap.2

== 1

set result

=> abc

If the frst character in the set is a right square bracket, then it is consid-

ered part of the set. If the frst character in the set is #, then characters not in the
set match. Again, put a right square bracket right after the * to include it in the
set. Nothing special is required to include a left square bracket in the set. As in
the example shown above, you’ll want to protect the format with braces, or use
backslashes, because square brackets are special to the Tcl parser.

String Matching

The string match command implements glob-style pattern matching that is
modeled after the flename pattern matching done by various UNIX shells.
There are just 3 constructs used in glob patterns: match any number of any char-
acters (*), match any single character (?), or match one of a set of characters
([abc]).” Any other characters in a pattern are taken as literals that must match
the input exactly. To match all strings that begin with a.
string match a* al pha
== 1
To match all two-letter strings:
string match ?? XY
== 1
To match all strings that begin with either a or b:
string match {[ab]*} cello
= 0
Be careful! Square brackets are also special to the Tcl interpreter, so you’ll
need to wrap the pattern up in curly braces to prevent it from being interpreted
as a nested command.
Another approach is to put the pattern into a variable:
set pat {[ab]*x}
string match $pat box
= 1
The pattern specifes a range of characters with the syntax [x-y]. For
example, [a- z] represents the set of all lower-case letters, and [0- 9] represents
all the digits. This range is applied to the ASCII collating sequence.
Finally, if you need to include a literal *, ?, or bracket in your pattern, pref-
ace it with a backslash.
string match {*\?} what?
= 1

“The stri ng nmat ch function does not support alternation in a pattern, such as the
a, b, ¢} syntax of the C-shell. The gl ob command, however, does support this form.
g

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

Regular Expressions 25

In this case the pattern is quoted with curly braces because the Tcl inter-
preter is also doing backslash substitutions. Without the braces, you would have
to do the following:

string match *\? ?
== 1

Regular Expressions

The most powerful way to express patterns is with regular expressions. It has a
general pattern speciftation syntax, which includes the ability to extract sub-
strings from the matching string. This proves quite useful in picking apart data.

A pattern is a sequence of a literal character, a matching character, a repe-
tition clause, an alternation clause, or a subpattern grouped with parentheses.
The following table summarizes the syntax of regular expressions:

Table 2-4 Regular Expression Syntax

Matches any character

* Matches zero or more.
+ Matches one or more.
? Matches zero or one.

() Groups a sub-pattern. The repetition and alternation operators apply to
the whole proceeding sub-pattern.

| Alternation.

[1 Delimit a set of characters. Ranges are specifed as [x-y]. If the frst char-
acter in the set is ”, then there is a match if the remaining characters in
the set are not present.

A Anchor the pattern to the beginning of the string. Only when frst.
$ Anchor the pattern to the end of the string. Only when last.

A number of examples of regular expressions are given below. Any pattern
than contains brackets, dollar sign, or spaces must be handled specially when
used in a Tcl command. Typically I use curly braces around patterns, although
the examples below do not quote anything.

The general wild-card character is the period, “." . It matches any single
character. The following pattern matches all two-character strings.

The matching character can be restricted to a set of characters with the
[xyz] syntax. Any of the characters between the two brackets is allowed to
match. For example, the following matches either Hello or hello

[Hh]ello

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

26 Strings and Pattern Matching Chap.2

The matching set can be specifed as a range over the ASCII character set
with the [x-y] syntax, which is the same as with the glob mechanism. However,
there is also the ability to specify the complement of a set. That is, the matching
character can be anything except what is in the set. This is achieved with the
[* xyz] syntax. Ranges and complements can be combined. The following
matches anything except the upper and lowercase letters:

[ra-zA-Z]

Repetition is specifed with *, for zero-or-more, +, for one-or-more, and ?, for
zero-or-one. These operators apply to the previous thing, which is either a
matching character, which could involve the set syntax, or a subpattern grouped
with parentheses. The following matches a string that contains b followed by
Z€ero or more a’s:

ba*

While the following matches a string that has one or more sequences of ab:
(ab)+

The pattern that matches anything is:

*

Alternation is specifed with “|” . Another way to match either Hello or
hello would be with:
hello|Hello
In general, a pattern does not have to match the whole string. If you need
more control than this, then you can anchor the pattern to the beginning of the
string by starting the pattern with », or to the end of the string by ending the
pattern with $. You can force the pattern to match the whole string by using
both. All strings that begin with spaces or tabs are matched with the following.
AN+
Finally, if a pattern can match several parts of a string, the matcher takes
the match that occurs earliest in the input string. Then, if there is more than one
match from that same point, the matcher takes the longest possible match. The
rule of thumb is “first, then longest”.

The regexp Command

The regexp command provides direct access to the regular expression matcher.
Its syntax is:
regexp ?flags? pattern string ?match subl sub2...?

The return value is 1 if some part of the string matches the pattern, it is 0
otherwise.

The f1 ags are optional and constrain the match as follows. If - nocase is
specifed, then upper case characters in string are treated as lower case during
the match. If -indices is specifed, then the match variables described below
will each contain a pair of numbers that are the indices that delimit the match
within string. Otherwise, the matching string itself is copied into the match

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

The regexp Command 27

variables. Finally, if your pattern begins with -, then you can use - - to separate
the fhgs from the pattern.

The pat t er n argument is a regular expression as described in the previous
section. If this contains $ or [, you have to be careful. The easiest thing to do is
group your patterns with curly braces. However, if your pattern contains back-
slash sequences like \ n or \'t you will have to group with double quotes so the Tcl
interpreter can do those substitutions. You will have to use \[and \ $ in your
patterns in that case.

If string matches pattern, then the results of the match are stored into
the variables named in the command. These match variable arguments are
optional. If present, mat ch is set to be the part of the string that matched the pat-
tern. The remaining variables are set to be the substrings of string that
matched the corresponding subpatterns in pat t er n. The correspondence is based
on the order of left parentheses in the pattern to avoid ambiguities that can arise
from nested subpatterns.

Example 2-2 Regular expression to parse the DI SPLAY environment variable.

set env(DI SPLAY) corvina: 0.1
regexp {([”*:1*):} $env(DI SPLAY) natch host
== 1

set match
=> corvina:
set host
=> corvi na

The example uses r egexp to pick the hostname out of the DI SPLAY environ-
ment variable, which has the form:
host nane: di spl ay
The pattern involves a complementary set, [*:], to match anything except
a colon. It uses repetition, *, to repeat that zero or more times. Then, it groups
that part into a subexpression with parentheses. The literal colon ensures that
the DI SPLAY value matches the format we expect. The part of the string that
matches the pattern will be stored into the mat ch variable. The part that we
really want is what matches the subpattern, and that will be stored into host .
The whole pattern has been grouped with braces to avoid the special meaning of
the square brackets to the Tcl interpreter. Without braces it would be:
regexp (\[”*:1*): $env(Dl SPLAY) nmatch host
This is quite a powerful statement, and it is efftient. If we only had the
string command to work with, we would have had to resort to the following,
which takes roughly twice as long to interpret.
set i [string first : $env(Dl SPLAY)]
if {$i >= 0} {
set host [string range $env(Dl SPLAY) 0 [expr $i-1]]
}

Multiple subpatterns are allowed. We can improve our pattern so that it

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

28 Strings and Pattern Matching Chap.2

extracts the screen part of the DI SPLAY as well as the host:
regexp {([*:]*):(.+)} $env(Dl SPLAY) match host screen

The regsub Command

The r egsub command is used to do string substitution based on pattern match-
ing. Its syntax is:
regsub ?switches? pattern string subspec varnane

The r egsub command returns the number of matches and replacements, or
0 if there was no match. r egsub copies st ri ng to var nane, replacing occurrences
of pat t er n with the substitution specifed by subspec.

The optional switches include - al | , which means to replace all occurrences
of the pattern. Otherwise only the frst occurrence is replaced. The -nocase
switch means that upper-case characters in the string are converted to lowercase
before matching. The - - switch is useful if your pattern begins with - .

The replacement pattern, subspec, can contain literal characters as well as
the following special sequences.

& is replaced with the string that matched the pattern.

\'1 through \ 9 are replaced with the strings that match the corresponding
subpatterns in pattern. As with regexp, the correspondence is based on the
order of left parentheses in the pattern speciftation.

The following is used to replace a user’s home directory with a ~:

regsub ~"$env(HOMVE)/ $pat hnane ~/ newpath
The following is used to construct a C compile command line given a fle-
name. The \ . is used to specify a match against period.
regsub {([*.]*)\.c} file.c {cc -c & -0 \1.0} ccCr
The value assigned to ccCnd is:
cc -c file.c -o file.o.

With an input pattern of fi |l e. c and a pattern of {([*\.]*)\.c}, the sub-
pattern matches everything up to the frst period in the input, or just fil e. The
replacement pattern, {cc -c & -0 \ 1.0} references the subpattern match with
\ 1, and the whole match with &.

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

C HAPTER

Tecl Data Structures

This chapter describes two higher level data structures used in Tcl: lists and
arrays.

The basic data structure in Tcl is a string.
In addition, there are two higher-level data structures, lists and arrays. Lists are
implemented as strings. Their structure is defned by the syntax of the string.
The syntax rules are the same as for commands, and in fact commands are just a
particular instance of lists. Arrays are variables that have an index. The index is
a string value, so you can think of arrays as maps from one string (the index) to
another string (the value of the array element).
As a rule, lists are ok when they are short, or when you are building up a
command to be evaluated later. Arrays are more convenient and efftient for
larger collections of data.

More About Variables

Before we dive into lists and arrays, let‘s consider simple variables in a bit more
detail. The set command is used to defne variables of any type. In addition, the

set command will return the value of a variable if it is only passed a single argu-
ment. It treats that argument as a variable name and returns the current value
of the variable. The dollar-sign syntax used to get the value of a variable is really
just a short-hand for using the set command in this way.

29

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

30

Tcl Data Structures Chap.3

Example 3—-1 Using set to return a variable value.

set var {the value of var}
=> the val ue of var

set name var

=> var

set nane

=> var

set $nane

=> the val ue of var

This is a somewhat tricky example. In the last command, $name gets sub-

stituted with var. Then the set command returns the value of var, which is t he
val ue of var. Another way to achieve a level of indirection like this is with
nested set commands. The last set command above can be written as follows

set [set nane]
=> the val ue of var

The unset command

You can delete a variable with the unset command:
unset var Name var Nanme2 ...
Any number of variable names can be passed to the unset command. How-

ever, unset will raise an error if a variable is not already defned.

You can delete an entire array, or just a single array element with unset .

Using unset on an array is a convenient way to clear out a big data structure.

Using info to find out about variables

The existence of a variable can be tested with the i nfo exi sts command. For
example, because i ncr requires that a variable exists, you might have to test for
the existence of the variable frst.

Example 3—2 Using i nf 0 to determine if a variable exists.

if I'[info exists foobar] {
set foobar O

} else {
i ncr foobar

}

In Chapter 5 there is an example on page 56 that implements a new version

of i ncr that handles this case.

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl Lists 31
Tcl Lists

Unlike list data structures in other languages, Tcl lists are just strings with a
special interpretation. By defnition, a T cl list has the same structure as a Tcl
command. That is, a list is simply a string with list elements separated by white
space. Braces or quotes can be used to group words with whitespace into a single
list element. Because of the relationship between lists and commands, the list-
related commands are used often when constructing Tcl commands.

The string representation of lists in Tcl has performance implications. The
string representation must be reparsed on each list access, so watch out for large
lists. If you fad yourself maintaining large lists that must be frequently
accessed, consider changing your code to use arrays instead.

There are several Tcl commands related to lists, and these are described
briefy in T able 2-1. Their use will be described in more detail via some examples.

Table 3-1 List-related commands

list argl arg2... Creates a list out of all its arguments.
lindexlist i Returns the i’th element from | i st .
Ilengthlist Returns the number of elements in | i st .
Irangelist i j Returns the i’th through j’th elements from | i st .
| append listVar arg arg ... Append a elements to the value of | i st Var.
linsert list index arg arg .. Insertelementsintoli st before the element at

position i ndex. Returns a new list.

Ireplacelist i j arg arg ... Replaceelementsi through;jofli st with the
ar gs. Returns a new list.

| search node |ist val ue Return the index of the element in | i st that
matches the val ue according to the mode, which
is - exact, - gl ob, or - r egexp. - gl ob is the
default. Return -1 if not found.

| sort switches Iist Sort elements of the list according to the switches:
-ascii, -integer, -real, -increasing,
-decreasi ng, -conmand conmand. Returns a
new list.

concat arg arg arg ... Join multiple lists together into one list.

joinlist joinString Merge the elements of a list together by separat-

ing them with j oi nStri ng.

split string splitChars Split a string up into list elements, using (and dis-
carding) the characters in spl i t Char s as bound-
aries between list elements.

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

32 Tcl Data Structures Chap.3
Constructing Lists: list, lappend, and concat

The I i st command constructs a list out of its arguments such that there is one
list element for each argument. This is a important command, although it might
not seem like it at fist glance, because it ensures that the resulting list has the
proper syntax. If any of the arguments contain special characters, the | i st com-
mand adds quoting to ensure they are parsed as a single element of the resulting
list.

Example 3-3 Constructing a list with the | i st command.

set x {1 2}
=1 2

set x

=1 2

list $x \'$ foo

=> {1 2} {$} foo

One thing that can be confusing at frst is that the braces used to group the
list value into one argument to the set command are not part of the list value. In
the example, the interpreter strips off the outer braces that are used to group the
second argument to set. However, the |i st command adds them back, which
could lead you to believe that the braces are part of x’s value, but they are not.

The | append command is used to append elements to the end of a list. It is
efftient because it takes advantage of extra space allocated at the end of lists.
Like | i st, | append preserves the structure of its arguments. That is, it may add
braces to group the values of its arguments so they retain their identity as list
elements when they are appended onto the string representation of the list. The
new elements added by | append are peers of the existing list elements in the
variable.

Example 3—4 Using | append to add elements to a list.

| append new 1 2
=12

| append new 3 "4 5"
=>1 2 3 {4 5}

set new

=> 12 3 {4 5}

The | append command is unique among the list-related commands because
its frst argument is the name of a list-valued variable, while all the other com-
mands take list values as arguments. You can call | append with the name of an
undefned variable and the variable will be created.

The concat command is useful for splicing together lists. It works by con-
catenating its arguments together, separating them with spaces. This joins mul-
tiple lists into one where the top-level list elements in each input list are also

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Getting List Elements: llength, lindex, and Irange 33

top-level list elements (i.e. peers) in the resulting list.

Example 3-5 Using concat to splice together lists.

concat 1 {2 3} {4 5 6}
=> 123456

It turns out that double quotes behave much like the concat command. The
following example compares the use of | i st, concat, and double quotes.

Example 3-6 Double quotes compared to the | i st command.

set x {1 2}

=12

set y "$x 3"
=123

set y [concat $x 3]
=123

set z [list $x 3]
= {12} 3

The distinction between list and concat becomes important when Tcl com-
mands are built dynamically. The basic rule is that | i st and | append preserve
list structure, while concat (or double-quotes) eliminate one level of list struc-
ture. The distinction can be subtle because there are examples where | i st and
concat return the same results. Unfortunately, this can lead to data-dependent
bugs. Throughout the examples of this book you will see the I i st command used
to safely construct lists. This issue is discussed more in Chapter 6.

Getting List Elements: llength, lindex, and Irange

The | | engt h command returns the number of elements in a list.
Ilength {a b {c d} "e f g" h}
=> 5
The | i ndex command returns a particular element of a list. It takes an
index; list indices count from zero. The keyword end means the last element, and
it can be used with | i ndex, | i nsert, | range, and | r epl ace.
lindex {1 2 3} O
= 1
The | range command returns a range of list elements. It takes a list and
two indices as arguments.
Irange {1 2 3 {4 5}} 2 end
== 3 {4 5}

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

34 Tcl Data Structures Chap.3
Modifying Lists: linsert and Ireplace

The linsert command inserts elements into a list value at a specifed
index. If the index is O or less, then the elements are added to the front. If the
index is equal to or greater than the length of the list, then the elements are
appended to the end. Otherwise, the elements are inserted before the element
that is current as position index.

I repl ace is used to replace a range of list elements with new elements. If
you don’t specify any new elements, you effectively delete elements from a list.

Example 3—7 Modifying lists with | i nsert and | r epl ace.

linsert {1 2} O new stuff
=> new stuff 1 2

set x [list a {b c} e d]
= a{bc} ed

Ireplace $x 1 2 B C

= aBCd

Ireplace $x 0 O

=> {bc} ed

Searching Lists: Isearch

| sear ch returns the index of a value in the list, or -1 if it is not present.
| sear ch supports pattern matching in its search. Glob-style pattern matching is
the default, and this can be disabled with the - exact fhg. The semantics of the
pattern matching done with the - gl ob and - r egexp options is described in Chap-
ter 2. In the example below, the glob pattern | * matches the value | i st.
| search {here is a list} |*
=> 3
The | repl ace command is often used with | sear ch to determine if the list
already contains the elements. The example below uses | r epl ace to delete ele-
ments by not specifying any replacement list elements.

Example 3-8 Deleting a list element by value.

proc ldelete { list value } {
set ix [Isearch -exact $list $val ue]
if {$ix >= 0} {
return [Ireplace $list $ix $ix]
} else {
return $list
}

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Sorting Lists: Isort 35

Sorting Lists: Isort

You can sort a list in a variety of ways with | sort. The three basic types of sorts
are specifed with the -ascii, -integer, or -real options. The -i ncreasi ng or
- decr easi ng option indicate the sorting order. The default option set is - asci i
-i ncreasi ng. The list is not sorted in place. Instead, a new list value is returned.

You can provide your own sorting function for special-purpose sorting
needs. For example, suppose you have a list of person names, where each ele-
ment is itself a list containing the person’s frst name, middle name (if any), and
last name. The default sort will sort by everyone’s frst name. If you want to sort
by their last name, however, you need to supply a sorting function.

Example 3-9 Sorting a list using a comparison function.

proc myconpare {a b} {
set alast [lindex $a [expr [Ilength $a]-1]]
set blast [lindex $b [expr [Ilength $b]-1]]
set res [string conpare $al ast $bl ast]
if {$res !'= 0} {
return $res
} else {
return [string conpare $a $b]
}

}

set list {{Brent B. Welch} {John CQusterhout} {M|es Davis}}
=> {Brent B. Welch} {John CQusterhout} {MIes Davis}

| sort -command nyconpare $li st

=> {M | es Davis} {John Qusterhout} {Brent B. Wl ch}

The nyconpar e procedure extracts the last element from each of its argu-
ments and compares those. If they are equal, then it just compares the whole of
each argument.

The split And join Commands

The spl it command takes a string and turns it into a list by breaking it at spec-
ifed characters. The split command provides a robust way to turn input lines
into proper Tcl lists. Even if your data has space-separated words, you should be
very careful when using list operators on arbitrary input data. Otherwise, stray
double-quotes or curly braces in the input can result in invalid list structure and
errors in your script.

Example 3-10 Use split to turn input data into Tcl lists.

set line {welch:*:3116: 100: Brent Wl ch:/usr/wel ch:/bin/csh}

split $line :
=> welch * 3116 100 {Brent Wl ch} /usr/welch /bin/csh
set line {this is "not a tcl list}

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

36 Tcl Data Structures Chap.3

lindex $line 1

=>is

lindex $line 2

=> unmat ched open quote in |ist
lindex [split $line] 2

=> "not

The default split character is white space. If there are multiple separator
characters in a row, these result in empty list elements - the separators are not
collapsed. The following command splits on commas, periods, spaces and tabs:

set line "\tHello, world."
split $line\ ,.\t
=> {} Hello {} world {}

The j oi n command is the inverse of split. It takes a list value and refor-
mats it with specifed characters separating the list elements. In doing so, it will
remove any curly braces from the string representation of the list that are used
to group the top-level elements. For example:

join {1 {2 3} {45 6}}
=> 1:2 3:456

Arrays

The other primary data structure that Tcl has is arrays. An array is a variable
with a string-valued index, so you can think of an array as a mapping from
strings to strings. Internally an array is implemented with a hash table, so the
cost of accessing each element is about the same. (It is affected a little by the
length of the index.)

The index of an array is delimited by parentheses. The index can have any
string value, and it can be the result of variable or command substitution. Array
elements are defned with set:

set arr(index) value

The value of an array element is obtained with $ substitution:

set foo $arr (index)

Example 3—-11 Using arrays.

set arr(0) 1
for {set i 1} {$i <= 10} {incr i} {

set arr($i) [expr $i * $arr([expr $i-1])]
}

This example sets arr(x) to the product of 1 * 2 * ... * x. The initial
assignment of arr (0) defnes arr as an array variable. It is an error to use a
variable as both an array and a normal variable. The following would be an error
after the previous example:

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The array Command 37

setarr 3
=> can't set "arr": variable is array

If you have complex indices, use a comma to separate different parts of the
index. Avoid putting a space after the comma. It is legal, but a space in an index
value will cause problems because parenthesis are not used as a grouping mecha-
nism. The space in the index needs to be quoted with a backslash, or the whole
variable reference needs to be grouped:

set {arr(I'm asking for trouble)} {I told you so.}

Of course, if the array index is stored in a variable, then there is no problem
with spaces in the variable’s value. The following works fhe:

set index {I'm asking for trouble}
set arr($index) {l told you so.}

The name of the array can be the result of a substitution. If the name of the
array is stored in another variable, then you must use set as shown in the last
command below to reference the array elements. If you are trying to pass an
array by name to a procedure, see the example on page 56, which uses a different
solution.

Example 3—-12 What if the name of the array is in a variable.

set name TheArray

=> TheArray

set ${name}(xyz) {some value}
=> some value

set x $TheArray(xyz)

=> some value

set x ${name}(xyz)

=> TheArray(xyz)

set x [set name](xyz)

=> some value

The array Command

The array command returns information about array variables, and it can
be used to iterate through array elements.

Table 3-2 The array command

array exists arr Returns 1 if arr is an array variable.

array get arr Returns a list that alternates between an index
and the corresponding array value.

array names arr ?pattern ? Return the list of all indices defned for arr , or
those that match the string match pattern

array set arr list Initialize the array arr from list , which should
have the same form as the list returned by get .

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

38 Tcl Data Structures Chap.3

Table 3-2 The array command

array sizearr Return the number of indices defhed for arr.
array startsearcharr Return a search id key for a search through arr.
array nextelenent arr id Return the value of the next element in ar r ay in

the search identifed by id. Returns an empty
string if no more elements remain in the search.

array anynorearr id Returns 1 if more elements remain in the search.

array donesearcharr id End the search identifed by i d.

The array nanes command is perhaps the most useful because it allows
easy iteration through an array with a f oreach loop. (f oreach is described in
more detail on page 44.)

foreach index [array nanes arr] { command body }

The order of the names returned by array nanes is arbitrary. It is essen-
tially determined by the hash table implementation of the array. You can limit
what names are returned by specifying a pattern argument. The pattern is the
kind supported by the st ri ng mat ch command, which is described on page 24.

It is also possible to iterate through the elements of an array one at a time
using the search-related commands. The ordering is also random, and in practice
I fand the foreach over the results of array names much more convenient. If your
array has an extremely large number of elements, or if you need to manage an
iteration over long period of time, then the array search operations might be
more appropriate.

The array get and array set operations are used to convert between an
array and a list. The list returned by ar r ay get has an even number of elements.
The frst element is an index, and the next is the corresponding array value. The
ordering of the indexes is arbitrary. The list argument to array set must have
the same structure.

Example 3—-13 Converting from an array to a list.

set fruit(best) kiw

set fruit(worst) peach

set fruit(ok) banana

array get fruit

=> ok banana best kiw worst peach

Environment V ariables

In a UNIX environment, the processes environment variables are available
through the global array env. The name of the environment variable is the index,
e.g., env(PATH), and the array element contains the current value of the environ-
ment variable. If assignments are made to env, then they result in changes to the

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tracing Variable Values 39

. . . &
corresponding environment variable.

Example 3-14 pri nt env prints the environment variable values.

proc printenv { args } {
gl obal env
set maxl O
if {[Ilength $args] == 0} {
set args [lsort [array names env]]

foreach x $args {
if {[string length $x] > $maxl} {
set maxl [string | ength $x]
}
}

incr maxl 2
foreach x $args {
puts stdout [format "% s = %" $maxl $x $env($x)]

}
}
printenv USER SHELL TERM
=>
USER = welch
SHELL = /bin/csh
TERM = tx

Tracing V ariable V alues

The t race command lets you register a command to be called whenever a vari-
able is accessed, modifed, or unset. This form of the command is:
trace variabl e name ops conmand
The name is a Tcl variable name, which can be a simple variable, an array,
or an array element. If a whole array is traced, then the trace is invoked when
any element is used according to ops. The ops argument is one or more of the let-
ters r, for read traces, w for write traces, and u, for unset traces. The command is
executed when one of these events occurs. It is invoked as:
conmand nanmel nane2 op
The nanel argument is the variable or array name. The nanme2 argument is
the name of the array index, or null if the trace is on a simple variable. If there is
an unset trace on an entire array and the array is unset, then nane2 is also null.
The value of the variable is not passed to the procedure. The upvar, upl evel , or
gl obal commands have to be used to make the variable visible in the scope of the
trace command. These commands are described in more detail in Chapter 5.
The next example uses traces to implement a read-only variable. The value

* Environment variables are a collection of string-valued variables associated each a UNIX
process. Environment variables are inherited by child processes, so programs run with the Tcl
exec call will inherit the environment of the Tcl script.

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

40 Tcl Data Structures Chap.3

is modifed before the trace procedure is called, so another variable (or some
other mechanism) is needed to preserve the original value.

Example 3-15 Tracing variables.

set x-orig $x
trace variable x wu Fi xupX
proc Fi xupX { varNane index op } {
upvar $var Nanme var
gl obal x-orig
switch $op {
w {set var $x-orig}
u {unset x-orig}

This example merely overrides the new value with the saved valued.
Another alternative is to raise an error with the err or command. This will cause
the command that modifed the variable to return the error. Another common
use of trace is to update a user interface widget in response to a variable change.
Several of the Tk widgets have this feature built into them.

If more than one trace is set on a variable, then they are invoked in the
reverse order; the most recent trace is executed fist. If there is a trace on an
array and on an array element, then the trace on the array is invoked fist. The
next example uses an array trace to dynamically create array elements.

Example 3-16 Creating array elements with array traces.

make sure variable is an array
set dynamic() {}
trace variabl e dynanmi c r Fi xupDynam c
proc Fi xupDynanmi ¢ {nane index op} {
gl obal dynanic;# W know this is $nane
if I'[info exists dynam c($index)] {
set dynam c($index) O
}

Information about traces on a variable is returned with the vi nf o option.
trace vinfo dynamc
=> {r Fi xDynam c}

A trace is deleted with the vdel et e trace option, which has the same form
as the vari abl e option. For example, the trace in the previous example can be
removed with the following command.

trace vdel ete dynam c r Fi xupDynam c

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 4

Control Flow Commands

This chapter describes the Tcl commands used for flow control: i f, swi t ch,
f oreach,whil e, for, break conti nue, catch, error, return.

Control fow in T cl is achieved with com-
mands, just like everything else. There are looping commands: whi | e, f or each,
and f or. There are conditional commands: i f and swi t ch. There is an error han-
dling command: cat ch. Finally, there are some commands to fae tune control
fow: break, continue,return,anderror.

A fbw control command often has a command body that is executed later ,
either conditionally or in a loop. In this case, it is important to group the com-
mand body with curly braces to avoid substitutions at the time the control fbw
command is invoked. Group with braces, and let the control fbw command trig-
ger evaluation at the proper time. A fbw control command returns the value of
the last command it chose to execute.

Another pleasant property of curly braces is that they group things
together while including newlines. The examples use braces in a way that is both
readable and convenient for extending the fbw control commands across multi-
ple lines.

Commands like i f, for and whi | e involve boolean expressions. They use
the expr command internally, so there is no need for you to invoke expr explicitly
to evaluate their boolean test expressions.

41

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

42 Control Flow Commands Chap.4
If Then Else

The if command is the basic conditional command. If an expression is true then
execute one command body, otherwise execute another command body. The sec-
ond command body (the else clause) is optional. The syntax of the command is:
if bool eanthen bodylelse body2
The then and else keywords are optional. In practice, I omit then , but use
else as illustrated in the next example. I always use braces around the com-
mand bodies, even in the simplest cases.

Example 4-1 A conditional if-then-else command.

if {$x == 0} {

puts stderr “Divide by zero!”
}else {

set slope [expr $y/$x]

The style of this example takes advantage of the way the Tcl interpreter
parses commands. Recall that newlines are command terminators, except when
the interpreter is in the middle of a group defned by braces (or double quotes).
The stylized placement of the opening curly brace at the end of the frst and third
line exploits this property to extend the if command over multiple lines.

The frst argument to if is a boolean expression. As a matter of style this
expression is grouped with curly braces. The expression evaluator will perform
variable and command substitution on the expression for us. Using curly braces
ensures that these substitutions are performed at the proper time. It is possible
to be lax in this regard, with constructs like:

if $x break continue

This is a sloppy, albeit legitimate if command that will either break out of
a loop or continue with the next iteration depending on the value of variable x.
Instead, always use braces around the command bodies to avoid trouble later
and to improve the readability of your code. The following is much better (use
then if it suites your taste).

if {$x} { break } else { continue }

Chained conditionals can be created by using the elseif keyword.

Example 4-2 Chained conditional with elseif

if {$key < 0} {
incr range 1
} elseif {$key == 0} {
return $range
}else {
incr range -1
}

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Switch 43

Any number of conditionals can be chained in this manner. However, the
swi t ch command provides a more powerful way to test multiple conditions.

Switch

The swi t ch command is used to branch to one of many command bodies depend-
ing on the value of an expression. In addition, the choice can be made on the
basis of pattern matching as well as simple comparisons. Pattern matching is
discussed in more detail in Chapter 2. Any number of pattern-body pairs can be
specifed. If multiple patterns match, only the body of the fist matching pattern
is evaluated.
The general form of the command is:
switch flags value patl bodyl pat2 body2 ...
You can also group all the pattern-body pairs into one argument:
switch flags value { patl bodyl pat2 body2 ... }
There are four possible fthgs that determine how val ue is matched.

- exact Match the val ue exactly to one of the patterns. (The default.)
-glob Use glob-style pattern matching. See page 24.
-regexp Use regular expression pattern matching. See page 25.

-- No fhg (or end of thgs). Useful when val ue can begin with - .

There are three approaches to grouping the pattern and body pairs. The dif-
ferences among them have to do with the substitutions that are performed (or
not) on the patterns. You will want to group the command bodies with curly
braces so that substitution only occurs on the body with the pattern that
matches the value.

The first style groups all the patterns and bodies into one argument. This
makes it easy to group the whole command without worrying about newlines,
and it suppresses any substitutions on the patterns.

Example 4-3 Using swi t ch for an exact match.

switch -exact -- $value {
foo { doFoo; incr count(foo) }
bar { doBar; return $count(foo)}
default { incr count(other) }

If the pattern associated with the last body is def aul t, then this command
body is executed if no other patterns match. Note that the def aul t keyword only
works on the last pattern-body pair. If you use the def aul t pattern on an earlier
body, it will be treated as a pattern to match the literal string def aul t .

The second style is useful if you have variable references or backslash
sequences in the patterns that you need to have substituted. However, you have

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

44 Control Flow Commands Chap.4

to use backslashes to escape the newlines in the command.

Example 4-4 Using switch with substitutions in the patterns.

switch -regexp -- $value \
~$key { bodyl)
\t##{ body2 \
{[0-91}H{ body3}

In this example the fist and second patterns have substitutions performed
to replace $key with its value and \t with a tab character. The third pattern is
quoted with curly braces to prevent command substitution; square brackets are
part of the regular expression syntax, too. (See page 25.)

A third style allows substitutions on the patterns without needing to quote
newlines, but you will have to backslash any double-quotes that appear in the
patterns or bodies.

Example 4-5 Using switch with all pattern body pairs grouped with quotes.

switch -glob -- $value “
${key}* { puts stdout \"Key is $value\” }
X* -

Y* { takeXorYaction $value }

If the body associated with a pattern is just “-”, then the switch command
“falls through” to the body associated with the next pattern. Any number of pat-
terns can be tied together in this fashion.

Foreach

The foreach command loops over a command body assigning a loop variable to
each of the values in a list. The syntax is:

foreach | oopVar val uelLi st conmmandBody
The frst argument is the name of a variable, and the command body is executed
once for each element in the loop with the loop variable taking on successive val-
ues in the list. The list can be entered explicitly, as in the next example:

Example 4-6 Looping with foreach .

setil
foreach value {1357 11 13 17 19 23} {
set i [expr $i*$value]

seti
=> 111546435

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

While 45

In the next example, a list-valued variable is used.

Example 4-7 Parsing command line arguments.

argv is set by the Tcl shells
foreach arg $argv {
switch -regexp -- $arg {
-foo {set fooOption 1}
-bar {barRelatedCommand}
-([0-9]4) {scan -%d $arg intValue}

The variable argv is set by the Tcl interpreter to be a list of the command
line arguments given when the interpreter was started up. The loop looks for
various command line options. The -- thg is required in this example because the
switch command will complain about a bad fhg if the pattern begins with a -
character. The scan command, which is similar to the C library scanf function, is
used to pick a number out of one argument.

If the list of values is to contain variable values or command results, then
the list command should be used to form the list. Double-quotes should be
avoided because if any values or command results contain spaces or braces, the
list structure will be reparsed, which can lead to errors or unexpected results.

Example 4-8 Using list with foreach .

foreach x [list $a $b [foo]] {
puts stdout “x = $x”
}

The loop variable x will take on the value of a, the value of b, and the result
of the foo command, regardless of any special characters or whitespace in those
values.

While

The while command takes two arguments, a test and a command body:
while bool eanExpr body
The while command repeatedly tests the boolean expression and then exe-
cutes the body if the expression is true (non-zero). Because the test expression is
evaluated again before each iteration of the loop, it is crucial to protect the
expression from any substitutions before the while command is invoked. The fol-
lowing is an infhite loop (See also Example 1-1 1 in Chapter 1):
set i O ; while $i<10 {incr i}
The following behaves as expected:
set i 0 ; while {$i<10} {incr i}

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

46 Control Flow Commands Chap.4

It is also possible to put nested commands in the boolean expression. The
following example uses get s to read standard input. The get s command returns
the number of characters read, returning -1 upon end-of-fle. Each time through
the loop the variable | i ne contains the next line in the fie.

Example 4-9 A whi | e loop to read standard input.

set nunliines 0 ; set nuntChars 0
while {[gets stdin line] >= 0} {
i ncr nunli nes
incr nunChars [string | ength $line]

For

The f or command is similar to the C f or statement. It takes four arguments:
for initial test final body
The frst argument is a command to initialize the loop. The second argu-
ment is a boolean expression that determines if the loop body will execute. The
third argument is a command to execute after the loop body. Finally there is the
loop body.

Example 4-10 Af or loop.

for {set i 0} {$i < 10} {incr i 3} {
| append aLi st $i

set ali st
= 03609

Break And Continue

Loop execution can be controlled with the break and conti nue commands. The
break command causes immediate exit from a loop, while the conti nue com-
mand causes the loop to continue with the next iteration. Note that there is no
got o statement in Tel.

Catch

Until now we have ignored the possibility of errors. In practice, however, a com-
mand will raise an error if it is called with the wrong number of arguments, or if
it detects some error condition particular to its implementation. If uncaught, an
error will abort execution of a script.* The cat ch command is used to trap such

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Catch 47

errors. It takes two arguments:
catch command ?resul tVar?

The frst argument to catch is a command body. The second argument is
the name of a variable that will contain the result of the command, or an error
message if the command raises an error. catch returns 0O if there was no error
caught, or 1 if it did catch an error.

It is important to use curly braces to group the command (as opposed to
double-quotes) because catch will invoke the full Tcl interpreter on the com-
mand, so any needed substitutions will occur then. If double-quotes are used, an
extra round of substitutions will occur before catch is even called.The simplest
use of catch looks like the following.

catch{ conmand }

A more careful catch phrase saves the result and prints an error message.

Example 4-11 A standard catch phrase.

if [catch { command argl arg2 ... }resul] {
puts stderr $result
}else {

command was ok, result is its return value

}

The most general catch phrase is shown in the next example. Multiple com-
mands are grouped into a command body. The errorinfo variable is set by the
Tel interpreter after an error to refbct the stack trace from the point of the error .

Example 4-12 A longer catch phrase.

if [catch {
comuandl
command?2
conmand3
} result] {
global errorinfo
puts stderr $result
puts stderr “*** Tcl TRACE ***”
puts stderr $errorinfo
}else {
command body ok, result of last command is in result
}

These examples have not grouped the call to catch with curly braces. This
is OK because catch always returns a 0 or a 1, so the if command will parse cor-
rectly. However, if we had used while instead of if , then curly braces would be
necessary to ensure that the catch phrase was evaluated repeatedly.

* More precisely, the Tcl script will unwind and the current Tcl_Eval procedure will return
TCL_ERRORIn Tk, errors that arise during event handling trigger a call to tkerror , a Tel
procedure you can implement in your application.

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

48 Control Flow Commands Chap.4
Error

The error command raises an error condition that will terminate a script unless
it is trapped with the catch command. The command takes up to three argu-
ments:

error message ?info? ?code?

The message becomes the error message stored in the result variable of the
cat ch command.

If the info argument is provided, then the Tcl interpreter uses this to ini-
tialize the errorinfo global variable. That variable is used to collect a stack
trace from the point of the error. If the info argument is not provided, then the
error command itself is used to initialize the error | nf o trace.

Example 4-13 The results of er r or with no info argument.

proc foo {} {
error bogus
}

f oo
=> bogus
set errorlnfo
=> bogus
while executing
“error bogus”
(procedure “foo” line 2)
invoked from within
“foo”

In the example above, the error command itself appears in the trace. One
common use of the i nf o argument is to preserve the error | nf o that is available
after a cat ch. The example below, the information from the original error is pre-
served.

Example 4-14 Preserving er r or | nf o0 when calling er r or.

if [catch {foo} result] {
gl obal errorinfo
set savedlnfo $errorinfo
Attenpt to handle the error here, but cannot...
error $result $savedlnfo

The code argument is used to specify a concise, machine-readable descrip-
tion of the error. It gets stored into the global er r or Code variable. It defaults to
NONE. Many of the fle system commands return an errorCode that contains
starts with POSI X and contains the error code and associated message:

POSI X ENCENT {No such file or directory}

In addition, your application could defne error codes of its own. Catch

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Return 49

phrases could examine the code in the global errorCode variable and decide how
to respond to the error.

Return

The return command is used to return from a procedure. It is needed if return is
to occur before the end of the procedure body, or if a constant value needs to be
returned. As a matter of style, I also use return at the end of a procedure, even
though a procedure returns the value of the last command executed in the body.
Exceptional return conditions can be specifed with some optional argu-
ments to return . The complete syntax is:
return ?-code c? ?-errorinfo i ? ?-errorcode ec? string

The -code option value is one of ok, error , return , break , continue , or an
integer. ok is the default if -code is not specifed.

The -code error option makes return behave much like the error com-
mand. In this case, the -errorcode option will set the global errorCode variable,
and the - errorinfo option will initialize the errorinfo global variable.

Example 4-15 Specifying errorinfo with return

proc bar {} {
return -code error -errorinfo “I'm giving up” bogus

catch {bar} result
=1

set result

=> bogus

set errorinfo

=> |I'm giving up
invoked from within
“bar”

The return , break , and continue code options take effect in the caller of the
procedure doing the exceptional return. If -code return is specifed then the
calling procedure returns. If -code break is specifed, then the calling procedure
breaks out of a loop, and if -code continue is specifed then the calling proce-
dure continues to the next iteration of the loop. Actually, with break and con-
tinue the interpreter will unwind the call stack until it fads a loop to operate on
in these cases. These -code options to return are rarely used, although they
enable the construction of new fbw control commands entirely in T cl.

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

50

Control Flow Commands

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Chap.4

C HAPTER 5

Procedures and Scope

Commands covered: proc, gl obal, upvar, uplevel.

P rocedures are used to parameterize a
commonly used sequence of commands. In addition, each procedure has a new
local scope for variables. The scope of a variable is the range of commands over
which it is defhed. This chapter describes the T cl pr oc command in more detail,
and then goes on to consider issues of variable scope.

The proc Command

A Tcl procedure is defned with the proc command. It takes three arguments:
proc nane parans body

The frst argument is the procedure name, which will be added to the set of
commands understood by the Tcl interpreter. The name is case sensitive, and can
contain any characters at all. The second argument is a list of parameter names.
The last argument is the body of the procedure.

Once defned, a T cl procedure is used just like any other Tcl command.
When it is called, each argument is assigned to the corresponding parameter and
the body is evaluated. The result of the procedure is the result returned by the
last command in the body. The r et ur n command can be used to return a specift
value.

The parameter list for a procedure can include default values for parame-
ters. This allows the caller to leave out some of the command arguments.

51

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

52

Changing command names with rename

fne it with proc , rename the existing command.
rename foo foo.orig

Example 5-1 Default parameter values.

Procedures and Scope Chap.5

proc p2 {a{b 7} {c -2} } {
expr $a / $b + $c

}
263
= 0

Here the procedure p2 can be called with one, two, or three arguments. If it
is called with only one argument, then the parameters b and c will take on the
values specifed in the proc command. If two arguments are provided, then only
¢ will get the default value, and the arguments will be assigned to a and b. At
least one argument and no more than three arguments can be passed to p2.

A procedure can take a variable number of arguments by specifying the
args keyword as the last parameter. When the procedure is called, the args
parameter is a list that contains all the remaining values.

Example 5-2 Variable number of arguments.

proc argtest {a {b foo} args} {
foreach param {a b args} {
puts stdout “\tdparam = [set $param]”

}

argtest 1
= a=1

b = foo

args =
argtest 1 2
= a=1

b =2

args =
argtest12 3
= a=1

b =2

args = 3
argtest 1234
= a=1

b =2

args = 3 4

The rename command changes the name of a command.There are two main
uses for rename . The frst is to augment an existing procedure. Before you rede-

Then, from within the new implementation of foo you can invoke the origi-

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Scope 53

nal command as f oo. ori g. Existing users of f oo will transparently use the new
version.

The other thing you can do with r enane is completely hide a command by
renaming it to the empty string. For example, you might not want users to exe-
cute UNIX programs, so you could disable exec with the following command.

renanme exec {}

Scope

There is a single, global scope for procedure names.”. You can defhe a pro-
cedure inside another procedure, but it is visible everywhere. There is a different
name space for variables and procedures, so you could have a procedure and a
variable with the same name without confict.

Each procedure has a local scope for variables. That is, variables introduced
in the procedure only live for the duration of the procedure call. After the proce-
dure returns, those variables are undefned. V ariables defned outside the proce-
dure are not visible to a procedure, unless the upvar or gl obal scope commands
are used. If there is the same variable name in an outer scope, it is unaffected by
the use of that variable name inside a procedure.

Example 5-3 Variable scope and Tcl procedures.

set a 5
set b -8
proc pl {a} {
set b 42
if {$a < 0} {
return $b
} else {
return $a
}

}

pl $b

=> 42

pl [expr $a*2]
=> 10

There is no conflct between the variables a and b in the outer scope and
either the parameter a or the local variable b.

The global Command

The top level scope is called the global scope. This scope is outside of any proce-
dure. Variables defned at the global scope have to be made accessible to the com-

“This is in contrast to Pascal and other Algol-like languages that have nested procedures, and
different than C that allows for fle-private (static) procedures.

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

54 Procedures and Scope Chap.5

mands inside a procedure by using the gl obal command. The syntax for global
is:
gl obal varNanel var Nanme2 ...

Once a variable is made accessible with the gl obal command, it is used
just like any other variable. The variable does not have to be defned at the glo-
bal scope when the gl obal command is used. When the variable is defhed, it will
become visible in the global scope.

A useful trick is to collect your global variables into an array so that it is
easier to manage your gl obal statements. Even though you can put any number
of variable names in the gl obal command, it is tedious to update the various
gl obal commands when you introduce a new global variable. Using arrays, only
a single gl obal statement is needed. Another beneft of using arrays is that if
you choose the array name to refbct the function of the collection of procedures
that share the variables, (a module in other languages), then you will be less
likely to have conflcts when you integrate your script with other code.

Example 5-4 A random number generator.”

proc random nit { seed } {

gl obal rand

set rand(ia) 9301 ;# Miltiplier
set rand(ic) 49297 ;# Constant

set rand(im 233280;# Divisor

set rand(seed) $seed;# Last result

proc random {} {
gl obal rand
set rand(seed) \
[expr ($rand(seed)*$rand(ia) + $rand(ic)) % $rand(im]
return [expr $rand(seed)/doubl e($rand(im)]
}
proc randonRange { range } {
expr int([randoni*%$range)

random ni t [pid]
=> 5049

random

=> 0.517687
random

=> 0.217177
randonmRange 100
= 17

* Adapted from “Numerical Recipes in C” by Press et al. Cambridge University Press, 1988

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Use Arrays for Global State 55
Use Arrays for Global State

Tcl arrays are very fbxible because there are no restrictions on the index
value. A very good use for arrays is to collect together a set of related variables,
much as one would use a record in other languages. An advantage of using
arrays in this fashion is that a gl obal scope command applies to the whole array,
which simplifes the management of global variables.

For example, in a larger Tk application, each module of the implementation
may require a few global state variables. By collecting these together in an array
that has the same name as the module, name conficts between different mod-
ules are avoided. Also, in each of the module’s procedures, a single gl obal state-
ment will suffce to make all the state variables visible. More advanced scope
control mechanisms are introduced by various object systems for Tcl, such as
[incr tell, which is described in Chapter 32.

The following artifeial example uses an array to track the locations of some
imaginary objects. (More interesting examples will be given in the context of
some of the Tk widgets and applications.)

Example 5-5 Using arrays for global state.

proc Gbjlnit { oxvy} {
gl obal obj
set obj ($o, x) $x
set obj (%0,y) Sy
set obj ($o,dist) [expr sgrt($x * $x + Sy * $y)]

}
proc CbjMove { o dx dy } {
gl obal obj
if '[info exists obj($0,x)] {
error "Qbject $0 not initialized"

}

i ncr obj ($o, x) $dx

i ncr obj ($o,y) $dy

set obj ($o,dist) [expr sqrt($obj($o,x) * $obj($o,x) + \
$obj ($0,y) * $obj ($0,y))]

This example uses the global array obj to collect state variables, and it also
parameterizes the index names with the name of an object. Remember to avoid
spaces in the array indexes. The i ncr command and the i nfo exi st commands
work equally well array elements as on scalar variables.

Call By Name Using upvar

The upvar command is used for situations in which you need to pass the name of
a variable into a procedure as opposed to its value. Commonly this is used with
array variables. The upvar command associates a local variable with a variable

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

56 Procedures and Scope Chap.5

in a scope up the Tcl call stack. The syntax of the upvar command is:
upvar ?l evel ? varNane | ocal var
The | evel argument is optional, and it defaults to 1, which means one level
up the Tcl call stack. You can specify some other number of frames to go up, or
you can specify an absolute frame number with a #nunber syntax. Level #0 is the
global scope, so the global foo command is equivalent to:
upvar #0 foo foo
The variable in the uplevel stack frame can be either a scalar variable, an
array element, or an array name. In the fist two cases, the local variable is
treated like a scalar variable. In the case of an array name, then the local vari-
able is also treated like an array.
The following procedure uses upvar in order to print out the value of a sca-
lar variable given its name. (See also Example 5-8 on page 56.)

Example 5-6 Print by name.

proc PrintByName { varName } {
upvar $varName var
puts stdout “$varName = $var”

Upvar can be used to fx incr procedure. One drawback of the built-in incr
is that it raises an error if the variable does not exist. We can make a version of
incr that will create the variable as needed.

Example 5-7 Improved incr procedure.

proc incr { varName {amount 1}} {
upvar $varName var
if [info exists var] {
set var [expr $var + $amount]
}else {
set var $amount
}

return $var

Passing arrays by name

The upvar command words on arrays. You can pass an array name to a proce-
dure and then use the upvar command to get an indirect reference to the array
variable in the caller’s scope. The next example illustrates this.

Example 5-8 Using an array to implement a stack.

proc Push { stack value } {
upvar $stack S

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The uplevel Command 57

if [[info exists S(top)] {
set S(top) 0

set S($S(top)) $value
incr S(top)

}
proc Pop { stack } {
upvar $stack S
if ![linfo exists S(top)] {
return {}

}

if {$S(top) == 0} {
return {}

}else {
incr S(top) -1
set X $S($S(top))
unset S($S(top))
return Sx

}

The array does not have to exist when the upvar command is called. The
Push and Pop procedures both guard against a non-existent array with the info
exists command. When the frst assignment to S(top) 1is done by Push, the
array variable is created in the caller’s scope.

The uplevel Command

The uplevel command is similar to eval , except that it evaluates a command in
a different scope than the current procedure. It is useful for defhing new control
structures entirely in Tcl. The syntax for uplevel is:

uplevel | evel command

As with upvar , the | evel parameter is optional and defaults to 1, which
means to execute the command in the scope of the calling procedure. The other
common use of level is #0, which means to evaluate the command in the global
scope.

When you specify the conmand argument, you have to be aware of any sub-
stitutions that might be performed by the Tcl interpreter before uplevel is
called. If you are entering the command directly, protect it with curly braces so
that substitutions occur in the correct scope. The following affects the variable x
in the caller’s scope.

uplevel {set x [expr $x + 1]}

However, the following will use the value of x in the current scope to defne

the value of x in the calling scope, which is probably not what was intended:
uplevel “set x [expr $x + 1]”

It is also quite common to have the command in a variable. This is the case

when the command has been passed into your new control fbw procedure as an

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

58 Procedures and Scope Chap.5

argument, or when you have built up the command using | i st and | append. Or,
perhaps you have read the command from a user-interface widget. In the control-
fow case you most likely want to evaluate the command one level up:

upl evel $cnd
In the case of the user interface command, you probably want to evaluate
the command at the global scope:

upl evel #0 $cnd

Finally, if you are assembling a command from a few different lists, such as
the ar gs parameter, then you’ll have to use concat explicitly with upl evel :

upl evel [concat $cnd $args]

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 6

Eval

This chapter describes explicit calls to the interpreter with the eval command.
An extra round of substitutions is performed that results in some useful
effects. The chapter describes the potential problems with eval and the
ways to avoid them. The chapter also describes the subst command
that does substitutions but no command invocation.

E valuation involves substitutions, and it
is sometimes necessary to go through an extra round of substitutions. This is
achieved with the eval and subst commands. The need for more substitutions
can crop up in simple cases, such as dealing with the list-valued ar gs parameter
to a procedure. In addition, there are commands like af t er, upl evel , and the Tk
send command that have similar properties to eval , except that the command
evaluation occurs later or in a different context.

The eval command is used to re-interpret a string as a command. It is very
useful in certain cases, but it can be tricky to assemble a command so it is evalu-
ated properly by eval . The root of the quoting problems is the internal use of
concat by eval and similar commands to smash all their arguments into one
command string. The result can be a loss of some important list structure so that
arguments are not passed through as you expect. One general strategy to avoid
these problems is to use | i st and | append to explicitly form the command. In
other cases, the concat is actually quite useful in joining together lists (e.g.,
$ar gs) to make up a single command.

Eval And List

The eval command results in another call to the Tcl interpreter. If you construct
a command dynamically, you will need to use eval to interpret it. For example,

59

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

60 Eval Chap.6

suppose we want to construct the following command now, but execute it later.
puts stdout “Hello, World!”

In this case, it is sufftient to do the following:

set cmd {puts stdout “Hello, World!"}
=> puts stdout “Hello, World!”

sometime later...

eval $cmd

=> Hello, World!

However, suppose that the string to be output is stored in a variable, but
that variable will not be defned at the time eval is used. We can artiftially cre-
ate this situation like this:

set string “Hello, World!”

set cmd {puts stdout $string}

unset string

eval $cmd

=> can'’t read “string”: no such variable

The solution to this problem is to construct the command using list , as
shown in the example below.

Example 6-1 Using list to construct commands.

set string “Hello, World!”

set cmd [list puts stdout $string]
=> puts stdout {Hello, World!}
unset string

eval $cmd

=> Hello, World!

The trick is that list has formed a list that has three elements: puts , std-
out , and the value of string . The substitution of $string occurs before list is
called, and list takes care of grouping that value for us.

In contrast, compare this to the most widely used incorrect approach:
set cmd “puts stdout $string”
=> puts stdout Hello, World!
eval $cmd
=> bad argument “World!”: should be “nonewline”
The use of double quotes is equivalent to doing:
set cmd [concat puts stdout $string]

The problem here is that concat does not preserve list structure. The main
lesson is that you should use list to construct commands if they contain vari-
able values or command results that are substituted now as opposed to later on
when the command is evaluated.

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Eval And Concat 61
Eval And Concat

This section illustrates cases where concat is useful in assembling a command
by concatenating multiple lists into one list. In fact, a concat is done internally
by eval if it gets more than one argument.

eval listl list2 list3 ...

The effect of concat is to join all the lists into one list; a new level of list
structure is not added. This is useful if the lists are fragments of a command.

A common use for this form of eval is with the args construct in proce-
dures. The args parameter can be used to layer functionality over another proce-
dure. The new procedure takes optional arguments that are passed through to
the lower layer. The problem with using args , however, is the proper formation
of the call to the lower layer.The variable args has a bunch of arguments for the
command, but they are all assembled into a list inside args .

This is illustrated with a simple Tk example. At this point, all you need to
know is that a command to create a button looks like this:

button .foo -text Foo -command foo

After a button is created, it is made visible by packing it into the display:

pack .foo -side left

The following does not work:

set args {-text Foo -command foo}
button .foo $args
=> unknown option “-text Foo -command foo”

The problem is that $args is a list value, and button gets the whole list as a
single argument. Instead, button needs to get the elements of $args as individ-
ual arguments. In this case, you can use eval and rely on the fact that it will con-
catenate its arguments and form a single list before evaluating things. The
single list is, by defnition, the same as a single T cl command, so the button com-
mand parses correctly.

eval button .foo $args
=> foo

Example 6-2 Using eval with $args .

PackedButton creates and packes a button.

proc PackedButton {path txt cmd {pack {-side right}} args} {
eval {button $path -text $txt -command $cmd} $args
eval {pack $path} $pack

In PackedButton , both pack and args are list-valued parameters that are
used as parts of a command. The internal concat done by eval is perfect for this
situation. The simplest call to PackedButton is given below.

PackedButton .new “New” { New }
The quotes and curly braces are redundant in this case, but are retained to

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

62 Eval Chap.6

convey some type information. The pack argument takes on its default value,
and the args variable is an empty list. The two commands executed by Packed-
Button are:

button .new -text New -command New
pack .new -side right
PackedButton creates a horizontal stack of buttons by default. The packing
can be controlled with a packing speciftation:
PackedButton .save “Save” { Save $f ile } {-side left}
This changes the pack command to be:
pack .new -side left
The remaining arguments, if any, are passed through to the button com-
mand. This lets the caller fne tune some of the button attributes:
PackedButton .quit Quit { Exit } {-side left -padx 5} \
-background red
This changes the button command to be:
button .new -text New -command New -background red

Double-quotes and eval

You may be tempted to use double-quotes instead of curly braces in your
uses of eval . Don’t give in! The use of double-quotes will probably be wrong. Sup-
pose the frst eval command were written like this:

eval “pack $path -text $txt -command $cmd $args”
This happens to work with the following because txt and cmd are one-word
arguments with no special characters in them.
PackedButton .quit Quit { Exit }
In the next call an error is raised, however.
PackedButton .save “Save” { Save $f ile}
=> can't read “f ile”: no such variable

The danger is that the success of this approach depends on the value of the
parameters. The value of txt and the value of cmd are subject to another round of
substitutions and parsing. When those values contain spaces or special charac-
ters, the command gets parsed incorrectly.

To repeat, the safe construct is:

eval {pack $path -text $txt -command $cmd} $args

As you may be able to tell, this was one of the more diffcult lessons I

learned, in spite of three uses of the word “concatenate”in the eval man page!

Commands That Concat Their Arguments

The uplevel command and two Tk commands, after and send, concatenate
their arguments into a command and execute it later in a different context.

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

The subst Command 63

Whenever I discover such a command I put it on my danger list and make sure I
explicitly form a single command argument with list instead of letting the com-
mand concat things together for me.

Get in the habit now:

after 100 [list doCmd $paraml $param?2]
send $interp [list doCmd $paraml $param?2] # Safe!

The worst part of this is that concat and list can result in the same thing,
so you can be led down the rosy garden path, only to be bitten later when values
change on you. The above two examples will always work. The next two will only
work if paraml and param2 have values that are single list elements:

after 100 doCmd $param1 $param2
send $interp doCmd $paraml $param?2 ;# Unsafe!

If you use other Tcl extensions that provide eval-like functionality, carefully
check their documentation to see if they contain procedures that concat their
arguments into a command. For example, Tcl-DP, which provides a network ver-
sion of send, dp_send , also uses concat .

The subst Command

The subst command is used to do command and variable substitution, but with-
out invoking any command. It is similar to eval in that it does a round of substi-
tutions for you. However, it doesn’t try to interpret the result as a command.
set a “foo bar”
subst {a=$a date=[exec date]}
=> a=foo bar date=Thu Dec 15 10:13:48 PST 1994
The subst command does not honor the quoting effect of curly braces.
Instead, it will expand any variables or nested commands whereever they occur
in its input argument.
subst {a=%$a date={[exec date]}}
=> a=foo bar date={Thu Dec 15 10: 15: 31 PST 1994}
You can use backslashes to prevent variable and command substitution,
though.
subst {a=\$a date=\[exec date]}
=> a=%a dat e=[exec dat €]

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

64

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Eval

Chap.6

C HAPTER 7

Working with UNIX

This chapter describes how to use Tcl in a UNIX environment. Tcl commands:
exec, open, close, read, wite, seek, tell, glob, pwd,
cd.

This chapter describes how to run pro-
grams and access the fle system from T cl. While these commands were designed
for UNIX, they are also implemented (perhaps with limitations) in the Tcl ports
to other systems such as DOS and Macintosh. These capabilities enable your Tcl
script to be a general purpose glue that assembles other programs into a tool
that is customized for your needs.

Running Unix Programs With exec

The exec command is used to run other UNIX programs from your Tcl script.*
For example:

set d [exec date]

The standard output of the program is returned as the value of the exec
command. However, if the program writes to its standard error stream or exits
with a non-zero status code, then exec will raise an error.

The exec command supports a full set of I/0O redirection and pipeline syn-
tax. Each UNIX process normally has three I/O streams associated with it: stan-
dard input, standard output, and standard error. With I/O redirection you can

*Unlike the C-shell exec command, the Tel exec does not replace the current process with the
new one. Instead, the Tcl library forks frst and executes the program as a child process.

65

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

66 Working with UNIX Chap.7

divert these I/O streams to fles or to I/O streams you have opened with the T cl
open command. A pipeline is a chain of UNIX processes that have the standard
output of one command hooked up to the standard input of the next command in
the pipeline. Any number of programs can be linked together into a pipeline.

Example 7-1 Using exec on a process pipeline.

set n [exec sort < /etc/passwd | unig | wc -1 2> /dev/null]

The example uses exec to run three programs in a pipeline. The frst pro-
gram is sort , which takes its input from the fle /et ¢/ passwd. The output of sort
is piped into uni q, which suppresses duplicate lines. The output of uni q is piped
into we, which counts up the lines for us. The error output of the command is
diverted to the null device in order to suppress any error messages.

Table 7-1 gives a summary of the syntax understood by the exec com-
mand. Note that a trailing & causes the program to run in the background. In
this case the process id is returned by the exec command. Otherwise, the exec
command blocks during execution of the program and the standard output of the
program is the return value of exec. The trailing newline in the output is
trimmed off, unless you specify - keepnew i ne as the frst argument to exec.

Table 7-1 Summary of the exec syntax for I/O redirection.

- keepnew i ne (First arg only.) Do not discard trailing newline from the result.

| Pipe standard output from one process into another.

| & Pipe both standard output and standard error output.

< fil eNane Take input from the named fle.

<@fileld Take input from the I/O stream identifed by fil el d.

<< val ue Take input from the given value.

> fil eName Overwrite f i | eNane with standard output.

2> fil eName Overwrite f i | eNane with standard error output.

>& fil eNane Overwrite f i | eName with both standard error and standard out.
>> fil eNane Append standard output to the named fle.

2>> fil eName Append standard error to the named fie.

>>& fil eName Append both standard error and standard output to the named fle.

>@fileld Direct standard output to the I/O stream identifed by fil el d.
2>@fileld Direct standard error to the I/O stream identifed by fil el d.
>&@fileld Direct both standard error and standard output to the I/O stream.
& As the last argument, indicates pipeline should run in background.

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Looking At The File System 67

If you look closely at the I/O redirection syntax, you'll see that it is built up
from a few basic building blocks. The basic idea is that |’ stands for pipeline, >’
for output, and ‘<‘ for input. The standard error is joined to the standard output
by ‘@. Standard error is diverted separately by using 2>’. You can use your own I/
O streams by using ‘@.

auto_noexec

The Tecl shell programs are set up by default to attempt to execute unknown
Tcl commands as UNIX programs. For example, you can get a directory listing by

typing:

I's
instead of
exec |s

This is handy if you are using the Tcl interpreter as a general shell. It can
also cause unexpected behavior when you are just playing around. To turn this
off, defne the aut o_noexec variable:

set aut o_noexec anything

Looking At The File System

The Tecl fi | e command provides several ways to check on the status of fles in the
UNIX fle system. For example, you can fad out if a fle exists and what type of
fle it is. In fact, essentially all the information returned by the stat system call
is available via the fi |l e command. Table 7-2 gives a summary of the various
forms of the fi | e command.

Table 7-2 The Tclf i | € command options.

file atine nane Return access time as a decimal string.

file dirnanme nanme Return parent directory of fle nane.

file executabl ename Return 1if nane has execute permission, else 0.

file existsnane Return 1 if nane exists, else 0.

fil e extensionnane Return the part of nane from the last dot .’ to the end.

file isdirectory nane Return 1if nane is a directory, else 0.

file isfilename Return 1 if nane is not a directory, symbolic link, or
device, else 0.

file |stat nane var Place stat results about the link nane into var.

file ntinenane Return modify time of nane as a decimal string.

file owned nanme Return 1 if current user owns the fle nane, else 0.

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

68 Working with UNIX Chap.7

Table 7-2 The Tclf i | € command options.

file readabl e nane Return 1 if nane has read permission, else 0.

file readlinknane Return the contents of the symbolic link nane.

file rootnane name Return all but the extension (‘. and onwards) ofnane.
file sizenane Return the number of bytes in nane.

file stat nanevar Place stat results about nane into array var. The ele-

ments defhed for var are: ati ne, cti ne, dev, gi d,
i no, node, nti me, nlink, si ze, type, and ui d.

file tail nanme Return all characters after last ¢/ innane.

file typenane Return type identifer , which is one of: fi | e, di rec-
tory, charact er Speci al , bl ockSpeci al ,fifo,
I'i nk, or socket .

file writabl e nane Return 1 if nane has write permission, else 0.

The following command uses file ntinme to compare the modify times of
two fles.

Example 7-2 A procedure to compare file modify times.

proc newer { filel file2 } {
expr [file mtinme $filel] > [file minme $file2]
}

A few of the options operate on pathnames as opposed to returning informa-
tion about the fle itself. Y ou can use these commands on any string; there is no
requirement that the pathnames refer to an existing fle. The di rname and tai |
options are complementary. The frst returns the parent directory of a pathname,
while t ai | returns the trailing component of the pathname. For a simple path-
name with a single component, the dirnanme option returns “. ”, which is the
name of the current directory.

file dirnane /al/b/c
=> /alb

file tail /alblc

=> C

The ext ensi on and root options are also complementary. The ext ensi on
option returns everything from the last period in the name to the end (i.e., the
fle suffk.) The root option returns everything up to, but not including, the last
period in the pathname.

file root /alb.c

*If you have ever resorted to piping the results of Is -1 into awk in order to derive this informa-
tion in other shell scripts, you'll appreciate these options.

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Looking At The File System 69

=> /alb

f ile extension /a/b.c

= .c

The makedir example given below uses the file command to determine if it

necessary to create the intermediate directories in a pathname. It calls itself
recursively, using f ile dirname in the recursive step in order to create the par-
ent directory. To do the actual work, it execs the mkdir program. An error can be
raised in two places, explicitly by the makedir procedure if it fads a non-direc-
tory in the pathname, or by the mkdir program if, for example, the user does not
have the permissions to create the directory.

Example 7-3 Creating a directory recusively.

proc makedir { pathname } {
if {[file isdirectory $pathname]} {
return $pathname
} elseif {[file exists $pathname]} {
error “Non-directory $pathname already exists.”
}else {
Recurse to create intermediate directories
makedir [file dirname $pathname]
exec mkdir $pathname
return $pathname

The most general file command options are stat and Istat . They take a
third argument that is the name of an array variable, and they initialize that
array with elements and values corresponding to the results of the stat system
call. The array elements defned are: atime, ctime, dev, gid, ino, mode,
mtime, nlink, size, type , and uid . All the element values are decimal strings,
except for type , which can have the values returned by the type option. (See the
UNIX man page on the stat system call for a description of these attributes.)

Example 7-4 Determining if pathnames reference the same file.

proc fileeq { pathl path2 } {
file stat $pathl statl
file stat $path2 stat2
expr [$statl(ino) == $stat2(ino) && \
$statl(dev) == $stat2(dev)]

The example uses the device (dev) and inode (ino) attributes of a fle to
determine if two pathnames reference the same fie.

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

70 Working with UNIX Chap.7

Input/Output

The table below lists the commands associated with fle input/output.

Table 7-3 Tcl commands used for file access.

open what ? access? ? pern ssions? Open a fle or pipeline.

puts ?-nonewline? ? strean? string Write a string.

gets stream? var nane? Read a line.

read ?-nonewline? stream ?nunByt es? Read bytes.

tell stream Return the seek offset.

seek stream offset ?origin? Set the seek offset. ori gi n is one of
start , current ,orend.

eof stream Query end-of-fle status.

flush stream Write out buffers of a stream.

close stream Close an I/O stream.

Opening Files For I/O

The open command sets up an I/O stream to either a fle or a pipeline of pro-
cesses. The basic syntax is:
open what 7?access? ?perm ssions?

The what argument is either a fle name or a pipeline speciftation similar
to that used by the exec command. The access argument can take two forms,
either a short character sequence that is compatible with the fopen library rou-
tine, or a list of POSIX access fhgs. T able 7-4 summarizes the frst form, while
Table 7-5 summarizes the POSIX thgs. If access is not specifed, it defaults to
read. The per ni ssi ons argument is a value used for the permission bits on a
newly created fle. The default permission bits are 0666. Consult the man page
on the UNIX chmod command for more details about permission bits.

Example 7-5 Opening a file for writing.

set fileld [open /tmp/foo w 0600]
puts $fileld “Hello, foo!”
close $f ileld

The return value of open is an identifer for the I/O stream. Y ou use this in
the same way the stdout , stdin , and stderr identifers have been used in the
examples so far, except that you need to store the result of open in a variable.

(You should consult your system’s man page for the open system call to
determine the precise effects of the NOCTTYand NONBLOCHhAgs.)

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Opening Files For I/O 71

Table 7-4 Summary of the open access arguments.

r Open for reading. The fle must exist.

r+ Open for reading and writing. The fle must exist.

W Open for writing. Truncate if it exists. Create if it does not exist.
W+ Open for reading and writing. Truncate or create.

a Open for writing. The fle must exist. Data is appended to the fle.
a+ Open for reading and writing. File must exist. Data is appended.

Table 7-5 Summary of POSIX flags for the access argument.

RDONLY Open for reading.

WRONLY Open for writing.

RDWR Open for reading and writing.

APPEND Open for append.

CREAT Create the fle if it does not exist.

EXCL If CREATis specifed also, then the fle cannot already exist.

NOCTTY Pr(lavent terminal devices from becoming the controlling termi-
nal.

NONBLOCK Do not block during the open.

TRUNC Truncate the fle if it exists.

Below is an example of how you’d use a list of POSIX access fhgs to open a
fle for reading and writing, creating it if needed, and not truncating it, which is
something you cannot do with the simpler form of the access argument.

Example 7-6 Opening a file using the POSIX access flags.

setf ileld [open /tmp/bar {RDWR CREAT}]

In general you want to be careful to check for errors when opening fies. The
following example illustrates a catch phrase used to open fles. Recall that catch
returns 1 if it catches an error, otherwise it returns zero. It treats its second
argument as the name of a variable. In the error case it puts the error message
into the variable. In the normal case it puts the result of the command into the
variable.

Example 7-7 A more careful use of open.

if [catch {open /tmp/data r} fileld] {
puts stderr “Cannot open /tmp/data: $fileld”

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

72 Working with UNIX Chap.7

}else {
Read and process the file, then...
close $fileld

}

Opening a process pipeline is done by specifying the pipe character, ‘| ’, as
the fist character of the frst argument. The remainder of the pipeline specifta-
tion is interpreted just as with the exec command, including input and output
redirection. The second argument determines which end of the pipeline you get
back from the open. The example below sorts the password fle, and it uses the
split command to separate the fle lines into list elements.

Example 7-8 Opening a process pipeline.

set input [open “|sort /etc/passwd” r]
set contents [split [read $input] \n]
close $input

You can open a pipeline for both read and write by specifying the r+ access
mode. However, in this case you need to worry about buffering.After a puts the
data may still be in a buffer in the Tcl library. Use the f lush command to force
this data out to the spawned processes before you try to read any output from the
pipeline. In general, the expect extension, which is described in Chapter
EXPECT, provides a much more powerful way to do these kinds of things.

Reading And W riting

The standard UNIX I/O streams are already open for you. These streams are
identifed by stdin , sdout , and stderr , respectively. Other I/O streams are iden-
tifed by the return value of the open command. There are several commands
used with fle identifers.

The puts and gets commands

The puts command writes a string and a newline to the output stream.
There are a couple of details about the puts command that have not been used
yet. It takes a -nonewline argument that prevents the newline character that is
normally appended to the output stream. This will be used in the prompt exam-
ple below. The second feature is that the stream identifer is optional, defaulting
to stdout if not specifid.

Example 7-9 Prompting for input.

puts -nonewline “Enter value: “
set answer [gets stdin]

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Reading And Writing 73

The get s command reads a line of input, and it has two forms. In the exam-
ple above, with just a single argument, get s returns the line read from the spec-
ifed I/O stream. It discards the trailing newline from the return value. If end-of-
fle is reached, an empty string is returned. Y ou have to use the eof command to
tell the difference between a blank line and end-of-fle. (eof returns 1 if there is
end-of-fle.) Given a second var Name argument, get s stores the line into named
variable and returns the number of bytes read. It discards the trailing newline,
which is not counted. A -1 is returned if the stream has reached end of fle.

Example 7-10 A read loop using get s.

while {[gets $streamline] >= 0} {
Process line

cl ose $stream

The read command

The r ead command is used to read blocks of data, which can often be more
effeient. It isn’ t clear in the table, but with r ead you can specify either the - non-
ew i ne argument or the nunByt es argument, but not both. Without nunByt es,
the whole fle (or what is left in the I/O stream) is read and returned. The - none-
w i ne argument causes the trailing newline to be discarded. Given a byte count
argument, read returns that amount, or less if not enough data remains in the
stream. The trailing newline is not discarded in this case.

Example 7-11 Aread loop usingread and split.

foreach line [split [read $stream \n] {
Process |ine

cl ose $stream

For moderately sized fles it is slightly faster , by about 10%, to loop over the lines
in a fle using the read loop in the second example. In this case, read is used to
return the whole fle, and split is used to chop the fle up into list elements, one
for each line. For small fles (less than 1K) it doesn’ t really matter. For really
large fles (megabytes) you might induce paging with this approach.

Random access I/O

The seek and tel | commands are used for random access to I/O streams.
Each stream has a current position called the seek offset. Each read or write
operation updates the seek offset by the number of bytes transferred. The cur-
rent value of the offset is returned by the t el | command. The seek command is
used to set the seek offset by an amount, which can be positive or negative, from

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

74 Working with UNIX Chap.7

an origin, which is either start, current, or end.

Closing I/0O streams

The cl ose command is just as important as the others because it frees up
operating system resources associated with the I/O stream. If you forget to close
a stream it will be closed when your process exits. However, if you have a long-
running program, like a Tk script, you might exhaust some O/S resources if you
forget to close your I/O streams.

Note that the cl ose command can raise an error. If the stream was a pro-
cess pipeline and any of the processes wrote to their standard error stream, then
this appears like an error to Tcl. The error is raised when the stream to the pipe-
line is fhally closed. Similarly , if any of the processes in the pipeline exit with a
non-zero status, cl ose will raise an error.

The Current Directory - cd And pwd

The UNIX process has a current directory that is used as the starting point when
resolving a relative pathname (a fle name that does not begin with ‘). The pwd
command returns the current directory, and the cd command is used to change
the current directory. We’ll use these commands in the example below that
involves the gl ob command.

Matching File Names W ith glob

The gl ob command is used to expand a pattern into the set of matching fle
names. The pattern syntax is like that of the st ri ng mat ch command in which *
matches zero or more characters, ? matches a single character, and [abc]
matches a set of characters. In addition, a fle glob pattern can include a con-
struct like { a, b, c} that will match any of a, b, or c. All other characters must
match themselves. The general form of the glob command is:

gl ob ?flags? pattern ?pattern? ...

The - noconpl ai n thg causes gl ob to return an empty list if not fles match
the pattern. Otherwise gl ob will raise an error if no fles match.

The - - fhg is used to introduce the pattern if it begins with a - .

Unlike the glob matching in csh, the Tcl gl ob command only matches the
names of existing fles. (In csh, the {a, b} construct can match non-existent
names.) In addition, the results of gl ob are not sorted. You'll have to use the
| sort command to sort its result if that is important to you.

Example 7-12 Finding a file by name.

proc FindFile { startDir nanePat } ({
set pwd [pwd]

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

The exit And pid commands 75

if [catch {cd $startDir} err] {
puts stderr $err
return

}

foreach match [glob -noconplain -- $nanePat] {
puts stdout $startDir/3$match

foreach file [glob -noconplain *] {

if [file isdirectory $file] {
FindFile $startDir/$file $namePat
}

}
cd $pwd

The Fi ndFi | e procedure traverses the fle system hierarchy using recur-
sion. At each iteration it saves its current directory and then attempts to change
to the next subdirectory. A cat ch is used to guard against bogus names. The gl ob
command is used to match fle names. FindFil e is called recursively on each
subdirectory.

The exit And pid commands

The exit command is used to terminate your script. Note that exit causes the
whole UNIX process that was running the script to terminate. If you supply an
integer-valued argument to exit then that becomes the exit status of the pro-
cess.

The pi d command returns the process ID of the current process. This can be
useful as the seed for a random number generator because it will change each
time you run your script. It is also common to embed the process ID in the name
of temporary fles.

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

76

Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

C HAPTER

Reflection and Debugging

This chapter describes commands that give you a view into the interpreter. The
history command and a simple debugger are useful during
development and and debugging. The i nfo command provides a
variety of information about the internals of the Tcl interpreter. The ti ne
command measures the time it takes to execute a command.

R efection provides feedback to a script
about the internal state of the interpreter. This is useful in a variety of cases,
from testing to see if a variable exists to dumping the state of the interpreter.
This chapter starts with a description of the i nf o command that provides lots of
different information about the interpreter.

Interactive command history is the second topic of the chapter. The history
facility can save you some typing if you spend a lot of time entering commands
interactively.

Debugging is the last topic of the chapter. The old-fashioned approach of
adding put s commands to your code is often quite useful. It takes so little time to
add code and run another test that this is much less painful than if you had to
wait for a long compilation everytime you changed a print command. The tkin-
spect program is an inspector that lets you look into the state of a Tk application.
It can hook up to any Tk application dynamically, so it proves quite useful. Don
Libes has implemented a Tcl debugger that lets you set breakpoints and step
through your script. This debugger is described at the end of the chapter.

The info Command

Table 81 summarises the i nf o command. The operations are described in more
detail after the table.

77

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

78

Table 8-1 The i nf o command.

