Chapter 14 AnIntroductionto Tk 133

14.1 Widgetsand windows 134

14.2 Screens, decorations, and toplevel windows 136
14.3 Applicationsand processes 137

14.4 Scriptsand events 138

14.5 Wish: awindowing shell 138

14.6 Widget creation commands 139

14.7 Geometry managers 140

14.8 Widget commands 141

14.9 Commands for interconnection 142

Chapter 15 Tour Of The Tk Widgets 145

15.1 Framesandtoplevels 145
15.2 Labels, buttons, checkbuttons, and radiobuttons 146

15.3 Menus and menubuttons 148

15.3.1 Pull-down menus 150

15.3.2 Pop-up menus 150

15.3.3 Cascaded menus 150

15.3.4 Keyboard traversal and accelerators 151

154 Listboxes 151
155 Entries 152
15.6 Scrollbars 153
157 Text 154
158 Canvases 155
159 Scaes 157
15.10 Messages 157

Chapter 16 Configuration Options 159
16.1 How optionsareset 159
16.2 Colors 161
16.3 Screendistances 163
16.4 Reliefs 164

DRAFT (3/11/93): Distribution Restricted

Chapter 17

Chapter 18

Chapter 19

16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

171
17.2
17.3
17.4
175
17.6
17.7

18.1
18.2
18.3
18.4

191
19.2

Fonts 164

Bitmaps 166

Cursors 166

Anchors 167

Script options and scrolling 169
Variables 171

Time intervals 171

The configure widget commandL71

The option databasel73

16.13.1Patterns 173

16.13.2RESOURCE_MANAGER property and .Xdefaults file 175
16.13.3Priorities 175

16.13.4The option command 176

Geometry Managers: The Placet79
An overview of geometry management79
Controlling positions with the placer182
Controlling the size of a slavel85

Selecting the master windowl85

Border modes 186

More on the place commandL86

Controlling the size of the masted 87

The Packer 189

Packer basics 189

Packer configuration options193
Hierarchical packing 196

Other options to the pack command97

Bindings 199

An overview of the bind command199
Event patterns 201

DRAFT (3/11/93): Distribution Restricted

Chapter 20

Chapter 21

Chapter 22

19.3
194
19.5
19.6
19.7
19.8

20.1
20.2
20.3

21.1
21.2
213
21.4
215

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
229

Sequences of event203
Conflict resolution 203
Substitutions in scripts 204
When are events processed205
Background errors: tkerror205
Other uses of bindings206

The Selection 207

Selections, retrievals, and gats 207
Locating and clearing the selectioi209
Supplying the selection withcTscripts 210

The Input Focus 213

Focus model: explicit vs. implicit 213
Setting the input focus 214

Clearing the focus 215

The default focus 215

Keyboard accelerators216

Window Managers 217

Window sizes 219

Gridded windows 220

Window positions 222

Window states 222

Decorations 223

Window manager protocols223

Special handling: transients, groups, and override-redirg2¢
Session managemen25

A warning about window manager225

DRAFT (3/11/93): Distribution Restricted

Chapter 23

Chapter 24

Chapter 25

Chapter 26

The Send Command 227
23.1 Basics 227
23.2 Hypertools 228
23.3 Application names 229
234 Security issues 229

Modal Interactions 231
24.1 Grabs 231
24.2 Keyboard handling during grabs 233
24.3 Waiting: the tkwait command 233

Oddsand Ends 237
25.1 Destroying windows 237
25.2 Timedelays 238
25.3 Theupdate command 239
25.4 Information about windows 240
25,5 Thetk command: color models 240
25.6 Variablesmanaged by Tk 241

Examples 243
26.1 A procedurethat generates dialog boxes 243
26.2 A remote-control application 247

DRAFT (3/11/93): Distribution Restricted

Part |l

Writing Scriptsfor Tk

132

DRAFT (3/11/93): Distribution Restricted

Chapter 14
An Introduction to Tk

Note:

Tk is a toolkit that allows you to create graphical user interfaces for thevkitiow sys-
tem by writing Tl scripts. Like €l, Tk is a C library package that can be included in C
applications. Tk extends the built-iclicommand set described in Part | with several
dozen additional commands that you can use to create user interface elementsdzalled
gets arrange them into interesting layouts on the screen gsimgetry managerand
connect them with each otherith the enclosing application, and with other applications.
This part of the book describes $Kcl commands.

In addition to its €| commands, Tk also provides a collection of C library functions
that can be invoked from C code in a Tk-based application. The library functions allow
you to implement new widgets and geometry managers in C. They are discussed in Part IV
of the book.

This chapter introduces the basic structures used for creating user interfaces with Tk,
including the hierarchical arrangements of widgets that make up interfaces and the main
groups of €l commands provided by Tk. Later chapters will go over the individual facili-
ties in more detail.

I've taken the liberty of describing things in the way | expect them to be when the book is
finally published, so the descriptions in this draft do not alwaysspand to the cuent
version of Tk (3.2). The following disprancies exist between this draft and Tk 3.2: (a) the
pack command syntax as describedehir diffeent than what exists in 3.2, although it
provides almost exactly the same set of festuib) Tk 3.2 doedréontain all of the built-

in bitmaps listed her(c)gr oove andr i dge reliefs ae not supported in Tk 3.2, and (d)
embedded widgetsanot yet supported in text widgets. As new versions ofeTk ar
released the disepancies should gradually disappear

133

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

134 An Introduction to Tk

Press Me|

@

|Sample texy

(b)

Figure 14.1. Examples of widgets in Tk: (a) a button widget displays a text string and invok
given Tl command when a mouse button is clicked over it; (b) an entry widget displays a o
text string and allows the text to be edited with the mouse and keyboard; (c) a scrollbar wid
displays a slider and two arrows, which can be manipulated with the mouse to adjust the vi
some other widget.

14.1 Widgets and windows

The basic user interface elements in Tk are callddets. Examples of widgets are labels,
buttons, pull-down menus, scrollbars, and text entries (see Figure 14dggts\are
grouped intaclasses, where all of the widgets in a class have a similar appearance on the
screen and similar behavior when manipulated with the mouse and keyboard. For exam-
ple, widgets in the button class display a text string or bitmap as shown in Figure 14.1(a).
Different buttons may display their strings or bitmaps ifedéht ways (e.g. in diérent
fonts and colors), but each one displays a single string or bitmap. Each button also has a
Tcl script associated with it, which is invoked whenever mouse button 1 is pressed with
the mouse cursor over the widget.fBiént button widgets may havefdifent commands
associated with them but each one has an associated command. When you create a widget
you select its class and provide additional class-spegifions, such as a string or bitmap
to display or a command to invoke.

Tk’s built-in widget classes implement the MBYflook-and-feel standard specified
by the Open Software Foundation. The Motif standard determines the three-dimensional
look that you'll see in the Tk widgets and many aspects of their behavior

Each widget is implemented using one window in the X window system, and the
terms “window” and “widget” are used interchangeably in this bodkg@ls may be
nested in hierarchical arrangements with widgets containing other widgets that contain
still other widgets. The result is a tree-like structure such as the one shown in Figure 14.2.
Each widget can contain any number of children and the widget tree can have any depth.
The widgets with behavior that is meaningful to the user are usually at the leaves of the
widget tree; the highdevel widgets are usually just containers faganmizing and arrang-
ing the leaf widgets.

DRAFT (3/11/93): Distribution Restricted

14.1 Widgets and windows 135

Hle - Help

[S

Lt

Hawraii
Idaho
Minois
Indiana J .listbox .menu .scroll
lowra
Kansas
Kentucky
Louisiana
Maine
Maryland i

(@) (b)

.menu. file. menu. hel p

Fle Help

Havraii : Py
Idaho
linois
Indiana |
lowa - _— \“
Kansas

Kentucky
Louisiana
kaine
Maryland Fi

(©)

Figure 14.2. Widgets are arranged hierarchicallycollection of widgets is shown in (a) as it
appears on the screen, and the hierarchical structure of the collection is shown in (b). An e
view of the screen is shown in (c) to clarify the widget structure. The topmost widget in the
hierarchy (“.”) contains three children: a menu bar across the top, a scrollbar along the right
and a listbox filling the remaindérhe menu bar contains two children of its owRj &e menu
button on the left and Hel p menu button on the right. Each widget has a name that reflect:
position in the hierarchyuch as nenu. hel p for theHel p menu button.

DRAFT (3/11/93): Distribution Restricted

136

An Introduction to Tk

14.2

Each widget/window has a textual name that is used to refer todt @@fimands.
Window names are similar to the hierarchical path names used to name files in Unix,
except that *” is used as the separator character insteati”ofThe name “.” refers to the
topmost window in the hierarchyhich is called thenain window. The name a. b. ¢
refers to a windowe that is a child of window a. b, which in turn is a child of a, which
is a child of the main windaw

Screens, decorations, and toplevel windows

Tk creates the main window of an application as a child of the root window of a particular
screen. This causes the main window to appear on that sceegwiidow manager will

then create a decorative frame around the main winatbieh usually displays a title and
provides controls that you can use to move and resize the wiAdgwen window man-

ager will decorate all applications in the same,voay diferent window managers may

use diferent styles of decoration. Figure 14.2 showed a main window without any win-
dow manager decoration; other figures will show decorations as providedriwntivén-

dow manager (e.g. see Figure 14.3).

X clips each window to the area of its parent: it will not display any part of a window
that lies outside the area of its parent. The descendants of the main window are called
internal windows to reflect the fact that they appear inside the area of the main window
However applications often need to create widgets that ard temside the main win-
dow. For example, it might be useful to position a dialog box in the center of the screen
regardless of the position of the main wingdowan application might wish to post several
panels that the user can move around on the screen indeperfe@nsiyuations like this
Tk provides a third kind of window called@p-level window. A top-level window
appears like an internal window in the applicatonidget hierarchy (e.g. it might have a
name like. a. b) but its X window is created as a child of the screemot rather than its
parent in the Tk widget hierarchjhe window manager will treat top-level windows just
like main windows, so the user will be able to move and resize and iconify each top-level
window separately from the main window and other top-level windoasIdvel win-
dows are typically used for panels and dialog boxes. See Figure 14.3 for an example.

It is not necessary for all of the widgets of an application to appear on the same screen
or even the same displaihen you create a top-level widget you can specify a screen for
it. The screen defaults to the screen of the widgpttent in the Tk hierarchiyut you can
specify any screen whose X server will accept a connection from the application. For
example, its possible to create a Tk application that broadcasts an announcement to a
number of wokstations by opening a top-level window on each of their screens.

Once a widget is created on a particular screen, it cannot be moved to another screen.
This is a limitation imposed by the X window system. Howgeyeu can achieve the same
effect as moving the widget by deleting it and recreating it orfer€ift screen.

DRAFT (3/11/93): Distribution Restricted

14.3 Applications and processes 137

—| ° States | -] —| _ Deletion Dialog | .| |
File Hel
—_— = il Are you sure that you
Hawaii really want to delete
Idaho "Kansas” from the
llinois database?
Indiana J
lovra - Yes I Ho l =
Kansas
Kentucky L :
Louisiana
Maine
| Maryland 7
] T
@)
.listbox .nenu .scroll .dlg
.menu. file.nenu. hel p .dlg.nmsg.dlg.yes .dlg.no
(b)

Figure 14.3. Top-level widgets appear in the Tk widget hierarchy just like internal widgets,
they are positioned on the screen independently from their parents in the hidraticisyexample
the dialog box dl g is a top-level windowFigure (a) shows how the windows appear on the s
(with decorations provided by tmeswmwindow manager) and Figure (b) showsshkidget
hierarchy for the application.

14.3

Applications and processes

In Tk the termapplication refers to a single widget hierarchy (one main window and any
number of internal and top-level windows descended from it), a siobietérpreter

associated with the widget hierarcpjus all the commands provided by that interpreter

Each application is usually a separate process, but Tk also allows a single process to man-
age several applications, each with its own widget hierarchy @nté@rpreter Tk does

DRAFT (3/11/93): Distribution Restricted

138

An Introduction to Tk

14.4

not provide any particular support for multi-threading (using a collection of processes to
manage a single application); it is conceivable that Tk could be used in a multi-threaded
environment but it would not be trivial and | know of no working examples.

Scripts and events

14.5

Tk applications are controlled by two kinds af $cripts: annitialization script andevent
handlers. The initialization script is executed when the application starts up. It creates the
applications user interface, loads the applicatodata structures, and performs any other
initialization needed by the application. Once initialization is complete the application
enters arevent loop to wait for user interactions. Whenever an interesting event occurs,
such as the user invoking a menu entry or moving the mouséseript is invoked to
process that event. These scripts are called event handlers; they can invoke application-
specific Tl commands (e.g. enter an item into a database), modify the user interface (e.g.
post a dialog box), or do many other things. Some event handlers are created by the initial-
ization script, but event handlers can also be created and modified by other event handlers.
Most of the Tl code for a Tk application is in the event handlers and the procedures
that they invoke. Complex applications may contain hundreds of event handlers, and the
handlers may create other panels and dialogs that have additional event handlers. Tk appli-
cations are thuevent-driven. There is no well-defined flow of control within the applica-
tion’s scripts, since there is no clear task for the application to carry out. The application
presents a user interface with many features and the user decides what to do next. All the
application does is to respond to the events corresponding to theact@&ms. The event
handlers implement the responses; they tend to be short scripts, and they are mostly inde-
pendent of each other

Wish: a windowing shell

While you're reading this book you may find it useful to experiment with a program called
wi sh (for “windowing shell”).W sh is the simplest possible Tk application. The ordly T
commands it contains are thel Built-ins and the additional commands provided by Tk. If
you invokewi sh with no aguments then it creates a main window and acts like a shell,
reading El commands from its standard input and executing them. For example, try typ-
ing the following commands tei sh:
button .b -text "Hello, world!" -conmand "destroy .
pack .b
This creates the application shown in Figure 14.4, consisting of a single button that dis-
plays the textMel | o, wor | d”. It also creates one event handler: if the user clicks
mouse button 1 over the widget then Tk will invoke the commdrdt'r oy . ", which

DRAFT (3/11/93): Distribution Restricted

14.6 Widget creation commands

139

Figure 14.4. A simple Tk application created by typing commandsiteh.

14.6

destroys the applicatiammain window and all its descendants and thereby causds
to exit. W sh responds to events for the applicatfowindows as well as to commands
typed on its standard input.

You can also usei sh to invoke scripts that have been saved in files. For example,
you could create a file naméeé! | o that contains the above two commands. Then you
could start upd sh and type

source hello
to process the file. Qyou could invoken sh with the following shell command:

wish -f hello
In this casenv sh will not read commands from standard input. Instead, it will execute the
script contained in the fileel | o and then enter an event loop where it responds only to
events from the applicationivindows.

Wish scripts can also be invoked using the same mechanismubat! for shell
scripts in UNIX. D do this, enter the following comment as the first lineedf| o:

#!/usr/local /bin/wi sh -f
Then mark the script file as executableuan now invokéel | o directly from the
shell like any other executable program:

hel | o
This will runwi sh and cause it to process the script file just as if you'd typedli - f
hel | 0”.

See theni sh reference documentation for details on other features provided by
wi sh, such as command-linegaments fomi sh scripts. Ifwi sh isn’t installed ir/
usr/ | ocal / bi n on your system then you'll need to use &edént comment in your
script files that reflects the locationwifsh.

Widget creation commands

Tk provides four main groups otlfcommands; they create widgets, arrange widgets on
the screen, communicate with existing widgets, and interconnect widgets within and

DRAFT (3/11/93): Distribution Restricted

140

An Introduction to Tk

14.7

between applications. This section and the three following sections introduce the groups
of commands to give you a general feel forsTi€atures. All of the commands are dis-
cussed in more detail in later chapters.

To create a widget, you invoke a command named after the veiaddgetsbut t on
for button widgetsscr ol | bar for scrollbar widgets, and so on.. For example, the fol-
lowing command creates a button that displays the Bn@$s ne” in red:

button .b -text "Press nme" -foreground red

All of the widget creation commands have a form similar to this. The comsaatie is
the same as the name of the class of the new widget. Thedirstent is a name for the
new widget in the widget hierarchyb in this case. This widget must not already exist but
its parent must exist. The command will create the widget and its corresponding X win-
dow.

The widget name is followed by any number of pairs gliarents, where the first
argument of each pair specifies the name ajrEliguration optiorfor the widget (e.g.
-t ext or-f or egr ound) and the secondgument specifies a value for that option (e.g.
“Press ne”orr ed). Each widget class supports deliént set of configuration options
but many options, such a§ or egr ound, are used in the same way byfeiént classes.
You need not specify a value for every option supported by a widget; defaults will be cho-
sen for the options you ddrspecify For example, buttons support about twentfedént
options but only two were specified in the example above. Chapter 16 discusses configura-
tion options in more detail.

Geometry managers

Widgets dort determine their own sizes and locations on the screen. This function is car-
ried out bygeometry manager&ach geometry manager implements a particular style of
layout. Given a collection of widgets to manage and some controlling information about
how to arrange them, a geometry manager assigns a size and location to each widget. For
example, you might tell a geometry manager to arrange a set of widgets in a vertical col-
umn. It would then position the widgets so that they are adjacent btibgeriap. If one
widget should suddenly need more space (e.g. its font is changedgerata) it will
notify the geometry manager and the geometry manager will move other widgets down to
preserve the proper column structure.

The second main group of Tk commands consists of those for communicating with
geometry managers. Tk currently contains four geometry managerglatkeis a sim-
ple fixed-placement geometry managéu give it instructions like “place windowx at
location (10,100) in its parent and make it 2 cm wide and 1 cm high.” The placer is simple
to understand but limited in applicability because it ddemsider interactions between
widgets. Chapter 17 describes the placer in detail.

DRAFT (3/11/93): Distribution Restricted

14.8 Widget commands 141

button .top -text "Top button” SEEE
pack .top P P = wash | .|)]
button .bottom -text "Bottom button" Top hutton|

pack . bottom "| Bottom button |

(@) (b)

Figure 14.5. The scriptin (a) creates two button widgets and arranges them in a vertical cc
with the first widget above the second. The applicagiappearance on the screen is shown in

14.8

The second geometry manager is callechtioier. It is constraint-based and allows
you to implement arrangements like the column example from above. It is more complex
than the placer but much more powerful and hence more widely used. The packer is the
subject of Chapter 18.

Two other geometry managers are implemented as part of the canvas and text wid-
gets. The canvas geometry manager allows you to mix widgets with structured graphics,
and the text geometry manager mixes widgets with text. See the reference documentation
for canvas and text widgets for descriptions of these geometry managers.

When you invoke a widget creation command bk t on the new widget will not
immediately appear on the screen. It will only be displayed after you have asked a geome-
try manager to manage it. If you want to experiment with widgets before reading the full
discussion of geometry managers, you can make a widget appear by involiag khe
command with the widget’name as gument. For example, the following script creates a
button widget and displays it on the screen:

button .b -text "Hello, world!"

pack .b
This will size the main window so that it is justgarenough to hold the button and it will
arrange the button so that it fills the space of the main windlgau create other widgets
and pack them in a similar fashion, the packer will arrange them in a column inside the
main window making the main window just g enough to accommodate them all. See
Figure 14.5 for an example.

Widget commands

Whenever a new widget is created Tk also creates a dem@rimand whose name is the
same as the widgsthame. This command is calledialget command, and the set of all
widget commands (one for each widget in the application) constitutes the third major

DRAFT (3/11/93): Distribution Restricted

142

An Introduction to Tk

14.9

group of Tks commands. Thus after the abtwg t on command was executed above, a
widget command whose name i3 appeared in the applicatisrinterpreterThis com-
mand will exist as long as the widget exists; if the widget is deleted then the command will
be deleted too.
Widget commands are used to communicate with existing widgets. Here are some

commands that could be invoked after It t on command from Section 14.6:

.b configure -foreground bl ue

.b flash

. b invoke
The first command changes the color of the budttext to blue, the second command
causes the button to flash brietiyd the third command invokes the button just as if the
user had clicked mouse button 1 on it. In widget commands the command name is the
name of the widget and the firsgament specifies an operation to invoke on the widget,
such agonfi gur e. Some widget commands, likenf i gur e, take additional gu-
ments; the nature of thesggaments depends on the specific command.

The set of widget commands supported by a given widget is determined by its class.

All widgets in the same class support the same set of commandsfénendiflasses have
different command sets. Some common commands are supported by multiple classes. For
example, every widget class supportoaf i gur e widget command, which can be used
to query and change any of the configuration options associated with the widget.

Commands for interconnection

The fourth group of Tk commands is used for interconnection. These commands are used
to make widgets work togethéo make them work cooperatively with the objects defined
in the application, and to allow t&fent applications sharing the same display to work
together in interesting ways.

Some of the interconnection commands are implemented as event handlers. For
example, each button has aonmand option that specifies allscript to invoke when-
ever mouse button 1 is clicked over the widget. This option was used in Section 14.5 to
terminate the application. Scrollbars provide another example of interconnection via event
handlers. Each scrollbar is used to control the view in some other widget: when you click
in the scrollbar or drag its slidehe view in the associated widget should change. This
connection between widgets is implemented by specifying edmmand for the scroll-
bar to invoke whenever the slider is dragged. The command invokes a widget command
for the asscociated widget to change its vievaddition to event handlers that are defined
by widgets, you can create custom event handlers usiryj thee command described in
Chapter 19.

Tk supports five other forms of interconnection in addition to event handlers: the
selection, the input focus, the window managesend command, and grabs. The

DRAFT (3/11/93): Distribution Restricted

14.9 Commands for interconnection 143

selection is a distinguished piece of information on the screen, such as a range of text or a
graphic. The X window system provides a protocol for applications to claim ownership of
the selection and retrieve the contents of the selection from whichever application owns it.
Chapter 20 discusses the selection in more detail and descriss®lTk'ct command,

which is used to manipulate it.

At any given time, keystrokes typed for an application are directed to a particular
widget, regardless of the mouse cutrsdocation. This widget is referred to as tbeus
widget orinput focus. Chapter 21 describes thecus command, which is used to move
the focus among the widgets of an application.

Chapter 22 describes Besvmcommand, which is used for communicating with the
window managefThe window manager acts as a geometry manager for main windows
and top-level windows, and thencommand can be used to make specific geometry
requests from the window managsuch as “dont’let the user make this window smaller
than 20 pixels across.” In additiomncan be used to specify a title to appear in the win-
dow’s decorative bordgea title and/or icon to display when the window is iconified, and
many other things.

Chapter 23 describes teend command, which provides a general-purpose means
of communication between applicationsitisend, you can issue an arbitrargltom-
mand to any Tk application on the display; the command will be transmitted togée tar
application, executed there, and the result will be returned to the original application.
Send allows one application to control another application in intimate and powerful
ways. For example, a debugger can send commands to an editor to highlight the current
line of execution, or a spreadsheet can send commands to a database application to
retrieve new values for cells in the spreadsheet, or a mail reader can send commands to a
video application to play a video clip identifying the sender of a message.

The last form of interconnection gsabs, which are described in Chapter 24. A grab
restricts keyboard and mouse events so that they are only processed in a subtree of the
widget hierarchy; windows outside the grab subtree become lifeless until the grab is
released. Grabs are used to disable parts of an application and force the user to deal imme-
diately with a high-priority window such as a dialog box.

DRAFT (3/11/93): Distribution Restricted

144 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

Chapter 15
Tour Of The Tk Widgets

15.1

This chapter introduces the fifteen widget classes that are currently implemented by Tk.
The descriptions are not intended to explain every feature of every class; for that you
should refer to the reference documentation for the individual widget classes. In fact, no
specific Tk commands will be mentioned in this chagikrs chapter gives an overview

of the behavior of the widgets as seen by users and the features provided by the widgets to
interface designers. The purpose of this chapter is to provide you with general information
about the capabilities of T&kwidgets so that it will be easier to understand the specific
commands described in later chapters.

The widget behavior described in this chapter is not hard-coded into the widgets.
Instead, Tk contains a startup script that generates default behaviors for the widgets using
the binding mechanism described in Chapter 19. The descriptions in this chapter corre-
spond to the default behaviors, and most widgets in most applications will use the default
behaviors. Howeveit is possible to extend or override the defaults, so some Tk applica-
tions may contain widgets that behavdetiéntly than described here.

If you have access to the sh program and the Tk demonstration scripts (both of
which are included in the Tk distributions) then you can experiment with real widgets as
you read through the chaptéo do this, execute thd dget demonstration script and
use the menus to bring up various examples.

Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting properties.
A frame appears as a rectangular region with a color and possibly a border that gives the

145

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

146 Tour Of The Tk Widgets

@ (b) (©

Figure 15.1. Frame and toplevel widgets have no visual characteristics except for a color &
optional three-dimensional border that can give the widget one of several appearances, su
raised as in (a), flat as in (b), or sunken as in (c).

frame a raised or sunken appearance as shown in Figure 15.1. Frames serve two purposes.
First, they can be used to generate decorations such as a block of color or a raised or
sunken border around a group of widgets. Second, they serve as containers for grouping
other widgets; most of the non-leaf widgets in the widget hierarchy are frames, and you'll
see in Chapter 18 that frames are particularly important for building up nested layouts

with geometry managers. When used in this,raynes are often invisible to the user

Frames do not normally respond to mouse or keyboard actions.

Toplevel widgets are identical to frames except that, as the name implies, they are
top-level widgets whereas frames (and almost all other widgets) are internal widgets. This
means that a toplevel widget can be positioned anywhere on its screen, independent of its
parent in the widget hierarchgnd it need not even appear on the same screen as its par-
ent. Toplevels are typically used as the outermost containers for panels and dialog boxes.
When you create a toplevel you can specify a screen for it to be displayed on.

15.2 Labels, buttons, checkbuttons, and radiobuttons

Labels, buttons, checkbuttons, and radiobuttons make up a family of widget classes with
similar characteristics. Each member of the family builds on the behavior of earlier mem-
bers. Labels are the simplest member of the farfiligy are similar to frames except that
each one can display a text string or a bitmap (see Figure 15.2). Like frames, labels do not
normally respond to the mouse or keyboard; they simply provide decoration in the form of
a text string or bitmap.

Buttons are similar to labels except that they also respond to the mouse. When the
mouse cursor moves over a button, the button lights up. This indicates that pressing a
mouse button will cause something to happen. It is a general property of Tk widgets that
they light up if the mouse cursor passes over them when they are prepared to respond to

DRAFT (3/11/93): Distribution Restricted

15.2 Labels, buttons, checkbuttons, and radiobuttons 147

w’@s o Bold i #Times |

W Italic A Helvetica |
Enter name here: Open File| I~ Undetined | - Courier [
(a) (b) (c) (d)

Figure 15.2. Members of the label/button family of widgetsvdlabels are shown in (a); the tc
one displays a bitmap and the bottom one displays a text string. Figure (b) shows a button
Three checkbuttons appear in (c); any combination of the checkbuttons may be selected al
group of three radiobuttons appears in (d); only one of the radiobuttons may be selected at
time. Although a bitmap only appears in (a), any of the classes can display a bitmap as wel
string.

button presses. A button or other widget lit up in this way it is said aothe. Buttons
become inactive again when the mouse cursor leaves them.

If mouse button 1 is pressed when a button is active then the buafipgarance
changes to make it look sunken, as if a real button had been pressed. When the mouse but-
ton is released, the widgedriginal appearance is restored. Furthermore, when the mouse
button is released allscript associated with the button is automatically executed. The
script is a configuration option for the button.

Checkbuttons allow users to make binary choices such as enabling or disabling under-
lining or grid-alignment. They are similar to regular buttons except for two things. First,
whenever mouse button 1 is clicked over a checkbuttahafiable toggles between two
values, one representing an “on” state and the other representing’ atdtef The name
of the variable and the values corresponding to the “on” affitistaftes are configuration
options for the widget. Second, the checkbutton displays a small rectaseidir to
the left of its text or bitmap. If the variable has the “on” value then the selector is displayed
in a bright color and the button is said tosblected. If the variable has the “Bfvalue
then the selector box appears empch checkbutton monitors the value of its associated
variable and if the variabkeVvalue changes (e.g. because ®& command) the check-
button updates the selector display

The last member of the label/button family is the radiobutton class. Radiobuttons are
typically arranged in groups and used to select one from among several mutually-exclu-
sive choices, such as one of several colors or one of several styles of dashed lines.
Radiobuttons are named after the radio selector buttons on older cars, where pressing the
button for one station caused all the other buttons to be released. When mouse button 1 is

DRAFT (3/11/93): Distribution Restricted

148

Tour Of The Tk Widgets

15.3

clicked over a radiobutton, the widget sets the variable to the “on” value associated with
that radiobutton. All of the radiobuttons in a group will share the same variable but each
will have a diferent “on” value. A radiobutton displays a diamond-shaped selector to the
left of its text or bitmap and lights up the selector when the widget is selected. Each
radiobutton monitors its variable so if some other radiobutton resets the variable to select
itself the previously-selected widget can turhitsf selector diamond. If you change the
value of the variable using thelBet command then all of the associated radiobuttons
will redisplay their selectors to match the new value of the variable.

The members of the label/button family also have two additional features. First, you
can specify that the string to be displayed in the widget should be taken fidmaai-T
able. The widget will monitor the variable and update its display to reflect the current con-
tents of the variable. Second, you ciigable the widget. While a widget is disabled it is
displayed in dimmer colors, it doesattivate when the mouse cursor passes over it, and it
doesnt respond to button presses.

Menus and menubuttons

Tk's menu widget provides a general-purpose facility for implementing pull-down menus,
pop-up menus, cascading menus, and many other things. A menu is a top-level widget that
contains a collection antries arranged in a column (see Figure 15.3(a)). Menu entries

are not distinct widgets but they behave much like the members of the label/button family
described in Section 15.2 above. The following types of entries may be used in menus:

Command: similar to a button widget. Displays a textual string or bitmap and invokes
a Tcl script when mouse button 1 is released over it.

Checkbutton: similar to a checkbutton widget. Displays a string or bitmap and toggles
a variable between “on” and ‘ffvalues when button 1 is released over the eitso
displays a square selector indicating whether the variable is currently in its “on” or
“of f” state.

Radiobutton: similar to a radiobutton widget. Displays a string or bitmap and sets a
variable to an “on” value associated with the enry when button 1 is released over it.
Also displays a diamond-shaped selector indicating whether or not the variable has the
value for this entry

Cascade: similar to a menubutton widget. Posts a cascaded sub-menu when the mouse
passes over it. See below for more details.

Separator: Displays a horizontal line for decoration. Does not respond to the mouse.
Unlike most other widgets, menus do not normally appear on the screen. They spend
most of their time in an invisible state call@tbosted. When a user wants to invoke a
menu entryhe or sheosts the menu, which makes it appear on the screen. Then the user
moves the mouse over the desired entry and releases button 1 to invoke th@neetry

DRAFT (3/11/93): Distribution Restricted

15.3 Menus and menubuttons 149

[Bold : Hle Edit View Iextj Graphics Help
N Italic =
. [Bold
I_ Underine) B Ialic
& Times M Undetine
i
“ Helvetica
Insert Bullet < Courier
Margins and Tabs... Ihsert Bullet
Margins and Tabs...

@ (b)
Hip LeftfRight Hie Editj View Text Graphics Help
gllpt;'tl;pfﬂuttnm Undo . Cirl+Z
.u—.. Redo Ciri+R
:!g" :;hgc_t;'" Delete Ctrl+%
ARt Copy CtrieC
Line Color => A
: s Group
Line Width ==> | 0.25 point
Line Style == [0.5 point Hngroup
: e Select Al
Arrowhead == |1 point - =
Fll Pattem =» | Z points Bring to Front
4 points Move To Back
6 points
& points
© (d)

Figure 15.3. Examples of menus. Figure (a) shows a single menu with three checkbutton entries,
three radiobutton entries, and two command entries. The groups of entries are separated by separator
entries. Figure (b) shows the menu being used in pull-down fashion with a menu bar and several
menubutton widgets. Figure (c) shows a cascaded series of menus; cascade entries in the parent
(leftmost) menu display => at their right edges, and theLi ne W dt h entry is currently active.
Figure (d) contains amenu that supports keyboard traversal and shortcuts. The underlined characters
in the menubuttons and menu entries can be used to invoke them from the keyboard, and the key
sequences at the right sides of some of the menu entries (such asCt r | +X) can be used to invoke the
same functions as menu entries without even posting the menu.

the menu has been invoked it is usually unposted until it is needed again. Menus are
posted or unposted by invoking their widget commands, which gives the interface

DRAFT (3/11/93): Distribution Restricted

150

Tour Of The Tk Widgets

15.3.1

15.3.2

15.3.3

designer a lot of flexibility in deciding when to post and unpost them. The subsections
below describe four of the most common approaches.

Pull-down menus

Menus are most commonly used ipull-down style. In this style the application displays
amenu bar near the top of its main windo menu bar is a frame widget that contains
several menubutton widgets as shown in Figure 15.3(b). Menubuttons are similar to but-
ton widgets except that instead of executiobsEripts when they are invoked they post

menu widgets. When a user presses mouse button 1 over a menubutton it posts its associ-
ated menu underneath the menubutton widget. Then the user can slide the mouse down
over the menu with the button still down and release the mouse button over the desired
entry When the button is released the menu entry is invoked and the menu is unposted.
The user can release the mouse button outside the menu to unpost it without invoking any
entry,

If the user releases the mouse button over the menubutton then the menu stays posted
and the user will not be able to do anything else with the application until the menu is
unposted either by clicking on one of its entries (which invokes that entry and unposts the
menu) or clicking outside of the menu (which unposts the menu without invoking any
entry). Situations like this where a user must respond to a particular part of an application
and cannot do anything with the rest of the application until responding areradiad
user interface elements. Menus and dialog boxes are examples of modal interface ele-
ments. Modal interface elements are implemented using the grab mechanism described in
Chapter 24.

Pop-up menus

The second common style of menu usage is cpipelp menus. In this approach, press-

ing one of the mouse buttons in a particular widget causes a menu to post next to the
mouse cursor and the user can slide the mouse over the desired entry and release it there to
invoke the entry and unpost the menu. As with pull-down menus, releasing the mouse but-
ton outside the menu causes it to unpost without invoking any of its entries.

Cascaded menus

The third commonly used approach to posting menus is aaisedded menus. Cascaded

menus are implemented using cascade menu entries in other menus, such as pull-down
and pop-up menus. Each cascade menu entry is similar to a menubutton in that it is associ-
ated with a menu widget. When the mouse cursor passes over the cascaite associ-

ated menu is posted just to the right of the cascade astspown in Figure 15.3(c). The

user can then slide the mouse to the right onto the cascaded menu and select an entry in the
cascaded menu. Menus can be cascaded to any depth.

DRAFT (3/11/93): Distribution Restricted

15.4 Listboxes 151

1534

15.4

Keyboard traversal and accelerators

Pull-down menus can also be posted from the keyboard using a techniqu&eyaibadd
traversal. One of the letters in each menubutton is underlined to indicate that it is the tra-
versal character for that menubutton. If that letter is typed while holdiny thé&ey
down then the menubuttanenu will be posted. Once a menu has been posted the arrow
keys can be used to move among the menus and their entries. The left and right arrow keys
move left or right among the menubuttons, unposting the menu for the previous menubut-
ton and posting the menu for the new one. The up and down keys move among the entries
in a menu, activating the next higher or lower enfheRet ur n key can be used to
invoke the active menu entriyr addition, the labels in menu entries are typically drawn
with one character underlined; if this character is typed when the menu is posted then the
entry is invoked immediately

Lastly, in many cases it is possible to invoke the function of a menu entry without
even posting the menu by typikeyboard shortcuts. If there is a shortcut for a menu entry
then the keystroke for the shortcut will be displayed at the right side of the menu entry
(e.g.Ctr| +Xis displayed in th®el et e menu entry in Figure 15.3(d)). This key combi-
nation may be typed in the application to invoke the same function as the menu entry (e.g.
typex while holding theCont r ol key down to invoke thBel et e operation without
going through the menu).

Listboxes

A listbox is a widget that allows the user to select one or more possibilities from a range of
alternatives, such as a file name from those in the current directory or a color from a data-
base of defined colors. A listbox contains one or more entries, each of which displays a
one-line string as shown in Figure 15.4. The widget commands for listboxes allow entries
to be created, destroyed, and queried.

If there are more entries than there are lines in the ligtlvairdow then only a few of
them are displayed at a time; the user can control which portion is displayed by using a
separate scrollbar widget associated with the listbox (see Section 15.6). The view in a list-
box can also be controlled by pressing mouse button 2 in the widget and dragging up or
down. This is calledcanning: it has the déct of dragging the listbox contents past the
window at high speed. Most Tk widgets that support scrollbars also support scanning. If
the strings in the listbox are too long to fit in the window then the listbox can also be
scrolled and scanned in the horizontal direction.

Typically listboxes are configured so that the user can select an entry by clicking on it
with mouse button 1. In some cases the user can also select a range of entries by pressing
and dragging with button 1. Selected entries appear ifieaatit color and usually have a
raised 3-D d&ct. Once the desired entries have been selected, the user will typically use
those entries by invoking another widget, such as a button widget or menurentry

DRAFT (3/11/93): Distribution Restricted

152

Tour Of The Tk Widgets

Hew York
Horth Carolina
Horth Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota

Figure 15.4. An example of a listbox widget displaying the names of all the states in the U.
Only a few of the entries are visible in the window at one time Chin® entry is selected.

[sampfle text

Figure 15.5. An example of an entry widget. The vertical bar is the insertion cursor ,which
identifies the point at which new text will be inserted.

15.5

example, the user might select one or more file names from a listbox and then click on a
button widget to delete the selected files; thecbmmand associated with the button wid-
get can read out the strings from the selected listbox entrgealsé’ common for listboxes

to support double-clicking, which both selects an entry and invokes some operation on it.
For example, in a file-open dialog box, double-clicking on a file name might cause that
file to be opened by the application.

Entries

An entry is a widget that allows the user to type in and edit a one-line text string. For
example, if a document is being saved to disk for the first time then the user will have to
provide a file name to use. The user might type the file name in an entry widget, then click
on a button widget whosecllfcommand retrieves the file name from the entry and saves
the document in that file. Figure 15.5 shows an example of an entry widget.

To enter text into an entry the user clicks mouse button 1 in the €hisymakes a
blinking vertical bar appeacalled thansertion cursor. The user can then type characters

DRAFT (3/11/93): Distribution Restricted

15.6 Scrollbars 153

Figure 15.6. A horizontal scrollbar widget. The rectangular slider indicates how much of the
document in an associated widget is visible in its window (in this case the rightmost 20% is
The user can adjust the view in the associated widget by dragging the slider with mouse bt
by clicking on the arrows or the slider region.

and they will be inserted into the entry at the point of the insertion clits@insertion

cursor can be moved by clicking anywhere in the entgxt. Ext in an entry can be

selected by pressing and dragging with mouse button 1, and it can be edited with a variety
of keyboard actions; see the reference documentation for details.

If the text for an entry is too long to fit in its window then only a portion of it is dis-
played and the view can be adjusted using an associated scrollbar widget or by scanning
with mouse button 2. Entries can be disabled so that no insertion cursor will appear and
the text in the entry cannot be modified. The text in an entry can be associatedakith a T
variable so that changes to the variable are reflected in the entry and changes made in the
entry are reflected in the variable.

15.6 Scrollbars

Scrollbar widgets are used to control what is displayed in other widgets. Each scrollbar is
associated with some other widget such as a listbox or. @hiyscrollbar is typically dis-
played next to the other widget and when the user clicks and drags on the scrollbar the
view in the associated widget will change. A scrollbar appears as shown in Figure 15.6
with an arrow at each end and a slider in the middle. The size and position of the slider
correspond to the portion of the associated widgkitument that is currently visible in
its window For example, if the slider covers the rightmost 20% of the region between the
two arrows as in Figure 15.6 it means that the rightmost 20% of the document is visible in
the window Scrollbars can be oriented either vertically or horizontally

Users can adjust the view by clicking mouse button 1 on the arrows, which moves the
view a small amount in the direction of the arrowby clicking in the empty space on
either side of the slidewhich moves the view by one screenful in that direction. The view
can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget usialgs€ripts. One of a scrollbar
configuration options is acTscript to invoke to change the view; typically this script
invokes the widget command for the associated widget. When the user manipulates the

DRAFT (3/11/93): Distribution Restricted

154

Tour Of The Tk Widgets

framePtr—>tkwin:

display: Ozxet2d8

dispPtr: Dxef324
screentum: 1]

visual: DxeTabE

depth: 1

window: 12583011
childList: 00

parentPtr: DxehlZe

nextPtr: Oxeaelc

mainPtr: Dxe23ac

pathtame : Ozx125had " top"
nameUid: 0x12835c "top"
classUid: 0x128d54 "Toplewel"
changes: fz= =0, v =0, width = 1, height = 1,

border width = 0, sibling = 0, stack mode = 0O}

Figure 15.7. An example of a text widget. This widget displays the contents of a structure as
a symbolic debuggefags are used to display field names in bold and to underline the name
structure.

15.7

scrollbar the scrollbar invokes the script, including additional information about the new
view that the user requested. The associated widget changes its view and then invokes
another Tl script (one of its configuration options) that tells the scrollbar exactly what
information is now displayed in the windpso the scrollbar can display the slider cor-
rectly. The scrollbar doesnupdate its slider until told to do so by the associated widget;
this makes it possible for the associated widget to reject or modify tHe tesguest (e.g.

to prevent the user from scrolling past the ends of the information in the widget).

Text

A text widget is similar to an entry except that it allows the text to span more than one line
(see Figure 15.7 for an examplegxTwidgets are optimized to handlegaramounts of
text, such as files containing thousands of lines. As with entries, the user can click mouse
button 1 to set the insertion cursor and then type new information into a text. Information
in a text widget can be selected with the mouse just as for entries, and a number of mouse
and keyboard actions are defined to assist in editing (see the reference documentation for
details). Ext widgets support scrolling and scanning, and they can be disabled to tempo-
rarily prevent edits.

In addition to the basic features described above, text widgets support three kinds of
annotations on the text: marks, tags and embedded widgets. A mark associates a name

DRAFT (3/11/93): Distribution Restricted

15.8 Canvases 155

Note:

15.8

with a particular position in the text (the gap between two adjacent characters). Marks are
used to keep track of interesting locations in the text as characters are added and deleted.

A tag is a string that is associated with ranges of characters in a text widget. Each tag
may be associated with any humber of ranges of characters in the text, and the ranges of
different tags may overlapa@s are dferent from marks in that they are associated with
particular characters, so they disappear when the characters are delgteateTused for
two purposes in texts: formatting and binding.

Each tag may contain formatting information such as background and foreground col-
ors, font, and stippling and underlining information. If a character has been tagged then
the formatting information in the tag overrides the default formatting information for the
widget as a whole. This makes it possible to display text with multiple fonts and colors. In
addition, the formatting information for a tag can be changed at any time. For example,
you can apply a tag to all instances of a particular word in the text, then modify the tag’
formatting information to make the words blink on anid of

The second use of tags is fdndings. A binding specifies acT script to be invoked
when certain events occur; each tag may have one or more bindings associated with it. For
example, you can arrange for a script to be invoked whenever the mouse cursor passes
over text with a particular tag, or whenever a mouse button is clicked over a particular
item (see Chapter 19 for more information on bindings). This can be used to produce
hypertext efects such as displaying a figure whenever the user clicks on the name of the
figure in a text widget.

The third form of annotation in texts consists of embedded widgets. It is possible to
embed other widgets in a text so that the other widgets are displayed at particular positions
in the text. For example, you can arrange for a button widget to appear in a text widget as
another way of getting hypertext-like capabilities, or you can embed canvas widgets to
include figures inside texts, and so on.

Embedded widgets are not supported in Tk version 3.2.

Text annotations allow you to configure a given text widget in a variety of interesting
ways, so dilerent text widgets may have veryfdilent behavior-or example, a file editor
might use a text widget to display an entire file in a single font with no special formatting
or bindings. In contrast, a debugger might use a text widget to display a structure as shown
in Figure 15.7, where the names of the strucsuields are formatted diérently than their
values and bindings are set up so that the user can click on fields to open new windows on
the structures pointed to by the fields.

Canvases

A canvas is a widget that displays a drawing surface and any number of graphical and tex-
tualitems. The items can include rectangles, ellipses, arcs, lines, curves, polygons, cur-
vagons, editable text, bitmaps, and embedded widgets. See Figure 15.8 for examples.

DRAFT (3/11/93): Distribution Restricted

156

Tour Of The Tk Widgets

F F

0o 1 2 3 4 5 6 7 [
||I|||I|||I|||I|||I|||I|||I|||I||E| ‘
F. FY

€Y
I [
ZID
— i
i]
10
-width 2 \
-arrowshape {8 10 3}
(b)

Figure 15.8. Canvas widget examples. Figure (a) shows a ruler with a tab well to the right.
user can create new tab stops by pressing mouse button 1 in the tab well and dragging out
stop. Four existing tab stops appear underneath the ruler; they can be repositioned by drag
with the mouse. Figure (b) shows an editor for arrowhead shapes. The user can edit the ar
shape and line width by dragging the three small squares attached to the oversiz&thamges t
this shape are reflected in the normal-size arrows on the right side of the canvas, in the din
displayed next to the oversize ary@md in the configuration option strings in the bottom left cc

Items can be created and deleted at any time, and their display attributes (such as line
width and color) can also be modified dynamicdtiyms can be moved and scaled but
rotations are not currently supported.

Canvases also provide a tagging mechanism similar to the tags in text widgets. Each
item may have any number of textual tags associated witags Jerve two purposes in
canvases. First, they make it easy to operate on groups of items all at once; for example, in
a single command you can move or delete or recolor all items with a given tag. Second,
tags can have bindings associated with them just as in texts. This allows you to achieve

DRAFT (3/11/93): Distribution Restricted

15.9 Scales 157

Signal Strength

I [T
Fidi]
0 20 40 60 o 100

Figure 15.9. A scale widget. The scatevalue can be adjusted by dragging the slider with the
mouse.

hypegraphic efects such as invoking some operation whenever a mouse button is clicked
over an item, or allowing some items to be dragged with the mouse.

As with texts, the features provided by canvases are flexible enough to achieve many
different efects, so dfierent canvases may appear and behave vdeyetitly Canvases
can be used to provide non-interactive graphical displays, such as pie-charts or figures, or
they can be used to create new kinds of editors and interactive widgets.

15.9 Scales

A scale is a widget that displays a numerical value and allows the user to edit the value
(see Figure 15.9). A scale widget appears as a linear scale with optional numerical labels
and a slider that shows the current value. The user can adjust the value by clicking mouse
button 1 in the scale or by dragging the slider with mouse button 1. Each scale can be con-
figured with a Tl script to invoke whenever its value changes; the script can propagate the
new value to other parts of the application. For example, three scales might be used to edit
the hue, saturation, and intensity values for a color; as the user modifies the scale values,
the new values can be used to update the color for an item in a canvas so that the item is
always displayed in the color selected by the scales.

15.10 Messages

A message widget displays a multi-line string of text like the one shown in Figure 15.10.
Messages are less powerful than texts (e.g. they dibmv their text to be selected or
edited, they don’provide annotations, they domsupport scrolling, and they daiandle

large amounts of text f€iently), but they are simpler to create and configure. Messages
are typically used for simple things like multi-line messages in dialog boxes.

DRAFT (3/11/93): Distribution Restricted

158 Tour Of The Tk Widgets

Y ou have made changes to
this document since the last
time it was saved. Isit OK to
discard the changes?

Figure 15.10. A message widget displays a string, breaking it into multiple lines if necessary.
Messages provide little other functionality (e.g. no edit capability).

DRAFT (3/11/93): Distribution Restricted

Chapter 16
Configuration Options

16.1

Most of the state of a widget exists as a sepofiguration optiongor the widget. For
example, the colors and font and text for a button widget are configuration options, as is
the Tcl script to invoke when the user clicks on the button. Each configuration option has a
name (e.g; r el i ef) and a value (e.g.ai sed). Widgets typically have 15-30 configu-
ration options. For widgets such as texts and canvases that have complex internal struc-
tures, the configuration options dbptovide complete access to the internal structures;
special widget commands exist for this purpose. Howatate that is shared among all

the objects in the internal structures (such as a default font for text widgets) is still repre-
sented as configuration options.

