Chapter 36 Introduction 323

36.1 What's in a widget? 324

36.2 Widgets are event-driven325
36.3 Tkvs. Xlib 325

36.4 Square: an example widgeB26
36.5 Design for re-usability 328

Chapter 37 Creating Windows 329
37.1 Tk_Window structures 329
37.2 Creating Tk_Vihdows 329
37.3 Setting a windowvs class 331
37.4 Deleting windows 332
37.5 Basic operations on Tk_Wdows 332
37.6 Create procedures333
37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337

38.1 Tk_ConfigureVidget 337

38.1.1 Tk_ConfigSpec tables 339

38.1.2 Invoking Tk_ConfigureWidget 341

38.1.3 Errors 342

38.1.4 Reconfiguring 342

38.1.5 Tk_Configurelnfo 342

38.1.6 Tk_FreeOptions 343

38.1.7 Other uses for configuration tables 343
38.2 Resource caches343

38.2.1 Graphics contexts 344
38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes347

38.6 The square configure procedurd48

38.7 The square widget command proceduz9

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353
39.1 Xevents 353
39.2 Fileevents 357
39.3 Timer events 359
39.4 Idlecallbacks 360
39.5 Generic event handlers 361
39.6 Invoking the event dispatcher 362

Chapter 40 Displaying Widgets 365
40.1 Delayedredisplay 365
40.2 Double-buffering with pixmaps 367
40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371
41.1 Basics 371
41.2 Delayedcleanup 372

Chapter 42 Managing the Selection 377
42.1 Selection handlers 377
42.2 Claiming the selection 380
42.3 Retrieving the selection 381

Chapter 43 Geometry Management 383
431 Requesting asizefor awidget 383
43.2 Internal borders 385
433 Grids 386
43.4 Geometry managers 387
43.5 Claiming ownership 388
43.6 Retrieving geometry information 388
43.7 Mapping and setting geometry 389

DRAFT (7/10/93): Distribution Restricted

Part |V

Tk’ s C Interfaces

322

DRAFT (7/10/93): Distribution Restricted

Chapter 36
| ntroduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-
lection of library procedures that you can invoke from C code in the enclosing application.
Although you can do many interesting things with Tk without writing any C code, just by
writing Tcl scripts fomi sh, you'll probably find that most Ilge GUI applications require
some C code too. The most common reason for usirgT kiterfaces is to build new
kinds of widgets. For example, if you write a Tk-based spreadsheet you'll probably need
to implement a new widget to display the contents of the spreadsheet; if you write a chart-
ing package you'll probably build one or two new widgets to display charts and graphs in
various forms; and so on. Some of these widgets could probably be implemented with
existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the
needs of your application can probably do the job more simply &oigetly than any of
Tk’s general-purpose widgets/pically you'll build one or two new widget classes to dis-
play your applicatiors new objects, then combine your custom widgets with Biilt-in
widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most sf Tk’
library procedures exist for this purpose, and most of the text in this part of the book is ori-
ented towards widget builders. Howewayu can also use Tlibrary procedures to build
new geometry managers; this is described in Chapter 4go@®@may simply need to pro-
vide access to some window system feature thatsspported by the existinglfcom-
mands, such as the ability to set the border width of a top-level wihd@amy event, the
new features you implement should appearchedmmands so that you can use them in
scripts. Both the philosophical issues and the library procedures discussed in Part Il apply
to this part of the book also.

323

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

324

Introduction

36.1 What's in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C
procedures that implement the widgdtok and feel. More complex widgets may have
additional data structures and procedures besides theses, but all widgets have at least these
basic components.

A widget ecod is the C data structure that represents the state of a widget. It
includes all of the widget'configuration options plus anything else the widget needs for
its own internal use. For example, the widget record for a label widget contains tre label’
text or bitmap, its background and foreground colors, its relief, and so on. Each instance of
a widget has its own widget record, but all widgets of the same class have widget records
with the same structure. One of the first things you will do when designing a new widget
class is to design the widget record for that class.

Of the widgets six core procedures, two are Tommand procedures. The first of
these is called thereate pocedug; it implements the d command that creates widgets
of this class. The commarsdhame is the same as the class name, and the command
should have the standard syntax described in Section XXX for creating widgets. The com-
mand procedure initializes a new widget record, creates the window for the widget, and
creates the widget command for the widget. It is described in more detail in Chapters 37
and 38.

The second command procedure iswdget command pcedueg; it implements the
widget commands for all widgets of this class. When the widget command is invoked its
cl i ent Dat a agument points to the widget record for a particular widget; this allows
the same C procedure to implement the widget commands for mérguifwidgets (the
counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class isdtsfigue pocedue. Given one or
more options in string form, such addackgr ound r ed”, it parses the options and
fills in the widget record with corresponding internal representations suctX@shar
structure. The configure procedure is invoked by the create procedure and the widget com-
mand procedure to handle configuration options specified on their command lines. Chap-
ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is theent pocedue. It is invoked by Tks event dis-
patcher and typically handles exposures (part of the window needs to be redrawn), win-
dow size changes, focus changes, and the destruction of the wirtumevent procedure
does not normally deal with user interactions such as mouse motions and key presses;
these are usually handled with class bindings created with thé command as
described in Chapter XXX. Chapter 39 describes the Tk event dispancheding its
facilities for managing X events plus additional features for timers, event-driven file I/O,
and idle callbacks

The fifth core procedure is tlisplay pocedue. It is invoked to redraw part or all of
the widget on the screen. Redisplays can be triggered by many things, including window
exposures, changes in configuration options, and changes in the input focus. Chapter 40

DRAFT (7/10/93): Distribution Restricted

36.2 Widgets are event-driven 325

36.2

Widget

Tk

Xlib

Figure 36.1. Tk hides many of the Xlib interfaces from widgets, but widgets still invoke Xlib
directly for a few purposes such as drawing on the screen.

discusses several issues related to redisplaph as deferred redisplalpuble-bufiering
with pixmaps, and Tk support for drawing 3-D fefcts.

The last of a widget’core procedures is ilestroy procedure. This procedure is
called when the widget is destroyed and is responsible for freeing up all of the resources
allocated for the widget such as the memory for the widget record and X resources such as
colors and pixmaps. \dget destruction is tricky because the widget could be in use at the
time it is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-
tial problems.

Widgets are event-driven

36.3

Part 1l described how theclTscripts for Tk applications are event-driven, in that they con-

sist mostly of short responses to user interactions and other events. The C code that imple-
ments widgets is also event-driven. Each of the core procedures described in the previous
section responds to events of some sort. The create, widget command, and configure pro-
cedures all respond ta@llcommands. The event procedure responds to X events, and the
display and destroy procedures respond to things that occur either in Xcbsamipts.

Tk vs. Xlib

Xlib is the C library package that provides the lowest level of access to thirdow

System. Tk is implemented using Xlib but it hides most of the Xlib procedures from the C
code in widgets, as shown in Figure 36.1. For example, Xlib provides a pro&re

at eW ndowto create a hew windows, but you should not use it; instead kcallr e-

at eW ndowFr onPat h or one of the other procedures provided by Tk for this purpose.
Tk's procedures call the Xlib procedures but also do additional things such as associating
a textual name with the windo®imilarly, you shouldrt' normally call Xlib procedures

like XAl | ocCol or to allocate colors and other resources; call the corresponding Tk pro-

DRAFT (7/10/93): Distribution Restricted

326 Introduction

cedures likeTk _Get Col or instead. In the case of colors, Tk calls Xlib to allocate the
color, but it also remembers the colors that are allocated; if you use the same color in
many diferent places, Tk will only communicate with the X server once.

However Tk does not totally hide Xlib from you. When widgets redisplay themselves
they make direct calls to Xlib procedures suc@sawLi ne andXDr awSt ri ng. Fur-
thermore, many of the structures manipulated by Tk are the same as the structures pro-
vided by Xlib, such as graphics contexts and window attributes. Thus you'll need to know
quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you
are familiar with the following concepts from Xlib:

* Window attributes such dmckgr ound_pi xel , which are stored iKSet W ndo-
WAt t ri but es structures.

¢ Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.
* Procedures for redisplaying, suchX¥ awlLi ne andXDr awSt r i ng.
* Event types and théEvent structure.

You'll probably find it useful to keep a book on Xlib nearby when reading this book and to
refer to the Xlib documentation for specifics about the Xlib structures and procedures. If
you havert used Xlib before I'd suggest waiting to read about Xlib until you need the
information. That way you can focus on just the information you need and avoid learning
about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldhheed to know anything about any other X toolkit or
library. For example, Tk is completely independent from the Xt toolkit so you dead
to know anything about Xt. For that mattiéryou’re using Tk yowcant use Xt: their wid-
gets are incompatible and cabé mixed together

36.4 Square: an example widget

I'll use a simple widget called “square” for examples throughout PaftH¥ square wid-

get displays a colored square on a background as shown in Figure 36.2. The widget sup-
ports several configuration options, such as colors for the background and for the square, a
relief for the widget, and a border width used for both the widget and the square. It also
provides three widget commandsnf i gur e, which is used in the standard way to

query and change optionspsi t i on, which sets the position of the squareppeileft

corner relative to the uppéft corner of the windoypandsi ze, which sets the squase’

size. Figure 36.2 illustrates th@si t i on andsi ze commands.

Given these simple commands many other features can be writtelhsasfts. For
example, the following script arranges for the square to center itself over the mouse cursor
on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes
that the square widget is nameds”.

DRAFT (7/10/93): Distribution Restricted

36.4 Square: an example widget 327

—| Square widget example | -

fromm |
] —| Square widget example| - | |||

square .s .S position 100 75
pack .s
wmtitle .s "Square w dget exanple"

@ (b)

fromm |
—| Square widget example| - | |||

.S size 40

(©

Figure 36.2. A sequence of scripts and the displays that they produce. Figure (a) creates a square
widget, Figure (b) invokesthe posi t i on widget command to move the square within its widget,
and Figure (c) changes the size of the square.

proc center {x y} {
set a [.s size]

.S position [expr $x-(%$a/2)] [expr $y-(%a/2)]

bind .s <1> {center % %}
bind .s <Bl-Mtion> {center % %}

Note: For this particular widget it would mbably make mersense to use configuration options

instead of th@posi t i on andsi ze commands; | made them widget commands just to
illustrate how to write widget commands.

DRAFT (7/10/93): Distribution Restricted

328

Introduction

36.5

The implementation of the square widget requires about 320 lines of C code exclud-

ing comments, or about 750 lines in a copiously-commented version. The square widget
doesnt use all of the features of Tk but it illustrates the basic things you must do to create
a new widget. For examples of more complex widgets you can look at the source code for
some of Tk widgets; they have the same basic structure as the square widget and they
use the same library procedures that you'll read about in the chapters that follow

Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If
you do this then it may be possible for you or someone else to use your widget in new
ways that you didn’foresee when you created it. Here are a few specific things to think
about:

1

Store all the information about the widget in its widget record. If you use static or glo-
bal variables to hold widget state then it may not be possible to have more than one
instance of the widget in any given application. Even if youtdamvision using more
than one instance per application, datd anything to rule this out.

. Make sure that all of the primitive operations on your widget are available through its

widget command. Dohhard-wire the widge$’ behavior in C. Instead, define the
behavior as a set of class bindings usingoihed command. This will make it easy to
change the widget’behaviar

. Provide escapes tell Think about interesting ways that you can emb#@dmmands

in your widget and invoke them in response to various events. For example, the actions
for button widgets and menu items are stored asd aoimmands that are evaluated

when the widgets are invoked, and canvases and texts allow you to assdaata-T
mands with their internal objects in order to give them behaviors.

. Organize the code for your widget in one or a few files that can easily be linked into

other applications besides the one you're writing.

DRAFT (7/10/93): Distribution Restricted

Chapter 37
Creating Windows

This chapter presents Bkbasic library procedures for creating windows. It describes the
Tk_W ndowtype, which is used as a token for windows, then introduces the Tk proce-
dures for creating and deleting windows. Tk provides several macros for retrieving infor-
mation about windows, which are introduced next. Then the chapter discusses what
should be in the create procedure for a widget, using the square widget as an example. The
chapter closes with a discussion of delayed window creation.ehde 37.1 for a sum-

mary of the procedures discussed in the chapter

37.1 Tk_Window structures

Tk uses a token of typek_ W ndowto represent each windoWvhen you create a new
window Tk returns &k_W ndowtoken, and you must pass this token back to Tk when
invoking procedures to manipulate the windéwr'k_W ndow s actually a pointer to a
record containing information about the wind®wch as its name and current size, but Tk
hides the contents of this structure and you may not read or write its fields dirbetly
only way you can manipulateéf& _W ndowis to invoke procedures and macros provided
by Tk.

37.2 Creating Tk_Windows

Tk applications typically use two procedures for creating winddwsCr eat eMai n-
W ndowandTk_Cr eat eW ndowFr onPat h. Tk_Cr eat eMai nW ndow creates a

329

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

330

Creating Windows

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,
char *screenNane, char *appNane)

Creates a new application and returns a token for the applisatiair win-
dow Scr eenNane gives the screen on which to create the main windo
NULL then Tk picks default), areppNare gives a base name for the appg
cation. If an error occurs, returNSLL and stores an error message in
interp->result.

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pat hNane, char *screenNane)

Creates a new window trkwi n’s application whose path namepast h-
Nane. If scr eenName is NULL the new window will be an internal win-
dow; otherwise it will be a top-level window sier eenNane. Returns a
token for the new windowf an error occurs, returMdJLL and stores an
error message innt er p- >resul t.

Tk_Set O ass(Tk_W ndow t kwi n, char *cl ass)
Setst kwi n’s class tel ass.

Tk_Dest r oyW ndow(TKW ndow t kwi n)
Destroyt kwi n and all of its descendants in the window hierarchy

Tk_W ndow Tk_NameToW ndow(Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n)
Returns the token for the window whose path narmpaitiNane in the
same application askwi n. If no such name exists then retuNidLL and
stores an error message int er p- >resul t.

Tk_MakeW ndowExi st (TkW ndow t kwi n)
Force the creation of the X window fokwi n, if it didn’t already exist.

Table 37.1. A summary of basic procedures for window creation and deletion.

new application; i8 usually invoked in the main program of an application. Before invok-
ing Tk_Cr eat eMai nW ndow you should create acllinterpreter to use for the applica-
tion. Tk_Cr eat eMai nW ndowtakes three guments, consisting of the interpreter plus
two strings:

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,

char *screenNanme, char *appNane)

Thescr eenNane agument gives the name of the screen on which to create the main
window. It can have any form acceptable to your X seiver example, on most UNIX-
like systems tini x: 0" selects the default screen of display 0 on the local machine, or
“gi nger. cs. berkel ey. edu: 0. 0” selects screen 0 of display 0 on the machine
whose network address igi“nger . cs. ber kel ey. edu”. Scr eenNanme may be
specified adlULL, in which case Tk picks a default serv@n UNIX-like systems the
default server is normally determined by BPIESPLAY environment variable.

DRAFT (7/10/93): Distribution Restricted

37.3 Setting a window's class 331

The last agument toTk_Cr eat eMai nW ndowis a name to use for the application,
such as ¢l ock” for a clock program orrfx f 0o. c¢” for an editor namedx editing a
file named o0o0. c. This is the name that other applications will use to send commands to
the new application. Each application must have a unique naapgMane is already in
use by some other application then Tk adds fixdie “ #2” to make the name unique.
Thus the actual name of the application may be somethingdikeck #3" or “nx
foo. c #4”. You can find out the actual name for the application usingkh&lane
macro or by invoking thecl command Wi nf o nane .".

Tk_Cr eat eMai nW ndowcreates the applicatianimain windowregisters its name
so that other applications can send commands to it, and adds alf @onkmands to the
interpreter It returns théfk_W ndowtoken for the main windowf an error occurs (e.g.
scr eenNane doesnt exist or the X server refused to accept a connection) then
Tk _Cr eat eMai nW ndow returnsNULL and leaves an error message in
interp->result.

