Advanced M otif Window M anager Customization

This chapter describes thewvm resources that enable you to perform the following tasks:
«®lodify menus, including the Root Menu

«Ereate new menus

«8lodify mouse button bindings

«8lodify key bindings

«8et up virtual panning for your screen

«€ontrol access of other clients to thevm menus

Motif User’s Guide

Under standing the Resour ce Description File

The supplementamnwm resource description file contains specifications for menus, key bindings, and mouse bindings that are referre
entries in theXdefaults file and other files that the window manager uses to create the resource database. If you do noivirave file
in your home directory, copy the system resource description file into your home directory with the following command:

% cp /usr/lib/X11/system.mwmrc ~/.mwmrc

You can freely modify the local copy of the resource description file to customize your Motif environment.

TheconfigFileresource specifies the pathname forrtivem resource description file. If the pathname begins with ~/ (a tilde followed by a
slash),mwm considers it to be relative to your home directory (as specified By@ME environment variable). If theANG environment
variable is setmwm looks forSHOME/$LANG/configFile . If that file does not exist or EANG is not setmwm looks for
$HOME/configFile . If the configFile pathname does not begin with ~/ (a tilde followed by a slashjn considers it to be relative to the
current working directory.

User actions, such as keystrokes, are associated with predefined window manager functions. Each function has a name that blegfns \
dot) character sequence. In general, the meaning of the function is evident from its name (see Table 6-IhWBeeefeesnce page in the
Motif Programmer’s Referender more information on these functions.)

Tablel Window Manger Functions

Motif User’s Guide 2

Function

f.beep
f.cci

f.circle_down
f.circle_up
f.execor !
f.focus _color
f.focus key
f.goto

kil

f.lower
f.maximize
f.menu

f.minimize
f.move
f.next_cmap
f.next_key

f.nop
f.normalize

f.pack_icons
f.pan

f.pass keys
f.post_wmenu
f.prev_cmap

f.prev_key

f.quit_mwm
f.raise
f.raise lower

f.refresh
f.refresh_win
f.resize

f.restart

f.restore
f.restore_and_raise

f.screen
f.send_msg
f.separator
f.set_behavior

f.title
f.track_pan

f.normalize_and_raise

Description
Causes a beep.
Controls the placement and naming of client—-command interface ((
commands generated by applications.

Moves the top window to the bottom of the window stack.

Moves the bottom window to the top of the window stack.
Executes the following shell command.

Sets the colormap focus to a window.

Sets the keyboard input focus to a window.

Moves the root window to a specified location.

Kills an application and its window.

Moves a window to the bottom of the window stack.

Maximizes a window.

Activates the named menu. This function can be used to create
cascading and Popup Menus.

Iconifies a window.

Starts an interactive move for a window.

Installs the next colormap.

Moves the keyboard input focus to the next window in the window
stack.

Does nothing.

Causes an icon or a maximized window to be displayed at its norm
size.

Causes an icon or a maximized window to be displayed at its norn
size and raised to the top of the window stack.

Reorganizes the icons according to the current icon placement poli
Moves the root window a specified amount.

Toggles the use of special key bindings.

Posts the Window Menu.

This function installs the previous colormap in the list of colormaps
the window with the colormap focus.

Moves the keyboard input focus to the previous window in the wing
stack.

Exits the window manager without exiting the X Window System.
Raises a window to the top of the window stack.

If obscured, raises a window to the top of the window stack; othery
lowers it to the bottom of the window stack.

Redraws all the windows on the screen.

Redraws a single window.

Starts an interactive resize for a window.

Stops and restarts the window manager.

Restores an iconified window to its previous state.

Restores an iconified window to its previous state and raises it to tt
of its stack.

Moves a pointer to a specific screen.

Sends a client message to the application.

Draws a separator in a menu pane.

Restarts the window manager with the default behavior or reverts
custom behavior.

Inserts a title in a menu pane.

Continuously moves the root window in the direction of the mouse|

The.mwmrc file defines named groups of key bindings, button bindings, and menu definitions. These groups are referenced by name
for mwm resources, such &eyBindingsindbuttonBindingsFor example, if you wanted to define alternative responses for mouse button
actions, you would create the named set of bindings (for inststyfjttonBinding}sin the.mwmrc file and reference those bindings in your

Xdefaults file as follows:
Mwm*buttonBindings: MyButtonBindings

The following sections describe the syntax for defining menus, key bindings, and button bindings.

