
Tcl and the Tk Toolkit

John K. Ousterhout
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal
use only. Any other form of duplication or reproduction requires prior written permis-
sion of the author or publisher. This statement must be easily visible on the first page
of any reproduced copies. The publisher does not offer warranties in regard to this
draft.

Note to readers:
This manuscript is a partial draft of a book to be published in early 1994 by Addison-
Wesley (ISBN 0-201-63337-X). Addison-Wesley has given me permission to make
drafts of the book available to the Tcl community to help meet the need for introduc-
tory documentation on Tcl and Tk until the book becomes available. Please observe
the restrictions set forth in the copyright notice above: you’re welcome to make a
copy for yourself or a friend but any sort of large-scale reproduction or reproduction
for profit requires advance permission from Addison-Wesley.

I would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atouster@cs.berkeley.edu. I’m particularly interested
in hearing about things that you found difficult to learn or that weren’t adequately
explained in this document, but I’m also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

2

DRAFT (8/12/93): Distribution Restricted

1

DRAFT (8/12/93): Distribution Restricted

Chapter 1 Introduction 1
1.1 Introduction 1

1.2 Organization of the book 3

1.3 Notation 4

Chapter 2 An Overview of Tcl and Tk 5
2.1 Getting started 5

2.2 Hello world with Tk 7

2.3 Script files 9

2.4 Variables and substitutions10

2.5 Control structures 11

2.6 Event bindings 13

2.7 Subprocesses15

2.8 Additional features of Tcl and Tk 18

2.9 Extensions and applications18
2.9.1 Expect 19
2.9.2 Extended Tcl 19
2.9.3 XF 20
2.9.4 Distributed programming 20
2.9.5 Ak 22

Chapter 3 Tcl Language Syntax 25
3.1 Scripts, commands, and words25

3.2 Evaluating a command26

3.3 Variable substitution 28

3.4 Command substitution29

3.5 Backslash substitution30

3.6 Quoting with double-quotes30

3.7 Quoting with braces 32

3.8 Comments 33

3.9 Normal and exceptional returns33

3.10 More on substitutions 34

2

DRAFT (8/12/93): Distribution Restricted

Chapter 4 Variables 37
4.1 Simple variables and the set command 37

4.2 Arrays 38

4.3 Variable substitution 39

4.4 Removing variables: unset 40

4.5 Multi-dimensional arrays 41

4.6 The incr and append commands 41

4.7 Preview of other variable facilities 42

Chapter 5 Expressions 43
5.1 Numeric operands 43

5.2 Operators and precedence 44
5.2.1 Arithmetic operators 44
5.2.2 Relational operators 46
5.2.3 Logical operators 46
5.2.4 Bitwise operators 46
5.2.5 Choice operator 46

5.3 Math functions 47

5.4 Substitutions 47

5.5 String manipulation 49

5.6 Types and conversions 49

5.7 Precision 50

Chapter 6 Lists 51
6.1 Basic list structure and the lindex command 51

6.2 Creating lists: concat, list, and llength 53

6.3 Modifying lists: linsert, lreplace, lrange, and lappend 54

6.4 Searching lists: lsearch 56

6.5 Sorting lists: lsort 56

6.6 Converting between strings and lists: split and join 57

6.7 Lists and commands 58

3

DRAFT (8/12/93): Distribution Restricted

Chapter 7 Control Flow 61
7.1 The if command 61

7.2 Looping commands: while, for, and foreach 63

7.3 Loop control: break and continue65

7.4 The switch command 65

7.5 Eval 67

7.6 Executing from files: source68

Chapter 8 Procedures 69
8.1 Procedure basics: proc and return69

8.2 Local and global variables71

8.3 Defaults and variable numbers of arguments 72

8.4 Call by reference: upvar73

8.5 Creating new control structures: uplevel74

Chapter 9 Errors and Exceptions77
9.1 What happens after an error?77

9.2 Generating errors from Tcl scripts 79

9.3 Trapping errors with catch80

9.4 Exceptions in general81

Chapter 10 String Manipulation 85
10.1 Glob-style pattern matching85

10.2 Pattern matching with regular expressions88

10.3 Using regular expressions for substitutions90

10.4 Generating strings with format91

10.5 Parsing strings with scan93

10.6 Extracting characters: string index and string range94

10.7 Searching and comparison94

10.8 Length, case conversion, and trimming95

4

DRAFT (8/12/93): Distribution Restricted

Chapter 11 Accessing Files 97
11.1 File names 97

11.2 Basic file I/O 99

11.3 Output buffering 101

11.4 Random access to files101

11.5 The current working directory102

11.6 Manipulating file names: glob and file102

11.7 File information commands105

11.8 Errors in system calls107

Chapter 12 Processes 109
12.1 Invoking subprocesses with exec109

12.2 I/O to and from a command pipeline112

12.3 Process ids 113

12.4 Environment variables 113

12.5 Terminating the Tcl process with exit 113

Chapter 13 Managing Tcl Internals 115
13.1 Querying the elements of an array115

13.2 The info command 117
13.2.1 Information about variables 117
13.2.2 Information about procedures 120
13.2.3 Information about commands 121
13.2.4 Tclversion and library 122

13.3 Timing command execution122

13.4 Tracing operations on variables123

13.5 Renaming and deleting commands125

13.6 Unknown commands 126

13.7 Auto-loading 128

Chapter 14 History 131
14.1 The history list 131

5

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.3 Re-executing commands from the history list 133

14.4 Shortcuts implemented by unknown 134

14.5 Current event number: history nextid 134

6

DRAFT (8/12/93): Distribution Restricted

1

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 1
Introduction

1.1 Introduction

This book is about two packages called Tcl and Tk. Together they provide a programming
system for developing and using graphical user interface (GUI) applications. Tcl stands
for “tool command language” and is pronounced “tickle”; is a simple scripting language
for controlling and extending applications. It provides generic programming facilities that
are useful for a variety of applications, such as variables and loops and procedures. Fur-
thermore, Tcl is embeddable: its interpreter is implemented as a library of C procedures
that can easily be incorporated into applications, and each application can extend the core
Tcl features with additional commands specific to that application.

One of the most useful extensions to Tcl is Tk. It is a toolkit for the X Window Sys-
tem, and its name is pronounced “tee-kay”. Tk extends the core Tcl facilities with addi-
tional commands for building user interfaces, so that you can construct Motif user
interfaces by writing Tcl scripts instead of C code. Like Tcl, Tk is implemented as a library
of C procedures so it too can be used in many different applications. Individual applica-
tions can also extend the base Tk features with new user-interface widgets and geometry
managers written in C.

Together, Tcl and Tk provide four benefits to application developers and users. First,
Tcl makes it easy for any application to have a powerful scripting language. All that an
application needs to do is to implement a few new Tcl commands that provide the basic
features of that application. Then the application can be linked with the Tcl interpreter to
produce a full-function scripting language that includes both the commands provided by
Tcl (called theTcl core) and those implemented by the application (see Figure 1.1).

FIGURE 1

TABLE 1

2 Introduction

DRAFT (8/12/93): Distribution Restricted

For example, an application for reading electronic bulletin boards might contain C
code that implements one Tcl command to query a bulletin board for new messages and
another Tcl command to retrieve a given message. Once these commands exist, Tcl scripts
can be written to cycle through the new messages from all the bulletin boards and display
them one at a time, or keep a record in disk files of which messages have been read and
which haven’t, or search one or more bulletin boards for messages on a particular topic.
The bulletin board application would not have to implement any of these additional func-
tions in C; they could all be written as Tcl scripts, and users of the application could write
additional Tcl scripts to add more functions to the application.

The second benefit of Tcl and Tk is rapid development. For example, many interest-
ing windowing applications can be written entirely as Tcl scripts with no C code at all,
using a windowing shell calledwish. This allows you to program at a much higher level
than you would in C or C++, and many of the details that C programmers must address are
hidden from you. Compared to toolkits where you program entirely in C, such as Xt/
Motif, there is much less to learn in order to use Tcl and Tk and much less code to write.
New Tcl/Tk users can often create interesting user interfaces after just a few hours of
learning, and many people have reported ten-fold reductions in code size and development
time when they switched from other toolkits to Tcl and Tk.

Another reason for rapid development with Tcl and Tk is that Tcl is an interpreted lan-
guage. When you use a Tcl application such aswish you can generate and execute new
scripts on-the-fly without recompiling or restarting the application. This allows you to test
out new ideas and fix bugs very rapidly. Since Tcl is interpreted it executes more slowly
than compiled C code, of course, but modern workstations are surprisingly fast. For exam-
ple, you can execute scripts with hundreds or even thousands of Tcl commands on each
movement of the mouse with no perceptible delay. In the rare cases where performance
becomes an issue, you can re-implement the most performance-critical parts of your Tcl
scripts in C.

Tcl
Interpreter

Built-in Commands

Application
Data Structures

Application Commands

Figure 1.1. To create a new application based on Tcl, an application developer designs new C data
structures specific to that application and writes C code to implement a few new Tcl commands. The
Tcl library provides everything else that is needed to produce a fully programmable command
language. The application can then be modified and extended by writing Tcl scripts.

Tcl Library Application

1.2 Organization of the book 3

DRAFT (8/12/93): Distribution Restricted

The third benefit of Tcl is that it makes an excellent “glue language”. Because it is
embeddable, it can be used for many different purposes in many different programs. Once
this happens, it becomes possible to write Tcl scripts that combine the features of all the
programs. For example, any windowing application based on Tk can issue a Tcl script to
any other Tk application. This feature makes multi-media effects much more accessible:
once audio and video applications have been built with Tk (and there exist several
already), any Tk application can issue “record” and “play” commands to them. In addi-
tion, spreadsheets can update themselves from database applications, user-interface edi-
tors can modify the appearance and behavior of live applications as they run, and so on.
Tcl provides thelingua franca that allows application to work together.

The fourth benefit of Tcl is user convenience. Once a user learns Tcl and Tk, he or she
can write scripts for any Tcl and Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more users to
personalize and enhance their applications.

1.2 Organization of the book

Chapter 2 uses several simple scripts to provide a quick overview of the most important
features of Tcl and Tk. It is intended to give you the flavor of the systems and convince
you that they are useful without explaining anything in detail. The remainder of the book
goes through everything again in a more comprehensive fashion. It is divided into four
parts:

• Part I introduces the Tcl scripting language. After reading this section you will be able
to write scripts for Tcl applications.

• Part II describes the additional Tcl commands provided by Tk, which allow you to cre-
ate user-interface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you’ll be able to create new windowing applica-
tion aswish scripts and write scripts to enhance existing Tk applications.

• Part III discusses the C procedures in the Tcl library and how to use them to create new
Tcl commands. After reading this section you’ll be able to write new Tcl packages and
applications in C.

• Part IV describes Tk’s library procedures. After reading this section you’ll be able to
create new widgets and geometry managers in C.

Each of these major parts contains about ten short chapters. Each chapter is intended to be
a self-contained description of a piece of the system, and you need not necessarily read the
chapters in order. I recommend that you start by reading through Chapters 3-9 quickly,
then skip to Chapters XXX-YYY, then read other chapters as you need them.

Not every feature of Tcl and Tk is covered here, and the explanations are organized to
provide a smooth introduction rather than a terse reference source. A separate set of refer-

4 Introduction

DRAFT (8/12/93): Distribution Restricted

ence manual entries is available with the Tcl and Tk distributions. These are much more
terse but they cover absolutely every feature of both systems.

This book assumes that you are familiar with the C programming language as defined
by the ANSI C standard, and that you have some experience with UNIX and X11. In order
to understand Part IV you will need to understand many of the features provided by the
Xlib interface, such as graphics contexts and window attributes; however, these details are
not necessary except in Part IV. You need not know anything about either Tcl or Tk before
reading this book; both of them will be introduced from scratch.

1.3 Notation

Throughout the book I use aCourier font for anything that might be typed to a com-
puter, such as variable names, procedure and command names, Tcl scripts, and C code.
The examples of Tcl scripts use notation like the following:

set a 44

⇒ 44

Tcl commands such as “set a 44” is the example appear in Courier and their results,
such as “44” in the example, appear in Courier oblique. The⇒ symbol before the result
indicates that this is a normal return value. If an error occurs in a Tcl command then the
error message appears in Courier oblique, preceded by a∅ symbol to indicate that this is
an error rather than a normal return:

set a 44 55

∅ wrong # args: should be "set varName ?newValue?"

When describing the syntax of Tcl commands, Courier oblique is used for formal
argument names. If an argument or group of arguments is enclosed in question marks it
means that the arguments are optional. For example, the syntax of theset command is as
follows:

set varName ?newValue?
This means that the wordset would be entered verbatim to invoke the command, while
varName andnewValue are the names ofset’s arguments; when invoking the com-
mand you would type a variable name instead ofvarName and a new value for the vari-
able instead ofnewValue. ThenewValue argument is optional.

5

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 2
An Overview of Tcl and Tk

This chapter introduces Tcl and Tk with a series of scripts that illustrate the main features
of the systems. Although you should be able to start writing simple scripts after reading
this chapter, the explanations here are not intended to be complete. All of the information
in this chapter will be revisited in more detail in later chapters, and several important
aspects of the systems, such as their C interfaces, are not discussed at all in this chapter.
The purpose of this chapter is to show you the overall structure of Tcl and Tk and the
kinds of things they can do, so that when individual features are discussed in detail you’ll
be able to see why they are useful.

2.1 Getting started

In order to invoke Tcl scripts you must run a Tcl application. If Tcl is installed on your sys-
tem then there should exist a simple Tcl shell application calledtclsh, which you can
use to try out some of the examples in this chapter (if Tcl has not been installed on your
system then refer to Appendix A for information on how to obtain and install it). Type the
command

tclsh

to your shell to invoketclsh; tclsh will start up in interactive mode, reading Tcl com-
mands from its standard input and passing them to the Tcl interpreter for evaluation. For
starters, type the following command totclsh:

expr 2 + 2

Tclsh will print the result “4” and prompt you for another command.

FIGURE 2

TABLE 2

6 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

This example illustrates several features of Tcl. First, Tcl commands are similar in
form to shell commands. Each command consists of one or morewords separated by
spaces or tabs. In the example there are four words:expr, 2, +, and2. The first word of
each command is its name: the name selects a C procedure in the application that will
carry out the function of the command. The other words arearguments that are passed to
the C procedure.Expr is one of the core commands built into the Tcl interpreter, so it
exists in every Tcl application. It concatenates its arguments into a single string and evalu-
ates the string as an arithmetic expression.

Each Tcl command returns a result string. For theexpr command the result is the
value of the expression. Results are always returned as strings, soexpr converts its
numerical result back to a string in order to return it. If a command has no meaningful
result then it returns an empty string.

From now on I will use notation like the following to describe examples:

expr 2 + 2

⇒ 4

The first line is the command you type and the second line is the result returned by the
command. The⇒ symbol indicates that the line contains a return value; the⇒ will not
actually be printed out bytclsh. I will omit return values in cases where they aren’t
important, such as sequences of commands where only the last command’s result matters.

Commands are normally terminated by newlines, so when you are typing totclsh
each line normally becomes a separate command. Semi-colons also act as command sepa-
rators, in case you wish to enter multiple commands on a single line. It is also possible for
a single command to span multiple lines; you’ll see how to do this later.

Theexpr command supports an expression syntax similar to that of expressions in
ANSI C, including the same precedence rules and most of the C operators. Here are a few
examples that you could type totclsh:

expr 3 << 2

⇒ 12

expr 14.1*6

⇒ 84.6

expr (3 > 4) || (6 <= 7)

⇒ 1

The first example illustrates the bitwise left-shift operator<<. The second example shows
that expressions can contain real values as well as integer values. The last example shows
the use of relational operators> and<= and the logical or operator||. As in C, boolean
results are represented numerically with 1 for true and 0 for false.

To leavetclsh, invoke theexit command:

exit

This command will terminate the application and return you to your shell.

2.2 Hello world with Tk 7

DRAFT (8/12/93): Distribution Restricted

2.2 Hello world with Tk

Although Tcl provides a full set of programming features such as variables, loops, and
procedures, it is not intended to be a stand-alone programming environment. Tcl is
intended to be used as part of applications that provide their own Tcl commands in addi-
tion to those in the Tcl core. The application-specific commands provide interesting prim-
itives and Tcl is used to assemble the primitives into useful functions. Tcl by itself isn’t
very interesting and it is hard to motivate all of Tcl’s facilities until you have seen some
interesting application-specific commands to use them with.

Tk provides a particularly interesting set of commands to use with Tcl’s programming
tools. Most of the examples in the book will use an application calledwish, which is sim-
ilar totclsh except that it also includes the commands defined by Tk. Tk’s commands
allow you to create graphical user interfaces. If Tcl and Tk have been installed on your
system then you can invokewish from your shell just liketclsh; it will display a small
empty window on your screen and then read commands from standard input. Here is a
simplewish script:

button .b -text "Hello, world!" -command exit
pack .b

If you type these two Tcl commands towish the window’s appearance will change to
what is shown in Figure 2.1. If you then move the pointer over the window and click
mouse button 1, the window will disappear andwish will exit.

There are several things to explain about this example. First let us deal with the syn-
tactic issues. The example contains two commands,button andpack, both of which
are implemented by Tk. Although these commands look different than theexpr com-
mand in the previous section, they have the same basic structure as all Tcl commands,
consisting of one or more words separated by white space. Thebutton command con-
tains six words and the pack command contains two words.

The fourth word of thebutton command is enclosed in double quotes. This allows
the word to include white space characters: without the quotes “Hello,” and “world!”
would be separate words. The double-quotes are not part of the word itself; they are
removed by the Tcl interpreter before the word is passed to the command as an argument.

Figure 2.1. The “hello world” application. All of the decorations around the “Hello, world!” button
are provided by themwm window manager. If you use a different window manager then your
decorations may be different.

8 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

For theexpr command the word structure doesn’t matter much sinceexpr concate-
nates all its arguments together. However for thebutton andpack commands, and for
most Tcl commands, the word structure is important. Thebutton command expects its
first argument to be the name of a window and the following arguments to come in pairs,
where the first argument of each pair is the name of aconfiguration option and the second
argument is a value for that option. Thus if the double-quotes were omitted the value of
the-text option would be “Hello,” and “world!” would be treated as the name of a
separate configuration option. Since there is no option defined with the name “world!”
the command would return an error.

Now let us move on to the behavior of the commands. The basic building block for a
graphical user interface in Tk is awidget. A widget is a window with a particular appear-
ance and behavior (the terms “widget” and “window” are used synonymously in Tk). Wid-
gets are divided into classes such as buttons, menus, and scrollbars. All the widgets in the
same class have the same general appearance and behavior. For example, all button wid-
gets display a text string or bitmap and execute a particular Tcl command when they are
invoked with the mouse.

Widgets are organized hierarchically in Tk, with names that reflect their position in
the hierarchy. Themain widget, which appeared on the screen when you startedwish, has
the name “.”. The name.b refers to a child of the main widget. Widget names in Tk are
like file names in UNIX except that they use “.” as a separator character instead of “/”.
Thus.a.b.c refers to a widget that is a child of widget.a.b, which in turn is a child of
.a, which is a child of the main widget.

Tk provides one command for each class of widgets, which you invoke to create wid-
gets of that class. For example thebutton command creates button widgets. All of the
widget creation commands have the same form: the first argument is the name of a new
widget to create and additional arguments specify configuration options. Different widget
classes support different sets of options. Widgets typically have many options (there are
about 20 different options defined for buttons, for example), and default values are pro-
vided for the options that you don’t specify. When a widget creation command likebut-
ton is invoked it creates a new window by the given name and configures it as specified
by the options.

Thebutton command in the example specifies two options:-text, which is a
string to display in the button, and-command, which is a Tcl script to execute when the
user invokes the button. In this example the-command option isexit. Here are a few
other button options that you can experiment with:

-background The background color for the button.
-foreground The color of the text in the button.
-font The name of the font to use for the button, such as

-times-medium-r-normal---120-* for a 12-point
Times Roman font.

2.3 Script files 9

DRAFT (8/12/93): Distribution Restricted

Thepack command makes the button widget appear on the screen. Creating a widget
does not automatically cause it to be displayed. Independent entities calledgeometry man-
agers are responsible for computing the sizes and locations of widgets and making them
appear on the screen. Thepack command in the example asks a geometry manager called
thepacker to manage.b. The command asks that.b fill the entire area of its parent win-
dow; furthermore, if the parent has more space than needed by its child, as in the example,
the parent is shrunk so that it is just large enough to hold the child. Thus when you typed
thepack command the main window shrunk from its original size to the size that appears
in Figure 2.1.

2.3 Script files

In the examples so far you have typed Tcl commands interactively totclsh orwish.
You can also place commands into script files and invoke the script files just like shell
scripts. To do this for the hello world example, place the following text in a file named
hello:

#!/usr/local/bin/wish -f
button .b -text "Hello, world!" -command exit
pack .b

This script is the same as the one you typed earlier except for the first line. As far aswish
is concerned this line is a comment but if you make the file executable (type
“chmod 775 hello” to your shell, for example) you can then invoke the file directly
by typinghello to your shell. When you do this the system will invokewish, passing it
the file as a script to interpret.Wish will display the same window shown in Figure 2.1
and wait for you to interact with it. In this case you will not be able to type commands
interactively to wish; all you can do is click on the button.

Note: This script will only work ifwish is installed in/usr/local/bin. If wish has been
installed somewhere else then you’ll need to change the first line to reflect its location on
your system.

In practice users of Tk applications rarely type Tcl commands; they interact with the
applications using the mouse and keyboard in the usual ways you would expect for graph-
ical applications. Tcl works behind the scenes where users don’t normally see it. The
hello script behaves just the same as an application that has been coded in C with a tool-
kit such as Motif and compiled into a binary executable file.

During debugging, though, it is common for application developers to type Tcl com-
mands interactively. For example, you could test out thehello script by startingwish
interactively (typewish to your shell instead ofhello). Then type the following Tcl
command:

source hello

10 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

Source is a Tcl command that takes a file name as argument. It reads the file and evalu-
ates it as a Tcl script. This will generate the same user interface as if you had invoked
hello directly from your shell, but you can now type Tcl commands interactively too.
For example, you could edit the script file to change the-command option to

-command "puts Good-bye!; exit"

then type the following commands interactively towish without restarting the program:

destroy .b
source hello

The first command will delete the existing button and the second command will recreate
the button with the new-command option. Now when you click on the button theputs
command will print a message on standard output beforewish exits.

2.4 Variables and substitutions

Tcl allows you to store values in variables and use those values in commands. For exam-
ple, consider the following script, which you could type to eithertclsh orwish:

set a 44

⇒ 44

expr $a*4

⇒ 176

The first command assigns the value “44” to variablea and returns the variable’s value. In
the secon command t he$ causes Tcl to performvariable substitution: the Tcl interpreter
replaces the dollar-sign and the variable name following it with the value of the variable,
so that the actual argument received byexpr is “44*4”. Variables need not be declared
in Tcl; they are created automatically when assigned to. Variable values are stored as
strings and arbitrary string values of any length are allowed. Of course, in this example an
error will occur inexpr if the value ofa doesn’t make sense as an integer or real number
(try other values and see what happens).

Tcl also providescommand substitution, which allows you to use the result of one
command in an argument to another command:

set a 44
set b [expr $a*4]

⇒ 176

Square brackets invoke command substitution: everything inside the brackets is evaluated
as a separate Tcl script and the result of that script is substituted into the word in place of
the bracketed command. In this example the second argument of the second command will
be “176”.

2.5 Control structures 11

DRAFT (8/12/93): Distribution Restricted

2.5 Control structures

The next example uses variables and substitutions along with some simple control struc-
tures to create a Tcl procedurepower that raises a base to an integer power:

proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result*$base]
set p [expr $p-1]

}
return $result

}

If you type the above lines towish ortclsh, or if you enter them into a file and then
source the file, a new commandpower will become available. The command takes two
arguments, a number and an integer power, and its result is the number raised to the
power:

power 2 6

⇒ 64

power 1.15 5

⇒ 2.01136

This example uses one additional piece of Tcl syntax: braces. Braces are like double-
quotes in that they can be placed around a word that contains embedded spaces. However,
braces are different from double-quotes in two respects. First, braces nest. The last word
of theproc command starts after the open brace on the first line and contains everything
up to the close brace on the last line. The Tcl interpreter removes the outer braces and
passes everything between them, including several nested pairs of braces, toproc as an
argument. The second difference between braces and double-quotes is that no substitu-
tions occur inside braces, whereas they do inside quotes. All of the characters between the
braces are passed verbatim toproc without any special processing.

Theproc command takes three arguments: the name of a procedure, a list of argu-
ment names separated by white space, and the body of the procedure, which is a Tcl script.
Proc enters the procedure name into the Tcl interpreter as a new command. Whenever the
command is invoked, the body of the procedure will be evaluated. While the procedure
body is executing it can access its arguments as variables:base will hold the first argu-
ment to power andp will hold the second argument.

The body of thepower procedure contains three Tcl commands:set, while, and
return. Thewhile command does most of the work of the procedure. It takes two
arguments, an expression “$p > 0” and a body, which is another multi-line Tcl script.
Thewhile command evaluates its expression argument and if the result is non-zero then
it evaluates the body as a Tcl script. It repeats this process over and over until eventually
the expression evaluates to zero. In the example, the body of thewhile command multi-

12 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

plies the result value bybase and then decrementsp. Whenp reaches zero the result con-
tains the desired power ofbase.

Thereturn command causes the procedure to exit with the value of variable
result as the procedure’s result. If it is omitted then the return value of the procedure
will be the result of the last command in the procedure’s body. In the case ofpower this
would be the result ofwhile, which is always an empty string.