Tk _Cr eat eW ndowFr onPat h adds a new window to an existing applicatiors. It’
the procedure that'usually called when creating new widgets and it has the following
prototype:

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pathNane, char *screenNane);

Thet kwi n agument is a token for an existing window; its only purpose is to identify the
application in which to create the new wind®at hNane gives the full name for the
new window such as.a. b. ¢”. There must not already exist a window by this name,
but its parent (for example, &. b”) must exist. Ifscr eenNane is NULL then the new
window is an internal window; otherwise the new window will be a top-level window on
the indicated screeitk Cr eat eW ndowfr onPat h returns a token for the new win-
dow unless an error occurs, in which case it rethtiid. and leaves an error message in
interp->result.

Tk also provides a third window-creation procedure calledCr eat eW ndow.

This procedure is similar fok_Cr eat eW ndowfr onPat h except that the new win-
dow’s name is specified a bit ftifently See the reference documentation for details.

37.3 Setting a window’ s class

The procedur@k_Set Cl ass assigns a particular class name to a windew example,
Tk_Set Cd ass(tkwi n, "Foo");

sets the class of windoinkwi n to “Foo”. Class names are used by Tk for several pur-

poses such as finding options in the option database and event bindinganYuse any

string whatsoever as a class name when you invkk&et C ass, but you should make

sure the first letter is capitalized: Tk assumes in several places that uncapitalized names

are window names and capitalized names are classes.

DRAFT (7/10/93): Distribution Restricted

332 Creating Windows

37.4 Deleting windows

The procedurdk_Dest r oyW ndowtakes ark_W ndow as agument and deletes the
window: It also deletes all of the windosvthildren recursivelyDeleting the main win-

dow of an application will delete all of the windows in the application and usually causes
the application to exit.

37.5 Basic operations on Tk_Windows

Given a textual path name for a winda_ NaneToW ndow may be used to find the
Tk _W ndowtoken for the window:
Tk_W ndow Tk_NaneToW ndow Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n);

Pat hNane is the name of the desired windasuch as “a. b. ¢”, andt kwi n is a token
for any window in the application of interest (it isnsed except to select a specific appli-
cation). NormallyTk_NameToW ndow returns a token for the given windobut if no
such window exists it returddJLL and leaves an error messagelim er p- >resul t.

Tk maintains several pieces of information about 8&chN ndowand it provides a
set of macros that you can use to access the informationaBkee3¥.2 for a summary of
all the macros. Each macro takeBka W ndow as an agument and returns the corre-
sponding piece of information for the windokor example if kwi n is aTk_W ndow
then

Tk_W dt h(t kwi n)

returns an integer value giving the current widthlo#i n in pixels. Here are a few of the

more commonly used macros:

* Tk_W dt h andTk_Hei ght return the windovg dimensions; this information is used
during redisplay for purposes such as centering text.

* Tk_W ndow d returns the X identifier for the window; it is needed when invoking
Xlib procedures during redisplay

* Tk_Di spl ay returns a pointer to Xlie'Di spl ay structure corresponding to the
window; it is also needed when invoking Xlib procedures.

Some of the macros, liKEk_| nt er nal Bor der W dt h andTk_ReqW dt h, are only
used by geometry managers (see Chapter 43) and others Jkchvasual are rarely
used by anyone.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

333

Macro Name

Result pe

Meaning

Tk_Attributes

XSet WndowAt t ri but es
*

Window attributes such as border pixe
and cursar

Tk_Changes XW ndowChanges * Window position, size, stacking order

Tk_d ass Tk _Uud Name of windows class.

Tk_Col or map Col or map Colormap for window

Tk_Dept h i nt Bits per pixel.

Tk_Di spl ay Di spl ay X display for window

Tk_Hei ght i nt Current height of window in pixels.

Tk_I nternal BorderWdth | int Width of internal border in pixels.

Tk_I| siMapped i nt 1 if window mapped, 0 otherwise.

Tk_| sTopLevel i nt 1 if top-level, O if internal.

Tk_Name Tk_Ui d Name within parent. For main windpw
returns application name.

Tk_Par ent Tk_W ndow Parent, oNULL for main window

Tk_Pat hNane char * Full path name of window

Tk_RegqW dt h i nt Requested width in pixels.

Tk_ReqHei ght i nt Requested height in pixels.

Tk_Screen Screen * X Screen for window

Tk_Scr eenNunber i nt Index of windows screen.

Tk_Vi sual Vi sual * Information about windowg visual char-
acteristics.

Tk_Wdth i nt Current width of window in pixels.

Tk_W ndowi d W ndow X identifier for window

Tk_X i nt X-coordinate within parent window

TK_Y i nt Y-coordinate within parent window

Table 37.2. Macros defined by Tk for retrieving window state. Each macro takks& ndow as
amgument and returns a result whose type is given in the second column. All of these macro
(they simply return fields from T&'internal structures and doréquire any interactions with the

server).

37.6 Create procedures

The create procedure for a widget must do five things: create aknew ndow; create

and initialize a widget record; set up event handlers; create a widget command for the wid-
get; and process configuration options for the widget. The create procedure should be the

command procedure for @lfcommand named after the widgetlass, and itsl i ent -

DRAFT (7/10/93): Distribution Restricted

334

Creating Windows

Dat a agument should be thE<_W ndowtoken for the main window of the application
(this is needed in order to create a ridw W ndow in the application).

Figure 37.1 shows the code fagquar eCnd, which is the create procedure for square
widgets. After checking its gument countSquar eCrd creates a new window for the
widget and invoke3k_Set Cl ass to assign it a class oBfjuar e”. The middle part of
Squar eCnd allocates a widget record for the new widget and initializes it. The widget
record for squares has the following definition:

typedef struct {
Tk_W ndow t kwi n;
Di spl ay *di spl ay;
Tcl _Interp *interp;
int x, vy;
int size;
i nt border Wdt h;

Tk_3DBor der bgBor der;
Tk_3DBor der f gBorder;

int relief;

CC gc;

i nt updat ePendi ng;
} Square;

The first field of the record is tie&k_W ndow for the widget. The next fieldi spl ay,
identifies the X display for the widget Gtheeded during cleanup after the widget is
deleted)] nt er p holds a pointer to the interpreter for the application.X bhedy fields
give the position of the uppéeft corner of the square relative to the uplgércorner of
the window and thesi ze field specifies the squasesize in pixels. The last six fields are
used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget recorBiquar eCnd callsTk_Cr e-
at eEvent Handl er ; this arranges fdéquar eEvent Pr oc to be called whenever the
widget needs to be redrawn or when various other events sactiras deleting its win-
dow or changing its size; events will be discussed in more detail in Chapter 39. Next
Squar eCnd callsTcl _Cr eat eConmrand to create the widget command for the wid-
get. The widges name is the name of the commasagiyar eW dget Cnd is the com-
mand procedure, and a pointer to the widget record slthent Dat a for the command
(using a pointer to the widget recordcds ent Dat a allows a single C procedure to
implement the widget commands for all square widgggsiar eW dget Conmand will
receive a dierentcl i ent Dat a agument depending on which widget command was
invoked). Therbquar eCd callsConf i gur eSquar e to process any configuration
options specified asguments to the command; Chapter 38 describes how the configura-
tion options are handled. If an error occurs in processing the configuration options then
Squar eCnd destroys the window and returns an er@herwise it returns success with
the widgets path name as result.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures 335

int SquareCnd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Tk_W ndow mai n = (Tk_W ndow) clientDat a;
Square *squarePtr;
Tk_W ndow t kwi n;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR,
}

tkwin = Tk_Creat eW ndowFr onPat h(i nterp, main, argv[1],
(char *) NULL);
if (tkwin == NULL) {
return TCL_ERROR,

}
Tk_Set C ass(t kwi n, "Square");

squarePtr = (Square *) nall oc(sizeof (Square));
squarePtr->tkwin = tkw n;

squarePtr->di splay = Tk_Di spl ay(tkw n);
squarePtr->interp = interp;
squarePtr->x = 0;

squarePtr->y = 0;

squarePtr->size = 20;

squar ePt r- >bgBorder = NULL;

squar ePtr->f gBorder = NULL;

squar ePtr->gc = None;

squar ePt r - >updat ePendi ng = O;

Tk_Cr eat eEvent Handl er (t kwi n,
Exposur eMask]| St ruct ureNot i f yMask, SquareEvent Proc,
(dientData) squarePtr);
Tcl _Creat eCommand(i nterp, Tk_Pat hName(tkwi n),
Squar eW dget Cnd, (ClientData squarePtr),
(Tcl _CndDel eteProc *) NULL);
i f (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
I= TCL_CK) {
Tk_DestroyW ndow(squar ePtr->t kwi n);
return TCL_ERROR
}
interp->result = Tk_Pat hNane(tkw n);
return TCL_OK;

Figure 37.1. The create procedure for square widgets. This procedure is the command procedure
for the squar e command.

DRAFT (7/10/93): Distribution Restricted

336

Creating Windows

37.7 Delayed window creation

Tk _Cr eat eMai nW ndowandTk _Cr eat eW ndowFr onPat h create the Tk data
structures for a windovbut they do not communicate with the X server to create an actual
X window. If you create &k _W ndow and immediately fetch its X window identifier
usingTk_W ndowl d, the result will béNone. Tk doesrt normally create the X window
for aTk_W ndow until the window is mapped, which is normally done by a geometry
manager (see Chapter 43). The reason for delaying window creation is performance.
When aTk_W ndowi s initially created, all of its attributes are set to default values.
Many of these attributes will be modified almost immediately when the widget configures
itself. It's more dicient to delay the window'creation until all of its attributes have been
set, rather than first creating the window and then asking the X server to modify the
attributes later

Delayed window creation is normally invisible to widgets, since the only time a wid-
get needs to know the X identifier for a window is when it invokes Xlib procedures to dis-
play it. This doesm’happen until after the window has been mapped, so the X window
will have been created by then. If for some reason you should need the X window identi-
fier before aTk_W ndow has been mapped, you can invdke MakeW ndowExi st :

voi d Tk_MakeW ndowExi st (t kwi n);

This forces the X window fdarkwi n to be created immediately if it hasbeen created
yet. OnceTk _MakeW ndowExi st returns,Tk_W ndowl d can be used to retrieve the
W ndowtoken for it.

DRAFT (7/10/93): Distribution Restricted

Chapter 38
Configuring Widgets

38.1

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-
ally drawing the widges$ contents on the screen. A widget is configured initially as part of
creating it, and it may be reconfigured by invoking its widget command. One ofgéstlar
components of configuring a widget is processing configuration options such as
“-borderw dt h 1ni. For each option the textual value must be translated to an inter-
nal form suitable for use in the widget. For example, distances specified in floating-point
millimeters must be translated to integer pixel values and font names must be mapped to
correspondingKFont St r uct structures. Configuring a widget also includes other tasks
such as preparing X graphics contexts to use when drawing the widget and setting
attributes of the widget'window such as its background calor

This chapter describes the Tk library procedures for configuring widgets, and it pre-
sents the square widgetonfigure procedure and widget command procedure. Chapter 40
will show how to draw a widget once configuration is complete.

Tk_ConfigureW idget

Tk provides three library procedurd¥_Conf i gur eW dget , Tk_Conf i gur e-

I nf o, andTk_Fr eeOpt i ons, that do most of the work of processing configuration
options (seedble 38.1). ® use these procedures you first createrdiguration tablehat
describes all of the configuration options supported by your new widget class. When creat-
ing a new widget, you pass this tabléelto Confi gur eW dget along withar gc/

ar gv information describing the configuration options (i.e. all tlyeigents in the cre-

ation command after the widget namejuMalso pass in a pointer to the widget record for

337

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

338

Configuring Widgets

int Tk_ConfigureWdget(Tcl_Interp *interp, Tk_W ndow tkw n,
Tk_Confi gSpec *specs, int argc, char *argv[], char *w dgRec,
int flags)

Processes a set offaments from adl commanddr gc andar gv) using a
table of allowable configuration optiorspecs) and sets the appropriate
fiels of a widget recordy dgRec). Tkwi n is the widge® window Nor-
mally returnsTCL_OXK; if an error occurs, retur®CL_ERROR and leaves
an error message imt er p- >r esul t . Flags is normally 0 oFK_CON-
FI G_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_Configurelnfo(Tcl_Interp *interp, TKk_Wndow tkw n,

Tk_Confi gSpec *specs, char *w dgRec, char * argvNane, fl ags)
Finds the configuration option gpecs whose command-line name is
ar gvNane, locates the value of that optionvindgRec, and generates in
i nterp->result alist describing that configuration option. If
ar gvNane isNULL, generates a list of lists describing all of the options
specs. Normally returnd’CL_OK; if an error occurs, returfi®CL_ERROR
and leaves an error message iirt er p- >r esul t. Fl ags is normally O
(see the reference documentation for other possibilities).

Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *w dgRec,
Di splay *display, int flags)
Frees up any resourceswindgRec that are used bypecs. Di spl ay
must be the widget'displayFl ags is normally O but can be used to sele
particular entries ispecs (see reference documentation for details).

int Tk_Ofset(type, field)
This is a macro that returns thédsef of a field namefli el d within a struc-
ture whose type isype. Used when creating configuration tables.

Table 38.1. A summary ofTk_Confi gur eW dget and related procedures and macros.

the widgetTk_Confi gur eW dget processes each option specifiediigv according

to the information in the configuration table, converting string values to appropriate inter-
nal forms, allocating resources such as fonts and colors if negesshstoring the results

into the widget record. For options that ateaxplicitly specified irar gv, Tk_Conf i g-

ur eW dget checks the option database to see if a value is specified there. For options
that still havert been sefTk_Conf i gur eW dget uses default values specified in the
table.

When theconf i gur e widget command is invoked to change options, you call
Tk_Conf i gur eW dget again with ther gc/ar gv information describing the new
option valuesTk_Conf i gur eW dget will process the guments according to the
table and modify the information in the widget record accordiMylyen theconf i g-
ur e widget command is invoked to read out the current settings of options, you call
Tk_Conf i gur el nf o. It generates acl result describing one or all of the widget’

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 339

38.1.1

options in exactly the right form, so all you have to do is return this result from the widget
command procedure.

Finally, when a widget is deleted you invokel _Fr eeOpti ons. Tcl _Fr eeOp-
ti ons scans through the table to find options for which resources have been allocated,
such as fonts and colors. For each such option it uses the information in the widget record
to free up the resource.

Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is
an array of records, each with the following structure:
typedef struct {

int type;

char *ar gvNane;

char *dbNane;

char *dbd ass;

char *def Val ue;

int offset;

i nt specFl ags;

Tk_CustonOption *custonPtr;

} Tk_Confi gSpec;
Thet ype field specifies the internal form into which the optsostring value should be
converted. For exampl&K_CONFI G_|I NT means the optios'value should be converted
to an integer an@iK_CONFI G_COLOR means that the optigwalue should be converted
to a pointer to aXCol or structure. FOTK_CONFI G_I NT the option$ value must have
the syntax of a decimal, hexadecimal, or octal integer anBkioCONFI G_COLOR the
option’s value must have one of the forms for colors described in Section XXX. For
TK_CONFI G_COLCOR Tk will allocate anXCol or structure, which must later be freed
(e.g. by callingTk_Fr eeQpt i ons). More than 20 dferent option types are defined by
Tk; see the reference documentation for details on each of the supported types.
Ar gvNane is the optiors name as specified on command lines, e.g.
“- background” or “- f ont ”. ThedbNane anddbCl ass fields give the optios’
name and class in the option database.d&ié/al ue field gives a default value to use
for the option if it isnt specified on the command line and theretiawalue for it in the
option databaséNULL means there is no default for the option.
Theof f set field tells where in the widget record to store the converted value of the

option. It is specified as a byte displacement from the beginning of the reoarshauld
use theTk O f set macro to generate values for this field. For example,

Tk_Of fset (Square, relief)
produces an appropriatefsdt for ther el i ef field of a record whose type $gjuar e.
ThespecFl ags field contains an OR-ed combination of flag bits that provide addi-
tional control over the handling of the option. A few of the flags will be discussed below;
see the reference documentation for a complete listing. Fittadlyust onPt r field pro-

DRAFT (7/10/93): Distribution Restricted

340 Configuring Widgets

vides additional information for application-defined options.dtily used when the type
is TK_CONFI G_CUSTOMand should b&IULL in other cases. See the reference documen-
tation for details on defining custom option types.

