oue

Teach Yourself SQL in 21 Days, Second
Edition

(= MNextChapter

Table of Contents:

| ntroduction

Week 1 at a Glance

Day 1 Introduction to SOL

Day 2 Introduction to the Query: The SELECT Statement

Day 3 Expressions, Conditions, and Operators

Day 4 Functions: Molding the Data You Retrieve

Day 5 Clausesin SOL

Day 6 Joining Tables

Day 7 Subqueries: The Embedded SEL ECT Statement

Week 1in Review

Week 2 at a Glance

Day 8 M anipulating Data

Day 9 Creating and Maintaining T ables

Day 10 Creating Views and | ndexes

Day 11 Controlling Transactions

Day 12 Database Security

Day 13 Advanced SQOL Topics

Day 14 Dynamic Uses of SOL

Week 2 1n Review

Week 3 at a Glance

Day 15 Streamlining SOL Statementsfor | mproved Perfor mance

Day 16 Using Views to Retrieve Useful | nfor mation from the Data Dictionary

Day 17 Using SOL to Generate SOL Statements

Day 18 PL/SQL : An Introduction

Day 19 Transact-SOL : An Introduction

Day 20 SQL*Plus

Day 21 Common SOL Mistakes/Errors and Resolutions

Week 3in Review

Appendixes

A Glossary of Common SOL Statements

B Source Code Listingsfor the C++ Program Used on Day 14

C Source Code Listings for the Delphi Program Used on Day 14

D Resources

E ASCII Table

F Answersto Quizzes and Excercises

[NextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

Acknowledgments

A special thanks to the following individuals: foremost to my loving wife, Tina, for her
tolerance and endless support, to Dan Wilson for his contributions, and to Thomas
McCarthy at IUPUI. Also, thank you Jordan for your encouragement over the past few
years.

-- Ryan K. Stephens

Special thanks to my wife for putting up with me through this busiest of times. |
apologize to my mom for not seeing her as often as | should (I'l l make it up to you). Also,
thanks to my loyal dog, Toby. He was with me every night and wouldn't leave my side.

-- Ronald Plew

Special thanks to the following people: Jeff Perkins, David Blankenbeckler, Shannon
Little, Jr., Clint and Linda Morgan, and Shannon and Kaye Little.

This book is dedicated to my beautiful wife, Becky. | am truly appreciative to you for
your support, encouragement, and love. Thanks for staying up with me during all those
late-night sessions. You are absolutely the best.

-- Bryan Morgan

Thanks to my family, Leslie, Laura, Kelly, Valerie, Jeff, Mom, and Dad. Their support
made working on this book possible.

-- Jeff Perkins

About the Authors

Ryan K. Stephens

Ryan K. Stephens started using SQL as a programmer/analyst while serving on active
duty in the Indiana Army National Guard. Hundreds of programs later, Ryan became a
database administrator. He currently works for Unisys Federal Systems, where he is
responsible for government-owned databases throughout the United States. In addition
to his full-time job, Ryan teaches SQL and various database classes at Indiana
University-Purdue University Indianapolis. He also serves part-time as a programmer for
the Indiana Army National Guard. Along with Ron Plew and two others, Ryan owns a
U.S. patent on a modified chess game. Some of his interests include active sports, chess,
nature, and writing. Ryan lives in Indianapolis with his wife, Tina, and their three dogs,
Bailey, Onyx, and Sugar.

Ronald R. Plew

Ronald R. Plew is a database administrator for Unisys Federal Systems. He holds a
bachelor of science degree in business administration/management from the Indiana
Institute of Technology. He is an instructor for Indiana University-Purdue University
Indianapolis where he teaches SQL and various database classes. Ron also serves as a
programmer for the Indiana Army National Guard. His hobbies include collecting Indy
500 racing memorabilia. He also owns and operates Plew's Indy 500 Museum. He lives in
Indianapolis with his wife, Linda. They have four grown children (Leslie, Nancy, Angela,
and Wendy) and eight grandchildren (Andy, Ryan, Holly, Morgan, Schyler, Heather,
Gavin, and Regan).

Bryan Morgan

Bryan Morgan is a software developer with TASC, Inc., in Fort Walton Beach, Florida.
In addition to writing code and chasing the golf balls he hits, Bryan has authored
several books for Sams Publishing including Visual J++ Unleashed, Java Developer’s
Reference, and Teach Yourself ODBC Programming in 21 Days. He lives in Navarre, Florida,
with his wife, Becky, and their daughter, Emma.

Jeff Perkins

Jeff Perkins is a senior software engineer with TYBRIN Corporation. He has been a
program manager, team leader, project lead, technical lead, and analyst. A graduate of
the United States Air Force Academy, he is a veteran with more than 2,500 hours of
flying time as a navigator and bombardier in the B-52. He has co-authored three other
books, Teach Yourself NT Workstation in 24 Hours, Teach Yourself ODBC Programming in 21 Days,

and Teach Yourself ActiveX in 21 Days.

Tdal UsWhat You Think!

As a reader, you are the most important critic and commentator of our books. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way. You can help us make strong books that meet your needs and give you the
computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our
CompuServe forum by typing GO SAMS at any prompt. If you prefer the World Wide Web,
check out oursiteathttp://ww. ncp. com

NOTE: If you have a technical question about this book, call the technical
support line at 317-581-3833 or send e-mail to support @tp. com

As the team leader of the group that created this book, | welcome your comments. You
can fax, e-mail, or write me directly to let me know what you did or didn't like about
this book--as wel l as what we can do to make our books stronger. Here's the information:
FAX: 317-581-4669

E-mail: enterpri se ngr @ans. ntp. com

Mail: Rosemarie Graham
Comments Department
Sams Publishing

201 W. 103rd Street
Indianapolis, IN 46290

| ntroduction

Who Should Read This Book?

Late one Friday afternoon your boss comes into your undersized cubicle and drops a new
project on your desk. This project looks just like the others you have been working on
except it includes ties to several databases. Recently your company decided to move
away from homegrown, flat-file data and is now using a relational database. You have
seen terms like SQL, tables, records, queries, and RDBMS, but you don't remember

http://www.mcp.com/
mailto:support@mcp.com
mailto:enterprise_mgr@sams.mcp.com

exactly what they all mean. You notice the due date on the program is three, no, make
that two, weeks away. (Apparently it had been on your boss's desk for a week!) As you
begin looking for definitions and sample code to put those definitions into context, you
discover this book.

This book is for people who want to learn the fundamentals of Structured Query
Language (SQL)--quickly. Through the use of countless examples, this book depicts all
the major components of SQL as well as options that are available with various
database implementations. You should be able to apply what you learn here to
relational databases in a business setting.

Overview

The first 14 days of this book show you how to use SQL to incorporate the power of
modern relational databases into your code. By the end of Week 1, you will be able to
use basic SQL commands to retrieve selected data.

NOTE: If you are familiar with the basics and history of SQL, we suggest
you skim the first week's chapters and begin in earnest with Day 8,
"Manipulating Data."

At the end of Week 2, you will be able to use the more advanced features of SQL, such
as stored procedures and triggers, to make your programs more powerful. Week 3 teaches
you how to streamline SQL code; use the data dictionary; use SQL to generate more SQL
code; work with PL/SQL, Transact-SQL, and SQL*Plus; and handle common SQL mistakes
and errors.

The syntax of SQL is explained and then brought to life in examples using Personal
Oracle7, Microsoft Query, and other database tools. You don't need access to any of
these products to use this book--it can stand alone as an SQL syntax reference.
However, using one of these platforms and walking though the examples will help you
understand the nuances.

Conventions Used in This Book

This book uses the fol lowing typeface conventions:

. Menu names are separated from menu options by a vertical bar (|). For example,
File | Open means "select the Open option from the File menu."

. New terms appear in italic.

. All code in the listings that you type in (input) appears in bol df ace nonospace.
Output appears in standard nonospace.

. The input label and output label also identify the nature of the code.

. Many code-related terms within the text also appear in nonospace.

. Paragraphs that begin with the analysis label explain the preceding code sample.
. The syntax label identifies syntax statements.

The following special design features enhance the text:

NOTE: Notes explain interesting or important points that can help you
understand SQL concepts and techniques.

TIP: Tips are little pieces of information to begin to help you in real-world
situations. Tips often offer shortcuts or information to make a task easier
or faster.

WARNING: Warnings provide information about detrimental performance
iIssues or dangerous errors. Pay careful attention to Warnings.

5 et Chaper

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 1 At A Glance

Let's Get Started

Week 1 introduces SQL from a historical and theoretical perspective. The first
statement you learn about is the SELECT statement, which enables you to retrieve data
from the database based on various user-specified options. Also during Week 1 you study
SQL functions, query joins, and SQL subqueries (a query within a query). Many examples
help you understand these important topics. These examples use Oracle7, Sybase SQL
Server, Microsoft Access, and Microsoft Query and highlight some of the similarities

and differences among the products. The content of the examples should be useful and
interesting to a broad group of readers.

| ¢ Previous Chapter B+ Next Chapter

© Copyright, Macmil lan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 1 -
| ntroduction to SQL

A Brief History of SQL

The history of SQL begins in an IBM laboratory in San Jose, California, where SQL was
developed in the late 1970s. The initials stand for Structured Query Language, and the
language itself is often referred to as "sequel.” It was original ly developed for IBM's
DB2 product (a relational database management system, or RDBMS, that can still be
bought today for various platforms and environments). In fact, SQL makes an RDBMS
possible. SQL is a nonprocedural language, in contrast to the procedural or third-
generation languages (3GLs) such as COBOL and C that had been created up to that
time.

NOTE: Nonprocedural means what rather than how. For example, SQL describes
what data to retrieve, delete, or insert, rather than how to perform the
operation.

The characteristic that differentiates a DBMS from an RDBMS is that the RDBMS
provides a set-oriented database language. For most RDBMSs, this set-oriented database
language is SQL. Set oriented means that SQL processes sets of data in groups.

Two standards organizations, the American National Standards Institute (ANSI) and
the International Standards Organization (ISO), currently promote SQL standards to
industry. The ANSI-92 standard is the standard for the SQL used throughout this book.
Although these standard-making bodies prepare standards for database system designers

to follow, all database products differ from the ANSI standard to some degree. In
addition, most systems provide some proprietary extensions to SQL that extend the
language into a true procedural language. We have used various RDBMSs to prepare
the examples in this book to give you an idea of what to expect from the common
database systems. (We discuss procedural SQL--known as PL/SQL--on Day 18, "PL/SQL: An
Introduction,” and Transact-SQL on Day 19, "Transact-SQL: An Introduction.")

A Brief History of Databases

A little background on the evolution of databases and database theory will help you
understand the workings of SQL. Database systems store information in every
conceivable business environment. From large tracking databases such as airline
reservation systems to a child's baseball card collection, database systems store and
distribute the data that we depend on. Until the last few years, large database systems
could be run only on large mainframe computers. These machines have traditionally
been expensive to design, purchase, and maintain. However, today's generation of
powerful, inexpensive workstation computers enables programmers to design software
that maintains and distributes data quickly and inexpensively.

Dr. Codd's 12 Rulesfor a Relational Database M odel

The most popular data storage model is the relational database, which grew from the
seminal paper "A Relational Model of Data for Large Shared Data Banks,"” written by
Dr. E. F. Codd in 1970. SQL evolved to service the concepts of the relational database
model. Dr. Codd defined 13 rules, oddly enough referred to as Codd's 12 Rules, for the
relational model:

0. A relational DBMS must be able to manage databases entirely through its
relational capabilities.

1. Information rule-- All information in a relational database (including table
and column names) is represented explicitly as values in tables.

2. Guaranteed access--Every value in a relational database is guaranteed to be
accessible by using a combination of the table name, primary key value, and
column name.

3. Systematic null value support--The DBMS provides systematic support for the
treatment of null values (unknown or inapplicable data), distinct from default
values, and independent of any domain.

4. Active, online relational catalog--The description of the database and its
contents is represented at the logical level as tables and can therefore be
queried using the database language.

5. Comprehensive data sublanguage--At least one supported language must have a
wel l-defined syntax and be comprehensive. It must support data definition,
manipulation, integrity rules, authorization, and transactions.

6. View updating rule--All views that are theoretical ly updatable can be updated
through the system.

7. Set-level insertion, update, and deletion--The DBMS supports not only set-
level retrievals but also set-level inserts, updates, and deletes.

8. Physical data independence--Application programs and ad hoc programs are
logical ly unaffected when physical access methods or storage structures are
altered.

9. Logical data independence--Application programs and ad hoc programs are
logical ly unaffected, to the extent possible, when changes are made to the table
structures.

10. Integrity independence--The database language must be capable of defining
integrity rules. They must be stored in the online catalog, and they cannot be
bypassed.

11. Distribution independence--Application programs and ad hoc requests are
logical ly unaffected when data is first distributed or when it is redistributed.

12. Nonsubversion--It must not be possible to bypass the integrity rules defined
through the database language by using lower-level languages.

Most databases have had a "parent/child" relationship; that is, a parent node would
contain file pointers to its children. (See Figure 1.1.)

Figure 1.1.
Codd's relational database management system.

This method has several advantages and many disadvantages. In its favor is the fact
that the physical structure of data on a disk becomes unimportant. The programmer
simply stores pointers to the next location, so data can be accessed in this manner. Also,
data can be added and deleted easily. However, different groups of information could
not be easily joined to form new information. The format of the data on the disk could
not be arbitrarily changed after the database was created. Doing so would require the
creation of a new database structure.

Codd's idea for an RDBMS uses the mathematical concepts of relational algebra to
break down data into sets and related common subsets.

Because information can naturally be grouped into distinct sets, Dr. Codd organized his

database system around this concept. Under the relational model, data is separated into
sets that resemble a table structure. This table structure consists of individual data
elements called columns or fields. A single set of a group of fields is known as a record
or row. For instance, to create a relational database consisting of employee data, you
might start with a table called EMPLOYEE that contains the fol lowing pieces of
information: Nane, Age, and Qccupat i on. These three pieces of data make up the fields
in the EMPLOYEE table, shown in Table 1.1.

Tablel.1. TheEMPLOYEE table.

Name Age Occupation

Will Williams 25 Electrical engineer
Dave Davidson 34 Museum curator
Jan Janis 42 Chef

Bill Jackson 19 Student

Don DeMarco 32 Game programmer
Becky Boudreaux 25 Model

The six rows are the records in the EMPLOYEE table. To retrieve a specific record from
this table, for example, Dave Davidson, a user would instruct the database management
system to retrieve the records where the NAME field was equal to Dave Davidson. If the
DBMS had been instructed to retrieve all the fields in the record, the employee's name,
age, and occupation would be returned to the user. SQL is the language that tells the
database to retrieve this data. A sample SQL statement that makes this query is

SELECT *
FROM EMPLOYEE

Remember that the exact syntax is not important at this point. We cover this topic in
much greater detail beginning tomorrow.

Because the various data items can be grouped according to obvious relationships (such
as the relationship of Enpl oyee Nane to Enpl oyee Age), the relational database
model gives the database designer a great deal of flexibility to describe the
relationships between the data elements. Through the mathematical concepts of join
and union, relational databases can quickly retrieve pieces of data from different sets
(tables) and return them to the user or program as one "joined" col lection of data. (See
Figure 1.2.) The join feature enables the designer to store sets of information in separate
tables to reduce repetition.

