Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

27.1
27.2
27.3
27.4
27.5

28.1
28.2
28.3
28.4

20.1
29.2
29.3
29.4
29.5
29.6

30.1
30.2
30.3

31.1
31.2
31.3

Philosophy 257

C vs. Tl: primitives 257

Object names 259

Commands: action-oriented vs. object-orient&s0
Application prefixes 261

Representing information262

Interpreters and Script Evaluatior263
Interpreters 263

A simple Tcl application 263

Other evaluation procedure66

Deleting interpreters 266

Creating New Tcl Commands269
Command procedures269

Registering commands271

The result protocol 272

Procedures for managing the resut73
ClientData and deletion callback®75

Deleting commands 278

Parsing 279
Numbers and boolean279
Expression evaluation282
Manipulating lists 283

Exceptions 285
Completion codes. 285
Augmenting the stack trace in errorinf@88
Setting errorCode 290

DRAFT (4/16/93): Distribution Restricted

Chapter 32 Accessing Tcl Variables 291
32.1 Naming variables 291
32.2 Setting variable values 293
32.3 Reading variables 295
32.4 Unsetting variables 296
32,5 Setting and unsetting variable traces 296
32.6 Tracecalbacks 297
32.7 Whole-array traces 299
32.8 Multipletraces 299
32.9 Unset callbacks 299
32.10 Non-existent variables 300
3211 Querying trace information 300

Chapter 33 Hash Tables 301
33.1 Keysandvaues 303
33.2 Creating and deleting hash tables 303
33.3 Creating entries 304
33.4 Finding existing entries 305
33.5 Searching 306
33.6 Deleting entries 307
33.7 Statistics 307

Chapter 34 String Utilities 309
34.1 Dynamic strings 309
34.2 Command completeness 312
34.3 String matching 313

Chapter 35 POSIX Utilities 315
35.1 Tildeexpansion 315
35.2 Generating messages 317

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses 318
35.4 Background processes 319

DRAFT (4/16/93): Distribution Restricted

DRAFT (4/16/93): Distribution Restricted

Part |11:

Writing Tcl Applications
In C

256

DRAFT (4/16/93): Distribution Restricted

Chapter 27
Philosophy

Note:

27.1

This part of the book describes how to write C applications based.dgifice the @l
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in¢hébfary to create interpret-

ers, evaluated scripts, and extend the built-in command set with new application-
specific commands.cTalso provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to acteagdbles, parse gu-

ments, manipulatecT lists, evaluate dl expressions, and so on. This chapter discusses
several high-level issues to consider when designirgy application, such as what new

Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided ky the T
library.

The interfaces described in Part 111 are those that will be available in Tcl 7.0, which had

not been released at the timex this draft was prepared. Thus there may some differences
between what you read here and what you can do with your current version of Tcl. There

are almost no differences in functionality; the differences mostly have to do with the
interfaces. Be sure to consult your manual entries when you actually write C code.

C vs. Tcl: primitives

In order to make acT application as flexible and powerful as possible, you shogkt or
nize its C code as a set of neal tommands that provide a clean sepromitive opera-
tions. You need not implement every imaginable feature in C, since new features can
always be implemented later ad $cripts. The purpose of the C code is to provide basic

257

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

258

Philosophy

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it b@possible to write

scripts that use the functions separately and your application leméry flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together withcT scripts. Yu'll probably find that many of your applicatisn’
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionalityds a T
script or as C code, s'generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamicaliyd you can debug them more quickly
because you donhave to recompile after each bug fix. Howetegre are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that at@tcessible indl scripts. For example, the
Tcl built-in commands dohprovide access to network sockets, so if you want to use the
network you'll have to write C code to do it. Second, you may be concerned dbout ef
ciency For example, if you need to carry out intensive numerical calculations, or if you
need to operate on g arrays of data, you'll be able to do it morficefntly in C than in
Tcl. The third reason for implementing in C is complexityou are manipulating com-
plex data structures, or if you're writing adaramount of code, the task will probably be
more manageable in C than ial.TTcl provides very little structure; this makes it easy to
connect diferent things together but hard to managgdaromplex scripts. C provides
more structure, which is cumbersome when you're implementing small things but indis-
pensable when you're implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for gdarumber of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

* What is the complete weather situation at station X?
* What is the current temperature at station X?
* Which station in the country has the highest current temperature?

* At which stations is it currently raining?
You'll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a seglarate-T
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you'd have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I'd suggest providing just two commands in @t lar _st at i ons com-
mand that returns a list of all the stations for which weather reports are available, and a

DRAFT (4/16/93): Distribution Restricted

27.2 Object names 259

27.2

wt hr _report command that returns a complete weather report for a particular station.
These commands ddnmplement any of the above features diredilyt they make it

easy to implement all of the features. For exampikalfeady has put s command that

can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script thatwahs _r eport , formats

the report, and prints it withut s. The second feature (printing just the temperature) can
be implemented by extracing the temperature from the resuittof r eport and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that imtdke_r epor t

for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that ldexasl commands are better than higher
level ones. Howeveif you make the commands too low level thehstripts will
become unnecessarily complicated and you may lose opportunitieidienefmplemen-
tation. For example, instead of providing a single command that retrieves a weather report,
you might provide separatellcommands for each step of the protocol that retrieves a
report: one command to connect to a seree command to select a particular station,
one command to request a report for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commandgdmrite
any additional functionality and they make it more tedious to wadkesdripts. Further-
more, suppose that network communication delays are high, so that it takes a long time to
get a response from a weather seriat the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as a single report. In this
situation you might want an even higher level interface, perhagiscarimand that takes
any number of stations aggaments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much moréaént implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
applications key functions are available individually througth dommands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities fofiefent implementation.

Object names

The easiest way to think about your C code is in ternabje€ts. The C code in acrl
application typically implements a few new kinds of objects, which are manipulated by
the applicatiors new Tl commands. In the C code of your application you'll probably
refer to the objects using pointers to the C structures that represent the objects, but you
cant use pointers ind scripts. Strings of some sort will have to be used in ¢hecFipts,

DRAFT (4/16/93): Distribution Restricted

260

Philosophy

27.3

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewt hr _st at i ons command returns a list of station names, and the

wt hr _report command takes a station name as goraent.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings@meat. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary numbet dont recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings daohvey any meaningful information to the
user

Instead, | recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. ThecT library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names likeenu. hel p for windows in order to indicate the
window’s position in the window hierarchycl uses names likiei | e3 orfi | e4 for
open files; these names doboonvey a lot of information, but they at least include the let-
ters ‘fi | e” to suggest that they're used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I'd recommend using sta-
tion names such as the city where the station is locatei tiiy U.S. Wather Service has
well-defined names for its stations then I'd suggest using those names.

Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which | callaction-oriented andobject-oriented. In the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as an@ament. The weather application is action-orientedthe _r e-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as angument. Tl's file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked itgirst ar
ment specifies the operation to perform on the objecs. Wkigets work this way: if there

DRAFT (4/16/93): Distribution Restricted

27.4 Application prefixes 261

Note:

27.4

is a button widgetb then there is also a command naniedyou can invoke
“.b flash ”to flash the widget or.b invoke " to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouhdake sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practideapplications have lge numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a lage number of stations. In addition, the application probably doesed to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objedtfoismjreat
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. T&'widgets fit this description. The object-oriented approach has
the advantage that it doespbllute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don't conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for tifent objects to implement the same action ifediht ways.
For example, ift is a text widget and is a listbox widget in Tk, theommands
“t yview0O "and"“lyview 0 " are implemented in very dérent ways even
though they produce the same logicéteff (adjust the view to make the topmost line vis-
ible at the top of the window).
Although Tis file commands arimplemented using the action-oriented aajgh, in

retrospect | wish that | had used the object-oriented fashion, since open files fit the object-
oriented model nicely

Application prefixes

If you use the action-oriented approach, | strongly recommend that you add a unique pre-
fix to each of your command names. For example, | used the pagffix “ ” for the

weather commands. This guarantees that your commandsasofiict with other com-

mands as long as your prefix is unique, and it makes it possiblede digrent applica-

tions together without name conflicts. | also recommend using prefixes fmo€edures

that you define and for global variables, again so that multiple packages can be used
together

DRAFT (4/16/93): Distribution Restricted

262

Philosophy

27.5 Representing information

The information passed into and out of yoak @dmmands should be formatted for
easy processing byclTscripts, not necessarily for maximum human readabHity exam-
ple, the command that retrieves a weather report showuédnin English prose describing
the weatherinstead, it should return the information in a structured form that makes it
easy to extract the ddrent components under the control othsEript. You might return
the report as a list consisting of pairs of elements, where the first element of each pair is a
keyword and the second element is a value associated with that keyword, such as:

tenp 53 hi 68 o 37 precip .02 sky part

This indicates that the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain has fallen in the last 24 hours,
and the sky is partly cloud®r, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
value is stored in that element. Either of these approaches would make it easy to extract
components of the reportod can always reformat the information to make it more read-
able just before displaying it to the user

Although machine readability is more important than human readapdiiyneed not
gratuitously sacrifice readabilitiFor example, the above list could have been encoded as

18 53 7 68 9 37 5 .02 17 4

wherel8 is a keyword for current temperatuvefor 24-hour high, and so on. This is
unnecessarily confusing and will not make your scripts any mficeeaf, since €l han-
dles strings at least adiefently as numbers.

DRAFT (4/16/93): Distribution Restricted

Chapter 28
|nterpretersand Script Evaluation

28.1

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tl scripts. Bble 28.1 summarizes the library procedures that are discussed in the
chapter

Interpreters

28.2

The central data structure manipulated by ttidiirary is a C structure of typecl _I n-

t er p. I'll refer to these structures (or pointers to themngss preters. Aimost all of the

Tcl library procedures take a pointer td@ _| nt er p structure as angument. An
interpreter embodies the execution state afladript, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands andcT procedures. MostcT applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

A simple Tcl application

The program below illustrates how to create and use an interprétea simple but com-
plete Tl application that evaluates alBcript stored in a file and prints the result or error
message, if any

#i ncl ude <stdi o. h>
#i ncl ude <tcl. h>

263

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

264 Interpreters and Script Evaluation

Tcl _Interp *Tcl _Createl nterp(void)

Create a new interpreter and return a token for it.
Tcl _Del etelnterp(Tcl _Interp *interp)

Delete an interpreter

int Tcl _Eval (Tcl _Interp *interp, char *script)
Evaluatescri pt ini nt er p and return its completion code. The result pr
error string will be iri nt er p- >resul t.

int Tcl_EvalFile(Tcl _Interp *interp, char *fil eNanme)
Evaluate the contents of file | eNane ini nt er p and return its comple-
tion code. The result or error string will belint er p- >resul t.

int Tcl _G obal Eval (Tcl _Interp *interp, char *script)
Evaluatescri pt ini nt er p at global level and return its completion cod
The result or error string will be imt er p- >resul t.

int Tcl_VarEval (Tcl _Interp *interp, char *string, char *string,

(char *) NULL)

Concatenate all of thet r i ng aguments into a single string, evaluate th
resulting script in nt er p, and return its completion code. The result or
error string will be iri nt er p->resul t.

int Tcl _RecordAndEval (Tcl _Interp *interp, char *script, int
flags)
Recordsscri pt as an eventinnt er p’s history list and evaluates it if
eval isnon-zeroTCL_NO_EVAL means don'evaluate the script). Return
a completion code such &€L_ K and leaves result or error message in
interp->result.

o

11}

2

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evalueting

mai n(int argc, char *argv[]) {
Tcl _Interp *interp;
i nt code;

if (argc !'=2) {
fprintf(stderr, "Wong # argunents: ");
fprintf("should be \"% fileNane\"\n",

argv[0]);

exit(1);

}

interp = Tcl _Createlnterp();

code = Tcl _Eval File(interp, argv[1]);

if (*interp->result = 0) {
printf("%\n", interp->result);

}
if (code !'= TCL_ OK) {

DRAFT (4/16/93): Distribution Restricted

28.2 A simple Tcl application 265

exit(1l);
}
exit(0);

If Tcl has been installed properly at your site you can copy the C code into a file named
si npl e. ¢ and compile it with the following shell command:

cc sinmple.c -ltcl -Im

Once you've compiled the program you can evaluate a scrip&fdé. t cl by typing
the following command to your shell:

a.out test.tcl

The code fosi npl e. c starts out with#i ncl ude statements fost di 0. h and
tcl. h. You'll need to include cl . h in every file that usescTstructures or procedures,
since it defines structures likel _| nt er p and declares thecllibrary procedures.

After checking to be sure that a file name was specified on the command line, the pro-
gram invokedcl _Cr eat el nt er p to create a new interpretdihe new interpreter will
contain all of the built-in commands described in Part | butchprbcedures or variables.

