A First Guide to PostScript

Peter J Weingartner
ewelngar@cs.indiana.edu

April 20, 1997

Contents

o O W >r

m

Introduction

What isPostScript?
Graphics Concepts

L anguage Concepts
Programmingin PostScript
Drawing and Filling Shapes
Putting Text on the Page
Transformations
Clippingfor Effect
Encapsulated PostScript
Post Processing

Examples

PostScript Operators
Errors You Might Encounter
String Escape Codes

PostScript Books

11

13

16

18

20

26

31

43

45

Chapter 1

| ntroduction

About this Document

This is meant to be a simple introduction to programming in the PostScript page description language from Adobe.
This document is not meant to be a comprehensive reference manual (although it does contain an index of some of
PostScript’s standard operators and a list of various errors). There are far better reference books, if thisis what you
need. Instead, thisis meant as an easily accessible tutorid. It was written with the assumption that you have some
experience programming and are familiar with concepts like arrays and variables.

The scope of thisdocument isfairly limited. | cover only asubset of PostScript Level 1 (theearliest version). Adobe
brought out animproved version of PostScript (Level 2) someyearsago, and they just recently introduced Level 3. This
document was hever meant to cover these versions of PostScript (although the code | present here should run just fine
onalevel 2or Level 3 capableprinter). Likewise, | do not cover any advanced printing concepts like color separations
or haftone screens (thisis mainly dueto ignorance on my part, | am an engineer... not a printer or graphic designer...
athough | do admire good graphic design when | seeiit).

| created this document because | have noticed that many people on the Internet have been asking for some online
document to get them started. | decided that this was a good opportunity.

Thisversion of theguidewastypeset in IATEX 2e after being converted fromtheorigind HTM L version by htmi 2l atex.
The resulting IATEX code was editted by hand, but many errors may have been introduced in the process. Keeping a
IATEX and an HTML version of this document in sync with each other isarea pain. My main interest, and my main
activity centers around the HTML, since | think that is the best way to present this materia. | created this document
mainly because there has been considerable demand for a printed version of the web version. | hope you likeit, but |
must warh you that theweb version islikely to be the most accurate and up-to-date. | maintainthisversion aswell as|
can, but | may have missed updates to the HTML version. If anyone knows of an easy way to have one source for both
printed and HTML versions of the same document, I'd be interested in hearing about it. Please note that the origina
web version can be found at:

http://ww. cs. i ndi ana. edu/ hypl an/ ewei ngar/ Post Scri pt/ postscript. htnl

Note

PostScript is aregistered trademark of Adobe Systems Incorporated. The copyright to the PostScript language is aso
held by Adobe Systems Incorporated. Lega questions concerning these issues should be directed to them.
Disclaimer

No warranty or guarantee, either expressed or implied, is made as to the correctness of this document. The author can
not be held responsible for any damages that may occur through the use of any code contained herein.
You get what you paid for.

That noted, permission to copy freely al informationwithin thisdocument is granted free of charge, so long asthe
original author is acknowledged.

Chapter 2

What is PostScript?

PostScript is a programming language optimized for printing graphics and text (whether on paper, film, or CRT isim-
material). In the jargon of the day, it is a page description language. It was introduced by Adobe in 1985 and first
(to my knowledge) appeared in the Apple LaserWriter. The main purpose of PostScript was to provide a convenient
language in which to describe imagesin adevice independent manner. Thisdevice independence means that theimage
isdescribed without reference to any specific devicefeatures (e.g. printer resol ution) so that the same description could
be used on any PostScript printer (say, a LaserWriter or aLinotron) without modification. In practice, some PostScript
files do make assumptions about the target device (such as its resolution or the number of paper traysit has), but this
is bad practice and limits portability.

The language itsdlf, which is typically interpreted, is stack-based in the same manner as an RPN calculator. A
program pushes arguments to an operator onto a stack and then invokesthe operator. Typicdly, the operator will have
some result which is left at the top of the stack. Asan example, let us say we want to multiply 12 and 134. We would
use the following PostScript code:

12 134 mul

Thefirst twowords 12’ and ‘134’ push the numbers 12 and 134 onto the stack. ‘rmul ’ invokesthe multiply oper-
ator which popstwo values off the stack, multipliesthem, and then pushes the result back onto the stack. The resulting
value can be |eft there to be used by another operator later in the program.

To follow the conventions used by Adobein their manuals, | will synopsize operators using the following scheme:

arg-larg-2...operator result

This scheme means that, to use operator, you must push arguments arg-1, arg-2, and so on before invoking the
operator. operator will return the result: result. Many operators return no result (they have some side-effect); these
will be shown asreturning *-'.

Chapter 3

Graphics Concepts

There are afew concepts that you need to know about before we dive into the language itself. These concepts are the
concepts PostScript uses to describe and manipul ate images on a page. There are really only afew.

Device Space This s the coordinate space understood by the printer hardware. This coordinate system is typicdly
measured in terms of the device's resolution. There isreally nothing else that can be said about this space, as
PostScript programs are typically not expressed using it.

User Space Thisis the coordinate system used by PostScript programs to describe the location of points and lines.
User space is essentially the same as the first quadrant of the standard coordinate system used in high school
meath classes. Point (0, 0) isin the lower left corner. Coordinatesare real numbers, so thereisno set resolution
inuser space. The interpreter automatically converts user space coordinates to device space.

Current Transformation Matrix The transformation of user space coordinates to device space coordinatesis done
through the current transformation matrix. This matrix isathree by three matrix that allows the user to rotate,
scale, and trand ate the entire user space withinthe device space. Thisisthesource of alot of PostScript’ spower,
as will be demonstrated later.

Path A path is acollection of (possibly digoint) line segments and curves arranged on the page. The path does not
describe actual ink on the paper; it merely describes an imaginary tracing over the page. There are operators
which allow the user to draw ink along the path (st r oke), fill an enclosed path withink (fi | I), or clipout all
futureimages that are outside the path (cl i p).

Current Path Thisisthe path that the PostScript program is creating at the moment. The current path is assembled
piece by piece.

Clipping Path The PostScript rendering system will ignore any part of aline segment, curve, or bitmap that extends
outsidea certain region; it will only draw the parts of those elements which are withintheregion. The regionis
described by a path called the clipping path. The clipping path isusualy arectangle about a quarter of an inch
in from the edge of the page, but it can easily be set by the user to an arbitrary path.

Graphics State Thisisa collection of various settings that describe the current state of the graphics system. Things
like the current path, the current font, and the current transformation matrix make up the graphics state. Often,
a program will need to temporarily save a graphics state to be used later. There are a couple of ways of doing
this, but the easiest is to push the state onto a special graphics state stack and pop it back later. This can be
accomplished withthegsave, and gr est or e operators.

Chapter 4

L anguage Concepts

As a programming language, PostScript is particularly simple. There are realy only a few concepts that need to be
sketched out.

Comment A commentin PostScriptisany text preceded by a‘%'. Thespecia comment ‘%!’ asthefirsttwo characters
of a PostScript program is seen as a tag marking the file as PostScript code by many systems (including Unix’s
Ipr command). It isagood ideato start every PostScript document witha ‘%!’ ... doing so will ensure that every
spooler and printer the document may encounter will recognize it as PostScript code.

Stack Thereare severa stacksinaPostScript system, but only two are important for thisguide: the operand stack, and
thedictionary stack. The operand stack iswhere argumentsto procedures (or operators, in PostScript jargon) are
pushed prior to use. The dictionary stack isfor dictionaries, and it provides storage for variables.

Dictionary A dictionary isacollection of name-value pairs. All named variables are stored in dictionaries. Also, all
available operatorsare stored in dictionariesalong with their code. The dictionary stack isastack of al currently
opendictionaries. When aprogram refersto somekey, theinterpreter wandersdown the stack lookingfor thefirst
instance of that key in a dictionary. In this manner, names may be associated with variables and a smple form
of scoping isimplemented. Conveniently, dictionariesmay be given names and be stored in other dictionaries.

