Using Customization Features

Moitif allows you to specify your preferences, for visual characteristics, such as colors and fonts. You can also specify certain behavio
the response to a keystroke or mouse button action. These characteristics are established in configuration files that are read by Motif
each time they start up. To specify your preferences you can modify the configuration files or you can override the specifications in th
configuration files by setting options in the command line that starts an application.

This chapter provides the following general information on customization:
«EInderstanding the resource database

«Besource specification syntax
«8lodifying the resource files

«§etting resources on the command line
«¥sing thexrdb client program

«gJsing internationalized applications

Chapters 5, 6, and 7 describe in detail how to customvzen and Motif applications.

Motif User’s Guide 1

Application Resources

Many aspects of an application’s appearance and behavior, such as location on the screen, color, and size, are controlled by sets of '
calledresourcesResources are assigned values that determine specific characteristics of an application. Depending on a resource’s fi
can take values that are either names, numbers, or Boolean values. For example, if the resource sets the color of an application or p:
application, you specify a predefined color string value as the resource’s value, BackSateBlueor Black If the resource sets the title line
of an application, you can specify a name string of choice. You can also set the resource to a numeric value for operations like definir
location of the application. Some resource values are set with values offeithar False

Application resources take values that can be set a number of different ways. Resources whose values are not set are assigned defa
Each application builds an initial database of resources based on the supplied and default values.

How Application Resource Databases Are Set Up

The setting of an application’s resource database is a linear process. Different values for the same application resource(s) can be set
times before an application is actually started up. The resource database is updated as resource values are changed.

The value that is finally set for a resource depends on when during the hierarchical process that particular value was being set. Howe
setting of an application’s resources are not dynamic. Resource values that are set after an application has already been started do n
until that application is restarted.

The application resource database is set up according to the following hierarchy, from the highest to lowest precedence:
«Zhe application command line

«4 per—host user environment resource file on the local host

«&he screen-specific resources for the screen

«&he resource property on the server or a user preference resource file on the local host
«@n application—specific user resource file on the local host

«@n application—specific class resource file on the local host

For example, if the color of an application was séltein an application—specific user resource file on the local host, but you specified,
the command-line invocation, that this application’s color be fRetbthen the same resource was defined for two values, with the comm
—line resource setting &edoverriding the earlier setting 8lue Thus,Redis registered in that application’s resource database. Note that
applications have default values to which resources are set if you do not specify a value for a particular resource.

As you can see from the listed hierarchy, applications often set up their database of resource values using existing resource files. Soi
resource files come with the system, and some are files that you create yourself.

The following subsections describe in more detail the different ways that an application’s resource database can be set.

Setting Application Resources from the Command Line

Most applications provide command-line options that allow users to set resource values. These options, listed in Table 4-1, provide
customization for the most common resources.

Table 1 Some Standard X Command-Line Options

Motif User’s Guide 2

Option Abbreviation Description

—background —bg Color of the window’s background

~bordercolor —bd Color of the window’s border

~borderwidth —bw Width of the border in pixels

—display -d Display on which the client can run

~foreground —fg Color of the text or drawings

—geometry -9 Size and placement

—iconic =i Start application as an icon

—name -n Name of the application

~reverse =rv, +rv Reverse foreground and background colors

—title -t Text displayed in the title bar

~xrm None Next argument contains any resource
specification

In most cases, these options will correspond to specific resources. For example, if you-bsekbeoundption to change an application’s
background color, theackgroundresource value is set to that color. Note, however, that option names are not always the same as the
they are setting values for.

Setting resource values at the command line is useful to set up an application in a particular way just this once. However, if you inten
same resource setting for that particular application, you should put the resource specification into your user—preferred resource file (
Xdefaults in your home directory).