Here is the option table for square widgets:

Tk_Confi gSpec configSpecs[] = {
{ TK_CONFI G_BORDER, "-background", "background",
" Background",
"#cdb79e", Tk_Of fset(Square, bgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonmOption *) NULL},
{ TK_CONFI G_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFI G MONO ONLY, (Tk_CustonOption *) NULL},
{ TK_CONFI G_SYNONYM "-bd", "borderWdth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{ TK_CONFI G_SYNONYM "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustonDption *) NULL},
{TK_CONFI G_PI XELS, "-borderw dth", "borderWdth",
"BorderWdth", "1nf', Tk_Ofset(Square, borderWdth),
0, (Tk_CustonOption *) NULL},
TK_CONFI G_SYNONYM "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFI G_ MONO ONLY, (Tk_CustonOption *) NULL},
{TK_CONFI G_ RELI EF, "-relief", "relief", "Relief",
"rai sed", Tk _Ofset(Square, relief), O,
(Tk_CustomOption *) NULL},
{TK_CONFI G END, (char *) NULL, (char *) NULL, ,
(char *) NULL, (char *) NULL, 0, O,
(Tk_CustomOption *) NULL}
b
This table illustrates three additional feature$lof Conf i gSpecs structures. First,
there are two entries each for theackgr ound and- f or egr ound options. The first
entry for each option has th& CONFI G_COLOR _ONLY flag set, which causes Tk to
use that option if the display is a color display and to ignore it if the display is mono-
chrome. The second entry specifiesThe CONFI G_MONO_ONLY flag so it is only used
for monochrome displays. This feature allowdedént default values to be specified for
color and mono displays (the current color model for the window determines whether the
it considered to be color or monochrome; see Section XXX). Second, the efins
bg, and- f g have typelK_CONFI G_SYNONYM This means that each of these options is
a synonym for some other option; ttheNane field identifies the other option and the
other fields are ignored. For example, if thbd option is specified with the above table,

Tk will actually use the table entry for thé&or der wi dt h option. Third, the last entry

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 341

38.1.2

Note:

in the table must have ty[&_ CONFI G_END; Tk depends on this to locate the end of the
table.

Invoking Tk_ConfigureW idget

Suppose thatk _Conf i gur eW dget is invoked as follows:

Tcl _Interp *interp;
Tk_W ndow t kwi n;

char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
i nt code;

code = Tk_Confi gureWdget (i nterp, tkw n, configSpecs,
4, argv, (char *) squarePtr, 0);

A call much like this will occur if a square widget is created with #ledmmand

square .s -relief sunken -bg bl ue

The-rel i ef option will be processed according to tyi€¢ CONFI G_RELI EF, which
dictates that the optiosivalue must be a valid relief, such aai‘sed” or “sunken”. In
this case the value specifiecsisnken; Tk_Conf i gur eW dget converts this string
value to the integer valueK_RELI EF_SUNKEN and stores that value in
squar ePtr->relief. The- bg option will be processed according to tenf i g-
Specs entry for- backgr ound, which has typdK_CONFI G_BORDER. This type
requires that the optiosvalue be a valid color name; Tk creates a data structure suitable
for drawing graphics in that color trkwi n, and it computes additional colors for draw-
ing light and dark shadows to produce 3-dimensiordatts. All of this information is
stored in the new structure and a token for that structure is storedbigBbeder field
of squar ePt r. In Chapter 40 you'll see how this token is used to draw the widget.

Since the bor der wi dt h and- f or egr ound options weren’specified irar gv,
Tk_Conf i gur eW dget looks them up in the option database using the information for
those options imonf i gSpecs. If it finds values in the option database then it will use
them in the same way as if they had been suppliad gv.

If an option isnt specified in the option database thi&n Conf i gur eW dget uses
the default value specified in its table enkgr example, for bor der wi dt h it will use
the default valueXni. Since the option has tygek CONFI G_PI XELS, this string must
specify a screen distance in one of the forms described in Section XAKXspecifies a
distance of one millimeter; Tk converts this to the corresponding number of pixels and
stores the result as an integesguar ePt r - >bor der W dt h. If the default value for
an option isNULL thenTk_Confi gur eW dget does nothing at all if there is no value
in eitherar gv or the option database; the value in the widget record will retain whatever
value it had wheifk_Conf i gur eW dget is invoked.

If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widgeataod befoe invokingTk _Conf i gur eW dget . If

DRAFT (7/10/93): Distribution Restricted

342

Configuring Widgets

38.1.3

38.1.4

38.1.5

there is a default value then you need not initialize the field in the widgadrsince
Tk_Conf i gur eW dget will always stoe a poper value thes.

Errors

Tk_Conf i gur eW dget normally return§ CL_OK. If an error occurs then it returns
TCL_ERROR and leaves an error messagetin er p- >r esul t . The most common

form of error is a value that doesmake sense for the option type, suchasc" for the

- bd option.Tk_Conf i gur eW dget returns as soon as it encounters an gwhich

means that some of the fields of the widget record may not have been set yet; these fields
will be left in an initialized state (such BBLL for pointers0 for integersNone for X
resources, etc.).

Reconfiguring

Tk_Confi gur eW dget gets invoked not only when a widget is created but also during
theconf i gur e widget command. When reconfiguring you probably wesaint to con-
sider the option database or default valuest'lfwant to process only the options that are
specified explicitly irar gv, leaving all the unspecified options with their previous values.
To accomplish this, specififkK CONFI G_ARGV_ONLY as the last gument toTk _Con-
figureWw dget:
code = Tk_ConfigureWdget (i nterp, tkw n, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFI G_ARGV_ONLY) ;

Tk _Configurelnfo

If aconfi gur e widget command is invoked with a singlg@ament, or with no gu-
ments, then it returns configuration information. For examples i a square widget
then

.s configure -background
should return a list of information about thieackgr ound option and

.s configure
should return a list of lists describing all the options, as described in Section XXX.
Tk_Conf i gur el nf o does all the work of generating this information in the proper for-
mat. For the square widget it might be invoked as follows:

code = Tk_Configurelnfo(interp, tkw n, configSpecs,

(char *) squarePtr, argv[2], 0);

Ar gv[2] specifies the name of a particular option (eltackgr ound in the first
example above). If information is to be returned about all options, as in the second exam-
ple above, theNULL should be specified as the option nafke.Conf i gur el nf o sets
i nt erp->resul t to hold the proper value and retui@._ OK. If an error occurs

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 343

38.1.6

38.1.7

38.2

(because a bad option name was specified, for example)kh&onf i gur el nf o
stores an error messags int er p- >r esul t and return§CL_ERRCR. In either case,
the widget command procedure can leiaméer p- >r esul t as itis and returoode as
its completion code.

Tk_FreeOptions

The library procedur&k_Fr eeOpt i ons is usually invoked after a widget is deleted in
order to clean up its widget record. For some option types, sudh &ONFI G_BOR-
DER, Tk_Conf i gur eW dget allocates resources which must eventually be freed.
Tk_FreeOpt i ons takes care of this:

voi d Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *wi dgRec,

Di spl ay *display, int flags);

Specs andwi dgRec should be the same as in calls to Tk_Configudejt.Di spl ay
identifies the X display containing the widgetg(itteeded for freeing certain options) and
f I ags should normally be 0 (see the reference documentation for other possibilities).
Tk_FreeOpt i ons will scanspecs looking for entries such 838_CONFI G_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure
a resource is actually allocated (for example, if the value of a string resoltdiel ist
means that no memory is allocated). If there is a resource allocatetktheneeOp-
t i ons passes the value from the widget record to an appropriate procedure to free up the
resource and resets the value in the widget record to a state dildH ae indicate that it
has been freed.

Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for
any situation where textual information must be converted to an internal form and stored
in fields of a structure, particularly if the information is specified in the same form as for
widget options, e.qg.

-background blue -width 1m
Tk uses configuration tables internally for configuring menu entries, for configuring can-
vas items, and for configuring display attributes of tags in text widgets.

Resource caches

The X window system provides a number ofatiént resources for applications to use.
Windows are one example of a resource; other examples are graphics contexts, fonts, pix-
maps, colors, and cursors. An application must allocate resources before using them and
free them when they’re no longer needed. X was designed to make resource allocation and

DRAFT (7/10/93): Distribution Restricted

344

Configuring Widgets

38.2.1

deallocation as cheap as possible, but it is still expensive in many situations because it
requires communication with the X server (for example, font allocation requires commu-
nication with the server to make sure the font exists). If an application uses the same
resource in several drent places (e.g. the same font in manfediint windows) it is
wasteful to allocate separate resources for each use: this wastes time communicating with
the server and it wastes space in the X server to keep track of the copies of the resource.
Tk provides a collection afsource caches in order to reduce the costs of resource
management. When your application needs a particular resource you staalldiib to
allocate it; call the corresponding Tk procedure instead. Tk keeps track of all the resources
used by the application and allows them to be shared. If you use the same font in many dif-
ferent widgets, Tk will call X to allocate a font for the first widget, but it will re-use this
font for all the other widgets. When the resource is no longer needed anywhere in the
application (e.g. all the widgets using the font have been destroyed) then Tk will invoke
the Xlib procedure to free up the resource. This approach saves time as well as memory in
the X server
If you allocate a resource through Tk you must treat it as read-only since it may be
shared. For example, if you allocate a graphics contextTkitiGet GC you must not
change the background color of the graphics context, since this wiadtthé other uses
of the graphics context. If you need to modify a resource after creating it then you should
not use Tks resource caches; call Xlib directly to allocate the resource so that you can
have a private copy
Most of the resources for a widget are allocated automaticallk bgonf i gur e-
W dget , andTk_Confi gur eW dget uses the Tk resource caches. The following sub-
sections describe how to use the Tk resource caches divgttigut going through
Tk_Confi gur eW dget .

Graphics contexts

Graphics contexts are the resource that you are most likely to allocate direethyare
needed whenever you draw information on the screeflan@onf i gur eW dget
does not provide facilities for allocating them. Thus most widgets will need to allocate a
few graphics contexts in their configure procedures. The procékufget GCallocates a
graphics context and is similar to the Xlib procedx@e eat e GC:

GC Tk_Get GC(Tk_W ndow t kwi n, unsi gned | ong val ueMask,

XGCVal ues *val uePtr)

Thet kwi n agument specifies the window in which the graphics context will be used.
Val ueMask andVal uePt r specify the fields of the graphics contesdl ueMask is
an OR-ed combination of bits such@3aFor egr ound or GCFont that indicate which
fields ofval uePt r are significantval uePt r specifies values of the selected fields.
Tk _Get GCreturns the X resource identifier for a graphics context that matehese-
Mask andval uePt r. The graphics context will have default values for all of the unspec-
ified fields.

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 345

38.2.2

When you're finished with a graphics context you must free it by calling
Tk_FreeGC:
Tk_FreeGC(Di spl ay *di splay, GC gc)
Thedi spl ay amgument indicates the display for which the graphics context was allo-
cated and thgc amgument identifies the graphics context (must have been the return
value from some previous call T&_Get GC). There must be exactly one call to
Tk_Fr eeGCfor each call td’k_Get GC.

Other resources

Although resources other than graphics contexts are normally allocated and deallocated
automatically byTk_Conf i gur eW dget andTk_Fr eeQpt i ons, you can also allo-

cate them explicitly using Tk library procedures. For each resource there are three proce-
dures. The first procedure (suchT&s Get Col or) takes a textual description of the

resource in the same way it might be specified as a configuration option and returns a suit-
able resource or an errdthe second procedure (suchrs Fr eeCol or) takes a

resource allocated by the first procedure and frees it. The third procedure takes a resource
and returns the textual description that was used to allocate it. The following resources are
supported in this way:

Bitmaps: the proceduresk _Cet Bi t map, Tk_Fr eeBi t map, andTk_Namef -
Bi t map managei xmap resources with depth oneotY can also invok&k_De-
fi neBi t map to create new internally-defined bitmaps, akd Si zeOf Bi t map
returns the dimensions of a bitmap.

Colors: the proceduresk Get Col or, Tk_Fr eeCol or, andTk_NaneCr Col or
manageXCol or structures. Wu can also invok&k Get Col or ByVal ue to specify
a color with integer intensities rather than a string.

Cursors: the proceduresk _CGet Cur sor, Tk_Fr eeCur sor, and
Tk_NameOf Cur sor manageCur sor resources. du can also invokék _Get Cur -
sor Fr onDat a to define a cursor based on binary data in the application.

Fonts: the procedure$k _Get Font St ruct , Tk_NameOf Font St ruct , and
Tk _FreeFont St ruct manageXFont St ruct structures.

3-D borders: the procedure$k_Get 3DBor der, Tk_Fr ee3DBor der, and
Tk_NameOf 3DBor der managel'k _3DBor der resources, which are used to draw
objects with beveled edges that produce 3{Bcts. Associated with these procedures
are other procedures suchlds Dr aw3DRect angl e that draw objects on the screen
(see Section 40.3). In addition you can invidke 3DBor der Col or to retrieve the
XCol or structure for the border base color

DRAFT (7/10/93): Distribution Restricted

346 Configuring Widgets

38.3 Tk_Uids

When invoking procedures likEk_Get Col or you pass in a textual description of the
resource to allocate, such aetl” for a color However this textual description is not a
normal C string but ratherumique identifierwhich is represented with the typke_Ui d:
typedef char *Tk_Ui d;
A Tk_Ui d is like an atom in Lisp. It is actually a pointer to a character gustlike a
normal C string, and 8 _Ui d can be used anywhere that a string can be used. However
Tk_Ui d’s have the property that any tWk_ Ui d’s with the same string value also have
the same pointer value:afandb areTk_Ui d’s and
(strcnp(a, b) == 0)
then
(a == b)
Tk usesTk_Ui d’'s to specify resources because they permit fast comparisons for equality
If you useTk_Confi gur eW dget to allocate resources then you widmave to
worry aboufTk Ui d’s (Tk automatically translates strings from the configuration table
into Tk__Ui d’s). But if you call procedures likek_Get Col or directly then you'll need
to useTk_Get Ui d to turn strings into unique identifiers:
Tk_Uid Tk_Get Ui d(char *string)
Given a string gyument,Tk_Get Ui d returns the correspondifidgc_ Ui d. It just keeps a
hash table of all unique identifiers that have been used so far and returns a pointer to the
key stored in the hash table.

Note: If you pass strings dictly to pocedues likeTk _Get Col or without converting them to
unique identifiers then you will get ueglictable esults. One common symptom is that the
application uses the samesouce over and over even though you think you've specified
different values for each useypically what happens is that the same string buffer was

used to star all of the diffeent values. Tk just compes the string addss rather than its
contents, so the values appear to Tk to be the same.

38.4 Other translators

Tk provides several other library procedures that translate from strings in various forms to
internal representations. These procedures are similar to the resource managers in Section
38.2 except that the internal forms are not resources that require freeing, so typically there
is just a “get” procedure and a “name of” procedure with no “free” procedure. Below is a
quick summary of the availabile translators (see the reference documentation for details):

Anchors. Tk_Get Anchor andTk_NaneCOf Anchor translate between strings con-
taining an anchor positions such aght er ” or “ne” and integers with values
defined by symbols such aK_ANCHOR CENTER or TK_ANCHOR _NE.

DRAFT (7/10/93): Distribution Restricted

38.5 Changing window attributes 347

Cap styles: Tk_Get CapSt yl e andTk_NameOF CapSt yl e translate betwen

strings containing X cap styleshit t ”, “pr oj ect i ng”, or “r ound”) and integers
with values defined by the X symbd&apBut t , CapPr oj ect i ng, andCapRound.

Join styles: Tk_Joi nSt yl e andTk_NarmeOf Joi nSt yl e translate between strings

containing X join styles @fevel ”, “m t er ", or “r ound”) and integers with values
defined by the X symbolkoi nBevel ,Joi nM t er, andJoi nRound.