Name A nameisany sequence of characters that can not beinterpreted as a number. Withthe exception of spaces and
certain reserved characters (the characters *(*, ‘), ‘[', ‘1", '<’, *>", *{", '}, /", and ‘%') any character may be
part of aname. The name may even start with digits(1Z isaname, for example), but you can get into problems
with them (1E10 is areal number). A name is seen as being a reference to some value in a dictionary on the
dictionary stack.

It should be noted that there are a couple of names that are legal in PostScript which do not follow the above
definition. These arethe’[" and the’]’ operators. Yes, they are operators and are stored in the dictionary. Some
other names that might surpriseyou are: '=",'==",'<<’, and '>>’".

If anameis preceded by a slash, PostScript will place the name on the stack as an operand. If the name has no
dash, theinterpreter will look up itsvalueinthedictionary stack. If thevaueisaprocedureobject, the procedure
will be evaluated. If the value is not a procedure, the value will be pushed onto the operand stack.

Number PostScript supportsintegers and reals. You can express numbers in two forms. radix form, and scientific
notation. Radix form isa number of the form radix#val ue where radix specifies the base for value. Scientific
notationis the standard manti ssaEexponent form used in most languages.

String Stringsare, of course, just stringsof characters. There aretwo ways of expressing stringsin Level 1 PostScript.
The most common way is to wrap your text in parentheses. For example the string “ Thisisastring” would be
writtenas(This is a string). Youcanasoexpressastringashexidecima codesin angle brackets. For
example, thestring“ABC” would be expressed as<414243>. There are severa escape codes that may be used
inthe parenthesis format of strings.

Array Arraysin PostScript are like arrays in any other language. Arrays may contain objects of different type, and
they arewritten asalist of objectssurrounded by brackets. Forinstance, [12 / Foo 5] isathreeelement array
containing the number 12, the name Foo, and the number 5.

Procedure A procedureisyour way of defining new operators. A procedureisan array that isexecutableand iswritten
with bracesrather than brackets. For example, aprocedureto squarethetop e ement on thestack might bewritten
as: {dup mul }. Wecan define this procedure to be the square operator with: / squar e {dup nul } def.

Chapter 5

Programming in PostScript

Programming in PostScript isrealy pretty easy. The fundamentals are that you push operands onto the operand stack
by naming them, and then you invoke the operand to use them. That'sreally al thereistoit. Therea art is knowing
which operand to use. Operatorsto draw and put text on the screen will be covered |ater, and these make up the bulk
of PostScript code, but there are a couple that are used mainly for maintaining the program itself.

Thefirst of these operatorsisdef . def isresponsiblefor entering a definitioninto the top-most dictionary on the
dictionary stack. The top operand on the operand stack is the value, and the operand below the value is the key (and
should beaname). Let’'s say that we wanted to define the name x to have avaue of 5. The PostScript to do thisis: / x
5 def . Noticethe use of the dash on the x. The slash ensures that the name x will be pushed onto the stack and not
any vaue it may already have in the dictionary stack.

def isalso used to define new operators. The valueinthiscaseisjust a procedure. The following code defines an
operator f 00 which addsitstop-most two operands and multipliesthe result with the next operand on the stack: / f 0o
{add mul } def. Remember, operandsthat return results push them onto the stack, where they may be used later.

An important point to know when defining procedures is that the elements in the procedure are not eval uated until
the procedureisinvoked. That meansthatintheprocedure{1 2 add 3 nul }, theactua names’add’ and ' mul’ are
stored in the array that is the procedure. Thisis different from an actual array in which the components are eval uated
when the array is created. For contrast, thearray [1 2 add 3 nul] contains one object: the number 9.

This delayed evauation of procedure components has two important effects. First, the definition of an operator
used in aprocedureistheonethat isin effect when the procedureisrun, not when it isdefined. Second, because each
operator has to be looked up each time the procedure is invoked, things can be a little low. Fortunately, PostScript
providesahandy operator to replace each namein aprocedure object withit’scurrent definition. Thisoperator iscalled
bi nd, and it can speed up your program considerably. bi nd istypicaly usedas: / f oo {add mul } bi nd def.

Thisdefinesf 0o to be a procedure array with two components. the proceduresfor add and nul . Notethat, if add
or mul isre-defined after defining f 0o, f 0o will have the same behavior as before. Without the use of bi nd, f oo’s
behavior would change.

Chapter 6

Drawing and Filling Shapes

Principles

The main purpose of PostScript isto draw graphics on the page. One of the elegant aspects of PostScript isthat even
text isakind of graphic. The main task that must be mastered, then, is constructing paths which may be used to create
theimage.

To draw and fill shapes, the basic sequenceis:

o Start the path with the newpat h operator.

¢ Congtruct the path out of line segments and curves (the path need not be contiguous).
¢ Draw the path with the st r ok e operator or fill itinwiththef i | | operator.

This basic sequence can be modified to do more complicated things as we will see later.

Drawing a Box

In thisfirst example, we will draw a square inch box toward the lower left corner of the page. We start off by defining
afunctionto convert inchesinto PostScript’ smain unit, the point (apoint isdefined in PostScript as 1/72th of an inch).
The conversionissimple, wejust multiply the number of inchesby 72. Thisgivesusthefunction/ i nch {72 nul }
def .

To actually draw the square, we start anew path and movethe current point to a point an inch in from both margins.
Thisisaccomplished with the code:

newpat h
1 inch 1 inch noveto

At thispoint, the path contains only the point (72, 72). We add in line segments leading away from this point with
the lineto operator. This operator adds aline segment from the current point to the point specified to lineto and makes
that point the new current point. We can build three sides of the box as follows:

2inch 1 inch lineto
2 inch 2 inch lineto
1inch 2 inch lineto

We can add the last line by telling PostScript to close up the path with the smallest possible line segment. The
cl osepat h operator doesthis. Thisoperator isespecialy useful if you need aclosed figurefor filling. Oncewe have
closed the path, we can draw it with the st r oke operator. We finish off the example by gecting the page (if you are
using a printer). PostScript € ects a page with the showpage operator:

cl osepat h
stroke
showpage

Refinements

Thel i net o operator worksin absol ute coordinateswithinuser space. Thatis, 72 72 | i net o addsaline segment
from the current point to the point (72, 72) in user space. In drawing the box, however, it is more convenient to ignore
the absol ute coordinates of the box’svertices and think instead of the lengths and directions of itssides. Fortunately,
PostScript provides a version of | i net o which takes relative coordinatesinstead. Thisisther | i net o operator.
r1i net o addsthe coordinates given as operands to the coordinates of the current point in the path to find the desti-
nation point. Thatis, 10 20 rl i net o will draw aline from the current point to a point 10 pointsto the right and
20 pointstoward the top of the page. Thisisin contrastto 10 20 | i net o which adds aline segment which always
ends at (10, 20).
Toseehow wecanuser | i net o, let’sreplacethel i net o linesin thelast example with the following code:

1 inch Oinchrlineto
Oinch 1 inch rlineto
-1 inch Oinchrlineto

This new example will draw the same figure, but it draws the lines using relative coordinates instead of absolute.
Thismakesitalittleeasier tovisualize and hasthe added benefit that the same code can draw thethreelinesat adifferent
location. Note that a negative relative x coordinate moves the point in the left direction while a negative relative y
coordinate moves the point down the page.

Filling Shapes

Filling ashapeisjust as easy as drawingit. You create the path using the standard path creation operators, but instead
of caling st r oke at theend, youinvokethefi | | operator. Thefi | | operator will fill the path with the current ink
settings. If you want to fill a shape with a pattern, you will need to do some specia tricks which we will cover later.
We will use the box from above as an example, but we replace the original invocation of st r oke withfil I .

fill usesasimplewindingrule (which isdescribed in the Programming Language Reference Manual) to deter-
minewhat parts of the page are inside or outside the path. The regionsthat are inside are painted. Note that arbitrarily
complex shapes can befilled with thisoperator so long as you have enough memory on your PostScript interpreter. You
can easily fill in different shades and even some patterns, but to fill an area with a complex image takes some special
effects which we will cover later.

Shading and Width

In PostScript, you can view lines as being drawn by pensthat have a given width and ink as having particular shades.
You are not restricted to completely black ink and one-point wide lines. PostScript provides two handy operators to
change these characteristics.

