Object Oriented Per|

#!/usr/bin/perl
Copyright (c) Marcus Post, <marcus@marcuspost.com>
#

$_=q,my(@f|@c|x$_=q.my(@f|@c|x$_=q.my(@f|@c|x$_=q.m(@f[|@c|x$_=q.m(@f||@c|xx
@w);@a=@f=<DAT%@w); @a=@f=<DAT%@w), @a=@f=<DAT%@w,@a=@f=<DAAT%@w,@a=@f=<DAAT%%
A>;seek(DATA|0!A>;seek(DAA|0!'A>;seek(DAA|0!A>;seek(DAA|0!!A>;seek(DAA|O!AA
|0); @c=<DATA>;Y|0); @c<DATA>;Y||0); @c<DATA>Y]|0); @c<DATA>Y|||0); @c<DATA>Y]|||
until(($_=pop(zutil(($_==pp(zuttil(($_==p(zuttil(($_==p(zutttil($_==p(zuttt
@c)=~I"_N{1Qc)=~"_N{}Qc))=~"_K}Qc))=~"_K}Qc)))=~I"_K}Qc)))
unshift(@a]$_)xnshift(@a|$_)xnshhift(a|$_)xnshhift(a|$_)xnshhiift(al$_)xnshh
;for(1..3){pri%;for(1.3){pri%;fforl.3){pri%;fforl.3){pri%;ffor11.3){pri%;fff
nt(shift(@c));!nt(shft(@c));!ntt(hft(@c));!ntt(hft(@c));!ntt(hftt(@c)); ! nttt
}for(@f){my($sY}for@f){my($sY}for@f){my($sY}for@f){my($sY}for@f){mmy($sY}foo
);split/;$_=sz);splt//;$_=sz);splt//;$_=sz);splt//;$_=sz);splt//;$_==sz);ss
hift(@c);$_=~sQhift(c);$_=~sQhift(c);$_=~sOhift(c);$_=~sQhift(c);$_=~sQQhiff
1(A15)) AT/ (LLSPALIXILEP*NLIXIC LIS *ALIXI (LIS HLIXX/(..

;@w=split//;fo%; @w=split/;fo%; @w=split/;fo%; @w=split/;fo%; @w=spllit;f0%%; @ww
r(@_){$w[$s+15!r(@_){$w[$515!r(@_){$w[$515!r(@_){$w[$515!!(@){$$w[s15!(@@
—$J=(($w[$s]eY—$J=(($W[$S]YY—J (($w[$s]YY—_] (($W[$S]YY—_] (((B[SsTIYY—__
Q)" Swi$zq"|") 2" " Sw[$zq|")?". " $[$zq|") ??.": $[[$2]") 22?.: $$[[$z]|
s]);$s++;or(Qs]);$s++;}or(Qs]; Ss++; ;Hor(Qsl; $3s+; }}orr(Qs]$$s++ Horr(Qss
1. 75){un|ess(><l .75){unless(x1.75){unnlss(x1.775){uulsss(x1.75){uuulsss(x11
$w[$_]ne”){$wrsw($_]ne”){$w%sw$_]nee " {$woSsw$_Inn"{Sw$sw_nnn"{{$wr%$s

$_1=$w[($_-DI[$_1=$w[($_-DI$_=Sw[[($_-)[$_==w[[($$_-)![$__WI[[($$_-)
] }}pnnt(JomY] }}prlnt(]omY] }prlnnt(JomY Yprinntt(joinY; }plnnntt(]omY

"|@w);print"\z™ |@w) print\z™ |w) ;print™\z"|w);; pprint"\z"|w;;ppprint"\zz
n";}print@a;,;#n";}print@a;.;#n";priint@a; . ;#n; priintt@a,; . ;#n; piinntt@a; . ; ##
y!ZY\1%x!,QL#y!|zY\1%X!. Q!i#y!1zY\I1%x!.QL#!1ZY\N%xX!!. QL #12\111%x!1. Q1 ##
s{Q."\n}{lg;#<>s{Q.*\n}{lg;#<>sQ.*\nn}[]g;#>sQ."\nn}{]]g;#>sQ.\nnn}{]]g;#>ss
eval;#EndFinil$eval;#EndFini!'$eal; #EEndFin!$eal;;##nddFin!$ea;;###nddFin!$ee

Paul Fenwick
Jacinta Richardson

Object Oriented Perl
by Paul Fenwick and Jacinta Richardson

Copyright © 2001-2004 by Paul Fenwick (pjf@perltraining.com.au)
Copyright © 2001-2004 by Jacinta Richardson (jarich@perltraining.com.au)
Copyright © 2001-2004 by Perl Training Australia (http://perltraining.com.au)
Copyright © 2001 by Obsidian Consulting Group

Cover artwork Copyright (c) 2001 Marcus Post. Used with permission.

The use of a camel image with the topic of Perl is a trademark of O’Reilly & Associates, Inc. Used with permission.

Conventions used throughout this text are based upon the conventions used in the Netizen training manuals by Kirrily Robert, and found at
http://sourceforge.net/projects/spork

Distribution of this work is prohibited unless prior permission is obtained from the copyright holder.

This training manual is maintained by Perl Training Australia, and can be found at http://www.perltraining.com.au/notes.html.

This is revision 1.4 of Perl Training Australia’s "Object Oriented Perl" training manual.

Table of Contents

L INTFOTUCTION. ...ttt bbbt bbb bt st r bt b b e en b n b e nas 1
COUISE OULTING 1.t b bbbt 1
ASSUMEA KNOWIBUGE ...ttt ettt sttt e b e bbb b neens 1
MOAUIE ODJECLIVES ...ttt bbb et b e bbbt nes 1
Platform and VErsion detailS...........c.coerrieiriininiiiiss s 2
THE COUISE NMOTES.......cveetiee ettt ettt 2
OENEE MATEITAIS ... bbbt 3

2. AN 0DJeCt OrieNted FEFTESNEN ..ot e 5
IN RIS CRAPLET... (ot e e b beb ettt et 5
Object orientation iN BIIET ..o e 5
ODjJECtS AN METNOGSveviieeiieeee bbb bbb 5
L0 - TSRS 6
INNEITEANCE ..ttt bbbt 6

MUILIPIE INNEITEANCEt 7
POIYMOIPRISIM 1.ttt sttt b bttt b et se et et enens 8
BB CISE .ttt b bbb b bbb bbbt b e bR bbb bbbt bbbt e ens 8
CRAPLEE SUMIMEIY ...ttt bbbt b et bbbttt n e 9

3. MOAUIES BN PACKAGES.......eetireieririctiiet ettt sttt b et 11
[N ENIS CREPLET.t ettt a e b et s 11
IMIOQUIE USES ...ttt ettt 11
WHAL IS @ MOTUIE? ...ttt 11
Where does Perl 100K fOr MOTUIES?ciiiiiiiiiieece e 12
Finding inStalled MOGUIEScooiuiiiie e bbb 12

EXEICISE .ottt 13

USING CPAN MOAUIES ..o e e 13
THe dOUDIE-COION ..o 13
WAL IS @ PACKAGE? ... ettt bttt et b e bbb sb e 14
POKING INSIAE PACKAGES -....veueeeiiitiieeieiese ettt bbb e eb e bbb b e 14
Package variableS AN OUFcouiiiiiii ettt 15
EXEICISES ..ttt etttk bRkt b Rkt R bRk R b r e r e b 15
ChaPLEI SUMMATY ...ttt ettt b e et s b et et b et e et bt eb et nn e 15

4. Writing packages and MOGUIES..........cociiiiiriie e bbb 17
IN IS CRAPLET... (oot 17
WIIEING PACKAGES. ..ottt ettt 17
WIEING MOUUIES ...ttt ettt ettt 17
WVBITHNGS .otttk e btk R e bttt ben ettt ee bbb ettt sbne 18
EXEICISES .ottt et bbb b b btk R e bbbt e bbbk e b R e bbb r e b b 19
CRAPLEE SUMIMEIY ...ttt ettt b st b st b st b st st b en b s e nenes 19

5. OUF fIrSt PErT ODJECT.......oiiiieiiciiee e 21
IN RIS CRAPLET... (ot b ettt 21
ClasSeS are JUSE PACKAGES .. .cvevvrveriieteieieireee ettt ettt 21
Methods are JUSt SUDFOULINES.........coi ittt e sb e 21
Blessing a referent Creates an ODJECEcviiii i s 22
CONSEIUCEON TUNCLIONS ...t 22
PIayingCard iN FUHL........couoiee et et sb bbb 24
EXEICISES ..ttt ettt bbbkt b bbb st h bt b R R Rk r b e r e b 24
ChaPLEI SUMMATY ...ttt ettt b et b ettt e b e et eb et e e 25

Perl Training Australia (http://www.perltraining.com.au/) v

6. Practical EXercise - Playing CardSccoveriiiriinniinensiecs et 27

Group EXercises - P1anning the CIaSScocuiiiiiescse e 27
Individual Exercise - Writing the Classcccoeiereiineieiee e 27
Practical Usage - The Card Game "War ... 28
7. ATGUMENT PASSING . vvtiveriesieiesie ettt ste s ettt s e e s tesaesaeseesestes e seenesnesseaeseesesneseeneanens 29
IN IS CRAPLET... coeieceiieceeebee bbbttt 29
Named ParameLer PASSINGvevererrerirreeriereririee ettt sttt se et et e seete st ere e neebe e ebeeneereneenes 29
DEfaUIt AIQUMENTSeoviiiieie ettt ettt e et sr et et ne e 30
(=] (o =TSSR 30
Named parameters and 0DJECt CONSIIUCLOTSc.cviviiririirieiiiree s 31
(=] (3 =TSSP 32
CaPLEI SUMMATY ...ttt ettt et b bbbt bt ettt e et b e eb et nnees 32
8. Class methods and VariabIes.............cciiiiiiiii e e e 33
[N ENIS CREPLET. .. .ttt e bbb et b e b e 33
What i @ Class MEtNOA?coiiiii e e e 33
AN example Class METNOM.........oouiiii b e b 33
ClaSS VATTADIES ...ttt ettt et b b ettt ee b e e 34
Package variables and class Variables.............ocooiiiiiiiiienee e 35
EXBICISES ..ttt sttt b bbb b h bbb et h b e b e R Rt e b e b e e bt ee b bt et b reneene 35
ChaPLEI SUMMATY ...ttt ettt et b bbbt bt ettt se et bt eb et nneeas 35
0. DBSTIUCTONS ...tttk ettt ettt b et ee btk h e se e bt s et e bt ehe e se e s b e b b en b e eb e e heebenbeabeebeennesbenrnn 37
IN RIS CRAPLET... (ot e e b b ettt 37
Perl’s garbage COECLION SYSLEIMciiiiiiriiiiiceiree e 37
DESIIUCTOr FUNCHIONS ...ttt ettt et enas 37
T (o =TSRSS 39
Other USES TOr AESLIUCTONS ...ttt 39
GrOUPD EXEICISES....evviriteiiieeiiietesee ettt et ettt b et bbb 40
CRAPLEE SUMIMEIY ...ttt bbbt b st b st b st b st st s en b s e nnenenes 40
O 1 g1 T 1 = L (o T 41
IN RIS CRAPLET... (ot 41
So what is INheritanCe iN PEFI?........coo i 41
MEthod diSPALCHveviieie s 41
Directed diSPALCeirieiiirie e 42

Dispatch via subrouting referenCe..........ocovvereieiie e 43

EXBICISES .ttt e b bbb bbb bbb e 43
Constructors and INNEITANCE ..o e 43
UNIVEISAl MELNOUSccvi ittt st b e bbb 45
The 1Sa() MELNO......ceeeeeiee bbb e 45

The can() METNOT. ... e 45
Problems With INItIAIISErS.oooiiiiee e e 46
Initialisers and diamond INNEFITANCE...........coiiiiii i e 46
ChanQINg PATENLSveeiiiiitirieeee ettt ettt b e ettt bbb e et sbe b e 48

The PerlTrainer Class i FUl ..ot 49
EXBICISES ..ttt sttt bbbttt b b itk b et h b b e R Rt bt e b e ee b bt b b e eneene 50
CAPLET SUMMATY ...ttt ettt b et b et bt ettt se et eb et e e 51

Perl Training Australia (http://www.perltraining.com.au/)

11. Redispatching Method CallSccooiiriiiiie s 53

IN IS CRAPLET... (.t b e e ettt 53

PASS IT 0N PIEASE ...ttt ettt ettt ettt ee bt be e 53
EXEBICISES .ottt ettt sttt bbb ek s bbb h e b bt etk e b Rt bbb bbbt bRt nea 54
OPtIONAl FEAISPALCH ...ttt 54
MaNdatory FEAISPALCI ..ot 55
EXBICISES ..ottt ettt ettt et bbbt b b bt b Rt b bt ekt bbbkt e b bbbt e b bbb e 56
Problems WIth NEXT ..ottt et eenas 56
Using EVERY to call all Methods............coviiiiiiiiiiniesces s 57
Using EVERY and EVERY::LAST 0N PraCtiCe.......ccoueierrieririeinnennienesieie e 58
CONSITUCTONS ...ttt e et b bbb n et r et n e an e 58
[T {0 Tox (o] £ PP P PRSP 59

BB CISES .. ettt b bbbttt ettt bttt anas 59

ChaPLEI SUMMATY ...ttt ettt b bbbt bttt e et eb e b nneeas 60

12, ADSTFACT CIASSES ...ttt ettt et b bbbt ekt b bbbt e bbbt e e b s e enene e 61
[N ENIS CRAPLET ... bbb e bbb et b bt e 61
AADSTFACTING ..ttt ettt sttt b bt R bbbt b e b e eneene s 61
GrOUP EXBICISE ..ttt bbbttt b e bt b et ettt eb et ne e 64
ChaPLEI SUMMATY ...ttt ettt b e et bt ettt e et e b e b nnees 64

13, POIYMOIPRISIT ..o 65
IN RIS CRAPTET... oottt 65
USING POIYMOIPRISI ...ttt ettt et eb bt beee e 65
Inheritance vs interface PolYMOIPRISIMcoiiiiii e 65
Adding default methods and the UNIVERSAL ClaSS ... 66
More on inheritance POIYMOIPRISMc.oiiiiiii e 66
EXEBICISES .oetteieetet ettt ettt sttt bbb b bbb st b bt ek ne bbbkt e b bbb e bR bt e 67
CRAPLEE SUMIMEIY ...ttt ettt ettt es b st b st b st st n s b s nnenenes 67

14. Practical Exercise - the Game 0f ChESS ..o s 69
REGUITEA FEAAING ..ottt ettt sttt e bt re e 69
GrOUP QUESLIONS ...ttt ettt sttt b ettt es b es b st b s b bt ne b s b s e nnenenes 69
INAIVIAUAT EXEICISES ...ttt sttt sttt 69
GrOUD DISCUSSION ...c.tivtteeeteseete ettt ettt ettt es b es et b st b bt st b s b s e e nenes 70

15. OPErator OVEFIOAMINGc.coveeieieiiee ettt ettt bbb an et e b ne e 71
IN TS CRAPLET. .. .t bbbt e bbb e 71
What is operator OVErIoading?cccooiieiiiiieee e e e 71
Overloading StrNGIfICALION.oiiieiiec e s 71
Inheritance and OVErloadingcoooe i e 72

EXEICISES ..tttk b bbbt bR bR bR bR bR b r et r e 73
Overloading COMPAriSON OPEIALOISc..cuerierueeetetirtereererieetesteseete e see e bebesbesbe e eresbesbenee e sse s 73
MAQIC AUEO-GENEIATION ...ttt ettt bbb ettt se bbbt st b e nesbebe e 74
Overloading USING AtIFIDULESco.eiiiiiiiie e e 75
EXEICISES ..ttt bbb h bt h et h b bR bRkt R bt r b r et r e 75
ChaPLEI SUMMATY ...ttt ettt et b et bt et bt e ettt eb e b e e 76

T o (ot=T o £ [0] OO OSSOV 77
[N ENIS CRAPLET.ttt e bbbt e bbb e 77
What iS @N EXCEPLIONTveiieieiteie ettt ettt eb e 77
Throwing eXCeptionS IN PEILc.ciiiiie e e 77
Catching exCeptions N PEFL........cccouiiiiiic e e 77
Having Perl throw more eXCEPLIONS ..ottt 78
Real-world examples 0f EXCEPLIONS ..ot 79

Perl Training Australia (http://www.perltraining.com.au/) vii

viii

B LN o T (0T (V] (=IO 81

Loading the Error MOGUIEcoueiiiiiiiincs e 81

Syntax provided by the Error MOdUIE............ccovveiiieenieieree e 82

try BLOCK CLAUSES ..ottt ettt 82

catch CLASS With BLOCKccociiiiiiieirie sttt st 82

EXCEPE BLOCKttt 83

OtherWisSe BLOCK ..ot 83

fINAIY BLOCK ...ttt bbb st s sbene e 83

g (0] g0] o] [=1 £ OO PPSRPRTRPRTN 83
Constructing an Error ODJECE.......c.veiirieerie e 83

ETTOT SYNEAX.. .t 84

CRAPLEE SUMIMEIY ...ttt ettt es b st b st b st st ban b ne e nenes 84

17, CONCIUSION ...t bbbt b bbbt e b e st b et s bt st bt e s bt e st b ebesnene e 85
WAL YOU VE TRAINT ...ttt et et b e bbb 85
WWHETE 10 NMOW? ..ottt ettt bttt 85
FUITNEE FRAING ...ttt ettt sttt se ettt e bbb e eneene 85
BIOOKS ...t 86

ONTINE ottt 86

16701 (0] o] 1 o] o FHT U OS U TOVRT PO SO PR 87

Perl Training Australia (http://www.perltraining.com.au/)

List of Figures

2-1. The DrinksMachine iNheritanCe treecovoiviiriiricc e 7
9-1. Object has @ NG DUTFEE ..o e e 38
10-1. The PerlTrainer iNNEritanCe Boo it 42
10-2. Adding PerlHacker to the iNheritanCe tree ..o 46
11-1. Classes providing the reView MEethodccooiiiiiiiiiee e e 53
11-2. The PerlTrainer NIErArCRYcoco it e e e 57

Perl Training Australia (http://www.perltraining.com.au/) ix

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 1. Introduction

Welcome to Perl Training Australia’s Object Oriented Perl training course. This is a two-day module
in which we will cover object oriented programming concepts in Perl.

Course outline

« Object oriented refresher

« What are packaged and modules
- How to write packages and modules
« A first Perl object

« Using this knowledge

« Passing arguments by name

+ Class methods and variables

+ Destructors

+ Inheritance

+ Redispatching method calls

+ Abstract classes

« Polymorphism

« Using this knowledge

« Operator overloading

Assumed knowledge

This training module assumes the following prior knowledge and skills:

« Thorough understanding of operators and functions, conditional constructs, subroutines and basic
regular expressions in Perl.

« Thorough understanding of arrays, scalars and hashes in Perl.

« Thorough understanding of references and complex data structures in Perl.

Module objectives

« Understand basic concepts of object oriented programming in Perl.
+ Understand how to write and use modules and packages.
+ Be able to write basic classes and class methods.

- Understand how and when to write destructor functions.

Perl Training Australia (http://www.perltraining.com.au/) 1

Chapter 1. Introduction

«+ Understand inheritance and multiple inheritance and how to handle the issues these create.

« Be able to use the NEXT pseudo-class to assist in cases of multiple inheritance.

Understand polymorphism.

« Understand and be able to overload operators in useful manners.

Platform and version details

This module is taught using Unix or a Unix-like operating system. Most of what is learnt will work
equally well on Windows NT or other operating systems; your instructor will inform you throughout
the course of any areas which differ.

All Perl Training Australia’s Perl training courses use Perl 5, the most recent major release of the
Perl language. Perl 5 differs significantly from previous versions of Perl, so you will need a Perl 5
interpreter to use what you have learnt. However, older Perl programs should work fine under Perl 5.

At the time of writing, the most recent stable release of Perl is version 5.8.4, however older versions
of Perl 5 are still common. Your instructor will inform you of any features which may not exist in
older versions.