Justify styles: Tk_Get Justi fy andTk_NaneCf Justi f y translate between
strings containing styles of justificatiod ¢ft”, “ri ght”, “center”, or“fill")
and integers with values defined by the symB&sJUSTI FY_LEFT, TK_JUSTI -

FY_RI GHT, TK_JUSTI FY_CENTER, andTK_JUSTI FY_FI LL.
Reliefs: Tk_Get Rel i ef andTk_NameOf Rel i ef translate between strings con-

taining relief names (“ai sed”, “sunken”, “f | at ”, “gr oove”, or “ri dge”) and
integers with values defined by the symbids RELI EF_RAI SED, TK_RELI EF_-

SUNKEN, etc.

Screen distances: Tk_Get Pi xel s andTk_Get Scr eenMMprocess strings that con-
tain screen distances in any of the forms described in Section XXX, suth&s' “or
“2". Tk_Cet Pi xel s returns an integer result in pixel units, ad Get Scr eenivM
returns a real result whose units are millimeters.

Window names. Tk__NanmeToW ndowtranslates from a string containing a window
path name such asdl g. qui t ” to the Tk_W ndowtoken for the corresponding
window.

X atoms. Tk_I nt er nAt omandTk _CGet At onNan® translate between strings con-
taining the names of X atoms (e.g. “RESOURCE_MANAGER”) ant ¥mtokens.
Tk keeps a cache of atom names to avoid communication with the X server

38.5 Changing window attributes

Tk provides a collection of procedures for modifying a windoattributes (e.g. back-
ground color or cursor) and configuration (e.g. position or size). These procedures are
summarized in dble 38.2. The procedures have the samgenaents as the Xlib proce-
dures with corresponding names. They perform the same functions as the Xlib procedures
except that they also retain a local copy of the new information so that it can be returned
by the macros described in Section 37.5. For exarmgleResi zeW ndowis similar to
the Xlib procedureXResi zeW ndow in that it modifies the dimensions of a window
However it also remembers the new dimensions so they can be accessed with the
Tk_W dt h andTk_Hei ght macros.

Only a few of the procedures imfle 38.2, such ak_Set W ndowBackgr ound,
are normally invoked by widgets.i#gets should definitelgiot invoke procedures like

DRAFT (7/10/93): Distribution Restricted

348 Configuring Widgets

Tk_ChangeW ndowAt t ri but es(Tk_W ndow t kwi n, unsi gned int val ue-
Mask,
XSet WndowAttributes *attsPtr)

Tk_Conf i gur eW ndow(Tk_W ndow t kwi n, unsigned int val ueMask,
XW ndowChanges *val uePtr)

Tk_Def i neCur sor (Tk_W ndow t kwi n, Cursor cursor)

Tk_MoveW ndow(Tk_W ndow tkwi n, int x, int y)

Tk_MoveResi zeW ndow(Tk_W ndow tkwin, int x, int vy,
unsigned int wi dth, unsigned int height)

Tk_Resi zeW ndow Tk_W ndow t kwi n, unsgi ned int wi dth,
unsi gned int height)

Tk_Set W ndowBackgr ound(Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBackgr oundPi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der (Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBor der Pi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der W dt h(TK_W ndow t kwi n, int w dth)

Tk_Set W ndowCol or map(Tk_W ndow t kwi n, Col or map col or nap)

Tk_Undefi neCur sor (Tk_W ndow t kwi n)

Table 38.2. Tk procedures for modifying attributes and window configuration information.
Tk_ChangeW ndowAt t ri but es andTk_Conf i gur eW ndowallow any or all of the
attributes or configuration to be set at oncal ueMask selects which values should be set); tl
other procedures set selected fields individually

Tk_MoveW ndowor Tk_Resi zeW ndow. only geometry managers should change the
size or location of a windaw

38.6 The square configure procedure

Figure 38.1 contains the code for the square wisigetfigure procedure. lés gv amgu-
ment contains pairs of strings that specify configuration options.Most of the work is done
by Tk_Conf i gur eW dget . OnceTk_Conf i gur eW dget returnsConfi gur -

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 349

38.7

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {
if (Tk_ConfigureWdget(interp, squarePtr->tkw n, configSpecs,
argc, argv, (char *) squarebPtr, flags) != TCL_OK) {
return TCL_ERROR

Tk_Set W ndowBackgr ound(squar ePt r - >t kwi n,
Tk_3DBor der Col or (squar ePtr - >bgBor der)) ;

if (squarePtr->gc == None) {

XGCVal ues gcVal ues;

gcVal ues. functi on = GXcopy;

gcVal ues. graphi cs_exposures = Fal se;

squarePtr->gc = Tk_Get GC(squarePtr->t kw n,

GCFunct i on| GCG aphi csExposures, &gcVal ues);

}
Tk_CGeonet ryRequest (squar ePtr->t kwi n, 200, 150);
Tk_Set | nt er nal Bor der (squar ePtr->t kwi n,
squar ePt r - >bor der W dt h) ;
i f (!squarePtr->updatePendi ng) {
Tk_DowWhenl dl e(Di spl aySquare, (ClientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
return TCL_OK;

Figure 38.1. The configure procedure for square widgets. It is invoked by the creation proc
and by the widget command procedure to set and modify configuration options.

eSquar e extracts the color associated with theackgr ound option and calls

Tk _Set W ndowBackgr ound to use it as the background color for the widgetin-

dow. Then it allocates a graphics context that will be used during redisplay to copy bits
from an of-screen pixmap into the window (unless some previous call to the procedure
has already allocated the graphics context). Mextf i gur eSquar e callsTk_Geom

et ryRequest andTk_Set | nt er nal Bor der W dt h to provide information to its
geometry manager (this will be discussed in Chapter 43). Fiitalyanges for the wid-
get to be redisplayed; this will be discussed in Chapter 40.

The square widget command procedure

Figures 38.2 and 38.3 contain the C codeStpuar eW dget Cormand, which
implements widget commands for square widgets. The main portion of the procedure con-
sists of a series off statements that compaegv[1] successively toc'onfi gure”,

“posi tion”, and “si ze”, which are the three widget commands defined for squares. If

DRAFT (7/10/93): Distribution Restricted

350 Configuring Widgets

int SquareWdgetCnd(CientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Square *squarePtr = (Square *) clientData;
int result = TCL_CK;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " option ?arg arg ...?2\"",
(char *) NULL);
return TCL_ERROR,

}

Tk_Preserve((CientData) squarePtr);
if (strcnp(argv[1l], "configure") == 0) {
if (argc == 2)
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, (char *) NULL, 0);
} elseif (argc == 3) {
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, argv[2], 0);
} else {
result = ConfigureSquare(interp, squarePtr,
argc-2, argv+2, TK_CONFI G_ARGV_QONLY);

}
} else if (strcnp(argv[1l], "position") == 0) {
if ((argc '=2) & & (argc !'=4)) {
Tcl _AppendResul t (i nterp,"wong # args: should be \"",
argv[0], " position ?x y?2\"", (char *) NULL);
goto error;

if (argc ==
if ((Tk_GetPixels(interp, squarePtr->tkw n,
argv[2], &squarePtr->x) != TCL_CK) ||
(Tk_Get Pi xel s(interp, squarePtr->tkw n,
argv[3], &squarebPtr->y) = TCL_OK)) {
goto error;

}
Keepl nW ndow(squarePtr);
}
sprintf(interp->result, "% %", squarePtr->x,

squarePtr->y);
} else if (strcnp(argv[1l], "size") == 0) {

Figure 38.2. Thewidget command procedure for square widgets. Continued in Figure 38.3.

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 351

if ((argc '=2) & & (argc !'= 3)) {
Tcl _AppendResul t (i nterp, "wong # args: should be \"",
argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
i f (.argc. == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwi n, argv[2],
&) = TCL_OK) {
goto error;

}
if ((i <=0) || (i >100)) {
Tcl _AppendResul t (i nterp, "bad size \"", argv[2],
"\"", (char *) NULL);
goto error;
}
squarePtr->size = i;
Keepl nW ndow(squarePtr);

sprintf(interp->result, "%l", squarePtr->size);
} else {
Tcl _AppendResul t (i nterp, "bad option \"", argv[1],
"\": nust be configure, position, or size",
(char *) NULL);
goto error;

i f (!squarePtr->updat ePendi ng) {
Tk_Dowhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1;

}
Tk_Rel ease((CientData) squarePtr);
return result;

error:
Tk_Rel ease((ClientData) squarePtr);
return TCL_ERROR;

Figure 38.3. The widget command procedure for square widgets, continued from Figure 3i

ar gv[1] matches one of these strings then the corresponding code is executed; other-
wise an error is generated.

Theconf i gur e widget command is handled in one three ways, depending on how
many additional uments it receives. If at most one additiongUuarent is provided then
Squar eW dget Cnd callsTk_Conf i gur el nf o to create descriptive information for
one or all of the widgeg’'configuration options. If two or more additionajuanents are

DRAFT (7/10/93): Distribution Restricted

352 Configuring Widgets

voi d Keepl nW ndow Square *squarePtr) {
int i, bd;
bd = 0O;
if (squarePtr->relief !'= TK RELI EF_FLAT) {
bd = squarePtr->border Wdt h;

}
i = (Tk_Wdth(squarePtr->tkw n) - bd)
- (squarePtr->x + squarePtr->size);
if (i <0) {
squarePtr->x += i;

}
i = (Tk_Hei ght (squarePtr->tkwi n) - bd)
- (squarePtr->y + squarePtr->size);
if (i <0) {
squarePtr->y += i;
}

if (squarePtr->x < bd) {
squarePtr->x = bd;

if (squarePtr->y < bd) {
squarePtr->y = bd;
}

Figure 38.4. TheKeepl nW ndow procedure adjusts the location of the square to make sure
is visible in the widge$ window

provided therSquar eW dget Crd passes the additionalgaments tcConf i gur -
eSquar e for processingSquar eW dget Cnd specifies the

TK_CONFI G_ARGV_ONLY flag, whichConf i gur eSquar e passes on tok_Con-
fi gureW dget so that options not specified explicitly &ygv are left as-is.

Theposi ti on andsi ze widget commands change the geometry of the square dis-
played in the widget, and they have similar implementations. If new values for the geome-
try are specified then each command cBlisGet Pi xel s to convert the gument(s) to
pixel distances. Thei ze widget command also checks to make sure that the new size is
within a particular range of values. Then both commands inkekel nW ndow;, which
adjusts the position of the square if necessary to ensure that it is fully visible in the wid-
get’s window (see Figure 38.4). Finglthe commands print the current values into
i nterp->result to return them as result.

Squar eW dget Cd invokes the procedurd&_Pr eser ve andTk_Rel ease as
a way of preventing the widget record from being destroyed while the widget command is
executing. Chapter 41 will discuss these procedures in more detail. The square widget is
so simple that the calls arémctually needed, but virtually all real widgets do need them
so | put them irSquar eW dget Cnd too.

DRAFT (7/10/93): Distribution Restricted

Chapter 39
Events

39.1

This chapter describes BKibrary procedures for event handling. The code you'll write
for event handling divides into three parts. The first part consists of code that creates event
handlers: it informs Tk that certain callback procedures should be invoked when particular
events occufThe second part consists of the callbacks themselves. The third part consists
of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just
become readable), and timer events. Tk also allows you to tdatallbacks, which
cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are
used to defer redisplays and other computations until all pending events have been pro-
cessed. Tls procedures for event handling are summarizealieT39.1.

If you are not already familiar with X events, | recommend reading about them in
your favorite Xlib documentation before reading this chapter

X events

The X window server generates a number dediint events to report interesting things
that occur in the window system, such as mouse presses or changes in as\simiow’
Chapter XXX showed how you can use §ti nd command to write event handlers as
Tcl scripts. This section describes how to write event handlers ipp@ally you'll only
use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-
played.

353

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

354

Events

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Arranges fopr oc to be invoked whenever any of the events selected b
mask occurs fort kwi n.
voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Deletes the event handler that matamesk, pr oc, andcl i ent Dat a, if
such a handler exists.

void Tk_CreateFil eHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)
Arranges foipr oc to be invoked whenver one of the conditions indicated
mask occurs for the file whose descriptor numbérds
voi d Tk_Del et eFi |l eHandl er (i nt fd)
Deletes the file handler féd, if one exists.

Tk_Ti mer Token Tk_CreateTi nerHandl er(int mlliseconds,
Tk_TimerProc *proc, ClientData clientData)
Arranges fopr oc to be invoked aftam | | i seconds have elapsed.
Returns a token that can be used to cancel the callback.
voi d Tk_Del et eTi nmer Handl er (Tk_Ti ner Token t oken)
Cancels the timer callback indicatedthyken, if it hasnt yet triggered.

voi d Tk_DoWhenl dl e(Tk_I dl eProc *proc, CientData clientData)
Arranges fopr oc to be invoked when Tk has nothing else to do.

voi d Tk_Cancel I dl eCal | (Tk_l dl eProc *proc, CientData clientData)
Deletes any existing idle callbacks fatl ePr oc andcl i ent Dat a.

voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Arranges forpr oc to be invoked whenever any X event is received by tf
process.
voi d Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Deletes the generic handler givengnyoc andcl i ent Dat a, if such a
handler exists.

voi d Tk_Mai nLoop(voi d)
Processes events until there are no more windows left in this process.
int Tk_DoOneEvent (i nt flags)
Processes a single event of any sort and then reRirags is normally 0
but may be used to restrict the events that will be processed or to retur
immediately if there are no pending events.

Table 39.1. A summary of the Tk library procedures for event handling.

DRAFT (7/10/93): Distribution Restricted

39.1 X events 355

Conf i gureNot i fy: these events occur when the wind®aize or position changes
so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-
tioned).

Focusl n andFocusCQut : these events notify the widget that it has gotten or lost the
input focus, so it can turn on orfdf insertion cursor

Dest royNot i fy: these events notify the widget that its window has been destroyed,
so it should free up the widget record and any associated resources.

The responses to these events are all relatively obvious and it is unlikely that a user or
application developer would want to deal with the events so it makes sense to hard-code
the responses in C. For most other events, such as key presses and mouse adi@ns, it’
ter to define the handlers iglwith thebi nd command. As a widget writer you can cre-
ate class bindings to give the widget its default behatkhien users can modify the class
bindings or augment them with additional widget-specific bindings. By usiresTuch

as possible you'll make your widgets more flexible.

The procedur@k_Cr eat eEvent Handl er is used by widgets to register interest

in X events:

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong

mask,

Tk_EventProc *proc, ClientData clientData);

Thet kwi n agument identifies a particular window amask is an OR’ed combination
of bits likeKeyPr essMask andSt r uct ur eNot i f yMask that select the events of
interest (refer to Xlib documentation for details on the mask values that are available).
When one of the requested events occurs kovi n Tk will invoke pr oc to handle the
event.Pr oc must match the following prototype:

typedef void Tk_EventProc(CientData clientData, XEvent

*eventPtr);
Its first agument will be the same as tbiki ent Dat a value that was passed to
Tk_Cr eat eEvent Handl er and the secondgument will be a pointer to a structure
containing information about the event (see your Xlib documentation for details on the
contents of aiXEvent structure). There can exist any number of event handlers for a
given window and mask but there can be only one event handler with a pattioilar,
mask, pr oc, andcl i ent Dat a. If a particular event matches thkewi n andnask for
more than one handler then all of the matching handlers are invoked, in the order in which
they were created.

For example, the C code for the square widget dealsBxjplos e, Conf i gur eNo-
tify,andDestroyNotify events. ® process these events, the following code is
present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_Cr eat eEvent Handl er (squar ePt r - >t kwi n,

Exposur eMask| St ruct ureNot i f yMask,
Squar eEvent Proc, (CientData) squarePtr);

DRAFT (7/10/93): Distribution Restricted

356 Events

voi d SquareEventProc(C ientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {
if ((eventPtr->xexpose.count == 0)
&& !squar ePtr - >updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == ConfigureNotify) {
Keepl nW ndow squar ePtr);
i f (!squarePtr->updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == DestroyNotify) ({
Tcl _Del et eConmand(squar ePtr->i nt erp,
Tk_Pat hNanme(squar ePtr->t kwi n));

squarePtr->tkwin = NULL;

if (squarePtr->flags & REDRAW PENDI NG ({
Tk_Cancel 1 dl eCal | (Di spl aySquar e,

(dientData) squarePtr);

Tk_Eventual | yFree((d ientData) squarePtr, DestroySquare);

Figure 39.1. The event procedure for square widgets.