Figure 1.2.
The join feature.

Figure 1.3 shows a union. The union would return only data common to both sources.

Figure 1.3.
The union feature.

Here's a simple example that shows how data can be logically divided between two
tables. Table 1.2 is called RESPONSI Bl LI TI ES and contains two fields: NAME and
DUTI ES.

Table1.2. The RESPONSIBILITIEStable.

Name Duties

Becky Boudreaux Smile

Becky Boudreaux Walk

Bill Jackson Study

Bill Jackson Interview for jobs

It would be improper to duplicate the employee's AGE and OCCUPATI ON fields for each
record. Over time, unnecessary duplication of data would waste a great deal of hard
disk space and increase access time for the RDBMS. However, if NAME and DUTI ES were
stored in a separate table named RESPONSI BI LI Tl ES, the user could join the

RESPONSI BI LI TlI ES and EMPLOYEE tables on the NAME field. Instructing the RDBMS to
retrieve all fields from the RESPONSI BI LI TI ES and EMPLOYEE tables where the NAVE
field equals Becky Boudr eaux would return Table 1.3.

Table 1.3. Return values from retrieval where NAM E equals Becky Boudr eaux.

Name Age Occupation Duties
Becky Boudreaux 25 Model Smile
Becky Boudreaux 25 Model Walk

More detailed examples of joins begin on Day 6, "Joining Tables."”

Designing the Database Structure

The most important decision for a database designer, after the hardware platform and
the RDBMS have been chosen, is the structure of the tables. Decisions made at this stage
of the design can affect performance and programming later during the development
process. The process of separating data into distinct, unique sets is cal led normalization.

Today's Database L andscape

Computing technology has made a permanent change in the ways businesses work around
the world. Information that was at one time stored in warehouses full of filing
cabinets can now be accessed instantaneously at the click of a mouse button. Orders
placed by customers in foreign countries can now be instantly processed on the floor of
a manufacturing facility. Although 20 years ago much of this information had been
transported onto corporate mainframe databases, offices still operated in a batch-
processing environment. If a query needed to be performed, someone notified the
management information systems (MIS) department; the requested data was delivered as
soon as possible (though often not soon enough).

In addition to the development of the relational database model, two technologies led
to the rapid growth of what are now called client/server database systems. The first
important technology was the personal computer. Inexpensive, easy-to-use applications
such as Lotus 1-2-3 and Word Perfect enabled employees (and home computer users) to
create documents and manage data quickly and accurately. Users became accustomed to
continual ly upgrading systems because the rate of change was so rapid, even as the price
of the more advanced systems continued to fall.

The second important technology was the local area network (LAN) and its integration
into offices across the world. Although users were accustomed to terminal connections
to a corporate mainframe, now word processing files could be stored locally within an
office and accessed from any computer attached to the network. After the Apple
Macintosh introduced a friendly graphical user interface, computers were not only
inexpensive and powerful but also easy to use. In addition, they could be accessed from
remote sites, and large amounts of data could be off-loaded to departmental data
servers.

During this time of rapid change and advancement, a new type of system appeared.
Called client/server development because processing is split between client computers and a
database server, this new breed of application was a radical change from mainframe-
based application programming. Among the many advantages of this type of architecture
are

. Reduced maintenance costs
. Reduced network load (processing occurs on database server or client computer)

. Multiple operating systems that can interoperate as long as they share a common
network protocol

. Improved data integrity owing to centralized data location

In Implementing Client/Server Computing, Bernard H. Boar defines client/server computing as
follows:

Client/server computing is a processing model in which a single application is
partitioned between multiple processors (front-end and back-end) and the
processors cooperate (transparent to the end user) to complete the processing as a
single unified task. Implementing Client/Server Computing A client/server bond
product ties the processors together to provide a single system image (il lusion).
Shareable resources are positioned as requestor clients that access authorized
services. The architecture is endlessly recursive; in turn, servers can become
clients and request services of other servers on the network, and so on and so on.

This type of application development requires an entirely new set of programming skills.
User interface programming is now written for graphical user interfaces, whether it be
MS Windows, IBM 0S/2, Apple Macintosh, or the UNIX X-Window system. Using SQL and a
network connection, the application can interface to a database residing on a remote
server. The increased power of personal computer hardware enables critical database
information to be stored on a relatively inexpensive standalone server. In addition, this
server can be replaced later with little or no change to the client applications.

A Cross-Product Language

You can apply the basic concepts introduced in this book in many environments--for
example, Microsoft Access running on a single-user Windows application or SQL Server
running with 100 user connections. One of SQL's greatest benefitsis thatitis truly a
cross-platform language and a cross-product language. Because it is also what
programmers refer to as a high-level or fourth-generation language (4GL), a large
amount of work can be donehigher-level language 4GL (fourth-generation) language
fourth-generation (4GL) language in fewer lines of code.

Early Implementations

Oracle Corporation released the first commercial RDBMS that used SQL. Although the
original versions were developed for VAX/VMS systems, Oracle was one of the first
vendors to release a DOS version of its RDBMS. (Oracle is now available on more than
70 platforms.) In the mid-1980s Sybase released its RDBMS, SQL Server. With client
libraries for database access, support for stored procedures (discussed on Day 14,
"Dynamic Uses of SQL"), and interoperability with various networks, SQL Server became
a successful product, particularly in client/server environments. One of the strongest
points for both of theseSQL Server powerful database systems is their scalability across
platforms. C language code (combined with SQL) written for Oracle on a PCis virtually
identical to its counterpart written for an Oracle database running on a VAX system.

SQL and Client/Server Application Development

The common thread that runs throughout client/server application development is the

use client/server computing of SQL and relational databases. Also, using this database
technology in a single-user business application positions the application for future
growth.

An Overview of SQL

SQL is the de facto standard language used to manipulate and retrieve data from these
relational databases. SQL enables a programmer or database administrator to do the
following:

. Modify a database's structure

. Change system security settings

. Add user permissions on databases or tables
. Query a database for information

. Update the contents of a database

NOTE: The term SQL can be confusing. The S, for Structured, and the L, for
Language, are straightforward enough, but the Q is a little misleading. Q,
of course, stands for "Query," which--if taken literally--would restrict you
to asking the database questions. But SQL does much more than ask
guestions. With SQL you can also create tables, add data, delete data,
splice data together, trigger actions based on changes to the database, and
store your queries within your program or database.

Unfortunately, there is no good substitute for Query. Obviously,
Structured Add Modify Delete Join Store Trigger and Query Language
(SAMDJSTQL) is a bit cumbersome. In the interest of harmony, we will stay
with SQL. However, you now know that its function is bigger than its name.

The most commonly used statement in SQL is the SELECT statement (see Day 2,
"Introduction to the Query: The SELECT Statement"), which retrieves data from the
database and returns the data to the user. The EMPLOYEE table example il lustrates a
typical example of a SELECT statement situation. In addition to the SELECT statement,
SQL provides statements for creating new databases, tables, fields, and indexes, as well
as statements for inserting and deleting records. ANSI SQL also recommends a core
group of data manipulation functions. As you will find out, many database systems also
have tools for ensuring data integrity and enforcing security (see Day 11, "Controlling
Transactions") that enable programmers to stop the execution of a group of commands if

a certain condition occurs.

Popular SQL Implementations

This section introduces some of the more popular implementations of SQL, each of which
has its own strengths and weaknesses. Where some implementations of SQL have been
developed for PC use and easy user interactivity, others have been developed to
accommodate very large databases (VLDB). This sections introduces selected key
features of some implementations.

NOTE: In addition to serving as an SQL reference, this book also contains
many practical software development examples. SQL is useful only when it
solves your real-world problems, which occur inside your code.

Microsoft Access

We use Microsoft Access, a PC-based DBMS, to il lustrate some of the examples in this
text. Access is very easy to use. You can use GUI tools or manually enter your SQL
statements.

Per sonal Oracle7

We use Personal Oracle7, which represents the larger corporate database world, to
demonstrate command-line SQL and database management techniques. (These techniques
are important because the days of the standalone machine are drawing to an end, as are
the days when knowing one database or one operating system was enough.) In command-
line REI, simple stand+[cedil laJone SQL statements are entered into Oracle's SQL*Plus
tool. This tool then returns data to the screen for the user to see, or it performs the
appropriate action on the database.

Most examples are directed toward the beginning programmer or first-time user of SQL.
We begin with the simplest of SQL statements and advance to the topics of transaction
management and stored procedure programming. The Oracle RDBMS is distributed with a
full complement of development tools. It includes a C++ and Visual Basic language
library (Oracle Objects for OLE) that can link an application to a Personal Oracle
database. It also comes with graphical tools for database, user, and object
administration, as well as the SQL*Loader utility, which is used to import and export
data to and from Oracle.

NOTE: Personal Oracle7 is a scaled-down version of the full-blown
Oracle7 server product. Personal Oracle7 allows only single-user

connections (as the name implies). However, the SQL syntax used on this
product is identical to that used on the larger, more expensive versions of
Oracle. In addition, the tools used in Personal Oracle7 have much in
common with the Oracle7 product.

We chose the Personal Oracle7 RDBMS for several reasons:

. Itincludes nearly all the tools needed to demonstrate the topics discussed in this
book.

. Itisavailable on virtually every platform in use today and is one of the most
popular RDBMS products wor ldwide.

. A 90-day trial copy can be downloaded from Oracle Corporation's World Wide
Web server (http://www.oracle.com).

Figure 1.4 shows SQL*Plus from this suite of tools.

Figure 1.4.
Oracle's SQL*Plus.

TIP: Keep in mind that nearly all the SQL code given in this book is
portable to other database management systems. In cases where syntax
differs greatly among different vendors' products, examples are given to
illustrate these differences.

Microsoft Query

Microsoft Query (see Figure 1.5) is a useful query tool that comes packaged with
Microsoft's Windows development tools, Visual C++, and Visual Basic. It uses the ODBC
standard to communicate with underlying databases. Microsoft Query passes SQL
statements to a driver, which processes the statements before passing them to a database

system.

Figure 1.5.
Microsoft Query.

Open Database Connectivity (ODBC)

ODBC is a functional library designed to provide a common Application Programming
Interface (API) to underlying database systems. It communicates with the database

http://www.oracle.com/

through a library driver, just as Windows communicates with a printer via a printer
driver. Depending on the database being used, a networking driver may be required to
connect to a remote database. The architecture of ODBC is il lustrated in Figure 1.6.

Figure 1.6.
ODBC structure.

The unique feature of ODBC (as compared to the Oracle or Sybase libraries) is that none
of its functions are database-vendor specific. For instance, you can use the same code to
perform queries against a Microsoft Access table or an Informix database with little or
no modification. Once again, it should be noted that most vendors add some proprietary
extensions to the SQL standard, such as Microsoft's and Sybase's Transact-SQL and
Oracle's PL/SQL.

You should always consult the documentation before beginning to work with a new
data source. ODBC has developed into a standard adopted into many products, including
Visual Basic, Visual C++, FoxPro, Borland Delphi, and PowerBuilder. As always,
application developers need to weigh the benefit of using the emerging ODBC standard,
which enables you to design code without regard for a specific database, versus the
speed gained by using a database specific function library. In other words, using ODBC
will be more portable but slower than using the Oracle7 or Sybase libraries.

SQL in Application Programming

SQL was originally made an ANSI standard in 1986. The ANSI 1989 standard (often
called SQL-89) defines three types of interfacing to SQL within an application program:

. Module Language-- Uses procedures within programs. These procedures can be
called by the application program and can return values to the program via
parameter passing.

. Embedded SQL--Uses SQL statements embedded with actual program code. This
method often requires the use of a precompiler to process the SQL statements. The
standard defines statements for Pascal, FORTRAN, COBOL, and PL/1.

. Direct Invocation--Left up to the implementor.

Before the concept of dynamic SQL evolved, embedded SQL was the most popular way to
use SQL within a program. Embedded SQL, which is stil I used, uses static SQL--meaning
that the SQL statement is compiled into the application and cannot be changed at
runtime. The principle is much the same as a compiler versus an interpreter. The
performance for this type of SQL is good; however, it is not flexible--and cannot always
meet the needs of today's changing business environments. Dynamic SQL is discussed
shortly.

The ANSI 1992 standard (SQL-92) extended the language and became an international
standard. It defines three levels of SQL compliance: entry, intermediate, and full. The
new features introduced include the following:

. Connections to databases
. Scrollable cursors
. Dynamic SQL

. Outer joins

This book covers not only all these extensions but also some proprietary extensions used
by RDBMS vendors. Dynamic SQL allows you to prepare the SQL statement at runtime.
Although the performance for this type of SQL is not as good as that of embedded SQL,
it provides the application developer (and user) with a great degree of flexibility. A
call-level interface, such as ODBC or Sybase's DB-Library, is an example of dynamic
SQL.

Call-level interfaces should not be a new concept to application programmers. When
using ODBC, for instance, you simply fill a variable with your SQL statement and call
the function to send the SQL statement to the database. Errors or results can be
returned to the program through the use of other function calls designed for those
purposes. Results are returned through a process known as the binding of variables.

Summary

Day 1 covers some of the history and structure behind SQL. Because SQL and relational
databases are so closely linked, Day 1 also covers (albeit briefly) the history and
function of relational databases. Tomorrow is devoted to the most important component
of SQL: the query.

Q& A

Q Why should I be concerned about SQL?

A Until recently, if you weren't working on a large database system, you
probably had only a passing knowledge of SQL. With the advent of client/server
development tools (such as Visual Basic, Visual C++, ODBC, Borland's Delphi, and
Powersoft's PowerBuilder) and the movement of several large databases (Oracle
and Sybase) to the PC platform, most business applications being developed today
require a working knowledge of SQL.

Q Why do | need to know anything about relational database theory to use

SQL?

A SQL was developed to service relational databases. Without a minimal
understanding of relational database theory, you will not be able to use SQL
effectively except in the most trivial cases.

Q All the new GUI tools enable me to click a button to write SQL. Why
should I spend time learning to write SQL manual ly?

A GUI tools have their place, and manually writing SQL has its place. Manually
written SQL is generally more efficient than GUI-written SQL. Also, a GUI SQL
statement is not as easy to read as a manually written SQL statement. Finally,
knowing what is going on behind the scenes when you use GUI tools will help you
get the most out of them.

Q So, if SQL is standardized, should I be able to program with SQL on any
databases?

A No, you will be able to program with SQL only on RDBMS databases that
support SQL, such as MS-Access, Oracle, Sybase, and Informix. Although each
vendor's implementation will differ slightly from the others, you should be able
to use SQL with very few adjustments.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. What makes SQL a nonprocedural language?
2. How can you tell whether a database is truly relational?

3. What can you do with SQL?

4. Name the process that separates data into distinct, unique sets.
Exercise

Determine whether the database you use at work or at home is truly relational.

| ¢ Previous Chapter [NextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 2 -
Introduction to the Query: The SELECT
Statement

ODbjectives

Welcome to Day 2! By the end of the day you will be able to do the following:
. Write an SQL query
. Select and list all rows and columns from a table
. Select and list selected columns from a table

. Select and list columns from multiple tables

Background

To fully use the power of a relational database as described briefly on Day 1,
"Introduction to SQL," you need to communicate with it. The ultimate communication
would be to turn to your computer and say, in a clear, distinct voice, "Show me all the
left-handed, brown-eyed bean counters who have worked for this company for at least
10 years." A few of you may already be doing so (talking to your computer, not listing
bean counters). Everyone else needs a more conventional way of retrieving information
from the database. You can make this vital link through SQL's middle name, "Query."