It will have an empty execution stadkcl _Cr eat el nt er p returns a pointer to the

Tcl _I nt er p structure for the interpretexhich is used as a token for the interpreter
when calling other dl procedures. Most of the fields of thel _I nt er p structure are
hidden so that they cannot be accessed outsidettibrary. The only accessible fields

are those that describe the result of the last script evaluation; they’ll be discussed later

Nextsi npl e. c callsTcl _Eval Fi | e with the interpreter and the name of the
script file as ayjumentsTcl _Eval Fi | e reads the file and evaluates its contents at a T
script, just as if you had invoked thel §our ce command with the file name as agwar
ment. WhenTcl _Eval Fi | e returns the execution stack for the interpreter will once
again be empty

Tcl _Eval Fi | e returns two pieces of information: an integempletion code and
a string. The completion code is returned as the result of the procedure. It will be either
TCL_OK, which means that the script completed normally CL_ ERROR, which means
that an error of some sort occurred (e.g. the script file cddddnead or the script aborted
with an error). The second piece of information returnefiddy Eval Fi | e is a string, a
pointer to which is returned imt er p- >r esul t . If the completion code iECL_OK
theni nt er p- >r esul t points to the scripd’result; if the completion codeTE€L_ER-
RORtheni nt er p- >r esul t points to a message describing the error

Note: Theresult string belongsto Tcl. It may or may not be dynamically allocated. You can read
it and copy it, but you should not modify it and you should not save pointersto it. Tcl may
overwrite the string or reallocate its memory during the next call to Tcl _Eval Fi | e or

any of the other procedures that evaluate scripts. Chapter 29 discusses the result string in
more detail.

DRAFT (4/16/93): Distribution Restricted

266 Interpreters and Script Evaluation

If the result string is non-empty then npl e. c prints it, regardless of whether it is
an error message or a normal result. Then the program exits. It follows the UNIX style of
exiting with a status of 1 if an error occurred and O if it completed successfully

When the script file is evaluated only the built-g fommands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

28.3 Other evaluation procedures

Tcl provides three other procedures besiids Eval Fi | e for evaluating scripts. Each
of these procedures takes an interpreter as its fistreant and each returns a completion
code and string, just likecl _Eval Fi |l e. Tcl _Eval is similar toTcl _Eval Fil e
except that its secondgument is a @l script rather than a file name:

code = Tcl _Eval (interp, "set a 44");
Tcl _Var Eval takes a variable number of stringigaments terminated withNULL

argument. It concatenates the strings and evaluates the resultlaapt. For example,
the statement below has the sanfeatfas the one above:

code = Tcl _VarEval (interp, "set a ", "44",
(char *) NULL);
Tcl _d obal Eval is similar toTcl _Eval except that it evaluates the script at global
variable context (as if the execution stack were empty) even when procedures are active. It
is used in special cases such asupleevel command and Tk’event bindings.
If you want a script to be recorded on thet Aistory list, callTcl _Recor dAndE-

val instead offcl _Eval :

char *script;

i nt code;

code = Tcl _RecordAndEval (interp, script, 0);
Tcl _Recor dAndEval is identical tofcl _Eval except that it records the script as a
new entry on the history list before invoking itl ®nly records the scripts passed to
Tcl _Recor dAndEval , so you can select which ones to recosghidally you'll record
only commands that were typed interactivdllge last ayument toTcl _Recor dAndE-
val is normallyO; if you specifyTCL_NO_EVAL instead, thend will record the script
without actually evaluating it.

28.4 Deleting interpreters

The procedurd&cl _Del et el nt er p may be called to destroy an interpreter and all its
associated state. It is invoked with an interpreter gsnaent:

DRAFT (4/16/93): Distribution Restricted

28.4 Deleting interpreters 267

Tcl _Del etelnterp(interp);

OnceTcl _Del et el nt er p returns you should never use the interpreter again. In appli-
cations likesi npl e. ¢, which use a single interpreter throughout their lifetime, there’
no need to delete the interpreter

DRAFT (4/16/93): Distribution Restricted

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

Chapter 29
Creating New Tcl Commands

29.1

Each Tl command is represented bganmand procedure written in C. When the com-

mand is invoked during script evaluatiom) Talls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er's result string. dble 29.1 summarizes thelTibrary procedures that are discussed in

the chapter

Command procedures

The interface to a command procedure is defined bydhe CndPr oc procedure proto-
type:
typedef int Tcl_CrmdProc(CientData clientData,

Tcl _Interp *interp, int argc,

char *argv[]);
Each command procedure takes foguanents. The firstl i ent Dat a, will be dis-
cussed in Section 29.5 belovhe second, nt er p, is the interpreter in which the com-
mand was invoked. The third and fourtiyanents have the same meaning asitige
andar gv aguments to a C main prograar. gc specifies the total number of words in
the Tcl command andr gv is an array of pointers to the values of the wordkpiio-
cesses all the special characters suchasd [] before invoking command procedures,
so the values iar gc reflect any substitutions that were specified for the command. The
command name is includedam gc andar gv, andar gv[ar gc]is NULL. A command

269

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

270

Creating New Tcl Commands

Tcl _Creat eConmand(Tcl _Interp *interp, char *cndNane,
Tcl _CndProc *cnmdProc, CientData clientData,
Tcl _CndDel et eProc *del et eProc)

Defines a new commandiimt er p with namecmdNane. When the com-
mand is invokea mdPr oc will be called; if the command is ever deleted

thendel et ePr oc will be called.

int Tcl_Del eteCommand(Tcl _Interp *interp, char *crdName)
If cmdNane is a command or procedureiint er p then deletes it and
returns 0. Otherwise returns -1.

Tcl _SetResult(Tcl _Interp *interp, char *string, Tcl _FreeProc
*freeProc)
Arrange forst ri ng (or a copy of it) to become the result fort er p.

Fr eePr oc identifies a procedure to call to eventually free the result, orfi

may beTCL_STATI C, TCL_DYNAM C, or TCL_VOLATI LE.
Tcl _AppendResul t (Tcl _Interp *interp, char *string,
char *string, ... (char *) NULL)
Appends each of th&t r i ng aguments to the result stringiimt er p.
Tcl _AppendEl enent (Tcl _Interp *interp, char *string)

Formatsst ri ng as a Tl list element and appends it to the result string in

i nt er p, with a preceding separator space if needed.
Tcl _Reset Resul t (Tcl _Interp *interp)

Resets nt er p’s result to the default empty state, freeing up any dyna

cally-allocated memory associated with it.

=

]

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating

procedure returns two values just likel _Eval andTcl _Eval Fil e. It returns an
integer completion code as its result (GL_OK or TCL_ERROR) and it leaves a result

string or error messageiimt er p- >resul t.

Here is the command procedure for a new command eadjéldat compares its two

arguments for equality:

int EqCnd(ClientData clientData, Tcl _Interp *interp,

int argc, char *argv[]) {

if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERROR;

}

if (strcnp(argv[1l], argv[2]) == 0) {
interp->result = "1";

} else {
i nterp->result

}

"0";

DRAFT (4/16/93): Distribution Restricted

29.2 Registering commands 271

29.2

return TCL_COK;
}
EqCnd checks to see that was called with exactly tvguiarents (three words, including
the command name), and if not it stores an error messagg er p- >r esul t and
returnsTCL_ ERRCR. Otherwise it compares its twagaiment strings and stores a string in
i nterp->result toindicate whether or not they were equal; then it reflihs OK
to indicate that the command completed normally

Registering commands

In order for a command procedure to be invokeddyybu must register it by calling
Tcl _Creat eConmand. For exampleEqCnd could be registered with the following
statement:

Tcl _CreateCommand(interp, "eq", EqCnd,

(AdientData *) NULL,
(Tcl _CmdDel et eProc *) NULL);
The first agument toTcl _Cr eat eConmand identifies the interpreter in which the com-
mand will be used. The secondament specifies the name for the command and the third
argument specifies its command procedure. The fourth and fiftimants are discussed
in Section 29.5 below; they can be specifietildsL for simple commands like this one.
Tcl _Cr eat eCommand will create a new command font er p namedeq; if there
already existed a command by that name then it is deleted. Whewgeisenvoked in
i nt er p Tcl will call EQCnd to carry out its function.
After the above call tdcl _Cr eat eConmand, eq can be used in scripts just like

any other command:

eq abc def

0

eq 11

1

set w.dlg

set w2 .dlg.ok
eq $w. ok $w2

1

When processing scriptsclicarries out all of the command-line substitutions before call-
ing the command procedure, so wikrCnd is called for the las’tq command above
bothar gv[1] andar gv[2] are “ dl g. ok”.

Tcl _Creat eCommand is usually called by applications during initialization to reg-
ister application-specific commands. Howewvew commands can also be created at any
time while an application is running. For example,ghec command creates a new

DRAFT (4/16/93): Distribution Restricted

272

Creating New Tcl Commands

29.3

command for eachcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you'll see an example where the command procedure for
one command creates a new command.

Commands created Ayl _Cr eat eCommand are indistinguishable fromcT's
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by cadltihg Cr eat eConmand
with the name of the command and a new command procedure.

The result protocol

The EqCnd procedure returns a result by setting er p- >r esul t to point to one of
several static strings. Howeyéhne result string can also be managed in several other
ways. Tl defines a protocol for setting and using the result, which allows for dynamically-
allocated results and provides a small static area to avoid memory-allocation overheads in
simple cases.

The full definition of theTcl _| nt er p structure, as visible outside thel Tibrary, is
as follows:

typedef struct Tcl _Interp {
char *result;
Tcl _FreeProc *freeProc;
i nt errorlLine;
} Tcl _Interp;
The first fieldy esul t , points to the interpreter current result. The second field,
fr eePr oc, is used when freeing dynamically-allocated results; it will be discussed
below The third fielder r or Li ne, is related to error handling and is described in Sec-
tion XXX.

When Tl invokes a command procedure thressul t andf r eePr oc fields always
have well-defined valueknt er p- >r esul t points to a small character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(the first character of the array is zeda)t er p- >f r eePr oc is always zero. This state
is referred to as thigitialized state for the result. Not only is this the state of the result
when command procedures are invoked, but mahiibFary procedures also expect the
interpreters result to be in the initialized state when they are invoked. If a command pro-
cedure wishes to return an empty string as its result, it simply returns without modifying
interp->result orinterp->freeProc.

There are three ways that a command procedure can specify a non-empty result. First,
it can modifyi nt er p- >r esul t to point to a static string as HgCnd. A string can be
considered to be static as long as its value will not change before thehestimand
procedure is invoked. For example, Tk stores the name of each widget in a dynamically-
allocated record associated with the widget, and it returns widget names by setting
i nt er p->resul t to the name string in the widget record. This string is dynamically

DRAFT (4/16/93): Distribution Restricted

29.4 Procedures for managing the result 273

29.4

allocated, but widgets are deleted lkty Jommands so the string is guaranteed not to be
recycled before the nextlfcommand executes. If a string is stored in automatic storage
associated with a procedure it cannot be treated as static, since its value will change as
soon as some other procedure re-uses the stack space.

The second way to set a result is to use the pre-allocated spacé&adn tHent er p
structure. In its initialized statent er p- >r esul t points to this space. If a command
procedure wishes to return a small result it can copy it to the location pointed to by
i nt erp->resul t.For example, the procedure below implements a command
numaor ds that returns a decimal string giving a count of itgiarents:

int NumwordsCrd(C i entData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
sprintf(interp->result, "%", argc);
return TCL_CK;
}
The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbbCL_RESULT_SI ZE defined byt cl . h. It's generally
safe to use this area for printing a few numbers and/or short strings, ndtisége to
copy strings of unbounded length to the pre-allocated space.

The third way to set a result is to allocate memory with a storage allocator such as
mal | oc, store the result string there, andiset er p- >r esul t to the address of the
memory In order to ensure that the memory is eventually freed, you must also set
i nt er p- >f reePr oc to the address of a procedure thatckn call to free the memaqry
such ag r ee. In this case the dynamically-allocated memory becomes the property of
Tcl. Once El has finished using the result it will free it by invoking the procedure speci-
fied byi nt er p- >f r eePr oc. This procedure must match the following procedure pro-
totype:

typedef void Tcl _FreeProc(char *bl ockPtr);

The procedure will be invoked with a singlg@ment containing the address that you
stored ini nt er p- >r esul t. In most cases you'll ugel | oc for dynamic allocation
and thus sdtnt er p- >f r eePr oc tof r ee, but the mechanism is general enough to
support other storage allocators too.

Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than settingnt er p- >r esul t andi nt er p- >f r eePr oc directly. The first
procedure igcl _Set Resul t, which simply implements the protocol described above.
For exampleEqCnd could have replaced the statement

interp->result = "wong # args";

DRAFT (4/16/93): Distribution Restricted

274 Creating New Tcl Commands

with a call toTcl _Set Resul t as follows:

Tcl _Set Result(interp, "wong # args", TCL_STATIC);

The first agument tolfcl _Set Resul t is an interpreteiThe second gument is a string
to use as result, and the thirg@ment gives additional information about the string.
TCL_STATI Cmeans that the string is static,18d _Set Resul t just stores its address
intoi nt er p->resul t. Avalue ofTCL_VOLATI LE for the third agument means that
the string is about to change (e.gs #tored in the procedusestack frame) so a copy must
be made for the resulicl _Set Resul t will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (setting nt er p- >f r eePr oc appropriately). If the third gument iSTCL_DY-
NAM C it means that the string was allocated wiitth | oc and is now the property of
Tcl: Tcl _Set Resul t will seti nt er p- >f r eePr oc tof r ee as described above.
Finally, the third agument may be the address of a procedure suitable for use in
i nt er p- >f reePr oc; in this case the string is dynamically-allocated acidvill even-
tually call the specified procedure to free it.

Tcl _AppendResul t makes it easy to build up results in pieces. It takes any num-
ber of strings as guments and appends them to the interpietesult in orderAs the
result grows in lengtiicl _AppendResul t allocates new memory for itcl _Ap-
pendResul t may be called repeatedly to build up long results incremeraaitlit does
this eficiently even if the result becomes venygi(e.g. it allocates extra memory so that
it doesnt have to copy the existing result into aylawrarea on each call). Here is an imple-
mentation of theoncat command that usdx| _AppendResul t:

int ConcatCnd(CientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
int i;
if (argc == 1) {
return TCL_CK;

}I'cl _AppendResul t (i nterp, argv[1l], (char *) NULL);
for (i =2; i <argc; i++) {
Tcl _AppendResul t(interp, " ", argv[i],
(char *) NULL);
let urn TCL_OK;
}
TheNULL agument in each call tbcl _AppendResul t marks the end of the strings to
append. Since the result is initially emgtye first call toTcl _AppendResul t just sets
the result tar gv[1] ; each additional call appends one moguarent preceded by a
separator space.
Tcl _AppendEl enent is similar toTcl _AppendResul t except that it only

adds one string to the result at a time and it appends it as a list element instead of a raw

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 275

29.5

string. It's useful for creating lists. For example, here is a simple implementation of the
i st command:

int ListCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char **argv) {
int i;
for (i =1; i < argc; i++) {
Tcl _AppendEl errent (i nterp, argv[i]);

return TCL_OK;

}
Each call toTcl _AppendEl enent adds one gument to the result. Thegament is
converted to a proper list element before appending it to the result (e.g. it is enclosed in
braces if it contains space charactefs). AppendEl enent also adds a separator
space if its needed before the new element (no space is added if the result is currently
empty or if its characters are{**, which means that the new element will be the first ele-
ment of a sub-list). For example Lif st Cnd is invoked with four agjuments, I'i st ”,

“abc”, “x y”, and ‘}”, it produces the following result:

abc {x y} \}
Like Tcl _AppendResul t, Tcl _AppendEl ement grows the result space if needed
and does it in a way that isfiefent even for lage results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procediitd _Reset Resul t . It will invoke
i nt er p->freeProc if needed and then restore the interprstezsult to its initialized
state. Yu can then store a new value in the result in any of the usual wayse¥d not
call Tcl _Reset Resul t if you're going to us@cl _Set Resul t to store the new
result, sincdcl _Set Resul t takes care of freeing any existing result.

ClientData and deletion callbacks

The fourth and fifth gruments tdrcl _Cr eat eConmmrand, cl i ent Dat a and
del et ePr oc, were not discussed in Section 29.2 but they are useful when commands
are associated with objects. Tdlel ent Dat a agument is used to pass a one-word value
to a command procedureclBaves thel i ent Dat a value that is passed 1@l _Cr e-
at eConmand and uses it as the firsgaiment to the command procedure. The type
d i ent Dat a is laige enough to hold either an integer or a pointer value. It is usually the
address of a C data structure for the command to manipulate.

Tcl and Tk useallback proceduresin many places. A callback is a procedure whose
address is passed to a library procedure and saved in a data structurat katee signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

DRAFT (4/16/93): Distribution Restricted

276

Creating New Tcl Commands

dure is an example of a callback! @ssociates the procedure address witti adimmand

name and calls the procedure whenever the command is invoked. When a callback is spec-
ified in Tcl or Tk adl i ent Dat a agument is usually provided along with the procedure
address and th@ i ent Dat a value is passed to the callback as its firgtiarent.

Thedel et ePr oc agument toTcl _Cr eat eCommand specifies a deletion call-
back. If its value ist’NULL then it is the address of a procedure fdrtd invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl _CndDel eteProc(ClientData clientData);
The deletion callback takes a singlguanent, which is the ClientData value specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 shows hoel i ent Dat a anddel et ePr oc can be used to implement
counter objects. The application containing this code must reGstert er Cnd as a Tl
command using the following call:

Tcl _CreateCommand(interp, "counter", CounterCnd,

(dientData) NULL, (Tcl_CndDel eteProc) NULL);

New counters can then be created by invokingthent er Tcl command; each invoca-
tion creates a new object and returns a name for that object:

count er

ctrQ

count er

ctrl
Count er Cnd is the command procedure foount er . It allocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variabled, arranges for that name to be returned as the comsnaastilt, and
increments d so that the next new counter will get dealiént name.

This example uses the object-oriented style described in Section 27.3, where there is
one command for each counter object. As part of creating a new cGanterer Cd
creates a newcl command named after the counteuses the address of tBeunt er
structure as th€l i ent Dat a for the command and specifiésl et eCount er as the
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its commamet , which returns the current value of the
counter andnext , which increments the countewvalue. Oncet r 0 andct r 1 were
created above, the following:lfcommands could be invoked:

ctr0 next; ctr0O next; ctr0O get
2

ctrl get

0

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 277

typedef struct {
int val ue;
} Counter;

int CounterCrd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Counter *counterPtr;
static int id = 0;
if (argc = 1) {
interp->result = "wong # args";
return TCL_ERROR;
}
counterPtr = (Counter *) mall oc(sizeof (Counter));
counterPtr->value = 0;
sprintf(interp->result, "ctr%", id);
i d++;
Tcl _CreateConmmand(interp, interp->result, ObjectCnd,
(CientData) counterPtr, DeleteCounter);
return TCL_COK;

}

int GhjectCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
CounterPtr *counterPtr = (Counter *) clientData;
if (argc !'=2) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], "get") == 0) {
sprintf(interp->result, "%", counterPtr->value);
} else if (strcnp(argv[1l], "next") == 0) {
counter Ptr->val uet+;
} else {
Tcl _AppendResul t (i nterp, "bad counter comand \"",
argv[1], "\": should be get or next",
(char *) NULL);
return TCL_ERROR;

return TCL_COK;
}

voi d Del eteCounter(ClientData clientData) {
free((char *) clientData);
}

Figure 29.1. Animplementation of counter objects.

DRAFT (4/16/93): Distribution Restricted

278

Creating New Tcl Commands

Note:

29.6

ctrO clear
bad counter command "clear": should be get or next

The proceduré&bj ect Crrd implements the d commands for all existing counters. It is
passed a diérentd i ent Dat a agument for each countexhich it casts back to a value
of typeCount er *.Cbj ect Cnd then checkar gv[1] to see which command option
was invoked. If it waget then it returns the countsrvalue as a decimal string; if it was
next then it increments the counteralue and leaveat er p- >r esul t untouched

so that the result is an empty string. If an unknown command was invoked then

hj ect Cnd callsTcl _AppendResul t to create a useful error message.

It is not safe to @ate the elwr message with a statement like
sprintf(interp->result, "bad counter conmmand \"%s\":
"shoul d be get or next", argv[1]);
This is unsafe because gv[1] has unknown length. It could be so long sat i nt f
overflows the space allocated in the intetpr and corrupts memory .

Tcl _AppendResul t is safe because it checks the lengths of garaents and
allocates as much space as needed for¢halt.

To destroy a counter you can delete tbcbmmand, for example:

renane ctr0 {}

As part of deleting the command|Twill invoke Del et ePr oc, which frees up the mem-
ory associated with the counter

This object-oriented implementation of counter objects is similar ®ifriplementa-
tion of widgets: there is oneclfcommand to create new instances of each counter or wid-
get, and oned command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientDatagument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

Deleting commands

Tcl commands can be removed from an interpreter by callihg Del et eComand.
For example, the statement below will deletedhe0 command in the same way as the
r enane command above:

Tcl _Del et eCommand(interp, "ctr0");
If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, andcT procedures.

DRAFT (4/16/93): Distribution Restricted

Chapter 30
Parsing

30.1

This chapter describeglibrary procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the wordscbEdmmands. Seeable 30.1 for a summary of

the procedures.

Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean viadleszet | nt

Tcl _Get Doubl e, andTcl _Get Bool ean. Each of these procedures takes thrga-ar
ments: an interpretea string, and a pointer to a place to store the value of the string. Each
of the procedures returii€L._ OK or TCL_ ERROR to indicate whether the string was
parsed successfullifor example, the command procedure below Tises Cet | nt to
implement assumcommand:

int SumCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
int numl, nung;
if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERRCR;

}

if (Tcl_GetInt(interp, argv[l1l], ¨) != TCL_CK) {
return TCL_ERROR;

}

279

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

280 Parsing

int Tcl_Getlnt(Tcl_Interp *interp, char *string, int *intPtr)
Parsest ri ng as an integestores value &ti nt Pt r, and returns
TCL_OK. If an error occurs while parsing, retufifSL_ ERROR and stores
an error message imt er p- >resul t.

int Tcl_GetDouble(Tcl _Interp *interp, char *string, double *dou-
bl ePtr)
Same aJcl _Cet | nt except parsest ri ng as a floating-point value and
stores value atdoubl ePtr.

int Tcl _CetBool ean(Tcl _Interp *interp, char *string, int *intPtr)
Same adcl _Get | nt except parsest ri ng as a boolean and stores 0/1
value at*i nt Pt r. See &ble 30.2 for legal values fet ri ng.

int Tcl _ExprString(Tcl _Interp *interp, char *string)
Evaluatest r i ng as an expression, stores value as string in
i nterp->result,andreturn§CL_CK. If an error occurs during evalua-
tion, returnsTCL_ERROR and stores an error messagetin er p-
>result.
int Tcl _ExprLong(Tcl _Interp *interp, char *string, long *l ongPtr)
Same agcl _Expr St ri ng except stores value as a long integer at
*| ongPt r. An error occurs if the value cafve converted to an integer
nt Tcl _ExprDoubl e(Tcl _Interp *interp, char *string,
doubl e *doubl ePtr)
Same agcl _Expr St ri ng except stores value as double-precision float-
ing-point value at doubl ePt r. An error occurs if the value cafse con-
verted to a floating-point number
int Tcl _ExprBool ean(Tcl _Interp *interp, char *string, int
*intPtr)
Same agcl _Expr St ri ng except stores value as 0/1 integer at
*i nt Pt r. An error occurs if the value case converted to a boolean
value.

nt Tcl _SplitList(Tcl _Interp *interp, char *list, int *argcPtr,
char ***argvPtr)
Parses$ i st as a Tl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elemeritaatic Pt r and
pointer to array atar gvPt r. ReturnsTCL_OK. If an error occurs while
parsingl i st, returnsTCL_ERROR and stores an error message in
i nt er p->resul t. Space for string array is dynamically allocated; caller
must eventually passar gvPtr tofree.
char *Tcl _Merge(int argc, char **argv)
Inverse offcl _Spl it Li st. Returns pointer tocT list whose elements ar¢
the members adr gv. Result is dynamically-allocated; caller must event
ally passittd r ee.

if (Tcl _Getint(interp, argv[2], &nunR) !'= TCL_CK) {
return TCL_ERROR;

sprintf(interp->result, "%l", nunil+nun®);

DRAFT (4/16/93): Distribution Restricted

30.1 Numbers and booleans 281

return TCL_COK;

}
Suntnd expects each of the commamtivo aguments to be an integétrcalls
Tcl _Get | nt to convert them from strings to integers, then it sums the values and con-
verts the result back to a decimal string it er p- >r esul t. Tcl _Get | nt accepts
strings in decimal (e.g492"), hexadecimal (e.g.0x1ae") or octal (e.g. 017"), and
allows them to be signed and preceded by white space. If the string is in one of these for-
mats theTcl _Get | nt returnsTCL_OK and stores the value of the string in the location
pointed to by its last gument. If the string cahbe parsed correctly thérel _Get | nt
stores an error messaga int er p- >r esul t and return§CL_ ERROR; SumCnd then
returnsTCL_ ERRORto its caller withi nt er p- >r esul t still pointing to the error mes-
sage fromflcl _Getlnt.