Per—Host User Environment Resource Files

Next in the hierarchical priority is the setting of user— and machine-specific resources. At initialization, the application checks if the
XENVIRONMENT environment variable has been set to the name of a specific resource file. If one has been set, then the applicatio
resource value settings from this file. If the environment variable has not been set, then the application initialization operation looks in
$HOME/.Xdefaults— host wherehostis the name of the host or machine running the application. This is a resource file that you can
run on your particular machine.

Per-Screen Resources

As of Release 5 of the X Window System (X11R5), any per—screen properties can be set and sto8€REHENM_RESOURCESproperty of
the root window of the default screen of the application’s display. For example, you can specify color resources for a color screen anc
monochrome resources for a monochrome screen. A resource database is created for each screen, and the application finds the resc
appropriate for each screen. The database is used to define resources when multiple screens are in use and, if some resources are r
all screens, it is typically set up with thelb —screen or xrdb —screens command. The former sets tS€EREEN_RESOURCES

property for the display’s default screen, the latter for a display’s multiple screens. Note, however, that when the system needs resou
screen that is not the display default, it usesSSBREEN_RESOURCESproperty of that other screen instead of the display’s default.

Server or User—Preference Resources

General resources that apply to all the screens of a display can have these common resources set and RE&AURGE_MANAGER
property of the root window on the default screen of the display. You can also use this property to set the resources of a screen if it is
screen of a display. This property is typically set up withxtidé —global command if some resources are not defined for all screens. |
property does not exist, the contents of the. Kidefaults in your home directory are used instead. Your persofufaults file is the
resource file where you usually put resource specifications that customize applications for your own use.

User Application File

You can also have your own application—specific resource file to set resources. This file sets resources for just one particular applicat
typically for one user or group of users. Usually, the name of the application—specific resource file is listed in that application’s associi

Motif User’s Guide 3

reference page, and is the name of that application’s class. As an example of an application—specific resource file name, the applicat
resource file for thecal application is name®Cal.

When an application looks for an application—specific resource file, it first checK&/BERFILESEARCHPATH environment variable,
which controls the search path that applications use to find application—specific resource files XAGPIRESDIR variable, then an
implementation-dependent predefined search path starting from the user’'s home directory. Refer to Section 4.1.1.7 for a description
paths.

Application Class Resource File

To set all the resources of a particular application class, an application—specific class resource file should be used. Application class
are application—specific default files that are defined for the entire system. However, instead of being named with the application nam
named the according to the application’s class name. For exampteatlaplication has a class namex@al, which would also be the nam
of its application—specific default file. Application default files are typically predefined and not generally accessible to the user. But, yc
check these files to see what the default values are for particular applications, then change them in your own user—specific resource 1
command line.

When an application looks for an application—specific class resource file, it first ched&tIESEARCHPATH environment variable for
guidance, then it uses an implementation—dependent predefined search path.

File Search Paths

An application searches for resource files and any localized databases on a file search path. A file search path is an ordered set of pz
resource file is not found in the first location, the application searches in the next location, and so on, until a resource file is found or &
locations have been searched.

File search paths can incorporate a set of substitution characters that represent variable data. At run time, an application looks at cer
data and supplies corresponding values for each substitution character in the file search path. X applications accept the following suk
characters:

«2N is replaced by the class name of the application.

«8Cis replaced by the value of thastomizatiomesource when searching for application defaults files.

«&6L is replaced by the display’s language specification. The format of the language specification is implementation dependent; it may
language, territory, and codeset components.

<%0l is replaced by the language part of the language specification.

<ot is replaced by the territory part of the language specification.

«@ocis replaced by the codeset part of the language specification.

<% s replaced by %.

For example%N can represent the class name of an application. \Mieis in a path description, the application class name is substitutec
the pathname. If the first path in a search path hierardhgridib/X11/app-defaults/%N and the application class namévailer,
the %N substitution causes the application to look in the directmnylib/X11/app—defaults for a file namedvailer, which contains
its application class defaults.

