
Motif User’s Guide 1

Customizing the Motif Window Manager
This chapter describes how to set some of the basic mwm (Motif Window Manger) resources:

•€Specifying colors for client window frames, icons, menus, and mattes

•€Specifying window decorations

•€Specifying the size and placement of windows and icons

•€Specifying fonts

•€Specifying input focus

•€Specifying mwm messages using the message catalog

There are three types of mwm resources:

Component appearance resources

These resources specify appearance attributes of window manager components such as menus and icons.

Specific appearance and behavior resources

These resources are used to specify mwm appearance and behavior; for example, colormap and keyboard input focus policies. They are

not set separately for different mwm components.

Client−specific resources

These mwm resources can be set for a particular client window or class of client windows. They specify client−specific icon and client
window frame appearance and behavior.

For example, you could specify the following resources for mwm in your .Xdefaults file:
Mwm*background: LightBlue
Mwm*foreground: Black
Mwm*activeBackground: Blue
Mwm*icon*foreground: DarkSlateBlue

Mwm*keyboardFocusPolicy: pointer
Mwm*focusAutoRaise: true

Mwm*UseIconBox: true
Mwm*iconBoxGeometry: 3x2
Mwm*my_application*iconImage: ~/my.bitmap

Notice that the class name for mwm is Mwm.

Motif User’s Guide 2

Specifying Colors

Color resources for the window manager include a background color and a foreground color, top and bottom shadow colors, and pixmaps for
shading. Names for colors vary from system to system and can also depend on locale. (See your system documentation for a list of valid color
names on your system.)

Set the resources for color using the following general format:

Mwm*resource: color

For example, you might have the following specifications in your .Xdefaults file:
Mwm*background: LightBlue
Mwm*foreground: Black

Coloring Client Window Frames

The Motif Window Manager provides resources for specifying colors for the window borders of the currently active window and the inactive
windows (see Table 5−1).

Table 1 Color Resources and What They Color
Inactive Window and Active Window and
Icon Resources Icon Resources Area Covered
foreground activeForeground
background activeBackground
topShadowColor activeTopShadowColor
bottomShadowColor activeBottomShadowColor

Foreground areas (text)
Background areas
Top and left 3−D bevels
Bottom and right 3−D bevels

You should pick contrasting color schemes to make the active window readily distinguishable from its inactive counterparts. For example, if you
would like the foreground and background of inactive window frames to be the reverse of the foreground and background of the active window
frame, using the colors Wheat and IndianRed, you would specify these resources in your .Xdefaults file:

Mwm*background: IndianRed
Mwm*foreground: Wheat
Mwm*activeBackground: Wheat
Mwm*activeForeground: IndianRed

The default values for mwm color resources are based on the visual type of the screen, such as monochrome or 8−bit pseudocolor, and the values
given to related resources. Table 5−2 shows the default values for a color display.

Table 2 Default Values for Appearance on a Color Display
Resource Specification Resource Value
Mwm*activeBackground
Mwm*activeBackgroundPixmap NULL
Mwm*activeBottomShadowPixmap NULL
Mwm*activeTopShadowPixmap NULL
Mwm*background
Mwm*backgroundPixmap NULL
Mwm*bottomShadowPixmap NULL
Mwm*topShadowPixmap NULL

CadetBlue

LightGrey

Specifying the value of the background resource automatically generates default colors for the top and bottom shadow color resources. A NULL
pixmap means that the color is solid, not patterned. The Motif Window Manager uses the following rules for generating default values for color
resources:

•€A top shadow color is generated by proportionally lightening the associated background color.

•€A bottom shadow color is generated by proportionally darkening the associated background color.

•€The foreground color is set to black or white, depending on the background color.

Table 5−3 indicates the default values for the appearance resources on a monochrome display.