Here are some examples of invoking shencommand in @l scripts:

sum 2 3

S

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl _Get Doubl e is similar toTcl _Get | nt except that it expects the string to
consist of a floating-point number such a22” or “3. Oe- 6” or “7". It stores the dou-
ble-precision value of the number at the location given by its Igirent or returns an
error in the same way 3l _Get | nt . Tcl _Get Bool ean is similar except that it con-
verts the string to a 0 or 1 integer value, which it stores at the location given by its last

argument. Any of the true values listed iable 30.2 converts to 1 and any of the false val-
ues converts to 0.

True \alues| False \alues
1 0
true false
on off
yes no

Table 30.2. Legal values for boolean strings parsediby _Get Bool ean. Any of the values
may be abbreviated or capitalized.

DRAFT (4/16/93): Distribution Restricted

282

Parsing

30.2

Many other Tl and Tk library procedures are similarfiol _Cet | nt in the way
they use amnt er p agument for error reporting. These procedures all expect the inter-
pretets result to be in its initialized state when they are called. If they complete success-
fully then they usually leave the result in that state; if an error occurs then they put an error
message in the result. The procedures’ return values indicate whether they succeeded, usu-
ally as aTCL_CK or TCL_ERRCR completion code but sometimes in other forms such as
aNULL string pointerWhen an error occurs, all the caller needs to do is to return a failure
itself, leaving the error message in the interptetersult.

Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX:Tcl _Expr St ri ng, Tcl _Expr Long, Tcl _Expr Doubl e, and

Tcl _Expr Bool ean. These procedures are similar except that they return the result of
the expression in diérent forms as indicated by their names. Here is a slightly simplified
implementation of thexpr command, which usé&| _Expr St ri ng:

int ExprCrd(dientData clientData, TcllInterp *interp,
int argc, char *argv[]) {
if (argc '=2) {
interp->result = "wong # args";
return TCL_ERRCR
]:eturn Tcl _ExprString(interp, argv[1]);
}
All Expr Cnd does is to check itsgument count and then caktl _Expr Stri ng.
Tcl _Expr Stri ng evaluates its secondgaiment as adl expression and returns the
value as a string innt er p- >r esul t . Like Tcl _Get I nt, it returnsTCL_ K if it
evaluated the expression successfully; if an error occurs it leaves an error message in
i nterp->result and return§CL_ERROR.
Tcl _ExprLong, Tcl _Expr Doubl e, andTcl _Expr Bool ean are similar to

Tcl _Expr Stri ng except that they return the expresssa@sult as a long integeou-
ble-precision floating-point numbear 0/1 integerrespectivelyEach of the procedures
takes an additional gmment that points to a place to store the result. For these procedures
the result must be convertible to the requested type. For examplbgif Is passed to
Tcl _Expr Long then it will return an error becausaf’c” has no integer value. If the
string “40” is passed td@cl _Expr Bool ean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists 283

30.3 Manipulating lists

Tcl provides several procedures for manipulating lists, of which the most useful are
Tcl _SplitList andTcl _Mer ge. Given a string in the form of aMist,
Tcl _SplitList extracts the elements and returns them as an array of string pointers.
For example, here is an implementation cfd1 i ndex command that uses
Tcl _SplitlList:
int LindexCnd(CdientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
int index, listArgc;
char **|istArgv;
if (argc !'= 3) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (Tcl _Getint(interp, argv[2], & ndex) != TCL_CK) {
return TCL_ERROR;

}
if (Tcl _SplitList(interp, argv[1l], & istArgc,
&istArgv) = TCL_OK) {
return TCL_ERRCR

}
if ((index >= 0) && (index < listArgc)) {
Tcl _SetResult(interp, |istArgv[index],
TCL_VOLATI LE);

%ree((char *) listArgv);
return TCL_CK;
}
Li ndexCd checks its ayjument count, call$cl _CGet | nt to convertar gv[2] (the
index) into an integethen callsTcl _Spl it Li st to parse the lisfTcl _SplitLi st
returns a count of the number of elements in the list &t Ar gc. It also creates an array
of pointers to the values of the elements and stores a pointer to that airay #r gv. If
Tcl _SplitLi st encounters an error in parsing the list (e.g. unmatched braces) then it
returnsTCL_ ERROR and leaves an error messagelim er p- >r esul t ; otherwise it
returnsTCL_OK.
Tcl _SplitlList callsmal | oc to allocate space for the array of pointers and for

the string values of the elements; the caller must free up this space by pasgidg gv
tof r ee. The space for both pointers and strings is allocated in a single block of memory
so only a single call tbr ee is needed.i ndexCnd callsTcl _Set Resul t to copy the
desired element into the interpréteresult. It specifieSCL_VOLATI LE to indicate that
the string value is about to be destroyed (its memory will be fréedl); Set Resul t
will make a copy of théi st Argv[i ndex] fori nt er p’s result. If the specified index

DRAFT (4/16/93): Distribution Restricted

284

Parsing

is outside the range of elements in the list thendexCnd leaves nt er p- >r esul t
in its initialized state, which returns an empty string.

Tcl _Mer ge is the inverse ofcl _Spl it Li st. Givenar gc andar gv informa-
tion describing the elements of a list, it returmsm&l oc’ed string containing the list.
Tcl _Mer ge always succeeds so it doggmeed anm nt er p agument for error reporting.
Heres another implementation of thé st command, which usé&cl _Mer ge:

int ListCrd2(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
interp->result = Tcl _Merge(argc-1, argv+1);
interp->freeProc = (Tcl _FreeProc *) free;
return TCL_OK;
}
Li st Cnd2 takes the result fromficl _Mer ge and stores it in the interpreteresult.
Since the list string is dynamically allocateidst Cnd2 setsi nt er p- >f r eePr oc to
f r ee so that €l will call f r ee to release the storage for the list when it is no longer
needed.

DRAFT (4/16/93): Distribution Restricted

Chapter 31
EXxceptions

31.1

Many Tcl commands, such a§ andwhi | e, have aguments that arecT scripts. The
command procedures for these commands inVake Eval recursively to evaluate the
scripts. IfTcl _Eval returns a completion code other thaEL_ OK then arexception is

said to have occurred. Exceptions incldd®d ERROR, which was described in Chapter

31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theer r or | nf o ander r or Code variables. Seeable 31.1 for a sum-

mary of procedures related to exception handling.

Completion codes.

Table 31.2 lists the full set otTcompletion codes that may be returned by command pro-
cedures. If a command procedure returns anything otheifttlanOK then Tl aborts the
evaluation of the script containing the command and returns the same completion code as
the result offcl _Eval (orTcl _Eval Fi |l e, etc). TCL_OK andTCL_ERROR have
already been discussed; they are used for normal returns and errors, respébtvely
completion code$CL_BREAK or TCL__ CONTI NUE occur ifbr eak orcont i nue com-
mands are invoked by a script; in both of these cases the intepretait will be an
empty string. Th@CL_RETURN completion code occursiifet ur n is invoked; in this
case the interpreterresult will be the intended result of the enclosing procedure.

As an example of how to generat€ @ BREAK completion code, here is the com-
mand procedure for tHa eak command:

285

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

286 Exceptions

Tcl _AddErrorinfo(Tcl _Interp *interp, char *nmessage)
Addsnessage to stack trace being formedtitne err or | nf o variable.
Tcl _SetError Code(Tcl _Interp *interp, char *field, char *field,
(char *) NULL)
Creates a list whose elements arefthel d aguments, and sets the
er r or Code variable to the contents of the list.

Table 31.1. A summary of €l library procedures for settirey r or | nf o ander r or Code.

Completion Code Meaning
TCL_OK Command completed normally
TCL_ERROR Unrecoverable error occurred.
TCL_BREAK Br eak command was invoked.
TCL_CONTINUE Cont i nue command was invoked.
TCL_RETURN Ret ur n command was invoked.

Table 31.2. Completion codes that may be returned by command procedures and procedu
evaluate scripts, such @sl _Eval .

int BreakCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
if (argc '=2) {
interp->result = "wong # args"”;
return TCL_ERRCR;

}
return TCL_BREAK;

}

TCL_BREAK, TCL_CONTI NUE, andTCL_RETURN are used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code otfeZlth@K
from Tcl _Eval should immediately return that same completion code to its caller with-
out modifying the interpret&s result. Howeveml few commands process some of the spe-
cial completion codes without returning them upward. For example, here is an
implementation of thehi | e command:

DRAFT (4/16/93): Distribution Restricted

31.1 Completion codes. 287

int WhileCd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {

i nt bool ;
i nt code;
if (argc !'= 3) {
interp->result = "wong # args";

return TCL_ERROR;

}
while (1) {
Tcl _Reset Result (i nterp);
i f (Tcl _ExprBool ean(interp, argv[1], &bool)
I= TCL_CK) {
return TCL_ERROR;

}
if (bool == 0) {
return TCL_CK;

code = Tcl _Eval (interp, argv[2]);

if (code == TCL_CONTINUE) {
conti nue;

} else if (code == TCL_BREAK) {
return TCL_COK;

} else if (code !'= TCL_OK) {
return code;

}

}
}

After checking its agument countyhi | eCrd enters a loop where each iteration evalu-
ates the commanrslfirst agument as an expression and its secogdnaent as a script. If
an error occurs while evaluating the expression Wer eCnd returns the erroif the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the scrigtiarent. If the completion code is
TCL_CONTI NUE thenWhi | eCnd goes on to the next loop iteration. If the code is
TCL_BREAK thenWhi | eCnd ends the execution of the command and retti€hs OK
to its callerIf Tcl _Eval returns any other completion code besiti€s_OK thenWhi -
| eCd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERROR or TCL_RETURN codes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then @ checks the completion code to be sure it is eili@tr_OK or TCL_ERROR.
If not then Tl turns the return into an error with an appropriate error message. Further-
more, if aTCL_BREAK or TCL_ CONTI NUE exception unwinds all the way out of a pro-
cedure thendl also turns it into an erroFor example:

DRAFT (4/16/93): Distribution Restricted

288

Exceptions

31.2

br eak
i nvoked "break" outside of a | oop

proc badbreak {} {break}
badbr eak

i nvoked "break" outside of a |oop

Thus applications need not worry about completion codes othef@ierOK and
TCL_ERROR when they evaluate scripts from the outermost level.

Augmenting the stack trace in errorinfo

When an error occursclfmodifies theer r or | nf o global variable to hold a stack trace
of the commands that were being evaluated at the time of theledwes this by calling
the procedurd@cl _AddEr r or | nf o, which has the following prototype:

void Tcl _AddErrorinfo(Tcl _Interp *interp,
char *nessage)

The first call toTcl _AddEr r or | nf o after an error setsr r or | nf o to the error mes-
sage stored innt er p- >r esul t and then appenasessage. Each subsubsequent call
for the same error appenaiessage toer r or | nf o’'s current value. Whenever a com-
mand procedure returfCL_ERROR Tcl _Eval callsTcl _AddError | nf o to log
information about the command that was being executed. If there are nested calls to
Tcl _Eval then each one adds information about its command as it unwinds, so that a
stack trace forms iar r or | nf 0.

Command procedures can cBfll _AddEr r or | nf o themselves to provide addi-
tional information about the context of the erfbhis is particularly useful for command
procedures tha invoKecl _Eval recursively For example, consider the followingl T
procedure, which is a buggy attempt to find the length of the longest element in a list:

proc longest list {
set i [lIlength $list]
while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $l ength
}

incr i

return $nmax
}

This procedure is buggy because it never initializes the variaxeso an error will
occur when théf command attempts to read it. If the procedure is invoked with the com-

DRAFT (4/16/93): Distribution Restricted

31.2 Augmenting the stack trace in errorinfo 289

mand ‘longest {a 12345 xyz} ", then the following stack trace will be stored in
errorinfo after the error:

can’t read "max": no such variable
while executing
"if {$length > $max} {
set max $length

("while" body line 3)
invoked from within
“while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incr i

3

(procedure "longest” line 3)

invoked from within

“longest {a 12345 xyz}"

All of the information is provided bycl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by thedde that evaluates procedure bodies. If
you used the implementationwhile on page 287 instead of the built-iol implemen-
tation then the first parenthesized message would be missing. The C code below is a
replacement for the lastse clause inWhileCmd ; it usesTcl_AppendResult to
add the parenthetical remark.

} else if (code != TCL_OK) {
if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",
interp->errorLine);
Tcl_AddErrorinfo(interp, msg);
}

return code;

}

TheerrorLine field ofinterp is set byTcl Eval whenever a command procedure
returns an error; it gives the line number of the command that produced thevighiar

the script being executed. A line number of 1 corresponds to the first line, which is the line
containing the open brace in this examplejtheommand that generated the error is on
line 3.