The course notes

These course notes contain material which will guide you through the topics listed above, as well as
appendices containing other useful information.

The following typographical conventions are used in these notes:

System commands appear in this typeface

Literal text which you should type in to the command line or editor appears as monospaced font.

Keystrokes which you should type appear like this: ENTER. Combinations of keys appear like this:
CTRL-D

Programlistings and other literal listings of what appears on the
screen appear in a nonospaced font |ike this.

Parts of commands or other literal text which should be replaced by your own specific values appears
like this

Notes and tips appear offset from the text like this.

-—" Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

2 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 1. Introduction

\: Notes marked with "Readme" are pointers to more information which can be found
in your textbook or in online documentation such as manual pages or websites.

Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials

In addition to these notes, it is highly recommend that you obtain a copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly referred to as "the Camel book". While these
notes have been developed to be useful in their own right, the Camel book covers an extensive range
of topics not covered in this course, and discusses the concepts covered in these notes in much more
detail. The Camel Book is considered to be the definitive reference book for the Perl programming
language.

The page references in these notes refer to the 3rd edition of the camel book. References to the 2nd
edition will be shown in parentheses.

An essential book on object oriented programming in Perl is Damian Conway’s "Object Oriented
Perl". This book is referenced through-out the text.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 1. Introduction

4 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 2. An object oriented refresher

In this chapter...

In this section we provide a quick refresher or lesson on basic object oriented concepts.

Object orientation in brief

This course does not aim to teach you all aspects of Object Oriented (OO) Programming, if we were
to do that it would leave precious little time to cover the aspects of the language (Perl) we wish to
implement it in. Rather, this course assumes that you already know the basics of OO, or are willing
to learn them rather quickly.

Damian Conway wrote in his book Object Oriented Perl the following on the essentials of Object
Orientation (used with permission):

You really need to remember only five things to understand 90 percent of the theory of object orientation:

« An object is anything that provides a way to locate, access, modify, and secure data;

« A classis a description of what data is accessible through a particular kind of object, and how that data
may be accessed;

« A method is the means by which an object’s data is accessed, modified or processed,;

« Inheritance is the way in which existing classes of objects can be upgraded to provide additional data or
methods;

 Polymorphism is the way that distinct objects can respond differently to the same message, depending
upon the class to which they belong.

Conway’s book is an excellent and enjoyable read, and a superb reference for all aspects of object
oriented programming in Perl. In fact, it’s so good that we’ll refer to it extensively throughout these
notes. After you complete this course you’ll find these notes are greatly enhanced if you have a copy
of Conway’s book to refer to as well.

Objects and methods

Put simply, an object is a way of accessing data. The data it allows you to access are usually referred
to as attributes. The thing that makes attributes special is that they’re associated exclusively with a
given object.

Now, if that’s all objects are, then we could say that a hash, array or scalar are objects. However,
while all these things can be turned into objects, they’re not objects in their own right. That’s because
one of the cornerstones of object oriented programming is that attributes are not accessible to the
entire program. In fact, you should only access them through special subroutines associated with the
object. These subroutines are referred to as methods, and they’re usually accessible to anyone who
can use your object.

Methods are very important, as they can be used to restrict the ways in which an object’s attributes
can be modified or accessed. A method which sets the date, for example, might forbid any attempt to

Perl Training Australia (http://www.perltraining.com.au/) 5

Chapter 2. An object oriented refresher

set the date to the 31st of February. Methods are also important because they allow the internal
representation of objects to change. Provided that the way of calling the method remains the same, it
doesn’t matter if an object changes its internal date representation from seconds from 1st January
1970 (often called "seconds from the epoch™ or "Unix timestamp"), to using three integers
containing the year, month and day.

Obijects are so named because there are many analogies to real-world objects, so an example here
should help make things more clear. Let’s consider the humble drinks machine.

A drinks machine has a number of attributes; the amount and type of coins with which to give
change, inventories of the various drinks available, the cost of each drink, the current internal
temperature, whether or not the refrigeration unit is operating, and so on. People don’t have direct
access to those attributes, instead they’re restricted by the buttons and coin slots on the machine.
This interface is designed to ensure that only certain operations may be performed so that the
machine maintains a consistent internal state. For example, the owners of the drinks machine only
want to dispense a drink if an appropriate amount of money has been inserted.

The restrictions aren’t just in the interest of the machine’s owner, some of them are to help the
customer as well. By maintaining a consistent state it’s possible to ensure that customers get both the
drink they asked for as well as correct change. Some restrictions (like the machine being bolted to
the floor) can stop potentially dangerous operations, like people trying to rock the machine. Other
restrictions help ensure that the internal temperature setting can’t be changed and spoil the drinks for
others.

What we’ll now investigate is how we set up the association between an object and its interface and
attributes.

Classes

A class provides a set of methods which become associated with a particular kind of object. A class
also provides a specification of the attributes to be used as well. It’s effectively a blueprint,
describing what the object is to look like and how it will act.

When a program needs an object of a particular type, it calls upon this blueprint along with some
information about the initial state of the object (like the advertising to put on the front of the drink
machine, or which drinks it has to start with). The blueprint (class) makes sure these initial values
are sensible, manufactures the appropriate object, and returns it.

When we call a method on an object (such as gi ve_change), the class definition is consulted again to
ensure that’s a valid method for the object and has been called correctly. If it is, that method is
invoked and does its thing. If it isn’t, then an error or exception is usually raised.

B

A common mistake in object oriented programming is to forget the distinction between objects
and their classes. The class is the description of the object and the object in an instance of the
class. For example the class of humans would describe us as having the attributes such as
arms, hands, legs and heads; and methods such as talk, think, eat, and sit. However each of us
would be an instance of that class, an object. If | can jump it's because humans can jump, if |
can laugh, it's because humans can laugh. That is, the class defines the methods and attributes
for each object belonging to that class.

6 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 2. An object oriented refresher

Inheritance

Let’s say that we want to build a new type of drink vending machine, one that not only accepts small
change, but also accepts credit cards as well. We wouldn’t want to start from scratch, designing an
entirely new refrigeration unit, cash dispenser, can holder, and so forth. Instead, we’d start with our
existing blueprint for a standard drinks machine, and modify it appropriately to our needs.

The idea of taking an existing class and extending it to add new functionality is highly encouraged in
object oriented programming. In this case we’d say that our new drinks machine is derived from, or
inherits, the existing Dr i nksMachi ne class. In this case we say that the Dri nksMachi ne is the parent
or base class, and the Dri nksMachi ne: : Credi t is the child or derived class.

Once we’ve stated that Dri nksMachi ne: : Credi t inherits the behaviour of Dri nksMachi ne, we’re
free to make changes to extend our new class as we see fit. For example, we might add a swi pe_card
method, and redefine r equest _dri nk to allow multiple drinks to be purchased in a single
transaction. Except for these changes, our new drinks machine operates just like the old one.

Parent and child classes are related by an "is a" relationship. A credit-card drinks machine is a drinks
machine, and a grandfather-clock is a clock. Inheritance extends not just to parents, but to
grandparents and great-grandparents and so on as well. So a credit card drinks machine is a drinks
machine is a vending machine is a machine. The further up the ancestry we go, the more generalised
things become.

We should note that there’s a difference between "is a" relationships and "has a" relationships. A car
has a steering wheel (which may be a class unto itself that inherits from a steering device class), but
it is not a steering wheel. A car has a front light (or two) but the car is not a front light. On the other
hand, the car may inherit from the vehicle class and hence we’d say the car is a vehicle. It’s usually
fairly straight forward to determine which is the correct relationship.

We'll explain the use of the : : (double-colon) in the next chapter.

Multiple inheritance

Sometimes we’ll want to create a class that requires the behaviour of two or more different classes,
and we’d like to inherit from both of them. This situation is called multiple inheritance, and is often
very useful. For example, our Dri nksMachi ne class might inherit from both the Ref ri ger at or and
Vendi ngMachi ne classes, gaining the behaviour and capabilities of both.

Multiple inheritance is not without its pitfalls. There may be cases when method calls become
ambiguous. If I have a person who inherits from both Tr uckDri ver and Gol f er, which method
should be used as a request to dri ve?

Another problem occurs when a class has two or more parents which share a common ancestor class.
Say that both Ref ri ger at or and Vendi nghachi ne both inherit from the mMachi ne class. Should our
Dri nksMachi ne receive the power _sour ce attribute twice, or should it be merged together because
they’re both inherited from the same source?

Perl Training Australia (http://www.perltraining.com.au/) 7

Chapter 2. An object oriented refresher

Figure 2-1. The DrinksMachine inheritance tree

Machine

power_source

Refrigerator Vending Machine

power_source power_source

Drinks Machine

power_source (?)

There are ways to solve all these problems, although different languages take different approaches.
For example, we might require that ambiguous methods be renamed, or we could mark (perhaps
arbitrarily) one method to have priority over another. We can do similar things with attributes. We’ll
explain how Perl solves these problems later in the course.

Polymorphism

Polymorphism is the ability for objects to respond differently to the same message, depending upon
what type of object they are. For example, members from each of the following classes; Spouse,
Younger Br ot her, Tot al St ranger OF Lawenf or cenent O fi cer, are likely to behave differently when
the hug method is called upon them.

Polymorphism becomes very useful when we have a group of related objects upon which we want to
perform an operation, but those objects may need to react in different ways. For example, an
El ect ri cCar Will need to react differently to a Fossi | Fuel Car when asked to accel er at e.

There are two distinct forms of polymorphism in object oriented programming; interface and
inheritance polymorphism. Interface polymorphism is where two or more unrelated classes provide
the same interface to certain methods. For example both sparrows and aeroplanes can fly. Although
sparrows and aeroplanes fly in completely different ways, if we implement our classes in such a way
that the methods have the same arguments and argument order then we have an example of interface
polymorphism.

Inheritance polymorphism is where a child class inherits methods from an ancestor. Hence if the
Machi ne class, mentioned above, implemented a t ur n_on method then the Dri nksMachi ne class
would inherit that method. If we were to call the t ur n_on method on a Dr i nksMachi ne object the
Dri nksMachi ne object would behave as if it were merely a Machi ne object for that method call.

Exercise

Imagine the following situation. Software is to be written to handle information about the aircraft
housed at a particular airport. There are various kinds of these aircraft and these fall into three
categories: personal, elite and passenger. Personal and elite aircraft are privately owned and the
airport keeps information about the owner’s name and contact details. Personal aircraft are never
piloted by the airport’s pilots. Elite aircraft also have a V.1.P. associated with them. Elite aircraft are

8 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 2. An object oriented refresher
usually owned by companies but usually use the airport’s pilots. Passenger aircraft are owned by the
airport and have a regular route with predetermined destinations and only use the airport’s pilots.

All aircrafts have fuel quantities, hanger numbers, a maximum person carrying capacity as well as
luggage and cargo, a maximum flying distance and several other values.

1. What classes can you identify in this description?

2. Draw these classes and their relations to each other. Can you identify any places where
inheritance might be useful?

3. With each class list any methods and attributes you can think of that belong to that class.

4. Can we make use of inheritance polymorphism to reduce code duplication? Mark any methods
you’ve included in child classes that can be inherited in total from an ancestor class.

Chapter summary

« An object is anything that provides a way to locate, access, modify and secure data.

- Aclass is a description of what data is accessible through a particular kind of object and how that
data may be accessed.

« A method is the means by which an object’s data is accessed, modified or processed.

- Inheritance is the way in which existing classes of objects can be upgraded to provide additional
data or methods.

- Multiple inheritance is where a class of objects inherit from more than one super/parent class.

« Polymorphism is the way that distinct objects can respond differently to the same message
depending upon the class to which they belong.

Perl Training Australia (http://www.perltraining.com.au/) 9

Chapter 2. An object oriented refresher

10 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 3. Modules and packages

In this chapter...

In this chapter we’ll discuss modules from a user’s standpoint. We’ll find out what a module is, how
they are named, and how to use them in our work.

Module uses

Perl modules can do just about anything. In general, however, there are three main uses for modules:

« Changing how the rest of your program is interpreted. For example, to enforce good coding
practices (use strict) orto allow you to write in other languages, such as Latin (use
Li ngua: : Romana: : Per | i gat a), or to provide new language features (use Swi t ch).

« To provide extra functions to do your work (use Carp Oruse CGE qw : st andard/).

« To make available new classes (use HTM.: : Tenpl at e Or use Fi nance: : Quot e) for object oriented
programming.

Sometimes the boundaries are a little blurred. For example, the ca module provides both a class and
the option of extra subroutines, depending upon how you load it.

What is a module?

A module is a separate file containing Perl source code, which is loaded and executed at compile
time. This means that when you write:

use C3;

Perl looks for a file called ca . pm(.pm for Perl Module), and upon finding it, loads it in and executes
the code inside it, before the looks at the rest of your program.

\: Sometimes you need to tell Perl where to look for your Perl modules, especially if
some of them are installed in a non-standard place. Like many things in Perl, There’s More Than
One Way To Do It. Check out perldoc -q library for some of the ways to tell Perl where your
modules are installed.

Sometimes you might choose to pass extra information to the module when you load it. Often this is
to request the module create new subroutines in your namespace.

use CA gw :standard/;

Note the use of qw /, this is a list of words (in our case, just a single word). It’s possible to pass
many options to a module when you load it. In the case above, we’re asking the ca module for the
: st andar d bundle of functions.

Perl Training Australia (http://www.perltraining.com.au/) 11

Chapter 3. Modules and packages

Each module has a different set of options (if any) that it will accept. You need to check the
documentation of the module you're dealing with to which (if any) are applicable to your needs.

To find out what options exist on any given module read its documentation: perldoc
nodul e_nane.

Where does Perl look for modules?

Perl searches through a list of directories that are determined when the Perl interpretor is compiled.
You can see this list (and all the other options Perl was compiled with), by using perl -V.

The list of directories which Perl searches for modules is stored in the special variable @ NC. It’s
possible to change @ NC so that Perl will search in other directories as well. This is important if you
have installed your own private copy of some modules.

Of course, being Perl, there’s more than one way to change @ NC. Here are some of the ways to add
to the list of directories inside @ NC:

« Call Perl with the - 1 command-line switch with the location of the extra directory to search. For
example:

perl -1/path/to/libs
This can be done either in the shebang line, or on the command-line.

« Usethelib pragma in your script to inform Perl of extra directories. For example:
use lib "/path/to/libs";

« Setting the PERL5LI B environment variable with a colon-separated list of directories to search.
Note that if your script is running with taint checks this environment variable is ignored.

Since use statements occur before regular Perl code is executed, modifying @ Nc directly usually
does not have the desired effect.

Finding installed modules

Perl comes with many modules in its standard distribution. You can get a list of all of them by doing
a perldoc perlmodlib. The Camel book describes the standard modules in chapters 31 and 32
(chapter 7, 2nd Ed).

Besides from the modules in the standard distribution, you can also see any other modules that
were installed on your system by using perldoc perllocal.

You can get more information on any module that you have installed by using perldoc
nodul e_nane. For example, perldoc English will give you information about the Engl i sh
module.

Most importantly, there’s a great resource for finding modules called the Comprehensive Perl
Archive Network, or CPAN for short. The CPAN website (http://www.cpan.org/) provides many

12 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 3. Modules and packages

ways of finding the modules you’re after and browsing their documentation on-line. It’s highly
recommended that you become familiar with CPAN’s search features, as many common problems
have been solved and placed in CPAN modules.

Exercise

1. Open a web browser to CPAN’s search site (http://search.cpan.org) and spend a few minutes
browsing the categories provided.

2. Perform a search on CPAN for a problem domain of your choice. If you can’t think of one,
search on CG , XML Or SOAP.

Using CPAN modules

At the time of writing, CPAN provides more than 5,500 separate and freely available modules. This
makes CPAN an excellent starting point when you wish to find modules to help solve your particular
problem. However, you should keep in mind that not all CPAN modules are created equal. Some are
much better documented and written than others. Some (such as the ca or bBl) modules have
become de-facto standards, whereas others may not be used by anyone except the module’s author.

As with any situation when you’re using third party code, you should take the time to determine the
suitability of any given module for the task at hand. However, in almost all circumstances it’s better
to use or extend a suitable module from CPAN rather than trying to re-invent the wheel.

Many of the popular CPAN modules are pre-packaged for popular operating systems. In addition,
the cPAN module that comes with Perl can make the task of finding and installing modules from
CPAN much easier.

Most CPAN modules come with ReADVE and/or | NSTALL files which tell you how to install the
modules. However in almost every case, the process is the same:

perl Makefile.PL
make

make test

make install

If you install your module in a different directory than your other Perl modules you may have to use
the I'i b pragma, mentioned in the previous section, to tell Perl where to find your files. Once a
module is installed, you can use it just like any other Perl module.

The double-colon

Sometimes you’ll see modules with double-colons in their names, like Fi nance: : Quot e,

Quant um : Super posi ti on, Of CG : : Fast . The double-colon is a way of grouping similar modules
together, in much the way that we use directories to group together similar files. You can think of
everything before the double-colon as the category that the module fits into.

In fact, the file analogy is so true-to-life that when Perl searches for a module, it converts all
double-colons to your directory separator and then looks for that when trying to find the appropriate
file to load. So Fi nance: : Quot e looks for a file named Quot e. pmin a directory called Fi nance. That
two modules are in the same category doesn’t necessarily mean that they’re related in any way. For

Perl Training Australia (http://www.perltraining.com.au/) 13

Chapter 3.

What

Modules and packages

example, Fi nance: : Quot e and Fi nance: : Quot eHi st have very similar names, and their maintainers
even enjoy very similar hobbies, they certainly have similar uses, but neither package shares any
code in common with the other.

It’s perfectly legal to have many double-colon separators in module names, so
Chi cken: : Bant am : Sof t Feat her : : Peki n is a perfectly valid module name.

IS a package?

A package is simply a namespace, where you can use variables, subroutines, and filehandles, without
the fear of clashing with identically named items from other name spaces. It’s possible for a file to
contain multiple packages, and packages may also stretch across multiple files. Since a module is
just a file with a special name, this means that modules can contain multiple packages, too.

Poking inside packages

14

Modules usually put their code, variables, and other things to do their jobs into their own namespace,
or package. It’s very rare that you should ever need to poke around inside someone else’s package,
and if you do so and break things, then you only have yourself to blame. However, in case you ever
have a very good reason, you can get into someone else’s namespace using the scoping operator, : : .

Yes, that’s the same operator we saw before with module names. If it helps, you can think that
modules can sit inside the namespace of other modules, in the same way that directories can sit
inside other directories. Here’s how we use the scoping operator to access variables inside a package:

use Carp;

Turning on $Carp:: Verbose nakes carp() and croak() provide
stack traces, nmaking themidentical to cluck() and confess()

$Car p: : Ver bose = 1;

When referring to a variable in another package, the sigil (punctuation denoting the variable
type) always goes before the package name. Hence to get to the scalar $bar in the package Foo,
we would write $Foo: : bar and not Foo: : $bar .

It is not possible to access lexically scoped variables (those created with ny) in this way.
Lexically scoped variables can only be accessed from their enclosing block.

We can call a subroutine inside another package in much the same way. For example, we can call
Car p’s cl uck subroutine which isn’t usually exported like this:

use Carp;

sub verify {
ny $i = shift;

Call Carp’s cluck subroutine directly.
Carp::cluck("Bad data") unless $i > 10;

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 3. Modules and packages

Calling subroutines like this is a perfectly acceptable alternative to exporting them into your own
namespace. You might want to do this if you already define a subroutine of the same name in your
own package.

Unlike accessing another package’s variables, which you should never do without good reason, most
modules make their subroutines available so that you can call them directly if you desire.

Package variables and our

It is not possible to access lexically scoped variables (those created with my) outside of their
enclosing block. This means that we need another way to create variables to make them global.
These global variables are called package variables. The preferred way to do this, under Perl 5.6.0
and above, is to declare them with our . Of course, there are alternatives you can use with older
version of Perl, which we also show here:

package Carp;
our $Version = '1.01"; # Preferred for Perl 5.6.0 and above

use vars qw $Version/; # Preferred for ol der versions
$Version = '1.01";

$Carp::Version = '1.01"; # Acceptable but requires that we then
always use this full name under strict

In all of the cases above, both our package and external code can access the variable using
$Car p: : Ver si on.