Table 3 Default Values for Appearance on a Monochrome Display

Motif User’s Guide 3

Resource Specification Resource Value
Mwm*activeBackground
Mwm*activeBackgroundPixmap
Mwm*activeBottomShadowPixmap
Mwm*activeTopShadowPixmap
Mwm*background
Mwm*backgroundPixmap
Mwm*bottomShadowColor
Mwm*bottomShadowPixmap
Mwm*topShadowColor
Mwm*topShadowPixmap
Mwm*foreground

White
50_foreground
foreground
50_foreground
White
25_foreground
Black
foreground
White
50_foreground
Black

Using Window Frame Pixmaps

Using a pixmap is a way of creating shades of colors. Pixmaps are drawn in the foreground color. The pixmap is composed of tiles that provide a
surface pattern or a visual texture. The concept is analogous to using ceramic tiles to make a pattern or texture on a floor or countertop.

Generally, the fewer colors a display produces, the more important the pixmap resources become. A pixmap provides a way to mix foreground
and background colors into a variety of color patterns. For example, with a monochrome display, you can use the pixmap resource to color
window frame elements with shades of gray to achieve a 3−dimensional look.

There are mwm pixmap resources for creating a pattern for the frame background and bevels of both inactive and active windows (see Table 5
−4).

Table 4 Using Pixmaps for Window Frames
Use this resource... To pattern these elements...
backgroundPixmap
bottomShadowPixmap
topShadowPixmap
activeBackgroundPixmap
activeBottomShadowPixmap
activeTopShadowPixmap

Background for inactive frames
Right and bottom bevels of inactive frames
Left and upper bevels of inactive frames
Background of the active frame
Right and lower bevels of the active frame
Left and upper bevels of the active frame

Figure 5−1 illustrates the various bitmaps that are defined in the Motif environment.

Figure 1 Illustrations of Valid Bitmap Values

To obtain the bitmap styles illustrated in the previous figure, use the values listed in Table 5−5.

Motif User’s Guide 4

Table 5 Valid Pixmap Values
To pattern an element in this manner... Use this

The foreground color
The background color
A mix of 25% foreground to 75% background
A mix of 50% foreground to 50% background
A mix of 75% foreground to 25% background
In horizontal lines alternating between the foreground and background color
In vertical lines alternating between the foreground and background color
In diagonal lines slanting to the right alternating between the foreground and background color
In diagonal lines slanting to the left alternating between the foreground and background color

value...
foreground
background
25_foreground
50_foreground
75_foreground
horizontal_tile
vertical_tile
slant_right
slant_left

The cleanText resource makes text easier to read on monochrome systems when a backgroundPixmap is specified. This resource controls the

display of window manager text in the title area and in the move/resize feedback window. If the value is set to True, the text is drawn with a

clear background. Only the background in the area immediately around the text is cleared. If the value is set to False, the text is drawn directly on
top of the existing background.

Coloring Icons

Icon window frame elements are colored with the same resources as normalized window frame elements. The image part of an icon can be
displayed with client−specific colors (see Table 5−6).

Table 6 Coloring Icon Images
To color this... Use this resource...
Icon image background
Left and upper 3−D bevels
Right and lower 3−D bevels
Icon image foreground

iconImageBackground
iconImageTopShadowColor
iconImageBottomShadowColor
iconImageForeground

There are two pixmap resources available for use in shading icon images: iconImageTopShadowPixmap and iconImageBottomShadowPixmap.

The default value for iconImageTopShadowPixmap is the icon top shadow pixmap, which is specified by Mwm*icon*topShadowPixmap. The
default value for iconImageBottomShadowPixmap is the icon bottom shadow pixmap, which is specified by

Mwm*icon*bottomShadowPixmap.

Resource specifications that color icons can have any of the following formats.