DRAFT (4/16/93): Distribution Restricted

290

Exceptions

Note:

31.3

For simple €l commands you shouldmieed to invokdcl _AddEr r or | nf o: the
information provided byrcl _Eval will be suficient. Howeverif you write code that
callsTcl _Eval then | recommend callingcl _AddEr r or | nf o whenever
Tcl _Eval returns an erroto provide information about whicl _Eval was invoked
and also to include the line number of the error
You must calllcl _AddEr r or | nf o rather than trying to set ther r or | nf o variable

directly, becausd@cl _AddEr r or | nf o contains special code to detect the first call after
an eror and clear out the old contentsexfr or | nf 0.

Setting errorCode

Note:

The last piece of information set after an error isstheor Code variable, which pro-
vides information about the error in a form thagasy to process witlellscripts. Its
intended for use in situations where a script is likely to catch the determine exactly
what went wrong, and attempt to recover from it if possible. If a command procedure
returns an error tocT without settinger r or Code then Tl sets it tdNONE. If a command
procedure wishes to provide informatioreinr or Code then it should invoké&cl _Se-

t Er r or Code before returning CL_ ERROR.

Tcl _Set Err or Code takes as guments an interpreter and any number of string
arguments ending with a null pointét forms the strings into a list and stores the list as
the value okr r or Code. For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent objectiernaght seier r or Code
as follows:

Tcl _Set Error Code(interp, "dzZMJ', "EXI ST",
"no object by that nane", (char *) NULL);

This will leave the valueG@ ZMO EXI ST {no obj ect by that nane}”in
err or Code. G ZMOidentifies a general class of errors (those associated with gizmo
objects) EXI ST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error messagecan store whatever you want in
err or Code as long as the first list element do¢swnflict with other values already in
use, but the overall idea is to provide symbolic information that can easily be processed by
a Tcl script. For example, a script that accesses gizmos might catch errors and if the error
is a hon-existent gizmo it might automatically create a new gizmo.
It's important to calllcl _Set Er r or Code rather than settingr r or Code directly
with Tcl _Set Var. This is becaus€c| _Set Er r r or Code also sets other information

in the interpeter so thaer r or Code isnt later set to its default value; if you set
er r or Code directly, then €l will override your value with the default valhENE.

DRAFT (4/16/93): Distribution Restricted

Chapter 32
Accessing Tcl Variables

This chapter describes how you can accebsdriables from C codecTprovides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses3Z.1 summa-
rizes the library procedures that are discussed in the chapter

32.1 Naming variables

The procedures related to variables come in pairs subtlasSet Var andTcl _Set -

Var 2. The two procedures in each paiffelifonly in the way they name alvariable. In

the first procedure of each pauch aJcl _Set Var, the variable is named with a single

string agumentyar Name. This form is typically used when a variable name has been

specified as angnment to a @ command. The string can name a scalar variable ¢.g. “

or “f i el dNamne”, or it can name an element of an armyg. ‘a(42) " or

“area(Sout h Aneri ca)”. No substitutions or modifications are performed on the

name. For example, ¥far Nane is “a($i) " Tcl will not use the value of variableas

the element name within array it will use the string $i " literally as the element name.
The second procedure of each pair has a name endiagy m§.Tcl _Set Var 2. In

these procedures the variable name is separated intogumemtsnanel andnane?2.

If the variable is a scalar theanel is the name of the variable andne?2 is NULL. If

the variable is an array element threrre 1 is the name of the array andne?2 is the

name of the element within the arrais form of procedure is less commonly used but it

is slightly faster than the first form (procedures likd _Set Var are implemented by

calling procedures lik&cl _Set Var 2).

291

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

292

Accessing Tcl Variables

char *Tcl _SetVar(Tcl _Interp *interp, char *varNaneg,

char *Tcl _SetVar2(Tcl _Interp *interp, char *namel, char *name2,

char *Tcl _CGetVar(Tcl _Interp *interp, char *varNaneg,

char *Tcl _CGetVar2(Tcl _Interp *interp, char *nanmel, char *name2,

char *newval ue, int flags)
char *newval ue, int flags)
Sets the value of the variablertewVal ue, creating the variable if it didn’
already exist. Returns the new value of the variabMubt in case of error
int flags)

int flags)
Returns the current value of the variablelNot.L in case of error

int Tcl_UnsetVar(Tcl _Interp *interp, char *varNane,
int flags)
int Tcl_UnsetVar2(Tcl _Interp *interp, char *namel, char *nane2,
int flags)
Removes the variable frormt er p and return§CL_OK. If the variable
doesnt exist or has an active trace then it té@ removed and
TCL_ERRCRIs returned.
int Tcl _TraceVar(Tcl _Interp *interp, char *varNane,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
int Tcl _TraceVar2(Tcl _Interp *interp, char *nanel, char *nane2,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
Arrange forpr oc to be invoked whenever one of the operations specified by
f1 ags is performed on the variable. Retuiif@L_OK or TCL_ERROR.
Tcl _UntraceVar(Tcl _Interp *interp, char *varNane,

Tcl _UntraceVar2(Tcl _Interp *interp, char *nanel, char *nane2,

ClientData Tcl _VarTracelnfo(Tcl _Interp *interp, char *var Nane,

ClientData Tcl _VarTracel nfo2(Tcl _Interp *interp, char *namel,

int flags, Tcl_VarTraceProc *proc, ClientData clientData)

int flags, Tcl_VarTraceProc *proc, CientData clientData)
Removes the trace on the variable that matphes, cl i ent Dat a, and
fl ags, if there is one.

int flags, Tcl_VarTraceProc *proc, CientData prevdientData)

char *name2, int flags, Tcl_VarTraceProc *proc,

ClientData prevclientData)
If prevd i ent Dat a is NULL, returns the ClientData associated with th
first trace on the variable that matchésgs andpr oc (only the
TCL_GLOBAL_ONLY bit of f | ags is used); otherwise returns t6ei -
ent Dat a for the next trace matchirig ags andpr oc after the one whose
Client Dataisprevd i ent Dat a. ReturndNULL if there are no (more)
matching traces.

¢

Table 32.1. Tcl library procedures for manipulating variables. The procedures come in pairs
procedure the variable is named with a single string (which may specify either a scalar or a
element) and in the other procedure the variable is named with separate array and elemen
(namel andnane2, respectively). Ihame2 is NULL then the variable must be a scalar

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values 293

Flag Name Meaning

TCL_GLOBAL_ONLY Reference global variable, regardless o
current execution context.

TCL_LEAVE_ERR_MSG| If operation fails, leave error message in
interp->result.

TCL_APPEND_MLUE Append new value to existing value
instead of overwriting.

TCL_LIST_ELEMENT Convert new value to a list element befare
setting or appending.

]

Table 32.2. Values that may be OR’ed together in the flagaments talcl _Set Var and
Tcl _Set Var 2. Other procedures use a subset of these flags.

32.2 Setting variable values

Tcl _Set Var andTcl _Set Var 2 are used to set the value of a variable. For example,
Tcl _SetVar(interp, "a", "44", 0);
will set the value of variable ini nt er p to the string 44”. If there does not yet exist a
variable namead then a new one will be created. The variable is set in the current execu-
tion context: if a Tl procedure is currently being executed, the variable will be a local one
for that procedure; if no procedure is currently being executed then the variable will be a
global variable. If the operation completed successfully then the return value from
Tcl _Set Var is a pointer to the variabkehew value as stored in the variable table (this
value is static enough to be used as an interpsatesult). If an error occurred, such as
specifying the name of an array without also specifying an element namalUhieris
returned.

The last ayument toTcl _Set Var orTcl _Set Var 2 consists of an OR’ed combi-
nation of flag bits. dble 32.2 lists the symbolic values for the flags. Ifitte_ GL OBA-
L_ONLY flag is specified then the operation always applies to a global variable, even if a
Tcl procedure is currently being execut€@L_L EAVE ERR_MSG controls how errors
are reported. Normallficl _Set Var andTcl _Set Var 2 just returnNULL if an error
occurs. Howeveiif TCL_LEAVE _ERR _MSGhas been specified then the procedures will
also store an error message in the intergeetesult. This last form is useful when the
procedure is invoked from a command procedure that plans to abort if the variable access
fails.

The flagTCL_APPEND_VALUE means that the new value should be appended to the
variables current value instead of replacing itl implements the append operation in a

DRAFT (4/16/93): Distribution Restricted

294

Accessing Tcl Variables

way that is relatively étient, even in the face of repeated appends to the same variable. If
the variable doesthyet exist therTCL_ APPEND VAL UE has no déct.

The last flagTCL_LI ST_ELEMENT, means that the new value should be converted
to a proper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If bothTCL_LI ST_ELEMENT andTCL_APPEND_VALUE are specified then a sepa-
rator space is also added before the new elemertt ifégded.

Here is an implementation of theppend command that uséx| _Set Var :

i nt LappendCnd(d ientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
int i;
char *newval ue;
if (argc < 3) {
interp->result = "wong # args"”;
return TCL_ERROR;

for (i =2; i <argc; i++) {
newval ue = Tcl _SetVar (interp, argv[1l], argv[i],
TCL_LI ST_ELEMENT| TCL_APPEND_VALUE
| TCL_LEAVE _ERR MSG) ;
i f (newval ue == NULL) {
return TCL_ERROR;
}
}

interp->result = newval ue;
return TCL_CK;
}

It simply callsTcl _Set Var once for each gument and let$cl _Set Var do all the
work of converting the gument to a list value and appending it to the variable. If an error
occurs therfcl _Set Var leaves an error messagé mt er p- >r esul t andLap-
pendCnd returns the message back tb. Tf the command completes successfully then it
returns the variabls’final value as its result. For example, suppose the follovaingpim-
mand is invoked:

set a 44
| append a x {b c}

44 x {b c}
WhenLappendCnd is invokedar gc will be 4.Ar gv[2] will be “x” andar gv[3]
will be “b c¢” (the braces are removed by the parser)LappendCnd makes two calls
to Tcl _Set Var ; during the first call no conversion is necessary to produce a proper list
element, but during the second c&adll _Set Var adds braces back arourtal ‘t” before
appending it the variable.

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables 295

32.3 Reading variables

The procedure$cl _Get Var andTcl _Get Var 2 may be used to retrieve variable val-
ues. For example,

char *val ue;

value = Tcl _GetVar(interp, "a", 0);
will store inval ue a pointer to the current value of variabldf the variable doest’
exist or some other error occurs thdill L is returnedTcl _Get Var andTcl _Cet -
Var 2 support th&fCL_GLOBAL_ONLY andTCL_LEAVE_ERR_MsSGflags in the same
way asTcl _Set Var . The following command procedure ued _Get Var and
Tcl _Set Var to implement thé ncr command:

int IncrCd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
int value, inc;
char *string;
if ((argc !'=2) &% (argc !'= 3)) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (argc == 2) {
inc = 1;
} else if (Tcl _GetInt(interp, argv[2], & nc)
= TCL_OK) {
return TCL_ERRCR
}

string = Tcl _GetVar(interp, argv[1],
TCL_LEAVE_ERR MSG) ;
if (string == NULL) {
return TCL_ERRCR;

}
if (Tcl _GetInt(interp, string, &alue) != TCL_OK) {
return TCL_ERRCR

sprintf(interp->result, "%l", value + inc);
if (Tcl_SetVar(interp, argv[l], interp->result,
TCL_LEAVE_ERR M5G == NULL) {
return TCL_ERRCR;

}
return TCL_OK;
}
I ncr Cnd does very little work itself. It just calls library procedures and aborts if errors
occur The first call toTcl _Get | nt converts the increment from text to binary

DRAFT (4/16/93): Distribution Restricted

296

Accessing Tcl Variables

324

Tcl _Get Var retrieves the original value of the variable, and another catilto CGet -
I nt converts that value to binatyncr Cnd then adds the increment to the variable’
value and callspri ntf to convert the result back to teXtl _Set Var stores this
value in the variable, arldhcr Crrd then returns the new value as its result.

Unsetting variables

32.5

To remove a variable, calcl _Unset Var orTcl _Unset Var 2. For example,

Tcl _Unset Var 2(interp, "population", "M chigan", 0);
will remove the elemeri¥l chi gan from the arraypopul at i on. This statement has
the same ééct as the @ command

unset popul ati on(M chi gan)

Tcl _Unset Var andTcl _Unset Var 2 returnTCL_ OK if the variable was successfully
removed andCL_ ERRORif the variable didrt’exist or couldrt' be removed for some
other reasonTCL_GLOBAL_ONLY andTCL_LEAVE_ERR MsGmay be specified as
flags to these procedures. If an array hame is given without an element name then the
entire array is removed.

Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever a variable is
read, written, or unsetrdces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of a variable and updates itself auto-
matically when the variable is modified. This feature is implemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
purposes.