The use of braces in this example is crucial. The single most difficult issue in writing
Tcl scripts is managing substitutions: making them happen when you want them and pre-
venting them from happening when you don’t want them. Braces prevent substitutions or
defer them until later. The body of the procedure must be enclosed in braces because we
don’t want variable and command substitutions to occur at the time the body is passed to
proc as an argument; we want the substitutions to occur later, when the body is evaluated
as a Tcl script. The body of thewhile command is enclosed in braces for the same rea-
son: rather than performing the substitutions once, while parsing thewhile command,
we want the substitutions to be performed over and over, each time the body is evaluated.
Braces are also needed in the “{$p > 0}” argument towhile. Without them the value
of variablep would be substituted when parsing thewhile command; the expression
would have a constant value andwhile would loop forever (you can try replacing some
of the braces in the example with double quotes to see what happens).

In the examples in this book I use a stylized syntax where the open brace for an argu-
ment that is a Tcl script appears at the end of one line, the script follows on successive
lines indented, and the close brace is on a line by itself after the script. Although I think
that this makes for readable scripts, Tcl doesn’t require this particular syntax. Script argu-
ments are subject to the same syntax rules as any other arguments; in fact the Tcl inter-
preter doesn’t even know that an argument is a script at the time it parses it. One
consequence of this is that the open parenthesis must be on the same line as the preceding
portion of the command. If the open brace is moved to a line by itself then the newline
before the open brace will terminate the command.

By now you have seen nearly the entire Tcl language syntax. The only remaining syn-
tactic feature is backslash substitution, which allows you to enter special characters such
as dollar-signs into a word without enclosing the entire word in braces. Note thatwhile
andproc are not special syntactic elements in Tcl. They are just commands that take
arguments just like all Tcl commands. The only special thing aboutwhile andproc is
that they treat some of their arguments as Tcl scripts and cause the scripts to be evaluated.
Many other commands also do this. Thebutton command was one example (its-com-
mand option is a Tcl script), and you’ll read about several other control structures later on,
such asfor, foreach, case, andeval.

One final note about procedures. The variables in a procedure are normally local to
that procedure and will not be visible outside the procedure. In thepower example the
local variables include the argumentsbase andp as well as the variableresult. A
fresh set of local variables is created for each call to a procedure (arguments are passed by
copying their values), and when a procedure returns its local variables are deleted. Vari-

2.6 Event bindings 13

DRAFT (8/12/93): Distribution Restricted

ables named outside any procedure are calledglobal variables; they last forever unless
explicitly deleted. You’ll find out later how a procedure can access global variables and
the local variables of other active procedures.

2.6 Event bindings

The next example provides a graphical front-end for thepower procedure. In addition to
demonstrating two new widget classes it illustrates Tk’s binding mechanism. A binding
causes a particular Tcl script to be evaluated whenever a particular event occurs in a par-
ticular window. The-command option for buttons is an example of a simple binding
implemented by a particular widget class. Tk also includes a more general mechanism that
can be used to extend the behavior of arbitrary widgets in nearly arbitrary ways.

To run the example, copy the following script into a filepower and invoke the file
from your shell.

#!/usr/local/bin/wish -f
proc power {base p} {

set result 1
while {$p > 0} {

set result [expr $result*$base]
set p [expr $p-1]

}
return $result

}
entry .base -width 6 -relief sunken -textvariable base
label .label1 -text "to the power"
entry .power -width 6 -relief sunken -textvariable power
label .label2 -text "is"
label .result -textvariable result
pack .base .label1 .power .label2 .result \

-side left -padx 1m -pady 2m
bind .base <Return> {set result [power $base $power]}
bind .power <Return> {set result [power $base $power]}

This script will produce a screen display like that in Figure 2.2. There are two entry wid-
gets in which you can click with the mouse and type numbers. If you type return in either

Figure 2.2. A graphical user interface that computes powers of a base.

14 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

of the entries, the result will appear on the right side of the window. You can compute dif-
ferent results by modifying either the base or the power and then typing return again.

This application consists of five widgets: two entries and three labels. Entries are wid-
gets that display one-line text strings that you can edit interactively. The two entries,
.base and.power, are used for entering the numbers. Each entry is configured with a
-width of 6, which means it will be large enough to display about 6 digits, and a
-relief of sunken, which gives the entry a depressed appearance. The
-textvariable option for each entry specifies the name of a global variable to hold
the entry’s text: any changes you make in the entry will be reflected in the variable and
vice versa.

Two of the labels,.label1 and.label2, hold decorative text and the third,
.result, holds the result of the power computation. The-textvariable option for
.result causes it to display whatever string is in global variableresult
whereas.label1 and.label2 display constant strings.

Thepack command arranges the five widgets in a row from left to right. The com-
mand occupies two lines in the script; the backslash at the end of the first line is a line-con-
tinuation character: it causes the newline to be treated as a space. The-side option
means that each widget is placed at the left side of the remaining space in the main widget:
first .base is placed at the left edge of the main window, then.label1 is placed at the
left side of the space not occupied by.base, and so on. The-padx and-pady options
make the display a bit more attractive by arranging for 1 millimeter of extra space on the
left and right sides of each widget, plus 2 millimeters of extra space above and below each
widget. The “m” suffix specifies millimeters; you could also use “c” for centimeters, “i”
for inches, “p” for points, or no suffix for pixels.

Thebind commands connect the user interface to thepower procedure. Eachbind
command has three arguments: the name of a window, an event specification, and a Tcl
script to invoke when the given event occurs in the given window. <Return> specifies
an event consisting of the user typing the return key on the keyboard. Here are a few other
event specifiers that you might find useful:

<Button-1> Mouse button 1 is pressed.
<ButtonRelease-1> Mouse button 1 is released.
<Double-Button-1> Double-click on mouse button 1.
<1> Short-hand for<Button-1>.
<Key-a> Key “a” is pressed.
<a> ora Short-hand for<Key-a>.
<Motion> Pointer motion with no buttons or modifier keys

pressed.
<B1-Motion> Pointer motion with button 1 pressed.
<Any-Motion> Pointer motion with any (or no) buttons or modifier

keys pressed.

2.7 Subprocesses 15

DRAFT (8/12/93): Distribution Restricted

The scripts for the bindings invokepower, passing it the values in the two entries,
and they store the result inresult so that it will be displayed in the.result widget.
These bindings extend the generic built-in behavior of the entries (editing text strings)
with application-specific behavior (computing a value based on two entries and displaying
that value in a third widget).

The script for a binding has access to several pieces of information about the event,
such as the location of the pointer when the event occurred. For an example, start upwish
interactively and type the following command to it:

bind . <Any-Motion> {puts "pointer at %x,%y"}

Now move the pointer over the window. Each time the pointer moves a message will be
printed on standard output giving its new location. When the pointer motion event occurs,
Tk scans the script for % sequences and replaces them with information about the event
before passing the script to Tcl for evaluation.%x is replaced with the pointer’s x-coordi-
nate and%y is replaced with the pointer’s y-coordinate.

2.7 Subprocesses

Normally Tcl executes each command by invoking a C procedure in the application to
carry out its function; this is different from a shell program likesh where each command
is normally executed in a separate subprocess. However, Tcl also allows you to create sub-
processes, using theexec command. Here is a simple example ofexec:

exec grep #include tk.h

⇒ #include <tcl.h>
#include <X11/Xlib.h>
#include <stddef.h>

Theexec command treats its arguments much like the words of a shell command line. In
this exampleexec creates a new process to run thegrep program and passes it
“#include” and “tk.h” as arguments, just as if you had typed

grep #include tk.h

to your shell. Thegrep program searches filetk.h for lines that contain the string
#include and prints those lines on its standard output. However, exec arranges for
standard output from the subprocess to be piped back to Tcl. Exec waits for the process to
exit and then it returns all of the standard output as its result. With this mechanism you can
execute subprocesses and use their output in Tcl scripts.Exec also supports input and out-
put redirection using standard shell notation such as<, <<, and>, pipelines with|, and
background processes with&.

The example below creates a simple user interface for saving and re-invoking com-
monly used shell commands. Type the following script into a file namedredo and invoke
it:

16 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

#!/usr/local/bin/wish -f
set id 0
entry .entry -width 30 -relief sunken -textvariable cmd
pack .entry -padx 1m -pady 1m
bind .entry <Return> {

set id [expr $id + 1]
if {$id > 5} {

destroy .b[expr $id - 5]
}
button .b$id -command "exec <@stdin >@stdout $cmd" \

-text $cmd
pack .b$id -fill x
.b$id invoke
.entry delete 0 end

}

Initially the script creates an interface with a single entry widget. You can type a shell
command such asls into the entry, as shown in Figure 2.3(a). When you type return the
command gets executed just as if you had typed it to the shell from which you invoked
redo, and output from the command appears in the shell’s window. Furthermore, the
script creates a new button widget that displays the command (see Figure 2.3(b)) and you
can re-invoke the command later by clicking on the button. As you type more and more
commands, more and more buttons appear, up to a limit of five remembered commands as
in Figure 2.3(c).

Figure 2.3. Theredo application. The user can type a command in the entry window, as in (a).
When the user types return the command is invoked as a subprocess usingexec and a new button is
created that can be used to re-invoke the command later, as in (b). Additional commands can be
typed to create additional buttons, up to a limit of five buttons as in (c).

(a)

(b)
(c)

2.7 Subprocesses 17

DRAFT (8/12/93): Distribution Restricted

Note: This example suffers from several limitations. For example, you cannot specify wild-cards
such as “*” in command lines, and the “cd” command doesn’t behave properly. In Part I
you’ll read about Tcl facilities that you can use to eliminate these limitations.

The most interesting part of theredo script is in thebind command. The binding
for <Return> must execute the command, which is stored in thecmd variable, and cre-
ate a new button widget. First it creates the widget. The button widgets have names like
.b1, .b2, and so on, where the number comes from the variableid. Id starts at zero
and increments before each new button is created. The notation “.b$id” generates a wid-
get name by “.b” and the value ofid. Before creating a new widget the script checks to
see if there are already five saved commands; if so then the oldest existing button is
deleted. The notation “.b[expr $id - 5]” produces the name of the oldest button by
subtracting five from the number of the new button and concatenating it with “.b”. The-
command option for the new button invokesexec and redirects standard input and stan-
dard output for the subprocess(es) towish’s standard input and standard output, which
are the same as those of the shell from whichwish was invoked: this causes output from
the subprocesses to appear in the shell’s window instead of being returned towish.

The command “pack .b$id -fill x” makes the new button appear at the bot-
tom of the window. The option “-fill x” improves the appearance by stretching the
button horizontally so that it fills the width of the window even it it doesn’t really need
that much space for its text. Try omitting the-fill option to see what happens without
it.

The last two commands of the binding script are calledwidget commands. Whenever
a new widget is created a new Tcl command is also created with the same name as the
widget, and you can invoke this command to communicate with the widget. The first argu-
ment to a widget command selects one of several operations and additional arguments are
used as parameters for that operation. In theredo script the first widget command causes
the button widget to invoke its-command option just as if you had clicked the mouse
button on it. The second widget command clears the entry widget in preparation for a new
command to be typed.

Each class of widget supports a different set of operations in its widget commands,
but many of the operations are similar from widget to widget. For example, every widget
class supports aconfigure widget command that can be used to modify any of the con-
figuration options for the widget. If you run theredo script interactively you could type
the following command to change the background of the entry widget to yellow:

.entry configure -background yellow

Or, you could type

.b1 configure -foreground brown

.b1 flash

to change the color of the text in button.b1 to brown and then cause the button to flash.
One of the most important things about Tcl and Tk is that they make every aspect of

an application accessible and modifiable at run-time. For example, theredo script modi-

18 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

fies its own interface on the fly. In addition, Tk provides commands that you can use to
query the structure of the widget hierarchy, and you can useconfigure widget com-
mands to query and modify the configuration options of individual widgets.

2.8 Additional features of Tcl and Tk

The examples in this chapter used every aspect of the Tcl language syntax and they illus-
trated many of the most important features of Tcl and Tk. However, Tcl and Tk contain
many other facilities that are not used in this chapter; all of these will be described later in
the book. Here is a sampler of some of the most useful features that haven’t been men-
tioned yet:

Arrays and lists. Tcl provides associative arrays for storing key-value pairs efficiently
and lists for managing aggregates of data.

More control structures. Tcl provides several additional commands for controlling the
flow of execution, such aseval, for, foreach, andswitch.

String manipulation. Tcl contains a number of commands for manipulating strings,
such as measuring their length and performing regular expression pattern matching and
substitution.

File access. You can read and write files from Tcl scripts and retrieve directory infor-
mation and file attributes such as length and creation time.

More widgets. Tk contains many widget classes besides those shown here, such as
menus, scrollbars, a drawing widget called acanvas, and a text widget that makes it
easy to achieve hypertext effects.

Access to other X facilities. Tk provides commands for accessing all of the major
facilities in the X Window System, such as a command for communicating with the
window manager (to set the window’s title, for example), a command for retrieving the
selection, and a command to manage the input focus.

C interfaces. Tcl provides C library procedures that you can use to define your own
new Tcl commands in C, and Tk provides a library that you can use to create your own
widget classes and geometry managers in C.

2.9 Extensions and applications

Tcl and Tk have an active and rapidly-growing user community that now numbers in the
tens of thousands. Many people have built applications based on Tcl and Tk and packages
that extend the base functionality of Tcl and Tk. Several of these packages and applica-
tions are publically available and widely used in the Tcl/Tk community. There isn’t space
in this book to discuss all of the exciting Tcl/Tk software in detail but this section gives a

2.9 Extensions and applications 19

DRAFT (8/12/93): Distribution Restricted

quick overview of five of the most popular extensions and applications. See Appendix A
for information on how you can obtain them and other contributed Tcl/Tk software.

2.9.1 Expect

Expect is one of the oldest Tcl applications and also one of the most popular. It is a pro-
gram that “talks” to interactive programs. Following a script,expect knows what output
can be expected from a program and what the correct responses should be. It can be used
to automatically control programs likeftp, telnet, rlogin, crypt, fsck, tip, and
others that cannot be automated from a shell script because they require interactive input.
Expect also allows the user to take control and interact directly with the program when
desired. For example, the followingexpect script logs into a remote machine using the
rlogin program, sets the working directory to that of the originating machine, then turns
control over to the user:

#!/usr/local/bin/expect
spawn rlogin [lindex $argv 1]
expect -re "(%|#) "
send "cd [pwd]\r"
interact

Thespawn, expect, send, andinteract commands are implemented byexpect,
andlindex andpwd are built-in Tcl commands. Thespawn command starts uprlo-
gin, using a command-line argument as the name of the remote machine. Theexpect
command waits forrlogin to output a prompt (either “%” or “#”, followed by a space),
thensend outputs a command to change the working directory, just as if a user had typed
the command interactively. Finally, interact causesexpect to step out of the way so
that the user who invoked theexpect script can now talk directly torlogin.

Expect can be used for many purposes, such as a scriptable front-end to debuggers,
mailers, and other programs that don’t have scripting languages of their own. The pro-
grams require no changes to be driven by expect.Expect is also useful for regression
testing of interactive programs.Expect can be combined with Tk or other Tcl exten-
sions. For example, using Tk it is possible to make a graphical front end for an existing
interactive application without changing the application.

Expect was created by Don Libes.

2.9.2 Extended Tcl

Extended Tcl (TclX) is a library package that augments the built-in Tcl commands with
many additional commands and procedures oriented towards system programming tasks.
It can be used with any Tcl application. Here are a few of the most popular features of
TclX:

• Access to many additional POSIX system calls and functions.

• A file scanning facility with functionality much like that of theawk program.

20 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

• Keyed lists, which provide functionality similar to C structures.

• Commands for manipulating times and dates and converting them to and from ASCII.

• An on-line help facility.

• Facilities for debugging, profiling, and program development.

Many of the best features of TclX are no longer part of TclX: they turned out to be so
widely useful that they were incorporated into the Tcl core. Among the Tcl features pio-
neered by TclX are file input and output, array variables, real arithmetic and transcenden-
tal functions, auto-loading, XPG-based internationalization, and theupvar command.

Extended Tcl was created by Karl Lehenbauer and Mark Diekhans.

2.9.3 XF

Tk makes it relatively easy to create graphical user interfaces by writing Tcl scripts, but
XF makes it even easier. XF is an interactive interface builder: you design a user interface
by manipulating objects on the screen, then XF creates a Tcl script that will generate the
interface you have designed (see Figure 2.4). XF provides tools for creating and configur-
ing widgets, arranging them with Tk’s geometry managers, creating event bindings, and so
on. XF manipulates a live application while it is running, so the full effect of each change
in the interface can be seen and tested immediately.

XF supports all of Tk’s built-in widget classes and allows you to add new widget
classes by writing class-specific Tcl scripts for XF to use to handle the classes. You
needn’t use XF exclusively: you can design part of a user interface with XF and part by
writing Tcl scripts. XF supports most of the currently available extensions to Tcl and Tk,
and XF itself is written in Tcl.

XF was created by Sven Delmas. It is based on an earlier interface builder for Tk
called BYO, which was developed at the Victoria University of Wellington, New Zealand.

2.9.4 Distributed programming

Tcl Distributed Programming (Tcl-DP) is a collection of Tcl commands that simplify the
development of distributed programs. Tcl-DP’s most important feature is aremote proce-
dure call facility, which allows Tcl applications to communicate by exchanging Tcl
scripts. For example, the following script uses Tcl-DP to implement a trivial “id server”,
which returns unique identifiers in response toGetId requests:

set myId 0
proc GetId {} {

global myId;
set myId [expr $myId+1]
return $myId

}
MakeRPCServer 4545

2.9 Extensions and applications 21

DRAFT (8/12/93): Distribution Restricted

All of the code in this script except the last line is ordinary Tcl code that defines a global
variablemyId and a procedureGetId that increments the variable and returns its new
value. TheMakeRPCServer command is implemented by Tcl-DP; it causes the applica-
tion to listen for requests on TCP socket 4545.

Other Tcl applications can communicate with this server using scripts that look like
the following:

set server [MakeRPCClient server.company.com 4545]
RPC $server GetId

The first command opens a connection with the server and saves an identifier for that con-
nection. The arguments toMakeRPCClient identify the server’s host and the socket on
which the server is listening. TheRPC command performs a remote procedure call. Its

Figure 2.4. A screen dump showing the main window of XF, an interactive application builder for
Tcl and Tk.

22 An Overview of Tcl and Tk

DRAFT (8/12/93): Distribution Restricted

arguments are a connection identifier and an arbitrary Tcl script.RPC forwards the script
to the server; the server executes the script and returns its result (a new identifier in this
case), which becomes the result of theRPC command. Any script whatosever could be
substituted in place of theGetId command.

Tcl-DP also includes several other features, including asynchronous remote procedure
calls, where the client need not wait for the call to complete, a distributed object system in
which objects can be replicated in several applications and updates are automatically
propagated to all copies, and a simple name service. Tcl-DP has been used for applications
such as a video playback system, groupware, and games. Tcl-DP is more flexible than
most remote procedure call systems because it is not based on compiled interfaces
between clients and servers: it is easy in Tcl-DP to connect an existing client to a new
server without recompiling or restarting the client.

Tcl-DP was created by Lawrence A. Rowe, Brian Smith, and Steve Yen.

2.9.5 Ak

Ak is an audio extension for Tcl. It is built on top of AudioFile, a network-transparent,
device independent audio system that runs on a variety of platforms. Ak provides Tcl com-
mands for file playback, recording, telephone control, and synchronization. The basic
abstractions in Ak are connections to AudioFile servers, device contexts (which encapsu-
late the state for a particular audio device), and requests such as file playback. For exam-
ple, here is a script that plays back an audio file on a remote machine:

audioserver remote "server.company.com:0"
remote context room -device 1
room create play "announcement-file.au"

The first command opens a connection to the audio server on the machine
server.company.com and gives this connection the nameremote. It also creates a
command namedremote, which is used to issue commands over the connection. The
second command creates a context namedroom, which is associated with audio device 1
on the server, and also creates a command namedroom for communicating with the con-
text. The last command initiates a playback of a particular audio file.

Ak implements a unique model of time that allows clients to specify precisely when
audio samples are going to emerge. It also provides a mechanism to execute arbitrary Tcl
scripts at specified audio times; this can be used to achieve a variety of hypermedia
effects, such as displaying images or video in sync with an audio playback. When com-
bined with Tk, Ak provides a powerful and flexible scripting system for developing multi-
media applications such as tutorials and telephone inquiry systems.

Ak was created by Andrew C. Payne.

Part I:

The Tcl Language

24

DRAFT (8/12/93): Distribution Restricted

25

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 3
Tcl Language Syntax

In order to write Tcl scripts you must learn two things. First, you must learn the Tcl syntax,
which consists of about a half-dozen rules that determine how commands are parsed. The
Tcl syntax is the same for every command. Second, you must learn about the individual
commands that you use in your scripts. Tcl provides about 60 built-in commands, Tk adds
several dozen more, and any application based on Tcl or Tk will add a few more of its
own. You’ll need to know all of the syntax rules right away, but you can learn about the
commands more gradually as you need them.

This chapter describes the Tcl language syntax. The remaining chapters in Part I
describe the built-in Tcl commands, and Part II describes Tk’s commands.

3.1 Scripts, commands, and words

A Tcl script consists of one or morecommands. Commands are separated by newlines and
semi-colons. For example,

set a 24
set b 15

is a script with two commands separated by a newline character. The same script could be
written on a single line using a semi-colon separator:

set a 24; set b 15

Each command consists of one or morewords, where the first word is the name of a
command and additional words are arguments to that command. Words are separated by
spaces and tabs. Each of the commands in the above examples has three words. There may

FIGURE 3

TABLE 3

26 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

be any number of words in a command, and each word may have an arbitrary string value.
The white space that separates words is not part of the words, nor are the newlines and
semi-colons that terminate commands

3.2 Evaluating a command

Tcl evaluates a command in two steps as shown in Figure 3.1:parsing andexecution. In
the parsing step the Tcl interpreter applies the rules described in this chapter to divide the
command up into words and perform substitutions. Parsing is done in exactly the same
way for every command. During the parsing step the Tcl interpreter does not apply any
meaning to the values of the words. Tcl just performs a set of simple string operations such
as replacing the characters “$a” with the string stored in variablea; Tcl does not know or
care whethera or the resulting word is a number or the name of a widget or anything else.

Figure 3.1. Tcl commands are evaluated in two steps. First the Tcl interpreter parses the command
string into words, performing substitutions along the way. Then a command procedure processes the
words to produce a result string. Each command has a separate command procedure.

Tcl Parser

Command Procedure

Command String

Words

Result

3.2 Evaluating a command 27

DRAFT (8/12/93): Distribution Restricted

In the execution step meaning is applied to the words of the command. Tcl treats the
first word as a command name, checking to see if the command is defined and locating a
command procedure to carry out its function. If the command is defined then the Tcl inter-
preter invokes its command procedure, passing all of the words of the command to the
command procedure. The command procedure is free to interpret the words in any way
that it pleases, and different commands apply very different meanings to their arguments

Note: I use the terms “word” and “argument” interchangeably to refer to the values passed to
command procedures. The only difference between these two terms is that the first
argument is the second word.

The following commands illustrate some of meanings that are commonly applied to
arguments:

set a 122

In many cases, such as theset command, arguments may take any form
whatsoever. Theset command simply treats the first argument as a variable
name and the second argument as a value for the variable. The command
“set 122 a” is valid too: it creates a variable whose name is “122” and
whose value is “a”.

expr 24/3.2

The argument toexpr must be an arithmetic expression that follows the rules
described in Chapter 5. Several other commands also take expressions as argu-
ments.

eval {set a 122}

The argument toeval is a Tcl script.Eval passes it to the Tcl interpreter
where another round of parsing and execution occurs for the argument. Other
control-flow commands such asif andwhile also take scripts as arguments.

lindex {red green blue purple} 2

The first argument tolindex is alist consisting of four values separated by
spaces. This command will extract element 2 (“blue”) from the list and
return it. Tcl’s commands for manipulating lists are described in Chapter 6.

string length abracadabra

Some commands, likestring and the Tk widget commands, are actually
several commands rolled into one. The first argument of the command selects
one of several operations to perform and determines the meaning of the
remaining arguments. For example “string length” requires one addi-
tional argument and computes its length, whereas “string compare”
requires two additional arguments.

button .b -text Hello -fg red

The arguments starting with-text are option-value pairs that allow you to
specify the options you care about and use default values for the others.

28 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

In writing Tcl scripts one of the most important things to remember is that the Tcl
parser doesn’t apply any meaning to the words of a command while it parses them. All of
the above meanings are applied by individual command procedures, not by the Tcl parser.
Another way of saying this is that arguments are quoted by default; if you want evaluation
you must request it explicitly. This approach is similar to that of most shell languages but
different than most programming languages. For example, consider the following C pro-
gram:

x = 4;
y = x+10;

In the first statement C stores the integer value 4 in variablex. In the second statement C
evaluates the expression “x+10”, fetching the the value of variablex and adding 10, and
stores the result in variabley. At the end of executiony has the integer value 14. If you
want to use a literal string in C without evaluation you must enclose it in quotes. Now con-
sider a similar-looking program written in Tcl:

set x 4
set y x+10

The first command assigns thestring “4” to variablex. The value of the variable need not
have any particular form. The second command simply takes the string “x+10” and stores
it as the new value fory. At the end of the script y has the string value “x+10”, not the
integer value 14. In Tcl if you want evaluation you must ask for it explicitly:

set x 4
set y [expr $x+10]

Evaluation is requested twice in this example. First, the second word of the second com-
mand is enclosed in brackets, which tells the Tcl parser to evaluate the characters between
the brackets as a Tcl script and use the result as the value of the word. Second, a dollar-
sign has been placed beforex. When Tcl parses theexpr command it substitutes the
value of variablex for the$x. If the dollar-sign were omitted thenexpr’s argument
would contain the string “x”, resulting in a syntax error. At the end of the scripty has the
string value “14”, which is almost the same as in the C example.