To color all clients regardless of class, the syntax is

Mwm*icon* resource: color

For example, the following specification in a resource file ensures that all icon backgrounds are the same color:
Mwm*icon*background: CadetBlue

To color specific classes of client icons, the syntax is

Mwm*icon* Clientclass*resource: color

The colors specified with this resource specification take precedence over any other specification of this resource for this class of clients. For

example, the following specification ensures that the icon background for xterm clients is the color IndianRed rather than CadetBlue:
Mwm*icon*Xterm*background: IndianRed

To color any client with an unknown class, the syntax is

Mwm*icon*default* resource: color

Coloring Menus

The color resources for the mwm Window Menu and Root Menu are the same as those for inactive windows and icons (see Table 5−1). Menus
that appear in application programs are not affected by the values set for these resources. Default menu colors are determined by the type of
display.

Resource specifications that color Menus can have any the following formats.

To color all clients regardless of class, the syntax is

Motif User’s Guide 5

Mwm*menu*resource: color

For example, the following specification in a resource file ensures that all Menu backgrounds are the same color:
Mwm*menu*background: CadetBlue

To color specific classes of clients, the syntax is

Mwm*menu*Clientclass*resource: color

The colors specified with this resource specification take precedence over any other specification for this resource for this class of clients.

To color any client with an unknown class, the syntax is

Mwm*menu*default* resource: color

You can also specify a color for a Menu with a specific name using the following syntax:

Mwm*menu*menuname*resource: value

For example, the following specification in a resource file sets the color of my_menu:
Mwm*menu*my_menu*background: SlateBlue

Coloring Mattes

A matte is a 3−dimensional border between the client’s window area and the window frame. A matte can give an individual client, or class of
clients, a distinct appearance. To configure a matte, you need to give the matteWidth resource a positive value. The matteWidth resource defines
the width of the matte between the client and the window frame. The width is specified in pixels. The default value of 0 (zero) disables the matte.

For example, to specify a matte of 10 pixels around all xload windows, use the following specification in your .Xdefaults file:
Mwm*XLoad*matteWidth: 10

Matte resources use the same wording as window frame resources, but begin with the term matte (see Table 5−7).

Table 7 Matte Resources and What They Color
Matte Resource Area Colored
matteBackground
matteTopShadowColor
matteBottomShadowColor
matteForeground

Background areas
Top and left 3−D bevels
Bottom and right 3−D bevels
Foreground areas

As with frame colors, the fewer colors a display can produce, the more value there is in using pixmap resources for mattes (see Table 5−8).

Table 8 Resources for Using Pixmaps with Mattes
Use this resource... To pattern these elements...
matteBottomShadowPixmap
matteTopShadowPixmap

Right and lower bevels of mattes
Left and upper bevels of mattes

Resource specifications for coloring mattes can have any of the following formats.

To matte all clients regardless of class, the syntax is

Mwm*matteResource: value

For example, to create a 10−pixel wide yellow matte for every client window, use the following specification in a resource file:
Mwm*matteWidth: 10
Mwm*matteBackground: Yellow

To matte specific classes of clients, the syntax is

Mwm*Clientclass.matteResource: value

To matte any client of an unknown class, the syntax is

Mwm*default* matteResource: value

Motif User’s Guide 6

Specifying Window Decorations

Window decorations include a border, a maximize button, a minimize button, a Window Menu button, a title bar, and resize handles. Table 5−9
shows the values that may be used to set the window decorations for a window.

Table 1 Valid Window Frame Elements
Frame Description
Element
all
border
maximize
minimize
none
resizeh
menu
title

Includes all decoration elements (default)
Window border
Maximize button (includes title bar)
Minimize button (includes title bar)
No decorations
Resize handles (includes border)
Window Menu button (includes title bar)
Title bar (includes border)

For some applications, the full complement of window decorations may not be desirable. For example, a clock may not need resize handles. The
Motif Window Manager has two resources for such situations: clientDecoration and transientDecoration.

The clientDecoration resource allows the user to choose how much decoration to put around each client. The default value is all, meaning that
windows include all decorations unless the application removes one or more of them.