Reflection and Debugging Chap.8

info args procedure A list of pr ocedur e’s arguments.
i nfo body procedure The commands in the body of pr ocedur e.
i nffo cndcount The number of commands executed so far.
i nffo conmands ?pattern? A list of all commands, or those matching pat -
t er n. Includes built-ins and Tcl procedures.
info conplete string True if st ri ng contains a complete Tcl command.
info default proc arg var Trueifarg has a default parameter value in pro-
cedure pr oc. The default value is stored into var.
info exists variable True if vari abl e is defned.
info gl obals ?pattern? A list of all global variables, or those matching
pattern.

info | evel The stack level of the current procedure, or 0 for
the global scope.

info | evel nunber A list of the command and its arguments at the
specifed level of the stack.

info library The pathname of the Tcl library directory.

info |l ocals ?pattern? A list of t all local variables, or those matching
pattern.

i nfo patchl evel The release patchlevel for Tcl.

info procs ?pattern? A list of all Tcl procedures, or those that match
pattern.

info script The name of the fle being processed, or NULL.

info tclversion The version number of Tcl.

info vars ?pattern? A list of all visible variables, or those matching
pattern.

Variables

There are three categories of variables: local, global, and visible. Informa-
tion about these categories is returned by the | ocal s, gl obal s, and var s opera-
tions, respectively. The local variables include procedure arguments as well as
locally defned variables. The global variables include all variables defhed at the
global scope. The visible variables include locals, plus any variables made visible
via gl obal or upvar commands. Remember that a variable may not be defned
yet even though a gl obal command as declared it to belong to the global scope.
Perhaps the most commonly used operation is i nf o exi st, to test whether a vari-
able is defned or not.

A pattern can be specifed to limit the returned list of variables to those
that mach the pattern. The pattern is interpreted according to the rules of the

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The info Command 79

string mat ch command, which is described on page 24.

Procedures

You can fid out everything about a T cl procedure with the ar gs, body, and
def aul t operations.This is illustrated in the ShowPr oc example given below. The
puts commands use the - nonew i ne thg because the newlines in the procedure
body, if any, are retained.

Example 8-1 Printing a procedure definition.

proc ShowProc {{namepat *} {file stdout}} {
foreach proc [info procs $nanepat] {
set needspace 0O
puts -nonewine $file "proc $proc {"
foreach arg [info args $proc] {
i f {$needspace) {
puts -nonewine $file " "

if [info default $proc $arg val ue] {
puts -nonewine $file "{$%arg $val ue}"
} else {
puts -nonewl ine $file $arg
}
}

No new i ne needed because info body may return a
value that starts with a newine

puts -nonewine $file "} {"

puts -nonewl ine $file [info body $proc]

puts $file "}"

The i nfo commands operation returns a list of all the commands, which
includes both built-in commands defhed in C and T cl procedures. There is no
operation that just returns the list of built-in commands. You have to write a pro-
cedure to take the difference of two lists to get that information.

The call stack

The info | evel operation returns information about the Tcl evaluation
stack, or call stack. The global level is numbered zero. A procedure called from
the global level is at level one in the call stack. A procedure it calls is at level two,
and so on. The i nfo | evel command returns the current level number of the
stack if no level number is specifed.

If a postitive level number is specifed (e.g. i nfol evel 3)then the command
returns the procedure name and argument values at that level in the call stack.
If a negative level is specifed, then it is relative to the current call stack. Rela-
tive level -1 is the level of the current procedure’s caller, and relative-level 0 is

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

80 Reflection and Debugging Chap.8

the current procedure. The following example prints out the call stack. The Call-
Trace procedure avoids printing information about itself by starting at one less
than the current call stack level. It prints a more descriptive header instead of
its own call.

Example 8-2 Getting a trace of the Tcl call stack.

proc Call Trace {{file stdout}} {
puts $file "Tcl Call Trace"
for {set | [expr [info level]-1]} {$l > 0} {incr I -1} {
puts $file "$l: [info level $I]"
}

Command evaluation

The i nf o conpl et e operation fgures out if a string is a complete T cl com-
mand. This is useful for command interpreters that need to wait until the user
has typed in a complete Tcl command before passing it to eval.

If you want to know how many Tcl commands are executed, use the i nfo
cmdcount command. This counts all commands, not just top-level commands.
The counter is never reset, so you need to sample it before and after a test run if
you want to know how many commands are executed during a test.

Scripts and the library

The name of the current script fle is returned with the info script com-
mand. For example, if you use the sour ce command to read commands from a
fle, then i nfo scri pt will return the name of that fle if it is called during execu-
tion of the commands in that script. This is true even if the i nfo scri pt com-
mand is called from a procedure that is not defhed in the script.

The pathname of the Tcl library is returned by the i nfo | i brary command.
While you could put scripts into this directory, it might be better to have a sepa-
rate directory and use the script library facility described in Chapter 9. This will
make it easier to deal with new releases of Tcl, and to package up your code if
you want other sites to use it.

Version numbers

Each Tcl release has a version number such as 7.4. This number is returned
by the i nfo t cl ver si on command. If you want your script to run on a variety of
Tcl releases, you may need to test the version number and take different actions
in the case of incompatibilities between releases. If there are patches to the
release, then a patch level is incremented. The patch level is reset to zero on each
release, and it is returned by the i nf o t cl pat chl evel command.

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Interactive Command History 81

Interactive Command History

The Tel shell programs keep a log of the commands that you type by using a
history facility. The log is controlled and accessed via the hi st ory command. The
history facility uses the term event to mean an entry in its history log. The events
are just commands, but they have an event ID that is their index in the log. You
can also specify an event with a negative index that counts backwards from the
end of the log. For example, event -1 is the previous event. Table 8—1 sumarises
the Tecl hi st ory command. Many forms take an event specifer , which defaults to
-1.

Table 8-2 The hi st ory command.

hi story Short for hi st ory i nf o with no count .

hi story add conmand Add the command to the history list. If exec is

?exec? specifed, then execute the command.

hi story change new Change the command specifed by event to new

?event ? in the command history.

hi story event ?event? Returns the command specifed by event.

history info ?count? Returns a formatted history list of the last count
commands, or of all commands.

hi story keep count Limit the history to the last count commands.

hi story nextid Returns the number of the next event.

hi story redo ?event? Repeate the specifed command.

hi story substitute old Globally replace ol d with newin the command

new ?event ? specifed by event, then execute the result.

hi story words sel ector Return list elements from the event according to

?event ? sel ect or. List items count from zero. $ is the

last item. A range is specifed as a-b, e.g., 1-$.

In practice you will want to take advantage of the ability to abbreviate the
history options and even the name of the hi st ory command itself. For the com-
mand you need to type a unique prefk, and this depends on what other com-
mands are already defned. For the options, there are unique one-letter
abbreviations for all of them. For example, you could reuse the last word of the
previous command with [hi st w $] . This works because a $ that is not followed
by alphanumerics (or an open brace) is treated as a literal $.

Several of the history operations update the history list. They remove the
actual hi story command and replace it with the command that resulted from
the history operation. The event, redo, substitute, and words operations all
behave in this manner. This makes perfect sense because you’d rather have the
actual command in the history instead of the history command used to retrieve
the command.

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

82

Reflection and Debugging Chap.8

History syntax

Some extra syntax is supported when running interactively to make the history
facility more convenient to use. Table 8—1 shows the special history syntax sup-
ported by tclsh and wish.

Table 8-3 Special hi st ory syntax.

Repeat the previous command.

I'n Repeat command number n. If n is negative it counts backward
from the current command. The previous command is event -1.

Iprefix Repeat the last command that begins with prefi x.

Ipattern Repeat the last command that matches patt ern.

Aol drnew Globally replace ol d with newin the last command.

The next example shows how some of the history operations work.

Example 8-3 Interactive hi st ory usage.

% set a5

5

% set a [expr $a+7]

12

% hi story
1 set ab
2 set a [expr $a+7]
3 history

%12

19

% !'!

26

% ~7713

39

% !h
1lset ab
2 set a [expr $a+7]
3 history
4 set a [expr $a+7]
5 set a [expr $a+7]
6 set a [expr $a+13]
7 history

A comparision to /bin/csh history syntax

The history syntax shown in the previous example is simpler than the his-

tory syntax provided by the C-shell. Not all of the history operations are sup-
ported with special syntax. The substitutions (using ~ol d*new) are performed

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Debugging 83

globally on the previous command. This is different than the quick-history of the
C-shell. Instead, it is like the ! : gs/ ol d/ new history command. So, for example,
if the example had included ~a”b in an attempt to set b to 39, an error would
have occurred because the command would have been changed to:

set b [expr $b+7]

If you want to improve the history syntax, you will need to modify the
unknown command, which is where it is implemented. This command is discussed
in more detail in Chapter 9. Here is the code from the unknown command that
implements the extra history syntax. The main limitation in comparision with-
the C-shell history syntax is that the ! substitutions are only performed when ! is
at the beginning of the command.

Example 8-4 Implementing special history syntax.

Excerpts from the standard unknown conmand
uplevel is used to run the command in the right context
if {$name == "11"} {

return [uplevel {history redo}]

}
if [regexp {*'(.+)$} $nane dummy event] {
return [uplevel [list history redo $event]]

}

if [regexp {M\A([AM]F)I\NAM[AM]*)\A?$} $name dummy ol d new] {
return [uplevel [list history substitute $old $new]

}

Debugging

The rapid turn around with Tcl coding means that it is often sufftient to add a
few put s statements to your script to gain some insight about its behavior. This
solution doesn’t scale too well, however. A slight improvement is to add a Debug
procedure that can have its output controlled better. You can log the information
to a fle, or turn it off completely . In a Tk application, it is simple to create a text
widget to hold the contents of the log so you can view it from the application.
Here is a simple Debug procedure. To enable it you need to set the debug(enabl e)
variable. To have its output go to your terminal, set debug(file) tostderr.

Example 8-5 A Debug procedure.

proc Debug { string } {
gl obal debug
if !'[info exists debug(enabled)] {
Default is to do nothing
return

}
puts $debug(file) $string

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

84 Reflection and Debugging Chap.8

}
proc DebugOn {{file {}}} {
gl obal debug
set debug(enabled) 1
if {[string length $file] == 0} {
if [catch {open /tnp/debug.out w} filelD {
put stderr "Cannot open /tnp/debug. out”
set debug(file) stderr
} else {
puts stderr "Debug info to /tnp/debug. out”
set debug(file) $filelD

}
}
}
proc DebugOrif {} {
gl obal debug

if [info exists debug(enabl ed)] {
unset debug(enabl ed)
flush $debug(file)
if {$debug(file) !'= "stderr" &&
$debug(file) !'= "stdout"} {
cl ose $debug(file)
unset $debug(file)

Don Libes’ debugger

Don Libes at the National Institute of Standards and Technology has built
a Tcl debugger that lets you set breakpoints and step through your scripts inter-
actively. He is also the author of the expect program that is described in Chapter
32. The debugger requires a modifed T cl shell because the debugger needs a few
more built-in commands to support it. This section assumes you have it built into
your shell already. The expect program includes the debugger, and creating a cus-
tom shell that includes the debugger is described in Chapter 32 on page 395.

The most interesting feature of the debugger is that you set breakpoints by
specifying patterns that match commands. The reason for this is that Tel doesn’t
keep around enough information to map from fle line numbers to T ¢l commands
in scripts. The pattern matching is a clever alternative, and it opens up lots of
possibilities.

The debugger defnes several one-character command names. The com-
mands are only defned when the debugger is active, and you shouldn’ t have one-
letter commands of your own so it should not create any conflcts :-) The way you
enter the debugger in the frst place is left up to the application. The expect shell
enters the debugger when you generate a keyboard interrupt, and Chapter 32
shows how you can set this up for a customized Tcl shell. Table 8—4 sumarises
the debugger commands. They are described in more detail below.

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Don Libes’ debugger 85

Table 8-4 Debugger commands.

s ?n? Step into a procedure. Step once, or n times.

n ?n? Step over a procedure. Step over once, or n times.

r Return from a procedure.

b Set, clear or show a breakpoint.

c Continue execution to next breakpoint or interrupt.

w ?-w wi dth? ?-c X? Show the call stack, limiting each line tow dt h
charcters. - ¢ 1 displays control characters as escape
sequences. -¢ 0 displays control characters normally.

u ?level ? Move scope up the call stack one level, or to level | evel .
d ?l evel ? Move scope down the call stack one level, or to level

I evel .
h Display help information.

When you are at the debugger prompt, you are talking to your Tcl inter-
preter so you can issue any Tcl command. There is no need to defne new com-
mands to look at variables. Just use set !

The s and n command are used to step through your script. They take an
optional parameter that indicates how many steps to take before stopping again.
The r command completes execution of the current procedure and stops right
after the procedure returns.

The wcommand prints the call stack. Each level is preceeded by its number,
with level 0 being the top of the stack. An asterisk is printed by the current
scope, which you can change as described next. Each line of the stack trace can
get quite long because of argument substitutions. Control the output width with
the - wargument.

The u and d commands change the current scope. They move up and down
the Tcl call stack, where "up" means towards the calling procedures. The very top
of the stack is the global scope. You need to use these commands to easily exam-
ine variables in different scopes. They take an optional parameter that specifes
what level to go to. If the level specifer begins with #, then it is an absolute level
number and the current scope changes to that level. Otherwise the scope moves
up or down the specifed number of levels.

Breakpoints by pattern matching

The b command manipulates breakpoints. The location of a breakpoint is
specifed by a pattern. When a command is executed that matches the pattern,
the breakpoint occurs. Eventually it will be possible to specify breakpoints by
line number, but the Tcl interpreter doesn’t keep around enough information to
make that easy to do. The general form of the command to set a breakpoint is
shown below.

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

86 Reflection and Debugging Chap.8

b ?-re regexp? ?if condition? ?then action?
b ?-glob pattern? ?if condition? ?then action?

The b command supports both glob patterns and regular expressions. Pat-
terns will be discussed in more detail below. A breakpoint can have a test associ-
ated with it. The breakpoint will only occur if the condition is met. A breakpoint
can have an action, independent of a condition. The action provides a way to
patch code into your script. Finally, the pattern itself is also optional, so you can
have a breakpoint that is just a conditional. A breakpoint that just has an action
will trigger on every command.

Here are several examples.

b -re ~foobar

This breaks whenever the f oobar command is invoked. The » in the regular
expression ensures that foobar is the frst word in the command. In contrast, the
next breakpoint occurs whenever foobar is about to be called from within another
command. A glob pattern is used for comparision. A glob pattern has to match
the whole command string, hence the asterisk at the beginning and end of the
pattern.

b -glob {*\[foobar *}

The subpattern matching of the regular expression facility is supported. If
you have subpatterns, the parts of the string that match are stored in the dbg(1)
through dbg(9) array elements. The string that matched the whole pattern is
stored in dbg(0) . The following breakpoint stops when the crunch command is
about to be called with its frst argument greater than 1024.

b -re {~crunch ([0-9]+)} if {$dbg(1l) > 1024}

If you just want to print information and keep going, you can put ac, s, n,
or r command into the action associated with a breakpoint. The following break-
point traces assignments to a variable.

b -re {#set a ([*]+)} then {
puts "a changing from$a to $dbg(1)"
c

}

The breakpoint is called before the command executes, so in this case $a
refers to the old value, and the pattern extracts the new value. If an error occurs
inside the action the error is discarded and the rest of the action is skipped.

Deleting break points

The b command with no arguments lists the defhed breakpoints. Each
breakpoint is preceeded by an ID number. To delete a breakpoint, give the break-
point number preceeded by a minus sign:

b -N

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The tkerror Command 87
The tkerror Command

When the Tk widgets encounter an error from a callback, such as the command
associated with a button, they signal the error by calling the tkerror procedure.
A default implementation displays a dialog and gives you an opportunity to view
the Tecl call stack at the point of the error. You can supply your own version of
tkerror. For example, my exmh application offers to send mail to me with a few
words of explanation from the user and a copy of the traceback. I get interesting
bug reports from all over the world!

The tkerror command is called with one argument that is the error mes-
sage. The global variable err or I nf 0 contains the stack trace information.

The tkinspect Program

The tkinspect program is a Tk application that lets you look at the state of
other Tk applications. It displays procedures, variables, and the Tk widget hier-
archy. With tkinspect you can issue commands to another application in order to
change variables or test out commands. This turns out to be a very useful way to
debug Tk applications. It was written by Sam Shen and is available in the Tcl
archives. The current FTP address for this is:

ftp.aud. al catel .com/pub/tcl/code/tkinspect-4d.tar.gz

Performance Tuning

The ti me command measures the exectution time of a Tcl command. It takes an
optional parameter that is a repetition count.

time {set a "Hello, World!"} 1000

=> 305 mi croseconds per iteration

This provides a very simple timing mechanism. A more advanced profler is
part of the Extended Tcl package, which is described on page 389. The profler
monitors the number of calls, the CPU time, and the elapsed time spent in differ-
ent procedures.

Perhaps the most common performance bug in a Tcl program is the use of
big lists instead of arrays. Extracting items from a list is expensive because the
list must be reparsed in order to fad each element. W ith a Tecl array you can
access any element in constant time.

In general, iterating through large data structures is slow because Tcl rep-
arses loop bodies and procedure bodies each time it evaluates them. Highly inter-
ative code is best optimized by moving it into C code.

If you really want to squeeze the last drop out of some Tcl code you can try
shorting the names of variables and commands used in the inner loops. For rea-
sons of good programming style you should not resort to this except in extreme
cases. You can use the r ename command to create short names for the commands
used within a tight loop.

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

88 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 9

Script Libraries

You can use a script library to collect useful Tcl procedures together so they
can be used by more than one application. The library is implemented by
the unknown command handler, which also provides a few other
facilities. On of its features is the utomatic execution of UNIX programs
instead of having to use the Tcl exec command.

Libraries are used to collect useful sets of
Tel procedures together so they can be used by multiple applications. For exam-
ple, you could use any of the code examples that come with this book by creating
a script library, and then directing your application to check in that library for
missing procedures. One way to structure a large application is to have a short
main script and a library of support scripts. The advantage of this approach is
that not all the Tcl code needs to be loaded to get the application started. Then,
as new features are accessed the code that implements them can be loaded.

If you are writing Tcl code that is designed to be used in a library, you need
to pay attention to some coding conventions. Because there is no formal module
system in Tcl, coding conventions have to be followed to avoid conflcts between
procedures and global variables used in different packages. This chapter
explains a simple coding convention for large Tcl programs.

The unknown Command

The Tcl library facility is made possible by the unknown command. Whenever the
Tel interpreter encounters a command that it does not know about, it calls the
unknown command with the name of the missing command. The unknown com-
mand is implemented in Tcl, so you are free to provide your own mechanism to
handle unknown commands. This chapter describes the behavior of the default

89

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

90 Script Libraries Chap.9

implementation of unknown, which can be found in the init.tcl fle in the Tcl
library. The location of the library is returned by the i nfo | i brary command. In
order to bootstrap the library facility, the Tcl shells (¢clsh and wish) invoke the
following Tcl command.

source [info library]/init.tcl

The tclindex File

The unknown command uses an index to make the search for missing commands
fast. When you create a script library, you will have to generate the index that
records what procedures are defned in the library . The aut o_nki ndex procedure
creates the index, which is stored in a fle named tcl I ndex that is kept in the
same directory as the fles that make up the script library .

Suppose all the examples from this book are in the directory / usr/ | ocal /
t cl / wel chbook. You can make the examples into a script library just by creating
the tclIndex fle.

aut o_nki ndex /usr/local/tcl/wel chbook *.tcl

You'll need to update the tclIndex fle if you add procedures or change any of
their names. A conservative approach to this is shown in the next example. It is
conservative because it recreates the index if anything in the library has
changed since the tclIndex fle was last generated, whether or not the change
added or removed a Tcl procedure.

Example 9-1 Maintaining at cl | ndex file.

proc Library_Updatelndex { libdir } {

if I[file exists $libdir/tcllndex] {
set doit 1

} else {
set age [file ntime $libdir/tcllndex]
set doit O
foreach file [glob $libdir/*.tcl] {

if {[file ntine $file] > $age} {

set doit 1
br eak
}
}
}
if { $doit } {

aut o_nki ndex $libdir *.tcl
}

Using A Library: auto_path

In order to use a script library you must inform the unknown command where to

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

How Auto Loading Works 91

look. It uses the aut o_pat h variable to record a list of directories to search for
unknown commands. To continue our example, you can make the procedures in
the book examples available by putting this command at the beginning of your
scripts.

| append auto_path /usr/local/tcl/wel chbook

This has no effect if you have not created the t cl | ndex fle. If you wanted to

be extra careful you can do also call Li brary_Updat el ndex. This will update the
index if you add new things to the library.

| append auto_path /usr/local/tcl/wel chbook

Li brary_Updat el ndex /usr/local/tcl/wel chbook

This will not work if there is no t cl | ndex fle at all because the unknown
procedure won’t be able to fad the implementation of Li brary_Updat el ndex.
Once the t cl | ndex has been created for the frst time, then this will ensure that
any new procedures added to the library will be installed into t cl | ndex. In prac-
tice, if you want this sort of automatic update it is wise to include something like
the Li brary_Updat el ndex fle directly into your application as opposed to load-
ing it from the library it is supposed to be maintaining.

Disabling the library facility: auto_noload

If you do not want the unknown procedure to try and load procedures, you can
set the auto_noload variable to disable the mechanism.
set aut o_nol oad anyt hi ng

How Auto Loading W orks

If you look at the contents of a t cl | ndex fle you will fad that it defhes an array
named aut o_i ndex. One element of the array is defned for each procedure in the
script library. The value of the array element is a command that will defhe the
procedure. A line in the tclIndex fle looks something like this.

set auto_index(Bind_Interface) "source $dir/bind_ui.tcl"

When the t cl | ndex fle is read, the $dir gets substituted with the name of
the directory that contains the t cl I ndex fle, so the result is a sour ce command
that loads the fle containing the T cl procedure. The substitution is done with
eval , so you could build a t cl | ndex fle that contained any commands at all and
count on $di r being defned properly . The next example is a simplifed version of
the code that reads the t cl | ndex fle.

Example 9-2 Loading at cl | ndex file.

This is a sinplified part of the auto_l oad
command that processes a tcllndex file.

Go throught auto_path from back to front
set i [expr [Ilength $auto_path]-1]

for {} {$i >= 0} {incr i -1} {

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

92 Script Libraries Chap.9

set dir [lindex $auto_path $i]

if [catch {open $dir/tclindex]} f] {
No index
conti nue

eval the file as a script. Because eval is

used instead of source, an extra round of

substitutions is perfornmed and $dir get expanded
The real code checks for errors here.

eval [read $f]

cl ose $f

The behavior of the aut o_| oad facility is exploited by schemes that dynami-
cally link object code in order to defne commands that are implemented in C. In
those cases the | oad Tcl command is used. This is not a standard command, yet,
because the details of dynamic linking vary considerably from system to system.

Interactive Conveniences

The unknown command provides a few other conveniences. These are only used
when you are typing commands directly. They are disabled once execution enters
a procedure or if the Tcl shell is not being used interactively. The convenience
features are automatic execution of programs, command history, and command
abbreviation. These options are tried, in order, if a command implementation
cannot be loaded from a script library.

Auto Execute

The unknown procedure implements a second feature: automatic execution
of external programs. This make a Tcl shell behave more like other UNIX shells
that are used to execute programs. The search for external programs is done
using the standard PATH environment variable that is used by other shells to fad
programs. If you want to disable the feature all together, set the aut o_noexec
variable.

set aut o_noexec anything

History

The history facility described in Chapter 8 is implemented by the unknown
procedure.

Abbreviations

If you type a unique prefk of a command then unknown will fgure that out
and execute the matching command for you. This is done after auto exec is

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl Shell Library Environment 93

attemped and history substitutions are performed.

Tcl Shell Library Environment

It may help to understand how the Tcl shells initialize their library environment.
The first toehold on the environment is made when the shells are compiled. At
that point the default pathname of the library directory is defned. For T cl, this
pathname is returned by the i nf o command:
info library
For Tk, the pathname is defned by the tk_library variable”. One of the
frst things that a T cl shell does is this:
source [info library]/init.tcl
The primary thing defhed by init.tcl is the implementation of the
unknown procedure. For Tk, wi sh also does this:
source $tk_library/tk.tcl
This initializes the scripts that support the Tk widgets. There are still more
scripts, and they are organized as a library. So, the tk.tcl script sets up the auto_-
path variable so the Tk script library is accessible. It does this:
| append auto_path $tk_library
To summarize, the bootstrap works as follows:

The Tcl C library defnes the pathname returned by the info |ibrary com-
mand, and this default can be overridden with the TCL_LI BRARY environ-
ment variable.

¢ The Tcl interpreter sources [info library]/init.tcl in order to defne the
unknown command that implements the bulk of the library facility.

The Tk C library defhes a pathname and stores it into tk_|ibrary, a Tel
variable. The default can be overridden with the Tk _LI BRARY environment
variable.

¢ The Tk interpreter sourcesinit.tcl as above, and $tk_library/tk.tcl

¢ The Tk initialization script appends $t k_I| i brary to aut o_pat h.

Normally these details are taken care of by the proper installation of the Tcl and
Tk software, but I fad it helps to understand things when you see all the steps in
the initialization process.

Coding Style

If you supply a library then you need to follow some simple coding conventions to
make your library easier to use by other programmers. The main problem is that
there is no formal module system in Tcl, so you must follow some conventions to

*You can also override these settings with environment variables), TCL_ LI BRARY and
TK_LI BRARY, but you shouldn’t have to resort to that.

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

94 Script Libraries Chap.9

avoid name conflcts with other library packages and the main application.

A module prefix for procedure names

The first convention is to choose an identifying prefk for the procedures in
your package. For example, the preferences package in Chapter 28 uses Pref as
its prefk. All the procedures provided by the library begin with Pref. This con-
vention is extended to distinguish between private and exported procedures. An
exported procedure has an underscore after its prefk, and it is OK to call this
procedure from the main application or other library packages. Examples
include Pref Add, Pref I nit,and Pref Di al og. A private procedure is meant for
use only by the other procedures in the same package. Its name does not have
the underscore. Examples include Pr ef Di al ogl t emand Pr ef Xres.

A global array for state variables

You should use the same prefk on the global variables used by your pack-
age. You can alter the capitalization, just keep the same prefk. I capitalize proce-
dure names and use lowercase for variables. By sticking with the same prefk
you identify what variables belong to the package and you avoid conflct with
other packages.

In general I try to use a single global array for a package. The array pro-
vides a convenient place to collect together a set of related variables, much like a
struct is used in C. For example, the preferences package uses the pref array to
hold all its state information. It is also a good idea ot keep the use of the array
private. It is better coding practice to provide exported procedures than to let
other modules access your data structures directly. This makes it easier to
change the implementation of your package without affecting its clients.

If you do need to export a few key variables from your module, use the
underscore convention to distinquish exported variables too. If you need more
than one global variable, just stick with the prefk convention to avoid conficts.

If you are dissapointed by the lack of real modules in Tcl, then you should
consider one of the object system extentions for Tcl. The [incr tcl] package
described in Chapter 32 provides classes that have their own scope for member
functions and instance variables.

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 10

Tk Fundamentals

This chapter introduces the basic concepts used in the Tk toolkit for the X
window system. Tk adds about 35 Tcl commands that let you create and
manipulate widgets in a graphical user interface.

Tk is a toolkit for window programming.
It was been designed for the X window system, although ports to other window
systems are expected to appear soon. Tk shares many concepts with other win-
dowing toolkits, but you don’t need to know much about graphical user interfaces
to get started with Tk.

Tk provides a set of Tcl commands that create and manipulate widgets. A
widget is a window in a graphical user interface that has a particular appear-
ance and behavior. The terms widget and window are often used interchange-
ably. Widget types include buttons, scrollbars, menus, and text windows. Tk also
has a general purpose drawing widget called a canvas that lets you create
lighter-weight items like lines, boxes and bitmaps. The Tcl commands added by
the Tk extension are summarized at the end of this chapter.

The X window system supports a hierarchy of windows, and this is refécted
by the Tk commands, too. To an application, the window hierarchy means that
there is a primary window, and then inside that window there can be a number
of children windows. The children windows can contain more windows, and so
on. Just as a hierarchical fle system has directories that are containers for fles
and directories, a hierarchical window system uses windows as containers for
other windows. The hierarchy affects the naming scheme used for Tk widgets as
described below, and it is used to help arrange widgets on the screen.

Widgets are under the control of a geometry manager that controls their
size and location on the screen. Until a geometry manager learns about a widget,

95

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

96 Tk Fundamentals Chap.10

it will not be mapped onto the screen and you will not see it. There are a few dif-
ferent geometry managers you can use in Tk, although this book primarily uses
the packer. The main trick with any geometry manger is that you use frame wid-
gets as containers for other widgets. One or more widgets are created and then
arranged in a frame by a geometry manager. The packer is discussed in detail in
Chapter 12.

A Tk-based application has an event driven control fbw , just as with most
window system toolkits. An event is handled by associating a Tcl command to
that event using the bi nd command. There are a large number of different
events defned by the X protocol, including mouse and keyboard events. Tk wid-
gets have default bindings so you do not have to program every detail yourself.
Bindings are discussed in detail in Chapter 13. You can also arrange for events to
occur after a specifed period of time with the after command. The event loop is
implemented by the wi sh shell, or you can provide the event loop in your own C
program as described in Chapter 29.

Event bindings are structured into a simple hierarchcy of global bindings,
class bindings, and instance bindings. An example of a class is But t on, which is
all the button widgets. The Tk toolkit provides the default behavior for buttons
as bindings on the But t on class. You can supliment these bindings for an individ-
ual button, or defne global bindings that apply to all bindings. Y ou can even
introduce new binding classes in order to group sets of bindings together. The
binding hierarchy is controlled with the bi ndt ags command.

A concept related to binding is focus. At any given time, one of the widgets
has the input focus, and keyboard events are directed to it. There are two gen-
eral approaches to focusing: give focus to the widget under the mouse, or explic-
itly set the focus to a particular widget. Tk provides commands to change focus
so you can implement either style of focus management. To support modal dialog
boxes, you can forcibly grab the focus away from other widgets. Chater 17
describes focus, grabs, and dialogs.

The basic structure of a Tk script begins by creating widgets and arranging
them with a geometry manager, and then binding actions to the widgets. After
the interpreter processes the commands that initialize the user interface, the
event loop is entered and your application begins running.

If you use wi sh interactively, it will create and display an empty main win-
dow and give you a command line prompt. With this interface, your keyboard
commands are handled by the event loop, so you can build up your Tk interface
gradually. As we will see, you will be able to change virtually all aspects of your
application interactively.

Hello World In Tk

Example 10-1 “Hello, World!” Tk program.

#!'/usr/local/bin/wish -f
button .hello -text Hello \

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Hello World In Tk 97

-command {puts stdout “Hello, World!"}
pack .hello -padx 20 -pady 10

This three-line script creates a button that prints a message when you click
it. A picture of the interface is shown below. Above the button widget is a title
bar that is provided by the window manager, which in this case is twm.

The first line identifes the interpreter for the script.
#!/usr/local/bin/wish -f
This special line is necessary if the script is in a fle that will be used like
other UNIX command fles. The -f fhg is required in versions of Tk before 4.0.
Remember, on many UNIX systems the whole frst line is limited to 32 characters,
including the #! and the -f .
The button command creates an instance of a button.
button .hello -text Hello \
-command {puts stdout “Hello, World!"}
=> .hello

The name of the button is .hello . The label on the button is Hello , and the
command associated with the button is:

puts stdout “Hello, World!”

The pack command maps the button onto the screen. Some padding param-
eters are supplied so there is space around the button.

pack .hello -padx 20 -pady 10

If you type these two commands into wish , you won’t see anything happen
when the button command is given. After the pack command, though, you will
see the empty main window shrink down to be just big enough to contain the but-
ton and its padding. The behavior of the packer will be discussed further in
Chapter 11 and Chapter12.

Tk uses an object-based system for creating and naming widgets. Associ-
ated with each class of widget (e.g., Button) is a command that creates instances
of that class of widget. As the widget is created, a new Tcl command is defned
that operates on that instance of the widget. The example creates a button
named .hello , and we can operate on the button using its name as a command.
For example, we can cause the button to highlight a few times:

.hello f lash

Or, we can run the command associated with the button:
.hello invoke
=> Hell o, Wrld!

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

98 Tk Fundamentals Chap.10
Naming Tk W idgets

The period in the name of the button instance, .hello , is required. Tk uses
a naming system for the widgets that refbcts their position in a hierarchy of wid-
gets. The root of the hierarchy is the main window of the application, and its
name is simply “.” . This is similar to the naming convention for directories in
UNIX where the root directory is named “/” , and then/ is used to separate com-
ponents of a fle name. Tk uses “.” in the same way. Each widget that is a child
of the main window is named something like .foo . A child widget of .foo would
be .foo.bar , and so on. Just as fle systems have directories that are containers
for fles (and other directories), the Tk window hierarchy uses frame widgets
that are containers for widgets (and other frames).

There is one drawback to the Tk widget naming system. If your interface
changes enough it can result in some widgets changing their position in the wid-
get hierarchy, and hence having to change their name. You can insulate yourself
from this programming nuisance by using variables to hold the names of impor-
tant widgets. Use a variable reference instead of widget pathnames in case you
have to change things, or in case you want to reuse your code in a different inter-
face.

Configuring Tk W idgets

The example illustrates a style of named parameter passing that is preva-
lent in the Tk commands. Pairs of arguments are used to specify the attributes of
a widget. The attribute names begin with a -, such as -text , and the next argu-
ment is the value of that attribute. Even the simplest Tk widget can have a
dozen or more attributes that can be specifed this way , and complex widgets can
have 20 or more attributes. However, the beauty of Tk is that you only need to
specify the attributes for which the default value is not good enough. This is
illustrated by the simplicity of this Hello, World example.

Finally, each widget instance supports a conf igure (often abbreviated to
conf ig) operation that can query and change these attributes. The syntax for
conf ig uses the same named argument pairs used when you create the widget.
For example, we can change the background color of the button to be red even
after it has been created and mapped onto the screen.

.hello conf ig -background red

You can use confgure to query the current value of an attribute by leaving

off the value. For example:
.hello conf ig -background
=> -background background Background #ffe4c4d red

The returned information includes the command line switch, the resource
name, the class name, the default value, and the current value, which is last.
The class and resource name have to do with the X resource mechanism. In most
cases you just need the current value, and you can use the cget operation for

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

About The Tk Man Pages 99

that.
. hell o cget -background
=> red
Widgets attributes can be redefned any time, even the text and command
that were set when the button was created. The following command changes
. hel | o into a goodbye button:
.hello config -text Goodbye! -command exit

About The Tk Man Pages

The on-line manual pages that come with Tk provide a complete reference source
for the Tk commands. You should be able to use the UNIX man program to read
them.

% man button

There are a large number of attributes that are common across most of the
Tk widgets. These are described in a separate man page under the name
options. Each man page begins with a STANDARD OPTI ONS section that lists
which of these standard attributes apply, but you have to look at the opti ons
man page for the description.

Each attribute has three labels: its command-line switch, its name, and its
class. The command-line switch is the format you use in Tel scripts. This form is
always all lowercase and prefked with a hyphen (e.g., - of f val ue).

The name and class have to do with X resource speciftations. The resource
name for the attribute has no leading hyphen, and it has uppercase letters at
internal word boundaries (e.g., of f Val ue). The resource class begins with an
upper case letter and has uppercase letters at internal word boundaries. (e.g.,
O f Val ue). You need to know these naming conventions if you specify widget
attributes via the X resource mechanism, which is described in more detail in
Chapter 27. In addition, the tables in this book list widget attributes by their
resource name because the command line switch can be derived from the
resource name by mapping it to all lowercase.

The primary advantage to using resources to specify attributes is that you
do not have to litter your code with attribute speciftations. W ith just a few
resource database entries you can specify attributes for all your widgets. In addi-
tion, if attributes are specifed with resources, users can provide alternate
resource speciftations in order to override the values supplied by the applica-
tion. For attributes like colors and fonts, this feature can be important to users.

Summary Of The Tk Commands

The following two tables list the Tcl commands added by Tk. The first table
lists commands that create widgets. There are 15 different widgets in Tk,
although 4 of them are variations on a button, and 5 are devoted to different fh-

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

100 Tk Fundamentals Chap.10

vors of text display. The second table lists commands that manipulate widgets
and provide associated functions like input focus, event binding, and geometry
management. The page number in the table is the primary reference for the com-
mand, and there are other references in the index.

Table 10-1 Tk widget-creation commands

Commrand Pg. Description

but t on 145 Create a command button.

checkbutton 149 Create a toggle button that is linked to a Tcl variable.

radi obutton 149 Create one of a set of radio buttons that are linked to one
variable.

nmenubut t on 153 Create a button that posts a menu.

menu 153 Create a menu.

canvas 227 Create a canvas, which supports lines, boxes, bitmaps,
images, arcs, text, polygons, and embedded widgets.

| abel 165 Create a read-only, one-line text label.

entry 180 Create a one-line text entry widget.

nessage 167 Create a read-only, multi-line text message.

l'i stbox 183 Create a line-oriented, scrolling text widget.

t ext 212 Create a general purpose text widget.

scrol | bar 172 Create a scrollbar that can be linked to another widget.

scal e 169 Create a scale widget that adjusts the value of a variable.

frame 163 Create a container widget that is used with geometry man-
agers.

t opl evel 163 Create a frame that is a new top level X window.

Table 10-2 Tk widget-manipulation commands

Conmmand Pg. Description

after 259 Execute a command after a period of time elapses.

bel | 176 Ring the X bell device.

bi nd 133 Bind a Tcl command to an X event.

bi ndt ags 134 Create binding classes and control binding inheritence.

cli pboard 255 Manipulate the X clipboard.
destr oy 200 Delete a widget.

fil eevent 260 Associate Tcl commands with fle descriptors.

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Summary Of The Tk Commands

Table 10-2 Tk widget-manipulation commands

101

focus
grab

i mage

| ower
option
pack

pl ace
raise
sel ection
send
tk
tkerror
t kwai t
updat e
wi nf o

wm

195
197
281
132
325
130
130
132
254
261
313
87

198
200
308
303

Control the input focus.

Steal the input focus from other widgets.
Create and manipulate images.

Lower a window in the stacking order.

Access the Xresources database.

The packer geometry manager.

The placer geometry manager.

Raise a window in the stacking order.
Manipulate the X PRIMARY selection.

Send a Tcl command to another Tk application.
Query internal Tk state (e.g., the color model)
Handler for background errors.

Block awaiting an event.

Update the display by going through the event loop.
Query window state.

Interact with the window manager.

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

102 Tk Fundamentals Chap.10

Created: December 15, 1994 —Tklintro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

11

C HAPTER

Tk by Example

This chapter introduces Tk through a series of short examples.

Tk provides a quick and fun way to gen-
erate user interfaces. In this chapter we will go through a series of short example
programs in order to give you a feel for what you can do. Some details are glossed
over in this chapter and considered in more detail later. In particular, the pack-
ing geometry manager is covered in Chapter 12 and event bindings are discussed
in Chapter 13. The Tk widgets are discussed in more detail in later chapters.

ExeclLog

Our first example provides a simple user interface to running a UNI X program.
The interface will consist of two buttons, Run it and Quit, an entry widget in
which to enter a command, and a t ext widget in which to log the results of run-
ning the program. The script runs the program in a pipeline and uses the
fil eevent command to wait for output. This structure lets the user interface
remain responsive while the program executes. You could use this to run make,
for example, and it would save the results in the log. The complete example is
given frst, and then its commands are discussed in more detail.

103

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

104 Tk by Example Chap.11

Example 11-1 Logging the output of a UNI X program.

#! /usr/local / bin/wi sh -f
execlog - run a UNI X program and | og the out put

Set window title
wntitle . ExeclLog

Create a frame for buttons and entry.
frame .top -borderwidth 10
pack .top -side top -fill x

Create the command buttons.

button .top.quit -text Quit -conmmand exit

set but [button .top.run -text "Run it" -conmmand Run]
pack .top.quit .top.run -side right

Create a |abeled entry for the command

| abel .top.l -text Conmand: -padx O

entry .top.cnd -width 20 -relief sunken \
-textvariabl e conmand

pack .top.l -side left

pack .top.cnmd -side left -fill x -expand true

Set up key binding equivalents to the buttons
bi nd .top.cnd <Return> Run

bind .top.cnd <Control -c> Stop

focus .top.cnd

Create a text widget to | og the output

frame .t

set log [text .t.log -width 80 -height 10 \
-borderwidth 2 -relief raised -setgrid true \
-yscroll command {.t.scroll set}]

scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

ExeclLog 105
pack .t -side top -fill both -expand true

Run the program and arrange to read its input
proc Run {} {
gl obal command input | og but
if [catch {open "| $conmand"} input] {
$log insert end $input\n
} else {
fil eevent $input readable Log
$l og insert end $comand\ n
$but config -text Stop -command Stop

}

}
Read and | og output fromthe program
proc Log {} {
gl obal input |og
if [eof $input] {
St op
} else {
gets $input line
$log insert end $line\n
$l og see end
}
}
Stop the programand fix up the button
proc Stop {} {
gl obal input but
catch {cl ose $input}
$but config -text "Run it" -comrand Run

Window title

The frst command sets the title that will appear in the title bar imple-

mented by the window manager. Recall that “. ”is the name of the main window.
wntitle . Execlog

The wm command is used to communicate with the window manager. The
window manager is the program that lets you open, close, and resize windows. It
implements the title bar for the window and probably some small buttons to
close or resize the window. (Different window managers look different - the fgure
shows a twm title bar.)

A frame for buttons, etc.

A frame is created to hold the widgets that appear along the top of the
interface. The frame has a border to provide some space around the widgets:
franme .top -borderwi dth 10
The frame is positioned in the main window. The default packing side is the
top, so the - si de t op is redundant here, but used for clarity. The -fi | | x packing
option will make the frame fll out to the whole width of the main window .

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

106 Tk by Example Chap.11

pack .top -side top -fill x

Command buttons

Two buttons are created: one to run the command, the other to quit the pro-
gram. Their names, . t op. quit and . t op. run, imply that they are children of the
.top frame. This affects the pack command, which positions widgets inside their
parent by default.

button .buttons.quit -text Quit -conmmand exit

set but [button .buttons.ping -text "Run it" \
-conmmand Run]

pack .buttons.quit .buttons.ping -side right

A label and an entry

The | abel and entry are also created as children of the top frame. The
| abel is created with no padding in the X direction so it can be positioned right
next to the entry. The size of the entry is specifed in terms of characters. The
relief attribute gives the ent ry some looks to set it apart visually on the display.
The contents of the ent ry widget are associated with the Tcl variable command.

| abel .top.l -text Conmand: -padx O
entry .top.cnd -width 20 -relief sunken \
-textvariabl e command

The | abel and entry are positioned to the left inside the .t op frame. The
additional packing parameters to the entry allow it to expand is packing space
and fll up that extra area with its display . The difference between packing space
and display space is discussed in Chapter 12.

pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Key bindings and focus

Key bindings are set up for the ent ry widget that provide an additional way
to invoke the functions of the application. The bi nd command associates a Tecl
command with an X event in a particular widget. The <Ret ur n> event is gener-
ated when the user presses the Ret urn key on the keyboard. The <Control - c>
event is generated when the letter ‘c’ is typed while the Cont rol key is already
held down. For the events to go to the ent ry widget, . t op. cnd, input focus must
be given to the widget. By default, an ent ry widget gets the focus when you click
the left mouse button in it. The explicit focus command is helpful for users with
the focus-follows-mouse model. As soon as the mouse is over the main window
they can type into the entry.

bi nd .top. host <Return> Run
bi nd .top.cnmd <Control-c> Stop
focus .top.cnd

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

ExeclLog 107

A resizable text and scrollbar

A text widget is created and packed into a frame along with a scrol | bar.
The scrol | bar is a separate widget in Tk, and it can be connected to a few differ-
ent widgets using the same setup as is used here. The t ext widget’s yscrol | com
mand is used to update the display of the scrol | bar when the text widget is
modifed, and the scrol | bar widget’s conmand is used to scroll the associated
widget when the user manipulates the scrollbar.
The set gri d attribute of the text widget is turned on. This has two effects.
The most important is that it allows interactive resizing of the main window. By
default, a Tk window is not resizable interactively, although it can always be
resized under program control. The other effect of gridding is to restrict the
resize so that only a whole number of lines and average sized characters can be
displayed.
frame .t
set log [text .t.log -width 80 -height 10 \
-borderwidth 2 -relief raised -setgrid true\
-yscroll command {.t.scroll set}]

scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill vy

pack .t.log -side left -fill both -expand true
pack .t -side top -fill both -expand true

A side effect of creating a Tk widget is the creation of a new Tcl command
that operates on that widget. The name of the Tcl command is the same as the
Tk pathname of the widget. In this script, the text widget command, . t. | og, will
be needed in several places. However, it is a good idea to put the Tk pathname of
an important widget into a variable because that pathname can change if you
reorganize your user interface. The disadvantage of this is that you must declare
the variable as a global inside procedures. The variable | og is used for this pur-
pose in this example to demonstrate this style.

The Run proc

The Run procedure starts the UNI X program specifed in the command
ent ry. That value is available via the global command variable because of the t ex-
tvari abl e attribute of the entry. The command is run in a pipeline so that it exe-
cutes in the background. The catch command is used to guard against bogus
commands. The variable i nput will be set to an error message, or to the normal
open return that is a fle descriptor . A trick is used so that the error output of the
program is captured. The program is started like this:

if [catch {open "| $command | & cat"} input] {

The leading | indicates that a pipeline is being created. If cat is not used
like this, then the error output from the pipeline, if any, shows up as an error
message when the pipeline is closed. In this example it turns out to be awkward
to distinguish between errors generated from the program and errors generated

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

108 Tk by Example Chap.11

because of the way the St op procedure is implemented. Furthermore, some pro-
grams interleave output and error output, and you might want to see the error
output in order instead of all at the end.

If the pipeline is opened successfully, then a callback is setup using the
fil eevent command. Whenever the pipeline generates output then the script
can read data from it. The Log procedure is registered to be called whenever the
pipeline is readable.

fileevent $input readable Log

The command (or the error message) is inserted into the log. This is done
using the name of the text widget, which is stored in the | og variable, as a Tcl
command. The value of the command is appended to the log, and a newline is
added so its output will appear on the next line.

$l og insert end $command\n

The text widget’s i nsert function takes two parameters: a mark and a
string to insert at that mark. The symbolic mark end represents the end of the
contents of the text widget.

The run button is changed into a stop button after the program is started.
This avoids a cluttered interface and demonstrates the dynamic nature of a Tk
interface. Again, because this button is used in a few different places in the
script, its pathname has been stored in the variable but .

$but config -text Stop -conmand Stop

The Log procedure

The Log procedure is invoked whenever data can be read from the pipeline,
and end-of-fle has been reached. This condition is checked fist, and the Stop
procedure is called to clean things up. Otherwise, one line of data is read and
inserted into the log. The text widget’s see operation is used to position the view
on the text so the new line is visible to the user.

if [eof $input] {
St op
} else {
gets $input line
$l og insert end $line\n
$l og see end

The Stop procedure

The St op procedure terminates the program by closing the pipeline. This
results in a signal, SI GPI PE, being delivered to the program the next time it does
a write to its standard output. The close is wrapped up with a catch. This sup-
presses the errors that can occur when the pipeline is closed prematurely on the
process. Finally, the button is restored to its run state so that the user can run
another command.

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Example Browser 109

catch {cl ose $input}
$but config -text "Run it" -command Run
In most cases, closing the pipeline is adequate to kill the job. If you really
need more sophisticated control over another process, you should check out the
expect Tcl extension, which is described briefy in Chapter 32 on page 391.

The Example Browser

The next example is an initial version of a browser for the code examples that
appear in this book. The basic idea is to provide a menu that selects the exam-
ples, and a text window to display the examples. Because there are so many
examples, a cascaded menu is set up to group the examples by the chapter in
which they occur.

Example 11-2 A browser for the code examples in the book.

#1/project/tcl/src/brent/w sh

browseO.tcl --

Browser for the Tcl and Tk exanples in the book.
Version O

The directory containing all the tcl files
set browse(dir) /tilde/welch/doc/tclbook/exanples

Set up the main display
wmninsize . 30 5
wntitle . "Tcl Exanple Browser, vO0"

frame . menubar

pack .nenubar -fill x

button .menubar.quit -text Quit -command exit
pack .nenubar.quit -side right

A label identifies the current exanple
| abel . nmenubar.|abel -textvariable browse(current)
pack .nenubar.label -side right -fill x -expand true

Look through the .tcl files for the keywords
that group the exanpl es.
foreach f [glob $browse(dir)/*.tcl] {
if [catch {open $f} in] {
puts stderr "Cannot open $f: $in"
conti nue

}
while {[gets $in line] >= 0} {
if [regexp -nocase {"# ([~]+) chapter} $line \
x keyword] ({
| append exanpl es($keywor d) $f
close $in
br eak

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

110 Tk by Example Chap.11
}
}
Create the menubutton and menu
menubutton . menubar. ex -text Exanples -nenu . nmenubar.ex.m

pack .nenubar.ex -side |left
set m[menu . nenubar.ex. m

Create a cascaded nenu for each group of exanples
set i O
foreach key [lsort [array names exanples]] {

$m add cascade -|abel $key -nmenu $m sub$i

set sub [menu $m sub$i -tearoff O]

incr i

foreach item [l sort $exanpl es($key)] {

$sub add conmand -l abel [file tail $iten] \
-command [list Browse $iteni

}

Create the text to display the exanple
frame . body
text .body.t -setgrid true -width 80 -height 25\
-yscrol | cormand {.body.s set}
scrol | bar .body.s -conmand {.body.t yview} -orient vertical
pack .body.s -side left -fill vy
pack .body.t -side right -fill both -expand true
pack .body -side top -fill both -expand true
set browse(text) .body.t

Display a specified file. The label is updated to
reflect what is displayed, and the text is left
in a read-only node after the exanple is inserted.
proc Browse { file } {
gl obal browse
set browse(current) [file tail $file]
set t $browse(text)
$t config -state nornal
$t delete 1.0 end
if [catch {open $file} in] {
$t insert end $in
} else {
$t insert end [read $in]
close $in

$t config -state disabled

More about resizing windows

This example uses the wmni nsi ze command to put a constraint on the min-
imum size of the window. The arguments specify the minimum width and height.
These values can be interpreted in two ways. By default they are pixel values.
However, if an internal widget has enabled geometry gridding, then the dimen-

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Example Browser 111

sions are in grid units of that widget. In this case the text widget enables grid-
ding with its set gri d attribute, so the minimum size of the window will be set so
that the text window is at least 30 characters wide by 5 lines high.
wn mnsize . 30 5

The other important side effect of setting the minimum size is that it
enables interactive resizing of the window. Interactive resizing is also enabled if
gridding is turned on by an interior widget, or if the maximum size is con-
strained with the wn nmaxsi ze command.

Managing global state

The example uses the browse array to collect its global variables. This
makes it simpler to reference the state from inside procedures because only the
array needs to be declared global. As the application grows over time and new
features are added, that global command won’t have to be adjusted. This style
also serves to emphasize what variables are important.

The example uses the array to hold the name of the example directory
(di r), the Tk pathname of the text display (t ext), and the name of the current
fle (current).

Searching through files

The browser searches the fle system to determine what it can display. It
uses gl ob to fad all the T cl fles in the example directory . Each fle is read one
line at a time with get s, and then r egexp is used to scan for keywords. The loop
is repeated here for reference.

foreach f [glob $browse(dir)/*.tcl] {
if [catch {open $f} in] {
puts stderr "Cannot open $f: $in"
conti nue

}
while {[gets $in line] >= 0} {
if [regexp -nocase {"# (["]+) chapter} $line \
x keyword] {
| append exanpl es($keyword) $f
close $in
br eak

}

The example fles contain lines like this:
Canvas chapter
The r egexp picks out the keyword Canvas with the ([~]+) part of the pat-
tern, and this gets assigned to the keywor d variable. The x variable gets assigned
the value of the whole match, which is more than we are interested in. Once the
keyword is found the fle is closed and the next fle is searched. At the end of the

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

112 Tk by Example Chap.11

foreach loop the exanpl es array has an element defned for each chapter key-
word, and the value of each element is a list of the fles that had examples for
that chapter.

Cascaded menus

The values in the examples array are used to build up a cascaded menu
structure. First a menubutton is created that will post the main menu. It is asso-
ciated with the main menu with its menu attribute. The menu is created, and it
must be a child of the menu button for the menu display to work properly.

menubutt on . menubar. ex -text Exanples \
-nmenu . menubar. ex. m
set m[nmenu .nenubar.ex. m

For each example a cascade menu entry is added to the menu and the asso-
ciated menu is defhed. Once again, the submenu is defhed as a child of the main
menu. The submenu gets flled out with command entries that browse the fle.
Note the inconsistency with menu entries. Their text is defhed with the -1 abel
option, not -text. Other than this they are much like buttons. Chapter 14
describes menus in more detail.

set i O
foreach key [lsort [array names exanples]] {
$m add cascade - abel $key -nenu $m sub$i
set sub [nenu $m sub$i -tearoff O]
incr i
foreach item[lsort $exanpl es($key)] {
$sub add conmand -1 abel [file tail $iten] \
-command [list Browse $iteni

The Browse proc

The Browse procedure is fairly simple. It sets br owse(current) to be the
name of the fle. This changes the main label because of its textvariable
attribute that ties it to this variable. The st at e attribute of the text widget is
manipulated so that the text is read-only after the text is inserted. You have to
set the st at e to normal before inserting the text, otherwise the i nsert has no
effect. Later enhancements to the browser will relax its read-only nature. Here
are a few commands from the body of Browse.

gl obal browse

set browse(current) [file tail $file]
$t config -state nornal

$t insert end [read $in]

$t config -state disabled

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Tcl Shell

A Tcl Shell

113

This section demonstrates the text widget with a simple Tcl shell application.
Instead of using some other terminal emulator, it provides its own terminal envi-
ronment using a t ext widget. You can use the Tcl shell as a sandbox in which to
try out Tcl examples. The browser can too, by sending Tcl commands to the shell.
Because the shell is a separate program, the browser is insulated from crashes.

The shell and the browser are hooked together in Chapter 21.

Example 11-3 A Tcl shell in a text widget.

#!/project/tcl/src/brent/w sh

pronpt - the command |ine pronpt
_t - holds the ID of the text w dget

A frame, scrollbar, and text

frame .eval

set _t [text .eval.t -width 80 -height 20 \
-yscroll command {.eval.s set}]

scrol | bar .eval.s -command {.eval .t yview}

pack .eval.s -side left -fill y
pack .eval.t -side right -fill both -expand true
pack .eval -fill both -expand true

Insert the prompt and initialize the limt mark
.eval .t insert insert "Tcl eval |og\n"

set pronmpt "tcl>"

.eval .t insert insert $pronpt

.eval .t mark set limt insert

.eval .t mark gravity limt left

focus .eval.t

Key bindings that limt input and eval things
bind .eval.t <Return> { _Eval .eval.t ; break }
bind .eval .t <Any-Key> {
if [V conpare insert < limt] {
WV mark set insert end
}
}

bi ndtags .eval.t {.eval.t Text all}

proc _Eval { t } {
gl obal prompt _debug
set command [$t get linmt end]
if [info conplete $comuand] {
set err [catch {uplevel #0 $command} result]

Sinple evaluator. It executes Tcl in its own interpreter
and it uses up the following identifiers.

Tk wi dgets:

.eval - the frane around the text |og

Procedures:

_Eval - the main eval procedure

Vari abl es:

#

#

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

114 Tk by Example Chap.11

if {$_debug} {

puts stdout "$err: $result\n”
}

$t insert insert \n$result\n
$t insert insert $pronpt

$t see insert

$t mark set limt insert
return

Naming issues

This example uses some funny names for variables and procedures. This is
a crude attempt to limit conflcts with the commands that you will type at the
shell. The comments at the beginning explain what identifers are used by this
script. With a small amount of C programing you can easily introduce multiple
Tcl interpreters into a single process to avoid problems like this. There have been
some extensions published on the net that provide this capability at the Tcl level.
(ref mi nt er p extension)

Text marks and bindings

The shell uses a text mark and some extra bindings to ensure that users
only type new text into the end of the text widget. The | i mi t mark keeps track of
the boundary between the read-only area and the editable area. The mark is
used in two ways. First, the Eval procedure looks at all the text between | i ni t
and end to see if it is a complete Tcl command. If it is, it evaluates it at the global
scope using upl evel #0. Second, the <Any- Key> binding checks to see where the
insert point is, and bounces it to the end if the user tries to input text before the
i mit mark. Chapter 18 describes the text widget and its mark facility in more
detail.

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 12

The Pack Geometry Manager

This chapter explores the pack geometry manager that is used to position
widgets on the screen. The place geometry manager is also briefly
described.

Geometry managers arrange widgets on
the screen. There are a few different geometry managers, and you can use differ-
ent ones to control different parts of your user interface. This book primarily
uses the pack geometry manager, which is a constraint-based system. Tk also
provides the pl ace geometry manager, which is discussed briefy at the end of
this chapter. Another interesting geometry manager is the t abl e geometry man-
ager provided as part of the BLT extension package, which is reviewed in Chapter
32.

A geometry manager uses one widget as a parent, and it arranges multiple
children (also called slaves) inside the parent. The parent is almost always a
frane, but this is not strictly necessary. A widget can only be managed by one
geometry manager at a time. If a widget is not managed, then it doesn’t appear
on your display at all.

The packer is a powerful constraint-based geometry manager. Instead of
specifying in detail the placement of each window, the programmer defnes some
constraints about how windows should be positioned, and the packer works out
the details. It is important to understand the algorithm used by the packer, oth-
erwise the constraint-based results may not be what you expect.

This chapter explores the packer through a series of examples. We will start
with a simple widget framework and then modify its layout to demonstrate how
the packer works. The background of the main window is set to black, and the
other frames are given different colors so you can identify frames and observe

115

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

116 The Pack Geometry Manager Chap.12

the effect of the different packing parameters.

Packing towards a side

Example 12-1 Two frames packed inside the main frame.

Make the main w ndow bl ack

config -bg bl ack
Create and pack two franes
frame .one -width 40 -height 40 -bg white
frame .two -width 100 -hei ght 100 -bg grey50
pack .one .two -side top

The example creates two frames and packs them towards the top side of the
main window. The upper frame, . one, is not as big and the main window shows
through on either side. The children are packed towards the specifed side in
order, so . one is on top. The four possible side are t op, ri ght, bottom and | ef t.
The t op side is the default.

Shrinking frames and pack propagate

Note that the main window has shrunk down to be just large enough to
hold its two children. In most cases this is the desired behavior. If it isn’t you can
turn it off with the pack propagat e command. Apply this to the parent frame,
and it will not adjust its size to ft its children.

Example 12—-2 Turning off geometry propagation.

frame .one -width 40 -height 40 -bg white

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Horizontal And Vertical Stacking 117

frame .two -width 100 -height 100 -bg grey50
pack propagate . false
pack .one .two -side top

Horizontal And V ertical Stacking

In general you should stick with either horizontal or vertical stacking
within a frame. If you mix sides such as | eft and t op, the effect might not be
what you expect. Instead, you should introduce more frames to pack a set of wid-
gets into a stack of a different orientation. For example, suppose we want to put
a row of buttons inside the upper frame in the examples we have given so far.

Example 12—-3 A horizontal stack inside a vertical stack.

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {al pha beta gamma} {
button .one.$b -text $b
pack .one.$b -side left
}

pack .one .two -side top

You can build up more complex arrangements by introducing nested frames
and switching between horizontal and vertical stacking as you go. Within each
frame pack all the children with either a combination of - si de |eft and -si de
right,or-side topand-side bottom

Example 12—4 Even more nesting of horizontal and vertical stacks.

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
foreach b {al pha beta} {

button .one.$b -text $b

pack .one.$b -side left

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

118 The Pack Geometry Manager Chap.12

Create a frane for two nore buttons

frame .one.right

foreach b {delta epsilon} {
button .one.right.$b -text $b
pack .one.right.$b -side bottom

}

pack .one.right -side right

pack .one .two -side top

This example replaces the . one. gamma button with a vertical stack of two
buttons, . one. right.deltaand. one. right. epsil on. These are packed towards
the bottom of . one. ri ght, so the frst one packed is on the bottom.

The frame . one. ri ght was packed to the right, and in the previous exam-
ple the button . one. gamma was packed to the | ef t . In spite of the difference, they
ended up in the same position relative to the other two widgets packed inside the
. one frame. The next section explains why.

The Cavity Model

The packing algorithm is based on a cavity model for the available space
inside a frame. For example, when the main wi sh window is created, the main
frame is empty and there is an obvious space, or cavity, in which to place wid-
gets. The primary rule about the cavity is that a widget occupies one whole side
of the cavity. To demonstrate this, pack three widgets into the main frame. Put
the frst two on the bottom, and the third one on the right.

Example 12-5 Mixing bottom and right packing sides.

pack two frames on the bottom

frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
pack .one .two -side bottom

pack another frane to the right

frame .three -width 20 -height 20 -bg red
pack .three -side right

When we pack a third frame into the main window with -si de left or -
side right, then the new frame is positioned inside the cavity, which is above
the two frames already packed toward the bottom side. The frame does not
appear to the right of the existing frames as you might have expected. This is

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Packing Space and Display Space 119

because the .two frame occupies the whole bot t om side of the packing cavity,
even though its display does not fll up that side.

Can you tell where the packing cavity is after this example? It is to the left
of the frame . t hr ee, which is the last frame packed towards the right, and it is
above the frame . t wo., which is the last frame packed towards the bottom. This
explains why there was no difference between the previous two examples when
. one. gamma was packed to the left side, but . one. ri ght was packed to the right.
At that point, packing to the left or right of the cavity had the same effect. How-
ever, it will affect what happens if another widget is packed into those two con-
fgurations. T ry out the following commands after running Example 12-3 and
Example 12-4 and compare the difference.”

button .one.onega -text onmega
pack .one.onmega -side right

Each packing parent has its own cavity, which is why introducing nested
frames can help. If you stick with a horizontal or vertical arrangement inside
any given frame, you can more easily simulate the packer’s behavior in you head!

Packing Space and Display Space

The packer distinguishes between packing space and display space when it
arranges the widgets. The display space is the area requested by a widget for the
purposes of painting itself. The packing space is the area allowed by the packer
for the placement of the widget. Because of geometry constraints, a widget may
be allocated more (or less) packing space than it needs to display itself. The extra
space, if any, is along the side of the cavity against which the widget was packed.

The -fill option

The -fill packing option causes a widget to fll up the allocated packing
space with its display. A widget can fll in the X or Y direction, or both. The
default is not to fll, which is why the black background of the main window has
shown through in the examples so far.

Example 12-6 Filling the display into extra packing space.

frame .one -width 100 -height 50 -bg grey50

* Answer: After Example 12-3 the new button is to the right of all buttons. After Example 12—
4 the new button is in between .one.beta and .one.right.

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

120 The Pack Geometry Manager Chap.12

frame .two -width 40 -height 40 -bg white
Pack with fill enabled

pack .one .two -side bottom-fill x

pack another frane to the right

The fill has no effect

frame .three -width 20 -height 20 -bg red
pack .three -side right -fill x

This is just like the previous example, except that -fi || x has been speci-
fed for all the frames. The .two frame flls, but the .t hr ee frame does not. This
is because the fll will not expand into the packing cavity . In fact, after this exam-
ple, the packing cavity is the part that shows through in black. Another way to
look at this is that the . two frame was allocated the whole bottom side of the
packing cavity, so its fll can expand the frame to occupy that space. The .three
frame has only been allocated the right side, so a fll in the x direction will not
have any effect.

Another use of fll is for a menu bar that has buttons at either end and some
empty space between them. The frame that holds the buttons is packed towards
the top and fll is enabled in the X direction. Then, buttons can be packed into
the left and right sides of the menubar frame. Without the fll, the menubar
would shrink to be just large enough to hold all the buttons, and the buttons
would be squeezed together.

Example 12—7 Using horizontal fill in a menubar.

frame . menubar -bg white
frame .body -wi dth 150 -height 50 -bg grey50
Create buttons at either end of the nmenubar
foreach b {al pha beta} {

button . menubar.$b -text $b
}

pack . nenubar. al pha -side left
pack . nenubar. beta -side right

Let the menu bar fill along the top
pack . nenubar -side top -fill X
pack . body

Internal padding with -ipadx and -ipady

Another way to get more fll space is with the -i padx and -i pady packing
options that request more display space in the x and y directions, respectively.
Due to other constraints the request might not be offered, but in general you can

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Packing Space and Display Space 121

use this to give a widget more display space. The next example is just like the
previous one except that some internal vertical padding has been added.

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

122 The Pack Geometry Manager Chap.12

Example 12-8 The effects of internal padding (-ipady).

Create and pack two franes

frame . menubar -bg white

frame .body -wi dth 150 -height 50 -bg grey50
Create buttons at either end of the nenubar
foreach b {al pha beta} {

button . nmenubar.$b -text $b

}

pack .nenubar.al pha -side left -ipady 10

pack .nenubar.beta -side right -ipadx 10

Let the menu bar fill along the top
pack .nenubar -side top -fill x -ipady 5
pack . body

The al pha button is taller and the bet a button is wider because of the inter-
nal padding. With a frame the internal padding reduces the space available for
the packing cavity, so the . menubar frame shows through above and below the
buttons.

Some widgets have attributes that result in more display space. It would be
hard to distinguish a frame with width 50 and no internal padding from a frame
with width 40 and a - i padx 5 packing option. The packer would give the frame 5
more pixels of display space on either side for a total width of 50.

Buttons have their own - padx and - pady options that give them more dis-
play space, too. The padding provided by the button is used to keep its text away
from the edge of the button. The following example illustrates the difference. The
-anchor e button option positions the text as far to the right as possible. Chapter
14 describes buttons and their attributes in more detail.

Example 12-9 Button padding vs. packer padding.

Foo has internal padding fromthe packer

button .foo -text Foo -anchor e -padx O -pady O
pack .foo -side right -ipadx 10 -ipady 10

Bar has its own paddi ng

button .bar -text Bar -anchor e -pady 10 -padx 10
pack .bar -side right -ipadx 0 -ipady O

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Expand And Resizing 123

External padding with -padx and -pady

The packer can provide external padding that allocates packing space that
cannot be flled. The space is outside of the border that widgets use to implement
their 3D reliefs. Example 22-2 on page 273 shows the different reliefs. The look
of a default button is achieved with an extra frame and some padding.

Example 12-10 The look of a default button.

config -borderw dth 10
OK is the default button
frame .ok -borderwidth 2 -relief sunken
button .ok.b -text OK
pack .ok.b -padx 5 -pady 5
Cancel is not
button .cancel -text Cancel
pack .ok .cancel -side left -padx 5 -pady 5

Even if the . ok. b button were packed with -fill both, it would look the
same. The external padding provided by the packer will not be filed by the child
widgets.

Expand And Resizing

The - expand true packing option lets a widget expand its packing space
into unclaimed space in the packing cavity. Example 12—6 could use this on the
small frame on top to get it to expand across the top of the display, even though it
is packed to the right side. The more common case occurs when you have a resiz-
able window. When the user makes the window larger, the widgets have to be
told to take advantage of the extra space. Suppose you have a main widget like a
text, | istbox, or canvas that is in a franme with a scrol | bar. That f r ame has to
be told to expand into the extra space in its parent (e.g., the main window) and
then the main widget (e.g., the canvas) has to be told to expand into its parent
frame. Example 11-1 does this.

In nearly all cases the -fill both option is used along with - expand true
so that the widget actually uses its extra packing space for its own display. The
converse is not true. There are many cases where a widget should fil extra
space, but not attempt to expand into the packing cavity. The examples below
show the difference.

The main window can be made larger by interactive resizing, or under pro-
gram control with the wm geonet ry command. By default interactive resizing is

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

124 The Pack Geometry Manager Chap.12

not enabled. You must use the wm minisize or wm maxsize commands which
have the side effect of enabling interactive resizing. These commands place con-
straints on the size of the window. The text , canvas , and listbox widgets also
have a setgrid attribute that, if enabled, makes the main window resizable.
Chapter 24 describes geometry gridding.

Now we can investigate what happens when the window is made larger.
The next example starts like Example 12-7 but the size of the main window is
increased.

Example 12-11 Resizing without the expand option.

Make the main window black
. config -bg black
Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
button .menubar.$b -text $b

pack .menubar.alpha -side left

pack .menubar.beta -side right

Let the menu bar fill along the top
pack .menubar -side top -fill x

pack .body

Resize the main window to be bigger
wm geometry . 200x100

Allow interactive resizing

wm minsize . 100 50

The only widget that claims any of the new space is .menubar because of its
-fillx packing option. The .body frame needs to be packed properly.

Example 12-12 Resizing with expand turned on.

Use all of Example 12-11 then repack .body

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Anchoring 125

pack .body -expand true -f ill both

If more than one widget inside the same parent is allowed to expand, then
the packer shares the extra space between them proportionally. This is probably
not the effect you want in the examples we have built so far. The .menubar , for
example is not a good candidate for expansion.

Example 12-13 More than one expanding widget.

Use all of Example 12-11 then repack .menubar and .body
pack .menubar -expand true -fill x
pack .body -expand true -f ill both

Anchoring

If a widget is left with more packing space than display space, then you can
position within its packing space using the -anchor packing option. The default
is -anchor center . The other options correspond to points on a compass: n, ne,

e, se, s, swW, s, nw

Example 12-14 Setup for anchor experiments.

Make the main window black

. config -bg black

Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom

Float a label and the prop in the cavity
label .foo -text Foo

pack .prop .foo -side right -expand true

The .base frame is packed on the bottom. Then the .prop frame and the
foo label are packed to the right with expand set but no fll. Instead of being

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

126 The Pack Geometry Manager Chap.12

pressed up against the right side, the expand gives each of these widgets half of
the extra space in the X direction. Their default anchor of cent er results in the
position shown. The next example shows some different anchor positions.

Example 12-15 The effects of non-center anchors.

Make the main wi ndow bl ack

config -bg bl ack
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float the | abel and prop
Change their position with anchors
| abel .foo -text Foo
pack .prop -side right -expand true -anchor sw
pack .foo -side right -expand true -anchor ne

The | abel has room on all sides, so each of the different anchors will posi-
tion the it differently. The . pr op frame only has room in the X direction, so it can
only be moved into three different positions: left, center, and right. Any of the
anchors w nw and sw will result in the left position. The anchors center, n, and s
will result in the center position. The anchors e, se, and ne will result in the
right position.

If you want to see all the variations, type in the following commands to ani-
mate the different packing anchors. The updat e i dl et asks forces any pending
display operations. The aft er 500 causes the script to wait for 500 milliseconds.

Example 12-16 Animating the packing anchors

foreach anchor {center n ne e se s sww nw center} {
pack .foo .prop -anchor $anchor
Update the display
updat e idl et asks
Wit half a second
after 500

Packing Order

The packer maintains an order among the children that are packed into a

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Packing Order 127

frame. By default, each new child is appended to the end of the packing order.
The most obvious effect of the order is that the children frst in the packing order
are closest to the side they are packed against. You can control the packing order
with the - before and - aft er packing options, and you can reorganize widgets
after they have already been packed.

Example 12-17 Controlling the packing order.

Create five labels in order

foreach | abel {one two three four five} {
| abel . $l abel -text $I abel
pack . $l abel -side left

ShuffleUp noves a wi dget to the beginning of the order
proc ShuffleUp { parent child } {

set first [lindex [pack slaves $parent] 0]

pack $child -in $parent -before $first

ShuffleUp noves a widget to the end of the order
proc ShuffleDown { parent child } {
pack $child -in $parent

}
ShuffleUp . .five
Shuffl eDown . .three

pack slaves and pack info

The pack slaves command returns the list of children in their packing
order. The Shuffl eUp procedure uses this to fad out the frst child so it can
insert another child before it. The Shuf f | eDown procedure is easier because the
default is to append the child to the end of the packing order.

When a widget is repacked, then it retains all its packing parameters that
have already been set. If you need to examine the current packing parameters
for a widget use the pack i nf o command.

pack info .five
=> -in . -anchor center -expand 0 -fill none -ipadx 0 \
-ipady 0 -padx O -pady O -side left

Pack the scrollbar first

The packing order also determines what happens when the window is made
too small. If the window is made small enough the packer will clip children that
come later in the packing order. It is for this reason that when you pack a
scrol | bar and a t ext widget into a f rane, pack the scrol | bar fist. Otherwise

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

128 The Pack Geometry Manager Chap.12

when the window is made smaller the t ext widget will take up all the space and
the scrol | bar will be clipped.

Choosing The Parent For Packing

In nearly all of the examples in this chapter a widget is packed into its par-
ent frame. In general, it is possible to pack a widget into any descendent of its
parent. For example, the . a. b widget could be packed into . a,.a.cor.a.d.e.f.
The - i n packing option lets you specify an alternate packing parent. One motiva-
tion for allowing this is that the frames introduced to get the arrangement right
can cause cluttered names for important widgets. In Example 12—-4 the buttons
have names like . one. al pha and . one. ri ght. del t a, which is not that consis-
tent. Here is an alternate implementation of the same example that simplifes
the button pathnames and gives the same result.

Example 12-18 Packing into other relatives.

Create and pack two franes
frame .one -bg white
frame .two -width 100 -hei ght 50 -bg grey50
Create a row of buttons
foreach b {al pha beta} {
button .$b -text $b
pack .$b -in .one -side left
}
Create a frane for two nore buttons
frame .one.right
foreach b {delta epsilon} {
button .$b -text $b
pack .$b -in .one.right -side bottom
}
pack .one.right -side right
pack .one .two -side top

When you do this, remember that the order in which you create widgets is
important. Create the frames frst, then create the widgets. The X stacking order
for windows will cause the later windows to obscure the windows created frst.
The following is a common mistake.

button .a -text hello

frame . b

pack .a -in .b

If you cannot avoid this problem scenario, then you can use the r ai se com-
mand to fk things up.

raise .a

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Unpacking a Widget 129
Unpacking a Widget

The pack forget command removes a widget from the packing order. The widget
gets unmapped so it is not visible. A widget can only be managed by one parent,
so you have to unpack it before moving the widget into another location. Unpack-
ing a widget can also be useful if you want to suppress extra features of your
interface. You can create all the parts of the interface, and just delay packing
them in until the user requests to see them. If you unpack a parent frame, the
packing structure inside it is maintained, but all the widgets inside the frame
get unmapped.

Packer Summary
Keep these rules of thumb about the packer in mind.

¢ Pack vertically (-side top and -si de bottom or horizontally (-si de |eft
and - side right) within a frame. Only rarely will a different mixture of
packing directions work out the way you want. Add frames in order to build
up more complex structures.

¢ By default, the packer puts widgets into their parent frame, and the parent
frame must be created before the children that will be packed into it.

e If you put widgets into other relatives, remember to create the frames fist
so the frames stay underneath the widgets packed into them.

* By default, the packer ignores - wi dt h and - hei ght attributes of frames that
have widgets packed inside them. It shrinks frames to be just big enough to
allow for its borderwidth and to hold the widgets inside them. Use pack
pr opagat e to turn off the shrink wrap behavior.

¢ The packer distinguishes between packing space and display space. A wid-
get’s display might not take up all the packing space allocated to it.

e The-fill option causes the display to fll up the packing space in the x or y
directions, or both.

¢ The - expand t r ue option causes the packing space to expand into any room
in the packing cavity that is otherwise unclaimed. If more than one widget
in the same frame wants to expand, then they share the extra space.

e The -i padx and -i pady options allocate more display space inside the bor-
der, if possible.

¢ The - padx and - pady options allocate more packing space outside the bor-
der, if possible.

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

130

The Pack Geometry Manager Chap.12

The pack Command

Table 12-1 summarizes the pack command. Refer to the examples in the
chapter for more detailed explanations of each command.

Table 12-1 A summary of the pack command.

pack win ?win ..? ?options? Thisis justlike pack confi gure.

pack configure win ?wn Pack one or more widgets according to the
L ?

?options?

opti ons, which are given in the next table.

pack forget win ?win...? Unpack the specifed windows.

pack info win

Return the packing parameters of Wi n.

pack propagate wi n ?bool ? Query or set the geometry propagation of wi n,

pack slaves wn

which has other widgets packed inside it.
Return the list of widgets managed by wi n.

Table 12—-2 summarizes the packing options for a widget. These are set with the
pack configure command, and the current settings are returned by the pack

i nf o command.

Table 12-2 Packing options.

-after win
-anchor anchor
-before win

- expand bool ean
-fill style

-in win

-i padx anount

-i pady anount

- padx amount

- pady amount

-side side

Pack after wi n in the packing order.

center n ne e se s swWs nw

Pack before wi n in the packing order.

Control expansion into the unclaimed packing cavity.
Control fil of packing space. styl eis:x y both none
Pack inside wi n.

Horizontal internal padding, in screen units.

Vertical internal padding, in screen units.

Horizontal external padding, in screen units.

