
Motif User’s Guide 1

Advanced Motif Window Manager Customization
This chapter describes the mwm resources that enable you to perform the following tasks:

•€Modify menus, including the Root Menu

•€Create new menus

•€Modify mouse button bindings

•€Modify key bindings

•€Set up virtual panning for your screen

•€Control access of other clients to the mwm menus

Motif User’s Guide 2

Understanding the Resource Description File

The supplementary mwm resource description file contains specifications for menus, key bindings, and mouse bindings that are referred to by
entries in the .Xdefaults file and other files that the window manager uses to create the resource database. If you do not have a .mwmrc file
in your home directory, copy the system resource description file into your home directory with the following command:

% cp /usr/lib/X11/system.mwmrc ~/.mwmrc

You can freely modify the local copy of the resource description file to customize your Motif environment.

The configFile resource specifies the pathname for the mwm resource description file. If the pathname begins with ~/ (a tilde followed by a

slash), mwm considers it to be relative to your home directory (as specified by the HOME environment variable). If the LANG environment

variable is set, mwm looks for $HOME/$LANG/configFile . If that file does not exist or if LANG is not set, mwm looks for

$HOME/configFile . If the configFile pathname does not begin with ~/ (a tilde followed by a slash), mwm considers it to be relative to the
current working directory.

User actions, such as keystrokes, are associated with predefined window manager functions. Each function has a name that begins with an f. (f
dot) character sequence. In general, the meaning of the function is evident from its name (see Table 6−1). (See the mwm reference page in the
Motif Programmer’s Reference for more information on these functions.)

Table 1 Window Manger Functions

Motif User’s Guide 3

Function Description
f.beep
f.cci Controls the placement and naming of client−command interface (CCI)

f.circle_down
f.circle_up
f.exec or !
f.focus_color
f.focus_key
f.goto
f.kill
f.lower
f.maximize
f.menu Activates the named menu. This function can be used to create

f.minimize
f.move
f.next_cmap
f.next_key Moves the keyboard input focus to the next window in the window

f.nop
f.normalize Causes an icon or a maximized window to be displayed at its normal

f.normalize_and_raise Causes an icon or a maximized window to be displayed at its normal

f.pack_icons
f.pan
f.pass_keys
f.post_wmenu
f.prev_cmap This function installs the previous colormap in the list of colormaps for

f.prev_key Moves the keyboard input focus to the previous window in the window

f.quit_mwm
f.raise
f.raise_lower If obscured, raises a window to the top of the window stack; otherwise,

f.refresh
f.refresh_win
f.resize
f.restart
f.restore
f.restore_and_raise Restores an iconified window to its previous state and raises it to the top

f.screen
f.send_msg
f.separator
f.set_behavior Restarts the window manager with the default behavior or reverts to any

f.title
f.track_pan

Causes a beep.

commands generated by applications.
Moves the top window to the bottom of the window stack.
Moves the bottom window to the top of the window stack.
Executes the following shell command.
Sets the colormap focus to a window.
Sets the keyboard input focus to a window.
Moves the root window to a specified location.
Kills an application and its window.
Moves a window to the bottom of the window stack.
Maximizes a window.

cascading and Popup Menus.
Iconifies a window.
Starts an interactive move for a window.
Installs the next colormap.

stack.
Does nothing.

size.

size and raised to the top of the window stack.
Reorganizes the icons according to the current icon placement policy.
Moves the root window a specified amount.
Toggles the use of special key bindings.
Posts the Window Menu.

the window with the colormap focus.

stack.
Exits the window manager without exiting the X Window System.
Raises a window to the top of the window stack.

lowers it to the bottom of the window stack.
Redraws all the windows on the screen.
Redraws a single window.
Starts an interactive resize for a window.
Stops and restarts the window manager.
Restores an iconified window to its previous state.

of its stack.
Moves a pointer to a specific screen.
Sends a client message to the application.
Draws a separator in a menu pane.

custom behavior.
Inserts a title in a menu pane.
Continuously moves the root window in the direction of the mouse.

The .mwmrc file defines named groups of key bindings, button bindings, and menu definitions. These groups are referenced by name as values

for mwm resources, such as keyBindings and buttonBindings. For example, if you wanted to define alternative responses for mouse button
actions, you would create the named set of bindings (for instance, MyButtonBindings) in the .mwmrc file and reference those bindings in your
.Xdefaults file as follows:

Mwm*buttonBindings: MyButtonBindings

The following sections describe the syntax for defining menus, key bindings, and button bindings.