Exercises

1. Look at the documentation for the car p module using the perldoc Carp command. This is one
of Perl’s most frequently used modules.

2. Using Fi | e: : copy make a copy of one of your files. If you’re eager, ask the user which file to
copy and what to name the copy. Don’t forget to clean the user’s input.

Chapter summary

- A module is a separate file containing Perl source code.
« We can use modules by writing use nodul e_nane; before we want to start using it.

« Perl looks for modules in a list of directories that are determined when the Perl interpretor is
compiled.

« Module names may contain double-colons (: :) in their names such as Fi nance: : Quot e, these tell
where Perl to look for a module (in this case in the Fi nance/ directory.

- Modules can be used for class definitions or as libraries for common code.

« A package is a namespace within a module

Perl Training Australia (http://www.perltraining.com.au/) 15

Chapter 3. Modules and packages

« A module can have more than one package defined within it.

« We can get to subroutines and variables within packages by using the double-colon as a scoping
operator for example Foo: : bar () calls the bar () subroutine from the Foo

16 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 4. Writing packages and modules

In this chapter...

This chapter will teach you the basics of writing your own packages and modules.

Writing packages

As we mentioned in the previous chapter, Perl provides the notation of separate name spaces, so that
unrelated sections of code can work in their own spaces and not have to worry about clobbering
someone else’s variables or subroutines. These hame spaces are also known as packages, and it’s
possible to move between them using the package statement:

package Foo;

sub hello { print "Hello FooWorld\n"; }
hel | o()

package Bar;
sub hello { print "Hello BarWorld\n"; }

hel l o(); # Implies Bar::hello(), since Bar is our current package
Foo: : hello(); # Explicitly calls Foo::hello()

Here we’ve created two entirely separate subroutines -- both of which are named hel | o, but which
exist in different packages. By default, whenever we refer to a subroutine or variable, we refer to the
one in our current package. We can also explicitly prefix a package name, followed by the
double-colon operator, to get at things in another package, as we did with Foo: : hel | o above.

The package that you’re in when the Perl interpreter starts (before you specify any package) is called
mai n. Package declarations use the same rules as ny, that is, it lasts until the end of the enclosing
block, file, or eval. Here’s an example:

#!/usr/bin/perl -w
use strict;

sub hello { print "This is hello in the main package\n"; }

{
package Foo
sub hello { print "This is hello in the Foo package\n"; }

}

Here we’re back in the main package again

hel l o(); # main's hello
Foo: : hello(); # Foo’s hello

Perl convention states that package names (or each part of a package name, if it contains many parts)
starts with a capital letter. Packages starting with lower-case are reserved for pragmas (such as
strict).

There’s a shorthand for accessing variables and subroutines in the mai n package, which is to use
double-colon without a package name. This means that $: : f oo is the same as $mai n: : f oo.

Perl Training Australia (http://www.perltraining.com.au/) 17

Chapter 4. Writing packages and modules

Writing modules

Modules contain regular Perl code, and for most modules the vast majority of that code is in
subroutines. Sometimes there are a few statements which initialise variables and other things before
any of those subroutines are called, and those get executed immediately. The subroutines get
compiled and tucked away for later use.

Besides from the code that’s loaded and executed, two more special things happen. Firstly, if the last
statement in the module did not evaluate to true, the Perl compiler throws an exception (usually
halting your program before it even starts). This is so that a module could indicate that something
went wrong, although in reality this feature is almost never used. Virtually any Perl module you care
to look at will end with the statement 1; to indicate successful loading.

The other thing that happens when a module is used is that its i mpor t subroutine (if one exists) gets
called with any directives that were specified on the use line. This is useful if you want to export
functions or variables to the program that’s using your module for functional programming but is
almost never used (and very often discouraged) for object oriented programming.

As you’ve no doubt guessed by now, modules and packages often go hand-in-hand. We know how to
use a module, but what are the rules on writing one? Well, the big one is this:

A module is a file that contains a package of the same name.

That’s it. So if you have a package called Tree: : Fruit:: G trus: : Li me, the file would be called
Tree/ Fruit/ G trus/Li me. pmand you would use it with use Tree:: Fruit:: G trus::Line;.

A module can contain multiple packages if you desire. So even though the module is called

Chess: : Pi ece, it might also contain packages for Chess: : Pi ece: : Kni ght and

Chess: : Pi ece: : Bi shop. It’s usually preferable for each package to have its own module, otherwise
it can be confusing to your users how they can load a particular package.

When writing modules, it’s important to make sure that they are well-named, and even more
importantly that they won’t clash with any current or future modules, particularly those available via
CPAN. If you are writing a module for internal use only, you can start its name with Local : : which
is reserved for the purpose of avoiding module name clashes.

\: ’ You can read more about writing modules in perldoc perlmodlib, and a little on
pages 554-556 of the Camel book.

\5 If you really want to know how to export things from your modules, then read
perldoc Exporter for the story. Please don’t export things by default unless you have a very,
very good reason.

Warnings

When your module is used by a script, whether or not it runs with warnings depends upon whether
the calling script is running with warnings turned on. You can (and should) invoke the use war ni ngs
pragma to turn on warnings for your module without changing warnings for the calling script.

18 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 4. Writing packages and modules

use strict;
use war ni ngs;

Exercises

1. Create a directory named 1 i b and open a file named M/ Test . pmin it.

2. Create a package named M/ Test in the file, and define at least two functions, pass and f ai | that
print some amusing output. Make sure that it uses both st ri ct and war ni ngs.

3. Test that your module has no syntax errors by running perl -c MyTest.pm. (The - ¢ tells Perl to
check your code)

4. Save the file, and create a simple Perl script that uses your module. Have it call the functions
MyTest::fail and MyTest : : pass

Chapter summary

- To write a package, just write package package_name Where you want the package to start.

« Package declarations last until the end of the enclosing block, file or eval (or until the next
package statement).

« A module is a file that contains a package of the same name.
« Modules usually end with the statement 1;
« A module can contain multiple packages, but this is often a bad idea.

« It’s often a good idea to put your own modules into the Local namespace.

Perl Training Australia (http://www.perltraining.com.au/) 19

Chapter 4. Writing packages and modules

20 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 5. Our first Perl Object

In this chapter...

We’ve just learnt (or been reminded of) some of the basic concepts of Object Oriented programming,
but how do we do that in Perl? It’s easier than most people think. This is what we’re going to cover.

Classes are just packages

To create a class in Perl, just create a package of the same name. For example, if we wanted to create
a PlayingCard class, we’d do the following:

package Pl ayi ngCard;

That’s all there is to it. Mind you, our class is very boring as it doesn’t do anything, but it does exist.
Anything after our package line to the end of the file (or until another package line) is placed into
the Pl ayi ngCar d class.

Methods are just subroutines

Methods are just subroutines that exist within a particular class that can perform operations on
objects of that class. So if we write a subroutine in our Pl ayi ngCar d package, that becomes a
method. Here’s an example:

package Pl ayi ngCard; # This sets our class

sub get_suit {
Code here to return the card’s suit.

}

This sure has been easy so far. How do we call that method which we just wrote? Well, if you’ve
used a class like HTML: : Tenpl at e (or one of many other object oriented modules), you probably

already know. Calling a method is very similar to doing any other sort of access which involves a
reference, you use the - > operator:

$obj ect _ref - >nmet hod(@r gs) ; # Access nethod via object reference.

Compare this with:

$array_ref->[$i ndex]; # Access array elenent via array reference.
$hash_ref ->{"key"}; # Access hash val ue via hash reference.

Note that calling a method on an object is very similar to accessing data via a reference. In this case
the reference to the object is on the left of the arrow, and what we wish to access is on the right.

There’ll usually be many methods available on an object. Here might be some examples with our
Pl ayi ngCar d class:

$card->get _suit();
$car d- >get _val ue();
$card- >swap_wi t h_ace_up_sl eeve();

Perl Training Australia (http://www.perltraining.com.au/) 21

Chapter 5. Our first Perl Object

When a method gets called, it receives a reference to the object upon which it was invoked as its first
argument. As such, it’s common (and recommended) to have code like this:

package Pl ayi ngCard;

sub get_suit {

ny ($self, @rgs) = @;
$self now contains ny object reference, and @rgs any
arguments that were passed to this method.

Code to return ny suit goes here.

Blessing a referent creates an object

A referent, for those not familiar with the term, is something that is referred to by a reference. * In
Perl, any type of variable (such as an array, hash or scalar) can also be an object. Hence there’s no
real trick in creating your object, instead the magic comes from how you tell Perl to associate an
object with a particular class. We do this by blessing (that’s Perl-specific terminology) the
object-to-be.

To bless an object we use the in-built Perl function which is aptly named bl ess. The bl ess function
takes two arguments, a reference to the variable to bless, and a string containing the class in which to
bless. Here’s an example of how we might do this for a member of the PlayingCard class.

ny $card = {
_suit => "spades",
_value => "ace"

b
bl ess($card, "Pl ayi ngCard");

Pretty painless, isn’t it? You need to remember that while we pass a reference to the bl ess function,
it’s the underlying (in this case anonymous) hash that changes, not the reference. You’ll note that our
hash keys started with underscores, this is a convention used for marking attributes that are intended
to remain private to this class. Note that it doesn’t guarantee privacy, but merely relies upon
convention.

- Actually, in Perl you can bless anything you can get a reference to. This includes not only the
arrays, hashes and scalars that we’ve just mentioned, but also things you wouldn’t normally
expect, such as subroutines, regular expressions, and typeglobs.

Now that we know how to create an object, and have an example of some likely attributes for it, we
can fill in our get _sui t method above.

package Pl ayi ngCard;

sub get_suit {
ny ($self) = @;

return $sel f->{ suit};

22 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 5. Our first Perl Object

Constructor functions

Now, if you’ve been thinking that creating a variable, populating it with data, and then blessing it
every time we want a new object is a lot of hard work, you’d be right. Most of the advantages of
object oriented programming would be lost if we had to do all this work ourselves. What we’d like is
something (preferably in the appropriate class) which can create objects for us. That’s commonly
called a constructor function.

In Perl, constructor functions are always called new by convention. A standard constructor function
takes some information about the initial state of the object, and returns an appropriately constructed
object.

package Pl ayi ngCard;

sub new {
my ($class, $value, $suit) = @;

Create an anonynous hashref and naively fill in our
fields.

ny $self = { _value => $value, _suit => $suit };

return bl ess($sel f, $cl ass);

Since bless is often the last thing in a constructor, it
returns the reference for convenience, so this is the
sane as:

bl ess($sel f, $cl ass);

return $sel f;

H* HH R K

}

Let’s explain briefly how that all works. Our constructor expects a class as its first argument, and a
card value and suit as its second and third. We create an anonymous hash reference, and populate
that with the values that we’ve been passed. Having done that, we bless our anonymous hash (via its
reference) into the class that we’ve been given and return a reference to the blessed hash.

That’s pretty straightforward, but you might be wondering why we want a class passed to our
constructor function. We already know that we’re in the PI ayi ngCar d class, why have a class passed
in?

The reason has to do with how constructor functions are usually called. Rather than calling the
function directly like this:

nmy $card = Pl ayi ngCard:: new("Pl ayi ngCard", "Ace", " Spades") ;
instead we treat the constructor as a class method, and call it thus:

ny $card = Pl ayi ngCard- >new(" Ace", " Spades")

If you’ve never done object oriented programming before, you’re probably wondering what a class
method is. Well, the methods we’ve been calling from objects are properly known as object methods.
They call a method on an object, and the subroutine which handles the call gets the object as its first
argument. A class method, as you’ve probably guessed, gets called upon a class, and receives the
class-name as the first argument.

Class methods are methods that are attached to a class but not an object. Constructors are a good
example of these, we want to form an object out of nothing. We’ll see more of them as we continue
through this course.

Perl Training Australia (http://www.perltraining.com.au/) 23

Chapter 5. Our first Perl Object
Now, that still doesn’t answer why we want to use the class name that’s been passed to us, rather
than blessing into Pl ayi ngCar d directly and saving ourselves a little typing.

The reason for that has to do with inheritance. If someone decides to use our class as a parent for
their own derived class, then our constructor function would receive the name of the derived class
when invoked. If we always blessed into the Pl ayi ngCar d class, then someone wanting to derive a
Pl ayi ngCar d: : UoM/Sl eeve class, would find that our constructor simply wouldn’t work for them (it
would always return a normal Pl ayi ngCar d object).

Don’t worry too much about that yet, when we get to the chapter on inheritance you’ll see many
good examples on why this is so.

PlayingCard in full
Here’s the Pl ayi ngCar d class in full.

package Pl ayi ngCard; # Qur class nane

The constructor function (a class nethod)
sub new {
my ($class, $value, $suit) = @;

Create an anonynous hashref and naively fill in our
fields.

ny $self ={ _value => $value, _suit => $suit };

return bl ess($sel f, $cl ass);

}

An object nmethod returning the value of this card' s suit
sub get_suit {
ny ($self) = @;

return $sel f->{_suit};

}

An object nethod returning the face value of this card
sub get_val ue {

ny ($self) = @;

return $sel f->{_val ue};

1; # Required if we've witten this as a nodul e.

Exercises

1. Create a Coi n class in a file called Coi n. pm
2. Create the following methods:

- toss: this function randomly changes the state of the coin to heads or tails, as if the coin had
just been tossed up.

« get _stat e: this function tells us whether the coin is heads up or tails up at the moment.

24 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 5. Our first Perl Object

3. Create a constructor for your Coi n class making sure that it ensures that the state is set to

something valid.

4. Write a program that uses your Coi n class and creates two coins. Make it flip these two coins a

number of times and report on each outcome.

An answer for this can be found in exer ci ses/ answers/test_coin. pl .

Chapter summary

Notes

Perl objects are variables, a collection of attributes.
Methods belong to classes not objects, and are divided into class methods and object methods.
To create an object in Perl we need only remember three rules:
« Classes are just packages
Methods are just subroutines

- Blessing a referent creates an object

In Perl objects are always accessed via a reference, objects themselves are never passed around.
Calling an object method can be done using the arrow notation. $obj ect _r ef - >met hod()

Constructor functions in Perl are conventionally called new() and can be called by writing:
$new_obj ect = Cl assNanme- >new().

1. Referents used to be called thingies (yes, that was the technical term), but that used to confuse

people as well.

Perl Training Australia (http://www.perltraining.com.au/) 25

Chapter 5. Our first Perl Object

26 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 6. Practical Exercise - Playing Cards

We’ve already seen the start of a Pl ayi ngCar d class, and learnt the very basics of object oriented
programming in Perl. Now we’ll take that knowledge and practice writing a simple module.

Group Exercises - Planning the Class

An important part of any project is planning. Determining what is required of your class and how it
will be required to function before you begin coding can save many hours of frustration later. This
course does not aim to teach you these skills, but it does assume that you’ll spend some time
thinking and documenting a class before you begin to write it.

Let’s say that we wish to continue with the PI ayi ngCar d class. It has many useful applications,
simulating variants of Poker, counting cards at casinos, writing online card-game clients, and so on.
Here are some things to think about as a group:

1. What sort of information will our PlayingCard need to store? Think of any attributes that we
might need to store.

2. What would be the best way to store the attributes which we’ve just discussed? Remember that
card values have an ordering. It would be nice to preserve this so that we can compare two cards
and see which is the highest.

3. The card game five-hundred when played with six or more players introduces cards valued 11
and 12 in each suit, and cards valued 13 in both red suits, which come below the picture cards in
value ™.

Can our PlayingCard class handle this situation? What about jokers? What about games where
aces are high instead of low?

4. What arguments should our constructor function take? How can we verify that we’ve been
given valid arguments?

5. What sort of operations would we like to do with our cards? Which of these make sense with
regards to an individual card?

Individual Exercise - Writing the Class

In exerci ses/ i b/ Pl ayi ngCar d. pmyou’ll find some skeleton code for writing a Pl ayi ngCar d class.
Try the following exercises:

1. Fill in the constructor function so that it can be used to create new Pl ayi ngCar ds.
2. Fill in the two accessor methods, get _sui t and get _val ue. \Verify that they work correctly.
3. Add the other methods that you and your group decided upon in the exercises above.

4. Create a program that uses your module. Have it generate a deck of cards (without jokers),
shuffle the deck, and print the first five cards. You can use @eck = sort {rand() <=> 0.5 }
@leck to shuffle the deck.

5. What happens if you just try to print the object references in the last exercise (for example,
print $card)? What needs to be done instead to print these in human readable forms?

Perl Training Australia (http://www.perltraining.com.au/) 27

Chapter 6. Practical Exercise - Playing Cards

Practi

Notes

28

cal Usage - The Card Game "War"

There are many variations of the simple card game war, but they all share similar rules. The game is
played by two players, and a 52 card deck is shuffled, and each player is dealt half the deck. The
players then draw cards simultaneously, and compare their values. The player holding the highest
value card wins their opponents cards, and these are placed onto the bottom of their pile. This
process repeats until only one player has cards remaining, and is declared the winner.

If the value of the cards are equal, then each player draws another card and compares it to their
opponent’s. The winner then claims all four cards as theirs.

It’s actually possible for infinite win-lose cycles to occur in this game, depending upon the initial
card ordering. As such, you may wish to shuffle the players’ cards after each round.

1. Use your Pl ayi ngCar d class to write a program which implements the game of war. If you are
used to playing with different rules, then you may use those instead of the ones listed above.

An answer for this game can be found in exer ci ses/ answer s/ war . pl . Make sure you try to solve
the problem before peeking at the answer.

1. Not to mention other fun things such as the Jack of the other same colour suit suddenly becomes
a member of the Trumps suit, when a suit is bid Trumps. Or that these two Jacks of the same
colour each have a higher value than all the other cards of the Trumps suit (except the Joker
which we’ll ignore here). The two Jacks of the opposing colour suits remain in their normal
value positions as immediately less than the appropriate Queen cards.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 7. Argument Passing

In this chapter...

In this chapter we look at how we can improve our subroutines and methods by using named
parameter passing and default arguments. This is useful both in object oriented coding and standard
coding, and is best used whenever a subroutine needs to take many arguments, or where more than
one argument is optional

Named parameter passing

We’ll use a particular form of parameter passing in these notes, and it’s so useful that it deserves a
special mention. It’s called named parameter passing and it usually starts like this:

sub met hod {

ny ($self, %args) = @;
...

}

$sel f is the object, which you’ve already heard about. It’s the var gs that is important. The
arguments for our methods are loaded into a hash for ease-of-use. We’ll see how it works, and why
it’s so good.

Most programming languages, including Perl, pass their arguments by position. So when a function
is called like this:

foo("Paul","Perl","Buffy");

the f oo() function gets its arguments in the same order in which they were passed (in this case, @ is
("Paul ", "Perl™, “Buf fy")). For functions which take a few arguments, positional parameter
passing is succinct and effective.

Positional parameter passing is not without its faults, though. If you wish to have optional
arguments, they can only exist in the end position(s). If we want to take extra arguments, they need
to be placed at the end, or we need to change every call to the function in question, or perhaps write a
new function which appropriately rearranges the arguments and then calls the original. That’s not
particularly elegant. As such, positional passing results in a subroutine that has a very rigid interface,
it’s not possible for us to change it easily. Furthermore, if we need to pass in a long list of arguments,
it’s very easy for a programmer to get the ordering wrong.

Named parameter passing takes an entirely different approach. With named parameters, order does
not matter at all. Instead, each parameter is given a name. Our f oo() function above would be called
thus:

foo(nane => "Paul ", |anguage => "Perl", favourite_show => "Buffy");

That’s a lot more keystrokes, but we gain a lot in return. It’s immediately obvious to the reader the
purpose of each parameter, and the programmer doesn’t need to remember the order in which
parameters should be passed. Better yet, it’s both flexible and expandable. We can let any parameter
be optional, not just the last ones that we pass, and we can add new parameters at any time without
the need to change existing code.