Motif User’s Guide

M odifying the Window Menu

All window manager menus are defined using the following syntax:
Menu menu_name
{
item1[mnemonic]|[accelerator] function[argument]
item2[mnemonic][accelerator] function[argument]
item# [mnemonic][accelerator] function| argument]
}

The menu is given a name, and each item in the menu is given a name or graphic representation (bitmap). The item is followed by ar
mnemonic or accelerator or both, and then by one of the window manager functions listed in Table 6-1. The function is the action tha
window manager takes when that menu item is selected. Some functions require an argument.

The default Window Menu definition as it appears in/tis/lib/X11/system.mwmrc file is as follows:

Menu DefaultWindowMenu

Restore R Alt<Key>F5 f.normalize
Move M Alt<Key>F7 f.move
Size _S Alt<Key>F8 f.resize
Minimize _n Alt<Key>F9 f.minimize
Maximize _X Alt<Key>F10 f.maximize
Lower _L Alt<Key>F3 f.lower
no-label f.separator
Close _C Alt<Key>F4 f.kill

Not all applications require each one of these default functions. For example, if you have a real-time application, it should never be ic
The Motif Window Manager allows you to specify a Window Menu for each application you are using.

To modify the default Window Menu, begin by copying BefaultWindowMendefinition from the/usr/lib/X11/system.mwmrc file
to the.mwmrc file in your home directory. Rename the default menu definititail(VindowMenufor example) and make the appropriate
changes, following the syntax shown at the beginning of this section.

Then you need to reference the alternate Window Menu definition in¥defaults file by using thevindowMenuesource:
Mwm*my_mail_program*windowMenu: MailWindowMenu

Remember that you need to restavtm for your version of the menu to appear.

Note that the menu item names you specify intiemrc file can be overridden by applications that rename menu item names.

Motif User’s Guide 4

Creating New Menus

To create a completely new menu, use the general menu syntax in Section 6.2 as a model and follow these steps:
1.Fill in a menu name.

2 Create the item names.

3.Choose a mnemonic and accelerator (optional).

4.Give each item a function to perform (see Table 6-1).

Menu Items
An item can be either a character string or a graphic representation (bitmap or pixmap).

A character string for items must be compatible with the menu font that is used. Character strings must be typed precisely using one |

following styles:

«Any character string containing a space must be enclosed in ™" (double quotes) (for eXdemplename).

«8&ingle-word strings do not have to be enclosed in double quotes, but it is probably a good idea for the sake of consistency (for exan
"Menuname).

«4n alternate method of dealing with multiple-word item names is to use an underbar in place of the space (foldsampiamg

An item in either X bitmap (XBM) or X pixmap (XPM) file format can be created. Using the @ (at sign) in the menu syntax tells the wir
manager that what follows is the pathname for a bitmap or pixmap file:
@itmapfile function [argument]

The following is an example of a newly created menu. The menu is n@anapdlics ProjectsThe menu items are all bitmaps symbolizing
different graphics projects. The bitmaps are kept in the direkiseys/pat/bits . When the user selects a symbol, the graphics progre
starts and opens the appropriate graphics file.

Menu "Graphics Projects”

"Graphics Projects"” f.title

@/users/pat/bits/fusel.bits f.exec"c
/spacest

@/users/pat/bits/lwing.bits f.exec"c
/spacest

@/users/pat/bits/rwing.bits f.exec"c
/spacest

@/users/pat/bits/nose.bits f.exec"c
/spacest

Another method for specifying the pathname is to replasers/pat/ with the ~/ (tilde and slash) characters. The ~/ specifies the user

home directory. Another method is to use bitenapDirectoryresource. If théitmapDirectoryresource is set tisers/pat/bits ,then a
menu item could be specified as follows:
[@fusel.bits f.exec "cad /spacestar/fusel.e12 |

Mnemonics and Accelerators

You can use mnemonics and keyboard accelerators in the menus that you create. Mnemonics are functional only when the menu is
accelerators are functional whether or not the menu is posted. A mnemonic specification has the following syntax:
mnemonic = _ character

The _ (underbar) is placed under the first matckimgracterin the label. If there is no matchicaracterin the label, no mnemonic is
registered with the window manager for that label. The accelerator specification is a key action with the same syntax as is used for bil
to window manager functions:

key context function [argument]

When choosing accelerators, be careful not to use key actions that are already used in key bindings. (See Section 6.5 for information
keyboard bindings.)