3.3 Variable substitution

Tcl provides three forms ofsubstitution: variable substitution, command substitution, and
backslash substitution. Each substitution causes some of the original characters of a word
to be replaced with some other value. Substitutions may occur in any word of a command,
including the command name, and there may be any number of substitutions within a sin-
gle word.

The first form of substitution isvariable substitution. It is triggered by a dollar-sign
character and it causes the value of a Tcl variable to be inserted into a word. For example,
consider the following commands:

3.4 Command substitution 29

DRAFT (8/12/93): Distribution Restricted

set kgrams 20
expr $kgrams*2.2046

⇒ 44.092

The first command sets the value of variablekgrams to20. The second command com-
putes the corresponding weight in pounds by multiplying the value ofkgrams by 2.2046.
It does this using variable substitution: the string$kgrams is replaced with the value of
variablekgrams, so that the actual argument received by theexpr command procedure
is “20*2.2046”.

Variable substitution can occur anywhere within a word and any number of times as
in the following command:

expr $result*$base

The variable name consists of all of the numbers, letters, and underscores following the
dollar-sign. Thus the first variable name (result) extends up to the* and the second
variable name (base) extends to the end of the word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to provide more explicit control over the extent of a variable name (e.g. so that there
can be a letter immediately following the variable name). These other forms are discussed
in Chapter 4.

3.4 Command substitution

The second form of substitution provided by Tcl is command substitution. Command sub-
stitution causes part or all of a command word to be replaced with the result of another Tcl
command. Command substitution is invoked by enclosing a nested command in brackets:

set kgrams 20
set lbs [expr $kgrams*2.2046]

⇒ 44.092

The characters between the brackets must constitute a valid Tcl script. The script may con-
tain any number of commands separated by newlines or semi-colons in the usual fashion.
The brackets and all of the characters in between are replaced with the result of the script.
Thus in the example above theexpr command is executed while parsing the words for
set; its result, the string “44.092”, becomes the second argument toset. As with vari-
able substitution, command substitution can occur anywhere in a word and there may be
more than one command substitution within a single word.

30 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

3.5 Backslash substitution

The final form of substitution in Tcl is backslash substitution. It is used to insert special
characters such as newlines into words and also to insert characters like[and$ without
them being treated specially by the Tcl parser. For example, consider the following com-
mand:

set msg Eggs:\ \$2.18/dozen\nGasoline:\ \$1.49/gallon

⇒ Eggs: $2.18/dozen
Gasoline: $1.49/gallon

There are two sequences of backslash followed by space; each of these sequences is
replaced in the word by a single space and the space characters are not treated as word
separators. There are also two sequences of backslash followed by dollar-sign; each of
these is replaced in the word with a single dollar-sign, and the dollar signs are treated like
ordinary characters (they do not trigger variable substitution). The backslash followed by
n is replaced with a newline character

 Table 3.1 lists all of the backslash sequences supported by Tcl. These include all of
the sequences defined for ANSI C, such as\t to insert a tab character and\xd4 to insert
the character whose hexadecimal value is 0xd4. If a backslash is followed by any charac-
ter not listed in the table, as in\$ or\[, then the backslash is dropped from the word and
the following character is included in the word as an ordinary character. This allows you to
include any of the Tcl special characters in a word without the character being treated spe-
cially by the Tcl parser. The sequence\\ will insert a single backslash into a word.

The sequence backslash-newline can be used to spread a long command across multi-
ple lines, as in the following example:

pack .base .label1 .power .label2 .result \
-side left -padx 1m -pady 2m

The backslash and newline, plus any leading space on the next line, are replaced by a sin-
gle space character in the word. Thus the two lines together form a single command.

Note: Backslash-newline sequences are unusual in that they are replaced in a separate
preprocessing step before the Tcl interpreter parses the command. This means, for
example, that the space character that replaces backslash-newline will be treated as a
word separator unless it is between double-quotes or braces.

3.6 Quoting with double-quotes

Tcl provides several ways for you to prevent the parser from giving special interpretation
to characters such as$ and semi-colon. These techniques are calledquoting. You have
already seen one form of quoting in backslash subsitution; for example,\$ causes a dol-
lar-sign to be inserted into a word without triggering variable substitution. In addition to
backslash substitution Tcl provides two other forms of quoting: double-quotes and braces.

3.6 Quoting with double-quotes 31

DRAFT (8/12/93): Distribution Restricted

Double-quotes disable word and command separators, while braces disable almost all spe-
cial characters.

If a word is enclosed in double-quotes then spaces, tabs, newlines, and semi-colons
are treated as ordinary characters within the word. The example from page 30 can be
rewritten more cleanly with double-quotes as follows:

set msg "Eggs: \$2.18/dozen\nGasoline: \$1.49/gallon"

⇒ Eggs: $2.18/dozen
Gasoline: $1.49/gallon

Note that the quotes themselves are not part of the word. The\n in the example could also
be replaced with an actual newline character, as in

set msg "Eggs: \$2.18/dozen
Gasoline: \$1.49/gallon"

but I think the script is more readable with\n.
Variable substitutions, command substitutions, and backslash substitutions all occur

as usual inside double-quotes. For example, the following script setsmsg to a string con-
taining the name of a variable, its value, and the square of its value:

Table 3.1. Backslash substitutions supported by Tcl. Each of the sequences in the first column is
replaced by the corresponding character from the second column. If a backslash is followed by a
character other than those in the first column, then the two characters are replaced by the second
character.

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\f Form feed (0xc)

\n Newline (0xa)

\r Carriage return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\ddd Octal value given byddd
(one, two, or threed’s)

\xhh Hex value given byhh
(any number ofh’s)

\newline space A single space character.

32 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

set a 2.1
set msg "a is $a; the square of a is [expr $a*$a]"

⇒ a is 2.1; the square of a is 4.41

If you would like to include a double-quote in a word enclosed in double-quotes, then use
backlash substitution:

set name a.out
set msg "Couldn’t open f ile \"$name\""

⇒ Couldn’t open f ile "a.out"

3.7 Quoting with braces

Braces provide a more radical form of quoting where all the special charaters lose their
meaning. If a word is enclosed in braces then the characters between the braces are the
value of the word, verbatim. No substitutions are performed on the word and spaces, tabs,
newlines, and semi-colons are treated as ordinary characters. The example on page 30 can
be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen
Gasoline: $1.49/gallon}

The dollar-signs in the word do not trigger variable substitution and the newline does not
act as a command separator. In this case\n cannot be used to insert a newline into the
wod as on page 31, because the\n will be included in the argument as-is without trigger-
ing backslash substitution:

set msg {Eggs: $2.18/dozen\nGasoline: $1.49/gallon}

⇒ Eggs: $2.18/dozen\nGasoline: $1.49/gallon

One of the most important uses for braces is todefer evaluation. Deferred evaluation
means that special characters aren’t processed immediately by the Tcl parser. Instead they
will be passed to the command procedure as part of its argument and the command proce-
dure will process the special characters itself. Braces are almost always used when passing
scripts to Tcl commands, as in the following example that computes the factorial of five:

set result 1
set i 5
while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

}

The body of thewhile loop is enclosed in braces to defer substitutions.While passes
the script back into Tcl for evaluation during each iteration of the loop and the subsitutions
will be performed at that time. In this case it is important to defer the substitutions so that
they are done afresh each time thatwhile evaluates the loop body, rather than once-and-
for-all while parsing thewhile command.

Braces nest, as in the following example:

3.8 Comments 33

DRAFT (8/12/93): Distribution Restricted

proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result*base]
set p [expr $p-1]

}
return $result

}

In this case the third argument toproc contains two pairs of nested braces (the outermost
braces are removed by the Tcl parser). The command substitution requested with “[expr
$p-1]” will not be performed when theproc command is parsed, or even when the
while command is parsed as part of executing the procedure’s body, but only when
while evaluates its second argument to execute the loop.

Note: If a brace is backslashed then it does not count in finding the matching close brace for a
word enclosed in braces. The backslash will not be removed when the word is parsed.

Note: The only form of substitution that occurs between braces is for backslash-newline. As
discussed in Section 3.5, backslash-newline sequences are actually removed in a pre-
processing step before the command is parsed.

3.8 Comments

If the first non-blank character of a command is# then the# and all the characters follow-
ing it up through the next newline are treated as a comment and discarded. Note that the
hash-mark must occur in a position where Tcl is expecting the first character of a com-
mand. If a hash-mark occurs anywhere else then it is treated as an ordinary character that
forms part of a command word:

This is a comment
set a 100 # Not a comment

∅ wrong # args: should be "set varName ?newValue?"

set b 101; # This is a comment

⇒ 101

The# on the second line is not treated as a comment character because it occurs in the
middle of a command. As a result the firstset command receives 6 arguments and gener-
ates an error. The last# is treated as a comment character, since it occurs just after the
command was terminated with a semi-colon.

3.9 Normal and exceptional returns

A Tcl command can terminate in several different ways. Anormal return is the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tcl also supportsexceptional returns from commands. The most frequent

34 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

form of exceptional return is an error. When an error return occurs, it means that the com-
mand could not complete its intended function. The command is aborted and any com-
mands that follow it in the script are skipped. An error return includes a string identifying
what went wrong; the string is normally displayed by the application. For example, the
following set command generates an error because it has too many arguments:

set state West Virginia

∅ wrong # args: should be "set varName ?newValue?"

Different commands generate errors under different conditions. For example,expr
accepts any number of arguments but requires the arguments to have a particular syntax; it
generates an error if, for example, parentheses aren’t matched:

expr 3 * (20+4

∅ unmatched parentheses in expression "3 * (20+4"

The complete exceptional return mechanism for Tcl is discussed in Chapter 9. It sup-
ports a number of exceptional returns other than errors, provides additional information
about errors besides the error message mentioned above, and allows errors to be “caught”
so that effects of the error can be contained within a piece of Tcl code. For now, though, all
you need to know is that commands normally return string results but they sometimes
return errors that cause Tcl command interpretation to be aborted.

Note: You may also find theerrorInfo variable useful. After an error Tcl setserrorInfo to
hold a stack trace indicating exactly where the error occurred. You can print out this
variable with the command “set errorInfo”.

3.10 More on substitutions

The most common difficulty for new Tcl users is understanding when substitutions do and
do not occur. A typical scenario is for a user to be surprised at the behavior of a script
because a substitution didn’t occur when the user expected it to happen, or a substitution
occurred when it wasn’t expected. However, I think that you’ll find Tcl’s substitution
mechanism to be simple and predictable if you just remember two related rules:

1. Tcl parses a command and makes substitutions in a single pass from left to right. Each
character is scanned exactly once.

2. At most a single layer of substitution occurs for each character; the result of one substi-
tution is not scanned for further substitutions.

Tcl’s substitutions are simpler and more regular than you may be used to if you’ve pro-
grammed with UNIX shells (particularlycsh). When new users run into problems with
Tcl substitutions it is often because they have assumed a more complex model than actu-
ally exists.

For example, consider the following command:

3.10 More on substitutions 35

DRAFT (8/12/93): Distribution Restricted

set x [format {Earnings for July: $%.2f} $earnings]

⇒ Earnings for July: $1400.26

The characters between the brackets are scanned exactly once, during command substitu-
tion, and the value of theearnings variable is substituted at that time. It isnot the case
that Tcl first scans the wholeset command to substitute variables, then makes another
pass to perform command substitution; everything happens in a single scan. The result of
theformat command is passed verbatim toset as its second argument without any
additional scanning (for example, the dollar-sign informat’s result does not trigger vari-
able substitution).

One consequence of the substitution rules is that all the word boundaries within a
command are immediately evident and are not affected by substitutions. For example,
consider the following script:

set city "Los Angeles"
set bigCity $city

The secondset command is guaranteed to have exactly three words regardless of the
value of variablecity. In this casecity contains a space character but the space isnot
treated as a word separator.

In some situations the single-layer-of-substitutions rule can be a hindrance rather than
a help. For example, the following script is an erroneous attempt to delete all files with
names ending in “.o”:

exec rm [glob *.o]

∅ rm: a.o b.o c.o nonexistent

Theglob command returns a list of all file names that match the pattern “*.o”, such as
“a.o b.o c.o”. Theexec command then attempts to invoke therm program to delete
all of these files. However, the entire list of files is passed torm as a single argument;rm
reports an error because it cannot find a file named “a.o b.o c.o”. For rm to work
correctly the result ofglob must be split up into multiple words.

Fortunately, it is easy to add additional layers of parsing if you want them. Remember
that Tcl commands are evaluated in two phases: parsing and execution. The substitution
rules apply only to the parsing phase. Once Tcl passes the words of a command to a com-
mand procedure for execution, the command procedure can do anything it likes with them.
Some commands will reparse their words, for example by passing them back to the Tcl
interpreter again.Eval is an example of such a command, and it can be used to solve the
problems withrm above:

eval exec rm [glob *.o]

Eval concatenates all of its arguments with spaces in-between and then evaluates the
result as a Tcl script, at which point another round of parsing and evaluation occurs. In this
exampleeval receives three arguments: “exec”, “rm”, and “a.o b.o c.o”. It con-
catenates them to form the string “exec rm a.o b.o c.o”. When this string is
parsed as a Tcl script it yields five words; each of the file names is passed toexec and

36 Tcl Language Syntax

DRAFT (8/12/93): Distribution Restricted

then to therm program as a separate argument, so the files are all removed successfully.
See Section 7.5 for more details on this.

One final note. It is possible to use substitutions in very complex ways but I urge you
not to do so. Substitutions work best when used in very simple ways such as
“set a $b”. If you use a great many substitutions in a single command, and particularly
if you use lots of backslashes, your code is unlikely to be unreadable and it’s also unlikely
to work reliably. In situations like these I suggest breaking up the offending command into
several commands that build up the arguments in simple stages. Tcl provides several com-
mands, such asformat andlist, that should make this easy to do.

37

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 4
Variables

Tcl supports two kinds of variables: simple variables and associative arrays. This chapter
describes the basic Tcl commands for manipulating variables and arrays, and it also pro-
vides a more complete description of variable substitution. See Table 4.1 for a summary of
the commands discussed in this chapter.

4.1 Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named “xyz !# 22” or “March earnings: $100,472”. In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores, since that makes it easier to use variable substitution.

Variables may be created, read, and modified with theset command, which takes
either one or two arguments. The first argument is the name of a variable and the second, if
present, is a new value for the variable:

set a {Eggs: $2.18/dozen}

⇒ Eggs: $2.18/dozen

set a

⇒ Eggs: $2.18/dozen

set a 44

⇒ 44

FIGURE 4

TABLE 4

38 Variables

DRAFT (8/12/93): Distribution Restricted

The first command above creates a new variablea if it doesn’t already exist and sets its
value to the character sequence “Eggs: $2.18/dozen”. The result of the command is
the new value of the variable. The secondset command has only one argument:a. In this
form it simply returns the current value of the variable. The thirdset command changes
the value ofa to44 and returns that new value.

Although the final value ofa looks like a decimal integer, it is stored as a character
string. Tcl variables can be used to represent many things, such as integers, floating-point
numbers, names, lists, and Tcl scripts, but they are always stored as strings. This use of a
single representation for all values allows different values to be manipulated in the same
way and communicated easily.

 Tcl variables are created automatically when they are assigned values. Variables
don’t have types so there is no need for declarations.

4.2 Arrays

In addition to simple variables Tcl also providesarrays. An array is a collection ofele-
ments, each of which is a variable with its own name and value. The name of an array ele-
ment has two parts: the name of the array and the name of the element within that array.
Both array names and element names may be arbitrary strings. For this reason Tcl arrays

Table 4.1. A summary of the basic commands for manipulating variables. Optional arguments are
indicated by enclosing them in question-marks.

append varName value ?value ...?
Appends each of thevalue arguments to variablevarName, in order. If
varName doesn’t exist then it is created with an empty value before
appending. The return value is the new value ofvarName.

incr varName ?increment?
Addsincrement to the value of variablevarName. Increment and
the old value ofvarName must both be integer strings (decimal,
hexadecimal, or octal). Ifincrement is omitted then it defaults to1. The
new value is stored invarName as a decimal string and returned as the
result of the command.

set varName ?value?
If value is specified, sets the value of variablevarName tovalue. In
any case the command returns the (new) value of the variable.

unset varName ?varName varName ...?
Deletes the variables given by thevarName arguments. Returns an empty
string.

4.3 Variable substitution 39

DRAFT (8/12/93): Distribution Restricted

are sometimes calledassociative arrays to distinguish them from arrays in other lan-
guages where the element names must be integers.

Array elements are referenced using notation likeearnings(January) where the
array name (earnings in this case) is followed by the element name in parentheses
(January in this case). Arrays may be used anywhere that simple variables may be used,
such as in theset command:

set earnings(January) 87966

⇒ 87966

set earnings(February) 95400

⇒ 95400

set earnings(January)

⇒ 87966

The first command creates an array namedearnings, if it doesn’t already exist. Then it
creates an elementJanuary within the array, if it doesn’t already exist, and assigns it the
value87966. The second command assigns a value to theFebruary element of the
array, and the third command returns the value of theJanuary element.

4.3 Variable substitution

Chapter 3 introduced the use of$-notation for substituting variable values into Tcl
commands. This section describes the mechanism in more detail.

Variable substitution is triggered by the presence of an unquoted$ character in a Tcl
command. The characters following the$ are treated as a variable name, and the$ and
name are replaced in the word by the value of the variable. Tcl provides three forms of
variable substitution. So far you have seen only the simplest form, which is used like this:

expr $a+2

In this form the$ is followed by a variable name consisting of letters, digits, and under-
scores. The first character that is not a letter or digit or underscore (“+” in the example)
terminates the name.

The second form of variable substitution allows array elements to be substituted. This
form is like the first one except that the variable name is followed immediately by an ele-
ment name enclosed in parentheses. Variable, command, and backslash substitutions are
performed on the element name in the same way as a command word in double-quotes,
and spaces in the element name are treated as part of the name rather than as word separa-
tors. For example, consider the following script:

set yearTotal 0
foreach month {Jan Feb Mar Apr May Jun Jul Aug Sep \

Oct Nov Dec} {
set yearTotal [expr $yearTotal+$earnings($month)]

}

40 Variables

DRAFT (8/12/93): Distribution Restricted

In theexpr command “$earnings($month)” is replaced with the value of an ele-
ment of the arrayearnings. The element’s name is given by the value of themonth
variable, which varies from iteration to iteration.

The last form of substitution is used for simple variables in places where the variable
name is followed by a letter or number or underscore. For example, suppose that you wish
to pass a value like “1.5m” to a command as an argument but the number is in a variable
size (in Tk you might do this to specify a size in millimeters). If you try to substitute the
variable value with a form like “$sizem” then Tcl will treat them as part of the variable
name. To get around this problem you can enclose the variable name in braces as in the
following command:

.canvas configure -width ${size}m

You can also use braces to specify variable names containing characters other than letters
or numbers or underscores.

Note: Braces can only be used to delimit simple variables. However, they shouldn’t be needed
for arrays since the parentheses already indicate where the variable name ends.

Tcl’s variable substitution mechanism is only intended to handle the most common
situations; there exist scenarios where none of the above forms of substitution achieves the
desired effect. More complicated situations can be handled with a sequence of commands.
For example, theformat command can be used to generate a variable name of almost
any imaginable form,set can be used to read or write the variable with that name, and
command substitution can be used to substitute the value of the variable into other com-
mands.

4.4 Removing variables: unset

Theunset command destroys variables. It takes any number of arguments, each of
which is a variable name, and removes all of the variables. Future attempts to read the
variables will result in errors just as if the variables had never been set in the first place.
The arguments tounset may be either simple variables, elements of arrays, or whole
arrays, as in the following example:

unset a earnings(January) b

In this case the variablesa andb are removed entirely and theJanuary element of the
earnings array is removed. Theearnings array continues to exist after theunset
command. Ifa orb is an array then all of the elements of that array are removed along
with the array itself.

4.5 Multi-dimensional arrays 41

DRAFT (8/12/93): Distribution Restricted

4.5 Multi-dimensional arrays

Tcl only implements one-dimensional arrays, but multi-dimensional arrays can be simu-
lated by concatenating multiple indices into a single element name. The program below
simulates a two-dimensional array indexed with integers:

set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
set i 1
set j 2
set cell $matrix($i,$j)

⇒ 218

Matrix is an array with three elements whose names are “1,1” and “1,2” and “1,3”.
However, the array behaves just as if it were a two-dimensional array; in particular, vari-
able substitution occurs while scanning the element name in theexpr command, so that
the values ofi andj get combined into an appropriate element name.

4.6 The incr and append commands

Incr andappend provide simple ways to change the value of a variable.Incr takes
two arguments, which are the name of a variable and an integer; it adds the integer to the
variable’s value, stores the result back into the variable as a decimal string, and returns the
variable’s new value as result:

set x 43
incr x 12

⇒ 55

The number can have either a positive or negative value. It can also be omitted, in which
case it defaults to1:

set x 43
incr x

⇒ 44

Both the variable’s original value and the increment must be integer strings, either in deci-
mal, octal (indicated by a leading0), or hexadecimal (indicated by a leading0x).

Theappend command adds text to the end of a variable. It takes two arguments,
which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the variable’s new value. The following example usesappend to
compute a table of squares:

42 Variables

DRAFT (8/12/93): Distribution Restricted

set msg ""
foreach i {1 2 3 4 5} {

append msg "$i squared is [expr $i*$i]\n"
}
set msg

⇒ 1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

Neitherincr norappend adds any new functionality to Tcl, since the effects of
both of these commands can be achieved in other ways. However, they provide simple
ways to do common operations. In addition,append is implemented in a fashion that
avoids character copying. If you need to construct a very large string incrementally from
pieces it will be much more efficient to use a command like

append x $piece

instead of a command like

set x "xpiece"

4.7 Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These com-
mands will be introduced in full after you’ve learned more about the Tcl language, but this
section contains a short preview of some of the facilities.

Thetrace command can be used to monitor a variable so that a Tcl script gets
invoked whenever the variable is set or read or unset. Variable tracing is sometimes useful
during debugging, and it allows you to create read-only variables. You can also use traces
for propagation so that, for example, a database or screen display gets updated whenever a
variable changes value. Variable tracing is discussed in Section 13.4.

Thearray command can be used to find out the names of all the elements in an
array and to step through them one at a time (see Section 13.1). It’s possible to find out
what variables exist using theinfo command (see Section 13.2).

Theglobal andupvar commands can be used by a procedure to access variables
other than its own local variables. These commands are discussed in Chapter 8.

43

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 5
Expressions

Expressions combine values (oroperands) with operators to produce new values. For
example, the expression “4+2” contains two operands, “4” and “2”, and one operator,
“+”; it evaluates to6. Many Tcl commands expect one or more of their arguments to be
expressions. The simplest such command isexpr, which just evaluates its arguments as
an expression and returns the result as a string:

expr (8+4) * 6.2

⇒ 74.4

Another example isif, which evaluates its first argument as an expression and uses the
result to determine whether or not to evaluate its second argument as a Tcl script:

if $x<2 then {set x 2}

This chapter uses theexpr command for all of its examples, but the same syntax, substi-
tution, and evaluation rules apply to all other uses of expressions too. See Table 5.1 for a
summary of theexpr command.

5.1 Numeric operands

Expression operands are normally integers or real numbers. Integers are usually specified
in decimal, but if the first character is 0 (zero) then the number is read in octal (base 8) and
if the first two characters are0x then the number is read in hexadecimal (base 16). For
example,335 is a decimal number, 0517 is an octal number with the same value, and
0x14f is a hexadecimal number with the same value.092 is not a valid integer: the lead-
ing 0 causes the number to be read in octal but9 is not a valid octal digit. Real operands

FIGURE 5

TABLE 5

44 Expressions

DRAFT (8/12/93): Distribution Restricted

may be specified using most of the forms defined for ANSI C, including the following
examples:

2.1
7.91e+16
6E4
3.

Note: These same forms are allowable not just in expressions but anywhere in Tcl that an integer
or real value is required.

Expression operands can also be non-numeric strings. String operands are discussed
in Section 5.5.

5.2 Operators and precedence

Table 5.2 lists all of the operators supported in Tcl expressions; they are similar to the
operators for expressions in ANSI C. Horizontal lines separate groups of operators with
the same precedence, and operators with higher precedence appear in the table above
operators with lower precedence. For example,4*2<7 evaluates to0 because the* oper-
ator has higher precedence than<. Except in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this will prevent
errors by you or by others who modify your programs.

Operators with the same precedence group from left to right. For example,10-4-3
is the same as(10-4)-3; it evaluates to3.

5.2.1 Arithmetic operators

Tcl expressions support the arithmetic operators+, -, *, /, and%. The- operator may be
used either as a binary operator for subtraction, as in4-2, or as a unary operator for nega-
tion, as in-(6*$i). The/ operator truncates its result to an integer value if both oper-
ands are integers.% is the modulus operator: its result is the remainder when its first
operand is divided by the second. Both of the operands for% must be integers.

Note: The / and % operators have a more consistent behavior in Tcl than in ANSI C. In Tcl the
remainder is always positive and has an absolute value less than the absolute value of the

Table 5.1. A summary of theexpr command.

expr arg ?arg arg ...?
Concatenates all thearg values together (with spaces in between),
evaluates the result as an expression, and returns a string corresponding to
the expression’s value.

5.2 Operators and precedence 45

DRAFT (8/12/93): Distribution Restricted

divisor. ANSI C guarantees only the second property: In both ANSI C and Tcl the quotient
will always have the property that (x/y)*y + x%y is x., for all x and y.

Table 5.2. Summary of the operators allowed in Tcl expressions. These operators have the same
behavior as in ANSI C except that some of the operators allow string operands. Groups of operands
between horizontal lines have the same precedence; higher groups have higher precedence.