This chapter describes Bkinechanisms for dealing with configuration options. Sec-
tion 16.1 gives an overview of how the values of options are set. Sections 16.2-16.1
describe some of the common configuration options that are used in the Tk widget set.
Finally, Sections 16.12 and 16.13 explain tlenf i gur e widget command and the
option database in more detaiable 16.1 summarizes the commands for manipulating
configuration options. For a complete list of the options available for a given class, see the
reference documentation for the command that creates widgets of that class beiy- the
t on command)

How options are set

Configuration options may be specified in four ways. First, you can specify configura-
tion options in the command that creates a widget. For example, the command

159

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

160 Configuration Options

cl ass wi ndow ?opti onName val ue optionNane val ue ...?
Create a new widget with claskass and path namei ndow;, and set
options for the new widget as givendgt i onNare-val ue pairs.
Unspecified options are filled in using the option database or widget defaults.
Returnsm ndow as result.

wi ndow confi g
Returns a list whose elements are sublists describing all of the options ffor
wi ndow Each sublist describes one option in the form described below

wi ndow confi g opti onNane
Returns a list describing optiapt i onNare for wi ndow. The list will
normally contain five valuespt i onNarme, the options name in the option
database, its class, its default value, and its current value. If the option fis a
synonym for another option, then the list contains two values: the option
name and the database name for the synonym.

wi ndow confi g optionNane val ue
Set the value for optioopt i onName of wi ndowto value.

option add pattern value ?priority?
Add a new option to the option database as specifigébyer n and
val ue. Pri ority must be either a number betwd&eand100 or a sym-
bolic name (see the reference documentation for details on symbolic names).
option clear
Remove all entries from the option database.
opti on get w ndow nane cl ass
If the option database contains a pattern that matdhedow, nane, and
cl ass, return the value for the highest priority matching pattern. Otherwise
return an empty string.
option readfile fileName ?priority?
Readf i | eName, which must have the standard format foxaef aul t s
file, and add all the options specified in that file to the option database at pri-
ority levelpriority. T

Table 16.1. The commands for manipulating widget configuration options.

button .help -text Help -foreground red

creates a new button widget and specifies thext and- f or egr ound options for it.
Every widget creation command has this form, where the command name is the name of
the widget class, the firstqamment is the name of the new widget in the Tk widget hierar-
chy, and additional guments (if any) are name-value pairs specifying options.

The second way to specify configuration options is througbptien database. If no
value is given for a configuration option on the command line that creates a widget, then
Tk checks the option database to see if a value has been specified for the option. The
option database is similar to the resource database in other X toolkits. It allows users to
specify values for options in tHRESOURCE MANAGER property on the root window or

DRAFT (3/11/93): Distribution Restricted

16.2 Colors 161

in a. Xdef aul t s file. Entries in the database can contain wildcard characters so that, for
example, a single entry in the option database can set the background color for all buttons
to blue. See Section 16.13 for more information on the option database.

The third way that configuration options are specified is through default values for
each widget class. Class defaults are used for options thatsgredified in the widget
creation command and aredefined in the option database. The class defaults are
intended to produce a reasonabfedfso that you dohheed to specify most options
either on the command line or in the option database. The class defaults are compiled into
the Tk library so you cahthange them without recompiling Tk, but you can always over-
ride them with values in the option database.

The final way to specify configuration options for a widget is withasf i gur e
widget command. Every widget class suppoit®af i gur e widget command. For
example, the following command changes the text in the button widget created above and
also specifies acT script to invoke when the user clicks on the widget:

.help configure -text Quit -command exit

Theconf i gur e widget command allows you to change the configuration options for a
widget at any time and it also allows you to query the current state of the configuration
options (see Section 16.12 for details on this).

16.2 Colors

Although each widget class defines its own set of configuration options, the options tend
to be used in a consistent fashion byedént classes. This section and the ones that follow
provide an overview of the most common options. These options have the same names
and legal values in many thfent widget classes.

The most common options are those for specifying colors. Every widget class sup-
ports a backgr ound option, which determines the background color of the widget and
is also used to compute the light and dark shadows if there is a 3D border drawn around
the widget. Nearly every widget class also suppofts@ egr ound option, which is
used when displaying text and graphics in the widgsilelr'16.2 lists all of the common
color options.

Color values may be specified either symbolically or numericalgymbolic color
value is a name such ki t e orr ed or SeaGr een2. The valid color names are
defined in a file namedgb. t xt in your X library directoryCommon names such as
bl ack andwhi t e andr ed should be defined in every X environment, but names like
SeaG een2 might not be available everywhere. Color names are not case-sensitive:
bl ack is the same &8l ack orbLaCk.

Colors can also be specified numerically in terms of their red, green, and blue compo-
nents. Four forms are available, in which the components are specified with 4-bit, 8-bit,
12-bit, or 16-bit vales:

DRAFT (3/11/93): Distribution Restricted

162

Configuration

Options

Name on
Command Line

Usage

- backgr ound

Background areas of widgets.

-foreground

Text and graphics.

-acti vebackground

Background color when widget is active (mouse
cursor is over widget and pressing a mouse but
will invoke some action).

ton

-acti vef oreground

Foreground color when widget is active.

- sel ect background

Background color for areas occupied by selecte
information within widget.

-sel ect f oreground

Foreground color for selected text and graphics|

-insertbackground

Color for insertion cursor

- di sabl edf or egr ound

2d.

Foreground color when widget has been disablé

Table 16.2. Commonly-used color options. The left column gives the name of the option as
specified in widget creation commands amhf i gur e widget commands. The right column
describes how the option is used.

#RGB
#RRGGBB
#RRRGGEGEBB

#RRRRGGEGEBBB

EachR, G orB in the above examples represents one hexadecimal digit of red, green, or
blue intensityrespectivelyThe first character of the specification must be #, and the same
number of digits must be provided for each component. If fewer than 16 bits are given for
the color components, they represent the most significant bits of the values. For example,
#3a7 is equivalent t¢t3000a0007000. A value of all ones represents “full on” for that
color, and a value of zero representd."ofhus#000 is black#f 00 is red#f f O is yel-

low, and#f f f is white.

If you specify a color other than black or white for a monochrome digplay Tk
will use black or white instead, depending on the overall intensity of the color you
requested. Furthermore, if you are using a color display and all of the entries in its color
map are in use (e.g. because you're displaying a complex image on the screen) then Tk
will treat the display as if it were monochrome.

DRAFT (3/11/93): Distribution Restricted

16.3 Screen distances 163

Name on Usage
Command Line

-borderw dth Width of 3D border drawn around widget.

-activeborderw dt h | Width of 3D border drawn around active elements
within widget.

- sel ect borderw dt h | Width of 3D border drawn around selected text.

-insertw dth _1f'otal width of insertion cursor including its border
if any.

-insertborderw dt h | Width of 3D border for insertion cursor

- padx Additional space to leave on left and right sides|of

information displayed in widget.

- pady Additional space to leave above and below infor

mation displayed in widget.

Table 16.3. Common options for specifying distances. The left column gives the name of tf
option as specified in widget creation commandscand i gur e widget commands. The right
column describes how the option is used.

16.3

Screen distances

Several options are used to specify distances on the screen. The most common of these
options is- bor der wi dt h, which determines the width of the 3D border drawn around a
widget. Every widget class supports theor der wi dt h option. Tble 16.3 lists several
other common distance options.

Ultimately, each distance option must reduce to a distance in screen pixels. However
Tk allows distances to be specified either in pixels or in absolute units that are independent
of the screen resolution. A distance is specified as an integer or floating-point value fol-
lowed optionally by a single character giving the units. If no unit specifier is given then the
units are pixels. Otherwise the unit specifier must be one of the following characters:

centimeters

inches

millimeters

printer's points (1/72 inch)

'03_'0

DRAFT (3/11/93): Distribution Restricted

164

Configuration Options

rai sed flat sunken ridge groove

Figure 16.1. The three-dimensionalfetts produced by ddrent values for ther el i ef option.

16.4

For example, a distance specifieagc will be rounded to the number of pixels that
most closely approximates 2.2 centimeters; this may béeaatif number of pixels on
different screens.

Reliefs

16.5

Every widget class supports an option namedl i ef , which determines the three-
dimensional appearance of the widget. The option must have one of thenailsesd,
fl at,sunken,ridge, orgr oove. Figure 16.1 illustrates thefe€t produced by each
value. Tk draws widget borders with combinations of light and dark shadows to produce
the diferent efects. For example, if a widgsttelief isr ai sed then Tk draws the top
and left borders in a lighter color than the widgé&tckground and it drawns the lower
and right borders in a darker col@his makes the widget appear to protrude from the
screen.

The width of a widge$ 3D border is determined by #tbor der wi dt h option. If
the border width is 0 then the widget will appear flat regardless-af &ki ef option.

Fonts

The- f ont option is used to specify a font for widgets that display text, such as buttons,
listboxes, entries, and texts. Tk uses standard X font names, which are illustrated in Figure
16.2 The name of a font consists of twelve fields separated by hyphens. The fields have the
following meanings:

foundry The type foundry that supplied the font data.
family Identifies a group of fonts with a similar typeface design.

DRAFT (3/11/93): Distribution Restricted

16.5 Fonts 165

family slant pixels X-res spacing char. set

foundry weight set width points y-res | width

TR MEBRE,

-adobe-ti nmes- bol d-r-normal -- 18-180- 75- 75- p- 99-i s08859- 1

Figure 16.2. The fields of an X font name.

weight Typographic weight of font, such aedi um nor nal , or
bol d.

dant Posture of font, such asfor roman or upright, for italic, or
o for oblique.

set width Proportionate width of font, such aer mal orcon-
densed ornarr ow

pixels Size of font in pixels.

points Size of font in tenths of points, assuming screen has x-res and
y-res specified for font.

x-res Horizontal resolution of screen for which font was designed,
in dots per inch.
y-res Vertical resolution of screen for which font was designed, in

dots per inch.

spacing Escapement class of font, suchn@®r monospace (fixed-
width) orp for proportional (variable-width).

width Average width of characters in font, in tenths of pixels.
char. set Character set that identifies the encoding of characters in the
font.

When- f ont values you can useand? wildcards:? matches any single character in a

font name, and matches any group of characters. For example, the font name
-tinmes-nmedi umr-nornmal ---100-*

requests a 10-poiniflies Roman font in a medium (normal) weight and normal width. It

specifies “dort’ care” for the foundrythe pixel size, and all fields after the point size. If

multiple fonts match this pattern then the X server will pick one of them. | recommend

specifying the point size for fonts but not the pixel size, so that characters will be the same

size regardless of the display resolution.

DRAFT (3/11/93): Distribution Restricted

166

Configuration Options

error gray25 gray50 hour gl ass

¢

info guest head guestion war ni ng

£

Figure 16.3. Bitmaps defined internally by Tk.

16.6

Bitmaps

16.7

Many widgets, such as labels and menubuttons, can dispiagps. A bitmap is an image
with two colors, foreground and background. Bitmaps are specified usingitherap
option, whose values may have two forms. If the first character of the vailkan the
remainder of the value is the name of a file containing a bitmap in the standavdri{dp
file format. Such files are generated bylihé map program, among others. Thus
“-bitmap @ ace. bit” specifies a bitmap contained in the filace. bi t .

If the first character of the value isi@then the value must be the name of a bitmap
defined internallyTk defines several internal bitmaps itself (see Figure 16.3) and individ-
ual applications may define additional ones.

The- bi t map option only determines the pattern of &hd 05 that make up the bit-
map. The foreground and background colors used to display the bitmap are determined by
other options (typically f or egr ound and- backgr ound). This means that the same
bitmap can appear in €frent colors at diérent places in an application, or the colors of a
given bitmap may be changed by modifying the options that determine them.

Cursors

Every widget class in Tk supports aur sor option, which determines the image to dis-
play in the mouse cursor when it is over that widget. If ther sor option isnt speci-
fied or if its value is an empty string then the widget will use its pareatsorOtherwise
the value of the cur sor option must be a propeciist with one of the following
forms:

name f gCol or bgCol or

nane fgCol or

DRAFT (3/11/93): Distribution Restricted

16.8 Anchors 167

16.8

name
@ourceFil e maskFi |l e fgCol or bgCol or
@ourceFil e fgCol or
In the first three formsane refers to one of the cursors in the standard X cursor font. Y
can find a complete list of all the legal names in the X includetitesor f ont . h. The
names in that file all start witkC , such asXC_ar r ow or XC_hand2; when using one
of these names in-acur sor option, omit theXC_, e.g.ar r oworhand2. Most of the
Xlib reference manuals also include a table showing the names and images of all the cur-
sors in the X cursor font; for example, see Appendix B Window System: The Com-
plete Reference to Xlib, X Protocol, ICCM, and XLFD, by Scheifler and Gettys, Second
Edition. If nane is followed by two additional list elements as in the following widget
command:

.f config -cursor {arrow red white}

then the second and third elements give the foreground and background colors to use for
the cursor; as with all color values, they may have any of the forms described in Section
16.2. If only one color value is supplied then it gives the foreground color for the cursor;
the background will be transparent. If no color values are given then black will be used for
the foreground and white for the background.

If the first character in thecur sor value is@then the image(s) for the cursor are
taken from files in bitmap format rather than the X cursor font. If two file names and two
colors are specified for the value, as in the following widget command:

.f config -cursor {@ursors/bits cursors/mask red white}
then the first file is a bitmap that contains the cussoaittern (I represent foreground
and 05 background) and the second file is a mask bitmap. The cursor will be transparent
everywhere that the mask bitmap has a 0 value; it will display the foreground or back-
ground wherever the mask is 1. If only one file name and one color are specified then the
cursor will have a transparent background.

Anchors

An anchor position indicates how to attach one object to anotRer example, if the win-
dow for a button widget is Iger than needed for the widgetéxt, a anchor option
may be specified to indicate where the text should be positioned in the wiuoidvor
positions are also used for other purposes, such as telling a canvas widget where to posi-
tion a bitmap relative to a point or telling the packer geometry manager where to position
a window in its frame.

Anchor positions are specified using one of the following points of the compass:

n Center of objecs top side.
ne Top right corner of object.

DRAFT (3/11/93): Distribution Restricted

168

Configuration Options

e Center of objecs right side.
se Lower right corner of object.
S Center of objec$ bottom side.
sSw Lower left corner of object.

w Center of objecs left side.

nw Top left corner of object.

center Center of object.

The anchor position specifid® point on the object by which it isto be attached, as if a

push-pin were stuck through the object at that point and then used to pin the object some-
place. For example, ifaanchor option ofwis specified for a button, it means that the
button’s text or bitmap is to be attached by the center of its left side, and that point will be
positioned over the corresponding point in the windblusw means that the text or bit-

map will be centered vertically and aligned with the left edge of the wirgombitmap

items in canvas widgets, th@nchor option indicates where the bitmap should be posi-
tioned relative to a point associated with the item; in this @aseans that the center of

the bitmaps left side should be positioned over the point, so that the bitmap actually lies to
the east of the point. Figure 16.4 illustrates these uses of anchor positions.

Button Text |

Button Text

@) (b)

(c) (d)

Figure 16.4. Examples of anchor positions used for button widgets and for bitmap items wi
canvases. Figure (a) shows a button widget with text anctpeed! (b) shows the same widget
with an anchor position afe. Figure(c) shows a canvas containing a bitmap with an anchor
position ofw relative to its point (the point appears as a cross, even though it waggear in
an actual canvas). Figure (d) shows the same bitmap item with an anchor peint of

DRAFT (3/11/93): Distribution Restricted

16.9 Script options and scrolling 169

16.9 Script options and scrolling

Script options are used in many places in Tk widgets. The most common usage is for wid-
gets like buttons and menus that are supposed to take action when invoked by the user
This is handled by specifying @llscript as a configuration option for the widget. For
example, button widgets support @onmand option, which should contain &llscript.

When the user invokes the widget by clicking over it with the mouse button, the widget
causes the script to be executed. SimiJadch entry in a menu widget has a script associ-
ated with it, which is executed when the user invokes the menu entry

Script options are also used for communicating between widggically, one wid-
get will be configured witlpart of a Tcl command (e.g. the name of another widgedd-
get command and the firsgaiment to that command). At appropriate times, the widget
will invoke the command. Before invoking the command the widget will augment it with
additional information that is relevant to the specific invocation. The best example of this
is the communication between scrollbars and other widgets, which is described in the rest
of this section.

When a scrollbar is associated with another widget and used to change ith&iew
communication between the scrollbar and the associated widget is controlled by two
options, one for the associated widget and one for the scrdiibasrmal usage, each of
these options invokes a widget command for the other widget.

The associated widget must inform the scrollbar about what it is currently displaying,
so that the scrollbar can display the slider in the correct positiotio This, the scrollbar
provides a widget command of the following form:

wi ndow set total Units windowUnits first |ast

W ndowis the name of the scrollbar widget (i.e. the name of the widget command for the
scrollbar).Tot al Uni t s indicates the total size of the information being displayed in the
associated widget in the dimension being scrolled, such as the number of lines in a listbox
or the number of characters in a text eiffyndowlni t s indicates how much of the
information can be displayed in the widget at one time given the current size of its win-
dow, andf i r st andl ast give the indices of the top and bottom elements currently vis-
ible in the widge® window (for horizontal scrollbafd r st andl ast refer to the
leftmost and rightmost visible elements).

The associated widget invokes the scrolbaet command whenever information
of interest to the scrollbar changes in the widgetdd this, scrollable widgets provide a
- xScr ol I Command option if they support horizontal scrolling and a
-yScrol I Command option if they support vertical scrolling. For example, a listbox
might be created with a vertical scrollbar using the following commands:

listbox .l -yscrollcomrand {.vscroll set}
scrol I bar .vscroll -orient vertica

pack .1 -side |eft

pack .vscroll -side right

DRAFT (3/11/93): Distribution Restricted

170

Configuration Options

The value of theyscr ol | cormmand option is a € command prefix. When the view in

the listbox changes (e.g. because elements were deleted), the listbox takes the value of the
-yscrol | conmand option (“ vscrol | set ”in this case) and appends four integer
values corresponding the thet al Uni t s, wi ndowUni ts,first, andl ast amgu-

ments described above. This will producechkcbmmand such as

.vscroll set 100 20 38 57

Then the listbox invokes the command, which causes the scrollbar to redraw its slider to
reflect the new viewf horizontal scrolling is desired for the listbox as well, an additional
scrollbar could be created andxascr ol | command option could be specified for the
listbox.

A similar form of communication is used by the scrollbar to notify the associated wid-
get when the user manipulates the scrollbar to request a nevEaelwscrollbar provides
a- command option, which specifies aclfcommand prefix for communicating new views
to the associated widget. It can be set for. thecr ol | widget above using the follow-
ing command:

.vscroll config -command {.| yview}

Then when the user clicks in the scrollbar to change the view the scrollbar takes the
- command option and appends the index of the element that should now appear at the top
of the window The result is a command like the following:

.1 yview 39

The scrollbar widget then invokes this command. Listboxes and other widgets that support

scrolling provide & vi ewwidget command with exactly the above syntax that causes the

widget to adjust its viewAfter adjusting its viewthe listbox uses itsyscr ol | com

mand option to notify the scrollbar of the new view so the scrollbar can redraw its slider
This scheme has the advantage that neither widget needs any built-in information

about the other; both the name of the other widget and the widget command to invoke are

provided with options that can be configured by the application desigract, the com-

mand options need not even correspond to widget commands. For example, a single

scrollbar could be made to control two widgets simultaneously by usiclgpaotedure

name as its conmand option:

.vscroll config -comuand scroll Proc
proc scroll Proc index {

.1 yview $i ndex

.12 yview $i ndex

}

Then the commands invoked by the scrollbar will look like
scrol | Proc 39

andscr ol | Proc will invoke yvi ewwidget commands in each of the two associated
widgets.

DRAFT (3/11/93): Distribution Restricted

16.10 Variables 171

16.10

Variables

16.11

Another common form for options is variable names. These options are used to associate
one or more @l global variables with a widget so that the widget can set the variable
under certain conditions or monitor its value and react to changes in the variable.

For example, many of the widgets that display text, such as labels and buttons and
messages and entries, support axt var i abl e option. The value of the option is the
name of a global variable that contains the text to display in the widget. The widget moni-
tors the value of the variable and updates the display whenever the variable changes value.
In addition, for widgets like entries that can modify their text, the widget updates the vari-
able to track changes made by the user

Checkbuttons and radiobuttons also suppertar i abl e option, which contains
the name of a global variable. For checkbuttons there are two additional options
(- onval ue and- of f val ue) that specify values to store in the variable when the
checkbutton is “on” and “6f’ As the user clicks on the checkbutton with the mouse, it
updates the variable to reflect the checkbuststite. The checkbutton also monitors the
value of the variable and changes its drgtdte if the variable'value is changed exter-
nally. Each checkbutton typically has its own variable.

With radiobuttons a group of widgets shares the same variable but each radiobutton
has a distinct value that it stores into the variable-(thel ue option). When the user
clicks on a radiobutton it sets the variable to its value and selects itself. The radiobutton
monitors the variable so that it can deselect itself when some other radiobutton stores a
different value into the variable. If the variablgalue is changed externally then all of the
radiobuttons associated with the variable update their selected/deselected state to reflect
the variables new value.

Time intervals

16.12

Several widget classes provide options that specify time intervals, such as the blink rate
for the insertion cursor or the rate at which mouse buttons should auto-rejdatl 6.4
summarizes the most commonly used options for specifying intervais.ifitervals are
always specified as integer numbers of milliseconds: an intert&®fmeans 100ms,

1000 means one second, and so on.

The configure widget command

Every widget class supportsanf i gur e widget command. This command comes in
three forms, which can be used both to change the values of options and also to retrieve
information about the widget'options. Seeable 16.1 for a summary of these forms.

DRAFT (3/11/93): Distribution Restricted

172 Configuration Options

Name on

Command Line Usage

-insertof fTi ne How long to leave insertion cursor turnedl iaf
each blink cycle. Zero means cursor doeblifk.

-insert OnTi me How long to leave insertion cursor turned on in
each blink cycle.

-repeat Del ay How long to wait before auto-repeating a button|or
keystroke.

-repeat | nterval | Once auto-repeat starts, how long to wait from ane
auto-repeat to the next.

Table 16.4. Commonly-used time interval options. The left column gives the name of the op
specified in widget creation commands ahf i gur e widget commands. The right column
describes how the option is used.

If confi gur e is given two additional guments then it changes the value of an
option as in the following example:

.button configure -text Quit

If the conf i gur e widget command is given just one extrguanent then it returns
information about the named option. The return value is normally a list with five elements:
.button configure -text
-text text Text { } Quit
The first element of the list is the name of the option as you'd specify itdrcariimand
line when creating or configuring a widget. The second and third elements are a name and
class to use for looking up the option in the option database (see Section 16.13 below).
The fourth element is the default value provided by the widget class (a single space char-
acter in the above example), and the fifth element is the current value of the option.
Some widget options are just synonyms for other options (e.gbtheption for but-
tons is the same as thbackgr ound option). Configuration information for a synonym
is returned as a list with two elements consisting of the optmhmand-line name and
the option database name of its synonym:

.button configure -bg
- bg backgr ound
If the conf i gur e widget command is invoked with no additionaj@amnents then it

returns information about all of the widgetptions as a list of lists with one sub-list for
each option:

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 173

16.13

.button configure

{-activebackground activeBackground Foreground Bl ack

Bl ack} {-activeforeground activeForeground Background
VWite White} {-anchor anchor Anchor center center}

{- background background Background White Wiite} {-bd
borderWdth} {-bg background} {-bitmap bitmp Bitmap {}
{}} {-borderwi dth borderWdth BorderWdth 2 2} {-comand
conmmand Conmand {} {}} {-cursor cursor Cursor {} {}}
{-di sabl edf or egr ound di sabl edFor egr ound

Di sabl edForeground {} {}} {-fg foreground} {-font font
Font - Adobe-Hel vetica-Bol d-R-Normal -*-120-* - Adobe-

Hel veti ca-Bol d-R-Normal -*-120-*} {-foreground
foreground Foreground Bl ack Bl ack} {-height hei ght

Hei ght 0 0} {-padx padX Pad 1 1} {-pady padY Pad 1 1}
{-relief relief Relief raised raised -state state
State normal normal} {-text text Text { } Quit}
{-textvariable textVariable Variable {} {}} {-width
width Wdth 0 0}

The option database

16.13.1

The option database supplies values for configuration options thatsgreaified explic-

itly by the application designerhe option database is consulted when widgets are cre-
ated: for each option not specified on the command line, the widget queries the option
database and uses the value found there, iflitiere is no value in the option database
then the widget supplies a default valualués in the option database are usually pro-
vided by the user to personalize applications, e.g. by using consisteglyftants. Tk
supports th&RESOURCE_MANAGER property and Xdef aul t s file in the same way as
other X toolkits like Xt.

Patterns

The option database contains any number of entries, where each entry consists of two
strings: goattern and avalue. The pattern determines whether the entry applies to a given
option for a given widget, and the value is a string to use for options that match the pat-
tern.