Motif User’s Guide 4

Modifying the Window Menu

All window manager menus are defined using the following syntax:

Menu menu_name
{

item1 [mnemonic] [accelerator] function [argument]
item2 [mnemonic] [accelerator] function [argument]
item# [mnemonic] [accelerator] function [argument]
}

The menu is given a name, and each item in the menu is given a name or graphic representation (bitmap). The item is followed by an optional
mnemonic or accelerator or both, and then by one of the window manager functions listed in Table 6−1. The function is the action that the
window manager takes when that menu item is selected. Some functions require an argument.

The default Window Menu definition as it appears in the /usr/lib/X11/system.mwmrc file is as follows:
Menu DefaultWindowMenu
{
Restore _R Alt<Key>F5 f.normalize
Move _M Alt<Key>F7 f.move
Size _S Alt<Key>F8 f.resize
Minimize _n Alt<Key>F9 f.minimize
Maximize _x Alt<Key>F10 f.maximize
Lower _L Alt<Key>F3 f.lower
no−label f.separator
Close _C Alt<Key>F4 f.kill
}

Not all applications require each one of these default functions. For example, if you have a real−time application, it should never be iconified.
The Motif Window Manager allows you to specify a Window Menu for each application you are using.

To modify the default Window Menu, begin by copying the DefaultWindowMenu definition from the /usr/lib/X11/system.mwmrc file
to the .mwmrc file in your home directory. Rename the default menu definition (MailWindowMenu, for example) and make the appropriate
changes, following the syntax shown at the beginning of this section.

Then you need to reference the alternate Window Menu definition in your .Xdefaults file by using the windowMenu resource:
Mwm*my_mail_program*windowMenu: MailWindowMenu

Remember that you need to restart mwm for your version of the menu to appear.

Note that the menu item names you specify in the .mwmrc file can be overridden by applications that rename menu item names.

Motif User’s Guide 5

Creating New Menus

To create a completely new menu, use the general menu syntax in Section 6.2 as a model and follow these steps:
1. Fill in a menu name.
2. Create the item names.
3. Choose a mnemonic and accelerator (optional).
4. Give each item a function to perform (see Table 6−1).

Menu Items

An item can be either a character string or a graphic representation (bitmap or pixmap).

A character string for items must be compatible with the menu font that is used. Character strings must be typed precisely using one of the
following styles:

•€Any character string containing a space must be enclosed in "" (double quotes) (for example, "Menu name").

•€Single−word strings do not have to be enclosed in double quotes, but it is probably a good idea for the sake of consistency (for example,
"Menuname").

•€An alternate method of dealing with multiple−word item names is to use an underbar in place of the space (for example, Menu_name).

An item in either X bitmap (XBM) or X pixmap (XPM) file format can be created. Using the @ (at sign) in the menu syntax tells the window
manager that what follows is the pathname for a bitmap or pixmap file:

@bitmapfile function [argument]

The following is an example of a newly created menu. The menu is named Graphics Projects. The menu items are all bitmaps symbolizing
different graphics projects. The bitmaps are kept in the directory /users/pat/bits . When the user selects a symbol, the graphics program
starts and opens the appropriate graphics file.
Menu "Graphics Projects"
{
"Graphics Projects" f.title
@/users/pat/bits/fusel.bits f.exec "cad

@/users/pat/bits/lwing.bits f.exec "cad

@/users/pat/bits/rwing.bits f.exec "cad

@/users/pat/bits/nose.bits f.exec "cad

}

/spacestar/fusel.e12"

/spacestar/lwing.s05"

/spacestar/rwing.s04"

/spacestar/nose.e17"

Another method for specifying the pathname is to replace /users/pat/ with the ~/ (tilde and slash) characters. The ~/ specifies the user’s
home directory. Another method is to use the bitmapDirectory resource. If the bitmapDirectory resource is set to /users/pat/bits , then a
menu item could be specified as follows:
@fusel.bits f.exec "cad /spacestar/fusel.e12

Mnemonics and Accelerators

You can use mnemonics and keyboard accelerators in the menus that you create. Mnemonics are functional only when the menu is posted;
accelerators are functional whether or not the menu is posted. A mnemonic specification has the following syntax:

mnemonic = _ character

The _ (underbar) is placed under the first matching character in the label. If there is no matching character in the label, no mnemonic is
registered with the window manager for that label. The accelerator specification is a key action with the same syntax as is used for binding keys
to window manager functions:

key context function [argument]

When choosing accelerators, be careful not to use key actions that are already used in key bindings. (See Section 6.5 for information about
keyboard bindings.)