The transientDecoration resource allows you to choose the decorations around each transient window. A transient window is a relatively short
−lived window, such as a DialogBox. The default value for this resource is menu title resizeh, meaning that transient windows have a title bar

with a Window Menu button and resize borders. Even if a decoration is specified by the transientDecoration resource, mwm does not put it
around a transient window unless that decoration is also specified by the clientDecoration resource.

The clientDecoration and transientDecoration resources can have more than one value specified at a time:

•€If the first value in the list is preceded by nothing or by a + (plus sign), the window manager starts with no frame and assumes that the list
contains those elements to be added.

•€If the list begins with a − (minus sign), the window manager starts with a complete frame and assumes that the list contains elements to be
removed from the frame.

The clientDecoration resource can have any of the following formats.

To add or remove elements from all classes of clients, the syntax is

Mwm*clientDecoration: value

For example, remove the maximize button from all windows with the following specification in a resource file:
Mwm*clientDecoration: −maximize

To add or remove elements from specific classes of clients, the syntax is

Mwm*Clientclass.clientDecoration: value

For example, to remove the resize handles and the maximize button from all clocks displayed on the screen, use the following specification:
Mwm*XClock.clientDecoration: −resizeh −maximize

To add or remove elements from any client with an unknown class, the syntax is

Mwm*defaults*clientDecoration: value

The transientDecoration resource has the following syntax:

Mwm*transientDecoration: value

For example, to remove the menu button from all transient windows, use the following specification in a resource file:
Mwm*transientDecoration: title resizeh

The iconDecoration resource indicates the parts of an icon that are displayed (see Table 5−10).

Table 2 Valid Icon Elements

Motif User’s Guide 7

Icon Description
Element
label
image
activelabel

The icon’s label, which may be truncated
The icon’s image
The label of an active is not truncated

When you are using an icon box, the default value for iconDecoration is label image. Without an icon box, the default value of the resource is
activelabel label image. For example, use the following specification to eliminate the label part of icons:

Mwm*iconDecoration: image

For window decoration, the Motif Window Manager also has the frameStyle resource, which lets you control the look of the window and its
border. Assigning a value of WmRECESSED to this resource makes the window appear to be recessed from its border. Assigning a value of
WmSLAB shows a flat window and border.

Motif User’s Guide 8

Sizing Windows

You can control the size of a window with specifications that match the following format:

Mwm*sizeResource : value

For most applications, sizes are specified in pixels, although some applications use units that make sense for the application. For example,
terminal windows are sized in characters and lines rather than in pixels.

The frameBorderWidth resource specifies the width of a client window frame border with shadow elements, but without resize handles. The
default value, usually about 5 pixels, is based on the size and resolution of the screen.

The limitResize resource controls the ability to enlarge a window beyond the client’s maximized size. The default value of True limits a
window’s size to no greater than the maximum size specified by the maximumClientSize resource, or the default maximum size assigned by

mwm. The value of False allows a window to be resized to any size.

The maximumClientSize resource controls the maximum size of a maximized client. The value of this resource is specified either as width by
height, interpreted in terms of the units that the client uses, or with the values vertical or horizontal, which causes the Maximize operation to
resize the window only in the specified direction. If this resource is not specified, the size of the screen is the default value.

The maximumMaximumSize resource controls the maximum size of a client window as set by the client. The dimensions are given in pixels. The
default value of this resource is twice the screen width and height.

The resizeBorderWidth resource specifies the width of a client window frame border with resize handles and shadow elements. The default value,
usually about 10 pixels, is based on the size and resolution of the screen.

The resizeCursors resource indicates whether the resize cursors are displayed when the pointer is in the window resize border. The default value

True causes the appropriate resize cursor to appear when the pointer enters a resize handle in the window frame. The value of False prevents
resize cursors from being displayed.

Motif User’s Guide 9

Controlling Window Placement

You can control the initial placement of client windows with specifications that use the following format:

Mwm*resource: value

Some of the resources for window placement are described in the following text.