Vertical external padding, in screen units.

top right bottomleft

The Place Geometry Manager

The place geometry manager is much simpler than the packer. You specify the
exact position and size of a window, or you specify the relative position and rela-
tive size of a widget. This is useful in a few situations, but it rapidly becomes

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Place Geometry Manager 131

tedious if you have to position lots of windows. The following pl ace command
centers a window in its parent. I use this command to position dialogs that I
don’t want to be detached top-level windows.

place $w -in $parent -relx 0.5 -rely 0.5 -anchor center

The -rel x and -rely specify the relative X and Y position of the anchor
point of the widget $win $par ent . The value is a number between zero and one,
so 0. 5 specifes the middle. The anchor point determines what point in $wis posi-
tioned according to the speciftations. In this case the center anchor point is
used so that the center of $wis centered in $par ent . The default anchor point for
windows is their upper-left hand corner (nw).

It is not necessary for $par ent to actually be the parent widget of $w The
requirement is that $par ent be the parent, or a descendent of the parent, of $w It
also has to be in the same toplevel window. This guarantees that $w is visible
whenever $par ent is visible. The following command positions a window fre pix-
els above a sibling widget. If $si bl i ng is repositioned, then $w moves with it.

place $w -in $sibling -relx 0.5 -y -5 -anchor s \
- bor der node out si de

The - bor der node out si de option is specifed so that any decorative border
in $si bl i ng is ignored when positioning $w In this case the position is relative to
the outside edge of $si bl i ng. By default, the border is taken into account to
make it easy to position widgets inside their parent’s border.

You do not have to place a widget inside a frame, either. I use the frst pl ace
command shown above to place a dialog in the middle of a t ext widget. In the
second command, $si bl i ng and $w might both be | abel widgets, for example.

The place Command

Table 12-1 summarizes the usage of the pl ace command.

Table 12-3 A summary of the pl ace command.

place win ?win ..? This is just like pl ace confi gure.

?options?

pl ace configure win ?win Place one or more widgets according to the
..? ?options? opti ons, which are given in the next table.

pl ace forget win ?win...? Unmap the windows

place info win Return the placement parameters of Wi n.

pl ace sl aves win Return the list of widgets managed by wi n.

Table 12—4 summarizes the placement options for a widget. These are set
with the pl ace confi gure command, and the current settings are returned by
the pl ace i nf o command.

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

132 The Pack Geometry Manager Chap.12

Table 12-4 Placement options.

-in win Place inside (or relative to) wi n.

-anchor where nwn ne e se s sws center.nwis the default.

-x coord X position, in screen units, of the anchor point.

-rel x offset Relative X position. 0.0 is the left edge. 1.0 is the right edge.
-y coord Y position, in screen units, of the anchor point.

-rely offset Relative Y position. 0.0 is the top edge. 1.0 is the bottom edge.
-width size Widget of the window, in screen units.

-relwidth size Width relative to parent’s width. 1.0 is full width.
-hei ght isze Height of the window, in screen units.
-rel hei ght size Height relative to the parent’s height. 1.0 is full height.

-border mode node Ifmode isi nsi de, then size and position is inside the par-
ent’s border. If mode is out si de, then size and position are
relative to the outer edge of the parent.

Window Stacking Order

The r ai se and | ower commands are used to control the X window stacking order.
X has a window hierarchy,and the stacking order controls the relative position of
sibling windows. By default, the stacking order is determined by the order that
windows are created. Newer widgets are higher in the stacking order so they
obscure older siblings. Consider this sequence of commands.

button .one

frame .two

pack .one -in .two

If you do this, you will not see the button. The problem is that the frame is

higher in the stacking order so it obscures the button. You can change the stack-
ing order with the r ai se command.

raise .one .two

This puts . one just above . t wo in the stacking order. If . t wo was not speci-
fed, then . one would be put at the top of the stacking order.

The | ower command has a similar form. With one argument it puts that
window at the bottom of the stacking order. Otherwise it puts it just below
another window in the stacking order.

You can use rai se and | ower on toplevel windows to control their stacking
order among all other toplevel windows. For example, if a user requests a dialog
that is already displayed, use rai se to make it pop to the foreground of their
cluttered X desktop.

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 13

Binding Commands to X Events

This chapter introduces the event binding mechanism in Tk. Bindings
associated a Tcl command with an event like a mouse click or a key
stroke.

B indings associate a Tcl command with
an event from the X window system. Events include key press, key release, but-
ton press, button release, mouse entering a window, mouse leaving, window
changing size, window open, window close, focus in, focus out, and widget
destroyed. These event types, and more, will be described in more detail in this
chapter.

The bind Command

The bi nd command returns information about current bindings, and it defnes
new bindings. Called with a single argument, a widget or class identifer , bi nd
returns the events for which there are command bindings.
bi nd Menubut t on
=> <Key- Ret urn> <Key-space> <ButtonRel ease- 1>
<Bl- Motion> <Mdtion> <Button-1> <Leave> <Enter>
These events are button-related events. <Button- 1> for example, is the
event generated when the user presses the frst, or left-hand, mouse button. <B1-
Mot i on> is a mouse motion event modifed by the frst mouse button. This event
is generated when the user drags the mouse with the left button pressed. The
event syntax will be described in more detail below.
If bi nd is given a key sequence argument then it returns the Tcl command

133

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

134 Binding Commands to X Events Chap.13

bound to that sequence:
bi nd Menubutton <Bl1- Mdtion>
=> tkMoMoti on 9N down %X %Y
The Tcl commands in event bindings support an additional syntax for event
keywords. These keywords begin with a percent and have one more character
that identifes some attribute of the event. The keywords are replaced (i.e., sub-
stituted) with event-specift data before the T cl command is evaluated. %WV is
replaced with the widget’s pathname. The %X and % keywords are replaced with
the coordinates of the event relative to the screen. The % and % keywords are
replaced with the coordinates of the event relative to the widget. The event key-
words are summarized below.
The %substitutions are performed throughout the entire command bound to
an event, without regard to other quoting schemes. You have to use %%to obtain a
single percent. For this reason you should make your binding commands short,
adding a new procedure if necessary instead of littering percent signs through-
out your code.

All, Class, And W idget Bindings

A hierarchy of binding information determines what happens when an event
occurs. The default behavior of the Tk widgets are determined by class bindings.
You can add bindings on a particular instance of a widget to supplement the
class bindings. You can defne global bindings by using the all keyword. The
default ordering among bindings is to execute the global bindings fist, then the
class bindings, and fhally the instance bindings.

Example 13-1 The binding hierarchy.

frame .one -width 30 -height 30

frame .two -width 30 -height 30

bind all <Control-c> {destroy %W

bind all <Enter> {focus %Y}

bi nd Frame <Enter> {9V config -bg red}

bi nd Frame <Leave> {%W config -bg white}

bind .two <Any-Button> {puts "Button % at 9% %"}
focus default

pack .one .two -side |eft

The example defhes bindings at all three levels in the hierarchy . At the glo-
bal level a handler for <Control - c> is defned. Because this is a keystroke, it is
important to get the focus directed at the proper widget. Otherwise the main
window has the focus, and the destroy command will destroy the entire applica-
tion. In this case moving the mouse into a widget gives it the focus. If you prefer
click-to-type, bind to <Any- But t on> instead of <Ent er >.

At the class level the Frane class is set up to change its appearance when
the mouse moves into the window. At the instance level one of the frames is set

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

All, Class, And Widget Bindings 135

up to report the location of mouse clicks.

The class for a widget is derived from the name of the command that cre-
ates it. A button widget has the class Button , a canvas has the class Canvas, and
so on. You can defne bindings for pseudo-classes as described below , which is
useful for grouping bindings into different sets.

The bindtags command

The bindtags command controls the binding hierarchy, and with it you can
specify one or more pseudo-classes as a source of bindings. One way to emulate
the vi editor, for example, is to have two sets of bindings, one for insert mode and
one for command mode.

bind InsertMode <Any-Key> {%W insert insert %A}
bind InsertMode <Escape> {bindtags %W {all CommandMode}}
bind CommandMode <Key-i> {bindtags %W {all InsertMode}}

Of course, you need to defne many more bindings to fully implement all the
vi commands. In this case the bindtags command has also simplifed the binding
hierarchy to include just global bindings and the mode-specift bindings. If it
made sense, you could also reorder the hierarchy so that the global bindings
were executed last, for example. The order that the tags appear in the bindtags
command determines the order in which bindings are triggered.

break and continue in bindings

If you want to completely override the bindings for a particular widget you
can use the break command inside the event handler. This stops the progression
through the hierarchy of bindings. This works at any level, so a particular class
could suppress global bindings.

The continue command in a binding stops the current binding and contin-
ues with the command from the next level in the binding hierarchy.

Note that you cannot use the break or continue commands inside a proce-
dure that is called by the binding. This restriction is necessary because the pro-
cedure mechanism will not propogate the break. You would have to use the
return -code break command to signal the break from within a procedure.

A note about bindings in earlier versions of Tk

In versions of Tk 3.6 and earlier, only one source of bindings for an event is used.
If there is a binding on a widget instance for an event sequence, that binding
overrides any class-specift or global bindings for that event sequence. Similarly
if there is a class-specift binding, then that overrides a global binding. Y ou must
be careful if you modify the bindings on a widget if you do not want to disable the
default behavior. The following trick in Tk 3.6 (and earlier) ensures that the
class-specift binding is executed before the new binding.
bind .list <Button-1> “[bind Listbox <Button-1>] ; Doit”

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

136 Binding Commands to X Events Chap.13
Event Syntax

The bi nd command uses the following syntax to describe events.

<nodi fi er-nodifier-type-detail >

The primary part of the description is the t ype, e.g. Butt on or Moti on. The
detail is used in some events to identify keys or buttons, .e.g. Key-a or
Button- 1. A nodi fi er is another key or button that is already pressed when the
event occurs, e.g., Cont r ol - Key- a or B2- Mot i on. There can be multiple modifers,
like Cont r ol - Shi ft - x.

The surrounding angle brackets are used to delimit a single event. The
bi nd command allows a binding to a sequence of events, so some grouping syntax
is needed. If there are no brackets, then the event defaults to a KeyPr ess event,
and all the characters specify keys in a sequence. Sequences are described in
more detail on page 141.

The following table briefy mentions all the event types. More information
can be found on these events in the Event Reference section of the XIib Reference
Manual.

Table 13-1 Event types. Comma-separated types are equivalent.

But t onPress, Button A button is pressed (down).

But t onRel ease A button is released (up).

Crcul ate The window has had its stacking order change.

Col or map The colormap has changed.

Configure The window has changed size, position, border, or stack-
ing order.

Destr oy The window has been destroyed.

Ent er The mouse has entered the window.

Expose The window has been exposed.

Focusln The window has received focus.

FocusCut The window has lost focus.

Gavity The window has moved because of a change in size of its

parent window.

Keynmap The keyboard mapping has changed.
KeyPress, Key A key is pressed (down).

KeyRel ease A key is released (up).

Mot i on The mouse is moving in the window.
Leave The mouse is leaving the window.

Map The window has been mapped (opened).

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Key Events 137

Table 13-1 Event types. Comma-separated types are equivalent.

Property A property on the window has been changed or deleted.
Repar ent A window has been reparented.

Unmrap The window has been unmapped (iconifed).
Visibility The window has changed visibility.

The most commonly used events are key presses, button presses, and
mouse motion. The Enter and Leave events indicate when the mouse enters a
widget. The Map and UnMap events let an application respond to the open and
close of the window. The Confi gur e event is useful with a canvas if the display
needs to be changed when the window resizes. The remaining events in the table
have to do with dark corners of the X protocol, and they are seldom used.

Key Events

The KeyPress type is distinguished from KeyRel ease so that you can have
different bindings for each of these events. KeyPr ess can be abbreviated Key, and
Key can be left off altogether if a detail is given to indicate what key. Finally, as a
special case for KeyPress events, the angle brackets can also be left out. The fol-
lowing are all equivalent event specifeations.

<KeyPr ess- a>
<Key- a>

<a>

a

The detail for a key is also known as the keysym, which is an X technical
term that refers to the graphic printed on the key of the keyboard. For punctua-
tion and non-printing characters, special keysyms are defhed. Commonly
encountered keysyms include (note capitalization):

Return, Escape, BackSpace, Tab, Up, Down, Left, Right,
comm, period, dollar, asciicircum nunbersign, exclam

The full list of defnitions of these keysyms is buried inside an X1 1 header
fle, and it can also be affected by a dynamic keyboard map, the X modmap. Y ou
may fond the next binding useful to determine just what the keysym for a partic-
ular key is on your system.*

bi nd $w <KeyPress> {puts stdout {%B&K=%K %WBWA=YA}}

The % keyword is replaced with the keysym from the event. The %A is
replaced with the printing character that results from the event and any modifi
ers like Shi ft . The 9%%is replaced with a single percent sign. Note that these sub-
stitutions occur in spite of the curly braces used for grouping. If the user types a
capital Q the output is:

*Use <Any-KeyPress> in versions of Tk before 4.0 so that extra modifers do not prevent the
event from matching.

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

138 Binding Commands to X Events Chap.13

9%K=Shift_R %A={}
%K=Q %A="Q"

In the frst line with %K=Shift_ R the {} indicates a NULL, a zero-valued byte,
which is generated when modifer keys are pressed. The NULL can be detected in
<KeyPress> bindings to avoid doing anything if only a modifer key is pressed.
The following might be used with an entry widget.

bind $w <KeyPress> {
if {%A 1= {}} {%W insert insert %A}

Button Events

Button events also distinguish between ButtonPress , (or Button), and But-
tonRelease . Button can be left off if a detail specifes a button by number . The
following are equivalent:

<ButtonPress-1>
<Button-1>
<1>

Note: the event <1> implies a ButtonPress event, while the event 1 implies
a KeyPress event.

The mouse is tracked by binding to the Enter , Leave , and Motion events.
Enter and Leave are triggered when the mouse comes into and exits out of the
widget, respectively. A Motion event is generated when the mouse moves within
a widget.

The coordinates of the mouse event are represented by the %x and %y key-
words in the binding command. The coordinates are widget-relative, with the ori-
gin at the upper-left hand corner of a widget’s window. The keywords %Xand %Y
represent the coordinates relative to the root window.

bind $w <Enter> {puts stdout “Entered %W at %x %y"}
bind $w <Leave> {puts stdout “Left %W at %x %y"}
bind $w <Motion> {puts stdout “%W %x %y}

Other Events

The <Map> and <Unmap> events are generated when a window is opened and
closed, or when a widget is packed or unpacked by its geometry manager.

The <Conf igure> event is generated when the window changes size. A can-
vas that computes its display based on its size can bind a redisplay procedure to
the <Configure> event, for example. The <Conf igure> event can be caused by
interactive resizing. It can also be caused by a conf igure -width widget com-
mand that changes the size of the widget. In general you should not reconfgure
a widget’s size while processing a <Configure> event to avoid an indefnite
sequence of these events.

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Modifiers 139

The <Dest r oy> event is generated when a widget is destroyed. (See also the
description of the wncommand. It is possible to register Tcl commands to handle
various messages from the window manager.)

Chapter 17 presents some examples that use the <Focusl n> and <Focu-
sQut > events.

Modifiers

A modifer indicates that another key or button is being held down at the time of
the event. Typical modifers are the Shift and Control keys. The mouse buttons
can also be used as modifers. If an event does not specify any modifers, then the
presence of a modifer key is ignored by the event dispatcher . However, if there
are two possible matching events then the more accurate match will be used.

For example, consider these three bindings:

bi nd $w <KeyPress> {puts "key=%A"}
bi nd $w <Key-c> {puts "just a c"}
bi nd $w <Control - Key-c> {exit}

The last event is more specift than the others, and its binding will be trig-
gered when the user types ¢ with the Control key held down. If the user types c
with the Met a key held down, then the second binding will be triggered. The Met a
key is ignored because it doesn’t match any binding. If the user types something
other than a c, then the fist binding will be triggered. If the user presses the
Shi ft key, then the keysym that is generated will be C, not c, so the last two
events will not match.

There are 8 modifer keys defned by the X protocol. The Control, Shift,
and Lock modifers are found on nearly all keyboards. The Meta and Al't modifi
ers tend to vary from system to system, and they may not be defhed at all. They
are commonly mapped to be the same as Mod1 or Mod2, and Tk will try to deter-
mine how things are set up for you. The remaining modifers, Mod3 through Md5,
are sometimes mapped to other special keys. Table 13—2 summarizes the modi-
fers.

Table 13-2 Event modifiers.

Contr ol The Control key.

Shi ft The shift key.

Lock The caps-lock key.

Meta, M Defhed to be the modifer (ML through Mb) that is
mapped to the Met a_L and Met a_R keysyms.

Al 't Defned to be the modifer mappedto At _LandAlt_R

Modl, ML The frst modifer .

Mod2, M2, Al t The second modifer .

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

140 Binding Commands to X Events Chap.13

Table 13-2 Event modifiers.

Mod3, M3 Another modifer .

Mod4, M Another modifer .

Mod5, M Another modifer .

Buttonl, Bl The fist mouse button (left).

Butt on2, B2 The second mouse button (middle).
Butt on3, B3 The third mouse button (right).
Button4, B4 The fourth mouse button.

Butt on5, B5 The ffth mouse button.

Doubl e Matches double press event.
Triple Matches triple press event.

Any Matches any combination of modifers.

The UNIX xmodmap program will return the current mappings from keys
to these modifers. The frst column of its output lists the modifer . The rest of
each line identifes the keysym(s) and low-level keycodes that are mapped to
each modifer . The xmodmap program can also be used to change the mapping.

Example 13-2 Output from the UNI X xmodmap program.

xnmodmap: up to 3 keys per nodifier,
(keycodes in parentheses):

shift Shift_L (0x6a), Shift_R (0x75)

| ock Caps_Lock (0x7e)

control Control _L (0x53)

nodl Meta_L (Ox7f), Meta_R (0x81)

nmod2 Mode_swi tch (0x14)

nmod3 Num Lock (0x69)

nod4 Alt_L (Oxla)

nod5 F13 (0x20), F18 (0x50), F20 (0x68)

The button modifers, Bl through B5, are most commonly used with the
Mot i on event to distinguish different mouse dragging operations.

The Doubl e and Tri pl e events match on repetitions of an event within a
short period of time. These are commonly used with mouse events. The main
thing to be careful with is that the binding for the regular press event will match
on the fist press of the Doubl e. Then the command bound to the Doubl e event
will match on the second press. Similarly, a Doubl e event will match on the first
two presses of a Tri pl e event. Verify this by trying out the following bindings:

bind . <1> {puts stdout 1}
bind . <Doubl e-1> {puts stdout 2}
bind . <Triple-1> {puts stdout 3}

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Event Sequences 141

Your bindings have to take into consideration that more than one command
could result from a Doubl e or Tri pl e event. This effect is compatible with an
interface that selects an object with the frst click, and then operates on the
selected object with a Doubl e event. In an editor, character, word, and line selec-
tion on a single, double and triple click, respectively, is a good examplefk

Events in Tk 3.6 and earlier

In earlier versions of Tk, before version 4.0, extra modifer keys prevented
events from matching. If you wanted your bindings to be liberal about what mod-
ifers were in effect, you had to use the Any modifer . This modifer is a wild card
that matches if zero or more modifers are in effect. Y ou can still use Any in Tk
4.0 scripts, but it has no effect.

Event Sequences

The bi nd command accepts a sequence of events in a speciftation, and most
commonly this is a sequence of key events.

bind . a {puts stdout A}

bind . abc {puts stdout C}

With these bindings in effect, both bindings will be executed when the user
types abc. The binding for a will be executed when a is pressed, even though this
event is also part of a longer sequence. This is similar to the behavior with Dou-
bl e and Tri pl e event modifers. For this reason you have to be careful when
binding sequences. One trick is to put a null binding on the keypress used as the
prefk of a command sequence.

bi nd $w <Control -x> { }
bi nd $w <Control - x><Control -s> Save
bi nd $w <Control -x><Control -c> Quit

The null command for <Cont r ol - x> ensures that nothing happens until the
command sequence is completed. This trick is embodied by Bi ndSequence in the
next example. If a sequence is detected, then a null binding is added for the pre-
fx. The procedure also supports the emacs convention that <Met a- x> is equiva-
lent to <Escape>x. This convention arose because Meta is not that standard
across keyboards. The regexp command is used to pick out the detail from the
<Met a> event.

Example 13-3 Emacs-like binding convention for Meta and Escape.

proc Bi ndSequence { w seq cnmd } {
bi nd $w $seq $cnd

*If you really want to disable this, you can experiment with using af t er to postpone process-
ing of one event The time constant in the bind implementation of <Double> is 500 millisec-
onds. At the single click event, schedule its action to occur after 600 milliseconds, and verify at
that time that the <Double> event has not occurred.

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

142 Binding Commands to X Events Chap.13

Doubl e-bi nd Met a- key and Escape-key
if [regexp {<Meta-(.*)>} $seq match letter] {
bi nd $w <Escape><$l etter> $cnd

}

Make | eadi ng keystroke harmnl ess

if [regexp {(<.+>)<.+>} $seq match prefix] {
bind $w $prefix { }

}

Event Keywords

The keyword substitutions are described in the table below. Remember that
these substitutions occur throughout the command, regardless of other Tcl quot-
ing conventions. Keep your binding commands short, introducing procedures if
needed. For the details about various event felds, consult the XIib Reference
Manual. The string values for the keyword substitutions are listed after a short
description of the keyword. If no string values are listed, the keyword has an
integer value like a coordinate or window ID. The events applicable to the key-
word are listed last, in parentheses.

Table 13-3 A summary of the event keywords.

%% Use this to get a single percent sign.

Y4t The serial number for the event.

%a The above feld from the event. (Conf i gur e)

% Button number. (But t onPr ess, But t onRel ease)
% The count feld. (Expose, Map)

% The detail feld.

Not i f yAncest or, Noti f yNonl i near Vi rtual , Noti f yDet ai | None,
Not i f yPoi nter, Notifyl nferior,NotifyPoi nterRoot, Noti -
fyNonlinear,NotifyVirtual.(Enter,Leave, Focusl n, FocusQut)

% The focus feld (0 or 1). (Ent er, Leave)

9% The height feld. (Confi gur e, Expose)

9K The keycode feld. (KeyPr ess, KeyRel ease)

%n The mode feld. Noti f yNor nal , Noti fyG ab, Noti fyUngrab, Notify-
Wi | eG abbed. (Ent er, Leave, Focusl n, FocusQut)

%0 The override_redirect feld. (Map, Repar ent, Confi gure)

% The place feld. Pl aceOnTop, Pl aceOnBottom (Gircul ate,)

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Event Keywords 143

Table 13-3 A summary of the event keywords.

s

%
Y
%
9%
%
YA
B8
9D
%E
9K
9N
IR
%8
o
LN
9

%Y

The state feld. A decimal string. (But t onPr ess, But t onRel ease,
Ent er, Leave, KeyPr ess, KeyRel ease, Mot i on)

Vi sibilityUnobscured,VisibilityPartiallyObscured, Visi -
bilityFull yObscured. (Visibility)

The time feld.

The value_mask feld. (Confi gure)

The width feld. (Confi gur e, Expose)

The x coordinate, widget relative.

The y coordinate, widget relative.

The ASCI | character from the event, or NULL. (KeyPr ess, KeyRel ease)
The border_width feld. (Conf i gur e)

The display feld.

The send_event feld.

The keysym from the event. (KeyPr ess, KeyRel ease)

The keysym as a decimal number. (KeyPr ess, KeyRel ease)
The root window ID.

The subwindow ID.

The type feld.

The Tk pathname of the widget receiving the event.

The x_root feld. Relative to the (virtual) root window . (But t onPr ess,
But t onRel ease, KeyPr ess, KeyRel ease, Moti on)

The y_root feld. Relative to the (virtual) root window . (But t onPr ess,
But t onRel ease, KeyPr ess, KeyRel ease, Mbti on)

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

144 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 14

Buttons and Menus

Buttons and menus are the primary way that applications expose functions to
users. This chapter describes how to create and manipulate buttons and
menus.

A button is a classic Tk widget because it
is associated with a Tcl command that invokes an action in the application. The
checkbutton and radiobutton ~ widgets affect an application indirectly by con-
trolling a Tcl variable. A menu elaborates on this concept by organizing button-
like items into related sets, including cascaded menus. The menubutton widget is
a special kind of button that displays a menu when you click on it.

Associating a command to a button is often quite simple, as illustrated by
the Tk Hello World example:

button .hello -command {puts stdout “Hello, World'}

This chapter describes a few useful techniques for setting up the commands
in more general cases. If you use variables inside button commands, you have to
understand the scoping rules that apply. This is the fist topic of the chapter .
Once you get scoping fgured out, then the other aspects of buttons and menus
are quite straight-forward.

Button Commands and Scope Issues

Perhaps the trickiest issue with button commands has to do with variable
scoping. A button command is executed at the global scope, which is outside of
any procedure. If you create a button while inside a procedure, then the button
command will execute in a different scope later. This can be a source of confu-

145

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

146 Buttons and Menus Chap.14

sion. A related issue is that when you defne a button you may want the values of
some variables as they are when the button is defned, while you want the value
of other variables as they are when the button is used. I think of this as the
‘now” and ‘later” scopes. Again, when these two “scopes” are mixed, it can be
confusing.

The next example illustrates the problem. The button command is an
expression that includes the variable x that is defhed in the global scope, and
val that is defned locally . This mixture makes things awkward.

Example 14-1 A troublesome button command.

proc Trouble {args} {
setb 0
label .label -textvariable x
set f [frame .buttons -borderwidth 10]
foreach val $args {
button $f.$b -text $val \
-command “set x \[expr \$x * $val\]’
pack $f.$b -side left
incr b

}
pack .label $f

setx 1
Trouble -1 4 7 36

The example uses a label widget to display the current value of x. The tex-
tvariable attribute is used so that the label displays the current value of the
variable, which is always a global variable. The button’s command is executed at
the global scope, so it updates the global variable x.

The defhition of the button command is ugly, though. The value of the loop
variable val is needed when the button is defned, but the rest of the substitu-
tions need to be deferred until later. The variable substitution of $x and the com-
mand substitution of expr are suppressed by quoting with backslashes.

set x \[expr \$x * $val\]

In contrast, the following command will assign a constant expression to x
each time the button is clicked, and it depends on the current value of x, which
not defhed in the version of Trouble above:

button $f.$b -text $val \

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Button Commands and Scope Issues 147

-command “set x [expr $x * $val]”

Another incorrect approach is to quote the whole command with braces.
This defers too much, preventing the value of val from being used at the correct
time.

The general technique for dealing with these sorts of scoping problems is to
introduce Tcl procedures for use as the button commands. The troublesome
example given above can be cleaned up by introducing a little procedure to
encapsulate the expression.

Example 14-2 Fixing up the troublesome situation.

proc LessTrouble { args } {

setb 0

label .label -textvariable x

set f [frame .buttons -borderwidth 10]

foreach val $args {
button $f.$b -text $val \

-command “UpdateX $val”

pack $f.$b -side left
incr b

}
pack .label $f

}
proc UpdateX { val } {
global x
set x [expr $x * $val]
}
setx1
LessTrouble -1 4 7 36

It may seem just like extra work to introduce the helper procedure, Upda-
teX . However, it makes the code clearer in two ways. First, you do not have to
struggle with backslashes to get the button command defned correctly . Second,
the code is much clearer about the function of the button. It’s job is to update the
global variable x.

Double quotes are used in the button command to allow $val to be substi-
tuted. Whenever you use quotes like this, you have to be aware of the possible
values for the substitutions. If you are not careful, the command you create may
not be parsed correctly. The safest way to generate the command is with the list
procedure:

button $f.$b -text $val -command [list UpdateX $val]

The use of list ensures that the command is a list of two elements, Upda-
teX and the value of val . This is important because UpdateX only takes a single
argument. If val contained white space then the resulting command would be
parsed into more words than you expected. Of course, in this case we plan to
always call LessTrouble with a set of numbers, which do not contain white space.

The next example provides a more straight-forward application of proce-
dures for button commands. In this case the advantage of the procedure Max-

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

148 Buttons and Menus Chap.14

LineLength is that it creates a scope for the local variables used during the
button action. This ensures that the local variables do not accidentally conflct
with global variables used elsewhere in the program. There is also the standard
advantage of a procedure, which is that you may fid another use for the action
in another part of your program.

Example 14-3 A button associated with a Tcl procedure.

proc MaxLineLength { file } {
set max 0
if [catch {open $file} in] {
return $in

foreach line [split [read $in] \n] {
set len [string length $line]
if {$len > $max} {
set max $len
}

return “Longest line is $max characters”
}
Create an entry to accept the file name,
a label to display the result
and a button to invoke the action
. config -borderwidth 10
entry .e -width 30 -bg white -relief sunken
button .doit -text “Max Line Length” \
-command {.label config -text [MaxLineLength [.e get]]}
label .label -text “Enter file name”
pack .e .doit .label -side top -pady 5

The example is centered around the MaxLineLength procedure. This opens
a fle and loops over the lines fading the longest one. The fle open is protected
with catch in case the user enters a bogus fle name. In that case, the procedure
returns the error message from open. Otherwise the procedure returns a mes-
sage about the longest line in the fle. The local variables in , max, and len are
hidden inside the scope of the procedure.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Buttons Associated with Tcl Variables 149

The user interface has three widgets, an entry for user input, the button ,
and a label to display the result. These are packed into a vertical stack, and the
main window is given a borderwidth so things look OK. Obviously this simple Ul
can be improved in several ways. There is no Quit button, for example.

All the action happens in the button command:

Jabel conf ig -text [MaxLineLength [.e get]]

Braces are used when defning the button command so that the command
substitutions all happen when the button is clicked. The value of the entry wid-
get is obtained with .e get . This value is passed into MaxLineLength , and the
result is confgured as the text for the label . This command is still a little com-
plex for a button command. For example, suppose you wanted to invoke the same
command when the user pressed <Return> in the entry. You would end up
repeating this command in the entry binding. It might be better to introduce a
one-line procedure to capture this action so it is easy to bind the action to more
than one user action. Here is how that might look:

proc Doit {} {
label conf ig -text [MaxLineLength [.e get]]

}

button .doit -text “Max Line Length” -command Doit
bind .e <Return> Doit

Chapter 13 describes the bind command in detail, and Chapter 15 describes
the label widget, and Chapter 16 describes the entry widgets.

Buttons Associated with Tcl Variables

The checkbutton and radiobutton widgets are associated with a Tcl variable.
When one of these buttons is clicked, a value is assigned to the Tcl variable. In
addition, if the variable is assigned a value elsewhere in the program, the
appearance of the check or radio button is updated to refect the new value. A set
of radiobuttons all share the same variable. The set represents a choice among
mutually exclusive options. In contrast, each checkbutton has its own variable.

The ShowChoices example uses a set of radiobuttons to display a set of
mutually exclusive choices in a user interface. The ShowBooleans example uses
checkbuttons.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

150 Buttons and Menus Chap.14

Example 14-4 Radio and Check buttons.

proc ShowChoi ces { parent varnane args } {
set f [frame $parent.choices -borderw dth 5]
set b 0
foreach item $args {
radi obutton $f.$b -variable $varname \
-text $item-value $item
pack $f.$b -side left
incr b

}
pack $f -side top

proc ShowBool eans { parent args } {
set f [frame $parent.choi ces -borderw dth 5]
set b 0
foreach item $args {
checkbutton $f.$b -text $item-variable $item
pack $f.$b -side left
incr b

}
pack $f -side top

set choice kiw

ShowChoi ces {} choi ce appl e orange peach kiw strawberry
set Bold 1 ; set Italic 1

ShowBool eans {} Bold Italic Underline

The ShowChoi ces procedure takes as arguments the parent frame, the
name of a variable, and a set of possible values for that variable. If the parent
frame is null, {}, then the interface is packed into the main window.
ShowChoi ces creates a r adi obut t on for each value, and it puts the value into the
text of the button. It also has to specify the value to assign to the variable when
the button is clicked. The default value is the name of the button, which would be
the value of b in the example. Another way to defne the radiobuttons and get the
correct value would be like this:

radi obutton $f.$item -variable $varnane -text $item

The danger of using $i t emas the button name is that not all values are
legal widget names. If the value contained a period or began with a capital letter,
the r adi obut t on command would raise an error. Tk uses periods, of course, to
refbct the widget hierarchy in names. Capitalized names are reserved for X

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Button Attributes 151

resource class names, so widget instance names cannot have capitalized compo-
nents. Chapter 27 describes X resources in more detail.

The ShowBooleans procedure is similar to ShowChoices . It takes a set of
variable names as arguments, and it creates a checkbutton for each variable.
The default values for the variable associated with a checkbutton are zero and
one, which is fhe for this example. If you need particular values you can specify
them with the -onvalue and -offvalue attributes.

Radio and check buttons can have commands associated with them, just
like ordinary buttons. The command is invoked after the associated Tcl variable
has been updated. Remember that the Tcl variable is modifed in the global
scope, so you need to access it with a global command if you use a procedure for
your button command. For example, you could log the changes to variables as
shown in the next example.

Example 14-5 Acommand on a radiobutton or checkbutton

proc PrintByName { varname } {
upvar #0 $varname var
puts stdout “$varname = $var”

}
checkbutton $f.$b -text $item -variable $item \
-command [list PrintByName $item]
radiobutton $f.$b -variable $varname \
-text $item -value $item \
-command [list PrintByName $varname]

Button Attributes

The table below lists the attributes for the button , checkbutton , menubutton ,
and radiobutton ~ widgets. Unless otherwise indicated, the attributes apply to all
of these widget types. Chapters 22, 23, and 24 discuss many of these attributes
in more detail.

The table uses the X resource name, which has capitals at internal word
boundaries. In Tcl commands the attributes are specifed with a dash and all
lowercase. Compare:

option add *Menubutton.highlightColor: red
$mb conf igure -highlightcolor red

The frst command defhes a resource database entry that covers all
menubutton widgets and gives them a red highlight. This only affects menubut-
tons created after the database entry is added. The second command changes an
existing button (.mb) to have a red highlight. Note the difference in capitalization
of color in the two commands. Chapter 27 explains how to use resource specifi
cations for attributes.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

152

Buttons and Menus Chap.14

Table 14-1 Resource names of attributes for all but t on widgets.

acti veBackgr ound
acti veFor eground
anchor

backgr ound

bi t map

bor der W dt h
conmmand

cursor

di sabl edFor egr ound
font

f or eground

hei ght

hi ghl i ght Col or

hi ghl i ght Thi ckness
i mage

i ndi cat or On

justify
menu

of f Val ue

onVal ue
padX

padY

relief

sel ect Col or

sel ect | mage

state

t ext

text Vari abl e
underline

val ue

Background color when the mouse is over the button.
Text color when the mouse is over the button.
Anchor point for positioning the text.

The normal background color.

A bitmap to display instead of text.

Width of the border around the button.

Tecl command to invoke when button is clicked.
Cursor to display when mouse is over the widget.
Foreground (text) color when button is disabled.
Font for the text.

Foreground (text) color. (Also f g).

Height, in lines for text, or screen units for images.
Color for input focus highlight border.

Width of highlight border.

Image to display instead of text or bitmap.

Boolean that controls if the indicator is displayed.
checkbut t on menubutton radi obutton

Text justifeation: center |eft right
Menu posted when nenubut t on is clicked.

Value for Tcl variable when checkbut t on is not
selected.

Value for Tcl variable when checkbut t on is selected.
Extra space to the left and right of the button text.
Extra space above and below the button text.

3D relief: f| at, sunken, raised, groove, ridge.
Color for selector. checkbut t on radi obutton

Alternate graphic image for selector.
checkbutton radi obutton

Enabled (nor nal) or deactivated (di sabl ed).
Text to display in the button.

Tecl variable that has the value of the text.
Index of text character to underline.

Value for Tcl variable when r adi obut t on is selected.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Button Operations 153

Table 14-1 Resource names of attributes for all but t on widgets.

vari abl e Tcl variable associated with the button.

checkbutton radi obutton
wi dt h Width, in characters for text, or screen units for image.
wr apLengt h Max character length before text is wrapped.

Button Operations

The table below summarizes the operations on button widgets. In the table $wis
a button, checkbutton, radi obutton, or menubutton, For the most part these
operations are used by the script libraries that implement the bindings for but-
tons. The cget and confi gur e operations are the most commonly used.

Table 14-2 Button operations. .

$w cget opti on Return the value of the specifed attribute.

$w confgure ?option? Query or manipulate the confguration information for
?value” ... the widget.

$w fhsh Redisplay the button several times in alternate colors.
$w invoke Invoke the action associated with the button, just as if

the user had pressed the mouse on it.

Menus and Menubuttons

A nenu presents a set of button-like menu entries to users. A menu entry is not a
full fedged Tk widget. Instead, you create a menu widget and then add entries to
the menu as shown below. There are several kinds of menu entries, including
command entries, check entries, and radio entries. These all behave much like
buttons, checkbuttons, and radiobuttons. Separator entries are used to visually
set apart entries. Cascade entries are used to post sub-menus. Tear-off entries
are used to detach a menu from its menu button so that it becomes a new top-
level window.

A nenubut ton is a special kind of button that posts (i.e., displays) a menu
when you press it. If you click on a menubutton, then the menu is posted and
remains posted until you click on a menu entry to select it, or click outside the
menu to dismiss it. If you press and hold the menubutton, then the menu is
unposted when you release the mouse. If you release the mouse over the menu it
selects the menu entry that was under the mouse.

You can have a command associated with a menubutton, too. The command
is invoked before the menu is posted, which means you can compute the menu
contents when the user presses the menubutton.

Our frst menu example creates a sampler of the different entry types.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

154 Buttons and Menus Chap.14

Example 14-6 A menusampler.

menubutton .mb -text Sampler -menu .mb.menu

pack .mb -padx 10 -pady 10

set m [menu .mb.menu -tearoff 1]

$m add command -label Hello! -command {puts “Hello, World!"}

$m add check -label Boolean -variable foo \
-command {puts “foo = $foo"}

$m add separator

$m add cascade -label Fruit -menu $m.sub1

set m2 [menu $m.sub1l -tearoff 0]

$m2 add radio -label apple -variable fruit

$m2 add radio -label orange -variable fruit

$m2 add radio -label kiwi -variable fruit

The example creates a menubutton and two menus. The main menu
(.mb.menu) is a child of the menubutton (.mb). This relationship is necessary so
the menu displays correctly when the menubutton is selected. Similarly, the cas-
caded submenu (.mb.menu.subl) is a child of the main menu. The frst menu
entry is represented by the dashed line. This is a tear-off entry that, when
selected, makes a copy of the menu in a new toplevel window. This is useful if the
menu operations are invoked frequently. The -tearoff 0 argument is used when
creating the submenu to eliminate its tear-off entry.

The command, radio, and check entries are similar to the corresponding
button types. The main difference is that the text string in the menu entry is
defned the -label argument, not -text . The arguments to defne the commands
and variables associated with the menu entries are the same as for the button
commands. Table 14-6 gives the complete set of attributes for menu entries.

The cascade menu entry is associated with another menu. It is distin-
guished by the small right arrow in the entry. When you select the entry the sub-
menu is posted. It is possible to have several levels of cascaded menus. There is

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Manipulating Menus and Menu Entries 155

no hard limit to the number of levels, except that your users will complain if you
nest menus too much.

Manipulating Menus and Menu Entries

A menu entry is referred to by an index. The index can be numerical, counting
from 0. There are also some keyword indices, which are summarized in Table 14—
3 . One of the most useful indices is a pattern that matches the label in the
menu entry. This form eliminates the need to keep track of the numerical indi-
ces.

Table 14-3 Menu entry index keywords

i ndex A numerical index counting from zero.

active The activated entry, either because it is under the mouse or has
been activated by keyboard traversal

| ast The last menu entry.

none No entry at all.

@coord The entry under the given Y coordinate. Use @4 in bindings.

pattern A string match pattern to match the label of a menu entry.

There are a number of operations that apply to menu entries. The add operation
has been introduced already. The entryconfi gure operation is similar to the
confgure operation. It accepts the same attribute-value pairs used when the
menu entry was created. The del et e operation removes a range of menu entries.
The rest of the operations are used by the library scripts that implement the
standard bindings for menus. The complete set of menu operations are summa-
rized in the next table. In the table, $wis a menu widget..

Table 14-4 Menu operations.

$w activate index Highlight the specifed entry .

$w add type ?option Add a new menu entry of the specifed type with
val ue? ... the given values for various attributes.

$w cget option Return the value for the confguration opti on.
$w configure ?option? Return the confguration information for the
?val ue? ... menu.

$w delete il ?i27? Delete the menu entries from indexi 1 toi 2

$w entrycget index option Returnthe valueofopti on for the specifed menu
entry.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

156 Buttons and Menus Chap.14

Table 14-4 Menu operations.

$w entryconf igure i ndex Query or modify the confguration information for
?option? ?val ue? ... the specifed menu entry .
$windex i ndex Return the numerical index corresponding to
i ndex.
$w invoke i ndex Invoke the command associated with the entry.
$wpost x y Display the menu at the specifed coordinates.
$wtype index Return the type of the entry at index.
$w unpost Unmap the menu.
$w ypostion i ndex Reé:urn the y coordinate of the top of the menu
entry.

A Menu by Name Package

If your application supports extensible or user-defnhed menus, then it can be
tedious to expose all the details of the Tk menus. The examples in this section
create a little package that lets users refer to menus and entries by name. In
addition, the package supports keystroke accelerators for menus.

Example 14—-7 A simple menu-by-name package.

proc MenuSetup { menubar } {
global Menu
frame $menubar
pack $menubar -side top -fill x
set Menu(menubar) $menubar
set Menu(uid) 0

proc Menu { label } {
global Menu
if [info exists Menu(menu,$label)] {
error “Menu $label already defined”

Create the menubutton and its menu

set name $Menu(menubar).mb$Menu(uid)

set menuName $name.menu

incr Menu(uid)

set mb [menubutton $name -text $label -menu $menuName]
pack $mb -side left

set menu [menu $menuName -tearoff 1]

Remember the name to menu mapping

set Menu(menu,$label) $menu

The MenuSetup procedure initializes the package. It creates a frame to hold
the set of menu buttons, and it initializes some state variables: the frame for the

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Menu by Name Package 157

menubuttons and a counter used to generate widget pathnames. All the global
state for the package will be kept in the array called Menu.

The Menu procedure creates a menubutton and a menu. It records the associ-
ation between the text label of the menubutton and the menuthat was created for
it. This mapping is used throughout the rest of the package so that the client of
the package can refer to the menu by its label (e.g., File) as opposed to the inter-
nal Tk pathname, (e.g., .top.menubar.f ile.menu).

Example 14-8 Adding menu entries.

proc MenuCommand { menuName label command } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”
}

$menu add command -label $label -command $command

}

proc MenuCheck { menuName label var { command {} } } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”
}

$menu add check -label $label -command $command \
-variable $var

}

proc MenuRadio { menuName label var {val {}} {command {}} } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”
}

if {{string length $val] == 0} {
set val $label

$menu add radio -label $label -command $command \
-value $val -variable $var

}

proc MenuSeparator { menuName } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”

$menu add separator

The procedures MenuCommang MenuCheck, MenuRadio , and MenuSeparator
are simple wrappers around the basic menu commands. The only trick is that
they use the Menu variable to map from the menu label to the Tk widget name. If
the user specifes a bogus menu name, the undefned variable error is caught and
a more informative error is raised instead.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

158 Buttons and Menus Chap.14

Creating a cascaded menu also requires saving the mapping between the
label in the cascade entry and the Tk pathname for the submenu. This package
imposes a restriction that different menus, including submenus cannot have the
same label.

Example 14-9 A wrapper for cascade entries.

proc MenuCascade { menuName label } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”
}

if [info exists Menu(menu,$label)] {
error “Menu $label already defined”

set sub $menu.sub$Menu(uid)

incr Menu(uid)

menu $sub -tearoff 0

$menu add cascade -label $label -menu $sub
set Menu(menu,$label) $sub

Creating the sampler menu with this package looks like this:

Example 14-10 Using the basic menu package.

MenuSetup

Menu Sampler

MenuCommand Sampler Hello! {puts “Hello, World!"}
MenuCheck Sampler Boolean foo {puts “foo = $foo"}
MenuSeparator Sampler

MenuCascade Sampler Fruit

MenuRadio Fruit apple fruit

MenuRadio Fruit orange fruit

MenuRadio Fruit kiwi fruit

The fhal touch on the menu package is to support accelerators in a consis-
tent way. A menu entry can display another column of information that is
assumed to be a keystroke identifer to remind users of a binding that also
invokes the menu entry. However, there is no guarantee that this string is cor-
rect, or that if the user changes the binding that the menu will be updated. The
MenuBind procedure takes care of this.

Example 14-11 Keeping the accelerator display up-to-date.

proc MenuBind { what sequence menuName label } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {
error “No such menu: $menuName”
}

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Popup Menus and Option Menus 159

if [catch {$menu index $label} index] {
error “$label not in menu $menuName”

set command [$menu entrycget $index -command]
bind $what $sequence $command
$menu entryconfigure $index -accelerator $sequence

}

The MenuBind command uses the index operation to fad out what menu
entry has the given label. It updates the display of the entry using the entrycon-
figure operation, and it creates a binding using the bind command. This
approach has the advantage of keeping the keystroke command consistent with
the menu command, as well as updating the display. To try out MenuBind , add an
empty frame to the sampler example, and bind a keystroke to it and one of the
menu commands, like this:

frame .body -width 100 -height 50

pack .body ; focus .body
MenuBind .body <space> Sampler Hello!

Popup Menus and Option Menus

The Tk script library comes with two procedures that are used to create popup
menus and option menus. A popup menu is not associated with a button.
Instead, it is posted in response to a keystroke or other event in the application.
An option menu represents a choice with a set of radio entries, and it displays
the current choice in the text of the menu button.

The tk_popup command posts a popup menu. First, create the menu as
described above, except that you do not need a menubutton. Then post the popup
menu like this:

tk_popup $menu $x Sy $entry

The last argument specifes the entry to activate when the menu is posted.
It is an optional parameter that defaults to 1. The menu is posted at the specifed
X and Y coordinates in its parent widget.

The tk_optionMenu command creates a menubutton and a menu full of
radio entries. It is invoked like this:

tk_optionMenu w varname f irstValue ?value value ...?

The frst argument is the pathname of the menubutton to create. The sec-
ond is the variable name. The third is the initial value for the variable, and the
rest or the other choices for the value. The menubutton displays the current
choice and a small symbol, the indicator, to indicate it is a choice menu.

Keyboard Traversal

The default bindings for menus allow for keyboard selection of menu entries. The
selection process is started by pressing <Alt- x> where x is the distinguishing let-

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

160 Buttons and Menus Chap.14

ter for a menubutton. The under| i ne attribute of a menubut t on is used to high-
light the appropriate letter. The underline value is a number that specifes a
character position, and the count starts at zero. For example, a Fi | e menu with a
highlighted F is created like this:
menubutton . nenubar.file -text File -underline 0\
-menu . menubar.file.m

When the user types <Al t - f > over the main window, the menu . nenubar . -
fil e. mis posted. The case of the letter is not important.

After a menu is posted the arrow keys can be used to change the selected
entry. The <Up> and <Down> keys move within a menu, and the <Left> and
<Ri ght > keys move between adjacent menus. The bindings assume that you cre-
ate your menus from left to right.

If any of the menu entries have a letter highlighted with the - underline
option, then typing that letter will invoke that menu entry. For example, an
Export entry that is invoked by typing x can be created like this:

.menubar.file. madd comrand -| abel Export -underline 1 \
-command Fi | e_Export

The <space> and <Ret ur n> keys will invoke the menu entry that is cur-
rently selected. The <Escape> key will abort the menu selection and unpost the
menu.

Menu Attributes

A menu has a few global attributes, and then each menu entry has many button-
like attributes that describe its appearance and behavior. The table below gives
the attributes that apply globally to the menu, unless overridden by a per-entry
attribute. The table uses the X resource names, which may have a capital at inte-
rior word boundaries. In Tcl commands use all lowercase and a leading dash.

Table 14-5 Resource names of attributes for renu widgets.

acti veBackgr ound Background color when the mouse is over a menu entry.
acti veFor eground Text color when the mouse is over a menu entry.

acti veBorderWdth Width of the raised border around active entries.

backgr ound The normal background color for menu entries.
bor der Wdt h Width of the border around all the menu entries.
cursor Cursor to display when mouse is over the menu.

di sabl edFor eground Foreground (text) color when menu entries are disabled.
f ont Default font for the text.
f oreground Foreground color. (Also f g).

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Menu Attributes 161

Table 14-5 Resource names of attributes for menu widgets.

post Conmand Tel command to run just before menu is posted.
sel ect Col or Color for selector in check and radio type entries.
tear O f True if menu should contain a tear off entry.

The attributes for menu entries are only valid in Tcl commands; they are not
supported directly by the X resource database. You can still use the resource
database for menu entries as described in Example 27-5 on page 328. The table
below describes the attributes for menu entries, as you would use them in a Tecl
command (i.e., all lowercase with a leading dash.).

Table 14-6 Attributes for menu entries.

-activebackground Background color when the mouse is over the entry.

-activeforeground Foreground (text) color with mouse is over the entry.

-accel erator Text to display as a reminder about keystroke binding.

- backgr ound The normal background color.

- bi t map A bitmap to display instead of text.

- command Tcl command to invoke when entry is invoked.

-font Default font for the text.

-foreground Foreground color. (Also f g).

-i mage Image to display instead of text or bitmap.

- | abel Text to display in the menu entry.

-justify Text justifeation: center |eft right

- menu Menu posted when cascade entry is invoked.

-of fval ue Value for Tcl variable when checkbut t on entry is not
selected.

-onval ue Value for Tcl variable when checkbut t on entry is
selected.

-sel ect col or Color for selector. checkbutt on and radi obutton
entries.

-state nornmal active disabl ed

-underline Index of text character to underline.

-val ue Value for Tcl variable when r adi obut t on entry is
selected.

-vari abl e Tel variable associated with the checkbut t on or

radi obut t on entry.

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

162 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 15

Simple Tk Widgets

This chapter describes several simple Tk widgets: the frame, label, message,
scale, and scrollbar. In general, these widgets require minimal setup to
be useful in your application. The bell command rings the X display bell,
and doesn't fit into other chapters, so it is described here.

This chapter describes fre simple wid-
gets. The f r ame is a building block for widget layout. The | abel provides a line of
read-only text. The message provides a read-only block of text that gets format-
ted onto several lines. The scal e is a slider-like widget used to set a numeric
value. The scrol | bar is used to control other widgets. These widgets (and the
bel | command) are not that interesting by themselves, so this chapter reviews
their functions rather briefy .

Chapter 22, 23, and 24 go into more detail about some of the generic widget
attributes shared by the widgets presented in this chapter. The examples in this
chapter use the default widget attributes in most cases.

Frames and Top-Level Windows

Frames have been introduced before for use with the geometry managers. There
is not much to a f r ame, except for its background color and border. You can also
specify a colormap and visual type for a frame. Chapter 23 describes visual types
and colormaps in more detail.

Atopl evel widget is like a frame, except that it is created as a new toplevel
window. That is, it is not positioned inside the main window of the application.
This is useful for dialog boxes, for example. A t opl evel has the same attributes
as a frame, plus it has a screen option that lets you put the toplevel on any X dis-

163

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

164 Simple Tk Widgets Chap.15

play. The value of the screen option uses the same format that you use when you
start an application
host : di spl ay. screen
For example, I have one X server on my workstation cor vi na that controls
two screens. My two screens are named corvi na: 0. 0 and corvina: 0. 1. If the
screen specifer is left off, it defaults to 0.

Attributes for frames and toplevels

Table 15-2 lists the attributes for the frame and topl evel widgets. The
attributes are named according to their X resource name, which includes a capi-
tal letter at internal word boundaries. When you specify an attribute in a Tcl
command when creating or reconfguring a widget, however, you specify the
attribute with a dash and all lowercase letters. Chapter 27 explains how to use
resource speciftations for attributes . Chapters 22, 23, and 24 discuss many of
these attributes in more detail.

Table 15-1 Resource names of attributes for f r ane and t opl evel widgets.

backgr ound Background color (also bg).

borderWdth Extra space around the edge of the label.

cl ass X resource class and binding class name.

col or map The value is newor the name of a window.
cursor Cursor to display when mouse is over the label.
hei ght In screen units for bitmaps, in lines for text.

hi ghl i ght Col or
hi ghl i ght Thi ckness
relief

screen

vi sual

wi dt h

Color for input focus highlight.
Thickness of focus highlight rectangle.
3D relief: f | at , sunken, r ai sed, gr oove, ri dge.

An X display speciftation. (t opl evel only, and this
cannot be specifed in the resource database.)

staticgrey greyscal e staticcol or
pseudocol or directcol or truecol or

Width. In characters for text labels.

The cl ass, col ormap, vi sual, and screen attributes cannot be changed
after the f rame or t opl evel has been created. These settings are so fundamental
that you basically need to destroy the frame and start over if you have to change

one of these.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

The label Widget 165
The label W idget

The | abel widget provides a read-only text label, plus it has attributes that let
you control the position of the label within the display space. Most commonly,
however, you just need to specify the text for the label.
| abel .version -text "MyApp v1.0"
The text can be specifed indirectly by using a T cl variable to hold the text.
In this case the label will be updated whenever the value of the Tcl variable
changes. The variable is used from the global scope, even if there happens to be a
local variable by the same name when you create the widget inside a procedure.
set version "MyApp v1.0"
| abel .version -textvariable version
The appearance of a label can be changed dynamically by using the confi g-
ur e widget operation. If you change the text or font of a label you are liable to
change the size of the widget, and this will cause the packer to shufft window
positions. You can avoid this by specifying a width for the label that is large
enough to hold all the strings you plan to display in it. The width is specifed in
characters, not screen coordinates.

Example 15-1 Al abel that displays different strings.

proc Fi xedW dt hLabel { name val ues } {
nane is a widget name to be created
values is a list of strings
set maxWdth O
foreach val ue $val ues {
if {[string length $value] > $maxWdth} {
set maxWdth [string | ength $val ue]
}

Use -anchor wto left-justify short strings

| abel $nane -width $maxWdth -anchor w\
-text [lindex $val ues 0]

return $name

The Fi xedW dt hLabel example is used to create a label with a width big
enough to hold a set of different strings. It uses the - anchor w attribute to left
justify strings that are shorter than the maximum. The text for the label can be
changed later by using the confgure widget command:

Fi xedW dt hLabel .status {OK Busy Error}
.status config -text Busy

A label can display a bitmap instead of a text string. For a discussion of

using bitmaps, see Chapter 23 and the section on Bitmaps and Images.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

166 Simple Tk Widgets Chap.15
Label attributes

Table 15-2 lists the widget attributes for the | abel widget. The attributes
are named according to their X resource name, which includes a capital letter at
internal word boundaries. When you specify an attribute in a Tcl command when
creating or reconfguring a widget, however , you specify the attribute with a
dash and all lowercase letters. Chapter 27 explains how to use resource specifta-
tions for attributes. Chapters 22, 23, and 24 discuss many of these attributes in
more detail.

Table 15-2 Resource names of attributes for | abel widgets.

anchor

backgr ound

bi t map

bor der Wdt h
cur sor

f ont
foreground

hei ght

hi ghl i ght Col or
hi ghl i ght Thi ckness
i mage

justify

padX

padY

relief

t ext

t ext Vari abl e

underli ne
wi dt h
wr apLengt h

Relative position of the label within its packing space.
Background color (also bg).

Name of a bitmap to display instead of a text string.
Extra space around the edge of the label.

Cursor to display when mouse is over the label.
Font for the label’s text.

Foreground color. (Also f g).

In screen units for bitmaps, in lines for text.

Color for input focus highlight.

Thickness of focus highlight rectangle.

Specifes image to display instead of bitmap or text.
Text justifeation: | eft,ri ght,center.

Extra space to the left and right of the label.

Extra space above and below the label.

3D relief: f | at, sunken, r ai sed, gr oove, ri dge.
Text to display.

Name of Tel variable. Its value is displayed.

Index of character to underline.

Width. In characters for text labels.

Length at which text is wrapped in screen units.

Label width and wrapLength

When a label is displaying text, its wi dt h attribute is interpreted as a num-

ber of characters. The label is made wide enough to hold this number of averaged
width characters in the label’s font. However, if the label is holding a bitmap or

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

The message Widget 167

an image, then the wi dt h is in pixels or another screen unit.

The wr apLengt h attribute determines when a label’s text is wrapped onto
multiple lines. The wrap length is always screen units. If you need to compute a
wr apLent h based on the font metrics (instead of guessing) then you’ll have to use
a text widget with the same font. Chapter 18 describes the t ext widget opera-
tions that return size information for characters.

The message W idget

The nessage widget displays a long text string by formatting it onto several
lines. It is designed for use in dialog boxes. It can format the text into a box of a
given width, in screen units, or a given aspect ratio. The aspect ratio is defned to

be the ratio of the width to the height, times 100. The default is 150, which
means the text will be one and a half times as wide as it is high.

Example 15-2 The nessage widget formats long lines of text.

message .nsg -justify center -text "This is a very long text\
line that will be broken into many lines by the\
message w dget™”

pack . nsg

This example creates a message widget with one long line of text. Back-
slashes are used to continue the text string without embedding any newlines.
(You can also just type a long line into your script.) Note that backslash-newline
collapses white space after the newline into a single space.

A newline in the string forces a line break in the message display. You can
retain exact control over the formatting by putting newlines into your string and
specifying a very large aspect ratio. In the next example, grouping with double
quotes is used to continue the string over more than one line. The newline char-
acter between the quotes is included in the string, and it causes a line break.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

168 Simple Tk Widgets Chap.15

Example 15-3 Controlling the text layout in a message widget.

message . nsg -aspect 1000 -justify left -text \
"This is the first long |ine of text,

and this is the second line."

pack . nsg

Message Attributes

The table on the next page lists the attributes for the message widget. The table
list the X resource name, which has capitals at internal word boundaries. In Tcl
commands the attributes are specifed with a dash and all lowercase.

Table 15-3 Resource names for attributes for nessage widgets.

anchor Relative position of the text within its packing space.
aspect 100 * width / height. Default 150.

backgr ound Background color (also bg).

border Wdth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.
f ont Font for the label’s text.

f or egr ound Foreground color. (Also f g).

hi ghl i ght Col or Color for input focus highlight.

hi ghl i ght Thi ckness Thickness of focus highlight rectangle.

justify | eft,center,orright.Defaultstol eft.

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief 3D relief: f | at, sunken, r ai sed, gr oove, ri dge.
t ext Text to display.

textVari abl e Name of Tel variable. Its value is displayed.

wi dth Width, in screen units.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

Arranging Labels and Messages 169

Arranging Labels and Messages

Both the | abel and nessage widgets have attributes that control the position of
their text in much the same way that the packer controls the position of widgets
within a frame. These attributes are padX, padY, anchor and bor der W dt h. The
anchor takes effect when the size of the widget is larger than the space needed to
display its text. This happens when you specify the - wi dt h attribute or if you
pack the widget with flling enabled and there is extra room. See Chapter 22 and
the section on Padding and Anchors for more details.

The scale W idget

The scal e widget displays a slider in a trough. The trough represents a range of
numeric values, and the slider position represents the current value. The scal e
can have an associated label, and it can display its current value next to the
slider.

The value of the scal e can be used in three different ways. You can explic-
itly get and set the value with widget commands. You can associate the scal e
with a Tcl variable. The variable is kept in sync with the value of the scal e, and
changing the variable affects the scal e. Finally, you can arrange for a Tcl com-
mand to be executed when the scal e value changes. You specify the initial part
of the Tcl command, and the scal e implementation adds the current value as
another argument to the command.

Example 15-4 A scal e widget.

scale .scale -from-10 -to 20 -length 200 -variable x \
-orient horizontal -label "The value of X' \
-command nyprint

proc nyprint { value } {puts "The value of X is $val ue"}

pack .scale

The example shows a scal e that has both a variable and a command. Typi-
cally you would use just one of these options. The nypri nt procedure can get the
value in two ways. As well as using its argument, it could use a gl obal x com-
mand to make the scale variable visible in its scope.

The scale has a resol uti on and bi gl ncrenent attribute that determine

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

170 Simple Tk Widgets Chap.15

how its value can be changed. If the resolution is set to 0.1, for example, then the
value will be rounded to the nearest tenth. The bi gl ncr enent attribute is used
in the keyboard bindings to shift the value by a large amount. Table 154 lists
the bindings for scal e widgets.

Table 15-4 Default bindings for scal e widgets.

<But t on- 1> Clicking on the trough moves the slider by one unit

of resolution towards the mouse click.

<Control -Button-1> Clicking on the trough moves the slider all the way

to the end of the trough towards the mouse click.
<Left> <Up> Move the slider towards the left (top) by one unit.

<Control -Left>
<Cont r ol - Up>

Move the slider towards the left (top) by the value of

the bi gl ncr enent attribute.
<Ri ght > <Down> Move the slider towards the right (bottom) one unit.

<Control - Ri ght >
<Cont r ol - Down>

Move the slider towards the right (bottom) by the
value of the bi gl ncr ement attribute.

<Home> Move the slider all the way to the left (top).
<End> Move the slider all the way to the right (bottom).

Scale attributes

The following table lists the scal e widget attributes. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tecl com-
mands the attributes are specifed with a dash and all lowercase.

Table 15-5 Resource names for attributes for scal e widgets.

acti veBackground
backgr ound

bi gl ncr enent

bor der W dt h

conmmand

cur sor
digits
from

font

f oreground

hi ghl i ght Col or

Background color when the mouse is over the slider.
The background color. (Also bg in commands.)
Coarse grain slider adjustment value.

Extra space around the edge of the text.

Command to invoke when the value changes. The cur-
rent value is appended as another argument

Cursor to display when mouse is over the widget.
Number of signiftant digits in scale value.
Minimum value. The left or top end of the scale.
Font for the label.

Foreground color. (Also f g).

Color for input focus highlight.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

The scale Widget

171

Table 15-5 Resource names for attributes for scal e widgets.

hi ghl i ght Thi ckness

Thickness of focus highlight rectangle.

| abel

l ength
ori ent
relief

r epeat Del ay

repeat | nterval
resol ution
showval ue
sliderLength
state
ticklnterval
to

t roughCol or

vari abl e

wi dt h

A string to display with the scale.

The length, in screen units, of the long axis of the scale.
hori zontal orverti cal

3D relief: f | at , sunken, r ai sed, gr oove, ri dge.

Delay before keyboard auto-repeat starts. Auto-repeat
is used when pressing <But t on- 1> on the trough.

Time period between auto-repeat events.

The value is rounded to a multiple of this value.

If true, value is displayed next to the slider.

The length, in screen units, of the slider.

normal , acti ve, or di sabl ed

Spacing between tick marks. Zero means no marks.
Maximum value. Right or bottom end of the scale.
The color of the bar on which the slider sits.

Name of Tcl variable. Changes to the scal e widget are
refected in the T cl variable value, and changes in the
Tel variable are refbcted in the scal e display.

Width of the trough, or slider bar.

Programming scales

The scal e widget supports a number of operations. For the most part these
are used by the default bindings and you won’t need to program the scal e
directly. Table 156 lists the operations supported by the scale. In the table, $w

is a scal e widget.

Table 15-6 Operations on scal e widgets..

$w cget option
$w configure ...

$w coords ?val ue?

$w get ?x y?

$widentify x vy

Return the value of the confguration option.
Query or modify the widget confguration.

Returns the coordinates of the point in the trough
that corresponds to val ue, or the scale’s value.

Return the value of the scale, or the value that
corresponds to the position given by X andy.

Returns t roughil, sl i der, or t r ough?2 to indi-
cate what is under the position given by x and y

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

172 Simple Tk Widgets Chap.15

Table 15-6 Operations on scal e widgets..

$w set val ue Set the value of the scale.

The scrollbar W idget

The scrol | bar is used to control the display of another widget. The Tk widgets
designed to work with scrollbars are the entry, | i st box, text, and canvas wid-
gets. There is a simple protocol between the scrol | bar and these widgets. While
this section explains the protocol, you don’t need to know the details to use a
scrollbar. All you need to know is how to set things up, and then these widgets
take care of themselves.

A scrollbar is made up of 5 components: arrowl, t roughl, sl i der, trough2,
and arrow2. The arrows are on either end, with arrowl being the arrow to the
left for horizontal scrollbars, or the arrow on top for vertical scrollbars. The
slider represents the relative position of the information displayed in the associ-
ated widget, and the size of the slider represents the relative amount of the infor-
mation displayed. The two trough regions are the areas between the slider and
the arrows. If the slider covers all of the trough area, you can see all the informa-
tion in the associated widget.

The protocol between the scrol | bar and its associated widget (or widgets)
is initialized by registering a command with each of the widgets. The scrol | bar
has a conmand attribute that is uses to scroll the associated widget. The xvi ew
and yvi ewoperations of the scrollable widgets are designed for this. These opera-
tions require parameters that indicate how to adjust their view, and the scrollbar
adds these parameters when it calls the command. The command to create a
scrol | bar for atext widget would look something like this:

scrol | bar .scroll -command {.text yview} -orient vertical

The scrollable widgets have xscrollcomand and/or yscrol | command
attributes that they use to update the display of the scrollbar. The scrol | bar
set operation is designed for this callback. Additional parameters are appended
to these commands that indicate how much information is visible in the widget
and the relative position of that information. The command below sets up the
other half of the relationship between the scrol | bar and the t ext widget.

text .text -yscrollcommand {.scroll set}

The protocol works like this. When the scrollbar is manipulated by the user
it calls its registered conmand with some parameters that indicate what the user
said to do. The associated widget responds to this command (e.g., its xvi ew oper-
ation) by changing its display. After the widget changes its display, it calls the
scrol | bar by using its registered xscrol | command or yscrol | cormand (e.g., the
set operation) with some parameters that indicate the new relative size and
position of the display. The scrollbar updates its appearance to refbct this infor-
mation. The protocol supports widgets that change their display by themselves,
such as by dragging them with <B2- Mot i on> events or simply by adding more
information. When this happens, the scrol | bar will be updated correctly, even

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

The scrollbar Widget 173

though it did not cause the display change.

Example 15-5 At ext widget and two scrollbars.

proc ScrolledText { f width height } {
frame $f
The setgrid setting allows the wi ndow to be resized.
text $f.text -width $w dth -hei ght $height \
-setgrid true -wap none \
-xscrol lcommand [list $f.xscroll set] \
-yscrollcommand [list $f.yscroll set]

scrol | bar $f.xscroll -orient horizontal \
-command [list $f.text xview]

scrol I bar $f.yscroll -orient vertical \
-command [list $f.text yview

pack $f.xscroll -side bottom-fill x

pack $f.yscroll -side right -fill y

The fill and expand are needed when resi zing.

pack $f.text -side left -fill both -expand true

pack $f -side top -fill both -expand true

return $f.text

}

set t [ScrolledText .f 40 8]
set in [open /etc/passwd]

$t insert end [read $in]
close $in

The example associates a text widget with two scrollbars. It reads and
inserts the password fle into the text widget. There is not enough room to dis-
play all the text, and the scrollbars indicate how much text is visible. Chapter 18
describes the t ext widget in more detail.

Table 15-4 lists the default bindings for scrollbars. Button 1 and button 2
of the mouse have the same bindings. A scrollbar does not normally get the key-
board focus, so you will have to direct the focus to it explicitly for the key bind-
ings like <Up> and <Down> to take effect.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

174 Simple Tk Widgets Chap.15

Table 15-7 Default bindings for scr ol | bar widgets.

<But t on- 1> <Button-2> Clicking on the arrows scrolls by one unit.

Clicking on the trough moves by one screenful.
<B1- Mot i on> <B2- Moti on> Dragging the slider scrolls dynamically.

<Control - Button- 1>
<Control - Button-2>

Clicking on the trough or arrow scrolls all the

way to the beginning (end) of the widget.
<Up> <Down> Scroll up (down) by one unit

<Contr ol - Up>
<Cont r ol - Down>

Scroll up (down) by one screenful.

<Left> <Ri ght > Scroll left (right) by one unit.

<Control -Left>
<Control - Ri ght>

Scroll left (right) by one screenful.

<Prior> <Next> Scroll back (forward) by one screenful.

<Home> Scroll all the way to the left (top).

<End> Scroll all the way to the right (bottom).

Scrollbar attributes

Table 15-8 lists the scrollbar attributes. The table uses the X resource
name for the attribute, which has capitals at internal word boundaries. In Tcl
commands the attributes are specifed with a dash and all lowercase.

Table 15-8 Resource names of attributes for scr ol | bar widgets.

acti veBackgr ound
activeRel i ef
backgr ound

bor der Wdt h

conmand

cursor
hi ghl i ght Col or

hi ghl i ght Thi ckness
jump

ori ent

r epeat Del ay

Color when the mouse is over the slider or arrows.
Relief of slider and arrows when mouse is over them.
The background color. (Also bg in commands.)

Extra space around the edge of the scrollbar.

Prefk of the command to invoke when the scrollbar
changes. Typically this is a xvi ewor yvi ew operation.

Cursor to display when mouse is over the widget.
Color for input focus highlight.
Thickness of focus highlight rectangle.

If true, dragging the elevator does not scroll dynamically.
Instead, the display jumps to the new position.

hori zontal orverti cal

Delay before keyboard auto-repeat starts. Auto-repeat is
used when pressing <But t on- 1> on the trough or arrows.

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

The scrollbar Widget 175

Table 15-8 Resource names of attributes for scr ol | bar widgets.

repeat | nt erval Time period between auto-repeat events.
t roughCol or The color of the bar on which the slider sits.
wi dt h Width of the narrow dimension of the scrollbar.

There is no | ength attribute for a scrollbar. Instead, a scroll bar is
designed to be packed next to another widget with a fil option that lets the
scrol | bar display grow to the right size. The relief of the scrol | bar cannot be
changed from r ai sed. Only the relief of the active element can be set. The back-
ground color is used for the slider, the arrows, and the border The slider and
arrows are displayed in the activeBackground color when the mouse is over
them. The trough is always displayed in the t r oughCol or.

Programming scrollbars

The scrol | bar widget supports a number of operations. However, for the
most part these are used by the default bindings. Table 156 lists the opera-
tions supported by the scrol | bar. In the table, $wis a scrol | bar widget.

Table 15-9 Operations on scrollbar widgets.

$w activate ?el ement? Query or set the active element, which can be
arrowl, arrow2, or sl i der.

$w cget option Return the value of the confguration option.

$w configure ... Query or modify the widget confguration.

$w fraction x vy Return a number between 0 and 1 that indicates the
relative location of the point in the trough.

$s get Return first and | ast from the set operation.

$widentify x y Returns arrowl, t r oughl, sl i der, trough2, or

arrow2, to indicate what is under the point.

$w set first |ast Set the scrollbar parameters. f i r st is the relative
position of the top (left) of the display. | ast is the
relative position of the bottom (right) of the display.

The Tk 3.6 protocol

The protocol between the scrol | bar and its associated widget changed in
Tk 4.0. The scrol | bar is backward compatible. The old protocol had 4 parame-
ters in the set operation:total Units,w ndowlnits,firstUnit,and!| astUnit.If
a scrol | bar is updated with this form of a set command, then the get operation
also changes to return this information. When the scr ol | bar makes the callback
to the other widget (e.g., an xvi ew or yvi ew operation), it passes a single extra

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

176 Simple Tk Widgets Chap.15

parameter that specifes what unit to display at the top (left) of the associated
widget. The Tk widgets’ xvi ew and yvi ew operations are also backward compati-
ble with this interface.

The bell Command

The bel | command rings the X display bell. About the only interesting property
of the bell is that it is associated with the display, so even if you are executing
your program on a remote machine, the bell is heard by the user. If your applica-
tion has windows on multiple displays, you can direct the bell to the display of a
particular window with the - di spl ayof option. The syntax for the bell command
is given below:

bel | ?-displayof w ndow?

If you want to control the bell’s duration, pitch, or volume, you need to use
the xset program. The volume is in percent of a maximum, e.g. 50. In practice,
many keyboard bells only support a variable duration, and the pitch is fked. The
arguments of xset that controll the bell are shown below.

exec xset b ?volume? ?hertz? ?mlliseconds?

The b argument by itself resets the bell to the default parameters. You can

turn the bell off with - b, or you can use the on or of f arguments.
exec xset -b
exec xset b ?on? ?off?

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hal—DRAFT: 1/13/95

C HAPTER 16

Entry and Listbox Widgets

The entry widget provides a single line of text for use as a data entry field. The
listbox provides a scrollable list of text lines.

Listbox and entry widgets are specialized
text widgets. They provide a subset of the functionality of the general purpose
text widget. They are a bit more complex than the simple widgets presented in
the previous chapter. You are more likely to program behavior for these widgets,
especially the listbox.

The entry Widget

The ent ry widget provides a one-line type-in area. It is commonly used in dialog
boxes when values need to be flled in, or as a simple command entry widget. The
entry widget supports editing, scrolling, and selections, which make it quite a bit
more complex than label or message widgets. Fortunately, the default settings
for an ent ry widget make it usable right away. You click with the left button to
set the insert point, and then type in text. Text is selected by dragging out a
selection with the left button. The entry can be scrolled horizontally by dragging
with the middle mouse button.

The complete set of bindings is given in the table below. When the table
lists two sequences they are equivalent. For example, both the left arrow key
(<Left>) and <Contr ol - b> move the insert cursor to the left by one character.
The table does not list all the right arrow key bindings, although there are corre-
sponding bindings for the left and right arrow keys. The middle mouse button

177

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

178

(<But t on- 2>) is overloaded with two functions. If you click and release the mid-
dle button, then the selection is inserted at the insert cursor. The location of the
middle click does not matter. If you press and hold the middle button, then you

Entry and Listbox Widgets Chap.16

can scroll the contents of the entry by dragging the mouse to the left or right.

Table 16-1 Default bindings for ent r y widgets.

<But t on- 1>

<B1- Mot i on>

<Doubl e- But t on- 1>
<Tri pl e-But t on- 1>
<Shi ft-Bl- Moti on>
<Control - Button- 1>
<But t on- 2>

<B2- Mot i on>

<Left> <Control - b>
<Shift-Left>
<Control - Left>

<Met a- b>

<Control - Shift-Left>
<Ri ght> <Control -f>
<Met a-f >

<Home> <Control - a>
<Shi ft - Home>

<End> <Control - e>
<Shi ft - End>

<Sel ect > <Contr ol - Space>

<Shi ft- Sel ect >
<Control - Shi ft - Space>

<Control - sl ash>

<Contr ol - backsl ash>

<Del et e>

<Backspace> <Control - h>
<Control -d>

<Met a- d>

Set insert point in start a selection.
Drag out a selection.

Select a word.

Select all text in the entry.

Adjust the ends of the selection.

Set insert point, leaving selection as is.
Paste selection at the insert cursor.

Scroll horizontally.

Move insert cursor one character left. Start selection.

Move cursor left and extend selection.

Move cursor left one word. Start selection.

Same as <Control-Left>

Move cursor left one word and extend the selection.
The bindings for Right correspond to the Left key.
Same as <Control-Right>, move right one word.
Move cursor to beginning of entry.

Move cursor to beginning and extend the selection.
Move cursor to end of entry.

Move cursor to end and extend the selection.
Anchor the selection at the insert cursor.

Adjust the selection to the insert cursor.

Selects all the text in the entry.

Clears the selection in the entry.

Delete the selection or delete next character.
Delete the selection or delete previous character.
Delete next character.

Delete next word.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The entry Widget 179

Table 16-1 Default bindings for ent r y widgets.

<Control - k> Delete to the end of the entry.
<Control -w> Delete previous word.
<Control - x> Delete the section, if it exists.
<Control -t> Transpose characters.

One common use of an entry widget is to associate a label with it, and a
command to execute when <Ret ur n> is pressed in the entry. This is implemented
in the following example.

Example 16-1 A command, al abel andanentry.

proc CommandEntry { nane | abel wi dth command args } {
frame $nane
| abel $nane.| abel -text $label -w dth $w dth -anchor w
eval {entry $nane.entry -relief sunken} $args
pack $nane. | abel -side left
pack $nane.entry -side right -fill x -expand true
bi nd $nane. entry <Return> $comrand
return $name.entry

ConmandEntry . nane Nanme 10 Updat eAddress -textvar addr(nane)
ConmandEntry . addressl Address 10 Updat eAddress \
-textvar addr(linel)
CommandEntry . address2 "" 10 Updat eAddress \
-textvar addr(line2)
CommandEntry . phone Phone 10 Updat eAddress \
-textvar addr(phone)
pack .name .addressl .address2 .phone

CommandEnt ry creates a frame to hold the label and the entry widget. The
| abel and | wi dt h arguments are used to defne the label. The explicit width and
the -anchor ware used so that you can line up the labels if you have more than
one CommandEnt ry. The label is packed frst so it does not get clipped if the frame
is made too small. The entry is packed so it will fll up any extra space, if any.
The ar gs parameter is used to pass extra parameters along to the entry widget.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

180 Entry and Listbox Widgets Chap.16

This requires the use of eval as discussed in Chapter 6. The Tcl command is
bound to the <Ret ur n> keystroke. Finally, the pathname of the entry widget is
returned in case the caller needs it.