In its simplest form, a pattern consists of an application name, a window name, and an
option name, all separated by dots. For example, here are two options in this form:

wi sh. a. b. f or egr ound
wi sh. background

DRAFT (3/11/93): Distribution Restricted

174

Configuration Options

The first pattern applies to ther egr ound option in the window a. b in the applica-

tionwi sh, and the second pattern applies tolthekgr ound option in the main win-

dow forwi sh. Each of these patterns applies to only a single option for a single widget.
Patterns may also contain classes or wildcards, which allow them to match many dif-

ferent options or widgets. Any of the window names in the pattern may be replaced by a

class, in which case the pattern matches any widget that is an instance of that class. For

example, the pattern below applies to all childrenathat are buttons:

wi sh. a. But t on. f or egr ound

Application and option names may also be replaced with classes. The class for an applica-
tion is the class of its main window; names and classes for applications are discussed in
more detail in Chapter 22. Individual options also have classes. For example, the class for
thef or egr ound option isFor egr ound. Several other options, suchast i ve-
Backgr ound andi nsert Backgr ound, also have the clag®r egound, so the fol-
lowing pattern applies to any of these options for any button widget that is a chédrof
Wi sh:
wi sh. a. But t on. For egr ound

Lastly, patterns may containwildcard characters. A matches any number of win-

dow names or classes, as in the following examples:

* For egr ound

wi sh*But t on. f or egr ound
The first pattern applies to any option in any widget of any application as long as the
option’s class i$-or egr ound. The second pattern applies to theg egr ound option
of any button widget in thei sh application. Thé wildcard may only be used for win-
dow or application names; it cannot be used for the option name (it womlaké much
sense to specify the same value for all options of a widget).

This syntax for patterns is the same as that supported by the standard X resource data-
base mechanisms in the 223 and X1R4 releases. TH2wildcard, which was added in
the X11R5 release, is not yet supported bysTéption database.

In order to support the above matching rules, each option has three names:

1. the name that can be typed on a command line, which always starts vétideénas no
uppercase letters, as imact i vebor der wi dt h;

2. the name of the option in the database, which is typically the same as the command-line
name except that it contains n@and uses capital letters to mark internal word bound-
aries, as iract i veBor der W dt h;

3. the class of the option, which always starts with a capital letter and may contain addi-
tional capital letters to mark internal boundaries, @&oinder W dt h.

When you query an option with tie®nf i gur e widget command all three of these

names are returned.dtimportant to remember that in Tk clasak®gays start with an ini-

tial capital letterand any name starting with an initial capital letter is assumed to be a

class.

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 175

16.13.2

16.13.3

RESOURCE_MANAGER property and .Xdefaults file

When a Tk application starts up, Tk automatically initializes the option database. If there
is aRESOURCE_MANAGER property on the root windgwhen the database is initialized
from it. Otherwise Tk checks the usehome directory for aXdef aul t s file and uses
it if it exists. The initialization information has the same form whether it comes from the
RESOURCE_MANAGER property or the Xdef aul t s file. The syntax described below is
the same as that supported by other toolkits such as Xt.

Each line of the initialization data specifies one entry in the resource database in a
form like the following:

*For eground: bl ue

The line consists of a patternKor egr ound in the example) followed by a colon fol-
lowed by whitespace and then a value to associate with that pattera i the exam-
ple). If the value is too long to fit on one line then it can be placed on multiple lines with
each line but the last ending in a backslash-newline sequence:

*Gzno.text: This is a very long initial \

value to use for the text option in all \

"G zno" w dgets.
The backslashes and newlines will not be part of the value.

Blank lines are ignored, as are lines whose first non-blank charagter lis

Priorities

It is possible for several patterns in the option database to match a particular option. When
this happens Tk uses a two-part priority scheme to determine which pattern appties. Tk’
mechanism for resolving conflicts isfeifent than the standard mechanism supported by
the Tk toolkit, but I think it simpler and easier to work with.

For the most part the priority of an option in the database is determined by the order in
which it was entered into the database: newer options take priority over older ones. When
specifying options (e.g. by typing them into yoxdef aul t s file) you should specify
the more general options first, with more specific overrides following Fdeexample, if
you want button widgets to have a background col@&i afquel and all other widgets to
have white backgrounds, then put the following lines in yo(def aul t s file:

*background: white

*But t on. background: Bi squel
The*backgr ound pattern will match any option that th8ut t on. backgr ound
pattern matches, but th@ut t on. backgr ound pattern has higher priority since it was
specified last. If the order of the patterns had been reversed then all widgets (including
buttons) would have white backgrounds andtBet t on. backgr ound pattern would
have no dkct.

In some cases it may not be possible to specify general patterns before specific ones

(e.g. you might add a more general pattern to the option database after it has already been

DRAFT (3/11/93): Distribution Restricted

176

Configuration Options

16.13.4

initialized with a number of specific patterns from RESOURCE_MANACER property).

To accommodate these situations, each entry also has an integer priority level between 0
and 100, inclusive. An entry with a higher priority level takes precedence over entries with
lower priority levels, regardless of the order in which they were inserted into the option
database. Priority levels are not used very often in Tk; for complete details on how they
work, please refer to the reference documentation.

TK’s priority scheme is dérent that the scheme used by other X toolkits such as Xt.
Xt gives higher priority to the most specific pattern, eay.b. f or egr ound is more
specific tharf f or egr ound so it receives higher priority regardless of the order in which
the patterns appedn most cases this wdrbe a problem: specify options for Xt applica-
tions using the Xt rules, and for Tk applications using the Tk rules. In cases where you
want to specify options that apply both to Tk applications and Xt applications, use the Xt
rules but also make sure that the patterns consideredpigbety by Xt also appear later
in your. Xdef aul t s file. In general, you shouldmeed to specify very many options to
Tk applications (if you do, it suggests that the applications helveah designed well), so
the issue of pattern priority shoulticome up often.

It's important to remember that the option database is only queried for options not
specified explicitly in the widget creation command. This means that the user will not be
able to override any option that was specified on the command line. If you want to specify
a value for an option but allow the user to override that value through the
RESOURCE_MANAGER property you should specify the value for the option using the
opt i on command described below

The option command

Theopt i on command allows you to manipulate the option database while an application
is running. The commarapt i on add will create a new entry in the database. It takes
two or three gyuments. The first two gmments are the pattern and value for the new
entry and the third gument, if specified, is a priority level for the new erfiigr example,

option add *Button. background Bi squel
adds an entry that sets the background color for all button widggitstpuel.
The command
option clear

will remove all entries from the option database. ®pei on readfil e command
will read a file in the format described above forRESOURCE MANAGER property and
make entries in the option database for each line. For example, the following script dis-
cards any existing options (including those loaded automatically from the
RESOURCE_MANAGER property) and reloads the database frornfleOpt i ons:

option clear

option readfil e newOptions

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 177

Theopti on readfil e command can also be given a priority level as an exgia ar
ment after the file name.

To query whether there is an entry in the option database that applies to a particular
option, use thept i on get command:

option get .a.b background Background

This command takes threegaments, which are the path name of a widgat b), the
database name for an optidra¢kgr ound) and the class for that option
(Backgr ound). The command will search the option database to see if any entries match
the given windowoption, and class. If so, the value of the highest-priority matching
option is returned. If no entry matches then an empty string is returned.

DRAFT (3/11/93): Distribution Restricted

178 Configuration Options

DRAFT (3/11/93): Distribution Restricted

Chapter 17
Geometry Managers. The Placer

17.1

Geometry managers are the entities that determine the dimensions and locations of wid-
gets. Tk is similar to other Xltoolkits in that it doeshallow individual widgets to deter-
mine their own geometnA widget will not even appear on the screen unless it is
managed by a geometry managéis separation of geometry management from internal
widget behavior allows multiple geometry managers to exist simultaneously and it allows
any widget to be used with any geometry mandfesidgets selected their own geometry
then this flexibility would be lost: every existing widget would have to be modified to
introduce a new style of layout.

This chapter describes the overall structure for geometry management and then pre-
sents the placewhich is Tks simplest geometry manager . The placer manages windows
independently without considering other related windows, so ttusny flexible in the
layouts it produces. Because of this, the placer tends to be used only in special situations.
Chapter 18 describes a more powerful geometry manager called the paekeacker
lays out groups of windows togetheonsidering the needs of each of the windows when
laying out the group. This produces more flexible layouts but also makes the packer harder
to understand.

An overview of geometry management

A geometry managés job is to arrange one or matave windows relative to anaster

window. For example, it might arrange three slaves in a row from left to right across the
area of the masteor it might arrange two slaves so that they split the space of the master
with one slave occupying the top half and the other occupying the bottom hizfebif

179

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

180

Geometry Managers: The Placer

Requested size Parameters from Geometry of
from slave application designer master

Geometry
M anager

Size and location Requested size
of slave for master

Figure 17.1. A geometry manager receives three kinds of inputs: a requested size for eact
(which usually reflects the information to be displayed in the slave), commands from the apj
designer (such as “arrange these three windows in a row”), and the actual geometry of the
window The geometry manager then assigns a size and location to each slave. It may alsc
requested size for the master windevkhich can be used by a higHevel geometry manager to
manager the master

geometry managers embodyféient styles of layout. The master is often the parent of the
slave but there are times whers itonvenient to use other windows as masters (you'll see
examples of this later).

A geometry manager receives three sorts of information for its use in computing a
layout (see Figure 17.1). First, each slave widget requests a particular width and height.
These are usually the minimum dimensions needed by the widget to display its informa-
tion. For example, a button widget requests a size jug Emough to display its text or
bitmap along with the border specified for the widget. Although geometry managets aren’
obliged to satisfy the requests made by their slave widgets, they usually do.

The second kind of input for a geometry manager comes from the application
designer and is used to control the layout algorithm. The nature of this information varies
from geometry manager to geometry manalpesome cases the information is very spe-
cific. For example, with the placer an application designer can specify the precise location
and dimensions for a given slave; all the placer does is to apply the given geomety to the
slave windowIn other cases the information is more abstract. For example, with the
packer an application designer can name three slaves and request that they be arranged in
a row from left to right within the master; the packer will then check the requested sizes of
the slaves and position them so that they abut in awitveach slave given just as much
space as it needs.

The third kind of information used by geometry managers is the geometry of the mas-
ter window For example, the geometry manager might position a slave at the lower left

DRAFT (3/11/93): Distribution Restricted

17.1 An overview of geometry management 181

corner of its masteor it might divide the space of the master among one or more slaves,
or it might refuse to display a slave altogether if it dad#invithin the area of its master

Once it has received all of the above information, the geometry manager executes a
layout algorithm to determine the dimensions and position of each of its slaves. If the size
of a widget isrt what it requested then the widget must make do in the best way it can.
Geometry managers usually try to give widgets the space they requested, but they may
produce better layouts by giving widgets extra space in some situations. If thiere isn’
enough space in a master for all of its slaves, then some of the slaves may get less space
than they asked fom extreme cases the geometry manager may choose not to display
some slaves at all.

The controlling information for geometry management may change while an applica-
tion runs. For example, a button might be reconfigured withferelift font or bitmap, in
which case it will change its requested dimensionsth@rgeometry manager might be
told to use a di€rent approach (e.g., arrange a collection of windows from top to bottom
instead of left to right) or some of the slave windows might be deleted, or the user might
interactively resize the master winddwhen any of these things happens the geometry
manager recomputes the layout.

Some geometry managers (e.g. the packer) will set the requested size for the master
window. For example, the packer computes how much space is needed in the master to
accommodate all of its slaves in the fashion requested by the application déstgear
sets the requested size for the master to these dimensions, overriding any request made by
the master widget itself. This approach allows for hierarchical geometry management,
where each master is itself the slave of another higlret masterSize requests pass up
through the hierarchy from each slave to its mastsulting ultimately in a size request
for a top-level windowwhich is passed to the window managéren actual geometry
information passes down through the hierayebith the geometry manager at each level
accepting the geometry of a master and using it to compute the geometry of one or more
slaves. As a result, the entire hierarchy sizes itself to just meet the needs of the lowest-
level slaves (the master windows “shrink-wrap” around their slaves).

Each widget can be managed by at most one geometry manager at a time, although it
is possible to switch geometry managers during the life of a slave. A widget can act as
master to any number of slaves, and it is even possible feratif geometry managers to
control diferent groups of slaves associated with the same mAsigrgle geometry
manager can simultaneously managéediint groups of slaves associated witlfiedént
masters.

Only internal windows may be slaves for geometry management. The techniques
described here do not apply to top-level or main windows. These windows are managed
by the window manager for the display; see Chapter 22 for information on how to control
their geometry

DRAFT (3/11/93): Distribution Restricted

182 Geometry Managers: The Placer

pl ace wi ndow option val ue ?option val ue ..?
Same apl ace confi gur e command described below

pl ace configure w ndow option value ?option value ..?
Arranges for the placer to manage the geometw adow Theopti on
andval ue aguments determine the dimensions and position ofdow.

pl ace dependents w ndow
Returns a list whose elements are the slave windows managed by the placer
for whichwi ndow s the master

pl ace forget w ndow
Causes the placer to stop managingdow and unmap it from the screen
Has no dect if wi ndowisn’t currently managed by the placer

pl ace i nfo w ndow
Returns a list giving the current configuratiombhdow The list consists
of opt i on-val ue pairs in exactly the same form as might be specified|to
thepl ace confi gur e command. Returns an empty stringiifndow
isn’t currently managed by the placer

Table 17.1. A summary of thepl ace command.
17.2 Controlling positions with the placer

The placer is a simple geometry manager that implements fixed placements. The applica-
tion designer specifies the position and size of each slave relative to its arabtie
placer simply implements the requested placement. The placer treats each slave indepen-
dently so changes in the placement of one slave haveeat eh any other slave.

Thepl ace command is used to communicate with the placer; abke 7.1 for a
summary of its features. In its simplest form itguements consist of a window name and
one or more configuration options specified as name-value pairs:

place .x -x 0 -y O

This command positions windowk so that its uppeleft corner appears at the upjeft
corner of its mastewhich defaults to its parent. The placer supports about a dozen config-
uration options in all; @ble 17.2 summarizes the options and Figure 17.2 shows some
examples of using the placer

The placer determines the position of a slave window in two steps. First, it uses the
-X,-Y,-rel x, and- r el y options to choose an anchor point, then it positions the slave
relative to that anchor point using thenchor option. The anchor point is specified rel-
ative to the upper left corner of the master windéwhe - x and- y options are used then
the position is given with absolute distances in any of the forms described in Section 16.3.
If the-r el x and- r el y options are used then the position is specified as a fraction of the
size of the master; for example,rel x . 75" specifies that the anchor point should lie

DRAFT (3/11/93): Distribution Restricted

17.2 Controlling positions with the placer 183

-x distance
Specifies the horizontal distance of the slaegichor point from the left
edge of its master

-y di stance
Specifies the vertical distance of the slavaichor point from the top edge
of its master

-relx fraction
Specifies the horizontal position of the slavanchor point in a relative fash-
ion as a floating-point numbéf f r act i on is0. 0 it refers to the master
left edge, and.. O refers to the right edgEr act i on need not lie betweer
0.0 and 1.0.

-rely fraction
Specifies the vertical position of the slavahchor point in a relative fashiop
as a floating-point numhdf f r act i on is0. O it refers to the mastertop
edge, Snd. 0 refers to the bottom eddér act i on need not lie between
0.0 and 1.0.

-anchor anchor
Specifies which point on the slave window is to be positioned over the
anchor point.

-wi dth distance
Specifies the width of the slave.

- hei ght di stance
Specifies the height of the slave.

-relwidth fraction
Specifies the slavewidth as a fraction of the width of its master

-rel hei ght fraction
Specifies the slaveheight as a fraction of the height of its master

-in w ndow
Specifies the master window for the slave. Must be the slpaeént or a
descendant of the parent.

- bor der nrode node
Specifies how the mastetborders are to be used in placing the slsbde
must be nsi de, out si de, ori gnor e.

Table 17.2. A summary of the configuration options supported by the placer

DRAFT (3/11/93): Distribution Restricted

184

Geometry Managers: The Placer

place .x -x 0 -y O place .x -relx 0.5 -y 1c \
-anchor n

(a) (b)

place .x -relx 0.5 -rely 0.5\ place .x -relx 0 -rely 0.5\
-anchor center -height 3c relwidth 0.5 -rel height 0.5

(c) (d)

Figure 17.2. Examples of using the placer to manage a winditagh figure shows ace
command and the layout that results. Thgdawindow is the master and the smaller shaded
window is. X, the slave being managed. In (a) and (b) the slave is given the size it requeste
the height of the slave is specified in fieace command, and in (d) both the width and height
the slave are specified in theace command.

three-fourths of the way from the left edge of the master to its right edge. These forms can
be mixed for a given slave, as in Figure 17.2(b).

The- anchor option indicates which point on the slave window should be posi-
tioned over the anchor point. It can have any of the anchor names described in Section
16.8. For example, an anchor positiors gdositions the slave so that the center of its bot-
tom edge lies over the anchor point.

It is possible to position a slave outside the area of its mémtexample by giving a
negative- x option or & r el y option greater than 1.0. Howey#&rclips each window to
the dimensions of its parent, so the portions of the slave that lie outside its parent will not

DRAFT (3/11/93): Distribution Restricted

17.3 Controlling the size of a slave 185

17.3

appear on the screen. In the normal case where the parent is the master it probably isn’
very useful to position the slave outside its mastewever if the master is a sibling or
nephew of the slave then the slave can be positioned outside its master and still be visible
on the screen. See Section 17.4 for information on changing the master window

Controlling the size of a slave

17.4

By default, a slave window managed by the placer is given the size it requests. However
the-width , -height ,-relwidth , and-relheight options may be used to over-

ride either or both of the slagefequested dimensions. Thedth and-height

options specify the dimensions in absolute terms;@ahdidth and-relheight

specify the dimensions as a fraction of the size of the m&steexample, the following
command sets the width of to 50 pixels and the height to half the height of its master:

place .x -width 50 -relheight 0.5

Selecting the master window

Note:

In most cases the master window for a given slave will be its parent in the window hierar-
chy. If no master is specified, the placer uses the parent by default. Hpives/eome-

times useful to use a €#frent window as the master for a slave. For example, it might be
useful to attach one window to a sibling so that whenever the sibling is moved the window
will follow . This can be accomplished using tlme configuration option. For example,

the following command arranges far always to be displayed with its upgeft corner
“glued” to the upper right corner of :

place .x -in .y -relx 1.0 -rely O

In this example,x won't actually be “in”.y ;.y will be .x 's master anck will be dis-
played outsidey but adjacent to it.

The master for a slave must be either theptof the slave or a descendant of thespar
The eason for thisestriction has to do with Xclipping rules. Each window is clipped to
the boundaries of its pant; no portion of a child that lies outside of its gatrwill be
displayed. Tls restriction on master windows gurantees that the slave will be visible and
unclipped if its master is visible and unclipped. Suppose thaegection wee not
enforced, so that window.y could havea as its masteiSuppose also tha and x

do not overlap at all. If you asked the placer to positiop at the center ofa , the
placer would setx.y’ s position asequested, but this would caugey to be outside
the aea of.x so X would not display it, even though is fully visible. This behavior
would be confusing to application designers soelftricts mastership to keep ibifn
occurring. The estriction applies to all of Tk'geometry managers.

DRAFT (3/11/93): Distribution Restricted

186

Geometry Managers: The Placer

17.5

Border modes

17.6

The last configuration option for the placer or der node; it determines how the mas-

ters borders are used in placing the slave, and it must have one of the naluds,

out si de, ori gnor e. A border mode off nsi de is typically used when placing the

slave inside the masteand it is the default. In this case, the placer considers the area of
the master to be its innermost area, inside any borders. The anchor point is specified rela-
tive to the uppeteft corner of this area, and theel x,-rel y,-rel wi dt h, and

-rel hei ght options use the dimensions of this inner area.

A border mode obut si de is typically used when paositioning the slave outside the
area of its mastemn this case the placer considers the area of the master to be its outer-
most area including all borders.

The final border modé,gnor e, causes the placer to completely ignore any borders
and use the mastsrofiicial X area. This area includes the 3D borders drawn by widgets,
which are drawn inside a windosvX area, but excludes any external borders. The
i gnor e option is provided for completeness but probablyt igery useful.

More on the place command

So far thepl ace command has been discussed in its simplest form, where itsdist ar
ment is the name of a slave window to man&jece also has several other forms,
where the first gument selects a particular command optiRirace confi gur e has
the same ééct as the short form thatbeen used so fdfor example, the following two
commands have the saméeef:

place .x -x 0 -y O

pl ace configure .x -x 0 -y O
Pl ace confi gur e (or place without a specific option) can be invoked at any time to
change the configuration of a slave windovhen invoked on a window already managed
by the placerunspecified options retain their previous values.

The commangl ace dependent s returns a list of all the slave windows man-

aged by the placer for a given master window:

pl ace dependents .
X .Y . Z

Pl ace i nf o returns information about the current configuration of a slave window
managed by the placer:

pl ace info .x
-Xx 0 -y 0 -anchor nw

DRAFT (3/11/93): Distribution Restricted

17.7 Controlling the size of the master 187

17.7

The return value is a list containing name-value pairs in exactly the same form that you
would specify them tpl ace confi gur e. It can be used to record the placement of a
window so that it can be restored later

Lastly, pl ace for get causes the placer to stop managing a given slave window:

pl ace forget .x

As a side déct, it unmaps the window so that it no longer appears on the setesre
f or get is useful if you decide that a window should be managed bjeaetif geometry
manager: you can tell the placer togferrit, then ask a dérent geometry manager to take
over. You dont need to invok@l ace f or get before deleting a widget: the placer (like
all geometry managers) automaticallygets about widgets when they are deleted.

Controlling the size of the master

Although it is possible for a geometry manager to set the requested size for the master
windows it manages, the placer does not do this. It simply uses whatever size is provided
for a given mastewithout attempting to influence that size at all. Thus you'll need to use
some other mechanism to specify the méstare (e.g. if the master is a frame widget

you can request particular dimensions with-té dt h and- hei ght configuration

options).

DRAFT (3/11/93): Distribution Restricted

188 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

Chapter 18
The Packer

The packer is the second geometry manager provided by Tk. Although it is slightly more
complicated than the placer described in Chapter 17, it is more powerful because it
arranges groups of slaves togetia&king into account the needs of one slave when choos-
ing the geometry for the othersitWthe packer it is easy to achievéeefs such as
“arrange the following three windows in a row” or “put the menu bar across the top of the
window, then the scrollbar across the right side, then fill the remaining space with a text
widget.” Because of this, the packer is much more commonly used than thegiddie
placer tends to be used only for special purposespabk command, summarized in
Table 18.1, is used to communicate with the packer

Note: The pack command syntax described in this chapter iswhat will eventually existin a
future release of Tk. No existing release supports this syntax. The current Tk release
provides essentially all of the features described in this chapter but with a clumsier syntax.

The only difference in features hasto do with padding. Please refer to the manual entry for
the pack command before writing any scripts that use it.

18.1 Packer basics

The packer maintains a list of all the slaves for a given master wircddad thepacking

list. The packer arranges the slaves by processing the packing list inpaickéng one

slave in each step. At the time a particular slave is processed, part of the area of the master
window has already been allocated to earlier slaves on the list, leaving a rectangular unal-
located area left for this and all remaining slaves, as shown in Figure 18.1(a). The slave is

positioned in three steps: allocate a frame, stretch the slave, and position it in the frame.

189

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

190

The Packer

pack
pack

pack

pack

pack

wi ndow i ndow ...? option val ue ?option val ue ..?
Same apack confi gur e command described below

configure wi ndow 2 ndow ...? opti on val ue ?option value ...?
Arrange for the packer to manage the geometry ofitlielows . The
opt i on andval ue aguments provide information that determines the
dimensions and position of the ndows.

forget w ndow
Causes the packer to stop managingdow and unmap it from the screer).
Has no dect if wi ndowisn’t currently managed by the packeturns an
empty string.

i nfo wi ndow
Returns a list giving the current configuratiombhdow The list consists
of opt i on-val ue pairs in exactly the same form as might be specified|to
thepack confi gur e command. Returns an empty stringiindowisn’t
currently managed by the packer

sl aves wi ndow
Returns a list of the slaves on windewacking list, in order

Table 18.1. A summary of thgpack command.

In the first step a rectangular region callddaane is allocated from the available
space. This is done by “slicing”fad piece along one side of the available space. For
example, in Figure 18.1(b) the frame has been sliced from the right side of the available
space. The packer allows you to control the width of the frame (if it is on the left or right)
or the height of the frame (if it is on the top or bottom) and which side to slice it from. By
default, the controllable dimension of the frame is taken from the wisdeguested size
in that dimension.

In the second step the packer chooses the dimensions of the slave. By default the
slave will get the size it requested, but you can specify instead that it should be stretched in
one or both dimensions to fill the space of the frame. If the sleegliested size is tmr
than the frame then it is reduced to fit the size of the frame. In Figure 18.1(c) the slave has
been stretched horizontally but not vertically

The third step is to position the slave inside its frame. If the slave is smaller than the
frame then you can specify an anchor position for the slave suglsasrcent er. In
Figure 18.1(c) the slave has been positioned in the center of the frame, which is the
default.

Once the slave has been positioned, a smaller rectangular region is left for the next
slave to use, as shown in Figure 18.1(d). If a slave dogsmall of the space in its frame,
as in Figure 18.1, the leftover space is unused; ittmnused for later slaves. Thus each
step in the packing starts with a rectangular region of available space and ends up with a
smaller rectangular region.