There are a number of environment variables that you can set to specify the search paths that an application uses to find various resc
For example, thkUSERFILESEARCHPATH environment variable controls the search path that applications use to find your applicat
—specific resource files. You can also setXE#ENVIRONMENT , XFILESEARCHPATH , andXAPPLRESDIR environment variables to
specify search paths for other aspects of resource lookup.

For more information about these features, refer té’tbgrammer’s Supplement for Releasd 891, published by O'Reilly and Associates,
Inc.

Motif User’s Guide 4

Resource Specification Syntax

To understand how to assign a resource value, a description of the resource specification syntax is first provided. You assign resourc
through this syntax, especially when using resource specification files.

An application’s resource specification syntax is composed of the name of the application (or client), its child widgets, and the resourc
being specified. It depends on how the components of an application are organized; in other words, the hierarchical relationship betw
parent and child widgets. For example, in a mail program there might be a MainWindow containing several PushButtons. Each PushE
have an associated subwindow that contains any number of Menus. If you want to specify the font size for a single Menu in one of the
subwindows, you need to know the names of all the widgets and their positions in the widget hierarchy.

These hierarchical components of a resource specification syntax are separated by one of three separators.

The dot is used between either an instance or class name and the lower widgets of a hierarchy to indicate a tight binding, where
presented hierarchy must be in the correct order. Usually the name of a class or an instance of the application comes first, follo
name of the highest widget in the widget hierarchy. The name of the top widget in the hierarchy is followed by the specification
number of widgets lower in the hierarchy. Finally, the resource to be specified is placed at the end of this hierarchical specificati

The asterisk is used between either an instance or class name and any of the lower widgets of a hierarchy, or the resource itsel
a loose binding, where the asterisk acts as a wildcard. The asterisk substitutes for any number of components in the widget hie
also be used as the first component in a resource specification, without an preceding instance or class name.

Note that using the (asterisk) causes the system to assume that the resource value being set is to apply to all the represented c
Because of this capability, you should be careful of unexpected results from overuse (@fsteeisk). For example, if you specify a
resource specification of the following:

*Foreground: Purple

this would make the foreground of any client/application that had a foreground resource be purple.

Unlike the preceding two separators, the question mark is used between two dots, and substitutes for a single widget or class n
also substitute for the first component in the resource specification, be followed by an asterisk, and not have a preceding period

A resource specification syntax can be expressed by using any combination of these separators.

Every application and resource in X has both an instance name and a class name. The instance name identifies each application anc
individually. The class name specifies the general category to which each individual instance of an application or resource belongs. F
the class nam®lailer specifies all instances of an application caffedler. Class names always begin with an uppercase letter and instanc
names always begin with a lowercase letter. If the instance name of a specific component is a compound pustiBiikenthe second worc
usually begins with an uppercase letter. The class name and the instance name for an application are often the same, except for the
initial character(s). The instance name for an application is usually the name of the command that is used to start the application. The
specification of an instance and its classes can be a hierarchical one, where an instance can have multiple classes.

The presence of the ? (question mark) separator slightly changes the existing X11 rules for matching components when an applicatio

the value for a resource. When a resource match is requested, the system performs a left-to-right scan of the resource specification

the application. When there is some ambiguity in the matching process, such as that caused by use of one of the wildcards, the follov
followed to determine the priority order for specifying the resource value:

«4 resource match by the current component’s name has priority over a match with the same component by class. A match by either
name or class takes precedence over a match by the ? (question mark) substitution character, and any of the three matches has pris
(asterisk) substitution.

«4 resource that uses a. (dot) to precede the current component has a higher priority than one that uses an * (asterisk) in the same p

Using #include in Resource Files

When using therdb client program, resource files can also usefthelude " filenamé directive to include other resource files into the

Motif User’s Guide 5

current resource file. This can be used to reduce duplicate entries in resource files. For example, if there is a base resource file for ar
and you simply want to reset the values of some of the base resources for this application, you can sfimplydese to put the file into
your own application—specific resource file and change just the resource values you want to change, leaving the other resources as tl

Assigning Resource Values

This section provides examples of how to use the resource specification syntax. In general, these syntaxes are most important when
resource specification files. Most of the examples illustrate typical lines you might use in a resource specification file. However, as sh
Section 4.3, if you are using an application’s command line to set resource values, using fuller resource specifications in the comman
ensure that these settings override existing ones.