The set gr ay operator sets the intensity of theink used in drawing lines and filling shapes (actually, set gr ay
affects all subsequent markings made on the page). set gr ay takes asingle numerical argument between 0 and 1. 0
signifiesblack, and 1 signifieswhite. Numbers between these two values signify various shades of gray.

Theset | i newi dt h operator does just what its name suggests: it sets the width of linesto be drawn. It takes a
single numerica argument which isthewidth of thelinein points. set | i newi dt h affects all lines stroked after the
operator isinvoked.

Both of these operators affect the markings placed on the page after they are called... they do not effect the path
until it isstroked or filled. In particular, you can not set thewidth or gray level for one part of the path and then change
it for another... they are the same for al parts of the path, sinceit is stroked or filled only once. Also, both of these
operators affect part of the graphics state and can be saved with gsave and restored with gr est or e.

10

Chapter 7

Putting Text on the Page

Printing text on apage is, understandably, a simple process. It consists basically of these main steps:
e Setupafonttouse
¢ Set the current point to where the lower eft corner of the text will be
¢ Givethestring to print to the show operator

The show operator is the basic operator for printing strings of text. It takesa string and printsit out in the current
font and with the lower | eft corner at the current point. After thetext has been printed, the current point is at the lower
right of the string.

Fonts

Fonts in PostScript are actudly dictionaries. A font dictionary contains severa operators. Most of these operators
simply set up the path for a single character in the font. When PostScript needs to typeset an ‘A’ in the current font,
it finds the operator specified in the font for ‘A’ and invokesit. This operator goes about the business of drawing the
letter. This means that there is no fundamental difference between letters and any other kind of ink on the page: text
is graphics. Furthermore, since afont is essentialy just a program to draw things, the current graphics state appliesto
text just as much asit appliesto linesand curves which your program draws. Thisisone of the most powerful features
of PostScript, as we will see later.

The fonts themselves are stored in a special dictionary of fonts, and they are named. If you want to retrieve a font
by name, you need to usethef i ndf ont operator. f i ndf ont retrievesthefont from thedictionary (if itisthere) and
leaves the font on the stack. You can then specify how big the font should be and make it the current font. The basic
process for setting thefont is:

¢ Retrievethefont from thedictionary withf i ndf ont ,
o Setthesize of thefont withscal ef ont

o Make thisnew font the current font with set f ont

scal ef ont takestwo arguments, thelower argument on the stack isafont dictionary whilethe second isthesize
of thenew font inpoints. scal ef ont returnsanew font dictionary which isthe same as the old one but scaled to the
givensize. set f ont , on the other hand, takes afont dictionary and makes it the current font.

For example, let us say that we want to start typesetting in Times Roman, and wewant it to be set to 20 points. The
following code would set up the correct font:

/ Ti mes- Roman findfont % Get the basic font
20 scal ef ont % Scal e the font to 20 points
set f ont % Make it the current font

11

Sincethefont “Times-Roman” isstored in adictionary, we search for it using its PostScript name. Your printer will
usually comewith aset of builtin fontsand will amost always alow you to add more. The names of thefontsavailable
will vary from printer to printer, but Timesis amost dways present. Fontstypicaly comein families. “Times’ isthe
name of the family we used here, and it has four member fonts: Times-Roman, Times-Italic, Time-Bold, and Times-
Boldltdic.

Showing Text

The show operator is used to typeset text on the page. It takes a single argument: a string containing the text to be
typeset. Text can be considered to be part of the path, so you must also have set the current point with call to moveto
or an equivalent operator. A typica call to show might look likethis:

newpat h % Start a new path
72 72 noveto % Lower |l eft corner of text at (72, 72)
(Hello, world!) show % Typeset ‘‘Hello, world!"’

If weranthiscoderight after the font sel ection code above, we would get the string “Hello, world!” printed aninch
in from the lower left corner, and it would be printed in 20 point Times-Roman.

12

Chapter 8

Transfor mations

The PostScriptinterpreter keepstrack of amatrix called thecurrent transformationmatrix. When constructinganimage,
theinterpreter uses thismatrix to convert theworld coordinates used by the programinto device coordinatesused by the
printer itself. Generaly, the actual contents of the matrix are of littleinterest to a well-written PostScript program; the
reason for thisisthat the specific contents are device-dependent. A program that uses them might not work properly.
PostScript does provide anumber of operators, however, that transform the matrix in adevice-independent way. These
operatorsalow youtotransformtheway user space maps onto device space, and they modify the current transformation
matrix with a simple matrix transformation. The basic transformation operators are:

e rotate
e transl ate
e scal e

It is useful to redlize that the current transformation matrix (and, hence the effect of all these operators) is part of
the current graphics state and can be saved and restored using the gsave, and gr est or e operators. In addition,
the transformations on the matrix affect path components constructed after the transformation. Even if a path isonly
partially constructed when atransformationisinvoked, the parts of the path that werein place beforethetransformation
will be unaffected.

Rotate

Ther ot at e operator takes a single, numerical operand. This operand specifies how many degrees to rotate the user
space around its origin (positive values specify counter clockwise rotations). This transform allows you to do some
pretty neat tricks. For example, let’ssay you have written a routineto draw some complex shape; and you have found
that you need to draw it several times at different angles. In a more primitive graphics system, you might need to re-
write to routine to take an angle as an argument, but in PostScript you only need to rotate the coordinates with the
r ot at e operator.

Asaconcrete example, let’ssay you want to draw linesinacircular pattern so that each lineisten degreesfromits
neighbors. Rather than figure out the coordinates for each of the 36 lines, we can just draw a horizontal line and rotate
it repeatedly to different angles. To do the repeated |ooping, we can usethef or operator. Thef or operator takesfour
arguments: aninitial index value, a step size, afina index vaue, and a procedure. The operator increments an index
fromtheinitial valueto thefina value, incrementing it by the step size. For each index vaue, f or will push theindex
on the stack and execute the procedure. This gives you a simple means of 1ooping.

We gtart by setting up the f or loop. At the beginning of the loop’s procedure, we start a new path and save the
graphics state.

0 10 360 { % CGo fromO to 360 degrees in 10 degree steps
newpat h % Start a new path
gsave % Keep rotati ons tenporary

13

We next set the start of the line to (144, 144) and rotate the coordinates, we do not rotate before moving because
(144, 144) would then be in a different location.

144 144 noveto
rotate % Rot ate by degrees on stack from*for’

We next draw just a horizonta line;

72 0 rlineto
stroke

Finally, we restore the old graphics state and end the loop.

grestore % Get back the unrotated state
} for % lterate over angles
Trandate

Thet r ansl at e operator takes two operands. an x-coordinate, and ay-coordinate. Thet r ansl| at e operator sets
the origin of user space to the point that was at the given coordinatesin user space. Themainuseof t r ansl at e isto
draw copiesof ashapein different locations. Typically, a shape will be constructed at the origin, and the shape will be
trand ated to the correct location before it isto be drawn. A simple example trand ates a box constructed at the origin
to the point (72, 72) in the original user space.

Scale

Thescal e operator takes two arguments: an x scale factor, and ay scale factor. The operator scales each coordinate
by itsassociated scale factor. That is, if you have an x scale factor of 0.5 and ay scale factor of 3, thex coordinate will
be reduced by a factor of two while the y coordinate will be magnified by a factor of 3. This operator allows you to
change the size and dimensions of objects quite easily.

A simple example can just scale text in a couple of ways.

We can make things narrow:

gsave
72 72 noveto
0.5 1 scale % Make the text narrow
(Narrow Text) show % Draw it

grestore

We can make thingstall:

gsave
72 144 noveto
1 2 scale % Make the text tall
(Tall Text) show % Draw it

grestore

We can distort the text completely:

gsave
72 216 noveto
2 0.5 scale % Make the text wide and short
(Squeezed Text) show % Draw it

grestore

14

Combining Transfor mations

Each of these transformations merely modifies the current transformation matrix. This means that these operators can
be combined for some interesting effects. For example, you can take a norma document and print two of its pages
on asingle page (reduced and placed side-by-side) smply by trandating the first page to one side, rotating the page
by ninety degrees and then reducing the page so that it fits. The second page is handled in the same manner, but is
trandated to the other side of the page. This can be easily done by PostScript postprocessors so long as they know
where one page ends and the next begins (this is often accomplished using specia comments). A somewhat simpler
example isto draw a simple box and some text trandlated, rotated, and scaled in various ways. An important thing to
remember when viewing thisexampleisthat trand ationsare dwaysrelative to the current user space. This means that

0.5 0.5 scale
72 72 transl ate

will have a different effect on the image than does

72 72 transl ate
0.5 0.5 scale

In thefirst case, the origin will be half an inch in from the bottom and |eft margins. In the second case, the origin
will be an inch in from the two margins.