TheExposur eMask bit select&Expose events andt r uct ur eNot i f yMask selects
bothConf i gureNot i fy andDest r oyNot i fy events, plus several other types of
events. The address of the widgetcord is used as tliki ent Dat a for the callback,
so it will be passed t8quar eEvent Pr oc as its first ggument.

Figure 39.1 contains the code fguar eEvent Pr oc, the event procedure for
square widgets. Whenever an event occurs that maisipess ur eMask or St r uc-
tureNot i f yMask Tk will invoke Squar eEvent Pr oc. Squar eEvent Pr oc casts
itscl i ent Dat a agument back into &quar e * pointer then checks to see what kind
of event occurred. FdExpose eventsSquar eEvent Pr oc arranges for the widget to
be redisplayed. Faonf i gur eNot i f y eventsSquar eEvent Pr oc callsKeepl n-

W ndowto make sure that the square is still visible in the window (see Figure 38.4 on
page 352), theBquar eEvent Pr oc arranges for the widget to be redrawn. For

Dest royNot i fy eventsSquar eEvent Pr oc starts the process of destroying the wid-
get and freeing its widget record; this process will be discussed in more detail in Chapter
41.

DRAFT (7/10/93): Distribution Restricted

39.2 File events 357

39.2

If you should need to cancel an existing X event handler you can ifkokeel e-
t eEvent Handl er with the same guments that you passeditk_Cr e-
at eEvent Handl er when you created the handler:
voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong
mask,
Tk_EventProc *proc, ClientData clientData);
This deletes the handler correspondingkai n, mask, pr oc, andcl i ent Dat a so
that its callback will not be invoked anymore. If no such handler exists then the procedure
does nothing. Tk automatically deletes all of the event handlers for a window when the
window is destroyed, so most widgets never need tdkalDel et eEvent Handl er.

File events

Event-driven programs like Tk applications should not block for long periods of time

while executing any one operation, since this prevents other events from being serviced.
For example, suppose that a Tk application attempts to read from its standard input at a
time when no input is available. The application will block until input appears. During this
time the process will be suspended by the operating system so it cannot service X events.
This means, for example, that the application will not be able to respond to mouse actions
nor will it be able to redraw itself. Such behavior is likely to be annoying to thesirsss

he or she expects to be able to interact with the application at any time.

File handlers provide an event-driven mechanism for reading and writing files that
may have long I/O delays. The procedike Cr eat eFi | eHandl er creates a new file
handler:

void Tk_CreateFil eHandl er(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);
Thef d agument gives the number of a POSIX file descriptor (e.g. 0 for standard input, 1
for standard output, and so oWhsk indicates whepr oc should be invoked. It is an
OR’ed combination of the following bits:

TK_READABLE means that Tk should involke oc whenever there is data waiting to
be read orf d;

TK_VWRI TABLE means that Tk should invoke oc whenevef d is capable of accept-
ing more output data;

TK_EXCEPTI ON means that Tk should invoke oc whenever an exceptional condi-
tion is present fof d.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(CientData clientData,
i nt mask);

DRAFT (7/10/93): Distribution Restricted

358

Events

Note:

Thecl i ent Dat a agument will be the same as thki ent Dat a agument to

Tk_Creat eFi | eHandl er andnmask will contain a combination of the bits
TK_READABLE, TK_WRI TABLE, andTK_EXCEPTI ONto indicate the state of the file at
the time of the callback. There can exist only one file handler for a given file at a time; if
you callTk_Cr eat eFi | eHandl er at a time when there exists a handlerffdrthen

the new handler replaces the old one.

You can temporarily disable a file handler by setting its mask tolDcan eset the mask
later when you want teerenable the handler

To delete a file handlecall Tk_Del et eFi | eHandl er with the samé d amgu-
ment that was used to create the handler:

voi d Tk_Del et eFi | eHandl er(int fd);
This removes the handler fbd so that its callback will not be invoked again.

With file handlers you can do event-driven file I/0. Rather than opening a file, reading
it from start to finish, and then closing the file, you open the file, create a file handler for it,
and then return. When the file is readable the callback will be invoked. It issues exactly
one read request for the file, processes the data returned by the read, and then returns.
When the file becomes readable again (perhaps immediately) then the callback will be
invoked again. Eventuallyhen the entire file has been read, the file will become readable
and the read call will return an end-of-file condition. At this point the file can be closed
and the file handler deleted.ittWthis approach, your application will still be able to
respond to X events even if there are long delays in reading the file.

For examplewi sh uses a file handler to read commands from its standard input. The
main program fowi sh creates a file handler for standard input (file descriptor 0) with the
following statement:

Tk_Cr eat eFi | eHandl er (0, TK_READABLE, StdinProc, (O ientData)
NULL) ;
Tcl _DStri ngl ni t (&onmand) ;

In addition to creating the callback, this code initializes a dynamic string that will be used
to buffer lines of input until a completecfcommand is ready for evaluation. Then the
main program enters the event loop as will be described in Section 39.6. When data
becomes available on standard inutli nPr oc will be invoked. Its code is as follows:
void StdinProc(CientData clientData, int mask) {

int count, code;

char input[1000];

count = read(0, input, 1000);

if (count <= 0) {

... handle erors and end of file...
}

Tcl _DSt ri ngAppend(&onmmrand, input, count);

if (Tcl _CrdConpl ete(Tcl _DStringVal ue(&onmmand)) {
code = Tcl _Eval (interp,

DRAFT (7/10/93): Distribution Restricted

39.3 Timer events 359

Note:

Note:

39.3

Tcl _DStringVval ue(&onmmand)) ;
Tcl _DStri ngFree(& onmand) ;

}
After reading from standard input and checking for errors and end-@tfiti,nPr oc
adds the new data to the dynamic stsragirrent contents. Then it checks to see if the
dynamic string contains a complete Tommand (it wort, for example, if a line such as
“foreach i $x {"“has been entered but the body of tlweg each loop hasrt yet
been typed). If the command is complete tBedi nPr oc evaluates the command and
clears the dynamic string for the next command.
It is usually best to use non-blocking I/O with file handlers, just to be absolutelthaiir
I/O operations dot’block. B request non-blocking 1/0, specify the flagNONBLOCK to
thef cnt| POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockesgstential that you use use non-blocking I/O;

otherwise if you supply too much data imra t e system call the output buffers will fill
and the pocess will be put to sleep.

For ordinary disk files it ish’'necessary to use the event-driven apph described in this
section, sincegading and writing these files &y incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

Timer events

Timer events trigger callbacks after particular time intervals. For example, widgets use
timer events to display blinking insertion cursors. When the cursor is first displayed in a
widget (e.g. because it just got the input focus) the widget creates a timer callback that will
trigger in a few tenths of a second. When the timer callback is invoked it turns the cursor
off if it was on, or on if it was &f and then reschedules itself by creating a new timer call-
back that will trigger after a few tenths of a second more. This process repeats indefinitely
so that the cursor blinks on and.&Vhen the widget wishes to stop displaying the cursor
altogether (e.g. because it has lost the input focus) it cancels the callback and turns the cur-
sor of.
The procedur&k_Cr eat eTi mer Handl er creates a timer callback:
Tk_Ti mer Token Tk_CreateTi merHandl er (int mlliseconds,
Tk_TimerProc *proc, ClientData clientData);

Them | | i seconds agument specifies how many milliseconds should elapse before
the callback is invoked’k _Cr eat eTi ner Handl er returns immediate)yand its
return value is a token that can be used to cancel the callback. After the given interval has
elapsed Tk will invokepr oc. Pr oc must match the following prototype:

void Tk_TimerProc(C ientData clientData);

DRAFT (7/10/93): Distribution Restricted

360 Events

Its agument will be the same as thki ent Dat a agument passed fik_Cr e-
at eTi nmer Handl er. Pr oc is only called once, then Tk deletes the callback automati-
cally. If you wantpr oc to be called over and over at regular intervals givemc should
reschedule itself by callingk_Cr eat eTi nmer Handl er each time it is invoked.

Note: Thee is no guarantee thair oc will be invoked at exactly the specified time. If the
application is busy mrcessing other events when the specified time occurgitizen

wont be invoked until the next time the application invokes the event dispaisher
described in Section 39.6.

Tk_Del et eTi mer Handl er cancels a timer callback:
voi d Tk_Del et eTi mer Handl er (Tk_Ti mer Token t oken);

It takes a single gument, which is a token returned by a previous calktoCr e-

at eTi mer Handl er, and deletes the callback so that it will never be invoked. It is safe
to invokeTk Del et eTi nmer Handl er even if the callback has already been invoked;
in this case the procedure has reet

39.4 Idle callbacks

The procedurd@k_DoWhenl dl e creates aidle callback

voi d Tk_DoWhenl dl e(Tk_I dl eProc *proc, CientData clientData);
This arranges fgor oc to be invoked the next time the application becomes idle. The
application is idle when TE'main event-processing procedurke, DoOneEvent , is
called and no X events, file events, or timer events are.rBadyally when this occurs
Tk _DoOneEvent will suspend the process until an event occurs. Howé\here exist
idle callbacks then all of them are invoked. Idle callbacks are also invoked when the
updat e Tcl command is invoked. Ther oc for an idle callback must match the follow-
ing prototype:

typedef void Tk_ldleProc(CientData clientData);
It returns no result and takes a singiguanent, which will be the same as thd ent -
Dat a agument passed ttk_DoWhenl dl e.

Tk_Cancel 1 dl eCal | deletes an idle callback so that it widme invoked after all:

voi d Tk_Cancel I dl eCal | (Tk_Idl eProc *proc, dientData

clientData);
Tk_Cancel | dl eCal | deletes all of the idle callbacks that match ePr oc and
cl i ent Dat a (there can be more than one). If there are no matching idle callbacks then
the procedure has ndfedt.

Idle callbacks are used to implement the delayed operations described in Section
XXX. The most common use of idle callbacks in widgets is for redisfilas/generally a
bad idea to redisplay a widget immediately when its state is modified, since this can result
in multiple redisplays. For example, suppose the following setlafommands is
invoked to change the colaize, and location of a square widgst

DRAFT (7/10/93): Distribution Restricted

39.5 Generic event handlers 361

39.5

.s configure -foreground purple

.S size 2c

.s position 1.2c 3.1c
Each of these commands modifies the widget in a way that requires it to be redisplayed,
but it would be a bad idea for each command to redraw the widget. This would result in
three redisplays, which are unnecessary and can cause the widget to flash as it steps
through a series of changes. It is much better to wait until all of the commands have been
executed and then redisplay the widget once. Idle callbacks provide a way of knowing
when all of the changes have been made: theytwerihvoked until all available events
have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever

it notices that it needs to be redrawn it invokes the following code:

i f (!squarePtr->updatePendi ng) {

Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
This arranges fobi spl aySquar e to be invoked as an idle handler to redraw the wid-
get. Theupdat ePendi ng field of the widget record keeps track of whetbespl ay-
Squar e has already been scheduled, so that it will only be scheduled once. When
Di spl aySquar e is finally invoked it resetspdat ePendi ng to zero.

Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur
for a particular window managed by Tk. Generic event handlers provide access to events
that arert associated with a particular windosuch advappi ngNot i f y events, and to
events for windows not managed by Tk (such as those in other applications). Generic
event handlers are rarely needed and should be used sparingly
To create a generic event handtall Tk_Cr eat eGeneri cHandl er:
voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
This will arrange fopr oc to be invoked whenever any X event is received by the appli-
cation.Pr oc must match the following prototype:
typedef int Tk_GenericProc(CientData clientData,
XEvent *eventPtr);
Itscl i ent Dat a agument will be the same as ttki ent Dat a passed tdk_Cr e-
at eGeneri cHandl er andevent Pt r will be a pointer to the X event. Generic han-
dlers are invoked before normal event handlers, and if there are multiple generic handlers
then they are called in the order in which they were created. Each generic handler returns
an integer result. If the result is non-zero it indicates that the handler has completely pro-

DRAFT (7/10/93): Distribution Restricted

362

Events

Note:

39.6

cessed the event and no further handlers, either generic or normal, should be invoked for
the event.
The procedur@k_Del et eGeneri cHandl er deletes generic handlers:
Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
Any generic handlers that matphoc andcl i ent Dat a are removed, so thpt oc
will not be invoked anymore.
Tk_Cr eat eGeneri cHandl er does nothing to ensaithat the deséd events ar
actually sent to the application. For example, if an application wishesstmnd to events
for a window in some other application then it must invéBel ect | nput to notify the
X server that it wants teeceive the events. Once the events arrive, Tk will dispatch them

to the generic handleHoweveran application should never invoX8el ect | nput for
a window managed by Tk, since this will intezfaiith Tk event management.

Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event
handlers and writing callback procedures. The final part of event management is to invoke
the Tk event dispatchaewhich waits for events to occur and invokes the appropriate call-
backs. If you dort’invoke the dispatcher then no events will be processed and no call-
backs will be invoked.

Tk provides two procedures for event dispatchifig: Mai nLoop and
Tk _DoOneEvent . Most applications only usgk_Mai nLoop. It takes no agjuments
and returns no result and it is typically invoked once, in the main program after initializa-
tion. Tk_Mai nLoop calls the Tk event dispatcher repeatedly to process events. When all
available events have been processed it suspends the process until more evearsdoccur
it repeats this over and ovétrreturns only when evefik_W ndow created by the pro-
cess has been deleted (e.g. after ttesst r oy . ” command has been executed). A typi-
cal main program for a Tk application will createch imterpreter call
Tk_Cr eat eMai nW ndowto create a Tk application plus its main wind@earform
other application-specific initialization (such as evaluatingladript to create the appli-
cation’s interface), and then cdlk_Mai nLoop. WhenTk _Mai nLoop returns the main
program exits. Thus Tk provides top-level control over the applicatex@cution and all
of the applicatiors useful work is carried out by event handlers invoked kiavai n-
Loop.

The second procedure for event dispatchintkisDoOneEvent , which provides a
lower level interface to the event dispatcher:

int Tk_DoOneEvent (i nt flags)

Thef | ags agument is normally 0 (pequivalently TK_ALL_EVENTS). In this case
Tk_DoOneEvent processes a single event and then returns 1. If no events are pending

DRAFT (7/10/93): Distribution Restricted

39.6 Invoking the event dispatcher 363

thenTk_DoOneEvent suspends the process until an event arrives, processes that event,
and then returns 1.
For exampleTk _Mai nLoop is implemented usingk_DoOneEvent :
voi d Tk_Mai nLoop(void) {
whi l e (tk_Numvai nW ndows > 0) {
Tk_DoOneEvent (0);
}

}

The variablg k_Numvai nW ndows is maintained by Tk to count the total number of
main windows (i.e. applications) managed by this proddssivai nLoop just calls
Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent is also used by commands such keai t that want to process
events while waiting for something to happen. For examplettkedi t w ndow”
command processes events until a given window has been deleted, then it returns. Here is
the C code that implements this command:

i nt done;

Tk_Creat eEvent Handl er (t kwi n, StructureNotifyMask,
Wai t W ndowPr oc,
(dientData) &done);
done = 0;
while (!done) {
Tk_DoOneEvent (0) ;
}

The variablg kwi n identifies the window whose deletion is awaited. The code creates an
event handler that will be invoked when the window is deleted, then invokes
Tk_DoOneEvent over and over until theone flag is set to indicate thatkwi n has
been deleted. The callback for the event handler is as follows:
voi d Wai t WndowProc(C ientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {
*donePtr = 1;
}

}
Thecl i ent Dat a agument is a pointer to the flag variabMi t W ndowPr oc checks
to make sure the event i¥ast r oyNot i fy event 6t ruct ur eNot i f yMask also
selects several other kinds of events, sudboa i gur eNot i fy) and if so it sets the
flag variable to one.