The following line from the default Window Menu illustrates mnemonic and accelerator syntax:

Motif User’s Guide 5

Restore _R Alt<Key>F5 f.normalize

Functions
The predefined Motif Window Manager functions are listed in Table 6-1. Bagh function operates in one or more of the following conte
root
Operates the function when the workspace or root window is selected.
window

Operates the function when a client window is selected. All subparts of a window are considered as windows for function contexts. |
some functions operate only when the window is in its normalized or iconifiedfstadi(ize), or its maximized or iconified state
(f.normalize).

icon
Operates the function when an icon is selected.

Each function is activated by one or more of the following devices:
«&louse button

«Beyboard key

+Blenu item

Any selection that uses an invalid context, an invalid function, or a function that does not apply to the current context is grayed out. F¢
the Restoreselection on a terminal window’s Window Menu and kiaimizeselection on an icon’s menu are invalid. Also, menu items are
grayed out if they are assigned ftveop (no operation performed) function.

If you want your new menu to appear whenever a certain mouse button or keyboard key is pressed, follow these steps:
1.Choose the mouse button or keyboard key that you want to use.

2.Choose the action on the button or key that causes the menu to appear.

3.Choose the context in which the menu is to appear.

4.Use thef.menu function with the new menu’s name as an argument to bind the menu to the button or key.

For example, you may want to create a root menu that gives some control over the entire screen area. The definition of a root menu r
follows:
Menu
RootMenu

"Workspace f.title

Menu"

"New Window'f.exec "mterm"
"Mail" f.exec "mail"
"Editor" f.exec "editor"
"Refresh" f.refresh
no-label f.separator
"Restart” f.restart

Once you have defined the menu, you need to bind the menu to a mouse buttonrimyrote file:
<Btn3Down> root f.menu RootMenu

Motif User’s Guide 6

M odifying M ouse Button Bindings

As described in Chapter 2, the Motif Window Manager recognizes the following button actions:
Press

Holding down a mouse button
Release

Releasing a pressed mouse button
Click

Pressing and releasing a mouse button
Double-click

Pressing and releasing a mouse button twice in rapid succession
Drag

Pressing a mouse button and moving the pointer/mouse device

You can associate a mouse button action with a window management function by using a button binding. A button binding is a comm
you put in yourmwmrc file that associates a button action with a window manager function.

User-defined button bindings are added to built-in button bindings and are always defined first.

Default Button Bindings
The Motif Window Manager provides default button bindings. These button bindings define the functions of the window frame compor

user-specified button bindings that are defined wittbtlitonBindingsesource are added to the built—in button bindings. The default valur
this resource i®efaultButtonBinding¢see Table 6-2).

Table1 Default Button Bindings

Button Action Context Function
Btn1Click2 menu f.kill
Btn1Click minimize f.minimize
Btn1Click maximize f.maximize
Btn1Down title f.move
Btn1Down windowjicon f.focus_key
Btn1Down border f.resize
Btn1Click icon f.post_wmenu
Btn1Click2 icon f.restore

Button Binding Syntax

The syntax for button bindings is as follows:
Buttons ButtonBindingSetName
{
button context[| context] function[argument]
button context[context] function[argument]

button context[| context] function[argument]
}

Each line identifies a certain mouse button action, followed by the context in which the button action is valid, followed by the function
done. Some functions require an argument.

Motif User’s Guide 7

M odifying Button Bindings

To modify the default button bindings, you need to edit eglgstem.mwmrc to make system-wide changesmwmrc to make changes to
the local environment. The easiest way to modify button bindings is to change the default bindings or to insert extra lines in the
DefaultButtonBindings

When modifying or creating a button binding, you need to first decide which mouse button to use and which action is performed on th
Make sure you do not use button—action combinations already used by Motif. You might want to require a simultaneous key press wit
mouse button action. This is called modifying the button action. Modifiers increase the number of possible button bindings you can m:
Table 6-3).

Note: Binding a function to a mouse button-down event in a window, as would be done in the following example, has some
undesirable side effects.
<Btn1Down> window f.raise

Once this binding is made, double clicking of that button on a PushButton inside a window will not be interpreted as a double-c
and the default PushButton action will not be taken. Therefore, when rebinding these events, it is important to keep the context
rebinding as constrained as possible.