15

Chapter 9

Clipping for Effect

Withinthe graphics state of a PostScript system isaspecial path called the clipping path. Every bit of ink to be placed
on the page is checked against this path. If PostScript determines that the ink would go outside the current clipping
path, that portion of ink isignored. If the ink would be within the clipping path, it is actualy placed on the page. For
the mathematically inclined, the clipping processis intersection: the set of pixelsto be painted is intersected with the
set of pixelswithinthe current clipping path to get the set of pixelsto paint. For objectsthat are partly inside and partly
outsidethe clipping path, the natural implicationisthat only the part that is within the clipping path is drawn.

By default, the clipping path is defined to be a rectangle just within the boundary of the page (usualy it is set to
about a quarter of an inch). You can set your own clip path by constructing the path with the normal path construction
operatorsandinvokingthecl i p operator. Thereisonly onedifficulty: once you reduce thesize of the current clipping
path, thereis no way to expand the size of the clipping path with cl i p. The only way to go back to alarger clipping
path isto save the one you would liketo restore with gsave and restoreit later with gr est or e. Infact, itisaways
good policy to only set a clipping path withing a bracketing gsave/gr est or e pair. You will always be safe if you
do this.

Clipping a Simple Path

As a simple example of clipping, let us say that we want to draw a box and fill it with text in such away that some
text is cut off. The effect we wanting isthat of aholein a piece of paper over some newsprint. This can be done quite
simply.

First, we set up the box to act as our window. We can set up the path, strokeit if we want to seeit, and then clip to
it:

gsave % Save the old clip path
72 72 box % Set up our box
gsave % Don't allow box to be |ost after stroke
stroke
grestore % Restore the box path
clip % Cip to the box

The clip path isnow established, and we can now go on to draw thetext that should be clipped (notethat thereisa
leading gsave...thisisto keep us from loosing our old clip path which covered the whole page).

60 60 noveto
(This is Times-Roman clipped to a box) show
70 90 noveto
(This is Times-Ronman clipped to a box) show
50 120 noveto
(This is Times-Roman clipped to a box) show

16

Once we have finished, we can just do agr est or e to clean up after ourselves.
While there are some implementation limitations on the complexity of the clip path, in general you can have very
complex paths...not just squares. Arcs, lines, even text can be used to create the clip path.

Clippingto Text

There may come atimewhen you will want to do some specid effects with text. For example, you might want to print
out “July 4” using lettersthat look like the flag. Thisisfairly easy to do using clipping. A somewhat simpler problem
would beto draw text that lookslikeasunburst (that is, thetext isfilled with asunburst pattern). Thisisaso fairly easy
to do once you know how to clip to text. The secret isan operator called char pat h. Thisoperator takesastringand a
boolean and buildsthe path at the current point that would trace out thetext of the string. The path, once created, can be
stroked, filled, clipped, or any other combination of things; itis, after dl, just a path. The boolean which char pat h
requiresisfor handling special kinds of fonts, and it is generally I€eft true.

As before, the steps to thisexample are to build the path, clip toit, and draw the image needing to be clipped.

Here we build the path by setting up our current point and string, and then invoking char pat h:

gsave % Save old clip path
/ Ti mes- Roman findfont 60 scal efont setfont
72 72 noveto (Cipping) true charpath % Set up the text’'s path

Once we have the path, we can invokecl i p to establish the complex path of thetext asthecurrent clip path. With
the clip path established, we can draw our sunburst, which will be confined to the area inside the text:

174 72 transl ate % Set our origin to mddle
0 2 360 { % For every second degree of circle
newpat h
gsave
rotate % Rotate to angle
0 0 noveto % From new origin
300 O rlineto % Setup a 300 point long line
stroke % ... and draw it
grestore
} for

Again, because of our judicioususe of gsave and gr est or e, asimplegr est or e cleans up the graphics state
when we' re done.

Asyou might imagine, thissort of effect isvery powerful and can makeit very easy for you to create some stunning
images.

17

Chapter 10

Encapsulated PostScript

What is Encapsulated PostScript?

At some point, you may want to include some nice PostScript image into a document. There are anumber of problems
associated with this, but the main oneisthat your page layout program needs to know how big theimage is, and how to
move it to the correct place on the page. Encapsulated PostScript (EPS) isthat part of Adobe' s Document Structuring
Convention that providesthisinformation.

What Isthe Document Structuring Convention?

The DSCisaspecid fileformat for PostScript documents. The full detailsfor the DSC can (and shoul d) be gotten from
Adobe. If you are writing a PostScript printer driver or other utility which will be used by alarge number of peopleto
create or manipul ate PostScript documents, do not even think about writing it without making it DSC-compliant. You
will save yoursdlf and your users alot of headaches.

Althoughthe full DSC is beyond the scope of this guide, the most basic rules can be explained. A DSC-compliant
document is an ordinary PostScript document with a number of comments added. These comments provide informa-
tion to any postprocessors which work with the files. Some comments strictly provide information, others are used to
structure the document into sections, which may be shuffled or processed in other ways by the postprocessor.

Every DSC-compliant document isindicated by having the comment \ %8 PS- Adobe 3. 0 asthefirst line. This
comment is aflag to indicate that the document is compliant. You should never use this comment unless your docu-
ment really is DSC compliant. There are many other partsto proper DSC. A document which followsthe DSC can be
manipulated in many ways. In particular, postprocessors can shuffle the pages, print two or more pages on aside, and
so on. The printer drivers from some notable companies do not follow the DSC, and their PostScript documents are,
therefore, impossible to work with once they’ ve been generated.

Now, What About EPS?

An EPSfileis a PostScript file which follows the DSC and which follows a couple of other rules. These rules can be
summarized as follows:

e Thefirst linemust be\ % PS- Adobe EPSF- 3.0
¢ Thefile must make use of the BoundingBox comment
¢ Thefile should be a single page image (in DSC terms, the %842ages comment must have avaue of 0 or 1).

¢ Thefile should not use any operators' which affect the global state.

1 Forbidden operators include: banddevice, clear, cleardictstack, copypage, erasepage, exitserver, framedevice, grestoreall, initclip, initgraph-
ics, initmatrix, quit, renderbands, setglobal, setpagedevice, setshared, and startjob. Operators to avoid include: nulldevice, setgstate, sethalftone,
setmatrix, setscreen, settransfer, ande undefinedfont.

18

o Finally, the EPS file should not use showpage. Actually, Adobe saysthat it isfineto use showpage in your EPS
files. Officialy, itistheresponsibility of theimporting application to redefine showpage so that the EPSfile does
not actualy g ect the page. Still, in creating EPS files, it would be wise not to use this operator.

In general, if you are creating a PostScript image by hand, all you need to do is ca culate the bounding box, add
thefirst comment and the %@Boundi ngBox comment, and you have an EPSfile. Once you have thefilein thisform,
page layout programs can incorporate the image and will allow you to move and resize the image at will.

BoundingBox

The BoundingBox comment is used in DSC to indicate where the actual image will be on a page. The comment de-
scribes a rectangle which completely encloses the image. The form of the comment is. %8@oundi ngBox: | I x
I 1y urx ury. Forinstance, suppose | have an imagewhich extendsfrom x=72 to x=144 and from y=150to y=170.
The BoundingBox comment in the document should then be: %98oundi ngBox: 72 150 144 170.

19

Chapter 11

Post Processing

There are often times when you will want to take an existing PostScript document and manipulate it in some way.
For example, you may be publishing a book, and you want to print the pages with wide margins for proofing notes
(but you don’t want to modify the book’slayout). Maybe you are printing out some 100-page manual, and you want
to avoid using most of arain forest to print it. Maybe you want to print out some document with the word “ Draft”
stamped beneath the pages. All of these things can be done in PostScript by a postprocessor (that is, a program which
mani pul ates an existing PostScript file). Moreover, theseare al thingswhich may be difficult to manage in the program
you used to generate the files.