The following is a format that uses a. (dot) as a separator.
Client. widgetl1. widget2. ...resource: value

As an example, you could use the following specifications in ydefaults file to set resources forcal clients on your system:
XCal.edit.geometry: 350x200

In this example, the specification states that only the geometry resource for the edit child widg¥éCal tharent widget is to be set with the
size of 350 by 200 pixelXCal is the class name.

The following is a format that uses an * (asterisk) as a separator. It illustrates a general, abbreviated format:
Clientrresource: value

As an example, you could use the following specifications in y¢defaults file to set resources foterm clients on your system:
XTerm*background: Wheat

XTerm*foreground: Navy
XTerm*font: fixed
XTerm*scrollBar: true
Xterm*geometry: 80x30

In this example, every instance oferm window on your system appears with a wheat—colored background and navy—colored foregrc
(the color of any text or graphics that appear in the window), uses the font fisedebas a size of 80 by 30 pixels, and provides a ScrollB¢
XTerm is the class name.

When using an * (asterisk) to substitute for the class name, the resource specification line would appear as the following:
*Foreground: Blue

This specification ensures that the foreground (text and graphics) in all clients will be blue.

You can use the following specification in yoMdefaults file to set the font for every window in every instance ofrttaler application:
Mailer*fontList: fixed

The next example shows how you would specify the font only for the area in which you compose mail messageslér #pplication:
Mailer*messageArea*fontList: fixed

The following is a format that uses the ? (question mark) separator.
Client>. resource: value

As an example, you can use the following resource specification to set the background color for all of the widgets that are grandchildr
top widget in the hierarchy for the application:

With X11R5 and thexrdb client program, you can now also use C preprocessor commands ixXgetaults file to specify per-screen
resources. For example, you can separate resource specifications for color screens from monochrome screens as follows:

#ifdef COLOR

*Background: Grey

*Foreground: Navy

#else

*reverseVideo: True

#endif

You can also specify unit types in yaiidefaults file for any resource that is of type Dimension or Position with the following format:

Motif User’s Guide 6

<floating value><unit>
where:
unit
is <", pixels inches centimetersmillimeters points font units-
pixels
is <pix, pixel, pixels>
inches
is <in, inch, inches
centimeter
is <cm, centimetercentimeters
millimeters
is <mm millimeter, millimeters>
points
is <pt, point, points>
font units
is <fu, font_unit font_units
float
is {"+"]"="H{<"0"-"9">*}.}<"0"-"9">*
Note that the type Dimension must always be positive.
For example,
xmfonts*XmMainWindow.height: 10.4cm
*PostIn.width: 3inches

The documentation for an application should provide the instance and class names of any components that the application allows yot
customize. When appropriate, use the class name in a resource specification to ensure that all instances will use the same resource '
Chapters 5, 6, and 7 provide additional information about the specification of particular resoursesifand Motif applications.

Motif User’s Guide 7

Using Command-Line Options

Many X applications provide the same basic set of options, as listed in Table 4-1. Often, you can just supply simple arguments to the
to have them set the resources properly. Other times, you need to define fuller resource specifications to get the values to override th
resource settings. This section provides some examples of how to use command-line options to set resource values.

The simplest use of a command-line option is to pass it a single argument, as follows. If you want to start a new terminal window witt
that is not the background color specified in the configuration file, start the client by usitithtion; all other resources will take the defe
values. For example:

% xterm —bg Red &

In the case of valid resources that do not have associated command-line options, you carkuseofiteon to set the values. Any valid
resource specification can follow thgrm option in ” (single quotes). For example:
% xclock —xrm "*hands: Red’ &

Resources specified in this manner are only applicable to the current instance of the program.