Syntax Result Operand Types

-a Negative ofa int, float

!a Logical NOT: 1 if a is zero, 0 otherwise int, float

~a Bit-wise complement ofa int

a*b Multiply a andb int, float

a/b Divide a byb int, float

a%b Remainder after dividinga byb int

a+b Add a andb int, float

a-b Subtractb froma int, float

a<<b Left-shift a byb bits int

a>>b Arithmetic right-shifta byb bits int

a<b 1 if a is less thanb, 0 otherwise int, float, string

a>b 1 if a is greater thanb, 0 otherwise int, float, string

a<=b 1 if a is less than or equal tob, 0 otherwise int, float, string

a>=b 1 if a is greater than or equal tob, 0 otherwise int, float, string

a==b 1 if a is equal tob, 0 otherwise int, float, string

a!=b 1 if a is not equal tob, 0 otherwise int, float, string

a&b Bit-wise AND ofa andb int

a^b Bit-wise exclusive OR ofa andb int

a|b Bit-wise OR ofa andb int

a&&b Logical AND: 1 if botha andb are non-zero,
0 otherwise

int, float

a||b Logical OR: 1 if eithera is non-zero orb is
non-zero, 0 otherwise

int, float

a?b:c Choice: ifa is non-zero thenb, elsec a: int, float

46 Expressions

DRAFT (8/12/93): Distribution Restricted

5.2.2 Relational operators

The operators< (less than),<= (less than or equal),>=(greater than or equal),> (greater
than),== (equal), and!= (not equal) are used for comparing two values. Each operator
produces a result of1 (true) if its operands meet the condition and0 (false) if they don’t.

5.2.3 Logical operators

The logical operators&&, ||, and! are typically used for combining the results of rela-
tional operators, as in the expression

($x > 4) && ($x < 10)

Each operator produces a0 or1 result.&& (logical “and”) produces a1 result if both its
operands are non-zero,|| (logical “or”) produces a1 result if either of its operands is
non-zero, and! (“not”) produces a1 result if its single operand is zero.

In Tcl, as in ANSI C, a zero value is treated as false and anything other than zero is
treated as true. Whenever Tcl generates a true/false value it uses1 for true and0 for false.

5.2.4 Bitwise operators

Tcl provides six operators that manipulate the individual bits of integers:&, |, ^, <<, >>,
and~. These operators require their operands to be integers. The&, |, and^ operators
perform bitwise and, or, and exclusive or: each bit of the result is generated by applying
the given operation to the corresponding bits of the left and right operands. Note that&
and| do not always produce the same result as&& and||:

expr 8&&2

⇒ 1

expr 8&2

⇒ 0

The operators<< and>> use the right operand as a shift count and produce a result
consisting of the left operand shifted left or right by that number of bits. During left shifts
zeros are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,
meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This
behavior is different from right-shifting in ANSI C, which is machine-dependent.

The~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa.

5.2.5 Choice operator

The ternary operator?: may be used to select one of two results:

expr {($a < $b) ? $a : $b}

5.3 Math functions 47

DRAFT (8/12/93): Distribution Restricted

This expression returns the smaller of$a and$b. The choice operator checks the value of
its first operand for truth or falsehood. If it is true (non-zero) then the argument following
the? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second and third arguments
is evaluated.

5.3 Math functions

Tcl expressions support a number of mathematical functions such assin andexp. Math
functions are invoked using standard functional notation:

expr 2*sin($x)
expr hypot($x, $y) + $z

The arguments to math functions may be arbitrary expressions, and multiple arguments
are separated by commas. See Table 5.3 for a list of all the built-in functions.

5.4 Substitutions

Substitutions can occur in two ways for expression operands. The first way is through the
normal Tcl parser mechanisms, as in the following command:

expr 2*sin($x)

In this case the Tcl parser substitutes the value of variablex before executing the com-
mand, so the first argument toexpr will have a value such as “2*sin(0.8)”. The sec-
ond way is through the expression evaluator, which performs an additional round of
variable and command substitution on the expression while evaluating it. For example,
consider the command:

expr {2*sin($x)}

In this case the braces prevent the Tcl parser from substituting the value ofx, so the argu-
ment toexpr is “2*sin($x)”. When the expression evaluator encounters the dollar-
sign it performs variable substitution itself, using the value of variablex as the argument
to sin.

Having two layers of substitution doesn’t usually make any difference for theexpr
command, but it is vitally important for other commands likewhile that evaluate an
expression repeately and expect to get different results each time. For example, consider
the following script that raises a base to a power:

set result 1
while {$power>0} {

set result [expr $result*$base]
incr power -1

}

48 Expressions

DRAFT (8/12/93): Distribution Restricted

The expression “$power>0” gets evaluated bywhile at the beginning of each iteration
to decide whether or not to terminate the loop. It is essential that the expression evaluator
use a new value ofpower each time. If the variable substitution were performed while
parsing thewhile command, for example “while $power>0 ...”, thenwhile’s
argument would be a constant expression such as “5>0”; either the loop would never exe-
cute or it would execute forever.

Table 5.3. The mathematical functions supported in Tcl expressions. In most cases the functions
have the same behavior as the ANSI C library procedures with the same names.

Function Result

abs(x) Absolute value ofx.

acos(x) Arc cosine ofx, in the range 0 toπ.

asin(x) Arc sine ofx, in the range -π/2 toπ/2.

atan(x) Arc tangent ofx, in the range -π/2 toπ/2.

atan2(x,y) Arc tangent ofx/y, in the range -π/2 toπ/2.

ceil(x) Smallest integer not less thanx.

cos(x) Cosine ofx (x in radians).

cosh(x) Hyperbolic cosine ofx.

double(i) Real value equal to integeri.

exp(x) e raised to the powerx.

floor(x) Largest integer not greater thanx.

fmod(x,y) Floating-point remainder ofx divided byy.

hypot(x,y) Square root of (x2 + y2).

int(x) Integer value produced by truncatingx.

log(x) Natural logarithm ofx.

log10(x) Base 10 logarithm ofx.

pow(x,y) x raised to the powery.

round(x) Integer value produced by roundingx.

sin(x) Sine ofx (x in radians).

sinh(x) Hyperbolic sine ofx.

sqrt(x) Square root ofx.

tan(x) Tangent ofx (x in radians).

tanh(x) Hyperbolic tangent ofx.

5.5 String manipulation 49

DRAFT (8/12/93): Distribution Restricted

Note: When the expression evaluator performs variable or command substitution the value
substituted must be an integer or real number (or a string, as described below). It cannot
be an arbitrary expression.

5.5 String manipulation

Unlike expressions in ANSI C, Tcl expressions allow som simple string operations, as in
the following command:

if {$x == "New York"} {
...
}

In this example the expression evaluator compares the value of variablex to the string
“New York” using string comparison; the body of theif will be executed if they are
identical. In order to specify a string operand you must either enclose it in quotes or braces
or use variable or command substitution. It is important that the expression in the above
example is enclosed in braces so that the expression evaluator substitutes the value ofx; if
the braces are left out then the argument toif will be a string like

Los Angeles == "New York"

The expression parser will not be able to parse “Los” (it isn’t a number, it doesn’t make
sense as a function name, and it can’t be interpreted as a string because it isn’t delimited)
so a syntax error will occur.

If a string is enclosed in quotes then the expression evaluator performs command,
variable, and backslash substitution on the characters between the quotes. If a string is
enclosed in braces then no substitutions are performed. Braces nest for strings in expres-
sions in the same way that they nest for words of a command.

The only operators that allow string operands are<, >, <=, >=, ==, and !=. For all
other operators the operands must be numeric. For operators like< the strings are com-
pared lexicographically using the system’sstrcmp library function; the sorting order
may vary from system to system.

5.6 Types and conversions

Tcl evaluates expressions numerically whenever possible. String operations are only per-
formed for the relational operators and only if one or both of the operands doesn’t make
sense as a number. Most operators permit either integer or real operands but a few, such as
<< and&, allow only integers.

If the operands for an operator have different types then Tcl automatically converts
one of them to the type of the other. If one operand is an integer and the other is a real then
the integer operand is converted to real. If one operand is a non-numeric string and the
other is an integer or real then the integer or real operand is converted to a string. The

50 Expressions

DRAFT (8/12/93): Distribution Restricted

result of an operation always has the same type as the operands except for relational oper-
ators like<, which always produce 0/1 integer results. You can use the math function
double to explicitly promote an integer to a real, andint andround to convert a real
value back to integer by truncation or rounding.

5.7 Precision

During expression evaluation Tcl represents integers internally with the C typeint,
which provides at least 32 bits of precision on most machines. Real numbers are repre-
sented with with the C typedouble, which is usually represented with 64-bit values
(about 15 decimal digits of precision) using the IEEE Floating Point Standard.

Numbers are kept in internal form throughout the evaluation of an expression and are
only converted back to strings when necessary, such as whenexpr returns its result. Inte-
gers are converted to signed decimal strings without any loss of precision. When a real
value is converted to a string only six significant digits are retained by default:

expr 1.11111111 + 1.11111111

⇒ 2.22222

If you would like more significant digits to be retained when real values are converted to
strings you can set thetcl_precision global variable with the desired number of sig-
nificant digits:

set tcl_precision 12
expr 1.11111111 + 1.11111111

⇒ 2.22222222

Thetcl_precision variable is used not just for theexpr command but anywhere
that a Tcl application converts a real number to a sting.

Note: If you settcl_precision to 17 on a machine that uses IEEE floating point, you will
guarantee that string conversions do not lose information: if an expression result is
converted to a string and then later used in a different expression, the internal form after
conversion back from the string will be identical to the internal form before converting to
the string.

51

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 6
Lists

Lists are used in Tcl to deal with collections of things, such as all the users in a group or all
the files in a directory or all the options for a widget. Lists allow you to collect together
any number of values in one place, pass around the collection as a single entity, and later
get the component values back again. A list is an ordered collection ofelements where
each element can have any string value, such as a number, a person’s name, the name of a
window, or a word of a Tcl command. Lists are represented as strings with a particular
structure; this means that you can store lists in variables, type them to commands, and nest
them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elements (see Table 6.1 for a summary).
There are other Tcl commands besides those described in this chapter that take lists as
arguments or return them as results; these other commands will be described in later chap-
ters.

6.1 Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by
spaces or tabs. For example, the string

John Anne Mary Jim

FIGURE 6

TABLE 6

52 Lists

DRAFT (8/12/93): Distribution Restricted

Table 6.1. A summary of the list-related commands in Tcl.

concat list ?list ...?
Joins multiple lists into a single list (each element of eachlist becomes an
element of the result list) and returns the new list.

join list ?joinString?
Concatenates list elements together withjoinString as separator and
returns the result.

lappend varName value ?value ...?
Appends eachvalue to variablevarName as a list element and returns the
new value of the variable. Creates the variable if it doesn’t already exist.

lindex list index
Returns theindex’ th element fromlist.

linsert list index value ?value ...?
Returns a new list formed by inserting all of thevalue arguments as list
elements beforeindex’ th element oflist.

list value ?value ...?
Returns a list whose elements are thevalue arguments.

llength list
Returns the number of elements inlist.

lrange list first last
Returns a list consisting of elementsfirst throughlast of list. If
last isend then it selects all elements up to the end of the list.

lreplace list first last ?value value ...?
Returns a new list formed by replacing elementsfirst throughlast of
list with zero or more new elements, each formed from onevalue argu-
ment.

lsearch ?-exact? ?-glob? ?-regexp? list pattern
Returns the index of the first element inlist that matchespattern or-1
if none. The optional switch selects a pattern-matching technique (default:
-glob).

lsort ?-ascii? ?-integer? ?-real? ?-command command? \
?-increasing? ?-decreasing? list

Returns a new list formed by sorting the elements oflist. The switches
determine the comparison function and sorted order (default:-ascii
-increasing).

split string ?splitChars?
Returns a list formed by splittingstring at instances ofsplitChars and
turning the characters between these instances into list elements.

6.2 Creating lists: concat, list, and llength 53

DRAFT (8/12/93): Distribution Restricted

is a list with four elements. There can be any number of elements in a list, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).

Thelindex command extracts an element from a list:

lindex {John Anne Mary Jim} 1

⇒ Anne

Lindex takes two arguments, a list and an index, and returns the selected element of the
list. An index of0 corresponds to the first element of the list,1 corresponds to the second
element, and so on. If the index is outside the range of the list then an empty string is
returned.

 When a list is entered in a Tcl command the list is usually enclosed in braces, as in
the above example. The braces are not part of the list; they are needed on the command
line to pass the entire list to the command as a single word. When lists are stored in vari-
ables or printed out, there are no braces around them:

set x {John Anne Mary Jim}

⇒ John Anne Mary Jim

Curly braces and backslashes within list elements are handled by the list commands in
the same way that the Tcl command parser treats them in words. This means that you can
enclose a list element in braces if it contains spaces, and you can use backslash substitu-
tion to get special characters such as braces into list elements. Braces are often used to nest
lists within lists, as in the following example:

lindex {a b {c d e} f} 2

⇒ c d e

In this case element 2 of the list is itself a list with three elements. There is no limit on how
deeply lists may be nested.

6.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to produce lists:concat and
list. Each of these commands accepts an arbitrary number of arguments, and each pro-
duces a list as a result. However, they differ in the way they combine their arguments. The
concat command takes one or more lists as arguments and joins all of the elements of
the argument lists together into a single large list:

concat {a b c} {d e} f {g h i}

⇒ a b c d e f g h i

Concat expects its arguments to have proper list structure; if the arguments are not well-
formed lists then the result may not be a well-formed list either. In fact, all thatconcat
does is to concatenate its argument strings into one large string with space characters
between the arguments. The same effect asconcat can be achieved using double-quotes:

54 Lists

DRAFT (8/12/93): Distribution Restricted

set x {a b c}
set y {d e}
set z [concat $x $y]

⇒ a b c d e

set z "$x $y"

⇒ a b c d e

Thelist command joins its arguments together so that each argument becomes a
distinct element of the resulting list:

list {a b c} {d e} f {g h i}

⇒ {a b c} {d e} f {g h i}

In this case, the result list contains only four elements. Thelist command will always
produce a list with proper structure, regardless of the structure of its arguments (it adds
braces or backslashes as needed), and thelindex command can always be used to
extract the original elements of a list created withlist. The arguments tolist need not
themselves be well-formed lists.

Thellength command returns the number of elements in a list:

llength {{a b c} {d e} f {g h i}}

⇒ 4

llength a

⇒ 1

llength {}

⇒ 0

As you can see from the examples, a simple string like “a” is a proper list with one ele-
ment and an empty string is a proper list with zero elements.

6.3 Modifying lists: linsert, lreplace, lrange, and lappend

Thelinsert command forms a new list by adding one or more elements to an existing
list:

set x {a b {c d} e}

⇒ a b {c d} e

linsert $x 2 X Y Z

⇒ a b X Y Z {c d} e

linsert $x 0 {X Y} Z

⇒ {X Y} Z a b {c d} e

Linsert takes three or more arguments. The first is a list, the second is the index of an
element within that list, and the third and additional arguments are new elements to insert
into the list. The return value fromlinsert is a list formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-

6.3 Modifying lists: linsert, lreplace, lrange, and lappend 55

DRAFT (8/12/93): Distribution Restricted

ments go at the beginning of the list; if it is one then the new elements go after the first
element in the old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.

Thelreplace command deletes elements from a list and optionally adds new ele-
ments in their place. It takes three or more arguments. The first argument is a list and the
second and third arguments give the indices of the first and last elements to be deleted. If
only three arguments are specified then the result is a new list produced by deleting the
given range of elements from the original list:

lreplace {a b {c d} e} 3 3

⇒ a b {c d}

 If additional arguments are specified tolreplace as in the example below, then they
are inserted into the list in place of the elements that were deleted.

lreplace {a b {c d} e} 1 2 {W X} Y Z

⇒ a {W X} Y Z e

Thelrange command extracts a range of elements from a list. It takes as arguments
a list and two indices and it returns a new list consisting of the range of elements that lie
between the two indices (inclusive):

set x {a b {c d} e}

⇒ a b {c d} e

lrange $x 1 3

⇒ b {c d} e

lrange $x 0 1

⇒ a b

Thelappend command provides an efficient way to append new elements to a list
stored in a variable. It takes as arguments the name of a variable and any number of addi-
tional arguments. Each of the additional arguments is appended to the variable’s value as a
new list element andlappend returns the variable’s new value:

set x {a b {c d} e}

⇒ a b {c d} e

lappend x XX {YY ZZ}

⇒ a b {c d} e XX {YY ZZ}

set x

⇒ a b {c d} e XX {YY ZZ}

Lappend is similar toappend except that it enforces proper list structure. As with
append, it isn’t strictly necessary. For example, the command

lappend x $a $b $c

could be written instead as

set x "$x [list $a $b $c]"

56 Lists

DRAFT (8/12/93): Distribution Restricted

However, as withappend, lappend is implemented in a way that avoids string copies.
For large lists this can make a big difference in performance.

6.4 Searching lists: lsearch

Thelsearch command searches a list for an element with a particular value. It takes
two arguments, the first of which is a list and second of which is a pattern:

set x {John Anne Mary Jim}
lsearch $x Mary

⇒ 2

lsearch $x Phil

⇒ -1

Lsearch returns the index of the first element in the list that matches the pattern, or-1 if
there was no matching element.

One of three different pattern matching techniques can be selected by specifying one
of the switches-exact, -glob, and-regexp before the list argument:

lsearch -glob $x A*

⇒ 1

The-glob switch causes matching to occur with the rules of thestring match com-
mand described in Section 10.1. A-regexp switch causes matching to occur with regu-
lar expression rules as described in Section 10.2, and-exact insists on an exact match
only. If no switch is specified then-glob is assumed by default.

6.5 Sorting lists: lsort

Thelsort command takes a list as argument and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:

lsort {John Anne Mary Jim}

⇒ Anne Jim John Mary

You can precede the list with any of several switches to control the sort. For example,
-decreasing specifies that the result should have the “largest” element first and
-integer specifies that the elements should be treated as integers and sorted according
to integer value:

lsort -decreasing {John Anne Mary Jim}

⇒ Mary John Jim Anne

lsort {10 1 2}

⇒ 1 10 2

6.6 Converting between strings and lists: split and join 57

DRAFT (8/12/93): Distribution Restricted

lsort -integer {10 1 2}

⇒ 1 2 10

You can use the-command option to specify your own sorting function (see the reference
documentation for details).

6.6 Converting between strings and lists: split and join

Thesplit command breaks up a string into component pieces so that you can process
the pieces independently. It creates a list whose elements are the pieces, so that you can
use any of the list commands to process the pieces. For example, suppose a variable con-
tains a UNIX file name with components separated by slashes, and you want to convert it
to a list with one element for each component:

set x a/b/c
set y /usr/include/sys/types.h
split $x /

⇒ a b c

split $y /

⇒ {} usr include sys types.h

The first argument tosplit is the string to be split up and the second argument contains
one or moresplit characters. Split locates all instances of any of the split characters in
the string. It then creates a list whose elements consist of the substrings between the split
characters. The ends of the string are also treated as split characters. If there are consecu-
tive split characters or if the string starts or ends with a split character as in the second
example, then empty elements are generated in the result list. The split characters them-
selves are discarded. Several split characters can be specified, as in the following example:

split xbaybz ab

⇒ x {} y z

If an empty string is specified for the split characters then each character of the string is
made into a separate list element:

split {a b c} {}

⇒ a { } b { } c

Thejoin command is approximately the inverse ofsplit. It concatenates list ele-
ments together with a given separator string between them:

join {{} usr include sys types.h} /

⇒ /usr/include/sys/types.h

set x {24 112 5}
expr [join $x +]

⇒ 141

58 Lists

DRAFT (8/12/93): Distribution Restricted

Join takes two arguments: a list and a separator string. It extracts all of the elements from
the list and concatenates them together with the separator string between each pair of ele-
ments. The separator string can contain any number of characters, including zero. In the
first example above a file name is generated by joining the list elements with “/”. In the
second example a Tcl expression is generated by joining the list elements with “+”.

One of the most common uses forsplit andjoin is for dealing with file names as
shown above. Another common use is for splitting up text into lines by using newline as
the split character.

6.7 Lists and commands

There is a very important relationship between lists and commands in Tcl. Any proper list
is also a well-formed Tcl command. If a list is evaluated as a Tcl script then it will consist
of a single command whose words are the list elements. In other words, the Tcl parser will
perform no substitutions whatsoever: it will simply extract the list elements with each ele-
ment becoming one word of the command. This property is very important because it
allows you to generate Tcl commands that are guaranteed to parse in a particular fashion
even if some of the command’s words contain special characters like spaces or$.

For example, suppose you are creating a button widget in Tk, and when the user
clicks on the widget you would like to reset a variable to a particular value. You might cre-
ate such a widget with a command like this:

button .b -text "Reset" -command {set x 0}

The Tcl script “set x 0” will be evaluated whenever the user clicks on the button. Now
suppose that the value to be stored in the variable is not constant, but instead is computed
just before thebutton command and must be taken from a variableinitValue. Fur-
thermore, suppose thatinitValue could contain any string whatsoever. You might
rewrite the command as

button .b -text "Reset" -command {set x $initValue}

The script “set x $initValue” will be evaluated when the user clicks on the button.
However, this will use the value ofinitValue at the time the user clicks on the button,
which may not be the same as the value when the button was created. For example, the
same variable might be used to create several buttons, each with a different intended reset
value.

To solve this problem you must generate a Tcl command that contains thevalue of the
initValue variable, not its name, and use this as part of the -command option for the
button command. Unfortunately, a simple approach like

button .b -text "Reset" -command "set x $initValue"

will not work in general. If the value ofinitValue is something simple like47 then
this will work fine: the resulting command will be “set x 47”, which will produce the
desired result. However, what ifinitValue contains “New York”? In this case the

6.7 Lists and commands 59

DRAFT (8/12/93): Distribution Restricted

resulting command will be “set x New York”, which has four words;set will gener-
ate an error because there are too many arguments. Even worse, what ifinitValue con-
tains special characters like “$” or “[”? These characters could cause unwanted
substitutions to occur when the command is evaluated.

The only solution that is guaranteed to work for any value ofinitValue is to use
list commands to generate the command, as in the following example:

button .b -text "Reset" -command [list set x $initValue]

The result of thelist command is a Tcl command whose first word will beset, whose
second word will bex, and whose third word will be the value ofinitValue. The com-
mand will always produce the desired result: whatever value is stored ininitValue at
the timebutton is invoked will be stored inx when the widget is invoked. For example,
suppose that the value ofinitValue is “New York”. The command generated by
list will be “set x {New York}”, which will parse and execute correctly. Any of
the Tcl special characters will also be handled correctly bylist:

set initValue {Earnings: $1410.13}
list set x $initValue

⇒ set x {Earnings: $1410.13}

set initValue "{ \\"
list set x $initValue

⇒ set x \{\ \\

60 Lists

DRAFT (8/12/93): Distribution Restricted

61

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 7
Control Flow

This chapter describes the Tcl commands for controlling the flow of execution in a script.
Tcl’s control flow commands are similar to the control flow statements in the C program-
ming language andcsh, includingif, while, for, foreach, switch, andeval.
Table 7.1 summarizes these commands.

7.1 The if command

Theif command evaluates an expression, tests its result, and conditionally executes a
script based on the result. For example, consider the following command, which sets vari-
ablex to zero if it was previously negative:

if {$x < 0} {
set x 0

}

In this caseif receives two arguments. The first is an expression and the second is a Tcl
script. The expression can have any of the forms for expressions described in Chapter 5.
Theif command evaluates the expression and tests the result; if it is non-zero thenif
evaluates the Tcl script. If the value is zero thenif returns without taking any further
action.

If commands can also include one or moreelseif clauses with additional tests
and scripts, plus a finalelse clause with a script to evaluate if no test succeeds:

FIGURE 7

TABLE 7

62 Control Flow

DRAFT (8/12/93): Distribution Restricted

Table 7.1. A summary of the Tcl commands for controlling the flow of execution.

break
Terminates the innermost nested looping command.

continue
Terminates the current iteration of the innermost looping command and
goes on to the next iteration of that command.

eval arg ?arg arg ...?
Concatenates all of thearg’s with separator spaces, then evaluates the
result as a Tcl script and returns its result.

for init test reinit body
Executesinit as a Tcl script. Then evaluatestest as an expression. If it
evaluates to non-zero then executesbody as a Tcl script, executesreinit
as a Tcl script, and re-evaluatestest as an expression. Repeats untiltest
evaluates to zero. Returns an empty string.

foreach varName list body
For each element oflist, in order, set variablevarName to that value
and executebody as a Tcl script. Returns an empty string.List must be a
valid Tcl list.

if test1 ?then? body1 ?elseif test2 ?then? body2 elseif ...? \
?else? ?bodyn?

Evaluatestest as an expression. If its value is non-zero then executes
body1 as a Tcl script and returns its value . Otherwise evaluatestest2 as
an expression; if its value is non-zero then executesbody2 as a script and
returns its value. If no test succeeds then executesbodyn as a Tcl script
and returns its result.

source fileName
Reads the file whose name isfileName and evaluates its contents as a Tcl
script. Returns the result of the script.

switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}

Matchesstring against eachpattern in order until a match is found,
then executes thebody corresponding to the matchingpattern. If the
lastpattern isdefault then it matches anything. Returns the result of
thebody executed, or an empty string if no pattern matches.Options
may be any of-exact, -glob, -regexp, or--.

while test body
Evaluatestest as an expression. If its value is non-zero then executes
body as a Tcl script and re-evaluatestest. Repeats untiltest evaluates
to zero. Returns an empty string.

7.2 Looping commands: while, for, and foreach 63

DRAFT (8/12/93): Distribution Restricted

if {$x < 0} {
...

} elseif {$x == 0} {
...

} elseif {$x == 1} {
...

} else {
...

}

This command will execute one of the four scripts indicated by “...” depending on the
value ofx. The result of the command will be the result of whichever script is executed. If
anif command has noelse clause and none of its tests succeeds then it returns an
empty string.