In this section, 1’1l show you the basic PostScript code to do each of these jobs and how to use EPS comments to
find the right places to insert the additional PostScript.

You are welcome to use these programs as you will. Bear in mind, however, that there are professionally written
programs that do these jobsand more. | strongly suggest that you ook into buying such aprogram rather than writing
your own. Generaly, they have aready solved most of the problems. Also, these packages usualy come with tools
you did not even knew were possible. These examples, therefore, are more to give you a taste of what is possible and
how to doiit, in case you want to roll your own post-processing utility.

Galley Proofs

A gdlley proof isaprintout of adocument inwhich the marginsare especialy large. Theideaisthat you can read over
what you have printed and have room for writing comments. This system was important in the days of manuscripts
and |lead-cast type, because the layout of your document was under the control of the publisher’ stypesetter. Youwould
receive a galley proof from your publisher and make comments about mistakes or changes to be made.

When you have control of the typesetting, galley proofsare not so important, but you may still want to have them.
Many systems will not let you make a galley proof, but fortunately it is not hard to do.

The main ideaisthat you want to scale each page down (to make room for the extra big margins) and then trand ate
the document up and to theright.

Let us say that we want to give ourselves an extrainch of margin on the vertical margins (and scale the horizontals
to keep the proportionscorrect). Here isthe PostScript code to do that:

gsave
8.5 6.5 sub 2 div inch % Cent er page horizontally..
11 11 6.5 8.5 div mul sub 2 div inch % and vertically
transl ate
6.5 8.5 div % Scal e page horizontally..
dup % and vertically
scal e
% ori gi nal page code here..
grestore

20

Hereisadightlyfaster version. Here, we allow the postprocessor to do themath for us. Thiswill print more quickly,
since each page does not need to do its own division:

gsave
72 93 transl ate
. 7647 . 7647 scal e
% ori gi nal page code here..
grestore

Why thegsave and gr est or e? Well, agood rule of thumb is to always save the graphics state before you go
about changing it (and remember to restore it when you are done). Also, one of the rules of the document structuring
convention isthat each page should restore the state of the system to what it was when the page was about to start. In
other words, the code to layout a page should not alter the permanent state of the system (graphicsor otherwise). This
assures that pages can be reordered after the PostScript has been generated.

TheHard Part

The hard part of all of thisis knowing where to insert the new code. Where does one page begin and another end?
You could look for calls to showpage, but many programs define their own versions of this operator (in the code that
isgenerated by dvi ps, for instance, it iscalled eop).

So, how do we go about recognizing pages? The document structuring conventions provide us with some handy
comments for flagging page information. The most importantisthe %84?age: comment. This comment specifies that
thenext piece of codeisthefirst onefor the new page (infact, it also tellsyou which pageitis). Theend of thedocument
should al'so be marked witha%@dr ai | er : comment and a %®&OF comment. The %84T ai | er : comment specifies
that codeto berunat the end of thedocument isabout to be given (so, we are donewiththe pages). The %8&CF comment
specifies that we are done with the file. Again, this specifies that we have processed the last page.

So, using these comments, how can we add the needed PostScript? Well, we can start by looking for the first
%Page: comment. When we find it, we insert thet r ansl at e and scal e commands right after it. Thereafter,
we will preceed each %84Page: withagr est or e and insert the trandate and scal e code after the comment. This
process continues until we find either a %84T ai | er : or a%®&OF comment. The first of these we find is preceeded
by agrest ore.

Thisisal we need to do. To make thingsa bit more concrete, hereisa PERL script to do the job (to make things
abit moreinteresting, | have added alight line around the origina page’simage, so you can know how big it is):

#!/ usr/ 1 ocal / bi n/ perl

$flag = 0O;
while (<>) {
if (/"9%Afage:/) {
if ($flag) {
print "grestore\n";
}
$flag = 1;
print $_;

print "gsave 72 93 translate .7647 .7647 scale\n";

print "gsave .75 setgray newpath -1 -1 noveto 614 O rlineto\n";

print "0 794 rlineto -614 0 rlineto cl osepath stroke grestore\n";
} elsif (/"%Adraill) {

if ($flag) {

print "grestore\n";

}

print $_;

$flag = 0;
} oelsif (/"%WECH) {

if ($flag) {

21

print "grestore\n";
}
print $_;
$flag = 0;
} else {
print;
}

Now, this script is not perfect. Many PostScript files do not comform as they should. This script can, however,
serve as a starting point for your own, more robust code.

Two Up

There are occassions when you might want to print more than one page of a PostScript document on a piece of paper.
For example, you may have a collection of sidesfor a presentation, and you may want to print them out in condensed
formfor akind of digest hand-out. Thiskind of printing, wheretwo pages are printed side-by-side on a piece of paper is
caled “two-up,” for the two pages facing up. Thisideageneralizes readily to any number of pages (though, of course,
legibility goes down quickly as the number of pages goes up). Initsgenera form, itiscalled “n-up.”

The PostScript

What isit that is necessary to print in two-up mode? First, we need to trandate and rotate each page into the right
location of the page, then we need to make sure that the pagefitsin the new area reserved for it (we will need to scde
it down to about half its original size). If we place the two pages side by side, we will get proper two-up form.
Thecodel will present herewill placethe odd pages on thel eft (asyour looking at the pagein landscape orientation)
and the even pages on theright. You could do it the other way around, if that makes more sense to you.
Here isthe code we must wrap around the odd pages:

gsave
504 30 translate % Position page in mddle of region
90 rotate %A mit in the right direction
.5 .5 scale % make it small enough
% ori gi nal page code here..
grestore

And hereisthe code for the even pages.

gsave
504 426 translate % Position page in mddle of region
90 rotate %A mit in the right direction
.5 .5 scale % make it small enough
% ori gi nal page code here..
grestore

Now, you will notice that | used some curious numbersin thet r ansl at e command. The reason | chose these
particular numbers was that | wanted to center each page inits haf of the page. | knew | was going to scale by 0.5, so
| computed how much whitespace was | eft and added in the appropriate fudge-factor to center the pages.

You may also noticethat | wrap agsave and agr est or e around the page and the additional code? The reason
for thisis that each page must |eave the state of the printer unchanged when it has been printed. If you permanently
changethe state, that state change will bein affect for al subsequent pages. By followingthisrule, you make the pages
independent of order. Some print servers must shuffle page order in order to print the document correctly; since my
pages are independent (at least as far as my codeis concerned), they will print correctly.

22

TheHard Part

Now comes the hard part of recognizing where the pages begin. The technique is essentially the same as what we
used for galley proofs, so | will spare you the logic here. Essentialy, we will look for 9%94age: comments. We
will, however, need to keep track of whether the current page is an odd page or an even page and insert the correct
trand ation code. Also, as before, we must be careful about inserting grestores before subsegquent pages and before the
% ai | er or 99&OF comments.

Hereisthe PERL script to do the job:

#!/usr/ | ocal / bin/ perl

$flag = 0; # W have not yet found a page
$even = 0; # First page is an odd page
$page = 1; # Start at page #1

$pages = 1; # All ow %4ages coment

while (<>) {

if (/" 9%AFages:/ && $pages) {
print "%4®ages: (atend)\n";

$pages = 0;
} elsif (/"%Page: /) { # W have found a page
if ($flag) {
print "restore\n"; # restore if it isn't the first
}
$flag = 1;
if ($even) { # Transl ate for even pages
print "save\n"; # gsave
print "504 426 translate\n";
$even = 0;
$page++;
} else { # Translate for odd pages

printf("%®88FPage: % %\ n", $page, $page);
print "save /showpage {} def\n";
print "504 30 translate\n";
$even = 1;
} # Code to rotate and shrink
print "90 rotate .5 .5 scale\n";
} elsif (/"%WAraill) { # Cleanup if a W®drailer is found
if ($flag) {
print "restore\n";
}

print $_;
printf("%A&8FPages: %\ n", \$page);
$flag = 0;
} elsif (/"9WECH) { # Cleanup if an %9&OF is found
if ($flag) {
print "restore\n";
}

print $_;

$flag = 0;
} else {

print;

Note the basic similarity with the script for the galley proofs. There are some additions, however. Because we are
taking two pages and printing them on one page, we need to modify the page numbers. The %84ages: comment

23

specifies how many pages are in the document. If you specify %84ages: (at end), you are specifying that you
do not know the exact number of pages, but you will givetheinformation later.