29
Perl Training Australia (http://www.perltraining.com.au/)

Chapter 7. Argument Passing

The difference between positional and named parameters is that the named parameters are read into
a hash. Arguments can then be fetched from that hash by name.

foo(name => "Paul ", |anguage => "Perl", favourite_show => "Buffy");

sub foo {
ny (%rgs) = @;

ny $nane = $args{nane} || "Bob the Buil der";
ny $l anguage = $args{l anguage} || "none that we know';
ny $favourite_show = $args{favourite_show} || "the ABC News";

print "${nane}’'s primary |anguage is $l anguage.
"$name spends their free tinme watching $f avourite_show n";

B

Calling a subroutine or method with named parameters does not mean we're passing in an
anonymous hash. We're passing in a list of name => value pairs. If we wanted to pass in an
anonymous hash we’d enclose the name-value pairs in curly braces {} and receive a hash

reference as one of our arguments in the subroutine.

Some modules handle arguments this way, such as the ca module, although ca also accepts
name => value pairs in many cases.

It is important to notice the distinction here.

Default arguments

Using named parameters, it’s very easy for us to use defaults by merging our hash of arguments with
our hash of arguments, like this:

ny %efaults = (pager => "/usr/bin/less", editor => "/usr/bin/vin);

sub set_editing_tools {
ny (Yargs) = @;

Here we join our argurments with our defaults. Si nce when
building a hash it’s only the last occurrence of a key that
matters, our arguments will override our defaults.

Y%args = (%efaults, %args);

print out the pager:
print "The new text pager is: $args{pager}\n";

print out the editor:
print "The new text editor is: $args{editor}\n";

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 7. Argument Passing

Exercises

1. Rewrite the f oo subroutine above to use a hash of default arguments rather than assigning
individual defaults.

Named parameters and object constructors

In object oriented coding we use hamed parameters most during object construction. This allows us
to choose reasonable defaults for arguments and saves the programmer from having to memorise the
order for the (possibly numerous) arguments. When we reach the chapter on inheritance, we’ll see
why this is doubly useful.

Here’s an example of being able to used named parameters to quickly and easily build a
Dri nksMachi ne:

package Dri nksMachi ne;

use strict;

use war ni ngs;

use Carp;

The default_fields for a drinks nachine.

desired_tenperature - best tenp for operation, deg. Cel

drinks - drink flavours

price - all drinks have the same price, standard deci nmal
starting_change - the change we start out with. Represented by a list
of the nunber of coins in foll ow ng denom nations:
$2, $1, 50c, 20c, 10c, 5c¢

so [gw 0 0 50 50 30 10/] mekes, 0 x $2, 0 x $1,
50 x 50c, 50 x 20c, 30 x 10c, 10 x 5c.

my %efault_fields = (
desired_tenperature => 4,
drinks => [qw/ col a orange | enbnade squash water/],
price => 1.20,
starting_change => [qw/ 0 0 50 50 30 10/]
)i
Qur required fields.
my @equired_fields = gw |l ocation/;

Al the fields that we expect to get
nmy @ields = (keys %efault _fields, @equired_fields);

sub new {
ny ($class, %args) = @;

Check we have all required argunents.
foreach (@equired_fields) {
exi sts($args{$_}) or croak("Required field $_ onmtted");
}
Any args we pass in will override the defaults.
Y%args = (%default_fields, %args);
ny % his;

Copy only the fields that we want into our hash.
@his{@ields} = @rgs{@i el ds};

return bl ess(\% his, $cl ass);

Perl Training Australia (http://www.perltraining.com.au/) 31

Chapter 7. Argument Passing

L EF))

You'll have noticed the line:

@his{@ields} = @rgs{@i el ds};

in that last listing of code. This is a hash-slice. We can take array slices as follows:

ny @Grray = qwab c d/;

ny @lice = @rray[0,3]; # @lice = ("a, 'd)

to get at only parts of an array or to rearrange the ordering of an array, and hash-slices are

exactly the same.

We precede a hash-slice with an @sign because we’re working with a list of hash values.

@his{@i el ds} are all the values from % hi s with the keys from in @i el ds.
Exercises

1. Modify your Pl ayi ngCar d class so that its constructor uses named parameters rather than
positional parameters.

2. Do the same for your Coi n class as well.

Chapter summary

« Parameters in Perl are usually passed "by position™.

- Positional parameter passing makes having independent optional arguments or extra arguments
difficult.

- Named parameter passing makes independent optional arguments and extra arguments easy.

- To pass named parameters to a subroutine all we have to do is give the subroutine a list of name,
value pairs when we call it, and to extract the hash from @ in our subroutine.

« Named parameter passing allows the programmer and class user to call subroutines with
arguments in different orders.

- Named parameter passing makes it very easy for us to handle defaults, especially in constructor
functions.

32 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 8. Class methods and variables

In this chapter...

What

In this chapter we will discuss class methods and class variables. We’ll look at some very special
class methods as well as more generalised ones. In addition, we’ll discuss some common uses of
class variables.

IS a class method?

Most of the methods we’ve discussed so far have been methods that we call from objects, which are
unsurprisingly called object methods. Class methods, on the other hand, are called directly on
classes, and don’t have a single object associated with them at all.

We’ve already seen one instance of a class method, and that’s constructor functions. Even though
constructors return a freshly created object, they’re called directly on the class, like this:

ny $card = Pl ayi ngCard- >new(sui t =>"di anonds", val ue=>"j ack");

Notice that we invoke the name of the class in order to use a class method, in the same way that we
invoke an object to use an object method. Like the constructors that we’ve already used, the method
receives the name of the class as its first argument.

Class methods are used for functionality that affects a whole class of objects. For example, | might
have a class method that increments the age of all stock in my inventory, or return the number of
times a particular class of object has been created.

An example class method

We’ve already seen one instance of a class method, and that’s new, the constructor function. In this
case, we have a class method because there’s no object to work upon. However, there are other times
when class methods come in handy as well.

Let’s think back to our PI ayi ngCar d class. Rather than requiring our user to deal have to manually
create a deck of cards (a very common operation) we could write a class method to do it:

package Pl ayi ngCard;

sub new_deck {
ny ($class) = @; # This is the class which was invoked.

my @leck;

foreach ny $suit (gw hearts spades di anonds clubs/) {
foreach ny $value (2..10, gw jack queen king ace/) {
push @eck, $cl ass->new($val ue, $suit);
}
}

return @leck;

Perl Training Australia (http://www.perltraining.com.au/) 33

Chapter 8. Class methods and variables

Notice that we use $cl ass->new(. . .) rather than Pl ayi ngCar d- >new(. . .). By using the first
syntax we invoke new on the class which was used to invoke our new_deck method. This is important
if we inherit from our class later on. We’ll see more about how inheritance works later in this course.

Our class method could be called from an object, since Perl itself does not enforce how a particular
method is invoked. In this case, we would have received an object and not a class as our first
argument. If we wished we could test for this and give an appropriate warning, however it’s very
easy to allow this alternate calling syntax as well:

sub new_deck {
ny ($class) = @;

Get the class of the invoking object, if required.
$class = ref($class) || $class;

#o...
}

The ref function returns the class of the object passed to it, or false if given something other than a
reference. In this way, we can obtain our desired class regardless of if we’re invoked as a class
method or an object method.

Invoking a class method on an object isn’t as uncommon or undesirable as you might think. There
are many instances where programmers will use an object but not know which class of objects
they’re dealing with. For example, you probably don’t know the class of statement handles in the DBl
module, nor should you need to know this in order to use them.

Class variables

34

We’ve already covered attributes on objects in some detail, but from time to time we also wish to
have an attribute or variable which is common to all objects in a class. We call such a variable a class
variable. Class variables easy to create and use in Perl. As you might expect, there’s more than one
way to do it.

package Pl ayi ngCard;
ny $Cards_created = O;

sub new {
...
$Car ds_cr eat ed++;

}

sub card_count {
return $Cards_creat ed;

}

Here we create a lexically scoped variable $car ds_cr eat ed which tracks the number of times our
constructor function has been used. Since the declaration of this variable is in the same scope as the
subroutines which use it, they are able to make use of it. Anything else cannot, not even with

$Pl ayi ngCar d: : Car ds_cr eat ed, as it’s not possible to name a lexical variable outside of its scope.
You can think of class variables made in this way as being private if you’re familiar with other object
oriented languages.

It’s possible to create really private class variables in this way. For example, here is a variable which
is shared between two methods, but cannot be accessed by any other sections of code:

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 8. Class methods and variables

package Poker Gane;

{
Only subroutines inside this block can use variabl es
declared within it.
ny $House_min_bet = 0.50; # 50c mini num bet
sub set_house_mi n {
ny ($class, $new nin) = @;
$House_mni n_bet = $new nin;
}
sub get_house_nmin {
return $House_mi n_bet;
}
}

In the code above, the only way to get access to $House_ni n_bet is through the two subroutines
defined in the same block as it. Other code, even code in the same class, cannot access the variable
except through these methods.

Package variables and class variables

You may recall from the modules and packages chapter that package variables can be used as globals
throughout our program. If we wish to have a class variable that can be accessed by name from
anywhere in our program, we’d need to declare it as global to our class. Since a class is just a
package, we create a package variable and use that.

package Pl ayi ngCard;

our $Cards_creat ed; # Preferred for Perl 5.6.0 and above.

use vars gw $Cards_created/; # Preferred for ol der versions.

$Pl ayi ngCard:: Cards_created; # Acceptable, but requires we always
use the full name under strict.

In all the cases above, both our package and external code can access the variable using
$Pl ayi ngCar d: : Car ds_cr eat ed. You can think of this like a public variable if you’re used to other
object oriented languages.

Exercises

1. Create a class method pri nt _stati sti cs to your Coi n class. Make this function print out what
percentage of heads and what percentage of tails have come up over how many coin tosses. Add
any class variables that you find you need.

2. Change your coin program to toss the 2 coins 100 times and then to print out the statistics using
the class method print _statistics.

An example answer for this can be found in exer ci ses/ answer s/ st ati sti cs. pl .

Perl Training Australia (http://www.perltraining.com.au/) 35

Chapter 8. Class methods and variables

Chapter summary

« Class methods are used when we wish to perform an operation which affects all members of a
class, or for which no object exists on which to invoke the method.

« Class methods in Perl can be invoked from objects as well, should we desire.

-« Perl allows us to create class variables which can be accessed by any part of our code, or variables
which are only available within a particular class.

« We can create very private class variables which are only available to certain methods within a
class, and not the entire class.

36 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 9. Destructors

In this chapter...

We’ve seen how to bring objects into the world by blessing an appropriate data type. We haven’t yet
looked at how objects are destroyed, and that’s the topic of this chapter.

Perl’s garbage collection system

To understand how Perl manages variables and objects (which are really just specially blessed
variables), we need to know a little about Perl’s garbage collection system. As you’ve probably
(consciously or sub-consciously) been aware, there’s no need to explicitly allocate or free memory in
Perl. When | create a variable, the memory is allocated automatically. When | assign elements to an
array or hash, those structures are extended as needed. When | put data into a scalar, the capacity of
that scalar grows as required. All of this saves oodles of headaches and programmer time.

What’s not immediately obvious is under what circumstances Perl frees memory. Perl keeps a
reference count to each data structure, recording how many things point to this particular chunk of
data. When the reference count drops to zero, the garbage collector kicks in and the memory is freed.
Here’s an example

ny $greet_ref;

{
ny $greeting = "Hello Wrld";
ny $farewel |l = "Goodnight World";
Add another reference to $greeting.
$greet _ref = \$greeting;
End of bl ock neans that variables created with ny
go out of scope. However, the data in $greeting
lives on, because there's still a reference to it.
}

It’s possible to cause Perl’s garbage collection system to screw-up if you’re using circular references.
For example, the following situation will leak memory:

{
ny ($a, $b);
$a = \ $b;
$b =\ $a;

}

even after $a and $b go out of scope. An even simpler case is when a variable is a reference to itself.
Since the reference count never drops to zero, these bits of memory never get collected (although
they’re cleaned up as the perl interpretor shuts down at the end of the program).

Consider the case where we wish to model a railroad connection map. Inside our object we have
references to stations and depots, each of which contains references to adjacent stations and depots.
This data is likely to contain many circular references. When the last reference to our railroad map
disappears, we want to make sure that we break the references in its internal representation so that
memory can be correctly freed. One of the ways of doing this with objects is using a destructor
function.

Perl Training Australia (http://www.perltraining.com.au/) 37

Chapter 9. Destructors

Destructor functions

Put simply, a destructor function in Perl is called to tidy up an object that’s about to be destroyed, in
the same way that a constructor function sets things up for an object that is being created.

Most objects don’t require destructor functions, nothing special needs to be done when a program
doesn’t need a particular Pl ayi ngCar d anymore. However, some objects do require special
treatment. For example, if | have an object which is controlling a modem or serial terminal, I might
want to make sure that the device gets reset back to a known state upon my program finishing with it.
If I have an object which is keeping a cache of information, | might want to write that cache to the
disk for speedy access next time. As we’ve seen above, if an object contains circular references in its
data, we want to break those references to make sure that the clean-up done by the garbage collector
is complete.

When an object’s reference count hits zero, the DESTROY method (if it exists) is invoked on it, before
that object’s memory is reclaimed. This gives the object one last chance to clean itself up before
disappearing. The DESTROY method gets the object as its first argument, just like any other object
method. If no DESTROY method exists, then the object’s memory is reclaimed as per any other Perl
variable.

Destructors also get called in a separate phase when the interpretor is exiting, before other variables
are cleaned. This is to ensure that destructors which perform important tasks like saving data to disk
get a chance to do so.

Writing a destructor is easy. Let’s pretend our object has a ring buffer as one of its attributes. Before
the object is destroyed we wish to break the circle of references:

Figure 9-1. Object has a ring buffer

",

_ring_buffer

next \next
nN /ext

To do this all we have to do is remove a single link from the circle. We can do this with a destructor
like the following:

sub DESTROY {
ny ($self) = @;

Break one of the references in our ring-buffer, so that
it will be cleaned up properly.

38 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 9. Destructors

del ete($sel f->{_ring_buffer}->{next});

Okay, the Perl garbage collector will take care of the
rest. Bye!

}

Destructor functions are free to do whatever they like, although you should have a good reason if
you do anything other than the required cleanup that’s expected. Remember that destructors are
called are not only called during the normal running of your program, but also when your program is
exiting. Assumptions about database connections, open files, and the like may not be valid.

Exercises

1. Write a destructor function for the Pl ayi ngCar d class. Have it print a message to STDERR
whenever a card is discarded.

2. Run one of your previous scripts that makes use of the Pl ayi ngCar ds and observe its behaviour.

Other uses for destructors

Destructors have a lot of use outside of simple clean-up. Destructors can be used to cleanly close

connections to servers or clients, or a convenient place to log information about an object’s usage.
More importantly, destructors are a convenient place to serialise an object, that is, to turn it into a
form suitable for storage and later retrieval.

The example below demonstrates a class which uses the Cache: : Fi | eCache module to create objects
which are persistent across processes.

Nai ve persistent object class. This assumes that only one

process will be using an object at any given tinme. No |ocking

or checking is done to ensure that doubl e-update or race

conditions are avoi ded.

package Persistent;

use Cache: : Fil eCache; # Coul d be any Cache:: Cache nodul e, TMIOATDI
our $cache = Cache:: Fil eCache->new);

|f the argunment "nane" is passed, and the object already exists

in our cache, we skip all initialisation and create the object
directly.
sub new {

ny ($class, %args) = @;

ny $this;

Grab our object fromthe cache, if it exists.
if ($args{nane}) {
$this = $cache->get ($args{nane});
return $this if $this;
}

Otherw se, proceed with regular initialisation.
$this = bless({}, $cl ass);

Perl Training Australia (http://www.perltraining.com.au/) 39

Chapter 9. Destructors

$t hi s->_init(%rgs);
return $this;

}

Stuff the object into our cache before releasing its menory.
sub DESTROY {

nmy $this = shift;

$cache- >set ($t hi s- >nane, $t hi s);

}

It’s now possible for us to inherit from the Per si st ent class, and provided we use the inherited
constructor and provide a name argument during creation, our objects will be made persistent across
processes.

Group Exercises

1. The Persi st ent class has a problem when multiple processes may wish to use the same object
at the same time. What solutions may exist to solve this problem?

2. The persi st ent class has other problems, in addition to those mentioned in the previous
exercise. What are these problems? How may they be solved?

Chapter summary

40

- Destructor functions are called upon an object when the reference count to that object has dropped
to zero.

- Destructors allow us to clean up after our object, so if our object controls a modem it might set it
to a known state before leaving, or if our object is the last outside reference to a loop of other
objects, it might break the loop so that those objects can also be destroyed.

- Destructors can be used for other things that need to occur before an object is destroyed, such as
logging of statistics dealing with that object, or serialising the object for later use.

« Under most situations, explicit destructor functions are not required.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

In this chapter...

One of the great virtues of object oriented programming is the ability to easily take existing objects
and extend them to meet new requirements. The primary means to achieve this is via inheritance
which we’ll talk about here.

So what is inheritance in Perl?

If you’ve used another object oriented language, you’re probably already quite familiar with the idea
of inheritance. Even if you haven’t, | suspect that you’ve grasped the idea by now. Inheritance is a
way of extending the functionality of a class by deriving a more specific sub-class from it.

Let’s take people, for example. There are lots of different classes of people, we might have

Gar dener S, ChessPl ayer S, Cycl i st S, and so on. A person may be all of these classes at once, but
each of them provides a very different set of behaviours. When something is a member of two or
more classes at once, we call this multiple inheritance.

In addition to there being many different types of people, some classes will be more specialised than
others. For example, a Per | Tr ai ner iS @ Trai ner iS a Teacher. S0 a Per| Trai ner is a special type of
Tr ai ner, which in turn is a special type of Teacher . This means that a Per | Tr ai ner can do
everything that a Tr ai ner can do, as well as a few tricks of their own.

Inheritance in Perl is a much more relaxed affair than inheritance in other programming languages.
In fact, inheritance in Perl is nothing more than a way of specifying where to look for methods. I’ll
repeat that, because those with prior object oriented experience will be muttering in disbelief right
now. Inheritance in Perl is nothing more than a way of specifying where to look for methods. That’s
it, end of story, nothing more to see here. Move along please.

Attributes do not get inherited. Ancestral constructors and destructors do not get called.
Compile-time consistency checks on interfaces or abstract methods do not happen. Actually, that’s
not completely fair. None of those things happen unless you want them to happen. Having a choice
is a powerful (and sometimes dangerous) thing, but in Perl the choice is yours to make.

Since the only thing out-of-the-box inheritance affects is method calls, we’ll discuss that before
going any further.

Method dispatch

The process of finding which method to call is known as method dispatch, and different
programming languages will handle it in different ways. Perl looks for methods using a depth-first,
left-to-right search of the tree of ancestors.

The ancestors of a class are found by looking at the @ sA array. Since this is a package variable, this
is one of the few times when you do not want to use ny. Instead, you should declare the variable with
the our keyword (in 5.6.0 and above), or using the use vars pragma (in any version of Perl).

\: A better explanation of the message dispatch mechanism is explained in Conway’s
book, pages 169-171.

41
Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

42

This is best demonstrated with an example. It’s all really quite simple.

package Perl Trai ner;
our @SA = gw Trainer Geek/; # 'our’ syntax only valid in >=5.6.0

package Trai ner;

use vars gqw @ SA ; # Portable across all versions of Perl 5.
@ SA = qw Teacher Witer/;

package Geek;

our @ SA = gw Progranmer Strategist CaffeineAddict/;

Figure 10-1. The PerlTrainer inheritance tree

Teacher Writer Programmer Strategist Caffeine Addict
* review() * review() * revi uﬂ’v()/
Trainer Geek
Perl Trainer

When a method call is made (say r evi ew) on an object in the Per | Tr ai ner class, the classes are
searched in the following order:

e Perl Trainer
« Trainer
« Teacher

« Witer

« Geek
« Programer
- Strategist

« Caffei neAddi ct

until the method is found.