Thef | ags agument toTk_DoOneEvent can be used to restrict the kinds of
events it will considelf it contains any of the bifEBK_X EVENTS, TK_FI LE_EVENTS,
TK_TI MER_EVENTS, or TK_| DLE_EVENTS, then only the events indicated by the
specified bits will be considered. Furthermoré,lifigs includes the biTK_DONT_-
WAI T, or if no X, file, or timer events are requested, thieknDoOneEvent won't sus-

DRAFT (7/10/93): Distribution Restricted

364 Events

pend the process; if no event is ready to be processed then it will return immediately with
a 0 result to indicate that it had nothing to do. For exampleptgdt e i dl et asks”
command is implemented with the following code, which use¥khé DLE EVENTS
flag:
whil e (Tk_DoOneEvent (TK_| DLE_EVENTS) != 0) {
/* enpty | oop body */
}

DRAFT (7/10/93): Distribution Restricted

Chapter 40
Displaying Widgets

40.1

Tk provides relatively little support for actually drawing things on the screen. For the most
part you just use Xlib functions liké€Dr awlLi ne andXDr awSt r i ng. The only proce-

dures provided by Tk are those summarizedaipld 40.1, which create three-dimensional
effects by drawing light and dark shadows around objects (they will be discussed more in
Section 40.3). This chapter consists mostly of a discussion of techniques for delaying
redisplays and for using pixmaps to doubleféaufedisplays. These techniques reduce
redisplay overheads and help produce smooth vistggitefwith mimimum flashing.

Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-
ing the widget every time its state is modified, you shouldrus@oWhenl dl e to
schedule the widget'display procedure for execution latwhen the application has fin-
ished processing all available events. This allows any other pending changes to the widget
to be completed beforestredrawn.

Delayed redisplay requires you to keep track of what to redramsimple widgets
such as the square widget or buttons or labels or entries, | recommend the simple approach
of redrawing the entire widget whenever you redraw any part of it. This eliminates the
need to remember which parts to redraw and it will have fine performance for widgets like
the ones mentioned above.

For lager and more complex widgets like texts or canvases fitgsactical to redraw
the whole widget after each change. This can take a substantial amount of time and cause
annoying delays, particularly for operations like dragging where redisplays happen many

365

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

366 Displaying Widgets

voi d Tk_Fil | 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Fills the area ofir awabl e given byx, y, wi dt h, andhei ght with the
background color frorbor der, then draws a 3-D bordbor der W dt h
pixels wide around (but just inside) the rectanBd.i ef specifies the 3-D
appearance of the border
voi d Tk_Draw3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Same agk_Fi | | 3DRect angl e except only draws the border

voi d Tk_Fil | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Fills the area of a polygon gir awabl e with the background color from
bor der. The polygon is specified poi nt Pt r andnunPoi nt s and
need not be closed. Also draws a 3-D border around the poBgoder -
W dt h specifies the width of the bordeneasured in pixels to the left of th
polygons trajectory (if negative then the border is drawn on the right).
Lef t Rel i ef specifies the 3-D appearance of the border T&gRELI| E-
F_RAI SED means the left side of the trajectory appears higher than the
right).
voi d Tk_Fi |l | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Same agk_Fi | | 3DPol ygon, except only draws the border without fill
ing the interior of the polygon.

Table 40.1. A summary of Tks procedures for drawing 3-Dfegts.

times per second. For these widgets you should keep information in the widget record
about which parts of the widget need to be redrawn. The display procedure can then use
this information to redraw only thefa€ted parts.

| recommend recording what to redraw in the simplest (coarsest) way that gives ade-
quate performance. Keeping redisplay information on a very fine grain is likely to add
complexity to your widgets and probably wbimprove performance noticeably over a
coarser mechanism. For example, the Tk text widget does not record what to redraw on a
charactetby-character basis; instead, it keeps track of which lines on the screen need to be
redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays
only involve one or two lines, and todayvorkstations are fast enough to redraw hun-
dreds of lines per second, so the widget can keep up with the user even if redraws are
occurring dozens of times a second (such as when the user is dragging one end of the
selection). Tks canvases optimize redisplay by keeping a rectangular bounding box that
includes all of the modified objects. If two small objects at opposite corners of the window
are modified simultaneously then the redisplay area will include the entire windbw

DRAFT (7/10/93): Distribution Restricted

40.2 Double-buffering with pixmaps 367

this doesrt' happen very often. In more common cases, such as dragging a single small
object, the bounding box approach requires only a small fraction of the widoe to
be redrawn.

40.2 Double-buffering with pixmaps

If you want to achieve smooth dragging and other vistietefthen you should not draw
graphics directly onto the screen, because this tends to cause annoying flashes. The reason
for the flashes is that widgets usually redisplay themselves by first clearing an area to its
background color and then drawing the foreground objects. While you're redrawing the
widget the monitor is continuously refreshing itself from display men®oynetimes the
widget will be refreshed on the screen after it has been cleared but before the objects have
been redrawn. For this one screen refresh the widget will appear to be empty; by the time
of the next refresh you'll have redrawn all the objects so they’ll appear again. The result is
that the objects in the widget will appear to flaghtben on. This flashing is particularly
noticeable during dynamic actions such as dragging or animation where redisplays happen
frequently
To avoid flashing it best to use a technique caltiedble-buffering, where you redis-

play in two phases using arf-streen pixmap. The display procedure for the square wid-
get, shown in Figure 40.1, uses this approach. It X@lisat ePi xnap to allocate a
pixmap the size of the windowhen it callsSTk_Fi | | 3DRect angl e twice to redraw the
widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are
copied to the screen by calliXgopy Ar ea. With this approach the screen makes a
smooth transition from the widgstprevious state to its new states #till possible for the
screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn
in either its correct old value or its correct new value.

Note: If you compile the square widget intow sh you can use the dragging script from Section
36.4 to compare double-buffering with drawing directly on the screen. To make a version
of the square widget that draws directly on the screen, just delete the calls to
XCr eat ePi xmap, XCopyAr ea, and XFr eePi xmap in Di spl aySquar e and
replace the pmargumentsto Tk_Fi | | 3DRect angl e with TkW ndow d(t kwi n) .

Or, you can use the version of the square widget that comes with the Tk distribution; it has
a- dbl option that you can use to turn double-buffering on and off dynamically.

40.3 Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are
summarized in dble 40.1. These procedures make it easy to produce the three-dimen-
sional efects required for Motif widgets, where light and dark shadows are drawn around
objects to make them look raised or sunken.

DRAFT (7/10/93): Distribution Restricted

368 Displaying Widgets

voi d DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_W ndow tkwi n = squarePtr->tkw n;
Pi xmap pm
squar ePt r - >updat ePendi ng = O;
if (!Tk_lIsvapped(tkw n)) {
return;
}

pm = XCreat ePi xmap(Tk_Di spl ay(tkwi n), Tk_W ndow d(t kwi n),
Tk_Wdth(tkw n), Tk_Hei ght (tkw n), Tk_Depth(tkw n));
TKk_Fi || 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->bgBorder
0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),

squar ePtr->borderWdth, squarePtr->relief);

Tk_Fi | | 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>si ze,

squar ePtr->border Wdth, squarePtr->relief);

XCopyAr ea(Tk_Di spl ay(tkwi n), pm Tk_W ndow d(t kwi n),
squarePtr->copyGC, 0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),
0, 0);

XFreePi xmap(Tk_Di spl ay(tkwi n), pm;

Figure 40.1. The display procedure for square widgets. It first clears

squar ePt r - >updat ePendi ng to indicate that there is no longer an idle callback for

Di spl aySquar e scheduled, then it makes sure that the window is mapped (if not thes ti®
need to redisplay). It then redraws the widget in &saken pixmap and copies the pixmap on
the screen when done.

Before using any of the procedures able 40.1 you must allocatéf&_3DBor der
object. ATk _3DBor der records three colors (a base color for “flat” background sur-
faces and lighter and darker colors for shadows) plus X graphics contexts for displaying
objects using those colors. Chapter 38 described how to alldcag8bBor der s, for
example by using a configuration table entry of fjlie CONFI G_BORDER or by calling
Tk_Get 3DBor der.

Once you've createdBk_3DBor der you can callTk_Fi | | 3DRect angl e to
draw rectangular shapes with any of the standard reliefs:

voi d Tk_Fi |l 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y,int width, int
hei ght ,
int borderWdth, int relief);
Thedi spl ay anddr awabl e aguments specify the pixmap or window where the rect-
angle will be drawnDi spl ay is usually specified a&k_Di spl ay(t kwi n) where
t kwi n is the window being redrawbr awabl e is usually the dfscreen pixmap being
used for displaybut it can also b&k_W ndowl d(t kwi n) . Bor der specifies the col-

DRAFT (7/10/93): Distribution Restricted

40.3 Drawing procedures 369

border Wdth (150, 70)
(120, 80) v
[]
70
< > (100, 150) A (200, 150)
100 bor der W dt h
Tk_Fi | | 3DRect angl e(di spl ay, static XPoint points[] =
dr awabl e, {{200, 150},
border, 120, 80, 100, 70, {150, 70}, {100, 150}};
bor der W dt h, Tk_Fi | | 3DPol ygon(di spl ay,
TK_RELI EF_RAI SED) ; dravabl e,
(a) (b)

Figure 40.2. Figure (a) shows a call tk_Fi | | 3DRect angl e and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows a call t
Tk_Fi | | 3DPol ygon and the resulting graphic. The relie_RELI EF_RAI SED specifies that
the left side of the path should appear higher than the right, and that the border should be ¢
entirely on the left side of the pathbibr der W dt h is positive.

ors to be used for drawing the rectanifley, wi dt h, hei ght , andbor der W dt h
specify the geometry of the rectangle and its bomlkin pixel units (see Figure 40.2).
Lastly, r el i ef specifies the desired 3Dfedt, such a3 K_RELI EF_RAI SED or
TK_RELI EF_RI DGE. Tk_Fi | | 3DRect angl e first fills the entire area of the rectangle
with the “flat” color frombor der then it draws light and dark shadolr der W dt h
pixels wide around the edge of the rectangle to produceftet specified by el i ef .
Tk_Fi | | 3DPol ygon is similar toTk_Fi | | 3DRect angl e except that it draws a
polygon instead of a rectangle:
voi d Tk_Fi || 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int leftRelief);
Di spl ay, dr awabl e, andbor der all have the same meaning asTar Fi | | 3-
DRect angl e. Poi nt Pt r andnunPoi nt s define the polygos’shape (see your Xlib
documentation for information aboXPoi nt structures) antor der W dt h gives the
width of the borderall in pixel unitsLef t Rel i ef defines the relief of the left side of
the polygonrs trajectory relative to its right side. For examplé gf t Rel i ef is speci-
fied asTK_RELI EF_RAI SED then the left side of the trajectory will appear higher than

DRAFT (7/10/93): Distribution Restricted

370

Displaying Widgets

the right side. If ef t Rel i ef isTK_RELI EF_RI DCGE or TK_REL| EF_GROOVE then
the border will be centered on the polygommajectory; otherwise it will be drawn on the
left side of the polygos'trajectory ifbor der W dt h is positive and on the right side if
bor der W dt h is negative. See Figure 40.2 for an example.

The proceduresk _Dr aw3DRect angl e andTk_Dr aw3DPol ygon are similar to
Tk_Fi || 3DRect angl e andTk_Fi | | 3DPol ygon except that they only draw the
border without filling the interior of the rectangle or polygon.

DRAFT (7/10/93): Distribution Restricted

Chapter 41
Destroying Widgets

41.1

This chapter describes how widgets should clean themselves up when they are destroyed.
For the most part widget destruction is fairly straightforwardjitst a matter of freeing

all of the resources associated with the widget. Howdéwvere is one complicating factor

which is that a widget might be in use at the time it is destroyed. This leads to a two-phase
approach to destruction where some of the cleanup may have to be delayed until the wid-
getis no longer in use. Tprocedures for window destruction, most of which have to do
with delayed cleanup, are summarized abl€ 41.1.

Basics

Widgets can be destroyed in thredeafiént ways. First, théest r oy Tcl command can
be invoked; it destroys one or more widgets and all of their descendants in the window
hierarchy Second, C code in the application can invbkeDest r oyW ndow; which
has the samefett as thelest r oy command:

voi d Tk_DestroyW ndow Tk_W ndow t kwi n);
Tk_Dest r oyW ndowis not invoked very often but it is used, for example, to destroy a
new widget immediately if an error is encountered while configuring it (see Figure 37.1 on
page 373). The last way for a widget to be destroyed is for someone to delete its X window
directly. This does not occur very often, and is not generally a good idea, but in some cases
it may make sense for a top-level window to be deleted externally (by the window man-
ager for example).

371

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

372

Destroying Widgets

41.2

voi d Tk_Dest r oyW ndow(TK_W ndow t kwi n)
Destroyst kwi n and all of its descendants in the widget hierarchy

void Tk_Preserve(CdientData clientData)
Makes sure thatl i ent Dat a will not be freed until a matching call to
Tk_Rel ease has been made.

voi d Tk_Rel ease(C i entData clientData)
Cancels a previousk_Pr eser ve call forcl i ent Dat a. May cause
cl i ent Dat a to be freed.

voi d Tk_Eventual |l yFree(ClientData clientData Tk_FreeProc
*freeProc)
Invokesf r eePr oc to free upcl i ent Dat a unlessTk_Pr eser ve has
been called for it; in this case eePr oc won't be invoked until each
Tk_Pr eser ve call has been cancelled with a calfto_Rel ease.

Table 41.1. A summary of the Tk library procedures for destroying widgets and delaying ok
cleanup.

A widget should handle all of these forms of window destruction in the same way
using a handler fobest r oyNot i f y events. Tk makes sure thabast r oyNot i fy

event is generated for each window that is destroyed and tdfresnup itsTk_W ndow

structure until after the handlers for the event have been invoked. When a widget receives

aDest royNoti fy event it typically does four things to clean itself up:

1. It deletes the widget command for the widget by calling _Del et eCommand.

2. It cancels any idle callbacks and timer handlers for the widget, such as the idle callback
to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling
Tk_FreeOpt i ons, but widgets usually have a few resources such as graphics con-
texts that are not directly associated with configuration options.

4. 1t frees the widget record.

For square widgets the first two of these actions are carried out in the event procedure, and
the third and fourth actions are carried out in a separate procedure called

Dest r oySquar e. Dest r oySquar e is thedestroy procedure for square widgets; it is
invoked indirectly from the event procedure using the mechanism discussed in Section
41.2 belowlts code is shown in Figure 41.1.

Delayed cleanup

The most delicate aspect of widget destruction is that the widget could be in use at the
time it is destroyed; special precautions must be taken to delay most of the widget cleanup

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 373

voi d DestroySquare(CientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOpti ons(confi gSpecs, (char *) squarePtr,
squar ePtr->di splay, 0);
if (squarePtr->gc != None) {
Tk_FreeGC(squar ePtr->di spl ay, squarePtr->gc);

free((char *) squarePtr);

Figure 41.1. The destroy procedure for square widgets.

until the widget is no longer in use. For example, suppose that a dialoglbgxcontains
a button that is created with the following command:
button .dlg.quit -text Qit -comuand "destroy .dlg"
The purpose of this button is to destroy the dialog box. Now suppose that the user clicks

on the button with the mouse. The binding<@ut t onRel ease- 1> invokes the but-
ton'si nvoke widget command:

.dlg.quit invoke
Thei nvoke widget command evaluates the buttorc omand option as a @l script,
which destroys the dialog and all its descendants, including the button itself. When the
button is destroyedBest r oyNot i f y event is generated, which causes the bigton’
event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not
safe for the event procedure to free the bustendget record because thevoke wid-
get command is still pending on the call stack: when the event procedure returns, control
will eventually return back to the widget command procedure, which may need to refer-
ence the widget record. If the event procedure frees the widget record then the widget
command procedure will make wild references into menidnys in this situation it is
important to wait until the widget command procedure completes before freeing the wid-
get record.