An additional complicationistheuseof save andr est or e rather thangsave and gr est or e. These operators
save the entire state of the printer and restore it just asgsave and gr est or e work with the graphics state. In fact,
an implicit gsave isdone by save; and an implicit gr est or e isdone by r est or e. The reason these are used
isso that | can redefine showpage to ado-nothing procedure (/ showpage {} def) for the odd pages. Thistrick
prevents the page from being gected when the odd page does its end of page routines. Unfortunately, thistrick only
works if the document calls showpage by name. If the document bound showpage up or calls some of the lower
level operators, this program would need to be more sophisticated.

Dr aft

There are times when you will need to stamp a document as a draft. That is, you will want to mark the document so
that no one can mistake it for afinished document, but you do not want to make it illegible. Watermarks are perfect for
thistask.

A watermark is any marking which appears behind the text of the page and is generally quitelight in apprearence.
The main text of the page should be legible above it, and the watermark should be visible beneath.

The PostScript

The PostScript for generating a watermark is quite smple. After each %842age: comment (and before the actua
PostScript code for the page, you should insert the code to draw the watermark (safely wrapped between agsave
and gr est or e pair.

As aconcrete example, let us say we want to print the word “Draft” down the page beneath the actual text of the
page. Such awatermark would be suitable for printing drafts of documents.

Here isthe PostScript code to print the watermark:

gsave
. 75 setgray
/ Hel vetica-Bold findfont 72 scal efont setfont
80 80 800 {
306 exch noveto % nmove to the center of the |line
(Draft) dup
stringwi dth pop 2 div neg O rnoveto % Center the text horizontally
show % Show t he text
} for % and keep doinging it
grestore
TheHard Part

The hard part of thejob isto find the pages. Fortunately, we can use the same technique we used for the galley proofs.
Actually, our requirements are simpler. We do not need to wrap the original page code in agsave, grestore pair, aswe
did before.

And hereisthe PERL script to do the job:

#!/usr/ 1 ocal / bi n/ perl

$flag = 0O;
while (<>) {
if (/"9%fage:/) {
if ($flag) {
print "grestore\n";
}
$flag = 1;

24

print $_;
print "gsave\n";
print ".75 setgray\n";
print "/Helvetica-Bold findfont 72 scal efont setfont\n";
print "80 80 800 { 306 exch noveto\n";
print "(Draft) dup\n";
print "stringwidth pop 2 div neg O rnoveto show } for\n";
print "grestore\n";
} else {
print;

25

Appendix A

Examples

Clipping Text to a Box

%
% oper at or box: xcoord ycoord box -
% Creates one inch box at xcoord, ycoord
/box {
newpat h
novet o
72 0 rlineto
0 72 rlineto
-72 0 rlineto

cl osepat h
} def
/ Ti mes- Roman findfont 30 scal efont setfont
gsave % Save the old clip path
72 72 box % Set up our box
gsave % Don't allow box to be |ost after stroke
st roke
grestore % Restore the box path
clip % dip to the box

60 60 noveto

(This is Tines-Ronman clipped to a box) show

70 90 noveto

(This is Tines-Ronman clipped to a box) show

50 120 noveto

(This is Tines-Ronman clipped to a box) show
grestore % Get the clip path back
showpage

Clipping to Text

%
gsave % Save old clip path
/ Ti mes- Roman findfont 60 scal efont setfont
72 72 noveto (Cipping) true charpath % Set up the text's path

clip %diptoit
174 72 transl ate % Set our origin to mddle
0 2 360 { % For every second degree of circle

26

newpat h

gsave
rotate % Rotate to angle
0 0 noveto % From new origin
300 O rlineto % Setup a 300 point long line
stroke % ... and draw it
grestore
} for
grestore % Restore old clip path
showpage

Drawing a Box

%

% Draws a one square inch box and inch in fromthe bottomleft
/inch {72 mul} def % Convert inches->points (1/72 inch)
newpat h % Start a new path

1 inch 1 inch noveto %an inch in fromthe lower left

2 inch 1 inch lineto % bot t om si de

2 inch 2 inch lineto % right side

1 inch 2 inch lineto % top side

cl osepat h % Automatically add left side to close path
stroke % Draw t he box on the paper

showpage % We're done... eject the page

Drawing a Box with rlineto

%
%% Draws a one square inch box and inch in fromthe bottoml eft
%% Thi s exanpl e uses rel ative coordinates on the lines

/inch {72 mul} def % Convert inches->points (1/72 inch)
newpat h % Start a new path
1 inch 1 inch noveto % an inch in fromthe |ower left

1 inch O inch rlineto % bott om si de
O inch 1 inch rlineto % right side
-1 inch O inch rlineto %top side

cl osepat h % Automatically add left side to close path
stroke % Draw t he box on the paper

showpage % We're done... eject the page

Filled Box

%

%% Draws a one square inch box and inch in fromthe bottoml eft
/inch {72 mul} def % Convert inches->points (1/72 inch)

newpat h % Start a new path

1 inch 1 inch noveto % an inch in fromthe lower left

2 inch 1 inch lineto % bott om si de

2 inch 2 inch lineto % right side

1 inch 2 inch lineto % top side

cl osepath % Automatically add left side to close path

27

fill
showpage

Text

%

% Fill in the box on the paper
% We're done... eject the page

% Sanpl e of printing text

/ Ti mes- Roman fi ndf ont
20 scal ef ont

set f ont

newpat h

72 72 nmoveto

(Hello, world!) show
showpage

Rotation

%
% Exanpl e of
0 10 360 {
newpat h
gsave
144 144 noveto
rotate
72 0 rlineto
st roke
grestore
} for
showpage

Scale

%

rotation...
% CGo fromO to 360 degrees in 10 degree steps
% Start a new path
% Keep rotations tenporary

% CGet the basic font

% Scal e the font to 20 points

% Make it the current font

% Start a new path

% Lower |eft corner of text at (72, 72)
% Typeset ‘‘Hello, world!’

draws 36 lines in a circular pattern

% Rot ate by degrees on stack from’for’

% Get back the unrotated state
% lterate over angles

% Exanpl e of scal ed i nage (text)

/ Ti mes- Roman fi ndf ont
gsave

72 72 nmoveto

0.5 1 scale

(Narrow Text) show
grestore
gsave

72 144 noveto

1 2 scale

(Tall Text) show
grestore
gsave

72 216 noveto

2 0.5 scale

40 scal efont setfont

% Make the text narrow
% Draw it

% Make the text tal
% Draw it

% Make the text wi de and short

(Squeezed Text) show % Draw it

grestore
showpage

28

Shade and Width

%
% Denonstrate shading and width in drawing lines and filling shapes
% Define an operator box which builds a path for a one inch square box
% Not e that box does not draw or fill the box.
/box {
newpat h
novet o % Current point is on stack
0 72 rlineto % Left
72 0 rlineto % Top
0 -72rlineto % Ri ght
cl osepat h % Bott om
} def
0 setgray % 100% bl ack
1 setlinew dth % One point thick lines
72 72 noveto 72 144 lineto stroke % Draw a one inch line
gsave % Save a copy of the current settings
0.5 setgray % 50% bl ack
10 setlinew dth % 10 point wide lines
144 72 noveto 144 144 lineto stroke % Draw a one inch wide |ine
216 72 box % Build a square path. ..
0. 35 setgray % make it a little darker...
fill % and fill it.
grestore % Go back to the original settings
3 setlinew dth % Make the box |ines w der
300 72 box stroke % Draw a bl ack box
showpage

If you try this example, you should note a couple of things. Firstly, the black outlined box isalittlelarger than the
gray filled one. Thisextrawidth comes fromthe 3 point widelinesused to draw it—they are centered about the path of
the box. Theink filling the gray box, however, is completely within the path of the box. Also, when shading objects,
you must be careful. PostScript makes shades through a process called halftoning. Basicaly, uniform dots are placed
in various patternsto simulate different shades of grey. Unfortunately, various considerations limit how many shades
a printer can produce. So some grey tones may come out the same. This may be the case with the filled box and the
outlined box when viewed on your screen or printer.