The argumentelse is an optional “noise word”. It is also legal to havethen noise
words after any of the expressions to test. Theelseif words are not optional: they are
needed to distinguishelseif clauses fromelse clauses.

Remember that the expressions and scripts forif and other control flow commands
are parsed using the same approach as all arguments to all Tcl commands. It is almost
always a good idea to enclose the expressions and scripts in braces so that substitutions are
deferred until the the command is executed. Furthermore, each open brace must be on the
same line as the preceding word or else the newline will be treated as a command separa-
tor. The following script is parsed as two commands, which probably isn’t the desired
result:

if {$x < 0}
{

set x 0
}

7.2 Looping commands: while, for, and foreach

Tcl provides three commands for looping:while, for, andforeach. While andfor
are similar to the corresponding C statements andforeach is similar to the correspond-
ing feature of thecsh shell. Each of these commands executes a nested script over and
over again; they differ in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhile command takes two arguments: an expression and a Tcl script. It evalu-
ates the expression and if the result is non-zero then it executes the Tcl script. This process
repeats over and over until the expression evaluates to zero, at which point thewhile
command terminates and returns an empty string. For example, the script below copies a
list from variableb to variablea, reversing the order of the elements along the way:

64 Control Flow

DRAFT (8/12/93): Distribution Restricted

set b ""
set i [expr [llength $a] -1]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

Thefor command is similar towhile except that it provides more explicit loop
control. The program to reverse the elements of a list can be rewritten usingfor as fol-
lows:

set b ""
for {set i [expr [llength $a]-1]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

The first argument tofor is an initialization script, the second is an expression that deter-
mines when to terminate the loop, the third is a reinitialization script, which is evaluated
after each execution of the loop body before evaluating the test again, and the fourth argu-
ment is a script that forms the body of the loop.For executes its first argument (the ini-
tialization script) as a Tcl command, then evaluates the expression. If the expression
evaluates to non-zero, thenfor executes the body followed by the reinitialization script
and re-evaluates the expression. It repeats this sequence over and over again until the
expression evaluates to zero. If the expression evaluates to zero on the first test then nei-
ther the body script nor the reinitialization script is ever executed. Likewhile, for
returns an empty string as result.

For andwhile are equivalent in that anything you can write using one command
you can also write using the other command. However, for has the advantage of placing
all of the loop control information in one place where it is easy to see. Typically the initial-
ization, test, and re-initialization arguments are used to select a set of elements to operate
on (integer indices in the above example) and the body of the loop carries out the opera-
tions on the chosen elements. This clean separation between element selection and action
makesfor loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
while loop may make more sense.

Theforeach command iterates over all of the elements of a list. For example, the
following script provides yet another implementation of list reversal:

set b "";
foreach i $a {

set b [linsert $b 0 $i]
}

Foreach takes three arguments. The first is the name of a variable, the second is a list,
and the third is a Tcl script that forms the body of the loop.Foreach will execute the
body script once for each element of the list, in order. Before executing the body in each
iteration,foreach sets the variable to hold the next element of the list. Thus if variablea
has the value “first second third” in the above example, the body will be exe-

7.3 Loop control: break and continue 65

DRAFT (8/12/93): Distribution Restricted

cuted three times. In the first iterationi will have the valuefirst, in the second iteration
it will have the valuesecond, and in the third iteration it will have the valuethird. At
the end of the loop, b will have the value “third second first” andi will have the
value “third”. As with the other looping commands,foreach always returns an empty
string.

7.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:
break andcontinue. These commands have the same behavior as the corresponding
statements in C. Neither takes any arguments. Thebreak command causes the innermost
enclosing looping command to terminate immediately. For example, suppose that in the
list reversal example above it is desired to stop as soon as an element equal toZZZ is
found in the source list. In other words, the result list should consist of a reversal of only
those source elements up to (but not including) aZZZ element. This can be accomplished
with break as follows:

set b "";
foreach i $a {

if {$i == "ZZZ"} break
set b [linsert $b 0 $i]

}

Thecontinue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the case ofwhile, this means
skipping out of the body and re-evaluating the expression that determines when the loop
terminates; infor loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, whereZZZ elements are simply skipped without copying them to the
result list:

set b "";
foreach i $a {

if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

}

7.4 The switch command

Theswitch command tests a value against a number of patterns and executes one of
several Tcl scripts depending on which pattern matched. The same effect asswitch can
be achieved with anif command that has lots ofelseif clauses, butswitch provides
a more compact encoding. Tcl’sswitch command has two forms; here is an example of
the first form:

66 Control Flow

DRAFT (8/12/93): Distribution Restricted

switch $x {a {incr t1} b {incr t2} c {incr t3}}

The first argument toswitch is the value to be tested (the contents of variablex in the
example). The second argument is a list containing one or more pairs of elements. The first
argument in each pair is a pattern to compare against the value, and the second is a script
to execute if the pattern matches. Theswitch command steps through these pairs in
order, comparing the pattern against the value. As soon as it finds a match it executes the
corresponding script and returns the value of that script as its value. If no pattern matches
then no script is executed andswitch returns an empty string. This particular command
increments variablet1 if x has the value a,t2 if x has the valueb, t3 if x has the value
c, and does nothing otherwise.

The second form spreads the patterns and scripts out into separate arguments rather
than combining them all into one list:

switch $x a {incr t1} b {incr t2} c {incr t3}

This form has the advantage that you can invoke substitutions on the pattern arguments
more easily, but most people prefer the first form because you can easily spread the pat-
terns and scripts across multiple lines like this:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}

}

The outer braces keep the newlines from being treated as command separators. With the
second form you would have to use backslash-newlines like this:

switch $x \
a {incr t1} \
b {incr t2} \
c {incr t3} \

}

Theswitch command supports three forms of pattern matching. You can precede
the value to test with a switch that selects the form you want:-exact selects exact com-
parison,-glob selects pattern matching as in thestring match command (see Sec-
tion 10.1 for details) and-regexp selects regular-expression matching as described in
Section 10.2. The default is-glob.

If the last pattern in aswitch command isdefault then it matches any value. Its
script will thus be executed if no other patterns match. For example, the script below will
examine a list and produce three counters. The first,t1, counts the number of elements in
the list that contain ana. The second,t2, counts the number of elements that are unsigned
decimal integers. The third,t3, counts all of the other elements:

7.5 Eval 67

DRAFT (8/12/93): Distribution Restricted

set t1 0
set t2 0
set t3 0
foreach i $x {

switch -regexp $i in {
a {incr t1}
^[0-9]*$ {incr t2}
default {incr t3}

}
}

If a script in aswitch command is “-” thenswitch uses the script for the next
pattern instead. This makes it easy to have several patterns that all execute the same script,
as in the following example:

switch $x {
a -
b -
c {incr t1}
d {incr t2}

}

This script increments variablet1 if x isa, b, orc and it incrementst2 if x isd.

7.5 Eval

Eval is a general-purpose building block for creating and executing Tcl scripts. It accepts
any number of arguments, concatenates them together with separator spaces, and then exe-
cutes the result as a Tcl script. One use ofeval is for generating commands, saving them
in variables, and then later evaluating the variables as Tcl scripts. For example, the script

set cmd "set a 0"
...
eval $cmd

clears variablea to0 when theeval command is invoked.
Perhaps the most important use foreval is to force another level of parsing. The Tcl

parser performs only level of parsing and substitution when parsing a command; the
results of one substitution are not reparsed for other substitutions. However, there are
occasionally times when another level of parsing is desirable, andeval provides the
mechanism to achieve this. For example, suppose that a variablevars contains a list of
variables and that you wish to unset each of these variables. One solution is to use the fol-
lowing script:

foreach i $vars {
unset $i

}

68 Control Flow

DRAFT (8/12/93): Distribution Restricted

This script will work just fine, but theunset command takes any number of arguments
so it should be possible to unset all of the variables with a single command. Unfortunately
the following script will not work:

unset $vars

The problem with this script is that all of the variable names are passed tounset as a sin-
gle argument, rather than using a separate argument for each name. The solution is to use
eval, as with the following command:

eval unset $vars

Eval generates a string consisting of “unset ” followed by the list of variable names
and then passes the string to Tcl for evaluation. The string gets re-parsed so each variable
name ends up in a different argument tounset.

Note: This approach works even if some of the variable names contain spaces or special
characters such as$. As described in Section 6.7, the only safe way to generate Tcl
commands is using list operations such aslist andconcat. The command “eval
unset $vars” is identical to the command “eval [concat unset $vars]”; in
either case the script evaluated byeval is a proper list whose first element is “unset”
and whose other elements are the elements ofvars.

7.6 Executing from files: source

Thesource command is similar to the command by the same name in thecsh shell: it
reads a file and executes the contents of the file as a Tcl script. It takes a single argument
that contains the name of the file. For example, the command

source init.tcl

will execute the contents of the fileinit.tcl. The return value fromsource will be
the value returned when the file contents are executed, which is the return value from the
last command in the file. In addition,source allows thereturn command to be used in
the file’s script to terminate the processing of the file. See Section 8.1 for more informa-
tion onreturn.

69

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 8
Procedures

A Tcl procedure is a command that is implemented with a Tcl script rather than C code.
You can define new procedures at any time with theproc command described in this
chapter. Procedures make it easy for you to package up solutions to problems so that they
can be re-used easily. Procedures also provide a simple way for you to prototype new fea-
tures in an application: once you’ve tested the procedures, you can reimplement them in C
for higher performance; the C implementations will appear just like the original proce-
dures so none of the scripts that invoke them will have to change.

Tcl provides special commands for dealing with variable scopes. Among other things,
these commands allow you to pass arguments by reference instead of by value and to
implement new Tcl control structures as procedures. Table 8.1 summarizes the Tcl com-
mands related to procedures.

8.1 Procedure basics: proc and return

Procedures are created with theproc command, as in the following example:

proc plus {a b} {expr $a+$b}

The first argument toproc is the name of the procedure to be created,plus in this case.
The second argument is a list of names of arguments to the procedure (a andb in the
example). The third argument toproc is a Tcl script that forms the body of the new pro-
cedure.Proc creates a new command and arranges that whenever the command is
invoked the procedure’s body will be evaluated. In this case the new command will have
the nameplus; wheneverplus is invoked it must receive two arguments. While the

FIGURE 8

TABLE 8

70 Procedures

DRAFT (8/12/93): Distribution Restricted

body ofplus is executing the variablesa andb will contain the values of the arguments.
The return value from theplus command is the value returned by the last command in
plus’s body. Here are some correct and incorrect invocations ofplus:

plus 3 4

⇒ 7

plus 3 -1

⇒ 2

plus 1

∅ no value given for parameter "b" to "plus"

If you wish for a procedure to return early without executing its entire script, you can
invoke thereturn command: it causes the enclosing procedure to return immediately

Table 8.1. A summary of the Tcl commands related to procedures and variable scoping.

global name1 ?name2 ...?
Binds variable namesname1, name2, etc. to global variables. References
to these names will refer to global variables instead of local variables for
the duration of the current procedure. Returns an empty string.

proc name argList body
Defines a procedure whose name isname, replacing any existing command
by that name.ArgList is a list with one element for each of the
procedure’s arguments, andbody contains a Tcl script that is the
procedure’s body. Returns an empty string.

return ?options? ?value?
Returns from the innermost nested procedure orsource command with
value as the result of the procedure.Value defaults to an empty string.
Additional options may be used to trigger an exceptional return (see
Section 9.4).

uplevel ?level? arg ?arg arg ...?
Concatenates all of thearg’s with spaces as separators, then executes the
resulting Tcl script in the variable context of stack levellevel . Level
consists of a number or a number preceded by#, and defaults to-1.
Returns the result of the script.

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?
Binds the local variable namemyVar1 to the variable at stack levellevel
whose name isotherVar1. For the duration of the current procedure,
variable references tomyVar1 will be directed tootherVar1 instead.
Additional bindings may be specified withotherVar2 andmyVar2, etc.
Level has the same syntax and meaning as foruplevel and defaults to-
1. Returns an empty string.

8.2 Local and global variables 71

DRAFT (8/12/93): Distribution Restricted

and the argument toreturn will be the result of the procedure. Here is an implementa-
tion of factorial that usesreturn:

proc fac x {
if {$x <= 1} {

return 1
}
expr $x * [fac [expr $x-1]]

}

fac 4

⇒ 24

fac 0

⇒ 1

If the argument tofac is less than or equal to one thenfac invokesreturn to return
immediately. Otherwise it executes theexpr command. Theexpr command is the last
one in the procedure’s body, so its result is returned as the result of the procedure.

8.2 Local and global variables

When the body of a Tcl procedure is evaluated it uses a different set of variables from its
caller. These variables are calledlocal variables, since they are only accessible within the
procedure and are deleted when the procedure returns. Variables referenced outside any
procedure are calledglobal variables. It is possible to have a local variable with the same
name as a global variable or a local variable in another active procedure, but these will be
different variables: changes to one will not affect any of the others. If a procedure is
invoked recursively then each recursive invocation will have a distinct set of local vari-
ables.

The arguments to a procedure are just local variables whose values are set from the
words of the command that invoked the procedure. When execution begins in a procedure,
the only local variables with values are those corresponding to arguments. Other local
variables are created automatically when they are set.

A procedure can reference global variables with theglobal command. For exam-
ple, the following command makes the global variablesx andy accessible inside a proce-
dure:

global x y

Theglobal command treats each of its arguments as the name of a global variable and
sets up bindings so that references to those names within the procedure will be directed to
global variables instead of local ones.Global can be invoked at any time during a proce-
dure; once it has been invoked, the bindings will remain in effect until the procedure
returns.

72 Procedures

DRAFT (8/12/93): Distribution Restricted

Note: Tcl does not provide a form of variable equivalent to “static” variables in C, which are
limited in scope to a given procedure but have values that persist across calls to the
procedure. In Tcl you must use global variables for purposes like this. To avoid name
conflicts with other such variables you should include the name of the procedure or the
name of its enclosing package in the variable name, for example
“ Hypertext_numLinks”.

8.3 Defaults and variable numbers of arguments

In the examples so far, the second argument toproc (which describes the arguments to
the procedure) has taken a simple form consisting of the names of the arguments. Three
additional features are available for specifying arguments. First, the argument list may be
specified as an empty string. In this case the procedure takes no arguments. For example,
the following command defines a procedure that prints out two global variables:

proc printVars {} {
global a b
puts "a is $a, b is $b"

}

The second additional feature is that defaults may be specified for some or all of the
arguments. The argument list is actually a list of lists, with each sublist corresponding to a
single argument. If a sublist has only a single element (which has been the case up until
now) that element is the name of the argument. If a sublist has two arguments, the first is
the argument’s name and the second is a default value for it. For example, here is a proce-
dure that increments a given value by a given amount, with the amount defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment

}

The first element in the argument list,value, specifies a name with no default value. The
second element specifies an argument with nameincrement and a default value of1.
This means thatinc can be invoked with either one or two arguments:

inc 42 3

⇒ 45

inc 42

⇒ 43

If a default isn’t specified for an argument in theproc command then that argument must
be supplied whenever the procedure is invoked. The defaulted arguments, if any, must be
the last arguments for the procedure: if a particular argument is defaulted then all the argu-
ments after it must also be defaulted.

The third special feature in argument lists is support for variable numbers of argu-
ments. If the last argument in the argument list is the special valueargs, then the proce-
dure may be called with varying numbers of arguments. Arguments beforeargs in the

8.4 Call by reference: upvar 73

DRAFT (8/12/93): Distribution Restricted

argument list are handled as before, but any number of additional arguments may be spec-
ified. The procedure’s local variableargs will be set to a list whose elements are all of
the extra arguments. If there are no extra arguments thenargs will be set to an empty
string. For example, the following procedure takes any number of arguments and returns
their sum:

proc sum args {
set s 0
foreach i $args {

incr s $i
}
return $s

}
sum 1 2 3 4 5

⇒ 15

sum

⇒ 0

If a procedure’s argument list contains additional arguments beforeargs then they may
be defaulted as described above. Of course, if this happens there will be no extra argu-
ments soargs will be set to an empty string. No default value may be specified for
args: the empty string is its default.

8.4 Call by reference: upvar

Theupvar command provides a general mechanism for accessing variables outside the
context of a procedure. It can be used to access either global variables or local variables in
some other active procedure. Most often it is used to implement call-by-reference argu-
ment passing. Here is a simple example ofupvar in a procedure that prints out the con-
tents of an array:

proc parray name {
upvar $name a
foreach el [lsort [array names a]] {

puts "$el = $a($el)"
}

}
set info(age) 37
set info(position) "Vice President"
parray info

⇒ age = 37
position = "Vice President"

Whenparray is invoked it is given the name of an array as argument. Theupvar com-
mand then makes this array accessible through a local variable in the procedure. The first
argument toupvar is the name of a variable accessible to the procedure’s caller. This

74 Procedures

DRAFT (8/12/93): Distribution Restricted

may be either a global variable, as in the example, or a local variable in a calling proce-
dure. The second argument is the name of a local variable.Upvar arranges things so that
accesses to local variablea will actually refer to the variable in the caller whose name is
given by variablename. In the example this means that whenparray reads elements of
a it is actually reading elements of theinfo global variable. Ifparray were to writea it
would modifyinfo. Parray uses the “array names” command to retrieve a list of
all the elements in the array, sorts them withlsort, then prints out each the elements in
order.

Note: In the example it appears as if the output is returned as the procedure’s result; in fact it is
printed directly to standard output and the result of the procedure is an empty string.

The first variable name in anupvar command normally refers to the context of the
current procedure’s caller. However, it is also possible to access variables from any level
on the call stack, including global level. For example,

upvar #0 other x

makes global variableother accessible via local variablex (the#0 argument specifies
thatother should be interpreted as a global variable, regardless of how many nested pro-
cedure calls are active), and

upvar -2 other x

makes variableother in the caller of the caller of the current procedure accessible as
local variablex (-2 specifies that the context ofother is 2 levels up the call stack). See
the reference documentation for more information on specifying a level inupvar.

8.5 Creating new control structures: uplevel

Theuplevel command is a cross betweeneval andupvar. It evaluates its argu-
ment(s) as a script, just likeeval, but the script is evaluated in the variable context of a
different stack level, likeupvar. With uplevel you can define new control structures as
Tcl procedures. For example, here is a new control flow command calleddo:

proc do {varName first last body} {
upvar $varName v
for {set v $first} {$v <= $last} {incr v} {

uplevel $body
}

}

The first argument todo is the name of a variable.Do sets that variable to consecutive
integer values in the range between its second and third arguments, and executes the
fourth argument as a Tcl command once for each setting. Given this definition ofdo, the
following script creates a list of squares of the first five integers:

8.5 Creating new control structures: uplevel 75

DRAFT (8/12/93): Distribution Restricted

set a {}
do i 1 5 {

lappend a [expr $i*$i]
}
set a

⇒ 1 4 9 16 25

Thedo procedure usesupvar to access the loop variable (i in the example) as local vari-
ablev. Then it uses thefor command to increment the loop variable through the desired
range. For each value it invokesuplevel to execute the loop body in the variable con-
text of the caller; this causes references to variablesa andi in the body of the loop to
refer to variables indo’s caller. If eval were used instead ofuplevel thena andi
would be treated as local variables indo, which would not produce the desired effect.

Note: This implementation ofdo does not handle exceptional conditions properly. For example,
if the body of the loop contains areturn command it will only cause thedo procedure to
return, which is more like the behavior ofbreak. If areturn occurs in the body of a
built-in control-flow command likefor or while then it causes the procedure that
invoked the command to return. In Chapter 9 you will see how to implement this behavior
for do.

As withupvar, uplevel takes an optional initial argument that specifies an
explicit stack level. See the reference documentation for details.

76 Procedures

DRAFT (8/12/93): Distribution Restricted

77

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 9
Errors and Exceptions

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command doesn’t exist, or because it doesn’t
receive the right number of arguments, or because the arguments have the wrong form, or
because some other problem occurs in executing the command, such as an error in a sys-
tem call for file I/O. In most cases errors represent severe problems that make it impossi-
ble for the application to complete the script it is processing. Tcl’s error facilities are
intended to make it easy for the application to unwind the work in progress and display an
error message to the user that indicates what went wrong. Presumably the user will fix the
problem and retry the operation.

Errors are just one example of a more general phenomenon calledexceptions. Excep-
tions are events that cause scripts to be aborted; they include thebreak, continue, and
return commands as well as errors. Tcl allows exceptions to be “caught” by scripts so
that only part of the work in progress is unwound. After catching an exception the script
can ignore it or take steps to recover from it. If the script can’t recover then it can reissue
the exception. Table 9.1 summarizes the Tcl commands related to exceptions.

9.1 What happens after an error?

When a Tcl error occurs the current command is aborted. If that command is part of a
larger script then the script is also aborted. If the error occurs while executing a Tcl proce-
dure, then the procedure is aborted, along with the procedure that called it, and so on until
all the active procedures have aborted. After all Tcl activity has been unwound in this way,
control eventually returns to C code in the application, along with an indication that an

FIGURE 9

TABLE 9

78 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

error occurred and a message describing the error. It is up to the application to decide how
to handle this situation, but most interactive applications will display the error message for
the user and continue processing user input. In a batch-oriented application where the user
can’t see the error message and adjust future actions accordingly, the application might
print the error message into a log and abort.

For example, consider the following script, which is intended to sum the elements of a
list:

set list {44 16 123 98 57}
set sum 0
foreach el $list {

set sum [expr $sum+$element]
}

∅ can’t read "element": no such variable

This script is incorrect because there is no variableelement: the variable nameele-
ment in theexpr command should have beenel to match the loop variable for the
foreach command. When the script is executed an error will occur as Tcl parses the
expr command: Tcl will attempt to substitute the value of variableelement but will not
be able to find a variable by that name, so it will signal an error. This error indication will
be returned to theforeach command, which had invoked the Tcl interpreter to evaluate
the loop body. Whenforeach sees that an error has occurred, it will abort its loop and
return the same error indication as its own result. This in turn will cause the overall script

Table 9.1. A summary of the Tcl commands related to exceptions.

catch command ?varName?
Evaluatescommand as a Tcl script and returns an integer code that
identifies the completion status of the command. IfvarName is specified
then it gives the name of a variable, which will be modified to hold the
return value or error message generated bycommand.

error message ?info ? ?code ?
Generates an error withmessage as the error message. Ifinfo is
specified and is not an empty string then it is used to initialize the
errorInfo variable. Ifcode is specified then it is stored in the
errorCode variable.

return -code code ?-errorinfo info ? ?-errorcode code ? ?string ?
Causes the current procedure to return an exceptional condition.Code
specifies the condition and must beok, error, return, break,
continue, or an integer. The-errorinfo option may be used to
specify a starting value for theerrorInfo variable, and-errorcode
may be used to specify a value for theerrorCode variable.String
gives the return value or error message associated with the return; it
defaults to an empty string.

9.2 Generating errors from Tcl scripts 79

DRAFT (8/12/93): Distribution Restricted

to be aborted. The error message “can’t read "element": no such vari-
able ” will be returned along with the error, and will probably be displayed for the user.

In many cases the error message will provide enough information for you to pinpoint
where and why the error occurred so you can avoid the problem in the future. However, if
the error occurred in a deeply nested set of procedure calls the message alone may not pro-
vide enough information to figure out where the error occurred. To help pinpoint the loca-
tion of the error, Tcl creates a stack trace as it unwinds the commands that were in
progress, and it stores the stack trace in the global variableerrorInfo . The stack trace
describes each of the nested calls to the Tcl interpreter. For example, after the above error
errorInfo will have the following value:

can’t read "element": no such variable
while executing

"expr $sum+$element"
invoked from within

"set sum [expr $sum+$element]..."
("foreach" body line 2)
invoked from within

"foreach el $list {
set sum [expr $sum+$element]

}"

Tcl provides one other piece of information after errors, in the global variable
errorCode . ErrorCode has a format that is easy to process with Tcl scripts; it is most
commonly used in Tcl scripts that attempt to recover from errors using thecatch com-
mand described below. TheerrorCode variable consists of a list with one or more ele-
ments. The first element identifies a general class of errors and the remaining elements
provide more information in a class-dependent fashion. For example, if the first element of
errorCode is POSIX then it means that an error occurred in a POSIX system call.
ErrorCode will contain two additional elements giving the POSIX name for the error,
such asENOENT, and a human-readable message describing the error. See the reference
documentation for a complete description of all the formserrorCode can take, or refer
to the descriptions of individual commands that seterrorCode , such as those in Chapter
11 and Chapter 12.

TheerrorCode variable is a late-comer to Tcl and is only filled in by a few com-
mands, mostly dealing with file access and child processes. If a command generates an
error without settingerrorCode then Tcl fills it in with the valueNONE.

9.2 Generating errors from Tcl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the
built-in commands. However, it is also possible to generate an error by executing the
error Tcl command as in the following example:

80 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

if {($x < 0} || ($x > 100)} {
error "x is out of range ($x)"

}

Theerror command generates an error and uses its argument as the error message.
As a matter of programming style, you should only use theerror command in situ-

ations where the correct action is to abort the script being executed. If you think that an
error is likely to be recovered from without aborting the entire script, then it is probably
better to use the normal return value mechanism to indicate success or failure (e.g. return
one value from a command if it succeeded and another if it failed, or set variables to indi-
cate success or failure). Although it is possible to recover from errors (you’ll see how in
Section 9.3 below) the recovery mechanism is more complicated than the normal return
value mechanism. Thus it’s best to generate errors only in situations where you won’t usu-
ally want to recover.