However a button widget might also be deleted at a time when therea isvak e
widget command pending (e.g. the user might click on some other button, which destroys
the entire application). In this case the cleanup must be done by the event procedure since
there wont be any other opportunity for the widget to clean itself up. In other cases there
could be several nested procedures each of which is using the widget record, scogwon’
safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping
track of whether an object is in use and delaying its cleanup until it is no longer being
used.Tk_Pr eser ve is invoked to indicate that an object is in use and should not be
freed:

void Tk_Preserve(CientData clientData);

DRAFT (7/10/93): Distribution Restricted

374

Destroying Widgets

Thecl i ent Dat a agument is a token for an object that might potentially be freed; typi-
cally it is the address of a widget record. For each caktd’r eser ve there must even-
tually be a call td’k_Rel ease:

voi d Tk_Rel ease(ClientData clientData);

Thecl i ent Dat a agument should be the same as the correspondingnant to
Tk _Preserve. Each call toTk_Rel ease cancels a call tdk_Pr eser ve for the
object; once all calls tok_Pr eser ve have been cancelled it is safe to free the object.
WhenTk_Pr eser ve andTk_Rel ease are being used to manage an object you
should callTk_Event ual | yFr ee to free the object:
void Tk_Eventual | yFree(Cd ientData clientDat a,
Tk_FreeProc *freeProc);
Cl i ent Dat a must be the same as ttlei ent Dat a agument used in calls to
Tk_Preserve andTk_Rel ease, andf r eePr oc is a procedure that actually frees the
object.Fr eePr oc must match the following prototype:

typedef void Tk_FreeProc(CientData clientData);

Itscl i ent Dat a agument will be the same as tbki ent Dat a agument to
Tk_Event ual | yFr ee. If the object hashbeen protected with calls Tk _Pr e-
serve thenTk_Event ual | yFr ee will invoke f r eePr oc immediately If Tk_Pr e-
ser ve has been called for the object tHareePr oc won'’t be invoked immediately;
instead it will be invoked later whérk_Rel ease is called. IfTk_Pr eser ve has been
called multiple times thehr eePr oc won't be invoked until each of the calls to
Tk_Preser ve has been cancelled by a separate calktoRel ease.

| recommend that you use these procedures in the same way as in the square widget.
Place a call tdk_Pr eser ve at the beginning of the widget command procedure and a
call toTk_Rel ease at the end of the widget command procedure, and be sure that you
don't accidentally return from the widget command procedure without cdlkndre-
| ease, since this would prevent the widget from ever being freed. Then divide the wid-
get cleanup code into two parts. Put the code to delete the widget command, idle
callbacks, and timer handlers directly into the event procedure; this code can be executed
immediately without dangeand it prevents any new invocations of widget code. Put all
the code to cleanup the widget record into a separate delete procedure like
Dest r oySquar e, and callTk_Event ual | yFr ee from the event procedure with the
delete procedure as its eePr oc agument.

This approach is a bit conservative big gimple and safe. For example, most wid-
gets have only one or two widget commands that could cause the widget to be destroyed,
such as the nvoke widget command for buttonso¥ could move the calls ftk_Pr e-
serve andTk_Rel ease so that they only occur around code that might destroy the
widget, such as&cl _d obal Eval call. This will save a bit of overhead by eliminating
calls toTk_Pr eser ve andTk_Rel ease where they're not needed. However
Tk_Preserve andTk_Rel ease are fast enough that this optimization wsdve
much time and it means you’ll constantly have to be on the lookout to add more calls to

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 375

Note:

Tk_Preserve andTk_Rel ease if you modify the widget command procedure. If you
place the calls the beginning and end of the procedure you can make any modifications
you wish to the procedure without having to worry about issues of widget cleanup. In fact,
the square widget doesmieed calls tdk_Pr eser ve andTk_Rel ease at all, but |
put them in anyway so that | wariave to remember to add them later if | modify the
widget command procedure.

For most widgets the only place you'll need call3o Pr eser ve andTk_Re-
| ease is in the widget command procedure. Howeifgrou invoke procedures like
Tcl _Eval anywhere else in the widgetode then you'll need additioriBk_Pr e-
serve andTk_Rel ease calls there too. For example, widgets like canvases and texts
implement their own event binding mechanisms in C code; these widgets must invoke
Tk_Pr eserve andTk_Rel ease around the calls to event handlers.

The problem of freeing objects while they’re in use occurs in many contexts in Tk
applications. For example,stpossible for the- conmand option for a button to change
the buttons - command option. This could cause the memory for the old value of the
option to be freed while &'still being evaluated by thellinterpreterTo eliminate this
problem the button widget evaluates a copy of the script rather than the original. In general
whenever you make a call whose behaviortisompletely predictable, such as a call to
Tcl _Eval and its cousins, you should think about all the objects that are in use at the
time of the call and take steps to protect them. In some simple cases making local copies
may be the simplest solution, as with treonmand option; in more complex cases I'd
suggest usingk_Pr eser ve andTk_Rel ease; they can be used for objects of any
sort, not just widget records.
Tk_Preserve and Tk_Rel ease implement a form of short-term reference counts.
They are implemented under the assumption that objects are only in use for short periods
of time such as the duration of a particular procedure call, so that there are only a few
protected objects at any given time. You should not use them for long-term reference

counts where there might be hundreds or thousands of objectsthat are protected at a given
time, since they will be very dlow in these cases.

DRAFT (7/10/93): Distribution Restricted

376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

Chapter 42
Managing the Selection

42.1

This chapter describes how to manipulate the X selection from C code. The low-level pro-
tocols for claiming the selection and transmitting it between applications are defined by
X’'s InterClient Communications Convention Manual (ICCCM) and are very compli-
cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-
pler operations that you can perform on the selection:

* Create aelection handler, which is a callback procedure that can supply the selection
when it is owned in a particular window and retrieved with a particulgettar

¢ Claim ownership of the selection for a particular window
* Retrieve the selection from its current owner in a particulgetdorm.

Each of these three operations can be performed either wsisgripts or by writing C

code. Chapter XXX described how to manipulate the selection wiitbcfipts and much

of that information applies here as well, such as the usegets$an specify diérent ways

to retrieve the selectioncilscripts usually just retrieve the selection; claiming ownership
and supplying the selection are rarely done franIh contrast, is common to create
selection handlers and claim ownership of the selection from C code but rare to retrieve
the selection. Seeable 42.1 for a summary of the Tk library procedures related to the
selection.

Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more
selection handlers to supply the selection on demand when the widget owns it. Each han-

377

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

378

Managing the Selection

Tk_Cr eat eSel Handl er (Tk_W ndow t kwi n, Atomtarget,
Tk_Sel ectionProc *proc, dientData clientData, Atom fornmat)

Arranges foipr oc to be invoked whenever the selection is owned by
t kwi n and is retrieved in the form given bgr get . For mat specifies the
form in which Tk should transmit the selection to the requesiat is usu-
ally XA_STRI NG

Tk_Del et eSel Handl er (Tk_W ndow t kwi n, Atomtarget)
Removes the handler fokwi n andt ar get , if one exists.

Tk_OanSel ecti on(Tk_W ndow t kwi n, Tk_Lost Sel Proc *proc,
ClientData clientData)
Claims ownership of the selection fokwi n and notifies the previous
owner if any that it has lost the selectidPr. oc will be invoked later when
t kwi n loses the selection.
Tk_Cl ear Sel ecti on(Tk_W ndow t kwi n)
Cancels any existing selection for the display containkg n.

int Tk_GetSel ection(Tcl _Interp *interp, Tk_Wndow tkw n,
Atomtarget, Tk_GetSel Proc *proc, ClientData clientData)
Retrieves the selection fokwi n’s display in the format specified bgr -
get and passes it for oc in one or more pieces. ReturiGL_OK or
TCL_ERRORand leaves an error messageri er p- >r esul t if an error
occurs.

Table 42.1. A summary of Tks procedures for managing the selection.

dler returns the selection in a particulag&rform. The procedurgk_Cr eat e-
Sel Handl er creates a new selection handler:
voi d Tk_Creat eSel Handl er (Tk_W ndow t kwi n, Atom target,
Tk_Sel ectionProc *proc, dientData clientData,
Atom format);
Tkwi n is the window from which the selection will be provided; the handler will only be
asked to supply the selection when the selection is owne#wiyn. Tar get specifies
the taget form in which the handler can supply the selection; the handler will only be
invoked when the selection is retrieved with thagé&Pr oc is the address of the handler
callback, anatl i ent Dat a is a one-word value to passpooc. For mat tells Tk how
to transmit the selection to the requestor and is UsMAINSTRI NG (see the reference
documentation for other possibilities).
The callback procedure for a selection handler must match the following prototype:
typedef int Tk_Sel ectionProc(CientData clientData,
int offset, char *buffer, int nmaxBytes);
Thecl i ent Dat a agument will be the same as thkei ent Dat a agument passed to
Tk_Cr eat eSel Handl er ; it is usually the address of a widget recéhdoc should
place a null-terminated stringlatif f er containing up taraxByt es of the selection

DRAFT (7/10/93): Distribution Restricted

42.1 Selection handlers 379

starting at bytef f set within the selection. The procedure should return a count of the
number of non-null bytes copied, which musthieexByt es unless there are fewer than
maxByt es left in the selection. If the widget no longer has a selection (because, for
example, the user deleted the selected range of characters) the selection handler should
return -1.

Usually the entire selection will be retrieved in a single requdsetofill be 0 and
maxByt es will be lage enough to accommodate the entire selection. Hoywesrgr
large selections will be retrieved in transfers of a few thousand bytes each. Tk will invoke
the callback several times using successively higher valuds afet to retrieve succes-
sive portions of the selection. If the callback returns a value lesadéixdyt es it means
that the entire remainder of the selection has been returned. If its return vedwe is
Byt es it means that there may be additional information in the selection so Tk will call it
again to retrieve the next portionotYcan assume thatixByt es will always be at least
a few thousand.

For example, Tls entry widgets have a widget record of t{m r y with three
fields that are used to manage the selection:

st ri ng points to a null-terminated string containing the text in the entry;

sel ect Fi r st is the index irst r i ng of the first selected byte (or -1 if nothing is
selected);

sel ect Last is the index of the last selected byte.

An entry will supply the selection in only onegat form STRI NG) so it only has a single
selection handleiThe create procedure for entries contains a statement like the following
to create the selection handiehereent r yPt r is a pointer to the widget record for the
new widget:

Tk_Creat eSel Handl er (entryPtr->tkwi n, XA STRI NG

EntryFet chSel ection, (ClientData) entryPtr,
XA_STRI NG ;

The callback for the selection handler is defined as follows:

int EntryFetchSelection(CientData clientData, int offset,
char *buffer, int maxBytes) {
Entry *entryPtr = (Entry *) clientData,;

int count;

if (entryPtr->selectFirst < 0) {
return -1;

}

count = entryPtr->selectlLast + 1 - entryPtr->sel ectFirst
- offset;

if (count > maxBytes) {
count = maxBytes;

}

if (count <= 0) {
count = 0O;

} else {

DRAFT (7/10/93): Distribution Restricted

380

Managing the Selection

42.2

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

buffer[count] = O;
return count;

}

If a widget wishes to supply the selection in sever&bidiht taget forms it should
create a selection handler for eaclyearWhen the selection is retrieved, Tk will invoke
the handler for the tget specified by the retriever

Tk automatically provides handlers for the followingts:

APPLI| CATI ON: returns the name of the application, which can be usedrtd com-
mands to the application containing the selection.

MULTI PLE: used to retrieve the selection in multiplegetrforms simultaneously
Refer to ICCCM documenation for details.

TARGETS: returns a list of all the tgets supported by the current selection owner
(including all the tagets supported by Tk).

Tl MESTAMP: returns the time at which the selection was claimed by its current.owner
W NDOW_NANME: returns the path name of the window that owns the selection.
A widget can override any of these default handlers by creating a handler of its own.

Claiming the selection

The previous section showed how a widget can supply the selection to a rettever
ever before a widget will be asked to supply the selection it must first claim ownership of
the selection. This usually happens during widget commands that select something in the
widget, such as theel ect widget command for entries and listboxes.claim owner-
ship of the selection a widget should d&dtl OwmnSel ect i on:

voi d Tk_OmSel ecti on(Tk_W ndow tkwi n, Tk_Lost Sel Proc *proc,

(AdientData) clientbData);

Tk_OmSel ect i on will communicate with the X server to claim the selection for
t kwi n; as part of this process the previous owner of the selection will be notified so that
it can deselect itselftkwi n will remain the selection owner until either some other win-
dow claims ownershig,kwi n is destroyed, ofk_Cl ear Sel ecti on is called. When
t kwi n loses the selection Tk will involke oc so that the widget can deselect itself and
display itself accordinglyPr oc must match the following prototype:

typedef void Tk_Lost Sel Proc(CientData clientData);

Thecl i ent Dat a agument will be the same as thki ent Dat a agument to
Tk_OmnSel ecti on; it is usually a pointer to the widget'ecord.

DRAFT (7/10/93): Distribution Restricted

42.3 Retrieving the selection 381

Note:

42.3

Pr oc will only be called if some other window claims the selection or if
Tk_Cl ear Sel ect i on isinvoked. It will not be called if the owning widget is
destroyed.

If a widget claims the selection and then eliminates its selection (for example, the
selected text is deleted) the widget has three options. First, it can continue to service the
selection and return O from its selection handlers; anyone who retrieves the selection will
receive an empty string. Second, the widget can continue to service the selection and
return -1 from its selection handlers; this will return an error (“no selection”) to anyone
who attempts to retrieve it. Third, the widget can Thll Cl ear Sel ecti on:

voi d Tk_d ear Sel ecti on(Tk_W ndow t kwi n) ;
Thet kwi n agument identifies a displayk will claim the selection away from whatever
window owned it (either in this application or any other applicationlosi n’s display)
and leave the selection unclaimed, so that all attempts to retrieve it will result in errors.
This approach will have the saméeet returning -1 from the selection handlers except
that the selection handlers will never be invoked at all.

Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text
into an entryit usually does so with the&l ecti on get” Tcl command. This section
describes how to retrieve the selection at C level, but this facility is rarely needed. The
only situation where | recommend writing C code to retrieve the selection is in cases
where the selection may be verygarand a @l script may be noticeably sloWhis might
occur in a text widget, for example, where a user might select a whole file in one window
and then copy it into another windolivthe selection has hundreds of thousands of bytes
then a C implementation of the retrieval will be noticeably faster thahimplementa-
tion.
To retrieve the selection from C code, invoke the procetkiréet Sel ect i on:
typedef int Tk_GetSel ection(Tcl_Interp *interp,
Tk_W ndow tkwi n, Atom target, Tk_GetSel Proc *proc,
ClientData clientData);
Thei nt er p agument is used for error reportirikwi n specifies the window on whose
behalf the selection is being retrieved (it selects a display to use for retrievdlgrand
get specifies the tget form for the retrievallk _Get Sel ect i on doesnt return the
selection directly to its calleinstead, it invokepr oc and passes it the selection. This
makes retrieval a bit more complicated but it allows Tk téebufata more &tiently.
Large selections will be retrieved in several pieces, with one gafldéa for each piece.
Tk _GCet Sel ecti on normally returnd CL_ CK to indicate that the selection was suc-
cessfully retrieved. If an error occurs then it retr@s_ ERROR and leaves an error mes-
sage in nterp->result.
Pr oc must match the following prototype:

DRAFT (7/10/93): Distribution Restricted

382 Managing the Selection

typedef int Tk _GetSel Proc(CientData clientData,
Tcl _Interp *interp, char *portion);
Thecl i ent Dat a andi nt er p aguments will be the same as the correspondigg-ar
ments toTk_Get Sel ecti on. Por ti on points to a null-terminated ASCII string con-
taining part or all of the selection. For small selections a single call will be mpdeto
with the entire contents of the selection. Fogdaselections two or more calls will be
made with successive portions of the selecwrac should returiCL_OK if it success-
fully processes the current portion of the selection. If it encounters an error then it should
returnTCL_ERROR and leave an error message it er p- >r esul t ; the selection
retrieval will be aborted and this same error will be returndktdGet Sel ecti on’s
caller
For example, here is code that retrieves the selectiorgiet tarmSTRI NG and
prints it on standard output:

i'f.(Tk_GetSeI ection(interp, tkwn,
Tk_InternAtom(tkwin, "STRING'), PrintSel,
(AdientData) stdout) != TCL_OK) ({

}

int PrintSel (ClientData clientData, Tcl _Interp *interp,
char *portion) {
FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;
}
The call toTk_GCet Sel ect i on could be made, for example, in the widget command
procedure for a widget, wherd&wi n is theTk_W ndow for the widget and nt er p is
the interpreter in which the widget command is being processea| Trent Dat a argu-
ment is used to pas$=& LE pointer toPr i nt Sel . The output could be written to a dif-
ferent file by specifying a dérentcl i ent Dat a value.