As soon as the method is found (in this case, at the Teacher class), it’s called immediately, and
cached so that Perl doesn’t need to go through all that hard work again. It’s important to note here
that you always end up with the first available method in the left-most inheritance chain. Conway
aptly refers to this as the "left-most ancestor wins".

Directed dispatch

There will be times (and we’ll see them later this chapter) that we want to start the dispatch
mechanism at a particular place in the class tree. In these cases we use a special syntax for method
calls, like this:

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance
$trai ner->Teacher::instruct(@rgs);

This directs Perl’s method dispatcher to begin looking for the i nst ruct method in the Teacher class
and calls this on the $t r ai ner object. If the method isn’t found on the Teacher class, then the parent
classes of Teacher will be searched, and so on. If neither the Teacher class nor any of its ancestors
have ani nst ruct method this will cause a run-time error.

Directed dispatch allows us to call the Geek r evi ewmethod as follows:

$trai ner->Geek: : reviewm @rgs);

Since the Geek class does not implement it’s own r evi ew method the dispatch mechanism would
traverse the inheritance tree of the Geek class and find the Pr ogr amrer revi ew method and call that.

Using this notation, it’s actually possible to specify a class of which your object is not a member.
This mainly has uses in invoking pseudo-classes, which have particular side-effects. We’ll see more
on this next chapter.

Dispatch via subroutine reference

There’s a third way of invoking methods in Perl, and that’s directly with a subroutine reference. It’s
possible to get a reference to a subroutine in a few ways (for example, \ & oo gives us a reference to
the subroutine named f oo). Given such a reference, it can be called as a method directly, without
involving the method dispatcher at all. This is very fast:

ny $subref = \&Strategist::review
$trai ner->$subref (@rgs);

Similar to the directed dispatch above, it’s possible to call methods that don’t exist on the object in
this fashion. We’ll see some uses for this notation later on when we examine the can() universal
method.

Be careful, the following line of code:

ny $subref = \&Strategist::review);

calls the strategi st : : revi ewsubroutine, and then takes a reference from what it returns. When
making subroutine references, we have to make sure that we do not include parentheses.

Exercises

1. You can find the source for the Per | Tr ai ner and related classes in your exerci ses/lib
directory. Write a small script to use the Per| Tr ai ner class, create a Per | Tr ai ner object, and
call the r evi ewmethod on it. Which class’ method gets called?

2. Invoke the r evi ewmethod but direct the dispatcher to start looking in the Geek class. Which
class” method gets called this time?

3. Obtain a reference to the the r evi ewmethod in the Strat egi st class by using ny $subref =
\&Strategist::revi ew. Use it to call the method directly on your Per | Tr ai ner object.

Perl Training Australia (http://www.perltraining.com.au/) 43

Chapter 10. Inheritance

Constructors and inheritance

You’ll remember that we mentioned that attributes do not get inherited in Perl, nor does every
constructor get called when an object is created. This is different to most other object oriented
languages.

In Perl, a constructor is just another (class) method, except it returns a newly blessed object. When
we call Per | Trai ner - >new() , Perl does the left-most inheritance search, and calls the first (and only
the first) constructor that it finds. With our example above, if Per | Tr ai ner had no constructor, but
Trai ner did, then that would be called.

It’s here that we finally see why it’s so important to bless an object into the class that was passed as
the constructor’s first argument. When we call Per | Tr ai ner - >new() We want a Per | Tr ai ner object,
and this is what the constructor is passed, even if it’s the Tr ai ner or Caf f ei neAddi ct constructor
that eventually gets called.

What we haven’t yet discussed is how to ensure all constructors get the chance to properly initialise
an object. Sure, the Trai ner constructor will correctly initialise attributes for cour ses_t aught and
not es_r evi sed, but is unlikely to even know about bl ood_caf f ei ne_| evel .

In Perl, the most common solution is to separate the object construction from the object
initialisation. This all happens internal to the class, of course. We don’t want users writing code like
this:

ny $trainer = Perl Trai ner->new,
$trainer->init(name => "Paul Fenwi ck");

That would just be asking for trouble. Rather, the constructor function should call the initialisation
function itself.

So, what’s the big deal about splitting creation from initialisation? Why bother in the first place if the
user doesn’t see nor care about it? Let’s take the following example:

package Perl Trai ner;
use vars gqw @ SA ;
@ SA = qw Trai ner Geek/;

Constructor nethod. Just creates the hash and then passes
the work off to the initialiser nethod.

sub new {
ny ($class, @rgs) = @;
ny $this = {};

bl ess($t hi s, $cl ass);
$this->_init(@rgs);

return $this;

Initialiser method, does all the hard work.
sub _init {
nmy ($this, %args) = @;

Initialise the object for all of our base classes.

$t hi s->Trainer:: _init(%rgs);
$t hi s->Geek: : _init(%args);

44 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

Class-specific initialisation.
$t hi s->{_perl _courses} = $args{courses} || [];

Return the initialised object.
return $this;

}

Our _i ni t function first calls the _i ni t functions on its base classes, and then does its own
class-specific initialisation. In this way, all the classes get a chance to do whatever work is needed on
the newly created object. If we had called constructor methods, we would get back many different
objects, when we only want to be working with one.

Universal methods

We’ll return to initialisers shortly, but first we’ll introduce two very special methods that exist on all
objects. Those methods are i sa() and can().

The isa() method

As we’ve seen, the ancestry of an object can be very long and involved, and sometimes it can be
rather tricky to determine if an object has inherited from a certain class. Looking through an object’s
@ SAarray is a naive approach, but doesn’t let us examine grandparents or great-grandparents.

As you can imagine, checking all the way up the class hierarchy is far from trivial. Luckily for us,
there’s a universal method called i sa() , which we can use to determine if an object isa member of a
particular class.

ny $trainer = Perl Trainer->new nane => "Paul Fenwi ck");

print "Paul is a geek.\n" i f $trainer->isa("CGeek");
print "Paul is a hairdresser.\n" if $trainer->isa("HairDresser");

Assuming the hierarchy for the Per | Tr ai ner class that we discussed before, this will print that Paul
is a geek, but not mention hairdressers at all.

The i sa() method caches its return values, so if you change inheritance of a class that has
objects in existence that you've already called i sa() on, then you might get unexpected results.
Of course, if you're changing the inheritance of classes at run-time, you should be expecting the
unexpected. :)

\: . The i sa() method can be found in more detail on pages 178-179 of Conway'’s book.

The can() method

The other universal method that we’ll talk about is can() , which tells us whether or not a particular
object can call the method supplied.

Perl Training Australia (http://www.perltraining.com.au/) 45

Chapter 10. Inheritance

A common use of can is to call a method only if it exists. For example, an object might have a
di spl ay method that prints its contents in a human readable form. Given a list of objects we want to
print, we could do this:

foreach my $obj (@ist) {
if ($obj->can("display")) {
$obj - >di spl ay;
} else {
print $obj;
}
}

Or, more concisely:

foreach my $obj (@ist) {
$obj - >can("di spl ay") ? $obj->display : print $obj;
}

The can method has more uses than you think. It’s particularly useful because it returns a reference
to the method if it exists. This makes it handy if you need a particular functionality but you’re not
certain what it may be called on the object you’re dealing with. In the example below, we search
through a series of likely methods for converting our object into a string of suitable form for saving
in a file or handing to another process.
Convert our object into a string for storage.
ny $freezer = $obj->can("freeze") |

$obj - >can("store") ||

$obj - >can("serialise") ||

$obj - >can("serialize") ||

die "Cannot serialise object\n";

ny $frozen_obj = $obj->$freezer();

\: Of course we could use Dat a: : Dunper to serialise our object. Data::Dumper
stringifies perl data structures suitable for printing or "eval"ing later. You can learn more about
Data::Dumper by checking out perldoc Data::Dumper.

Problems with initialisers

Separating constructors from initialisers to let all the classes in an inheritance hierarchy have a
chance at initialising the object is extremely useful. However it is not without traps for the unwary.
We cover these next.

Initialisers and diamond inheritance

Let’s take our Per | Trai ner example again and extend it a little. A Per| Trai ner isn’t just any sort of
Pr ogr amner , they’re a Per | Hacker .

46 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

Figure 10-2. Adding PerlHacker to the inheritance tree

Teacher Writer Programmer Strategist CaffeineAddict
Trainer PerlHacker Geek
Perl Trainer

Here we have two classes (Geek and Per | Hacker) that share a common ancestor (Pr ogr anmmer). Now,
this can cause some interesting problems, particularly at object creation time. Using the techniques
that we’ve just discussed, the Progr anmer ’s _i ni t function would be called twice when a

Per| Trai ner is created. This might be okay, but what if the _i ni t function keeps a record of how
many Pr ogr ammer S get created? A Per | Tr ai ner would end up getting counted twice! Fortunately,
provided we are using hashes for our objects, a solution is close at hand:

package Progranmer;

sub _init {
ny ($self, %args) = @;
return if $sel f->{_init}{Programmer}++;

remai nder of initialisation...

}

The first time this is called, $sel f->{ i ni t }{ Progr ammer} does not exist, so the initialisation is run.
The post-increment operator (++) ensures that the attribute gets created and set to a true value. The
next time (if there is a next time) the initialisation is called, we can tell that we’re experiencing a sort
of inherited deja vu, and skip the initialisation that we’ve already performed.

Indeed, this code can be generalised even further to protect ourselves against mistyping our own
package name (which can happen if you’re dealing with long names like
Per son: : Enpl oyee: : Techni cal : : SysAdni n: : UNI X: : Fr eeBSD), like this:

sub _init {
ny ($self, %rgs) = @;

ny $PACKACGE = __ PACKACE__;
return if $sel f->{_init}{$PACKACE} ++;
...

}

__PACKAGE__ is a magic symbol that always evaluates to the current package, and is generally
preferable to writing the package name itself. This is particularly the case if your code is likely to be
cut’n’pasted, or if the package name might change, or if it’s 3am in the morning with an important
client demonstration the next day.

In the example above we copy the value of __PACKAGE__ to a variable and use that in our hash
lookup. This is because of Perl’s rules about hash keys, which says that bare words in hash lookups
are always assumed to be strings. We don’t want Perl to look up the literal string __PACKAGE__ in the
hash but rather the result of evaluating __PAckaGe__ first.

Perl Training Australia (http://www.perltraining.com.au/) 47

Chapter 10. Inheritance

\: Damian Conway has an example on page 175 of his book which also illustrates this
point.

Changing parents

48

It’s possible that during the course of your class’ development, you might end up inheriting from a
few new classes, or dropping off some old ones. For example, in our last section we added
Per | Hacker as a parent for our Per | Tr ai ner class.

Previously, when calling parent initialisers, we needed to list our parent classes twice. Once in our

@ SAarray, and once in our _i ni t function. That’s not a good thing, because as changes are made the
two lists might get out of sync. We could end up calling an initialiser on an unrelated class, or forget
to call one on a parent class.

Perl provides a special pseudo-class named SUPER, which signals to Perl’s dispatch mechanism to
look for the first available method above our current class, and call that:

Let’s take the following example:

package Perl Hacker;
use vars gqw @ SA ;

@ SA = qw/ Programmer/;

sub _init {
ny ($self, %rgs) = @;

Call my parent’s _init function.
$sel f->SUPER: : _i ni t (%ar gs) ;

Class-specific initialisation.
$sel f->{_perl monks_l evel } = $args{pm.|evel} || 4;
$sel f->{_nodul es_mai nt ai ned} = $args{nodules} || [];

return $this;

}

Notice that we’re using named parameter passing in this code. This is especially useful in inherited
situations as we can use values from the parameters that we need and pass the rest to our parent
constructors in case they can use them.

Note that using SUPER here acts differently than just an alias to Pr ogr ammer . If a class has more than
one parent, SUPER will search all of them in the regular depth-first, left-to-right fashion, until it finds
the required method (or throws an exception if none can be found).

Unfortunately, SUPER only calls the first method it finds. So for any class that uses multiple
inheritance, and wishes to call initialisers on all of its parents, SUPER just isn’t suitable.

One way to get around this is to ignore SUPER entirely, and walk our @ sA array, and determine when
we should be calling the method in question...

package Perl Hacker;
use vars gqw @ SA ;

@ SA = qw Progranmer/;

sub _init {
ny ($this, %args) = @;

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

Call my parents’ _init functions.

foreach ny $parent (@SA) {
$parent _init = $parent->can("_init");
$this->$parent _init(%rgs) if $parent_init;

Class-specific initialisation.
$t hi s->{_perl monks_l evel } = $args{pm.|evel} || 4;
$t hi s->{_nodul es_nmi nt ai ned} = $args{nodul es} || [];

return $this;

}

That code needs a bit of explaining. You’ll recall that $par ent - >can("_i ni t") checks to see if the
given parent (or one of its parents) can handle a call to _i ni t, and if so, returns a reference to that
method. We then call that method directly (using $t hi s- >$par ent _i ni t (%ar gs)). Calling a method
directly with a subroutine reference is very fast, and means we don’t need to fire up the dispatcher a
second time (once for can() and a second time for the method call itself). This also has the
advantage that if a given branch of the ancestor tree doesn’t have an _i ni t function for whatever
reason, we don’t try to call it.

If you find the above is hard to grasp, or think that it’s an awful lot of effort to do what should be a
very simple thing, then you’re right. And there is a better way which involves firing up the dispatcher
mechanism where it left off. We’ll talk about that next™.

\: . The sUPER package is discussed in further detail in Conway’s book on pages 183
and 184.

What is a pseudo-class?

A pseudo-class is a class which cannot instantiate an object, and which should not be inherited.
Rather, it exists so that it can be invoked for its side-effects. One use of pseudo-classes is to
control the dispatch mechanism. We've seen the SUPER pseudo-class, but there are others such
as NexT which we’ll be covering shortly.

The PerlTrainer class in full

Here’s how all we’ve learnt so far fits together:
package Perl Trai ner;

use vars gqw @ SA ;

use Trai ner;

use Perl Hacker;

use Ceek;

@ SA = qw/ Trai ner Perl Hacker Ceek/;

Constructor nmethod. Just creates the hash and then passes
the work off to the initialiser nethod.

Perl Training Australia (http://www.perltraining.com.au/) 49

Chapter 10. Inheritance

sub new {
ny ($class, @rgs) = @;
ny $this = {};

bl ess($t hi s, $cl ass);
$this->_init(@rgs);

return $this;

}

Initialiser method, does all the hard work.
sub _init {
ny ($this, %rgs) = @;

Initialise the object for all of our base classes.

foreach nmy $parent (@ SA) {

$parent _init = $parent->can("_init");

$thi s->$parent _init(%args) if $parent _init;
}

Class-specific initialisation.
$t his->{_perl _courses} = $args{courses} || [];

Return the initialised object.
return $this;

Exercises

1. Derive a Coi n: : Wi ght ed class from the Coi n class. These coins behave as regular Coi ns,
however heads comes up 60% of the time instead of 50%.

2. Modify your statistics coin program to create one Coi n coin and one Coi n: : Wi ght ed coin
(instead of 2 coi n coins). Run it and check that the statistics match what you expect.

3. Create a second coin program which creates a Coi n object and a Coi n: : Wi ght ed object.
a. Use i sa to check whether they are both Coi ns.
b. Use i sa to check whether they are both Coi n: : Wi ght eds.

An answer for this can be found in exer ci ses/ answers/i sa. pl .
c. Are the results as you expect?
4. Add the following functions to your Coi n: : Wi ght ed class:
- set_wei ght which sets the amount of favour the coin shows to heads.

« get_wei ght which returns the current value of favour the coin shows to heads.

5. Create 10 each of Coi n coins and Coi n: : Wi ght ed coin and put them into an array. Randomise
the array using

@rray = sort {rand() <=> 0.5} @rray;

50 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 10. Inheritance

and then walk over it setting the weight of each of the Coin::Weighted coins to 90%.

Use the can() method to ensure you don’t call set _wei ght on a Coi n coin and then use the
returned subroutine reference to call the function.

An answer for this can be found in exer ci ses/ answer s/ can. pl .

6. Since we can now set the value of our Coi n: : Wi ght ed coin’s weight you will have had to

make a decision as to how that weight is initially set. Pull this initialisation that you’ve done out
into an _i ni t function and change your Coi n constructor function to call _i ni t on the object if
that method exists.

7. Your Coi n: : Wi ght ed class should no longer need to have a separate constructor function.

Remove this if you’ve created one.

Chapter summary

Notes

Inheritance (in Perl) is nothing more than a way of specifying where to look for methods.

When looking for a method called on our object that that object does not define, Perl will do a
depth-first, left-to-right search of the tree of ancestors.

We can instruct Perl where to start its search by qualifying a method with a parent (or other) class
name, for example $t r ai ner - >Teacher : : revi ew() .

To ensure that our code is easy to inherit from we ought to do our initialisation for our object
inside a separate initialise function. This is called i ni t by convention.

Theisa() method automatically exists on all objects and allows us to determine whether that
object is a member of a particular class.

The can() method also automatically exists on all objects and allows us to determine whether that
object can call a given method.

If we want to call each of our parent constructors for our object we can loop through our @ sa
array.

The SUPER pseudo-class tells Perl to look for the first available method above our current class
and call that.

1. Pun not intentional

Perl Training Australia (http://www.perltraining.com.au/) 51

Chapter 10. Inheritance

52 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 11. Redispatching method calls

In this chapter...

In the Per | Tr ai ner example in the previous chapter, we demonstrated how Perl’s dispatch
mechanism might find the method r evi ew. In this chapter we look at what happens if it finds the
wrong one.

Pass it on please

What happens if a number of ancestors have the method that’s just been requested, and we end up
calling the wrong one? For example:

ny $person = Perl Trai ner->new nane => "Paul Fenw ck");

Get our person to review sonme Perl code.
$per son- >revi ew(| anguage => "Perl| ", progran¥>"hello.pl");

Let’s suppose that all of the Teacher, Wit er, Programer and St r at egi st ancestors provide a

revi ewmethod. In this case, the method from Teacher will always be called, due to the "left-most
ancestor wins" rule. It’s fairly obvious that we wanted the method from Pr ogr ammrer , but Perl has no
way of knowing that.

Figure 11-1. Classes providing the review method

Teacher Writer Programmer Strategist CaffeineAddict
* review() * review() * review() * review()
Trainer PerlHacker Geek
Perl Trainer

Now, we could explicitly tell Perl which method we meant, by qualifying it with a classname:
$per son- >Progranmer: : revi ew(| anguage => "Perl|", program=> "hello.pl");

But as a user of the class we shouldn’t need to know nor care what the inheritance structure of a
Per | Trai ner is. In fact, it would be very bad if we did this, since Per | Tr ai ner might change at
some point to provide a much more appropriate method than the one inherited from Pr ogr anmrer .

In cases like this, when a class receives a method call that was obviously meant for someone else, or
when we want to see what other members of the hierarchy might think, there’s a way to drop back
into the message dispatch mechanism and call the next method along. We need to use a special
module to do this, and that module is unsurprisingly called NeXT.

Perl Training Australia (http://www.perltraining.com.au/) 53

Chapter 11. Redispatching method calls

use NEXT;
package Teacher;

sub review {
nmy ($this, Y%args) = @;

unl ess ($args{assignment} or $args{exant) {
Gosh darn, the nethod dispatcher gave us the call
that was meant for someone else. Throw it back.

return $this->NEXT: :revi ew(%ar gs) ;
}

Review our literature here.

}

The NEXT module defines a pseudo-class which allows message dispatch to continue on where it left
off. In the case of our Per | Tr ai ner example, the dispatch mechanism would trek back down the
Trai ner branch of the ancestor-tree, and up the wi t er class, which also defines a r evi ewmethod,
which is then called.

The wi ter class can also choose to re-invoke the method dispatcher with another call via the NeEXT
pseudo-class. In this case, the dispatcher would backtrack to the Tr ai ner class again, down even
further to Per | Trai ner and then up through Per | Hacker t0 Progr anmer .