DRAFT (3/11/93): Distribution Restricted

18.1 Packer basics 191

Master Slave
Available Erame for
Space Slave
@ (b)
Available
Space for
Next Slave
(©) (d)

Figure 18.1. The steps taken to pack a single slave. Figure (a) shows the situation before p
slave. Part of the mastsrarea has already been allocated for previous slaves, and a rectang
region is left for the remaining slaves. The current slave is shown in its requested size. The
allocates a frame for the slave along one side of the available space, as shown in (b). The p
stretch the slave to partially or completely fill the frame, then it positions the slave over the f
in (c). This leaves a smaller rectangular region for the next slave to use, as shown in (d).

Thepack command is used to communicate with the padkéts simplest form, a
pack command takes one or more window names@gents, followed by one or more
pairs of additional guments that indicate how to manage the windows. For example, con-
sider the following command:

pack .ok .cancel .help -side left

This command asks the packer to managje, . cancel , and. hel p as slaves and to
pack them in that ordefhe master for the slaves defaults to their parent. Thede
| ef t ” option indicates that the frame for each slave should be allocated on the left side of
the available space. By default, the frame for each slave is allocated just wide enough for
the slaves requested width, and the slave is centered in its frame without any stretching.
The result is that the slaves will be arranged in a row from left to right across the master
as shown in Figure 18.2 (b).

DRAFT (3/11/93): Distribution Restricted

192

The Packer

.ok .cancel . help

{

v

= Wish | aiJiJ = Wish | ‘iJiJ .
| wash _Jjj
-(EI Cancellﬂg —_‘(Ej Cﬂ“CE”H_HHj |
5 =1 L |
@) (b) (©)

Figure 18.2. A simple example of packing. Figure (a) shows a master window and the reqt
sizes for three slaves. Figure (b) shows the arrangement that is produced by the cqgramiand
.0k .cancel .help -side |eft”ifthe mastels size is fixed. In most cases, howetlee
master will resize so that it just meets the needs of its slaves, producing the result in (c).

The result in Figure 18.2(b) assumes that the master window is fixed in size. How-
ever this isnt usually the case. As part of its layout computation the packer computes the
minimum dimensions the master would need so that all of its slaves just barely fit, and it
sets the requested size of the master to those dimensions. In most cases the geometry man-
ager for the master will set the ma&esize from those dimensions, so that the master
“shrink wraps” around the slaves. For example, top-level windows resize themsleves to
their requested dimensions unless other directions have been given withatemand
described in Chapter 22. Thus the result fronpiek command above is more likely to
be as shown in Figure 18.2(c)wYcan choose between the scenarios in Figure 18.2(b)
and Figure 18.2(c) with the way you manage the niasgeometry

Figure 18.3 shows another simple packer example, which uses the following script to
arrange three windows:

pack .l abel -side top -fill x
pack .scrollbar -side right -fill vy
pack .listbox

The three windows are configuredfditntly so a separapack command is used for

each one. The order of thack commands determines the order of the windows in the
packing list. The menubar widget is packed first, and it occupies the top part of the
master windowThe “ fi || X" option specifies that the window should be stretched
horizontally so that it fills its frame. The scrollbar widget is packed next, in a similar fash-
ion except that it is arranged against the right side of the window and stretched vertically
The widget | i st box is packed last. No options need to be specifiedlforst box: it

gets all the remaining space regardless of which side it is packed against.

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options 193

.l abel .scroll bar

! I |

] /] i . L
= Wish | , | J| List of States.! ?:_3
il ¥
Hawraii : ! i —
Idaho =] Aish |1
Minois List of States:
Indiana Hawaii A
lowra Idaho
Kansas Minois
Kentucky Indiana _|
Louisiana lowra
KMaine Kansas
Maryland Kentucky
Louisiana
f Maine
. I'i st box Maryland
| | 1
(a) (b)
Figure 18.3. Another packer example. Figure (a) shows a master windpan@ the requested
sizes for three slaves. Figure (b) shows the result of packing the slaves with the script
pack .label -side top -fill x
pack .scrollbar -side right -fill y
pack .li stbox
under the assumption that the master window resizes to just meet the needs of its slaves.
18.2 Packer configuration options

The examples in the previous section illustrated a few of the configuration options pro-
vided by the packer;able 18.2 contains a complete listing. The options fall into three
groups: those that determine the location and size of asfaamie; those that determine
the size and position of the slave within its frame; and those that select a master for the
slave and determine the sla@osition in the masterpacking list.

The location of a slave’frame is determined by thei de option as already dis-
cussed. For slaves packed on the top or bottom, the width of the frame is always the width
of the available space left in the masTdre height of the frame is usually the requested
height of the slave; howevyehe options padx, - i padx, - pady, and- i pady cause
the packer to pretend that the slawequested size is tgar than what the slave specified.
Slaves packed on the left and right sides are handled in an analogous fashion.

DRAFT (3/11/93): Distribution Restricted

194

The Packer

-after w ndow

Usewi ndow's master as the master for the slave and insert the slave info the
packing list just afteni ndow

-anchor position
If the frame is lager than the slavefinal size, this option determines whefe
in the frame the slave will be positioned.

-before w ndow
Usewi ndow's master as the master for the slave and insert the slave info the
packing list just beforai ndow

- expand bool ean
If bool ean is a true value then the slaséfame will be grown to absorb
any extra space left over in the master

-fill style
Specifies whether (and how) to grow the slave if its framegderddhan the
slaves requested siz&t yl e must be eithemone, x, y, orbot h.

-in w ndow
Usewi ndowas the master for slawd ndow must be the slaveparent or a
descendant of the slaggdarent. If no master is specified then it defaults to
the slaves parent.

-i padx di stance
Di st ance specifies internal padding for the slave, which is extra horizontal

space to allow inside the slave on each side, in addition to what the slaye

requests.

-i pady distance
Di st ance specifies internal padding for the slave, which is extra vertig
space to allow inside the slave on each side, in addition to what the sla
requests.

al
ve

- padx di stance
Di st ance specifies external padding for the slave, which is extra horiz
tal space to allow outside the slave but inside its frame on each side.

- pady di stance
Di st ance specifies external padding for the slave, which is extra verti
space to allow outside the slave but inside its frame on each side.

cal

-si de side
Si de specifies which side of the master the slave should be packed ag
Must bet op, bott om | ef t, orri ght.

ainst.

Table 18.2. A summary of the configuration options supported by the packer

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options 195

| | p—
= Wish B

oK] Cancel r Help]

| i} I

pack .ok .cancel .help -side left -ipadx 3m-ipady 2m -expand 1

Figure 18.4. An example of the padding an@xpand options. When thpack command in the
figure is applied to the windows shown in Figure 18.2(a), the resulting layout is as shown ir
figure, assuming that the massesize is fixed. Internal padding causes each wirglsizé to be
increased beyond what it requested, and thepand option causes the extra space in the mas
be distributed among the slaves’ frames.

The- expand option allows a frame to absorb leftover space in the méfstiee
master ends up with more space than its slaves need (e.g. because the user has interac-
tively stretched a top-level window), and if thexpand option has been set to true for
one of the slaves, then that sla&ame will be expanded to use up all the extra horizontal
or vertical space (for left/right and top/bottom slaves, respectively). If multiple slaves
have the expand option set, then the extra space is divided evenly among them. See
Figure 18.4 for an example that usexpand and the padding options.

The size and location of a slave within its frame are determined by tHd and
- anchor options in conjunction with the padding options. Thé | | option can select
no filling, filling in a single direction, or filling in both directions. If internal padding has
been specified for a slavei (padx or-i pady) then the slave will be stretched by the
amount of the internal padding even if no filling has been requested in that dimension. If
external padding has been specified for a slagadx or - pady), then the packer will
leave the specified amount of space between the window and the edge of the frame even if
filling is requested.

If the final size of the slave is smaller than the frame, thenahehor option con-
trols where to place the slave in the frame. This option may have any of the values
described in Section 16.8, suchnagto indicate that the northwest (uppeft) corner of
the slave should be positioned at the northwest corner of the frame. If external padding has
been specified withpadx or - pady, thennwreally refers to a point inset from the cor-
ner of the frame by the pad amounts.

The third group of options,i n, - bef or e, and- af t er, controls the master for a
slave and the position of the slave in the packing list. By default the master for a slave is
its parent and the order of slaves in the packing list is determined by the order of their
pack commands. Howevgthe- i n option may be used to specify afeient masterAs

DRAFT (3/11/93): Distribution Restricted

196

The Packer

pack .left -side left -padx 3m -pady 3m
pack .right -side right -padx 3m-pady 3m
pack .pts8 .ptsl0 .ptsl2 .ptsl8 .pts24 \ 10 points [Bold

pack .bold .italic .underline \

I] p—
N wish I

~0 points

-in .left -side top -anchor w 12 points ¥ Malic

~~18 points & Undetine
- ~24 points Il

-in .right -side top -anchor w

]

(@) (b)

Figure 18.5. Hierarchical packing. The pack commands in (a) produce the layout shown in
Two invisible frame widgets,| ef t and. ri ght, are used to achieve the columfeef.

18.3

with the placerthe master must be either the slaygrent or a descendant of the slawve’
parent (see page 185 for an explanation of this restriction). B&for e and- af t er

options allow you to control the order in which slaves are packed. When one of these
options is used, the master for the slave is automatically set to the master for the window
named in the option.

Hierarchical packing

The packer is often used in hierarchical arrangements where slave windows are also mas-
ters for other slaves. Figure 18.5 shows an example of hierarchical packing. The resulting
layout has a column of radio buttons on the left and a column of check buttons on the
right, with each group of buttons centered vertically in its colurarachieve this ééct
two extra frame widgets,| eft and. ri ght, are packed side by side in the main win-
dow, then the buttons are packed inside them. The packer sets the requested sizes for
.l eft and. ri ght to provide enough space for the buttons, then uses this information
to set the requested size for the main windbwe main windows geometry will be set to
the requested size, then the packer will arrangef t and. ri ght inside the it, and
finally it will arrange the buttons insidé ef t and. ri ght.

Figure 18.5 also illustrates why it is sometimes useful for a wirklma'ster to be
different from its parent. It would have been possible to create the button windows as chil-
drenof. | eft and. ri ght (e.g.. | eft. pt s8 instead of pt s8) but it is better to cre-
ate them as children ofand then pack them insidé ef t and. ri ght .The windows
.l eft and. ri ght serve no purpose in the application except to help in geometry man-
agement. They are not even visible on the screen. If the buttons were children of their
geometry masters then changes to the geometry management (such as adding more levels
in the packing hierarchy) might require the button windows to be renamed and would

DRAFT (3/11/93): Distribution Restricted

18.4 Other options to the pack command 197

18.4

break any code that used the old names (such as entries in XskrBaul t s files). Itis

better to give windows names that reflect their logical purpose in the application, build
separate frame hierarchies where needed for geometry management, and then pack the
functional windows into the frames.

Other options to the pack command

So far thepack command has been discussed in its most common form, where the first
argument is the name of a slave window and the otlgemaents specify configuration
options. Bble 18.1 shows several other forms forghek command, where the first
argument selects a particular command optRatk confi gur e has the samefett as

the short form that’ been used up until now: the remaininguanents specify windows

and configuration options. pfack confi gur e (or the short form with no command
option) is applied to a window that is already managed by the p#io&erthe slave’con-
figuration is modified; configuration options not specified inpiiek command retain

their old values.

The commangback sl aves returns a list of all of the slaves managed by the
packer for a given master windowhe order of the slaves in the list reflects their order in
the packing list:

pack slaves .left

Pack i nf o returns all of the configuration options for a given slave:
pack info .pts8
-in .left -side top -anchor w
The return value is a list consisting of names and values for configuration options in
exactly the form you would specify thempack confi gur e. This command can be
used to save the state of a slave so that it can be restored later
Lastly, pack forget causes the packer to stop managing one or more slaves and
forget all of its configuration state for them. It also unmaps the windows so that they no
longer appear on the screen. This command can be used to transfer control of a window
from one geometry manager to anottoersimply to remove a window from the screen for
a while. If a fogotten window is itself a master for other slaves, the information about
those slaves is retained but the slaves waadisplayed on the screen until the master
window becomes managed again.

DRAFT (3/11/93): Distribution Restricted

198 The Packer

DRAFT (3/11/93): Distribution Restricted

Chapter 19
Bindings

19.1

You have already seen that Scripts can be associated with certain widgets such as but-
tons or menus so that the scripts are invoked whenever certain eventsodewas click-
ing a mouse button over a button widget. These mechanisms are provided as specific
features of specific widget classes. Tk also contains a general-phinetiag mechanism
that can be used to create additional event handlers for widgets. A binding “birads” a T
script to an X event or sequence of X events in one or more windows; the script will be
invoked automatically by Tk whenever the given event sequence occurs in any of the win-
dows. You can create new bindings to extend the basic functions of a widget (e.g. with
keyboard accelerators for common actions), or you can override or modify the default
behaviors of widgets, since they are implemented with bindings.

This chapter assumes that you already know at least the basics about X event types,
keysyms, modifiers, and the fields in event structures. More information on these topics
can be found in any of several books that describe the Xlib programming interface.

An overview of the bind command

Thebi nd command is used to create, modduery and remove bindingsable
19.1 summarizes its syntax. This section illustrates the basic featiniesdfand later
sections go over the features in more detail.

Bindings are created with commands like the one below:

bind .entry <Control-d> {.entry delete insert}

199

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

200

Bindings

bi nd

bi nd

bi nd

bi nd

wi ndowSpec sequence scri pt
Arranges foiscri pt to be executed each time the event sequence given by
sequence occurs in the window(s) given oy ndowSpec. If a binding
already exists fomM ndowSpec andsequence then it is replaced. If
scri pt is an empty string then the binding fdrndowSpec and
sequence is removed, if there is one.

wi ndowSpec sequence +scri pt
If there is already a binding far ndowSpec andsequence then appends|
scri pt to the script for the current binding; otherwise creates a new bjnd-
ing.

wi ndowSpec sequence
If there is a binding foni ndowSpec andsequence then returns its
script. Otherwise returns an empty string.

wi ndowSpec
Returns a list whose entries are all of the sequences for wihimbowSpec
has bindings.

t ker

ror nessage
Invoked by Tk when it encounters el €rror in an event handler such as a
binding.Message is the error message returned lgy. Any result returned
byt kerror isignored.

Table 19.1. A summary of thédi nd andt ker r or commands.

Note:

The first agument to the command specifies the path name of the window that the binding
applies to. It can also be a widget class name, in which case the binding applies to all wid-
gets of that class (such bindings are cadlads bindings), or it can bal | , in which case
the binding applies to all widgets. The secorgliarent specifies a sequence of one or
more X events. In this example the sequence specifies a single event, which is a key-press
of thed character while th€ont r ol key is down. The third gument may be anycl
script. The script in the example invokesnt r y’s widget command to delete the charac-
ter just after the insertion cursor

After the command completes, the script will be invoked whenever Control-d is typed
in . ent ry. The binding can trigger any number of times. It remainsfaciefintil
. ent ry is deleted or the binding is explicitly removed by involkinghd with an empty
script:

bind .entry <Control-d> {}

A binding for a keystroke will only trigger if the input focusis set to the window for the
binding. See Chapter 21 for more information on the input focus.

Thebi nd command can also be used to retrieve information about binditg s df
is invoked with an event sequence but no script then it returns the script for the given
event sequence:

bind .entry <Control-d>

DRAFT (3/11/93): Distribution Restricted

19.2 Event patterns 201

19.2

.entry delete insert
If bi nd is invoked with a single gument then it returns a list of all the bound event
sequences for that window or class:

bind .entry

<Control - Key- d>

bi nd Button

<Butt onRel ease- 1> <Button-1> <Any-lLeave> <Any-Enter>

The first example returned the bound sequencesefiot r y, and the second example
returned information about all of the class bindings for button widgets.

Event patterns

Event sequences are constructed out of basic units eadietchatterns, which Tk
matches against the stream of X events received by the application. An event sequence can
contain any number of patterns, but in practice most sequences only contain a single pat-
tern.
The simplest form for an event pattern consists of a printing character saicin @s
This form of pattern matches a key-press event for that character as long as there are no
modifier keys pressed. For example,
bind .entry a {.entry insert insert a}
arranges for the characteto be inserted intoent r y at the point of the insertion cursor
whenever it is typed.
The second form for an event pattern is longer but more flexible. It consists of one or
more fields between angle brackets, with the following syntax:
<nmodi fier-nodifier-...-nodifier-type-detail >
White space may be used instead of dashes to separate the various fields, and most of the
fields are optional. Thigpe field identifies the particular X event type, such as
KeyPr ess orEnt er (see able 19.2 for a list of all the available types). For example,
the command
bind .x <Enter> {puts Hello!}
causestel | o! " to be printed on standard output whenever the mouse cursor moves into
widget. x.
For key and button events, the event type may be followedl&tgih field that speci-
fies a particular button or kelyor buttons, the detail is the number of the button (1-5). For
keys, the detail is an Keysym. A keysym is a textual name that describes a particular key
on the keyboard, such BackSpace or Escape orcomma. The keysym for alphanu-
meric ASCII characters such as “a” or “A” or “2” is just the character itself. Refer to your
X documentation for a complete list of keysyms.

DRAFT (3/11/93): Distribution Restricted

202 Bindings
Button, ButtonPress Expose Leave
But t onRel ease Focusln Map
Crculate FocusCut Property
Circul at eRequest Gavity Repar ent
Col or map Keynap Resi zeRequest
Configure Key, KeyPress Unmap
Confi gur eRequest KeyRel ease Visibility
Dest r oy MapRequest
Ent er Mot i on
Table 19.2. Names for event types. Some event types have multiple named& e gnd
KeyPr ess.

If no detail field is provided, as kKeyPr ess>, then the pattern matches any event
of the given type. If a detail field is provided, asiKeyPr ess- Escape>, then the pat-
tern only matches events for the specific key or button. If a detail is specified then you can
omit the event typesEscape> is equivalent tacKeyPr ess- Escape>.

Note: The patterr<1> is equivalent t&But t on- 1>, not<KeyPr ess- 1>.

The event type may be preceded by any numberodlifiers each of which must be
one of the values inable 19.3. Most of the modifiers are X modifier names, su€bms
trol orShift.If one or more of these modifiers are specified then the pattern only
matches events that occur when the specified modifiers are present. For example, the pat-
tern<Met a- Cont r ol - d> requires that both the Meta and Control keys be held down
whend is typed, an&B1- But t on- 2> requires that button 1 already be down when but-
ton 2 is pressed. If no modifiers are specified then none must be pré&&fer ess- a>
will not match an event if the Control key is down.

If the Any modifier is specified, it means that the state of unspecified modifiers should
be ignored. For exampleAny- a> will match a press of the “a” key even if button 1 is
down or the Meta key is pressedny- B1- Mot i on> will match any mouse motion
event as long as button 1 is pressed; other modifiers are ignored.

The last two modifierddoubl e andTr i pl e, are used primarily for specifying dou-
ble and triple mouse clicks. They match a sequence of two or three events, each of which
matches the remainder of the pattern. For exampleubl e- 1> matches a double-click
of mouse button 1 with no modifiers down, ahy- Tr i pl e- 2> matches any triple
click of button 2 regardless of modifiers. Fddaubl e or Tr i pl e pattern to match, all
of the events must occur close together in time and without substantial mouse motion
between them.

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events 203

Cont r ol Button4, B4 Modl, M2, Alt
Shi ft Button5, B5 Mod3, MB
Lock Any Mod4, M4
Buttonl, Bl Double Mod5, Mb

Button2, B2 Triple
Button3, B3 Mddl, ML, Mta, M

Table 19.3. Modifier names for event patterns. Multiple names are available for some modi
for exampleMbd1, ML, Met a, andMare all synonyms for the same modifier

19.3 Sequences of events

An event sequence consists of one or more event patterns optionally separated by white
space. For example, the sequerEscape>a contains two patterns. It triggers when the
a key is pressed immediately after teecape key.

A sequence need not necessarily match consecutive events. For example, the
sequenceEscape>a will match an event sequence consisting of a key-press on
Escape, arelease dEscape, and then a press af the release dEscape will be
ignored in determining the match. Tk ignores conflicting events in the input event stream
unless they are of typgéeyPr ess orBut t onPr ess. Thus if some other key is pressed
between th&scape and thea then the sequence womatch. These same rules apply to
double events such adoubl e- 1>.

19.4 Conflict resolution

At most one binding will trigger for any given X event. If several bindings match the event
then the most specific binding is chosen and only its script is invoked. For example, sup-
pose there are bindings foBut t on- 1> and<Doubl e- But t on- 1> and button 1 is
clicked three times. The first button-press event will match onlyBué t on- 1> bind-
ing, but the second and third presses will match both bindings. Since
<Doubl e- But t on- 1> is more specific thagBut t on- 1>, its script is executed on
the second and third presses. Similats cape>a is more specific thaxa>, <Con-
t r ol - d> is more specific thanAny- d> or <d>, and<d> is more specific thanKey-
Press>.

There may also be a conflict among bindings witfedéht window specifications.
For example, there might be a binding for a specific wingdws another binding for its
class, plus another fal | . When this occurs, any window-specific binding receives pref-
erence over any class binding and any class binding receives preference aldr any

DRAFT (3/11/93): Distribution Restricted

204

Bindings

Note:

19.5

binding. For example, if there is aAny- KeyPr ess> binding for a window and a
<Ret ur n> binding for its class, pressing the return key will trigger the window-specific
binding, not the class binding.

The default behaviors for widgetseagstablished with class bindingeated by Tk during
initialization. You can modify the behavior of an individual widget ating window-
specific bindings that override the class bindings. Howereerhave to be caful in
doing this that you donhaccidentally override merbehavior than you intended. For
example, if you specify atAny- KeyPr ess> binding for a widget, it will override a
<Ret ur n> binding for the class, even though #tRet ur n> binding appears to be
mote specific. The solution is to duplicate #iet ur n> class binding for the widget.

Substitutions in scripts

Note:

If the script for a binding contaifécharacters then it is not executed diredtigtead, a

new script is generated by replacing e#@haracter and the one that follows it with
information about the X event. The character followingléiselects a specific substitution

to make. About 30 diérent substitutions are defined; see the reference documentation for
complete details. The following substitutions are the most commonly used ones:

U Substitute the x-coordinate from the event.

%y Substitute the y-coordinate from the event.

N Substitute the path name of the event window

YA Substitute the 8-bit ISO character value that corresponds to a

KeyPr ess orKeyRel ease event, or an empty string if the
event is for a key like Shift that doeshave an ISO equiva-
lent.

%0 Substitute the charactés

For example, the following bindings implement a simple mouse tracker:

bind all <Enter> {puts "Entering %N}
bind all <Leave> {puts "Leaving %WV}
bind all <Mdtion> {puts "Muse at (%, %)"}

When Tk makes % substitutions @aits the script as an dinary string without any
special poperties. The normal quoting rules fal Tommands & not considexd, sd%
sequences will be substituted even if embedded in bracesoaded by backslashes. The
only way to pevent éosubstitution is to double tRécharacter The easiest way to avoid
problems with complex scripts and % substitutions is to keep the binding simple, for
example by putting the script in aggedue and having the binding invoke the@pedue
with arguments aated via % substitution.

DRAFT (3/11/93): Distribution Restricted

19.6 When are events processed? 205

19.6

When are events processed?

Note:

19.7

Tk only processes events at a few well-defined times. After a Tk application completes its
initialization it enters aevent loopo wait for X events and other events such as timer and
file events. When an event occurs the event loop executesaCamd€ to respond to that
event. Once the response has completed, control returns to the event loop to wait for the
next interesting event. Almost all events are processed from the top-level event loop. New
events will not be considered while responding to the current event, so there is no danger
of one binding triggering in the middle of the script for another binding. This approach
applies to all event handlers, including those for bindings, those for the script options
associated with widgets, and others yet to be discussed, such as window manager protocol
handlers.

A few special commands suchtdswai t andupdat e reinvoke the event loop
recursively so bindings may trigger during the execution of these commaadshéuld
only invoke these commands at times when it is safe for bindings to ti@mamands
that invoke the event loop are specially noted in their reference documentation; all other
commands complete immediately without re-entering the event loop.
Event handlers & always invoked at global level (as if the commaungl “evel #0”
were used), even if the event loop was invokem fit kwai t or updat e command

inside a pocedue. This means that global variablegalways accessible in event
handlers without invoking thgd obal command.

Background errors: tkerror

It is possible for adl error to occur while executing the script for a binding. These errors
are calledbackgound erors; when one occurs, the default action is for Tk to print the
associated error message on standard output. Havtieiggorobably isr’very useful in

most cases. It is usually better to display the error message in a message window or dialog
box on the screen where the user can see itt Keer or command permits each appli-
cation to handle background errors in the best way for that application. When a back-
ground error occurs, Tk invoké&ker r or with a single agument consisting of the error
message. Thieker r or command is not defined by Tk; presumably each application will
define its owrt ker r or procedure to report errors in a way that makes sense for that
application. Ift ker r or returns normally then Tk will assume it has dealt with the error
and it wont do anything else itself. tfker r or returns an error (e.g. because there is no
t ker r or command defined) then Tk falls back on the default approach of printing the
message on standard output.