DRAFT (7/10/93): Distribution Restricted

Chapter 43
Geometry M anagement

43.1

Tk provides two groups of library procedures for geometry management. The first group
of procedures implements a communication protocol between slave windows and their
geometry managers. Each widget calls Tk to provide geometry information such as the
widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-
vant geometry manageso that the widget does not have to know which geometry man-
ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it
will manage, so that Tk will know who to notify when geometry information changes for
the slaves. The second group of procedures is used by geometry managers to place slave
windows. It includes facilities for mapping and unmapping windows and for setting their
sizes and locations. All of these procedures are summarizedblie 43.1.

Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that
this information is forwarded to any relevant geometry managers. There are three pieces
of information that the slave can provide: requested size, internal pandegrid. The
first piece of information is provided by calliigg_ Geonet r yRequest :

voi d Tk_GeonetryRequest (Tk_W ndow tkwi n, int w dth, height);
This indicates that the ideal dimensionstfemi n arewi dt h andhei ght , both speci-
fied in pixels. Each widget should c@lk_CGeonet r yRequest once when it is created
and again whenever its preferred size changes (such as when its font changes); normally
the calls torTk_Geonet r yRequest are made by the widgsttonfigure procedure. In

383

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

384 Geometry Management

Tk_GeonetryRequest (Tk_W ndow tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions
t kwi n arewi dt h andhei ght .

Tk_Set I nt er nal Bor der (Tk_W ndow t kwi n, int wi dth)
Informs any relevant geometry managers thati n has an internal borde
wi dt h pixels wide and that slave windows should not be placed in this
der region.

Tk_Set Gri d(Tk_W ndow tkwin, int reqWdth, int reqHei ght,

int widthlnc, int heightlnc)

Turns on gridded geometry management fon n’s top-level window and
specifies the grid geometrihe dimensions requested By _Geone-
t ryRequest correspond to grid dimensionsrafqW dt h and
r eqHei ght , andwi dt hl nc andhei ght I nc specify the dimensions of
single grid cell.

Tk_ManageGeonetry(Tk_W ndow t kwi n, Tk_GeonetryProc *proc,
ClientData clientData)
Arranges fompr oc to be invoked whenev@ik_CGeonet r yRequest is
invoked fort kwi n. Used by geometry managers to claim ownership of
slave window

i nt Tk_ReqHei ght (Tk_W ndow t kwi n)
Returns the height specified in the most recent calktdGeonet r yRe-
quest fort kwi n (this is a macro, not a procedure).

int Tk_ReqW dt h(Tk_W ndow t kwi n)
Returns the width specified in the most recent calktoGeonet r yRe-
quest fort kwi n (this is a macro, not a procedure).

int Tk_I nternal Border W dt h(Tk_W ndow t kwi n)
Returns the border width specified in the most recent cak td nt er -
nal Bor der W dt h fort kwi n (this is a macro, not a procedure).

Tk_MapW ndow(Tk_W ndow t kwi n)
Arranges fot kwi n to be displayed on the screen whenever its ancestor
mapped.

Tk_UnmapW ndow(Tk_W ndow t kwi n)

Preventg kwi n and its descendants from appearing on the screen.

Tk_MoveW ndow(Tk_W ndow tkwi n, int x, int
Positiong kwi n so that its uppeleft pixel (including any borders) appea
at coordinateg andy in its parent.
Tk_MoveResi zeW ndow Tk_W ndow tkwi n, int x, int vy,
unsi gned int width, unsigned int height)
Changed kwi n’s position within its parent and also its size.
Tk_Resi zeW ndow TK_W ndow t kwi n, unsi gned int width,
unsi gned int height)
Sets the inside dimensionstdéwi n (not including its external bordef
any) tow dt h andhei ght .

Table 43.1. A summary of Tks procedures for geometry management.

DRAFT (7/10/93): Distribution Restricted

43.2 Internal borders 385

43.2

<«—wW dth—>

A
<«—wi dt h T
hei ght hei ght
X border Internal border
® (b)

Figure 43.1. X borders and internal borders. (a) shows digiaf X border which is drawn by X
outside the area of the windo(f) shows an internal border drawn by a widget, where the are
occupied by the border is part of the windswficial area. In both figuresi dt h andhei ght
are the dicial X dimensions of the windaw

addition, geometry managers will sometimes €hll Georret r yRequest on a win-

dow’s behalf. For example, the packer resets the requested size for each master window
that it manages to match the needs of all of its slaves. This overrides the requested size set
by the widget and results in the shrink-wrafeets shown in Chapter XXX.

Internal borders

The X window system allows each window to have a border that appears just outside the
window. The oficial height and width of a window are the inside dimensions, which
describe the usable area of the window andtdoafude the bordetnfortunately
though, X requires the entire border of a window to be drawn with a single solid color or
stipple. © achieve the Motif three-dimensionalestts, the upper and left parts of the bor-
der have to be drawn €&ifently than the lower and right parts. This means that X borders
cant be used for Motif widgets. Instead, Motif widgets draw their own borders, typically
using Tk procedures such®s_Dr aw3DRect angl e. The border for a Motif widget is
drawn around the perimeter of the widget but inside theafX area of the widget. This
kind of border is called aimternal border. Figure 43.1 shows the tifence between
external and internal borders.

If a widget has an internal border then its usable area (the pastitiséde the border)
is smaller than its @itial X area. This complicates geometry management in two ways.
First, each widget has to include the border width (actuslige the border width) in the
width and height that it requests Vik_Geonet r yRequest . Second, if a master win-

DRAFT (7/10/93): Distribution Restricted

386 Geometry Management

dow has an internal border then geometry managers should not place slave windows on
top of the border; the usable area for arranging slaves should be the area inside the border
In order for this to happen the geometry managers must know about the presence of the
internal borderThe procedur@k_Set | nt er nal Bor der is provided for this purpose:

voi d Tk_Set I nt er nal Border (Tk_W ndow tkwi n, int w dth);
This tells geometry managers th&wi n has an internal border thatisdt h pixels
wide and that slave widgets should not overlap the internal baets with internal
borders normally callk_Set | nt er nal Bor der in their configure procedures at the
same time that they cdlk_Geonet r yRequest . If a widget uses a normal X border
if it has an internal border but doessmiind slaves being placed on top of the barthemn
it need not callTk _Set | nt er nal Bor der, or it can call it with av dt h of O.

43.3 Grids

Gridded geometry management was introduced in Section XXX. The goal is to allow the
user to resize a top-level window interactiydlyt to constrain the resizing so that the
window’s dimensions always lie on a gridipically this means that a particular subwin-
dow displaying fixed-width text always has a width and height that are an integral number
of characters. The window manager implements constrained resizes, but the application
must supply it with the geometry of the grid. In order for this to happen, the widget that
determines the grid geometry must @l Set Gri d:
void Tk_Set Gi d(Tk_W ndow tkwin, int gridWwdth, int
gri dHei ght,
int widthlnc, int heightlnc);

Thegri dW dt h andgr i dHei ght amguments specify the number of grid units corre-
sponding to the pixel dimensions requested in the most recent Tkll @onet r yRe-
quest . They allow the window manager to display the windogurrent size in grid
units rather than pixels. The dt hl nc andhei ght | nc aguments specify the number
of pixels in a grid unit. Tk passes all of this information on to the window maraageit
will then constrain interactive resizes so thlatvi n’s top-level window always has
dimensions that lie on a grid defined by its requested geqmetrd W dt h, andgr i d-
Hei ght .

Widgets that support gridding, such as texts, normally haweagri d option . If
-set gri dis 0 then the widget doegrcall Tk_Set G i d; this is done if gridded resiz-
ing isnt wanted (e.g. the widget uses a variable-width font) or if some other widget in the
top-level window is to be the one that determines the gricséf gri d is 1 then the
widget callsTk_Set G i d; typically this happens in the configure procedure at the same
time that other geometry-related calls are made. If the wilgetl geometry changes (for
example, its font might change) then the widget ddtlsSet G- i d again.

DRAFT (7/10/93): Distribution Restricted

43.4 Geometry managers 387

43.4 Geometry managers

The remainder of this chapter describes the Tk library procedures that are used by geome-
try managers. It is intended to provide the basic information that you need to write a new
geometry manager his section provides an overview of the structure of a geometry man-
ager and the following sections describe the Tk library procedures.

A typical geometry manager contains four main procedures. The first procedure is a
command procedure that implements the geometry madsaigécommand. ¥pically
each geometry manager provides a single command that is used by the application
designer to provide information to the geometry manaaperk for the packempl ace
for the placerand so on. The command procedure collects information about each slave
and master window managed by the geometry manager and allocates a C structure for
each window to hold the information. For example, the packer uses a structure with two
parts. The first part is used if the window is a master; it includes information such as a list
of slaves for that masterhe second part is used if the window is a slave; it includes infor-
mation such as the side against which the slave is to be packed and padding and filling
information. If a window is both a master and a slave then both parts are used. Each geom-
etry manager maintains a hash table (usitigs hash table facilities) that maps from wid-
get names to the C structure for geometry management.

The second procedure for a geometry managerlayast procedure. This procedure
contains all of the actual geometry calculations. It uses the information in the structures
created by the command procedure, plus geometry information provided by all of the
slaves, plus information about the current dimensions of the makeelayout procedure
typically has two phases. In the first phase it scans all of the slaves for 3 nwasfrItes
the ideal size for the master based on the needs of its slaves, ai# c&itome-
tryRequest to set the requested size of the master to the ideal size. This phase only
exists for geometry managers like the packer that reflect geometry information upwards
through the widget hierarchifor geometry managers like the platee first phase is
skipped. In the second phase the layout procedure recomputes the geometries for all of the
slaves of the master

The third procedure israquest callback that Tk invokes whenever a slave managed
by the geometry manager calle_Geonet r yRequest . The callback arranges for the
layout procedure to be executed, as will be described below

The final procedure is an event procedure that is invoked when a master window is
resized or when a master or slave window is destroyed. If a master window is resized then
the event procedure arranges for the layout procedure to be executed to recompute the
geometries of all of its slaves. If a master or slave window is destroyed then the event pro-
cedure deletes all the information maintained by the geometry manager for that window
The command procedure creates event handlers that cause the event procedure to be
invoked.

The layout procedure must be invoked after each call to the command procedure, the
request callback, or the event procedure. Usually this is done with an idle callback, so that

DRAFT (7/10/93): Distribution Restricted

388 Geometry Management

the layout procedure doesilctually execute until all pending work is completed. Using

an idle callback can save a lot of time in situations such as the initial creation of a complex
panel. In this case the command procedure will be invoked once for each of many slave
windows, but there wohbe enough information to compute the final layout until all of

the invocations have been made for all of the slaves. If the layout procedure were invoked
immediately it would just waste time computing layouts that will be discarded almost
immediately With the idle callback, layout is deferred until complete information is avail-
able for all of the slaves.

43.5 Claiming ownership

A geometry manager uses the procedikeManageCeonet r y to indicate that it
wishes to manage the geometry for a given slave window:
voi d Tk_ManageGeonetry(Tk_W ndow t kwi n, Tk_GeonetryProc *proc,
ClientData clientData);
From this point on, whenev@k_Geonet r yRequest is invoked fort kwi n, Tk will
invokepr oc. There can be only one geometry manager for a slave at a given time, so any
previous geometry manager is cancelled. A geometry manager can also disown a slave by
calling Tk_ManageGeonet r y with a null value fopr oc. Pr oc must match the fol-
lowing prototype:
typedef void Tk_CeometryProc(CientData clientData,
Tk_W ndow t kwi n);
Thecl i ent Dat a andt kwi n aguments will be the same as those passé# tdvan-
ageCeonet ry. UsuallyTk_ManageCGeonet ry is invoked by the command procedure
for a geometry manageand usuall! i ent Dat a is a pointer to the structure holding
the geometry managerinformation about kwi n.

43.6 Retrieving geometry information

When a widget call¥k_Geonet r yRequest orTk_Set | nt er nal Bor der Tk
saves the geometry information in its data structure for the widget. The geometry manag-
er's layout procedure can retrieve the requested dimensions of a slave with the macros
Tk _RegW dt h andTk_ReqHei ght , and it can retrieve the width of a ma&ténternal
border with the macrdk_| nt er nal Bor der W dt h. It can also retrieve the master
actual dimensions with thek_ W dt h andTk_Hei ght macros, which were originally
described in Section 37.5.

Note: Geometry managers need not worry about the gridding informatmndad with the

Tk_Set Gri d procedue. This information doedraffect geometry managers at all. It is
simply passed on to the window manager for use in@inty interactive esizes.

DRAFT (7/10/93): Distribution Restricted

43.7 Mapping and setting geometry 389

43.7 Mapping and setting geometry

A geometry manager does two things to control the placement of a slave witickbwit
determines whether the slave window is mapped or unmapped, and second, it sets the size
and location of the window
X allows a window to exist without appearing on the screen. Such a window is called
unmapped: neither it nor any of its descendants will appear on the screen. In order for a
window to appeaiit and all of its ancestors (up through the nearest top-level window)
must bemapped. All windows are initially unmapped. When a geometry manager takes
responsibility for a window it must map it by calling_MapW ndow:
voi d Tk_MapW ndow(Tk_W ndow t kwi n);
Usually the geometry manager will cakk_ MapW ndow in its layout procedure once it
has decided where the window will appdfia geometry manager decides not to manage
a window anymore (e.g. in thpdck f or get” command) then it must unmap the win-
dow to remove it from the screen:
voi d Tk_UnmapW ndow(Tk_W ndow t kwi n) ;
Some geometry managers may temporarily unmap windows during normal operation. For
example, the packer unmaps a slave if theré@&rugh space in its master to display it; if
the master is enlged later then the slave will be mapped again.
Tk provides three procedures that a geometry matsalggout procedure can use to
position slave windows:
voi d Tk_MoveW ndow Tk_W ndow tkwin, int x, int y);
voi d Tk_Resi zeW ndow(Tk_W ndow t kwi n, unsi gned int w dth,
unsi gned int height);
voi d Tk_MoveResi zeW ndow(Tk_W ndow tkwin, int x, int vy,
unsi gned int width, unsigned int height);
Tk_MoveW ndowmoves a window so that its upper left corner appears at the given loca-
tion in its parentTk _Resi zeW ndow sets the dimensions of a window without moving
it; andTk_MboveResi ze both moves a window and changes its dimensions.
The position specified tok_MoveW ndowor Tk_MoveResi zeW ndowis a
position in the slave’parent. Howevemost geometry managers allow the master for a
slave to be not only its parent but any descendant of the paypitially the layout proce-
dure will compute the slav@location relative to its master; before calling
Tk_MoveW ndowor Tk_MoveResi zeW ndowit must translate these coordinates to
the coordinate system of the sla/parent. The following code shows how to transform
coordinatex andy from the master to the parent, assuming shatv e is the slave win-
dow andmast er is its master:

int x, vy;
Tk_W ndow sl ave, naster, parent, ancestor;

for (ancestor = master; ancestor != Tk_Parent (sl ave);
ancestor = Tk_Parent (ancestor)) {

DRAFT (7/10/93): Distribution Restricted

390 Geometry Management

X += Tk_X(ancestor) + Tk_Changes(ancestor)->border_wi dt h;
y += Tk_Y(ancestor) + Tk_Changes(ancestor)->border_wi dt h;

DRAFT (7/10/93): Distribution Restricted