The clientAutoPlace resource determines the position of a window when the window has not been given a specific position. The default value of

True positions a window with the top left corner of the frame offset horizontally and vertically. The value of False causes the currently

configured position of the window to be used. In either case, mwm attempts to place the window so the entire window appears within the
boundaries of the screen.

The interactivePlacement resource controls the initial placement of new windows on the screen. The value of True changes the shape of the
pointer to an upper−left−corner bracket before a new window is displayed, so that you can choose a position for the window. When the default

value of False is used, the window is placed according to its initial configuration attributes or the values of other mwm resources such as
clientAutoPlace.

The moveThreshold resource controls the sensitivity of dragging operations. The value of the moveThreshold resource is the number of pixels
that the pointer must be moved with a button pressed before a drag operation is initiated. This resource is used to prevent window or icon
movement when you unintentionally move the pointer during a click or double−click action. The default value is 4 pixels.

The positionIsFrame resource determines how client window position information is interpreted. When the default value True is used, the

position information is relative to the position of the window frame. When the value is False, the position information is relative to the position
of the client window itself.

The positionOnScreen resource controls clipping of new windows by screen edges. The default value True causes a window to be placed, if
possible, so that it is not clipped. If clipping cannot be avoided, a window is placed so that at least the upper left corner of the window is on the

screen. The value of False causes a window to be placed at the requested position even if it is totally off the screen. The iconPinned and
clientPinned resources prevent windows from being moved when one of the window manager’s virtual desktop capabilities, such as interactive

panning, is in use. When the default value False is used, the icon or client window is panned whenever the root window is panned. If the value is

True, the icon or client window will not be moved during panning operations.

The showFeedback resource controls when feedback information is displayed. It controls both window position and size feedback during move
or resize operations and initial client placement. It also controls window manager DialogBoxes (see Table 5−11).

Table 1 Feedback Options
Name Description
all
behavior
kill
move
none
placement
quit
resize
restart

Shows all feedback (default value)
Confirms behavior switch
Confirms on receipt of KILL signal
Shows position during a move
Shows no feedback
Shows position and size during initial placement
Confirms quitting mwm
Shows size during a resize operation
Confirms restarting mwm

The value for this resource is a list of names of the feedback options to be enabled or disabled; the names must be separated by a space. If an
option is preceded by a − (minus sign), that option is excluded from the list. The sign of the first item in the list determines the initial set of

options. If the sign of the first option is a − (minus sign), mwm assumes all options are present and starts subtracting from that set. If the sign of

the first option is a + (plus sign) or not specified, mwm starts with no options and builds a list from the resource specification.

For example, you could use the following specification in your .Xdefaults file:
Mwm*showFeedback: placement resize behavior restart

This specification provides feedback for initial client placement and resize and enables DialogBoxes to confirm the restart and set behavior
functions. It disables feedback for move operations.

To specify the maximum client size for specific classes of clients, the syntax is

Mwm*Clientclass.maximumClientSize: width×height

Motif User’s Guide 10

For example, to specify that xload clients should be maximized to no more than one sixty−fourth of the size of a 1024×768 display, use the
following specification:

Mwm*XLoad.maximumClientSize: 128×96

To specify the maximum client size for any client with an unknown class, the syntax is

Mwm*defaults*maximumClientSize: width×height

Motif User’s Guide 11

Sizing Icons

Each icon image has maximum and minimum default sizes as well as maximum and minimum allowable sizes. The following two resources
control icon image size:

•€The iconImageMaximum resource limits the maximum size of an icon image. The largest value allowed is 128×128 pixels. The default value is
50×50 pixels.

•€The iconImageMinimum resource limits the minimum size of an icon image. The smallest value allowed is 16×16 pixels and is also the default
value.

When calculating limits for image size, remember that the width of an icon is the image width plus the icon frame plus the space between icons.
The height of an icon is the image height plus the icon frame plus the space between icons. The amount of icon decoration and the size of font
used in the icon label also affects the height of the icon.