9.3 Trapping errors with catch

Errors generally cause all active Tcl commands to be aborted, but there are some situations
where it is useful to continue executing a script after an error has occurred. For example,
suppose that you want to unset variablex if it exists, but it may not exist at the time of the
unset command. If you invokeunset on a variable that doesn’t exist then it generates
an error:

unset x

∅ can’t unset "x": no such variable

You can use thecatch command to ignore the error in this situation:

catch {unset x}

⇒ 1

The argument tocatch is a Tcl script, whichcatch evaluates. If the script completes
normally thencatch returns 0. If an error occurs in the script thencatch traps the error
(so that thecatch command itself is not aborted by the error) and returns 1 to indicate
that an error occurred. The example above ignores any errors inunset sox is unset if it
existed and the script has no effect if x didn’t previously exist.

Thecatch command can also take a second argument. If the argument is provided
then it is the name of a variable andcatch modifies the variable to hold either the script’s
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg

⇒ 1

set msg

⇒ can’t unset "x": no such variable

9.4 Exceptions in general 81

DRAFT (8/12/93): Distribution Restricted

In this case theunset command generates an error somsg is set to contain the error mes-
sage. If variablex had existed thenunset would have returned successfully, so the return
value fromcatch would have been0 andmsg would have contained the return value
from theunset command, which is an empty string. This longer form ofcatch is use-
ful if you need access to the return value when the script completes successfully. It’s also
useful if you need to do something with the error message after an error, such as logging it
to a file.

9.4 Exceptions in general

Errors are not the only things in Tcl that cause work in progress to be aborted. Errors are
just one example of a set of events calledexceptions. In addition to errors there are
three other kinds of exceptions in Tcl, which are generated by thebreak, continue,
andreturn commands. All exceptions cause active scripts to be aborted in the same
way, except for two differences. First, theerrorInfo anderrorCode variables are
only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For example,break andcontinue commands are normally invoked inside a
looping command such asforeach; foreach will catch break and continue exceptions
and terminate the loop or skip to the next iteration. Similarly, return is normally only
invoked inside a procedure or a file beingsource’d. Both the procedure implementation
and thesource command catch return exceptions.

Note: If a break or continue command is invoked outside any loop then active scripts
unwind until the outermost script for a procedure is reached or all scripts in progress have
been unwound. At this point Tcl turns the break or continue exception into an error with an
appropriate message.

All exceptions are accompanied by a string value. In the case of an error, the string is
the error message. In the case ofreturn, the string is the return value for the procedure
or script. In the case ofbreak andcontinue the string is always empty.

Thecatch command actually catches all exceptions, not just errors. The return
value fromcatch indicates what kind of exception occurred and the variable specified in
catch’s second argument is set to hold the string associated with the exception (see Table
9.2). For example:

catch {return "all done"} string

⇒ 2

set string

⇒ all done

Whereascatch provides a general mechanism for catching exception of all types,
return provides a general mechanism for generating exceptions of all types. If its first
argument consists of the keyword-code, as in

82 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

return -code return 42

then its second argument is the name of an exception (return in this case) and the third
argument is the string associated with the exception. The enclosing procedure will return
immediately, but instead of a normal return it will return with the exception described by
thereturn command’s arguments. In the example above the procedure will generate a
return exception, which will then cause the calling procedure to return as well.

In Section 8.5 you saw how a new looping commanddo could be implemented as a
Tcl procedure usingupvar anduplevel. However, the example in Section 8.5 did not
properly handle exceptions within the loop body. Here is a new implementation ofdo that
usescatch andreturn to deal with exceptions properly:

Table 9.2. A summary of Tcl exceptions. The first column indicates the value returned bycatch
in each instance. The second column describes when the exception occurs and the meaning of the
string associated with the exception. The last column lists the commands that catch exceptions of
that type (“procedures” means that the exception is caught by a Tcl procedure when its entire body
has been aborted). The top row refers to normal returns where there is no exception.

Return value
from catch

Description Caught by

0 Normal return. String gives return
value.

Not applicable

1 Error. String gives message describ-
ing the problem.

Catch

2 Thereturn command was
invoked. String gives return value
for procedure orsource com-
mand.

Catch, source, procedures

3 Thebreak command was invoked.
String is empty.

Catch, for, foreach, while,
procedures

4 Thecontinue command was
invoked. String is empty.

Catch, for, foreach, while,
procedures

anything else Defined by user or application. Catch

9.4 Exceptions in general 83

DRAFT (8/12/93): Distribution Restricted

proc do {varName first last body} {
global errorInfo errorCode
upvar $varName v
for {set v $first} {$v <= $last} {incr v} {

switch [catch {uplevel $body} string] {
1 {return -code error -errorinfo $errorInfo \

-errorCode $errorcode $string}
2 {return -code return $string}
3 return

}
}

}

This new implemenation evaluates the loop body inside acatch command and then
checks to see how the body terminates. If no exception occurs (return value 0 from
catch) or if the exception is a continue (return value 4) thendo just goes on to the next
iteration. If an error or return occurs (return value 1 or 2 fromcatch) thendo uses the
return command to reflect the exception upward to the caller. If a break exception
occurs (return value 3 fromcatch) thendo returns to its caller normally, ending the
loop.

Whendo reflects an error upwards it uses the-errorinfo option toreturn to
make sure that a proper stack trace is available after the error. If that option were omitted
then a fresh stack trace would be generated starting withdo’s error return; the stack trace
would not indicate where inbody the error occurred. The context withinbody is avail-
able in theerrorInfo variable at the timecatch returns, and the-errorinfo
option causes this value to be used as the initial contents of the stack trace whendo
returns an error. As additional unwinding occurs more information gets added to the initial
value, so that the final stack trace includes both the context withinbody and the context
of the call todo. The-errorcode option serves a similar purpose for theerrorCode
variable, retaining theerrorCode value from the original error as theerrorCode
value whendo propagates the error. Without the-errorcode option theerrorCode
variable will always end up with the valueNONE.

84 Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

85

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 10
String Manipulation

This chapter describes Tcl’s facilities for manipulating strings. The string manipulation
commands provide pattern matching in two different forms, one that mimics the rules used
by shells for file name expansion and another that uses regular expressions as patterns. Tcl
also has commands for formatted input and output in a style similar to the C procedures
scanf andprintf. Finally, there are several utility commands with functions such as
computing the length of a string, extracting characters from a string, and case conversion.
Tables10.1 and 10.2 summarize the Tcl commands for string processing.

10.1 Glob-style pattern matching

The simplest of Tcl’s two forms of pattern matching is called “glob” style. It is named
after the mechanism used in thecsh shell for file name expansion, which is called “glob-
bing”. Glob-style matching is easier to learn and use than the regular expressions
described in the next two sections, but it only works well for simple cases. For more com-
plex pattern matching you will probably need to use regular expressions.

The commandstring match implements glob-style pattern matching. For exam-
ple, the following script extracts all of the elements of a list that begin with “Tcl”:

set new {}
foreach el $list {

if [string match Tcl* $el] {
lappend new $el

}
}

FIGURE 10

TABLE 10

86 String Manipulation

DRAFT (8/12/93): Distribution Restricted

Table 10.1. A summary of the Tcl commands for string manipulation (continued in Table 10.2).

format formatString ?value value ...?
Returns a result equal toformatString except that thevalue
arguments have been substituted in place of% sequences in
formatString.

regexp ?-indices? ?-nocase? ?--? exp string ?matchVar? \
?subVar subVar ...?

Determines whether the regular expressionexp matches part or all of
string and returns1 if it does,0 if it doesn’t. If there is a match,
information about matching range(s) is placed in the variables named by
matchVar and thesubVar’s, if they are specified.

regsub ?-all? ?-nocase? ?--? exp string subSpec varName
Matchesexp againststring as forregexp and returns1 if there is a
match,0 if there is none. Also copiesstring to the variable named by
varName, making substitutions for the matching portion(s) as specified by
subSpec.

scan string format varName ?varName varName ...?
Parses fields fromstring as specified byformat and places the values
that match% sequences into variables named by thevarName arguments.

string compare string1 string2
Returns-1, 0, or1 if string1 is lexicographically less than, equal to, or
greater thanstring2.

string first string1 string2
Returns the index instring2 of the first character in the leftmost
substring that exactly matches the characters instring1, or-1 if there is
no such match.

string index string charIndex
Returns thecharIndex’ th character ofstring, or an empty string if
there is no such character. The first character instring has index 0.

string last string1 string2
Returns the index instring2 of the first character in the rightmost
substring ofstring2 that exactly matchesstring1. If there is no
matching substring then-1 is returned.

string length string
Returns the number of characters instring.

string match pattern string
Returns1 if pattern matchesstring using glob-style matching rules
(*, ?, [], and \) and0 if it doesn’t.

string range string first last
Returns the substring ofstring that lies between the indices given by
first andlast, inclusive. An index of0 refers to the first character in
the string, andlast may beend to refer to the last character of the string.

10.1 Glob-style pattern matching 87

DRAFT (8/12/93): Distribution Restricted

Thestring command is actually about a dozen string-manipulation commands rolled
into one. If the first argument ismatch then the command performs glob-style pattern
matching and there must be two additional arguments, a pattern and a string. The com-
mand returns1 if the pattern matches the string,0 if it doesn’t. For the pattern to match
the string, each character of the pattern must be the same as the corresponding character of
the string, except that a few pattern characters are interpreted specially. For example, a*
in the pattern matches a substring of any length, so “Tcl*” matches any string whose first
three characters are “Tcl”. Here is a list of all the special characters supported in glob-
style matching:

Many simple things can be done easily with glob-style patterns. For example,
“*.[ch]” matches all strings that end with either “.c” or “.h”. However, many interest-
ing forms of pattern matching cannot be expressed at all with glob-style patterns. For
example, there is no way to use a glob-style pattern to test whether a string consists
entirely of digits: the pattern “[0-9]” tests for a single digit, but there is no way to spec-
ify that there may be more than one digit.

* Matches any sequence of zero or more characters.
? Matches any single character.
[chars] Matches any single character inchars. If chars contains a

sequence of the forma-b then any character betweena andb,
inclusive, will match.

\x Matches the single characterx. This provides a way to avoid special
interpretation for any of the characters*?[]\ in the pattern.

Table 10.2. A summary of the Tcl commands for string manipulation, cont’d.

string tolower string
Returns a value identical tostring except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical tostring except that all lower case characters
have been converted to upper case.

string trim string ?chars?
Returns a value identical tostring except that any leading or trailing
characters that appear inchars are removed.Chars defaults to the white
space characters (space, tab, newline, and carriage return).

string trimleft string ?chars?
Same asstring trim except that only leading characters are removed.

string trimright string ?chars?
Same asstring trim except that only trailing characters are removed.

88 String Manipulation

DRAFT (8/12/93): Distribution Restricted

10.2 Pattern matching with regular expressions

Tcl’s second form of pattern matching uses regular expressions like those for theegrep
program. Regular expressions are more complex than glob-style patterns but more power-
ful. Tcl’s regular expressions are based on Henry Spencer’s publicly available implemen-
tation, and parts of the description below are copied from Spencer’s documentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are calledatoms, and the simplest form of regular expression consists of one or
more atoms. For a regular expression to match an input string, there must be a substring of
the input where each of the regular expression’s atoms (or other components, as you’ll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular expressionabc matches any
string containingabc, such asabcdef orxabcy.

A number of characters have special meanings in regular expressions; they are sum-
marized in Table 10.3. The characters^ and$ are atoms that match the beginning and end
of the input string respectively; thus^abc matches any string that starts withabc, abc$
matches any string that ends inabc, and^abc$ matchesabc and nothing else. The atom

Table 10.3. The special characters permitted in regular expression patterns.

Character(s) Meaning

. Matches any single character.

^ Matches the null string at the start of the input string.

$ Matches the null string at the end of the input string.

\x Matches the characterx.

[chars] Matches any single character fromchars. If the first character of
chars is^ then it matches any single character not in the remain-
der ofchars. A sequence of the forma-b in chars is treated as
shorthand for all of the ASCII characters betweena andb, inclu-
sive. If the first character inchars (possibly following â) is]
then it is treated literally (as part ofchars instead of a termina-
tor). If a- appears first or last inchars then it is treated literally.

(regexp) Matches anything that matches the regular expressionregexp.
Used for grouping and for identifying pieces of the matching sub-
string.

* Matches a sequence of 0 or more matches of the preceding atom.

+ Matches a sequence of 1 or more matches of the preceding atom.

? Matches either a null string or a match of the preceding atom.

regexp1|regexp2 Matches anything that matches eitherregexp1 orregexp2.

10.2 Pattern matching with regular expressions 89

DRAFT (8/12/93): Distribution Restricted

“.” matches any single character, and the atom\x, wherex is any single character,
matchesx. For example, the regular expression “.\$” matches any string that contains a
dollar-sign, as long as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular
expressions. The first form consists of any regular expression enclosed in parentheses,
such as “(a.b)”. Parentheses are used for grouping. They allow operators such as* to be
applied to entire regular expressions as well as atoms. They are also used to identify pieces
of the matching substring for special processing. Both of these uses are described in more
detail below.

The final form for an atom is arange, which is a collection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of the forma-b among the characters, then
all of the ASCII characters betweena andb are treated as acceptable. Thus the regular
expression[0-9a-fA-F] matches any string that contains a hexadecimal digit. If the
character after the[is a^ then the sense of the range is reversed: it only matches charac-
tersnot among those specified between the^ and the].

The three operators*, +, and? may follow an atom to specify repetition. If an atom is
followed by* then it matches a sequence of zero or more matches of that atom. If an atom
is followed by+ then it matches a sequence of one or more matches of the atom. If an
atom is followed by? then it matches either an empty string or a match of the atom. For
example, “̂ (0x)?[0-9a-fA-F]+$” matches strings that are proper hexadecimal
numbers, i.e. those consisting of an optional0x followed by one or more hexadecimal
digits.

Finally, regular expressions may be joined together with the| operator. The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the|. For example, the following pattern matches any string that is either a
hexadecimal number or a decimal number:

^((0x)?[0-9a-fA-F]+|[0-9]+)$

 Note that the information between parentheses may be any regular expression, including
additional regular expressions in parentheses, so it is possible to build up quite complex
structures.

Theregexp command invokes regular expression matching. In its simplest form it
takes two arguments: the regular expression pattern and an input string. It returns0 or1 to
indicate whether or not the pattern matched the input string:

regexp {^[0-9]+$} 510

⇒ 1

regexp {^[0-9]+$} -510

⇒ 0

Note: The pattern must be enclosed in braces so that the characters $, [, and] are passed
through to the regexp command instead of triggering variable and command

90 String Manipulation

DRAFT (8/12/93): Distribution Restricted

substitution. In almost always a good idea to enclose regular expression patterns in
braces.

If regexp is invoked with additional arguments after the input string then each addi-
tional argument is treated as the name of a variable. The first variable is filled in with the
substring that matched the entire regular expression. The second variable is filled in with
the portion of the substring that matched the leftmost parenthesized subexpression within
the pattern; the third variable is filled in with the match for the next parenthesized subex-
pression, and so on. If there are more variable names than parenthesized subexpressions
then the extra variables are set to empty strings. For example, after executing the com-
mand

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c

variablea will have the value “10 km”, b will have the value10, andc will have the
valuekm. This ability to extract portions of the matching substring allowsregexp to be
used for parsing.

It is also possible to specify two extra switches toregexp before the regular expres-
sion argument. A-nocase switch specifies that alphabetic atoms should match either
upper-case or lower-case letters. For example:

regexp {[a-z]} A

⇒ 0

regexp -nocase {[a-z]} A

⇒ 1

The-indices switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with a list giving the
first and last indices of the substring’s range within the input string. After the command

regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
a b c

variablea will have the value “5 9”, b will have the value “5 6”, andc will have the
value “8 9”.

10.3 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions using theregsub com-
mand. Consider the following example:

regsub there "They live there lives" their x

⇒ 1

The first argument toregsub is a regular expression pattern and the second argument is
an input string, just as forregexp. And, likeregexp, regsub returns1 if the pattern
matches the string,0 if it doesn’t. However, regsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-

10.4 Generating strings with format 91

DRAFT (8/12/93): Distribution Restricted

string. The replacement value is contained in the third argument toregsub, and the new
string is stored in the variable named by the final argument toregsub. Thus, after the
above command completesx will have the value “They live their lives”. If the
pattern had not matched the string then0 would have been returned andx would have the
value “They live there lives”.

Two special switches may appear as arguments toregsub before the regular expres-
sion. The first is-nocase, which causes case differences between the pattern and the
string to be ignored just as forregexp. The second possible switch is-all. Normally
regsub makes only a single substitution, for the first match found in the input string.
However, if -all is specified thenregsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x

x will have the valuezzbzzbzz. If -all had been omitted thenx would have been set
to zzbaba.

In the examples above the replacement string is a simple literal value. However, if the
replacement string contains a “&” or “\0” then the “&” or “\0” is replaced in the substitu-
tion with the substring that matched the regular expression. If a sequence of the form\n
appears in the replacement string, wheren is a decimal number, then the substring that
matched then-th parenthesized subexpression is substituted instead of the\n. For exam-
ple, the command

regsub -all a|b axaab && x

doubles all of thea’s andb’s in the input string. In this case it setsx toaaxaaaabb. Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x

replaces sequences ofa’s with a singlez if they precede ab but don’t also follow ab. In
this casex is set tozbaabxzb. Backslashes may be used in the replacement string to
allow “&”, “\0”, “\n”, or backslash characters to be substituted verbatim without any
special interpretation.

Note: It’s usually a good idea to enclose complex replacement strings in braces as in the
example above; otherwise the Tcl parser will process backslash sequences and the
replacement string received byregsub may not contain backslashes that are needed.

10.4 Generating strings with format

Tcl’sformat command provides facilities like those of thesprintf procedure from
the ANSI C library. For example, consider the following command:

format "The square root of 10 is %.3f" [expr sqrt(10)]

⇒ The square root of 10 is 3.162

92 String Manipulation

DRAFT (8/12/93): Distribution Restricted

The first argument toformat is a format string, which may contain any number of con-
version specifiers such as “%.3f”. For each conversion specifierformat generates a
replacement string by reformatting the next argument according to the conversion speci-
fier. The result of theformat command consists of the format string with each conver-
sion specifier replaced by the corresponding replacement string. In the above example
“%.3f” specifies that the next argument is to be formatted as a real number with three
digits after the decimal point.Format supports almost all of the conversion specifiers
defined for ANSI Csprintf, such as “%d” for a decimal integer, “%x” for a hexadeci-
mal integer, and “%e” for real numbers in mantissa-exponent form.

Theformat command plays a less significant role in Tcl thanprintf and
sprintf play in C. Many of the uses ofprintf andsprintf are simply for conver-
sion from binary to string format or for string substitution. Binary-to-string conversion
isn’t needed in Tcl because values are already stored as strings, and substitution is already
available through the Tcl parser. For example, the command

set msg [format "%s is %d years old" $name $age]

can be written more simply as

set msg "$name is $age years old"

The%d conversion specifier in theformat command could be written just as well as%s;
with %d format converts the value of age to a binary integer, then converts the integer
back to a string again.

Format is typically used in Tcl to reformat a value to improve its appearance, or to
convert from one representation to another (e.g. from decimal to hexadecimal). As an
example of reformatting, here is a that script prints the first ten powers ofe in a table:

puts "Number Exponential"
for {set i 1} {i <= 10} {incr i} {

puts [format "%4d %12.3f" $i [expr exp($i)]]
}

This script generates the following output on standard output:

Number Exponential
1 2.718
2 7.389
3 20.085
4 54.598
5 148.413
6 403.429
7 1096.630
8 2980.960
9 8103.080
10 22026.500

The conversion specifier “%4d” causes the integers in the first column of the table to be
printed right-justifed in a field four digits wide, so that they line up under their column
header. The conversion specifier “%12.3f” causes each of the real values to be printed

10.5 Parsing strings with scan 93

DRAFT (8/12/93): Distribution Restricted

right-justified in a field 12 digits wide, so that the values line up; it also sets the precision
at 3 digits to the right of the decimal point.

The second main use forformat , changing the reprensentation of a value, is illus-
trated by the script below, which prints a table showing the ASCII characters that corre-
spond to particular integer values:

puts "Integer ASCII"
for {set i 95} {$i <= 101} {incr i} {

puts [format "%4d %c" $i $i]
}

This script generates the following output on standard output:

Integer ASCII
95 _
96 `
97 a
98 b
99 c

100 d
101 e

The value ofi is used twice in the format command, once with%4d and once with%c.
The%c specifier takes an integer argument and generates a replacement string consisting
of the ASCII character whose represented by the integer.

10.5 Parsing strings with scan

Thescan command provides almost exactly the same facilities as thesscanf procedure
from the ANSI C library. Scan is roughly the inverse offormat . It starts with a format-
ted string, parses the string under the control of a format string, extracts fields correspond-
ing to% conversion specifiers in the format string, and places the extracted values in Tcl
variables. For example, after the following command is executed variablea will have the
value16 and variableb will have the value24.2 :

scan "16 units, 24.2% margin" "%d units, %f" a b

⇒ 2

The first argument toscan is the string to parse, the second is a format string that controls
the parsing, and any additional arguments are names of variables to fill in with converted
values. The return value of 2 indicates that two conversions were completed successfully.

Scan operates by scanning the string and the format together. Each character in the
format must match the corresponding character in the string, except for blanks and tabs,
which are ignored, and% characters. When a% is encountered in the format, it indicates
the start of a conversion specifier:scan converts the next input characters according to
the conversion specifier and stores the result in the variable given by the next argument to

94 String Manipulation

DRAFT (8/12/93): Distribution Restricted

scan. White space in the string is skipped except in the case of a few conversion specifi-
ers such as%c.

One common use for scan is for simple string parsing, as in the example above.
Another common use is for converting ASCII characters to their integer values, which is
done with the%c specifier. The procedure below uses this feature to return the character
that follows a given character in lexicographic ordering:

proc next c {
scan $c %c i
format %c [expr $i+1]

}
next a

⇒ b

next 9

⇒ :

Thescan command converts the value of thec argument from an ASCII character to the
integer used to represent that character, then the integer is incremented and converted back
to an ASCII character again with theformat command.

10.6 Extracting characters: string index and string range

The remaining string manipulation commands are all implemented as options of the
string command. For example,string index extracts a character from a string:

string index "Sample string" 3

⇒ p

The argument afterindex is a string and the last argument gives the index of the desired
character in the string. An index of0 selects the first character.

Thestring range command is similar tostring index except that it takes
two indices and returns all the characters from the first index to the second, inclusive:

string range "Sample string" 3 7

⇒ ple s

The second index may have the valueend to select all the characters up to the end of the
string:

string range "Sample string" 3 end

⇒ ple string

10.7 Searching and comparison

The commandstring first takes two additional string arguments as in the following
example:

10.8 Length, case conversion, and trimming 95

DRAFT (8/12/93): Distribution Restricted

string first th "There is the tub where I bathed today"

⇒ 3

It searches the second string to see if there is a substring that is identical to the first string.
If so then it returns the index of the first character in the leftmost matching substring; if not
then it returns-1. The commandstring last is similar except it returns the starting
index of the rightmost matching substring:

string last th "There is the tub where I bathed today"

⇒ 21

The commandstring compare takes two additional arguments and compares
them in their entirety. It returns0 if the strings are identical,-1 if the first string sorts
before the second, and1 if the first string is after the second in sorting order:

string compare Michigan Minnesota

⇒ -1

string compare Michigan Michigan

⇒ 0

10.8 Length, case conversion, and trimming

Thestring length command counts the number of characters in a string and returns
that number:

string length "sample string"

⇒ 13

Thestring toupper command converts all lower-case characters in a string to
upper case, and thestring tolower command converts all upper-case characters in
its argument to lower-case:

string toupper "Watch out!"

⇒ WATCH OUT!

string tolower "15 Charing Cross Road"

⇒ 15 charing cross road

Thestring command provides three options for trimming:trim, trimleft, and
trimright. Each option takes two additional arguments: a string to trim and an optional
set of trim characters. Thestring trim command removes all instances of the trim
characters from both the beginning and end of its argument string, returning the trimmed
string as result:

string trim aaxxxbab abc

⇒ xxx

Thetrimleft andtrimright options work in the same way except that they only
remove the trim characters from the beginning or end of the string, respectively. The trim

96 String Manipulation

DRAFT (8/12/93): Distribution Restricted

commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

97

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 11
Accessing Files

This chapter describes Tcl’s commands for dealing with files. The commands allow you to
read and write files sequentially or in a random-access fashion. They also allow you to
retrieve information kept by the system about files, such as the time of last access. Lastly,
they can be used to manipulate file names; for example, you can remove the extension
from a file name or find the names of all files that match a particular pattern. See Table
11.1 for a summary of the file-related commands.

Note: The commands described in this chapter are only available on systems that support the
kernel calls defined in the POSIX standard, such as most UNIX workstations. If you are
using Tcl on another system, such as a Macintosh or a PC, then the file commands may not
be present and there may be other commands that provide similar functionality for your
system.

11.1 File names

File names are specified to Tcl using the normal UNIX syntax. For example, the file name
x/y/z refers to a file namedz that is located in a directory namedy, which in turn is
located in a directory namedx, which must be in the current working directory. The file
name/top refers to a filetop in the root directory. You can also use tilde notation to
specify a file name relative to a particular user’s home directory. For example, the name
~ouster/mbox refers to a file namedmbox in the home directory of userouster, and
~/mbox refers to a file namedmbox in the home directory of the user running the Tcl
script. These conventions (and the availability of tilde notation in particular) apply to all
Tcl commands that take file names as arguments.