The following line from the default Window Menu illustrates mnemonic and accelerator syntax:

Motif User’s Guide 6

Restore _R Alt<Key>F5 f.normalize

Functions

The predefined Motif Window Manager functions are listed in Table 6−1. Each mwm function operates in one or more of the following contexts:

root

Operates the function when the workspace or root window is selected.

window

Operates the function when a client window is selected. All subparts of a window are considered as windows for function contexts. Note that

some functions operate only when the window is in its normalized or iconified state (f.maximize), or its maximized or iconified state

(f.normalize).

icon

Operates the function when an icon is selected.

Each function is activated by one or more of the following devices:

•€Mouse button

•€Keyboard key

•€Menu item

Any selection that uses an invalid context, an invalid function, or a function that does not apply to the current context is grayed out. For example,
the Restore selection on a terminal window’s Window Menu and the Minimize selection on an icon’s menu are invalid. Also, menu items are

grayed out if they are assigned the f.nop (no operation performed) function.

If you want your new menu to appear whenever a certain mouse button or keyboard key is pressed, follow these steps:
1. Choose the mouse button or keyboard key that you want to use.
2. Choose the action on the button or key that causes the menu to appear.
3. Choose the context in which the menu is to appear.
4. Use the f.menu function with the new menu’s name as an argument to bind the menu to the button or key.

For example, you may want to create a root menu that gives some control over the entire screen area. The definition of a root menu might look as
follows:
Menu
RootMenu
{
"Workspace f.title
Menu"
"New Window"f.exec "mterm"
"Mail" f.exec "mail"
"Editor" f.exec "editor"
"Refresh" f.refresh
no−label f.separator
"Restart" f.restart
}

Once you have defined the menu, you need to bind the menu to a mouse button in your .mwmrc file:
<Btn3Down> root f.menu RootMenu

Motif User’s Guide 7

Modifying Mouse Button Bindings

As described in Chapter 2, the Motif Window Manager recognizes the following button actions:

Press

Holding down a mouse button

Release

Releasing a pressed mouse button

Click

Pressing and releasing a mouse button

Double−click

Pressing and releasing a mouse button twice in rapid succession

Drag

Pressing a mouse button and moving the pointer/mouse device

You can associate a mouse button action with a window management function by using a button binding. A button binding is a command line
you put in your .mwmrc file that associates a button action with a window manager function.

User−defined button bindings are added to built−in button bindings and are always defined first.

Default Button Bindings

The Motif Window Manager provides default button bindings. These button bindings define the functions of the window frame components. The
user−specified button bindings that are defined with the buttonBindings resource are added to the built−in button bindings. The default value for
this resource is DefaultButtonBindings (see Table 6−2).

Table 1 Default Button Bindings
Button Action Context Function
Btn1Click2
Btn1Click
Btn1Click
Btn1Down
Btn1Down
Btn1Down
Btn1Click
Btn1Click2

menu
minimize
maximize
title
window|icon
border
icon
icon

f.kill
f.minimize
f.maximize
f.move
f.focus_key
f.resize
f.post_wmenu
f.restore

Button Binding Syntax

The syntax for button bindings is as follows:

Buttons ButtonBindingSetName
{

button context [| context] function [argument]
button context [| context] function [argument]
...

button context [| context] function [argument]
}

Each line identifies a certain mouse button action, followed by the context in which the button action is valid, followed by the function to be
done. Some functions require an argument.

Motif User’s Guide 8

Modifying Button Bindings

To modify the default button bindings, you need to edit either system.mwmrc to make system−wide changes or .mwmrc to make changes to
the local environment. The easiest way to modify button bindings is to change the default bindings or to insert extra lines in the
DefaultButtonBindings.

When modifying or creating a button binding, you need to first decide which mouse button to use and which action is performed on the button.
Make sure you do not use button−action combinations already used by Motif. You might want to require a simultaneous key press with the
mouse button action. This is called modifying the button action. Modifiers increase the number of possible button bindings you can make (see
Table 6−3).

Note: Binding a function to a mouse button−down event in a window, as would be done in the following example, has some
undesirable side effects.

<Btn1Down> window f.raise

Once this binding is made, double clicking of that button on a PushButton inside a window will not be interpreted as a double−click,
and the default PushButton action will not be taken. Therefore, when rebinding these events, it is important to keep the context of the
rebinding as constrained as possible.