The window manager sizes an icon depending on the size of the image in relation to the specified maximum and minimum sizes (see Table 5
−12).

Table 1 Icon Size Affects Treatment of an Icon
If an icon image is... The

Smaller than the minimum size Acts as if

Within maximum and minimum limits Centers

Larger than the maximum size Clips the

window
manager...

no image
were
specified

the image
within the
maximum
area

right side
and
bottom of
the image
to fit the
maximum
size

Motif User’s Guide 12

Placing Icons

By default, the window manager places icons in the lower left corner of the workspace. Successive icons are placed in a row proceeding toward
the right. Icons are prevented from overlapping by resource specification. An icon is placed in the position it last occupied if no icon is already
there. If that position is taken, the icon is placed at the next free location.

The iconAutoPlace resource indicates whether the window manager arranges icons in a particular area of the screen or places each icon at the

window location when it is iconified. The value True indicates that icons are arranged in a particular area of the screen, determined by the

iconPlacement resource. The value False indicates that an icon is placed at the location of the window when it is iconified. The default is True.

The iconPlacement resource is available only when iconAutoPlace has the value True. The iconPlacement resource specifies the arrangement
scheme the window manager uses when placing icons on the workspace. The default value is left bottom (see Table 5−13).

Table 1 Icon Placement Values
If you want this icon placement... Choose this option...
From left to right across the top of the screen, new rows below
From right to left across the top of the screen, new rows below
From left to right across the bottom of the screen, new rows above
From right to left across the bottom of the screen, new rows above
From bottom to top along the left of the screen, new columns to the right
From bottom to top along the right of the screen, new columns to the left
From top to bottom along the left of the screen, new columns to the right
From top to bottom along the right of the screen, new columns to the left

left top
right top
left bottom
right bottom
bottom left
bottom right
top left
top right

The iconPlacementMargin resource specifies the distance between the edge of the screen and the icons. The default value is equal to the default
space between icons.

The resources that place icons use the following format:

Mwm*resource: value

For example, if you want automatic placement of icons starting at the top of the screen and proceeding down the right side, use the following
specifications in a resource file:

Mwm*iconPlacement: top right
Mwm*iconAutoPlace: True

The Motif Window Manager allows you to use an icon box to display icons in a separate mwm window. The icon box is a scrollable window

that displays icons in rows and columns. The useIconBox resource enables the window manager’s icon box facility. The value of True places

icons in an icon box. The default value of False places icons on the root window.

The icon box is displayed in a standard window management client frame. Client−specific resources for the icon box can be specified by using
iconbox as the client name.

Resources for icon boxes have the following format:

Mwm*iconbox* resource: value

Resources that can be used with the icon box are clientDecoration, windowMenu, and all window resources dealing with color, shadow, and
matte.

The iconBoxGeometry resource sets the initial size and placement of the icon box. If the iconBoxGeometry resource is set, the largest dimension
of the size determines whether the icons are placed in a row or a column. The default policy is to place icons in rows going from left to right, top
to bottom. The value of this resource is a standard window geometry string with the following syntax:

<width>x<height>{+-} <xoffset>{+-} <yoffset>

For example, use the following specification in your .Xdefaults file for an icon box 3 icons wide and 2 icons high:
Mwm*iconBoxGeometry: 3x2

The actual size of the icon box window depends on the iconImageMaximum and iconDecoration resources. By default, mwm places the icon box
in the lower left corner with space for six icons in a single row.

Every client window that can be iconified has an icon in the icon box, even when the window is in the normal state. The icon for a client is put
into the icon box when the client becomes managed by the window manager, and is removed from the icon box when the client withdraws from

Motif User’s Guide 13

being managed.

Icons for windows in the normal state are visually distinct from icons for windows that are iconified. Icons for windows that are iconified look

like standalone icons. Icons for windows that are in the normal state appear flat and are optionally grayed out. The value of True for the

fadeNormalIcon resource grays out icons for normalized windows. The default value is False.