If Progr anmer uses NEXT to pass on the method, we backtrack down to the Per 1 Trai ner class again,
and then back up to Progr ammer a second time via the Geek class.

Hmm, that makes sense in a way, but isn’t what we want in this (or many other) situations. Luckily,
NEXT has a way for us to specify that we should skip over methods that we’ve already seen:

return $this->NEXT:: Dl STI NCT: : revi ew(%ar gs) ;

If we use NEXT: : DI STI NCT then the redispatch mechanism would skip over the Pr ogr ammer class
(which it had already seen before), and land the call into the St r at egi st class.

You should always use NEXT: : DI STI NCT unless you're sure that you want parent methods that
are multiply-inherited to be called multiple times.

Exercises

1. Change your Per | Tr ai ner classes from your exer ci ses/ | i b to superficially distinguish
between review calls. For example Teacher s may expect both "student” and "paper" as
arguments, whereas Wi t er ss my expect "novel”, or "book", or "whole_lifes_work", and so on.
Use NEXT in each class to make sure that inappropriate calls are passed on.

2. Write a script that uses the Per | Trai ner classes and makes calls to review various things.
Check that the call is getting through to the appropriate class.

3. What happens if you call the review method with arguments that none of the parent classes
expect?

54 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 11. Redispatching method calls

Optional redispatch

So, what happens if St rat egi st decides to fire up the redispatcher and send the call on its way?
There’s no class after St rat egi st which can handle a call to r evi ew. Does Perl throw an exception
or something?

No. It goes away. Since nobody wants the method call, Perl arranges for it to return the undefined
value (or the empty list, in list context) and silently leaves it at that.

Isn’t that bad? We asked the dispatcher to pass the method on, and it just ignored it? You’re going to
tell me that’s a feature, right? Yup, that’s most certainly a feature.

You see, one of the best uses of the NEXT pseudo-class is in initialisers and destructors, where we
want to call our parent(s) methods and then add a little bit of our own work. If our parents don’t have
the methods to call, we want to ignore that and continue, rather than bail out.

So, we can replace the rather ugly:
Call my parents’ _init functions.
foreach ny $parent (@SA) {
$parent _init = $parent->can("_init");
$thi s->$parent _init(%args) if $parent _init;
}

with the much more elegant:
$t hi s- >NEXT: : DI STI NCT: : _i ni t (%ar gs) ;

Not only is that shorter, it’s much more clear about what’s needed. It also avoids the problems of
initialisers being called twice in the case of multiple inheritance. In destructors it’s just as easy:

sub DESTROY ({
ny ($this) = @;

Do my own cl ean-up here.
$t hi s- >NEXT: : DI STI NCT: : DESTROY;
}

It’s difficult to recommend NexT enough for this sort of work.

\: You can read more about the NEXT pseudo-class by using perldoc NEXT.

Mandatory redispatch

Back to our original example, with the r evi ewmethod. Here we want to pass on the method call, but
if nobody else is willing to take it we want to complain loudly. Having the code below failing silently
is probably not acceptable.

ny $trainer = Perl Trainer->new nanme => "Paul Fenw ck",
drinks => [gw/ coffee tea colal/]);

$trainer->review(quilt => $quilt_pattern);

Perl Training Australia (http://www.perltraining.com.au/) 55

Chapter 11. Redispatching method calls

Per | Tr ai ner s usually know nothing about quilting *, so rather than this method call fall into a hole
and disappear, we’d like it to throw an exception that it couldn’t do the required task. Enter
NEXT: : ACTUAL.

NEXT: : ACTUAL works identically to NEXT, except that it throws an exception if we try redispatching
when no further methods exist to try the call against.

Let’s see it in action:

use NEXT;
package Witer;

sub review {
nmy ($this, %args) = @;
unl ess ($args{book} or $args{notes} or $args{article}) {
Gosh darn, the nethod dispatcher gave us the call
that was meant for someone else. Throw it back.

return $thi s->NEXT: : ACTUAL: : revi ew(%ar gs) ;
}

Review our literature here.

}
And yes, it’s possible (and recommended) to use both NEXT: : ACTUAL and NEXT: : DI STI NCT together:

use NEXT;
package Witer;

sub review {
ny ($this, %rgs) = @;
unl ess ($args{book} or $args{notes} or $args{article}) {
Gosh darn, the nethod dispatcher gave us the call
that was nmeant for soneone else. Throw it back.

return $this->NEXT:: DI STI NCT: : ACTUAL: : revi em %ar gs) ;
}

Review our literature here.

}

Yes, NEXT: : ACTUAL: : DI STI NCT works as well (and behaves exactly the same) as
NEXT: : DI STI NCT: : ACTUAL.

Exercises

1. Add mandatory dispatch to your review methods. What happens now if you call the r evi ew
method with arguments that none of the parent classes expect?

Problems with NEXT

Unfortunately, NEXT isn’t the solution to all our problems. The most common issue you will
experience with NEXT is when you’re working with third-party classes. Proper operation of NEXT

56 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 11. Redispatching method calls

relies upon each method (particularly constructors/destructors) invoking NEXT at the appropriate
point. If you’re inheriting from a third-party class that doesn’t do this, then you have a problem.

If you’re only inheriting from a single NExT-ignorant class, then making that your rightmost ancestor
may solve your problem, as there will be no requirement for it to try and re-dispatch any method call
outside of its own inheritance tree.

Another issue that arises with NEXT is that in the case of diamond-inheritance, it’s possible for child
initialisers to be called before their parents. If this causes problems, then it can be avoided by using
the following code construct:

sub _init {
ny ($self,@rgs) = @;
$sel f->NEXT: : _init(@rgs);
ny $package = __ PACKAGE _;
return if $sel f->{_init}{$package}++;
... initialisation occurs here.

}

It’s important to use regular NEXT and not NEXT: : DI STI NCT for this to work correctly.

More recent versions of the NEXT module provide a new pseudo-class to overcome these problems,
called Every. We’ll cover this new pseudo-class in the next section.

Using EVERY to call all methods

The NeXT pseudo-class is most useful when we want methods to have the ability to redispatch a
method call. However it has some shortcoming when we wish to use it for initialisation and
destructors, which the ordering of method calls can also be quite significant, and we wish to process
methods in a strict ’parent before child’ or ’child before parent’ order.

In order to accommaodate these situations, Perl has the EVERY pseudo-class, for when we wish to call
every method in a class hierarchy, rather than just the next one. EVERY does not use the ’leftmost
ancestor’ routine of NEXT and the in-built Perl dispatch mechanism. Instead EVERY works on a
breadth-first search. Let’s see an example using our Per | Tr ai ner class:

Figure 11-2. The PerlTrainer hierarchy

Teacher Writer Programmer Strategist CaffeineAddict
Trainer PerlHacker Geek
Perl Trainer

Using EVERY would result in classes being called in the following order:

e Perl Trainer
e Trainer
¢ Perl Hacker

e Geek

Perl Training Australia (http://www.perltraining.com.au/) 57

Chapter 11. Redispatching method calls

e Teacher

e Witer

e Programmer

¢ Strategist

e Caf f ei neAddi ct

Of particular note is that Geek is called before Pr ogr anmrer , even though pr ogr ammer appears “first’
in the Per | Trai ner inheritance hierarchy. EVERY guarantees that all child classes will be called
before their parents.

Ensuring that child classes are called before parents is very useful for destructor methods, where
usually the derived class needs to do tidy-up before its parents. However what of the case of
constructors, where we want parent classes to do initialisation first? For this, we use the

EVERY: : LAST pseudo-class.

EVERY: : LAST will call every method in a given inheritance hierarchy, but in the reverse order to
EVERY. As such, parents are guaranteed to be called before their child classes.

Using EVERY and EVERY::LAST in practice

When using NexT, each method either begins or ends with a call to the next method. However when
using EVERY and EVERY: : LAST, a single call executes all the methods in a given hierarchy. As such,
the use of EVERY and EVERY: : LAST requires a different, and often simpler, approach to coding.

Constructors

58

Let’s consider the humble constructor. In our constructors we usually want to ensure that all of our
parent classes do their initialisation first before we do our own. This allows us to overwrite values
that our parents have set rather than the other way around. To achieve this our constructor will often
look like this:

sub new {
my ($class, @rgs) = @;
ny $this = bless({}, $cl ass);
$this->_init(@rgs); # Call nmy _init method.
return $this;

}
sub _init {
nmy ($this, %args) = @;
Initialise nmy parents
$t hi s- >SUPER: : _i ni t (%ar gs) ; # or wal k through @ SA
Performny initialisation here.
}

Unfortunately, in the case of diamond inheritance, this can mean that a parent is initialised twice,
once for each child. Using NEXT: : DI STI NCT doesn’t help either as it can result in a child class doing
its initialisation prior to one of its parents.

When using EVERY: : LAST only a single call is made, from the constructor itself:

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 11. Redispatching method calls

use NEXT;

sub new {
ny ($class, @rgs) = @;
ny $this = bless({}, $cl ass);
$t hi s- >EVERY: : LAST: : _init(@rgs); # Call every _init
return $this;

}
sub _init {

ny ($this, %rgs) = @;

No need to call ny parents.

Performny initialisation here.
}

The call to EVERY: : LAST guarantees that every _i ni t method will be called, starting with the parent
classes and then moving to the children. No child class will be called before all of its parents are
called, and each method will only be called once.

Destructors

In our destructors we usually want to ensure that the child classes’ destructors are called prior to
their parents. This allows the child class to write out their changes to the database before the parent
disconnects, for example.

When we call a method via the EVERY pseudo-classes this method is called on each parent class as
well as the current class, if it exists. As a result, in the previous example, we were able to call the
_ini't method for our class without having to explicitly specify it. However this means that we don’t
want to call our DESTROY method via a call to EVERY: : DESTROY as this would result in our DESTROY
method calling itself (and its parents) in an infinitely recursive loop.

The easiest way to solve this issue is simply to have a single, inherited DESTROY method, which
dispatches the call to methods that do all the hard work, but have a different name:

use NEXT;

sub DESTROY ({

ny ($this) = @;
$t hi s- >EVERY: : _destroy;
}

sub _destroy {
ny ($this) = @;
Al the real clean-up occurs here.

}

Each parent class now defines its own _dest r oy method (if required) instead of a DESTROY method.
The DESTROY method is defined in a single class and ensures that all _dest r oy methods are called
appropriately.

Exercises

1. Modify your exer ci ses/ | i b/ Per| Trai ner . pms0 that the Per| Trai ner class hasacal | _test
which calls EVERY: : t est .

Perl Training Australia (http://www.perltraining.com.au/) 59

Chapter 11. Redispatching method calls

2. Write a program which instantiates a Per | Tr ai ner object and calls its cal | _t est method.

3. Either modify your cal | _t est method to use EVERY: : LAST or add an additional method which
calls every t est method in reverse.

4. Call this method on your Per | Tr ai ner object.

Chapter summary

« Perl’s redispatcher always calls the first method it finds of the requested name, in its depth-first,
left-to-right search.

« If we wish to ask Perl to find the next method by that name we can use NEXT.
- If we want to insist that Perl find another method or die we can use NEXT: : ACTUAL.

- If we want to avoid calling a function twice due to diamond inheritance we can use
NEXT: : DI STI NCT.

« Unfortunately NexT doesn’t solve all of our problems with multiple inheritance in Perl

« EVERY provides a way of calling a number of methods in one go. It overcomes the problems
associated with NExT when dealing with constructors and destructors.

Notes

1. Actually, some per| Trai ner s know quite a bit about quilting. See this PerIMonks node
(http://perlmonks.org/index.pl?node_id=72270) for that knowledge put to good use.

60 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 12. Abstract Classes

In this chapter

This chapter discusses abstract classes, where they’re useful and how to create them.

Abstracting

Sometimes you’ll encounter a situation where it’s advantageous for many different objects to share a
similar behaviour, but this common behaviour does not constitute a proper object in itself. In this
case, we want abstract classes. These classes can be inherited from, but not instantiated into objects.

Let’s take an example to demonstrate. You should all be familiar with the game of chess. All the
pieces share common attributes, such as their colour and position, and common behaviours like
being able to move and take. However there’s no such thing as a generic chess piece. We can write
an abstract chess piece class like this:

package Ganes:: Chess:: Piece
use Carp
use NEXT;

can_nove, can_take, and get_nanme nust be over-ridden by the
child class.

sub can_nove {
croak "Abstract nethod call ed"

}

sub can_t ake {
croak "Abstract nethod call ed"

}

sub get _nanme {
croak "Abstract nethod called"

}

Both nove() and take() will need to be updated when we understand
how our pieces fit together on the board. Currently they’ re unaware
of other pieces.

sub nmove {
ny $this = shift;
ny $location = shift;
unl ess ($thi s->can_nove($l ocation)) {
croak "Cannot nove ".$this->get_nane()." to $l ocation”
}
$t hi s->set _| ocati on($l ocation);

}

sub take {
ny $this = shift;
nmy $location = shift;

W need a check here to ensure an opposing piece is in the
| ocation specified

unl ess ($this->can_take($l ocation)) {

Perl Training Australia (http://www.perltraining.com.au/) 61

Chapter 12. Abstract Classes

62

croak $this->get_nanme()." cannot take piece at $location";

}

$t hi s->set _| ocati on($l ocation);

Do whatever is needed to make the opposing pi ece di sappear.

}

sub get_location { return $_[0]->{_location}; }
sub get_position { return $_[0]->get_location(); }
sub get_col our { return $_[0]->{ _colour}; }

For our American friends...
sub get_col or { return $_[0]->get_colour(); }

set_location really should ensure that the location is actually on
the board at the very |east
sub set_location {

ny ($this, $location) = @;

$thi s->{_l ocation} = $location;

}

sub new {
nmy ($class, @rgs) = @;
ny $this = {};
bl ess($t hi s, $cl ass);
$this->_init(@rgs);
return $this;

}

The _init function does specific initialisation for this class.
sub _init {
my ($this, Y%args) = @;

$t hi s- >NEXT: : UNSEEN: : _i ni t (%ar gs) ;

Naively assign colour and |ocation attributes.

These shoul d be checked for validity.

$t hi s->{_col our} = $args{col our} || $args{color};

$t hi s->set _| ocation($args{location} || $args{position});

return $this;

}

Now, let’s look at that in more detail, shall we? The first three methods the class defines, can_nove,
can_t ake and get _name simply return errors. That doesn’t seem like a particularly useful thing to do
when someone tries to move a piece, is it? The reason we do this (as the comments suggest) is that
these methods are place holders for child classes to override with something more useful.

Such place holders are called abstract methods. In our case, every chess piece has different rules on
moving and taking, so while we want to make sure these methods exist, we also want to make sure

they’re defined properly for the piece at hand. When we have a class that we want others to inherit,

but shouldn’t be used to create objects in its own right, we call it an abstract class.

Now, let’s derive a class from this abstract one that we’ve already built.
use Ganes:: Chess:: Pi ece;
package Games:: Chess:: Pi ece: : Rook;

use vars gqw @ SA/ ;

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 12. Abstract Classes

@ SA = qw Ganes: : Chess: : Pi ece/;

Check to see if the piece can nove to a particular |ocation.
This doesn’t currently check for intervening pieces.
sub can_nove {

ny ($this, $newioc) = @;

nmy $ol dl oc = $this->get_| ocation;

Rooks can nove along files (colums, for non-chess players)...
return 1 if (substr($oldloc,0,1) eq substr($new oc,0,1));

...and rows.
return 1 if (substr($oldloc,1,1) eq substr($new oc, 1,1));

return O;

}

Rooks take the same way that they nove. Only pawns have odd

behaviour here. Note this doesn't check to ensure we're taking
a piece of the opposite col our.

sub can_take { return shift()->can_nmnove(@); }

sub get_nane { return "Rook" };

As you can see, we only needed to define the can_rove, can_t ake and get _name methods to build
ourselves a rook class. The creation of the piece and common functions to check its location and
colour have been handled for us by the parent.

You may have noticed that we found the rook’s location by calling $t hi s- >get _I ocat i on, rather
than accessing it directly with $t hi s->{_| ocat i on} . Why was that? Surely it’s faster to fetch the
value directly from the hash, rather than going through a method call. Well, it is, but there’s a price to
pay for it. As long as we call the get _I ocat i on method, the internals of how that information is
stored can change, and provided the method returns the same information we don’t need to worry
about it. Imagine if we wanted to store the location packed into a single byte for more compact
storage -- we’d need to update each and every piece * (knights, rooks, kings, queens, pawns and
bishops) and change every instance where we accessed the location to instead unpack that byte into
an appropriate form. Object oriented methodology doesn’t just exist to protect the users of a class, it
exists to protect the writers of a class as well.

\: The Class::Virtual and Class::Virtually::Abstract classes can be used to automate
the creation of virtual methods.

You can read more about these classes using perldoc Class::Virtual and perldoc
Class::Virtually::Abstract.

Now that we have all these chess pieces to play with, we can go on to our next topic, which is
polymorphism.

- We can force a class to be abstract by not providing a constructor method for that class. Note
that this is not the same as not providing initialisation, since that may be essential. If no
constructor method exists for a class then a user of the class must explicitly bless their object
into the class themselves. Hopefully they’ll think about that first.

Perl Training Australia (http://www.perltraining.com.au/) 63

Chapter 12. Abstract Classes

In our example, we do provide a constructor, as it saves us needing to write a constructor for
each child class. The primary purpose of an abstract class is to provide useful functionality to
any classes that inherit it.

Group Exercise

1. Earlier we described airplane modelling. Of the classes you defined which were abstract?
Which methods were abstract?

Chapter summary

« Abstract classes are usually set up to ensure that their child classes definitely have a particular
interface.

« Abstract methods ought to be overridden by each child class (and bad things should happen if they
are not).

Notes

1. Chess purists will no doubt complain that pawns are pawns, not pieces. However you shouldn’t
change your code just because a chess purist tells you to.

64 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 13. Polymorphism

In this chapter...

As we discussed in the introduction, polymorphism is the ability for objects to react differently to the
same message, depending upon their class. There are many instances where polymorphism is useful.
For example, we may be managing a fleet of vehicles, and the form to print when requested to
print_registration_formis likely to be different for a motor-bike compared to a tow-truck.

Using polymorphism

Let’s take our chess pieces that were introduced in the last chapter, as they are an excellent example
of where polymorphic behaviour is useful. When we try to move a piece, we want to be told if that
move is valid or not, and the way in which a piece can move varies from piece to piece. Rather than
having to use different methods depending upon the piece we’re dealing with, (can_nove_bi shop(),
can_rove_r ook() , etc) we can use the same method call, and trust the piece to do the right thing.
Let’s see an example:

use Ganes:: Chess: : Pi ece: : Rook;
use Ganes:: Chess:: Pi ece:: Bi shop;

ny $rook = Ganes:: Chess:: Pi ece: : Rook- >new(col our =>"whi te", | ocati on=>"al");
ny $bi shop = Ganes:: Chess: : Pi ece: : Bi shop- >new(col our =>"bl ack", | ocati on=>"h1");

ny @ieces = ($rook, $bishop);

foreach ny $piece (@ieces) {
print "The ", $pi ece->get _name()," at ", $pi ece->get _| ocation()
if ($piece->can_nmove("a5")) {
print " can nove to a5\n";
} else {
print " cannot nove to a5\n";

}
}

That’s a somewhat contrived example, but it shows off polymorphism very well. There are three
separate places where polymorphic behaviour was used. $pi ece- >get _nane(),

$pi ece- >get _| ocati on(), and $pi ece- >can_nove() . If you think they look just like regular method
calls, then you’re absolutely right.

Inheritance vs interface polymorphism

Broadly speaking, there are two main types of polymorphism. What we’ve seen so far is an example
of inheritance polymorphism. All of our chess pieces share a common ancestor, and so we know that
they all share a common set of methods (such as get _| ocati on() and can_nove()) which that
ancestor class defines.

What happens if we want polymorphic behaviour with objects that don’t share anything in common?
This is an instance of interface polymorphism. Our objects aren’t related, but they all share some
common interface which allows them to be treated in a polymorphic way.