Thet ker r or procedure is invoked not just for errors in bindings, but for all other
errors that are returned to Tk at times when it has no-one else to return the errors to. For
example, menus and buttons d¢dtler r or if an error is returned by the script for a menu
entry or button; scrollbars cdlker r or if a Tcl error occurs while communicating with

DRAFT (3/11/93): Distribution Restricted

206

Bindings

19.8

the associated widget; and the window-manager interfacet &adlsr or if an error is
returned by the script associated with a window manager protocol.

Other uses of bindings

The binding mechanism described in this chapter applies to widgets. Hogienikzr
mechanisms are available internally within some widgets. For example, canvas widgets
allow bindings to be associated with graphical items such as rectangles or polygons, and
text widgets allow bindings to be associated with ranges of characters. These bindings are
created using the same syntax for event sequencéésutbtitutions, but they are cre-

ated with the widget command for the widget and refer to the widigét'rnal objects

instead of windows. For example, the following command arranges for a message to be
printed whenever mouse button 1 is clicked over item 2 in a carvas

.C bind 2 <ButtonPress-1> {puts Hello!}

DRAFT (3/11/93): Distribution Restricted

Chapter 20
The Sdection

20.1

Theselection is a mechanism for passing information between widgets and applications.
The user first selects one or more objects in a widget, for example by dragging the mouse
across a range of text or clicking on a graphical object. Once a selection has been made,
the user can invoke commands in other widgets that cause them to retrieve information
about the selection, such as the characters in the selected range or the name of the file con-
taining the selection. The widget containing the selection and the widget requesting it can
be in the same or ddrent applications. The selection is most commonly used to copy
information from one place to anothbut it can be used for other purposes as well, such
as setting a breakpoint at a selected line or opening a new window on a selected file.

X defines a standard mechanism for supplying and retrieving the selection and Tk
provides access to this mechanism withgbeect i on command. @ble 20.1 summa-
rizes thesel ecti on command. The rest of this chapter describes its features in more
detail. For complete information on the X selection protocol, refer to the@fitaet
Communications Convention Manual (ICCCM).

Selections, retrievals, and targets

X's selection mechanism allows for multiple selections to exist at once, with names like
“primary selection”, “secondary selection”, and so on. HowelMeisupports only the pri-
mary selection; Tk applications cannot retrieve or supply selections other than the primary
one and the term “selection” always refers to the primary selection in this book. At most
one widget has a primary selection at any given time on a given digyii@y a user

selects information in one widget, any selected information in any other widget is auto-

207

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

208 The Selection

sel ection clear w ndow
If there is a selection anywhere wnndow's display deselect it so that no
window owns the selection anymore.

sel ection get ?target?
Retrieve the value of the primary selection usiagget as the form in
which to retrieve it, and return the selectiwnalue as resullar get
defaults toSTRI NG

sel ection handl e wi ndow script 2target? ?format?
Creates a handler for selection requests sucls thdtpt will be executed
whenever the primary selection is owneddbyndowand someone attempt
to retrieve it in the form given byar get . Tar get defaults toSTRI NG
For mat specifies a representation for transmitting the selection to the
requester; it defaults 8TRI NG Whenscr i pt is invoked, two additional
numbers are appended to it, consisting of the startfegt@nd maximum
number of bytes to retriev8er i pt should return the requested range of
the selection; if it returns an error then the selection retrieval will be rejected.

sel ecti on own i ndow? ?scri pt?
Claims ownership of the selection f@grndow; if some other window previ
ously owned the selection, deselects the old selectisorlif pt is speci-
fied then it will be executed whew ndow is deselected. If neithei ndow
norscri pt is specified, then the command returns the path name of the
window that currently owns the selection, or an empty string if no windoy in
this application owns the selection.

W

Table 20.1. A summary of thesel ecti on command.

matically deselected. It is possible for multiple disjoint objects to be selected simulta-
neously within a widget (e.g. threefdifent items in a listbox or severalfdifent

polygons in a drawing window), but usually the selection consists of a single object or a
range of adjacent objects.

When you retrieve information about the selection, you can ask for any of several dif-
ferent kinds of information. The d&rent kinds of information are referred to as retrieval
targets. The most common tget iSSTRI NG In this case the contents of the selection are
returned as a string. For example, if text is selected then a retrieval wétSERI NG
will return the contents of the selected text; if graphics are selected then a retrieval with
target STRI NGwill return some string representation for the selected graphics. If the
selection is retrieved with getFl LE_NANE then the return value will be the name of
the file associated with the selection. Ig&tiL] NE is used then the return value will be
the number of the selected line within its file. There are maggtsawith well-defined
meanings; refer to the X ICCCM for more information.

The commandel ecti on get retrieves the selection. Thedat may be specified
explicitly or it may be left unspecified, in which case it defaulSTBI NG. For example,
the following commands might be invoked when the selection consists of a few words on
one line of a file containing the text of Shakespedremeo and Juliet;

DRAFT (3/11/93): Distribution Restricted

20.2 Locating and clearing the selection 209

20.2

sel ection get
star-crossed | overs

sel ection get FILE NAME
ronmeoJul i et

sel ection get LINE

6

These commands could be issued in any Tk application on the display containing the
selection; they need not be issued in the application containing the selection.

Not every widget supports every possible selectiayetaFor example, if the infor-
mation in a widget ist’associated with a file then tHel LE_NAME target will not be
supported. If you try to retrieve the selection with an unsupportget tdaen an error will
be returned. Fortunatelgvery widget is supposed to support retrievals witetarAR-

CETS; such retrievals return a list of all thegat forms supported by the current selection
owner You can use the result off&ARGETS retrieval to pick the most convenient avail-
able taget. For example, the following procedure retrieves the selection as Postscript as
possible, otherwise as an unformatted string:

proc getSelection {} {
set targets [sel ection get TARGETS]
if {[lsearch $targets POSTSCRI PT] >= 0} {
return [selection get POSTSCRI PT]

}
sel ection get STRING

Locating and clearing the selection

Tk provides two mechanisms for retrieving information about who owns the selection.
The commandel ecti on own (with no additional ayjuments) will check to see if the
selection is owned by a widget in the invoking application. If so it will return the path
name of that widget; if there is no selection or it is owned by some other application then
sel ecti on own will return an empty string.

The second way to locate the selection is with the retriexgatskPPLI CATI ON
andW NDOW NAME. These tagets are both implemented by Tk and are automatically
available whenever the selection is in a Tk application. The command

sel ection get APPLI CATI ON

returns the name of the Tk application that owns the selection (in a form suitable for use
with thesend command, for example) and

sel ecti on get W NDOW NAME

DRAFT (3/11/93): Distribution Restricted

210

The Selection

20.3

returns the path name of the window that owns the selection. These commands will work
only if the owning application is based on Tk. If the application that owns the selection
isn't based on Tk then it probably does not supporfireLl CATI ON andW N-
DOW NAME tamgets and theel ecti on get command will return an errofhese com-
mands will also return errors if there is no selection.

The command

sel ection clear
will clear out any selection on the display of the invoking application. It works regardless
of whether the selection is in the invoking application or some other application on the
same displayThe following script will clear out the selection only if it is in the invoking
application:

sel ection clear
}

Supplying the selection with Tcl scripts

The sections above described gfacilities for retrieving the selection; this section
describes how to supply the selection. The standard widgets like entries and texts already
contain C code that supplies the selection, so you dsnally have to worry about it
when writing Tl scripts. Howeverit is possible to write dl scripts that implement new
targets or that provide the complete supply-side protocol, and this section describes how to
do it. This feature of Tk is seldom used so you may wish to skip over this material until
you need it.
The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any previous selection

and typically redisplays the selected material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other widgets and applica-
tions.

3. The owner may request that it be notified when it is deseleciddeW typically

respond to deselection by eliminating the highlights on the display
The paragraphs below describe two scenarios. The first scenario just adds getaw gar
widget that already has selection support, so it only deals with the second part of the pro-
tocol. The second scenario implements complete selection support for a group of widgets
that didnt previously have any; it deals with all three parts of the protocol.

Suppose that you wish to add a newgeéarto those supported for a particular widget.

For example, text widgets contain built-in support forSh&l NGtamget but they don’
automatically support thel LE_NANE taget. You could add support féil LE_NAME
retrievals with the following script:

DRAFT (3/11/93): Distribution Restricted

20.3 Supplying the selection with Tcl scripts 211

selection handle .t getFile FILE NAME
proc getFile {offset maxBytes} ({
gl obal fil eNane
set |last [expr $offset+$maxBytes- 1]
string range $fil eNanme $of fset $l ast
}
This code assumes that the text widget is nanieaind that the name of its associated file
is stored in a global variable nanfeidl eName. Thesel ecti on handl e command
tells Tk to invokeget Fi | e whenever t owns the selection and someone attempts to
retrieve it with tagetFl LE_NAME. When such a retrieval occurs, Tk takes the specified
command et Fi | e in this case) appends two additional numeriogliarents, and
invokes the resulting string as el Tommand. In this example a command like

getFile 0 4000

will result. The additional guments identify a sub-range of the selection by its first byte

and maximum length, and the command must return this portion of the selection. If the
requested range extends beyond the end of the selection, then the command should return
everything from the given starting point up to the end of the selection. Tk takes care of
returning the information to the application that requested it. In most cases the entire
selection will be retrieved in one invocation of the command, but for veyy smlections

Tk will make several separate invocations so that it can transmit the selection back to the
requester in manageable pieces.

The above example simply added a neweatto a widget that already provided some
built-in selection support. If selection support is being added to a widget that has no built-
in support at all, then additionatlicode is needed to claim ownership of the selection and
to respond to deselections. For example, suppose that there is a group of three radio but-
tons named a, . b, and. ¢ and that the buttons have already been configured with their
-vari abl e and- val ue options to store information about the selected button in a glo-
bal variable namesdt at e. Now suppose that you want to tie the radio buttons to the
selection, so that (a) whenever a button becomes selected it claims the X selection, (b)
selection retrievals return the contents bt e, and (¢) when some other widget claims
the selection away from the buttons tis¢rat e is cleared and all the buttons become
deselected. The following code implements these features:

sel ection handl e .a getVal ue STRI NG
proc getVal ue {offset maxBytes} {
gl obal state
set last [expr $offset+$maxByt es- 1]
string range $state $offset $l ast
}
foreach w{.a .b .c} {
$w config -comand {sel ection own .a sel Gone}

proc sel Gone {} {

DRAFT (3/11/93): Distribution Restricted

212 The Selection

gl obal state
set state {}
}

Thesel ecti on handl e command and thget Val ue procedure are similar to the
previous example: they respondI®RI NG selection requests fora by returning the
contents of thaet at e variable. Thd or each loop specifies acomrand option for
each of the widgets. This causesdle¢ ect i on own command to be invoked when-
ever the user clicks on any of the radio buttons, ande¢hecti on own command
claims ownership of the selection for widget (. a will own the selection regardless of
which radio button gets selected and it will retsitrat e in response to selection
requests). Theel ecti on own command also specifies that procedugé Gone
should be invoked whenever the selection is claimed away by some other ®alget.
CGone setsst at e to an empty string. All of the radio buttons mongérat e for
changes, so when it gets cleared the radio buttons will all deselect themselves.

DRAFT (3/11/93): Distribution Restricted

Chapter 21
Thelnput Focus

21.1

At any given time one window of an application is designated dsibefocus window,

or focus window for short. All keystrokes received by the application are directed to the
focus window and they are processed according to its event bindings. This chapter
describes Tlef ocus command, which is used to control the input focasld 21.1
summarizes the syntax of thecus command. The focus window only determines what
happens once a keystroke event arrives at a particular application; it does not determine
which of the applications on the display receives keystrokes. The selection of a focus
application is made by the window manager

Focus model: explicit vs. implicit

There are two possible ways of handling the input focus, which are knowni emplilcet
andexplicit models. In the implicit model the focus follows the mouse: keystrokes are
directed to the window under the mouse pointer and the focus window changes implicitly
when the mouse moves from one window to anothahe explicit model the focus win-

dow is set explicitly and doegdrehange until it is explicitly reset; mouse motions do not
change the focus.

Tk implements the explicit focus model, for several reasons. First, the explicit model
allows you to move the mouse cursor out of the way when you're typing in a window;
with the implicit model you'd have to keep the mouse in the window you're typing to.
Second, and more important, the explicit model allows an application to change the focus
window without the user moving the mouse. For example, when an application pops up a
dialog box that requires type-in (e.g. one that prompts for a file name) it can set the input

213

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

214

The Input Focus

focus

focus w ndow

focus default 2w ndow?

focus none

Returns the path name of the applicasdocus windowor an empty string
if there is no focus window

Sets the applicatios’focus window taM ndow .

If Wi ndowis specified then it becomes the default focus winedvich will

receive the input focus whenever the focus window is deleted. In this case

the command returns an empty stringrilhdow s specified asone, then

there will be no default focus windo¥ wi ndow is omitted then the com-

(rjne}ndlreturns the current default focus windomnone if there is no
efault.

Clears the focus windaw

Table 21.1. A summary of thé ocus command.

21.2

focus to the appropriate window in the dialog without you having to move the mouse, and
it can move the focus back to its original window when you're finished with the dialog
box. This allows you to keep your hands on the keyboard. Simieilsn you're typing
in a form the application can move the input focus to the next entry in the form each time
you type a tab, so that you can keep your hands on the keyboard and worKicientlef
Lastly, if you want an implicit focus model then you can always achieve it with event
bindings that change the focus each time the mouse cursor enters a new window

Tk applications dont’'need to worry about the input focus very often because the
default bindings for text-oriented widgets already take care of the most common situa-
tions. For example, when you click button 1 over an entry or text widget, the widget will
automatically make itself the focus windofs application designgyou only need to set
the focus in cases like those in the previous paragraph where you want to move the focus
among the windows of your application to reflect the flow of work.

Setting the input focus

To set the input focus, invoke thecus command with a widget name agament:

focus .dialog.entry
From this point on, all keystrokes received by the application will be directed to
. di al og. ent ry and the previous focus window will no longer receive keystrokes. The
new focus window will display some sort of highlight, such as a blinking insertion cursor
to indicate that it has the focus and the previous focus window will stop displaying its
highlight.

DRAFT (3/11/93): Distribution Restricted

21.3 Clearing the focus 215

21.3

Here is a script that implements tabbing among four entries in a form:

set tabList {.formel .forme2 .forme3 .form e4}
foreach w $tabList {
bi nd $w <Tab> {tab $tabLi st}

proc tab list {
set i [lsearch $list [focus]]

incr i
if {$i >=[llength $list]} {
set i O

focus [lindex $list $i]

}
This script assumes that the four entry windows have already been created. It uses the
variablet abLi st to describe the order of traversal among the entries and arranges for
the proceduré ab to be invoked whenever a tab is typed in any of the enfrids.
invokesf ocus with no aguments to determine which window has the focus, finds where
this window is in the list that gives the order of tabbing, and then sets the input focus to the
next window in the list. The procedurab could be used for many &hfent forms just by
passing it a dierentl i st agument for each form. The order of focussing can also be
changed at any time by changing the value of tiieli st variable.

Clearing the focus

21.4

The command ocus none clears the input focus for the application. Once this com-
mand has been executed, keystrokes for the application will be discarded.

The default focus

When the focus window is deleted, Tk automatically sets the input focus for the applica-
tion to a window called thdefault focus window. The default focus window is initially
none, which means that there will be no focus window after the focus window is deleted
and keystrokes will be discarded until the focus window is set again.

Thef ocus def aul t command can be used to specify a default focus window and
to query the current default:

f ocus defaul t
none

focus default .entry
focus default

DRAFT (3/11/93): Distribution Restricted

216 The Input Focus
.entry
Once this script has been completednt r y will receive the input focus whenever the
input focus window is deleted.
21.5 Keyboard accelerators

Applications with keyboard accelerators (e.g. they allow you to®gpé r ol +s to save

the file orCont r ol +q to quit the application) require special attention to bindings and

the input focus. First, the accelerator bindings must be present in every window where you
want them to applyFor example, suppose that an editor has a main text window plus sev-
eral entry windows for searching and replacemeon. Will create bindings for accelera-

tors likeCont r ol +q in the main text windowbut you will probably want most or all of

the bindings to apply in the auxiliary windows also, so you'll have to define the accelera-
tor bindings in each of these windows too.

In addition, an application with keyboard accelerators should never let the focus
becomenone, since that will prevent any of the accelerators from being processed. If no
other focus window is available, | suggest setting the focus to the main window of the
application; of course, you'll have to define accelerator bindings $arthat they are
available in this mode. In addition, | recommend setting the default focus windowrto
some other suitable window so that the focug isst when dialog boxes and other win-
dows are deleted.

DRAFT (3/11/93): Distribution Restricted

Chapter 22
Window Managers

For each display running the Xilldow System there is a special process calledithe
dow manager. The window manager is separate from the X display server and from the
application processes using the displye main function of the window manager is to
control the arrangement of all the top-level windows on each screen. In this respect it is
similar to the geometry managers described in Chapters 17 and 18 except that instead of
managing the internal windows within an application it manages the top-level windows of
all applications. The window manager allows each application to request particular loca-
tions and sizes for its top-level windows, which can be overridden interactively by users.
Window managers also serve several other purposes besides geometry management: they
add decorative frames around top-level windows; they allow windows to be iconified and
deiconified; and they notify applications of certain events, such as user requests to destroy
the window

X allows for the existence of many féifent window managers that implemenfefif
ent styles of layout, provide @&fent kinds of decoration and icon management, and so
on. Only a single window manager runs for a display at any given time, and the user gets
to choose which one. In order to allow any application to work smoothly with any window
managerX defines a protocol for the interactions between applications and window man-
agers. The protocol is defined as part of the 18temt Communication Conventions
Manual (ICCCM). Vith Tk you use themcommand to communicate with the window
manager; Tk implements tlencommand using the ICCCM protocols so that any Tk-
based application should work with any window man@ables 22.1 and 22.2 summarize
thewmcommand.

217

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

218

Window Managers

wm aspect wi ndow ?Thin yThin xFat yFat?
Set or queryv ndow's aspect ratio. If an aspect ratio is specified, it con-
strains interactive resizes so thaindow's width/height will be at least as
great axThi n/yThi n and no greater thatFat /yFat .

wm client wi ndow ?nane?
Set or query th&VM_CLIENT_MACHINRroperty fomi ndow;, which
gives the name of the machine on whidmdow's application is running.

wm command wi ndow val ue?
Set or query th&VM_COMMARNDperty fosi ndow;, which should contain
the command line used to initiate ndow's application.

wm deiconify wi ndow
Arrange for window to be displayed in normal fashion.

wm focusmodel w ndow ?nodel ?
Set or query the focus model forndow . Model must beactive or
passi ve.

wm geometry wi ndow val ue?
Set or query the requested geometry for windéat ue must have the form
=wi dt hxhei ght x y (any of=, wi dt hxhei ght,or x y can be
omitted).

wm group wi ndow ? eader ?
Set or query the window group theitndow belongs toLeader must be
the name of a top-level windgar an empty string to remowe ndow from
its current group.

wm iconbitmap wi ndow ?bi t map?
Set or query the bitmap fai ndow's icon.

wm iconify wi ndow
Arrange fowi ndowto be displayed in iconic form.

wm iconmask w ndow ?bi t map?
Set or query the mask bitmap f@grndow's icon.

wm iconname window ?string ?
Set or query the string to be displayedMmdow's icon.

wm iconposition wi ndow ?x y?
Set or query the hints about where on the screen to displagow's icon.

wm iconwindow w ndow 2 con?
Set or query the window to use as iconbondow | con must be the path
name of a top-level windaw

wm maxsize w ndow M dt h hei ght ?
Set or query the maximum permissible dimensionsifardow during inter-
active resize operations.

wm minsize wi ndow 2 dt h hei ght ?
Set or query the minimum permissible dimensionsMardow during inter-
active resize operations.

Table 22.1. A summary of thevmcommand. In all of these commandsndow must be the nam
of a top-level windowMany of the commands, suchws1 aspect orwm group , are used to
set and query various parameters related to window management. For these commands, i
parameters are specified as null strings then the parameters are removed coamplefetye

parameters are omitted then the command returns the current settings for the parameters.

DRAFT (3/11/93): Distribution Restricted

22.1 Window sizes 219

wm overri deredirect w ndow ?bool ean?
Set or query the override-redirect flag ¥@mdow
wm posi ti onfrom w ndow whon?
Set or query the source of the position specificationifordow Whommust
bepr ogr amoruser.
wm pr ot ocol w ndow ?protocol ? ?script?
Arrange forscri pt to be executed whenever the window manager sends a
message tai ndow with the giverpr ot ocol . Pr ot ocol must be the
name of an atom for a window manager protocol, such as
VWV DELETE_W NDOWWM SAVE_YOURSELF, or WW TAKE_FOCUS. If
scri pt is an empty string then the current handler for protocol is deletgd. If
scri pt is omitted then the current script forot ocol is returned (or an
empty string if there is no handler for ot ocol). If bothpr ot ocol and
scri pt are omitted then the command returns a list of all protocols wit
handlers defined foxi ndow
wm si zef rom wi ndow whonf?
Set or query the source of the size specificatiomifordow. Whommust be
pr ogr amoruser.
wm st ate wi ndow
Returns the current statewif ndow: nor mal , i coni c, orwi t hdr awn.
wmtitle wi ndow ?string?
Set or query the title string to display in the decorative bordevi fodow
wm transi ent wi ndow ?master?
Set or query the transient statussohdow Mast er must be the name of a
top-level window on whose behalf ndowis working as a transient.
wm wi t hdraw wi ndow
Arrange forwi ndow not to appear on the screen at all, either in normal or
iconic form.

=2

22.1 Window sizes

If a Tk application doestuse thevmcommand, Tk will communicate with the window
manager automatically on the applicat®héhalf so that its top-level windows appear on
the screen. By default each top-level window will appear in its “natural” size, which is the
size it requested using the normal Tk mechanisms for geometry management. Tk will for-
ward the requested size on to the window manager and most window managers will honor
the request. If the requested size of a top-level window should change then Tk will for-
ward the new size on to the window manager and the window manager will resize the win-
dow to correspond to the latest request. By default the user will not be able to resize
windows interactively: window sizes will be determined solely by their requested sizes as
computed internally

If you want to allow interactive resizing then you must invoke at least one wfithe
nm nsi ze andwm maxsi ze commands, which specify a range of acceptable sizes. For
example the commands

DRAFT (3/11/93): Distribution Restricted

220

Window Managers

22.2

wm ninsize .x 100 50

wm naxsi ze . x 400 150
will allow. x to be resized but constrain it to be 100 to 400 pixels wide and 50 to 150 pix-
els high. If the command

wmmnsize .x 1 1

is invoked then there will &fctively be no lower limit on the size ok. If you set a min-
imum size without a maximum size (or vice versa) then the other limit will be uncon-
strained. ¥u can disable interactive resizing again by clearing all of the size bounds:

wm ninsize .x {} {}
wm naxsi ze .x {} {}
In addition to constraining the dimensions of a window you can also constrain its
aspect ratio (width divided by height) using tira aspect command. For example,

wm aspect .x 1 341

will tell the window manager not to let the user resize the window to an aspect ratio less
than 1/3 (window three times as tall as it is wide) or greater than 4 (four times as wide as it
is tall).

If the user interactively resizes a top-level window then the wirglowernally
requested size will be ignored from that point on. Regardless of how the internal needs of
the window change, its size will remain as set by the Assimilar efect occurs if you
invoke thenm geonet ry command, as in the following example:

wm geonetry . x 300x200

This command forcesx to be 300 pixels wide and 200 pixels high just as if the user had
resized the window interactivelyhe internally requested size for will be ignored once
the command has completed, and the size specifiedwntigeonet r y command over-
rides any size that the user might have specified interactively (but the user can resize the
window again to override the size in tlwn geonet r y command). The only didrence
between theum geonet r y command and an interactive resize is #imatgeonet ry is
not subject to the constraints specifiedany i nsi ze, wn maxsi ze, andwm
aspect .