Table 2 Button Binding Modifier Keys
Modifier Description
Ctrl
Shift
Alt
Lock
Mod1
Mod2
Mod3
Mod4
Mod5

Control Key
Shift Key
Alt (Meta) Key
Lock Key
Modifier 1
Modifier 2
Modifier 3
Modifier 4
Modifier 5

On some systems, you can bind up to five buttons if you have a 3−button mouse. For example, Button 4 is the simultaneous press of Buttons 1
and 2. Button 5 is the simultaneous press of Buttons 2 and 3. Each button can be bound with one of four actions (see Table 6−4).

Table 3 Button Actions for Button Bindings
Button Description
Btn1Down
Btn1Up
Btn1Click
Btn1Click2
Btn2Down
Btn2Up
Btn2Click
Btn2Click2
Btn3Down
Btn3Up
Btn3Click
Btn3Click2

Button 1 press
Button 1 release
Button 1 press and release
Button 1 double−click
Button 2 press
Button 2 release
Button 2 press and release
Button 2 double−click
Button 3 press
Button 3 release
Button 3 press and release
Button 3 double−click

After choosing the optional modifier and the mouse button action, you must decide under which context(s) the binding works (see Table 6−5).

Table 4 Contexts for Mouse Button Bindings

This context... pointer position...
root
window
frame
icon
title
border
app

For mouse action at this

Workspace (root window)
Client window
Window frame (title and border)
Icon
Title bar
Frame minus title bar
Application window (inside the frame)

The context indicates where the pointer must be for the button binding to be effective. For example, a context of window indicates that the pointer

Motif User’s Guide 9

must be over a client window or window frame for the button binding to be effective. The frame context is for the window frame around a client
window (including the border and title bar), the border context is for the border part of the window frame (not including the title bar), the title
context is for the title bar of the window frame, and the app context is for the application window or client area (not including the window
frame).

The following is an example of a button binding. Imagine you have created your own Graphics Projects menu and you want to display the menu
with a button action. You choose Alt as a modifier and Btn3Down as the button action. You decide the pointer must be on the workspace. The

function name for posting a special menu is f.menu and the argument is the menu name Graphics Projects. The following line in the
DefaultButtonBindings in your .mwmrc file creates the button binding:

Alt<Btn3Down> root f.menu "Graphics Projects"

Making a New Button Binding Set

If inserting a new button binding into the DefaultButtonBindings set is not enough, you may need to make a complete new set of button bindings.
To create a new button binding set, use the DefaultButtonBindings in your .mwmrc file as a model. After you have created a new button binding
set, use the buttonBindings resource to tell the window manager about it.

The buttonBindings resource specifies a button binding set. The default value of the resource is DefaultButtonBindings. Use the following syntax
for specifying the resource in your .Xdefaults file:

Mwm*buttonBindings: NewButtonBindingSetName

This line directs the window manager to use NewButtonBindingSetName as the source of its button binding information. The button bindings are
assumed to exist in the file named by the configFile resource; the default is .mwmrc .

For example, suppose that you want to specify a completely new button binding set instead of inserting a line in the existing
DefaultButtonBindings set. The following entry in your .mwmrc file creates a new button binding set:

Buttons GraphicsButtonBindings
{
<Btn3Down> root f.menu "Graphics Projects"
}

The following line in your .Xdefaults file references the new button binding set:
Mwm*buttonBindings: GraphicsButtonBindings

To display the graphics menu, press Button 3 on the mouse when the pointer is on the workspace.

Motif User’s Guide 10

Keyboard Bindings

In a manner similar to mouse button bindings, you can bind window manager functions to keys on the keyboard by using keyboard bindings.

Default Keyboard Bindings

Motif has default key bindings. These key bindings are replaced with user−specified key bindings specified with the keyBindings resource. Table
6−6 lists the default key binding specifications.

Table 1 Default Keyboard Bindings
Keys Context Function
Shift<Key>Escape
Alt<Key>space
Alt<Key>Tab
Alt Shift<Key>Tab
Alt<Key>Escape
Alt Shift<Key>Escape
Alt Shift Ctrl<Key>exclam
Alt<Key>F6 window
Alt Shift<Key>F6 window
Shift<Key>F10 icon

window|icon
window|icon
root|icon|window
root|icon|window
root|icon|window
root|icon|window
root|icon|window

f.post_wmenu
f.post_wmenu
f.next_key
f.prev_key
f.circle_down
f.circle_up
f.set_behavior
f.next_key transient
f.prev_key transient
f.post_wmenu

Keyboard Binding Syntax

The syntax for keyboard bindings is as follows:

Keys KeyBindingSetName
{

key context [| context] function [argument]
key context [| context] function [argument]
...

key context [| context] function [argument]
}

Each line identifies a unique key press sequence, followed by the context in which that sequence is valid, followed by the function to be done.
Some functions require an argument. Context refers to the location of the keyboard input focus when a key is pressed.