Perl Training Australia (http://www.perltraining.com.au/) 65

Chapter 13. Polymorphism

Sometimes it’s important to know if an object has a particular method. To do this, you’ll want to cast
your mind back to the can() universal method, which exists on all objects.

Check if our object can refresh itself on the screen.

if ($obj->can("refresh")) {
$obj - >refresh;
} else {
Refresh the object manually. ...

}

In Perl, there’s no requirement that your classes declare allegiance to a particular interface
specification to be polymorphic, it just has to declare the appropriate method that it’s expected to
provide.

Adding default methods and the UNIVERSAL class

Sometimes it would be nice to have a method exist for all of our objects, and perhaps for some
objects we didn’t write. We can (and should) write these methods into our classes, but we may not be
able to change the sources of classes we don’t own. Fortunately for us, all objects inherit from the
UNI VERSAL class. Which is why we are able to call the universal methods can and i sa on them.

This means that we can add default methods to the UNI VERSAL class, if necessary, and be confident
that all objects will now have access to that method. For example:

sub UNI VERSAL: :to_string

{
return $_[0];
or if we've used Data:: Dunper
return Dunper($_[0]);

}

print out ny object types all ny objects
foreach ny $object ($gardener, $pitchfork, $shovel, S$car, $cat, $dog)

{
print $object->to_string();

}

If the object has it’s own t o_st ri ng method then that will be called in preference to the UNI VERSAL
method. If it does not, we can feel certain that we won’t receive any run-time errors, as the
UNI VERSAL method will be used instead.

More on inheritance polymorphism

66

The most common form of polymorphism is via inheritance, and this warrants a little further
discussion as Perl’s approach may differ from other object oriented languages that you’ve used in the
past.

In Perl, when a method is called upon an object, it is always dispatched according to the class to
which the object belongs, not the class of the current subroutine. This means that if you have a
Chess: : Pi ece: : Bi shop object, then $bi shop- >get _nane() will always start searching in the
Chess: : Pi ece: : Bi shop class.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 13. Polymorphism

There are some object oriented languages (such as C++) where in some instances the object is

treated as being in one of its base classes, regardless of its actual type. If you want this behaviour in
Perl you can have it:

$bi shop- >Chess: : Pi ece: : get _nane()

Using the directed method syntax above (which was covered in the chapter on Inheritance), we start

the dispatch in the chess: : Pi ece class (which in this case will almost certainly generate an
exception about invoking an abstract method).

Exercises

1. Write a script that creates both a Pl ayi ngCar d object and a Coi n object. In your script define a
UNI VERSAL t o_st ri ng subroutine which uses Dat a: : Dunper to print out the content of that
object. Call this subroutine on both objects.

2. Add a separate t o_st ri ng subroutine in Pl ayi ngCar d which prints out the card’s value and suit.
Call t o_st ri ng on both objects and see what happens.

3. Add ato_string subroutine in Coi n which prints out the coin’s current state. Call t o_st ri ng
on both objects and see what happens. These are instances of interface polymorphism.

Chapter summary

« Polymorphism is the term for different classes behaving in different ways when given the same
message.

« Inheritance polymorphism is where a set of classes have the same interface because they all share
a common ancestor.

« Interface polymorphism is where a set of classes have the same interface because they have agreed
to.

Perl Training Australia (http://www.perltraining.com.au/) 67

Chapter 13. Polymorphism

68 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 14. Practical Exercise - the Game of
Chess

Required reading

The game of chess has simple and easy-to-understand rules. Although the strategy involved in the
game can be quite complex, it is possible to learn the basic rules with only a few minutes of reading.
We’re going to use this game as the basis of a number of practical exercises using our Object
Oriented Perl knowledge.

The basic rules of chess are explained very clearly on the website of the US Chess Federation, in
their "Let’s Play Chess" (http://www.uschess.org/beginners/letsplay.php) primer. At the very least
you will need to know the names of the pieces and how they move, so take a few minutes to read
over this information now.

For these exercises, we will use algebraic notation to denote the location of the pieces on the board.
Algebraic notation assigns every file (column) a number between a and h, and every rank (row) a
number between 1 and 8. A good introduction to algebraic notation can be found on the US Chess
Federation’s "How to Read and Write Chess™ (http://www.uschess.org/beginners/read/) page. You
may wish to take a moment to read it now.

We’ll actually be using a simplified version of algebraic notation for these exercises. Rather than
writing a shorthand involving just the piece and final location (eg, Bc4 - Bishop to c4), we’ll instead
just list both the starting and ending squares for the move (eg, f1-c4 - the piece at f1 moves to c4).

Group Questions

In this exercise we will create a number of related classes that implement a set of chess pieces. We
would like our pieces to be able to know their name, colour, and position. We’d also like our chess
pieces to be able to tell if they can move to, or take a piece in, a particular square.

1. Chess pieces have a co-ordinate in two dimensions, their row (rank) and column (file). Discuss
the best way to store this information.

2. There will be some behaviour which is common to all chess pieces. For example, we should be
able to ask any piece for its colour or location. Discuss what methods we might want common to
all chess pieces. In what way might we guarantee that these methods exist on all pieces?

Determine what these methods will be called, what arguments they’ll take and in which order.

3. Consider further methods that will make the chess pieces more usable. For example, rather than
just get _nare to get a piece’s name, would it be useful to also have a method which reports a
piece’s name, colour, and location?

4. There are six different types of chess pieces (rooks, knights, bishops, kings, queens and pawns).
We’ll be implementing these pieces as part of the remaining exercises. Volunteer to implement
at least one of these pieces for the group. We’ll make sure that everyone in the group will be
working on at least one piece.

Perl Training Australia (http://www.perltraining.com.au/) 69

Chapter 14. Practical Exercise - the Game of Chess

Individual Exercises

You may do this section in pairs if you desire.

1. Create a Chess: : Pi ece abstract class, and make sure that it implements all the virtual methods
that were decided upon in the group exercises above. Your trainer may provide you with a
starting point. Verify the class doesn’t generate any errors when run with perl -wc Piece.pm.

2. Create a Chess: : Pi ece: : Rook, or one of the pieces you volunteered to create for the group.
Make sure it inherits from Chess: : Pi ece. Use the chess-t est er. pl program that your trainer
will supply to test that the piece can be created, moved, and displayed.

3. Update the chess-tester. pl program to create two or more different types of pieces, and let
the user take turns in moving them about the board.

Group Discussion

1. Are there any problems with how the pieces currently behave? Why is this? How might they be
solved?

2. Let’s say that we create a Chess: : Boar d class, that implements a chess board which can have
pieces. What sort of relationships need to exist between the pieces and the board? Does this
solve any of the problems we’ve discovered above?

70 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 15. Operator overloading

In this chapter...

In this chapter we will briefly discuss Perl’s operator overloading mechanism, and how we can use it
improve code readability and extend the usefulness of objects we create.

\: This topic is covered in much greater detail in Chapter 10 of Damian Conway'’s book
(Object Oriented Perl), or by using perldoc overload.

What is operator overloading?
Operator overloading is the process of taking standard arithmetic, comparison, and other operators,
and changing their behaviour to act differently based upon the objects they are dealing with.

Operator overloading has the potential to make programs easy to read and write, and provide concise
and intuitive ways of manipulating objects. For example, if we had a class which represented
numbers in Roman Numerals, it would make perfect sense to be able to perform all the regular
arithmetic operations on those objects.

On the other hand, operator overloading can turn your program into an incomprehensible minefield
of obscure errors and unexpected problems. Overloading eq so that we can write:

if ($card eq "hearts")

rather than:
if ($card->get_suit eq "hearts")

may seem quite intuitive, but overloading cos to mean "cut once shuffled" is certainly not.

Perl allows you to overload a great many things, including things that you may not expect, like
constants. This chapter will show you how to overload a few simple operators. It is not a complete
guide to operator overloading.

Overloading stringification

The most useful operator to overload is Perl’s stringification operator, commonly written as g{ " "}
(or more perversely as "\"\"""). This isn’t a real operator per se, rather it’s an operation that is
performed whenever your object gets used in a string context, such as being used as a hash-key,
being printed, being concatenated, or having a string comparison (eq, | e, ge, etc) operator applied.

Without overloading the stringification operator, Perl objects are just plain ugly (and unhelpful!)
when they’re printed. For example, one of our chess-pieces when printed might produce this:

Chess: : Pi ece: : Bi shop=HASH(0x80f 62ac)

While it’s correct that we have an object of the specified type, and it is built upon a hash, that’s not
particularly useful to most mortals. Wouldn’t it be better if instead it would print:

71
Perl Training Australia (http://www.perltraining.com.au/)

Chapter 15. Operator overloading

bl ack bi shop at e3

We can do all this (and more) using Perl’s over | oad pragma. Here’s how:

package Chess:: Piece;

Overloading is inherited, so we only need to define this on
our base, abstract Chess::Piece.

use overl oad (
g{""} => "as_string",

)

sub as_string {
my ($this) = @;

return join(" ", $this->colour, $this->nane, "at", $this->location);

}

The over | oad pragma takes a list of directives, in the form of operator and method pairs. You will
have noticed that we wrote the method name as a string. Since operator overloading is inherited by
subclasses, specifying the name as a string indicates to Perl that it should search the class hierarchy
for an appropriate method. If we specified the method as a subroutine reference, that subroutine
would be invoked directly.

In our example above, whenever we used the chess-piece as a string (including when printed,
concatenated, or used as a hash-key), its as_st ri ng method would be called, and the result of that
used as the string.

Inheritance and overloading

72

There are two ways to provide Perl with methods that are used in overloads. If a string is passed to
the over | oad pragma, then Perl looks for a method with that name, starting on the child class and
working a leftmost-ancestor wins fashion. This is the preferred way to specify overloads, as it means
that a child overriding a parent method does so for both regular and operator-overloaded calls to that
method.

It is also possible to provide Perl with a subroutine reference to the code to be executed for an
overloaded operator. Because this is a code reference, the over | oad pragma cannot tell if it refers to
a normal method or an otherwise anonymous subroutine. The result of this is that if child classes
want to override the method called for these operators, they must invoke the over | oad pragma again.

Where possible, it’s recommended that methods to be used for overloaded operators always be
passed by name, as this provides the most consistent and useful functionality to child classes.

package A,

use overl oad (

q(-) => "minus",

q(*) => "nmultiply",

q(+) => \&plus, # This is a subroutine reference.
)
sub mi nus { return $_[0]->{value} - $ [1] }

sub nultiply { return $_[0]->{value} * $_[1] }
sub plus { return $_[0]->{value} + $_[1] }

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 15. Operator overloading

e s e e e e e e e e e e e e e e e e e e e m o

package A::B;

our @SA = qw A ; # A.:B inherits fromA
$sel f - 2; # Calls A :B:.:ninus
$sel f * 2; # Calls A:B::multiply
$sel f + 2; # Calls A :plus

sub mi nus { return $_[0]->{b_value} - $_[1] }
sub multiply { return $_[0]->{b_value} * $_[1] }

sub plus { return $_[0]->{b_value} + $ [1] }

-

package A::C

our @SA = qw A ; # A.:Cinherits fromA

use overl oad (

q(+) => "plus", # 1 want to use my own plus nethod
)
$sel f - 2; # Calls A :C :mnus
$sel f * 2; # Calls Ac:C:multiply
$sel f + 2; # Calls A :C :plus as explicitly requested
sub minus { return $_[0]->{c_value} - $_[1] }
sub nultiply { return $_[0]->{c_value} * $_[1] }
sub plus { return $_[0]->{c_value} + $_[1] }

If a method is overloaded in several ancestors then the usual inheritance rules work and the left-most
ancestor wins.

Exercises

1. Add an overloaded g{ " "} method to your PI ayi ngCar d class. Have this print out the card’s
value and suit.

2. Create a deck of cards and use this new overload to print out the card objects without explicitly
calling the subroutine.

Overloading comparison operators

The conversion operators (such as g{" "} above) are invoked with only a single argument, being the
object that requires conversion. Most operators, however, are binary operators with two operands,
both of which are passed to the required method when that particular operator is used.

In fact, the method receives three arguments -- the object itself, the second operand, and whether or
not the object and operand were reversed. The last argument is needed because methods always
receive their object first, and we need to be able to distinguish between:

if ($obj <2) { ...}

and

Perl Training Australia (http://www.perltraining.com.au/) 73

Chapter 15. Operator overloading

if (2 <$obj) { ...}

which obviously have very different meanings.

The subroutine which handles the overloaded method is expected to return a value that is appropriate
to the operator in question. In the case of simple comparison operators, this is just a simple true/false
value. In the case of the <=> and cnp operators, it is expected to be 1, 0, or -1, depending upon if the
first operand is greater than equal to, or less than the second operand respectively.

Let’s look at overloading the <=> operator for our Pl ayi ngCar d class.

package Pl ayi ngCard;
use Carp;

use overl oad (
a(" " - “as_string",
e - “ conpar e

sub conpare {
ny ($this, $that, $reversed) = @;
unl ess (UNI VERSAL: :isa($that, "PlayingCard") {
croak("Attempt to conpare card to non-card");

}
($this,$that) = ($that,$this) if $reversed;

return ($this->{value} <=> $that->{val ue});

}

As you can see, writing an overload method for a comparison operator isn’t that hard. However,
there are a lot of comparisons in Perl (fourteen, to be exact), and writing a method for every one gets
very tedious very quickly. Luckily for us, there’s a better way.

Magic auto-generation

74

In order to save us from the tiresome job of writing a very large number of methods which do
essentially the same thing, the over | oad pragma can arrange to do much of the hard work for us. It
does this through a process called magic auto-generation (yes, that’s the technical term).

How it works is quite simple. If | overload a particular operator, the over | oad pragma will figure out
whether it can derive any other operators from that, and do so if required. Since the <=> operator can
be used to determine if two objects are greater than, less than, or equal to each other, it can be used
to magically auto-generate all other numeric comparisons (>, >=, ==, etc). The same holds for cnp
and string comparisons.

So, let’s assume that we overloaded the <=> operator in the PI ayi ngCar d class above. We can now
write code that looks like this:

#! /usr/bin/perl -w

use strict;

use Pl ayi ngCard;

Assunme we’ ve inplenmented the deck class method, to return a full
deck of cards.

my @eck = Pl ayi ngCard->deck();

Shuffle...

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 15. Operator overloading

@eck = sort { rand() <=> 0.5 } @leck;
Deal one card each...

ny $ny_card = pop(@leck);
ny $your _card = pop(@leck);

And conpare. ..

if ($ny_card > $your_card) {

print "I win!'\n";

} elsif ($ny_card < $your_card) {
print "I lose.\n";

} else {

print "We draw. Isn't that nice?\n";

}

Overloading using attributes

An alternate way of declaring which subroutines are responsible for overloaded operators is by using
the Attri bute: : Overl oad module. This allows you to define attributes on subroutines to indicate
they are to be used for overloaded operations.

use Attribute:: Overl oad;

sub as_string : Overload("") {
my ($this) = @;

return join(" ", $this->col our, $t hi s->nane, "at", $t hi s->| ocati on);

}

When using Actri but e: : Over | oad there are a few things to remember:

« The operator name is not quoted or escaped in any way. You should write these as:

sub add : Overload(+) { ... }
sub string : Overload("") { ... }

« TheAttribute:: Overl oad module associates a specific subroutine (not a subroutine name) with
an overloaded operator. Inherited classes need to explicitly declare which methods are responsible
for overloaded operations, otherwise those in the parent class will be used. This behaviour is the
same as using subroutine references with the over | oad pragma.

Exercises

1. Declare your t o_st ri ng subroutine on your Coi n class to have an Overload attribute for ™.
2. Create and print a Coi n object.
3. Create and print a Coi n: : Wi ght ed object.

4. Provide a separate t o_st ri ng subroutine overload for your Coi n: : Wi ght ed class. Create a
Coi n coin and a Coi n: : Wi ght ed coin and print them both.

Perl Training Australia (http://www.perltraining.com.au/) 75

Chapter 15. Operator overloading

Chapter summary

76

Operators can be overloaded to increase (or decrease) the legibility and intuitiveness of our code.

We can overload the stringification operator (q{ " *}) to change how our object behaves when it is
printed or used as a string.

We can overload comparison operators to change the way in which objects are compared. We can
change other operators to change how our objects behave in other circumstances too.

The over | oad pragma will auto-magically generate overload methods for us when possible. This
saves us from having to tediously code them all ourselves.

The Attribute: : Over | oad module can be used to place overload declarations on the subroutines
that handle the overloaded operations, rather than with your use declarations.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 16. Exceptions

In this chapter...

We all know that handling errors is important, and the most frequently seen way of handling errors in
Perl is to deal with them in the code where they occur. Another approach adopted by many modern
languages, including Perl, is to make use of exceptions, which allow for errors to be handled in a
separate block of code. Proper use of exceptions can improve both readability and correctness of
code. In this chapter, we examine exceptions in Perl.

What is an exception?

The Free Online Dictionary of Computing (http://wombat.doc.ic.ac.uk/foldoc/) defines an exception
as "an error condition that changes the normal flow of control in a program”. Exceptions may be
thrown by the underlying operating system or language (eg, when trying to write to a closed file, or
dividing by zero), or they can be thrown by modules or code to indicate that something exceptional
has happened.

An important aspect of an exception is that it can be caught and handled. This may involve rolling
back a transaction, attempting to perform the operation a different way, ignoring the exception, or
printing an error to the user. Uncaught exceptions may kill the program entirely.

Throwing exceptions in Perl

You may have been throwing exceptions in Perl for years, and been unaware that you have been
doing so. The following familiar code throws an exception when the file cannot be opened:

open(FILE, "< $filenane") or die "Cannot open $filenanme - $!'\n";

The di e throws an exception. Normally, these exceptions aren’t caught, and so your program dies
with an error.

Catching exceptions in Perl

Most people are surprised when they learn that catch in Perl is spelled eval . Any exception (using
di e) that’s thrown inside an eval doesn’t kill the program, instead it gets placed into the special
variable $@

Perl has two very different eval constructs, commonly referred to as string eval and block eval,
depending upon the argument which they accept.

String eval takes a string, parses it (and re-parses it every time the eval is executed), and executes
the resulting code. It’s most commonly used for delaying parsing and execution of code until
run-time. Because the string in a string eval gets re-parsed every time the statement is executed,
there’s a perception that all eval constructs are slow. However this is not the case with block eval.

77
Perl Training Australia (http://www.perltraining.com.au/)

Chapter 16. Exceptions

The block eval construct takes a block, which is parsed at the same time as the code surrounding it,
and executed within the same context as the surrounding code. It comes with no performance
penalty, and is used almost exclusively for exception handling. Here’s an example:

eval {
ny $result = $custonmer->credit_card->bill ($anmount);
do_sonething_with($result);

}; # Don't forget that seni-col on!

if ($@ {
Ch dear, it didn't succeed.

}

In the case that something calls di e or otherwise generates a fatal error, the execution of code will
stop and s@will be set. In the example above, this would include the circumstance where $cust oner ,
or the result of any of the chained methods called on $cust oner were undefined, in addition to
exceptions generated from those methods.

Inspection of $@can be done to determine exactly what sort of exception occurred. In the case of a
regular di e this will contain a string. However it is also possible to die with an object, which can
make exception handling much cleaner. We’ll be discussing this topic in greater detail later in this
chapter.

Having Perl throw more exceptions

One of the reasons for using the exception-based paradigm is to free the programmer from having to
do error checking at every stage of an operation. Being able to wrap an operation in an eval and then
test to see if the operation as a whole has failed can result in much cleaner and maintainable code
than testing each element individually.

By convention, most Perl functions and modules indicate errors by using return values, rather than
throwing an exception. This means we still have to check all of our functions returns and throw the
exceptions ourselves, however this checking of every step defeats many of the advantages of using
exceptions to begin with. However, there is a way to change Perl’s behaviour.