The example includes four sample calls to CommandEnt ry and the pack com-
mand used to arrange them. The -rel i ef sunken for the ent ry widget sets them
apart visually, and you can see the effect of the - anchor w on the labels. The
-t extvar attribute is used to associate a Tcl variable with the entries, and in this
case array elements are specifed. The T cl command Updat eAddr ess can get the
current values of the entry widgets through the global array variable addr.

entry attributes

The following table lists the entry widget attributes. The table lists the X
resource name, which has capitals at internal word boundaries. In Tcl commands
the attributes are specifed with a dash and all lowercase.

Table 16-2 Resource names for attributes of ent r y widgets.

backgr ound
bor der Wdt h

Background color (also bg).
Extra space around the edge of the text (also bd).
cursor Cursor to display when mouse is over the widget.

export Sel ection If "true", then the selected text is exported via the X

selection mechanism.
f ont Font for the text.
f oregr ound

hi ghl i ght Col or

Foreground color. (Also f g).
Color for input focus highlight.

hi ghl i ght Thi ckness
i nsertBackground

i nsert Border Wdt h
insertOfFf Time

i nsertOnTi e

i nsert Wdth
justify

relief

sel ect Backgr ound
sel ect For egr ound
sel ect Bor der Wdt h

show

Thickness of focus highlight rectangle.
Background for area covered by insert cursor.
Width of cursor border. Non-zero for 3D effect.
Time, in milliseconds the insert cursor blinks off.
Time, in milliseconds the insert cursor blinks on.
Width of insert cursor. Default is 2.

Text justifeation: | eft,ri ght,center.

3D relief: f | at, sunken, r ai sed, gr oove, ri dge.
Background color of selection.

Foreground color of selection.

Widget of selection border. Non-zero for 3D effect.

If false, asterisk (*) are displayed instead of contents.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The entry Widget 181

Table 16-2 Resource names for attributes of ent r y widgets.

state di sabl ed (read-only) or nor nal .
textVariabl e Name of Tcl variable.

wi dth Width, in characters.

xScr ol | Conmand Used to connect entry to a scrollbar.

Perhaps the most useful attribute of an entry widget is the t ext Vari abl e
attribute. Use this to mirror the contents of the entry widget in a Tcl variable
and your scripts will be simpler. Changes to the ent ry widget are refécted in the
Tel variable value, and changes in the Tcl variable are refbcted in the entry con-
tents.

An entry widget has several attributes that control the appearance of the
selection and the insert cursor, such as sel ect Backgr ound and i nsert W dt h. The
export Sel ect i on attribute controls whether or not the selected text in the entry
can be pasted into other applications. The show attribute is useful for entries
that accept passwords or other sensitive information. Instead of displaying text,
asterisks are displayed if show is f al se. The st at e attribute determines if the
contents of an entry can be modifed. Set the st at e to di sabl ed to prevent modi-
feation, and set it to nor mal to allow modifeation.

.nane.entry config -state disabled ;# read-only
.nane.entry config -state nornal ;# editable

Programming entry widgets

The default bindings for entry widgets are fairly good. However, you can
completely control the ent ry with a set of widget operations for inserting, delet-
ing, selecting, and scrolling. The operations involve addressing character posi-
tions called indices. The indices count from zero. The entry defhes some
symbolic indices such as end. The index corresponding to an X coordinate is spec-
ifed with @ xcoor d, such as @6. Table 16-3 lists the formats for indices.

Table 16-3 Indices for ent r y widgets

0 Index of the frst character .

anchor The index of the anchor point of the selection.
end Index of the last character.

nunber Index a character, counting from zero.

i nsert The character right after the insertion cursor.

sel . first The frst character in the selection.
sel .| ast The character just after the last character in the selection.

@coord The character under the specifed X coordinate.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

182

Entry and Listbox Widgets Chap.16

Table 164 summarizes the widget operations. In the table, $wis an entry
widget.

Table 16—4 Operations on ent r y widgets.

$w cget option

$w configure ...

$w delete first ?last?

$w
$w
$w

$w
$w
$w
$w
$w
$w
$w
$w

$w
$w

$w

$w

$w

get

i cursor

i ndex

i ndex i ndex

i nsert

i ndex string

scan mark x

scan dragto x

sel ect
sel ect
sel ect
sel ect

sel ect

sel ect

XVi ew

adj ust i ndex
cl ear
fromindex
pr esent

range start end

to index

XVi ew i ndex

Xxvi ew noveto fraction

xvi ew scrol |l num what

Return the value of the confguration option.
Query or modify the widget confguration.

Delete the characters from fi rst tol ast, not
including the character at | ast . The character at
first is deleted if | ast is not given.

Return the string in the entry.
Move the insert cursor.

Return the numerical index corresponding to
index.

Insert the stri ng at the given i ndex.

Start a scroll operation. X is a screen coordinate.
Scroll from previous mark position.

Move the boundary of an existing selection.
Clear the selection.

Set the anchor position for the selection.
Returns 1 if there is a selection in the entry.

Select the characters from st art to the one just
before end.

Extend a selection.

Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

Shift the display so the character ati ndex is at
the left edge of the display.

Shift the display so that f r act i on of the contents
are off the left edge of the display.

Scroll the contents by the specifed number of
what , which can be uni t s or pages.

Use the bind interface from Chapter 13 to browse the Ent ry class bindings.
You will see examples of these operations. For example, the binding for <But t on-
1> includes the following commands.

%N i cursor @«

%N sel ect from @&
if {[lindex [V config -state] 4] == "normal "} {focus %W

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The listbox Widget 183

Recall that the %triggers substitutions in binding commands, and that %nis
replaced with the widget pathname and %« is replaced with the X coordinate of
the mouse event. Chapter 13 describes bindings and these substitutions in
detail. These commands set the insert point to the point of the mouse click by
using the @« index, which will be turned into something like @7 when the bind-
ing is invoked. The binding also starts a selection. If the entry is not in the dis-
abled state, then keyboard focus is given to the entry so that it gets KeyPress
events.

The listbox W idget

The | i st box widget displays a set of text lines in a scrollable display. The basic
text unit is a line. There are operations to insert, select, and delete lines, but
there are no operations to modify the characters in a line. As such, the | i st box is
suitable for displaying a set of choices, such as in a fle selection dialog, but it is
not right for a general purpose text editor. The t ext widget described in the next
chapter is designed for general text display and editing.

A listbox is almost always associated with a scrol | bar, even though you
can also scroll by dragging with the middle mouse button. The following example
associates two scrollbars with a listbox, one for both the X and Y directions.

Example 16-2 Al i st box with scrollbars.

proc Scroll edLi stbox { parent args } {
Create listbox attached to scrollbars, pass thru $args
franme $parent
eval {listbox $parent.list \
-yscrol l command [list $parent.sy set] \
-xscrol l command [list $parent.sx set]} $args
Create scrollbars attached to the |istbox
scrol | bar $parent.sx -orient horizontal \
-command [list $parent.list xview
scrol | bar $parent.sy -orient vertical \
-command [list $parent.list yview
Arrange themin the parent frane
pack $parent.sx -side bottom-fill x
pack $parent.sy -side right -fill vy
Pack to allow for resizing
pack $parent.list -side left -fill both -expand true
return $parent.list

}
Scrol | edListbox .f -width 20 -height 5 -setgrid true

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

184 Entry and Listbox Widgets Chap.16

pack .f -fill both -expand true
.f.list insert end "This is a |istbox"
.f.list insert end "It is line-oriented"

The Scroll edLi stbox procedure uses the eval and $args technique
described in Chapter 6 to pass through extra arguments to the listbox. The
example specifes the wi dth, hei ght, and setgrid values for the listbox. The
main window becomes resizable as a side effect of gridding the listbox. Chapter
24 describes gridding and geometry in more detail.

The | i st box has two scrolling commands associated with it, one each for
the X and Y directions. These commands set the parameters of the scrollbar with
its set command. This is most of what you need to know about scrollbars,
although Chapter 15 describes them in more detail.

The |i stbox is controlled by the command associated with a scrol | bar.
When the user clicks on the scrol | bar, it commands the | i st box to change its
display. When the |i st box changes its display, it commands the scrollbars to
update their display. Thus the scrollbars display themselves correctly whether
the user scrolls with the scrollbars or by dragging the | i st box with the middle
mouse button.

The | i st command is used to construct the scroll commands so that $par -
ent gets expanded and the command has the right form. It is also used in the
scrollbar commands when defning their command attributes. While you could
use double-quotes instead of | i st here, make a habit of using | i st when con-
structing Tcl commands. This habit prevents bugs that arise when variable val-
ues include special characters. For more discussion, see Chapter 6 and 3.

The packing commands arrange three widgets on three different sides of
the parent frame. This is one of the few cases where a mixture of horizontal and
vertical packing within the same frame works. However, the arrangement causes
the bottom scrollbar to extend past the listbox a little bit. If you want to line up
the bottom scrollbar with the listbox, you must introduce a little frame to space
things out, and then another frame to hold this spacer and one of the scrollbars.
The second version of Scrol | edLi st box presented below achieves this.

Example 16-3 Al i st box with scrollbars and better alignment.

proc Scroll edLi stbox2 { parent args } {
Create listbox attached to scrollbars, pass thru $args
eval {listbox $parent.list \
-yscrollcommand [list $parent.sy set]
-xscrol | command [list $parent.pad.sx set]} $args

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The listbox Widget 185

scrollbar $parent.sy -orient vertical
-command [list $parent.list yview]
Create extra frame to hold pad and horizontal scrollbar
frame $parent.pad
scrollbar $parent.pad.sx -orient horizontal
-command [list $parent.list xview]
Create padding based on the scrollbar’s width
and its borders.
set pad [expr [$parent.sy cget -width] + 2* \

([$parent.sy cget -bd] +\

[$parent.sy cget -highlightthickness])]
frame $parent.pad.it -width $pad -height $pad
Arrange everything in the parent frame
pack $parent.pad -side bottom -fill x
pack $parent.pad.it -side right
pack $parent.pad.sx -side bottom -fill x
pack $parent.sy -side right -fill y
pack $parent.list -side left -fill both -expand true
return $parent.list

}
ScrolledListbox2 .f -width 20 -height 5 -setgrid true
pack .f -expand true -fill both
flistinsert end \
"The bottom scrollbar" "is aligned with frames"

The packing parameters are a bit subtle in ScrolledListbox2 . The bottom
scrollbar of the previous example is replaced by a frame, $parent.pad , that con-
tains the horizontal scrollbar and another frame for padding. It is packed with
the same parameters that the horizontal scrollbar was packed with before: -side
bottom -f il x . The padding frame and the horizontal scrollbar are packed
inside that. Here we see another case of mixing horizontal and vertical packing,
with the pad to the right and the scrollbar to the bottom:

pack $parent.pad.sx -side bottom -f ill x

The combination of -side bottom and -f ill x enables the scrollbar to fll
out the whole bottom side of the virtual packing cavity. Another way to pack the
horizontal scrollbar is given below. The -expand true is required, otherwise the
- side left squeezes down the scrollbar to a minimum size.

pack $parent.pad.sx -side left -f ill x -expand true

Programming listboxes

The listbox is the frst of the specialized text widgets that really requires some
programming to make it useful. There are listbox operations to insert and delete
items. There are also a set of operations to control the selection and scrolling, but
these are already used by the pre-defned bindings, which are discussed in the
next section.

The listoox operations use indices to reference lines in the listbox. The
lines are numbered starting at zero. Keyword indices are also used for some spe-
cial lines. The listbox keeps track of an active element, which is displayed with

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

186 Entry and Listbox Widgets Chap.16

underlined text. There is also a selection anchor that is used when adjusting
selections. The keywords used for indices are summarized in the table below.

Table 16-5 Indices for | i st box widgets

0 Index of the fist line.

active The index of the activated line.

anchor The index of the anchor point of the selection.

end Index of the last line.

nunber Index a line, counting from zero.

e,y The line closest to the specifed X and Y coordinate.

The table below gives the operations used to program a listbox. In the
table, $wis a | i st box widget. Most of the operations have to do with the selec-
tion, and these operations are already programmed by the default bindings for

the Li st box widget class.

Table 16-6 Operationson | i st box widgets..

$w activate index

$w bbox i ndex

$w cget option
$w configure ...
$w cursel ecti on

$w delete first ?last?

$w get first ?last?

$w i ndex i ndex

$w insert index ?string

string string ...?

$w nearest y

$w scan mark x y

$w scan dragto x y

$w see index

Activate the specifed line.

Return the bounding box of the text in the speci-
fed line in the form: xof f yoff width height.

Return the value of the confguration option.
Query or modify the widget confguration.
Return a list of indices of the selected lines.

Delete the lines from fi r st tol ast, including
the line at | ast. The line at fi r st is deleted if
| ast is not given.

Return the lines from fi r st tol ast as a list.

Return the numerical index corresponding to
i ndex.

Insert the st ri ng items before the line ati ndex.
If i ndex is end, then append the items.

Return the index of the line closest to the widget-
relative Y coordinate.

Start a scroll operation. x and y are widget-rela-
tive screen coordinates

Scroll from previous mark position.

Adjust the display so the line at i ndex is visible.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The listbox Widget 187

Table 16-6 Operations on | i st box widgets..

$w sel ect anchor i ndex Anchor the selection at the specifed line.

$w sel ect clear Clear the selection.

$w sel ect includes index Returns 1 ifthe line ati ndex is in the selection.
$w sel ect set start ?end? Select the lines from st art to end.

$w xvi ew Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

$w xvi ew i ndex Shift the display so the character at i ndex is at
the left edge of the display.

$w xvi ew noveto fraction Shift the display sothatfracti on of the contents
are off the left edge of the display.

$w xvi ew scrol |l num what Scroll the contents horizontally by the specifed
number of what , which can be uni t s or pages.

$w yvi ew Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

$w yvi ew i ndex Shift the display so the line at i ndex is at the top
edge of the display.

$w yvi ew noveto fraction Shift the display sothatfracti on of the contents
are off the top of the display.

$w yvi ew scrol |l num what Scroll the contents vertically by the specifed
number of what , which can be uni t s or pages.

The most common programming task for a listbox is to insert text. If your
data is in a list, then you can loop through the list and insert each element at the
end.

foreach item $list {
$listbox insert end $item
}

You can do the same thing by using eval to concatenate the list onto a sin-

gle i nsert command.
eval {$listbox insert end} $list

It is also common to react to mouse clicks on a listbox. The following exam-
ple displays two listboxes. When the user clicks on an item in the frst listbox, it
is copied into the second listbox. When an item in the second listbox is selected, it
is removed.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

188

Entry and Listbox Widgets Chap.16

Example 16-4 Choosing items from al i st box

proc ListSelect { parent choices } {

}

Create two lists side by side

frane $parent

Scrol | edLi st box2 $parent.choices -width 20 -height 5\
-setgrid true

Scrol | edLi st box2 $parent. pi cked -width 20 -height 5\
-setgrid true

The setgrid allows interactive resizing, so the

pack paraneters need expand and fill.

pack $parent.choi ces $parent.picked -side left \
-expand true -fill both

Sel ecting in choice noves itens into picked

bi nd $parent. choices.list <ButtonPress-1>\
{Li stSel ectStart %V %}

bi nd $parent.choices.list <Bl-Mtion> \
{Li st Sel ect Ext end %W %}

bi nd $parent.choices.list <ButtonRel ease-1> \
[1ist ListSelectEnd %W % $parent. pi cked. i st]

Sel ecting in picked deletes itens

bi nd $parent. pi cked.|ist <ButtonPress-1>\
{ListSel ectStart W %}

bi nd $parent. picked.list <Bl-Mtion> \
{Li st Sel ect Ext end %N %}

bi nd $parent. pi cked. i st <ButtonRel ease-1> \
{Li st Del et eEnd %N %}

Insert all the choices

eval is used to construct a command where each
itemin choices is a separate argunent

eval {$parent.choices.list insert 0} $choices

proc ListSelectStart { wy } {

}

$w sel ect anchor [$w nearest $y]

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Listbox Bindings 189

proc ListSelectExtend { wy } {
$w sel ect set anchor [$w nearest $y]

proc ListSelectEnd {wy list} {
$w sel ect set anchor [$w nearest $y]
foreach i [$w cursel ection] {
$list insert end [$w get $i]
}

proc ListDel eteEnd {w y} {
$w sel ect set anchor [$w nearest $y]
foreach i [lsort -decreasing [$w curselection]] {
$list delete $i
}
}

Li st Sel ect .f {appl es oranges bananas \
grapes mangos peaches pears}
pack .f -expand true -fill both

The Li st Sel ect procedure creates two lists using Scrol | edLi st box2. Bind-
ings are created to move items from choices to picked, and to delete items from
picked. Consider the <But t onRel ease- 1> binding for choices:

bi nd $parent.choices.list <ButtonRel ease-1> \
[list ListSelectEnd YW % $parent. picked.list]

The | i st command is used to construct the Tcl command because we need
to expand the value of $par ent at the time the binding is created. The command
will be evaluated later at the global scope, and par ent will not be defhed after
the Li st Sel ect procedure returns. Or, worse yet, an existing global variable
named par ent will be used, which is unlikely to be correct!

Short procedures are used to implement the binding command, even though
two of them are just one line. This style has two advantages. First, it confhes the
%substitutions done by bi nd to a single command. Second, if there are any tem-
porary variables, such as the loop counter i , they are hidden within the scope of
the procedure.

The Li st Sel ect End procedure extends the current selection to the | i st box
item under the given Y coordinate. It gets the list of all the selected items, and
loops over this list to insert them into the other list. The Li st Del et eEnd proce-
dure is similar. However, it sorts the selection indices in reverse order. It deletes
items from the bottom up so the indices remain valid throughout the process.

Listbox Bindings

A li st box has an active element and it may have one or more selected elements.
The active element is highlighted with an underline, and the selected elements
are highlighted with a different color. There are 4 selection modes for a listbox,
and the bindings vary somewhat depending what mode the listbox is in. You can
always select items with the mouse bindings, but the listbox needs the input

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

190 Entry and Listbox Widgets Chap.16

focus for the key bindings to work. The 4 possible sel ect Mbde settings are
described below.

Table 16-7 The values for the sel ect Mbde ofal i st box.

singl e A single element can be selected.

browse A single element can be selected, and the selection can be
dragged with the mouse. This is the default.

mul tiple More than one element can be selected by toggling the selection
state of items, but you only select or deselect one line at a time.

ext ended More than one element can be selected by dragging out a selec-
tion with the shift or control keys.

Browse select mode

In br owse selection mode, <But t on- 1> selects the item under the mouse and
dragging with the mouse moves the selection, too. Table 16-8 gives the bindings
for br owse mode.

Table 16-8 Bindings for br owse selection mode.

<Button-1> Select the item under the mouse. This becomes the
active element, too.

<B1l- Moti on> Same as <But t on- 1>, the selection moves with the
mouse.

<Shi ft-Button-1> Activate the item under the mouse. The selection is not
changed.

<Key- Up> <Key- Down> Move the active item up (down) one line, and select it.

<Cont r ol - Hone> Activate and select the frst element of the listbox.
<Cont r ol - End> Activate and select the last element of the listbox.
<space> <Sel ect > Select the active element.

<Cont rol - sl ash>

Single select mode

In singl e selection mode, <But t on- 1> selects the item under the mouse,
but dragging the mouse does not change the selection. When you release the
mouse, the item under that point is activated. Table 16—-9 gives the bindings for
si ngl e mode.

Table 16-9 Bindings foral i st box in si ngl e selectMode.

<But t onPr ess- 1> Select the item under the mouse.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Listbox Bindings

191

Table 16-9 Bindings foral i st box in si ngl e selectMode.

<But t onRel ease- 1>

<Shi ft-Button-1>

<Key- Up> <Key- Down>

<Cont r ol - Hone>
<Cont r ol - End>

<space> <Sel ect>
<Control - sl ash>

<Cont r ol - backsl ash>

Activate the item under the mouse.

Activate the item under the mouse. The selection is not
changed.

Move the active item up (down) one line. The selection
is not changed.

Activate and select the fist element of the listbox.
Activate and select the last element of the listbox.

Select the active element.

Clear the selection.

Extended select mode

In ext ended selection mode multiple items are selected by dragging out a
selection with the frst mouse button. Hold down the Shift key to adjust the
ends of the selection. Use the Control key to make a disjoint selection. The Con-
trol key works in a toggle fashion, changing the selection state of the item under
the mouse. If this starts a new part of the selection, then dragging the mouse
extends the new part of the selection. If the toggle action cleared the selected
item, then dragging the mouse continues to clear the selection. The extended
mode is quite intuitive once you try it out. Table 16—10 gives the complete set of

bindings for ext ended mode.

Table 16-10 Bindings for ext ended selection mode.

<Button-1>

<B1- Moti on>
<But t onRel ease- 1>

<Shi ft-Button-1>

<Shi ft-B1l- Moti on>
<Control -Button-1>

<Cont r ol - B1- Mot i on>

<Key- Up> <Key- Down>

Select the item under the mouse. This becomes the
anchor point for adjusting the selection.

Sweep out a selection from the anchor point.
Activate the item under the mouse.

Adjust the selection from the anchor item to the item
under the mouse.

Continue to adjust the selection from the anchor.

Toggle the selection state of the item under the
mouse, and make this the anchor point.

Set the selection state of the items from the anchor
point to the item under the mouse to be the same as
the selection state of the anchor point.

Move the active item up (down) one line, and start
out a new selection with this item as the anchor
point.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

192

Entry and Listbox Widgets Chap.16

Table 16-10 Bindings for ext ended selection mode.

<Shi ft - Up> <Shi ft - Down>

<Cont r ol - Honme>
<Control - Shi ft - Homre>
<Contr ol - End>
<Control - Shift-End>
<space> <Sel ect >
<Escape>

<Control - sl ash>

<Cont r ol - backsl ash>

Move the active element up (down) and extend the
selection to include this element.

Activate and select the fist element of the listbox.
Extend the selection to the fist element.

Activate and select the last element of the listbox.
Extend the selection to the last element.

Select the active element.

Cancel the previous selection action.

Select everything in the listbox.

Clear the selection.

Multiple select mode

In mul ti pl e selection mode you can have more than one item selected, but
you only add or remove one item at a time. Dragging the mouse does not sweep
out a selection. If you click on a selected item it is deselected. Table 16—11 gives
the complete set of bindings for mul ti pl e selection mode.

Table 16-11 Bindings for mul ti pl e selection mode.

<Button-1>
<But t onRel ease- 1>

<Key- Up> <Key- Down>

<Shi ft - Up> <Shi ft - Down>
<Cont r ol - Hone>

<Contr ol - Shi ft - Home>
<Contr ol - End>

<Control - Shift-End>
<space> <Sel ect >
<Control - sl ash>

<Cont r ol - backsl ash>

Select the item under the mouse.
Activate the item under the mouse.

Move the active item up (down) one line, and start
out a new selection with this item as the anchor
point.

Move the active element up (down).

Activate and select the fist element of the listbox.
Activate the fist element of the listbox.

Activate and select the last element of the listbox.
Activate the last element of the listbox.

Select the active element.

Select everything in the listbox.

Clear the selection.

Scroll bindings

There are a number of bindings that scroll the display of the listbox. As well

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Listbox Bindings 193

as the standard middle-drag scrolling, there are some additional key bindings for
scrolling. The scroll-related bindings are summarized in the table below.

Table 16-12 Scroll bindings common to all selection modes.

<But t on- 2> Mark the start of a scroll operation.
<B2- Mot i on> Scroll vertically and horizontally.
<Left> <Ri ght > Scroll horizontally by one character.

<Control -Left> <Control - Ri ght> Scroll horizontally by one screen
<Control - Prior> <Control - Next > width.

<Prior> <Next> Scroll vertically by one screen height.

<Home> <End> Scroll to left and right edges of the
screen, respectively.

listbox attributes

Table 1613 lists the | i st box widget attributes. The table uses the X resource
name for the attribute, which has capitals at internal word boundaries. In Tcl
commands the attributes are specifed with a dash and all lowercase.

Table 16-13 Resource names of attributes for | i st box widgets.

backgr ound
bor der Wdt h
cursor

export Sel ection

f ont

foreground

hei ght

hi ghl i ght Col or

hi ghl i ght Thi ckness
relief

sel ect Backgr ound
sel ect For egr ound
sel ect Bor der W dt h
sel ect Mbde
setGid

Background color (also bg).
Extra space around the edge of the text.
Cursor to display when mouse is over the widget.

If t r ue, then the selected text is exported via the X
selection mechanism.

Font for the text.

Foreground color. (Also f g).

Number of lines in the listbox.

Color for input focus highlight.

Thickness of focus highlight rectangle.

3D relief: f | at, sunken, r ai sed, gr oove, ri dge.
Background color of selection.

Foreground color of selection.

Widget of selection border. Non-zero for 3D effect.
br owse, si ngl e, ext ended, nul ti pl e

Boolean. Set gridding attribute.

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

194 Entry and Listbox Widgets Chap.16

Table 16-13 Resource names of attributes for | i st box widgets.

wi dth Width, in average character sizes.
xScr ol | Command Used to connect | i st box to a horizontal scrollbar.
yScr ol | Conmand Used to connect | i st box to a vertical scrollbar.

Geometry gridding

The set G'i d attribute affects interactive resizing of the window containing
the listbox. By default, a window can be resized to any size. If gridding is turned
on, however, the size is restricted so that a whole number of listbox lines and a
whole number of average-width characters will be displayed. In addition, grid-
ding affects the user feedback during an interactive resize, assuming the window
manager displays the current size of the window in numeric terms. Without grid-
ding the size is reported in pixel dimensions. When gridding is turned on, then
the size is reported in grided units (e.g., 20x10).

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 17

Focus, Grabs, and Dialogs

Input focus directs keyboard events to different widgets. The grab mechanism
lets a widget capture the input focus. Dialog boxes are the classic
example of a user interface object that uses grabs.

.D ialog boxes are a classic feature in a
user interface. The application needs some user response before it can continue.
It displays some information and some controls, and the user must interact with
this dialog box before the application can continue. To implement this, the appli-
cation grabs the input focus so the user can only interact with the dialog box.
This chapter describes focus and grabs, and fhishes with some examples of dia-
log boxes.

Input Focus

The X window system directs keyboard events to the main window that cur-
rently has the input focus. The application, in turn, directs the keyboard events
to one of the widgets within that toplevel window. The f ocus command is used to
set focus to a particular widget. Tk remembers what widget has focus within a
toplevel window, and automatically gives focus to that widget when the window
manager gives focus to a toplevel window.

Two focus models are used: focus-follows-mouse, and click-to-type. In the
frst, moving the mouse into a toplevel window gives the application focus. In the
second, the user must click on a window for it to get focus, and thereafter the
position of the mouse is not important. Within a toplevel window, Tk uses the
click-to-type model by default. In addition, the creation order of widgets deter-

195

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

196 Focus, Grabs, and Dialogs Chap.17

mines a traversal order for focus. Use the t k_focusNext and tk_focusPrev pro-
cedures to change the focus to the next (previous) widget in the focus order.

You can get the focus-follows-mouse model within a toplevel window by call-
ing the t k_f ocusFol | owsMbuse procedure. However, in many cases you will fad
that an explicit focus model is actually more convenient for users.

The focus command

Table 17-1 sumarises the f ocus command. The implementation supports
an application that has windows on multiple displays with a separate focus win-
dow on each display. The -displayof option can be used to query the focus on a
particular display. The -lastfor option fads out what widget last had the focus
within the same toplevel as another window. Tk will restore focus to that window
if the widget that has the focus is destroyed. The toplevel widget gets the focus if
no widget claims it.

Table 17-1 The f ocus command.

focus Return the widget that currently has the focus on the
display of the application’s main window.

focus w ndow Set the focus to wi ndow
focus -displayof win Return the focus widget on the same display as wi n.

focus -lastfor win Return the name of the last widget to have the focus
on the display of wi n.

Focus follows mouse

To implement the focus-follows-mouse model you need to track the <Ent er >
and <Leave> events that are generated when the mouse moves in and out of wid-
gets. The t k_f ocusFol | owsMouse procedure sets up this binding (the real proce-
dure is only slightly more complicated).

bind all <Enter> {focus %W

It might be better to set up this binding only for those widget classes for
which it makes sense to get the input focus. The next example does this. The
focus detail (%) is checked by the code in order to fiter out extraneous focus
events generated by X. That trick is borrowed from t k_f ocusFol | owsMuse. (The
Xlib reference manual discourages you from attempting to understand the
details of its focus mechanism. After reading it, I understand why. This code
seems plausible.)

Example 17-1 Setting focus-follows-mouse input focus model.

proc FocusFol | onsMbuse {} {
foreach class {Button Checkbutton Radi obutton Menubutton\
Menu Canvas Entry Listbox Text} {

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Grabbing the Focus 197

bi nd $cl ass <Enter> {

if {("%" == "NotifyAncestor") ||
("%l" == "NotifyNonlinear") ||
("9%" == "Notifylnferior")} {
focus oW
}
}
}
}
}
Click to type

To implement the click-to-type focus model you need to set up a binding on
the button events. The <Any-Button> event will work nicely.
bind all <Any-Button> {focus %\
Again, it might be better to restrict this binding to those classes for which it
makes sense. The previous example can be modifed easily to account for this.

Hybrid models

You can develop hybrid models that are natural for users. If you have a dia-
log or form-like window with several entry widgets, then it can be tedious for the
user to position the mouse over the various entries in order to direct focus.
Instead, click-to-type as well as keyboard shortcuts like <Tab> or <Ret ur n> may
be easier for the user, even if they use focus-follows-mouse with their window
manager.

Grabbing the Focus

An input grab is used to override the normal focus mechanism. For example, a
dialog box can grab the focus so that the user cannot interact with other windows
in the application. The typical scenario is that the application is performing
some task but it needs user input. The grab restricts the user’s actions so it can-
not drive the application into an inconsistent state. A global grab prevents the
user from interacting with other applications, too, even the window manager. Tk
menus use a global grab, for example, which is how they unpost themselves no
matter where you click the mouse. When an application prompts for a password
a global grab is also a good idea. This prevents the user from accidentally typing
their password into a random window. Table 17-1 summarizes the grab com-
mand.

Table 17-2 The gr ab command.

grab ?-gl obal ? wi ndow Set a grab to a particular window.

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

198 Focus, Grabs, and Dialogs Chap.17

Table 17-2 The gr ab command.

grab current ?w ndow? Query the grabs on the display of wi ndow or on all
displays if Wi ndowis omitted.

grab rel ease wi ndow Release a grab on wi ndow
grab set ?-global? win Seta grab to a particular window.

grab status w ndow Returns none, | ocal , or gl obal .

In most cases you only need to use the grab and gr ab rel ease commands.
Note that the grab set command is equivalent to the gr ab command. The next
section includes examples that use the grab command.

Dialogs

The tkwait Command

This section presents a number of different examples of dialogs. In nearly all
cases the t kwai t command is used to wait for the dialog to complete. This com-
mand waits for something to happen, and the key thing is that t kwai t allows
events to be processed while waiting. This effectively suspends part of your
application while other parts can respond to user input. Table 17-1 summarizes
the t kwai t command.

Table 17-3 Thet kwai t command.

tkwait variabl e varnane Wait for the global variable var nane to be set.
tkwait visibility win Wait for the window wi n to become visible.

tkwait wi ndow win Wait for the window wi n to be destroyed.

The variable specifed in the tkwait vari abl e command is a global vari-
able. Remember this if you use procedures to modify the variable. They must
declare it global or the tkwait command will not notice the assignments.

The tkwait visibility waits for the visibility state of the window to change.
Most commonly this is used to wait for a newly created window to become visible.
For example, if you have any sort of animation in a complex dialog, you’ll want to
wait until the dialog is displayed before starting the animation.

Prompter dialog

The GetVal ue dialog gets a value from the user, returning the value
entered, or the empty string if the user cancels the operation.

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Dialogs 199

Example 17-2 A simple dialog.

proc CGetValue { prompt } {
gl obal prompt
set f [toplevel .pronpt -borderw dth 10]
nessage $f.nmsg -text $pronpt
entry $f.entry -textvariable pronpt(result)
set b [frame $f.buttons -bd 10]
pack $f.nmsg $f.entry $f.buttons -side top -fill x

bi nd $f.entry <Return> {set pronpt(ok) 1}

bi nd $f.entry <Control -c> {set pronpt(ok) 0}

button $b. ok -text OK -command {set pronpt(ok) 1}

button $b.cancel -text Cancel -command {set pronpt(ok) 0}

focus $f.entry
grab $w
tkwait variabl e pronpt (ok)
grab rel ease $w
destroy $w
if {$pronpt(ok)} {
return $pronpt(result)
} else {
return {}
}

Cet Val ue "Pl ease enter a nane"

The tkwai t vari abl e command is used to wait for the dialog to complete.
Anything that changes the pr onpt (ok) variable will cause the t kwai t command
to return, and then the dialog will be completed. The variable is set if the user
presses the OK or Cancel buttons, of if they press <Ret ur n> or <Cont r ol - ¢> in the
entry widget.

The focus is set to the entry widget and a grab is placed so the user can only
interact with the dialog box. The sequence of focus, grab, tkwait, and grab
rel ease is fairly standard.

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

200 Focus, Grabs, and Dialogs Chap.17
Destroying widgets

The destroy command deletes one or more widgets. If the widget has chil-
dren, all the children are destroyed, too. The example deletes the dialog with a
single destroy operation on the toplevel window.

You can wait for a window to be deleted with the tkwait window command.

tkwait window pat hnane

This provides an alternate way to synchronize things when using dialogs.

Focusing on buttons

The previous example defhed two key bindings for the entry widget that
invoked the same commands used by the buttons. An alternative that is more
like the interfaces in the Windows environment is to has key bindings that shift
the focus to different widgets. The Tk widgets, even buttons and scrollbars, have
bindings that support keyboard interaction. A <space> for example, will invoke
the command associated with a button, assuming the button has the input focus.
The Tk widgets highlight themselves when they get focus, too, so the user has
some notion of what is going on.

The following bindings cause the <Tab> key to cycle focus among the wid-
gets in the prompter dialog.

bind $f.entry <Tab> [list focus $b.ok]
bind $b.ok <Tab> [list focus $b.cancel]
bind $b.cancel <Tab> [list focus $f.entry]

Another way to shift focus is to use a standard key sequence where the last
letter indicates what widget to focus on. The label and button widgets have an
underline attribute that indicates what letter to underline. If you use that letter
as the ID for a widget, users will know (with some training) how to focus on dif-
ferent widgets.

Animation with the update command

Suppose you want to entertain your user while your application is busy. By
default, the user interface will just hang until your processing completes. Even if
you are changing a label or entry widget in the middle of processing, the updates
to that widget will be batched up until an idle moment. The user will notice that
the window is not refreshed when it gets obscured and uncovered, and they will
not see your feedback. The update command forces Tk to go through its event
loop. The safest way to use update is with its idletasks option.

Example 17-3 A feedback procedure.

proc Feedback { message } {
global feedback
An entry widget is used because it won't change size
based on the message length, and it can be scrolled

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

File Selection Dialog 201

set e $f eedback(entry)

$e config -state norma

$e delete 0 end

$e insert 0 $nessage

Leave the entry in a read-only state
$e config -state disabled

Force a display update

updat e i dl et asks

The Tk widgets update their display at idle moments, which basically
means after everything else is taken care of. This lets them collapse updates into
one interaction with the X server, and it improves the batching effects that are
part of the X protocol. A call to updat e i dl et asks causes any pending display
updates to be processed.

If you use the update command with no options, then all events are pro-
cessed. In particular, user input events are processed. If you are not careful, it
can have unexpected effects because another thread of execution is launched into
your Tcl interpreter. The current thread is suspended and any callbacks that
result from input events get to execute. It is usually better to use the t kwai t
command instead of a naked updat e.

File Selection Dialog

Selecting fles is common to many applications. This section presents a fle selec-
tion dialog that supports fle name completion. The dialog displays the current
directory, and has an ent ry widget in which to enter a name. It uses al i st box to
display the contents of the current directory. There is an K and a Cancel button.
These buttons set a variable and the dialog fhishes, returning the selected path-
name or an empty string.

Some key bindings are set up to allow for keyboard selection. Once the cor-
rect pathname is entered, a <Ret ur n> is equivalent to hitting the OK button.
<Control - c> is equivalent to hitting the Cancel button. <space> does fle name
completion, which is discussed in more detail below. A <Tab> changes focus to the
listbox so that its bindings can be used for selection. The arrow keys move the
selection up and down. A <space> copies the current name into the entry, and a
<Ret ur n> is like hitting the OK button. A picture of the dialog appears below.

Creating the dialog

Example 17-4 A file selection dialog.

proc fileselect {{why "File Selection"} {default {}} } {
gl obal fileselect

catch {destroy .fileselect}

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

202 Focus, Grabs, and Dialogs Chap.17

set t [toplevel .fileselect -bd 4]

message $t.nsg -aspect 1000 -text $why
pack $t.nmsg -side top -fill x

Create a read-only entry for the current directory

set fileselect(dirEnt) [entry $t.dir -width 15\
-relief flat -state disabl ed]

pack $t.dir -side top -fill x

Create an entry for the pathnane

The value is kept in filesel ect(path)

frane $t.top

| abel $t.top.l -text "File:" -padx O

set e [entry $t.top.path -relief sunken \
-textvariable filesel ect(path)]

pack $t.top -side top -fill x

pack $t.top.| -side left

pack $t.top.path -side right -fill x -expand true

set fileselect(pathEnt) $e

Set up bindings to invoke OK and Cance
bi nd $e <Return> filesel ect K

bi nd $e <Control -c> fil esel ect Cance

bi nd $e <space> fil esel ect Conpl ete

focus $e

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

File Selection Dialog 203

Create a listbox to hold the directory contents
listbox $t.list -yscrollcommand [list $t.scroll set]
scrol | bar $t.scroll -command [list $t.list yview

A single click copies the name into the entry

A doubl e-click selects the nane

bind $t.list <Button-1> {fileselectdick %}

bind $t.|ist <Doubl e-Button-1> {
fileselectdick % ; fileselectX

}

Warp focus to listbox so the user can use arrow keys
bi nd $e <Tab> "focus $t.list ; $t.list select set 0"
bind $t.list <Return> filesel ect Take

bind $t.list <space> {filesel ect Take ; break}

bind $t.list <Tab> "focus $e"

Create the OK and Cancel buttons
The OK button has a rimto indicate it is the default
frame $t.buttons -bd 10
frame $t.buttons.ok -bd 2 -relief sunken
button $t.buttons.ok.b -text OK\
-command fil esel ect K
button $t. buttons.cancel -text Cancel \
-command fil esel ect Cance

Pack the list, scrollbar, and button box
in a horizontal stack bel ow the upper widgets
pack $t.list -side left -fill both -expand true
pack $t.scroll -side left -fill y
pack $t.buttons -side left -fill both
pack $t.buttons.ok $t.buttons.cancel \
-side top -padx 10 -pady 5
pack $t.buttons.ok.b -padx 4 -pady 4

Initialize variables and list the directory
if {[string length $default] == 0} ({
set fileselect(path) {}
set dir [pwd]
} else {
set fileselect(path) [file tail $default]
set dir [file dirname $defaul t]

set fileselect(dir) {}
set fileselect(done) O

Wait for the listbox to be visible so

we can provide feedback during the listing
tkwait visibility .fileselect.list
fileselectList $dir

tkwait variable filesel ect(done)

destroy .filesel ect
return $fil esel ect(path)

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

204 Focus, Grabs, and Dialogs Chap.17

The t kwai t command is used in two ways in this dialog. First, t kwai t vi s-
i bility is used so we can delay listing the directory until the listbox is visible. A
special message is displayed there during the listing, which can take some time
for larger directories. This ensures that the dialog appears quickly so the user
knows what is going on. After this, t kwai t vari abl e is used to wait for the user
interaction to complete.

Listing the directory

Much of the complexity of the fle selection process has to do with looking
through the directory and doing fle name completion. The code uses file
di rname to extract the directory part of a pathname, and file tail to extract
the last component of a directory. The gl ob command is used to do the directory
listing. It also has the nice property of expanding pathnames that begin with a ~.

Example 17-5 Listing a directory for fileselect.

proc fileselectList { dir {files {}} } {
gl obal fileselect

Update the directory, being careful
to viewthe tail end

set e $fileselect(dirEnt)

$e config -state nornal

$e delete 0 end

$e insert 0 $dir

$e config -state disabled

$e xview noveto 1

G ve the user sone feedback

set fileselect(dir) $dir
.fileselect.list delete 0O end
.fileselect.list insert O Listing...
updat e idl et asks

.fileselect.list delete O
if {[string length $files] == 0} {
List the directory and add an
entry for the parent directory
set files [glob -noconplain $fileselect(dir)/*]
.fileselect.list insert end ../

}
Sort the directories to the front
set dirs {}

set other {}
foreach f [Isort $files] {
if [file isdirectory $f] {
| append dirs [file tail $f]/

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

File Selection Dialog 205

} else {
| append others [file tail $f]

foreach f [concat $dirs $others] {
.fileselect.list insert end $f

}

The fil esel ectList procedure does three things: update the directory
name, provide some feedback, and fnally list the directory. The entry widget
that holds the pathname is kept read-only, so it has to be reconfgured when it is
updated. Then the entry’s xvi ew novet o operation is used to ensure that the tail
end of the pathname is visible. An argument of 1 is specifed, which tries to scroll
all of the pathname off screen to the left, but the widget implementation limits
the scrolling so it works just the way we want it to.

Before the directory is listed the listbox is cleared an a single line is put into
it. The update idletasks command forces Tk to do all its pending screen updates
so the user sees this message while she waits for the directory listing.

The directory listing itself is fairly straight-forward. The glob command is
used if no fle list is passed in. The slow part is the file isdirectory test on
each pathname to decide if the trailing / should be appended. This requires a fle
system st at system call, which can be expensive. The directories are sorted into
the beginning of the list.

Accepting a name

There are a few different cases when the user clicks the OK button or other-
wise accepts the current name. The easy case is when the name matches an
existing fle in the current directory. The complete name is put into the global
filesel ect(path) variable and the fil esel ect (done) variable is set to signal
that we are done. If an existing directory is specifed, then the fil esel ect Li st
routine is called to list its contents. The parent directory has to be handled spe-
cially because we want to trim off the last component of the current directory.
Without the special case the ../ components remain in the directory pathname,
which is still valid, but ugly.

The user can type a fle name pattern, such as *.tcl. We test for this by
trying the gl ob command to see if it matches on anything. If it matches a single
fle, filesel ect K is called recursively. Otherwise, fil esel ect Li st is called to
display the results.

If the gl ob fails, then the user may have typed in a new absolute pathname.
Until now we have assumed that what they typed was relative to the current
directory. The gl ob command is used again, and we leave out the current direc-
tory. If gl ob fails the user has not typed anything good, so we attempt fle name
completion. Otherwise we ignore the return from gl ob and call fil esel ect K
recursively instead. This works because we fk up the current directory with fil e
di r name, which doesn’t care if the input name exists.

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

206 Focus, Grabs, and Dialogs Chap.17

Example 17-6 Accepting a file name.

proc fileselectOK {} {
global fileselect

Handle the parent directory specially

if {[regexp { '/?} $fileselect(path)]} {
set fileselect(path) {}
fileselectList [file dirname $fileselect(dir)]
return

}
set path $fileselect(dir)/$fileselect(path)

if [file isdirectory $path] {
set fileselect(path) {}
fileselectList $path
return

}

if [file exists $path] {
set fileselect(path) $path
set fileselect(done) 1
return

Neither a file or a directory.
See if glob will find something
if [catch {glob $path} files] {
No, perhaps the user typed a new
absolute pathname
if [catch {glob $fileselect(path)} path] {
Nothing good - attempt completion
fileselectComplete
return
}else {
OK - try again
set fileselect(dir) \
[file dirname $fileselect(path)]
set fileselect(path) \
[file tail $fileselect(path)]
fileselectOK
return

}else {

Ok - current directory is ok,

either select the file or list them.

if {{llength [split $files]] == 1} {
set fileselect(path) $files
fileselectOK

}else {
set fileselect(dir) \

[file dirname [lindex $files 0]]

fileselectList $fileselect(dir) $files

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

File Selection Dialog 207

}

Easy stuff

If the user hits Cancel, or presses <Control -c>, the result variable is
cleared and the done variable is set to end the dialog. The fil esel ect Cancel
procedure does this.

The user can select something from the listbox in two ways. If they click on
an item, then the listbox near est operation is used to fad out which one. If they
have shifted focus to the listbox with <Tab> and then press <space>, then the
listbox cur sel ecti on operation is used to fad out what is selected. These two
operations return a listbox index, so the listbox get operation is used to get the
actual value.

Example 17-7 Simple support routines.

proc filesel ectCancel {} {
gl obal fileselect
set fileselect(done) 1
set fileselect(path) {}

}

proc fileselectdick { y } {
Take the itemthe user clicked on
gl obal fileselect
set | .fileselect.list
set fileselect(path) [$l get [$] nearest $y]]
focus $filesel ect(pathEnt)

proc filesel ect Take {} {
Take the currently selected list item and
change focus back to the entry
gl obal fileselect
set | .fileselect.list
set fileselect(path) [$l get [$l curselection]]
focus $fil esel ect(pathEnt)

File name completion

File name completion tries to match what the user has typed against exist-
ing fles. It more complex than using gl ob to match fles because the common
prefkx of the matching names is flled in for the user . In addition, the matching
names are listed in the | i st box. The search for the matching prefk is crude, but
effective. The prefk begins as the string typed by the user . Then, the frst match-
ing name from the gl ob is used as the source for the rest of the prefk. The prefk
is lengthened by one until it fails to match all the names in the list.

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

208 Focus, Grabs, and Dialogs Chap.17

Example 17-8 File name completion.

proc fileselectConplete {} {
gl obal fileselect

Do file name conpl etion
Nuke the space that triggered this cal
set fileselect(path) [string trim$fileselect(path) \t\]

Figure out what directory we are | ooking at
dir is the directory
tail is the partial nane
if {[string match /* $fileselect(path)]} {
set dir [file dirname $filesel ect(path)]
set tail [file tail $fileselect(path)]
} elseif [string match ~* $fileselect(path)] {
if [catch {file dirname $fileselect(path)} dir] {
return ; # Bad user
}

set tail [file tail $fileselect(path)]
} else {
set path $fileselect(dir)/$fileselect(path)
set dir [file dirname $path]
set tail [file tail $path]
}
See what files are there
set files [glob -noconplain $dir/$tail*]
if {[Ilength [split $files]] == 1} {
Matched a single file
set fileselect(dir) $dir
set fileselect(path) [file tail $files]
} else {
if {[Ilength [split $files]] > 1} {
Find the | ongest comon prefix
set | [expr [string length $tail]-1]
set mss O
Renenber that files has absol ute paths
set filel [file tail [lindex $files 0]]
while {!$mss} {

incr |

if {$I == [string length $filel]} {
filel is a prefix of all others
br eak

}
set new [string range $filel 0 $I]
foreach f $files {
if I'[string match $new [file tail $f]] {
set mss 1
incr | -1
br eak

}

}
set fileselect(path) [string range $filel 0 $I]

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

File Selection Dialog 209

fileselectList $dir $files

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

210 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 18

The text Widget

Tk t ext widget is a general purpose editable text widget with features for line
spacing, justification, tags, marks, and embedded windows.

The Tk text widget is a versatile widget
that is simple to use for basic text display and manipulation, while at the same
time it has many advanced features to support sophisticated applications. The
line spacing and justiftation can be controlled on a line-by-line basis. Fonts,
sizes, and colors are controlled with tags that apply to ranges of text. Edit opera-
tions use positional marks that keep track of locations in text, even as text is
inserted and deleted.

Text widget taxonomy

Tk provides several widgets that handle text. The | abel widget provides a
single line of read-only text. The entry widget provides a single line for user
type-in. The nessage widget arranges its read-only text in multiple lines with a
given width or aspect ratio. The |i st box widget holds a set of scrollable text
lines. And, fhally, the t ext widget is a general-purpose multi-line text widget.
While it is possible to use the t ext widget for all of these purposes, using the spe-
cialized widgets can be more convenient.

The main drawback of having several different text-related widgets is that
there is some inconsistency among the widgets. The entry, | i st box, and t ext
widgets have different notions of text addressing. The ent ry addresses charac-
ters, the | i st box addresses lines, and the t ext widget addresses lines and char-
acters. In addition, both the ent ry and t ext widgets provide operations to insert

211

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

212 The text Widget Chap.18

and edit text, but they differ slightly. Chapter 18 describes the entry and | i st -
box widgets. Chapter 15 describes the | abel and nessage widgets.

Text Indices

The characters in a text widget are addressed by their line number and the char-
acter position within the line. Lines are numbered starting at one, while charac-
ters are numbered starting at zero. The numbering for lines was chosen to be
compatible with other programs that number lines starting at one, like compilers
that generate line-oriented error messages. Here are some examples of text indi-
ces.

1.0 The frst character .
1.1 The second character on the fist line.
l.end The character just before the newline on line one.

There are also symbolic indices. The i nsert index is the position at which new
characters are normally inserted when the user types in characters. You can
defne new indices called marks, too, as described below. Table 18—1 summa-
rizes the various forms for a text index.

Table 18-1 Forms for the indices int ext widgets.

l'i ne. char Lines count from 1. Characters count from 0.
@,y The character under the specifed position.

end Just after the very last character.

i nsert The position right after the insert cursor.

mar k Just after the named mark.

tag. first The frst character in the range tagged with t ag.
tag. | ast Just after the last character tagged with t ag.

wi ndow The position of the embedded wi ndow

The text widget supports a simple sort of arithmetic on indices. You can
specify "the end of the line with this index" and "three characters before this
index", and so on. This is done by grouping a modifying expression with the
index. For example, the i nsert index can be modifed like this:

"insert |ineend"
"insert -3 chars"

Table 18-2 summarizes the set of index modifers.

The interpretation of indices and their modifers is designed to operate well
with the del ete and addt ag operations of the t ext widget. These operations

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Marks 213

Table 18-2 Index modifiers for t ext widgets.

+ count chars count characters past the index.

- count chars count characters before the index.

+ count lines count lines past the index, retaining character position.
- count lines count lines past the index, retaining character position.
l'inestart The beginning of the line.

| i neend The end of the line (just before the newline character).
wor dst ar t The frst character of a word.

wor dend Just after the last character of a word.

apply to a range of text defhed by two indices. The second index refers to the
character just after the end of the range. For example, the following command
deletes the word containing the insert cursor.

$t delete "insert wordstart" "insert wordend"

You can supply several modifers to an index, and they are applied in left to
right order. If you want to delete a whole include, including the trailing newline,
you need to do the following. Otherwise the newline remains and you are left
with a blank line.

$t delete "insert linestart” "insert |lineend +1 char"

Text Marks

A mark is a symbolic name for a position between two characters. Marks have
the property that when text is inserted or deleted they retain their logical posi-
tion, not their numerical index position. Even if you delete the text surrounding
a mark it remains intact. Marks are created with the mark set operation, and
have to be explicitly deleted with the mar k unset operation. Once defned, a mark
can be used in operations that require indices.
$t mark set foobar "insert wordstart”
$t del ete foobar "foobar |ineend"
$t mark unset foobar
When a mark is defned, it is set to be just before the character specifed by
the index. In the example above, this is just before the frst character of the word
where the insert cursor is. When a mark is used in an operation that requires an
index it refers to the character just after the mark. So, in many ways the mark
seems associated with the character right after it, except that the mark remains
even if that character is deleted.
You can use almost any string for the name of a mark. However, do not use
pure numbers, and do not include spaces, plus (+) or minus (-). These characters
are used in the mark arithmetic and will cause problems if you put them into

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

214 The text Widget Chap.18

mark names. The mar k nanes operation returns a list of all defned marks.

The i nsert mark defnes where the insert cursor is displayed. The i nsert
mark is treated specially: you cannot remove it with the mar k unset operation.
Attempting to do so does not raise an error, though, so the following is a quick
way to unset all marks.

eval {$t nmark unset} [$t mark names]

Each mark has a gravity that determines what happens when characters
are inserted at the mark. The default gravity is ri ght, which means that the
mark sticks to the character that was to its right. Inserting text at a mark with
right gravity causes the mark to be pushed along so it is always after the
inserted text.” With | ef t gravity the mark stays with the character to its left, so
inserted text goes after the mark and the mark does not move. The mark grav-
i ty operation is used to query and modify the gravity of a mark.

$t mark gravity foobar
=> right
$t mark gravity foobar left

Text Tags

A tag is a symbolic name for a range of characters. You can use almost any string
for the name of a tag. However, do not use pure numbers, and do not include
spaces, plus (+) or minus (-). These characters are used in the mark arithmetic
and will cause problems if you use them tag names.

A tag has attributes that affect the display of text that is tagged with it.
These attributes include fonts, colors, line spacing and justifeation. A tag can
have event bindings so you can create hypertext. A tag can be used for non-dis-
play reasons, too. The text widget operations described later include operations
to fnd out what tags are defned and where they are applied.

A tag is added to a range with the t ag add operation. The following com-
mand applies the tag ever ywher e to all the text in the widget.

$t tag add everywhere 1.0 end
You can add one or more tags when text is inserted, too.
$t insert insert "new text" soneTag soneCt her Tag

If you do not specify tags when text is inserted, then the text will pick up
any tags that are present on the characters on both sides of the insertion point.
(Before Tk 4.0, tags from the left hand character were picked up.) If you specify
tags in the i nsert operation, only those tags are applied to the text.

A tag is removed from a range of text with the t ag r enove operation. Even
if there is no text labeled with a tag, its attribute settings are remembered. All
information about a tag can be removed with the t ag del et e operation.

“In versions of Tk before 4.0, marks only had right gravity, which made some uses of marks
awkward.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Tags

215

$t tag renove everywhere 3.0 6.end
$t tag del ete everywhere

Tag attributes

The attributes for a tag are defned with the tag configure operation.
Table 18-3 gives the complete set of attributes for tags. For example, a tag for
blue text is defhed with the following command:

$t tag configure blue -foreground bl ue

Table 18-3 Attributes for t ext tags.

- background col or
- bgsti ppl e bitnmap
-borderwi dt h pixels
-fgstipple bitmp
-font font
-foreground col or
-justify how

-l margi nl pixels
-1 margi n2 pi xels
-of fset pixels
-relief what
-rmargin pixels
-spaci ngl pixels
-spaci ng2 pixels
-spaci ng3 pi xel s

-underline bool ean

The background color for text.

A stipple pattern for the background color.
The width for 3D border effects.

A stipple pattern for the foreground color.
The font for the text.

The foreground color for text.

left right center

Normal left indent for a line.

Indent for the part of a line that gets wrapped.
Baseline offset. Positive for superscripts.
flat rai sed sunken ridge groove
Right hand margin.

Additional space above a line.

Additional space above wrapped part of line.
Additional space below a line.

If true, the text is underlined.

The relief and border width attributes go together. If you specify a relief
without a borderwidth, then there is no visible effect. The default relief is fl at ,
too, so if you specify a borderwidth without a relief you wont see any effect

either.

The stipple attributes require a bitmap argument. For example, to "grey
out" text you could use a foreground stipple of gr ay50. Bitmaps and colors are
explained in more detail in Chapter 23.

$t tag configure disabled -fgstipple gray50

You can set up the appearance (and bindings) for tags once in your applica-

tion, even before you have labeled any text with the tags. The attributes are

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

216 The text Widget Chap.18

retained until you explicitly remove the tag. If you are going to use the same
appearance over and over again then it will be more effeient to do the setup once
so that Tk can retain the graphics context.

The next example defnes a few tags for character styles you might see in
an editor. The example is a bit over simplifed. In practice you would want to
parameterize the font family and the size for the fonts.

Example 18-1 Tag configurations for basic character styles.

proc TextStyles { t } {
$t tag configure bold -font *-tines-bold-r-*-12-*
$t tag configure italic -font *-times-mediumi-*-12-*
$t tag configure fixed -font fixed
$t tag configure underline -underline true
$t tag configure super -offset 6 \
-font *-helvetica-nediumr-*-8-*
$t tag configure sub -offset -6\
-font *-helvetica-mediumr-*-8-*

On the other hand, if you change the confguration of a tag, any text with
that tag will be redisplayed with the new attributes. Similarly, if you change a
binding on a tag, all tagged characters are affected immediately.

Mixing attributes from different tags

A character can be labeled with more than one tag. In this case an ordering
among the tags determines the priority of the attributes from the different tags.
The tags might not conflct, either . For example, one tag could determine the
font, another could determine that foreground color, and so on. Only if different
tags try to supply the same attribute is the priority ordering taken into account.
The latest tag added to a range of text has the highest priority. The ordering of
tags can be controlled explicitly with the t ag r ai se and t ag | ower commands.

You can achieve interesting effects by composing attributes from different
tags. In a mail reader, for example, the listing of messages in a mail folder can
use one color to indicate messages that are marked for delete, and it can use
another color for messages that are marked to be moved into another folder.
These tags might be defned like this:

$t tag configure del eted -background grey75
$t tag configure noved -background yel | ow

These tags don’t mix. However, a selection could be indicated with an
underline, for example.

$t tag configure select -underline true

With these tags defhed, you can add and remove the sel ect tag to indicate
what messages have been selected, and the underline is independent of the back-
ground color.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Line Spacing and Justification 217
Line Spacing and Justification

The spacing and justiftation for text has several attributes. The situation
is complicated a little by wrapped text lines. The text widget distinguishes
between the fist display line and the remaining display lines for a given text
line. For example, if a line in the text widget has 80 characters but the window is
only wide enough for 30, then the line may be wrapped onto three display lines.
See Table 18-7 on page 226 for a description of the text widget’s wr ap attribute
that controls this behavior.

Spacing is controlled with three attributes, and there are global spacing
attributes as well as per-tag spacing attributes. The - spaci ngl attribute adds
space above the frst display line, while -spaci ng2 adds space above the subse-
quent display lines that exist because of wrapping, if any. The -spacing3
attribute adds space before the last display line, which could be the same as the
frst display line if the line is not wrapped at all.

The margin settings also distinguish between the fist and remaining dis-
play lines. The -I mar gi n1 attribute specifes the indent for the fist display line,
while the - | mar gi n2 attribute specifes the indent for the rest of the display
lines, if any. There is only a single attribute, - r mar gi n, for the right indent.
These margin attributes are only tag attributes. The closest thing for the text
widget as a whole is the - padx attribute, but this adds an equal amount of spac-
ing on both sides.

Example 18-2 Line spacing and justification in the t ext widget.

proc TextExample { f } {
frane $f
pack $f -side top -fill both -expand true

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

218 The text Widget Chap.18

set t [text $f.t -setgrid true -wap word \
-width 42 -height 14 \
-yscrol | command "$f.sy set"]
scrol | bar $f.sy -orient vert -conmand "$f.t yview'
pack $f.sy -side right -fill y
pack $f.t -side left -fill both -expand true

$t tag configure para -spacingl 0.25i -spacing2 0.1i \
-lmarginl 0.5i -lmargin2 0.1 -rmargin 0.5i

$t tag configure hang -lmarginl 0.1i -lmargin2 0.5i

$t insert end "Here is a line with no special settings\n"
$t insert end "Nowis the tine for all good wonen and men

to cone to the aid of their country. In this great tine of

need, no one can avoid their responsibility.\n"

$t insert end "The quick brown fox junps over the |azy

dog. "

$t tag add para 2.0 2.end
$t tag add hang 3.0 3.end

The example defnes two tags, para and hang, that have different spacing
and margins. The - spaci ngl setting for para causes the white space after the
frst line. The -spaci ng2 setting causes the white space between the wrapped
portions of the second paragraph. The hang tag has no spacing attributes so the
last paragraph starts right below the previous paragraph. You can also see the
difference between the - | mar gi n1 and - | mar gi n2 settings.

The newline characters are inserted explicitly. Each newline character
defnes a new line for the purposes of indexing, but not necessarily for display,
and this example shows. In the third line there is no newline. This means that if
more text is inserted at the end mark, it will be on the same logical line.

The values for the spacing and margin parameters are in screen units.
Because different fonts are different sizes, you may need to compute the spacings
as a function of the character sizes. The bbox operation returns the bounding box
for a given character.

$t insert 1.0 " ABCDE"

$t bbox 1.0

=> 337 13

set height [lindex [$t bbox 1.0] 3]
=> 13

Text justiftation is limited to three styles: | eft, ri ght or center. There is
no setting that causes the text to line up on both margins, which would have to
be achieved by introducing variable spacing between words.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Selection 219
The Selection

The selection is implemented with a predefned tag named sel. When the user
makes a selection with the mouse, the selected characters are tagged with sel . If
the application tags characters with sel then the selection is changed to be those
characters. This is just what is done with the default bindings in order to set the
selection.

The export Sel ecti on attribute of a text widget controls whether or not
selected text is exported by the X selection mechanism. By default the selection
is exported. In this case, when another widget or application asserts ownership
of the selection then the sel tag is removed from any characters that are tagged
with it.

You cannot delete the sel tag with the t ag del et e operation. However, it is
not an error to do so. You can delete all the tags on the text widget with the fol-
lowing command:

eval {$t tag delete} [$t tag nanes]

Tag Bindings

A tag can have bindings associated with it so that when the user clicks on differ-
ent areas of the text display then different things happen. The syntax for the t ag
bi nd command is similar to that of the main Tk bi nd command. You can both
query and set the bindings for a tag. Chapter 13 describes the bi nd command
and the syntax for events in detail.

The only events supported by the t ag bi nd command are Ent er, Leave, But -
tonPress, Motion, and KeyPress. ButtonPress and KeyPress can be shorted to
Button and Key as in the regular bi nd command. The Enter and Leave events
are triggered when the mouse moves in and out of characters with a tag, which is
different than when the mouse moves in and out of the window.

If a character has multiple tags, then the bindings associated with all the
tags will be invoked, in the order from lowest priority tag to highest priority tag.
After all the tag bindings have run, the binding associated with the main widget
is run, if any. The cont i nue and br eak commands work inside tag bindings in a
similar fashion as they work with regular command bindings. See Chapter 13 for
the details.

The next example defhes a text button that has a highlighted relief and an
action associated with it.

Example 18-3 An active t ext button.

proc TextButton { t start end command } {
gl obal textbutton
if 1[info exists textbutton(uid)] {
set textbutton(uid) O
} else {
i ncr textbutton(uid)

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

220 The text Widget Chap.18

set tag button$textbutton(uid)
$t tag configure $tag -relief raised -borderwidth 2
if {[tk colormpbdel $t] == "color"} {
$t tag configure $tag -background thistle
}

$t tag bind $tag <Enter> {9V config -cursor tcross}
$t tag bind $tag <Leave> {

%W config -cursor [lindex [9W config -cursor] 3]
}

$t tag bind $tag <Button-1> $command
$t tag add $tag $start $end
}

The example generates a new tag name so that each text button is unique.
The relief and background are set for the tag to set it apart visually. The tk col -
or nodel command is used to fad out if the display supports color before adding a
colored background to the tag. The command is bound to <But t on- 1>, which is
the same as <But t onPr ess- 1>. The cursor is changed when the mouse is over the
tagged are by binding to the <Enter> and <Leave> events. Upon leaving the
tagged area, the cursor is reset to the default setting for the widget, which is the
third element of the confguration information. Another approach would be to
save and restore the cursor setting for the window.

To behave even more like a button the action should trigger upon <But t on-
Rel ease- 1>, and the appearance should change upon <But t onPr ess- 1>. If this is
important to you, you can always embed a real Tk button. Embedding widgets is
described in the next section.

Embedded Widgets

The text widget can display one or more other widgets as well as text. You can
include picture, for example, by constructing it in a canvas and then inserting
the canvas into the text widget. An embedded widget takes up one character in
terms of indices. You can address the widget by its index position or by the Tk
pathname of the widget.

For example, suppose $t names a text widget. The following commands cre-
ate a button and insert it into the text widget. The button behaves normally, and
in this case it will invoke the Hel p command when the user clicks on it.

button $t.help -bitmap questhead - conmand Hel p
$t wi ndow create end -wi ndow $t. hel p

By default an embedded widget is centered vertically on its text line. You
can adjust this with the - al i gn option to the wi ndow cr eat e command. The pos-
sible alignments are t op, cent er, basel i ne, or bott om

top Top of widget lines up with top of text line.

center Center of widget lines up with center of text line.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Embedded Widgets 221

basel i ne Bottom of widget lines up with text baseline.

bott om Bottom of widget lines up with bottom of text line.

You can postpone the creation of the embedded widget by specifying a Tcl
command that creates the window, instead of specifying the -window option. This
delayed creation is useful if you have lots of widgets embedded in your text. In
this case the Tcl command is evaluated just before the text widget needs to dis-
play the window. In other words, when the user scrolls the text so the widget
would appear, the Tcl command is run to create the widget.

Example 18-4 Delayed creation of embedded widgets.

$t wi ndow create end -create [list MakeGoBack $t]
proc MakeGoBack { t } {
button $t.goback -text "Go to Line 1" \
-command [list $t see 1.0]

It might seem excessive to introduce the MakeGoBack procedure in this
example, but it actually makes things easier. The fact that the button has its
own command make that you have to quote things if you do not introduce the
procedure. Furthermore, if you are really creating buttons on the f/ they are
likely to require more complex setup than in this simple example. Without the
procedure you have to do the following. It may not seem messy now, but if you
need to execute more than one Tcl command to create the widget or if the embed-
ded button has a complex command, the quoting can quickly get out of hand.

$t wi ndow create end -create "button $t.goback \
-text {Go to Line 1} -command \{$t.goback see 1.0\}"

Table 18-4 gives the complete set of options for creating embedded wid-
gets. You can change these later with the wi ndowconfi gur e operation. For exam-
ple:

$t wi ndow configure $t.goback -align bottom

Table 18-4 Options to the wi ndow cr eat e operation.

-align where top center bottom baseline

-create command Tcl command to create the widget.

- padx pi xel s Padding on either side of the widget.

- pady pi xels Padding above and below the widget.

-stretch bool ean If true, the widget is stretched vertically to match

the spacing of the text line.

-wi ndow pat hnane Tk pathname of the widget to embed.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

222 The text Widget Chap.18

You can specify the window to reconfgure with either the index where the
window is located, or by its pathname. Note that end is not a good candidate for
the index because the text widget treats it specially. A character, or widget,
inserted at end is really inserted right before the very last character, which is
always a newline.

Text Bindings

There is an extensive set of default bindings for text widgets. In general,
the commands that move the insert cursor also clear and the selection. Often you
can hold the Shift key down to extend the selection instead, or hold the Control
key down to move the insert cursor without affecting the insert cursor. Table 18—
5 lists the default bindings for the text widget.

Table 18-5 Bindings for the t ext widget.

<Any- Key> Insert normal printing characters.

<But t on- 1> Set the insert point, clear the selection, set focus.
<Control -Button-1> Set the insert point without affecting the selection.
<B1- Moti on> Sweep out a selection from the insert point.
<Doubl e- Butt on- 1> Select the word under the mouse.

<Tri pl e-Button- 1> Select the line under the mouse.

<Shi ft-Button-1> Adjust the end of selection closest to the mouse.
<Shi ft - B1- Mot i on> Continue to adjust the selection.

<But t on- 2> Paste the selection, or set the scrolling anchor.
<B2- Mot i on> Scroll the window.

<Key- Left> <Control -b> Move the cursor left one character. Clear selection.

<Shift-Left> Move the cursor and extend the selection.
<Control - Left> Move the cursor by words. Clear the selection.
<Control - Shift-Left> Move the cursor by words. Extend the selection.

<Key- Ri ght > <Control -f> All Ri ght bindings are analogous to Lef t bindings.

<Met a- b> <Meta-f> Same as <Control - Left >and <Control - Ri ght >
<Key- Up> <Control - p> Move the cursor up one line. Clear the selection.
<Shi ft - Up> Move the cursor up one line. Extend the selection.
<Cont r ol - Up> Move the cursor up by paragraphs, which are a

group of lines separated by a blank line.

<Control - Shi ft- Up> Move the cursor up by paragraph. Extend selection.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Operations 223

Table 18-5 Bindings for the t ext widget.

<Key- Down> <Control -n> All Down bindings are analogous to Up bindings.

<Next > <Pri or> Move the cursor by a screenful. Clear the selection.
<Shi f t - Next > Move the cursor by a screenful. Extend the selection.
<Shift-Prior>

<Home> <Control - a> Move the cursor to line start. Clear the selection.
<Shi f t - Hone> Move the cursor to line start. Extend the selection.
<End> <Control - e> Move the cursor to line end. Clear the selection.
<Shi ft - End> Move the cursor to line end. Extend the selection.
<Cont r ol - Homre> Move the cursor to the beginning of text. Clear the
<Met a- | ess> selection.

<Contr ol - End> Move the cursor to the end of text. Clear the selec-
<Met a- greater> tion.

<Sel ect > Set the selection anchor to the position of the cursor.
<Control - space>

<Shi ft- Sel ect > Adjust the selection to the position of the cursor.
<Control - Shift-space>

<Control - sl ash> Select everything in the text widget.

<Contr ol - backsl ash> Clear the selection.

<Del et e> Delete the selection, if any. Otherwise delete the

character to the right of the cursor.

<BackSpace> <Control - h> Delete the selection, if any. Otherwise delete the
character to the left of the cursor.

<Control -d> Delete character to the right of the cursor.

<Met a- d> Delete word to the right of the cursor.

<Control - k> Delete from cursor to end of the line. If you are at the
end of line, delete the newline character.

<Control - 0> Insert a newline but do not advance the cursor.

<Control -w> Delete the word to the left of the cursor.

<Control - x> Deletes the selection, if any.

<Control -t> Transpose the characters on either side of the cursor.

Text Operations

Table 18-6 below describes the text widget operations, including some that are
not discussed in this chapter. In the table, $t is a text widget.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

224

The text Widget

Table 18-6 Operations for the t ext widget.

$t bbox index

$t cget option
$t conpare il op i2

$t configure ..
$t debug bool ean
$t delete il ?i2?

$t dlineinfo index

$t get i1 ?i2?

$t i ndex index

$t insert index chars

?tags?

$t mark gravity nane
?direction?

$t mark nanes
$t mark set nane i ndex

$t mark unset nanel
?name2 ...?

$t scan mark x vy
$t scan dragto x y

$t search ?switches? pat-
tern index ?varNane?

$t see index

$t tag add name i1 ?i2?

$t tag bind name
?sequence? ?script?

$t tag cget name option

Return the bounding box of the character at
i ndex. 4 numbers are returned: x y w dth
hei ght .

Return the value of the confguration option.

Perform index comparison. i x and i 2 are
indexes. opisoneof:< <= == >= > | =

Query or set confguration options.
Enable consistency checking for B-tree code.

Delete from i 1 up to, but not including i 2. Just
delete the character ati 1 if i 2 is not specifed.

Return the bounding box, in pixels, of the display
for the line containing index. 5 numbers are
returned, x y w dth hei ght baseli ne.

Return the text fromi 1 toi 2, or just the charac-
terati 1ifi 2 is not specifed.

Return the numerical value of i ndex

Insert char s at the specifed i ndex. Ift ags are
specifed they are added to the new characters.

Query or assign a gravity direction to the mark
nane. di recti on, if specifed, is | eft orri ght.

Return a list of defhed marks.
Defhe a mark nane at the given i ndex.

Delete the named mark(s).

Anchor a scrolling operation.
Scroll based on a new position.

Search for text starting at index. The index of the
start of the match is returned. The number of
characters in the match is stored in varName.
Switches are: - f orw, -back, -exact, -
regexp, -now ap, --

Position the view to see i ndex.

Add the tag to i 1 through, but not includingi 2,
or just the character at i1 if i 2 is not given.

Query or defne bindings for the tag nane.

Return the value of opt i on for tag nane.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Chap.18

Text Attributes 225

Table 18-6 Operations for the t ext widget.

$t tag delete tagl ?tag2 Delete information for the named tags.
L7

$t tag | ower tag ?before? Lower the priority of t ag to the lowest priority or
to just below tag bel ow

$t tag nanes ?i ndex? Return the names of the tags at the specifed
i ndex, or in the whole widget, sorted from lowest
to highest priority.

$t tag nextrange tag il Return a list of two indices that are the next

?i 2? range of text with tag that starts at or afteri 1

and before index i 2, or the end.

$t tag raise tag ?above? Raise the priority of t ag to the highest priority, or
to just above the priority of above.

$t tag ranges tag Return a list describing all the ranges of tag.

$t tag renmove tag i1l ?i 2? Remove tag from the rangei 1 up to, but not
includingi 2, or just ati 1 ifi 2 is not specifed.

$t wi ndow config ir ... Query or modify the confguration of the embed-
ded window

$t window create ir Create an embedded window. The confguration

?option value ...? options depend on the type of the window.

$t xview Return two fractions between zero and one that

describe the amount of text off screen to the left
and the amount of text displayed.

$t xview nmoveto fraction Position the text sofracti on of the text is off
screen to the left.

$t xview scroll num what Scroll numof what , which is uni t s or pages.

$t yview Return two fractions between zero and one that
describe the amount of text off screen towards the
beginning and the amount of text displayed.

$t yview noveto fraction Position the text sofracti on of the text is off
screen towards the beginning.

$t yview scroll num what Scroll numof what , which is uni t s or pages.
$t yview ?-pi ckpl ace? i x Obsoleted by the see operation, which is similar.

$t yvi ew nunber Position line nunber at the top of the screen.
Obsoleted by the yvi ew npvet o operation.

Text Attributes

The table below lists the attributes for the text widget. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tecl com-
mands the attributes are specifed with a dash and all lowercase.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

226

The text Widget Chap.18

Table 18-7 Resource names of attributes for t ext widgets.

backgr ound Background color (also bg).

border Wdth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

f ont Default font for the text.

f or egr ound Foreground color. (Also f g).

hi ghl i ght Col or Color for input focus highlight border.

hi ghl i ght Thi ckness Width of highlight border.

i nsert Background Color for the insert cursor.

i nsert BorderWdth Size of 3D border for insert cursor.

insertOff Ti me Milliseconds insert cursor blinks off.

i nsert OnTi ne Milliseconds insert cursor blinks on.

i nsert Wdth Width of the insert cursor.

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief 3D relief: f| at, sunken, raised, groove, ridge.

sel ect Backgr ound
sel ect For egr ound
sel ect Border W dt h
setGid

spaci ngl

spaci ng2

spaci ng3

state

wi dt h

wrap

xScr ol | Command

yScr ol | Conmand

Background color of selected text.
Foreground color of selected text.

Size of 3D border for selection highlight.
Enable/disable geometry gridding.

Extra space above each unwrapped line.
Space between parts of a line that have wrapped.
Extra space below an unwrapped line.
Editable (nor mal) or read-only (di sabl ed).
Width, in characters, of the text display.
Line wrap mode: none char word

Tel command prefk for horizontal scrolling.

Tcl command prefk for vertical scrolling.

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 19

The canvas Widget

This canvas widget provides a general-purpose display that can programmed
to display a variety of objects including arcs, images, lines, ovals,
polygons, rectangles, text, and embedded windows.Hello,

Canvas widgets are very féxible widgets
that can be programmed to display almost anything and to respond in just about
any fashion to user input. A canvas displays objects such as lines and images,
and each object can be programed to respond to user input, or they can be ani-
mated under program control. There are several pre-defned canvas object types.
Chapter X describes the a C programming interface for creating new canvas
objects. This chapter presents a couple of examples before covering the features
of the canvas in more detail.

Hello, W orld!

A simple exercise for a canvas is to create an object that you can drag around
with the mouse. The next example does this.

Example 19-1 The canvas Hello, World! example.

proc Hello {} {
Create and pack the canvas
canvas .c -width 400 -height 100
pack .c
Create a text object on the canvas
.Cc create text 50 50 -text "Hello, World!'" -tag novable
Bind actions to objects with the novable tag

227

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

228 The canvas Widget Chap.19

.c bind novabl e <Button-1> {Mark % % %W
.Cc bind novabl e <Bl-Mdtion> {Drag % % %V
}

proc Mark { x y w} {
gl obal state
Find the object
set state($w,obj) [$w find closest $x 3By]
set state($w, x) $x
set state($w,y) $y

}

proc Drag { x y w} {
gl obal state
set dx [expr $x - $state(dw, x)]
set dy [expr 3y - S$state($w,y)]
$w nove $state($w, obj) $dx $dy
set state($w, x) $x
set state($w,y) Sy

The example creates a t ext object and gives it a tag named novabl e. Tags
are discussed in a moment. The fist argument after create specifes the type,
and the remaining arguments depend on the type of object being created. In this
case a t ext object needs two coordinates for its location. There is also text, of
course, and fnally a tag. The complete set of attributes for text objects are given
later in this chapter.