Table2 Button Binding Modifier Keys

Modifier Description
Ctrl Control Key
Shift Shift Key

IAlt Alt (Meta) Key
Lock Lock Key
Mod1 Modifier 1
Mod2 Modifier 2
Mod3 Modifier 3
Mod4 Modifier 4
Mod5 Modifier 5

On some systems, you can bind up to five buttons if you have a 3—-button mouse. For example, Button 4 is the simultaneous press of
and 2. Button 5 is the simultaneous press of Buttons 2 and 3. Each button can be bound with one of four actions (see Table 6-4).

Table 3 Button Actionsfor Button Bindings

Button Description

Btn1Down Button 1 press

Btn1Up Button 1 release

Btn1Click Button 1 press and release
Btn1Click2 Button 1 double-click
Btn2Down Button 2 press

Btn2Up Button 2 release

Btn2Click Button 2 press and release
Btn2Click2 Button 2 double—-click
Btn3Down Button 3 press

Btn3Up Button 3 release

Btn3Click Button 3 press and release
Btn3Click2 Button 3 double—click

After choosing the optional modifier and the mouse button action, you must decide under which context(s) the binding works (see Talt

Table4 Contextsfor Mouse Button Bindings

For mouse action at this

This context... pointer position...
root Workspace (root window)
indow Client window
frame Window frame (title and border)
icon Icon
itle Title bar
border Frame minus title bar
app Application window (inside the frame)

The context indicates where the pointer must be for the button binding to be effective. For example, a euintdotvaidicates that the point:

Motif User’s Guide 8

must be over a client window or window frame for the button binding to be effectivérarhecontext is for the window frame around a clie
window (including the border and title bar), therder context is for the border part of the window frame (not including the title barjtléhe
context is for the title bar of the window frame, andabg context is for the application window or client area (not including the window
frame).

The following is an example of a button binding. Imagine you have created youmaphics Projectsnenu and you want to display the me
with a button action. You choogédt as a modifier an8tn3Downas the button action. You decide the pointer must be on the workspace.
function name for posting a special mentiisenu and the argument is the menu naBraphics ProjectsThe following line in the
DefaultButtonBinding# your.mwmrc file creates the button binding:

Alt<Btn3Down> root f.menu "Graphics Projects"

Making a New Button Binding Set

If inserting a new button binding into tefaultButtonBindingset is not enough, you may need to make a complete new set of button bil
To create a new button binding set, useReé&ultButtonBindingsn your.mwmrc file as a model. After you have created a new button bini
set, use theuttonBindinggesource to tell the window manager about it.

ThebuttonBindingsesource specifies a button binding set. The default value of the resoDefautiButtonBindingsUse the following synta>
for specifying the resource in yootdefaults file:
Mwm*buttonBindings: NewButtonBindingSetName

This line directs the window manager to dNmwButtonBindingSetNanas the source of its button binding information. The button bindings
assumed to exist in the file named by thafigFileresource; the default imwmrc.

For example, suppose that you want to specify a completely new button binding set instead of inserting a line in the existing
DefaultButtonBindingset. The following entry in youmwmrc file creates a new button binding set:
Buttons GraphicsButtonBindings

{

<Btn3Down> root f.menu "Graphics Projects"

}

The following line in your.Xdefaults file references the new button binding set:
Mwm*buttonBindings: GraphicsButtonBindings

To display the graphics menu, press Button 3 on the mouse when the pointer is on the workspace.

Motif User’s Guide 9

Keyboard Bindings

In @ manner similar to mouse button bindings, you can bind window manager functions to keys on the keyboard by using keyboard bi

Default Keyboard Bindings

Motif has default key bindings. These key bindings are replaced with user—specified key bindings specifiedeyintldénggesource. Table
6-6 lists the default key binding specifications.

Table 1 Default Keyboard Bindings

Keys Context Function
IShift<Key>Escape windowjicon f.post_wmenu
|Alt<Key>space windowjicon f.post_wmenu
|Alt<Key>Tab rootliconwindow f.next_key

|Alt Shift<Key>Tab rootficonwindow f.prev_key
|Alt<Key>Escape rootliconwindow f.circle_down

|Alt Shift<Key>Escape rootficonwindow f.circle_up

|Alt Shift Ctrl<Key>exclam rootliconwindow f.set_behavior
Alt<Key>F6 window f.next_key transient
IAlt Shift<Key>F6 window f.prev_key transient
Shift<Key>F10 icon f.post_wmenu

Keyboard Binding Syntax

The syntax for keyboard bindings is as follows:
keys KeyBindingSetName
{
key context[context] function| argument]
key context[| context] function| argument]

key context[| context] function| argument]
}

Each line identifies a unique key press sequence, followed by the context in which that sequence is valid, followed by the function to |
Some functions require an argument. Context refers to the location of the keyboard input focus when a key is pressed.