Perl’s use war ni ngs pragma allows us to escalate mere warnings into full-blown exceptions. Let’s
examine the following code:

eval {
socket (SOCKET, PF_| NET, SOCK_STREAM $t cp)
or die "Could not nake socket - $!\n";
set sockopt (SOCKET, SOL_SOCKET, $opt i on, $val ue)
or die "Can't setsockopt - $'\n";
bi nd(SOCKET, $address) or die "Could not bind socket - $!'\n";
|'i sten(SOCKET, 1) or die "Listen failed - $!'\n";
accept (CLI ENT, SOCKET) or die "Accept failed - $!'\n";
print CLIENT "Hello, the time is now'.localtime()."\n"
or die "Could not print to socket - $!'\n";
cl ose(CLIENT) or die "Bizarre, could not close - $!'\n";
H

Trivial handling of exceptions.
warn "Connection handling failed - $@ if $@

78 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 16. Exceptions

Sockets require many operations, and there are plenty of places where things could go wrong. As
such, our code is littered with or die "..." statements. It’s easy to forget that these are needed,
and they definitely detract from the readability of the code.

eval {
use war ni ngs FATAL => qw(i0); # Al /O warnings are now fatal .

socket (SOCKET, PF_| NET, SOCK_STREAM $t cp) ;

set sockopt (SOCKET, SOL_SOCKET, $opt i on, $val ue);

bi nd(SOCKET, $addr ess) ;

|'i sten(SOCKET, 1);

accept (CLI ENT, SOCKET) ;

print CLIENT "Hello, the time is now'.localtinme()."\n";
cl ose(CLIENT) or die "Bizarre, could not close - $!'\n";

}s

Trivial handling of exceptions.
warn "Connection handling failed - $@ if $@

By promoting all 1/0 warnings to errors, we’ve removed the need for us to check our return values,
as trying to perform an erroneous operation, such as setting options on a closed socket, or printing to
a closed filehandle, will now result in an exception being thrown.

It’s worth noting that a failed socket call will not generate an exception, but the action of trying to
set options on it will. We have also keptthe or die "... after our cl ose, since failing to close a
filehandle does not generate a warning or exception.

Real-world examples of exceptions

Most people don’t really begin to appreciate exceptions until they realise that there are real modules
out there, which handle exceptions very well, and which they’re using every day. The bBi module is
just one of these.

The pBI module is used to access databases. Almost everyone who’s needed to interface with a
database in Perl has used Dsli . If you haven’t, then don’t worry, the following still contains valuable
lessons and examples, and there’s a very good chance you’ll end up using DBl sometime during your
Perl programming career.

When using DBl , a lot of time is spent checking to ensure things are still okay. Did we connect to the
database? Did we authenticate? Was that last SQL statement free of errors? Did we get back
error-free results? Is the database still there? Large amounts of programming time and readability is
spent checking for errors. Here’s an example:

Connect to the database, or die.
ny $dbh = DBI - >connect ($dsn, $user, $pass, { Aut oCommi t => 0})
or die $DBl::errstr;

Start a transaction, or die.
$dbh- >begi n_work or die $dbh->errstr;

Prepare sonme SQ., or die.
ny $sth = $dbh->prepare($SQ.) or die $dbh->errstr;

Execute the SQL with sone bind val ues, or die.
$st h- >execut e($cust oner, $pur chase, $nunber) or di e $dbh->errstr;

Pull out some rows...
while (nmy $row = $sth->fetchrow hashref) {

Perl Training Australia (http://www.perltraining.com.au/) 79

Chapter 16. Exceptions

80

Process each row here.

}

... or die (if there was a problemin retrieving rows).
$DBl ::err and die $dbh->errstr;

Commit our transaction, or die.
$dbh->commit or die $dbh->errstr;

For every operation involving DBl we’re manually checking for errors. Some of the more obscure
checks (like checking the value of $DBI : : err after a fetch loop have finished) are easy to forget.

However, DBl also has a mode whereby it throws exceptions upon errors, rather than meekly
returning a false value. This not only improves readability, but also removes the problem of forgetful
programmers not checking their return values.

Connect to the database, using RaiseError to throw exceptions.
ny $dbh = DBI - >connect (

$dsn, $user, $pass,

{AutoCommit => 0, RaiseError => 1,

PrintError => 0, ShowkrrorStatement => 1}
)i

$dbh- >begi n_wor k;
ny $sth = $dbh->prepare($SQ);
$st h- >execut e($cust onmer, $pur chase, $nunber) ;

Pull out sone rows....
while (my $row = $sth->fetchrow hashref) {
Process each row here.

}

$dbh->commi t ;

It’s worth noting what some of the options we’ve passed through to DBI - >connect are doing:

« AutoCommit => 0 states that we should not automatically commit every statement. This only
works on databases that allow transactions.

+ RaiseError => 1 states that any error from DBI should be turned into an exception and thrown.
It’s the reason why we don’t have or die "..." scattered throughout our code.

« PrintError => 0 prevents errors from being printed using war n. An error will result in an
exception which will be displayed if not caught. If the exception is caught, we may wish to decide
for ourselves if it should generate a warning.

« ShowErrorStatement => 1 means that any exception (or warning) will also contain the SQL that
generated the error. This wonderful option takes most of the detective work out of trying to debug
which bit of SQL is being naughty, and is highly recommended.

As can be seen, having the bBI module throw exceptions when required simplifies our
error-handling. In this example, we’re simply dying with an error if anything goes wrong, with Dal
automatically arranging for our transactions to be rolled-back in case of error. In many applications
involving DBl , that’s the correct thing to do.

However, we can also use the same code when we wish to handle errors. Let’s take the example of a
database import. We may have a number of records we wish to import into a database, and some of
them may fail. Rather than aborting the entire process, we’d like to note which of these failed, and
continue on.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 16. Exceptions

ny $dbh = DBI - >connect (
$dsn, $user, $pass,
{AutoCommit => 0, RaiseError => 1,
PrintError => 0, ShowkrrorStatement => 1}

)

ny $sth = $dbh- >prepare($SOVE_SQ._| NSERT_CCDE) ;
ny $sth2 = $dbh- >prepare($SQL_FOR_SECOND TABLE);

whi | e (<RECORDS>) {
ny $record = $_;

eval {
ny ($fieldsl, $fields2) = process_record($record);
$dbh- >begi n_wor k;
$st h- >execut e(@fi el dsl);
$st h2- >execut e(@fi el ds2);
$dbh->conmi t;
b

Error-handling.
if ($@ {

eval { $dbh->rollback; }; # Rollback current transaction.

if ($@=~ /execute failed:/) {
Hmm | ooks like our record had bad data.
W' Il log that, and continue onwards.
| og_record($record);
} else {
Some other kind of error? W don't
know how to deal with these, so we'll
re-throw the exception.
die $@

}

The above code allows us to process a large number of records, back-out and log the ones which fail,
and can easily be expanded to include extra code that may also generate exceptions.

The Error module

CPAN has an Err or module which provides both syntactic sugar as well as a basis for exception
objects for use in Perl. In this section we’ll cover the basics of using Er r or and some of the common
pitfalls you may encounter.

B

The Error does not come standard with Perl. To use it, you must install it from CPAN first.

Loading the Error module

In order to use the extra syntax provided by Er r or, one needs to call it with the : t ry argument:
use Error ':try’;

Without requesting : t ry, the Error class is loaded, but none of the extra syntax is provided for your
program.

Perl Training Australia (http://www.perltraining.com.au/) 81

Chapter 16. Exceptions

\: . You can find further documentation on Error at CPAN

(http://search.cpan.org/~uarun/Error-0.15/Error.pm) or by using perldoc Error if it is installed on
your system.

Syntax provided by the Error module
The Error module provides extra syntax for dealing with exceptions. Here’s an example:
use Error ':try’;
ny $CONFI G = "Config.txt";

-e $CONFIG or throw Error::Sinple("No config file");

try {
open(FI LE, "< $CONFI G')
or die with Error:: Perm ssion(
-filename => $CONFI G,
-val ue => $!,
-text => "Cannot open $CONFIG - $!\n"
)i
while (<FILE>) {
do_sone_stuff();
die with Error::Sinple("Oops!") if $some_condition;
}
}
catch Error::Permssion with {
ny $E = shift;
print STDERR "Permi ssion difficulties with $E->{’-filenane’}:
$E->{" -text’};
}
except {
ny $E = shift;
return {
"Error:: 10O => \ &handl e_i o_excepti on,
"Error::CPU" => \&handl e_cpu_exception,
"Error::Acme" => \ &handl e_acne_excepti on,
b
}

otherw se {
print STDERR "Caught an exception not handl ed anywhere el se\n";

}
finally {

tidy up_progran(); # Al ways gets call ed.
}; # Don't forget we need a trailing sem-colon.

We will now examine each piece of extra syntax in turn.

try BLOCK CLAUSES

The try construct is used to enclose a block of code. If no exception is thrown, then try returns the
result of the block. If an exception is thrown, then the clauses described below are examined and the
appropriate action taken.

82 Perl Training Australia (http://www.perltraining.com.au/)

Chapter 16. Exceptions

catch CLASS with BLOCK

This clause allows exceptions of a given CLASS (or its descendants) to be handled with the BLOCK
provided. An Error object is passed to the BLOCK as the first argument ($_[0]). This error can be
propagated by calling the t hr ow method upon it.

If the cat ch block returns a value then this will be returned by try.

except BLOCK

Rather than writing a separate cat ch for every class of error, it’s possible to provide a hash mapping
classes to subroutines, and this is the purpose of an except block.

If an except block exists, then it will be passed the error as its first argument. This allows the except
block to do any necessary preparation. The except block should then return a hashref mapping
classes to subroutines.

otherwise BLOCK

The ot her wi se block will be called if no cat ch or except wishes to deal with the error. Only one
ot her wi se can be specified pert ry block.

finally BLOCK

The final Iy block will be called regardless of whether or not the t ry block succeeded or resulted in
an exception. It’s a useful place to perform any necessary clean-up.

Error objects

The Error module also provides an abstract class (also called Er r or) which is a useful base for
exception objects. The Err or module providesa Error: : Si npl e class that can be used directly. Any
call to di e with a literal string will be converted into an Error : : Si npl e Object.

Constructing an Error object

The Error object is implemented as a hash and can take the following arguments to its constructor
(all optional). In some cases where these defaults are not specified defaults are given:

« -file (the name of the file that the error was thrown in)

+ -line (the line number of the file that the error was thrown from)

« -text (the error message)

- -val ue (a numerical value associated with the error, defined when the exception is thrown)
« -object (an object which is associated with the exception, defined when it is thrown)

The -fileand-1inearguments are automatically filled in with the location where the error was
thrown, or are automatically extracted from the di e message in the case of Error: : Si npl e objects.

The -text, - val ue and - obj ect arguments allow for extra information to be provided about an error,
such as an error message, a well-defined error-code, or an object which is associated with the error.

Perl Training Australia (http://www.perltraining.com.au/) 83

Chapter 16. Exceptions

These not are defined when using a simple di e and are often not set when usingan Error: : Si npl e
object.

If an object is passed to the constructor, then the Error class will remember this as the last error
associated with that object’s class. It can be retrieved with Err or - >pri or ($cl assnane) .

Error syntax

Any object that inherits from Er r or can be used with the following constructs:

« throw Sone:: Error (ARGS) will throw an exception. Any arguments will be passed to the
class’ constructor.

« with Some::Error (ARGS) issyntactic sugar to allow the programmerto writedie with
Some: : Error (...).ltmerely creates an Error object and returns it.

« record Some::Error (ARGS) isalso syntactic sugar that creates and returns a member of the
Error class. It’s most useful for Error classes which log information when they are constructed.

Chapter summary

84

Exceptions allow us to handle errors in the code where they occur.

« An exception is an error condition that changes the normal flow of control in a program.

Exceptions can be caught and handled, or ignored. Uncaught exceptions can kill the program
entirely.

« The di e function can be used to throw a simple exception.
« In Perl exceptions are caught by using the eval construct.

« Promoting Perl’s warnings to fatal errors can allow us to generate exceptions in large operations
which we can then handle correctly.

- Some modules, such as DBl allow the programmer to utilise exceptions very well to detect and
handle errors.

« The Error module provides a more structured and syntactically pleasing way of dealing with
exceptions in Perl.

Perl Training Australia (http://www.perltraining.com.au/)

Chapter 17. Conclusion

What you’ve learnt

Now you’ve completed Perl Training Australia’s Object Oriented Perl module, you should be
confident in your knowledge of the following fields:

« Object orientation (in Perl anyway).

« What packages and modules are.

- How to write packages and modules.

« How to write Perl objects.

« How to write constructors, init functions and destructors for your objects.

« How your class can inherit from other classes.

« How you can redispatch method calls that come to your class unintentionally.
« What polymorphism is, and how easy it is in Perl.

« How to overload operators.

Where to now?

To further extend your knowledge of Perl, you may like to:

« Work through any material not included during the course
« Visit the websites in our "Further Reading" section (below)

- Follow some of the URLSs given throughout these course notes, especially the ones marked
"Readme"

- Join a Perl user group such as Perl Mongers (http://www.pm.org/)
« Join an on-line Perl community such as PerIMonks (http://www.perlmonks.org/)
« Extend your knowledge with further Perl Training Australia courses such as:
- CGI Programming with Perl
Perl Security
Database Programming with Perl

Information about these courses can be found on Perl Training Australia’s website
(http:/lwww.perltraining.com.au/).

Perl Training Australia (http://www.perltraining.com.au/)

85

Chapter 17. Conclusion

Further reading

Books

Online

86

Damian Conway, Object Oriented Perl, Manning, 2000. ISBN 1-884777-79-1

Tom Christiansen and Nathan Torkington, The Perl Cookbook, O’Reilly and Associates, 1998.
ISBN 1-56592-243-3.

Joseph N. Hall and Randal L. Schwartz Effective Perl Programming, Addison-Wesley, 1997.
ISBN 0-20141-975-0.

The Perl homepage (http://www.perl.com/)

The Perl Journal (http://www.tpj.com/)

Perlmonth (http://www.perlmonth.com/) (online journal)
Perl Mongers Perl user groups (http://www.pm.org/)
PerlMonks online community (http://www.perlmonks.org/)
comp.lang.perl.announce newsgroup
comp.lang.perl.moderated newsgroup
comp.lang.perl.misc newsgroup

Comprehensive Perl Archive Network (http://www.cpan.org)

Perl Training Australia (http://www.perltraining.com.au/)

Colophon

#!/usr/bin/perl
Copyright (c) Marcus Post, <marcus@marcuspost.com>
#

$_=q,my(@f|@c|x$_=q.my(@f|@c|x$_=q.my(@f|@c|x$_=q.my(@f|@c|x$_=q.my(@f|@c|x$
@w);,@a=@f=<DAT%@w);@a=@f=<DAT%@Ww);@a=@f=<DAT%@w); @a=@f=<DAT%@w);@a=@f=<DAT% @
A>;seek(DATA|0!A>;seek(DAT|00!A>;sek((DAT|00!IA>;sek((DT|000IA>;sek((DT|000!A
|0);@c=<DATA>;Y|0);@c=<DAA>;;Y|0);c=<<DAA>;;Y|0);c=<<AA>;;;Y|0);c=<<AA>;;Y|
until(($_=pop(zuntil(($_| pop((zuntl(($$ pop((zuntl(($ pop((zzuntl(($ pop((zzu
@c))=~"_H{}:Q@c))=~"){};Q@c)=~/""){};;Q@c)=~/"){};;;Q@c)=~"_){};;;Q@
unshift(@a|$_)xunshift(@]$_))xunsift(@|$_))xunsift(@|$_)))xunsift(@[$_)))xu
;for(1..3){pri%:;forl..3){pri%;forl..3){pri%%:;forl..3{pri%%%;forl..3{pri%%%:;f
nt(shift(@c));!nt(hift(@c));!nt(hift((@c));;!Int(hift(@));;;Int(hift(@));;;!nt
Hor(@f){my($sYHr(@F){my($sYHr(@F){my($$sY}r(@f){m($$ssYHr(@F){m($sssY}f
);split//;$_=sz);split//$_=ssz);slit///$_=ssz);slit//$_=ss52);slit//$_=sS5Z)
hift(@c);$_=~sQhift(@c);_=~ssQhif(@c));_=~ssQhif(@c))_=~sssQhif(@c))_=~sssQh
1({15}).*NLIxI({15)).NLIXI(.A5Y) . ALIXICISH)ALIIXI (AN ixI

;@w=split//;fo%; @w=split/;foo%;@wspliit/;foo%; @wspliit;fooo%; @wspliit;fo00%;
r(@_){$w[$s+15|r(@_{$w[$s+15'r(@ {$W[$s+15"r(@_{$w[$515”lr(@_{$w[$515“lr(
=$_1=(($w[$s]eY-$_=(($wW[Ps]leY-$_=(($w[$s]eeY-$_=(($w[$leeeY-$_=(($w[$]eceY-$
)" wlzg) 2" wlzg™) 2" " $w([$2g™) 2" " Sww$zg ™) ?". " $wwSszq”
s]);$s++;Hor(Qs]); $s++;for((Qs])$s+++;for((Qs])s+++;fr(((Qs])$s+++;fr(((Qs
1..75){unless(x1..75){uness((x1..5){uuness((x1..5){uunes(((x1..5){uunes(((x1
$W[$_]ne”){$w%sw[$_]ne {$Iwwdw[Jnee’){$wwdw[_Jnee {$wwodw[]nee’){$wwo$
[$_1=$W[(S_—D)S_]=SwW[(_—1D)'[$_=$ww[(_—-1D)[$_=$ww[(_—-11)[$_=$ww[(_-11)]
Ihprint(joinY];JprintjooinY];}prrintjooinY]; }prrintooinnY]; }prrintooinnY]

"l@w); pr|nt"\2""|@w) pnnt"\z""|@w) pr|nt"\2""|@w) pint' \zz""|@w) pint"\zz"
n";}print@a;,;#n";}print@a;.;#n"; }print@a;.;#n";}prin@a,;.;;#n"; }prin@a;.;;#n
y!|zY\!%x!,Q!;#y!|zY\!%x!.Q!;#y!|zY\!%x!.Q!;#y!|zY\!%X.Q!;;#y!IZY\!%x.Q!;;#y
S{Q.“\n}{lg;#<>s{Q.*\n}{]g;#<>s{Q."\n}[]g;#<>s{Q."\n}{]g;#<>S{Q.“\n}{]g;#<>s
eval;#EndFini!'$eval;#EndFini'$eval;#EndFinil$eval;#EndFinil$eval; #EndFinil$e

DATA

00
00
000000000000110000000110000000000000000011100000000000000000
000000000001110000001110000000000000000111110000000000000000
000000000011110000011110000000000000001111111000000000000000
000000000011110000011110000000000000001111110000000000000000
000000000011110000011110000000000000001111100000000000000000
000001111222221111171722221111110000000001111200000000000000000
00001111112112112111121211111100000000000111100000000000000000
00011111172222211111172221111000000000000111100000000000000000
000000000011110000011110000000000000000111100000000000000000
000000000011110000011110000000000000000111100000000000000000
000000000011110000011110000000000000000111100000000000000000
000000000011110000011110000000000000000011100000000000000000
00000111112112112111121211111110000000000011100000000000000000
0000111121112212212212111111100000000000011100000000000000000
000111112112112121211111111111000000000000001100000000000000000
000000000011110000011110000000000000000001100000000000000000
000000000011110000011110000000000000000001100000000000000000
000000000011110000011110000000000000000000000000000000000000
000000000011100000011100000000000000000000000000000000000000
000000000011000000011000000000000000000011110000000000000000
000000000000000000000000000000000000000111111000000000000000
000000000000000000000000000000000000000111110000000000000000
0011110000000000000000
00
00

The Perl code on the cover was written by Marcus Post. It generates stereograms based upon the
information provided in its DATA segment (not shown on the front cover due to space). The output of

the script is not only a stereogram, but is also a valid Perl program that is capable of creating new
stereograms.

A discussion of the code where it was originally posted can be found on PerlMonks
(http://perlmonks.org/index.pl?node_id=118799). More information about Marcus Post and his work
can be found on his website (http://www.marcuspost.com/).

Perl Training Australia (http://www.perltraining.com.au/) 87

88

Perl Training Australia (http://www.perltraining.com.au/)