.C create text 50 50 -text "Hello, World!'" -tag novable

The create operation returns an ID for the object being created, which
would have been 1 in this case. However, the code manipulates the canvas
objects by specifying a tag instead of an object ID. A tag is a more general handle
on canvas objects. Many objects can have the same tag, and an object can have
more than one tag. A tag can be (almost) any string; avoid spaces and numbers.
Nearly all the canvas operations operate on either tags or object IDs.

The example defnes behavior for objects with the novabl e tag. The path-
name of the canvas (%W is passed to Mar k and Dr ag so these procedures could be
used on different canvases. The % and % keywords get substituted with the X
and Y coordinate of the event.

.C bind novabl e <Button-1> {Mark % % %N
.c bind novabl e <Bl1-Mtion> {Drag % % %N

The Move and Dr ag procedures let you drag the object around the canvas.
Because they are applied to any object with the novabl e tag, the Mar k procedure
must frst fad out what object was clicked on. It uses the fi nd operation:

set state($w,obj) [$w find closest $x $y]

The actual moving is done in Dr ag with the nove operation:
$w nove $state($w, obj) $dx $dy

Try creating a few other object types and dragging them around, too.
.Cc create rect 10 10 30 30 -fill red -tag movabl e

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Double-Slider Example 229

.c create line 1 1 40 40 90 60 -width 2 -tag novabl e
.c create poly 1 1 40 40 90 60 -fill blue -tag novabl e
The example may seem a little cluttered by the general use of st at e and its
indices that are parameterized by the canvas pathname. However, if you get into
the habit of doing this early, then you will fad it easy to write code that is reus-
able among programs.

The Double-Slider Example

This section presents an example that constructs a scale-like object that has two
sliders on it. The sliders represent the minimum and maximum values for some
parameter. Clearly, the minimum cannot be greater than the maximum, and vice
versa. The example creates three rectangles on the canvas. One rectangle forms
the long axis of the slider. The other two rectangles are markers that represent
the values. Two text objects fbat below the markers to give the current values of
the minimum and maximum.

Example 19-2 A double slider canvas example.

proc Scale2 {wmn max {width {}} } {

gl obal scal e2

if {$width == {}} {
Set the long dinmension, in pixels
set width [expr $max - $m n]

}

Save paraneters

set scal e2($w, scal e) [expr ($max-$m n)/ $wi dth. 0]

set scal e2($w, mn) $nin

set scal e2($w, max) $max

set scal e2($w,Mn) $nin

set scal e2($w, Max) $nmax

set scal e2($w, L) 10

set scal e2($w, R) [expr $wi dt h+10]

Build fromO to 100, then scale and nove it by 10 | ater
Di stance between | eft edges of boxes is 100
The left box sticks up, and the right one hangs down

canvas $w

$w create rect 0 0 110 10 -fill grey -tag slider

$w create rect 0 -4 10 10 -fill black -tag {left |box}
$w create rect 100 0 110 14 -fill red -tag {right rbox}

$w create text 5 16 -anchor n -text $nin -tag {left | nun}

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

230 The canvas Widget Chap.19

$w create text 105 16 -anchor n -text $max \
-tag {right rnun} -fill red

Stretch/shrink the slider to the right |ength,
set scale [expr ($wi dth+10) / 110.0]

$w scale slider 0 0 $scale 1.0

move the right box and text to match new | ength
set nx [lindex [$w coords slider] 2]

$w nmove right [expr $nx-110] O

Move everything into view
$w nove all 10 10

Make the canvas fit confortably around the inmage
set bbox [$w bbox all]

set height [expr [lindex $bbox 3] +4]

$w config -height $height -width [expr $w dt h+30]

Bind drag actions

$w bind left <Button-1> {Start %W % | box}
$w bind right <Button-1> {Start 9%WN % rbox}
$w bind left <Bl-Mtion> {Mve %N % | box}
$w bi nd right <Bl-Mtion> {Mve %N % rbox}

The slider is constructed with absolute coordinates, and then it is scaled to
be the desired width. The alternative is to compute the coordinates based on the
desired width. The scal e and nove operations are used in this example to illus-
trate them. I also found it a little clearer to use numbers when creating the ini-
tial layout as opposed to using expr or introducing more variables. It only makes
sense to scale the slider bar. If the marker boxes are scaled, then their shape gets
distorted, too. The scale operation takes a reference point, which in our case is (0,
0), and independent scale factors for the X and Y dimensions. The scale factor is
computed from the wi dt h parameter, taking into account the extra length added
(10) so that the distance between the left edge of the boxes is $wi dt h.

set scale [expr ($w dth+10) / 110. 0]
$w scale slider 0 O $scale 1.0

After stretching the slider bar its new coordinates are used to determine
how to move the right box and right hanging text. The coor ds operation returns
a list of 4 numbers, x1 y1 x2 y2. The distance to move is just the difference
between the new right coordinate and the value used when constructing the
slider initially. The box and text share the same tag, ri ght, so they are both
moved with a single nove command.

set nx [lindex [$w coords slider] 2]
$w nove right [expr $nx-110] O

After the slider is constructed it is shifted away from (0, 0), which is the
upper-left corner of the canvas. The bbox operation returns four coordinates, x1
y1l x2 y2, that defoe the bounding box of the items with the given tag. In the
example, y1 is zero, so y2 gives us the height of the image. The information

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Double-Slider Example 231

returned by bbox can be off by a few pixels, and the example needs a few more
pixels of height to avoid clipping the text. The width is computed based on the
extra length added for the marker box, the 10 pixels the whole image was
shifted, and 10 more for the same amount of space on the right side.

set bbox [$w bbox all]

set height [expr [lindex $bbox 3] +4]

$w config -hei ght $height -w dth [expr $w dt h+30]

Finally, the bindings are defned for the box and hanging text. Again, the
general tags | eft and ri ght are used for the bindings. This means you can drag
either the box or the text to move the slider. The pathname of the canvas is
passed into these procedures so you could have more than one double slider in
your interface.

$w bind left <Button-1> {Start %N % | box}
$w bind right <Button-1> {Start 9%WN % rbox}
$w bind left <Bl-Mdtion> {Mve %N % | box}
$w bi nd right <Bl-Mtion> {Mve %N % rbox}
The St art and Move implementations are shown below.

Example 19-3 Moving the markers for the double-slider.

proc Start { wx what } {
gl obal scal e2
Renenber the anchor point for the drag
set scal e2($w, $what) $x
}
proc Move { w x what } {
gl obal scal e2

Conpute delta and update anchor point
set x1 $scal e2($w, $what)

set scal e2($w, $what) $x

set dx [expr $x - $x1]

Find out where the boxes are currently
set rx [lindex [$w coords rbox] O]
set Ix [lindex [$w coords |box] 0]

if {$what == "I box"} {
Constrain the novenment to be between the
left edge and the right marker.
if {$Ix + $dx > $rx} {
set dx [expr $rx - $lx]
set scal e2($w, $what) $rx
} elseif {$lx + $dx < $scal e2($w, L)} {
set dx [expr $scal e2($w, L) - $Ix]
set scal e2($w, $what) $scal e2($w, L)

$w nove left $dx O

Update the m ni mum val ue and the hangi ng text

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

232 The canvas Widget Chap.19

set Ix [lindex [$w coords |box] O]
set scal e2($w, min) [expr int($scal e2($w, M n) + \
($l x-$scal e2($w, L)) * $scal e2($w, scale))]
$w itenconfigure | num-text $scal e2($w, i n)
} else {
Constrain the novement to be between the
right edge and the left narker
if {$rx + $dx < $I x} {
set dx [expr $Ix - $rx]
set scal e2($w, $what) $I x
} elseif {$rx + $dx > $scal e2($w, R} {
set dx [expr $scal e2($w, R) - $rx]
set scal e2($w, $what) $scal e2($w, R

}
$w nove right $dx 0

Update the maxi num val ue and t he hangi ng text

set rx [lindex [$w coords right] O]

set scal e2($w, max) [expr int($scal e2($w, M n) + \
($rx-$scal e2($w, L)) * $scal e2($w, scale))]

$w itenconfigure rnum -text $scal e2($w, max)

}

}

proc Value {w} {
gl obal scal e2
Return the current values of the double slider
return [list $scal e2($w, min) $scal e2($w, max)]

}

The St art procedure initializes an anchor position, scal e2($w, $what) , and
Move uses this to detect how far the mouse has moved. The change in position,
dx, is constrained so that the markers cannot move outside their bounds. The
anchor is updated if a constraint was used, and this means the marker will not
move until the mouse is moved back over the marker. (Try commenting out the
assignments to scal e2($w, $what) inside the i f statement.) After the marker
and hanging text are moved, the value of the associated parameter is computed
based on the parameters of the scale. Finally, the Val ue procedure is used to
query the current values of the double slider.

The canvas tag facility is very useful. The example uses the al | tag to move
all the items, and to fad out the bounding box of the image. The left box and the
left hanging text both have the | eft tag. They can be moved together, and they
share the same bindings. Similarly, the ri ght tag is shared by the right box and
the right hanging text. Each item has its own unique tag so it can be manipu-
lated individually, too. Those tags are sl i der, | box, | num r box, r num Note that
the it entonfi gure operation is used to change the text. If there were several
objects with the same tag, then i t enconfi gure could be used to change all of
them.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Canvas Coordinates 233

Canvas Coordinates

The position and possibly the size of a canvas object is determined by a set of
coordinates. Different objects are characterized by different numbers of coordi-
nates. For example, text objects have two coordinates, x1 y1, that specify their
anchor point. A line can have many pairs of coordinates that specify the end-
points of its segments. The coordinates are set when the object is created, and
they can be updated later with the coor ds operation. By default coordinates are
in pixels. If you suffk a coordinate with one of the following letters then you
change these units:

c centimeters

i i nch

m millineters

p printer points (1/72 inches)

The coordinate space of the canvas positions 0, 0 at the top left corner.
Larger X coordinates are to the right, and larger Y coordinates are downward.
The wi dt h and hei ght attributes of the canvas determine its viewable area. The
scrol | Regi on attribute of the canvas determines the boundaries of the canvas.
The view onto the scroll region is changed with the xvi ew and yvi ew commands.
These are designed to work with scrollbars.

Example 19-4 A large scrollable canvas.

proc ScrolledCanvas { ¢ width height region } {
frane $c
canvas $c.canvas -width $w dth -hei ght $height \
-scrol I region $region \
-xscroll command [list $c.xscroll set] \
-yscrol l command [list $c.yscroll set]

scrol I bar $c.xscroll -orient horizontal \
-command [list $c.canvas xview]

scrol | bar $c.yscroll -orient vertical \
-command [list $c.canvas yview

pack $c.xscroll -side bottom-fill x

pack $c.yscroll -side right -fill y

pack $c.canvas -side left -fill both -expand true

pack $c -side top -fill both -expand true

return $c.canvas

}
Scrol | edCanvas .c 300 200 {0 0 1000 400}
=> ., c.canvas

The next several sections describe the built-in object types for canvases.

Arcs

An arc is a section of an oval. The dimensions of the oval are determined by four

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

234

The canvas Widget Chap.19

coordinates that are its bounding box. The arc is then determined by two angles,
the start angle and the ext ent. The region of the oval can be flled or unfiled,
and there are three different ways to defhe the fll region. The pieslice style
connects the arc with the center point of the oval. The chor d style connects the
two endpoints of the arc. The ar ¢ style just fils the arc itself and there is no out-

line.

Example 19-5 Canvas ar c items.

$c
$c
$c

create arc 10 10 100 100 -start 45 -extent -90 \
-style pieslice -fill orange -outline black
create arc 10 10 100 100 -start 135 -extent 90 \
-style chord -fill blue -outline white -width 4
create arc 10 10 100 100 -start 255 -extent 45\
-style arc -fill black -width 2

Table 19-1 gives the complete set of ar ¢ attributes.

Table 19-1 Attributes for ar ¢ canvas items.

-extent degrees The length of the arc in the counter-clockwise direction.

-fill color The color of the interior of the arc region.
-outline color The color of the arc itself.
-start degrees The starting angle of the arc.

-stipple bitmap A stipple pattern for the fil.

-style style pi eslice,chord,arc
-tags taglLi st List of tags for the arc item.
-wi dth num Width, in canvas coordinates, of the arc and outline.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Bitmap Items 235

Bitmap Items

A bitmap is a simple graphic with a foreground and background color. One-bit
per pixel is used to choose between the foreground and the background. A canvas
bi t map item is positioned with two coordinates and an anchor position. Its size is
determined by the bitmap data. The bi t map itself is specifed with a symbolic
name or by the name of a fle that contains its defnition. If the name begins with
an @ it indicates a fle name. The bitmaps built into wish are shown in the exam-
ple below. There is a C interface for registering more bitmaps under a name.

Example 19-6 Canvas bi t map items.

set o [$c create bitmap 10 10 -bitmap @andl e. xbm -anchor nw
set x [lindex [$c bbox $0] 2];# Right edge of bitnmap
foreach builtin {error gray25 gray50 hourglass \
i nfo questhead questi on warning} {
incr x 20
set o [$c create bitmap $x 30 -bitmap $builtin -anchor c\
- background white -foreground bl ue]
set x [lindex [$c bbox $o0] 2]

Table 19—1 gives the complete set of bi t map attributes.

Table 19-2 Attributes for bi t map canvas items.

-anchor position C hneeses swwnw

- background col or The background color (for zero bits).
-bi tmap nane A built in bitmap.

-bitmap @il enanme A bitmap defhed by a fle.
-foreground col or The foreground color (for one bits).
-tags taglLi st List of tags for the bitmap item.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

236 The canvas Widget Chap.19

Images

The canvas i mage objects use the general image mechanism of Tk. An
image has to be defned first using the inmge command. This command is
described Chapter 23 in the section Bitmaps and Images. Once you have defhed
an image, all you need to specify for the canvas is its position, anchor point, and
any tags. The size and color information is set when the image is defned. If an
image is redefned then anything that is displaying that image gets updated
automatically.

Example 19-7 Canvas i mage items.

i mage create bitmap hourgl ass2 \
-file hourglass. bitmap -nmaskfil e hourgl ass. mask \
- background white -foreground bl ue]
for {set x 20} {$x < 300} {incr x 20} {
$c create image $x 10 -inmge hourgl ass2 -anchor nw
incr x [image w dth hourgl ass2]

Table 19—-1 lists the attributes for canvas i mage items.

Table 19-3 Attributes for i mage canvas items.

-anchor position C nneeses swwnw

-i mage nane The name of an image.

-tags tagli st List of tags for the image item.
Line Items

A line has two or more sets of coordinates, where each set of coordinates defhes
an endpoint of a line segment. The segments can be joined in several different
styles, and the whole line can be drawn with a spline fi as opposed to straight-
line segments. The next example draws a line in two steps. In the frst past, sin-
gle-segment lines are drawn. When the stroke completes, these are replaced with
a single line segment that is drawn with a spline curve.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Line ltems 237

Example 19-8 A canvas stroke drawing example.

proc Strokelnit {} {
canvas .c ; pack .c
bind .c <Button-1> {StrokeBegin %V % %}
bind .c <Bl-Mtion> {Stroke %N % %}
bind .c <ButtonRel ease-1> {StrokeEnd %W % %}

proc StrokeBegin { wx vy } {
gl obal stroke
catch {unset stroke}
set stroke(N 0
set stroke(0) [list $x $y]

}
proc Stroke { wx y } {
gl obal stroke
set |ast $stroke($stroke(N))
i ncr stroke(N)
set stroke($stroke(N)) [list $x $y]
eval {$w create line} $last {$x $y -tag segnents}
}
proc StrokeEnd { wx y } {
gl obal stroke
set points {}
for {set i 0} {$i <= $stroke(N} {incr i} {
append points $stroke($i) " "

$w del ete segnents
eval {$w create line} $points \
{-tag line -joinstyle round -snoboth true -arrow | ast}

The example uses the st r oke array to hold the points of the line as it builds
up the stroke. At the end of the stroke it assembles the points into a list. The
eval command is used to splice this list of points into the create | i ne command.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

238 The canvas Widget Chap.19

Recall that eval uses concat if it gets multiple argument. The other parts of the
create |ine command are protected by braces so they only get evaluated once.
Chapter 6 describes this trick in more detail.

The arrow attribute adds an arrow head to the end of the stroke. If you try
out this example you’ll notice that the arrow isn’t always aimed like you expect.
This is because there are often many points generated quite close together as you
lift up on the mouse button. In fact, the X and Y coordinates of seen by Str o-
keEnd are always the same as those seen by the last St roke call. If you add this
duplicate point to the end of the list of points, no arrowhead is drawn at all. In
practice you might want to make Stroke fiter out points that are two close
together.

Table 19-1 gives the complete set of line attributes. The capst yl e affects
the way the ends of the line are drawn. The j oi nst yl e affects the way line seg-
ments are joined together.

Table 19-4 Attributes for | i ne canvas items.

-arrow where none first |last both

-arrowshape {a b c} Three parameters that describe the shape of the arrow.
c is the width and b is the overall length. a is the length
of the part that touches the line. (e.g., 8 10 3)

-capstyl e what butt projecting round
-fill color The color of the line.
-joinstyl e what bevel miter round
-snoot h bool ean If t r ue, a spline curve is drawn.
-splinesteps num Number of line segments that approximate the spline.
-stipple bitmp Stipple pattern for line fil.
-tags tagli st Set of tags for the line item.
-width width Width of the line, in screen units.
Oval Items

An oval is defhed by two sets of coordinates that defne its bounding box. If the
box is square, a circle is drawn. You can set the color of the interior of the oval as
well as the outline of the oval. A sampler of ovals is shown in the next example.

Example 19-9 Canvas oval items

$c create oval 10 10 80 80 -fill red -width 4
$c create oval 100 10 150 80 -fill blue -width O
$c create oval 170 10 250 40 -fill black -stipple gray25.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Polygon Items 239

The various artifacts on the ovals are a function of the quality of your X
server. Different X servers draw circles better and faster than others. Table 19—
1 gives the complete set of oval attributes.

Table 19-5 Attributes for oval canvas items.

-fill color The color of the interior of the oval.
-outline color The color for the outline of the oval.
-stipple bitmap Stipple pattern for oval fil.

-tags tagli st Set of tags for the oval item.
-width width The thickness of the outline.

Polygon Items

A pol ygon is a closed shape specifed by a number of sets of points, one for each
vertex of the polygon. The vertices can be connected with smooth or straight
lines. There is no outline option for a polygon. You can get an outline by drawing
a line with the same coordinates, although you will need to duplicate the starting
point at the end of the list of coordinates for the line.

Example 19-10 Canvas pol ygon items.

$c create poly 20 -40 40 -20 40 20 20 40 -20 40\
-40 20 -40 -20 -20 -40 -fill red
$c create line 20 -40 40 -20 40 20 20 40 -20 40 \
-40 20 -40 -20 -20 -40 20 -40 -fill white -width 5
$c create text 0 0 -text STOP -fill white
$c nove all 50 50

Table 19—1 gives the complete set of pol ygon attributes.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

240 The canvas Widget Chap.19

Table 19-6 Attributes for pol ygon canvas items.

-fill color The color of the polygon.

-snoot h bool ean If t r ue, a spline curve is drawn around the points.
-splinesteps num Number of line segments that approximate the spline.
-stipple bitnmap Stipple pattern for polygon fil.

-tags tagli st Set of tags for the line item.

Rectangle Items

A rectangl e is specifed with two coordinates that are its opposite corners. A
rectangle can have a fil color and an outline color . The example below drags out
a box as the user drags the mouse. All it requires is remembering the last rectan-
gle drawn so it can be delete when the next box is drawn.

Example 19-11 Dragging out a box.

proc Boxlnit {} {
canvas .c -bg white ; pack .c
bind .c <Button-1> {BoxBegin %W % %}
bind .c <Bl-Mtion> {BoxDrag %W % %}

}

proc BoxBegin { wx y } {
gl obal box
set box(anchor) [list $x $y]
catch {unset box(last)}

}

proc BoxDrag { wx y } {
gl obal box
catch {$w del ete $box(l ast)}
set box(last) [eval {$w create rect} $box(anchor) \
{$x Py -tag box}]

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Items 241

The example uses box(anchor) to record the start of the box. This is a list
with two elements. The eval command is used so that this list can be spliced into
the create rect command. Table 19-1 gives the complete set of rectangle
attributes.

Table 19-7 Attributes for rectangle canvas items.

-fill color The color of the interior of the rectangle.
-outline color The color for the outline of the rectangle.
-stipple bitmp Stipple pattern for rectangle fil.
-tags tagli st Set of tags for the rectangle item.
-width width The thickness of the outline.

Text Items

The canvas t ext item provides yet another way to display and edit text. It sup-
ports selection, editing, and can extend onto multiple lines. The position of a text
item is given by one set of coordinates and an anchor position. The size of the
text is determined by the number of lines and the length of each line. By default
a new line is started if there is a newline in the text string. If a width is specifed,
in screen units, then any line that is longer than this is wrapped onto multiple
lines. The wrap occurs before a space character.

The editing and selection operations for text items operations use indices to
specify positions within a given text item. These are very similar to those used in
the entry widget. Table 19—-8 summarizes the indices for canvas t ext items.

Table 19-8 Indices for canvast ext items

0 Index of the fist character .

end Index just past the last character.

nunber Index a character, counting from zero.

i nsert The character right after the insertion cursor.

sel .first The frst character in the selection.
sel . | ast The last character in the selection.

@,y The character under the specifed X and Y coordinate.

There are several canvas operations that manipulate text items. These are
similar to some of the operations of the entry widget, except that they are param-
eterized by the tag or ID of the canvas object being manipulated. If the tag refers
to more than one object, then the operations apply to the frst object in the dis-

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

242 The canvas Widget Chap.19

play list that supports an insert cursor. Table 19-9 summarizes these opera-
tions. In the table $t is a text item or tag and $c is a canvas.

Table 19-9 Canvas operations that apply to t ext items.

$c dchars $t first ?last? Delete the characters from first throughl ast,
or just the character at first.

$c focus ?%t? Set input focus to the specifed item, or return the
id of the item with the focus if not it is given.

$c icursor $t index Set the insert cursor to just before i ndex.

$c index $t index Return the numerical value of i ndex.

$c insert $t index string Insertthe string just beforei ndex.

$c sel ect adjust $t index Move the boundary of an existing selection.

$c select clear Clear the selection.

$c select from $t index Start a selection.

$c select item Returns the id of the selected item, if any.
$c select to $t index Extend the selection to the specifed i ndex.

There are no default bindings for canvas text items. The following example
sets up some rudimentary bindings for canvas text items. The <Butt on- 1> and
<But t on- 2> bindings are on the canvas as a whole. The rest of the bindings are
on items with the t ext tag. The bindings try to be careful about introducing tem-
porary variables because they execute at the global scope. This is a hint that it
might be better to create a procedure for each binding.

The <But t on- 1> binding uses the canvas fi nd overl appi ng operation to
see if a text object has been clicked. This operation is a little more awkward than
the fi nd cl osest operation, but fi nd cl osest will fad an object no matter how
far away it is.

The <But t on- 2> binding does one of two things. It pastes the selection into
the canvas item that has the focus. If no item has the focus, then a new text item
is created with the selection as its value.

Example 19-12 Simple edit bindings for canvas text items.

proc CanvasEditBind { ¢ } {
bi nd $c <Button-1> {
focus oW
if {[WTfind overlapping [expr %-2] [expr %-2] \
[expr %+2] [expr %y+2]] == {}} {
%WV focus {}
}

$c bind text <Button-1> {
%N f ocus current

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Items

243

QWi cursor current @&, %
%WV sel ect fromcurrent @&, %

$c bind text <Bl-Mtion> {
%WV sel ect to current @&, %

$c bind text <Delete> {
if {[WWselect iten] !'= {}} {
oW dchars [9WWselect iten] sel.first sel.last
} elseif {[WWfocus] !'= {}} {
%W dchars [%WV focus] insert
}

$c bind text <Control-d> {
if {[Wfocus] !'= {}} {
%W dchars [%W focus] insert
}

$c bind text <Control-h> {
if {[Wselect item !'={}}
oW dchars [9WWselect iten] sel.first sel.last
} elseif {[WWfocus] !'= {}} {
set _t [9Wfocus]
WWicursor $_t [expr [Windex $_t insert]-1]
%WV dchars $_t insert
unset _t
} }
$c bind text <BackSpace> [$c bind text <Control-h>]

$c bind text <Control-Delete> {
%N del ete current
}

$c bind text <Return> {
%Ninsert current insert \n
}

$c bind text <Any-Key> {
%Ninsert current insert %A

}
bi nd $c <Button-2> {
if {[catch {selection get} _s] == 0} {
if {[WWfocus] !'= {}} {
oW insert [9Wfocus] insert $ s
} else {
%W create text % % -text $_s -anchor nw\
-tag text
}

unset _s

}

}
$c bind text <Key-Right> {
QW icursor current [expr [%Windex current insert]+1]

}
$c bind text <Control-f> [$c bind text <Key-Ri ght>]
$c bind text <Key-Left> {

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

244 The canvas Widget Chap.19
W icursor current [expr [%Windex current insert]-1]

}
$c bind text <Control-b> [$c bind text <Key-Left>]

Table 19—-1 gives the complete set of attributes for t ext items. Note that
there are no foreground and background attributes. Instead, the fll color speci-
fes the color for the text. It is possible to stipple the text, too.

Table 19-10 Attributes for t ext canvas items.

-anchor position Cnneeses swwnw
-fill color The foreground color for the text.
-font font The font for the text.

-justify how left right center
-stipple bitmp Stipple pattern for the text fil.
-tags tagli st Set of tags for the rectangle item.
-text string The string to display.

-width width The thickness of the outline.

Window Items

A wi ndowitem allows you to position other Tk widgets on a canvas. The position
is specifed by one set of coordinates and an anchor position. Y ou can also specify
the width and height, or you can let the widget determine its own size. The
example below uses a canvas to provide a scrolling surface for a large set of
labeled entries. A frame is created and a set of labeled entry widgets are packed
into it. This main frame is put onto the canvas as a single window item. This way
we let the packer take care of arranging all the labeled entries. The size of the
canvas is set up so that a whole number of labeled entries are displayed. The
scroll region and scroll increment are set up so that clicking on the scrollbar
arrows brings one new labeled entry completely into view.

Example 19-13 Using a canvas to scroll a set of widgets.

proc Exanple { top title labels } {
Create a resizable toplevel w ndow
topl evel $top
wm m nsi ze $top 200 100
wntitle $top $title

Create a franme for buttons,

Only Dismss does anything useful
set f [frame $top.buttons -bd 4]

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Window ltems 245

button $f.quit -text Dismss -command "destroy $top"
button $f.save -text Save

button $f.reset -text Reset

pack $f.quit $f.save $f.reset -side right

pack $f -side top -fill x

Create a scrollable canvas
frane $top.c
canvas $top.c.canvas -width 10 -height 10 \
-yscrol lcommand [list $top.c.yscroll set]
scrol | bar $top.c.yscroll -orient vertical \
-command [list $top.c.canvas yview
pack $top.c.yscroll -side right -fill y
pack $top.c.canvas -side left -fill both -expand true
pack $top.c -side top -fill both -expand true

Set Of Label edEntri es $top. c$top. canvas $l abel s

proc Set Of Label edEntries { canvas |abels } {
Create one frame to hold everything
and position it on the canvas
set f [frame $canvas.f -bd 0]
$canvas create wi ndow 0 O -anchor nw -w ndow $f

Find out how big the labels are
set max O
foreach | abel $l abels {
set len [string |l ength $l abel]
if {$len > $max} {
set max $len
}

Create and pack the | abeled entries
set i O
foreach | abel $labels {
frame $f. $i
| abel $f.$i.label -text $label -width $max
entry $f.$i.entry
pack $f.$i.label -side left
pack $f.$i.entry -side right -fill x
pack $f.$i -side top -fill x
incr i

}
set child [lindex [pack slaves $f] 0]

Wait for the wi ndow to becone visible and then
set up the scroll region and increnment based on
the size of the frane and the subfranes

tkwait visibility $child

set incr [w nfo height $child]

set width [winfo width $f]

set height [w nfo height $f]

$canvas config -scrollregion "0 O $w dth $hei ght"
$canvas config -scrollincrenent $incr

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

246 The canvas Widget Chap.19

if {$height > 4 * $incr} {
set height [expr 4 * $incr]
}

$canvas config -width $w dth -hei ght $hei ght

}

Exanpl e .top "An exanple" {
al pha beta ganma delta epsilon zeta eta theta iota kappa
| anbda mu nu xi omcron pi rho sigma tau upsilon
phi chi psi onega}

The tkwait visibility command is important to the example. It causes
the script to suspend execution until the toplevel window, $t op, is displayed on
the screen. The wait is necessary so the right information gets returned by the
wi nf o wi dt h and wi nf o hei ght commands. By waiting for a subframe of the main
frame, $chi | d, we ensure that the packer has gone through all its processing to
position the interior frames. The canvas’s scroll region is set to be just large
enough to hold the complete frame. The scroll increment is set to the height of
one of the subframes.

Canvas Operations

Table 19—11 below summarizes the operations on canvas widgets. In the
table, $t represents a tag that identifes one or more canvas objects, or it repre-
sents the numerical ID of a single canvas object. In some cases an operation only
operates on a single object. If a tag identifes several objects, the frst object in
the display list is operated on.

The canvas display list refers to the global order among canvas objects.
New objects are put at the end of the display list. Objects later in the display list
obscure objects earlier in the list. The term above refers to objects later in the
display list.

Table 19-9 describes several of the canvas operations that only apply to
t ext objects. They are dchars f ocus i ndex i cursor insert sel ect. Those oper-
ations are not repeated in the next table. In the table, $t is a text item or tag
and $c is a canvas.

Table 19-11 Operations on a canvas widget.

$c addtag tag above $t Add t ag to the item just above $t in the display
list.

$c addtag tag all Add t ag to all objects in the canvas.

$c addtag tag bel ow $t Add t ag to the item just below $t in the display
list.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Canvas Operations

247

Table 19-11 Operations on a canvas widget.

$c addtag tag closest x vy
?hal 0? ?start?

$c addtag tag encl osed x1
yl x2 y2

$c addtag tag withtag $t
$c bbox $t ?tag tag ...?

$c bind $t ?sequence?
?comand?

$c canvasx screenx ?grid?

$c canvasy screeny ?grid?
$c cget option

$c configure ...

$c coords $t ?x1 yl ...?

$c create type x y ?x2
y2? ?opt value ...?

$c delete $t ?tag ...?
$c dtag $t ?del tag?

$c find addtagSearch ..

$c gettags St

$c itenctonfigure $t

$c [ower $t ?bel owThi s?

$c nove $t dx dy
$c postscript

$c rai se $t ?aboveThi s?

Add t ag to the item closest to the x y position. If
more than one object is the same distance away, or
if more than one object is within halo pixels, then
the last one in the display list (uppermost) is
returned. If st art is specifed, the closest object
after st art in the display list is returned.

Add t ag to the items completely enclosed in the
specifed region. x1 <=x2,yl <=y2.

Add t ag to the items identifed by $t .

Return the bounding box of the items identifed by
the tag(s) in the form x1 y1 x2 y2

Set or query the bindings of canvas items.

Map from the X screen coordinate scr eenx to the
X coordinate in canvas space, rounded to multi-
ples of gri d if specifed.

Map from screen Y to canvas Y.

Return the value of opt i on for the canvas.
Query or update the attributes of the canvas.
Query or modify the coordinates of the item.

Create a canvas object of the specifed t ype at the
specifed coordinates.

Delete the item(s) specifed by the tag(s) or IDs.

Remove the specifed tags from the items identi-
fed by $t.Ifdel t ag is omitted, it defaults to $t

Return the IDs of the tags that match the search
speciftation: above al | bel owcl osest
encl osed wi t ht ag as for the addt ag operation.

Return the tags associated with the first item
identifed by $t.

Query or reconfgure item $t.

Move the items identifed by $t to the beginning
of the display list, or just before bel owThi s.

Move $t by the specifed amount.
Generate postscript. See the next section.

Move the items identifed by $t to the end of the
display list, or just after aboveThi s.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

248 The canvas Widget Chap.19

Table 19-11 Operations on a canvas widget.

$c scale $t x0 y0 xS yS Scale the coordinates of the items identifed by $t.
The distance between X0 and a given X coordinate
changes by a factor of xS. Similarly for Y.

$c scan mark x y Set a mark for a scrolling operation.

$c scan dragto x y Scroll the canvas from the previous mark.

$c type $t Return the type of the frst item identifed by $t .
$c xvi ew i ndex Position the canvas so that i ndex (in scroll incre-

ments) is at the left edge of the screen.

$c yvi ew i ndex Position the canvas so that i ndex (in scroll incre-
ments) is at the top edge of the screen.

Generating Postscript

The post scri pt operation generates postscript based on the contents of a can-
vas. There are many options that refne the postscript. Y ou control what region of
the canvas is printed with the - wi dt h, - hei ght, -x and -y options. You control
the size and location of this in the output with the - pageanchor, - pagex, - pagey,
- pagewi dt h, and - pagehei ght options. The postscript is written to the fle named
by the -fi | e option, or it is returned as the value of the postscript canvas opera-
tion.

You control fonts with a mapping from X screen fonts to postscript fonts.
Defne an array where the index is the name of the X font and the contents are
the name and pointsize of a postscript font.

Table 19—12 summarizes all the options for generating postscript.

Table 19-12 Canvas postscript options.

-col ormap var Nanme The index of varName is a named color, and the
contents of each element is the postscript code to
generate the RGB values for that color.

- col or nnde node node is one of: col or grey nono

-file nane The fle in which to write the postscript. If not
specifed, the postscript is returned as the result
of the command.

-fontmap var Nane The index of varName is an X font name. Each
element contains a list of two items, a postscript
font name and a point size.

- hei ght size Height of the area to print.

- pageanchor anchor anchor isoneof:c n ne e se s sws nw

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Generating Postscript

Table 19-12 Canvas postscript options.

- pagehei ght si ze Height of image on the output. A fbating point
number followed by ¢ (centimeters) i (inches) m

(millimeters) p (printer points).

- pagewi dth size Width of image on the output.

- pagex position The output X coordinate of the anchor point.

- pagey position The output Y coordinate of the anchor point.

-rotate bool ean If true, rotate so that X axis is the long direction of
the page (landscape orientation).

-width size Size of the area to print.

-X position Canvas X coordinate of left edge of the image.

-y position Canvas Y coordinate of top edge of the image.

The next example positions a number of text objects with different fonts
onto a canvas. For each different X font used, it records a mapping to a postscript
font. The example has a fairly simple font mapping, and in fact the canvas would
have probably guessed the same font mapping itself. If you use more exotic
screen fonts you may need to help the canvas widget with an explicit font map.

The example positions the output at the upper-left corner of the printed
page by using the - pagex, - pagey and - pageanchor options. Recall that post-

script has its origin at the lower left corner of the page.

Example 19-14 Generating postscript from a canvas.

proc Setup {} {
gl obal font Map
canvas .c
pack .c -fill both -expand true
set x 10
set y 10
set last [.c create text $x $y -text "Font sanpler” \
-font fixed -anchor nw

Create several strings in different fonts and sizes
foreach famly {tines courier helvetica} {

set wei ght bold
switch -- $famly {

times { set fill blue; set psfont Tines}
courier { set fill green; set psfont Courier }
hel vetica { set fill red; set psfont Helvetica }

}
foreach size {10 14 24} {

set y [expr 4+[lindex [.c bbox $last] 3]]

CQuard agai nst nissing fonts

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

250 The canvas Widget Chap.19

if {[catch {.c create text $x $y \
-text $family-$wei ght-3$size \

-anchor nw -fill $fill \
-font -*-$fam|y-$wei ght-*-*-*-$size-*} \
it] == 0} {

set fontMap(-*-$fanmily-$weight-*-*-*-$size-*)\
[list $psfont $size]
set last $it

} }
set fontMap(fixed) [list Courier 12]

proc Postscript { c file } {

gl obal fontMap

Tweak the output col or

set col orMap(blue) {0.1 0.1 0.9 setrgbcolor}

set col orMap(green) {0.0 0.9 0.1 setrgbcolor}

Position the text at the upper-left corner of

an 8.5 by 11 inch sheet of paper

$c postscript -fontnap fontMap -col ornap col or Map \
-file $file \
-pagex 0.i -pagey 11.i -pageanchor nw

Canvas Attributes

Table 19-13 lists the attributes for the canvas widget. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tcl com-
mands the attributes are specifed with a dash and all lowercase.

Table 19-13 Resource names of attributes for the canvas widget.

backgr ound The normal background color.

bor der Wdt h The width of the border around the canvas.

cl oseEnough Distance from mouse to an overlapping object.
confine Boolean. True constrains view to the scroll region.
cur sor Cursor to display when mouse is over the widget.
hei ght Height, in screen units, of canvas display.

hi ghl i ght Col or Color for input focus highlight border.

hi ghl i ght Thi ckness Width of highlight border.
i nsert Backgr ound Background for area covered by insert cursor.
i nsertBorderwi dth Width of cursor border. Non-zero for 3D effect.

insertOFfTime Time, in milliseconds the insert cursor blinks off.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Hints 251

Table 19-13 Resource names of attributes for the canvas widget.

i nsert OnTi ne Time, in milliseconds the insert cursor blinks on.

i nsert Wdth Width of insert cursor. Default is 2.

relief 3D relief: f| at, sunken, raised, groove, ridge.
scrol | I ncrenment The minimum scrolling distance.

scrol | Regi on Left, top, right, and bottom coordinates of t he canvas
sel ect Backgr ound Background color of selection.

sel ect For egr ound Foreground color of selection.

sel ect Border Wdth Widget of selection border. Non-zero for 3D effect.

wi dth Width, in characters for text, or screen units for image.
xScrol | Command Tel command prefk for horizontal scrolling.
yScr ol | Command Tecl command prefk for vertical scrolling.

The scroll region of a canvas defnes the boundaries of the canvas coordi-
nate space. It is specifed as four coordinates, x1 y1 x2 y2 where (x1, y1) is the
top-left corner and (x2, y2) is the lower right corner. If the const r ai n attribute is
true, then the canvas cannot be scrolled outside this region. It is OK to position
canvas objects partially or totally off the scroll region, they just may not be visi-
ble. The scroll increment determines how much the canvas is scrolled when the
user clicks on the arrows in the scroll bar.

The cl oseEnough attribute indicates how far away a position can be from
an object and still be considered to overlap it. This applies to the over| appi ng
search criteria.

Hints

Large coordinate spaces

Coordinates for canvas items are stored internally as fbating point num-
bers, so the values returned by the coor ds operation will be fbating point num-
bers. If you have a very large canvas, you may need to adjust the precision with
which you see coordinates by setting the tcl _precision variable. This is an
issue if you query coordinates, perform a computation on them, and then update
the coordinates.

Scaling and Rotation

The scale operation scales the coordinates of one or more canvas items. It is
not possible to scale the whole coordinate space. The main problem with this is

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

252 The canvas Widget Chap.19

that you can lose precision when scaling and unscaling objects because their
internal coordinates are actually changed by the scale operation. For simple
cases this is not a problem, but in extreme cases it can show up.

The canvas does not support rotation.

X Resources

There is no resource database support built into the canvas and its items.
You can, however, defne resources and query them yourself. For example, you
could defne
*Canvas. f or egr ound: bl ue
This would have no effect by default. However, your code could look for this
resource with option get. You'd then have to specify this color directly for the
-fill attribute of your objects.
set fg [option get $c foreground {}]
$c create rect 0 0 10 10 -fill $fg
The main reason to take this approach is to let your users customize the
appearance of canvas objects without changing your code.

Objects with many points

The canvas implementation seems well optimized to handle lots and lots of
canvas objects. However, if an object like a line or a polygon has very many
points that defne it, the implementation ends up scanning through these points
linearly. This can adversely affect the time it takes to process mouse events in
the area of the canvas containing such an item. Apparently any object in the
vicinity of a mouse click is scanned to see if the mouse has hit it so that any bind-
ings can be fred.

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 20

Selections and the Clipboard

Cut and paste allows information exchange between applications. The X
selection mechanism is used for this purpose. The clipboard selection is
a special-purpose selection mechanism used by the OpenLook tools.

S elections are handled in a general way
by X, including a provision for different selections, different data types, and dif-
ferent formats for the data. For the most part you can ignore these details
because they are handled by the Tk widgets. However, you can also control the
selection explicitly. This chapter describes how.

There are two Tcl commands that deal with selections. The sel ecti on com-
mand is a general purpose command that can set and get different selections. By
default it manipulates the PRI MARY selection. The cl i pboar d command is used to
store data for later retrieval using CLI PBOARD selection. The next example imple-
ments a robust paste operation by checking for both of these selections.

Example 20-1 Paste the PRI MARY or CLI PBOARD selection.

proc Paste { t } {
if [catch {selection get} sel] {
if [catch {selection get -selection CLI PBOARD} sel] ({
no sel ection or clipboard data
return
}
}

$t insert insert $sel

253

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

254 Selections and the Clipboard Chap.20
The selection Command

The basic model for selections is that there is an owner for a selection, and other
applications request the value of the selection from that owner. The X server
keeps track of ownership, and applications are informed when some other appli-
cation takes away ownership. Several of the Tk widgets implement selections
and take care of asserting ownership and returning its value. The sel ect i on get
command returns the value of the current selection, or raises an error if the
selection does not exist. The error conditions are checked in the previous exam-
ple.

For many purposes the selection handling that is built into the Tk widgets
is adequate. If you want more control over selection ownership, you can provide a
handler for selection requests. The last section of this chapter presents an exam-
ple of this.

A selection can have a type. The default is STRI NG. The type is different
than the name of the selection (e.g., PRI MARY or CLI PBOARD). Each type can have a
format, and the default is also STRI NG Ordinarily these defaults are fne. If you
are dealing with non-Tk applications, however, you may have to ask for their
selections by the right type (e.g., FI LE_NAVE). Other formats include ATOM and
| NTEGER. An ATOMis a name that is registered with the X server and identifed by
number. It is probably not a good idea to use non-STRI NG types and formats
because it limits what other applications can use the information. The details
about selection types and formats are specifed in the Inter-Client Communica-
tion Conventions Manual (ICCCM).

Table 20—-1 summarizes the sel ecti on command. All of the operations
take an optional parameter that specifes what selection is being manipulated.
This defaults to PRI MARY. Some of the operations take a pair of parameters that
specify what X display the selection is on. The value for this is a Tk pathname of
a window, and the selection on that window’s display is manipulated. The default
is to manipulate the selection on the display of the main window.

Table 20-1 The sel ecti on command.

sel ection cl ear ?-displayof Clear the specifed selection.
wi n? ?-selection sel?

sel ection get ?displayof win? Return the specifed selection. T ype defaults
?-selection sel? ?-type type? toSTRI NG

sel ection handl e ?-sel ection Defhe conmand to be the handler for selec-

sel ? ?-type type? ?-format tion requests when wi ndow owns the selec-

format? wi ndow conmand tion.

sel ecti on own ?-di spl ayof Return the Tk pathname of the window that
wi ndow? ?-sel ection sel? owns the selection, if it is in this application.
sel ecti on own ?-conmand com Assert that wi ndow owns the sel selection.

mand? ?-sel ection sel? wi ndow The command is called when ownership of
the selection is taken away from wi ndow

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The clipboard Command 255
The clipboard Command

The cl i pboar d command is used to install values into the CLI PBOARD selec-
tion. The CLI PBOARD is meant for values that have been recently or temporarily
deleted. The sel ecti on command is used to retrieve values from the CLI PBOARD
selection. For example, the Past e function in Example 20-1 will insert from the
CLI PBOARD if there is no PRI MARY selection. Table 20—1 summarizes the cl i p-
boar d command.

Table 20-2 The cl i pboar d command.

clipboard cl ear ?-displayof Clear the CLI PBOARD selection.
W n?

cl i pboard append ?-di spl ayof Append dat a to the CLI PBOARD with the
win? ?-format format? ?-type specifed t ype and f or mat , which both
type? data default to STRI NG

Interoperation with OpenLook

The CLI PBOARD is necessary to interoperate correctly with OpenLook. When
the user presses the Copy or Cut function keys in an OpenLook application, a
value is copied into the CLI PBOARD. A Past e inserts the contents of the CLI P-
BOARD; the contents of the PRI MARY selection are ignored.

In contrast, toolkits like Tk and Xt that use the PRI MARY selection do not
need a Copy step. Instead, dragging out a selection with the mouse automatically
asserts ownership of the PRI MARY selection, and paste inserts the value of the
PRI MARY selection.

Selection Handlers

The sel ecti on handl e command registers a Tcl command to handle selec-
tion requests. The command is called to return the value of the selection to a
requesting application. If the selection value is large, the command may be
called several times to return the selection in pieces. The command gets two
parameters that indicate the offset within the selection to start returning data,
and the maximum number of bytes to return. If the command returns fewer than
that many bytes, the selection request is assumed to be completed. Otherwise
the command is called again to get the rest of the data, and the offset parameter
is adjusted accordingly.

You can also get a callback when you lose ownership of the selection. At
that time it is appropriate to unhighlight the selected object in your interface.
The sel ecti on own command is used to set up ownership and register a callback
when you lose ownership.

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

256 Selections and the Clipboard Chap.20
A canvas selection handler

The following example illustrates a selection handler for a canvas widget. A
description of the selected object is returned in such a way that the requester can
create an identical object. The example lacks highlighting for the selected object,
but otherwise provides full cut, copy and paste functionality.

Example 20-2 A selection handler for canvas widgets.

proc SetupCanvasSelect { ¢ } {
Create a canvas with a couple of objects
canvas $c
pack $c
$c create rect 10 10 50 50 -fill red -tag object
$c create poly 100 100 100 30 140 50 -fill orange \

-tag object

Set up cut and paste bindings
$c bind object <1> [list CanvasSelect $c %x %y]
$c bind object <3> [list CanvasCut $c %x %y]
bind $c <2> [list CanvasPaste $c %x %y]
Register the handler for selection requests
selection handle $c [list CanvasSelectHandle $c]

}

proc CanvasSelect {w x y }{
Select an item on the canvas.
This should highlight the object somehow, but doesn’t
global canvas
set id [$w find closest $x $y]
set canvas(select,$w) $id
Claim ownership of the PRIMARY selection
selection own -command [list CanvasSelectLose $w] $w

}

proc CanvasCut {w xy }{
Delete an object from the canvas, saving its
description into the CLIPBOARD selection
global canvas
set id [$w find closest $x $y]
Clear the selection so Paste gets the clipboard
selection clear
clipboard clear
clipboard append [CanvasDescription $w $id]
$w delete $id

}

proc CanvasSelectHandle { w offset maxbytes } {
Handle a selection request
global canvas
if I[info exists canvas(select,$w)] {
error "No selected item"

set id $canvas(select,$w)
Return the requested chunk of data.

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Selection Handlers 257

return [string range [CanvasDescription $w $id] \
$of f set [expr $of f set +$maxbyt es]]
}
proc CanvasDescription { wid } {
Generate a description of the object that can
be used to recreate it l|ater
set type [$w type $id]
set coords [$w coords $id]
set config {}
Bundl e up non-default configuration settings
foreach conf [$w itenctonfigure $id] {
itenconfigure returns a list like
#-fill {} {} {} red
set default [lindex $conf 3]
set value [lindex $conf 4]
if {[string conpare $default $value] != 0} {
append config [list [lindex $conf 0] $val ue]

return [concat CanvasObject $type $coords $confi g]

}

proc CanvasSel ectLose { w} {
Sone other app has clained the selection
gl obal canvas
unset canvas(sel ect, $w)

}

proc CanvasPaste { wx y } {
Paste the selection, fromeither the
PRI MARY or CLI PBOARD sel ections
if [catch {selection get} sel] {
if [catch {selection get -selection CLIPBOARD} sel] {
no selection or clipboard data
return

}

}
if [regexp {~CanvasObject} $sel] {
if [catch {eval {$w create} [Irange $sel 1 end]} id] {
return;

ook at the first coordinate to see where to
move the object. Elenent 1 is the type, the
next two are the first coordinate

set x1 [lindex $sel 2]

set y1 [lindex $sel 3]

$w nove $id [expr $x-$x1] [expr Py-$yl]

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

258 Selections and the Clipboard Chap.20

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 21

Callbacks and Handlers

This chapter describes the send command that is used to invoke Tcl
commands in other applications, the af t er command that causes Tcl
commands to occur at a time in the future, and the fil eevent
command that registers a command to occur in response to file 1/0.

Callbacks and interprocess communica-
tion provide powerful mechanisms for structuring your application. The send
command lets Tk applications send each other Tcl commands and cooperate in
very fexible ways. A large application can be structured as a set of smaller tools
that cooperate instead of one large monolith. This encourages reuse, and it
exploits your workstations multiprogramming capabilities. Within a single
application you can use the af t er command to cause events to occur at a speci-
fed time in the future. This is useful for periodic tasks and animations. The
fil eevent command lets you application do I/O processing in the background
and response as needed when I/O events occur. Together, all of these mechanisms
support a féxible and powerful applications.

The after Command

The aft er command sets up commands to happen in the future. In its simplest
form it just pauses the application for a specifed time, in milliseconds. During
this time the application processes no events. This behavior is different than the
t kwai t command that does allow event processing. The example below waits for
half a second.

after 500

The after command can register a Tcl command to occur after period of

259

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

260 Callbacks and Handlers Chap.21

time, in milliseconds. The af t er command behaves like eval ; if you give it extra
arguments it concatenates them to form a single command. If your argument
structure is important, use | i st to build the command. The following example
always works, no matter what the value of nyvari abl e is.

after 500 [list puts $nyvari abl e]

The return value of af t er is an identifer for the registered command. Y ou
can cancel this command with the af t er cancel operation. You specify either the
identifer returned from after, or the command string. In the latter case the
event that matches the command string exactly is canceled.

Table 21-1 summarizes the af t er command.

Table 21-1 The af t er command.

after mlliseconds Pause for mi | | i seconds.

after ns arg ?arg...? Concatenate the ar gs into a command and execute it
after ms milliseconds. Immediately returns an ID.

after cancel id Cancel the command registered under i d.

after cancel command Cancel the registered command.

The fileevent Command

The fi | eevent command registers a procedure that is called when an I/O stream
is ready for read or write events. For example, you can open a pipeline for read-
ing, and then process the data from the pipeline using a command registered
with fi | eevent. The advantage of this approach is that your application can do
other things, like update the user interface, while waiting for data from the pipe-
line. If you use a Tcl extension like Tcl-DP that lets you open network I/O
streams, then you can also use fil eevent to register procedures to handle data
from those I/O streams. You can use fi | eevent on st di n and st dout , too.

The command registered with fi | eevent uses the regular Tcl commands to
read or write data on the I/O stream. For example, if the pipeline generates line-
oriented output, you can use get s to read a line of input. If you try and read more
data than is available, your application will hang waiting for more input. For
this reason you should read one line in your fleevent handler , assuming the data
is line-oriented. If you know the pipeline will generate data in fked-sized blocks,
then you can use the r ead command to read one block.

Currently there is no support for non-blocking writes, so there is a chance
that writing too much data on a writable I/O stream will block your process.

You should check for end-of-fle in your read handler because it will be
called when end-of-fle occurs. It is safe to close the stream inside the fle han-
dler. Closing the stream automatically unregisters the handler.

There can be at most one read handler and one write handler for an I/O
stream. If you register a handler and one is already registered, then the old reg-
istration is removed. If you call fil eevent without a command argument it

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

The send Command 261

returns the currently registered command, or null if there is none. If you register
the null string, it deletes the current fle handler .

The example below shows a typical read event handler. A pipeline is opened
for reading and its command executes in the background. The Reader command
is invoked when data is available on the pipe. The end-of-fie condition is
checked, and then a single line of input is read and processed. Example 11-1
also uses fi | eevent to read from a pipeline.

Example 21-1 A read event file handler.

set pipe [open "|sone command"]
fileevent $pipe readable [list Reader $pipe]
proc Reader { pipe } {
if [eof $pipe] {
catch {cl ose $pipe}
return

gets $pipe line
Process one |ine

Table 21-1 summarizes the fi |l eevent command.

Table 21-2 Thefi | eevent command.

fileevent fileld readabl e Query or register conmand to be called
?command? when fi | el d is readable.
fileevent fileld witable Query or register conmmand to be called
?comand? when fi | el d is writable.

The send Command

The send command invokes a Tcl command in another application. This
provides a very general way for scripts to cooperate. The general form of the com-
mand is

send interp arg ?arg...?

Perhaps the trickiest thing to get right with send is i nt er p, which is the
name of the other application. An application defnes its own name when it cre-
ates its main window. The wish shell uses as its name the last component of the
flename of the script it is executing. For example, if the fle /usr/I ocal / bi n/
exmh begins with:

#!'/usr/ 1 ocal / bi n/w sh

The wish shell will interpret the script and set up its application name to be
exmh. However, if another instance of the exnmh application is already running,
then wish will choose the name exmh #2, and so on. If wish is not executing from
a fle, then its name is just wi sh. You may have noticed wi sh #2 or wi sh #3 in

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

262 Callbacks and Handlers Chap.21

your window title bars, and this refbcts the fact that multiple wish applications
are running on your display. If you application crashes it can forget to unregister
its name. The tkinspect program has a facility to clean up these old registrations.
A script can fod out its own name, so you can pass names around or put
them into fles in order to set up communications. The tk appname command is
used to get or change the application name.
set nmynane [tk appnane]
tk appnane aNewNane
In Tk 3.6 and earlier, you have to use the wi nfo nanme command to get the
name of the application.
set nmynanme [wi nfo nanme .]

The sender script

The following example is a general purpose script that reads input and then
sends it to another application. You can put this at the end of a pipeline in order
to get a loopback effect to the main application, although you can also use
fil eevent for similar effects. One advantage of send over fi |l eevent is that the
sender and receiver can be more independent. A logging application, for exam-
ple, can come and go independently of the applications that log error messages.

Example 21-2 The sender application.

#!'/usr/ | ocal / bi n/w sh

sender takes up to four arguments:

1) the nane of the application to which to send.
2) a command prefix

3) the name of another application to notify when
after the end of the data.

4) the comuand to use in the notification.

#

H de t he unneeded w ndow
wm wi t hdraw .

Process conmand |ine argunents

if {$argc == 0} {
puts stderr "Usage: send nanme ?cnd? ?ui Name?"
exit 1

} else {
set app [lindex $argv 0]

if {$argc > 1} {

set cnd [lindex $argv 1]
} else {

set cnd Send_lnsert

}
if {$argc > 2} {

set ui [lindex $argv 2]
set ui Crd Send_Done

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

The send Command 263

if {$argc > 3} {
set uiCnmd [lindex $argv 3]

Read input and send it to the | ogger
while {! [eof stdin]} {
set nunBytes [gets stdin input]
if {$nunBytes < 0} {
br eak
}

lgnore errors with the | ogger
catch {send $app [concat $cnd [list $input\n]]}

Notify the controller, if any
if [info exists ui] {
if [catch {send $ui $ui Ond} nsg] {
puts stderr "send.tcl could not notify $ui\n$nsg"

}
A . _
This is necessary to force wish to exit.
exit

The sender application supports communication with two processes. It
sends all its input to a primary "logging" application. When the input fhishes, it
can send a notiftation message to another "controller" application. The logger
and the controller could be the same application. An example that sets up this
three way relationship is given later.

Consider the send command used in the example:

send $app [concat $cmd [list $input\n]]

The combination of concat and I i st is a little tricky. The | i st command is
used to quote the value of the input line. This quoted value is then appended to
the command so it appears as a single extra argument. Without the quoting by
l'i st, the value of the input line will affect the way the remote interpreter parses
the command. Consider these alternatives:

send $app [list $cmd $i nput]

This form is safe, except that it limits $cnd to be a single word. If cnd con-
tains a value like the ones given below, the remote interpreter will not parse it
correctly. It will treat the whole multi-word value as the name of a command.

.log insert end
.log see end ; .log insert end

The version below is the most common wrong answer:

send $app $cnd $i nput

The send command will concatenate $cnd and $i nput together, and the
result will be parsed again by the remote interpreter. The success or failure of
the remote command depends on the value of the input data, which is always a
bad idea.

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

264 Callbacks and Handlers Chap.21

Using sender

The example below is taken from a control panel that runs jobs in the back-
ground and uses sender to send their output to an editor for logging. When the
job fnishes, the control panel is notifed.

The editor is mxedit, a Tcl-based editor. It defnes its application name to be
nxedit pat hname, where pathname is the name of the fle being edited. That
name will be passed to sender as the name of the logging application. The control
panel passes its own name as the name of the controller, and it uses the t k app-
name command to fad out its own name.

Example 21-3 Using the sender application.

#!/project/tcl/src/brent/w sh
Send chapter
Control Panel deno

wntitle . Controller
Create a frane for buttons and entry.

frame .top -borderwidth 10
pack .top -side top -fill x

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The send Command 265

Create the command buttons.

button .top.quit -text Quit -command exit

set but [button .top.run -text "Run it" -command Run \
-wi dth 6]

pack .top.quit .top.run -side right

Create a | abeled entry for the command

| abel .top.l -text Conmand: -padx O

entry .top.cnd -width 20 -relief sunken \
-textvariabl e conmand

pack .top.l -side left

pack .top.cnmd -side left -fill x -expand true

Set up key binding equivalents to the buttons
bi nd .top.cnd <Return> Run

bind .top.cnmd <Control -c> Stop

focus .top.cnd

Fork an editor to |log the output.
exec nxedit /tnp/log.[pid] &

set sendCrd [list /usr/local/bin/send.tcl \
"mkedit /tnp/log.[pid]" mxlnsert [tk appnane]]

Run the programand arrange to log its input via sender
proc Run {} {
gl obal conmand j ob sendCnd but
set cnd [concat exec $command | & $sendCmd &]
send "nxedit /tnp/log.[pid]" [list mxlnsert $command\ n]
if [catch {eval $cnd} job] {
send "mxedit /tnmp/log.[pid]" [list mxlnsert $job\n]
} else {
$but config -text Stop -command Stop
}

Stop the programand fix up the button
proc Stop {} {
gl obal job but
job contains nultiple pids
catch {eval {exec kill} $job}
send "nxedit /tnp/log.[pid]" [list mxlnsert ABORT\n]
$but config -text "Run it" -command Run

Handl e the cal | back from sender

proc Send_Done {} {
gl obal but
send "nxedit /tnp/log.[pid]" [list nmxlnsert DONE\nN]
$but config -text "Run it" -command Run

This example is very similar to the ExecLog application from Example 11—
1 on page 104. Instead of creating a text widget for a log, this version forks the
muxedit program to serve as the logging application. The command is run in a

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

266 Callbacks and Handlers Chap.21

pipeline. Instead of reading the pipeline itself, the control panel lets the sender
program send the output to the editor. When the process completes, the sender
notifes the control panel.

The formation of the command to execute is done in two parts. First, the
sendCmd variable is set up with the right arguments to send.tcl. This includes the
result of tk appname, which gives the name of the controller application. Once
again, it is crucial to use list so that spaces in the names of the interpreters are
quoted properly. In the second step the user’s command is concatenated into a
pipeline command, and eval is used to interpret the carefully constructed com-
mand.

The return from exec is a list of process ids, one for each process in the
pipeline. This leads to another use of eval to construct a kil command that
lists each process id as separate arguments.

The example always uses list to construct the command used in a send . In
this case it is necessary in order to preserve the newline character that is
appended to the string being inserted. Another approach would be to use curly
braces. In that case the \n would be converted to a newline character by the
remote interpreter. However, this doesn’t work when the command or error mes-
sage is being sent. In these cases the variable needs to be expanded, so list is
used in all cases for consistency.

Hooking the browser to a shell

Chapter 11 presented two examples, a browser for the examples in this
book and a simple shell in which to try out Tcl commands. The two examples
shown below hook these two applications together using the send command. The
frst example adds a Load button to the browser that tells the shell to source the
current fle. The browser starts up the shell, if necesarry .

Example 21-4 Hooking the browser to an eval server.

Add this to Example 11-2
button .menubar.load -text Load -command Load
pack .menubar.load -side right

Start up the eval.tcl script.

proc StartEvalServer {} {
global browse
Start the shell and pass it our name.
exec eval.tcl [tk appname] &
Wait for eval.tcl to send us its name
tkwait variable browse(evallnterp)

}
proc Load {} {
global browse
if {[Isearch [winfo interps] eval.tcl] < 0} {
StartEvalServer

if [catch {send $browse(evalinterp) {info vars}} err] {

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

The send Command 267

It probably died - restart it.
StartEvalServer

Send the command, using after 1 so that _EvalServe
is done asynchronously. We don’t wait. The three
list commands foil the concat done by send, after, and
the uplevel in _EvalServe
send $browse(evallnterp) \
[list after 1 [list _EvalServe \
[list source $browse(current)]]]

The number of lists created before the send command may seem excessive.
Here is what happens. First, the send command concats its arguments, so
instead of letting it do that, we pass it a single list. The after command also con-
cats its arguments, so it is passed a list as well. If you didn’t care how long the
command would take, you could eliminate the use of after to simplify things.
Finally, EvalServe expects a single argument that is a valid command, so list
is used to construct that.

We need to add two things to Example 11-3 to get it to support these addi-
tions to the browser. First, when it starts up it needs to send us its application
name. We pass our own name on its command line, so it knows how to talk to us.
Second, an _EvalServer procedure is added. It accepts a remote command, echos
it in the text widget, and then evaluates it. The results, or errors, are added to
the text widget.

Example 21-5 Making the shell into an eval server.

Add this to the beginning of Example 11-3
if {$argc > 0} {
Check in with the browser
send [lindex $argv 0]\
[list set browse(evallnterp) [tk appname]]

}

Add this after _Eval
proc _EvalServe { command } {
global prompt

sett .eval.t
$t insert insert $command\n

set err [catch {uplevel #0 $command} result]
$t insert insert \n$result\n

$t insert insert $prompt

$t see insert

$t mark set limit insert

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

268 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—-DRAFT: 1/13/95

22

C HAPTER

Tk Widget Attributes

Each Tk widget has a number of attributes that affect its appearance and
behavior. This chapter describes the use of attributes in general, and
covers some of the size and appearance-related attributes. The next two
chapters cover the attributes associated with colors, images, and text.

This chapter describes some of the widget
attributes that are in common among many Tk widgets. A widget always pro-
vides a default value for its attributes, so you can avoid specifying most of them.
If you want to fhe tune things, however , you’ll need to know about all the widget
attributes. You may want to just skim through this chapter fist, and then refer
back to it once you have learned more about a particular Tk widget.

Configuring Attributes

Attributes for Tk widgets are specifed when the widget is created. They can be
changed dynamically at any time after that, too. In both cases the syntax is sim-
ilar, using pairs of arguments. The frst item in the pair identifes the attribute,
the second provides the value. For example, a button can be created like this:
button .doit -text Doit -conmand DoSonet hi ng
The name of the button is . doi t, and two attributes are specifed, the text
and the command. The . doit button can be changed later with the configure
widget operation:
.doit configure -text Stop -conmand Stoplt
The current confguration of a widget can be queried with another form of
the confi gur e operation. If you just supply an attribute, the settings associated
with that attribute are returned:

269

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

270 Tk Widget Attributes Chap.22

.doit configure -text
=> -text text Text { } Stop

This command returns several pieces of information: the command line
switch, the resource name, the resource class, the default value, and the current
value. In most cases you want the current value, which comes last. One way to
get this value is with | i ndex:

lindex [.doit configure -text] 4

Tk 4.0 added a cget widget command that makes life easier. Just do:
.doit cget -text
=> St op

You can also confgure widget attributes indirectly by using the X resource
database. An advantage of using the resource database is that users can recon-
fgure your application without touching the code. Otherwise, if you specify
attribute values explicitly in the code, they cannot be overridden by resource set-
tings. This is especially important for attributes like fonts and colors.

The tables in this chapter list the attributes by their X resource name,
which may have a capital letter at an internal word boundary (e.g., act i veBack-
ground). When you specify attributes in a Tcl command, use all lowercase
instead, plus a leading dash. Compare:

option add *Button. acti veBackground red
$button configure -activebackground red

The frst command defhes a resource that affects all buttons created after
that point, while the second command changes an existing button. Command
line settings override resource database speciftations. Chapter 27 describes the
use of X resources in more detail.

Size

Most widgets have a wi dt h and hei ght attribute that specifes their desired size,
although there are some special cases described below. In all cases, the geometry
manager for a widget may modify the size to some degree. The table below sum-
marizes the attributes used to specify the size for widgets.

Table 22-1 Size attribute resource names.

aspect The aspect ratio of a message widget, which is 100 times the
ratio of width divided by height.
message

hei ght Height, in text lines or screen units.
button canvas checkbutton frane | abel |istbox
i stbox menubutton radi obutton text toplevel

| ength The long dimension of a scale.
scal e

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Size 271

Table 22-1 Size attribute resource names.

orient Orientation for long and narrow widgets:
hori zontal vertical.
scal e scroll bar.

wi dt h Width, in characters or screen units.
button canvas checkbutton entry frane | abel
i stbox nmenubutton nessage radi obutton scale
scrol I bar text toplevel

Most of the text-related widgets interpret their sizes in units of characters
for width and lines for height. All other widgets, including the message widget,
interpret their dimensions in screen units. Screen units are pixels by default,
although you can suffk the dimension with a unit specifer:

c centinmeters

i i nch

m millineters

p printer points (1/72 inches)

Scales and scrollbars can have two orientations as specifed by the ori ent
attribute, so width and height are somewhat ambiguous. These widgets do not
support a hei ght attribute, and they interpret their wi dt h attribute to mean the
size of their narrow dimension. The scal e has a | engt h attribute that deter-
mines its long dimension. Scrollbars do not even have a | engt h. Instead, a
scrol | bar is assumed to be packed next to the widget it controls, and the fil |
packing attribute is used to extend the scrollbar to match the length of its adja-
cent widget. Example 15-5 shows how to pack scrollbars with another widget.

The message widget displays a fked string on multiple lines, and it uses
one of two attributes to constrain its size: its aspect or its wi dt h. The aspect
ratio is defned to be 100*width/height, and it formats its text to honor this con-
straint. However, if a wi dt h is specifed, it just uses that and uses as many lines
(i.e. as much height) as needed. Example 15-2 and Example 15-3 show how
message widgets display text.

It is somewhat unfortunate that text-oriented widgets only take character-
and line-oriented dimensions. These sizes change with the font used for the
label, and if you want a precise size you might be frustrated. One trick is to put
each widget, such as a label, in its own frame. Specify the size you want for the
frame, and then pack the label and turn off size propagation. For example:

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

272 Tk Widget Attributes Chap.22

Example 22-1 Equal-sized labels

proc Equal Si zedLabel s { parent wi dth height strings args } {
set I O
foreach s $strings {
franme $parent. $l -width $wi dth -hei ght $hei ght
pack propagate $parent.$l false
pack $parent.$l -side left

eval {label $parent.$l.l -text $s} $args
pack $parent.$l.l -fill both -expand true
incr |

}
}
frame .f ; pack .f

Equal Si zedLabel s .f 1i 1c {apple orange strawberry kiwi} \
-relief raised

The frames $par ent . $| are all created with the same size. The pack prop-
agat e command prevents these frames from changing size when the labels are
packed into them later. The labels are packed with fi | | and expand turned on so
they fll up the fked-sized frames around them.

Borders and Relief

The three dimensional appearance of widgets is determined by two
attributes: borderWdt h and rel i ef . The bor der W dt h adds extra space around
the edge of a widget’s display, and this area can be displayed in a number of ways
according to the rel i ef attribute. The example on the next page illustrates the
different reliefs

Table 22-2 Border and relief attribute resource names.

borderWdth The width of the border around a widget, in screen units.
button canvas checkbutton entry frane | abel
| i stbox menu menubutton nessage radi obutton
scal e scrol |l bar text toplevel

bd Short for borderWdth. Tcl conmands only.

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Focus Highlight 273

Table 22-2 Border and relief attribute resource names.

relief The appearance of the border:
flat rai sed sunken ridge groove
button canvas checkbutton entry frane | abel
| i stbox nenubutton nessage radi obutton scale
scrol | bar text toplevel

acti veBorder Wdth The borderwidth for menu entries.

activeReli ef The relief for a active scr ol | bar elements.

Example 22-2 3D relief sampler.

frame .f -borderwi dth 10

pack .f

foreach relief {raised sunken flat ridge groove} {
label .f.%relief -text $relief -relief $relief -bd 4
pack .f.$relief -side left -padx 4

The act i veBor der W dt h attribute is a special case for menus. It defhes the
border width for the menu entries. The relief of a menu is (currently) not confg-
urable. It probably isn’t worth adjusting the menu border width attributes
because the default looks OK.

The activeRel i ef applies to the elements of a scrollbar (the elevator and
two arrows) when the mouse is over them. In this case there is no corresponding
border width to play with, and changing the activeRelief doesn’t look that
great.

The Focus Highlight

Each widget can have a focus highlight that indicates what widget cur-
rently has the input focus. This is a thin rectangle around each widget that is
displayed in the normal background color by default. When the widget gets the
input focus, the highlight rectangle is displayed in an alternate color. The addi-
tion of the highlight adds a small amount of space outside the border described
in the previous section. Attributes control the width and color of this rectangle. If
the widget is zero, no highlight is displayed.

By default, only the widgets that normally expect input focus have a non-

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

274 Tk Widget Attributes Chap.22
Table 22-3 Border and relief attribute resource names.

hi ghl i ght Col or The color of the highlight when the widget has focus.

hi ghl i ght Thi ckness The width of the highlight border.

zero width highlight border. This includes the t ext, entry, and | i st box widgets.
It also includes the butt on and nenu widgets because there is a set of keyboard
traversal bindings that focus input on these widgets, too.

Padding and Anchors

Some widgets have padding and anchor attributes that are similar in spirit to
some packing attributes described in Chapter 12, The Pack Geometry Manager.
However, they are distinct from the packing attributes, and this section explains
how they work together with the packer

Table 22-4 Layout attribute resource names.

anchor The anchor position of the widget: n ne e se s sw w nw center.
button, checkbutton, |abel, nenubutton, nessage,
radi obutt on.

padX, padY Padding space in the X or Y direction, in screen units.
button checkbutton | abel nenubutton nessage radi obut -
ton text

The padding attributes for a widget defne space that is never occupied by
the display of the widgets contents. For example, if you create a | abel with the
following attributes and pack it into a frame by itself, you will see the text is still
centered, in spite of the anchor attribute.

| abel .foo -text Foo -padx 20 -anchor e
pack .foo
The anchor attribute only affects the display if there is extra room for
another reason. One way to get extra room is to specify a wi dt h attribute that is
longer than the text. The following label has right-justifed text. Y ou can also see
the effect of the default padx value for labels that keeps the text spaced away

from the right edge.
| abel .foo -text Foo -width 10 -anchor e
pack .foo

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Putting It All Together 275

Another way to get extra display space is with the - i padx and - i pady pack-
ing parameters. The example in the next section illustrates this effect. Chapter
12 has several more packing examples of the packing parameters.

Putting It All T ogether

The number of different attributes that contribute to the size and appearance
can be confusing. The example in this section uses a label to demonstrate the dif-
ference among size, borders, padding, and the highlight. Padding can come from
the geometry manager, and it can come from widget attributes.

Example 22—-3 Borders and padding.

frame .f -bg white
| abel .f.one -text One -relief raised
pack .f.one -side top
| abel .f.two -text Two \
-hi ghl'i ghtthickness 4 -highlightcolor red \
-borderwidth 5 -relief raised \
-padx 0 -pady 0\
-width 10 -anchor w
pack .f.two -side top -pady 10 -ipady 10 -fill both
focus .f.two
pack .f

The frst | abel in the example uses a raised relief so you can see the default
2-pixel border. There is no highlight on a label by default. There is one pixel of
internal padding so that the text is spaced away from the edge of the label. The
second label adds a highlight rectangle by specifying a non-zero thickness. Wid-
gets like buttons, entries, listboxes, and text have a highlight rectangle by

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

276 Tk Widget Attributes Chap.22

default. The second label’s padding attributes are reduced to zero. The anchor
positions the text right next to the border in the upper left (nw) corner. However,
note the effect of the padding provided by the packer. There is both external and
internal padding in the Y direction. The external padding (from pack - pady)
results in unflled space. The internal packing (pack -i pady) is used by the label
for its display. This is different than the label’s own - pady attribute, which keeps
the text away from the edge of the widget.

Created: March 15, 1994 —TKkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 23

Color, Images, and Cursors

This chapter describes the color attributes shared by the Tk widgets. Images
and bitmaps can be displayed instead of text by several widgets. This
chapter describes that commands that create and manipulate images.
The shape of the mouse cursor when it is over a particular widget is also
controlled by attributes. This chapter includes a figure that shows all the
cursors in the X cursor font.

Color is one of the most fun things to play
with in a user interface. However, this chapter makes no attempt to improve
your taste in color choices; it just describes the attributes that affect color.
Because color choices are often personal, it is a good idea to specify them via X
resources so your users can change them easily. For example, Tk does not have a
reverse video mode. However, with a couple resource specifeations you can con-
vert a monochrome display into reverse video. The defhitions are given in the
next example. The For egr ound and Backgr ound class names are used, and the
various foreground and background colors (e.g., acti veBackground) are given
the right resource class so these settings work out.

Example 23-1 Resources for reverse video.

proc ReverseVideo {} {
option add *Foreground white
opti on add *Background bl ack

This chapter describes images, too. The image facility in Tk lets you create
an image and then have other Tk widgets display it. The same image can be dis-
played by many different widgets (or multiple times on a canvas). If you redefne
an image, its display is updated in whatever widgets are displaying it.

The last topic of the chapter is cursors. All widgets can control what the

277

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

278 Color, Images, and Cursors Chap.23

mouse cursor looks like when it is over them. In addition, the widgets that sup-
port text input defne another cursor, the insert cursor. Its appearance is con-
trolled with a few related attributes.

Colors

There are several color attributes. The f or egr ound color is used to draw an ele-
ment, while the backgr ound color is used for the blank area behind the element.
Text, for example, is painted with the foreground color. There are several varia-
tions on foreground and background that refbct different states for widgets or
items they are displaying. Table 23-1 lists the resource names for color
attributes. The table indicates what widgets use the different color attributes.
Remember to use all lowercase and a leading dash when specifying attributes in
a Tcl command.

Table 23-1 Color attribute resource names.

backgr ound The normal background color.
button canvas checkbutton entry frane | abel
| i stbox menu nmenubutton nessage radi obutton
scal e scrol |l bar text toplevel

bg Short for background. Command line only.

f or egr ound The normal foreground color.
button checkbutton entry I abel |istbox nenu
nmenubutt on message radi obutton scal e text

fg Short for foreground. Command line only.

acti veBackground The background when a mouse button will take an action.

button checkbutton nenu nenubutton radi obutton
scal e scroll bar

acti veFor eground The foreground when the mouse is over an active widget.
button checkbutton nenu nenubutton radi obutton

di sabl edFor eground The foreground when a widget is disabled.
button checkbutton nmenu nenubutton radi obutton

hi ghl i ght Col or The color for input focus highlight.
button canvas checkbutton entry frane | abel
nmenubutt on radi obutton scal e scroll bar text
t opl evel

i nsert Backgr ound The background for the area covered by the insert cursor.
canvas entry text

sel ect Backgr ound The background of selected items.
canvas entry |istbox text

sel ect Col or The color of the selector indicator.
checkbutton radi obutton

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Colors 279

Table 23-1 Color attribute resource names.

selectForeground The foreground of selected items.
canvas entry listbox text

troughColor The trough part of scales and scrollbars.
scale scrollbar

Color values are specifed in two ways: symbolically (e.g., red), or by hexa-
decimal numbers (e.g., #f0000). The leading # distinguishes the hexadecimal
representation from the symbolic one. The number is divided into three equal
sized felds that give the red, green, and blue values, respectively . The felds can
specify 4, 8, 12, or 16 bits of a color:

#RGB 4 bits per color

#RRGGBBS bits per color
#RRRGGGBBBL2 bits per color
#RRRRGGGGEBBBBL16 bits per color

If you specify more resolution than is supported by the X server, the low
order bits of each feld are discarded. The different display types supported by X
are described in the next section. Each feld ranges from 0, which means no color,
to a maximum, which is all ones in binary, or all f in hex, that means full color
saturation. For example, pure red can be specifed four ways:

#f00 #ff0000 #fff000000 #ffff00000000

The symbolic color names understood by the X server may vary from sys-
tem to system. You can hunt around for a fle named rgb.txt in the X directory
structure to fad a listing of them. Or, run the xcolors program that comes with
the standard X distribution.

The winfo rgp command maps from a color name (or value) to three num-
bers that are its red, green, and blue values. You can use this to compute varia-
tions on a color. The ColorDarken procedure shown below uses the winfo rgb
command to get the red, green, and blue components of the input color. It
reduces these amounts by 5 percent, and reconstructs the color speciftation
using the format command.