As mentioned on Day 1, the name Query is really a misnomer in this context. An SQL
qguery is not necessarily a question to the database. It can be a command to do one of the
following:

. Build or delete a table
. Insert, modify, or delete rows or fields

. Search several tables for specific information and return the results in a specific
order

. Modify security information

A gquery can also be a simple question to the database. To use this powerful tool, you
need to learn how to write an SQL query.

General Rules of Syntax

As you will find, syntax in SQL is quite flexible, although there are rules to follow as
in any programming language. A simple query il lustrates the basic syntax of an SQL
select statement. Pay close attention to the case, spacing, and logical separation of the
components of each query by SQL keywords.

SELECT NAME, STARTTERM ENDTERM
FROM PRESI DENTS
WHERE NAME = ' LI NCOLN ;

In this example everything is capitalized, but it doesn't have to be. The preceding query
would work just as well if it were written like this:

sel ect nanme, startterm endterm
from presidents
where nanme = ' LI NCOLN :

Notice that LI NCOLN appears in capital letters in both examples. Although actual SQL
statements are not case sensitive, references to data in a database are. For instance,
many companies store their data in uppercase. In the preceding example, assume that the
column nane stores its contents in uppercase. Therefore, a query searching for 'Lincoln'’
in the nanme column would not find any data to return. Check your implementation
and/or company policies for any case requirements.

NOTE: Commands in SQL are not case sensitive.

Take another look at the sample query. Is there something magical in the spacing? Again
the answer is no. The fol lowing code would work as well:

sel ect nane, startterm endtermfrom presidents where nane =
" LI NCOLN ;

However, some regard for spacing and capitalization makes your statements much easier
to read. It also makes your statements much easier to maintain when they become a part
of your project.

Another important feature of ; (semicolon)semicolon (;)the sample query is the semicolon
at the end of the expression. This punctuation mark tells the command-line SQL program
that your query is complete.

If the magic isn't in the capitalization or the format, then just which elements are
important? The answer is keywords, or the words in SQL that are reserved as a part of
syntax. (Depending on the SQL statement, a keyword can be either a mandatory element
of the statement or optional.) The keywords in the current example are

. SELECT
. FROVI
. VHERE

Check the table of contents to see some of the SQL keywords you will learn and on
what days.

The Building Blocks of Data Retrieval: SELECT and
FROM

As your experience with SQL grows, you will notice that you are typing the words
SELECT and FROMmore than any other words in the SQL vocabulary. They aren't as
glamorous as CREATE or as ruthless as DROP, but they are indispensable to any
conversation you hope to have with the computer concerning data retrieval. And isn't
data retrieval the reason that you entered mountains of information into your very
expensive database in the first place?

This discussion starts with SELECT because most of your statements will also start with
SELECT:

SYNTAX:

SELECT <COLUMN NAMES>

The commands, see also statementsbasic SELECT statement couldn't be simpler. However,
SELECT does not work alone. If you typed just SELECT into your system, you might get
the following response:

INPUT:
SQL> SELECT;
OUTPUT:

SELECT

*

ERRCOR at |ine 1:

ORA- 00936: m ssi ng expression

The asterisk under the offending line indicates where Oracle7 thinks the offense
occurred. The error message tells you that something is missing. That something is the
FROMclause:

SYNTAX:

FROM <TABLE>

Together, the statements SELECT and FROMbegin to unlock the power behind your
database.

NOTE: keywordsclausesAt this point you may be wondering what the
difference is between a keyword, a statement, and a clause. SQL keywords
refer to individual SQL elements, such as SELECT and FROM A clause is a
part of an SQL statement; for example, SELECT columnl, column2, ...isa
clause. SQL clauses combine to form a complete SQL statement. For example,
you can combine a SELECT clause and a FROMiclause to write an SQL
statement.

NOTE: Each implementation of SQL has a unique way of indicating errors.
Microsoft Query, for example, says it can't show the query, leaving you to
find the problem. Borland's Interbase pops up a dialog box with the error.
Personal Oracle7, the engine used in the preceding example, gives you an
error number (so you can look up the detailed explanation in your manuals)
and a short explanation of the problem.

Examples

Before going any further, look at the sample database that is the basis for the
following examples. This database il lustrates the basic functions of SELECT and FROM
In the real world you would use the techniques described on Day 8, "Manipulating
Data,” to build this database, but for the purpose of describing how to use SELECT and
FROM assume it already exists. This example uses the CHECKS table to retrieve
information about checks that an individual has written.

The CHECKS table:
CHECK# PAYEE AMOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bel | 200. 32 Cel l ul ar Phone
4 Local Utilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
6 Cash 25 Wld N ght Qut
7 Joans Gas 25.1 Gas

Your First Query

INPUT:

SQ.> sel ect * from checks;

OUTPUT:
quer i esCHECK# PAYEE AMOUNT REMARKS
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bel | 200. 32 Cel l ul ar Phone
4 Local Utilities 98 Gas
5 Joes Stale $ Dent 150 Groceri es
6 Cash 25 Wld N ght Qut
7 Joans Gas 25.1 Gas

7 rows sel ected.
ANALYSIS:

This output looks just like the code in the example. Notice that columns 1 and 3 in the
output statement are right-justified and that columns 2 and 4 are left-justified. This

format follows the alignment convention in which numeric data types are right-
justified and character data types are left-justified. Data types are discussed on Day 9,
"Creating and Maintaining Tables."

The asterisk (*) in sel ect * tells the database to return all the columns associated
with the given table described in the FROMclause. The database determines the order in
which to return the columns.

Terminating an SQL Statement

In some implementations of SQL, the semicolon at the end of the statement tells the
interpreter that you are finished writing the query. For example, Oracle's SQL*PLUS
won't execute the query until it finds a semicolon (or a slash). On the other hand, some
implementations of SQL do not use the semicolon as a terminator. For example,
Microsoft Query and Borland's ISQL don't require a terminator, because your query is
typed in an edit box and executed when you push a button.

Changing the Order of the Columns

The preceding example of an SQL statement used the * to select all columns from a
table, the order of their appearance in the output being determined by the database. To
specify the order of the columns, you could type something like:

INPUT:

SQ.> SELECT payee, remarks, anmount, check# from checks;

Notice that each column name is listed in the SELECT clause. The order in which the
columns are listed is the order in which they will appear in the output. Notice both the
commas that separate the column names and the space between the final column name
and the subsequent clause (in this case FROW). The output would look like this:

OUTPUT:

PAYEE REVARKS AMOUNT CHECK#
Ma Bel | Have sons next tine 150 1
Reading R R Train to Chicago 245, 34 2
Ma Bel | Cel | ul ar Phone 200. 32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash Wld N ght Cut 25 6
Joans Gas Gas 25.1 7

7 rows sel ected.

Another way to write the same statement fol lows.
INPUT:

SELECT payee, remarks, anount, check#
FROM checks;

Notice that the FROMclause has been carried over to the second line. This convention is
a matter of personal taste when writing SQL code. The output would look like this:

OUTPUT:

PAYEE REMARKS AMOUNT CHECK#
Ve Bel | Have sons next tine 150 1
Reading R R Train to Chicago 245. 34 2
Ve Bel | Cel | ul ar Phone 200. 32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceri es 150 5
Cash WIld N ght Qut 25 6
Joans @Gas Gas 25.1 7

7 rows sel ected.

ANALYSIS:

The output is identical because only the format of the statement changed. Now that
you have established control over the order of the columns, you will be able to specify
which columns you want to see.

Selecting Individual Columns

Suppose you do not want to see every column in the database. You used SELECT * to
find out what information was available, and now you want to concentrate on the
check number and the amount. You type

INPUT:

SQL> SELECT CHECK#, anpunt from checks;

which returns
OUTPUT:

CHECK# AMOUNT

245. 34
200. 32
98

150

25
25.1

~NOoO oabhwN

7 rows sel ected.

ANALYSIS:

Now you have the columns you want to see. Notice the use of upper- and lowercase in
the query. It did not affect the result.

What if you need information from a different table?

Selecting Different Tables

Suppose you had a table called DEPCSI TS with this structure:

DEPCOSI T# WHOPAI D AMOUNT RENMARKS
1 Rich Uncle 200 Take off Xmas |i st
2 Enpl oyer 1000 15 June Payday
3 Credit Union 500 Loan

You would simply change the FROMclause to the desired table and type the following
statement:

INPUT:

SQ.> select * from deposits

The result is

OUTPUT:
DEPOSI T# WHOPAI D AMOUNT RENMARKS
1 Rich Uncle 200 Take off Xmas |i st
2 Enpl oyer 1000 15 June Payday
3 Credit Union 500 Loan
ANALYSIS:

With a single change you have a new data source.

Querieswith Distinction

IT you look at the original table, CHECKS, you see that some of the data repeats. For
example, if you looked at the AMOUNT column using

INPUT:
SQ.> sel ect anpbunt from checks;
you would see

OUTPUT:

Notice that the amount 150 is repeated. What if you wanted to see how may different
amounts were in this column? Try this:

INPUT:

SQL> sel ect DI STINCT anount from checks;

The result would be

OUTPUT:

6 rows sel ected.

ANALYSIS:

Notice that only six rows are selected. Because you specified DI STI NCT, only one
instance of the duplicated data is shown, which means that one less row is returned.
ALL is a keyword that is implied in the basic SELECT statement. You almost never see
ALL because SELECT <Tabl e>and SELECT ALL <Tabl e> have the same result.

Try this example--for the first (and only!) time in your SQL career:
INPUT:

SQL> SELECT ALL AMOUNT
2 FROM CHECKS;

OUTPUT:

7 rows sel ected.

It is the same as a SELECT <Col unm>. Who needs the extra keystrokes?

Summary

The keywords SELECT and FROMenable the query to retrieve data. You can make a
broad statement and include all tables with a SELECT * statement, or you can
rearrange or retrieve specific tables. The keyword DI STI NCT limits the output so that
you do not see duplicate values in a column. Tomorrow you learn how to make your
gueries even more selective.

Q& A

Q Where did this data come from and how do | connect to it?

A The data was created using the methods described on Day 8. The database
connection depends on how you are using SQL. The method shown is the
traditional command-line method used on commercial-quality databases. These
databases have traditional ly been the domain of the mainframe or the
workstation, but recently they have migrated to the PC.

Q OK, but if I don't use one of these databases, how will | use SQL?

A You can also use SQL from within a programming language. Embedded
SQLEmbedded SQL is normally a language extension, most commonly seen in
COBOL, in which SQL is written inside of and compiled with the program.
Microsoft has created an entire Application Programming Interface (API) that
enables programmers to use SQL from inside Visual Basic, C, or C++. Libraries
available from Sybase and Oracle also enable you to put SQL in your programs.

Borland has encapsulated SQL into database objects in Delphi. The concepts in
this book apply in all these languages.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises,” and make sure you
understand the answers before starting tomorrow's work.

Quiz
1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
select * from checks; ?

2. The following queries do not work. Why not?

a. Sel ect *

b.Sel ect * from checks

c.Sel ect anmobunt nane payee FROM checks;

3. Which of the following SQL statements will work?
a.sel ect *

from checks;

b.sel ect * from checks;

c.select * from checks

Exercises

1. Using the CHECKS table from earlier today, write a query to return just the
check numbers and the remarks.

2. Rewrite the query from exercise 1 so that the remarks will appear as the first
column in your query results.

3. Using the CHECKS table, write a query to return all the unique remarks.

| ¢ Previous Chapter (& MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 3 -
Expressions, Conditions, and Operators

Objectives

On Day 2, "Introduction to the Query: The SELECT Statement,” you used SELECT and
FROMto manipulate data in interesting (and useful) ways. Today you learn more about
SELECT and FROMand expand the basic query with some new terms to go with query,

table, and row, as well as a new clause and a group of handy items called operators.
When the sun sets on Day 3, you will

. Know what an expression is and how to use it

. Know what a condition is and how to use it

. Be familiar with the basic uses of the WHERE clause

. Be able to use arithmetic, comparison, character, logical, and set operators

. Have a working knowledge of some miscel laneous operators

NOTE: We used Oracle's Personal Oracle7 to generate today's examples.
Other implementations of SQL may differ slightly in the way in which
commands are entered or output is displayed, but the results are basically
the same for all implementations that conform to the ANSI standard.

EXpressions

The definition of an expression is simple: An expression returns a value. Expression types
are very broad, covering different data types such as String, Numeric, and Boolean. In
fact, pretty much anything following a clause (SELECT or FROM for example) is an
expression. In the following example anobunt is an expression that returns the value
contained in the anount column.

SELECT anpbunt FROM checks;

In the following statement NAME, ADDRESS, PHONE and ADDRESSBOCK are
expressions:

SELECT NAME, ADDRESS, PHONE
FROM ADDRESSBOCK;

Now, examine the fol lowing expression:

VWHERE NAME = ' BROMWN

It contains a condition, NAME = ' BROMWN , which is an example of a Boolean expression.
NAME = ' BROAN will be either TRUE or FALSE, depending on the condition =.

Conditions

IT you ever want to find a particular item or group of items in your database, you need
one or more conditions. Conditions are contained in the WHERE clause. In the preceding
example, the condition is

NAVE = ' BROMWN

To find everyone in your organization who worked more than 100 hours last month,
your condition would be

NUVBEROFHOURS > 100

Conditions enable you to make selective queries. In their most common form, conditions
comprise a variable, a constant, and a comparison operator. In the first example the
variable is NAVE, the constant is' BROAN , and the comparison operator is =. In the
second example the variable is NUVBEROFHOURS, the constant is 100, and the comparison
operator is >. You need to know about two more elements before you can write
conditional queries: the WHERE clause and operators.

The WHERE Clause

The syntax of the WHERE clause is
SYNTAX:

VWHERE <SEARCH CONDI TI ON>

SELECT, FROM and WHERE are the three most frequently used clauses in SQL. WHERE
simply causes your queries to be more selective. Without the WHERE clause, the most
useful thing you could do with a query is display all records in the selected table(s).
For example:

INPUT:

SQL> SELECT * FROM BI KES;

lists all rows of data in the table Bl KES.

OUTPUT:

NANVE FRAMESI ZE COMPCSI TI ON M LESRI DDEN TYPE
TREK 2300 22.5 CARBON FI BER 3500 RACI NG
BURLEY 22 STEEL 2000 TANDEM
G ANT 19 STEEL 1500 COVMUTER
FUJI 20 STEEL 500 TOURI NG
SPECI ALI ZED 16 STEEL 100 MOUNTAI N
CANNONDALE 22.5 ALUM NUM 3000 RACI NG

6 rows sel ected.

If you wanted a particular bike, you could type
INPUT/OUTPUT:

SQL> SELECT *
FROM Bl KES
WHERE NAME = ' BURLEY' ;

which would yield only one record:

NANVE FRAMESI ZE COVMPCSI Tl ON M LESRI DDEN TYPE

BURLEY 22 STEEL 2000 TANDEM

ANALYSIS:

This simple example shows how you can place a condition on the data that you want to
retrieve.