Transfor mations

%
% Exanpl e to denonstrate translate, rotate, and scale
% operator box: xcoord ycoord box -
% Creates one inch box at xcoord, ycoord
/box {

newpat h

novet o

72 0 rlineto

0 72 rlineto

-72 0 rlineto

cl osepat h
} def
% Specify font for text |abels
/Helvetica findfont 40 scal efont setfont

29

gsave
40 40 transl ate
0 0 box stroke
77 0 noveto
(Transl at ed) show
grestore
gsave
100 150 transl ate
30 rotate
0 0 box stroke
75 0 noveto

(Transl ated & Rotated) show

grestore
gsave
40 300 transl ate
0.5 1 scale
0 0 box stroke
75 0 noveto
(Transl ated & Squi
grestore
gsave
100 450 transl ate
30 rotate
0.5 1 scale
0 0 box stroke
75 0 noveto
(Everyt hing) show
grestore
showpage

Trandate
%

% Draw a box at 72,
% oper at or box:

% Set origin to (40, 40)
% Draw box at new origin...

% and | abel

% Transl ate origin to (100, 150)
% Rot at e count er-cl ockwi se by 30 degrees
% Dr aw box. ..

% and | abel

% Translate to (40, 300)

% Reduce x coord by 1/2, y coord |left al one
% Dr aw box. ..
%

shed) show and | abel

% Set origin to (300, 300)

% Rot at e coordi nates by 45 degrees
% Scal e coordi nat es

% Dr aw box

72 using transl ate

xcoord ycoord box -

% Creates one inch box at xcoord, ycoord

/box {
newpat h
novet o
72 0 rlineto
0 72 rlineto
-72 0 rlineto
cl osepat h
} def
gsave
72 72 transl ate
0 0 box stroke
grestore
showpage

% Preserve the old coordi nates
% Set originto (72, 72)

% Draw t he box at the new origin
% Restore the old coordinates

30

Appendix B

PostScript Operators

Operator: add

numl num2 add num3
This operator returns the addition of the two arguments.

o stackunderflow

o typecheck

¢ undefinedresult
See dlso:

o div

e mul

e sub

Operator: arc

x-coord y-coord r angl ang2 arc -

This operator adds an arc to the current path. The arc is generated by sweeping a line segment of lengthr, and tied
at the point (x-coord y-coord), in acounter-clockwise direction from an angle angl to and angleang2. Note: astraight
line segment will connect the current point to the first point of the arc, if they are not the same.

o |imitcheck
o stackunderflow

o typecheck

Operator: begin

dict begin -

This operator pushes the dictionary dict onto the dictionary stack. Where it can be used for def and name lookup.
This operator alows an operator to set up a dictionary for itsown use (e.g. for loca variables).

Errors:

o dictstackoverflow

31

e invaidaccess
o stackunderflow

o typecheck

Operator: bind

procedurel bind procedure?

Thebind operator goes through procedurel and replaces any operator names with their associate operators. Names
which do not refer to operators are |eft done. Operators within procedurel which have unrestricted access will have
bind called on themselves before they are inserted into the procedure. The new procedure with operators instead of
operator names is returned on the stack as procedure2.

Themain effect and use of thisoperator isto reduce the amount of name lookup done by theinterpreter. This speeds
up execution and ties down the behavior of operators.

Errors:

o typecheck

Operator: clip

- clip -

This operator intersects the current clipping path with the current path and sets the current clipping path to the
results. Any part of apath drawn after calling this operator which extends outside this new clipping area will simply
not be drawn. If the given pathisopen, clip will treat it asif it were closed. Also, clip does not destroy the current path
when it isfinished... it may be used for other activities.

It isimportant to notethat thereis no easy way to restorethe clip path to alarger size onceit hasbeen set. The best
way to set theclip path isto wrap it in agsave and grestore pair.

Errors:

o |imitcheck

Operator: closepath

- closepath -

This operator adds a line segment to the current path from the current point to the first point in the path. Thiscloses
the path so that it may be filled.

Errors:

o limitcheck

Also see the following operators:
¢ newpath

e moveto

e lineto

32

Operator: charpath

string bool charpath -

This operator takes the given string and appends the path which the characters define to the current path. The result
is can be used as any other path for stroking, filling, or clipping.

The boolean argument informs char path what to do if the font was not designed to be stoked. If the boolean is
true, the path will be modified to befilled and clipped (but not stroked). If the boolean isfalse, the path will be suitable
to be stroked (but not filled or clipped).

o limitcheck

e nocurrentpoint
o stackunderflow
o typecheck
See dso:

e clip

o fill

e show

stroke

Operator: curveto

x1yl x2 y2 x3 y3 curveto -

This operator draws a curve from the current point to the point (x3, y3) using points (x1, y1) and (x2, y2) as control
points. The curveisa Bézier cubic curve. In such a curve, the tangent of the curve at the current point will be aline
segment running from the current point to (x1, y1) and the tangent at (x3, y3) is the line running from (x3, y3) to (X2,

y2).

limitcheck

nocurrentpoint

o stackunderflow

typecheck
See also:

e arc
e lineto

e Mmoveto

33

Operator: def

name value def -

This operator associates the name with value in the dictionary at the top of the dictionary stack. This operator
essentially defines names to have values in the dictionary and is used to define variables and operators.

Errors:

o dictfull
e invaidaccess

limitcheck

stackunderflow

typecheck

¢ VMeror

Operator: div

numl num2 div num3
This operator returns the result of dividing numl by num2. The result isalwaysared.

o stackunderflow
o typecheck

¢ undefinedresult
See dso:

e add

e mul

e sub

Operator: dup

object dup object object

This operate pushes a second copy of the topmost object on the operand stack. If the object is a reference to an
array, string, or similar composite object, only the reference is duplicated; both references will still refer to the same
object.

Errors:

o stackoverflow

o stackunderflow

Operator: end

-end -

This operator pops the topmost dictionary off of the dictionary stack. The dictionary below it becomes the new
current dictionary.

Errors:

o dictstackunderflow

34

Operator: fill

- fill -

This operator closes and fills the current path with the current color. Any ink withinthe path is obliterated. Note
that fill blanks out the current path asiif it had called newpath. If you want the current path preserved, you should use
gsave and grestoreto preserve the path.

Errors:

o limitcheck

Operator: findfont

name findfont font

This operator looks for the named font in the font dictionary. If it findsthe font, it pushes the font on the stack for
later processing. It signalsan error if the font can not be found.

Errors:

¢ invalidfont

o stackunderflow

o typecheck

Also see the following operators:
o scalefont

o setfont

Operator: for

initial increment limit proc for -

Thisoperator will execute proc repeatedly. Thefirst timeprocisexecuted, it will begiveninitial asthetop operand.
Each time it is executed after that, the top operand will be incremented by increment. This process will continue until
the argument would have exceeded limit.

¢ stackoverflow
o stackunderflow
o typecheck
See dso:

o if

o ifelse

Operator: grestore
- grestore-

Setsthe current graphics state to the topmost graphi cs state on graphi cs state stack and popsthat state off the stack.
This operator isamost always used in conjunction with gsave.

35

Operator: gsave

- gsave-
This operator pushes a copy of the current graphics state onto the graphics state stack. The graphics state consists
of (among other things):

e Current Transformation Matrix

Current Path

Clip Path

Current Color

Current Font

Current Gray Vdue

gsave istypicaly used with grestore whenever you need to change the graphics state temporarily and return to the
original.
Errors:

o limitcheck

Operator: if

booal procif -
This operator will execute procif bool istrue.

o stackunderflow

o typecheck

Operator: ifelse

bool procl proc2 ifelse -
This operator will execute procl if bool istrue and proc2 otherwise.

o stackunderflow

o typecheck

Operator: lineto

x-coord y-coord lineto -

This operator adds a line into the path. The lineis from the current point to the point (x-coord y-coord). After the
lineisadded to the path, the current pointisset to (x-coord y-coord). Itisan error to call lineto without having acurrent
point.