Example 23—-2 Computing a darker color

proc ColorDarken { color } {
set rgb [winfo rgb $color]
return [format “#%03x%03x%03x" \
[expr round([lindex $rgb 0] * 0.95)] \
[expr round([lindex $rgb 1] * 0.95)] \
[expr round([lindex $rgb 2] * 0.95)]]

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

280 Color, Images, and Cursors Chap.23
Colormaps and V isuals

For the most part Tk manages the color resources of the display for you.
However, if your application uses a lot of colors you may need to control the dis-
play with the Visual and Colormap attributes described in this section. Competi-
tion from other applications can cause color allocations to fail, and this causes Tk
to switch into monochrome mode (i.e., black and white).

Each pixel on the screen is represented by one or more bits of memory.
There are a number of ways to map from a value stored at a pixel to the color
that appears on the screen at that pixel. The mapping is a function of the num-
ber of bits at each pixel, which is called the depth of the display, and the style of
interpretation, or visual class. The 6 visual classes defned by X are listed in the
table below. Some of the visuals use a colormap that maps from the value stored
at a pixel to a value used by the hardware to generate a color. A colormap
enables a compact encoding for a much richer color. For example, a 256 entry col-
ormap can be indexed with 8 bits, but it may contain 24 bits of color information.
If you run the UNIX xdpyinfo program it will report the different visual classes
supported by your display.

Table 23-2 Visual classes for X displays. Values for the visual attribute.

staticgrey Greyscale with a fked colormap defned by the X server .
greyscale Greyscale with a writable colormap.

staticcolor Uses a colormap defned by the X server .

pseudocolor Color values determined by single writable colormap.
directcolor Color values determined by three independent colormaps.
truecolor Color values determined by read-only independent colormaps?

The frame and toplevel widgets support a Colormap and Visual attribute
that gives you control over these features of the X display. Again, in a Tcl com-
mand specify these attributes in all lowercase with a leading dash. Unlike other
attributes, these cannot be changed after the widget is created. The value of the
Visual attribute has two parts, a visual type and the desired depth of the display.
The following example requests a greyscale visual with a depth of 4 bits per
pixel.

toplevel .grey -visual “greyscale 4”

By default a widget inherits the colormap and visual from its parent wid-
get. The value of the Colormap attribute can be the keyword new, in which case
the frame or toplevel gets a new private colormap, or it can be the name of
another widget, in which case the frame or toplevel shares the colormap of that
widget. When sharing colormaps, the other widget must be on the same screen
and using the same visual class.

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Bitmaps and Images 281
Bitmaps and Images

The label and all the button widgets have an i mage attribute that specifes a
graphic image to display. Using an image takes two steps. In the frst step the
image is created via the i mage cr eat e command. This command returns an iden-
tifer for the image, and it is this identifer that is passed to widgets as the value
of their image attribute.

Example 23—-3 Specifying an image attribute for a widget.

set im[inage create bitmp \
-file glyph.bitmap -nmaskfile glyph. mask \
- background white -foreground bl ue]
button .foo -inmage $im

There are three things that can be displayed by labels and all the buttons:
text, bitmaps, and images. If more than one of these attributes are specifed,
then the image has priority over the bitmap, and the bitmap has priority over
the text. You can remove the image or bitmap attribute by specifying a null
string for its value. The text, if any, will be displayed instead.

The image Command

Table 23—3 summarizes the i mage command.

Table 23-3 Summary of the i mage command.

i mage create type Create an image of the specifed type. If name is not

?nane? ?options? specifed, one is made up. The remaining arguments
depend on the type of image being created.

i mage del ete nane Delete the named image.

i mage hei ght nane Return the height of the image, in pixels.

i nege nanes Return the list of defhed images.

i mage type name Return the type of the named image.

i mage types Return the list of possible image types.

i mage wi dth nane Return the width of the image, in pixels.

The exact set of options for i nage creat e depend on the image type. There
are two built-in image types: bi t map and phot o. Chapter 30 describes the C
interface for defning new image types.

bimap images

A bi t map image has a main image and a mask image. The main image is

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

282 Color, Images, and Cursors Chap.23

drawn in the foreground color. The mask image is drawn in the background color,
unless the corresponding bit is set in the main image. The remaining bits are
“clear” and the widget’ s normal background color shows through. For the bi t map
image type supports the following options.

Table 23-4 Bitmap image options

- background col or The background color. (no -bg equi val ent)
-data string The contents of the bitmap as a string.

-file nane The name of the fle containing a bitmap defnition.
-foreground col or The foreground color. (no -fg equival ent)
-maskdata string The contents of the mask as a string.

-maskfil e name The name of the fle containing the mask data.

The bitmap defnition fles are stylized C structure defnitions that are
parsed by X. These are generated by bitmap editors such as bi t map program,
which comes with the standard X distribution. The -fi | e and - maskfi | e options
name a fle that contains such a defnition. The -data and - maskdat a options
specify a string in the same format as the contents of one of those fles.

The bitmap attribute

The label and all the button widgets also support a bi t map attribute, which
is a special case of an image. This attribute is a little more convenient than the
image attribute because the extra step of creating an image is not required. How-
ever, there is some power and fbxibility with the i rage command, such as the
ability to reconfgure a named image (e.g., for animation) that is not possible
with a bitmap. .

Example 23-4 Specifying a bitmap for a widget.

button .foo -bitmap @l yph.bitmap -fg bl ue

The @syntax for the bitmap attribute signals that a fle containing the bit-
map is being specifed. It is also possible to name built-in bitmaps. The pre-
defhed bitmaps are shown in the next fgure along with their symbolic name.
Chapter X describes the C interface for defhing built in bitmaps.

Example 23-5 The built-in bitmaps

foreach nane {error gray25 gray50 hourgl ass \
i nfo questhead question warning} {
frame . $nanme
| abel .$nane.|l -text $nanme -width 9 -anchor w

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Bitmaps and Images 283

| abel .$name.b -bitmap $name

pack .$nane.|l -side left
pack . $nanme.b -side top
pack .$nane -side top -expand true -fill x

photo images

The phot 0 image type was contributed by Paul Mackerras. It displays full
color images and can do dithering and gamma correction. The phot o image sup-
ports different image formats, although the only format supported by Tk 4.0 is
the PPM format. There is a C interface to defne new photo formats.

Table 23—5 lists the attributes for photo images. These are specifed in the
i mage cr eat e phot o command.

Table 23-5 Photo image attributes

-format fornmat Specifes the data format for the fle or data string.

-data string The contents of the photo as a string.

-file nane The name of the fle containing a photo defnition.

- gamma val ue A gamma correction factor, which must be greater than
zero. A value greater than one brightens an image.

- hei ght val ue The height, in screen units.

-pal ette spec A single number specifes the number of grey levels.

Three numbers separated by slashes determines the
number of red, blue, and green levels.

-wi dth val ue The width of the image, in screen units.

The f or mat indicates what format the data is in. However, the photo imple-
mentation will try all format handlers until it fod one that accepts the data. An
explicit format limits what handlers are tried. The format name is treated as a
prefk that is compared against the names of handlers. Case is not signifeant in
the format name.

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

284 Color, Images, and Cursors Chap.23

The pal ette setting determines how many colors or graylevels are used
with rendering an image. If a single number is specifed, the image is rendered in
greyscale with that many different graylevels. For full color, three numbers sep-
arated by slashes specify the number of shades of red, green, and blue, respec-
tively. The more levels you specify the more room you take up in your colormap.
The photo widget will switch to a private colormap if necessary. Multiply the
number of red, green, and blue shades to determine how many different colors
you use. If you have an 8-bit display, there are only 256 colors available. Reason-
able palette settings that don’t hog the colormap include 5/ 5/ 4 and 6/ 6/ 5. You
can get away with fewer shades of blue because the human eye is less sensitive
to blue.

After you create an image you can operate on it with several image instance
operations. In the table below, $p is a photo image handle returned by the i nage
cr eat e phot o command.

Table 23-6 Photo image operations.

$p bl ank
$p cget option
$p configure ...

$p copy source
options

$p get x y

$p put data ?-to
x1 yl x2 y2?

$p read file
options

$p redither

$p wite file
opti ons

Clear the image. It becomes transparent.
Return the confguration attribute opti on.
Reconfgure the photo image attributes.

Copy another image. Table 23-7 lists the copy options.

Return the pixel value at position X y.

Insert dat a into the image. dat a is a list of rows, where
each row is a list of colors.

Load an image from a fle. T able X lists the read
options.

Reapply the dithering algorithm to the image.

Save the image to f i | e accoring to opt i ons. Table X
lists the write options.

Table 23—7 lists the options available when you copy data from one image
to another. The regions involved in the copy are specifed by the upper -left and
lower-right corners. If the lower-right corner of the source is not specifed, then it
defaults to the lower-right corner of the image. If the lower-right corner of the
destination is not specifed, then the size is determined by the are of the source.
Otherwise, the source image may be cropped or replicated to fil up the destina-
tion.

Table 23-7 lists the read options, and Table 23—7 lists the write options.
The format option is more important for writing, because otherwise the frst for-
mat found will be used. With reading, the format is determined automatically,
although if there are multiple image types that can read the same data, you can
use the format to chose the one you want.

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Mouse Cursor 285

Table 23-7 Image copy options.

-fromx1l yl ?x2 y2? Specifes the location and area in the source image. If
x2 and y2 are not given, there are set to the bottom-
right corner.

-to x1 y1 ?x2 y2? Specifes the location and area in the destination. If x2
and y2 are not given, the size is determined by the
source. The source may be cropped or tiled to fil the
destination.

-shrink Shrink the destination so its bottom right corner
matches the bottom right corner of the data copied in.
This has no effect if the wi dt h and hei ght have been
set for the image.

-zoom x ?y? Magnify the source so each source pixel becomes a block
of x by y pixels. y defaults to x if it isn’t specifed.

-decimate x ?y? Reduce the source by taking every x’th pixel in the X
direction and every y’th pixel in the Y direction. y
defaults to x.

Table 23-8 Image read options.

-format format Specifes the format of the data. By default, the format
is determined automatically.

-fromx1l yl ?x2 y2? Specifes a subregion of the source data. If x2 and y2
are not given, the size is determined by the data.

-to x1 yl Specifes the top-left corner of the new data.

-shrink Shrink the destination so its bottom right corner
matches the bottom right corner of the data read in.
This has no efect if the width and height have been set
for the image.

Table 23-9 Image write options.

-format fornat Specifes the format of the data. By default, the format
is determined automatically.

-fromx1l yl ?x2 y2? Specifes a subregion of the data to save. If x2 and y2
are not given, they are set to the lower-right corner.

The Mouse Cursor

The cur sor attribute defnes the mouse cursor . This attribute can have a number
of forms. The simplest is a symbolic name for one of the glyphs in the X cursor
font, which is shown in the fgure on the next page. Optionally , a foreground and
background color for the cursor can be specifed. Here are some examples:

$w config -cursor watch;# stop-watch cursor

$w config -cursor {gunby bl ue};# blue gunby

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

286 Color, Images, and Cursors Chap.23

¥ X _cursor [dothox S man Ty sizing
P 1 double_arrow & middiebutton S spider
T based_arrow_down P draft_large @ mouse ﬂ spraycan
1 bhased_arrow_up y.d draft_small % pencil ?jg star
= boat draped_hox & pirate O target
Hi bogosity 2, exchange + plus + tcross
L bottom_left_comer + fleur 2 question_arrow * top_left_arrow
Ell bottom_right_comer wl: gobbler A rght_ptr = top_left_comer
L bottom_side 'ﬂ! gumby -3| right_side = top_right_comer
L bottom_tee f hand1 - right_tee S top_side
@ box_spiral Y hand2 & rightbutton T top_tee
A center_ptr O heart] rti_logo s trek
QO circle n sailboat - ul_angle
@ clock B iron_cross ! sh_down_arrow e umbrella
coffee_mug Y left_ptr + sh_h_double_arrow 1 ur_angle
2= cross |« left_side + sh_left_arrow & watch
2 cross_reverse | left_tee =+ sh_right_arrow T =term
- crosshair m] lefthutton 1 sh_up_arrow
4k diamond_cross L 1_angle $ sb_v_double_arrow
$w conf ig -cursor {X_cursor red white} ;# red X on white

The other form for the cursor attribute specifes a fle that contains the def-
inition of the cursor bitmap. If two fle names are specifed, then the second spec-
ifes the cursor mask that determines what bits of the background get covered
up. Bitmap editing programs like idraw and iconedit can be used to generate
these fles. Here are some example cursor specifeation using fles. Y ou need to
specify a foreground color, and if you specify a mask fle then you also need to
specify a background color.

$w conf ig -cursor “@timer.bitmap black”
$w conf ig -cursor “@timer.bitmap timer.mask black red”

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Text Insert Cursor 287
The Text Insert Cursor

The t ext, entry, and canvas widgets have a second cursor to mark the text
insertion point. The text insert cursor is described by a set of attributes. These
attributes can make the insert cursor vary from a thin vertical line to a large
rectangle with its own relief. Table 23-10 lists these attributes. The default
insert cursor is a 2-pixel wide vertical line. You may not like the look of a wide
insert cursor. The cursor is centered between two characters, so a wide one does
not look the same as the block cursors found in many terminal emulators.
Instead of occupying the space of a single character, it partially overlaps the two
characters on either side.

Table 23-10 Cursor attribute resource names.

cursor The mouse cursor. See text for sample formats.
button canvas checkbutton entry frane | abel
| i stbox menu nmenubutton nessage radi obutton
scal e scroll bar text toplevel

i nsert Backgr ound Color for the text insert cursor.
canvas entry text

i nsertBorderWdth Width for three dimensional appearance.
canvas entry text

insertOFfTime Milliseconds the cursor blinks off.
canvas ent ry t ext

i nsert OnTi ne Milliseconds the cursor blinks on.
canvas entry text

i nsert Wdth Width of the text insert cursor, in screen units.
canvas entry text

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

288 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

24

C HAPTER

Fonts and Text Attributes

This chapter describes the naming convention for X fonts. The examples show
how to trap errors from missing fonts. This chapter describes other text-
related attributes such as justification, anchoring, and geometry gridding.

F onts can cause trouble because the set of
installed fonts can vary from system to system. This chapter describes the font
naming convention and the pattern matching done on font names. If you use
many different fonts in your application, you should specify them in the most
general way so the chances of the font name matching an installed font is
increased.

After fonts are described, the chapter explains a few of the widget
attributes that relate to fonts. This includes justifeation, anchors, and geometry
gridding.

Fonts

Fonts are specifed with X font names. The font names are specifed with the
-font attribute when creating or reconfguring a widget.
label .foo -text “Foo” -font f ixed

This label command creates a label widget with the fixed font. fixed is an
example of a short font name. Other short names might include 6x12, 9x15, or
times12 . However, these aliases are site dependent. In fact, all font names are
site dependent because different fonts may be installed on different systems. The
only font guaranteed to exist is named f ixed .

The more general form of a font name has several components that describe

289

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

290 Fonts and Text Attributes Chap.24

various attributes of the font. Each component is separated by a dash, and aster-
isk (*) is used for unspecifed components. Short font names are just aliases for
these more complete speciftations. Here is an example:
-*-times-mediumr-normal -*-18-*-*-*-*.*.j508859-1
The components of font names are listed in Table 24-1 in the order in
which they occur in the font speciftation. The table gives the possible values for
the components. If there is an ellipsis (...) then there are more possibilities, too.

Table 24-1 X Font specification components.

Component Description
foundry adobe xerox linotype msc ...
family times helvetica lucida courier synbol
weight bol d medi um dem bol d dem nornal book Iight
slant iro
swidth nor mal sans narrow sem condensed
adstyle sans
pixels 8 10 12 14 18 24 36 48 72 144 ...
points 0 80 100 120 140 180 240 360 480 720 ...
resx 0 72 75 100
resy 0 72 75 100
space pmc
avgWidth 73 94 124 ...
registry i 508859 xerox dec adobe jisx0208.1983 ...
encoding 1 fontspecific dectech synbol dingbats

The most common attributes chosen for a font are its family, weight, slant,
and size. The family determines the basic look, such as couri er or helvetica.
The weight is usually bold or medium. The slant component is a bit cryptic, but
i means italic, r means roman (i.e., normal), and o means oblique. A given font
family might have an italic version, or an oblique version, but not both. Simi-
larly, not all weights are offered by all font families. Size can be specifed in pix-
els (i.e., screen pixels) or points. Points are meant to be independent of the
screen resolution. On a 75dpi font, there are about 10 points per pixel. Again, not
all font sizes are available in all fonts.

It is generally a good idea to specify just a few key aspects of the font and
use * for the remaining components. The X server will attempt to match the font
speciftation with its set of installed fonts, but it will fail if there is a specift
component that it cannot match. If the fist or last character of the font name is

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Fonts 291

an asterisk, then that can match multiple components. The following selects a 12
pixel times font:
times-medium-r--*-12*

Two useful UNIX programs that deal with X fonts are xlsfonts and xfontsel.
These are part of the standard X11 distribution. xIsfonts ~ simply lists the avail-
able fonts that match a given font name. It uses the same pattern matching that
the server does. Because asterisk is special to most UNIX shells, you’ll need to
quote the font name argument if you run xslfonts from your shell. xfontsel has
a graphical user interface and displays the font that matches a given font name.

Unfortunately, if a font is missing, neither Tk nor the X server attempt to
substitute another font, not even f ixed . The FindFont routine looks around for
an existing font. It falls back to f ixed if nothing else matches.

Example 24-1 FindFont matches an existing font.

proc FindFont { w {sizes 14} {weight medium} {slant r}} {
foreach family {times courier helvetica} {
foreach size $sizes {
if {[catch {$w config -font \
-*-$family-$weight-$slant-*-*-$size-*}] == 0} {
return -*-$family-$weight-$slant-*-*-$size-*

}
}
$w config -font fixed
return fixed

The FindFont proc takes the name of a widget, w as an argument, plus
some optional font characteristics. All fre kinds of text widgets take a -font
attribute speciftation, so you can use this routine on any of them. The sizes
argument is a set of pixel sizes for the font (not points). The routine is written so
you can supply a choice of sizes, but it fkes the set of families it uses and allows
only a single weight and slant. Another approach is to loop through a set of more
explicit font names, with fixed being your last choice. The font that works is
returned by the procedure so that the search results can be saved and reused
later. This is important because opening a font for the frst time is a fairly heavy-
weight operation, and a failed font lookup is also expensive.

Another approach to the font problem is to create a wrapper around the Tk
widget creation routines. While you are at it you can switch some attributes to
positional arguments if you fad you are always specifying them.

Example 24—2 Handling missing font errors.

proc Button { name text command args } {
set cmd [list button $name -text $text -command $command]
if [catch {concat $cmd $args} w] {
puts stderr “Button (warning) $w”

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

292 Fonts and Text Attributes Chap.24

Delete the font specified in args, if any
set ix [lsearch $args -font]
if {$ix >= 0} {

set args [lreplace $args $ix [expr $ix+1]]

This font overrides the resource database
eval $cmd $args {-font fixed}

return $nane

The But t on procedure creates a button and always takes a t ext and com
mand argument. Note that | i st is used to carefully construct the prefk of the T cl
command so that the values of t ext and command are preserved. Other argu-
ments are passed through with ar gs. The procedure falls back to the fi xed font
if the button command fails. It is careful to eliminate the font specifed in ar gs, if
it exists. The explicit font overrides any setting from the resource database or
the Tk defaults. Of course, it might fail for some more legitimate reason, but that
is allowed to happen in the backup case. The next example provides a generate
wrapper that can be used when creating any widget.

Example 24-3 FontWidget protects against font errors.

proc FontWdget { args } {
if [catch $args W {
Delete the font specified in args, if any
set ix [lsearch $args -font]
if {$ix >= 0} {
set args [lreplace $args $ix [expr $ix+1]]

This font overrides the resource database
set w [eval $args {-font fixed}]

return $w

Font Wdget button .foo -text Foo -font garbage

Text Layout

There are two simple text layout attributes, j usti fy and wr apLengt h. The
text widget introduces several more layout-related attributes, and Chapter X
describe those in detail. The two attributes described in this section apply to the
various butt on widgets, the | abel , entry, and message widgets. Those widgets
are described in Chapters 14, 15, and 16.

The j usti fy attribute causes text to be centered, left-justifed, or right jus-
tifed. The default justiftation is center for all the widgets in the table, except
for the ent ry widget that is left-justifed by default.

The wr apLengt h attribute specifes how long a line of text is before it is

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Padding and Anchors 293

Table 24-2 Resource names for layout attributes.

justify Text line justiftation: | eft center right.
button checkbutton entry | abel nmenubutton nessage
radi obutton

wr apLengt h Maximum line length for text, in screen units.
button checkbutton | abel menubutton radiobutton

wrapped onto another line. It is used to create multi-line buttons and labels. This
attribute is specifed in screen units, however , not string length. It is probably
easier to achieve the desired line breaks by inserting newlines into the text for
the button or label and specifying a wr apLengt h of 0, which is the default.

Padding and Anchors

Some widgets have padding and anchor attributes that are similar in spirit to
some packing attributes described in Chapter 12, The Pack Geometry Manager.
However, they are distinct from the packing attributes, and this section explains
how they work together with the packer

Table 24-3 Resource names for padding and anchors.

anchor The anchor position of the widget: n ne e se s sw w nw center.
button, checkbutton, |abel, nenubutton, nessage,
radi obutt on.

padX, padY Padding space in the X or Y direction, in screen units.
button checkbutton | abel nenubutton nessage radi obut -
ton text

The padding attributes for a widget defne space that is never occupied by
the display of the widgets contents. For example, if you create a | abel with the
following attributes and pack it into a frame by itself, you will see the text is still
centered, in spite of the anchor attribute.

| abel .foo -text Foo -padx 20 -anchor e
pack .foo
The anchor attribute only affects the display if there is extra room for
another reason. One way to get extra room is to specify a wi dt h attribute that is
longer than the text. The following label has right-justifed text.

| abel .foo -text Foo -width 10 -anchor e

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

294 Fonts and Text Attributes Chap.24

pack .foo
Another way to get extra display space is with the - i padx and - i pady pack-
ing parameters. The following commands produce approximately the same dis-
play as the last example. With the packing parameters you specify things in
screen dimensions instead of string lengths.
| abel .foo -text Foo -anchor e
pack .foo -ipadx 25
Chapter 12 has several more packing examples that illustrate the effects of
the packing parameters.

Gridding, Resizing, and Geometry

The text and | i st box widgets support geometry gridding. This is an alternate
interpretation of the main window geometry that is in terms of grid units, typi-
cally characters, as opposed to pixels. The set G'i d attribute is a boolean that
indicates if gridding should be turn on. The widget implementation takes care of
defhing a grid size that matches its character size.

When a widget is gridded, its size is constrained to have a whole number of
grid units displayed. In other words, the height will be constrained to show a
whole number of text lines, and the width will be constrained to show a whole
number of average width characters. This affects interactive resizing by users,
as well as the various window manger commands (wm) that relate to geometry.
When gridding is turned on, the geometry argument (e.g., 24x80) is interpreted
as grid units, otherwise it is interpreted as pixels. The window manager geome-
try commands are summarized below. In all cases, the wi n parameter to the wm
command is a toplevel window. However, widget that asks for gridding is typi-
cally an interior window surrounded by a collection of other widgets.

Table 24-4 Geometry commands affected by gridding.

wm georetry wi n ?geonetry? Set or query the geometry of a window.
wm i nsize win ?wi dth hei ght? Set the minimum window size.
wm maxsize win ?wi dth hei ght? Set the maximum window size.

wmgrid win ?w dth hei ght dw dh? Defhe the grid parameters.

An important side-effect of gridding is that it enables interactive resizing
by the user. Setting the minsize or maxsize of a window also enables resizing.

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Selection Attributes 295

Otherwise, Tk windows are only resizable under program control. Try out the fol-
lowing example with and without the - set gri d fhg., and with and without the
wm ni nsi ze command. The Scr ol | edLi st box procedure is defhed on page 183.

Example 24-4 A gridded, resizable listbox.

wm minsize . 20 20

button .quit -text Quit -command exit

pack .quit -side top -anchor e

frame .f

pack .f -side top -fill both -expand true

Scrol | edLi stbox .f -width 10 -height 5 -setgrid true

Selection Attributes

Each widget can export its selection via the X selection mechanism. This is con-
trolled with the export Sel ecti on attribute. The colors for selected text are set
with sel ect Foreground and sel ect Background attributes. The selection is
drawn in a raised relief, and the sel ect Bor der W dt h attribute affects the 3D
appearance. Choose a border width of zero to get a fht relief.

A Font Selection Application

This chapter concludes with an application that lets you browse the fonts avail-
able in your system. This is modeled after the xfontsel program. It displays a set
of menus, one for each component of a font name. You can select different values
for the components, although the complete space of font possibilities is not
defned. Y ou might choose components that result in an invalid font name. The
tool also lets you browse the list of available fonts, though, so you can fad out
what is offered.

Example 24-5 A font selection application.

#!/import/tcl/bin/w sh+

The menus are big, so position the w ndow
near the upper-left corner of the display
wm geonetry . +30+30

Create a frane and buttons al ong the top
frame . buttons

pack .buttons -side top -fill X

button .buttons.quit -text Quit -command exit
button .buttons.reset -text Reset -conmand Reset
pack .buttons.quit .buttons.reset -side right

An entry widget is used for status nessages
entry .buttons.e -textvar status -relief flat

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

296

Fonts and Text Attributes Chap.24

pack .buttons.e -side top -fill x
proc Status { string } {

gl obal status

set status $string

updat e i dl et asks
}
SO we can see status nessages
tkwait visibility .buttons.e

The application uses the f ont global variable for its state. It creates a sta-

tus line and a few buttons at the top. Underneath that is a set of menus, one for
each font component. The next example creates the menu buttons for the menus.

Example 24-6 Menus for each font component.

Set up the nenus. There is one for each
conmponent of a font nane, except that the two resol utions
are conbined and the avgWdth is suppressed.
frame . menubar
set font(conps) {foundry fanm |y weight slant swidth \
adstyl e pixels points res res2 \
space avgWdth regi stry encodi ng}
foreach x $font(conps) {
font (component) lists all possible conmponent val ues
font(cur,conponent) keeps the current conponent val ues
set font(cur, $x) *
set font($x) {}
Trimout the second resolution and the average w dth
if {$x == "res2" || $x == "avgWdth"} {
conti nue

}
The border and highlight thickness are set to 0 so the
button texts run together into one |ong string.
menubut t on . nenubar. $x -nenu . nenubar. $x. m-text -$x \
-padx O -bd O -font fixed \
- hi ghl'i ghtthi ckness 0O
menu . nenubar. $x. m
pack .nmenubar. $x -side |left
Create the initial wild card entry for the conponent
. menubar . $x. m add radio -label * \
-variable font(cur, $x) \
-value * \
-command [list DoFont]

The menus for two components are left out. The two resolutions are virtu-

ally always the same, so one is enough. The avgW dt h component varies wildly,
and user probably won’t choose a font based on it. Variable traces are used to fk
up the values associated with these components. The second resolution is tied to
the frst resolution. The avgW idth always returns *, which matches anything.
The points are set to 10 times the pixels if the pixels are set. However, if that

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Font Selection Application 297

isn’t right, which sometimes happens, then the user can still set the points
explicitly.

Example 24-7 Using variable traces to fix things up.

Use traces to patch up the suppressed font(conps)
trace variable font(cur,res2) r TraceRes2
proc TraceRes2 { args } {
gl obal font
set font(cur,res2) $font(cur,res)
}
trace variable font(cur,avgWdth) r TraceWdth
proc TraceWdth { args } {
gl obal font
set font(cur,avgWdth) *
}
Mostly, but not always, the points are 10x the pixels
trace variable font(cur, pixels) w TracePi xel s
proc TracePixels { args } {
gl obal font
catch {
M ght not be a nunber
set font(cur, points) [expr 10*$font (cur, pixels)]

}

The application displays a listbox with all the possible font names in it. If
you click on a font name its font is displayed. The set of possible font names is
obtained by running the xlsfonts program.

Example 24-8 Listing available fonts.

Create a listbox to hold all the font names
frame . body
set font(list) [listbox .body.list \
-setgrid true -sel ect rode browse \
-yscrol l command {.body. scroll set}]

scrol | bar .body.scroll -comuand {.body.list yview
pack .body.scroll -side right -fill y
pack .body.list -side left -fill both -expand true

Clicking on an itemdisplays the font
bi nd $font(list) <ButtonRel ease-1> [list Sel ectFont
$font (list) %]

Use the xlsfonts programto generate a

list of all fonts known to the server.

Status "Listing fonts..."

if [catch {open "|xlsfonts *"} in] {
puts stderr "xlsfonts failed $in"
exit 1

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

298 Fonts and Text Attributes Chap.24

A simple data structure is created based on the list of available fonts. For
each font component, all possible values are recorded. These values are used to
create menus later on.

Example 24-9 Determining possible font components.

set font(num O

set numAliases 0O

set font(N) O

while {[gets $in line] >= 0} {
$font(list) insert end $line
fonts(all,$i) is the master list of existing fonts
This is used to avoid potentially expensive
searches for fonts on the server, and to
highlight the matching font in the |istbox
when a pattern is specified.
set font(all,$font(N)) $line
incr font(N)

set parts [split $line -]
if {[Ilength $parts] < 14}
Aliases do not have the full information
| append aliases $line
i ncr numAl i ases
} else {
incr font(num
Chop up the font name and record the
unique font(conps) in the font array.
The leading - in font names means that
parts has a leading null elenment and we
start at element 1 (not zero).
set i 1
foreach x $font(conps) {
set value [lindex $parts $i]
incr i
if {[Isearch $font($x) $value] < 0} {
Mssing this entry, so add it
| append font ($x) $val ue

Menus are created so the user can select different font components. Radio
button entries are used so that the current selection is highlighted. The special
case for the two suppressed components crops up here. We let the variable traces
fx up those values.

Example 24-10 Creating the r adi obut t on menu entries.

Fill out the nenus
foreach x $font(conps) {

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Font Selection Application 299

if {$x == "res2" || $x == "avgWidth"} {
continue

foreach value [Isort $font($x)] {
if {{string length $value] == 0} {
set label (nil)
}else {
set label $value

.menubar.$x.m add radio -label $label \
-variable font(cur,$x) \
-value $value \
-command DoFont

}

Status "Found $font(num) fonts and $numAliases aliases"

Below the menu is a label that holds the current font name. Below that is a
message widget that displays a sample of the font. One of two messages are dis-
played, depending on if the font is matched or not.

Example 24-11 Setting up the label and message widgets.

This label displays the current font
label .font -textvar font(current) -bd 5 -font fixed

A message displays a string in the font.

set font(msg) [message .font(msg) -aspect 1000 -borderwidth
10]

set font(sampler) "

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqurstuvwxyz

0123456789

I@#P%NN&*()_+-=[1{};:"~,.<>I?\\|

set font(errormsg) "

(No matching font)

font Now pack the main display

pack .menubar -side top -fill x

pack .body -side top -fill both -expand true
pack .font $font(msg) -side top

The next example has the core procedures of the example. The DoFont pro-
cedure is triggered by changing a radio button menu entry. It rebuilds the font
name and calls SetFont . The SetFont procedure searches the list of all fonts for a
match. This prevents expensive searches by the X server, and it allows the appli-
cation to highlight the matching font in the listbox. The SelectFont procedure is
triggered by a selection in the listbox. It also constructs a font name and calls

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

300 Fonts and Text Attributes Chap.24

SetFont . Finally, Reset restores the font name to the match-all pattern.

Example 24-12 The font selection procedures.

proc DoFont { } {
global font
set font(current) {}
foreach x $font(comps) {
append font(current) -$font(cur,$x)

}
SetFont

}
proc SelectFont { listy } {
Extract a font name from the listbox
global font
set ix [$font(list) nearest $y]
set font(current) [$font(list) get $ix]
set parts [split $font(current) -]
if {{llength $parts] < 14} {
foreach x $font(comps) {
set font(cur,$x) {}

}else {
setil
foreach x $font(comps) {
set value [lindex $parts $i]
incr i
set font(cur,$x) $value
}
}
SetFont

}
proc SetFont {} {
global font
Generate a regular expression from the font pattern
regsub -all -- {<nil>} $font(current) {} font(current)
regsub -all -- {*} $font(current) {[*-]*} pattern
for {set n O} {$n < $font(N)} {incr n} {
if [regexp -- $pattern $font(all,$n)] {
$font(msg) config -font $font(current) \
-text $font(sampler)
catch {$font(list) select clear \
[$font(list) curselection]}
$font(list) select set $n
$font(list) see $n
return

}

$font(msg) config -text $font(errormsg)

proc Reset {} {
global font
foreach x $font(comps) {

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Font Selection Application 301

set font(cur, $x) *

}

DoFont

Status "$font(nun) fonts"
}
Reset

This is what the interface | ooks |ike.

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

302 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 25

Window Managers and Window
Information

A window manager is a special application that can control the size and
location of other applications’ windows. The wm command provides an
interface to the window manager. The wi nfo command returns
information about windows.

M anagement of toplevel windows is done
by a distinguished application called the window manager. The window manager
controls the position of toplevel windows, and it provides a way to resize win-
dows, open and close them, and it implements a border and decorative title for
windows. The window manager contributes to the general look and feel of the X
display, but there is no requirement that the look and feel of the window man-
ager be the same as that used in an application. The wm command is used to
interact with the window manager so that the application itself can control its
size, position, and iconifed state .

If you need to fie tune your display you may need some detailed informa-
tion about widgets. The wi nf o command returns all sorts of information about
windows, including interior widgets, not just toplevel windows.

The wm Command

The wm command has about 20 operations that interact with the window man-
ager. The general form of the commands is:
wm operation win ?args?
In all cases the wi n argument must be for a toplevel window. Otherwise an
error is raised. In many cases the operation either sets or queries a value. If a
new value is not specifed, then the current settings are returned. For example,

303

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

304 Window Managers and Window Information Chap.25

the frst command below returns the current window geometry, and the next
command defnes a new geometry .

wm geonetry .
=> 300x200+327+20
wm geonetry . 400x200+0+0

The operations can be grouped into four main categories.

¢ Size, placement and decoration of windows.
¢ Icons.

e Long term session state.

e Miscellaneous.

Size, placement, and decoration

Perhaps the most commonly used wm operation is wntitle that sets the
title of the window. The title appears in the title bar that the window manager
places above your application’s main window. The title may also appear in the
icon for your window, unless you specify another name with wm i connane.

wntitle . "My Application”

The wm geonet ry command can be used to adjust the position or size of your
main windows. A geometry speciftation has the general form W«H+X+Y, where W
is the widget, H is the height, and X and Y specify the location of the upper-left
corner of the window. The location +0+0 is the upper-left corner of the display.
You can specify a negative X or Y to position the bottom (right) side of the window
relative to the bottom (right) side of the display. For example, +0- 0 is the lower
left corner, and - 100- 100 is offset from the lower-right corner by 100 pixels in the
X and Y direction. If you do not specify a geometry, then the current geometry is
returned.

A window can have a gridded geometry, which means that the geometry is
in terms of some unit other than pixels. For example, the text and listbox wid-
gets can set a grid based on the size of the characters they display. You can defne
a grid with the wm gri d command, or you can use that command to fad out what
the current grid size is. The next example sets up gridded geometry for a canvas.

Example 25-1 Gridded geometry for a canvas.

canvas .c -width 300 -height 150
pack .c -fill both -expand true
wm geonetry

=> 300x200+678+477

wngrid . 30 15 10 10

wm geonetry .

=> 30x20+678+477

An important side effect of gridding is that it enables interactive resizing of
windows. By default, Tk windows are not resizable except by program control.

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The wm Command 305

You can constrain the minimum size, maximum size, and the aspect ratio of
a toplevel window. The aspect ratio is the width divided by the height. The con-
straint is applied when the user resizes the window interactively. The i nsi ze,
maxsi ze, and aspect operations apply these constraints. As with gridding, a side
effect of setting one of these constraints is to allow interactive resizing.

Some window managers insist on having the user position windows. The
si zefromand posi ti onfromoperations let you pretend that the user specifed
the size and position in order to work around this restriction.

Table 25—-1 summarizes the wncommands that deal with size, decorations,
placement.

Table 25-1 Size, placement and decoration window manager operations.

wm apsect win ?a b ¢ d? Constrain Wi n’s ratio of width to height to
be between (a/ b and ¢/ d).

wm geonetry w n ?geonetry? Query or set the geometry of wi n.

wmgrid win ?w h dx dy? Query or set the grid size. wand h are the

base size, in grid units. dx and dy are the
size, in pixels, of a grid unit.

wm group wi n ?l eader? Query or set the group leader (a toplevel
widget) for win. The window manager may
unmap all the group at once.

wm mexsi ze win ?wi dth hei ght? Constrain the maximum size of wi n.

wm i nsize win ?wi dth height? Constrain the minimum size of wi n.

wm posi tionfromw n ?who? Query or set who to be pr ogr amor user.

wm si zefrom wi n ?who? Query or set who to be pr ogr amor user.

wmtitle win ?string? Query or set the window title to st ri ng.
Icons

When you close a window the window manager unmaps the window and
replaces it with an icon. You can open and close the window yourself with the
dei coni fy and i coni fy operations, respectively. Use the wi t hdr aw operation to
unmap the window without replacing it with an icon. The state operation
returns the current state, which is one of normal, i conified, or wi t hdrawn. If
you withdraw a window, you can restore it with dei coni fy.

You can set the attributes of the icon with the i connane, i conposition,
i conbi t map, and i conmask operations. The icon’s mask is used to get irregularly
shaped icons. Chapter 23 describes how masks bitmaps are defhed. In the case
of an icon, it is most likely that you have the defnition in a fle, so your command
will look like this:

wm i conbitmap . @uvyfil enane
Table 25—-2 summarizes the window manager commands that have to do

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

306 Window Managers and Window Information Chap.25

with icons.

Table 25-2 Window manager commands for icons.

wm dei coni fy win Open the window Wi n.

wm i conbitmap win ?bitmap? Query or defne the bitmap for the icon.

wmiconify wn Close the window wi n.

wm i conmask win ?mask? Query or defhe the mask for the icon.

wm i connane wi n ?nane? Query or set the name on the icon.

wm i conposition win ?x y? Query or set the location of the icon.

wm i conwi ndow wi n ?wi ndow? Query or specify an alternate window to dis-
play when in the iconifed state.

wmn state win Returns nor nal , i coni ¢, or wi t hdr awn.

wm wi t hdraw wi n Unmap the window and forget about it. No

icon is displayed.

Session state

Some window managers support the notion of a session that lasts between
runs of the window system. A session is implemented by saving state about the
applications that are running, and using this information to restart the applica-
tions when the window system is restarted. This section also describes how you
can intercept requests to quit your application so you can stop cleanly.

An easy way to participate in the session protocol is to save the command
used to start up your application. The wm command operation does this. The wish
shell saves this information, so it is just a matter of registering it with the win-
dow manager. ar gv0 is the command, and ar gv is the command line arguments.

wm command . "$argv0 $argv"”

If your application is typically run on a different host than the one with the
display (like in an Xterminal environment), then you also need to record what
host to run the application on. Use the wm cl i ent operation for this. You may
need to use unane - n instead of host nane on your system.

wm client . [exec hostnane]

The window manager usually provides a way to quit applications. If you
have any special processing that needs to take place when the user quits, then
you need to intercept the quit action. Use the wmpr ot ocol operation to register a
command that handles the WV DELETE W NDOWmessage from the window man-
ager. The command must eventually call exi t to actually stop your application.

wm protocol . WM DELETE_W NDOW Qui t

Other window manager messages that you can intercept are W SAVE_Y-
OURSELF and WM TAKE_FOCUS. The frst is called by some session managers when
shutting down. The latter is used in the active focus model. Tk (and this book)

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The wm Command 307

assumes a passive focus model where the window manager assigns focus to a
toplevel window.
describes the session-related window manager operations.

Table 25-3 Session-related window manager operations.

wm client win ?nanme? Record the hostname int he WM _CLI ENT_MA-
CHI NE property.

wm command wi n ?command? Record the startup command in the W COVMAND

property.
wm protocol win ?nanme? Register a command to handle the protocol request
?command? nane, which can be WM DELETE_W NDOW

WM SAVE_YOURSELF, WM TAKE_FOCUS.

Miscellaneous

A window manager works by reparenting an applications window so it is a
child of the window that forms the border and decorative title bar. The wm f r ame
operation returns the window ID of the new parent, or the id of the window itself
if it has not been reparented. The wi nf o i d command returns the id of a window.
The wm overri der edi rect operation can set a bit that overrides the reparenting.
This means that no title or border will be drawn around the window, and you
cannot control the window through the window manager.

The wm group operation is used to collect groups of windows so that the
window manager can open and close them together. Not all window managers
implement this. One window, typically the main window, is chosen as the leader.
The other members of the group are iconifed when it is iconifed.

The wm transient operation informs the window manager that this is a
temporary window and there is no need to decorate it with the border and deco-
rative title bar. This is used, for example, on pop-up menus, but in that case it is
handled by the menu implementation.

Table 254 lists the remaining window manager operations.

Table 25-4 Miscellaneous window manager operations.

wm f ocusnodel win ?what? Set the focus model to acti ve or passi ve. Many
parts of Tk assume the passi ve model.

wm frame win Return the ID of the parent of wi n has been rep-
arented, otherwise return the ID of wi n itself.

wm group wi n ?l eader? Assign Wi n to the group headed by | eader.

wm overrideredirect win Set the override redirect bit that suppresses rep-

?bool ean? arenting by the window manager.

wmtransient win ?l eader? Queryor mark a window as transient window
working for | eader, another widget.

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

308 Window Managers and Window Information Chap.25

The winfo Command

The winfo command has just over 40 operations that return information about a
widget or the display. The operations fall into the following categories.

¢ Sending commands between applications.
e Family relationships.

e Size.

¢ Location.

¢ Virtual root coordinates.

¢ Atoms and IDs.

¢ Colormaps and visuals.

Sending commands between applications

Each Tk application has a name that is used when sending commands
between applications using the send command. The list of Tk applications is
returned by the i nt er ps operation. The t k appnane is used to get the name of the
application, and that command can also be used to set the application name. In
Tk 3.6 and earlier, you had to use wi nfo name . to get the name of the applica-
tion.

Example 25-2 Telling other applications what your name is.

foreach app [wWinfo interps] {
catch {send $app [list lam [tk appnanme .]]}
}

The example shows how your application might connect up with several
existing applications. It contacts each registered Tk interpreter and sends a
short command that contains the applications own name as a parameter. The
other application can use that name to communicate back.

Table 25-5 summarizes these commands.

Table 25-5 Information useful with the send command.

tk appname ?newnane? Query or set the name used with send.

winfo name . Also returns the name used for send, for back-
ward compatibility with Tk 3.6 and earlier.

winfo name pat hnane Return the last component of pat hnane.

winfo interps Return the list of registered Tk applications.

Family relationships

The Tk widgets are arranged in a hierarchy, and you can use the winfo com-

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The winfo Command 309

mand to fnd out about the structure of the hierarchy . The wi nf o chi | dr en opera-
tion returns the children of a window, and the wi nf o parent operation returns
the parent. The parent of the main window is null (i.e., an empty string).

A widget is also a member of a class, which is used for bindings and as a key
into the X resource database. The wi nf o cl ass operation returns this informa-
tion. You can test for the existence of a window with wi ndowexi st s, and whether
or not a window is mapped onto the screen with wi nf o i smapped.

The wi nf o manager operation tells you what geometry manager is control-
ling the placement of the window. This returns the name geometry manager
command. Examples include pack, pl ace, canvas, and t ext. The last two indi-
cate the widget is imbedded into a canvas or text widget.

Table 25-5 summarizes these winfo operations.

Table 25-6 Information about the window hierarchy.

winfo children win Return the list of children widgets of wi n.
wi nfo class wn Return the binding and resource class of wi n.
winfo exists win Returns 1 if the wi n exists.
wi nfo i smapped win Returns 1 if wi n is mapped onto the screen.
wi nfo manager win The geometry manager: pack pl ace canvas text
wi nfo parent win Returns the parent widget of wi n.

Size

The wi nf o wi dt h and wi nf o hei ght operations return the width and height
of a window, respectively. However, a window’s size is not set until a geometry
manager maps a window onto the display. Initially a window starts out with a
width and height of 1. You can use t kwai t vi si bi | i ty to wait for a window to be
mapped before asking its width or height.

Alternatively, you can ask for the requested width and height of a window.
Use wi nfo reqw dt h and wi nfo reghei ght for this information. The requested
size may not be accurate, however, because the geometry manager may allocate
more of less space, and the user may resize the window.

The wi nf o geonet ry operation returns the size and position of the window
in the standard geometry format: WcH+X+Y. In this case the X and Y offsets are
relative to the parent widget, or relative to the root window in the case of the
main window.

You can fid out how big the display is, too. The wi nfo screenw dth and
winfo screenhei ght operations return this information in pixels. The w nf o
screenmi dt h and wi nf o screennmhei ght return this information in millime-
ters.

You can convert between pixels and screen distances with the wi nf o pi xel s
and wi nf o f pi xel s operations. Given a number of screen units such as 10m 3c,
or 72p, these return the corresponding number of pixels. The first form rounds to

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

310 Window Managers and Window Information Chap.25

a whole number, while the second form returns a fbating point number . Chapter
22 has an explanation of the screen units. For example:
set pixelsTolnch [winfo pixels . 2.54c]
Table 25-5 summarizes these operations.

Table 25-7 Information about the window size.

wi nfo fpixels win num Convert num in screen units, to pixels. Returns a
fbating point number .
wi nfo geonetry win Return the geometry of Wi n, in pixels and relative
to the parent in the form WkH+X+Y
nfo height win Return the height of wi n, in pixels.

nfo pixels win num Convert num to a whole number of pixels.

nfo reghei ght win Return the requested height of wi n, in pixels.
nfo reqwidth win Return the requested width of wi n, in pixels.
screenhei ght win Return the height of the screen, in pixels.

nfo screennmhei ght win Return the height of the screen, in millimeters.
nfo screennmni dth win Return the width of the screen, in millimeters.

nfo screenwidth win Return the width of the screen, in pixels.

£ £ £ £ £ £ £ £ &=
=4
o

nfo width win Return the width of wi n, in pixels.

Location

The wi nfo x and wi nf o y operations return the position of a window rela-
tive to its parent widget. In the case of the main window, this is its location on
the screen. The wi nf o root x and wi nf o r ooty return the location of a widget on
the screen, even if it is not a toplevel window.

The wi nf o cont ai ni ng operation returns the pathname of the window that
contains a point on the screen. This is useful in implementing menus and drag
and drop applications.

The wi nf o t opl evel operation returns the pathname of the toplevel win-
dow that contains a widget. If the window is itself a toplevel, then this operation
returns its pathname.

The wi nf o screen operation returns the display identifer for the screen of
the window. This value is useful in the sel ecti on command.

Table 25-5 summarizes these operations.

Table 25-8 Information about the window location.

winfo containing win x y Return the pathname of the window at x and y.

wi nfo rootx wn Return the X screen position of wi n.

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The winfo Command 311

Table 25-8 Information about the window location.

wi nfo rooty wn Return the Y screen position of wi n.

wi nfo screen win Return the display identifer of Wi n’s screen.

wi nfo toplevel win R_eturn the pathname of the toplevel that contains
wi n.

winfo x win Return the X position of Wi n in its parent.

winfoy wn Return the Y position of wi n in its parent.

Virtual root window

A virtual root window is used by some window managers to give the user a
larger virtual screen. At any given time only a portion of the virtual screen is vis-
ible, and the user can change the view on the virtual screen to bring different
applications into view. In this case, the wi nfo x and wi nf o y operations return
the coordinates of a main window in the virtual root window (i.e., not the screen).

The wi nf o vr oot hei ght and wi nf o vr oot wi dt h operations return the size of
the virtual root window. If there is no virtual root window, then these just return
the size of the screen.

The wi nfo vroot x and wi nfo vrooty are used to map from the coordinates
in the virtual root window to screen-relative coordinates. These operations
return 0 if there is no virtual root window. Otherwise they return a negative
number. If you add this number to the value returned by wi nfo x or wi nfo v, it
gives the screen-relative coordinate of the window.

Table 25-5 summarizes these operations.

Table 25-9 Information associated with virtual root windows.

winfo containing win x y Return the pathname of the window at x and y.

wi nfo rootx wn Return the X screen position of wi n.

winfo rooty wn Return the Y screen position of wi n.

wi nfo screen win Return the display identifer of Wi n’s screen.

wi nfo toplevel win R_eturn the pathname of the toplevel that contains
wi n.

winfo x win Return the X position of wi n in its parent.

winfoy win Return the Y position of wi n in its parent.

Atoms and IDs

An atom is an X technical term for an identifer that is registered with the
X server. Applications map names into atoms, and the X server assigns each
atom a 32 bit identifer that can then be passed around. One of the few places
this is used in Tk is when the selection mechanism is used to interface with dif-

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

312 Window Managers and Window Information Chap.25

ferent toolkits. In some cases the selection is returned as atoms, which appear as
32 bit integers. The wi nf o at oomame operation converts that number into an
atom (i.e., a string), and the wi nf o at omregisters a string with the X server and
returns the 32-bit identifer as a hexadecimal string.

Each widget has an ID from the X server. The wi nfo i d command returns
this identifer . The wi nf o pat hname operation returns the Tk pathname of the
widget that has a given ID, but only if the window is part of the same applica-
tion.

Table 25-5 summarizes these operations.

Table 25-10 Information about atoms and window ids.

wi nfo at om nane Returns the 32-bit identifer for the atom nane.
wi nfo atomane id Returns the atom that corresponds to the 32-bit ID.
winfoid wn Returns the X window ID of wi n.

wi nfo pat hnane id Returns the Tk pathname of the window with i d, or null.

Colormaps and visuals

Chapter 23 describes colormaps and visual classes in detail. The wi nfo
dept h returns the number of bits used to represent the color in each pixel. The
wi nfo cells command returns the number of colormap entries used by the
visual class of a window. These two values of generally related. A window with 8
bits per pixel usually has 256 colormap cells. The wi nf o screendept h and wi nf o
screencel | s return this information for the default visual class of the screen.

The wi nf o vi sual savai | abl e command returns a list of the visual classes
and screen depths that are available. For example, a display with 8 bits per pixel
might report the following visual classes are available:

wi nfo visual savail abl e .
=> {staticgray 8} {grayscale 8} {staticcolor 8} \
{pseudocol or 8}

The wi nf o vi sual operation returns the visual class of a window, and the
wi nf o screenvi sual returns the default visual class of the screen.

The winfo rgb operation converts from a color name or value to the red,
green, and blue components of that color. Three decimal values are returns.
Example 23—-2 uses this command to compute a slightly darker version of the
same color.

Table 25-5 summarizes these operations.

Table 25-11 Information about colormaps and visual classes.

winfo cells win Returns the number of colormap cells in Wi n’s visual.

wi nfo depth win Return the number of bits per pixel for wi n.

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The tk Command 313

Table 25-11 Information about colormaps and visual classes.

wi nfo rgb win color Return the red, green, and blue values for col or.

wi nfo screencells wn Returns the number of colormap cells in the default
visual.

wi nfo screendepth win Returns the number of bits per pixel in the screen’s
default visual.

wi nfo visual wn Returns the visual class of win.

wi nfo vi sual savai | abl e Returns a list of pairs that specify the visual type

win and bits per pixel of the available visual classes.

The tk Command

The t k command provides a few miscellaneous entry points into the Tk library.
The frst form is used to set or query the application name used with the Tk send
command. If you defhe a new name and it is already in use by another applica-
tion, (perhaps another instance of yourself) then a number is appened to the
name (e.g., #2, #3, and so on).

tk appnane ?nane?

The other form of the t k command is used to query and set the colormodel
of the application. The colormodel is either monochrome or col or, and it deter-
mines what default colors are chosen the the Tk widgets. You should test the col-
ormodel yourself before setting up colors in your application. Note that when a
color allocation fails, Tk automatically changes the colormodel to monochrome.
You can force it back into color mode with another call to t k col or nodel . This
form of the command is shown below.

tk col ornodel w ndow ?what ?

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

314 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 26

A User Interface to bind

This chapter presents a user interface to view and edit bindings.

A good way to learn about how a widget
works is to examine the bindings that are defhed for it. This chapter presents a
user interface that lets you browse and change bindings for a widget or a class of
widgets. Here is what the display looks like.

A Binding User Interface

The interface uses a pair of listboxes to display the events and their associated
commands. An entry widget is used to enter the name of a widget or a class.
There are a few command buttons that let the user add a new binding, edit an

315

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

316 A User Interface to bind Chap.26

existing binding, save the bindings to a fle, and dismiss the dialog.

Example 26—-1 A user interface to widget bindings.

proc Bind Interface { w} {
Qur state
gl obal bind
set bind(class) $w

Set a class used for resource specifications
set franme [toplevel .bindui -class Bindui]

Default relief

option add *Bindui *Entry.relief sunken startup
option add *Bi ndui *Li stbox.relief raised startup
Default Listbox sizes

option add *Bi ndui *key.wi dth 18 startup

option add *Bi ndui *cnd. wi dth 25 startup

opti on add *Bi ndui *Li st box. hei ght 5 startup

A labeled entry at the top to hold the current
wi dget nane or cl ass.

set t [frame $frane.top -bd 2]

| abel $t.l -text "Bindings for"

entry $t.e -textvariabl e bind(class)

pack $t.| -side left

pack $t.e -side left -fill x -expand true

pack $t -side top -fill x

bind $t.e <Return> [list Bind_Di splay $frane]

Command buttons
button $t.quit -text Dismss \
-command [list destroy $frane]
button $t.save -text Save \
-command [list Bind_Save $frane]
button $t.edit -text Edit \
-command [list Bind _Edit $frane]
button $t.new -text New \
-command [list Bind_New $f rane]
pack $t.quit $t.save $t.edit $t.new -side right

A pair of |istboxes and a scroll bar
scrol Il bar $frame.s -orient vertical \
-command [list BindYview\
[1ist $frane. key $frane.cnd]]
i stbox $frame. key \
-yscrollcommand [list $frane.s set] \
-exportsel ection fal se
l'i stbox $frame.cnd \
-yscrollcommand [list $franme.s set]

pack $frane.s -side left -fill y
pack $frame.key $frame.cnd -side left \
-fill both -expand true

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Pair of Listboxes Working Together 317

foreach | [list $franme.key $franme.cnd] {

bi nd $I <B2-Mtion>\

[list BindDragto % % $frane. key $frane. cnd]
bi nd $I <Button-2>\

[list BindMark 9% % $frame. key $framne. cnd]
bi nd $I <Button-1> \

[list BindSelect % $frame. key $frane. cnd]
bind $I <Bl1-Mtion> \

[list BindSelect % $frane. key $frane.cnd]
bi nd $I <Shift-Bl-Mtion> {}
bind $I <Shift-Button-1> {}

Initialize the display
Bi nd_Di spl ay $franme

The Bi nd_I nter f ace command takes a widget name or class as a parame-
ter. It creates a toplevel window and gives it the Bindui class so that X resources
can be set to control widget attributes. The opti on add command is used to set
up the default listbox sizes. The lowest priority, startup, is given to these
resources so that clients of the package can override the size with their own
resource speciftations.

At the top of the interface is a labeled entry widget. The entry holds the
name of the class or widget for which the bindings are displayed. The t ext vari -
abl e option of the entry widget is used so that the entry’s contents are available
in a variable, bind(class). Pressing <Return> in the entry invokes
Bi nd_Di spl ay that fils in the display .

Example 26—2 Bind_Display presents the bindings for a given widget or class.

proc Bind_Display { frame } {
gl obal bind
$franme. key delete 0 end
$frame. cnd del ete 0 end
foreach seq [bind $bind(class)] {
$frame. key insert end $seq
$frame. cnd insert end [bind $bind(class) $seq]

The Bi nd_Di spl ay procedure flls in the display with the binding informa-
tion. It used the bi nd command to fad out what events have bindings, and what
the command associated with each event is. It loops through this information
and fils in the listboxes.

A Pair of Listboxes W orking T ogether

The two listboxes in the interface, $f rane. key and $frane. cnd, are set up to

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

318 A User Interface to bind Chap.26

work as a unit. A selection in one causes a parallel selection in the other. A single
scrollbar scrolls both of them. This is achieved with some simple bindings that
accept a variable number of arguments. The frst arguments are coordinates, and
then the rest are some number of listboxes that need to be operated on as a

group.

Example 26—-3 Related listboxes are configured to select items together.

foreach | [list $franme.key $frane.cnd] {
bi nd $I <Button-1>\
[list BindSelect % $frame. key $frane. cnd]
bi nd $I <B1-Motion> \
[list BindSelect % $frane. key $frane. cnd]

}
proc BindSelect { y args } {
foreach w $args {
$w sel ect clear 0 end
$w sel ect anchor [$w nearest $y]
$w sel ect set anchor [$w nearest 3$y]

The bi nd commands from Bi nd_I nterface are repeated in the example.
The Bi ndSel ect routine selects an item in both listboxes. In order to have both
selections highlighted, the listboxes are prevented from exporting their selection
as the X PRI MARY selection. Otherwise, the last listbox to assert the selection
would steal the selection rights away from the frst widget.

A single scrollbar is created and set up to control both listboxes.

Example 26—-4 Controlling a pair of listboxes with one scrollbar.

scrol l bar $frame.s -orient vertical \
-command [list BindYview [list $frame. key $frane.cnd]]

proc BindYview { lists args } {
foreach | $lists {
eval {$l yview} $args
}

The scrol | bar command from the Bi nd_I nterf ace procedure is repeated
in the example. The Bi ndYvi ew command is used to change the display of the
listboxes associated with the scrollbar. Before the scroll command is evaluated
some additional parameters are added that specify how to position the display.
The details are essentially private between the scrollbar and the listbox, so the
args keyword is used to represent these extra arguments, and eval is used to
pass them through BindYview The reasoning for using eval like this is
explained in Chapter 6 in the section on Eval And Concat.

The Li st box class bindings for <But t on- 2> and <B2- Mot i on> cause the list-

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Editing Interface 319

box to scroll as the user drags the widget with the middle mouse button. These
bindings are adjusted in the example so that both listboxes move together.

Example 26-5 Drag-scrolling a pair of listboxes together.

bi nd $I <B2-Modtion>\

[list BindDragto % % $frane. key $frane. cnd]
bi nd $I <Button-2> \

[list Bindvark % % $frane. key $frane.cnd]

proc BindDragto { x y args } {
foreach w $args {
$w scan dragto $x Sy
}

}
proc Bindvark { x y args } {
foreach w $args {
$w scan mark $x Sy
}

The bi nd commands from the Bi nd_I nt er f ace procedure are repeated in
this example. The Bi ndMar k procedure does a scan mar k that defhes an origin,
and Bi ndDr agt o does a scan dr agt o that scrolls the widget based on the distance
from that origin. All Tk widgets that scroll support yvi ew scan nark, and scan
dr agt 0. Thus the Bi ndYvi ew Bi ndMvar k, and Bi ndDr agt o procedures are general
enough to be used with any set of widgets that scroll together.

The Editing Interface
Editing and defning a new binding is done in a pair of entry widgets. These

widgets are created and packed into the display dynamically when the user
presses the New or Edi t button.

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

320 A User Interface to bind Chap.26

Example 26-6 An interface to define bindings.

proc Bind_New { frame } {
if [catch {frame $frane.edit} f] {
Franme al ready created
set f $frame.edit
} else {
foreach x {key cmd} {
set f2 [frame $f. $x]
pack $f2 -fill x
| abel $f2.1 -width 9 -anchor e
pack $f2.1 -side left
entry $f2.e
pack $f2.e -side left -fill x -expand true
bind $f2. e <Return> [|ist Bi ndDefine $f]

$f . key.| config -text Event:
$f.cnd. | config -text Command

pack $frame.edit -after $frame.top -fill x

proc Bind_Edit { frame } {
Bi nd_New $frane
set line [$frame. key cursel ection]
if {$line == {}} {

return
}

$frame. key. e delete 0 end
$frane. key. e insert O [$frane. key get $line]
$franme.cnd. e delete O end
$frame.cnd. e insert 0 [$frame.cnd get $line]

The -wi dth 9 and - anchor e attributes for the label widgets are specifed
so that the Event: and Command: labels will line up properly. Another approach
would be to fk the width of the entry widgets, and then use the -anchor option
when packing the labels.

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Editing Interface 321

| abel $f2.1

entry $f2. e -width 44

pack $f2.e -side right

pack $f2.1 -side right -anchor e

All that remains is the actual change or defition of a binding, and some
way to remember the bindings the next time the application is run. A simple
technique is to write out the defnitions as a series of T ¢l commands that defne
them.

Example 26—7 Defining and saving bindings.

proc BindDefine { f } {
if [catch {
bind [$f.top.e get] [$f.edit.key.e get] \
[$f.edit.cnd. e get]
}oerr] {
St atus S$err
} else {
Renmpove the edit w ndow
pack forget $f.edit
}
}
proc Bind_Save { dotfile args } {
set out [open $dotfile.new w
foreach w $args {
foreach seq [bind $wW {
Qutput a Tcl command
puts $out [list bind $w $seq [bind $w $seq]]
}

cl ose $out
exec nv $dotfile.new $dotfile

}
proc Bind_Read { dotfile } {
if [catch {
if [file exists $dotfile] {
Read the saved Tcl comands
source $dotfile

}
}oerr] {

Status "Bind_Read $dotfile failed: $err"
}

The Bi ndDefi ne procedure attempts a bind command that uses the con-
tents of the entries. If it succeeds, then the edit window is removed by unpacking
it. The Bi nd_Save procedure writes a series of Tcl commands to a fle. It is crucial
that the | i st command be used to construct the command properly. Finally, Bi n-
d_Read uses the source command to read the saved commands.

The application will have to call Bi nd_Read as part of its initialization in
order to get the customized bindings for the widget or class. It will also have to

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

322 A User Interface to bind Chap.26

provide a way to invoke Bi nd_I nt er f ace, such as a button, menu entry, or key
binding.

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 27

Using X Resources

This chapter describes the use of the X resource database. It describes a way
for users to define buttons and menu via resource specifications.

X supports a resource database through
which your application can be customized by users and site administrators. The
database holds specifeations of widget attributes such as fonts and colors. Y ou
can control all attributes of the Tk widgets through the resource database. It can
also be used as a more general database of application-specift parameter set-
tings.

Because a Tk application can use Tcl for customization, it might not seem
necessary to use the X resource mechanism. However, partly because users have
grown to expect it, and partly because of the fbxibility it provides, the X resource
mechanism is a useful tool for your Tk application.

An Introduction To X Resources

When a Tk widget is created, its attributes are set by one of three sources. the
most evident source is the command line switches in the tcl command, such as
the -t ext quit attribute specifeation for a button. If an attribute is not specifed
on the command line, then the X resource database is queried as described below.
Finally, if there is nothing in the resource database, then a hardcoded value from
the widget implementation is used. It is important to note that command line
speciftations have priority over resource database speciftations.

The resource database consists of a set of keys and values. Unlike many

323

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

324 Using X Resources Chap.27

databases, however, the keys are patterns that are matched against the names of
widgets and attributes. This makes it possible to specify attribute values for a
large number of widgets with just a few database entries. In addition, the
resource database can be shared by many applications, so users and administra-
tors can defne common attributes for their whole set of applications.

The resource database is maintained in main memory by the Tk toolkit. It
is initialized from your ~/.xdefaul ts fle, and from additional fles that are
explicitly loaded by the Tk application.ﬁk You can also add individual database
entries with the opti on tcl command.

The pattern language for the keys is related to the naming convention for
tk widgets. Recall that a widget name refbcts its position in the hierarchy of
windows. You can think of the resource names as extending the hierarchy one
more level at the bottom to account for all the attributes of each individual wid-
get. There is also a new level of the hierarchy at the top in order to specify the
application by name. For example, the database could contain an entry like the
following in order to defne a font for the quit button in a frame called . but t ons.

Tk. buttons. quit.font: fixed

The leading Tk. matches the default class name for wi sh applications. You
could also specify a more specift application name, such as exnh, or an asterisk
to match any application.

Resource keys can also specify classes of widgets and attributes as opposed
to individual instances. The quit button, for example, is an instance of the But-
ton class. Class names for widgets are the same as the tcl command used to cre-
ate them, except for a leading capital. A class-oriented speciftation that would
set the font for all buttons in the . but t ons frame would be:

Tk. buttons. Button.font: fixed

Patterns allow you to replace one or more components of the resource name
with an asterisk (*). For example, to set the font for all the widgets packed into
the . buttons frame, you could use the resource name *buttons*font. Or, you
could specify the font for all buttons with the pattern *Button. font. In these
examples we have replaced the leading Tk with an asterisk as well. It is the abil-
ity to collapse several layers of the hierarchical name with a single asterisk that
makes it easy to specify attributes for many widgets with just a few database
entries.

You can determine the resource names for the attributes of different wid-
gets by consulting their man page, or by remembering the following convention.
The resource name is the same as the command line switch (without the leading
dash), except that multi-word attributes use a capital letter at the internal word
boundaries. For example, if the command line switch is - of f val ue, then the cor-
responding resource name is of f Val ue. There are also class names for attributes,
which are also distinguished with a leading capital (e.g., Of f Val ue).

“This is a bit different than the Xt toolkit that loads speciftations from as many as 5 different
fles to allow for per -user, per-site, per-application, per-machine, and per-user-per-application
speciftations.

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

Loading Option Database Files 325

Warning: order is important!

The matching between a widget name and the patterns in the database can
be ambiguous. It is possible that multiple patterns can match the same widget.
The way this is resolved in Tk is by the ordering of database entries, with later
entries taking precedence.* Suppose the database contained just two entries, in
this order.

*Text*foreground: blue
*foreground: red

In spite of the more specift *Text*foreground entry, all widgets will have a
red foreground, even text widgets. For this reason you should list your most
general patterns early in your resource fles, and give the more specift patterns
later.

Loading Option Database Files

The option command is used to manipulate the resource database. The fist
form of the command is used to load a fie containing database entries.
option readf ile filenane ?priority?

The priority can be used to distinguish different sources of resource infor-
mation and give them different priorities. From lowest to highest, the priorities
are: widgetDefault, startupFile, userdDefault, interactive . These names
can be abbreviated. The default priority is interactive

Example 27-1 Reading an option database file.

if [file exists $appdefaults] {
if [catch {option readfile $appdefaults startup} err] {
puts stderr “error in $appdefaults: $err”
}

The format of the entries in the fle is:
key: val ue
The key has the pattern format described above. The value can be any-
thing, and there is no need to group multi-word values with any quoting charac-
ters. In fact, quotes will be picked up as part of the value.
Comment lines are introduced by the exclamation character (!).

Example 27-2 A file containing resource specifications.

!
I Grey color set
*This is unlike other toolkits that use the length of a pattern where longer matching patterns

have precedence, and instance speciftations have priority over class speciftations. (This may
change in Tk 4.0).

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

326 Using X Resources Chap.27
I Slightly modified from Ron Frederick’s nv grey family
|

*activeBackground: white
*activeForeground: black
*selectColor: black
*background: #efefef
*foreground: black
*selectBackground: #bfdfff
*troughColor: #efefef
*Scrollbar.background: #dfdfdf
*Scale.background: #dfdfdf
*disabledforeground: #7f7f7f

The example resource fle specifes an alternate color scheme for the Tk
widget set that is based on a family of gray levels. Color highlighting shows up
well against this backdrop. Most of these colors are applied generically to all the
widgets (e.g., *background), while there are a few special cases for scale and
scrollbar widgets. The hex values for the colors specify 2 digits (8 bits) each for
red, green, and blue.

Adding Individual Database Entries

You can enter individual database entries with the option add Tcl command.
This is appropriate to handle special cases, or if you do not want to manage a
separate per-application resource speciftation fie. The command syntax is:
option add pattern value ?priority?
The pri ority is the same as that used with optionreadf ile . Thepattern
and val ue are the same as in the fle entries, except that the key does not have a
trailing colon when specifed in an option add command. Some of the specifta-
tions from the last example could be added as follows:
option add *foreground black
option add *Scrollbar.background #dfdfdf
You can clear out the option database altogether with:
option clear

Accessing The Database

Often it is sufftient to just set up the database and let the widget implementa-
tions use the values. However, it is also possible to record application-specift
information in the database. To fetch a resource value, use option get

option get wi ndow name cl ass

The wi ndowis a Tk widget pathname. The nane is a resource name. In this
case, it is not a pattern or a full name. Instead, it is the simple resource name as
specifed in the man page. Similarly , the cl ass is a simple class name. It is possi-
ble to specify a null name or class. If there is no matching database entry, option

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

User Defined Buttons 327

get returns the empty string.

User Defined Buttons

In a big application there might be many functions provided by various menus,
but suppose we wanted users to be able to defne a set of their own buttons for
frequently executed commands. Or, as we will describe later, perhaps users can
augment the application with their own Tcl code. The following scheme lets them
defne buttons to invoke their own code or their favorite commands. *

The user interface will create a special frame to hold the user-defned but-
tons, and place it appropriately. Assume the frame is created like this:

frame .user -class User

The class speciftation for the frame means that we can name resources for
the widgets inside the frame relative to * User. Users will specify the buttons that
go in the frame via a personal fle containing X resource speciftations.

The fist problem is that there is no means to enumerate the database, so
we must create a resource that lists the names of the user defned buttons. W e
will use the name buttonlist, and make an entry for *user. buttonlist that
specifes what buttons are being defned. It is possible to use artiftial resource
names like this, but they must be relative to an existing Tk widget.

Example 27-3 Using resources to specify user-defined buttons.

*User.buttonlist: save search justify quit
*User. save.text: Save

*User. save. conmand: Fil e_Save
*User.search.text: Search

*User . search. conmand: Edit_Search
*User.justify.text: Justify
*User.justify.command: Edit_Justify
*user.quit.text: Quit

*User.quit.command: File_Quit

*User. quit. background: red

In this example we have listed four buttons and specifed some of the
attributes for each, most importantly the t ext and conmand attributes. We are
assuming, of course, that the application manual publishes a set of commands
that users can invoke safely. In this simple example the commands are all one
word, but there is no problem with multi-word commands. There is no interpre-
tation done of the value, so it can include references to Tecl variables and nested
command calls. The code that uses these resource speciftations to defne the
buttons is given below.

* Special thanks go to John Robert LoVerso for this idea.

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

328 Using X Resources Chap.27

Example 27-4 Defining buttons from the resource database.

proc ButtonResources { f class } {
frame $f -class $class -borderwidth 2
pack $f -side top
foreach b [option get $f buttonlist {}] {
if [catch {button $f.$b}] {
button $f.$b -font fixed

}
pack $f.$b -side right

The cat ch phrase is introduced to handle a common problem with fonts and
widget creation. If the user’s resources specify a bogus or missing font, then the
widget creation command will fail. The cat ch phrase guards against this case by
falling back to the fi xed font, which is guaranteed by the X server to always
exist.

The button speciftation given in the previous example results in the dis-
play shown below.

option readfile button.resources
But t onResour ces .user user

User Defined Menus

User-defhed menus can be set up with a similar scheme. However , it is a little
more complex because there are no resources for specift menu entries. W e have
to use some more artiftial resources to emulate this. First use menul i st to name
the set of menus. Then for each of these we defne an entrylist resource.
Finally, for each entry we defne a few more resources for the label, command,
and menu entry type. The conventions will be illustrated by the next example.

Example 27-5 Specifying menu entries via resources.

*User. menul ist: stuff

*User.stuff.text: My stuff
*User.stuff.mentrylist: keep insert find
*User.stuff.ml_keep: Keep on send
*User.stuff.mt_keep: check
*User.stuff.mv_keep: checkvar
*User.stuff.ml __insert: Insert File...
*User.stuff.mc_insert: InsertFileDi al og

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

User Defined Menus 329

*User.stuff.ml _find: Find
*User.stuff.mt_find: cascade
*User.stuff. mmfind: find

*User.stuff. mfind.entrylist: next prev
*User.stuff.mfind.| _next: Next
*User.stuff.mfind. c_next: Fi nd_Next
*User.stuff.mfind.|l_prev: Previous
*User.stuff.mfind.c_prev: Find_Previous

The menu structure created from the resource specifeation is shown below .

In the example, st uff is defned to be a menu. Actually, . user.stuff is a
Tk menubut t on. It has a menu as its child, . user. st uf f. m where the . mis set up
by convention. You will see this in the code for MenuResour ces below. The entryl-
ist for the menu is similar in spirit to the buttonlist resource. For each entry,
however, we have to be a little creative with the next level of resource names.
The following resources are used to specify the frst entry in the menu:
*User.stuff.ml_keep: Keep on send
*User.stuff.mt_keep: check
*User.stuff.mv_keep: checkvar
The | _entrynane resource specifes the label (text) for the entry . The t _en-
tryname resource specifes the type of the entry, which is a command entry by
default. In this case we are defning a checkbutton entry. Associated with a
checkbutton entry is a variable, which is defhed with the v_ent ryname resource.
The i nsert menu entry is simpler, just requiring a label resource, | _i n-
sert, and a command resource, c_i nsert:
*user.stuff.ml _insert: insert file...
*user.stuff.mc_insert: insertfiledialog
The fand menu entry is for a cascaded menu. This requires the type, t_find,
to be cascade. Associated with a cascade entry is a submenu, m fi nd, and again a
label, | _find:
*User.stuff.ml _find: find
*User.stuff.mt_find: cascade

*User.stuff. mmfind: find
The conventions are the same for the cascaded menus, with *user. -

stuff.mfind. entrylist defning the entries, and so on. The code to support all

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

330 Using X Resources Chap.27

this is given in the next example.

Example 27-6 Defining menus from resource specifications.

proc MenuResources { f class } {
set f [frame .user -class User]
pack $f -side top
foreach b [option get $f nenulist {}] {
set cmd [list menubutton $f.3$b -menu $f.$b. m\
-relief raised]
if [catch $crmd t] {
eval $cnd {-font fixed}

}
if [catch {menu $f.$b.n}] {
menu $f.$b. m-font fixed

pack $f.$b -side right
MenuBut t onl nner $f. $b. m
}
}
proc MenuButtonlnner { menu } ({
foreach e [option get $menu entrylist {}] {
set | [option get $nenu | _$e {}]
set ¢ [option get $nenu c_%$e {}]
set v [option get $menu v_$e {}]
switch -- [option get $menu t_%$e {}] {
check {

$nmenu add checkbutton -1abel $I -command $c \
-variable $v

radi o {
$nenu add radi obutton -1 abel $I -command $c \
-vari able $v

separator {
$menu add separ at or

cascade {
set sub [option get $nmenu m $e {}]
if {[string length $sub] != 0} {
set subnmenu [nmenu $nenu. $sub -tearoff 0]
$nmenu add cascade -1abel $I -command $c \
-menu $subnenu
nmenubut t oni nner $subnmenu

}

}
default {

$menu add command -1 abel $I -conmand $c
}

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

C HAPTER 28

Managing User Preferences

This chapter describes a user preferences package. The X resource database
is used to store preference settings. Applications specify what Tcl
variables get initialized from what database entries. A user interface lets
the user browse and change their settings.

User customization is an important part
of any complex application. There are always design decisions that could go
either way. A typical approach to choose a reasonable default but then allow
users to change the default setting through a preferences user interface. This
chapter describes a preference package that works by tying together a Tcl vari-
able, which is used by the application, and an X resource speciftation, which can
be set by the user. In addition, a user interface is provided so the user does not
have to edit the resource database directly.

App-Defaults Files

We will assume that it is sufftient to have two sources of application defaults, a
per-application database and a per-user database. In addition, we will allow for
some resources to be specift to color and monochrome displays. The following
example initializes the preference package by reading in the per-application and
per-user resource speciftation fles. There is also an initialization of the global
array pref that will be used to hold state information about the preferences
package. The Pref I nit procedure is called like this:
Pref Init $library/foo-defaults ~/.foo-defaults

We assume $library is the directory holding support fles for the foo

application, and that per-user defaults will be kept ~/ . f oo- def aul t s.

331

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

332 Managing User Preferences Chap.28

Example 28-1 Preferences initialization.

proc Pref_Init { userDefaults appDefaults } {
global pref

set pref(uid) 0 ;# for a unique identifier for widgets
set pref(userDefaults) $userDefaults
set pref(appDefaults) $appDefaults

PrefReadFile $appDefaults startup

if [file exists $userDefaults] {
PrefReadFile $userDefaults user

}

proc PrefReadFile { basename level } {
if [catch {option readfile $hasename $level} err] {
Status “Error in $basename: $err”

if {[tk colormodel .] == “color”} {
if [file exists $basename-color] {
if [catch {option readfile \
$basename-color $level} err] {
Status “Error in $basename-color: $err”

}else {
if [file exists $bhasename-mono] {
if [catch {option readfile $hasename-mono $level
Status “Error in $basename-mono: $err”
}

The PrefReadFile procedure reads a resource fle and then looks for
another fle with the suffk -color or -mono depending on the color model of the
display. The tk colormodel command is used to fad out what the toolkit thinks
the display is capable of handling. The choices are either color or monochrome.