Modifying Keyboard Bindings

To modify the default keyboard bindings, you need to edit either system.mwmrc to make system−wide changes or .mwmrc to make changes
to the local environment. The easiest way to modify keyboard bindings is to change the default bindings or to insert extra lines in the
DefaultKeyBindings.

When modifying a keyboard binding, you need to decide which key you want to bind and which action the key performs. Then choose the
context in which the key binding is to work (see Table 6−7).

Table 2 Contexts for Key Bindings
Use this context... When the keyboard focus is here...
root
window
icon

Workspace (root window)
Client window (includes frame, title, border, and application window)
Icon

Note that if f.post_wmenu or f.menu is bound to a key, mwm automatically uses the same key for removing the menu from the screen after it
has been popped up.

Suppose you wanted to eliminate a particular keyboard binding. To disable it, you can delete or comment out the appropriate line in your
.mwmrc file. You comment out a line by placing an ! (exclamation point) comment character at the beginning of the line. The following shows
an example of a commented−out line in a .mwmrc file:

Motif User’s Guide 11

Keys DefaultKeyBindings
{
!Shift<Key>Escape icon|window f.post_wmenu
Alt<Key>Tab window f.next_key
}

Making a New Keyboard Binding Set

With keyboard bindings, as with button bindings, you have the option of creating a whole new binding set. To do so, use the DefaultKeyBindings
of your .mwmrc file as a model. After you have created the new keyboard binding set, use the keyBindings resource to specify a key binding set
in your .Xdefaults file:

mwm*keyBindings: NewKeyboardBindingSetName

The default value for this resource is DefaultKeyBindings.

Motif User’s Guide 12

Setting up mwm’s Virtual Desktop Panning

This section describes an example of how you can modify your .Xdefaults file and .mwmrc file to activate virtual panning in mwm. The

mwm functions f.pan, f.goto, and f.track_pan need to be bound either to keys or to mouse buttons.

Editing .mwmrc for Virtual Desktop Panning

Add the following to your .mwmrc file to use virtual panning.

Ensure that the name of your button bindings match the name given for the resource value Mwm*buttonBindings in your .Xdefaults file.
Buttons MyButtonBindings
{
 <Btn2Down> root f.menu GotoMenu
 Meta<Btn1Down> root f.track_pan
}

Ensure that the name of your key bindings match the name given for the resource value Mwm*keyBindings in your .Xdefaults file.
Keys MyKeyBindings
{
 Meta<Key>Up window|root f.pan 0,−100
 Meta<Key>Down window|root f.pan 0,100
 Meta<Key>Left window|root f.pan −100,0
 Meta<Key>Right window|root f.pan 100,0
}

To set up a menu that lets you quickly switch to different locations on the virtual desktop, code it as follows. You can then restart your mwm
application.

Menu GotoMenu
{
 Up−Left f.goto 1500,1100
 Up f.goto 0,1100
 Up−Right f.goto −1500,1100
 Left f.goto 1500,0
 Home f.goto 0,0
 Right f.goto −1500,0
 Down−Left f.goto 1500,−1100
 Down f.goto 0,−1100
 Down−Right f.goto −1500,−1100
}

Editing .Xdefaults for Virtual Desktop Panning

You can add the following to your .Xdefaults file to keep mwm from moving all your windows back to the visible part of the screen at
startup:

Mwm*positionOnScreen: False

Note that it is important to set the positionOnScreen resource to False because mwm automatically repositions all off−screen windows back to
the display screen on restart.

To set up a menu to go to preset positions on the virtual canvas, add the following:
Mwm*GotoMenu*numColumns: 3
Mwm*GotoMenu*packing: PACK_COLUMN
Mwm*GotoMenu*orientation: HORIZONTAL
Mwm*GotoMenu*alignment: ALIGNMENT_CENTER

To ensure consistency with the .mwmrc file, you can add the following lines:
Mwm*buttonBindings: MyButtonBindings
Mwm*keyBindings: MyKeyBindings

Motif User’s Guide 13

To prevent the client and icon windows from moving, you can use the following lines:
Mwm*wsm.iconPinned: True
Mwm*wsm.clientPinned: True
Mwm*iconPinned: True

Where wsm is the workspace manager, which controls aspects of the desktop beyond the confines of the windows actually visible on the screen.