Modifying Keyboard Bindings

To modify the default keyboard bindings, you need to edit eitygtem.mwmrc to make system-wide changesmwmrc to make changes
to the local environment. The easiest way to modify keyboard bindings is to change the default bindings or to insert extra lines in the
DefaultKeyBindings

When modifying a keyboard binding, you need to decide which key you want to bind and which action the key performs. Then choose
context in which the key binding is to work (see Table 6-7).

Table2 Contextsfor Key Bindings

Use this context... When the keyboard focusis here...
root Workspace (root window)

indow Client window (includes frame, title, border, and application windo
icon Icon

Note that iff.post_wmenu or f.menu is bound to a keypwm automatically uses the same key for removing the menu from the screen aft
has been popped up.

Suppose you wanted to eliminate a particular keyboard binding. To disable it, you can delete or comment out the appropriate line in'y
.mwmrc file. You comment out a line by placing a(exclamation point) comment character at the beginning of the line. The following st
an example of a commented-out line immavmrc file:

Motif User’s Guide 10

Keys DefaultKeyBindings

{

IShift<Key>Escape icon|window f.post_wmenu
Alt<Key>Tab window f.next_key

}

Making a New Keyboard Binding Set

With keyboard bindings, as with button bindings, you have the option of creating a whole new binding set. To do sDetesaltteyBindings
of your.mwmrc file as a model. After you have created the new keyboard binding set, ksyBiedinggesource to specify a key binding s
in your .Xdefaults file:

mwm*keyBindings: NewKeyboardBindingSetName

The default value for this resourceDsfaultKeyBindings

Motif User’s Guide 11

Setting up mwm’s Virtual Desktop Panning

This section describes an example of how you can modify Yalefaults file and.mwmrc file to activate virtual panning imwm. The
mwm functionsf.pan, f.goto, andf.track_pan need to be bound either to keys or to mouse buttons.

Editing .mwmrc for Virtual Desktop Panning
Add the following to yourmwmrc file to use virtual panning.

Ensure that the name of your button bindings match the name given for the resourdéwmaitieuttonBindings in your .Xdefaults file.
Buttons MyButtonBindings
{
<Btn2Down> root f.menu GotoMenu
Meta<Btn1lDown> root f.track_pan

}

Ensure that the name of your key bindings match the name given for the resourdédwaltikeyBindings in your.Xdefaults file.
Keys MyKeyBindings
{
Meta<Key>Up window]root f.pan 0,-100
Meta<Key>Down window]root f.pan 0,100
Meta<Key>Left window|root f.pan -100,0
Meta<Key>Right window|root f.pan 100,0
}

To set up a menu that lets you quickly switch to different locations on the virtual desktop, code it as follows. You can then restart your
application.
Menu GotoMenu
{
Up-Left f.goto 1500,1100
Up f.goto 0,1100
Up-Right f.goto -1500,1100
Left f.goto 1500,0
Home f.goto 0,0
Right f.goto —1500,0
Down-Left f.goto 1500,-1100
Down f.goto 0,-1100
Down-Right f.goto -1500,-1100

Editing .Xdefaultsfor Virtual Desktop Panning

You can add the following to youXdefaults file to keepmwm from moving all your windows back to the visible part of the screen at

startup:
Mwm*positionOnScreen: False

Note that it is important to set tesitionOnScreeresource td-alse becausenwm automatically repositions all off-screen windows back t
the display screen on restart.

To set up a menu to go to preset positions on the virtual canvas, add the following:
Mwm*GotoMenu*numColumns: 3
Mwm*GotoMenu*packing: PACK_COLUMN
Mwm*GotoMenu*orientation: HORIZONTAL
Mwm*GotoMenu*alignment: ~ ALIGNMENT_CENTER

To ensure consistency with thewmrc file, you can add the following lines:

Mwm*buttonBindings: MyButtonBindings
Mwm*keyBindings: MyKeyBindings

Motif User’s Guide 12

To prevent the client and icon windows from moving, you can use the following lines:
Mwm*wsm.iconPinned: True
Mwm*wsm.clientPinned: True
Mwm*iconPinned: True

Wherewsm is the workspace manager, which controls aspects of the desktop beyond the confines of the windows actually visible on 1

Motif User’s Guide 13

Controlling Client Accessto mwm Windows

In support of thenwm Client—-Command Interface (CCl), the MWM resource file allows the user to control access of other clients (suct
window managers) to tlewm menus. Clients such as the workspace manager demo which is included with Motif in
/demos/programs/workspace/wsm , make use of the CCI to insert commands mtem’s Root and Window menus. When one of the
commands is selecteshwm sends a message back to the inserting client specifying the selected command. This allows the end-user 1
workspace manager commands throdylam's menus without using screen real estate for the workspace manager application.