Operators

Operators are the elements you use inside an expression to articulate how you want
specified conditions to retrieve data. Operators fall into six groups: arithmetic,
comparison, character, logical, set, and miscel laneous.

Arithmetic Operators

The arithmetic operators are plus (+), minus (-), divide (/), multiply (*), and modulo (%).
The first four are selfexplanatory. Modulo returns the integer remainder of a division.
Here are two examples:

5 %2 1

0

The modulo operator does not work with data types that have decimals, such as Real or
Number.

IT you place several of these arithmetic operators in an expression without any
parentheses, the operators are resolved in this order: multiplication, division, modulo,
addition, and subtraction. For example, the expression

2*6+9/ 3

equals

12 + 3 = 15

However, the expression

2* (6 +9) / 3

equals

2 * 15/ 3 =10

Watch where you put those parentheses! Sometimes the expression does exactly what
you tell it to do, rather than what you want it to do.

The following sections examine the arithmetic operators in some detail and give you a

chance to write some queries.
Plus (+)

You can use the plus sign in several ways. Type the following statement to display the
PRI CE table:

INPUT:

SQ.> SELECT * FROM PRI CE

OUTPUT:

| TEM VWHOLESALE
TOVATCES .34
POTATCES .51
BANANAS . 67
TURNI PS .45
CHEESE . 89
APPLES .23

6 rows sel ected.
Now type:

INPUT/OUTPUT:

SQ > SELECT | TEM WHOLESALE, WHOLESALE + 0. 15
FROM PRI CE

Here the + adds 15 cents to each price to produce the fol lowing:

| TEM WHOLESALE VWHOLESALE+O. 15
TOVATOES .34 .49
POTATCES .51 . 66
BANANAS . 67 .82
TURNI PS .45 . 60
CHEESE . 89 1.04
APPLES . 23 . 38

6 rows sel ected.

ANALYSIS:

What is this last column with the unattractive column heading WHOLESALE+0. 15? It's
not in the original table. (Remember, you used * in the SELECT clause, which causes all

the columns to be shown.) SQL allows you to create a virtual or derived column by
combining or modifying existing columns.

Retype the original entry:
INPUT/OUTPUT:

SQ.> SELECT * FROM PRI CE

The following table results:

| TEM VWHOLESALE
TOVATOES .34
POTATCES .51
BANANAS . 67
TURNI PS .45
CHEESE . 89
APPLES . 23

6 rows sel ect ed.

ANALYSIS:

The output confirms that the original data has not been changed and that the column
heading WHOLESALE+O0. 15 is not a permanent part of it. In fact, the column heading is so
unattractive that you should do something about it.

Type the following:
INPUT/OUTPUT:

SQL> SELECT | TEM WHOLESALE, (WHOLESALE + 0.15) RETAIL
FROM PRI CE;

Here's the result:

| TEM VWHOLESALE RETAI L
TOVATCES .34 .49
POTATCES .51 . 66
BANANAS . 67 .82
TURNI PS .45 . 60
CHEESE . 89 1.04
APPLES .23 . 38

6 rows sel ected.

ANALYSIS:

This is wonderful! Not only can you create new columns, but you can also rename them
on the fly. You can rename any of the columns using the syntax col uim_nane al i as
(note the space between col unmm_nane and al i as).

For example, the query
INPUT/OUTPUT:

SQL> SELECT | TEM PRODUCE, WHOLESALE, WHOLESALE + 0.25 RETAIL
FROM PRI CE;

renames the columns as fol lows:

PRODUCE VWHOLESALE RETAI L
TOVATOES .34 .99
POTATCES .51 . 76
BANANAS . 67 .92
TURNI PS .45 .70
CHEESE . 89 1.14
APPLES . 23 .48

NOTE: Some implementations of SQL use the syntax <col uitmm nane =
al i as>. The preceding example would be written as fol lows:

SQ.> SELECT | TEM = PRODUCE,
VWHOLESALE,
VWHOLESALE + 0. 25 = RETAIL,
FROM PRI CE;

Check your implementation for the exact syntax.

You might be wondering what use aliasing is if you are not using command-line SQL. Fair
enough. Have you ever wondered how report builders work? Someday, when you are
asked to write a report generator, you'll remember this and not spend weeks reinventing
what Dr. Codd and IBM have wrought.

So far, you have seen two uses of the plus sign. The first instance was the use of the plus
sign in the SELECT clause to perform a calculation on the data and display the
calculation. The second use of the plus sign is in the WHERE clause. Using operators in
the WHERE clause gives you more flexibility when you specify conditions for retrieving

data.

In some implementations of SQL, the plus sign does double duty as a character operator.
You'll see that side of the plus a little later today.

Minus (-)

Minus also has two uses. First, it can change the sign of a number. You can use the table
HI LOWto demonstrate this function.

INPUT:

SQ.> SELECT * FROM HI LOW

OUTPUT:

STATE HI GHTEMP LOMEMP
CA -50 120
FL 20 110
LA 15 99
ND -70 101
NE - 60 100

For example, here's a way to manipulate the data:
INPUT/OUTPUT:

SQ.> SELECT STATE, -H GHTEMP LOA5, - LOMEMP H GHS

FROM H LOW
STATE LOWNE HI GHS
CA 50 -120
FL - 20 - 110
LA -15 -99
ND 70 -101
NE 60 - 100

The second (and obvious) use of the minus sign is to subtract one column from another.
For example:

INPUT/OUTPUT:

SQL> SELECT STATE,
2 H GHATEMP LOW5,
3 LONMEMP H GHS,
4 (LOMEMP - HI GHTEWVP) DI FFERENCE

STATE LONS H GHS DI FFERENCE
CA -50 120 170
FL 20 110 90
LA 15 99 84
ND -70 101 171
NE - 60 100 160

Notice the use of aliases to fix the data that was entered incorrectly. This remedy is
merely a temporary patch, though, and not a permanent fix. You should see to it that
the datais corrected and entered correctly in the future. On Day 21, "Common SQL
Mistakes/Errors and Resolutions,” you'l 1 learn how to correct bad data.

This query not only fixed (at least visual ly) the incorrect data but also created a new
column containing the difference between the highs and lows of each state.

If you accidental ly use the minus sign on a character field, you get something like this:
INPUT/OUTPUT:

SQ.> SELECT - STATE FROM H LOW

ERROR:
ORA-01722: invalid nunber
no rows sel ected

The exact error message varies with implementation, but the result is the same.
Divide (/)

The division operator has only the one obvious meaning. Using the table PRI CE, type the
following:

INPUT:

SQ.> SELECT * FROM PRI CE

OUTPUT:

| TEM VWHOLESALE
TOVATCES .34
POTATCES .51
BANANAS . 67
TURNI PS .45

CHEESE . 89

APPLES . 23

6 rows sel ected.

You can show the effects of a two-for-one sale by typing the next statement:
INPUT/OUTPUT:

SQL> SELECT | TEM WHOLESALE, (WHOLESALE/ 2) SALEPRI CE
2 FROM PRI CE;

| TEM VWHOLESALE SALEPRI CE
TOVATCES . 34 .17
POTATCES .51 . 255
BANANAS . 67 . 335
TURNI PS .45 . 225
CHEESE . 89 . 445
APPLES .23 . 115

6 rows sel ected.

The use of division in the preceding SELECT statement is straightforward (except that
coming up with half pennies can be tough).

Multiply (*)

The multiplication operator is also straightforward. Again, using the PRI CE table, type
the following:

INPUT:

SQ.> SELECT * FROM PRI CE

OUTPUT:

| TEM VWHOLESALE
TOVATOES .34
POTATCES .51
BANANAS . 67
TURNI PS .45
CHEESE . 89
APPLES . 23

6 rows sel ected.

This query changes the table to reflect an across-the-board 10 percent discount:

INPUT/OUTPUT:

SQL> SELECT | TEM WHOLESALE, WHOLESALE * 0.9 NEWPRI CE

FROM PRI CE;
| TEM VWHOLESALE NEWPRI CE
TOVATCES .34 . 306
POTATCES .51 . 459
BANANAS . 67 . 603
TURNI PS .45 . 405
CHEESE . 89 . 801
APPLES .23 . 207

6 rows sel ected.

These operators enable you to perform powerful calculations in a SELECT statement.

Modulo (%)

The modulo operator returns the integer remainder of the division operation. Using the
table REMAI NS, type the fol lowing:

INPUT:
SQL> SELECT * FROM RENAI NS;
OUTPUT:

NUVERATOR DENOM NATOR

10 5
8 3
23 9
40 17
1024 16
85 34

6 rows sel ected.

You can also create a new column, REMAI NDER, to hold the values of NUVERATOR %
DENOM NATOR:

INPUT/OUTPUT:

SQL> SELECT NUMERATOR
DENOM NATOR,
NUVERATORYOENOM NATOR REMAI NDER

FROM REMAI NS;

NUMERATOR DENOM NATOR REMAI NDER

10 5 0
8 3 2
23 9 5
40 17 6
1024 16 0
85 34 17

6 rows sel ected.

Some implementations of SQL implement modulo as a function called MOD (see Day 4,
"Functions: Molding the Data You Retrieve"). The fol lowing statement produces
results that are identical to the results in the preceding statement:

SQ.> SELECT NUMERATOR
DENOM NATOR,
MOD(NUMERATCOR, DENOM NATOR) REMAI NDER

FROM REMAI NS;

Precedence

This section examines the use of precedence in a SELECT statement. Using the database
PRECEDENCE, type the fol lowing:

SQL> SELECT * FROM PRECEDENCE

N1 N2 N3 N4
1 2 3 4
13 24 35 46
9 3 23 5
63 2 45 3
7 2 1 4

Use the following code segment to test precedence:
INPUT/OUTPUT:

SQL> SELECT
2 NL+N2* N3/ N4,
3 (NL+N2) *N3/ N4,
4 N1+(N2*N3)/ N4
5 FROM PRECEDENCE;

NL+N2* N3/ N4 (NL+N2) * N3/ N4 N1+(N2* N3) / N4

2.5 2.25 2.5
31. 26087 28.152174 31. 26087

22.8 55.2 22.8
93 975 93
7.5 2.25 7.5

Notice that the first and last columns are identical. If you added a fourth column
N1+N2* (N3/ N4), its values would also be identical to those of the current first and
last columns.

Comparison Operators

True to their name, comparison operators compare expressions and return one of three
values: TRUE, FALSE, or Unknown. Wait a minute! Unknown? TRUE and FALSE are self-
explanatory, but what is Unknown?

To understand how you could get an Unknown, you need to know a little about the
concept of NULL. In database terms NULL is the absence of data in a field. It does not
mean a column has a zero or a blank in it. A zero or a blank is a value. NULL means
nothing is in that field. If you make a comparison like Fi el d = 9 and the only value
for Fi el d is NULL, the comparison will come back Unknown. Because Unknown is an
uncomfortable condition, most flavors of SQL change Unknown to FALSE and provide a
special operator,| S NULL, to test for a NULL condition.

Here's an example of NULL: Suppose an entry in the PRI CE table does not contain a
value for WHOLESALE. The results of a query might look like this:

INPUT:

SQ.> SELECT * FROM PRI CE

OUTPUT:

| TEM VWHOLESALE
TOVATCES .34
POTATCES .51
BANANAS . 67
TURNI PS .45
CHEESE . 89
APPLES .23
ORANGES

Notice that nothing is printed out in the WHOLESALE field position for oranges. The
value for the field WHOLESALE for oranges is NULL. The NULL is noticeable in this case
because it is in a numeric column. However, if the NULL appeared in the | TEMcolumn, it
would be impossible to tell the difference between NULL and a blank.

Try to find the NULL:
INPUT/OUTPUT:

SQ.> SELECT *
2 FROM PRI CE
3 VWHERE VWHOLESALE IS NULL

| TEM VWHOLESALE

ANALYSIS:

As you can see by the output, ORANGES is the only item whose value for WHOLESALE is
NULL or does not contain a value. What if you use the equal sign (=) instead?

INPUT/OUTPUT:

SQL> SELECT *
FROM PRI CE
WHERE WHOLESALE = NULL;

no rows sel ected

ANALYSIS:

You didn't find anything because the comparison WHOLESALE = NULL returned a
FALSE - the result was unknown. It would be more appropriate tousean | S NULL
instead of =, changing the WHERE statement to WHERE WHOLESALE | S NULL. In this
case you would get all the rows where a NULL existed.

This example also illustrates both the use of the most common comparison operator, the
equal sign (=), and the playground of all comparison operators, the WHERE clause. You
already know about the WHERE clause, so here's a brief look at the equal sign.

Equal (=)

Earlier today you saw how some implementations of SQL use the equal sign in the
SELECT clause to assign an alias. In the WHERE clause, the equal sign is the most
commonly used comparison operator. Used alone, the equal sign is a very convenient way
of selecting one value out of many. Try this:

INPUT:

SQL> SELECT * FROM FRI ENDS

OUTPUT:

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

Let's find JD's row. (On a short list this task appears trivial, but you may have more
friends than we do--or you may have a list with thousands of records.)

INPUT/OUTPUT:

SQL> SELECT *
FROM FRI ENDS
WHERE FI RSTNAME = ' JD ;

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP

We got the result that we expected. Try this:
INPUT/OUTPUT:

SQL> SELECT *
FROM FRI ENDS
WHERE FI RSTNAME = 'AL':

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

NOTE: Here you see that = can pull in multiple records. Notice that ZI P is
blank on the second record. ZI P is a character field (you learn how to
create and populate tables on Day 8, "Manipulating Data"), and in this
particular record the NULL demonstrates that a NULL in a character field
Is impossible to differentiate from a blank field.

Here's another very important lesson concerning case sensitivity:

INPUT/OUTPUT:

SQ.> SELECT * FROM FRI ENDS
VWHERE FI RSTNAME = ' BUD ;

FI RSTNAME

BUD
1 row sel ect ed.

Now try this:
INPUT/OUTPUT:

SQ.> select * fromfriends
where firstnane = 'Bud';

no rows sel ected.

ANALYSIS:

Even though SQL syntax is not case sensitive, data is. Most companies prefer to store
data in uppercase to provide data consistency. You should always store data either in
all uppercase or in all lowercase. Mixing case creates difficulties when you try to
retrieve accurate data.

Greater Than (>) and Greater Than or Equal To (>=)

The greater than operator (>) works like this:
INPUT:

SQL> SELECT *
FROM FRI ENDS
WHERE AREACODE > 300;

OUTPUT:

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
wsT o 381 555- 6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
ANALYSIS:

This example found all the area codes greater than (but not including) 300. To include
300, type this:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE AREACODE >= 300;

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
MVERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
ANALYSIS:

With this change you get area codes starting at 300 and going up. You could achieve
the same results with the statement AREACCDE > 299.

NOTE: Notice that no quotes surround 300 in this SQL statement. Number-
defined fieldsnumber-defined fields do not require quotes.

LessThan (<) and Less Than or Equal To (<=)

As you might expect, these comparison operators work the same way as > and >= work,
only in reverse:

INPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE STATE < 'LA';

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VERRI CK BUD 300 555-6666 CO 80212
BULHER FERRI S 345 555-3223 | L 23332

NOTE: How did STATE get changed to ST? Because the column has only two
characters, the column name is shortened to two characters in the
returned rows. If the column name had been COAS, it would come out CO
The widths of AREACODE and PHONE are wider than their column names, so
they are not truncated.