Motif User’s Guide 14

Controlling Client Access to mwm Windows

In support of the mwm Client−Command Interface (CCI), the MWM resource file allows the user to control access of other clients (such as other

window managers) to the mwm menus. Clients such as the workspace manager demo which is included with Motif in

/demos/programs/workspace/wsm , make use of the CCI to insert commands into mwm’s Root and Window menus. When one of these

commands is selected, mwm sends a message back to the inserting client specifying the selected command. This allows the end−user to access
workspace manager commands through Mwm’s menus without using screen real estate for the workspace manager application.

When an application inserts commands using the CCI protocol, the commands are inserted by mwm at the end of the appropriate menu. The
location of these inserted commands can be modified by making changes to the Mwm resource file. More specifically, the CCI command

placement is controlled using the f.cci command in the menu specifications of the Mwm resource file.

When a client, such as the workspace manager demo, inserts commands using the CCI, it specifies a command using an internal command−name
along with a command−label. The command−label is the string that is displayed in the corresponding button of the appropriate Mwm menu. If

you wish to control the placement of this command, you must refer to this command in the mwm resource file using the command−name. In
addition, each command−name reference must be delimited with brackets as follows:

< command−name >

To obtain the corresponsing command−name, see the documentation from the inserting application. This documentation should describe the
underlying command−names for each command.

The workspace manager demo adds two commands to the Mwm root menu. These commands are "Hide Workspace Manager" and "Switch
Workspace". To be more precise, the "Hide Workspace Manager" entry is actually a toggle entry which changes to "Show Workspace Manager"

when the Workspace Manager is hidden. The command−names are _WSM_HIDE_WSM and _WSM_SWITCH_WORKSPACE . The Switch
Workspace command is actually a command−set and appears in the root menu as a cascade menu with a list of rooms as its sub−menu. The

placement of the commands can be controlled using the f.cci function in the mwm resource file. The following sample root menu definition
shows how the positions of these commands may be changed:

Menu MyRootMenu
{
"Root Menu" f.title
DEFAULT_NAME f.cci <_WSM_HIDE_WSM>
DEFAULT_NAME f.cci <_WSM_SWITCH_WORKSPACE>
"New Window" f.exec "xterm &"
"Shuffle Up" f.circle_up
"Shuffle Down" f.circle_down
"Refresh" f.refresh
"Pack Icons" f.pack_icons
 no−label f.separator
"Restart..." f.restart
"Quit..." f.quit_mwm
}

The example above will cause the two commands Hide Workspace Manager and Switch Workspace to be placed at the top of the root menu,
below the title. They will not be inserted at the end of the menu.

The format of the f.cci command is the following:

label [mnemonic] [accelerator] f.cci [modifier] command−reference

The label, mnemonic, and accelerator specifications are the same as for the other Mwm functions. The optional modifiers are described later in
this reference page.

The command−reference specifies which command−name or command−names are being refered to. The preceding example refers to a single

command and to a single command−set. In the wsm demo, the command "Switch Workspace" cascades to a sub−menu that contains a list of
rooms. It is possible to refer to the entries within this sub−menu by concatinating command−names in the command−reference. This can be done
be inserting a period between command−name specifications.

The submenu for the Switch Workspace menu entry contains, by default, the entries Room1, Room2, Room3, and Room4. Fortunately, wsm uses
the same command−name and command−label for the entries. We can modify the MyRootMenu specification above to include Room1 in the

MyRootMenu specification by concatenating the command−set−name _WSM_SWITCH_WORKSPACE with the command−name Room1 as

Motif User’s Guide 15

in the following example:
Menu MyRootMenu
{
"Root Menu" f.title
DEFAULT_NAME f.cci <_WSM_HIDE_WSM>
DEFAULT_NAME f.cci <_WSM_SWITCH_WORKSPACE>
"Home" f.cci <_WSM_SWITCH_WORKSPACE>.<Room1>
"New Window" f.exec "xterm &"
"Shuffle Up" f.circle_up
}

In the preceding example, a menu entry referring to Room1 would appear below the Switch Workspace entry. The label Home would be used

instead of the default label specified by wsm.

Often, it is necessary to refer to multiple command−names. This is possible by using a ’*’ as a wild−card symbol in place of the command
−name. For example,

<_WSM_SWITCH_WORKSPACE>.<*>

refers to all command−names in the _WSM_SWITCH_WORKSPACE menu.