FIGURE 11

TABLE 11

98 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Table 11.1. A summary of the Tcl commands for manipulating files (continued in Table 11.2).

cd ?dirName?
Changes the current working directory todirName, or to the home
directory (as given by theHOME environment variable) ifdirName isn’t
given. Returns an empty string.

close ?fileId?
Closes the file given byfileId. Returns an empty string.

eof fileId
Returns1 if an end-of-file condition has occurred onfileId, 0 otherwise.

file option name ?arg arg ...?
Performs one of several operations on the filename given byname or on
the file that it refers to, depending onoption. See Table 11.3 for details.

flush fileId
Writes out any buffered output that has been generated forfileId.
Returns an empty string.

gets fileId ?varName?
Reads the next line fromfileId and discards its terminating newline. If
varName is specified, places the line in that variable and returns a count of
characters in the line (or-1 for end of file). IfvarName isn’t specified,
returns line as result (or an empty string for end of file).

glob ?-nocomplain? ?--? pattern ?pattern ...?
Returns a list of the names of all files that match any of thepattern
arguments (special characters?, *, [], {}, and \). If -nocomplain
isn’t specified then an error occurs if the return list would be empty.

open name ?access?
Opens filename in the mode given byaccess. Access may ber, r+, w,
w+, a, ora+ or a list of flags such asRDONLY; it defaults tor. Returns a
file identifier for use in other commands likegets andclose. If the first
character ofname is “|” then a command pipeline is invoked instead of
opening a file (see Section 12.2 for more information).

puts ?-nonewline? ?fileId? string
Writesstring tofileId, appending a newline character unless
-nonewline is specified.FileId defaults tostdout. Returns an
empty string.

pwd
Returns the full path name of the current working directory.

11.2 Basic file I/O 99

DRAFT (8/12/93): Distribution Restricted

11.2 Basic file I/O

The Tcl commands for file I/O are similar to the procedures in the C standard I/O library,
both in their names and in their behavior. Here is a script calledtgrep that illustrates
most of the basic features of file I/O:

#!/usr/local/bin/tclsh
if {$argc != 2} {

error "Usage: tgrep pattern fileName"
}
set f [open [lindex $argv 1] r]
set pat [lindex $argv 0]
while {[gets $f line] >= 0} {

if [regexp $pat $line] {
puts stdout $line

}
}
close $f

This script behaves much like the UNIXgrep program: you can invoke it from your shell
with two arguments, a regular expression pattern and a file name, and it will print out all of
the lines in the file that match the pattern.

Whentclsh processes evaluates the script it makes the command-line arguments
available as a list in variableargv, with the length of that list in variableargc. After
making sure that it received enough arguments, the script invokes theopen command on
the file to search, which is the second argument.Open takes two arguments, the name of a
file and an access mode. The access mode provides information such as whether you’ll be

Table 11.2. A summary of the Tcl commands for manipulating files, cont’d.

read ?-nonewline? fileId
Reads and returns all of the bytes remaining infileId. If -nonewline
is specified then the final newline, if any, is dropped.

read fileId numBytes
Reads and returns the nextnumBytes bytes fromfileId (or up to the
end of the file, if fewer thannumBytes bytes are left).

seek fileId offset ?origin?
PositionfileId so that the next access starts atoffset bytes from
origin. Origin may bestart, current, orend, and defaults to
start. Returns an empty string.

tell fileId
Returns the current access position forfileId.

100 Accessing Files

DRAFT (8/12/93): Distribution Restricted

reading the file or writing it, and whether you want to append to the file or access it from
the beginning. The access mode may have one of the following values:

The access mode may also be specified as a list of POSIX flags likeRDONLY, CREAT, and
TRUNC. See the reference documentation for more information about these flags.

Theopen command returns a string such asfile3 that identifies the open file. This
file identifier is used when invoking other commands to manipulate the open file, such as
gets, puts, andclose. Normally you will save the file identifier in a variable when
you open a file and then use that variable to refer to the open file. You should not expect
the identifiers returned byopen to have any particular format.

Three file identifiers have well-defined names and are always available to you, even if
you haven’t explicitly opened any files. These arestdin, stdout, andstderr; they
refer to the standard input, output, and error channels for the process in which the Tcl
script is executing.

After opening the file to search, thetgrep script reads the file one line at a time with
thegets command.Gets normally takes two arguments: a file identifier and the name of
a variable. It reads the next line from the open file, discards the terminating newline char-
acter, stores the line in the named variable, and returns a count of the number of characters
stored into the variable. If the end of the file is reached before reading any characters then
gets stores an empty string in the variable and returns-1.

Note: Tcl also provides a second form ofgets where the line is returned as the result of the
command, and a commandread for non-line-oriented input.

For each line in the file thetgrep script matches the line against the pattern and
prints it usingputs if it matches. Theputs command takes two arguments, which are a
file identifier and a string to print.Puts adds a newline character to the string and outputs
the line on the given file. The script usesstdout as the file identifier so the line is printed
on standard output.

Whentgrep reaches the end of the filegets will return-1, which ends thewhile
loop. The script then closes the file with theclose command; this releases the resources
associated with the open file. In most systems there is a limit on how many files may be
open at one time in an application, so it is important to close files as soon as you are fin-

r Open for reading only. The file must already exist. This is the default if
the access mode isn’t specified.

r+ Open for reading and writing; the file must already exist.
w Open for writing only. Truncate the file if it already exists, otherwise

create a new empty file.
w+ Open for reading and writing. Truncate the file if it already exists, oth-

erwise create a new empty file.
a Open for writing only and set the initial access position to the end of the

file. If the file doesn’t exist then create a new empty file.
a+ Open the file for reading and writing and set the initial access position

to the end of the file. If the file doesn’t exist then create a new empty
file.

11.3 Output buffering 101

DRAFT (8/12/93): Distribution Restricted

ished reading or writing them. In this example the close is unnecessary, since the file will
be closed automatically when the application exits.

11.3 Output buffering

Theputs command uses the buffering scheme of the C standard I/O library. This means
that information passed toputs may not appear immediately in the target file. In many
cases (particularly if the file isn’t a terminal device) output will be saved in the applica-
tion’s memory until a large amount of data has accumulated for the file, at which point all
of the data will be written out in a single operation. If you need for data to appear in a file
immediately then you should invoke theflush command:

flush $f

Theflush command takes a file identifier as its argument and forces any buffered output
data for that file to be written to the file.Flush doesn’t return until the data has been writ-
ten. Buffered data is also flushed when a file is closed.

11.4 Random access to files

File I/O is sequential by default: eachgets orread command returns the next bytes
after the previousgets orread command, and eachputs command writes its data
immediately following the data written by the previousputs command. However, you
can use theseek, tell, andeof commands to access files non-sequentially.

Each open file has anaccess position, which is the location in the file where the next
read or write will occur. When a file is opened the access position is set to the beginning or
end of the file, depending on the access mode you specified toopen. After each read or
write operation the access position increments by the number of bytes transferred. The
seek command may be used to change the current access position. In its simplest form
seek takes two arguments, which are a file identifier and an integer offset within the file.
For example, the command

seek $f 2000

changes the access position for the file so that the next read or write will start at byte num-
ber 2000 in the file.

Seek can also take a third argument that specifies an origin for the offset. The third
argument must be eitherstart, current, orend. Start produces the same effect as
if the argument is omitted: the offset is measured relative to the start of the file.Current
means that the offset is measured relative to the file’s current access position, andend
means that the offset is measured relative to the end of the file. For example, the following
command sets the access position to 100 bytes before the end of the file:

seek $f -100 end

102 Accessing Files

DRAFT (8/12/93): Distribution Restricted

If the origin iscurrent orend then the offset may be either positive or negative; for
start the offset must be positive.

Note: It is possible to seek past the current end of the file, in which case the file may contain a
hole. Check the documentation for your operating system for more information on what
this means.

Thetell command returns the current access position for a particular file identifier:

tell $f

⇒ 186

This allows you to record a position and return to that position later on.
Theeof command takes a file identifier as argument and returns0 or1 to indicate

whether the most recentgets orread command for the file attempted to read past the
end of the file:

eof $f

⇒ 0

11.5 The current working directory

Tcl provides two commands that help to manage the current working directory:pwd and
cd. Pwd takes no arguments and returns the full path name of the current working direc-
tory. Cd takes a single argument and changes the current working directory to the value of
that argument. Ifcd is invoked with no arguments then it changes the current working
directory to the home directory of the user running the Tcl script (cd uses the value of the
HOME environment variable as the path name of the home directory).

11.6 Manipulating file names: glob and file

Tcl has two commands for manipulating filenames as opposed to file contents:glob and
file. Theglob command takes one or more patterns as arguments and returns a list of
all the file names that match the pattern(s):

glob *.c *.h

⇒ main.c hash.c hash.h

Glob uses the matching rules of thestring match command (see Section 10.1). In
the above exampleglob returns the names of all files in the current directory that end in
.c or.h. Glob also allows patterns to contain comma-separated lists of alternatives
between braces, as in the following example:

glob {{src,backup}/*.[ch]}

⇒ src/main.c src/hash.c src/hash.h backup/hash.c

11.6 Manipulating file names: glob and file 103

DRAFT (8/12/93): Distribution Restricted

Glob treats this pattern as if it were actually multiple patterns, one containing each of the
strings, as in the following example:

glob {src/*.[ch]} {backup/*.[ch]}

Note: The extra braces around the patterns in these examples are needed to keep the brackets
inside the patterns from triggering command substitution. They are removed by the Tcl
parser in the usual fashion before invoking the command procedure for glob.

If a glob pattern ends in a slash then it only matches the names of directories. For
example, the command

glob */

will return a list of all the subdirectories of the current directory.
If the list of file names to be returned byglob is empty then it normally generates an

error. However, if the first argument toglob, before any patterns, is-nocomplain then
glob will not generate an error if its result is an empty list.

The second command for manipulaing file names isfile. File is a general-pur-
pose command with many options that can be used both to manipulate file names and also
to retrieve information about files. See Tables 11.3 and 11.4 for a summary of the options
to file. This section discusses the name-related options and Section 11.7 describes the
other options.The commands in this section operate purely on file names. They make no
system calls and do not check to see if the names actually correspond to files.

File dirname returns the name of the directory containing a particular file:

file dirname /a/b/c

⇒ /a/b

file dirname main.c

⇒ .

File extension returns the extension for a file name (all the characters starting
with the last. in the name), or an empty string if the name contains no extension:

file extension src/main.c

⇒ .c

File rootname returns everything in a file name except the extension:

file rootname src/main.c

⇒ src/main

file rootname foo

⇒ foo

Lastly, file tail returns the last element in a file’s path name (i.e. the name of the
file within its directory):

file tail /a/b/c

⇒ c

file tail foo

⇒ foo

104 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Table 11.3. A summary of the options for thefile command (continued in Table 11.4).

file atime name
Returns a decimal string giving the time at which filename was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

file dirname name
Returns all of the characters inname up to but not including the last/
character. Returns. if name contains no slashes,/ if the last slash in
name is its first character.

file executable name
Returns1 if name is executable by the current user, 0 otherwise.

file exists name
Returns1 if name exists and the current user has search privilege for the
directories leading to it,0 otherwise.

file extension name
Returns all of the characters inname after and including the last dot.
Returns an empty string if there is no dot inname or no dot after the last
slash inname.

file isdirectory name
Returns1 if name is a directory, 0 otherwise.

file isfile name
Returns1 if name is an ordinary file,0 otherwise.

file lstat name arrayName
Invokes thelstat system call onname and sets elements of
arrayName to hold information returned bylstat. This option is
identical to thestat option unlessname refers to a symbolic link, in
which case this command returns information about the link instead of the
file it points to.

file mtime name
Returns a decimal string giving the time at which filename was last
modified, measured in seconds from 12:00 A.M. on January 1, 1970.

file owned name
Returns1 if name is owned by the current user, 0 otherwise.

file readable name
Returns1 if name is readable by the current user, 0 otherwise.

file readlink name
Returns the value of the symbolic link given byname (the name of the file
it points to).

11.7 File information commands 105

DRAFT (8/12/93): Distribution Restricted

11.7 File information commands

In addition to the options already discussed in Section 11.6 above, thefile command
provides many other options that can be used to retrieve information about files. Each of
these options exceptstat andlstat has the form

file option name

whereoption specifies the information desired, such asexists orreadable or
size, andname is the name of the file. Table 11.3 summarizes all of the options for the
file command.

Theexists,isfile,isdirectory, andtype options return information about
the nature of a file.File exists returns1 if there exists a file by the given name and0
if there is no such file or the current user doesn’t have search permission for the directories
leading to it.File isfile returns1 if the file is an ordinary disk file and0 if it is
something else, such as a directory or device file.File isdirectory returns1 if the
file is a directory and0 otherwise.File type returns a string such asfile, direc-
tory, orsocket that identifies the file type.

Table 11.4. A summary of the options for thefile command, cont’d.

file rootname name
Returns all of the characters inname up to but not including the last.
character. Returnsname if it doesn’t contain any dots or if it doesn’t
contain any dots after the last slash.

file size name
Returns a decimal string giving the size of filename in bytes.

file stat name arrayName
Invokesstat system call onname and sets elements ofarrayName to
hold information returned bystat. The following elements are set, each
as a decimal string:atime, ctime, dev, gid, ino, mode, mtime,
nlink, size, anduid.

file tail name
Returns all of the characters inname after the last/ character. Returns
name if it contains no slashes.

file type name
Returns a string giving the type of filename. The return value will be one
of file, directory, characterSpecial, blockSpecial, fifo,
link, orsocket.

file writable name
Returns1 if name is writable by the current user, 0 otherwise.

106 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Thereadable, writable, andexecutable options return0 or1 to indicate
whether the current user is permitted to carry out the indicated action on the file. The
owned option returns1 if the current user is the file’s owner and0 otherwise.

Thesize option returns a decimal string giving the size of the file in bytes.File
mtime returns the time when the file was last modified. The time value is returned in the
standard POSIX form for times, namely an integer that counts the number of seconds
since 12:00 A.M. on January 1, 1970. Theatime option is similar tomtime except that
it returns the time when the file was last accessed.

Thestat option provides a simple way to get many pieces of information about a
file at one time. This can be significantly faster than invokingfile many times to get the
pieces of information individually. File stat also provides additional information that
isn’t accessible with any other file options. It takes two additional arguments, which are
the name of a file and the name of a variable, as in the following example:

file stat main.c info

In this case the name of the file ismain.c and the variable name isinfo. The variable
will be treated as an array and the following elements will be set, each as a decimal string:

Theatime, mtime, andsize elements have the same values as produced by the corre-
spondingfile options discussed above. For more information on the other elements,
refer to your system documentation for thestat system call; each of the elements is
taken directly from the corresponding field of the structure returned bystat.

Thelstat andreadlink options are useful when dealing with symbolic links,
and they can only be used on systems that support symbolic links.File lstat is iden-
tical tofile stat for ordinary files, but when it is applied to a symbolic link it returns
information about the symbolic link itself, whereasfile stat will return information
about the file the link points to.File readlink returns the contents of a symbolic link,
i.e. the name of the file that it refers to; it may only be used on symbolic links. For all of
the otherfile commands, if the name refers to a symbolic link then the command oper-
ates on the target of the link, not the link itself.

atime Time of last access.
ctime Time of last status change.
dev Identifier for device containing file.
gid Identifier for the file’s group.
ino Serial number for the file within its device.
mode Mode bits for file.
mtime Time of last modification.
nlink Number of links to file.
size Size of file, in bytes.
uid Identifier for the user that owns the file.

11.8 Errors in system calls 107

DRAFT (8/12/93): Distribution Restricted

11.8 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopen orfile stat on a file that doesn’t exist, or if an I/O error occurs in read-
ing a file. The Tcl commands detect these system call errors and in most cases the Tcl
commands will return errors themselves. The error message will identify the error that
occurred:

open bogus

∅ couldn’t open "bogus": no such f ile or directory

When an error occurs in a system call Tcl also sets theerrorCode variable to pro-
vide more precise information. You may find this information useful as part of error recov-
ery so that, for example, you can determine exactly why the the file wasn’t accessible
(Was there no such file? Was it protected to prevent access? ...). If a system call error has
occurred thenerrorCode will consist of a list with three elements:

set errorCode

⇒ POSIX ENOENT {no such f ile or directory}

The first element is alwaysPOSIX to indicate that the error occurred in a POSIX system
call. The second element is the official name for the error (ENOENT in the above exam-
ple). Refer to your system documentation or to the include fileerrno.h for a complete
list of the error names for your system. These names adhere to the POSIX standard as
much as possible. The third element is the error message that corresponds to the error.
This string usually appears in the error message returned by the Tcl command. Tcl uses the
standard list of error messages provided by your system, if there is one, and adheres to the
POSIX standard as much as possible.

108 Accessing Files

DRAFT (8/12/93): Distribution Restricted

109

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 12
Processes

Tcl provides several commands for dealing with processes. You can create new processes
with theexec command, or you can create new processes withopen and then use file
I/O commands to communicate with them. You can access process identifiers with the
pid command. You can read and write environment variables using theenv variable and
you can terminate the current process with theexit command. Like the file commands in
Chapter 11, these commands are only available on systems that support POSIX kernel
calls. Table 12.1 summarizes the commands related to process management.

12.1 Invoking subprocesses with exec

Theexec command creates one or more subprocesses and waits until they complete
before returning. For example,

exec rm main.o

executesrm as a subprocess, passes it the argumentmain.o, and returns afterrm com-
pletes. The arguments toexec are similar to what you would type as a command line to a
shell program such assh orcsh. The first argument toexec is the name of a program to
execute and each additional argument forms one argument to that subprocess.

To execute a subprocess,exec looks for an executable file with a name equal to
exec’s first argument. If the name contains a/ or starts with~ thenexec checks the sin-
gle file indicated by the name. Otherwiseexec checks each of the directories in thePATH
environment variable to see if the command name refers to an executable file in that direc-
tory. Exec uses the first executable that it finds.

FIGURE 12

TABLE 12

110 Processes

DRAFT (8/12/93): Distribution Restricted

Exec collects all of the information written to standard output by the subprocess and
returns that information as its result, as in the following example:

exec echo wc tcl.h

⇒ 618 2641 21825 tcl.h

If the last character of output is a newline thenexec removes the newline. This behavior
may seem strange but it makesexec consistent with other Tcl commands,which don’t
normally terminate the last line of the result; you can retain the newline by specifying
-keepnewline as the first argument toexec.

Exec supports I/O redirection in a fashion similar to the UNIX shells. For example, if
one of the arguments toexec is “>foo” (or if there is a “>” argument followed by a
“foo” argument), then output from the process is placed in filefoo instead of returning
to Tcl asexec’s result. In this caseexec’s result will be an empty string.Exec also sup-
ports several other forms of output redirection, such as>> to append to a file,>& to redi-
rect both standard output and standard error, and2> to redirect standard error
independently from standard output.

Standard input may be redirected using either< or<<. The< form causes input to be
taken from a file. In the<< form the following argument is not a file name, but rather an

Table 12.1. A summary of Tcl commands for manipulating processes.

exec ?-keepnewline? ?--? arg ?arg ...?
Executes command pipeline specified byarg’s using one or more
subprocesses and returns the pipeline’s standard output or an empty string if
output is redirected (the trailing newline, if any, is dropped unless-
keepnewline is specified). I/O redirection may be specified with<, <<,
and> and several other forms and pipes may be specified with|. If the last
arg is& then the pipeline is executed in background and the return value is
a list of its process ids.

exit ?code?
Terminates process, returningcode to parent as exit status.Code must be
an integer. Code defaults to 0.

open |command ?access?
Treatscommand as a list with the same structure as arguments toexec
and creates subprocess(es) to execute command(s). Depending onaccess,
creates pipes for writing input to pipeline and reading output from it.

pid ?fileId?
If fileId is omitted, returns the process identifier for the current process.
Otherwise returns a list of all the process ids in the pipeline associated with
fileId (which must have been opened using |).

12.1 Invoking subprocesses with exec 111

DRAFT (8/12/93): Distribution Restricted

immediate value to be passed to the subprocess as its standard input. The following com-
mand uses<< to write data to a file:

exec cat << "test data" > foo

The string “test input” is passed tocat as its standard input;cat copies the string
to its standard ouput, which has been redirected to filefoo. If no input redirection is spec-
ified then the subprocess inherits the standard input channel from the Tcl application.

You can also invoke a pipeline of processes instead of a single process using|, as in
the following example:

exec grep #include tclInt.h | wc

⇒ 8 25 212

Thegrep program extracts all the lines containing the string “#include” from the file
tclInt.h. These lines are then piped to thewc program, which computes the number of
lines, words, and characters in thegrep output and prints this information on its standard
output. Thewc output is returned as the result ofexec.

If the last argument toexec is& then the subprocess(es) will be executed in back-
ground.Exec will return immediately, without waiting for the subprocesses to complete.
Its return value will be a list containing the process identifiers for all of the processes in
the pipeline; standard output from the subprocesses will go to the standard output of Tcl
application unless redirected. No errors will be reported for abnormal exits or standard
error output, and standard error for the subprocesses will be directed to the standard error
channel of the Tcl application.

If a subprocess is suspended or exits abnormally (i.e., it is killed or returns a non-zero
exit status), or if it generates output on its standard error channel and standard error was
not redirected, thenexec returns an error. The error message will consist of the output
generated by the last subprocess (unless it was redirected with>), followed by an error
message for each process that exited abnormally, followed by the information generated
on standard error by the processes, if any. In addition,exec will set theerrorCode
variable to hold information about the last process that terminated abnormally, if any (see
the reference documentation for details).

Note: Many UNIX programs are careless about the exit status that they return. If you invoke
such a program with exec and it accidentally returns a non-zero status then the exec
command will generate a false error. To prevent these errors from aborting your scripts,
invoke exec inside a catch command.

Althoughexec’s features are similar to those of the UNIX shells there is one impor-
tant difference:exec does not perform any file name expansion. For example, suppose
you invoke the following command with the goal of removing all.o files in the current
directory:

exec rm *.o

∅ rm: *.o nonexistent

112 Processes

DRAFT (8/12/93): Distribution Restricted

Rm receives “*.o” as its argument and exits with an error when it cannot find a file by this
name. If you want file name expansion to occur you can use theglob command to get it,
but not in the obvious way. For example, the following command will not work:

exec rm [glob *.o]

∅ rm: a.o b.o nonexistent

This fails because the list of file names thatglob returns is passed torm as a single argu-
ment. If, for example, there exist two.o files,a.o andb.o, then rm’s argument will be
“a.o b.o”; since there is no file by that namerm will return an error. The solution to
this problem is the one described in Section 7.5: useeval to reparse theglob output so
that it gets divided into multiple words. For example, the following command will do the
trick:

eval exec rm [glob *.o]

In this caseeval concatenates its arguments to produce the string

exec rm a.o b.o

which it then evaluates as a Tcl script. The namesa.o andb.o are passed torm as sepa-
rate arguments and the files are deleted as expected.

12.2 I/O to and from a command pipeline

You can also create subprocesses using theopen command; once you’ve done this you
can then use commands likegets andputs to interact with the pipeline. Here are two
simple examples:

set f1 [open {|tbl | ditroff -ms} w]
set f2 [open |prog r+}

If the first character of the “file name” passed toopen is the pipe symbol| then the argu-
ment isn’t really a file name at all. Instead, it specifies a command pipeline. The remainder
of the argument after the| is treated as a list whose elements have exactly the same mean-
ing as the arguments to theexec command.Open will create a pipeline of subprocesses
just as forexec and it will return an identifier that you can use to transfer data to and from
the pipeline. In the first example the pipeline is opened for writing, so a pipe is used for
standard input to thetbl process and you can invokeputs to write data on that pipe; the
output fromtbl goes toditroff, and the output fromditroff goes to the standard
output of the Tcl application. The second example opens a pipeline for both reading and
writing so separate pipes are created forprog’s standard input and standard output. Com-
mands likeputs can be used to write data toprog and commands likegets can be
used to read the output fromprog.

Note: When writing data to a pipeline, don’t forget that output is buffered: it probably will not
actually be sent to the child process until you invoke theflush command to force the
buffered data to be written.

12.3 Process ids 113

DRAFT (8/12/93): Distribution Restricted

When you close a file identifier that corresponds to a command pipeline, theclose
command flushes any buffered output to the pipeline, closes the pipes leading to and from
the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally thenclose returns an error in the same way asexec.

12.3 Process ids

Tcl provides three ways that you can access process identifiers. First, if you invoke a pipe-
line in background usingexec thenexec returns a list containing the process identifiers
for all of the subprocesses in the pipeline. You can use these identifers, for example, if you
wish to kill the processes. Second, you can invoke thepid command with no arguments
and it will return the process identifier for the current process. Third, you can invokepid
with a file identifier as argument, as in the following example:

set f [open {| tbl | ditroff -ms} w]
pid $f

⇒ 7189 7190

If there is a pipeline corresponding to the open file, as in the example, then thepid com-
mand will return a list of identifiers for the processes in the pipeline.

12.4 Environment variables

Environment variables can be read and written using the standard Tcl variable mechanism.
The array variableenv contains all of the environment variables as elements, with the
name of the element inenv corresponding to the name of the environment variable. If you
modify theenv array, the changes will be reflected in the process’s environment variables
and the new values will also be passed to any child process created withexec oropen.

12.5 Terminating the Tcl process with exit

If you invoke theexit command then it will terminate the process in which the com-
mand was executed.Exit takes an optional integer argument. If this argument is pro-
vided then it is used as the exit status to return to the parent process.0 indicates a normal
exit and non-zero values correspond to abnormal exits; values other than0 and1 are rare.
If no argument is given toexit then it exits with a status of0. Sinceexit terminates the
process, it doesn’t have any return value.

114 Processes

DRAFT (8/12/93): Distribution Restricted

115

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 13
Managing Tcl Internals

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of the Tcl interpreter. For example, you can use these commands to see if
a variable exists, to find out what entries are defined in an array, to monitor all accesses to
a variable, to rename or delete a command, or to handle references to undefined com-
mands. Tables 13.1 and 13.2 summarize the commands.

13.1 Querying the elements of an array

Thearray command provides information about the elements currently defined for an
array variable. It provides this information in several different ways, depending on the first
argument passed to it. The commandarray size returns a decimal string indicating
how many elements are defined for a given array variable and the commandarray
names returns a list whose entries are the names of the elements of a given array variable:

set currency(France) franc
set "currency(Great Britain)" pound
set currency(Germany) mark
array size currency

⇒ 3

array names currency

⇒ {Great Britain} France Germany

For each of these commands the final argument must be the name of an array variable. The
list returned byarray names does not have any particular order.