ANALYSIS:

Wait a minute. Did you just use < on a character field? Of course you did. You can use
any of these operators on any data type. The result varies by data type. For example, use
lowercase in the following state search:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE STATE < 'l a';

LASTNANME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

VERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
ANALYSIS:

Uppercase is usual ly sorted before lowercase; therefore, the uppercase codes returned
are lessthan' | a' . Again, to be safe, check your implementation.

TIP: To be sure of how these operators will behave, check your language
tables. Most PC implementations use the ASCII tables. Some other platforms
use EBCDIC.

To include the state of Louisiana in the original search, type
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE STATE <= ' LA ;

LASTNANVE FI RSTNAME AREACODE PHONE ST ZIP

BUNDY AL 100 555-1111 IL 22333
MVERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

I nequalities (< > or =)

When you need to find everything except for certain data, use the inequality symbol,

which can be either < > or ! =, depending on your SQL implementation. For example, to
find everyone who is not AL, type this:

INPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE FI RSTNAME <> 'AL';

OUTPUT:

LASTNANME FI RSTNAME AREACCDE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

To find everyone not living in California, type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS

3 WHERE STATE != 'CA';
LASTNANE FI RSTNANE AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
MVEZA AL 200 555-2222 UK
MERRI CK BUD 300 555- 6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

NOTE: Notice that both symbols, <> and ! =, can express "not equals.”

Character Operators

You can use character operators to manipulate the way character strings are
represented, both in the output of data and in the process of placing conditions on data
to be retrieved. This section describes two character operators: the LI KE operator and
the || operator, which conveys the concept of character concatenation.

| Want to BeLikeL| KE

What if you wanted to select parts of a database that fit a pattern but weren't quite

exact matches? You could use the equal sign and run through all the possible cases, but
that process would be boring and time-consuming. Instead, you could use LI KE. Consider
the following:

INPUT:

SQ.> SELECT * FROM PARTS;

OUTPUT:

NANVE LOCATI ON PARTNUVBER
APPENDI X M D- STOVACH 1
ADAMS APPLE THROAT 2
HEART CHEST 3
SPI NE BACK 4
ANVI L EAR 5
Kl DNEY M D- BACK 6

How can you find all the parts located in the back? A quick visual inspection of this
simple table shows that it has two parts, but unfortunately the locations have slightly
different names. Try this:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PARTS
3 WHERE LOCATI ON LI KE ' %BACK% ;

NAME LOCATI ON PARTNUVBER
SPI NE BACK 4
Kl DNEY M D- BACK 6
ANALYSIS:

You can see the use of the percent sign (% in the statement after LI KE. When used
inside a LI KE expression, % is a wildcard. What you asked for was any occurrence of
BACK in the column location. If you queried

INPUT:

SQL> SELECT *
FROM PARTS
WHERE LOCATI ON LI KE ' BACK% :

you would get any occurrence that started with BACK:

OUTPUT:

If you queried
INPUT:

SQL> SELECT *
FROM PARTS
WHERE NANE LI KE ' A% ;

you would get any name that starts with A:

OUTPUT:

NAME LOCATI ON PARTNUVBER
APPENDI X M D- STOVACH 1
ADAMS APPLE THROAT 2
ANVI L EAR 5

Is LI KE case sensitive? Try the next query to find out.
INPUT/OUTPUT:

SQL> SELECT *
FROM PARTS
WHERE NAME LI KE ' a% ;

no rows sel ected

ANALYSIS:
The answer is yes. References to data are always case sensitive.

What if you want to find data that matches all but one character in a certain pattern?
In this case you could use a different type of wildcard: the underscore.

Underscore ()

The underscore is the single-character wildcard. Using a modified version of the table
FRI ENDS, type this:

INPUT:

SQL> SELECT *

FROM FRI ENDS

OUTPUT:

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK ub 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

To find all the records where STATE starts with C, type the following:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 \WHERE STATE LIKE 'C';

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP

MERRI CK BUD 300 555-6666 CO 80212
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

You can use several underscores in a statement:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE PHONE LI KE' 555-6 6 '

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

The previous statement could also be written as fol lows:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE PHONE LI KE ' 555- 6% :

LASTNANVE FI RSTNAME AREACODE PHONE ST ZIP

MAST JD 381 555-6767 LA 23456

Notice that the results are identical. These two wildcards can be combined. The next
example finds all records with L as the second character:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE FI RSTNAME LIKE ' L%

LASTNANVE FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

PERKI NS ALTON 911 555-3116 CA 95633

Concatenation (||)

The | | (double pipe) symbol concatenates two strings. Try this:
INPUT:

SQL> SELECT FI RSTNAME || LASTNAME ENTI RENAMVE
2 FROM FRI ENDS

OUTPUT:

ENTI RENAME

AL BUNDY
AL VEZA
BUD MERRI CK
JD MAST
FERRI S BULHER
ALTON PERKI NS
SIR BCSS

7 rows sel ected.

ANALYSIS:

Notice that | | isused instead of +. If you use + to try to concatenate the strings, the
SQL interpreter used for this example (Personal Oracle?) returns the following error:

INPUT/OUTPUT:

SQ.> SELECT FI RSTNAME + LASTNAME ENTI RENAME
FROM FRI ENDS

ERROR:
ORA-01722: invalid nunber

It is looking for two numbers to add and throws the errori nval i d nunber when it
doesn't find any.

NOTE: Some implementations of SQL use the plus sign to concatenate
strings. Check your implementation.

Here's a more practical example using concatenation:

INPUT/OUTPUT:

SQL> SELECT LASTNAME || ',' || FIRSTNAME NANME
FROM FRI ENDS

NANVE

BUNDY , AL

MEZA . AL

MERRI CK , BUD

MAST , JD

BULHER , FERRI'S

PERKINS , ALTON

BOSS , SIR

7 rows sel ected.

ANALYSIS:

This statement inserted a comma between the last name and the first name.

NOTE: Notice the extra spaces between the first name and the last name in
these examples. These spaces are actually part of the data. With certain
data types, spaces are right-padded to values less than the total length
allocated for a field. See your implementation. Data types will be discussed
on Day 9, "Creating and Maintaining Tables."

So far you have performed the comparisons one at a time. That method is fine for some

problems, but what if you need to find all the people at work with last names starting
with P who have less than three days of vacation time?

L ogical Operators

logical operatorsLogical operators separate two or more conditions in the WHERE clause
of an SQL statement.

Vacation time is always a hot topic around the workplace. Say you designed a table
called VACATI ON for the accounting department:

INPUT:

SQL> SELECT * FROM VACATI ON

OUTPUT:

LASTNANVE EMPLOYEENUM YEARS LEAVETAKEN
ABLE 101 2 4
BAKER 104 5 23
BLEDSOE 107 8 45
BOLI VAR 233 4 80
BOLD 210 15 100
COSTALES 211 10 78

6 rows sel ected.

Suppose your company gives each employee 12 days of leave each year. Using what you
have learned and a logical operator, find all the employees whose names start with B
and who have more than 50 days of leave coming.

INPUT/OUTPUT:

SQL> SELECT LASTNANME

2 YEARS * 12 - LEAVETAKEN REMAI NI NG
3 FROM VACATI ON
4 \WWHERE LASTNAME LI KE ' B%
5 AND
6 YEARS * 12 - LEAVETAKEN > 50;
LASTNANVE RENVAI NI NG
BLEDSCE 51
BOLD 80

ANALYSIS:

This query is the most complicated you have done so far. The SELECT clause (lines 1 and
2) uses arithmetic operators to determine how many days of leave each employee has
remaining. The normal precedence computes YEARS * 12 - LEAVETAKEN. (A clearer
approach would be to write (YEARS * 12) - LEAVETAKEN)

LI KE is used in line 4 with the wildcard %to find all the B names. Line 6 uses the > to
find all occurrences greater than 50.

The new element is on line 5. You used the logical operator AND to ensure that you
found records that met the criteria in lines 4 and 6.

AND

AND means that the expressions on both sides must be true to return TRUE. If either
expression is false, AND returns FALSE. For example, to find out which employees have
been with the company for 5 years or less and have taken more than 20 days leave, try
this:

INPUT:

SQL> SELECT LASTNANME
2 FROM VACATI ON
3 WHERE YEARS <= 5
4 AND
5 LEAVETAKEN > 20 ;

OUTPUT:

LASTNANME

BAKER
BOLI VAR

If you want to know which employees have been with the company for 5 years or more
and have taken less than 50 percent of their leave, you could write:

INPUT/OUTPUT:

SQL> SELECT LASTNAME WORKAHOLI CS
2 FROM VACATI ON
3 WWHERE YEARS >= 5
4 AND
5 ((YEARS *12)- LEAVETAKEN)/ (YEARS * 12) < 0.50;

BAKER
BLEDSOE

Check these people for burnout. Also check out how we used the AND to combine these
two conditions.

OR

You can also use OR to sum up a series of conditions. If any of the comparisons is true, OR
returns TRUE. To il lustrate the difference, conditionsrun the last query with OR
instead of with AND:

INPUT:

SQL> SELECT LASTNAME WORKAHOLI CS
2 FROM VACATI ON
3 WHERE YEARS >= 5
4 OR
5 ((YEARS *12)- LEAVETAKEN)/ (YEARS * 12) >= 0. 50;

OUTPUT:

BLEDSOE
BOLD
COSTALES

ANALYSIS:

The original names are still in the list, but you have three new entries (who would
probably resent being called workaholics). These three new names made the list because
they satisfied one of the conditions. OR requires that only one of the conditions be true
in order for data to be returned.

NOT

NOT means just that. If the condition it applies to evaluates to TRUE, NOT make it FALSE.
If the condition after the NOT is FALSE, it becomes TRUE. For example, the following
SELECT returns the only two names not beginning with B in the table:

INPUT:

SQL> SELECT *
2 FROM VACATI ON
3 WHERE LASTNAMVE NOT LIKE ' B% ;

OUTPUT:

LASTNANVE EMPLOYEENUM YEARS LEAVETAKEN
ABLE 101 2 4
COSTALES 211 10 78

NOT can also be used with the operator | Swhen applied to NULL. Recall the PRI CES
table where we put a NULL value in the WHOLESALE column opposite the item ORANGES.

INPUT/OUTPUT:

SQ.> SELECT * FROM PRI CE

| TEM VWHOLESALE
TOVATCES .34
POTATCES .51
BANANAS . 67
TURNI PS .45
CHEESE . 89
APPLES . 23
ORANGES

7 rows sel ected.

To find the non-NULL items, type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 WWHERE WHOLESALE |'S NOT NULL;

| TEM VWHOLESALE
TOVATCES .34
POTATCES .51
BANANAS .67
TURNI PS .45
CHEESE . 89
APPLES . 23

6 rows sel ected.

Set Operators

On Day 1, "Introduction to SQL," you learned that SQL is based on the theory of sets.
The following sections examine set operators.

UNION and UNION ALL

UNI ON returns the results of two queries minus the duplicate rows. The following two
tables represent the rosters of teams:

INPUT:
SQ.> SELECT * FROM FOOTBALL;

OUTPUT:

7 rows sel ect ed.
INPUT:
SQL> SELECT * FROM SOFTBALL

OUTPUT:

BAKER
CHARLI E
DEAN

EXI TOR
FALCONER
GOOBER

7 rows sel ected.

How many different people play on one team or another?
INPUT/OUTPUT:

SQL> SELECT NAME FROM SOFTBALL
2 UNI ON
3 SELECT NAME FROM FOOTBALL

BRAVO
CHARLI E
DEAN
DECON
EXI TOR
FALCONER
FUBAR
GOOBER

10 rows sel ect ed.

UNI ON returns 10 distinct names from the two lists. How many names are on both lists
(including duplicates)?

INPUT/OUTPUT:

SQL> SELECT NAME FROM SOFTBALL
2 UNON ALL
3 SELECT NAME FROM FOOTBALL

EXI TOR
FALCONER
GOOBER
ABLE
BRAVO
CHARLI E
DECON
EXI TOR
FUBAR
GOOBER

14 rows sel ect ed.

ANALYSIS:

The combined list--courtesy of the UNI ON ALL statement--has 14 names. UNI ON ALL
works just like UNI ON except it does not eliminate duplicates. Now show me a list of
players who are on both teams. You can't do that with UNI ON--you need to learn

| NTERSECT.

INTERSECT

| NTERSECT returns only the rows found by both queries. The next SELECT statement
shows the list of players who play on both teams:

INPUT:

SQ.> SELECT * FROM FOOTBALL
2 | NTERSECT
3 SELECT * FROM SOFTBALL;

OUTPUT:

ABLE
CHARLI E
EXI TOR
GOCBER

ANALYSIS:

In this example | NTERSECT finds the short list of players who are on both teams by
combining the results of the two SELECT statements.

MINUS (Difference)

M nus returns the rows from the first query that were not present in the second. For
example:

INPUT:

SQ.> SELECT * FROM FOOTBALL
2 M NUS
3 SELECT * FROM SOFTBALL;

OUTPUT:

ANALYSIS:

The preceding query shows the three football players who are not on the softball

team. If you reverse the order, you get the three softball players who aren't on the
football team:

INPUT:

SQL> SELECT * FROM SOFTBALL
2 M NUS
3 SELECT * FROM FOOTBALL;

OUTPUT:

DEAN
FALCONER

Miscellaneous Operators: IN and BETWEEN

The two operators | Nand BETVWEEN provide a shorthand for functions you already know
how to do. If you wanted to find friends in Colorado, California, and Louisiana, you
could type the following:

INPUT:

SQL> SELECT *

2 FROM FRI ENDS
3 WHERE STATE= ' CA
4 OR
5 STATE =' CO
6 OR
7 STATE = ' LA ;
OUTPUT:
LASTNANE FI RSTNANE AREACCDE PHONE ST ZIP
MERRI CK BUD 300 555- 6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKI NS ALTON 911 555-3116 CA 95633

Or you could type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WHERE STATE IN('CA','CO,'LA);

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP

MAST JD 381 555-6767 LA 23456
PERKI NS ALTON 911 555-3116 CA 95633
ANALYSIS:

The second example is shorter and more readable than the first. You never know when
you might have to go back and work on something you wrote months ago. | Nalso works
with numbers. Consider the fol lowing, where the column AREACCODE is a number:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 \WHERE AREACODE | N(100, 381, 204) ;

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP

BUNDY AL 100 555-1111 IL 22333
MAST JD 381 555-6767 LA 23456
BCSS SIR 204 555-2345 CT 95633

If you needed a range of things from the PRI CE table, you could write the following:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 \WHERE WHOLESALE > 0. 25
4 AND
5 WHOLESALE < 0. 75;

| TEM VWHOLESALE
TOVATCOES .34
POTATCES .51
BANANAS . 67
TURNI PS .45

Or using BETVEEN, you would write this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 WHERE WHOLESALE BETWEEN 0. 25 AND 0. 75;

| TEM VWHOLESALE

TOVATCES .34
POTATCES .51
BANANAS . 67
TURNI PS .45

Again, the second example is a cleaner, more readable solution than the first.