If you would like to restore a window to its natural size you can inwokegeorre-
t ry with an empty geometry string:

wm geonetry . x {}

This causes Tk to fget any size specified by the user omboy geonet ry, so the win-
dow will return to the size it requested internally

Gridded windows

In some cases it doesmake sense to resize a window to arbitrary pixel sizes. For exam-
ple, consider the application in Figure 22.1. When the user resizes the top-level window

DRAFT (3/11/93): Distribution Restricted

22.2 Gridded windows 221

~| Berkeley Introduction | - | |

File Hglpé
]) T
= 7 s Berkeley is internationally
| Harkeky iodlicton | |"'.| noted for its academic
File He_lpl excellence. Its faculty
| includes 8§ Nobel laureates,

Berkeley is internationally noted for
its academic excellence. Its faculty
includes 8 Nobel lawreates, 104 members

104 members of the National
Academy of Sciences, 61
nembers of the National

of the National Academy of Sciences, 61 | academy of Engineering, and
members of the National academy of more Guggenheim Fellows and
Engineering, =nd more Guggenheim Fellows Presidential ¥oung

and Presidential Young Investigators

- ; Investigators than there are
than there are at any other vniversity

at any other wniversity in the

in the country. In a recent national country. In a recent national
survey, Berkeley was ranked the hest survey, Berkeley was ranked
owverall graduate institution in the B the hest overall graduate
United States, with 30 of its 32 F institution in the United
L 1 States, with 30 of its 32
graduate departments ranked
(@) | within the top 10. J

(b)

Figure 22.1. An example of gridded geometry management. If the user interactively resi:
window from the dimensions in (a) to those in (b), the window manager will rotittteof
dimensions so that the text widget holds an even number of characters in each dimensio
figure shows decorative borders as provided byntrawindow manager

the text widget changes size in response. Ideally the text widget should always contain an
even number of characters in each dimension, and sizes that result in partial characters
should be rounded fof

Gridded geometry management accomplishes tfeéstefVhen gridding is enabled
for a top-level window its dimensions will be constrained to lie on an imaginary grid. The
geometry of the grid is determined by one of the widgets contained in the top-level win-
dow (e.g. the text widget in Figure 22.1) so that the widget always holds an integral num-
ber of its internal objects. Usually the widget that controls the gridding is a text-oriented
widget such as an entry or listbox or text.

To enable gridding, set theset gr i d option to 1 in the controlling widget. The fol-
lowing code was used in the example in Figure 22.1, where the text widget is

.t configure -setgrid 1

This command has severafegits. First, it automatically makes the main window resiz-
able, even if neum m nsi ze orwm maxsi ze command has been invoked. Second, it
constrains the size of the main window so thawill always hold an even number of
characters in its font. Third, it changes the meaning of dimensions used in Tk. These
dimensions now represent grid units rather than pixels. For example, the command

DRAFT (3/11/93): Distribution Restricted

222

Window Managers

Note:

22.3

wm geonetry . 50x30

will set the size of the main window so that is 50 characters wide and 30 lines high,

and dimensions in them ni nsi ze andwm maxsi ze commands will also be grid

units. Many window managers display the dimensions of a window on the screen while it
is being resized; these dimensions will given in grid units too.

In order for gridding to work coectly you must have configuarthe internal geometry
management of the application so that the alitig window stetches and shrinks in

response to changes in the size of the top-level window , e.g. by packing it with the
- expand option settd. and-fi | | tobot h.

Window positions

22.4

Controlling the position of a top-level window is simpler than controlling its size. Users
can always move windows interactiveiynd an application can also move its own win-
dows using them geonet ry command. For example, the command

wm geonetry .x +100+200

will position. x so that its uppeleft corner is at pixel (100,200) on the displdither of
the+ characters is replaced with ahen the coordinates are measured from the right and
bottom sides of the displalfor example,

wm geonetry .x -0-0
positions. x at the lowetright corner of the display

Window states

At any given time each top-level window is in one of three states. hotineal or de-ico-
nified state the window appears on the screen. lictrgfiedstate the window does not
appear on the screen, but a small icon is displayed instead vithbdeawnstate neither
the window nor its icon appears on the screen and the window is ignored completely by
the window manager

New top-level windows start biin the normal state.o0 can use the facilities of your
window manager to iconify a window interactivedy you can invoke them i coni fy
command within the window’application, for example

wmiconify .Xx

If you invokewm i coni f y immediately before the window first appears on the screen,
then it will start of in the iconic state. The commanth dei coni fy causes a window
to revert to normal state again.

The commanavm wi t hdr aw places a window in the withdrawn state. If invoked
immediately before a window has appeared on the screen, then the window will tart of
withdrawn. The most common use for this command is to prevent the main window of an

DRAFT (3/11/93): Distribution Restricted

22.5 Decorations 223

22.5

application from ever appearing on the screen (in some applications the main window
serves no purpose: the application presents a collection of windows any of which can be
deleted independently from the others; if one of these windows were the main window
deleting it would delete all the other windows too). Once a window has been withdrawn, it
can be returned to the screen with eitli@r dei coni fy orwm i coni fy.
Thewm st at e command returns the current state for a window:

wmiconify .x

wm state . Xx

iconic

Decorations

Note:

22.6

When a window appears on the screen in the normal state, the window manager will usu-
ally add a decorative frame around the winddhe frame typically displays a title for the
window and contains interactive controls for resizing the winaoewing it, and so on.

For example, the window in Figure 22.1 was decorated bywhevindow manager

Thewm ti t| e command allows you to set the title thatisplayed a window'dec-
orative frame. For example, the command

wmtitle . "Berkel ey Introduction"
was used to set the title for the window in Figure 22.1.

Thewmcommand provides several options for controlling what is displayed when a
window is iconified. First, you can use tlw® i connane command to specify a title to
display in the icon. Second, some window managers allow you to specify a bitmap to be
displayed in the icon. Them i conbi t map command allows you to set this bitmap, and
wm i connask allows you to create non-rectangular icons by specifying that certain bits
of the icon are transparent. Third, some window managers allow you to use one window
as the icon for anothenm i conwi ndow will set up such an arrangement if your win-
dow manager supports it. Finalijyou can specify a position on the screen for the icon
with thewm i conposi ti on command.

Almost all window managers supp@rn i connane andwm i conposi ti on but
fewer supportvm i conbi t map and almost no window managers suppert

i conwi ndowvery well. Dort’assume that these feaggrwork until you've tried them
with your own window manager

Window manager protocols

There are times when the window manager needs to inform an application that an impor-
tant event has occurred or is about to occur so that the application can do something to
deal with the event. In X terminologihese events are calleéhdow manager mtocols

DRAFT (3/11/93): Distribution Restricted

224

Window Managers

22.7

The window manager passes an identifier for the event to the application and the applica-
tion can do what it likes in response (including nothing). The two most useful protocols
areWM_DELETE_WINDGWIWM_SAVE_YOURSELFhe window manager invokes
theWM_DELETE_WIND@dtocol when it wants the application to destroy the window
(e.g. because the user asked the window manager to kill the window). The
WM_SAVE_YOURSEDFotocol is invoked when the X server is about to be shut down or
the window is about to be lost for some other reason. It gives the application a chance to
save its state on disk before its X connection disappears. For information about other pro-
tocols, refer to ICCCM documentation.

Thewm protocol command arranges for a script to be invoked whenever a partic-
ular protocol is triggered. For example, the command

wm protocol . WM_DELETE_WINDOW {
puts stdout "I don’t wish to die"
}

will arrange for a message to be printed on standard output whenever the window manager
asks the application to kill its main windolm this case, the window will not actually be
destroyed. If you dob’specify a handler foVM_DELETE_WINDQNén Tk will destroy

the window automatically¥M_DELETE_WINDQ&\the only protocol where Tk takes

default action on your behalf; for other protocols, W& _SAVE_YOURSELi6thing

will happen unless you specify an explicit handler

Special handling: transients, groups, and override-redirect

The window manager protocols allow you to request three kinds of special treatment for
windows. First, you can mark a top-level windowtrasmsient with a command like the
following:

wm transient .X .

This indicates to the window manager thatis a short-lived windowsuch as a dialog

box, working on behalf of the applicatisnhain windowThe last agument tovm

transient (“. "in the example) is referred to as timaster for the transient window

The window manager may treat transient windowiedihtly e.g. by providing less deco-
ration or by iconifying and deiconifying them whenever their master is iconified or deico-
nified.

In situations where a group of long-lived windows works together you can usmthe
group command to tell the window manager about the group. The following script tells
the window manager that the windowspl ,.top2 ,.top3 , and.top4 are working
together as a group, artdpl is the groupeader:

foreach i {.top2 .top3 .top4} {
wm group $i .topl
}

DRAFT (3/11/93): Distribution Restricted

22.8 Session management 225

22.8

The window manager can then treat the group as a unit, and it may give special treatment
to the leaderor example, when the group leader is iconified, all the other windows in the
group might be removed from the display without displaying icons for them: the’keader
icon would represent the whole group. When the léadeon is deiconfied again, all the
windows in the group might return to the display also. The exact treatment of groups is up
to the window managgeand diferent window managers may handle therfed#ntly The

leader for a group need not actually appear on the screen (e.qg. it could be withdrawn).

In some extreme cases it is important for a top-level window to be completely ignored
by the window manager: no decorations, no interactive manipulation of the window via
the window manageno iconifying, and so on. The best example of such a window is a
pop-up menu. In these cases, the windows should be markeg ade-redirect using a
command like the following:

wm overri deredirect .popup
This command must be invoked before the window has actually appeared on the screen.

Session management

22.9

Thewmcommand provides two options for communicating with session managers:
cl i ent andwm command. These commands pass information to the session manager
about the application running in the window; they are typically used by the session man-
ager to display information to the user and to save the state of the session so that it can be
recreated in the futur®¥n cl i ent identifies the machine on which the application is
running, andvm comand identifies the shell command used to invoke the application.
For example,

wmclient . sprite. berkel ey. edu

wm application . {browse /usr/local/bin}
indicates that the application is running on the machprd t e. ber kel ey. edu and
was invoked with the shell commanidr‘owse /usr/ | ocal / bi n”.

A warning about window managers

Although the desired behavior of window managers is supposedly described in the X
ICCCM document, the ICCCM is not always clear and no window manager that | am
aware of implements everything exactly as described in the ICCCM. For example, the
mvmwindow manager doedralways deal properly with changes in the minimum and
maximum sizes for windows after they've appeared on the screen, angntiveindow

manager treats the aspect ratio backwards; neither window manager positions windows on
the screen in exactly the places they request. Tk tries to compensate for some of the defi-
ciencies of window managers (e.g. it checks to see where the window manager puts a win-

DRAFT (3/11/93): Distribution Restricted

226

Window Managers

dow and if its the wrong place then Tk repositions it again to compensate for the window
manage’s error), but it cam’compensate for all the problems.

One of the main sources of trouble isSBynamic nature, which allows you to
change anything anytime. Almost all applications (except those based on Tk) set all the
information about a window before it appears on the screen and they never change it after
that. Because of this, window manager code to handle dynamic chang¢béasn’
debugged very well. & can avoid problems by setting as much of the information as
possible before the window first appears on the screen and avoiding changes.

DRAFT (3/11/93): Distribution Restricted

Chapter 23
The Send Command

23.1

The selection mechanism described in Chapter 20 provides a simple way for one applica-
tion to retrieve data from another application. This chapter describgemitlecommand,

which provides a more powerful form of communication between applicatidtis. W

send, any Tk application can invoke arbitrargl Bcripts in any other Tk application on

the display; these commands can not only retrieve information but also take actions that
modify the state of the tget application. dble 23.1 summarizeend and a few other
commands that are useful in conjunction with it.

Basics

To usesend, all you have to do is give the name of an application aradl scfiipt to exe-
cute in the application. For example, consider the following command:

send tgdb {break tkButton.c 200}

The first agument tosend is the name of the tget application (see Section 23.3 below
for more on application nhames) and the secogdraent is a @l script to execute in that
application. Tk locates the named application (an imaginarpased version of thgdb
debugger in this case), forwards the script to that application, and arranges for the script to
be executed in the applicatigrinterpreterin this example the script sets a breakpoint at a
particular line in a particular file. The result or error generated by the script is passed back
to the originating application and returned byslesd command.

Send is synchronous: it doegréomplete until the script has been executed in the
remote application and the result has been returned. While waiting for the remote applica-

227

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

228

The Send Command

send appName arg ?arg ..?
Concatenates all ther g’s with spaces as separators, then executes the
resulting script in the interpreter of the application givemjpyNane. The
result of that execution is returned as the result of éml command.

wi nfo interps
Returns a list whose elements are the names of all the applications available
on the display containing the applicat®main window

wi nfo nane .
Returns the name of the current application, suitable for tsend com-
mands issued by other applications.

Table 23.1. A summary osend and related commands.

tion to respondsend will defer the processing of X events, so the application will not
respond to its user interface during this time. Oncs #r command completes and the
application returns to normal event processing, any deferred events will be processed. A
sending applicatiowill respond t@eend requests from other applications while waiting

for its ownsend to complete. This means, for example, that thgetasf thesend can

send a command back to the initiator while processing the script, if that is useful.

23.2 Hypertools

| hope thasend will enable a new kind of small re-usable application that Irygir-

tools. Many of todays windowing applications are monoliths that bundle seveifardift
packages into a single program. For example, debuggers often contain editors to display
the source files being debugged, and spreadsheets often contain charting packages or com-
munication packages or even databases. Unfortunatell of these packages can only be

used from within the monolithic program that contains it.

With send each of these packages can be built as a separate stand-alone program.
Related programs can communicate by sending commands to eaclrotleample, a
debugger can send a command to an editor to highlight the current line of execution, or a
spreadsheet can send a script to a charting package to chart a dataset derived from the
spreadsheet, or a mail reader can send a command to a multi-media application to play a
video clip associated with the mail.itWthis approach it should be possible to re-use
existing programs in many unforeseen ways. For example, once a Tk-based audio-video
application becomes available, any existing Tk application can become a multi-media
application just by extending with scripts that send commands to the audio-video applica-
tion. The term “hypertools” reflects this ability to connect applications together in interest-
ing ways and to re-use them in ways not foreseen by their original designers.

DRAFT (3/11/93): Distribution Restricted

23.3 Application names 229

23.3

When designing Tk applications, | encourage you to focus on doing one or a few
things well; dort try to bundle everything in one program. Instead, providereifit func-
tions in diferent hypertools that can be controlled v&nd and re-used independently

Application names

23.4

In order to send to an application you have to know its name. Each application on the dis-
play has a unigue name, which it can choose in any way it pleases as long as it is unique.
In many cases the application name is just the name of the program that created the appli-
cation. For exampley sh will use the application nanwé sh by default; orif it is run-

ning under the control of a script file then it will use the name of the script file as its
application name. In programs like editors that are typically associated with a disk file, the
application name typically has two parts: the name of the application and the name of the
file or object on which it is operating. For example, if an editor named displaying a

file named k. h, then the applicatioa’name is likely to bentk t k. h”.

If an application requests a name that is already in use then Tk adds an extra number
to the end of the new name to keep it from conflicting with the existing name. For exam-
ple, if you start upv sh twice on the same display the first instance will have the name
wi sh and the second instance will have the namesh #2". Similarly, if you open a
second editor window on the same file it will end up with a namefiket'k. h #2".

Tk provides two commands that return information about the names of applications.
First, the command

w nfo nanme .
w sh #2

will return the name of the invoking application (this command is admittedly obscure;
implement t k appnane” before the book is published!!). Second, the command

wi nfo interps

wish {wish #2} {nmx tk.h}
will return a list whose elements are the names of all the applications defined on the dis-
play.

Security issues

Thesend command is potentially a major security loophole. Any application that uses
your display carsend scripts to any Tk application on that displagd the scripts can

use the full power ofdl to read and write your files or invoke subprocesses with the
authority of your account. Ultimately this security problem must be solved in the X dis-
play serversince even applications that donse Tk can be tricked into abusing your

DRAFT (3/11/93): Distribution Restricted

230

The Send Command

account by sticiently sophisticated applications on the same displayever without
Tk it is relatively dificult to create invasive applications; with Tk aw®hd it is trivial.

You can protect yourself fairly well if you employ a key-based protection scheme for
your display likexaut h instead of a host-based scheme ¥kest . Unfortunately
many people use thehost program for protection: it specifies a set of machine names to
the server and any process running on any of those machines can establish connections
with the serverAnyone with an account on any of the listed machines can connect to your
server send to your Tk applications, and misuse your account.

If you currently usechost for protection, you should learn abowut h and switch
to it as soon as possibkaut h generates an obscure authorization string and tells the
server not to allow an application to use the display unless it can produce the gping. T
cally the string is stored in a file that can only be read by a particulasoghbis restricts
use of the display to the one udérou want to allow other users to access your display
then you can give them a copy of your authorization file, or you can change the protection
on your authorization file so that it is group-readable. Of course, you should be aware that
in doing so you are ffctively giving these other users full use of your account.

DRAFT (3/11/93): Distribution Restricted

Chapter 24
Modal Interactions

24.1

Usually the user of a Tk application has complete flexibility to determine what to do next.
The application dérs a variety of panels and controls and the user selects between them.
However there are times whendtuseful to restrict the userrange of choices or force the
user to do things in a certain order; these are calteldl interactions. The best example
of a modal interaction is a dialog box: the application is carrying out some function
requested by the user (e.g. writing information to a file) when it discovers that it needs
additional input from the user (e.g. the name of the file to write). It displays a dialog box
and forces the user to respond to the dialog box (e.g. type in a file name). Once the user
responds, the application completes the operation and returns to its normal mode of opera-
tion where the user can do anything he or she pleases.

Tk provides two mechanisms for use in modal interactions. Firgyythb command
allows you to temporarily restrict the user so that he or she can only interact with certain
of the applicatiors windows (e.g. only the dialog box). Second,ttheai t command
allows you to suspend the evaluation of a script (e.g. saving a file) until a particular event
has occurred (e.g. the user responded to the dialog box), and then continue the script once
this has happened. These commands are summarizedlenZ@.1.

Grabs

Mouse events such as button presses and mouse motion are normally delivered to the win-
dow under the mouse cursbtowever it is possible for a window to claim ownership of

the mouse so that mouse events are only delivered to that window and its descendants in
the Tk window hierarchyThis is called @rab. When the mouse is over one of the win-

231

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

232

Modal Interactions

grab ?-gl obal ? wi ndow

grab current 2w ndow?

grab rel ease w ndow

grab set ?-gl obal ? wi ndow

grab status w ndow

Same agr ab set command described below

Returns the name of the current grab windowsandow's display or an
empty string if there is no grab for that displiyv ndowis omitted,
returns a list of all windows grabbed by this application for all displays.
Releases the grab @m ndow if there is one.

Sets a grab oni ndow, releasing any previous grabwinndow's display If
- gl obal is specified then the grab is global; otherwise it is local.

Returnsnone if no grab is currently set o ndow, | ocal if a local grab
is set, andgyl obal if a global grab is set.

tkwait variabl e var Nane
tkwait visibility w ndow

t kwai t wi ndow wi ndow

Waits until variablesrar Namre changes value, then returns.

Waits until the visibility state ofi ndow changes, then returns.

Waits untilwvi ndow s destroyed, then returns.

Table 24.1. A summary of thgr ab andt kwai t commands.

dows in the grab sub-tree, mouse events are delivered and processed just as if no grab
were in efect. When the mouse is outside the grab sub-tree, button presses and releases
and mouse motion events are delivered to the grab window instead of the window under
the mouse, and window entry and exit events are discarded. Thus a grab prevents the user
from interacting with windows outside the grab sub-tree.

Thegr ab command sets and releases grabs. For example, if you've created a dialog
box named dl g and you want to restrict interactions. tdl g and its subwindows, you
can invoke the command

grab set .dlg
Once the user has responded to the dialog box you can release the grab with the command
grab release .dlg

If the dialog box is destroyed after the user has responded to it thes tiereed to
invokegr ab rel ease: Tk releases the grab automatically when the grab window is
destroyed.

Tk provides two forms of grab, local and global. A local grédécts only the grab-
bing application: if the user moves the mouse into some other application on the display
then he or she can interact with the other application as usuakhbuld normally use
local grabs, and they are the default ingheb set command. A global grab takes over

DRAFT (3/11/93): Distribution Restricted

24.2 Keyboard handling during grabs 233

Note:

24.2

the entire display so that you cannot interact with any application except the one that set
the grab. ® request a global grab, specify thgd obal switch togr ab set as in the
following command:

grab set -global .dlg
Global grabs are rarely needed and they are tricky to use (if yget torrelease the grab
your display will become unusable). One place where they are used is for pull-down
menus.
Xwill not |et you set a global grab on a window unlessit isvisible. Section 24.3 describes

howtousethet kwai t vi si bi | i t y command towait for awindow to becomevisible.
Local grabs are not subject to the visibility restriction.

The most common way to use grabs is to set a grab on a top-level window so that only
a single panel or dialog box is active during the grab. How#\ismossible for the grab
sub-tree to contain additional top-level windows; when this happens then all of the panels
or dialogs corresponding to those top-level windows will be active during the grab.

Keyboard handling during grabs

24.3

Local grabs have nofeft on the way the keyboard is handled: keystrokes received any-
where in the application will be forwarded to the focus window as usual. Most likely you
will set the focus to a window in the grab sub-tree when you set the girsdowsg out-

side the grab sub-tree careceive any mouse events so they are unlikely to claim the
focus away from the grab sub-tree. Thus the grab is likely to havefd¢eafrestricting

the keyboard focus to the grab sub-tree; howspeer are free to move the focus anywhere
you wish. If you move the mouse to another application then the focus will move to that
other application just as if there had been no grab.

During global grabs Tk also sets a grab on the keyboard so that keyboard events go to
the grabbing application even if the mouse is over some other application. This means that
you cannot use the keyboard to interact with any other application. Once keyboard events
arrive at the grabbing application they are forwarded to the focus window in the usual
fashion.

Waiting: the tkwait command

The second aspect of a modal interaction is waitigigically you will want to suspend a
script during a modal interaction, then resume it when the interaction is complete. For
example, if you display a file selection dialog during a file write operation, you will prob-
ably want to wait for the user to respond to the dialog, then complete the file write using
the name supplied in the dialog interaction. v@ren you start up an application you

might wish to display an introductory panel that describes the application and keep this

DRAFT (3/11/93): Distribution Restricted

234

Modal Interactions

panel visible while the application initializes itself; before goirfgmtio the main initial-
ization you’ll want to be sure that the panel is on the screert. Kihai t command can
be used to wait in situations like these.
Tkwai t has three forms, each of which waits for fedént event to occuthe first

form is used to wait for a window to be destroyed, as in the following command:

tkwait wi ndow .dlg
This command will not return untildl g has been destroyedolY might invoke this com-
mand after creating a dialog box and setting a grab on it; the commartd-etom until
after the user has interacted with the dialog in a way that causes it to be destroyed. While
t kwai t is waiting the application responds to events so the user can interact with the
applications windows. In the dialog box example you should have set up bindings that
destroy the dialog once the usaresponse is complete (e.g. the user clicks oOKHw®ut-
ton). The bindings for the dialog box might also save additional information in variables
(such as the name of a file, or an identifier for the button that was pressed). This informa-
tion can be used ont&wai t returns.

The script below creates a panel with two buttons lab&lkeandCancel , waits for

the user to click on one of the buttons, and then deletes the panel:

t opl evel . panel

button . panel.ok -text OK -conmand {

set | abel K
destroy . panel

}

button . panel.cancel -text Cancel -command {
set | abel Cancel
destroy . panel

}

pack .panel.ok -side left

pack . panel.cancel -side right

grab set . panel

t kwai t wi ndow panel
When thet kwai t command returns the variablabel will contain the label of the but-
ton that was clicked upon.

The second form fdrkwai t waits for the visibility state of a window to change. For

example, the command

tkwait visibility .intro
will not return until the visibility state ofi nt r o has changed.ypically this command is
invoked just after a new window has been created, in which case itreturh until the
window has become visible on the scréBowai t vi si bi | ity can be used to wait
for a window to become visible before setting a global grab on it, or to make sure that an
introductory panel is on the screen before invoking a lengthy initialization script. Like all
forms oft kwai t ,t kwait vi si bility will respond to events while waiting.

DRAFT (3/11/93): Distribution Restricted

24.3 Waiting: the tkwait command 235

The third form oft kwai t provides a general mechanism for implementing other
forms of waiting. In this form, the command doésaturn until a given variable has been
modified. For example, the command

tkwait variable x

will not return until variablex has been modified. This formkwai t is typically used

in conjunction with event bindings that modify the variable. For example, the following
procedure useskwai t vari abl e to implement something analogous tonai t

wi ndow except that you can specify more than one window and it will return as soon as
any of the named windows has been deleted (it returns the name of the window that was

deleted):

proc waitWndows args {
gl obal dead
foreach w $args {

bi nd $w <Destroy> "set dead $w'

}
tkwait variabl e dead
return $dead

}

DRAFT (3/11/93): Distribution Restricted

236 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

Chapter 25
Oddsand Ends

25.1

This chapter describes five additional Tk commadds:t r oy, which deletes widgets;

af t er, which delays execution or schedules a script for executionlgtegt e, which

forces operations that are normally delayed, such as screen updates, to be done immedi-
ately;wi nf o, which provides a variety of information about windows, such as their
dimensions and children; ahd, which provides access to various internals of the Tk
toolkit. Table 25.1 summarizes these commands. This chapter also describes several glo-
bal variables that are read or written by Tk and may be useful to Tk applications.