The text and image attributes of icons in icon boxes are determined in the same way as for standalone icons; that is, by using the iconDecoration
resource.

Motif User’s Guide 14

Specifying Fonts

The renderTable resource specifies the style of text characters in the title area, menus, and icon labels. The default font is called fixed, a fixed
−width font that does not make adjustments for a particular character’s size and shape. The fonts available on your system are usually listed in
directories under /usr/lib/X11/fonts . You can set the renderTable resource to any basename of a font listed in the font directories.

You can specify a font for all mwm components by using the following syntax:

Mwm*renderTable: font_name

You can specify a font for a particular mwm component (menu, icon, or client) by using the following syntax:

Mwm*menu*renderTable: font_name

Remember that the size of the font affects the size of the client window frames, icons, and menus. The fonts used by applications managed by

mwm are not affected when you set the renderTable resource.

Motif User’s Guide 15

Setting Input Focus Policy

Use the keyboardFocusPolicy resource to specify how a window becomes active and receives keyboard input. The default value for this resource
is explicit, which moves the keyboard input into a new window only when the window is explicitly selected. Keyboard input goes to the selected
window regardless of the location of the pointer until you select another window for keyboard input. The default focus−selection action is
pressing Button 1 in a window. Explicit focus policy is also known as "click−to−type."

The other input focus policy is called pointer. Under this policy, keyboard input is always sent to the window that currently contains the mouse
pointer. To change the default input focus policy, use the following specification in your .Xdefaults file:

Mwm*keyboardFocusPolicy: pointer

When the focus policy is set to pointer, the window with the input focus will not automatically be raised to the top of the stack.

The focusAutoRaise resource determines whether the window with input focus is raised. This resource has a default value of True when the

keyboard focus is explicit, and a default value of False when the keyboard focus is pointer. If you are using pointer policy and you want the
window with input focus to automatically be raised to the top of the stack, use the following specification:

Mwm*focusAutoRaise: True

To avoid flickering in the display while the pointer moves across a number of stacked windows, there is a brief delay before the window with the
input focus is raised to the top of the stack. This delay is controlled by the autoRaiseDelay resource. The default is 500 milliseconds.

Motif User’s Guide 16

Localizing mwm

Dialog widgets display three default buttons. In English−speaking locales, these default buttons generally display the words "Help," "Cancel,"
and "OK." However, you may customize these buttons to display words appropriate to your locale. To customize these buttons, just specify the

appropriate word or words for the XmNmessageString, XmNcancelLabelString, and XmNokLabelString resources.

For example, suppose that you are in a French−speaking locale. In this case, you can customize the dialogs by adding the following lines to your
.Xdefaults file:

 Mwm*confirmQuit*messageString: Quitter Mwm
 Mwm*confirmQuit*cancelLabelString: Annuler
 Mwm*confirmQuit*okLabelString: Confirmer

! Restart Dialog
! −−−−−−−−−−−−−−

 Mwm*confirmRestart*messageString: Redemarrer Mwm
 Mwm*confirmRestart*cancelLabelString: Annuler
 Mwm*confirmRestart*okLabelString: Confirmer

! Toggle Default Dialog
! −−−−−−−−−−−−−−−−−−−−−

 Mwm*confirmDefaultBehavior*messageString: Utiliser le Comportement Par Defaut
 Mwm*confirmDefaultBehavior*cancelLabelString: Annuler
 Mwm*confirmDefaultBehavior*okLabelString: Confirmer

! Toggle Custom Dialog
! −−−−−−−−−−−−−−−−−−−−

 Mwm*confirmCustomBehavior*messageString: Utiliser le Comportement Personnalise
 Mwm*confirmCustomBehavior*cancelLabelString: Annuler
 Mwm*confirmCustomBehavior*okLabelString: Confirmer