In the preceding examples, a more specific resource specification was unnecessary to achieve the desired effect. However, a resourc
specification in a configuration file can take precedence over a command-line option if the command line is less explicit. For example
resource file includes this specification:

xclock*hands: Blue

the following command line will have no effect:
% xclock -xrm *hands: Red’ &

To override the specification in the resource file, you would have to enter the following command line:
% xclock —xrm ’xclock*hands: Red’ &

Note that not all Motif applications support all of these command-line options. To see which options are actually available for a partic
application, refer to the documentation for the application.

Motif User’s Guide 8

Modifying the Resource Files

Most of the features that you will want to customize can be set with resourcesXdefeults file in your home directory. However, key
bindings, mouse button bindings, and menu definitionsnfiem are specified in the supplementamywvmrc file, which is referenced by
resources in theXdefaults file.

If you do not have anwmwcfile in your home directory, you can copy it as follows:
% cp /usr/lib/X11/system.mwmrc ~/.mwmrc

If you do not have aXdefaults file in your home directory, you can create one with any text e@oce you have these files in your hon
directory, you can set resource values in them as you wish. Because you've made your own copy ofitirarthdile, your specifications will
not interfere with the specifications of other users.

Motif User’s Guide 9

Using the xrdb Client Program

The X Window System uses thedb client program to create and update a resource database on each server. Nodimadiyun when X
starts up. If you make any changes to resource settings in the resource files, youxedin fanthe new changes to take effect. Note that the
xrdb is an optional utility for the setting up of the resource database.

To replace old resource settings with new settingsxrdin with the—loadoption, as shown in the following example:
% xrdb .Xdefaults

In this example, any changes you made to resource specifications Xuéfaults file are available to clients that use these resources. /
resource that you do not specify a new value for will be overwritten with an empty value. After replacing resource settings in the datat
need to restart any clients, includimgvm, so that they will reread the database and use the new resource settings.

To append new settings without changing the old settingxrdinwith the—mergeoption, as shown in the following example:
% xrdb —merge values.new

In this example, the resource settings contained in thediles.new will be appended to the resource database. You can specify the cl
in a file, as in this example, or you can specify an individual resource setting, as shown in the following example:

% xrdb —-merge

xterm*scrollBar: True

PressCtrI-D to signal the end of input.

To check the current resource settings, b with the—queryoption. If you have not previously rumdb, you will not get any output from
this command. If you have ruadb, the output will look something like the following example:

xterm*scrollBar: on

xterm*font: terminall4

Mwm*keyboardFocusPolicy: explicit

Mwm*buttonBindings: ExplicitButtonBindings

emacs*geometry: 77x34x17+225

As of Release 5 of the X Window Systexndb has been modified so that you can now specify resources on a per—screen bagiobie
—screen—-screensand-all options control whether resources are read from the screen—independent property, from screen—-dependent
or both. The-removeoption indicates that the specified property should be removed from the server. For more information about these
as well as many other options for advanced customization, see the reference pagésifothe X Window System documentation.

Motif User’s Guide 10

Using Internationalized Applications

Internationalizationis a method of application development that enables an application to be used in a ViadatgThe concept of a locale
is used to encompass the characteristics and requirements of a given language. An internationalized application requires that any lan
—dependent or custom-dependent information be stored external to the application program. A locale can be characterized by severe
components. For example, character sets, sort order, text direction, and formats for data such as date and currency are used to desc
characteristics of a locale. For each different locale, information such as menu items, help information, and user prompts is defined ai
separately. The information is localized, which means that it has been tailored for a specific language and/or country.

An application designed to run in different locales examines certain resources and environment variables in order to determine which
use when executed. An application establishes file search paths for resource files and other language-dependent information. There
variety of information that can be localized. Localized information is stored in files that reside in different directories. Motif uses an unt
Xt Intrinsics mechanismXtResolvePathnamé to select and locate the appropriate files, depending on the locale.