Destroying windows

Thedest r oy command is used to delete windows. It takes any number of window
names as guments, for example:

destroy .dlgl .dlg2
This command will destroydl g1 and. dI g2, including all of their widget state and the
widget commands named after the windows. It also recursively destroys all of their chil-
dren. The commandiést r oy . ” will destroy all of the windows in the application;
when this happens most Tk applications (eigsh) will exit.

237

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

238 Odds and Ends

after ns
Delays forms milliseconds.
after ns arg ?arg arg ..?
Concatenates all tte g values (with spaces as separators) and arranges for
the resulting script to be executed aftermilliseconds have elapsed.
Returns without waiting for the script to be executed.

destroy w ndow 2w ndow wi ndow ...?
Deletes each of theindow s, plus all of the windows descended from them.
The corresponding widget commands (and all widget state) are also deleted.

tk colormodel wi ndow val ue?
Sets the color model fo ndow's screen to value, which must be either
color ormonochrome. If val ue isn't specified, returns the current colg
model forwi ndow's screen.

=

update “Zdletasks ?
Brings display up to date and processes all pending eveiaietdisks
is specified then no events are processed except those in the idle task gueue
(delayed updates).

winfo option ?arg arg ..?
Returns various pieces of information about windows, depending on
opt i on agument. See reference documentation for details.

Table 25.1. A summary of the commands discussed in this chapter

25.2 Time delays

Theafter command allows you to incorporate timing into your Tk applications. It has
two forms. If you invokefter — with a single agument, then the gument specifies a
delay in milliseconds, and the command delays for that number of milliseconds before
returning. For example,

after 500
will delay for 500 milliseconds before returning. If you specify additiorgi@ents, as in
the command

after 5000 {puts "Time’s up!"}
then the after command returns immediately without any delayever it concatenates
all of the additional luments (with spaces between them) and arranges for the resulting
script to be evaluated after the specified déelég script will be evaluated at global level
as an event hand|gust like the scripts for bindings. In the example above, a message will
be printed on standard output after five seconds. The script beloafteses to build a
general-purpose blinking utility:

DRAFT (3/11/93): Distribution Restricted

25.3 The update command 239

25.3

proc blink {w option valuel value2 interval} {
$w config $option $val uel
after $interval [list blink $w $option \
$val ue2 $val uel S$interval]

}
blink .b -bg red bl ack 500

Thebl i nk procedure takes fiveg@rments, which are the name of a widget, the name of

an option for that widget, two values for that option, and a blink interval in milliseconds.
The procedure arranges for the option to switch back and forth between the two values at
the given blink interval. It does this by immediately setting the option to the first value and
then arranging for itself to be invoked again at the end of the next interval with the two
option values reversed, so that option is set to the other value. The procedure reschedules
itself each time it is called, so it executes periodically fordldarnk runs “in back-

ground”: it always returns immediatethen gets reinvoked by Tktimer code after the

next interval expires.

The update command

Tk normally delays operations such as screen updates until the application is idle. For
example, if you invoke a widget command to change the text in a button, the button will
not redisplay itself immediatelinstead, it will schedule the redisplay to be done later and
return immediatelyWhen the application becomes idle (i.e. the current event handler has
completed, plus all events have been processed, so that the application has nothing to do
but wait for the next event) then it carries out all the delayed operations. Tk delays redis-
plays because it saves work in situations where a script changes the same window several
different times: with delayed redisplay the window only gets redrawn once at the end. Tk
also delays many other operations, such as geometry recalculations and window creation.
For the most part the delays are invisible. Tk rarely does very much work at a time, so
it becomes idle again very quickly and updates the screen before the user can perceive any
delay However there are times when the delays are inconvenient. For example, if a script
is going to execute for a long time then you may wish to bring the screen up to date at cer-
tain times during the execution of the script. Tipelat e command allows you to do this.
If you invoke the command

updat e idl et asks

then all of the delayed operations like redisplays will be carried out immediately; the com-
mand will not return until they have finished.
The following procedure usegpdat e to flash a widget synchronously:

proc flash {w option valuel value2 interval count} {
for {set i 0} {$i < $count} {incr i} {
$w config $option $val uel

DRAFT (3/11/93): Distribution Restricted

240 Odds and Ends

updat e idl et asks

after $interval

$w config $option $val ue2

updat e idl et asks

after $interval

}
}

This procedure is similar fol i nk except that it runs in foreground instead of back-
ground: it flashes the option a given number of times and daeturn until the flashing
is complete. Tk never becomes idle during the execution of this procedureupal ttee
commands are needed to force the widget to be redisplaydgmbuitheupdat e com-
mands no changes would appear on the screen until the script completed, at which point
the widgets option would change toal ue2.

If you invokeupdat e without thei dl et asks agument, then all pending events
will be processed too.0d might do this in the middle of a long calculation to allow the
application to respond to user interactions (e.g. the user might invoke a “cancel” button to
abort the calculation).

25.4 Information about windows
Thewi nf o command provides information about windows. It has more than #¢0edfif
forms for retrieving diierent kinds of information. For example,
wi nfo exists .x
returns & or 1 value to indicate whether there exists a window
wi nfo children . nenu
returns a list whose elements are all of the childremeiu,
wi nfo screennmmhei ght . di al og
returns the height ofdi al og’s screen in millimeters, and
wi nfo class .x
returns the class of widgek (e.g.but t on, t ext , etc.). Refer to the Tk reference docu-
mentation for details on all of the options providedibyf o.
25.5 The tk command: color models

Thet k command provides access to various aspects sfiffi€rnal state. At present only
one aspect is accessible: tofor model. At any given time, Tk treats each screen as being
either a color or monochrome screen; this is the s@eefor model. When creating wid-
gets, Tk will use dferent defaults for configuration options depending on the color model

DRAFT (3/11/93): Distribution Restricted

25.6 Variables managed by Tk 241

25.6

of the screen. If you specify a color other than black or white for a screen whose color
model is monochrome, then Tk will round the color to either black or white.

By default Tk picks a color model for a screen based on the number of bits per pixel
for that screen: if the screen has only a few bits per pixel (currently four or fewer) then Tk
uses a monochrome color model; if the screen has many bits per pixel then Tk treats the
screen as colol¥ou can invoke thek command to change Ttolor model from the
default. For example, the following command sets the color model for the main wéndow’
screen to monochrome:

tk col ornodel . nonochrone

If the color model for a screen is color and Tk finds itself unable to allocate a color for
a window on that screen (e.g. because the colormap is full) then Tk generates an error that
is processed using the standakder r or mechanism described in Section 19.7. Tk then
changes the color model to monochrome and retries the allocation so the application can
continue in monochrome mode. If the application finds a way to free up more colors, it can
reset the color model back to color again.

Variables managed by Tk

Several global variables are significant to Tk, either because it sets them or because it
reads them and adjusts its behavior accordinvgly may find the following variables use-
ful:

tk_version Set by Tk to its current version numbldas a form like
3.2, where 3 is the major version number and 2 is a minor
version numberChanges in the major version number
imply incompatible changes in Tk.

tk_library Set by Tk to hold the path name of the directory containing
a library of standard Tk scripts and demonstrations. This
variable is set from th€K_LI BRARY environment vari-
able, if it exists, or from a compiled-in default otherwise.

tk_strictMotif Ifsettol by the application, then Tk goes out of its way to
observe strict Motif compliance. Otherwise Tk deviates
slightly from Motif (e.g. by highlighting active elements
when the mouse cursor passes over them).

In addition to these variables, which may be useful to the application, Tk also uses the

associative arralyk _pri v to store information for its private use. Applications should
not use or modify any of the valuestik_pri v.

DRAFT (3/11/93): Distribution Restricted

242 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

Chapter 26
Examples

26.1

This chapter presents two relatively complete examples that illustrate many of the features
of Tk. The first example is a procedure that generates dialog boxes, waits for the user to
respond, and returns the useiesponse. The second example is an application that allows
you to “remote-control” any other Tk application on the display: it connects itself to that
application so that you can type commands to the other application and see the results.

A procedure that generates dialog boxes

The first example is acTprocedure namedii al og that creates dialog boxes like those
shown in Figure 26.1. Each dialog contains a text message at the top plus an optional bit-
map to the left of the text. At the bottom of the dialog box is a row of any humber of but-
tons. One of the buttons may be specified as the default button, in which case it is
displayed in a sunken frani8i. al og creates a dialog box of this form, then waits for the
user to respond by clicking on a button. Once the user has respdndéadg destroys
the dialog box and returns the index of the button that was invoked. If the user types a
return and a default button was specified, then the index of the default button is returned.
Di al og sets a grab so that the user must respond to the dialog box before interacting with
the application in any other way

Figures 26.2 and 26.3 show the Tode fordi al og. It takes six or more guments.
The first agumentw, gives the name to use for the diatogp-level windowThe second
amgumentti t| e, gives a title for the window manager to display in the dialdgcora-
tive frame. The third gumentt ext , gives a message to display on the right side of the
dialog. The fourth gjumentbi t map, gives the name of a bitmap to display on the left

243

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

244 Examples

= ' File Modified |«]

File "tcl.h” has been modified
since the last time it was saved.
Do you want to save it before
exiting the application?

A=

| ‘ Save File I Discand Changes I Return To Editor l A

dialog .d {File Modif ied} {File "tkInt.h" has been modif ied since the last \
time it was saved. Do you want to save it before exiting the application?} \
warning 0 {Save File} {Discard Changes} {Return To Editor}

— Mot Responding e

The file server isn’t responding
right now; TI'll keep trying.

0|<|

dialog .d {Not Responding} {The f ile server isn’t responding right
now; I'll keep trying.} {} -1 OK

Figure 26.1. Two examples of dialog boxes created bydladog procedure. Underneath eact
dialog box is the command that created it.

side of the dialog; if it is specified as an empty string then no bitmap is displayed.The fifth
argumentdefault , gives the index of a default button, or -1 if there is to be no default
button. The sixth and additionalgaiments contain the strings to display in the buttons.
The code fodialog divides into five major parts, each headed by a comment. The
first part of the procedure creates the diadgp-level windowlt sets up information for
the window managesuch as the title for the windoesMframe and the text to display in the
dialog’s icon. Then it creates two frames, one for the bitmap and message at the top of the
dialog, and the other for the row of buttons at the bottom.
The second part afialog creates a message widget to hold the dialtext string
and a label widget to hold its bitmap, if afiyie widgets are arranged on the right and left
sides of the top frame, respectiyalging the packer

DRAFT (3/11/93): Distribution Restricted

26.1 A procedure that generates dialog boxes 245

proc dialog {wtitle text bitmap default args} {
gl obal button

1. Create the top-level wi ndow and divide it into top
and bottom parts.

topl evel $w -class Dial og

wntitle $w $title

wm i connarme $w Di al og

frame $w.top -relief raised -bd 1
pack $w.top -side top -fill both
frame $w. bot -relief raised -bd 1
pack $w. bot -side bottom-fill both

2. Fill the top part with the bitmap and nessage.

message $w.top.meg -width 3i -text $text \
-font -Adobe- Ti mes- Medi um R- Nor mal - *- 180- *
pack $w.top.nsg -side right -expand 1 -fill both \
-padx 5m -pady 5m
if {$bitmap !'= ""} {
| abel $w. top. bitmap -bitmap $bitnmap
pack $w.top.bitmap -side left -padx 5m -pady 5m
}

3. Create a row of buttons at the bottom of the dial og.

set i O
foreach but $args {
button $w bot.button$i -text $but -command \
"set button $i"
if {$i == $default} {
frame $w. bot.default -relief sunken -bd 1
pack $w. bot.default -side left -expand 1\
-padx 5m -pady 2m
pack $w. bot.button$i -in $w bot.default -side left

-padx 3m -pady 3m -ipadx 2m-ipady 1m
} else {
pack $w. bot.button$i -side left -expand 1\
-padx 5m -pady 5m -ipadx 2m -ipady 1m
}

incr i

Figure 26.2. A Tcl procedure that generates dialog boxes with a text message, optional bitmap, and
any number of buttons. Continued in Figure 26.3.

DRAFT (3/11/93): Distribution Restricted

246

Examples

4. Set up a binding for <Return>, if there’s a default,
set a grab, and claim the focus too.

if {$default > 0} {
bind $w <Return> "$w.bot.button$default lash; \
set button $default”

set oldFocus [focus]
grab $w
focus $w

5. Wait for the user to respond, then restore the focus
and return the index of the selected button.

tkwait variable button
destroy $w

focus $oldFocus
return $button

Figure 26.3. Procedure to generate dialog boxes, cont'd.

Note:

The third part of the procedure creates the row of buttons. 8igse was used as
the name of the lastgument tadialog , the procedure can take any number gtiar
ments greater than or equal to fiaegs will be a list whose elements are all the addi-
tional aguments aftedefault . For each of thesegumentsdialog creates a button
that displays the gument value as its text. The default button, if, @packed in a spe-
cial sunken ring%w.bot.default). The buttons are packed with Hexpand option
so that they spread themselves evenly across the width of the dialog box; if there is only a
single button then it will be centered. Each button is configured so that when the user
clicks on it the global variableutton will be set to the index of that button.

It's important that the value of theommand option is specified in quotes, not curly
braces, so tha$i (the buttors index) is substituted into the command immedidfehe
value wee surounded by braces, then the valu&obfwouldnt be substituted until the
command is actually executed; this would use the value of global variahde the
variablei from thedialog procedue.

The fourth part oflialog sets up a binding so that typing a return to the dialog box
will flash the default button and set thgtton variable just as if the button had been
invoked. It also sets the input focus to the dialog box and sets a local grab on the dialog
box to give it control over both the keyboard and the mouse.

The last part of the procedure waits for the user to interact with the dialog. It does this
by waiting for thebutton variable to change value, which will happen when the user

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 247

. |
= Tk Remote Controller 1]
Eile I
mt: set x 44 |
44

rmt: set x

44

widget: set x

can’'t read "x": no such variable
widget: winfo children .

JMEg . men

rolodex: winfo children

.menu | buttons | frame

rolodex: |

.

Figure 26.4. Ther nt application allows users to type interactively to any Tk application on
display It contains a menu for selecting an application plus a text widget for typing commar
displaying results. In this example the user has issued commands to flereatipplications:
first ther mt application itself, then an application namediget , and finally one named

r ol odex (the prompt on each command line indicates the name of the application that ex:
the command).

clicks on a button in the dialog box or types a return. Whehkk@i t command

returns, théout t on variable contains the index of the selected bufoal og then
destroys the dialog box (which also releases its grab), restores the input focus to its old
window, and returns.

26.2 A remote-control application

The second example is an application calletd, which allows you to typecl commands
interactively to any Tk application on the displ&igure 26.4 shows whatrt looks like
on the screen. It contains a menu that can be used to select an application plus a text wid-
get and scrollba’At any given time nt is “connected” to one application; lines that you
type in the text widget are forwarded to the current application ggind and the results
are displayed in the text widg&nt displays the name of the current application in the
prompt at the beginning of each command lireu ¥an change the current application by
selecting an entry in the menu, in which case the prompt will change to display the new
applications name. ¥u can also type commands to thg application itself by selecting
rm as the current application. Whent starts up it connects to itself.

The script that createsrt is shown in Figures 26.5-26.9. The script is designed to be
placed into a file and executed direclife first line of the script,

DRAFT (3/11/93): Distribution Restricted

248

Examples

#!/usr/local/bin/wish -f

1. Create basic application structure: nmenu bar on top of
text wi dget, scrollbar on right.

frame .menu -relief raised -bd 2

pack .nenu -side top -fill x

scrollbar .s -relief flat -conmand ".t yview

pack .s -side right -fill y

text .t -relief raised -bd 2 -yscrollcomand ".s set" \
-setgrid true

.t tag configure bold -font *-Courier-Bol d-R-Normal -*-120-*

pack .t -side left -fill both -expand 1

wnmtitle . "Tk Renpte Controller"

wm i connanme . "Tk Renote”

wnmnsize . 11

2. Create nenu button and nenus.

nmenubutton .menu.file -text "File" -underline O -nmenu
.menu.file.m
menu .nenu.file.m
.menu.file.madd cascade -|abel "Select Application" \
-underline O -accelerator => -nmenu .nenu.file. mapps
.menu.file.madd conmand -l abel "Quit" -underline 0\
-comrand "destroy ."
menu . nenu.file. mapps -postcomrand fill AppsMenu
pack .nenu.file -side left
tk_nmenuBar .nmenu .nenu.file
proc fill AppsMenu {} {
catch {.nmenu.file. mapps delete 0 | ast}
foreach i [Isort [winfo interps]] {
.menu. file. mapps add conmand -1l abel $i \
-command [list newApp $i]

Figure 26.5. A script that generateart , an application for remotely controlloing other Tk
applications. This figure contains basic window set-up code. The script continues in Figure:
26.9

#!/usr/local/bin/wsh -f

is similar to the first line of a shell script: if you invoke the script file directly from a shell
then the operating system will invoke sh instead, passing it twoguments: f and the
name of the script fila sh will then execute the contents of the file axbstript.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 249

3. Create bindings for text widget to allow commands to

be entered and information to be selected. New characters
can only be added at the end of the text (can't ever move

insertion point).

bind .t <1>{
set tk_priv(selectMode) char
.t mark set anchor @%x,%y
if {[lindex [%W conf ig -state] 4] == "normal"} {focus %W}

bind .t <Double-1> {
set tk_priv(selectMode) word
tk_textSelectTo .t @%x,%y

bind .t <Triple-1> {
set tk_priv(selectMode) line
tk_textSelectTo .t @%X,%y

bind .t <Return> {.t insert insert \n; invoke}
bind .t <BackSpace> backspace
bind .t <Control-h> backspace
bind .t <Delete> backspace
bind .t <Control-v> {
.tinsert insert [selection get]
.t yview -pickplace insert
if [string match *.0 [.t index insert]] {
invoke
}

Figure 26.6. Bindings for themt application. These are modified versions of the default Tk
bindings, so they use existing Tk facilities such as the vatiabeiv =~ and the procedure
tk_textSelectTo

Thermt script contains about 100 lines afl Tode in all, which divide into seven
major parts. It makes extensive use of the facilities of text widgets, including marks and
tags; you may wish to review the reference documentation for texts as you read through
the code formt .

The first part of themt script sets up the overall window structure, consisting of a
menu bara text widget, and a scrollbdtralso passes information to the window manager
such as titles to appear in the windswecorative frame and icon. The command*
minsize . 11 ” enables interactive resizing by the user as described in Section 22.1.
Since the text widget has been packed withé¢xpand option set to 1, it will receive
any extra space; since it is last in the packing pideill also shrink if the user resizes

DRAFT (3/11/93): Distribution Restricted

250

Examples

4. Procedure to backspace over one character, as long as
the character isn't part of the prompt.

proc backspace {} {
if {{.t index promptEnd] !=[.t index {insert - 1 char}]}

.t delete {insert - 1 char} insert
.t yview -pickplace insert

Figure 26.7. Procedure that implements backspacingriutr .

Note:

the application to a smaller size than it initially requested.-3¢étgrid ~ option for the
text widget enables gridding as described in Section 22.2: interactive resizing will always
leave the text widget with dimensions that are an integral number of characters.

The command

.ttag conf igure bold -font \
-Courier-Bold-R-Normal--120-*

creates dgagnamedbold for the text widget and associates a bold font with that tag. The
script will apply this tag to the characters in the prompts so that they appear in boldface,
whereas the commands and results appear in a normal font.

The second part of the script fills in the menu with two entries. The top entry displays
a cascaded submenu with the names of all applications, and the bottom entry is a com-
mand entry that causemt to exit (it executes the scripiéstroy . ", which destroys
all of the applicatiors windows; whenvish discovers that it no longer has any windows
left then it exits). The cascaded submenu is namedu.f ile.m.apps ;its
- postcommand option causes the scrigtitAppsMenu " to be executed each time
the submenu is posted on the scrédiAppsMenu is a Tl procedure defined at the
bottom of Figure 26.5; it deletes any existing entries in the submenu, extracts the names of
all applications on the display withwinfo interps ", and creates one entry in the
menu for each application name. When one of these entries is invoked by thieeuser-
cedurenewApp will be invoked with the applicatios’hame as gument.
The command[tist newApp $i] " creates a @l list with two elements. As
described in Section XXX, when a list is executed as a command each element of the list
becomes one woifor the command. Thus this form guarantees that newApp will be

invoked with a single gument consisting of the value$of at the time the menu entry is
created, even Bi contains spaces or other special characters.

The third part of themt script, shown in Figure 26.6, creates event bindings for the
text widget. Tk defines several default bindings for texts, which handle mouse clicks,

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 251

5. Procedure that's invoked when return is typed: if

there’s not yet a complete command (e.g. braces are open)
then do nothing. Otherwise, execute command (locally or
remotely), output the result or error message, and issue

a new prompt.

proc invoke {} {
global app
set cmd [.t get {promptEnd + 1 char} insert]
if [info complete $cmd] {
if {$app == [winfo name .1} {
catch [list uplevel #0 $cmd] msg
}else {
catch [list send $app $cmd] msg

}
if {$msg ="} {

.tinsert insert $msg\n
}

prompt
}
.t yview -pickplace insert

}

proc prompt {} {
global app
.tinsert insert "$app: "
.t mark set promptEnd {insert - 1 char}
.t tag add bold {insert linestart} promptEnd

Figure 26.8. Procedures that execute commands and output prompistfor

character insertion, and common editing keystrokes such as backspace. Haate'ger

text widget has special behavior that is inconsistent with the default bindings, so the code
in Figure 26.6 overrides many of the defaultsu™ont need to understand the details of

the bindings; they have been copied from the defaults & Stiirtup script and modified

so that (a) the user camhove the insertion cursor (it always has to be at the end of the
text), (b) the procedufgackspace is invoked instead of Tk’normal text backspace
procedure, and (c) the procedimeoke is called whenever the user types a return or
copies in text that ends with a newline.

The fourth part of themt script is a procedure callé&éckspace . It implements
backspacing in a way that disallows backspacing over the prompt (see Figure 26.7).
Backspace checks to see if the character just before the insertion cursor is the last char-
acter of the most recent prompt. If not, then it deletes the character; if so, then it does noth-

DRAFT (3/11/93): Distribution Restricted

252

Examples

6. Procedure to select a new application. Al so changes
the pronpt on the current conmand line to reflect the new
name.

proc newApp appNane {
gl obal app
set app $appNane
.t delete {pronptEnd |inestart} pronptEnd
.t insert pronptEnd "$appNane:"
.t tag add bold {pronptEnd |linestart} pronptEnd

}

7. Mscellaneous initialization.

set app [wi nfo name .]

pr onpt
focus .t

Figure 26.9. Code to select a new application for rmt, plus miscellaneous initialization code

ing, so that the prompt never gets erasedkelep track of the most recent promptt
sets anark namedpr onpt End at the position of the last character in the most recent
prompt (see thpr onpt procedure below for the code that getenpt End).

The fifth part of the nt script handles command invocation; it consists of two proce-
dures, nvoke andpr onpt (see Figure 26.8). Thenvoke procedure is called when-
ever a newline character has been added to the text widget, either because the user typed a
return or because the selection was copied into the widget and it ended with a newline.
Invoke extracts the command from the text widget (everything from the end of the prompt
to the current insertion point) and then invoke$ o conpl et e to make sure that the
command is complete. If the command contains unmatched braces or unmatched quotes
theni nvoke returns without executing the command so the user can enter the rest of the
command; after each return is typgeav oke will check again, and once the command is
complete it will be invoked. The command is invoked by executing it locally or sending it
to the appropriate application. If the command returns a non-empty string (either as a nor-
mal reult or as an error message) then the string is added to the end of the text widget.
Finally, i nvoke outputs a new prompt and scrolls the view in the text to keep the inser-
tion cursor visible.

Thepr onpt procedure is responsible for outputting prompts. It just adds characters
to the text widget, sets tipg onpt End mark to the last character in the prompt, and then
applies thébol d tag to all the characters in the prompt so that they'll appear in a bold
font.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 253

The sixth part of thent script consists of theewApp procedure in Figure 26.9.
NewApp is invoked to change the current application. It sets the global vasipple
which identifies the current application, then overwrites the most recent prompt to display

the new applicatios’name.
The last part of mt consists of miscellaneous initialization (see Figure 26.9). It con-

nects the application to itself initiaJlgutputs the initial prompt, and sets the input focus to
the text window

DRAFT (3/11/93): Distribution Restricted

254 Examples

DRAFT (3/11/93): Distribution Restricted