Errors:

o limitcheck
e nocurrentpoint
o stackunderflow

o typecheck

36

Also see the following operators:
e rlineto

e Moveto

e 'Moveto

e curveto

e arc

¢ closepath

Operator: moveto

x-coord y-coord moveto -

This operator moves the current point of the current path to the given point in user space. If a moveto operator
immediately follows another moveto operator, the previousoneis erased.

Errors:

o limitcheck

o stackunderflow

o typecheck

Also see the following operators:
e rmoveto

¢ lineto

e curveto

e arc

closepath

Operator: mul

valuel value2 mul product

This operator multipliesthe first two operands on the stack and pushes the result back onto the stack. The result
isan integer if both operands are integers and the product is not out of range. If the product is too big, or one of the
operandsisareal, theresult will beareal.

Errors:

o stackunderflow
o typecheck
o undefinedresult

Operator: newpath
- newpath -

The newpath operator clears out the current path and prepares the system to start anew current path. This operator
should be called before starting any new path, even though some operatorscall it implicitly.

37

Operator: restore

staterestore -
Thisrestores the tota state of the PostScript system to the state saved in state.
Errors:

¢ invalidrestore
o stackunderflow
o typecheck
See dso:

e Save

Operator: rlineto

dx dyrlineto -

Thisoperator adds alineintothe path. Thelineisfrom the current point to apoint found by adding dx to the current
x and dy to the current y. After line isadded to the path, the current point is set to the new point. It isan error to call
lineto without having a current point.

Errors:

o limitcheck

e nocurrentpoint

o stackunderflow

o typecheck

Also see the following operators:
¢ lineto

e Moveto

e 'Mmoveto

e curveto

e arc

e closepath

Operator: rmoveto

dx dy rmoveto -
This operator moves the current point of the current path by adding dx to the current x and dy to the current y.
Errors:

o limitcheck
o stackunderflow
o typecheck

Also see the following operators:

38

e Moveto
e lineto
e curveto
e arc

¢ closepath

Operator: rotate

anglerotate-
This operator has the effect of rotating the user space counter-clockwise by angle degrees (negative angles rotate
clockwise). The rotation occurs around the current origin.

e rangecheck

o stackunderflow
o typecheck
See dso:

e scale

e trandate

Operator: save

- save state
This operator gathers up the complete state of the PostScript system and savesit in state.
Errors:

o limitcheck
o stackoverflow
See Also:

e restore

Operator: scale

sx sy scale -

Thisoperator hasthe effect of scaling theuser coordinates. All coordinateswill be multiplied by sxinthe horizontal
direction, and sy inthe vertical.

The origin will not be affected by this operation.

e rangecheck

o stackunderflow
o typecheck
See dso:

e rotate

e trandate

39

Oper ator: scalefont

font size scalefont font

This operator takes the given font and scales it by the given scale factor. The resulting scaled font is pushed onto
the stack. A size of one produces the same sized characters as the original font, 0.5 produces half-size characters, and
soon.

Errors:

e invaidfont

stackunderflow

typecheck

¢ undefined

Also see the following operators:
¢ findfont

¢ setfont

Operator: setfont

font setfont -
Thisoperator setsthe current font to befont. Thisfont can betheresult of any font creation or modification operator.
Thisfont isused in all subsequent character operationslike show.

¢ invalidfont

o stackunderflow
o typecheck
Also see!

¢ findfont

e scalefont

Operator: setgray

gray-value setgray -

This operator sets the current intensity of the ink to gray-value. gray-value must be a number from 0 (black) to
1 (white). Thiswill affect all markings stroked or filled onto the page. This applies even to path components created
beforethe call to setgray aslong as they have not yet been stroked.

o stackunderflow
o typecheck
o undefined

40

Operator: setlinewidth

width setlinewidth -
This operator sets the width of dl lines to be stroked to width, which must be specified in points. A line width of
zero ispossible and isinterpreted to be a hairline, as thin as can be rendered on the given device.

o stackunderflow

o typecheck

Operator: show

string show -

This operator draws the given string onto the page. The current graphics state applies, so the current font, fontsize,
gray value, and current transformation matrix all apply.

Thelocation for the text is set by the current point. The current point will specify the leftmost point of the baseline
for the text.

e invaidaccess

e invaidfont

nocurrentpoint

rangecheck

o stackunderflow

typecheck
See also:

e charpath
¢ moveto

o setfont

Operator: showpage

- showpage -
This operator commits the current page to print and gjects the page from printing device. showpage also prepares
anew blank page.

Operator: stroke

- stroke-

This operator draws aline along the current path using the current settings. Thisincludesthe current linethickness,
current pen color, current dash pattern, current settings for how lines should be joined, and what kind of caps they
should have. These settings are the settings at the time the stroke operator isinvoked.

A closed path consisting of two or more pointsat the same |location is a degenerate path. A degenerate path will be
drawn only if you have set theline caps to round caps. If your line caps are not round caps, or if the path is not closed,
the path will not be drawn. If the path isdrawn, it will appear as afilled circle center at the point.

Errors:

o limitcheck

41

Operator: sub

numl num2 sub num3
This operator returns the result of subtracting num2 from numl.

o stackunderflow
o typecheck

¢ undefinedresult
See dso:

e add

o div

o mul

Operator: trandate

x-coord y-coord trandlate -
This operator has the affect of moving the origin to the point (x-coord, y-coord) in the current user space.

e rangecheck

o stackunderflow
o typecheck
See dso:

e rotate

e scale

42

Appendix C

ErrorsYou Might Encounter

configurationerror setpagedevice request can not be satisfied

dictfull dictionaryisfull

dictstackoverflow too many begi ns

dictstackundeflow too many ends

invalidaccess access attribute violated (e.g. attempted to write aread-only object)
invalidfont bad font name or dictionary

invalidrestore the saved state object istoo old to restore

ioerror some kind of error during input or output

limitcheck some implementati on-dependent size restriction has been exceeded
nocurrentpoint the current point is not defined, yet

rangecheck operand istoo big or too small

stackoverflow the stack was full before the last push

stackunderflow you tried to pop from an empty stack

syntaxerror PostScript’ssyntax has been violated

typecheck operand is of the wrong type

undefined nameisnot defined in any dictionary on the stack

undefinedresult the result of the last numeric operationisinvalid (e.g. division by zero)

VMerror virtuad memory full

43

Appendix D

String Escape Codes

\n Newline

\r Carriagereturn

\t Horizontal TAB

\b Backspace

\f Form feed

\\ Backslash

\(Left parenthesis

\) Right parenthesis

\ddd The character code ddd, whereddd isin octal.

In addition to these basic codes, a backslash just before a newline alows you to break a string across two lines
without inserting a newlineinto the string. That is, the string:

(This is a\

string $\backsl ash$
that has no \

new i nes)

isequivalenttothestring: (This is a string that has no new ines).

Appendix E

PostScript Books

There are a number of good books on PostScript. If you do much PostScript programming at dl, | highly recommend
that you get one of these print books.

POSTSCRIPT LANGUAGE REFERENCE MANUAL: SECOND EDITION Thisbook isput out by Adobe Systems|ncor-
porated and is published by Addison Wesley. It isthe reference manual and pretty much defines the language.
The operator reference guide | have here pretty well follows Adobe' s reference in this manual. Their reference
is, however, far more detailed (and accurate). This book isknown as the “Red and White Book.” Adobe aso
provides other books (including the “Blug’ tutoria and cookbook). The PLRM’s ISBN is: 0-201-181127-4

LEARNING POSTSCRIPT: A VISUAL APPROACH Thisbook isafine beginningtext for PostScript. The book empha-
sizes PostScript’ sfantastic graphics abilitieswhileillustrating basi ¢ language constructs. The language concepts
areillustrated with graphic design examples, most of which you will be tempted to use in your own documents.
The book also includes a number of interesting and useful utilities. Author: Ross Smith. Publisher: Peachpit
Press. ISBN 0-938-151-12-6.

45