NOTE: If a WHOLESALE value of 0. 25 existed in the PRI CE table, that
record would have been retrieved also. Parameters used in the BETWEEN
operator are inclusive parametersinclusive.

Summary

At the beginning of Day 3, you knew how to use the basic SELECT and FROMclauses. Now
you know how to use a host of operators that enable you to fine-tune your requests to
the database. You learned how to use arithmetic, comparison, character, logical, and
set operators. This powerful set of tools provides the cornerstone of your SQL
knowledge.

Q& A

Q How does all of this information apply to me if I am not using SQL from the
command line as depicted in the examples?

A Whether you use SQL in COBOL as Embedded SQL or in Microsoft's Open
Database Connectivity (ODBC), you use the same basic constructions. You will use
what you learned today and yesterday repeatedly as you work with SQL.

Q Why are you constantly telling me to check my implementation? | thought
there was a standard!

A There is an ANSI standard (the most recent version is 1992); however, most
vendors modify it somewhat to suit their databases. The basics are similar if not
identical, and each instance has extensions that other vendors copy and improve.
We have chosen to use ANSI as a starting point but point out the differences as we
go along.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

Use the FRI ENDS table to answer the following questions.

LASTNANME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

VERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

1. Write a query that returns everyone in the database whose last name begins
with M

2. Write a query that returns everyone who lives in I1linois with a first name of
AL.

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how
would you find out which part numbers are in both tables? Write the query.

4. What shorthand could you use instead of WHERE a >= 10 AND a <=307?

5. What will this query return?

SELECT FI RSTNAME

FROM FRI ENDS

VHERE FI RSTNAME = ' AL'
AND LASTNAME = ' BULHER ;

Exercises

1. Using the FRI ENDS table, write a query that returns the following:

INPUT:

> SELECT (FIRSTNAME || 'FROM) NAME, STATE
FROM FRI ENDS
WHERE STATE = 'IL'
AND
LASTNAME = ' BUNDY" ;

U‘I-b(JOT\J(F2

OUTPUT:

NAME ST

AL FROM | L

2. Using the FRI ENDS table, write a query that returns the following:

NAME PHONE

MERRI CK, BUD 300- 555- 6666
MAST, JD 381-555-6767
BULHER, FERRI S 345-555-3223

| ¢ Previous Chapter [NextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 4 -
Functions. Molding the Data You Retrieve

Objectives

Today we talk about functions. Functions in SQL enable you to perform feats such as
determining the sum of a column or converting all the characters of a string to
uppercase. By the end of the day, you will understand and be able to use all the
following:

. Aggregate functions

. Date and time functions
. Arithmetic functions

. Character functions

. Conversion functions

. Miscellaneous functions

These functions greatly increase your ability to manipulate the information you
retrieved using the basic functions of SQL that were described earlier this week. The
first five aggregate functions, COUNT, SUM AVG MAX, and M N, are defined in the ANSI
standard. Most implementations of SQL have extensions to these aggregate functions,
some of which are covered today. Some implementations may use different names for

these functions.

Aggregate Functions

These functions are also referred to as group functions. They return a value based on
the values in a column. (After all, you wouldn't ask for the average of a single field.)
The examples in this section use the table TEAMSTATS:

INPUT:

SQ > SELECT * FROM TEAMSTATS;

OUTPUT:

NANVE PCS AB H TS WALKS SI NGLES DOUBLES TRI PLES HR SO
JONES 1B 145 45 34 31 8 1 5 10
DONKNOW 3B 175 65 23 50 10 1 4 15
WORLEY LF 157 49 15 35 8 3 3 16
DAVI D OF 187 70 24 48 4 0 17 42
HAVHOCKER 3B 50 12 10 10 2 0 0 13
CASEY DH 1 0O O 0 0 0 0 1

6 rows sel ected.

COUNT

The function COUNT returns the number of rows that satisfy the condition in the WHERE
clause. Say you wanted to know how many ball players were hitting under 350. You
would type

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
2 FROM TEAMSTATS
3 WHERE HI TS/ AB < . 35;

To make the code more readable, try an alias:
INPUT/OUTPUT:

SQL> SELECT COUNT(*) NUM BELOW 350
2 FROM TEAMSTATS

3 WHERE H TS/ AB < . 35;

NUM BELOW 350

Would it make any difference if you tried a column name instead of the asterisk? (Notice
the use of parentheses around the column names.) Try this:

INPUT/OUTPUT:

SQL> SELECT COUNT(NAMVE) NUM BELOW 350
2 FROM TEAMSTATS
3 WHERE HI TS/ AB < . 35;

NUM_BELOW 350

The answer is no. The NAME column that you selected was not involved in the WHERE
statement. If you use COUNT without a WHERE clause, it returns the number of records in
the table.

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
2 FROM TEAVSTATS;

SUM

SUMdoes just that. It returns the sum of all values in a column. To find out how many
singles have been hit, type

INPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES
2 FROM TEAVSTATS;

OUTPUT:

TOTAL_SI NGLES

To get several sums, use
INPUT/OUTPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES, SUM DOUBLES) TOTAL_DOUBLES,
SUM TRI PLES) TOTAL_TRI PLES, SUM HR) TOTAL_HR
2 FROM TEAMSTATS;

TOTAL_SI NGLES TOTAL_DOUBLES TOTAL_TRI PLES TOTAL_HR

To collect similar information on all 300 or better players, type
INPUT/OUTPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES, SUM DOUBLES) TOTAL_DOUBLES,
SUM TRI PLES) TOTAL_TRI PLES, SUM HR) TOTAL_HR

2 FROM TEAMSTATS

3 WHERE HI TS/ AB >= . 300;

TOTAL_SI NGLES TOTAL_DOUBLES TOTAL_TRI PLES TOTAL_HR

To compute a team batting average, type
INPUT/OUTPUT:

SQL> SELECT SUM HI TS)/ SUM AB) TEAM AVERAGE
2 FROV TEAVMSTATS;

TEAM_AVERAGE

. 33706294

SUMworks only with numbers. If you try it on a nonnumerical field, you get
INPUT/OUTPUT:

SQL> SELECT SUM NAME)
2 FROM TEAMBTATS;

ERROR:
ORA-01722: invalid nunber
no rows sel ected

This error message is logical because you cannot sum a group of names.

AVG

The AVGfunction computes the average of a column. To find the average number of
strike outs, use this:

INPUT:

SQL> SELECT AVG(SO AVE STRI KE_OUTS
2 FROM TEAVSTATS;

OUTPUT:

AVE_STRI KE_OUTS

16. 166667

The following example illustrates the difference between SUMand AVG
INPUT/OUTPUT:

SQL> SELECT AVGE HI TS/ AB) TEAM AVERAGE
2 FROM TEAMSTATS;

TEAM AVERAGE

. 26803448

ANALYSIS:

The team was batting over 300 in the previous example! What happened? AVGcomputed
the average of the combined column hits divided by at bats, whereas the example with
SUMdivided the total number of hits by the number of at bats. For example, player A
gets 50 hits in 100 at bats for a .500 average. Player B gets 0 hitsin 1 at bat for a 0.0
average. The average of 0.0 and 0.5 is .250. If you compute the combined average of 50 hits
in 101 at bats, the answer is a respectable .495. The following statement returns the
correct batting average:

INPUT/OUTPUT:

SQL> SELECT AVG(HI TS)/ AVG(AB) TEAM AVERAGE
2 FROM TEAVSTATS;

TEAM_AVERAGE

. 33706294

Like the SUMfunction, AVGworks only with numbers.

MAX

If you want to find the largest value in a column, use MAX. For example, what is the
highest number of hits?

INPUT:

SQL> SELECT MAX(HI TS)
2 FROV TEAMSTATS;

OUTPUT:

MAX(HI TS)

Can you find out who has the most hits?
INPUT/OUTPUT:

SQL> SELECT NAME
2 FROM TEAMSTATS
3 WHERE HI TS = MAX(HI TS);

ERROR at |ine 3:
ORA- 00934: group function is not allowed here

Unfortunately, you can't. The error message is a reminder that this group function
(remember that aggregate functions are also cal led group functions) does not work in the
VWHERE clause. Don't despair, Day 7, "Subqueries: The Embedded SELECT Statement,”
covers the concept of subqueries and explains a way to find who has the MAX hits.

What happens if you try a nonnumerical column?
INPUT/OUTPUT:

SQL> SELECT MAX(NAVE)
2 FROM TEAVSTATS;

Here's something new. MAX returns the highest (closest to Z) string. Finally, a function
that works with both characters and numbers.

MIN

M N does the expected thing and works like MAX except it returns the lowest member of
a column. To find out the fewest at bats, type

INPUT:

SQL> SELECT M N(AB)
2 FROM TEAVSTATS;

OUTPUT:

M N(AB)

The following statement returns the name closest to the beginning of the alphabet:
INPUT/OUTPUT:

SQL> SELECT M N(NAVE)
2 FROV TEAVSTATS;

M N(NAME)
You can combine M Nwith MAX to give a range of values. For example:
INPUT/OUTPUT:

SQL> SELECT M N(AB), MAX(AB)
2 FROV TEAVSTATS;

M N(AB) NMAX(AB)

This sort of information can be useful when using statistical functions.

NOTE: As we mentioned in the introduction, the first five aggregate
functions are described in the ANSI standard. The remaining aggregate
functions have become de facto standards, present in all important
implementations of SQL. We use the Oracle7 names for these functions.
Other implementations may use different names.

VARIANCE

VARI ANCE produces the square of the standard deviation, a number vital to many
statistical calculations. It works like this:

INPUT:

SQL> SELECT VARI ANCE(HI TS)
2 FROM TEAMSTATS,

OUTPUT:

VARI ANCE(HI TS)

802. 96667

If you try a string
INPUT/OUTPUT:

SQL> SELECT VARI ANCE(NAME)
2 FROM TEAVSTATS;

ERROR:
ORA-01722: invalid nunber
no rows sel ected

you find that VARI ANCE is another function that works exclusively with numbers.

STDDEV

The final group function, STDDEV, finds the standard deviation of a column of numbers,
as demonstrated by this example:

INPUT:

SQL> SELECT STDDEV(HITS)
2 FROM TEAMSTATS;

OUTPUT:

STDDEV(HI TS)

28. 336666

It also returns an error when confronted by a string:

INPUT/OUTPUT:

SQL> SELECT STDDEV(NAVE)
2 FROM TEAVSTATS;

ERROR;
ORA-01722: invalid nunber
no rows sel ected

These aggregate functions can also be used in various combinations:
INPUT/OUTPUT:

SQL> SELECT COUNT(AB),
AVGE AB) ,

M N(AB),

MAX(AB) ,

STDDEV(AB) ,

VARI ANCE(AB)
SUM AB)

FROM TEANVBTATS;

coO~NO O hWN

COUNT(AB) AVG(AB) M N(AB) MAX(AB) STDDEV(AB) VARI ANCE(AB) SUM AB)

6 119. 167 1 187 75. 589 5712. 97 715

The next time you hear a sportscaster use statistics to fill the time between plays, you
will know that SQL is at work somewhere behind the scenes.

Date and Time Functions

We live in a civilization governed by times and dates, and most major implementations of
SQL have functions to cope with these concepts. This section uses the table PRQIECT to
demonstrate the time and date functions.

INPUT:
SQL> SELECT * FROM PRQJECT
OUTPUT:

TASK STARTDATE ENDDATE

KI CKOFF MIG 01- APR-95 01- APR-95
TECH SURVEY 02- APR-95 01- MAY-95
USER MIGS 15- MAY- 95 30- MAY- 95
DESI GN W DGET 01-JUN-95 30- JUN- 95
CODE W DGET 01-JUL-95 02- SEP-95

TESTI NG 03- SEP-95 17- JAN- 96

6 rows sel ected.

NOTE: This table used the Date data type. Most implementations of SQL
have a Date data type, but the exact syntax may vary.

ADD_MONTHS

This function adds a number of months to a specified date. For example, say something
extraordinary happened, and the preceding project slipped to the right by two months.
You could make a new schedule by typing

INPUT:

SQL> SELECT TASK,

2 STARTDATE,

3 ENDDATE ORI G NAL_END,
4 ADD_MONTHS(ENDDATE, 2)
5

FROM PROJECT;

OUTPUT:

TASK STARTDATE ORI G NAL_ ADD_MONTH
Kl CKOFF MIG 01- APR-95 01- APR-95 01-JUN- 95
TECH SURVEY 02- APR-95 01- MAY-95 01-JUL-95
USER MIGS 15- MAY- 95 30- MAY-95 30-JUL-95
DESI GN W DGET 01-JUN-95 30-JUN-95 31- AUG 95
CODE W DGET 01-JUL-95 02- SEP-95 02- NOV- 95
TESTI NG 03- SEP-95 17-JAN-96 17- MAR- 96

6 rows sel ected.

Not that a slip like this is possible, but it's nice to have a function that makes it so easy.
ADD MONTHS also works outside the SELECT clause. Typing

INPUT:

SQ.> SELECT TASK TASKS_SHORTER _THAN_ONE_MONTH
2 FROM PRQIECT
3 VHERE ADD MONTHS(STARTDATE, 1) > ENDDATE;

produces the following result:

OUTPUT:

TASKS_SHORTER THAN ONE_MONTH

Kl CKOFF MIG
TECH SURVEY
USER MIGS
DESI GN W DGET

ANALYSIS:

You will find that all the functions in this section work in more than one place.
However, ADD MONTHS does not work with other data types like character or number
without the help of functions TO_CHAR and TO DATE, which are discussed later today.

LAST DAY

LAST_DAY returns the last day of a specified month. It is for those of us who haven't
mastered the "Thirty days has September..." rhyme--or at least those of us who have not
yet taught it to our computers. If, for example, you need to know what the last day of
the month is in the column ENDDATE, you would type

INPUT:

SQL> SELECT ENDDATE, LAST_DAY(ENDDATE)
2 FROM PRQJECT;

Here's the result:
OUTPUT:

ENDDATE

LAST_DAY(ENDDATE)

01- APR- 95
01- MAY- 95
30- MAY- 95
30- JUN- 95
02- SEP- 95
17- JAN- 96

30- APR- 95
31- MAY- 95
31- MAY- 95
30- JUN- 95
30- SEP- 95
31- JAN- 96

6 rows sel ected.

How does LAST DAY handle leap years?

INPUT/OUTPUT:

SQL> SELECT LAST DAY(' 1- FEB-95') NON_LEAP,
2 LAST DAY(' 1- FEB-96') LEAP

28- FEB- 95
28- FEB- 95
28- FEB- 95
28- FEB- 95
28- FEB- 95
28- FEB- 95

6 rows sel

29- FEB- 96
29- FEB- 96
29- FEB- 96
29- FEB- 96
29- FEB- 96
29- FEB- 96

ect ed.

ANALYSIS:

You got the right result, but why were so many rows returned? Because you didn't
specify an existing column or any conditions, the SQL engine applied the date functions
in the statement to each existing row. Let's get something less redundant by using the
following:

INPUT:

SQL> SELECT DI STI NCT LAST_DAY(' 1- FEB-95') NON_LEAP
2 LAST_DAY(' 1-FEB-96') LEAP
3 FROM PRQJECT;,

This statement uses the word DI STI NCT (see Day 2, "Introduction to the Query: The
SELECT Statement") to produce the singular result

OUTPUT:

NON_LEAP LEAP

28- FEB- 95 29- FEB- 96

Unlike me, this function knows which years are leap years. But before you trust your
own or your company's financial future to this or any other function, check your
implementation!