The procedurescl _TraceVar andTcl _Tr aceVar 2 create variable traces, as in
the following example:

Tcl _TraceVar(interp, "x", TCL_TRACE WRI TES, Wi teProc,
(CientData) NULL);

This creates a write trace on variakleni nt er p: Wi t ePr oc will be invoked when-
everx is modified. The third gument toTcl _Tr aceVar is an OR’ed combination of
flag bits that select the operations to trd@@: TRACE_READS for reads,
TCL_TRACE_WRI TES for writes, andrCL_ TRACE_UNSETS for unsets. In addition,
the flagTCL_GLOBAL_ONLY may be specified to force the variable name to be inter-
preted as globallcl _TraceVar andTcl _Tr aceVar 2 normally returnTCL_ CK; if
an error occurs then they leave an error messagetiar p- >r esul t and return
TCL_ERROR.

DRAFT (4/16/93): Distribution Restricted

32.6 Trace callbacks 297

The library proceduregcl _UntraceVar andTcl _UntraceVar 2 remove vari-
able traces. For example, the following call will remove the trace set above:
Tcl _UntraceVar(interp, "x", TCL_TRACE WRI TES,
WiteProc, (CientData) NULL);
Tcl _Unt raceVar finds the specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by geraents, and removes the trace if it
exists. If no matching trace exists therl _Unt r aceVar does nothingTcl _Un-
traceVar andTcl _Unt r aceVar 2 accept the same flag bitsesl _Tr aceVar.

32.6 Trace callbacks

Trace callback procedures such/és t ePr oc in the previous section must match the
following prototype:
typedef char *Tcl VarTraceProc(CientData clientData,
Tcl _Interp *interp, char *nanmel, char *nane2,
int flags);

Thecl i ent Dat a andi nt er p aguments will be the same as the correspondigg-ar
ments passed ficl _TraceVar orTcl _TraceVar 2.d i ent Dat a typically points
to a structure containing information needed by the trace callNaokel andnane2
give the name of the variable in the same form as thexants tolcl _Set Var 2.
FI ags consists of an OR’ed combination of bits. OndGE_ TRACE READS,
TCL_TRACE _WRI TES, orTCL_TRACE_UNSETS is set to indicate which operation trig-
gered the trace, anidCL_GLOBAL_ONLY is set if the variable is a global variable that
isn't accessible from the current execution context; the trace callback must pass this flag
back into procedures likecl _CGet Var 2 if it wishes to access the variable. The bits
TCL_TRACE _DESTROYED andTCL_| NTERP_DESTROYED are set in special circum-
stances described below

For read traces, the callback is invoked just befole Get Var orTcl _Get Var 2
returns the variabls’value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variablevalue has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl _Set Var orTcl _Set Var 2. For unset traces the callback is invoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when a variable is explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variables in
the interpreter).

A trace callback procedure can invokel _Get Var 2 andTcl _Set Var 2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so callsdb_Get Var 2 andTcl _Set Var 2 will

DRAFT (4/16/93): Distribution Restricted

298

Accessing Tcl Variables

not trigger additional trace callbacks. As mentioned above, unset tracésramaied
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. Howeverit is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.
The code below sets a write trace that prints out the new value of variadth time
it is modified:
Tcl _TraceVar (interp, "x", TCL_TRACE WRI TES, Print,
(CientData) NULL);

char *Print(CientData clientData,

Tcl _Interp *interp, char *nanmel, char *nane2,
int flags) {

char *val ue;

val ue = Tcl _GetVar2(interp, nanel, nane2,

flags & TCL_GLOBAL_ONLY);

if (value !'= NULL) {

printf("new value is %\n", value);

return NULL;
}

Pri nt Proc must pass th€CL_GLOBAL_ONLY bit of itsf | ags agument on to
Tcl _Get Var 2 in order to make sure that the variable can be accessed properly
Tcl _Get Var 2 should never return an errdautPr i nt Pr oc checks for one anyway
and doesit’'try to print the variablg'value if an error occurs.

Trace callbacks normally retuMULL values; a nomtNULL value signals an errdn
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invoked by aommand of-substitution
then a Tl error will result; if the access was invoked Vil _Get Var, Tcl _Get Var
will return NULL and also leave the error messageriher p- >r esul t if the
TCL_LEAVE_ERR MsGflag was specified.

The code below uses a trace to make variallad-only with valud 92:

Tcl _TraceVar(interp, "x", TCL_TRACE WRI TES, Reject,
(dientData) "192");
char *Reject(CientData clientData, Tcl _Interp *interp,
char *namel, char *nanme2, int flags) {
char *correct = (char *) CientData;
Tcl _Set Var2(i nterp, nanel, nane2, correct,
flags & TCL_GLOBAL_QONLY);
return "variable is read-only";
s
Rej ect is a trace callback thatinvoked wheneverx is written. It returns an error mes-
sage to abort the write access. Sindws already been modified beffej ect is

DRAFT (4/16/93): Distribution Restricted

32.7 Whole-array traces 299

invoked,Rej ect must undo the write by restoring the variableorrect value. The cor-
rect value is passed to the trace callback using itent Dat a agument. This imple-

mentation allows the same procedure to be used as the write callback for rfexapntdif
read-only variables; a didrent correct value can be passe®éepect for each variable.

32.7 Whole-array traces

You can create a trace on an entire array by specifying an array néaie for aceVar

or Tcl _TraceVar 2 without an element name. This creates a whole-array trace: the call-
back procedure will be invoked whenever any of the specified operations is invoked on
any element of the arralf the entire array is unset then the callback will be invoked just
once, withnanmel containing the array name andnme2 NULL.

32.8 Multiple traces

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacks is invoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

32.9 Unset callbacks

Unset callbacks are @&rent from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extra flags are defined for unset callbadkd. TRACE DELETED and

TCL_| NTERP_DESTROYED. When a variable is unset all of its traces are deleted; unset
traces on the variable will still be invoked, but they will be passe@iGhe TRACE DE-
LETEDflag to indicate that the trace has now been deleted antllveoinvvoked anymore.

If an array element is unset and there is a whole-array unset trace for the slemayt’

then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETED flag set.

If the TCL_| NTERP_DESTROYED flag is set during an unset callback it means that
the interpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpsettate is in the process of
being deleted. All that the callback should do is to clean up its own internal data struc-
tures.

DRAFT (4/16/93): Distribution Restricted

300 Accessing Tcl Variables

32.10 Non-existent variables

It is legal to set a trace on a variable that does not yet exist. The variable will continue to
appear not to exist (e.g. attempts to read it will fail), but the saediback will be

invoked during operations on the variable. For example, you can set a read trace on an

undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The procedurescl _Var Tr acel nf o andTcl _Var Tr acel nf 02 can be used to find
out if a particular kind of trace has been set on a variable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;

clientData = Tcl _VarTracelnfo(interp, "x", 0, Reject,
(dientData) NULL);

Tcl _Var Tr acel nf o will see if there is a trace on variablehat hafej ect as its
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will retiMdL L. Given the code in Section 32.6
above, this call will tell whether is read-only; if so, it will return the variabdefead-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple callsTd _Var Tr acel nf o, as in the
following code:

ClientData clientDat a;

clientData = NULL;
while (1) {
clientData = Tcl _VarTracel nfo(interp, "x", O,
Rej ect, clientData);
if (clientData == NULL) {
br eak;
}

... processtrace ...
}
In each call tarcl _Var Tr acel nf o after the first, the previous ClientData value is
passed in as the laspamentTcl _Var Tr acel nf o finds the trace with this value, then
returns the ClientData for the next trace. When it reaches the last trace it Kefukns

DRAFT (4/16/93): Distribution Restricted

Chapter 33
Hash Tables

A hash tablés a collection oEntries where each entry consists dfeyand avalue No

two entries have the same k&jven a keya hash table can very quickly locate its entry

and hence the associated valug.cbntains a general-purpose hash table package that it
uses in several places internafpr example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (seable 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for useliocommands. When a
command procedure receives an object name agamant it must locate the C data
structure for the objectypically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error

For the examples in this chapter I'll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct G znmo {
... fields of gizmo object ...
} G zno;

301

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

302 Hash Tables

Tcl _I ni t HashTabl e(Tcl _HashTabl e *tabl ePtr, int keyType)
Creates a new hash table and stores information about the table at
*t abl ePtr. KeyType is eitherTCL_STRI NG_KEYS,
TCL_ONE_WORD_KEYS, or an integer greater than 1.

Tcl _Del et eHashTabl e(Tcl _HashTabl e *tabl ePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl _HashEntry *Tcl _Creat eHashEntry(Tcl _HashTabl e *tabl ePtr,

char *key,
int *newPtr)

Returns a pointer to the entrytiabl ePt r whose key i«key, creating a
new entry if needed.NewPt r is set to 1 if a new entry was created or O ff
the entry already existed.

Tcl _HashEntry *Tcl _Fi ndHashEntry(Tcl _HashTabl e *tabl ePtr, char
*key)
Returns a pointer to the entrytiabl ePt r whose key ikey, or NULL if
no such entry exists.

Tcl _Del et eHashEnt ry(Tcl _HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl _GetHashVal ue(Tcl _HashEntry *entryPtr)
Returns the value associated with a hash table.entry

Tcl _Set HashVal ue(Tcl _HashEntry *entryPtr, CientData val ue)
Sets the value associated with a hash table.entry

char *Tcl _Get HashKey(Tcl _HashEntry *entryPtr)
Returns the key associated with a hash table.entry

Tcl _HashEntry *Tcl _Fi rst HashEntry(Tcl _HashTabl e *tabl ePtr,
Tcl _HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search &sear chPt r and returns the hash talsldirst entry or
NULL if it has no entries.

Tcl _HashEntry *Tcl _Next HashEntry(Tcl _HashSearch *searchPtr)
Returns the next entry in the search identifieddgr chPt r or NULL if all
entries in the table have been returned.

char *Tcl _HashStats(Tcl _HashTabl e *tabl ePtr)
Returns a string giving usage statisticstfabl ePt r. The string is dynam-
ically allocated and must be freed by the caller

The application uses names likg ‘Znp42” to refer to gizmos in @ commands, where
each gizmo has a é#frent number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collectichomiii-
mands to manipulate the objects, such@seat e to create a new gizmggdel et e to
delete an existing gizmgsear ch to find gizmos with certain characteristics, and so on.

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values 303

33.1

Keys and values

33.2

Tcl hash tables support threefdient kinds of keys. All of the entries in a single hash
table must use the same kind of Keyt diferent tables may use fiifent kinds. The most
common form of key is a string. In this case each keyNidld_-terminated string of arbi-
trary length, such agf znp18” or “WAst e not want not ". Different entries in a
table may have keys of éfent length. The gizmo implementation uses strings as keys.
The second form of key is a one-word value. In this case each key may be any value
that fits in a single word, such as an inte@sre-word keys are passed int dsing val-
ues of type €har *” so the keys are limited to the size of a character pointer
The last form of key is an arraly this case each key is an array of integerisr(C
type). All keys in the table must be the same size.
The values for hash table entries are items of @peent Dat a, which are lage
enough to hold either an integer or a poinitemost applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
d i ent Dat a items when storing them in hash table entries, and they are cast back from
d i ent Dat a to object pointers when retrieved from the hash table.

Creating and deleting hash tables

Each hash table is represented by a C structure offyijpeHashTabl e. Space for this
structure is allocated by the client, not lmy}; Typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you pass in a
pointer to alcl _HashTabl e structure as a token for the hash tabtmu ¥hould never
use or modify any of the fields off&l _HashTabl e directly Use the €l library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl _HashTabl e gi znoTabl e;

Tel I ni t HashTabl e(&gi znoTabl e, TCL_STRI NG_KEYS) :

The first agument toTcl _I ni t HashTabl e is aTcl _HashTabl e pointer and the
second ggument is an integer that specifies the sort of keys that will be used for the table.
TCL_STRI NG_KEYS means that strings will be used in the table;
TCL_ONE_WORD_VALUES specifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number ®frirgach array
Tcl _I ni t HashTabl e ignores the current contents of the table it is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.

Tcl _Del et eHashTabl e removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space foctheHashTabl e

DRAFT (4/16/93): Distribution Restricted

304

Hash Tables

33.3

structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash table initialized above:

Tcl _Del et eHashTabl e(&gi znoTabl e) ;

Creating entries

The procedur&cl _Cr eat eHashEnt ry creates an entry with a given key and
Tcl _Set HashVal ue sets the value associated with the erfior example, the code
below might be used to implement tper eat e command, which makes a new gizmo
object:
int GcreateCnd(d ientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
static int id = 1;
int new,
Tcl _HashEntry *entryPtr;
G zmo *gi znoPtr;
... check argc, etc ...
do {
sprintf(interp->result, "gizm%", id);
i d++;
entryPtr = Tcl _CreateHashEntry(&gi znoTabl e,
interp->result, &new);
} while (!new);
gi zmoPtr = (G zmo *) malloc(sizeof (G znp));
Tcl _Set HashVal ue(entryPtr, giznmoPtr);
... initialize * gizmoPtr, etc ...
return TCL_COX;
}
This code creates a name for the object by concatenafirmgrd” with the value of the
static variablé d. It stores the name imt er p- >r esul t so that the commarsglresult
will be the name of the new objeGcr eat eCnd then incrementsd so that each new
object will have a unique nam&c| _Cr eat eHashEnt ry is called to create a new
entry with a key equal to the objextiame; it returns a token for the entdypder normal
conditions there will not already exist an entry with the given ikeyhich case
Tcl _Creat eHashEnt ry setsnewto 1 to indicate that it created a new enttgwever
it is possible foifcl _Cr eat eHashEnt ry to be called with a key that already exists in
the table. IfGcr eat eCnd this can only happen if a very ¢@r number of objects are cre-
ated, so thatd wraps around to zero again. If this happens Tredn Cr eat eHashEn-
try sets new to Qzcr eat eCnd will try again with the next lgeri d until it eventually
finds a name that isnalready in use.