When an application inserts commands using the CCI protocol, the commands are insested aythe end of the appropriate menu. The
location of these inserted commands can be modified by making changes to the Mwm resource file. More specifically, the CCI comm
placement is controlled using theci command in the menu specifications of the Mwm resource file.

When a client, such as the workspace manager demo, inserts commands using the CCl, it specifies a command using an internal cor
along with a command-label. The command-label is the string that is displayed in the corresponding button of the appropriate Mwm
you wish to control the placement of this command, you must refer to this commandrniwitheesource file using the command-name. In
addition, each command-name reference must be delimited with brackets as follows:

< command-name >

To obtain the corresponsing command-name, see the documentation from the inserting application. This documentation should desc
underlying command-names for each command.

The workspace manager demo adds two commands to the Mwm root menu. These commands are "Hide Workspace Manager" and '
Workspace". To be more precise, the "Hide Workspace Manager" entry is actually a toggle entry which changes to "Show Workspace
when the Workspace Manager is hidden. The command-named&/&d_HIDE_WSM and_WSM_SWITCH_WORKSPACE. TheSwitch
Workspaceommand is actually a command-set and appears in the root menu as a cascade menu with a list of rooms as its sub—mei
placement of the commands can be controlled usinfjdti€unction in themwm resource file. The following sample root menu definition
shows how the positions of these commands may be changed:

Menu MyRootMenu

{

"Root Menu" f.title

DEFAULT_NAME f.cci <_ WSM_HIDE_WSM>

DEFAULT_NAME f.cci <_WSM_SWITCH_WORKSPACE>

"New Window" f.exec "xterm &"

"Shuffle Up" f.circle_up

"Shuffle Down" f.circle_down

"Refresh" f.refresh

"Pack Icons" f.pack_icons

no-label f.separator

"Restart..." f.restart

"Quit..." f.quit_mwm

}

The example above will cause the two commdhiide Workspace ManagemdSwitch Workspac® be placed at the top of the root menu,
below the title. They will not be inserted at the end of the menu.

The format of thé.cci command is the following:
label[mnemonic][accelerator] f.cci [modifierj] command-reference

The label, mnemonic, and accelerator specifications are the same as for the other Mwm functions. The optional modifiers are describ
this reference page.

Thecommand-referencspecifies which command-name or command-names are being refered to. The preceding example refers to
command and to a single command-set. Intha demo, the command "Switch Workspace" cascades to a sub—-menu that contains a li¢
rooms. It is possible to refer to the entries within this sub—-menu by concatinating command-namesnmmthed-referencel his can be dont
be inserting a period between command-name specifications.

The submenu for th8witch Workspacmenu entry contains, by default, the entRe®m1 Room2 Room3 andRoom4 Fortunatelywsm uses
the same command-name and command-label for the entries. We can mohblifjRibetMenwspecification above to includ®om1in the
MyRootMenwspecification by concatenating the command-set-nakeM_SWITCH_WORK SPACE with the command-nanfRoom1las

Motif User’s Guide 14

in the following example:
Menu MyRootMenu
{
"Root Menu" f.title
DEFAULT_NAME f.cci<_WSM_HIDE_WSM>
DEFAULT_NAME f.cci <_WSM_SWITCH_WORKSPACE>
"Home" f.cci <_WSM_SWITCH_WORKSPACE>.<Room1>
"New Window" f.exec "xterm &"
"Shuffle Up" f.circle_up
}

In the preceding example, a menu entry referringdomlwould appear below thewitch Workspacentry. The labeHomewould be used
instead of the default label specifiedvagm.

Often, it is necessary to refer to multiple command—names. This is possible by using a * as a wild—card symbol in place of the comm
—name. For example,
<_WSM_SWITCH_WORKSPACE>.<*>

refers to all command-names in th&/ SM_SWITCH_WORKSPACE menu.

Motif User’s Guide 15