With this scheme a user would put generic settings in their ~/.foo-
defaults fle, and they would put their color speciftations in their ~/.foo-
defaults-color or ~/.foo-defaults-mono fles. Y ou could extend PrefReadFile
to allow for per-host fles as well.

Another approach is to use the winfo visuals command which provides
more detailed information about the display characteristics. You could detect a
greyscale visual and support a third set of color possibilities. Visuals are dis-
cussed in Chapter 23.

Throughout this chapter we will assume that the Status procedure is used
to display messages to the user. It could be as simple as:

proc Status { s } { puts stderr $s }

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Defining Preferences 333
Defining Preferences

This section describes the Pref Add procedure that is used by an application to
defhe preference items. A preference item defnes a relationship between a T cl
variable and an X resource name. A default value, a label, and a more extensive
help string are also associated with the item. The Tcl variable is undefned at the

time Pref Add is called, then it is set from the value for the resource, if it exists,
otherwise it is set to the default value. Each preference item will be represented
by a Tcl list of these 5 elements. A few short routines hide the layout of the item
lists and make the rest of the code read a bit better. Pref Add is shown along
with these below:

Example 28—-2 Adding preference items.

proc PrefVar { item } { lindex $item 0 }

proc PrefXres { item } { lindex $item 1}

proc PrefDefault { item } { lindex $item 2 }
proc PrefComment { item } { lindex $item 3 }
proc PrefHelp { item } { lindex $item 4 }

proc Pref_Add { prefs } {
global pref
append pref(items) $prefs
foreach item $prefs {
set varName [PrefVar $item]
set xresName [PrefXres $item]
set value [PrefValue $varName $xresName]
if {$value == {}} {
Set variables that are still not set
set default [PrefDefault $item]
if {[llength $default] > 1} {
if {{lindex $default 0] == “CHOICE"} {
PrefValueSet $varName [lindex $default 1]
}else {
PrefValueSet $varName $default

}else {

Is it a boolean?

if {$default == “OFF"} {
PrefValueSet $varName 0

} elseif {$default == “ON"} {
PrefValueSet $varName 1

}else {
This is a string or numeric
PrefValueSet $varName $default

}else {
Should map boolean resources to 0, 1 here.
}

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

334 Managing User Preferences Chap.28

(One small improvement can be made to Pref Add . If a user specifes a bool-
ean resource manually, they might use ‘true” instead of 1 and ‘false” instead of
0. Pref_Add should fk that up for us.)

The procedures Prefvalue and PrefvalueSet are used to query and set the
value of the named variable, which can be an array element or a simple variable.
The upvar #0 command is used to set the variable in the global scope.

Example 28-3 Setting preference variables.

PrefValue returns the value of the variable if it exists,
otherwise it returns the X resource database value
proc PrefValue { varName xres } {
upvar #0 $varName var
if [info exists var] {
return $var
}

set var [option get . $xres {}]

PrefValueSet defines a variable in the globla scope.
proc PrefValueSet { varName value } {

upvar #0 $varName var

set var $value

An important side effect of the Pref_Add call is that the variables in the
preference item are defned at the global scope. It is also worth noting that
Prefvalue will honor any existing value for a variable, so if the variable is
already set at the global scope then neither the resource value or the default
value will be used. It is easy to change Prefvalue to always set the variable if
this is not the behavior you want.

Example 28—-4 Using the preferences package.

PrefAdd {
{win(scrollside) scrollbarSide {CHOICE left right}
“Scrollbar placement”
“Scrollbars can be positioned on either the left or
right side of the text and canvas widgets.”}
{win(typeinkills) typeinKills OFF
“Type-in kills selection”
“This setting determines whether or not the selection
is deleted when new text is typed in."}

{win(scrollspeed) scrollSpeed 15 “Scrolling speed”
“This parameter affects the scrolling rate when a selection
is dragged off the edge of the window. Smaller numbers
scroll faster, but can consume more CPU."}

}

Any number of preference items can be specifed in a call to Pref Add . The
list-of-lists structure is created by proper placement of the curly braces, and it is

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Preferences User Interface 335

preserved when the argument is appended to the master list of preferences, pre-
f(tems) .In this example Pref Add gets passed a single argument that is a Tecl
list with three elements. The Tcl variables are array elements, presumably
related to the Win module of the application. The resource names are associated
with the main application as opposed to any particular widget. They will be spec-
ifed in the database like this:

*scrollbarSide: left

*typeinKills: 0

*scrollSpeed: 15

The Preferences User Interface

The fgure shows what the interface looks like for the items added with the Pre-
f Add command given in the previous section. The popup window with the
extended help text appears after you click on “Scrollbar placement”.

The user interface to the preference settings is table driven. As a result of
all the Pref_Add calls, a single list of all the preference items is built up. The
interface is constructed by looping through this list and creating a user interface
item for each

Example 28-5 A user interface to the preference items.

proc Pref_Dialog {} {
global pref
if [catch {toplevel .pref}] {
raise .pref
}else {
wm title .pref “Preferences”
set buttons [frame .pref.but]
pack .pref.but -side top -fill x
button $buttons.quit -text Quit \
-command {PrefDismiss}
button $buttons.save -text Save \
-command {PrefSave}
button $buttons.reset -text Reset \
-command {PrefReset ; PrefDismiss}

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

336 Managing User Preferences

label $buttons.label \
-text “Click labels for info on each item”
pack $buttons.label -side left -fill x
pack $buttons.quit $buttons.save $buttons.reset \
-side right

frame .pref.b -borderwidth 2 -relief raised
pack .pref.b fill both

set body [frame .pref.b.b -bd 10]

pack .pref.b.b fill both

set maxWidth O
foreach item $pref(items) {
set len [string length [PrefComment $item]]
if {$len > $maxwidth} {
set maxWidth $len
}

foreach item $pref(items) {
PrefDialogltem $body $item $maxWidth
}

Chap.28

The interface supports three different types of preference items: boolean,

choice, and general value. A boolean is implemented with a checkbutton

that is

tied to the Tecl variable, which will get a value of either O or 1. A boolean is identi-
fed by a default value that is either ONor OFF A choice item is implemented as a
set of radiobuttons , one for each choice. A choice item is identifed by a default
value that is a list with the frst element equal to CHOICE The remaining list
items are the choices, with the frst one being the default choice. If neither of
these cases, boolean or choice, are detected, then an entry widget is created to

hold the general value of the preference item.

Example 28-6 Interface objects for different preference types.

proc PrefDialogltem { frame item width } {
global pref
incr pref(uid)
set f [frame $frame.p$pref(uid) -borderwidth 2]
pack $f -fill x
label $f.label -text [PrefComment $item] -width $width
bind $f.label <1>\
[list PrefltemHelp %X %Y [PrefHelp $item]]
pack $f.label -side left
set default [PrefDefault $item]
if {([llength $default] > 1) &&
([lindex $default 0] == “CHOICE")} {
foreach choice [Ireplace $default 0 0] {
incr pref(uid)
radiobutton $f.c$pref(uid) -text $choice \
-variable [PrefVar $item] -value $choice

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Preferences User Interface 337
pack $f.c$pref(uid) -side left

}else {

if {$default == “OFF” || $default == “ON"} {
This is a boolean
set varName [PrefVar $item]
checkbutton $f.check -text “On” -variable $varName
pack $f.check -side left

}else {
This is a string or numeric
entry $f.entry -width 10 -relief sunken
pack $f.entry -side left -fill x -expand true
set pref(entry,[PrefVar $item]) $f.entry
set varName [PrefVar $item]
$f.entry insert O [uplevel #0 [list set $varName]]
bind $f.entry <Return> “PrefEntrySet %W $varName”

}

proc PrefEntrySet { entry varName } {
PrefValueSet $varName [$entry get]
}

The use of radio and check buttons that are tied directly to the Tcl variables
results in a slightly different mode of operation for the preferences interface than
is provided by other toolkits. Typically a user will make some settings and then
choose Save or Cancel . In this interface, when the user clicks a radiobutton or a
checkbutton then the Tcl variable is set immediately. Of course, there are still
Save and Cancel buttons, but there is also an intermediate state in which the
settings have been made but they have not been saved to a fle. This is either a
feature that lets users try out settings without committing to them, or it is a bug.
However, changing this requires introducing a parallel set of variables to shadow
the real variables until the user hits Save, which is tedious to implement.

In order to obtain a similar effect with the general preference item, the
<Return> key is bound to a procedure that will set the associated Tcl variable to
the value from the entry widget. PrefEntrySet is a one-line procedure that
saves us from having to use the more awkward binding given below. Grouping
with double-quotes allows substitution of $varName, but then we need to quote
the square brackets to postpone command substitution.

bind $f.entry <Return> “PrefValueSet $varName \[%W get\]”

The binding on <Return > is done as opposed to using the -textvariable
option because it interacts with traces on the variable a bit better. With trace
you can arrange for a Tcl command to be executed when a variable is changed.
For a general preference item it is better to wait until the complete value is
entered before responding to its new value. A tracing example is given in the
next section.

The other aspect of the user interface is the display of additional help infor-
mation for each item. If there are lots of preference items then there isn’t enough
room to display this information directly. Instead, clicking on the short descrip-

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

338 Managing User Preferences Chap.28

tion for each item brings up a toplevel window with the help text for that item.

Example 28-7 Displaying the help text for an item.

proc PrefltemHelp { x y text } {
catch {destroy .prefitemhelp}
if {$text == {}} {

return

set self [toplevel .prefitemhelp -class Itemhelp]
wm title $self “Item help”
wm geometry $self +[expr $x+10]+[expr $y+10]
wm transient $self .pref
message $self.msg -text $text -aspect 1500
pack $self.msg
bind $self.msg <1> {PrefNukeltemHelp .prefitemhelp}
.pref.but.label configure -text \
“Click on popup or another label”

}
proc PrefNukeltemHelp {t}{
.pref.but.label configure -text \
“Click labels for info on each item”
destroy $t

Managing The Preferences File

The preference settings are saved in the per-user fle. The fle is divided into two
parts. The tail is automatically re-written by the preferences package. Users can
manually add resource speciftations to the beginning of the fle and they will be

preserved.

Example 28-8 Saving preferences settings to a file.

PrefSave writes the resource specifications to the
end of the per-user resource file, allowing users to
add other resources to the beginning.
proc PrefSave {} {
global pref
if [catch {
set old [open $pref(userDefaults) r]
set oldValues [split [read $old] \n]
close $old

R

set oldValues {}

if [catch {open $pref(userDefaults).new w} out] {
.pref.but.label configure -text \
“Cannot save in $pref(userDefaults).new: $out”
return

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Managing The Preferences File 339

foreach line $oldValues {
if {$line ==
“lIl Lines below here automatically added} {
break
}else{
puts $out $line
}

puts $out “!I!! Lines below here automatically added”
puts $out “!!l [exec date]”
puts $out “!I!! Do not edit below here”
foreach item $preferences {

set varName [PrefVar $item)]

set xresName [PrefXres $item]

if [info exists pref(entry,$varName)] {

PrefEntrySet $pref(entry,$varName) $varName

set value [PrefValue $varName $xresName]
puts $out [format “%s\t%s” *${xresName}: $value]

close $out

set new [glob $pref(userDefaults).new]

set old [file root $new]

if [catch {exec mv $new $old} err] {
Status “Cannot install $new: $err”
return

}

PrefDismiss

There is one fne point in PrefSave , which is that the value from the entry
widget for general purpose items is obtained explicitly in case the user has not
already pressed <Return> to update the Tcl variable.

Example 28-9 Read settings from the preferences file.

proc PrefReset {} {
global pref
Re-read user defaults
option clear
PrefReadFile $pref(appDefaults) startup
PrefReadFile $pref(userDefaults) user
Clear variables
set items $pref(items)
set pref(items) {}
foreach item $items {
uplevel #0 [list unset [PrefVar $item]]

Restore values
Pref_Add $items

proc PrefDismiss {} {
destroy .pref

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

340 Managing User Preferences Chap.28

catch {destroy .prefitemhelp}

The interface is rounded out with the PrefReset and PrefDismiss proce-
dures. A reset is achieved by clearing the option database and reloading it, and
then temporarily clearing the preference items and their associated variables
and then redefhing them with Pref Add .

Tracing Changes T o Preference V ariables

Suppose, for example, we want to repack the scrollbars when the user
changes their scrollside setting from left to right. This is done by setting a
trace on the win(scrollside) variable. When the user changes that via the user
interface, the trace routine will be called. The trace command and its associated
procedure are given below. The variable must be declared global before setting
up the trace, which is not otherwise required if Pref Add is the only command
using the variable.

Example 28-10 Tracing a Tcl variable in a preference item.

PrefAdd {
{win(scroliside) scrollbarSide {CHOICE left right}
“Scrollbar placement”
“Scrollbars can be positioned on either the left or
right side of the text and canvas widgets."”}

global win
set win(lastscrollside) $win(scrollside)
trace variable win(scrollside) w ScrollFixup

Assume win(scrollbar) identifies the scrollbar widget

proc ScrollFixup { namel name2 op } {

global win

if {$win(scrollside) != $win(lastscrollside)} {
set parent [lindex [pack info $win(scrollbar)] 1]
pack forget $win(scrollbar)
set firstchild [lindex [pack slaves $parent] 0]
pack $win(scrollbar) -in $parent -before $firstchild \

-side $win(scrollside) fill y

set win(lastscrollside) $win(scrollside)

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 29

C Programming and Tcl

This chapter explains how to extend the basic Tcl shells with new built-in
commands. It describes how to include a Tcl interpreter in an existing
application. The chapter reviews some of the support facilities provided
by the Tcl C library, including a hash table package.

TCl is designed to be easily extensible by
writing new command implementations in C. A command implemented in C is
more efftient than an equivalent T cl procedure. A more pressing reason to write
C code is that it may not be possible to provide the same functionality purely in
Tel. Suppose you have a new device, perhaps a color scanner or a unique input
device. The programming interface to that device is through a set of C proce-
dures that initialize and manipulate the state of the device. Without some work
on your part, that interface is not accessible to your Tcl scripts. You are in the
same situation if you have a C library that implements some specialized function
such as a database. Foretunately, it is rather straight-forward to provide a Tcl
interface that corresponds to the C interface. Unfortunately it is not automatic.
This chapter explains how to provide a Tcl interface as a one or more new Tcl
commands that you implement in C.

An alternative to writing new Tcl commands is to write stand-alone pro-
grams in C and use the Tcl exec command to run these programs. However,
there is additional overhead in running an external program as compared to
invoking a Tcl command that is part of the same application. There may be long
lived state associated with your application (e.g., the database), and it may make
sense for a collection of Tcl commands to provide an interface to this state than to
run a program each time you want to access it. An external program is more suit-
able for one-shot operations like encrypting a fle.

Another way to view Tcl is as a C library that is easy to integrate into your

341

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

342 C Programming and Tcl Chap.29

existing application. By adding the Tcl interpreter you can confgure and control
your application with Tel scripts, and with Tk you can provide a nice graphical
interface to it. This was the original model for Tcl. Applications would be largely
application-specift C code and include a small amount of T cl for confguration
and the graphical interface. However, the basic Tcl shells proved so useful by

themselves that relatively few Tcl programers need to worry about programming
in C.

Using the Tcl C Library

This chapter does not provide a complete reference to the procedures exported by
the Tecl C library. Instead, the general use of the procedures is explained at the
end of this chapter, and a few of them appear in the code examples. You will need
to refer to the on-line manual pages for the routines for the specift details about
each procedure. This approach differs from the rest of the chapters on the Tcl
scripting commands, but space and time preclude a detailed treatment of the Tcl
C library. Besides, their man pages are an excellent source of information. The
goal of this chapter is to give you an overall idea of what it is like to integrate C
and Tcl, and to provide a few working examples.

Application Structure

This section describes the overall structure of an application that includes a Tecl
interpreter. The relationship between the Tcl interpreter and the rest of your
application can be set up in a variety of ways. A general picture is shown below.

* Tel Script * L Tel
9 Applicatin
Library Tecl Commands C
-~ *
Your
Application

The Tcl C library implements the interpreter and the core Tcl commands
such as set, while, and proc. Application-specift T cl commands are imple-
mented in C or C++ and registered as commands in the interpreter. The inter-
preter calls these command procedures when the script uses the application-
specift T cl command. The command procedures are typically thin layers over

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl_Main and Tcl_Applnit 343

existing functionality in your application. Finally, by using Tcl _Eval , your appli-
cation can invoke functionality programmed in the script layer. You can query
and set Tcl variables from C using the Tcl _Set Var and Tcl _Get Var procedures.

The application creates an interpreter with Tcl _Createl nterp and regis-
ters new commands with Tcl _Creat eConmand. Then it evaluates a script to ini-
tialize the application by calling Tcl _Eval Fi | e. The script can be as simple as
defhing a few variables that are parameters of a computation, or, it can be as
ambitious as building a large user interface. The situation is slightly more com-
plicated if you are using Tk and providing a graphical user interface, but not
much more complex. Using Tk and C is described in the next chapter.

Tcl_Main and T cl_Applnit

The Tcl library supports the basic application structure through the
Tcl _Mai n procedure that is designed to be called from your nain program.
Tcl _Mai n does three things:

e It creates an interpreter that includes all the standard Tcl commands like
set and proc. It also defnes a few T cl variables like ar gc and ar gv. These
have the command line arguments that were passed to your application.

e It calls Tcl _Appl ni t, which is not part of the Tcl library. Instead, your appli-
cation provides this procedure. In Tcl _Appl nit you can register additional
appcliation-specift T cl commands.

¢ It reads a script or goes into an interactive loop.

To use Tcl _Mai n you call it from your main program and provide an imple-
mentation of the Tcl _Appl ni t procedure. An example is shown below.

Example 29-1 A canonical Tcl main program and Tcl_Applnit.

/* main.c */
#i nclude <tcl.h>

/*
* Declarations for application-specific command procedures
*/
i nt RandonmCnd(ClientData clientData,
Tcl _Interp *interp,
int argc, char *argv[]);

mai n(int argc, char *argv[]) {
Tcl _Mai n(argc, argv);

exit(0);
}
/*
* Tcl _Applnit is called from Tcl _Main
* after the Tcl interpreter has been created,
*

and before the script file

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

344 C Programming and Tcl Chap.29

* or interactive command | oop is entered.
*/
i nt
Tcl _Applnit(Tcl _Interp *interp) {
/*

* |nitialize packages
* Tcl _Init sets up the Tcl library facility.
*/
if (Tcl_Init(interp) == TCL_ERROR) {
return TCL_ERRCR
}

/*
* Regi ster application-specific conmands.
*/
Tcl _Creat eCommand(i nterp, "randon, RandonCnd,
(dientData) NULL, (Tcl_CndDel eteProc *)NULL);
/*
* Define startup filenane. This file is read in
* case the programis run interactively.
*/
tcl _RcFileName = "~/ . nmyapp.tcl™;
return TCL_OK;

The nai n program calls Tcl _Min with the argc and argv parameters
passed into the program. These are the strings passed to the program on the
command line, and Tcl _Mai n will store these values into Tcl variables by the
same name. Tcl _Appl nit is called by Tcl _Mai n with one argument, a handle on
a newly created interpreter. There are three parts to the Tcl _Appl ni t procedure.
The frst part initializes the various packages used by the application. The exam-
ple just calls Tcl _Init to complete the setup of the Tcl interpreter. While the core
Tcl commands are defned during Tcl Createlnterp, which is called by
Tcl _Mai n, there is some additional setup required for the Tcl library facility that
is done by the Tcl _Init call. The library facility is described later in this chapter.

The second part of Tcl _Appl nit does application-specift initialization. The
example registers a command procedure, RandonCnd that implements a new Tcl
command, r andom When the Tel script uses the randomcommand, the RandontCnd
procedure will be invoked by the Tecl library. The command procedure will be
described in the next section. The third part defhes an application startup
script, t cl _RcFi | eName, that is used if the program is used interactively.

The standard main in Tcl 7.3

The Tcl _Mai n procedure was added in Tcl 7.4. Prior to that the Tecl library
actually included a mai n program, so all you needed was a Tcl_AppInit proce-
dure. There were some problems with using nmai n from the library, especially
with C++ programs, so Tcl _Mai n was introduced.

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A C Command Procedure 345
A C Command Procedure

The interface to a C command procedure is much like the interface to the mai n
program. The arguments from the Tcl command are available as an array of
strings defhed by an argv parameter and counted by an argc parameter. In
addition, the handle on the interpreter is passed, along with the client data that
was registered when the command was defned. The client data is useful if the
same command procedure is implementing many different commands. For exam-
ple, a Tk command procedure can implement the commands corresponding to the
various instances of a particular type of Tk widget. It that case, client data is
used to hold a pointer to the data structure defning the particular instance of
the widget.

The return value of a Tcl command is either a string or an error message. A
feld in the interp data structure is used to return this value, and the the com-
mand procedure returns either TCL_OK or TCL_ERRCR to indicate success or fail-
ure. The procedure can also return TCL_BREAK, TCL_CONTI NUE, or an application-
specift code, which might be useful if you are implementing new kinds of built-
in control structures. The examples in this book only use TCL_OK and TCL_ERROR.
The use of the result feld to return string values is described in the next section.

Example 29-2 The RandonCrd C command procedure.

/
RandonCnd - -
This implements the random Tcl command. Wth no argunents
the command returns a random i nt eger.
Wth an integer valued argunment "range",

* it returns a randominteger between 0 and range.

*/
i nt
RandonCnd(Cli ent Data clientData, Tcl_Interp *interp,

int argc, char *argv[])

{

* F X X F

int rand, error;

int limt = 0;

if (argc > 2) {
interp->result = "Usage: random ?range?";
return TCL_ERROR,

}
if (argc == 2)
error = Tcl _GetInt(interp, argv[1l], &imt);
if (error !'= TCL_OK) {
return error;
}

}

rand = random();

if (limt !'=0) {
rand = rand % limt;

sprintf(interp->result, "%", rand);
return TCL_OK;

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

346 C Programming and Tcl Chap.29

The r andomimplementation accepts an optional argument that is a range
over which the random numbers should be returned. The argc parameter is
tested to see if this argument has been given in the Tcl command. ar gc counts
the command name as well as the arguments, so in our case ar gc == 2 indicates
that the command has been invoked something like:

random 25

The procedure Tcl _Get I nt is used to convert the string-valued argument to
an integer. It does error checking and sets the interpreter’s result feld in the
case of error, so we can just return if it fails to return TCL_OK.

Finally, the real work of calling r andomis done, and the result is formatted
directly into the result buffer. TCL_K is returned to signal success.

Managing The Result’ s Storage

There is a simple protocol used to manage the storage for a command proce-
dure’s result string. It involves two felds in the interpreter structure, interp-
>resul t that holds the value, and i nt er p- >f r eePr oc that determines how the
storage is cleaned up. When a command is called the interpreter provides default
storage of TCL_RESULT_SI ZE bytes, which is 200 by default. The default cleanup
action is to do nothing. These defaults support two simple ways to defne the
result of a command. One way is to use spri ntf to format the result in place.

sprintf(interp->result, "%", rand);

Using sprintf is suitable if you know your result string is short, which is
often the case. The other way is to set i nterp->result to the address of a con-
stant string. In this case the original result buffer is not used, and there is no
cleanup required because the string is compiled into the program.

interp->result = "Usage: random ?randon?";

In more general cases the following procedures should be used to manage
theresult and freeProc felds.

Tcl _SetResult(interp, string, freeProc)
Tcl _AppendResul t (interp, strl, str2, str3, (char *)NULL)
Tcl _AppendEl enent (i nterp, string)

Tcl _Set Resul t sets the return value to be string. The f r eePr oc argument
describes how the result should be disposed of. TCL_STATI C is used in the case
where the result is a constant string allocated by the compiler. TCL_DYNAM C is
used if the result is allocated with mal | oc. TCL_VOLATI LE is used if the result is
in a stack variable. In this case the Tcl interpreter will make a copy of the result
before calling any other command procedures. Finally, if you have your own
memory allocator, pass in the address of the procedure that should free up the
result.

Tcl _AppendResul t copies its arguments into the result buffer, reallocating

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Invoking Scripts From C 347

the buffer if necessary. The arguments are concatenated onto the end of the
existing result, if any. Tcl _AppendResul t can be called several times in order to
build up a result.

Tcl _AppendEl enent adds the string to the result as a proper Tecl list ele-
ment. It may add braces or backslashes to get the proper structure.

Invoking Scripts From C

The main program is not the only place you can evaluate a Tcl script. The
Tcl _Eval procedure can be used essentially at any time to evaluate a Tcl com-
mand.

Tcl _Eval (Tcl _Interp *interp, char *comrand);

This is how the command associated with a button is invoked, for example.
The only caveat about this is that the script may destroy the widget or Tcl com-
mand that invoked it. To guard against this, the Tk_Preserve, Tk_Rel ease, and
Tk_Event ual | yFr ee procedures can be used to manage any data structures asso-
ciated with the widget or Tcl command. These are described on page 363.

You should also be aware that Tcl _Eval may modify the string that is
passed into it as a side effect of the way substitutions are performed. If you pass
a constant string to Tcl _Eval , make sure your compiler hasn’t put the string con-
stant into read-only memory. If you use the gcc compiler you may need to use the
-fwritabl e-strings option.

Bypassing Tcl_Eval

In a performance critical situation you may want to avoid some of the over-
head associated with Tcl _Eval . David Nichols showed me a clever trick by which
you can call the implementation of a C command procedure directly. The trick is
facilitated by the Tcl _Get CormandI nf o procedure that returns the address of the
C command procedure for a Tcl command, plus its client data pointer. The
Tcl _I nvoke procedure shown in the next example implements this trick. It is
used much like Tcl _Var Eval , except that each of its arguments becomes an argu-
ment to the Tcl command without any substitutions being performed.

For example, you might want to insert a large chunk of text into a text wid-
get without worriying about the parsing done by Tcl _Eval. You could use
Tcl _I nvoke like this:

Tcl _Invoke(interp, ".t", "insert", "insert", buf, NULL);

Or:

Tcl _Invoke(interp, "set", "foo", "$xyz [blah] {", NULL);

No substitutions are performed on any of the arguments because Tcl _Eval
is out of the picture. The variable f oo gets the literal value $xyz [bl ah] {.

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

348 C Programming and Tcl Chap.29

Example 29-3 Calling C command procedure directly.

#i ncl ude <varargs. h>
#i nclude <tcl.h>
/*
* Tcl _I nvoke --
Call this sonewhat |ike Tcl_VarEval :
Tcl _Invoke(interp, cmdName, argl, arg2, ..., NULL);
Each arg becones one argunent to the conmand,
with no substitutions or parsing.
/
i nt
Tcl _I nvoke(va_al i st)
va_dcl /* Variabl e number of argunents */
{

* X X X X

Tcl _Interp *interp;
char *cnd;

char **argv;

int argc, nax;

Tcl _CndInfo info;
va_list pvar;

int result;

va_start(pvar);
interp = va_arg(pvar, Tcl_Interp *);
cmd = va_arg(pvar, char *);

/*

* Build an argv vector out of the rest of the argunents.
*/

max = 10;

argv = (char **)nal |l oc(nmax * sizeof (char *));
argv[0] = cnd;
argc = 1,
while (1) {
argv[argc] = va_arg(pvar, char *);
if (argv[argc] == (char *)NULL) {

br eak;
}
ar gc++;
if (argc >= max) {
/*
* Allocate a higger vector and copy old val ues in.
*/
int i;
char **oldargv = argv;
argv = (char **)nmall oc(2*max * sizeof(char *));
for (i=0; i<max ; i++) {
argv[i] = oldargv[i];
free(ol dargv);
max = 2*max;
}
}
Tcl _ResetResul t(interp);

/*

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Putting A Tcl Program Together 349

* Map fromthe command name to a C procedure.

*/

if (Tcl _Get Conmandl nfo(interp, cnd, & nfo)) {
result = (*info.proc)(info.clientData, interp,

argc, argv);

} else {

Tcl _AppendResul t (i nterp, "Unknown command \"",
cmd, "\"", NULL);

result = TCL_ERROR

va_end(pvar);
free(argv);
return result;

Putting A T cl Program T ogether

Assuming you’ve put the examples into fles named tcl Mai n. ¢, random c, and
tcl I nvoke. o you are ready to try them out. You need to know the locations of
two things, the t ¢l . h include fle and the tcl C library . In this book we’ll assume
they are in /usr/local/include and /usr/local/lib, respectively, but you
should check with your local system administrator to see how things are set up
at your site.

Example 29-4 A Makefile for a simple Tcl C program.

INC = -1/usr/local/include
LIBS = -L/usr/local/lib -ltcl -Im
DEBUG = -g

CFLAGS =$(DEBUG $(!NC)
OBJS = tcl Main.o randomo tcllnvoke. o

nytcl : $(0BIS)
$(CO -0 mytcl $(OBIS) $(LIBS)

The details in this Makefi | e may not be correct for your system. In some
cases the math library (-1 m) is included in the standard C library. You should
consult a local expert and defne a Makefi | e so you can record the details specift
to your site.

An Overview of the T cl C library

This section provides a brief survey of other facilities provided by the Tcl C
library. For the complete details about each procedure mentioned here, consult
the on-line manual pages. The man pages describe groups of related C proce-
dures. For example, Tcl _Cr eat eConmand and Tcl _Del et eCommand are described

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

350 C Programming and Tcl Chap.29

in the Cr t Command man page. Your site may not have additional links setup to let
you utter "man Tcl _Creat eCommand". Instead, you may have to use "man Crt Com
mand". For this reason, the name of the man page is noted in each section that
introduces the procedures.

Application initialization

The Tcl _Main and Tcl _Applnit procedures are described in the Appl nit
and Tcl _Mai n man pages, respectively.

Creating and deleting interpreters

A Tcl interpreter is created and deleted with the Tcl _Createlnterp and
Tcl _Del et el nt er p procedures, which are described in the Crt | nt er p man page.
You can register a callback to occur when the interpreter is deleted with Tcl -
Cal | WhenDel et ed. Unregister the callback with Tcl Dont Cal | WhenDel et ed.
These two procedures are described in the Cal | Del man page.

Creating and deleteing commands

Register a new Tcl command with Tcl _Creat eConmand, and delete a com-
mand with Tcl _Del et eCommand. The Tcl _Get Conmandl nf o and Tcl _Set Command-
I nf o procedures query and modify the procedure that implement a Tcl command
and the clientdata that is associated with the command. All of these are
described in the Crt Command man page.

Managing the result string

The result string is managed through the Tcl Set Result, Tcl _Appen-
dResul t, Tcl _AppendEl ement, and Tcl Reset Result procedures. These are
described in the Set Result man page. Error information is managed with the
Tcl _AddErrorlnfo, Tcl _Set Error Code, and Tcl _Posi xError procedures, which
are described in the AddErr | nf o man page.

Lists and command parsing

If you are reading commands, you can test for a complete command with
Tcl _ConmandConpl et e, which is described in the CndCnpl t man page.You can do
backslash substitutions with Tcl Backsl ash, which is described in the Back-
sl ash man page. The Tcl _Concat procedure, which is described in the Concat
man page, concatenates its arguments with a space separator, just like the Tecl
concat command.

You can chop a list up into its elements with Tcl _Spl it Li st, which returns
an array of strings. You can create a list out of an array of strings with Tcl _M
erge. This behaves like the |i st command in that it will add syntax to the
strings so that the list structure has one element for each of the strings. The

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tcl C library 351

Tcl _ScanEl ement and Tcl _Convert El ement procedures are used by Tcl _Mer ge.
All of these are described in the Spl it Li st man page.

Command pipelines

The Tcl _Creat ePi pel i ne procedure does all the work of setting up a pipe-
line between processes. It handles fie redirection and implements all the syntax
supported by the exec and open commands. It is described by the Crt Pi pelin
man page.

If the command pipeline is run in the background, then a list of process
identifers is returned. Y ou can detach these processes with Tcl Det achPi ds,
and you can clean up after them with Tcl ReapDet achedProcs. These are
described in the Det achPi d man page.

Tracing the actions of the Tcl interpreter

There are several procedures that let you trace the execution of the Tecl
interpreter and provide control over its behavior. The Tcl _Cr eat eTr ace registers
a procedure that is called before the execution of each Tcl command. Remove the
registration with Tcl Del et eTrace. These are described in the Crt Trace man
page.

You can trace modiftations and accesses to T cl variables with Tcl _Tr ace-
Var and Tcl _TraceVar 2. The second form is used with array elements. Remove
the traces with Tcl _UntraceVvar and Tcl _UntraceVar 2. You can query the traces
on variables with Tcl Var Tracelnfo and Tcl Var Tracel nf o2. These are all
described in the Tr acevar man page.

Evalutating Tcl commands

The Tcl _Eval command is used to evaluate a string as a Tcl command.
Tcl _Var Eval takes a variable number of string arguments and concatenates
them before evaluation. The Tcl _Eval Fil e command reads commands from a
fle. Tcl _d obal Eval evaulates a string at the global scope. These are all
described in the Eval man page.

If you are implementing an interactive command interpreter and want to
use the history facility, then call Tcl _Recor dAndEval . This records the command
on the history list and then behaves like Tcl _Qd obal Eval . This is described in
the Recor dEval man page.

You can set the recursion limit of the interpreter with Tcl _Set Recur si on-
Li m t, which is described in the Set RecLnmt man page.

If you are implementing a new control structure you may need to use the
Tcl _Al | owExcept i ons procedure. This makes it OK for Tcl _Eval and friends to
return something other than TCL_OK and TCL_ERROR. This is described in the
Al | owExc man page.

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

352 C Programming and Tcl Chap.29

Manipulating Tcl variables

You can set a Tecl variable with Tcl _Set Var and Tcl _Set Var 2. The second
form is used for array elements. You can retrieve the value of a Tcl variable with
Tcl _Get Var and Tcl _Get Var 2. You can delete variables with Tcl _Unset Var and
Tcl _Unset Var 2. These are all described in the Set Var man page.

You can link a Tcl variable and a C variable together with Tcl _Li nkVvar, and
break the relationship with Tcl _Unl i nkVar. Setting the Tcl variable modifes the
C variable, and reading the Tcl variable returns the value of the C variable.
These are described in the Li nkVar man page.

Use the Tcl _UpVar and Tcl _UpVar 2 procedures to link Tecl variables from
different scopes together. You may need to do if your command takes the name of
a variable as an argument as opposed to a value. These procedures are used in
the implementation of the upvar Tecl command, and they are described in the
UpVar man page.

Evalutating expressions

The Tcl expression evaluator is available through the Tcl ExprLong,
Tcl _ExprDoubl e, Tcl _ExprBool and Tcl ExprString procedures. These all use
the same evaluator, but they differ in how they return their result. They are
described in the Expr Long man page.

You can register the implementation of new math functions by using the
Tcl _Cr eat eMat hFunc procedure, which is described in the Crt Mat hFnc man page.

Converting numbers

You can convert strings into numbers with the Tcl _Get I nt, Tcl _Get Doubl e,
and Tcl _Get Bool ean procedures, which are described in the Get I nt man page.
The Tcl _Pri nt Doubl e procedure converts a fbating point number to a string. It
is used by Tcl anytime it need to do this conversion, and it honors the precision
specifed by the tcl _precision variable. It is described in the Pri nt Dbl man

page.

Hash tables

Tcl has a nice hash table package that automatically grows the hash table
data structures as more elements are added to the table. Because everything is a
string, you may need to set up a hash table that maps from a string-valued key
to an internal data structure. The procedures in the package are Tcl _I ni t Hash-
Tabl e, Tcl _Del eteHashTabl e, Tcl _CreateHashEntry, Tcl _Del eteHashEntry,
Tcl _Fi ndHashEntry, Tcl _Get HashVal ue, Tcl _Set HashVal ue, Tcl _Get HashKey,
Tcl _FirstHashEntry, Tcl _NextHashEntry, and Tcl_HashStats. These are
described in the Hash man page.

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tcl C library 353
Dynamic Strings

The Tecl dynamic string package is designed for strings that get built up
incrementaly. You will need to use dynamic strings if you use the Tcl _Ti | deS-
ubst procedure. The procedures in the package are Tcl _DStringlnit, Tcl D
Stri ngAppend, Tcl _DSt ri ngAppendEl enent , Tcl _DStringStartSublist,
Tcl _DStri ngEndSubl i st, Tcl _DSt ri ngLengt h, Tcl _DSt ri ngVal ue, Tcl _DSt ri ng-
Set Lengt h, Tcl _DStringFree, Tcl _DStringResul t, and Tcl _DStringGet Resul t.
These are described in the DSt ri ng man page.

Regular expressions and string matching

The regular expression library used by Tcl is exported through the Tcl _-
RegExpMat ch, Tcl _RegExpConpi | e, Tcl _RegExpExec, and Tcl _RegExpRange pro-
cedures. These are described in the RegExp man page. The string match function
is available through the Tcl _Stri nghat ch procedure, which is described in the
St r Mat ch man page.

Tilde Substitution

The Tcl _Til deSubst procedure converts flenames that begin with ~ into
absolute pathnames. The ~ syntax is used to refer to the home directory of a user.

Working with signals

Tcl provides a simple package for safely dealing with signals and other
asynchronous events. You register a handler for an event with Tcl _AsyncCr eat e.
When the event occurs, you mark the handler as ready with Tcl _AsyncMark.
When the Tcl interpreter is at a safe point, it uses Tcl _Asyncl nvoke to call all
the ready handlers. Your application can call Tcl _Asynclnvoke, too. Use
Tcl _AsyncDel et e to unregister a handler. These are described in the Async man

page.

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

354 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProglntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 30

C Programming and Tk

This chapter explains how to include Tk in your application. It includes an
overview of the Tk C library. The next chapter shows a sample widget
implementation.

Tk has a few ways of its own that it can
be extended. You can implement new widgets, new canvas items, new image
types, and new geometry managers. This chapter provides a brief introduction to
these topics and some examples. Geometry managers are not described,
although you can read about the table geometry manager provided by the BLT
extension in the next chapter.

The structure of an application that uses Tk is a little different than the
basic structure outlined in the previous chapter. After an initialization phase
your program enters an event loop so it can process window system events. If you
use certain extensions like Tcl-DP, you will also need an event loop. Tk_Mai nLoop
is an event loop that processes window events, and Tk_DoOneEvent can be used if
you build your own event loop. If you use Tk_Mai nLoop, you can have it call han-
dlers for your own I/O streams by using Tk_Cr eat eFi | eHandl er. Thus there is
some initial setup, the evaluation of a script, and then a processing loop.

Tk_Main and Tcl_Applnit

The Tk library supports the basic application structure through the
Tk_Mai n procedure that is designed to be called from your main program.
Tk_Mai n does the following things:

e Like Tcl _Mai n it creates a Tcl interpreter and defhes the argc and ar gv Tel

355

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

356

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C Programming and Tk Chap.30

variables. The complete set of variables is listed below.

It parses some window-related command line arguments. These are listed

below.

It creates the main window for your application by
Tk_Cr eat eMai nW ndow It also defhes the env(DI SPLAY) variable.

calling

It calls Tcl _Applnit, which is is provided by your application. Your
Tcl _Appl nit should call Tcl _Init and Tk_I nit as shown in the example.

It reads a script or sets up to read interactive commands.

It enters an event loop in order to process window events and interactive

commands.

Example 30-1 A canonical Tk main program and Tcl_Applnit.

/* main.c */
#i ncl ude <tk. h>

mai n(int argc, char *argv[]) {
Tk_Mai n(argc, argv);

exit(0);
/*
* New features added by this wish.
*/

int CockCnhd(dientData clientData,
Tcl _Interp *interp,
int argc, char *argv[]);

Tcl _Applnit is called from Tcl _Main
after the Tcl interpreter has been created,
and before the script file
* or interactive command | oop is entered.
*/
i nt
Tcl _Applnit(Tcl _Interp *interp) {
/*
* |nitialize packages

EIE I

* Tcl _Init sets up the Tcl library facility.

*

/

if (Tcl _Init(interp) == TCL_ERROR) {
return TCL_ERROR

}

if (Tk_Init(interp) == TCL_ERROR) {
return TCL_ERROR

}

/*

* Define application-specific commands here.

*

/

Tcl _Creat eCommand(interp, "clock", O ockCnd,
(dientDat a) Tk_Mai nW ndow(i nterp),
(Tcl _CndDel et eProc *) NULL) ;

A Custom Main Program 357

/*

* Define startup filenane. This file is read in
* case the programis run interactively.

*/

tcl _RcFileNanme = "~/ . nmyapp.tcl™;

return TCL_OK;

The use of Tk_Mi n is very similar to using Tcl _Mai n. Both procedures call
Tcl _Applnit for initialization. If you are using Tk then you need to call both
Tcl _Init and Tk_Init from your Tcl _Appl nit procedure. The frst sets up the
Tcl library, and the second sets up the script library used with the Tk widgets.
This is important because much of the default behavior and event bindings for
the Tk widgets are defned by its script library .

This example sets up for the clock widget example, the pixmap image type,
and the label canvas item type that are the subject of examples later in this
chapter.

A Custom Main Program

In more complex applications you may need to have complete control over
the main program. This section gives an example that has a custom event loop. It
shows much of the boiler-plate code needed to initialize a Tk application. In addi-
tion, it sets up an error handler for X protocol errors. This is mainly useful so you
can set a breakpoint and fad out what is causing the problem.

You should carefully consider whether a custom main program is really nec-
essary. The primary point of this example is to give you an understanding of
what goes on inside Tk_Mi n. In most cases Tk_Mai n should be sufftient for your
needs.

Example 30-2 A custom Tk main program.

#i ncl ude <tk. h>

/*

* XErrorProc --

* Toe- hol d for debuggi ng X Protocol botches.
*/

static int

XErrorProc(data, errEventPtr)
ClientData data;
XError Event *errEventPtr;

Tk_W ndow w = (TK_W ndow) dat a;

fprintf(stderr, "X protocol error: ");

fprintf(stderr, "error=%l request=% m nor=%\n",
errEvent Ptr->error_code, errEventPtr->request_code,
err Event Ptr->m nor _code) ;

/*

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

358

C Programming and Tk Chap.30

* Claimto have handl ed the error.
*/
return O;

}
Tk_W ndow nmai nW ndow,

/*

* Atable for command |ine argunents.
*/

static char *display = NULL;

static int debug = O;

static char *geonetry = NULL;

Tk_Argvinfo argTable[] = {
{"-display", TK_ARGV_STRING, (char *) NULL,
(char *) &display, "Display to use"},
{"-debug", TK_ARGV_CONSTANT, (char *) 1, (char *) &debug,
"Set things up for gdb-type debugging"},
{"", TK_ARGV_END, 1},

I
/*

* This programtakes one argunent, which is the
* nane of a script to interpret.
*/
mai n(int argc, char *argv[])
{
Tcl _Interp *interp;
int error; char *trace;

interp = Tcl _Createlnterp();

if (Tk_ParseArgv(interp, (Tk_Wndow) NULL, &argc, argv,
argTable, 0) '= TCL_OK) {
fprintf(stderr, "%\n", interp->result);
exit(1);

if (argc < 2) {
fprintf(stderr, "Usage: % filenanme\n", argv[0]);
exit(1l);

Create the main wi ndow. The nanme of the application
* for use with the send conmand is "nyapp". The
* class of the application for X resources is "Mapp".
*/
mai nW ndow = Tk_Cr eat eMai nW ndow(i nterp, display,
"nyapp", "Mapp");
i f (mai nWndow == NULL) {
fprintf(stderr, "%\n", interp->result);
exit(1l);
}
/*
* Register the X protocol error handler, and ask for
* a synchronous protocol to hel p debuggi ng.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Custom Main Program 359

*/
Tk_Cr eat eError Handl er (Tk_Di spl ay(mai nW ndow), -1, -1, -1,
XErrorProc, (CientData)nminWndow);
i f (debug) {
XSynchr oni ze(Tk_Di spl ay(mai nW ndow), True);
}

/*
* Grab an initial size and background.
*/
Tk_CGeonet r yRequest (mai nW ndow, 200, 200);
Tk_Set W ndowBackgr ound(mai nW ndow,
Whi t ePi xel OF Scr een(Tk_Scr een(nmai nW ndow))) ;

/*
* This is where Tcl _Applnit woul d be call ed.
* In this case, we do the work right here.
*/
if (Tel_Init(interp) !'= TCL_OK) {
fprintf(stderr, "Tcl _Init failed: %\n",
interp->result);
}
if (Tk_Init(interp) !'= TCL_CK)
fprintf(stderr, "Tk_Init failed: %\n",
interp->result);
}
error = Tcl _Eval File(interp, argv[1]);
if (error !'= TCL_OK) {
fprintf(stderr, "%: %\n", argv[1],
interp->result);
trace = Tcl _GetVar(interp, "errorlnfo",
TCL_G.OBAL_ONLY);
if (trace != NULL)
fprintf(stderr, "*** TCL TRACE ***\n");
fprintf(stderr, "%\n", trace);

}

/*

* Enter the custom event | oop.

*/

while (MyappExists())
Tk_DoOneEvent (TK_ALL_EVENTS) ;
MyappSt uf f ()

}

/*

* Call the Tcl exit to ensure that everything is

* cl eaned up properly.

*/

Tcl _Eval (interp, "exit");

return O;

The command line arguments are parsed with Tk _ParseArgv. Then
Tcl _Createlnterp creates an interpreter context, and Tk_Creat eMai nW ndow
creates the fist window . As a side effect it defhes all the Tk-related T cl com-

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

360 C Programming and Tk Chap.30

mands. The default window size is set, and the rest of the appearance is left up
to the script. Tcl _Init and Tk_Init are called to complete the setup of these
packages. Tk_I ni t has to be called after Tk_Cr eat eMai nW ndow

The handler for X protocol errors is installed with Tk_Cr eat eEr r or Handl er.
If the debug fhg is set, then the X protocol is put into synchronous mode. This
means that any protocol errors will occur as a direct result of your graphic opera-
tions, so you can put a breakpoint in XErr or Proc and see what call causes the
problems.

The application is really defned by the script, which is processed by the
Tcl _Eval Fi | e command. Its fle name argument is argv[1], which is the first
argument to the program when it is run from the command line. If the user types
a bad fle name, then Tcl _Eval Fi | e will return an error so we can avoid checking
for that ourselves.

This argument convention means that you can specify your program
directly in the script with the #! notation. That is, if your program is named
nyapp, and it is stored as / usr/j oe/ bi n/ nyapp, then you can begin a script with:

#!'/ usr/j oel bi n/ myapp

The script will be processed by your version of the Tcl interpreter Remem-
ber there is a 32 character limit on this line in most UNIX systems, including the
#.

Much of the main program is devoted to handling any errors from the
script. First, the return code from Tcl _Eval Fi | e is checked. If it is not TCL_CX,
then an error has occurred in the script. An error message is available in
interp->result. We can provide even more detailed information to the user
than the error message generated by the offending command. The interpreter
maintains a variable error| nfo that is a stack trace of the commands that led
up to the error. The Tcl _Get Var call returns us its value, or NULL if it is unde-
foed. In practice, you would probably prompt the user before dumping the T cl
trace.

A Custom Event Loop

An event loop is used to process window system events and other events like tim-
ers and network sockets. The different event types are described below. All Tk
applications must have an event loop so they function properly in the window
system environment. Tk provides a standard event loop with the Tk_Mai nLoop
procedure, which should be sufftient for most cases.

You can provide your own event loop as shown in the previous example. In
this case you call Tk_DoOneEvent to process any outstanding Tk events. By
default, Tk_DoOneEvent handles all event types and will block if there are no
events ready. It takes a bitmap of thg arguments that control what kind of
events it will handle and whether or not it will block. Specify the TK_DONT_WAI T
fhg if you don’ t want it to block. In this case you typically want to process all out-
standing requests and then go do some application-specift processing.
Tk_DoOneEvent returns 1 if there are more events ready to process.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tk C library. 361

Example 30-3 Using Tk_DoOneEvent with TK_DONT_WAI T.

voi d
DoAl | TkEvents() {
whi | e (Tk_DoOneEvent (TK_ALL_EVENTS| TK_DONT_WAI T)) {
/* keep processing Tk events */
}

The other way to customize the event loop is to register handlers for differ-
ent events and use the Tk_Mai nLoop procedure. Tk_Mai nLoop takes no parame-
ters and it returns when the last window is destroyed. It uses Tk_DoOneEvent to
process events. Unless you have some really special requirements, using
Tk_Mai nLoop and the registration procedures described below is preferable to
using Tk_DoOneEvent directly.

There are four event classes, and they are handled in the following order by
Tk_DoOneEvent .

¢ Window events. Use the Tk_Creat eEvent Handl er procedure to register a
handler for these events. Use the TK X EVENTS fhg to process these in
Tk_DoOneEvent.

e File events. Use these events to wait on slow devices and network connec-
tions. Register a handler with Tk_Creat eFil eHandl er. Use the TK_FI -
LE_EVENTS fhg to process these in Tk_DoOneEvent .

¢ Timer events. You can set up events to occur after a specifed time period.
Use the Tk_Creat eTi nmer Handl er procedure to register a handler for the
event. Use the TK_TI MER_EVENTS fhg to process these in Tk_DoOneEvent .

¢ Idle events. These events are processed when there is nothing else to do.
Virtually all the Tk widgets use idle events to display themselves. Use the
Tk_DoWenl dl e procedure to register a procedure to call once at the next
idle time. Use the TK_| DLE_EVENTS fhg to process these in Tk_DoOneEvent .

An Overview of the Tk C library

The next few sections briefy introduce the facilities provided by the Tk C library .
For the complete details you will need to consult the on line manual pages. The
man page for each set of routines is identifed in the description so you can easily
fid the right on-line documentation. Y our site may not be set up so that the man
page is available by the name of the routine. You many need to know the name of
the man page frst.

Parsing command line arguments

The Tk_Par seAr gv procedure parses command line arguments. This proce-
dure is designed for use by main programs. While you could use it for Tcl com-

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

362 C Programming and Tk Chap.30

mands, the Tk _ConfigureWdget procedure might be better suited. The
Tk_Par seAr gv procedure is described by the Par seAr gv man page.

The standard application setup

The Tk_Mai n procedure does the standard setup for your application’s main
window and event loop. It is described by the Tk_Mai n man page.

Creating windows

The Tk_Cr eat eMai nW ndow procedure is what Tk_Mi n uses to create the
main window for your application. The Tk_Cr eat eW ndow and Tk_Cr eat eW ndow
FronPat h are used to create windows for widgets. The actual creation of the win-
dow in the X server is delayed until an idle point. You can force the window to be
created with Tk_MakeW ndowExi st. Destroy a window with Tk_Dest r oyW ndow
These are described in the Crt Mai nW n man page.

The Tk_Mai nW ndow procedure returns the handle on the applications main
window. It is described in the Mai nW n man page. The Tk_MapW ndow and Tk_Un-
mapW ndow are used to display and withdraw a window, respectively. They are
described in the MapW ndow man page. The Tk_MveTopl evel W ndow call is used
to position a toplevel window. It is described in the MoveTopl ev man page.

Translate between window names and the Tk_W ndow type with Tk_Nane,
Tk_Pat hNane, and Tk_NameToW ndow These are described in the Name man page.

Application name for send

The name of the application is defned or changed with Tk_Set AppNane.
This name is used when other applications send it Tcl commands using the send
command. This procedure is described in the Set AppName man page.

Configuring windows

The confguration of a window includes its width, height, cursor , and so on.
Tk provides a set of routines that use Xlib routines to confgure a window and
also cache the results. This makes it efftient to query these settings because the
X server does not need to be contacted. The window confguration routines are
Tk_Confi gur eW ndow Tk_MyveW ndow Tk_Resi zeW ndow Tk_MveResi zeW ndow
Tk_Set W ndowBor der Wdt h Tk_ChangeW ndowAt tri but es, Tk_Set W ndowBack-
ground, Tk_Set W ndowBackgr oundPi xmap, Tk_Set W ndowBor der, Tk_Set W ndow
Bor der Pi xmap, Tk_Set W ndowCol or map, Tk_Def i neCursor, and
Tk_Undef i neCur sor. These are described in the Conf i gwW nd man page.

Window coordinates

The coordinates of a widget relative to the root window (the main screen)
are returned by Tk_Get Root Coor ds. This is described in the Get Root Crd man

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tk C library. 363

page. The Tk_Get VRoot Geonet ry procedure returns the size and position of a
window relative to the virtual root window. This is described by the Get VRoot
man page. The Tk_Coor dsToW ndow procedure locates the window under a given
coordinate. It is described in the Coor dToW n man page.

Window stacking order

Control the stacking order of windows in the X window hierarchy with
Tk_Rest ackW ndow This is described in the Rest ack man page.

Window information

Tk keeps lots of information associated with each window, or wiget. The fol-
lowing calls are fast macros that return the information without calling the X
server: Tk_W ndow d, Tk_Parent, Tk_Di spl ay, Tk_Di spl ayName, Tk_Scr eenNum
ber, Tk_Screen, Tk_X, Tk_Y, Tk_W dt h, Tk_Hei ght, Tk_Changes, Tk_Attri butes,
Tk_I sMapped, Tk_I sTopLevel , Tk_ReqW dt h, Tk_ReqgHei ght, Tk_I nt er nal Bor der -
W dt h, Tk_Vi sual , Tk_Dept h, and Tk_Col or map. These are described in the W n-
dowl d man page.

Configuring widget attributes

The Tk_W dget Confi gur e procedure parses command line speciftation of
attributes and allocates resources like colors and fonts. Related procedures
include Tk_Offset, Tk_Confi gurel nfo, Tk_Confi gureVal ue, Tk_FreeQpti ons,
and these are described in the Confi gW dg man page.

Safe handling of the widget data structure

If your widget makes callbacks to the script level it might invoke a Tecl com-
mand that deletes the widget. To avoid havoc in such situations, a simple refer-
ence counting scheme can be implemented for data structures. Call Tk_Preserve
to increment the use count, and call Tk_Rel ease to decrement the count. Then,
when your widget is destroyed, use the Tk_Event ual | yFree procedure to indi-
rectly call the procedure that cleans up your widget data structure. If the data
structure is in use, then the clean up call is delayed until after the last reference
to the data structure is released with Tk _Rel ease. These procedures are
described in the Pr eser ve man page.

The selection and clipboard

Retrieve the current selection with Tk_Get Sel ecti on. This is described in
the GetSel ect man page. Register a handler for X selection requests with
Tk_Creat eSel Handl er. Unregister the handler with Tk_Del et eSel Handl er.
These are described in the Crt Sel Hdl r man page. Claim ownership of the selec-
tion with Tk_OanSel ect i on. This is described in the OmSel ect man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

364 C Programming and Tk Chap.30

Manipulate the clipboard with Tk_d i pboar dCl ear and Tk_d i pboar dAp-
pend, which are described in the O i pboar d man page.

Event bindings

The routines that manage bindings are exported by the Tk library so you
can manage bindings your self. For example, the canvas widget does this to
implement bindings on canvas items. The procedures are Tk_Cr eat eBi ndi ng-
Tabl e, Tk_Del et eBi ndi ngTabl e, Tk_Cr eat eBi ndi ng, Tk_Del et eBi ndi ng, Tk_GCet -
Bi ndi ng, Tk_Get Al | Bi ndi ngs, Tk_Del et eAl | Bi ndi ngs, and Tk_Bi ndEvent . These
are described in the Bi ndTabl e man page.

Event loop interface

The standard event loop is implemented by Tk_Mai nLoop. If you write your
own event loop you need to call Tk_DoOneEvent so Tk can handle its events. If
you read X events directly, e.g., through Tk_Cr eat eGeneri cHandl er, then you can
dispatch to the correct handler for the event with Tk_Handl eEvent. These are
described in the DoOneEvent man page.

If you want to use the Tk event loop mechnaims without using the rest of
Tk tookit, which requires a connection to an X server, then call Tk_Eventinit to
set up the event registration mechanism. You can create handlers for fle, timer
and idle events after this call.

Restrict or delay events with the Tk_Restri ct Event procedure, which is
described in the Rest ri ct Ev man page.

Handling X events

Use Tk_Cr eat eEvent Handl er to set up a handler for specift X events. W id-
get implementations need a handler for expose and resize events, for example.
Remove the registration with Tk_Del et eEvent Handl er. These are described in
the Event Hndl r man page.

You can set up a handler for all X events with Tk_Cr eat eGeneri cHandl er.
This is useful in some modal interactions where you have to poll for a certain
event. Delete the handler with Tk_Del et eGeneri cHandl er. These are described
in the Crt GenHdl r man page.

File handlers

Use Tk_Cr eat eFi | eHandl er to register handlers for I/O streams. You set up
the handlers to be called when the I/O stream is ready for reading or writing, or
both. Or, you can use the lower-level Tk_Cr eat eFi | eHandl er 2, which is called
every time through the event loop so it can decide for itself if the I/O stream is
ready. File handlers are called after X event handlers.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tk C library. 365

Timer events

Register a callback to occur at some time in the future with Tk_CreateTi m
er Handl er. The handler is only called once. If you need to delete the handler
before it gets called, use Tk_Del et eTi mer Handl er. These are described in the
Tk_Ti mer Token man page.

Idle callbacks

If there are no outstanding events, the Tk makes idle callbacks before wait-
ing for new events to arrive. In general, Tk widgets queue their display routines
to be called at idle time. Use Tk_DoWenl dl e to queue an idle callback, and use
Tk_Cancel I dl eCal | to remove the callback from the queue. These are described
in the Dowhenl dl e man page.

Sleeping

The Tk_SI eep procedure delays execution for a specifed number of millisec-
onds. It is described in the Sl eep man page.

Reporting script errors

If you widget makes a callback into the script level, what do you do when
the callback returns an error? Use the Tk _BackgroundError procedure that
invokes the standard t kerr or procedure to report the error to the user. This is
described in the BackgdEr r man page.

Handling X protocol errors

You can handle X protocol errors by registering a handler with Tk_Cre-
ateErrorHandl er. Unregister it with Tk_Del et eErrorHandl er. These are
described in the Crt Err Hdl r man page. Because X has an asynchronous inter-
face, the error will be reported sometime after the offending call was made. You
can call the Xlib XSynchr oni ze routine to turn off the asynchronous behavior in
order to help you debug.

Using the X resource database.

The Tk_Get Opti on procedure looks up items in the X resource database.
This is described in the Get Opt i on man page.

The resource class of a window is set with Tk_Set d ass, and the current
class setting is retrieved with Tk_Cl ass. These are described in the Set C ass
man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

366 C Programming and Tk Chap.30
Managing bitmaps

Tk maintains a registry of bitmaps by name, e.g. gray50 and quest head.
You can defhe new bitmaps with Tk_Defi neBi t map, and you can get a handle on
the bitmap from its name with Tk _Get Bi t map. Related procedures include
Tk_NaneOf Bi t map, Tk_Si zeOf Bi t map, Tk_FreeBi t map, and Tk_Get Bi t mapFrom
Dat a. These are described in the Get Bi t map man page.

Creating new image types

The Tk_Cr eat el mageType procedure is used to register the implementation
of a new image type. The registration includes several procedures that callback
into the implementation to support creation, display, and deletion of images. The
interface to an image implementation is described in the Crt | ngType man page.

When an image changes, the widgets that display it are notifed by calling
Tk_I mgChanged. This is described in the | ngChanged man page.

Using an image in a widget

The following routines support widgets that display images. Tk_Get | mage
maps from the name to a Tk_I mage data structure. Tk_Redr awl mage causes the
image to update its display. Tk_Si zeOf | mage tells you how big it is. When the
image is no longer in use, call Tk_Fr eel mage. These are described in the Get I m
age man page.

Photo image types

One of the image types is phot o, which has its own C interface for defning
new formats. The job of a format handler is to read and write different image for-
mats such as G F or JPEGso that the phot o image can display them. The Tk_Cre-
at ePhot ol mageFor mat procedure sets up the interface, and it is described in the
Crt Phl ngFnt man page.

There are several support routines for photo format handlers. The
Tk_Fi ndPhot o procedure maps from a photo name to its associated Tk_Phot oHan-
dl e data structure. The image is updated with Tk_Phot oBl ank, Tk_Phot oPut -
Bl ock, and Tk_Phot oPut ZoomedBl ock. The image values can be obtained with
Tk_Phot oGet | mage. The size of the image can be manipulated with Tk_Phot oEx-
pand, Tk_Phot oGet Si ze, and Tk_Phot oSet Si ze. These support routines are
described in the Fi ndPhot o man page.

Canvas object support

The C interface for defning new canvas items is exported via the Tk _Cre-
at el t eniType procedure. The description for a canvas item includes a set of proce-
dures that the canvas widget uses to call the implementation of the canvas item
type. This interface is described in detail in the Ot | t enifype man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tk C library. 367

There are support routines for the managers of new item types. The CanvT-
kwi n man page describes Tk_CanvasTkwi n, Tk_CanvasGet Coor d, Tk_CanvasDr aw
abl eCoords, Tk_CanvasSet StippleQrigin, Tk _CanvasW ndowCoords, and
Tk_CanvasEvent ual | yRedr aw The following procedures help with the generation
of postscript: Tk_CanvasPsY, Tk_CanvasPsBi t map, Tk_CanvasPsCol or, Tk_Can-
vasPsFont , Tk_CanvasPsPat h, and Tk_CanvasPsSti ppl e. These are described by
the CanvPsY man page. If you are manipulating text items directly, then you can
use the Tk_CanvasText | nf o procedure to get a description of the selection state
and other details about the text item. This procedure is described in the CanvTx-
t I nf o man page.

Geometry managment

A widget requests a certain size with the Tk_Geonet r yRequest procedure. If
it draws a border inside that area, it calls Tk_Set I nt er nal Bor der. The geome-
tery manager responds to these requests, although the widget may get a differ-
ent size. These are described in the GeonReq man page.

The Tk_ManageGeonetry procedure sets up the relationship between the
geometry manager and a widget. This is described in the ManageGeomman page.

The Tk_Mai nt ai nGeonet ry arranges for one window to stay at a fked posi-
tion relative to another widget. This is used by the place geometry manager. The
relationship is broken with the Tk_Unmaintai nGeonetry call. These are
described in the Mai nt Geomman page.

The Tk_Set Gri d enabled gridded geometry management. The grid is turned
off with Tk_Unset G i d. These are described in the Set G i d man page.

String identifiers (UIDS)

Tk maintains a database of string values such that a string only appears in
it once. The Tk_Ui d type refers to such a string. You can test for equality by using
the value of Tk_Ui d, which is the strings address, as an identifer . A Tk_Ui d is
used as a name in the various Get ByNane calls introduced below. The Tk_Get Ui d
procedure installs a string into the registry. It is described in the Get Ui d man

page.

Colors and Colormaps

Use Tk_Get Col or and Tk_Get Col or ByVal ue to allocate a color. You can
retrieve the string name of a color with Tk_NaneOf Col or. When you are done
using a color you need to call Tk_Fr eeCol or. Colors are shared among widgets, so
it is important to free them when you are done using them. These are described
in the Get Col or man page.

Use Tk_Get Col or map and Tk_Fr eeCol or map to allocate and free a colormap.
Colormaps are shared, if possible, so you should use these routines instead of the
lower-level X routines to allocate colormaps. These are described in the Get O r -
map man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

368 C Programming and Tk Chap.30

The color model used by the screen can be set and queried with Tk_Set Col -
or Model and Tk_Get Col or Model . For example, you can force a window into mono-
chrome mode when it runs on a color screen. These are described in the
Set CWbdel man page.

The window’s visual type is set with Tk_Set W ndowVi sual . This is described
in the Set Vi sual man page.

3D Borders

The three dimensional relief used for widget borders is supported by a col-
lection of routines described by the 3DBorder man page. The routines are
Tk_CGet 3DBor der, Tk_Draw3DRect angl e, Tk_Fi |l | 3DRect angl e, Tk_Dr aw3DPol y-
gon, Tk_Fi | | 3DPol ygon, Tk_3DVerti cal Bevel , Tk_3DHor i zont al Bevel , Tk_Set -
Backgr oundFr onBor der, Tk_NaneOF 3DBor der, Tk_3DBor der Col or,
Tk_3DBor der GC, and Tk_Fr ee3DBor der.

Mouse cursors

Allocate a cursor with Tk_Get Cur sor and Tk_Get Cur sor Fr onDat a. Map back
to the name of the cursor with Tk_NanmeOf Cur sor. Release the cursor resource
with Tk_Fr eeCur sor. These are described in the Get Cur sor man page.

Font structures

Allocate a font with Tk _Get Font Struct. Get the name of a font with
Tk_NameOf Font Struct. Release the font with Tk_FreeFont Struct. These are
described in the Get Font St r man page.

Graphics Contexts

Allocate a graphics context with Tk_Get GC, and free it with Tk_FreeGC.
These are described in the Get GC man page.

Allocate a pixmap

Allocate and free pixmaps with Tk_Get Pi xmap and Tk_Fr eePi xmap. These
are described in the Get Pi xmap man page.

Screen measurements

Translate between strings like 4c or 72p and screen distances with Tk_Get -
Pi xel s and Tk_Get Scr eenMM The frst call returns pixels (integers), the second
returns millimeters as a fbating point number . These are described in the Get -
Pi xel s man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

An Overview of the Tk C library. 369

Relief style

Translate between relief styles and names with Tk_GetRelief and
Tk_NaneOf Rel i ef . These are described in the Get Rel i ef man page.

Text anchor positions

Translate between strings and anchor positions with Tk_Get Anchor and
Tk_NaneOf Anchor. These are described in the Get Anchor man page.

Line cap styles

Translate between line cap styles and names with Tk_Get CapStyl e and
Tk_NaneOf CapSt yl e. These are described in the Get CapSt yl| man page.

Line join styles

Translate between line join styles and names with Tk_Get Joi nStyl e and
Tk_NaneOf Joi nSt yl e. These are described in the Get Joi nSt1 man page.

Text justification styles

Translate between line justiftation styles and names with Tk_Get Justify
and Tk_NameOf Just i fy. These are described in teh Get Justi f y man page.

Atoms

An atom is an integer that references a string that has been registered with
the X server. Tk maintians a cache of the atom registry to avoid contacting the X
server when atoms are used. Use Tk_I nt er nAt omto install an atom in the regis-
try, and Tk_Get At omNane to return the name given an atom. These are described
by the I nt er nAt omman page.

X resource ID management

Each X resource like a color or pixmap has a resource ID associated with it.
The Tk_Fr eeXl d call releases an ID so it can be reused. This is used, for example,
by routines like Tk_Fr eeCol or and Tk_Fr eePi xmap. It is described in the FreeXi d
man page.

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

370 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 31

Writing a Tk Widget in C

This chapter describes in the implementation of a simple clock widget.

A custom widget implemented in C has
the advantage of being effecient and féxible. However , it is more work, too. This
chapter illustrates the effort by explaining the implementation of a clock widget.

Implementing a New Widget

This section describes the implementation of a clock Tk widget. This is just a dig-
ital clock that displays the current time according to a format string. The format-
ing is done by the st rfti me library, so you can use any format supported by that
routine. The default format is %H: %t %6, which results in 16: 23: 45.

The implementation of a widget includes several parts.

¢ A data structure to describe one instance of the widget.

¢ A set of confguration options for the widget.

e A command procedure to create a new instance of the widget.

¢ A command procedure ot operate on an instance of the widget.

e A confguration procedure used when creating and reconfguring the widget.
¢ An event handling procedure.

¢ A display procedure.

e Other widget-specift procedures.

371

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

372 Writing a Tk Widgetin C Chap.31
The Widget Data Structure

Each widget is associated with a data structure that describes it. Any wid-
get structure will need a pointer to the Tcl interpreter, the Tk window, and the X
display. The interpreter is used in many of the Tcl and Tk library calls, and it
provides a way to call out to the script or query and set Tcl variables. The Tk
window is needed for various Tk operations, and the X display is used when
doing low-level graphic operations. The rest of the information in the data struc-
ture depends on the widget. The structure for the clock widget is given below.
The different types will be explained as they are used in the rest of the code.

Example 31-1 The Clock widget data structure.

#include "tkPort.h"

#include "tk.h"
typedef struct {
Tk_Window tkwin; [* The window for the widget */
Display *display; [* X’s handle on the display */
Tcl_Interp *interp; [* Interpreter of the widget */
/*
* Clock-specific attributes.
*/
int borderWidth; [* Size of 3-D border */
int relief; [* Style of 3-D border */

Tk_3DBorder background;
XColor *foreground;
XColor *highlight;

int highlightWidth;
XFontStruct *fontPtr;

char *format;

[* Color for border, background */
[* Color for the text */

[* Color for the highlight */

[* Thickness of highlight rim */

[* Font info for the text */

/* Format for the clock text */

/*
*/Graphic contexts and other support.
*
GC highlightGC; [* Highlight graphics context */
GC textGC; [* Text graphics context */
Tk_TimerToken token; [* For periodic callbacks */
char *clock; [* Pointer to the clock string */
int numChars; [* in the text */
int textWidth; [* in pixels */
int textHeight; [* in pixels */
int flags; I* Flags defined below */
} Clock;
/*
* Flag bit definitions.
*/
#define REDRAW_PENDING 0x1
#define GOT_FOCUS 0x2

#def ine TICKING Ox4

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Specifying Widget Attributes 373
Specifying W idget Attributes

Several of the felds in the Clock structure are attributes that can be set
when the widget is create or reconfgured with the confgure operation. The
default values, their resource names, and their class names are specifed with an
array of Tk_Confi gSpec records, and this array is processed by the Tk_Confi g-
ur eW dget operation. The speciftations for the Clock structure are given in the
next example.

Example 31-2 Configuration specs for the clock widget.

static Tk_Confi gSpec configSpecs[] = {

{ TK_CONFI G_BORDER, "-background", "background",
"Background", "light bl ue",
Tk_Of fset (O ock, background), TK_CONFI G COLOR_ONLY},

{ TK_CONFI G_BORDER, "-background", "background",
"Background", "white", Tk_Of fset(Cd ock, background),
TK_CONFI G_MONO_ONLY},

{TK_CONFI G_SYNONYM "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFI G_SYNONYM "-bd", "borderWdth", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFI G_PI XELS, "-borderw dth", "borderWdth",
"BorderWdth","2", Tk_Ofset(C ock, borderWdth), 0},

{TK_CONFI G RELIEF, "-relief", "relief", "Relief",
"ridge", Tk _Ofset(Cock, relief), 0},

{TK_CONFI G_ COLCOR, "-foreground", "foreground",
"Foreground", "bl ack", Tk_Offset(d ock, foreground),
0},

{TK_CONFI G_SYNONYM "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFI G_COLCOR, "-highlightcolor", "highlightColor",
"Hi ghlightColor","red", Tk_Ofset(d ock, highlight),
TK_CONFI G_COLOR_ONLY},

{TK_CONFI G_COLCOR, "-highlightcolor", "highlightColor",

"Hi ghl i ght Col or", "bl ack",
Tk_Of fset (C ock, highlight), TK_CONFI G_MONO_ONLY},

{TK_CONFI G_PI XELS, *"-highlightthickness",

"hi ghl i ght Thi ckness", " Hi ghl i ght Thi ckness",
"2", Tk_Ofset(Cd ock, highlightWdth), 0},

{TK_CONFI G_ STRING "-format", "format", "Format",
"o4 vt %8, Tk_Offset(Cd ock, format), O},

{TK_CONFI G_FONT, "-font", "font", "Font",
"*courier-mediumr-normal -*-18-*",
Tk_Offset (O ock, fontPtr), O},

{TK_CONFI G END, (char *) NULL, (char *) NULL,
(char *) NULL, (char *) NULL, 0, 0}

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

374 Writing a Tk Widgetin C Chap.31

I

The initial feld is a type, such as TK_CONFI G_ BORDER. Colors and borders
will be explained shortly. The next feld is the command line fhg for the
attribute, e.g. - backgr ound. Then comes the resource name and the class name.
The default value is next, e.g., I i ght bl ue. The offset of a structure member is
next, and the Tk_Of f set macro is used to compute this offset. The last feld is a
bitmask fo fthgs. The two used in this example are TK_CONFI G COLOR ONLY and
TK_CONFI G_MONO_ONLY, which restrict the application of the confguration setting
to color and monochrome displays, respectively. You can defhe additional thgs
and pass them into Tk_Confi gur eW dget if you have a family of widgets that
share most, but not all, of their attributes. The t kBut t on. ¢ fle in the Tk sources
has an example of this.

Table 31-1 lists the correspondence bewtween the confguration type
passed Tk_Confi gureW dget and the type of the associated feld in the widget
data structure. The complete details are given in the Confi gW dg man page.
Some of the table entries reference a Tk procedure like Tk_Get CapStyle. In
those cases an integer-valued feld takes on a few limited values that are
described in the man page for that procedure.

Table 31-1 Configuration flags and corresponding C types.
TK_CONFI G_ACTI VE_CURSOR Cur sor

TK_CONFI G_ANCHCR Tk_Anchor
TK_CONFI G_BI TMAP Pi xmap
TK_CONFI G_BOOLEAN int (0 or 1)

TK_CONFI G_BORDER
TK_CONFI G_CAP_STYLE
TK_CONFI G_COLOR
TK_CONFI G_CURSOR
TK_CONFI G_CUSTOM
TK_CONFI G_DOUBLE
TK_CONFI G_END
TK_CONFI G_FONT
TK_CONFI G_I NT
TK_CONFI G JOI N_STYLE
TK_CONFI G_JUSTI FY
TK_CONFI G_MM

TK_CONFI G _PI XELS

Tk_3DBorder *
int (see Tk_Get CapStyle)
XCol or *

Cur sor

doubl e

(signals end of options)
XFont St ruct *

i nt

int (see Tk_GetJoinStyle)
Tk _Justify

doubl e

i nt

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Widget Class Command 375

Table 31-1 Configuration flags and corresponding C types.

TK_CONFIG_RELIEF int (see Tk_GetRelief)
TK_CONFIG_STRING char *
TK_CONFIG_SYNONYM (alias for other option)
TK_CONFIG_UID Tk_Uid
TK_CONFIG_WINDOW Tk_Window

The Widget Class Command

The Tcl command that creates an instance of a widget is known as the class
command. In our example, the clock command creates a clock widget. The com-
mand procedure for the clock command is shown below. The procedure allocates
the Clock data structure. It registers an event handler that gets called when the
widget is exposed, resized, or gets focus. It creates a new Tcl command that oper-
ates on the wiget. Finally, it calls ClockConf igure to set up the widget according
to the attributes specifed on the command line and the default confguration
speciftations.

Example 31-3 The ClockCmd command procedure.

int

ClockCmd(clientData, interp, argc, argv)
ClientData clientData; /* Main window of the app */
Tcl_Interp *interp; [* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; [* Argument strings. */

{

Tk_Window main = (Tk_Window) clientData;
Clock *clockPtr;
Tk_Window tkwin;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be ",
argv[0], " pathName ?options?", (char *) NULL);
return TCL_ERROR;

tkwin = Tk_CreateWindowFromPath(interp, main,
argv[1], (char *) NULL);
if (tkwin == NULL) {
return TCL_ERROR;

}

Tk_SetClass(tkwin, "Clock");

/*

* Allocate and initialize the widget record.
*/

clockPtr = (Clock *) ckalloc(sizeof(Clock));
clockPtr->tkwin = tkwin;

clockPtr->display = Tk_Display(tkwin);

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

376

Writing a Tk Widgetin C Chap.31

clockPtr->interp = interp;
cl ockPtr->borderWdth = O;
cl ockPtr->highlightWdth = 0;
clockPtr->relief = TK RELI EF_FLAT;
cl ockPtr->background = NULL;
cl ockPt r - >f or egr ound NULL;
cl ockPtr->hi ghlight = NULL;
clockPtr->fontPtr = NULL;
cl ockPtr->text GC = None;
cl ockPt r->hi ghl i ght GC = None;
cl ockPtr->t oken = NULL;
cl ockPtr->cl ock = NULL;
cl ockPtr->nuntChars = O;
clockPtr->textWdth = 0;
cl ockPtr - >t ext Hei ght = O0;
clockPtr->flags = 0;
/*
* Register a handler for when the windowis
* exposed or resized.
*/
Tk_Creat eEvent Handl er (cl ockPtr->t kwi n,
Exposur eMask]| Struct ureNot i f yMask| FocusChangeMask,
Cl ockEvent Proc, (ClientData) clockPtr);
/*
* Create a Tcl command that operates on the wi dget.
*/
Tcl _Creat eCommand(i nterp, Tk_Pat hName(cl ockPtr->t kwi n),
Cl ockl nst anceCd,
(AdientData) clockPtr, (void (*)()) NULL);
/*
* Parse the command |ine argunents.
*/
if (O ockConfigure(interp, clockPtr,
argc-2, argv+2, 0) !'= TCL_CK) {
Tk_DestroyW ndow(cl ockPtr->t kwi n);
return TCL_ERROR

}
interp->result = Tk_Pat hNanme(cl ockPtr->tkwi n);

return TCL_OK;

Widget Instance Command

For each instance of a widget a new command is created that operates on

that widget. This is called the widget instance command. Its name is the same as
the Tk pathname of the widget. In the clock example, all that is done on
instances is to query and change their attributes. Most of the work is done by
Tk_Confi gureW dget and Cl ockConfi gur e, which is shown in the next section.
The d ockl nst anceCrd command procedure is shown in the next exmaple.