DRAFT (4/16/93): Distribution Restricted

33.4 Finding existing entries 305

Note:

33.4

After creating the hash table en@®yr eat eCnd allocates memory for the objext’
record and invoke$cl _Set HashVal ue to store the record address as the value of the
hash table entryfcl _Set HashVal ue is actually a macro, not a procedure; its first
argument is a token for a hash table entry and its secgadant, the new value for the
entry, can be anything that fits in the space 6f aent Dat a value. After setting the
value of the hash table ent®¢r eat eCd initializes the new object’record.

Tcl's hash tablesastructue themselves as you add entries. A tabletwse’ much
memory for the hash buckets when it has only a small number of entries, but it will

increase the size of the bucket array as the number of entrieages:; di's hash tables
should operate efficiently even with venglinumbers of entries.

Finding existing entries

The procedur@cl _Fi ndHashEnt ry locates an existing entry in a hash table. It is sim-
ilar to Tcl _Cr eat eHashEnt ry except that it won’create a new entry if the key
doesnt already exist in the hash tablel _Fi ndHashEnt ry is typically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure calle@et G zno, which is something lik&cl _Get | nt except that it trans-
lates its string gument to & zno pointer instead of an integer:
Gznmo *Getd zmo(Tcl _Interp *interp, char *string) {
Tcl _HashEntry *entryPtr;
entryPtr = Tcl _Fi ndHashEntry(&gi znoTabl e, string);
if (entryPtr == NULL) {
Tcl _AppendResul t(interp, "no gizno naned \",
string, "\", (char *) NULL);
return TCL_ERRCR

}
return (G znmo *) Tcl _Get HashVal ue(entrypbtr);
}
CGet G zno looks up a gizmo name in the gizmo hash table. If the name exis&ahen
G zno extracts the value from the entry using the mdecrio_CGet HashVal ue, con-
verts it to aG zno pointer and returns it. If the name dodsaxist thenGet G zno
stores an error messaga int er p- >r esul t and returngNULL.

Get G zno can be invoked from any command procedure that needs to look up a
gizmo object. For example, suppose there is a comgiawdst that performs a “twist”
operation on gizmos, and that it takes a gizmo name as its dissh@nt. The command
might be implemented like this:

int GwistCrd(CdientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
G znmo *gi znoPtr;
... check agc, etc ...

DRAFT (4/16/93): Distribution Restricted

306 Hash Tables

gi zmoPtr = GetG znmo(interp, argv[1]);
if (giznoPtr == NULL) {

return TCL_ERROR;
}

... perform twist operation ...

33.5 Searching

Tcl provides two procedures that you can use to search through all of the entries in a hash
table.Tcl _Fi r st HashEnt r y starts a search and returns the first eamgTcl _N-
ext HashEnt ry returns successive entries until the search is complete. For example,
suppose that there iggear ch command that searches through all existing gizmos and
returns a list of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:
int GsearchCnd(d ientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
Tcl _HashEntry *entryPtr;
Tcl _HashSearch search;
G znmo *gi znmoPtr;
... process aguments to choose seércriteria ...
for (entryPtr = Tcl _FirstHashEntry(&giznoTabl e,
&search); entryPtr != NULL;
entryPtr = Tcl _NextHashEntry(&search)) {
gi zmoPtr = (G zno *) Tcl _GetHashVal ue(entryPtr);
i f (...object satisfies sedr criteria..) {
Tcl _AppendE!l enent (i nterp,
Tcl _Get HashKey(entryPtr));
}
}
return TCL_CX;
}
A structure of typdcl _HashSear ch is used to keep track of the search.
Tcl _Fi r st HashEnt ry initializes this structure antcl _Next HashEnt r y uses the
information in the structure to step through successive entries in the tabpeskible to
have multiple searches underway simultaneously on the same hash table by uéng a dif
entTcl _HashSear ch structure for each searcfcl _Fi r st HashEnt ry returns a
token for the first entry in the table (dLL if the table is empty) anticl _Next Hash-
Ent r y returns pointers to successive entries, eventually retuxtihgy when the end of
the table is reached. For each e@sear chCnd extracts the value from the entopn-
verts it to a3 zno pointer and sees if that object meets the criteria specified in the com-
mands aguments. If so, the@Bsear chCnd uses thdcl _Get HashKey macro to get

DRAFT (4/16/93): Distribution Restricted

33.6 Deleting entries 307

Note:

the name of the object (i.e. the erdgrigey) and invoke$cl _AppendE!l enent to
append the name to the interpr&teesult as a list element.

It is not safe to modify the structure of a hash table during a search. If you create or delete
entries then you should terminate any searches in progress.

33.6 Deleting entries
The procedur&cl _Del et eHashEnt ry will delete an entry from a hash table. For
example, the following procedure uSed Del et eHashEnt ry to implement gde-
| et e command, which takes any humber @futanents and deletes the gizmo objects they
name:
int GdeleteCnd(CientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
Tcl _HashEntry *entryPtr;
G znmo *gi znoPtr;
int i;
for (i = 1; i < argc; i++)
entryPtr = Tcl _Fi ndHashEntry(&gi znoTabl e,
argv[i]);
if (entryPtr == NULL) {
conti nue;
}
gi zmoPtr = (G zno *) Tcl _HashGet Val ue(entryPtr);
Tcl _Del et eHashEntry(entryPtr);
... Clean up *gizmoPtr ...
free((char *) giznoPtr);
}
return TCL_CK;
}
Gdel et eCd checks each of itsguments to see if it is the name of a gizmo object. If
not, then the gument is ignored. Otherwisglel et eCnd extracts a gizmo pointer from
the hash table entry and then caktd _Del et eHashEnt r y to remove the entry from
the hash table. Then it performs internal cleanup on the gizmo object if needed and frees
the objects record.
33.7 Statistics

The procedur&cl _HashSt at s returns a string containing various statistics about the
structure of a hash table. For example, it might be used to implergebhied command
for gizmos:

DRAFT (4/16/93): Distribution Restricted

308

Hash Tables

int GtatCnd(ClientData clientData, Tcl _Interp *interp,
int argc,

if (_argc = 1)

}

i nterp->result

return TCL_CK;

}

i nterp->result
return TCL_ERROR;

char *argv[]) {
{

"wong # args";

= Tcl _HashSt at s(&gi znoTabl e) ;
interp->freeProc = free;

The string returned bycl _HashSt at s is dynamically allocated and must be passed to
free;Gst at Cnd uses this string as the commanisult, and then sets

i nter p->freeProc so that Tl will free the string.

The string returned bycl _HashSt at s contains information like the following:
1416 entries in table,

nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber

bility.

of
of
of
of
of
of
of
of
of
of
of

bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s

wi th
with
with
with
wth
wi th
wi th
with
with
with
wth

1024 buckets

entri
entri
entri
entri
entri
entri
entri
entri
entri
entri

CoOo~NOOUIT~WNEFO

es:
es:
es:
es:
es:
es:
es:
es:
es:
es:

60
591
302
67

ooooowu

nore than 10 entries: O
average search distance for entry: 1.4
You can use this information to see hoficedntly the entries are stored in the hash table.
For example, the last line indicates the average number of entrieslthalt iave to
check during hash table lookups, assuming that all entries are accessed with equal proba-

DRAFT (4/16/93): Distribution Restricted

Chapter 34
String Utilities

This chapter describe<ITs library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Bble 34.1 summarizes these procedures.

Note: None of the dynamic string facilities are available in versions of Tcl earlier than 7.0.

34.1 Dynamic strings

A dynamic string is a string that can be appended to without bound. As you append infor-
mation to a dynamic stringclfautomatically grows the memory area allocated for it. If
the string is short thencTavoids dynamic memory allocation altogether by using a small
static bufer to hold the string.d provides five procedures for manipulating dynamic
strings:

Tcl _DStringl ni t creates a new empty string;

Tcl _DSt ri ngAppend adds characters to a dynamic string;

Tcl _DSt ri ngAppendEl enent adds a new list element to a dynamic string;

Tcl _DSt ri ngFr ee releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl _DSt ri ngResul t moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

309

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

310

String Utilities

Tcl _DStringlnit(Tcl _DString *dsPtr)
Initializes* dsPt r to an empty string (previous content$ dsPt r are
discarded without cleanup).

char *Tcl _DStringAppend(Tcl _DString *dsPtr, char *string, int
| engt h)
Appendd engt h bytes fromst ri ng todsPt r ’s value and returns new
value ofdsPt r. If | engt h is less than zero, appends alkof i ng up to
terminatingNULL character

char *Tcl _DStringAppendEl enent (Tcl _DString *dsPtr, char *string)
Convertsst r i ng to proper list element and appendsl$d’t r 's value
(with separator space if needed). Returns new valdsfefr .

Tcl _DStringFree(Tcl _DString *dsPtr)
Frees up any memory allocated &Pt r and reinitializeg dsPt r to an
empty string.

Tcl _DStringResul t(Tcl _Interp *interp, Tcl_DString *dsPtr)
Moves the value adsPtr toi nt er p- >r esul t and reinitializesls P-
t r’s value to an empty string.

i nt Tcl _ConmmandConpl et e(char *cnd)
Returnsl if crmd holds one or more complete commartild,the last com-
mand incnd is incomplete due to open braces etc.

int Tcl _StringMatch(char *string, char *pattern)
Returnsl if st ri ng matchegat t er n using glob-style rules for pattern
matching,0 otherwise.

The code below uses all of these procedures to implenmap aommand, which

takes a list and generates a new list by applying some operation to each element of the
original list. Map takes two aguments: a list and aclfcommand. For each element in the
list, it executes the given command with the list element appended as an addigional ar
ment. It takes the results of all the commands and generates a new list out of them, and
then returns this list as its result. Here are some exmples of how you might oae the
command:

proc inc x {expr $x+1}

map {4 18 16 19 -7} inc

519 17 20 -6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{a z} {b z} {abc z}

Here is the command procedure that implemeafs:

int MapCrd(CientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {

DRAFT (4/16/93): Distribution Restricted

34.1 Dynamic strings 311

Tcl _DString conmand, newLi st;

int listArgc, i, result;

char **|istArgv;

if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERRCR

}
if (Tel_SplitList(interp, argv[1l], & istArgc,
&istArgv) !'= TCL_OK) {
return TCL_ERRCR
}
Tcl _DStringlnit(&ewlist);
Tcl _DStringlnit(&ommand);
for (i =0; i <IlistArgc; i++) {
Tcl _DStringAppend(&omand, argv[2], -1);
Tcl _DStri ngAppendEl enent (&commrand,
listArgv[i]);
result = Tcl _Eval (interp, command. string);
Tcl _DStri ngFree(& omrand) ;
if (result '= TCL_OK) {
Tcl _DStri ngFree(&ewli st) ;
free((char *) listArgv);
return result;

}
Tcl _DStri ngAppendEl enent (&newli st ,

interp->result);

}rcl _DStringResult(interp, &newlist);

free((char *) listArgv);

return TCL_COK;

}
MapCnd uses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list as it builds
up (this information cab’be placed immediately innt er p- >r esul t because the
interpretets result will be overwritten by the command te&valuated to process the next
list element). Each dynamic string is represented by a structure df¢ypddSt ri ng.
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and a length. The only field that you should ever
access is thet r i ng field, which is a pointer to the current valuel doesnt allocate
Tcl DSt ri ng structures; i up to you to allocate the structure (e.g. as a local variable)
and pass its address to the dynamic string library procedures.
After checking its ayjument count, extracting all of the elements from the initial list,

and initializing its dynamic string8apCnd enters a loop to process the elements of the

DRAFT (4/16/93): Distribution Restricted

312

String Utilities

34.2

list. For each element it first creates the command to execute for that element. It does this
by callingTcl _DSt ri ngAppend to append the part of the command provided in
argv[2], then it callsTcl _DSt ri ngAppendEl errent to append the list element as
an additional ayjument. These procedures are similar in that both add new information to
the dynamic string. HoweveFcl _DSt r i ngAppend adds the information as raw text
whereaslcl _DSt ri ngAppendEl enent converts its string gument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). I8 important to us&cl _DSt ri ngAppendE!l ermrent for the list element so
that it becomes a single word of thed €ommand being formed. Ticl _DSt r i ngAp-
pend were used instead and the element waréb” ¢” as in the example on page 310,
then the command passediml _Eval would be ‘addz a b c¢”, which would result
in an error (too many guments to thaddz procedure). Whefiicl _DSt r i ngAppen-
dEl enent is used the command iaddz {a b c}”, which parses correctly
OnceMapCnd has created the command to execute for an element, it invokes
Tcl _Eval to evaluate the command. Thel _DSt ri ngFr ee call frees up any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an errdvith@nrd
returns that same error; otherwise it usek_DSt r i ngAppendE!l enent to add the
result of the command to the result list as a new list element.
MapCd callsTcl _DSt ri ngResul t after all of the list elements have been pro-
cessed. This transfers the value of the string to the intergredsult in an dtient way
(e.g. if the dynamic string uses dynamically allocated memoryTtbenDSt r i ngRe-
sul t just copies a pointer to the resuli tot er p- >r esul t rather than allocating new
memory and copying the string).
Before returningVapCrd must be sure to free up any memory allocated for the
dynamic strings. It turns out that this has already been domelbyDSt r i ngFr ee for
command and byTcl DSt ri ngResul t fornewli st .