FIGURE 13

TABLE 13

116 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Thearray names command can be used in conjunction withforeach to iterate
through the elements of an array. For example, the code below deletes all elements of an
array with values that are0 or empty:

foreach i [array names a] {
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}

Table 13.1. A summary of commands for manipulating Tcl’s internal state (continued in Table
13.2).

array anymore name searchId
Returns1 if there are any more elements to process in searchsearchId
of arrayname, 0 if all elements have already been returned.

array donesearch name searchId
Terminates searchsearchId of arrayname and discard any state
associated with the search. Returns an empty string.

array names name
Returns a list containing the names of all the elements of arrayname.

array nextelement name searchId
Returns the name of the next element in searchsearchId of arrayname,
or an empty string if all elements have already been returned in this search.

array size name
Returns a decimal string giving the number of elements in arrayname.

array startsearch name
Initializes a search through all of the elements of arrayname. Returns a
search identifier that may be passed toarray nextelement, array
anymore, orarray donesearch.

auto_mkindex dir pattern
Scans all of the files in diretorydir whose names matchpattern (using
the glob-style rules ofstring match) and generates a filetclIndex
in dir that allows the files to be auto-loaded.

info option ?arg arg ...?
Returns information about the state of the Tcl interpreter. See Table 13.3.

rename old new
Renames commandold tonew, or deletesold if new is an empty string.
Returns an empty string.

time script ?count?
Executesscript count times and returns a string giving the average
elapsed time per execution.Count defaults to 1.

13.2 The info command 117

DRAFT (8/12/93): Distribution Restricted

Note: Thearray command also provides a second way to search through the elements of an
array, using thestartsearch, anymore, nextelement, anddonesearch
options. This approach is more general than theforeach approach given above, and in
some cases it is more efficient, but it is more verbose than theforeach approach and
isn’t needed very often. See the reference documentation for details.

13.2 The info command

Theinfo command provides information about the state of the interpreter. It has more
than a dozen options, which are summarized in Tables 13.3 and 13.4.

13.2.1 Information about variables

Several of theinfo options provide information about variables.Info exists returns
a0 or1 value indicating whether or not there exists a variable with a given name:

set x 24
info exists x

⇒ 1

Table 13.2. Commands for manipulating Tcl’s internal state, cont’d.

trace variable name ops command
Establishes a trace on variablename such thatcommand is invoked
whenever one of the operations given byops is performd onname. Ops
must consist of one or more of the charactersr, w, oru. Returns an empty
string.

trace vdelete name ops command
If there exists a trace for variablename that has the operations and
command given byops andcommand, removes that trace so that its
command will not be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variable
name. Each element is a sub-list with two elements, which are theops and
command associated with that trace.

unknown cmd ?arg arg ...?
This command is invoked by the Tcl interpreter whenever an unknown
command name is encountered.Cmd will be the unknown command name
and thearg’s will be the fully-substituted arguments to the command. The
result returned byunknown will be returned as the result of the unknown
command.

118 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Table 13.3. A summary of the options for theinfo command (continued in Table 13.4).

info args procName
Returns a list whose elements are the names of the arguments to procedure
procName, in order.

info body procName
Returns the body of procedureprocName.

info cmdcount
Returns a count of the total number of Tcl commands that have been
executed in this interpreter.

info commands ?pattern?
Returns a list of all the commands defined for this interpreter, including
built-in commands, application-defined commands, and procedures. If
pattern is specified then only the command names matchingpattern
are returned (string match’s rules are used for matching).

info default procName argName varName
Checks to see if argumentargName to procedureprocName has a default
value. If so, stores the default value in variablevarName and returns1.
Otherwise, returns0 without modifyingvarName.

info exists varName
Returns1 if there exists a variable namedvarName in the current context,
0 if no such variable is currently accessible.

info globals ?pattern?
Returns a list of all the global variables currently defined. Ifpattern is
specified, then only the global variable names matchingpattern are
returned (string match’s rules are used for matching).

info level ?number?
If number isn’t specified, returns a number giving the current stack level
(0 corresponds to top-level,1 to the first level of procedure call, and so
on). If number is specified, returns a list whose elements are the name and
arguments for the procedure call at levelnumber.

info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

info locals ?pattern?
Returns a list of all the local variables defined for the current procedure, or
an empty string if no procedure is active. Ifpattern is specified then
only the local variable names matchingpattern are returned (string
match’s rules are used for matching).

13.2 The info command 119

DRAFT (8/12/93): Distribution Restricted

unset x
info exists x

⇒ 0

The optionsvars, globals, andlocals return lists of variable names that meet
certain criteria.Info vars returns the names of all variables accessible at the current
level of procedure call;info globals returns the names of all global variables, regard-
less of whether or not they are accessible; andinfo locals returns the names of local
variables, including arguments to the current procedure, if any, but not global variables. In
each of these commands an additional pattern argument may be supplied. If the pattern is
supplied then only variable names matching that pattern (using the rules ofstring
match) will be returned.

For example, suppose that global variablesglobal1 andglobal2 have been
defined and that the following procedure is being executed:

proc test {arg1 arg2} {
global global1
set local1 1
set local2 2
...

}

Then the following commands might be executed in the procedure:

Table 13.4. A summary of the options for theinfo command, cont’d.

info procs ?pattern?
Returns a list of the names of all procedures currently defined. Ifpattern
is specified then only the procedure names matchingpattern are
returned (string match’s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns the
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the form
major.minor, wheremajor andminor are each decimal integers.
Increments inminor correspond to bug fixes, new features, and
backwards-compatible changes.Major increments only when
incompatible changes occur.

info vars ?pattern?
Returns a list of all the names of all variables that are currently accessible.
If pattern is specified then only the variable names matchingpattern
are returned (string match’s rules are used for matching).

120 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

info vars

⇒ global1 arg1 arg2 local2 local1

info globals

⇒ global2 global1

info locals

⇒ arg1 arg2 local2 local1

info vars *al*

⇒ global1 local2 local1

13.2.2 Information about procedures

Another group ofinfo options provides information about procedures. The command
info procs returns a list of all the Tcl procedures that are currently defined. Likeinfo
vars, it takes an optional pattern argument that restricts the names returned to those that
match a given pattern.Info body, info args, andinfo default return informa-
tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {
if {$a < $b}{

puts stdout "c is $c"
}

}
info body maybePrint

⇒
 if {$a < $b} {
 puts stdout "c is $c"
 }

info args maybePrint

⇒ a b c

info default maybePrint a x

⇒ 0

info default maybePrint c x

⇒ 1

set x

⇒ 24

Info body returns the procedure’s body exactly as it was specified to theproc com-
mand.Info args returns a list of the procedure’s argument names, in the same order
they were specified toproc. Info default returns information about an argument’s
default value. It takes three arguments: the name of a procedure, the name of an argument
to that procedure, and the name of a variable. If the given argument has no default value
(e.g.a in the above example),info default returns0. If the argument has a default

13.2 The info command 121

DRAFT (8/12/93): Distribution Restricted

value (c in the above example) theninfo default returns1 and sets the variable to
hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,
here is a Tcl procedure that writes a Tcl script file. The script will contain Tcl code in the
form ofproc commands that recreate all of the procedures in the interpreter. The file can
then besource’d in some other interpreter to duplicate the procedure state of the origi-
nal interpreter. The procedure takes a single argument, which is the name of the file to
write:

proc printProcs file {
set f [open $file w]
foreach proc [info procs] {

set argList {}
foreach arg [info args $proc] {

if [info default $proc $arg default] {
lappend argList [list $arg $default]

} else {
lappend argList $arg

}
}
puts $f [list proc $proc $argList \

[info body $proc]]
}
close $f

}

Info provides one other option related to procedures:info level. If info
level is invoked with no additional arguments then it returns the current procedure invo-
cation level:0 if no procedure is currently active,1 if the current procedure was called
from top-level, and so on. Ifinfo level is given an additional argument, the argument
indicates a procedure level andinfo level returns a list whose elements are the name
and actual arguments for the procedure at that level. For example, the following procedure
prints out the current call stack, showing the name and arguments for each active proce-
dure:

proc printStack {} {
set level [info level]
for {set i 1} {$i < $level} {incr i} {

puts "Level $i: [info level $i]"
}

}

13.2.3 Information about commands

Info commands is similar toinfo procs except that it returns information about all
existing commands, not just procedures. If invoked with no arguments, it returns a list of
the names of all commands; if an argument is provided, then it is a pattern in the sense of
string match and only command names matching that pattern will be returned.

122 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

The commandinfo cmdcount returns a decimal string indicating how many com-
mands have been executed in this Tcl interpreter. It may be useful during peformance tun-
ing to see how many Tcl commands are being executed to carry out various functions.

The commandinfo script indicates whether or not a script file is currently being
processed. If so then the command returns the name of the innermost nested script file that
is active. If there is no active script file theninfo script returns an empty string. This
command is used for relatively obscure purposes such as disallowing command abbrevia-
tions in script files.

13.2.4 Tclversion and library

Info tclversion returns the version number for the Tcl interpreter in the form
major.minor. Each ofmajor andminor is a decimal string. If a new release of Tcl
contains only backwards-compatible changes such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If a new
release contains changes that are not backwards-compatible, so that existing Tcl scripts or
C code that invokes Tcl’s library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to 0.

The commandinfo library returns the full path name of the Tcl library direc-
tory. This directory is used to hold standard scripts used by Tcl, such as a default definition
for theunknown procedure described in Section 13.6 below.

13.3 Timing command execution

Thetime command is used to measure the performance of Tcl scripts. It takes two argu-
ments, a script and a repetition count:

time {set a xyz} 10000

⇒ 92 microseconds per iteration

Time will execute the given script the number of times given by the repetition count,
divide the total elapsed time by the repetition count, and print out a message like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To
make accurate timing measurements, I suggest experimenting with the repetition count
until the total time for thetime command is a few seconds.

13.4 Tracing operations on variables 123

DRAFT (8/12/93): Distribution Restricted

13.4 Tracing operations on variables

Thetrace command allows you to monitor the usage of one or more Tcl variables. Such
monitoring is calledtracing. If a trace has been established on a variable then a Tcl com-
mand will be invoked whenever the variable is read or written or unset. Traces can be used
for a variety of purposes:

• monitoring the variable’s usage (e.g. by printing a message for each read or write oper-
ation)

• propagating changes in the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

• restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variable’s value to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

Here is a simple example that causes a message to be printed when either of two vari-
ables is modified:

trace variable color w pvar
trace variable a(length) w pvar
proc pvar {name element op} {

if {$element != ""} {
set name ${name}($element)

}
upvar $name x
puts "Variable $name set to $x"

}

The firsttrace command arranges for procedurepvar to be invoked whenever variable
color is written:variable specifies that a variable trace is being created,color
gives the name of the variable,w specifies a set of operations to trace (any combination of
r for read,w for write, andu for unset), and the last argument is a command to invoke.
The second trace command sets up a trace for elementlength of arraya.

Whenevercolor ora(length) is modified, Tcl will invoke pvar with three
additional arguments, which are the variable’s name, the variable’s element name (if it is
an array element, or an empty string otherwise), and an argument indicating what opera-
tion was actually invoked (r for read,w for write, oru for unset). For example, if the com-
mand “set color purple” is executed, Tcl will evaluate the command
“pvar color {} purple” because of the trace. If “set a(length) 108” is
invoked, the trace command “pvar a length w” will be evaluated.

Thepvar procedure does three things. First, if the traced variable is an array element
thenpvar generates a complete name for the variable by combining the array name and
the element name. Second, the procedure usesupvar to make the variable’s value acces-
sible inside the procedure as local variablex. Finally, it prints out the variable’s name and
value on standard output. For the two accesses in the previous paragraph the following
messages will be printed:

124 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Variable color set to purple
Variable a(length) set to 108

The example above set traces on individual variables. It’s also possible to set a trace
on an entire array, as with the command

trace variable a w pvar

wherea is the name of an array variable. In this casepvar will be invoked whenever any
element ofa is modified.

Write traces are invoked after the variable’s value has been modified but before
returning the new value as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. Read traces are invoked just
before the variable’s result is read. The trace command can modify the variable to affect
the result returned by the read operation. Tracing is temporarily disabled for a variable
during the execution of read and write trace commands. This means that a trace command
can access the variable without causing traces to be invoked recursively.

If a read or write trace returns an error of any sort then the traced operation is aborted.
This can be used to implement read-only variables, for example. Here is a script that
forces a variable to have a positive integer value and rejects any attempts to set the vari-
able to a non-integer value:

trace variable size w forceInt
proc forceInt {name element op} {

upvar $name x ${name}_old x_old
if ![regexp {^[0-9]*$} $x] {

set x $x_old
error "value must be a postive integer"

}
set x_old $x

}

By the time the trace command is invoked the variable has already been modified, so if
forceInt wants to reject a write it must restore the old value of the variable. To do this
it keeps a shadow variable with a suffix “_old ” to hold the previous value of the variable.
If an illegal value is stored into the variable,forceInt restores the variable to its old
value and generates an error:

set size 47

⇒ 47

set size red

∅ can’t set "size": value must be a postive integer

set size

⇒ 47

Note: The forceInt procedure only works for simple variables, but it could be extended to
handle array elements as well.

13.5 Renaming and deleting commands 125

DRAFT (8/12/93): Distribution Restricted

It is legal to set a trace on a non-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set a read trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove the variable and any traces associated with the variable,
then invoke any unset traces for the variable. It is legal, and not unusual, for an unset trace
to immediately re-establish itself on the same variable so that it can monitor the variable if
it should be re-created in the future.

To delete a trace, invoketrace vdelete with the same arguments passed to
trace variable. For example, the trace created oncolor above can be deleted with
the following command:

trace vdelete color w pvar

If the arguments totrace vdelete don’t match the information for any existing trace
exactly then the command has no effect.

The commandtrace vinfo returns information about the traces currently set for a
variable. It is invoked with an argument consisting of a variable name, as in the following
example:

trace vinfo color

⇒ {w pvar}

The return value fromtrace vinfo is a list, each of whose elements describes one
trace on the variable. Each element is itself a list with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will be invoked. If the variable specified totrace vinfo is an element of an array,
then only traces on that element will be returned; traces on the array as a whole will not be
returned.

13.5 Renaming and deleting commands

Therename command can be used to change the command structure of an application. It
takes two arguments:

rename old new

Rename does just what its name implies: it renames the command that used to have the
nameold so that it now has the namenew. New must not already exist as a command
whenrename is invoked.

Rename can also be used to delete a command by invoking it with an empty string as
thenew name. For example, the following script disables file I/O from an application by
deleting the relevant commands:

foreach cmd {open close read gets puts} {
rename $cmd {}

}

126 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably a bad idea in general, since it will break scripts that depend on the
command, but in some situations it can be useful. For example, theexit command as
defined by Tcl just exits the process immediately (see Section 12.5). If an application
wants to have a chance to clean up its internal state before exiting, then it can create a
“wrapper” aroundexit by redefining it:

rename exit exit.old
proc exit status {

application-specific cleanup
...
exit.old $status

}

In this example theexit command is renamed toexit.old and a newexit proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scripts that callexit to be
used without change while still giving the application an opportunity to clean up its state.

13.6 Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If
the interpreter discovers that the command name specified in a Tcl command doesn’t exist,
then it checks for the existence of a command namedunknown. If there is such a com-
mand then the interpreter invokesunknown instead of the original command, passing the
name and arguments for the non-existent command tounknown. For example, suppose
that you type the following commands:

set x 24
createDatabase library $x

If there is no command namedcreateDatabase then the following command is
invoked:

unknown createDatabase library 24

Notice that substitutions are performed on the arguments to the original command before
unknown is invoked. Each argument tounknown will consist of one fully-substituted
word from the original command.

Theunknown procedure can do anything it likes to carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

13.6 Unknown commands 127

DRAFT (8/12/93): Distribution Restricted

proc unknown {name args} {
set cmds [info commands $name*]
if {[llength $cmds] != 1} {

error "unknown command \"$name\""
}
uplevel $cmds $args

}

Note that when the command is re-invoked with an expanded name, it must be invoked
usinguplevel so that the command executes in the same variable context as the original
command.

The Tcl script library includes a default version ofunknown that peforms the follow-
ing functions, in order:

1. If the command is a procedure that is defined in a library file, source the file to define
the procedure, then re-invoke the command. This is calledauto-loading; it is described
in the next section.

2. If there exists a program with the name of the command, use theexec command to
invoke the program. This feature is calledauto-exec. For example, you can type “ls”
as a command andunknown will invoke “exec ls” to list the contents of the current
directory. If the command doesn’t specify redirection then auto-exec will arrange for
the command’s standard input, standard output, and standard error to be redirected to
the corresponding channels of the Tcl application. This is different than the normal
behavior ofexec but it allows interactive programs such asmore andvi to be
invoked directly from a Tcl application.

3. If the command name has one of several special forms such as “!!” then compute a
new command using history substitution and invoke it. For example, the if the com-
mand is “!!” then the previous command is re-invoked. See Chapter 14 for more infor-
mation on history substitution.

4. If the command name is a unique abbreviation for an existing command, then the
abbreviated command name is expanded and the command is re-invoked.

The last three actions are intended as conveniences for interactive use, and they only occur
if the command was invoked interactively. You should not depend on these features when
writing scripts. For example, you should not try to use auto-exec in scripts: always use the
exec command explicitly.

If you don’t like the default behavior of theunknown procedure then you can write
your own version or modify the library version to provide additional functions. If you
don’t want any special actions to be taken for unknown commands you can just delete the
unknown procedure, in which case errors will occur whenever unknown commands are
invoked.

128 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

13.7 Auto-loading

One of the most useful functions performed by theunknown procedure isauto-loading.
Auto-loading allows you to write collections of Tcl procedures and place them in script
files in library directories. You can then use these procedures in your Tcl applications
without having to explicitlysource the files that define them. You simply invoke the
procedures. The first time that you invoke a library procedure it won’t exist, sounknown
will be called.Unknown will find the file that defines the procedure, source the file to
define the procedure, and then re-invoke the original command. The next time the proce-
dure is invoked it will exist so the auto-loading mechanism won’t be triggered.

Auto-loading provides two benefits. First, it makes it easy to build up large libraries
of useful procedures and use them in Tcl scripts. You need not know exactly which files to
source to define which procedures, since the auto-loader takes care of that for you. The
second benefit of auto-loading is efficiency. Without auto-loading an appliation must
source all of its script files when it starts up. Auto-loading allows an application to start
up without loading any script files at all; the files will be loaded later when their proce-
dures are needed, and some files may never be loaded at all. Thus auto-loading reduces
startup time and saves memory.

Using the auto-loader is straightforward and involves three steps. First, create a
library as a set of script files in a single directory. Normally these files have names that end
in “.tcl”, for exampledb.tcl orstretch.tcl. Each file can contain any number of
procedure definitions. I recommend keeping the files relatively small, with just a few
related procedures in each file. In order for the auto-loader to handle the files properly, the
proc command for each procedure definition must be at the left edge of a line, and it
must be followed immediately by white space and the procedure’s name on the same line.
Other than this the format of the script files doesn’t matter as long as they are valid Tcl
scripts.

The second step is to build an index for the auto-loader. To do this, start up a Tcl
application such astclsh and invoke theauto_mkindex command as in the follow-
ing example:

auto_mkindex . *.tcl

Auto_mkindex isn’t a built-in command but rather a procedure in Tcl’s script library.
Its first argument is a directory name and the second argument is a glob-style pattern that
selects one or more script files in the directory. Auto_mkindex scans all of the files
whose names match the pattern and builds an index that indicates which procedures are
defined in which files. It stores the index in a file calledtclIndex in the directory. If you
modify the files to add or delete procedures then you should regenerate the index.

The third step is to set the variableauto_path in the applications that wish to use
the library. Theauto_path variable contains a list of directory names. When the auto-
loader is invoked it searches the directories inauto_path in order, looking in their
tclIndex files for the desired procedure. If the same procedure is defined in several

13.7 Auto-loading 129

DRAFT (8/12/93): Distribution Restricted

libraries then the auto-loader will use the one from the earliest directory inauto_path.
Typically auto_path will be set as part of an application’s startup script. For example,
if an application uses a library in directory/usr/local/tcl/lib/shapes then it
might include the following command in its startup script:

set auto_path \
[linsert $auto_path 0 /usr/local/tcl/lib/shapes]

This will add/usr/local/tcl/lib/shapes to the beginning of the path, retaining
all the existing directories in the path such as those for the Tcl and Tk script libraries but
giving higher priority to procedures defined in/usr/local/tcl/lib/shapes.
Once a directory has been properly indexed and added toauto_path, all of its proce-
dures become available through auto-loading.

130 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

131

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 14
History

This chapter describes Tcl’s history mechanism. In applications where you type com-
mands interactively, the history mechanism keeps track of recent commands and makes it
easy for you to re-execute them without having to completely re-type them. You can also
create new commands that are slight variations on old commands without having to com-
pletely retype the old commands, for example to fix typos. Tcl’s history mechanism pro-
vides many of the features available incsh, but not with the same syntax in all cases.
History is implemented by thehistory command, which is summarized in Table 14.1 .
Only a few of the most commonly used history features are described in this chapter; see
the reference documentation for more complete information.

14.1 The history list

Each command that you type interactively is entered into ahistory list. Each entry in the
history list is called anevent; it contains the text of a command plus a serial number iden-
tifying the command. The command text consists of exactly the characters you typed,
before the Tcl parser peforms substitutions for$, [], etc. The serial number starts out at1
for the first command you type and is incremented for each successive command.

Suppose you type the following sequence of commands to an interactive Tcl program:

set x 24
set y [expr $x*2.6]
incr x

At this point the history list will contain three events. You can examine the contents of the
history list by invokinghistory with no arguments:

FIGURE 14

TABLE 14

132 History

DRAFT (8/12/93): Distribution Restricted

history

⇒ 1 set x 24
 2 set y [expr $x*2.6]
 3 incr x
 4 history

The value returned byhistory is a human-readable string describing what’s on the his-
tory list, which also includes thehistory command. The result ofhistory is intended
for printing out, not for processing in Tcl scripts; if you want to write scripts that process
the history list, you’ll probably find it more convenient to use otherhistory options
described later in the reference documentation, such ashistory event.

The history list has a fixed size, which is initially 20. If more commands than that
have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with thehistory keep command:

history keep 100

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

Table 14.1. A summary of some of the options for thehistory command. Several options have
been omitted; see the reference documentation for details.

history
Returns a string giving the event number and command for each event on
the history list.

history keep count
Changes the size of the history list so that thecount most recent events
will be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the history list.

history redo ?event?
Re-executes the command recorded forevent and returns its result.

history substitute old new ?event?
Retrieve the command recorded forevent, replace any occurrences of
old bynew in it, execute the resulting command, and returns its result.
Bothold andnew are simple strings. The substitution uses simple equality
checks: no wild cards or regular expression features are supported.

14.2 Specifying events 133

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events

Several of the options of thehistory command require you to select an event from the
history list; the symbolevent is used for such arguments in Table 14.1. Events are spec-
ified as strings with one of the following forms:

Suppose that you had just typed the three commands from page 131 above. The command
“incr x” can be referred to as event-1 or3 orinc, and “set y [expr $x*2.6]”
can be referred to as event-2 or2 or*2*. If an event specifier is omitted then it defaults
to -1.

14.3 Re-executing commands from the history list

Theredo andsubstitute options tohistory will replay commands from the his-
tory list.History redo retrieves a command and re-executes it just as if you had
retyped the entire command. For example, after typing the three commands from page
131, the command

history redo

replays the most recent command, which isincr x; it will increment the value of vari-
ablex and return its new value (26). If an additional argument is provided forhistory
redo, it selects an event as described in Section 14.2; for example,

history redo 1

⇒ 24

replays the first command,set x 24.
Thehistory substitute command is similar tohistory redo except that

it modifies the old command before replaying it. It is most commonly used to correct typo-
graphical errors:

set x "200 illimeters"

⇒ 200 illimeters

history substitute ill mill -1

⇒ 200 millimeters

Positive number: Selects the event with that serial number.
Negative number: Selects an event relative to the current event.-1 refers to

the last command,-2 refers to the one before that, and so
on.

Anything else: Selects the most recent event that matches the string. The
string matches an event either if it is the same as the first
characters of the event’s command, or if it matches the
event’s command using the matching rules forstring
match.

134 History

DRAFT (8/12/93): Distribution Restricted

History substitute takes three arguments: an old string, a new string, and an event
specifier (the event specifier can be defaulted, in which case it defaults to-1). It retrieves
the command indicated by the event specifier and replaces all instances of the old string in
that command with the new string. The replacement is done using simple textual compari-
son with no wild-cards or pattern matching. Then the resulting command is executed and
its result is returned.

14.4 Shortcuts implemented by unknown

Thehistory redo andhistory substitute commands are quite bulky; in the
examples above it took more keystrokes to type thehistory commands than to retype
the commands being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:

All of these shortcuts are implemented by theunknown procedure described in Section
13.6.Unknown detects commands that have the forms described above and invokes the
correspondinghistory commands to carry them out.

Note: If your system doesn’t use the default version ofunknown provided by Tcl then these
shortcuts may not be available.

14.5 Current event number: history nextid

The commandhistory nextid returns the number of the next event to be entered into
the history list:

history nextid

⇒ 3

It is most commonly used for generating prompts that contain the event number. Many
interactive applications allow you to specify a Tcl script to generate the prompt; in these
applications you can include ahistory nextid command in the script so that your
prompt includes the event number of the command you are about to type.

!! Replays the last command: same as “history redo”.
!event Replays the command given byevent; same as

“history redo event”.
^old^new Replay the last command, substituting new for old; same as

“history substitute old new”.