MONTHS BETWEEN

If you need to know how many months fall between month x and month y, use
MONTHS BETWEEN like this:

INPUT:

SQL> SELECT TASK, STARTDATE, ENDDATE, MONTHS BETWEEN(STARTDATE, ENDDATE)

DURATI ON

2 FROM PRQJECT;

OUTPUT:

TASK STARTDATE ENDDATE DURATI ON
Kl CKOFF MIG 01- APR-95 01- APR-95 0
TECH SURVEY 02- APR-95 01- MAY-95 -.9677419
USER MIGS 15- MAY- 95 30- MAY-95 -.483871
DESI GN W DGET 01-JUN-95 30-JUN-95 -.9354839
CODE W DCGET 01-JUL-95 02- SEP-95 -2.032258
TESTI NG 03- SEP-95 17-JAN-96 -4.451613

6 rows sel ected.

Wait a minute--that doesn't look right. Try this:

INPUT/OUTPUT:

SQ.> SELECT TASK, STARTDATE, ENDDATE

2 MONTHS_BETWEEN(ENDDATE, STARTDATE) DURATI ON

3 FROM PRQJECT;,

TASK STARTDATE ENDDATE DURATI ON
KI CKOFF MIG 01- APR-95 01- APR-95 0
TECH SURVEY 02- APR-95 01- MAY-95 .96774194
USER MIGS 15- MAY- 95 30- MAY-95 . 48387097
DESI GN W DGET 01-JUN-95 30-JUN-95 . 93548387
CODE W DGET 01-JUL-95 02- SEP-95 2. 0322581
TESTI NG 03-SEP-95 17-JAN-96 4.4516129

6 rows sel ected.

ANALYSIS:

That's better. You see that MONTHS BETWEEN is sensitive to the way you order the
months. Negative months might not be bad. For example, you could use a negative result
to determine whether one date happened before another. For example, the following
statement shows all the tasks that started before May 19, 1995:

INPUT:

SQL> SELECT *
2 FROM PRQJECT

3 WHERE MONTHS_BETWEEN(' 19 MAY 95', STARTDATE) > O;

OUTPUT:

TASK STARTDATE ENDDATE

Kl CKOFF MIG 01- APR-95 01- APR-95
TECH SURVEY 02- APR-95 01- MAY-95
USER MIGS 15- MAY- 95 30- MAY- 95

NEW_TIME

IT you need to adjust the time according to the time zone you are in, the New_TI ME
function is for you. Here are the time zones you can use with this function:

Abbreviation Time Zone

AST or ADT Atlantic standard or daylight time
BST or BDT Bering standard or daylight time
CST or CDT Central standard or daylight time
EST or EDT Eastern standard or daylight time
GMT Greenwich mean time

HST or HDT Alaska-Hawaii standard or daylight time
MST or MDT Mountain standard or daylight time
NST Newfoundland standard time

PST or PDT Pacific standard or daylight time
YST or YDT Yukon standard or daylight time

You can adjust your time like this:
INPUT:

SQL> SELECT ENDDATE EDT,
2 NEW.TI ME(ENDDATE, ' EDT',' PDT")
3 FROM PRQJECT;

OUTPUT:

EDT NEW TI ME(ENDDATE
01- APR-95 1200AM 31- MAR- 95 0900PM
01- MAY-95 1200AM 30- APR-95 0900PM
30- MAY- 95 1200AM 29- MAY- 95 0900PM
30-JUN-95 1200AM 29- JUN- 95 0900PM
02- SEP-95 1200AM 01- SEP-95 0900PM
17-JAN-96 1200AM 16- JAN-96 0900PM

6 rows sel ected.

Like magic, all the times are in the new time zone and the dates are adjusted.

NEXT_DAY

NEXT DAY finds the name of the first day of the week that is equal to or later than
another specified date. For example, to send a report on the Friday following the first
day of each event, you would type

INPUT:

SQL> SELECT STARTDATE,
2 NEXT_DAY(STARTDATE, ' FRI DAY")
3 FROM PRQJECT;,

which would return
OUTPUT:

STARTDATE NEXT_DAY(

01- APR-95 07- APR-95
02- APR-95 07- APR-95
15- MAY- 95 19- MAY- 95
01-JUN-95 02- JUN-95
01-JUL-95 07-JUL-95
03- SEP- 95 08- SEP-95

6 rows sel ected.

ANALYSIS:

The output tells you the date of the first Friday that occurs after your STARTDATE.

SYSDATE

SYSDATE returns the system time and date:
INPUT:

SQ.> SELECT DI STI NCT SYSDATE
2 FROM PRQJECT;

OUTPUT:

SYSDATE

18- JUN- 95 1020PM
IT you wanted to see where you stood today in a certain project, you could type

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PROJECT
3 WHERE STARTDATE > SYSDATE;

TASK STARTDATE ENDDATE

CODE W DCGET 01-JUL-95 02- SEP-95
TESTI NG 03- SEP-95 17- JAN- 96

Now you can see what parts of the project start after today.

Arithmetic Functions

Many of the uses you have for the data you retrieve involve mathematics. Most
implementations of SQL provide arithmetic functions similar to the functions covered
here. The examples in this section use the NUMBERS table:

INPUT:

SQ.> SELECT *
2 FROM NUMBERS

OUTPUT:

A B

3. 1415 4
-45 . 707

5 9

-57. 667 42
15 55

-7.2 5.3

6 rows sel ected.

ABS

The ABS function returns the absolute value of the number you point to. For example:

INPUT:

SQL> SELECT ABS(A) ABSCOLUTE_VALUE
2 FROM NUMBERS

OUTPUT:

ABSCLUTE_VALUE

57. 667
15
7.2
6 rows sel ected.

ABS changes all the negative numbers to positive and leaves positive numbers alone.

CEIL and FLOOR

CEl L returns the smallest integer greater than or equal to its argument. FLOOR does
just the reverse, returning the largest integer equal to or less than its argument. For
example:

INPUT:

SQL> SELECT B, CEIL(B) CEILING
2 FROM NUMBERS

OUTPUT:

42 4
95 5
5.3

6 rows sel ected.

And
INPUT/OUTPUT:

SQL> SELECT A, FLOOR(A) FLOCOR
2 FROM NUMBERS;

3. 1415 3
-45 -45

5 5

-57. 667 -58
15 15

-7.2 -8

6 rows sel ected.

COS, COSH, SIN, SINH, TAN, and TANH

The CGCS, SI N, and TAN functions provide support for various trigonometric concepts.
They all work on the assumption that n is in radians. The following statement returns
some unexpected values if you don't realize COS expects A to be in radians.

INPUT:

SQL> SELECT A, COS(A)
2 FROM NUMBERS:

OUTPUT:

3. 1415 -1
-45 . 52532199

5 .28366219

-57. 667 . 437183
15 -. 7596879

-7.2 .60835131

ANALYSIS:

You would expect the COS of 45 degrees to be in the neighborhood of . 707, not . 525.
To make this function work the way you would expect it to in a degree-oriented world,
you need to convert degrees to radians. (When was the last time you heard a news
broadcast report that a politician had done a pi-radian turn? You hear about a 180-
degree turn.) Because 360 degrees = 2 pi radians, you can write

INPUT/OUTPUT:

SQL> SELECT A, COS(A* 0.01745329251994)
2 FROM NUMBERS

A COS(A*0.01745329251994)

3. 1415
-45

5

-57. 667
15

-7.2

ANALYSIS:

Note that the number 0. 01745329251994 is radians divided by degrees. The

. 99849724
. 70710678

. 9961947
. 5348391

. 96592583

. 9921147

trigonometric functions work as fol lows:

INPUT/OUTPUT:

SQL> SELECT A, COS(A*0.017453),

2 FROM NUMBERS

COSH(A* 0. 017453)

A COS(A*0.017453) COSH(A*0.017453)

15
-7.2

. 99849729
. 70711609
. 99619483
. 53485335
. 96592696
. 99211497

6 rows sel ected.

And

INPUT/OUTPUT:

SQL> SELECT A, SIN(A*0.017453),

2 FROM NUMBERS

1. 0015035
1. 3245977

1. 00381

1. 5507072
1. 0344645
1. 0079058

SI NH(A*0. 017453)

A SI N(A*0.017453) SI NH(A*0.017453)

15
-7.2

6 rows sel ected.

And

INPUT/OUTPUT:

. 05480113
-. 7070975
. 08715429
-. 8449449
. 25881481
-. 1253311

. 05485607
- . 8686535

. 0873758
-1.185197
. 26479569
-. 1259926

SQL> SELECT A, TAN(A*0.017453),

2 FROM NUMBERS

TANH(A*0. 017453)

A TAN(A*0. 017453) TANH(A*0. 017453)

3. 1415 . 05488361 . 05477372
-45 -. 9999737 -. 6557867

5 . 08748719 . 08704416

-57. 667 -1.579769 -. 7642948
15 . 26794449 . 25597369

-7.2 -. 1263272 -. 1250043

6 rows sel ected.

EXP

EXP enables you to raise e (e is a mathematical constant used in various formulas) to a
power. Here's how EXP raises e by the values in column A:

INPUT:

SQL> SELECT A, EXP(A)
2 FROM NUVBERS;

OUTPUT:

15
-7.2

23. 138549
2. 863E- 20
148. 41316
9. 027E- 26
3269017. 4
. 00074659

6 rows sel ected.

LN and LOG

These two functions center on logarithms. LN returns the natural logarithm of its
argument. For example:

INPUT:

SQL> SELECT A, LN(A)
2 FROM NUVBERS;

OUTPUT:

ERROR:
ORA- 01428: argunent '-45" is out of range

Did we neglect to mention that the argument had to be positive? Write

INPUT/OUTPUT:

SQL> SELECT A, LN(ABS(A))
2 FROM NUVBERS

A LN(ABS(A))

3.1415 1.1447004
-45 3. 8066625

5 1.6094379
-57.667 4.0546851
15 2.7080502

-7.2 1.974081

6 rows sel ected.
ANALYSIS:

Notice how you can embed the function ABS inside the LN call. The other logarith-mic
function, LOG, takes two arguments, returning the logarithm of the first argument in
the base of the second. The following query returns the logarithms of column B in base
10.

INPUT/OUTPUT:

SQL> SELECT B, LOG(B, 10)
2 FROM NUVBERS;

B LOG(B, 10)

4 1.660964

. 707 - 6. 640962
9 1.0479516

42 . 61604832
55 . 57459287
5.3 1.3806894

6 rows sel ected.

MOD

You have encountered MOD before. On Day 3, "Expressions, Conditions, and Operators,"

you saw that the ANSI standard for the modulo operator %is sometimes implemented as
the function MOD. Here's a query that returns a table showing the remainder of A
divided by B:

INPUT:

SQL> SELECT A, B, MOD(A B)
2 FROM NUVBERS;

OUTPUT:

A B MOD(A B)

3. 1415 4 3. 1415
-45 . 707 -. 459

5 9 5

-57. 667 42 -15. 667
15 55 15

-7.2 5.3 -1.9

6 rows sel ected.

POWER

To raise one number to the power of another, use POAER. In this function the first
argument is raised to the power of the second:

INPUT:

SQL> SELECT A, B, POWER(A, B)
2 FROM NUVBERS;

OUTPUT:

ERROR:
ORA-01428: argunent '-45" is out of range

ANALYSIS:

At first glance you are likely to think that the first argument can't be negative. But
that impression can't be true, because a number like -4 can be raised to a power.
Therefore, if the first number in the POAER function is negative, the second must be an
integer. You can work around this problem by using CEl L (or FLOOR):

INPUT:

SQL> SELECT A, CEIL(B), POWER(A, CEl L(B))

2 FROM NUMBERS

OUTPUT:

15
-7.2

CEl L(B) POVER(A, CEl L(B))

6 rows sel ected.

That's better!

SIGN

97.3976
-45
1953125
9. 098E+73
4. 842E+64
139314. 07

SI GNreturns - 1 if its argument is less than O, O if its argument is equal to 0, and 1 if its
argument is greater than 0, as shown in the fol lowing example:

INPUT:

SQL> SELECT A, SI G\(A)
2 FROM NUMBERS

OUTPUT:

A SIGN(A)

3. 1415 1

- 45 -1

5 1

-57. 667 -1
15 1

-7.2 -1

0 0

7 rows sel ected.

You could also use SI GNin a SELECT WHERE clause like this:

INPUT:

SQL> SELECT A
2 FROM NUVBERS
3 WHERE SIGN(A) = 1;

OUTPUT:

SORT

The function SQRT returns the square root of an argument. Because the square root of
a negative number is undefined, you cannot use SQRT on negative numbers.

INPUT/OUTPUT:

SQL> SELECT A, SQRT(A)
2 FROM NUMBERS;

ERROR:
ORA- 01428: argunent '-45" is out of range

However, you can fix this limitation with ABS:
INPUT/OUTPUT:

SQL> SELECT ABS(A), SQRT(ABS(A))
2 FROM NUVBERS;

ABS(A) SQRT(ABS(A))
3. 1415 1.7724277
45 6. 7082039

5 2.236068
57.667 7.5938791
15 3. 8729833

7.2 2.6832816

0 0

7 rows sel ected.

Character Functions

Many implementations of SQL provide functions to manipulate characters and strings of
characters. This section covers the most common character functions. The examples in
this section use the table CHARACTERS

INPUT/OUTPUT:

SQL> SELECT * FROM CHARACTERS

LASTNANVE FI RSTNAME M CODE
PURVI S KELLY A 32
TAYLOR CHUCK J 67
CHRI STI NE LAURA C 65
ADAMS FESTER M 87
COSTALES ARVANDO A 77
KONG MAJOR G 52

6 rows sel ected.

CHR

CHR returns the character equivalent of the number it uses as an argument. The
character it returns depends on the character set of the database. For this example the
database is set to ASCII. The column CODE includes numbers.

INPUT:

SQL> SELECT CODE, CHR(CODE)
2 FROM CHARACTERS;

OUTPUT:

(o)
\I
AZTES>O

6 rows sel ected.

The space opposite the 32 shows that 32 is a space in the ASCII character set.

CONCAT

You used the equivalent of this function on Day 3, when you learned about operators.
The | | symbol splices two strings together, as does CONCAT. It works like this:

INPUT:

SQL> SELECT CONCAT(FI RSTNAME, LASTNAME) "FI RST AND LAST NAMES'
2 FROM CHARACTERS

OUTPUT:

FI RST AND LAST NAMES

KELLY PURVI S
CHUCK TAYLOR
LAURA CHRI STI NE
FESTER ADAMS
ARVANDO COSTALES
MAJOR KONG

6 rows sel ected.

ANALYSIS:

Quotation marks surround the multiple-word alias FI RST AND LAST NAMES. Again, it
Is safest to check your implementation to see if it al lows multiple-word aliases.

Also notice that even though the table looks like two separate columns, what you are
seeing is one column. The first value you concatenated, FI RSTNAME, is 15 characters
wide. This operation retained all the characters in the field.

INITCAP

| NI TCAP capitalizes the first letter of a word and makes all other characters
lowercase.