Command completeness

When an application is reading commands typed interactivslymportant to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:

foreach i {1 2 3 4 5} {
puts "$i*$i is [expr $i*$i]"
}

If the application reads each line separately and passekcit tdeval , a “mi ssi ng

cl ose- brace” error will be generated by the first line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

DRAFT (4/16/93): Distribution Restricted

34.3 String matching 313

or quotes) then execute all of the input as a single script. The prod@dur€ommrand-
Conpl et e makes this possible. It takes a string gsiarent and returns 1 if the string
contains syntactically complete commands, O if the last commangéticomplete.

The C procedure below uses dynamic stringsTaid ConmandConpl et e to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it evaluates the command(s) and returns the completion code from
the evaluation. It usékcl _Recor dAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCnd(Tcl _Interp *interp) {

char |ine[200];
Tcl _DString cnd;

int result;
Tcl _DStringlnit(&nd);
while (1) {
if (fgets(line, 200, stdin) == NULL) {
br eak;

}

Tcl _DStringAppend(&cnd, line, -1);

if (Tcl_CommandConpl ete(cnd. string)) {
br eak;

}

}

result = Tcl _RecordAndEval (interp, cnd.string, 0);

Tcl _DStringFree(&) ;

return result;

}

In the example of the previous pageOneCnd will collect all three lines before evaluat-
ing them. If an end-of-file occufget s will return NULL andDoOneCnd will evaluate
the command even if it isncomplete yet.

34.3 String matching

The procedurd&cl _St ri ngat ch provides the same functionality as tisé I i ng

mat ch” Tcl command. Given a string and a pattern, it retdriighe string matches the
pattern using glob-style matching abatherwise. For example, here is a command pro-
cedure that uséicl _St ri nghat ch to implement sear ch. It returns the index of the
first element in a list that matches a pattern, oif no element matches:

int LsearchCrd(ClientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
int listArgc, i, result;
char **|istArgv;
if (argc !'= 3) {

DRAFT (4/16/93): Distribution Restricted

314

String Utilities

interp->result = "wong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1l], & istArgc,
&istArgv) !'= TCL_OK) {
return TCL_ERRCR;

result = -1;
for (i =0; i <listArgc; i++) {
if (Tcl _StringMatch(listArgv[i], argv[2])) {
result =i;
br eak;

}

sprintf(interp->result, "%", result);
free((char *) listArgv);
return TCL_COXK;

DRAFT (4/16/93): Distribution Restricted

Chapter 35
POSI X Utilities

35.1

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expanatation in file names, to
generate messages for POSIX errors and signals, and to manage sub-procesable See T
35.1 for a summary of the procedure.

Tilde expansion

Tcl and Tk allow you to use notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login
opens the file named ogi n in the home directory of useust er, and
open ~/.login
opens a file named ogi n in the home directory of the current user (as given by the
HOVE environment variable). Unfortunatebjides are not supported by the POSIX sys-
tem calls that actually open files. For example, in thedjppehh command above the name
actually presented to tlopen system call must be something like
/users/ouster/.login

where~oust er has been replaced byhe home directory fasust er. Tcl _Ti | deS-
ubst is the procedure that carries out this substitution. It is used internallyt bpd Tk

315

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

316

POSIX Utilities

char

*Tcl _Til deSubst (Tcl _Interp *interp, char *nane,
Tcl _DString *resultPtr)

If nane starts with~, returns a new name with theand following charac-
ters replaced with the corresponding home directory nameani¢ doesnt
start with~, returnshane. Uses‘r esul t Pt r if needed to hold new nam
(caller need not initializ&r esul t Pt r, but must free it by callingicl _D-
St ri ngFr ee). If an error occurs, returddJLL and leaves an error mes-
sage in nterp->result.

char

char

char

char

*Tcl _Posi xError(Tcl _Interp *interp)
Sets theer r or Code variable ini nt er p based on the current value of
er r no, and returns a string identifying the error

*Tcl _Errnol d(voi d)
Returns a symbolic name corresponding to the current vaérer afo, such
asENCENT.

*Tcl _Signal Id(int siag)
Returns the symbolic name fer g, such assl G NT.

*Tcl _Si gnal Msg(int sig)
Returns a human-readable message describing siggal

i nt

Tcl _CreatePipeline(Tcl _Interp *interp, int argc, char
*argv([],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes
ated, and stores api dPt r the address of@al | oc-ed array of process
identifiers. If an error occurs, return and leaves an error message in
i nterp->result.lnPipePtr,outPipePtr,anderrFil ePtr are
used to control default I/O redirection (see text for details).

Tcl _Det achPi ds(int nunPids, int *pidPtr)

Passes responsibility faunPi ds at* pi dPt r to Tcl: Tcl will allow them
to run in backround and reap them in some future caltto ReapDe-
t achedPr ocs.

Tcl _ReapDet achedPr ocs(voi d)

Checks to see if any detached processes have exited; if so, cleans up 1
state.

cre-

heir

to process file names before using them in system calls, and you may find it useful if you

write C code that deals with POSIX files.

For example, the implementation of thygen command contains code something

like the following:

int fd;
Tcl _DString buffer;
char *ful | Nane;

DRAFT (4/16/93): Distribution Restricted

35.2 Generating messages 317

35.2

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {
return TCL_ERROR,;

}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);

Tcl_TildeSubst takes as guments an interpretea file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with~), a new tilde-expanded name NIJLL if an error occurred; in the last
case an error message is left in the interpgetesult.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by its final agument to store the name. Wheel_TildeSubst is called the dynamic
string should either be uninitialized or empkgl_TildeSubst initializes it and then
uses it for the new name if needed. Once the caller has finished using the new file name it
must invokeTcl_DStringFree to release any memory that was allocated for the
dynamic string.

Generating messages

When an error or signal occurs in the C code aflapplication, the application should
report the error or signal back to tha Jcript that triggered it, usually as & €rror To do
this, information about the error or signal must be converted from the binary form used in
C to a string form for use incTscripts. €l provides four procedures to do this:
Tcl_PosixError , Tcl_Erronld , Tcl_Signalld , andTcl_SignalMsg

Tcl_PosixError provides a simple “all in one” mechanism for reporting errors in
system callsTcl_PosixError examines the C variab&rno to determine what
kind of error occurred, then it callel_SetErrorCode to set theerrorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure;

FILE *f;

f = fopen("prolog.ps", "r");
if (f == NULL) {
char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,
“"couldn’t open prolog.ps: ", msg,
(char *) NULL);
return TCL_ERROR,;

DRAFT (4/16/93): Distribution Restricted

318

POSIX Utilities

35.3

If the file doesrt’ exist or isnt readable then an error will occur wHepen invokes a
system call to open the file. An integer code will be stored ierttm® variable to iden-
tify the error andopen will return a null pointerThe above code detects such errors and
invokesTcl_PosixError . If the file didnt exist thenTcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the stringid such f ile or directory ". The code above incorporates
Tcl_PosixError 's return value into its own error message, which it stores in
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory " as its error
message.

Tcl_Errmold takes no gjuments and returns thdiofal POSIX name for the error
indicated byerrno . The names are the symbolic ones defined in the header file
errno.h . For example, ierrno 's value iENOENThenTcl_Errnold will return
the string ENOENT. The return value froriicl_Errnold is the same as the value that
Tcl_PosixError will store in the second elementaforCode

Tcl_Signalld andTcl_SignalMsg each take a POSIX signal number agiar
ment, and each returns a string describing the sigoklSignalld returns the dicial
POSIX name for the signal as definedgignal.h , andTcl_SignalMsg returns a
human-readable message describing the signal. For example,

Tcl_Signalld(SIGILL)
returns the stringSIGILL ", and
Tcl_SignalMsg(SIGILL)
returns fllegal instruction

Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses faxec andopen. It creates one or more subprocesses in a pipeline con-
figuration. It has the following guments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,

char *argv[], int **pidPtr, int *inPipePtr,

int *outPipePtr, int *errFilePtr)
Theargc andargv amguments describe the commands for the subprocesses in the same
form they would be specified &xec . Each string irargv becomes one word of one
command, except for special strings like ‘and “| ” that are used for 1/O redirection and
separators between commanfd. CreatePipeline normally returns a count of the
number of subprocesses created, and it stofeidttr a pointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

DRAFT (4/16/93): Distribution Restricted

35.4 Background processes 319

35.4

be freed by the caller by passing if toee. If an error occurred while spawning the sub-
processes (e.@r gc andar gv specified that output should be redirected to a file but the
file couldnt be opened) theficl _Cr eat ePi pel i ne returns- 1 and leaves an error
message innt er p- >resul t.

The last three guments tdlcl _Cr eat ePi pel i ne are used to control I/O to and
from the pipeline ifar gv andar gc dont specify I/O redirection. If thesequments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the pargtiandard error channel for their
error message. ifnPi pePt r is notNULL then it points to an integefel _Cr e-
at ePi pel i ne will create a pipe, connect its output to the standard input of the first sub-
process, and store a writable file descriptor for its inptit aPi pePt r. If
out Pi pePtr is notNULL then standard output goes to a pipe and a read descriptor for
the pipe is stored &tout Pi pePtr.If errFi | ePtr is notNULL thenTcl _Cre-
at ePi pel i ne creates a temporary file and connects the standard error files for all of the
subprocesses to that file; a readable descriptor for the file will be stéredréfi -
| ePtr.Tcl _Creat ePi pel i ne removes the file before it returns, so the file will only
exist as long as it is open.

If ar gv specifies input or output redirection then this overrides the requests made in
the aguments talcl _Cr eat ePi pel i ne. For example, iir gv redirects standard
input then no pipe is created for standard inputnpiPi pePt r is notNULL then- 1 is
stored at'i nPi pePt r to indicate that standard input was redirectedr v redirects
standard output then no pipe is created for dyif Pi pePt r is notNULL then- 1 is
stored at out Pi pePtr. If ar gv redirects some or all of the standard error output and
errFil ePtr is notNULL, the file will still be created and a descriptor will be returned,
even though i§ possible that no messages will actually appear in the file.

Background processes

Tcl _Det achPi ds andTcl _ReapDet achedPr ocs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
dons it (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a “zombie”. It remains a zom-
bie until its parent dicially waits for it or until the parent exits. Zombie processes occupy
space in the systemprocess table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more procedssep this
from happening, you must invoke a system call suckeas pi d, which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishes its slot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processéxto Det achPi ds:

DRAFT (4/16/93): Distribution Restricted

320

POSIX Utilities

Tcl _DetachPi ds(int nunmPids, int *pidPtr)

Thepi dPt r agument points to an array of process identifiersrandPi ds gives the
size of the arrayEach of these processes now becomes the property arid the caller
should not refer to them agaircl Will assume responsibility for waiting for the processes
after they exit.

In order for El to clean up background processes you may need fbadallReap-
Det achedPr ocs from time to timeTcl _ReapDet achedPr ocs invokes the
wai t pi d kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executing¢herfiReapDet ached-
Pr ocs doesnt actually wait for them to exit; it only cleans up the processes that have
already exited. dl automatically invoke3cl _ReapDet achedPr ocs each time
Tcl _Creat ePi pel i ne is invoked, so under normal circumstances you tverer
need to invoke it. Howevelif you create processes without callihgl _Cr eat ePi pe-
I i ne (e.g. by invoking thé or k system call) and subsequently pass the processes to
Tcl _Det achPi ds, then you should also invoRel _ReapDet achedPr ocs from
time to time. For example, a good place to Tall _ReapDet achedPr ocs is in the
code that creates new subprocesses.

DRAFT (4/16/93): Distribution Restricted