An internationalized application can set its locale at run time, typically using an internal procedurel@atjadge procedureThe language
procedure processes data in your user environment and sets the application’s locale. This feature enables you to modify your user er
and rerun an application in a different locale. An application can use a default language procedure or supply its own procedure. As a
applications can process the same user environment data with different results.

Refer to the user documentation for the application you intend to use for detailed instructions on using its internationalized features. F
detailed information about internationalization issues, refer to the "Internationalization" chaptédatiftfeogrammer’s Guidend the
Programmer’s Supplement for Releasd 891, published by O'Reilly and Associates, Inc.

Layout Direction

Layout direction is the direction that is used to display visual components such as PushButtons, PopupMenus, ScrollBars, titles, and :
general, this direction matches the direction that people use when reading or writing in a particular language. Languages such as Eng¢
German, and Swedish are read and written from left to right, top to bottom. Therefore, when users working in those languages enter
from a computer keyboard, each new character is displayed to the right of the preceding one. These same users would also expect tt
other visual components to be displayed from left to right. For example, when you use a Pulldown Menu to access a cascading menu
—right environment, the cascading menu pops up to the right of the Pulldown Menu. Another example is the way that ToggleButtons &
In a left-to-right environment, the ToggleButton is located to the left of its text label. However, for right-to-left languages, such as Ar
Hebrew, the ToggleButton could be located to the right of its text label. The layout direction of a visual component is defined by the a)
and is affected by the environment's locale. In the example of the cascading menu, the menu would cascade to the left.

In some Asian languages, text is drawn vertically. Vertical writing is enabled wh¥mfhextresourceXmNlayoutDirection is set to
XmTOP_TO_BOTTOM . In addition to causing text that you enter to be drawn verticallyriiBext widget exhibits other behaviors
consistent with this manner of entering and editing text; for example,

«¥ word wrapping is turned on, text is wrapped from one column to the next, rather than from line to line.

«# key binding that (in the case of English) would cause the cursor to move to the next character in the current line, instead causes tt
move to the next character in the current column.

Input Methods

An input methods the underlying mechanism that takes keyboard input and displays the locale’s corresponding character(s) on the sc
input method interprets the user’s keystrokes based on the conventions supplied by the input method. The input method used by an ¢
based on an alphabetic language is generally invisible. However, ideographic languages, such as Chinese or Japanese, may use an
that composes keystrokes in a separate window cajeet@dit window For example, you type a phonetic representation of a spoken wor
the input method determines the ideographic character that is pronounced in that way. When more than one character meets the crite
method displays a list of characters to select from. Once you confirm a selection in the pre-edit area, the information is passed to the

Input methods can be defined by the platform vendor, an application, or a user. Information about available input methods and their fe
be found in the documentation for the system or application that you are using. Motif provides support for the following input method ¢
OffTheSpot, Root, None, OverTheSpot, andOnTheSpot

For example, when th®@nTheSpotinput style is used, a pre—edit string is displayed in the text widget window. Depending on the text in
mode, new text is inserted into the existing text or overwrites it. You can edit the pre—edit string until you commit the buffer by some &

Motif User’s Guide 11

as cutting, pasting, selecting an object, moving the cursor, or using a "commit" key. For a given application, the action that cause the
committed depends on the implementation of the input method for that application.

Setting and Modifying the Language Environment
An internationalized application can dynamically set its language environment when it is run. The design of the application defines wt
information is expected and how it is used to set the language environment. Typically, you can modify the language environment use:

application by specifying a language resource or a language environment variable. The exact method that you use to set the languag
environment for an application is defined by the application, so you need to see the documentation for the application for specific info

Message Catalogs

Some internationalized applications use message catalogs to display text to users. Message catalogs are files that store text that is p
specific locales (for example, fr_FR.ISO8859-1). Refer to Chapter 5 for more information on these catalogs.

Motif User’s Guide 12