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Widget Instance Command

Example 31-4 The ClockinstanceCmd command procedure.

377

static int
ClockinstanceCmd(clientData, interp, argc, argv)
ClientData clientData; [* A pointer to a Clock struct */
Tcl_Interp *interp; [* The interpreter */
int argc; [* The number of arguments */
char *argv(]; /* The command line arguments */
{

Clock *clockPtr = (Clock *)clientData;
int result = TCL_OK;

charc;

int length;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be ",
argv[0], " option ?arg arg ...?", (char *) NULL);
return TCL_ERROR;

}
¢ = argv[1][0];
length = strlen(argv[1]);
if ((c =="¢") && (strncmp(argv[1], "cget", length) == 0)
&& (length >= 2)) {
if (argc = 3) {
Tcl_AppendResult(interp,
"wrong # args: should be ",
argv[0Q], " cget option™,
(char *) NULL);
return TCL_ERROR;

result = Tk_ConfigureValue(interp, clockPtr->tkwin,
configSpecs, (char *) clockPtr, argv[2], 0);
}elseif ((c =='C’) &&
(strncmp(argv[1], "configure", length) == 0)
&& (length >= 2)) {

if (argc == 2) {
/*
* Return all configuration information.
*/

result = Tk_Configurelnfo(interp, clockPtr->tkwin,
configSpecs, (char *) clockPtr,
(char *) NULL,0);
} else if (argc == 3) {
/*

* Return info about one attribute, like cget.

*/

result = Tk_Configurelnfo(interp, clockPtr->tkwin,
configSpecs, (char *) clockPtr, argv[2], 0);

}else {

/*

* Change one or more attributes.

*/

result = ClockConfigure(interp, clockPtr, argc-2,
argv+2,TK_CONFIG_ARGV_ONLY);

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

378 Writing a Tk Widgetin C Chap.31

}else {
Tcl_AppendResult(interp, "bad option ™, argv[1],
" must be cget, configure, position, or size",
(char *) NULL);
return TCL_ERROR;
}

return result;

Configuring And Reconfiguring Attributes

When the widget is created or reconfgured, then the implementation needs
to allocate the resources implied by the attribute settings. Each clock widget
uses some colors and a font. These are described by graphics contexts. A graphic
context is used by X to parameterize graphic operations. Instead of specifying
every possible attribute in the X calls, a graphics context is initialized with a
subset of the parameters and this is passed into the X drawing commands. The
context can specify the foreground and background colors, clip masks, line styles,
and so on. In the example, two different graphics contexts are used, one for the
highlight rectangle and one for the text and background. They use different col-
ors, so different contexts are needed. The graphics contexts are allocated once
and reused each time the widget is displayed.

There are two kinds of color resources used by the widget. The focus high-
light and the text foreground are simple colors. The background is a Tk_3DBor-
der, which is a set of colors used to render 3D borders. The background color is
specifed in the attribute, and the other colors are computed based on that color .
The code uses Tk_3DBorderColor to map back to the originial color for use in the
background of the widget.

After the resources are set up, a call to redisplay the widget is scheduled for
the next idle period. This is a standard idiom for Tk widgets. It means that you
can create and reconfgure a widget in the middle of a script, and all the changes
only result in one redisplay. The REDRAW_PENDINfhg is used to ensure that only
one redisplay is queued up at any time. The ClockConf igure procedure is shown
in the next example.

Example 31-5 ClockConf igure allocates resources for the widget.

static int
ClockConfigure(interp, clockPtr, argc, argv, flags)
Tcl_Interp *interp; I*Needed for return values and errors
*/
Clock *clockPtr; [* The per-instance data structure */
int argc; I* Number of valid entries in argv */
char *argv[l; [* The command line arguments */
int flags; [* Tk_ConfigureClock flags */
{

XGCValues gcValues;

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Configuring And Reconfiguring Attributes 379
GC newGC;

/*

* Tk_ConfigureWidget parses the command line arguments

* and looks for defaults in the resource database.

*/

if (Tk_ConfigureWidget(interp, clockPtr->tkwin,

configSpecs, argc, argv, (char *) clockPtr, flags)
I=TCL_OK) {

return TCL_ERROR;

}

/*

* Give the widget a default background so it doesn’t get

* a random background between the time it is initially

* displayed by the X server and we paint it

*/

Tk_SetWindowBackground(clockPtr->tkwin,
Tk_3DBorderColor(clockPtr->background)->pixel);

/*

* Set up the graphics contexts to display the widget.

* These contexts are all used to draw off-screen

* pixmaps, so turn off exposure notifications.

*/

gcValues.graphics_exposures = False;

gcValues.background = clockPtr->highlight->pixel;

newGC = Tk_GetGC(clockPtr->tkwin,
GCBackground|GCGraphicsExposures, &gcValues);

if (clockPtr->highlightGC != None) {
Tk_FreeGC(clockPtr->display, clockPtr->highlightGC);

}
clockPtr->highlightGC = newGC;

gcValues.background =
Tk_3DBorderColor(clockPtr->background)->pixel;

gcValues.foreground = clockPtr->foreground->pixel;

gcValues.font = clockPtr->fontPtr->fid;

newGC = Tk_GetGC(clockPtr->tkwin,
GCBackground|GCForeground|GCFont|GCGraphicsExposures,
&gcValues);

if (clockPtr->textGC != None) {
Tk_FreeGC(clockPtr->display, clockPtr->textGC);

clockPtr->textGC = newGC;

/*

* Determine how big the widget wants to be.
*/

ComputeGeometry(clockPtr);

/*

* Set up a call to display ourself.

*/

if ((clockPtr->tkwin != NULL) &&
Tk_IsMapped(clockPtr->tkwin)
&& !(clockPtr->flags & REDRAW_PENDING)) {

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

380

Writing a Tk Widgetin C Chap.31

Tk_DowWhenl dl e(C ockDi splay, (CientData) clockPtr);
cl ockPtr->flags | = REDRAW PENDI NG

}
return TCL_OK;

Displaying The Clock

There are two parts to a widget’s display. First the size must be determined.
This is done at confguration time, and then that space is requested from the
geometry manager. When the widget is later displayed, it should use the
Tk_W dt h and Tk_Hei ght calls to fad out how much space it was actually allo-
cated by the geometry manager. The next example shows Conput eGeonet ry.

Example 31-6 Conput eGeonet ry figures out how big the widget is.

static void
Conput eGeonet ry(C ock *cl ockPtr)

{

int width, height;
struct tm*tnPtr; [* Time info split into fields */
struct tineval tv; /* BSD-style tine value */
int offset = clockPtr->highlightWdth +

cl ockPtr->borderWdth

+ 2; /* Should be padX attribute */
char cl ock[1000] ;

/
Get the time and format it to see howbig it wll be.
gettimeofday returns the current tine.

localtime parses this into day, hour, etc.

* strftime formats this into a string according to

* a format. By default we use %1 YM %S

E R I

*/
getti neof day(&t v, NULL);
tnPtr = localtine(&v.tv_sec);

strftime(cl ock, 1000, clockPtr->format, tnPtr);
if (clockPtr->clock !'= NULL) {
ckfree(cl ockPtr->cl ock);

cl ockPtr->clock = ckalloc(l+strlen(clock));
cl ockPtr->nuntChars = strlen(cl ock);
/*
* Let Tk tell us how big the string will be.
*/
TkConput eText Geonmetry(cl ockPtr->fontPtr, clock,
cl ockPtr->nuntChars, 0, &clockPtr->textWdth,
&cl ockPt r - >t ext Hei ght) ;
width = clockPtr->textWdth + 2*of fset;
hei ght = cl ockPtr->textHei ght + 2*of fset;
/*

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Displaying The Clock 381

* Request size and border fromthe geonmetry nanager.
*/
Tk_Geonet ryRequest (cl ockPtr->tkwi n, width, height);
Tk_Set | nt er nal Border (cl ockPtr->tkwi n, offset);

Finally we get to the actual display of the widget! The routine is careful to
check that the widget still exists and is mapped. This is important because the
redisplay is scheduled asynchronously. The current time is converted to a string.
This uses library procedures that exist on SunOS. There might be different rou-
tines on your system. The string is painted into a pixmap, which is a drawable
region of memory that is off-screen. After the whole display has been painted,
the pixmap is copied into on-screen memory to avoid flckering as the image is
cleared and repainted. The text is painted frst, then the borders. This ensures
that the borders overwrite the text if the widget has not been allocated enough
room by the geometry manager.

This example allocates and frees the off-screen pixmap for each redisplay.
This is the standard idiom for Tk widgets. They temporarily allocate the off-
screen pixmap each time they redisplay. In the case of a clock that updates every
second, it might be reasonable to permanently allocate the pixmap and store its
pointer in the Clock data structure. Make sure to reallocate the pixmap if the
size changes.

After the display is fhished, another call to the display routine is scheduled
to happen in one second. If you were to embellish this widget, you might want to
make the uptime period a paramter. The TICKING fhg is used to note that the
timer callback is scheduled. It is checked when the widget is destroyed so that
the callback can be canceled. The next example shows O ockDi spl ay.

Example 31-7 The O ockDi spl ay procedure.

static void
Cl ockDi splay(ClientData clientData)

Cl ock *cl ockPtr

Tk_W ndow t kwi n

Pi xmap pi xmap;

int offset, x, y;

struct tm*tnPtr;/* Tinme info split into fields */

struct tineval tv;/* BSD-style time value */

/*

* Make sure the button still exists

* and is mapped onto the display before painting.

*/

cl ockPtr->fl ags & ~(REDRAW PENDI NG TI CKI NG) ;

if ((clockPtr->tkwin == NULL) || !'Tk_IsMapped(tkw n)) ({
return;

}

/

(A ock *)clientData;
cl ockPtr->t kwi n;

*

* Format the tine into a string.
* |ocaltime chops up the tine into fields.

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

382

Writing a Tk Widgetin C Chap.31

* strftine formats the fields into a string.

*/
gettineof day(& v, NULL);
tnPtr = localtine(&v.tv_sec);

strftime(cl ockPtr->clock, clockPtr->nuntChars+1,
clockPtr->format, tnPtr);
/*
* To avoid flicker when the display is updated, the new
* image is painted in an offscreen pixmap and then
* copied onto the display in one operation.
*/
pi xmap = Tk_Get Pi xmap(cl ockPtr->di spl ay,
Tk_W ndow d(t kw n), Tk_Wdt h(tkw n),
Tk_Hei ght (tkwi n), Tk_Depth(tkw n));
Tk_Fi || 3DRect angl e(cl ockPtr->di spl ay, pixmap,
cl ockPtr->background, 0, 0, Tk_Wdth(tkw n),
Tk_Hei ght (tkwi n), 0, TK_RELIEF_FLAT);
/*
* Paint the text first.
*/
of fset = clockPtr->highlightWdth +
cl ockPtr->border Wdt h;
X = (Tk_Wdth(tkwin) - clockPtr->textWdth)/2;
if (x <0) x =0;
y = (Tk_Height (tkwi n) - clockPtr->textHeight)/2;
if (y<0)y=0;

TkDi spl ayText (cl ockPtr->di spl ay, pixmap,
cl ockPtr->fontPtr, clockPtr->cl ock,
cl ockPtr->nunthars, x, y, clockPtr->textWdth,
TK_JUSTI FY_CENTER, -1, clockPtr->textGO);
/*
* Display the borders, so they overwite any of the
* text that extends to the edge of the display.
*/
if (clockPtr->relief !'= TK_RELI EF_FLAT) {
Tk_Dr aw3DRect angl e(cl ockPtr->di spl ay, pixnap,
cl ockPt r- >background, cl ockPtr->highlightWdth,
cl ockPt r - >hi ghl i ght Wdt h,
Tk_Wdth(tkw n) - 2*cl ockPtr->hi ghlightWdth,
Tk_Hei ght (tkwi n) - 2*cl ockPtr->hi ghli ght Wdth,
cl ockPtr->borderWdth, clockPtr->relief);
}
if (clockPtr->highlightWdth !'= 0) {
GC gc;
if (clockPtr->flags & GOT_FOCUS) {
gc = cl ockPtr->highlight GC,
} else {
gc = Tk_3DBor der GC(cl ockPt r - >backgr ound,
TK_3D_FLAT_GO) ;
}
TkDr awFocusHi ghl i ght (t kwi n, gc,
cl ockPt r->hi ghli ght Wdth, pixmap);

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Window Event Procedure

* Copy the information fromthe of f-screen pixmap onto
* the screen, then del ete the pixnmap.
*/
XCopyAr ea(cl ockPtr->di spl ay, pixmap, Tk_W ndow d(t kwi n),
clockPtr->textGC, 0, 0, Tk _Wdth(tkw n),
Tk_Hei ght (tkwin), 0, 0);
Tk_Fr eePi xmap(cl ockPtr->di spl ay, pixnmap);
/*
* Queue another call to ourselves.
*/
cl ockPtr->token = Tk_CreateTi mer Handl er (1000,
Cl ockDi splay, (dientData)clockPtr);
clockPtr->flags | = TICKING

383

The Window Event Procedure

Each widget registers an event handler for expose and resize events. If it
implements and focus highlight, it also needs to be notifed of focus events. If you
have used other toolkits, you may expect to register callbacks for mouse and key-
stroke events too. You shouldn’t have to do that. Instead, use the regular Tk bind
facility and defne your bindings in T cl. That way they can be customized by
applications.

Example 31-8 The O ockEvent Pr oc handles window events.

static void
Cl ockEvent Proc(ClientData clientData, XEvent *eventPtr)

{

Clock *clockPtr = (dock *) clientData;
if ((eventPtr->type == Expose) &&
(event Pt r->xexpose. count == 0)) {
goto redraw,
} else if (eventPtr->type == DestroyNotify) ({
Tcl _Del et eConmand(cl ockPtr->i nterp,
Tk_Pat hName(cl ockPtr->tkwi n));
/*
* Zapping the tkwin lets the other procedures
* know we are being destroyed.
*/
clockPtr->tkwi n = NULL;
if (clockPtr->flags & REDRAW PENDI NG ({
Tk_Cancel I dl eCal | (O ockDi spl ay,
(AdientData) clockPtr);
cl ockPtr->flags & ~REDRAW PENDI NG
}
if (clockPtr->flags & TICKING {
Tk_Del et eTi ner Handl er (cl ockPt r - >t oken) ;
cl ockPtr->flags & ~TI CKI NG

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

384 Writing a Tk Widgetin C Chap.31

* This results in a call to C ockDestroy.
*/
Tk_Eventual | yFree((CientData) cl ockPtr,
Cl ockDestroy);
} else if (eventPtr->type == Focusln) {
if (eventPtr->xfocus.detail != NotifyPointer) ({
cl ockPtr->flags | = GOT_FOCUS;
if (clockPtr->highlightWdth > 0) {
goto redraw,
}

}
} else if (eventPtr->type == FocusOQut) {
if (eventPtr->xfocus.detail != NotifyPointer) ({
cl ockPtr->fl ags & ~GOT_FOCUS;
if (clockPtr->highlightWdth > 0) {
goto redraw,
}

}
}
return;
redraw
if ((clockPtr->tkwin !'= NULL) &&
I (cl ockPtr->flags & REDRAW PENDI NG)) {

Tk_DowWhenl dl e(C ockDi splay, (dientData) clockPtr);
cl ockPtr->flags | = REDRAW PENDI NG,

Final Cleanup

When a widget is destroyed you need to free up any resources it has allo-
cated. The resources associated with attributes are cleaned up by Tk_Fr eeQp-
ti ons. The others you must take care of yourself. The C ockDest r oy procedure is
called as a result fo the Tk_Eventual | yFree call in the O ockEvent Proc. The
Tk_Event ual | yFree procedure is part of a protocol that is needed for widgets
that might get deleted when in the middle of processing. Typically the Tk_Pr e-
serve and Tk_Rel ease procedures are called at the beginning and end of the wid-
get instance command to mark the widget as being in use. Tk_Event ual | yFree
will wait until Tk_Rel ease is called before calling the cleanup procedure. The
next example shows Cl ockDest r oy.

Example 31-9 The O ockDest r oy cleanup procedure.

static void
Cl ockDestroy(clientData)
ClientData clientData;/* Info about entry widget. */
{
regi ster Cock *clockPtr = (O ock *) clientData;

/*

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Final Cleanup 385

* Free up all the stuff that requires special handling,
* then let Tk_FreeOptions handl e resources associ at ed
* with the widget attributes.
*/
if (clockPtr->highlightGC != None) {
Tk_FreeCGC(cl ockPtr->di spl ay, clockPtr->highlightGC);
}
i

f (clockPtr->textGC !'= None) {
Tk_FreeGC(cl ockPtr->di spl ay, clockPtr->textCC);

if (clockPtr->clock !'= NULL) {
ckfree(cl ockPtr->cl ock);

}

i

f (clockPtr->flags & TICKING ({
Tk_Del et eTi ner Handl er (cl ockPt r- >t oken);
}
if (clockPtr->flags & REDRAW PENDI NG ({
Tk_Cancel I dl eCal | (O ockDi spl ay,
(AdientData) clockPtr);

}
/*
* This frees up colors and fonts and any all ocated
* storage associated with the widget attributes.
*/
Tk_FreeOptions(configSpecs, (char *) clockPtr,
cl ockPtr->di splay, 0);
ckfree((char *) clockPtr);

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

386 Writing a Tk Widgetin C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

32

C HAPTER

Tcl Extension Packages

This chapter surveys a few of the more popular Tcl extension packages.

E xtension packages add suites of Tcl com-
mands, usually as a combination of new built-in commands written in C and
associated Tcl procedures. Some extensions provide new Tk widgets and geome-
try managers. This chapter surveys a few of the more popular extensions. Some
are complex enough to deserve their own book, so this chapter is just meant to
give you a feel for what these packages have to offer. For the details, you will
have to consult the documentation that comes with the packages. This chapter
briefy describes the following packages.

e Extended Tcl adds commands that provide access to more Unix libraries and
system calls. It adds new list operations and new loop constructs. It adds
profling commands so you can analyze the performance of your T cl scripts.

e Expect adds commands that let you control interactive programs. Programs
that insist on having a conversation with a user can be fooled by expect into
doing work for you automatically.

e Tl debugger. Part of the Expect package includes a small Tcl debugger that
lets you set breakpoints and step through scripts.

e Tel-dp adds commands that set up network connections among Tcl inter-
preters. You can set up distributed systems using Tcl-dp.

e BLT provides a table geometry manager for Tk, a graph widget, and more.

¢ [incr tcl] provides an object system for Tcl. The scope for variables and pro-
cedures can be limited by using classes, and multiple inheritence can be

387

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

388 Tcl Extension Packages Chap.32

used to set up a class hierarchy. The Tk-like interface with attributes and

values is well supported by the package so you can create mega-widgets

that look and feel like native Tk widgets to the programmer.

There are many more extentions available on the internet, and there is not
enough time or space to describe even these extentions in much detail. This
chapter provides a few tips on how to integrate these extensions into your appli-
cation and what they can provide for you.

Extended Tcl

Extended Tcl, or tclX, provides many new built-in commands and support proce-
dures. It provides access to more UNIX system calls and librarys, and it provides
tools that are useful for developing large Tcl applications. Over time, features
from tclX have been adopted by Ousterhout for use in the core language. For
example, arrays and the addi nput command originated from tclX.

The tclX extension is a little different from other applications because it
assumes a more fundamental role. It provides its own script library mechanism,
which is described in more detail below, and its own interactive shell. The ext-
neded Tcl shell is normally installed as ¢cl, and the Extended Tcl/Tk shell is nor-
mally installed as wishx.

There is one main manual page for tcIX that describes all the commands
and Tcl procedures provided by the package. The system also comes with a built-
in help system so you can easily browse the man pages for standard Tcl and
Extended tcl. The tclhelp program provides a graphical interface to the help sys-
tem, or use the hel p command when running under the Extended Tcl shell, ¢cl.

Extended Tcl was designed and implemented by Karl Lehenbauer and
Mark Diekhans, with help in the early stages from Peter da Silva. Extended Tcl
is freely redistributable, including for commercial use and resale. You can fetch
the tclX distribution from the following FTP site:

ftp.neosoft.com/pub/tcl/distrib/tcl X7.4a.tar.gz

Adding tclX to your application

TelX has a different script library mechanism that makes integrating it into
your application a little different that other extension packages. The main thing
is that you need to call Tcl X_I nit in your Tcl _Appl nit procedure, not the stan-
dard Tcl _Init procedure. A version of the tcl Applnit.c that is oriented
towards Extended Tcl is provided with its distribution. The tclX library facility
can read the t cl | ndex fles of the standard library mechanism, so you can still
use other packages.

It is possible, but rather awkward, to use the tclX commands and proce-
dures with the standard library mechanism, which is described in Chapter 9.
Instead of calling Tcl X_I ni t, you call Tcl XCnd_I ni t that only registers the built-
in commands provided by TclX. However, gaining access to the Tcl procedures

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Extended Tcl 389

added by tclX is awkward because tclX insists on completely overriding the stan-
dard tcl library. It goes so far as to change the result of the i nfo | i brary call if
you use its script library mechanism. This means that you can use one library
directory or the other, but not both at the same time. You will have to copy the
tcl.tlib fle out of the tclX library directory into another location, or teach your

application where to fnd it. It is probably easiest to use the tclX library system if

you are using Extended Tecl.

More UNIX system calls

Extended Tcl provides several UNIX-related commands. Most of the follow-
ing should be familar to a UNIX programmer: al arm chgrp, chmod, chown,
chroot, convertcl ock, dup, execl , f nt cl ock, fork, getcl ock, kill,link, nkdir,
ni ce, pi pe, readdir, rndi r, sel ect, si gnal, sl eep, system sync, ti nes, unmask,
unlink, and wai t. The i d command provides several operation on user, group,
and process IDs.

File operations

The bsear ch command does a binary search of a sorted fle. The copyfile
command copies a fle, and frename changes the name of a fle. Low level fle con-
trols are provided with fcnt 1, fl ock, funl ock, and f st at. Use | get s to read the
next complete Tcl list into a list varible. The read file and wite file com-
mands provide basic I/O operations. The r ecusri ve_gl ob command matches fle
names in a directory hierarchy.

New loop constructs

The | oop command is an optimized version of the f or loop that works with
constant start, end, and increment values. The for _array_keys command loops
over the contents of an array. The f or _recursi ve_gl ob command loops over fle
names that match a pattern. The for _fil e command loops over lines in a fie.

Command line addons

A script can explicitly enter an interactive command loop with the com
mandl oop command. The echo command makes it easy to print values. The di rs,
pushd, and popd commands provide a stack of working directories. The i nf ox
command provides information like the application name, the version nubmer,
and so on.

Debugging and development support

The cmdtrace procedure shows what commands are being executed. The
profil e command sets up a profie of the CPU time used by each procedure or
command. The profie results are formatted with the profrep command. Use

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

390 Tcl Extension Packages Chap.32

showpr ocs to display a procedure defnition, edprocs to bring up an editor on a
procedure, and savepr ocs to save procedure defnitions to a fle.

TCP/IP access

The server i nfo command returns name, address, and alias information
about servers. The server open command opens a TCP socket to specifed host
and port. The f st at renot ehost command returns the IP address of the remote
peer if the fle is an open socket. Once a socket is opened, it can be read and writ-
ten with the regular fle /O commands, and sel ect can be used to wait for the
socket to be ready for 1/0.

File scanning (i.e., awk)

You can search for patterns in fles and then execute commands when lines
match those patterns. This provides a similar sort of functionality as awk. The
process starts by defhing a context with the scancont ext command. The scan-
mat ch command registers patterns and commands. The scanfil e command
reads a fle and does matching according to a context. When a line is matched,
information is placed into the mat chl nf o array for use by the associated com-
mand.

Math functions as commands

Procedures are defhed that let you use the math functions as command
names. The commands are implemented like this.

proc sin {x} { uplevel [list expr sin($x)] }

List operations

New built-in list operations are provided. The | var pop command removes
an element from a list and returns its value, which is useful for processing com-
mand line arguments. The | var push command is similar to | i nsert. The | as-
si gn command assigns a set of variables values from a list. The | mat ch command
returns all the elements of a list that match a pattern. The | enpt y command is a
shorthand for testing the list length against zero. The | var cat command is simi-
lar to the | append command.

There are four procedures that provide higher level list operations. The
i ntersect procedure returns the common elements of two lists. The i nt er sect 3
procedure returns three lists: the elements only in the frst list, the elements in
both lists, and the elements only in the second list. The uni on procedure merges
to lists. The | r ndups procedure removes duplicates from a list.

Keyed list data structure

A keyed list is a list where each element is a key-value pair. The value can

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Expect: Controlling Interactive Programs 391

also be a keyed list, leading to a recursive data structure. Extended Tcl provides
built-in support to make accessing keyed lists efftient. The keyl set command
sets the value associated with a key. The keyl keys returns a list of the keys in a
keyed list. The keyl get command returns the value associated with a key. The
keyl del command deletes a key-value pair.

String utilities

Several built-in commands provide the same function as uses of the string
command. The cequal command is short for checking st ri ng conpar e with zero.
The cl engt h command is short for st ri ng | engt h. The cr ange command is short
for string range. The ci ndex command is short for string i ndex. The col | ate
command is short for string compare, plus it has locale support for different
character sets. Because these are built-in commands, they are faster that writing
Tcl procedures to obtain the shorthand, and a tiny bit faster than the string
command because there is less argument checking.

The ct ype command provides several operations on strings, such as check-
ing for spaces, alphanumberics, and digits. It can also convert between charac-
ters and their ordinal values.

The cexpand command expands backslash sequences in a string. The r ep-
| i cat command creates copies of a string. The transl it command maps charac-
ters in a string to new values in a similar fashion as the UNIX ¢r program.

XPG/3 message catalog

The XPG/3 message catalog supports internationalization of your program.
You build a catalog that has messages in different languages. The cat open com-
mand returns a handle on a catalog. The catgets command takes a default
string, looks for it in the catalog, and returns the right string for the current
locale setting. The cat cl ose command closes the handle on the catalog.

Memory debugging

Extended Tcl provides both C library hooks to help you debug memory prob-
lems, and a Tecl interface that dumps out a map of how your dynamic memory
arena is being used. Consult the Memory man page that comes with TclX for
details.

Expect: Controlling Interactive Programs

Expect gives you control over interactive programs. For example, you can have
two instances of the chess program play each other. More practical applications
include automated access to FTP sites or navigation through network frewalls.
If you are stuck with a program that does something useful but insists on an
interactive interface, then you can automate its use with expect. It provides

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

392 Tcl Extension Packages Chap.32

sophisticated control over processes and UNIX pseudo-terminals, so you can do
things with expect that you just cannot do with ordinary shell scripts.

The expect shell program includes the core Tcl commands and the addi-
tional expect commands. The expectk shell also includes Tk, so you can have a
graphical interface. If you have a custom C program you can include the expect
commands by linking in its C library, | i bexpect . a. You can use the C interface
directly, but in nearly all cases you will fad it easier to drive expect (and the rest
of your application) from Tecl.

The expect package was designed and implemented by Don Libes. Histori-
cally it is the frst extension package. Libes wrote the intial version in about two
weeks after he frst heard about T cl. He had long wanted to write something like
expect, and Tcl provided just the infrastructure that he needed to get started. By
now the expect package is quite sophisticated. Libes has an excellent book about
Expect, Exploring Expect, published by O’Reilly & Associates, Inc.

As of this writing, the current version of expect is 5.13, and it is compatible
with Tecl 7.4. A version 5.14 is expected which will take advantage of some of the
new features in Tcl and improve the debugger that comes with expect. You can
always fetch the latest version of expect by FTP from the following site and fle
name.

ftp.cne. nist.gov:/pub/expect/expect.tar.Z

The rest of this section provides a short overview of expect and gives a few
tips that may help you understand how expect works. Expect is a rich facility,
however, and this section only scratches the surface.

The core expect commandsl

There are four fundamental commands added by expect: spawn, exp_send,
expect, and i nteract. The spawn command executes a program and returns a
handle that is used to control I/O to the program. The exp_send command sends
input to the program. (If you are not also using Tk, then you can shorten this
command to send.) The expect command pattern matches on output from the
program. The expect command is used somewhat like the Tcl swi t ch command.
There are several branches that have different patterns, and a block fo Tecl com-
mands is associated with each pattern. When the program generates output that
matches a pattern, the associated Tcl commands are executed.

The send_user and expect _user commands are analagous to exp_send and
expect , but they use the I/O connection to the user instead of the process. A com-
mon idiom is to expect a prompt from the process, expect _user the response,
and then exp_send the response to the program. Generally the user sees every-
thing so you do not need to send_user all the program output.

The i nteract command reconnects the program and the user so you can
interact with the program directly. The i nt eract command also does pattern
matching, so you can set up Tcl commands to execute when you type certain
character sequences or when the program emits certain strings. Thus you can
switch back and forth between human interaction and program controlled inter-

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Expect: Controlling Interactive Programs 393

action. Expect is quite powerful!

Pattern matching

The default pattern matching used by expect is glob-style. You can use reg-
ular expression matching by specifying the -r e option to the expect command.
Most of the work in writing an expect script is getting the patterns right.When
writing your patterns, it is important to remember that expect relies on the Tcl
parser to expand backslash sequences like \ r\ n (carriage return, newline), which
is often an important part of an expect pattern. There is often a\n and or \r at
the end of a pattern to make sure that a whole line is matched, for example. You
need to group your patterns with double-quotes, not braces, to alllow backslash
substitutions.

If you use regular expressions the quoting can get complicated. You have to
worry about square brackets and dollar signs, which have different meanings to
Tcl and the regular expression parser. Matching a literal backslash is the most
tedious because it is special to both Tcl and the regular expression parser. You’ll
need four backslashes, which Tcl maps into two, which the regular expression
interprets as a single literal backslash.

There are a few pattern keywords. If an expect does not match within the
timeout period, the ti meout pattern is matched. If the process closes its output
stream, then the eof pattern is matched.

Important variables

Expect uses a number of variables. A few of the more commonly used vari-
ables are described here.

The spawn command returns a value that is also placed into the spawn_i d
variable. If you spawn several programs, you can implement a sort of job control
by changing the value of the global spawn_i d variable. This affects which process
is involved with exp_send, expect, and i nt er act commands. You can also specify
the id explicity with a -i argument to those commands.

Hint: If you use spawn in a procedure, you probably need to declare
spawn_i d as a gl obal variable. Otherwise, an exp_send or expect in anther con-
text will not see the right value for spawn_i d. It is not strictly necessary to make
spawn_i d global, but it is certainly necessary if you use it in different contexts.

The ti neout variable controls how long expect waits for a match. Its value
is in seconds.

When a pattern is matched by expect, the results are put into the
expect _out array. The expect out (0, string) element has the part of the input
that matched the pattern. If you use subpatterns in your regular expressions,
the parts that match those are available in expect out (1, string), expect _o-
ut (2, string), and so on. The expect out (buffer) element has the input that
matched the pattern, plus everything read before the match since the last
expect match.The i nt eract command initializes an array called i nt eract out
which has a similar structure.

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

394 Tcl Extension Packages Chap.32

The log_user variable controls whether or not the user sees the output from
the process. For some programs you may want to supress all the output. In other
cases it may be important for the user to see what is happening so they know
when to type responses, such as passwords.

An example expect script

The following example demonstrates the usefulness of expect. The situation
is an FTP server that uses a challenge response security system. Without expect,
the user needs two windows. In one window they run FTP. In the other window
they run a program that computes the reponse to the challenge from FTP. They
use cut and paste to feed the challenge from FTP to the key program, and use it
again to feed the response back to FTP. It is a tedious task that can be fully auto-
mated with expect.

Example 32-1 A sample expect script.

#!/usr/ 1 ocal / bi n/ expect -f
This logs into the FTP nachi ne and
handl es the S/ Key authentication dance.

Setup gl obal timeout action. Any expect that does not match
in timeout seconds will trigger this action.
expect _after tinmeout {

send_user "Tinmeout waiting for response\n"

exit 1

}

set tinmeout 30 ; # seconds

Run ftp and wait for Name pronpt
spawn ftp parcftp. xerox.com
expect {*Name *:}

Get the nane fromthe user pass it to FTP
expect _user "*\n"
exp_send $expect _out (buffer)

Wait for Skey Chall enge, which | ooks like:
331 Skey Chal l enge "s/ key 664 be42066"
expect -re {331.*s/key ([*"]1+)"} {

set skey $expect_out (1, string)

Save the spawn ID of ftp and then

run the key programwi th the challenge as the argument
set ftpid $spawn_id

eval {spawn key} $skey

Read password with no echoing, pass it to key
system stty -echo

expect {password:}

expect _user "*\n" { send_user \n }

exp_send $expect _out (buffer)

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Expect's Tcl debugger 395

Wait for the key response
expect -re "\n(.+H)\[\r\in\]" {
set response $expect _out (1, string)

C ose down the connection to the key program
cl ose
system stty echo

Pull ftp back into the foreground
set spawn_id $ftpid

system stty echo

exp_send $response\n

Interact with FTP normally
expect {*ftp>*} { interact }

The example uses the expect _after command to set up a global timeout
action. The alternative is to include a timeout pattern on each expect command.
In that case the commands would look like this:

expect {*Name *:} { # Do nothing } \
ti meout { send_user "You have to login!'\n" ; exit 1}

The syst emcommand is used to run UNIX programs. It is like exec, except
that the output is not returned and a /bin/sh is used to interpret the command.
The stty echo command turns off echoing on the terminal so the user doesn’t see
their password being typed.

Debugging expect scripts

The expect shell takes a - d fhg that turns on debugging output. This shows
you all the characters generated by a program and all the attempts at pattern
matching. This is very useful. You become very aware of little details. Remember
that programs actually generate \r\n at the end of a line, even though their
printf only includes \n. The terminal driver converts a simple newline into a
carrage return, line feed sequence. Conversely, when you send data to a program,
you need to explicitly include a \ n, but you don’t send \r.

Expect includes a debugger, which is described in the next section and in
Chapter 8. If you specify the -D 1 command line argument to the expect shell,
then this debugger is entered before your script starts execution. If you specify
the - D 0 command line argument, then the debugger is entered if you generate a
keyboard interrupt (SI G NT).

Expect’ s Tcl debugger

The expect package includes a Tcl debugger. It lets you set breakpoints and
look at the Tcl execution stack.This section explains what you need to add to
your C program to make the debugger available to scripts. The interactive use of
the debugger is described in Chapter 8 on page 84.

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

396 Tcl Extension Packages Chap.32

The Dbg C interface

The debugger is implemented in one fle, Dbg. c, that is part of the expect
library. You can make the debugger separately from expect, but it is easiest to
link against the expect library. The core procedures are Dbg_On and Dbg Of f.”

void *Dbg_On(Tcl _Interp *interp, int inmedi ate);
void *Dbg_Of(Tcl _Interp *interp);

If i medi at e is 1, then Dbg_On enters an interactive command loop right
away. Otherwise the debugger waits until just before the next command is evalu-
ated. It is reasonable to call Dbg_On with i nredi at e set to zero from inside a SI G
I NT interrupt handler.

The Dbg_Ar gcAr gv call lets the debugger make a copy of the command line
arguments. It wants to print this information as part of its call stack display. If
the copy argument is 1, a copy of the argument strings is made and a pointer to
the allocated memory is returned. Otherwise it just retains a pointer and returns
0. The copy may be necessary because the Tk_Par seAr gv procedure will modify
the argument list. Call Dog_Ar gcAr gv frst.

char **Dbg_ArgcArgv(int argc, char *argv[], int copy);

The Dbg_Act i ve procedure returns 1 if the debugger is currently on. It does
no harm, by the way, to call Dog_On if the debugger is already active.

int Dbg_Active(Tcl _Interp *interp);

The remaining procedures are only needed if you want to refne the behav-
ior of the debugger. You can change the command interpreter, and you can fiter
out commands so the debugger ignores them.

The Dbg_I nt eract or procedure registers a command loop implementation
and a clientdata pointer. It returns the previously registered procedure.

Dbg_I nter Proc
Dbg_I nteractor(Tcl _Interp *interp,
Dbg_I nterpProc *inter_proc, CientData data);

The command loop procedure needs to have the following signature.

int nmyinteractor(Tcl_Interp *interp);

Look in the Dbg.c fle at the simpler_interactor procedure to see how the
command loop works. In practice the default interactor is just fne.

The Dbg_IgnoreFuncs procedure registers a fitering function that decides
what Tcl commands should be ignored. It returns the previously registered fiter
procedure. The fiter should be relatively efftient because it is called before
every command when the debugger is enabled.

Dbg_I gnor eFuncsProc
Dbg_I gnor eFuncs(Tcl _Interp *interp,
Dbg_|I gnor eFuncsProc *i gnoreproc);

* I will give the C signatures for the procedures involved because I no longer see them in the
standard Expect documentation. Libes described the debugger in a nice little paper, "A Debugger
for Tecl Applications", that appeared in the 1993 Tcl/Tk workshop.

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Expect's Tcl debugger 397

The i gnor epr oc procedure just takes a string as an argument, which is the
name of the command about to be executed. It returns 1 if the command should
be ignored.

int ignoreproc(char *s);

Handling SIGINT

A common way to enter the debugger is in response to a keyboard interrupt.
The details of signal handling vary a little from system to system, so you may
have to adjust this code somewhat. The Si g Setup procedure is meant to be
called early in your main program. It does two things. It registers a signal han-
dler, and it registers a Tcl asynchronous event. It isn’t safe to do much more than
set a variable value inside a signal handler, and it certainly is not safe to call
Tcl _Eval in a signal handler. However, the Tcl interpreter lets you register pro-
cedures to be called at a safe point. The registration is done with Tcl _AsyncCre-
at e, and the handler is enabled with Tcl _AsyncMar k. Finally, within the async
handler the debugger is entered by calling Dog_On.

Example 32-2 A SIGINT handler.

#i ncl ude <signal . h>
/*
* Token and handl er procedure for async event.
*/
Tcl _AsyncHandl er si g_Token;
int Sig_Handl eSafe(C ientData data,
Tcl _Interp *interp, int code);
/*
* Set up a signal handler for interrupts.
* This also registers a handler for a Tcl asynchronous
* event, which is enabled in the interrupt handler.
*/
voi d
Si g_Setup(interp)
Tcl _Interp *interp;

RETSI GTYPE (*ol dhandl er) ();
ol dhandl er = signal (SI G NT, Sig_Handl el NT);

if ((int)oldhandler == -1)
perror("signal failed");
exit(1l);

}
si g_Token = Tcl _AsyncCreat e(Si g_Handl eSafe, NULL);
#i f !defined(__hpux) & !defined(SVR4)

/*
* Ensure that wait() kicks out on interrupt.
*/
siginterrupt(SIG NT, 1);on interrupt */
#endi f
}
/*

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

398 Tcl Extension Packages Chap.32

* I nvoked upon interrupt (control-C)
*/
RETSI GTYPE
Si g_Handl el NT(si g, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

{
Tcl _AsyncMar k(si g_Token);
}
/*
* | nvoked at a safe point sonetinme after Tcl _AsyncMark
*/
i nt

Si g_Handl eSaf e(data, interp, code)
ClientData data;
Tcl _Interp *interp;
i nt code;

Dbg On(interp, 1);/* Enter the Tcl debugger */

BLT

The BLT package has a number of Tk extensions: a bar graph widget, an X-Y
graph widget, a drag-and-drop facility, a table geometry manager, a busy win-
dow, and more. This section provides an overview of this excellect collection of
extensions. The gadgets in BLT where designed and built by George Howlett,
and Michael McLennan built the drag and drop facility. As of this writing BLT
version 1.7 is compatible with Tk 3.6 and Tcl 7.4. A 1.8 (or 2.0) release is
expected shortly that will be compatible with Tk 4.0 and Tcl 7.4. You can fad the
BLT package in the Tcl archives in the extensions directory.
ftp.aud.alcaltel.compub/tcl/extensions/BLT-1.7.tar.gz

The BLT package is very clean to add to your application. All the commands
and variables that it defnes begin with the blt_ prefk. Initialization simply
requires calling Bl t _I ni t in your Tcl _Appl ni t procedure.

Drag and drop

The drag and drop paradigm lets you "pick up" an object in one window and
drag it into another window, even if that window is in another application. The
bl t _dr ag&dr op command provides a drag and drop cability for Tk applications. A
right click in a window creates a token window that you drag into another win-
dow. When the object is released, the TK send command is used to communicate
between the sender and the receiver.

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

BLT 399

Hypertext

The bl t _ht ext widget combines text and other widgets in the same scrolla-
ble window. The widget lets you embed Tcl commands in the text, and these com-
mands are invoked as the text is parsed and displayed. Tk 4.0 added similar
functions to the standard Tk text widget, except for the embedded Tcl com-
mands in the text.

Graphs

The bl t _gr aph widget provides and X-Y plotting widget. You can confgure
the graph in a variety of ways. The elements of the graph can have tags that are
similar to the canvas widget object tags. The bl t _barchart widget provides a
bar graph display. It also has a tag facility.

Table geometry manager

The t abl e geometry manager lets you position windows on a grid, which
makes it easy to line things up. The interface is designed by defning a grid that
can uneven spacing for the rows and colums. Widgets are positioned by specify-
ing a grid location and the number of rows and columns the widget can span. You
can constrain the size of the widget in various ways. A table geometry manager
will probably be added to the standard Tk library in a future release.

Bitmap support

In standard Tk, the only way to defne new bitmaps in T cl is to specify a fle
that contains its defnition. The blt_bit map command lets you defne a new bit-
map and give it a symbolic name. It also lets you query the names and sizes of
existing bitmaps.

Background exec

The bl t _bgexec command runs a pipeline of processes in the background.
The output is collected into a Tecl variable. You use tkwait vari abl e to detect
when the pipeline has completed operation.

Busy window

The bl t _busy command creates an invisible window that covers your appli-
cation, provides a different cursor, and prevents the user from interacting with
your application.

Tracing Tcl commands

The bl t _wat ch provides a Tcl interface to the Tcl trace facility. It lets you

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

400 Tcl Extension Packages Chap.32

register Tcl commands to be called before and after the execution of all com-
mands. You can implement logging and profling with this facility . The bl t _de-
bug command displays each Tcl command before and after substitutions are
performed.

The old-fashioned cutbuffer

Old versions of X programs may still use the out-dated cutbuffer facility.
The bl t_cut buf fer command provides an interface to the cutbuffer. This can
help improve your interoperation with other tools, although you should use the
regular selection mechanism by default.

Tcl-DP

The Tcl-DP extension creates network connections between Tcl interpreters
using the TCP protocol. It provides a client-server model so you can execute Tcl
commands in other interpreters. This is similar to the Tk send command, except
that Tcl-DP is not limited to applications on the same display. You can have Tcl-
DP without Tk, too, for clients or servers that have no graphical interface.

There are three shell programs: dpwish includes Tk and Tcl-DP. dptcl just
has the Tk event loop and Tcl-DP. The dpsh shell includes Tk, but can be started
with a - not k argument to prevent it from opening a display. Of course, all of
these include the standard Tcl commands, too.

The low-level networking functions are exported to both Tcl and C. For
example, the dp_packet Send Tcl command sends a network packet. The same
function is available from C with the Tdp_Packet Send procedure. Other C proce-
dures include Tdp_Fi ndAddr ess, Tdp_Cr eat eAddr ess, Tdp_Packet Recei ve, and
Tdp_RPC. These are bundled into the | i bdpnet wor k. a library archive.

Tcl-DP was designed and built by Brian Smith, Steve Yen, and Stephen Tu.
Version 3.2 is compatible with Tcl 7.3 and Tk 3.6. When it is released, version 3.3
will be compatible with Tcl 7.4 and Tk 4.0. You can fnd the T cl-DP distribution
at the following FTP site.

mnm ft p. cs. berkel ey. edu
[pub/ mul tinmedia/ Tcl -DP/tcl-dp3.2.tar.Z

Remote Procedure Call

The dp_MakeRPCSer ver command sets up the server’s network socket. The
dp_MakeRPCCl i ent command sets up the client and connects to the server. The
dp_RPC command invokes a Tcl command in the server. The do_RDO command is
similar, except that it does not wait for completion of the command. It takes an
optional callback command so you can get notifed when the asynchronous opera-
tion completes. The dp_Cancel RPC is used to cancel asynchronous RPCs. The
dp_d oseRPC shuts down one end of a connection.

Servers are identifed by a network address and port number . No higher-

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl-DP 401

level name service is provided, although you can often do quite well by using a
fle in your shared network fle system.

A simple form of security is provided. A server can defne a set of trusted
hosts with the dp_Host command. Connections will only be accepted from clients
on those trusted hosts. Each command can be verifed before execution. The
dp_Set CheckCnd registers a procedure that is called to verify a client request.
You could use the veriftation hook to enforce an authentication dialog, although
the TCP connect is not encrypted.

Connection setup

The dp_connect -server command is used by servers to create a listening
socket. Servers then use the dp_accept command to wait for new connections
from clients. Clients use the dp_connect command (without - server) to connect
to a server. The connect uses TCP by default. The - udp option creates a UDP con-
nection. The dp_socket Opt i on provides an interface to the set sockopt and get -
sockopt system calls. The dp_shut down command is used to close down a
connection. The dp_atclose command registers a command to be called just
before a connection is closed. The dp_at exit command registers a command to
be called when the process is exiting. These commands are used by the RPC-
related procedures described above.

Sending network data

The regular put s and gets commands can be used to transfer line-oriented
data over a connection.If you use these commands, it is necessary to use the eof
command to detect a closed connection.

The dp_send and dp_r ecei ve commands transfer data across a connection.
The dp_packet Send and dp_packet Recei ve transfer blocks of data while pre-
serving message boundaries. These use the TCP protocol, and they automatically
handle closed connections.

Using UDP

The dp_sendTo and dp_r ecei veFr omcommands transfer packets using the
UDP protocol. These commands take an argument that specifes the remote net-
work address with which to communicate. These arguments are returned by
dp_addr ess command, which maintains an address table.

Event processing

Tcl-DP uses the Tk event loop mechanism to wait for network data. It pro-
vides several commands that relate to the event loop processing. The dp_flehan-
dler command registers a command to be called when data is ready on a
connection. The dp_isready command indicates if data is available on a connec-
tion. The dp_whenidle command schedules a command to occur at the next idle

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

402 Tcl Extension Packages Chap.32

point.

The following commands are provided by Tcl-DP in case Tk is not available.
The dp_updat e command forces a trip through the event loop. The dp_after
command executes a command after a specifed time interval. dp_wai tvari abl e
waits for a variable to be modifed. These are equivalent to the following Tk com-
mands: updat e, after, and t kwai t vari abl e.

Replicated objects

A simple replicated object package is built on top of Tcl-DP. In the model, an
object is procedure with methods and slot values. Every object must implement
the confi gure, sl ot val ue, and dest r oy methods. The confi gur e method is used
to query and set slot values, much like the Tk widget confi gur e operation. The
sl ot val ue method returns the value of a slot, much like the cget operation of a
Tk widget.

An object is replicated on one or more sites, and updates to an object are
refbcted in all copies. Y ou can register callbacks that are invoked when the
object is modifed. The dp_setf command sets a replicated slot value. The
dp_getf command returns a slot value. The dp_Di stri but eCbj ect command
arranges for an object to be replicated on one or more sites. The dp_Undi st ri bu-
tebj ect breaks the shared relationship among distributed objects. The
dp_Set Tri gger, dp_AppendTrigger, and dp_AppendTri gger Uni que commands
register a Tcl command to be called with a slot is modifed. The dp_Get Tri ggers
command returns the registered triggers. The dp_Rel easeTri gger removes one
trigger, and the dp_d ear Tri gger removes all triggers from a slot.

An object can be implemented by a command procedure written in C. All it
has to do is adhear to the conventions outlined above about what methods it sup-
ports. The method is just the frst argument to the procedure. The object will be
invoked as follows:

obj Nane net hod ?args?

Obviously, there must also be a command that creates instances of the

object. This should have the following form:
makeCrd obj Nane ?-slot value? ?-slot value? ...

You can also implement objects with Tcl procedures. Several commands are
provided to support this: dp_obj ect Cr eat eProc, dp_obj ect Exi sts, dp_obj ect -
Free, dp_obj ect Confi gure dp_obj ect Sl ot, dp_obj ect Sl ot Set, dp_obj ect Sl o-
t Append, and dp_obj ect Sl ot s.

The [incr tcl] Object System

The [incr tcl] extension provides an object system for Tcl. Its funny name is an
obvious spoof on C++. This extension adds classes with multiple inheritence to
Tcl. A class has methods, class procedures, private variables, public variables,
and class variables. All of these items are contained within their own scope. The

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The [incr tcl] Object System 403

class procedures and class variables are shared by all objects in a class. The
methods, private variables, and public variables are per-object. A public variable
is a lot like the attributes for Tk widgets. Its value is defhed when the object is
created, or changed later with a confi g method. The confi g syntax looks like
the syntax used with Tk widgets and their attributes.

The following summary of the [incr tcl] commands is taken straight from
the man page for the package.

Example 32—-3 Summary of [incr tcl] commands

itcl _class classNane {
i nherit baseCd ass ?baseC ass...?

constructor args body
destructor body

A nethod is per-object

met hod nanme args body

proc creates class procedures
proc nane args body

public vars have a config syntax to set their val ue
public varName ?init? ?config?

protected variabl es are per-object

protected varNanme ?init?

common vari abl es are shared by the whole class
comon var Nane ?init?

}

Create an object. The second form chooses the nane.
cl assName obj Name ?args...?
cl assNanme #auto ?args...?

I nvoke a class procedure proc fromthe gl obal scope
cl assNanme :: proc ?args...?

I nvoke an obj ect nethod
obj Nane net hod ?args...?

Built-in methods

obj Nane isa cl assNane

obj Nane del ete

obj Nane info option ?args?

Get info about classes and objects

itcl_info classes ?pattern?

itcl _info objects ?pattern? ?-class classNane? ?-isa
cl assNane?

Commands avail able within class nethods/ procs:

gl obal var Nane ?varNane...?

Run conmmand in the scope of the parent class (up)

previ ous conmand ?args...?

Run conmmand in the scope of the npst-specific class (down)

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

404 Tcl Extension Packages Chap.32

virtual command ?args...?

The most important contribution of [incr tcl] is the added scope control. The
elements of a class are hidden inside its scope, so they do not clutter the global
Tecl name space. When you are inside a method or class procedure, you can
directly name other methods, class procedures, and the various class variables.
When you are outside a class, you can only invoke its methods through an object.
It is also possible to access class procedures with the :: syntax shown in the pre-
vious example. The scope control is implemented by creating a new Tcl inter-
preter for each class, although this is hidden from you when you use the
extension.

There is one restriction on the multiple inheritence provided by [incr tcl].
The inheritence graph must be a tree, not a more general directed-acyclic-graph.
For example, if you have a very general class called Obj that two classes A and B
inherit, then class C cannot inherit from both A and B. That causes the elements
of (bj to be inherited by two paths, and the implementation of [incr tcl] does not
allow this. You would have to replicate the elements of Cbj in A and B in this
example.

Tcl_Applnit W ith Extensions

The next example shows a Tcl _Appl ni t that initializes several packages in
addition to the new commands and widgets from the previous chapters. Most of
the packages available from the Tcl archive have been structured so you can ini-
tialize them with a single call to there Package | nit procedure. To create the full
application, the Tcl _Appl ni t routine is linked with the libraries for Tcl and the
various extensions being used. The Makefle for that is given in the next exam-
ple.

Example 32—-4 Tcl_Applnit and extension packages.

[* supertcl.c */

#i ncl ude <stdio. h>

#i ncl ude <tk. h>

#i ncl ude <tcl Extend. h>

extern char *exp_argv0;/* For expect */

/*
* Qur clock wi dget.
*/
int ClockCnd(dientData clientData,
Tcl _Interp *interp,
int argc, char *argv[]);
/*
* Qur pixmap inmage type.
*/
extern Tk_Il mageType t kPi xmapl mageType;

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl_Applnit With Extensions

mai n(int argc, char *argv[]) {

}

int
Tcl

/*

* Save argunents for expect and its debugger.
*/

exp_argv0 = argv[0];/* Needed by expect */
Dbg_ArgcArgv(argc, argv, 1);

/*

* Create the main window. This calls
* back into Tcl _Applnit.

*/

Tk_Mai n(argc, argv);

exit(0);

_Applnit(Tcl _Interp *interp) {

char *val ue;

Tk_W ndow mai n = Tk_Mai nW ndow(i nterp);

/*

* |nitialize extensions

*/

if (Tel X Init(interp) == TCL_ERROR) {
[* Tcl X Init is called instead of Tcl _Init */
return TCL_ERRCR

if (Tk_Init(interp) == TCL_ERROR) {
return TCL_ERRCR

if (Tdp_Init(interp) == TCL_ERROR) {/* Tcl-DP */
return TCL_ERRCR

if (Blt_Init(interp) == TCL_ERROR) {/* BLT */
return TCL_ERRCR

if (Exp_lnit(interp) == TCL_ERROR) {/* Expect */
return TCL_ERRCR
}

/*
* This affects X resource nanes.
*/
Tk_Set Gl ass(mai n, "SuperTcl");
/*
* Qur own extra conmands.
*/
Tcl _Creat eConmand(interp, "clock", O ockCnd,
(CdientData) Tk_Mai nW ndow(i nterp),
(Tcl _CndDel et eProc *) NULL) ;

Tk_Cr eat el mageType(& kPi xmapl mageType) ;
/*

* The remaining lines are simlar to code in TkX Init.

*

The tcl App variables define info returned by infox
The Tcl _SetupSigint is a Tcl X utility that lets
keyboard interrupts stop the current Tcl command.

*

*

405

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

406 Tcl Extension Packages Chap.32

*/

tclAppName = "SuperTcl";

tclAppLongname = "Tcl-Tk-TcIX-DP-BLT-Expect-[incr tcl]";

tclAppVersion = "1.0";

/*

* |f we are going to be interactive,

* Setup SIGINT handling.

*/

value = Tcl_GetVar (interp, "tcl_interactive",
TCL_GLOBAL_ONLY);

if ((value !'= NULL) && (value [0] !="0"))
Tcl_SetupSigint ();

return TCL_OK;

Because Extended Tcl is being used, TclX_Init is called instead of
Tcl_Init . I think this is an unfortunate inconsistency, but Extended Tcl insists
on duplicating some things in Tcl and Tk, so this is necessary to avoid linker
problems. I have rebelled a little bit by calling Tk_Init instead of TkX_Init
which is recommended by the TclX documentation. However, this means I do
much the same work by calling Tcl_SetupSigint and defhing the various
tclApp varibles.

The Makefie for the superwish program is given in the next example. The
program uses a mixture of shared and static libraries. Ideally all the packages
can be set up as shared libraries in order to reduce the size of the shell programs.
Shared libraries are described in LIBRARY chapter.

Example 32-5 Makefile for supertcl.

At our site all the Tcl packages have their
libraries in /import/tcl/lib, and the files

have the version number in them explicitly
The .so files are shared libraries

TCL_LIB = /import/tcl/lib/libtcl7_4_g.a
TK_LIB = /import/tcl/lib/libtk4_0_g.a

BLT_LIB = /import/tcl/lib/libBLT1_7.a
DP_LIB = /import/tcl/lib/libdpnetwork.so0.3.2
EXP_LIB = /import/tcl/lib/libexpect5_13.a
TCLX_LIB = /import/tcl/lib/libtcIx7_4.a
TKX_LIB = /import/tcl/lib/libtkx4_0.a
INCR_LIB = /import/tcl/lib/libitcl.s0.1.3

The include files are also organized under

limport/tcl/include in directories that

reflect the packages’ version numbers.

INCS = -l/import/tcl/include/tk4.0 \
-l/import/tcl/include/tcIX7.4a\
-l/import/tcl/include/tcl7.4 \
-l/import/X11R4/usr/include

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Other Extensions 407

CFLAGS = -g $(INCS)
CC = gcc

The order of these libraries is inportant, expecially

having TKX TK TCLX TCL cone | ast.

Your site may not need -Imfor the math library

ALL_LIBS = $(DP_LIB) $(EXP_LIB) $(BLT_LIB) $(INCR LIB) \
$(TKX_LIB) $(TK_LIB) $(TCLX LIB) $(TCL_LIB) -1X11 -Im

OBJS = supertcl.o tkWdget.o tklnmgPi xmap. o
supertcl: $(0BJS)
$(CCO) -0 supertcl $(TRACE) $(OBIS) $(ALL_LIBS)

Other Extensions

There are lots of contributed Tcl packages. You should check out the Tcl FTP
archive site, which is currently

ftp.aud. al catel.com

There is an excellent set of Frequently Asked Questions fles that are main-

tained by Larry Virden. Volumes 4 and 5 of the FAQ list the contributed exten-
sions and the contributed applications, respectively. The TIX package provides
many compound widgets and an object system that is designed to support them.
The jstools package, which is contributed by Jay Sekora, contains a collection of
useful support scripts and applications. The list goes on and on, and gets
updated with new contributes regularly

Tcl applications

You should try out my nifty mail reader, exmh, which provides a graphical
front end for MH mail. It supports the MIME standard for multimedia mail, and
the PGP tool for encryption and digital signatures. The tkman program, written
by Tom Phelps, provides a great user interface to the UNIX man pages. The ical
program is a very useful calendar manager. There are several Tcl-based editors. I
ported Ousterhout’s mx editor into the Tk framework, and the result is mxedit. If
you like interface builders, try out XF, which lets you build Tk interfaces interac-
tively. Again, the list goes on and on

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

408 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

C HAPTER 33

Porting to Tk 4.0

This chapter has notes about upgrading your application from earlier versions
of Tk such as Tk 3.6. This includes notable new features that you may
want to take advantage of as well as things that need to be fixed
because of incompatible changes.

P orting your scripts from any of the Tk 3.*
releases is pretty easy. Not that many things have changed. The sections in this
chapter summarize what has changed in Tk 4.0 and what some of the new com-
mands are.

wish

The wish shell no longer requires a -fil e (or - f) argument, so you can drop this
from your script header lines. This fhg is still valid, but no longer necessary .

The class name of the application is set from the name of the script fle
instead of always being Tk. If the script is /usr/ | ocal / bi n/ f oobar, then the
class is set to Foobar, for example.

Obsolete Features

Several features that were replaced in previous versions are now completely
unsupported.

The variable that contains the version number is t k_ver si on. The ancient
(pre 1.4) t kVer si on is no longer supported.

Button widgets no longer have activate and deactivate operations.

409

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

410 Portingto Tk 4.0 Chap.33

Instead,confgure their st at e attribute.
Menus no longer have enabl e and di sabl e operations. Instead, confgure
their st at e attribute.

The cget Operation

All widgets support a cget operation that returns the current value of the speci-
fed confguration option. The following two commands are equivalent.
l'index [$w config option] 4
$w cget option
Nothing breaks with this change, but you should enjoy this feature.

Input Focus Highlight

Each widget can have an input focus highlight, which is a border that is drawn
in color when the widget has the input focus. This border is outside the border
used to draw the 3D relief for widgets. It has the pleasant visual effect of provid-
ing a little bit of space around widgets, even when they do not have the input
focus. The addition of the input focus highlight does not break anything, but it
will change the appearance of your interfaces a little. See Chapter 22 for a
description of the generic widget attributes related to this feature.

Bindings

The hierarchy of bindings has been fked so that it is actually useful to defhe
bindings at each of the global (i.e., al |), class, and instance levels. The new
bi ndt ags command is used to defnhe the order among these sources of binding
information. You can also introduce new binding classes, e.g. | nsert Mode, and
bind things to that class. Use the bi ndt ags command to insert this class into the
binding hierarchy. The order of binding classes in the bindtags command deter-
mines the order in which bindings are triggered. Use br eak in a binding com-
mand to stop the progression, or use conti nue to go on to the next level.
bi ndtags $w [list all Text InserthMde $wj

The various Request events have gone away: G r cul at eRequest , Confi gur -
eRequest , MapRequest , Resi zeRequest .

Extra modifer keys are ignored when matching events. While you can still
use the Any wild card modifer , it is no longer necessary. The Al t and Met a modi-
fers are set up in general way so they are associated with the Alt_L, Alt_R
Met a_L, and Met a_R keysyms.

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Scrollbar Interface 411

Scrollbar Interface

The interface between scrollbars and the scrollable widgets has changed. Hap-
pily the change is transparent to most scripts. If you hook your scrollbars to wid-
gets in the straight-forward way, the new interface is compatible. If you use the
xvi ew and yvi ew widget commands directly, however, you may have to modify
your code. The old use still works, but there are new features of the these opera-
tions that give you even better control over. You can also query the view state so
you do not have to watch the scroll set commands to keep track of what is going
on. Finally, scrollable widgets are constrained so that end of their data remains
stuck at the bottom (right) of their display.
In most cases, nothing is broken by this change.

Pack info

Version 3 of Tk introduced a new syntax for the pack command, but the old syn-
tax was still supported. This continues to be true in nearly all cases except the
pack i nfo command. If you are still using the old packer format, you should
probably take this opportunity to convert to the new packer syntax.

The problem with pack i nfo is that its semantics changed. The new opera-
tion used to be known as pack newi nf o. In the old packer, pack i nf o returned a
list of all the slaves of a window and their packing confguration. Now pack i nfo
returns the packing confguration for a particular slave.Y ou must frst use the
pack slaves command to get the list of all the slaves, and then use the (new)
pack i nfo to get their confguration information.

Focus

The focus mechanism has been cleaned up to support different focus windows on
different screens. The focus command now takes a -displayof argument
because of this. Tk now remembers which widget inside each toplevel has the
focus. When the focus is given to a toplevel by the window manager, Tk automat-
ically assigns focus to the right widget. The - | ast f or argument is used to query
which widget in a toplevel will get the focus by this means.

The focus default and focus none commands are no longer supported.
There is no real need for focus default anymore, and focus none can be
achieved by passing an empty string to the regular f ocus command.

The tk_focusFol | owsMouse procedure can be used to change from the
default explicit focus model where a widget must claim the focus to one in which
moving the mouse into a widget automatically gives it the focus.

The t k_f ocusNext and t k_f ocusPr ev procedures are used for keyboard tra-
versal of the focus among widgets. Most widgets have bindings for <Tab> and
<Shi ft - Tab> that cycle the focus among widgets.

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

412 Portingto Tk 4.0 Chap.33
Send

The send command has been changed so that it does not time out after 5 seconds,
but instead waits indefnitely for a response. Specify the -async option if you do
not want to wait for a result. You can also specify an alternate display with the
- di spl ayof option.

The name of an application can be set and queried with the new t k appnane
command. Use this instead of wi nfo nane ".".

Because of the changes in the send implementation, it is not possible to use
send between Tk 4.0 applications and earlier versions.

Internal Button Padding

Buttons and labels have new defaults for the amount of padding around their
text. There is more padding now, so your buttons will get bigger if you use the
default padX and padY attributes. The old defaults were one pixel for both
attributes. The new defaults are 3m for padX and 1m for padY, which map into
three pixels and ten pixels on my display.

There is a difference between buttons and the other button-like widgets. An
extra 2 pixels of padding is added, in spite of all padX and padY settings in the
case of simple buttons. If you want your checkbuttons, radiobuttons, menubut-
tons, and buttons all the same dimensions, you’ll need two extra pixels of pad-
ding for everything but simple buttons.

Radio Buttons

The default value for a radio button is no longer the name of the widget. Instead,
it is an empty string. Make sure you specify a -val ue option when setting up
your radio buttons.

Entry Widget

The scrol | Conmand attribute changed to xScr ol | Conmand to be consistent with
other widgets that scroll horizontally. The vi ew operation changed to the xvi ew
operation for the same reasons.

The del et e operation has changed the meaning of the second index so that
the second index refers to the character just after the affected text. The selection
operations have changed in a similar fashion. The sel . | ast index refers to the
character just after the end of the selection, so deleting from sel.first to
sel . | ast still works OK. The default bindings have been updated, of course, but
if you have custom bindings you will need to fk them.

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Menus 413
Menus

The nenu associated with a menubut t on must be a child widget of the nenubut -
t on. Similarly, the nenu for a cascade menu entry must be a child of the nenu.
The @ index for a menu always returns a valid index, even if the mouse
cursor is outside any entry. In this case, it simply returns the index of the closest
entry, instead of none.
The sel ect or attribute is now sel ect Col or.

Listboxes

Listboxes have changed quite a bit in Tk 4.0. Chapter 16 has all the details.
There are now 4 Motif-like selection styles, and two of these support disjoint
selections. The tk_|i st boxSi ngl eSel ect procedure no longer exists. Instead,
confgure the sel ect Mode attribute of the listbox.
You can selectively clear the selection, and query if there is a selection in
the listbox.
A listbox has an active element, which is drawn with an underline. It is ref-
erenced with the acti ve index keyword.
The selection commands for listboxes have changed. Change:
$li stbox select fromindexl
$l i stbox select to index2
To
$l i stbox sel ect anchor indexl
$li stbox sel ect set anchor index2
The set operation takes two indices, and anchor is a valid index, which typ-
ically corresponds to the start of a selection.

No geometry Attribute

The frame, topl evel , and | i st box widgets no longer have a geonet ry attribute.
Use the wi dt h and hei ght attributes instead. The geonetry attribute got con-
fused with geometry speciftations for toplevel windows. The use of wi dth and
hei ght is more consistent. Note that for listboxes the width and height is in
terms of lines and characters, while for frames and toplevels it is in screen units.

Text Widget

The tags and marks of the text widgets have been cleaned up a bit, justiftation
and spacing is supported, and you can embed widgets in the text display.

A mark now has a gravity, either left or right, that determines what hap-
pens when characters are inserted at the mark. With right gravity you get the

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

414 Portingto Tk 4.0 Chap.33

old behavior: the mark gets pushed along by the inserted text by sticking to the
right-hand character. With left gravity it remains stuck. The default is right
gravity. The mark gravity operation changes it.

When text is inserted, it only picks up tags that are present on both sides of
the insert point. Previously it would inherit the tags from the character to the
left of the insert mark. You can also override this default behavior by supplying
tags to the insert operation.

The widget scan operation supports horizontal scrolling. Instead of using
marks like @, you need a mark like @, vy.

For a description of the new features, see Chapter 18.

Canvas scrollincrement

The canvas widget no longer has a scrol |l ncrement attribute. Instead, the
equivalent of the scroll increment is set at one tenth of the canvas. Scrolling by
one page scrolls by nine tenths of the canvas display. (Ugh - I like’d the fhe grain
control provided by scrol | I ncrenent .)

The Selection

The selection support has been generalized in Tk 4.0 to allow use of other selec-
tions such as the CLI PBOARD and SECONDARY selections. The changes to not break
anything, but you should check out the new cl i pboard command. Some other
toolkits, notably OpenLook, can only paste data from the clipboard.

Color Attributes

The names for some of the color attributes changed.

Table 33-1 Changes in color attribute names

Tk 3.6 Tk4.0

selector selectColor
Scrollbar.activeForeground Scrollbar.activeBackground
Scrollbar.background troughColor
Scrollbar.foreground Scrollbar.background
Scale.activeForeground Scale.activeBackground
Scale.background troughColor
Scale.sliderForeground Scale.background

(didn’t exist) highlightColor

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The bell Command 415
The bell Command

The bel I command can be used to ring the bell associated with the X display. You
need to use the xset program to modify the parameters of the bell such as volume
and duration.

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

416 Portingto Tk 4.0 Chap.33

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Index

Abbreviations 92
activeBackground 278, 326
activeForeground 278, 326
after 62, 63, 96

-after 320

anchor 274, 293

-anchor 125, 165, 320
Any modifer 141
APP-DEFAULTS 331
appdefaults 325

APPEND 71

append 21

archive site for Tcl xxviii
args 52, 61, 179, 272, 291
argtest 52

argv 45

array names 39

-aspect 168

aspect ratio 167

aspect ratio of a message widget 270
atime 67

automatic execution of programs 92
auto_noexec 67, 92
auto_path 92, 93

B

B1-Motion 133

background 66, 278, 326

Backslash 14

backslash substitution 6

backslash-newline 167

Backspace 14

beep 176

-before 340

Bell 14

bell, Tk command 176

bg 278

bind 96, 106, 133, 149, 179, 320, 337, 338
Return key 104

BindSequence 141

bindtags 96, 135

BindYview 318

bitmap label 165

blockSpecial 68

bold 290

-borderwidth 105

borderwidth attribute 105
break 46

break, in bindings 135
button 104, 145, 148, 335
button command 145
button modifiers 140
Button procedure 291
Button-2 133

buttonlist 327
ButtonResources 328

C

call stack, viewing 79

CallTrace 80

Carriage return 14

cascade 330

catch 46, 48, 71, 75, 105, 291, 292, 320,
325, 328, 332, 338

cavity model 118

cd 74, 75

cget 270

Changing a button’s command 105

character code 14

characterSpecial 68

checkbutton 145, 149, 330, 337

circles 238

-class 328

classes 324

close 72, 74, 105, 339

close a window 138

-code 49

Color 326

color 278

color name 279

ColorDarken 279

command abbreviation 92

command body 9

command history 92

command line arguments 45

command procedures 342

command substitution 4

CommandEntry 179

comments 13

concat 31, 33, 60, 61, 63, 291

config 105

Configure 138

configure 269, 338

continue 46

continue, in bindings 135

CREAT 71

Created: May 9, 1994 —booklIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

418

curly braces 47 fixed font 289
FixedWidthLabel 165
D flush 72
date 65 focus 96, 104
font 324

default 330

Default parameter values 52
Destroy 139

destroy 338

dialog boxes 167

directory 68

dirname 67
disabledForeground 278, 326

-font 289, 291

font family 290

Fonts 289

for 46

foreach 39, 45, 52, 73, 75, 321, 336, 339
foreground 278, 326

Form feed 14

format 7, 21, 39, 279

Double 140

double 54 frame 96, 98, 320, 335

Double quotes 7

double-quotes 47 G

dp_send 63 geometry gridding 110
geometry manager 95

E gets 46, 73, 105

else 42 glob 24, 74

elseif 42 -glob 43

entry 104, 148, 177, 337 global 39, 47, 54, 55, 105, 332

entrylist 328 goto 4_6

env 39 grouping 2

environment variable 39 H

eof 105

EqualSizedLabels 272 height 270

error 48 highlightColor 278

errorCode 48

-errorcode 49 1

errorinfo 47, 48 if 49

-errorinfo 49 -in 340

Escape-key 142 incr 9, 30, 42, 55, 56, 336

eval 59, 60, 61, 92, 179, 272, 292, 330 infinite loop 9

-exact 43 info exists 55, 56, 334

EXCL 71 info library 93

exec 66, 69, 321, 339 init.tcl 93

executable 67 input focus 106

exists 67 insertBackground 278

€Xpr 4_’ 9, 10, 20, 42, 52, 54, 68 insert, text operation 105

extension 67 -ipadx 275, 294
isdirectory 67

F isfile 67

fg 278 italic 290

fifo 68 1/0 redirection 65

file dirname 69

file exists 69, 325, 332 J

f?le isdirfectqry 69, 75 join 31

file modify times 68 justify 293

fileeq 69 “justify 167

fileevent 105

-fill 119

FindFile 74 K

FindFont 291 -keepnewline 66

Created: May 9, 1994 —booklIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

keysym 137

L

label 104, 148, 165, 336
lappend 31, 32, 46, 59, 93
ldelete 34

length 270

lindex 31, 33, 333

link 68

linsert 31, 34

list 31, 32, 33, 45, 59, 60, 63, 147, 291,

321, 330
llength 31, 33, 39, 333
lower, Tk command 132
Irange 31, 33
Ireplace 31, 34, 292
Isearch 31, 34, 292
Isort 31, 39
Istat 67

M

makedir 69

Makefile for a Tcl C program 349
Map 138

mark 108

math expressions 4
MaxLineLength 148

menu 145, 153, 330
menu entries 153
menubutton 145, 153, 330
MenuButtonlnner 330
menulist 328
MenuResources 330
message 167, 338
Meta-key 142

mkdir 69

modifier key 138

module 54

mtime 67

N

Newline 14
-nocomplain 74
NOCTTY 71
NONBLOCK 71
null binding 141

@)

open 71, 321, 338
pipeline 105

option 326

option get 328, 330

option menus 159

Created: May 9, 1994 —booklIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

option readfile 325, 332
orient 271
ovals 238
owned 67

P

pack 106, 148, 320, 335

pack forget 340

pack propagate 272

padX widget attribute 274, 293
padY widget attribute 274, 293
-pageanchor 249

-pagex 249

-pagey 249

Parsing command line arguments 45

pid 54

pipeline 65, 74

place, Tk command 131
points per pixel 290

Pop 57

popup menus 159
POSIX 48

PrefEntrySet 337
PreferencesDialogltem 336
PreferencesReadFile 332
PreferencesReset 339
PreferencesSave 338
Preferences_Add 333, 334, 340
Preferences_Dialog 335
Preferences_Init 332
PrefNukeltemHelp 338
PrefValue 334
PrefValueSet 334
PRIMARY selection 318
PrintByName 56, 151
printenv 39

printf 21

proc 7, 8, 39, 51, 52, 53
Push 56

puts 3, 10, 339

pwd 74

Q

Quit button 104
quoting with backquotes 146

R

radiobuton 330
radiobutton 145, 149, 336
raise 335

raise, Tk command 132
random number 54
randomlInit 54
randomRange 54

419

420

RDONLY 71

RDWR 71

read 72, 338

readable 68

readlink 68

regexp 26, 142

-regexp 43

regular expressions 25
relative position of windows 130
relative size of windows 130
relief attribute 106
resource 323

return 8, 49, 51, 69

RGB 279

ring the bell 176

rootname 68

round 279

S

scale 271

scan 45

scanf 45

scope 56

Screen units 271

scrollable text lines 211
scrollbar 271

scrollbar, with text 104, 107
ScrollFixup 340

scrolling a frame using a canvas 244
seed 54

see, text operation 105
selectBackground 278, 326
selectColor 278
selectForeground 279
selector 326

send 62, 63

separator 330

set 3, 9, 10, 29

setgrid attribute 107
significant digits 5

size 68, 270

socket 68

sort 72

source 2

split 31, 72, 73, 338

sqrt 8, 55

stack 56

stat 68

Status 332

stderr 3, 71

stdin 3

stdout 3

string 4, 19, 20

string compare 21

string length 39, 46, 330, 336

substitution 2, 3
switch 45, 330
symbolic link 68
syntax 2

T

Tab 14

tail 68

Tcl archive 404

tcllndex 91
Tcl_AppendElement 346
Tcl_AppendResult 346
Tcl_Applnit 344, 356
Tcl_CmdInfo 348
Tcl_CreateCommand 343, 344
Tcl_Createlnterp 343, 359
TCL_ERROR 345

Tcl_Eval 47, 343

Tcl_Eval runs Tcl commands from C 347

Tcl_EvalFile 343
Tcl_GetCommandInfo 349
Tcl_GetInt 345

Tcl_Init 344, 356
Tcl_Invoke bypasses Tcl_Eval 347
TCL_LIBRARY 93
TCL_OK 345

tcl_precision 5
tcl_RcFileName 344, 357
Tcl_SetResult 346

text 211

-textvariable 165
textvariable attribute 104
text, with scrollbar 104, 107
then 42

title bar 105

Title of window 104

tk colormodel 332

tk.tcl 93
Tk_CreateFileHandler 355
Tk_DoOneEvent 355
Tk_LIBRARY 93
tk_library 93
tk_listboxSingleSelect 413
Tk_MainLoop 355
toplevel 335, 338

trace 337

trace variable 340

Triple 140

troughColor 279

TRUNC 71

type 68
U

Unmap 138

Created: May 9, 1994 —booklIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

421

unset 57

uplevel 57, 339

upvar 55, 56, 151, 334
User input field, entry 104
user type-in 211

\Y%

variable 3, 30
Vertical tab 14

\\%

while 9, 45, 73
widgets 95

width 271

window changes size 138
window is opened 138
window manager 105
winfo rgb 279

wm command 105
wm geometry 338

wm title 104, 335
wm transient 338
wrapLength 293
writable 68

WRONLY 71

X

X event 106

X resource database 323
X resource name 270
xfontsel 291

xlsfonts 291

Created: May 9, 1994 —booklIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