INPUT:

SQL> SELECT FI RSTNAME BEFORE, | NI TCAP(FI RSTNAME) AFTER
2 FROM CHARACTERS

OUTPUT:

BEFORE AFTER
KELLY Kel |'y
CHUCK Chuck
LAURA Laur a
FESTER Fester
ARVMANDO Ar mando
MAJOR Maj or

6 rows sel ected.

L OWER and UPPER

As you might expect, LOAER changes all the characters to lowercase; UPPER does just
the reverse.

The following example starts by doing a little magic with the UPDATE function (you
learn more about this next week) to change one of the values to lowercase:

INPUT:

SQL> UPDATE CHARACTERS
2 SET FIRSTNAME = ' kel ly'
3 WHERE FI RSTNAME = ' KELLY";

OUTPUT:
1 row updat ed.
INPUT:

SQL> SELECT FI RSTNAME
2 FROM CHARACTERS

OUTPUT:

FI RSTNAME

LAURA
FESTER
ARVANDO
MAJOR

6 rows sel ected.

Then you write
INPUT:

SQL> SELECT FI RSTNAMVE, UPPER(FI RSTNAME), LOWER(FI RSTNAME)
2 FROM CHARACTERS

OUTPUT:

FI RSTNAME UPPER(FI RSTNAME LOWER(FI RSTNAME

kel l'y KELLY kel l'y

CHUCK CHUCK chuck
LAURA LAURA | aura
FESTER FESTER fester
ARNMANDO ARMANDO ar mando
MAJOR MAJOR maj or

6 rows sel ected.

Now you see the desired behavior.

LPADand RPAD

LPAD and RPAD take a minimum of two and a maximum of three arguments. The first
argument is the character string to be operated on. The second is the number of
characters to pad it with, and the optional third argument is the character to pad it
with. The third argument defaults to a blank, or it can be a single character or a
character string. The fol lowing statement adds five pad characters, assuming that the
field LASTNAME is defined as a 15-character field:

INPUT:

SQL> SELECT LASTNAME, LPAD(LASTNAME, 20,'*")
2 FROM CHARACTERS;

OUTPUT:

LASTNANME LPAD(LASTNAME, 20, ' *'
PURVI S *ExFEPURVI S

TAYLOR *FEXFETAYLOR

CHRI STI NE *HExF*xCHRI STI NE
ADAMS *xxxx ADAMS

COSTALES *Hx** COSTALES

KONG *rFEFKONG

6 rows sel ected.

ANALYSIS:

Why were only five pad characters added? Remember that the LASTNAME column is 15
characters wide and that LASTNAME includes the blanks to the right of the characters
that make up the name. Some column data types eliminate padding characters if the
width of the column value is less than the total width allocated for the column.
Check your implementation. Now try the right side:

INPUT:

SQL> SELECT LASTNAME, RPAD(LASTNAME, 20,'*")
2 FROM CHARACTERS

OUTPUT:

LASTNANME RPAD(LASTNANME, 20, ' *'
PURVI S PURVI S FAR I
TAYLOR TAYLOR FAR I
CHRI STI NE CHRI STI NE FAR I
ADAMS ADAMS FAR I
COSTALES COSTALES TR I
KONG KONG FHIEE

6 rows sel ected.

ANALYSIS:

Here you see that the blanks are considered part of the field name for these operations.
The next two functions come in handy in this type of situation.

LTRI Mand RTRI M

LTRI Mand RTRI Mtake at least one and at most two arguments. The first argument, like
LPAD and RPAD, is a character string. The optional second element is either a character
or character string or defaults to a blank. If you use a second argument that is not a
blank, these trim functions will trim that character the same way they trim the blanks
in the following examples.

INPUT:

SQL> SELECT LASTNAME, RTRI M LASTNAME)
2 FROM CHARACTERS

OUTPUT:

LASTNAVE RTRI M LASTNANE)
PURVI S PURVI S

TAYLOR TAYLOR

CHRI STI NE CHRI STI NE
ADANVS ADANVS

COSTALES COSTALES

KONG KONG

6 rows sel ected.

You can make sure that the characters have been trimmed with the fol lowing
statement:

INPUT:

SQL> SELECT LASTNAME, RPAD(RTRI M LASTNAME), 20,'*')
2 FROM CHARACTERS

OUTPUT:

LASTNANVE RPAD(RTRI M LASTNANE)
PURVIS PURVI SH**xxssssssss
TAYLOR TAYLOR* * * * % % % % % % % % * %
CHRI STI NE CHRI STI NE* * * % % % % % % % x
ADANMS ADANMH * * * %k % % % % k % % % %
COSTALES COSTALESH * * * % % % % % % % x
KONG KONIGE * * * % % & % % % % k & % % %

6 rows sel ected.

The output proves that trim is working. Now try LTRI M
INPUT:

SQL> SELECT LASTNAME, LTRI M LASTNAME, 'C)
2 FROM CHARACTERS;

OUTPUT:

LASTNANVE LTRI M LASTNANME,
PURVI S PURVI S

TAYLOR TAYLOR

CHRI STI NE HRI STI NE

ADAMS ADAMS

COSTALES OSTALES

KONG KONG

6 rows sel ected.

Note the missing Cs in the third and fifth rows.
REPLACE

REPLACE does just that. Of its three arguments, the first is the string to be searched.
The second is the search key. The last is the optional replacement string. If the third

argument is left out or NULL, each occurrence of the search key on the string to be
searched is removed and is not replaced with anything.

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, ' ST') REPLACEMENT
2 FROM CHARACTERS

OUTPUT:

LASTNANVE REPLACEMENT
PURVI S PURVI S
TAYLOR TAYLOR

CHRI STI NE CHRI' | NE
ADAMS ADAMS
COSTALES COALES
KONG KONG

6 rows sel ected.

If you have a third argument, it is substituted for each occurrence of the search key in
the target string. For example:

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST','**') REPLACEMENT
2 FROM CHARACTERS

OUTPUT:

LASTNANVE REPLACEMENT
PURVI S PURVI S
TAYLOR TAYLOR

CHRI STI NE CHRI ** 1 NE
ADAMS ADAMS
COSTALES CO** ALES
KONG KONG

6 rows sel ected.

IT the second argument is NULL, the target string is returned with no changes.
INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, NULL) REPLACEMENT
2 FROM CHARACTERS

OUTPUT:

LASTNANVE REPLACEMENT
PURVI S PURVI S
TAYLOR TAYLOR

CHRI STI NE CHRI STI NE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG

6 rows sel ected.
SUBSTR

This three-argument function enables you to take a piece out of a target string. The
first argument is the target string. The second argument is the position of the first
character to be output. The third argument is the number of characters to show.

INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNAME, 2, 3)
2 FROM CHARACTERS

OUTPUT:

FI RSTNAVE SUB
kel l'y el |
CHUCK HUC
LAURA AUR
FESTER EST
ARVANDO RVA
MAJOR AJO

6 rows sel ected.

IT you use a negative number as the second argument, the starting point is determined by
counting backwards from the end, like this:

INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNANME, - 13, 2)
2 FROM CHARACTERS

OUTPUT:

FI RSTNAME SU

kel l'y |1
CHUCK uc
LAURA UR
FESTER ST
ARMANDO VA
MAJOR JO

6 rows sel ected.

ANALYSIS:

Remember the character field FI RSTNAME in this example is 15 characters long. That is
why you used a - 13 to start at the third character. Counting back from 15 puts you at
the start of the third character, not at the start of the second. If you don't have a
third argument, use the following statement instead:

INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNANME, 3)
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAVE SUBSTR(FI RSTN
kel l'y 1y

CHUCK UCK

LAURA URA

FESTER STER

ARMANDO MANDO

MAJCOR JOR

6 rows sel ected.

The rest of the target string is returned.
INPUT:
SQL> SELECT * FROM SSN_TABLE;

OUTPUT:

300541117
301457111
459789998

3 rows sel ect ed.

ANALYSIS:

Reading the results of the preceding output is difficult--Social Security numbers
usually have dashes. Now try something fancy and see whether you like the results:

INPUT:

SQL> SELECT SUBSTR(SSN, 1,3)||'-'|| SUBSTR(SSN, 4,2)||" -
' | | SUBSTR(SSN, 6, 4) SSN
2 FROM SSN_TABLE;

OUTPUT:

300-54-1117
301-45-7111
459-78-9998

3 rows sel ect ed.

NOTE: This particular use of the subst r function could come in very
handy with large numbers using commas such as 1,343,178,128 and in area
codes and phone numbers such as 317-787-2915 using dashes.

Here is another good use of the SUBSTR function. Suppose you are writing a report and a
few columns are more than 50 characters wide. You can use the SUBSTR function to
reduce the width of the columns to a more manageable size if you know the nature of
the actual data. Consider the following two examples:

INPUT:

SQ.> SELECT NAME, JOB, DEPARTMENT FROM JOB_TBL;

OUTPUT:

NANVE

JOB DEPARTVENT
ALVIN SM TH

VI CEPRESI DENT MARKETI NG

1 ROW SELECTED.

ANALYSIS:

Notice how the columns wrapped around, which makes reading the results a little too
difficult. Now try this sel ect :

INPUT:

SQL> SELECT SUBSTR(NAME, 1,15) NAME, SUBSTR(JOB, 1, 15) JOB,
DEPARTNMENT
2 FROM JOB_TBL,;

OUTPUT:
NANE JoB DEPARTMENT
ALVI N SM TH VI CEPRES| DENT MARKETI NG

Much better!
TRANSLATE

The function TRANSLATE takes three arguments: the target string, the FROMstring, and
the TOstring. Elements of the target string that occur in the FROMstring are
translated to the corresponding element in the TOstring.

INPUT:

SQL> SELECT FI RSTNAME, TRANSLATE(FI RSTNAME
2 '0123456789ABCDEFGHI JKLMNOPQRSTUVWKYZ
3 ' NNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAAA)
4 FROM CHARACTERS

OUTPUT:

FI RSTNAVE TRANSLATE(FI RST
kel l'y kel l'y

CHUCK AAAAA

LAURA AAAAA

FESTER AAAAAA

ARMANDO AAAAAAA

MAJOR AAAAA

6 rows sel ected.

Notice that the function is case sensitive.

INSTR

To find out where in a string a particular pattern occurs, use | NSTR. Its first argument
is the target string. The second argument is the pattern to match. The third and forth
are numbers representing where to start looking and which match to report. This
example returns a number representing the first occurrence of Ostarting with the
second character:

INPUT:

SQL> SELECT LASTNAME, | NSTR(LASTNAME, 'O, 2, 1)
2 FROM CHARACTERS

OUTPUT:

LASTNANME | NSTR(LASTNAME, ' O , 2, 1)

PURVI S 0
TAYLOR 5
CHRI STI NE 0
ADAMS 0
COSTALES 2
KONG 2

6 rows sel ected.

ANALYSIS:

The default for the third and fourth arguments is 1. If the third argument is negative,
the search starts at a position determined from the end of the string, instead of from the
beginning.

LENGTH

LENGTH returns the length of its lone character argument. For example:
INPUT:

SQL> SELECT FI RSTNAME, LENGTH(RTRI M Fl RSTNAME))
2 FROM CHARACTERS:

OUTPUT:

FI RSTNAVE LENGTH(RTRI M FI RSTNAME))
5
5
LAURA 5
FESTER 6

\l

ARVANDO
MAJOR 5

6 rows sel ected.

ANALYSIS:

Note the use of the RTRI Mfunction. Otherwise, LENGTHwould return 15 for every
value.

Conversion Functions

These three conversion functions provide a handy way of converting one type of data to
another. These examples use the table CONVERSI ONS.

INPUT:

SQL> SELECT * FROM CONVERSI ONS;

OUTPUT:
NANE TESTNUM
40 95
13 23
74 68

The NAME column is a character string 15 characters wide, and TESTNUMis a number.

TO CHAR

The primary use of TO_CHARIs to convert a number into a character. Different
implementations may also use it to convert other data types, like Date, into a character,
or to include different formatting arguments. The next example il lustrates the primary
use of TO CHAR:

INPUT:

SQL> SELECT TESTNUM TO_CHAR(TESTNUM
2 FROM CONVERT;

OUTPUT:

TESTNUM TO_CHAR(TESTNUM)

95 95
23 23
68 68

Not very exciting, or convincing. Here's how to verify that the function returned a
character string:

INPUT:

SQL> SELECT TESTNUM LENGTH(TO CHAR(TESTNUM))
2 FROM CONVERT;

OUTPUT:

TESTNUM LENGTH(TO_CHAR(TESTNUM))

95 2

23 2

68 2
ANALYSIS:

LENGTH of a number would have returned an error. Notice the difference between TO
CHAR and the CHR function discussed earlier. CHR would have turned this number into a
character or a symbol, depending on the character set.

TO NUMBER

TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a string
into a number. For example:

INPUT:

SQL> SELECT NAME, TESTNUM TESTNUM TO_NUMBER(NAME)
2 FROM CONVERT;

OUTPUT:

NANVE TESTNUM TESTNUM TO_NUMBER(NAME)
40 95 3800
13 23 299
74 68 5032
ANALYSIS:

This test would have returned an error if TO NUMBER had returned a character.

M iscellaneous Functions

Here are three miscel laneous functions you may find useful.

GREATEST and LEAST

These functions find the GREATEST or the LEAST member from a series of expressions. For
example:

INPUT:

SQL> SELECT GREATEST(' ALPHA', ' BRAVO ,' FOXTROT', 'DELTA')
2 FROM CONVERT,;

OUTPUT:

GREATEST

ANALYSIS:

Notice GREATEST found the word closest to the end of the alphabet. Notice also a
seemingly unnecessary FROMand three occurrences of FOXTROT. If FROMis missing, you
will get an error. Every SELECT needs a FROM The particular table used in the FROM
has three rows, so the function in the SELECT clause is performed for each of them.

INPUT:

SQL> SELECT LEAST(34, 567, 3, 45, 1090)
2 FROM CONVERT;

OUTPUT:

LEAST(34, 567, 3, 45, 1090)

As you can see, GREATEST and LEAST also work with numbers.

USER

USER returns the character name of the current user of the database.
INPUT:
SQL> SELECT USER FROM CONVERT;

OUTPUT:

PERKI NS
PERKI NS
PERKI NS

There really is only one of me. Again, the echo occurs because of the number of rows in
the table. USERis similar to the date functions explained earlier today. Even though
USERis not an actual column in the table, it is selected for each row that is contained
in the table.

Summary

It has been a long day. We covered 47 functions--from aggregates to conversions. You
don't have to remember every function--just knowing the general types (aggregate
functions, date and time functions, arithmetic functions, character functions,
conversion functions, and miscel laneous functions) is enough to point you in the right
direction when you build a query that requires a function.

Q& A

Q Why are so few functions defined in the ANSI standard and so many defined
by the individual implementations?

A ANSI standards are broad strokes and are not meant to drive companies into
bankruptcy by forcing all implementations to have dozens of functions. On the
other hand, when company X adds a statistical package to its SQL and it sells
well, you can bet company Y and Z will follow suit.

Q | thought you said SQL was simple. Will | really use all of these
functions?

A The answer to this question is similar to the way a trigonometry teacher might
respond to the question, Will | ever need to know how to figure the area of an

isosceles triangle in real life? The answer, of course, depends on your profession.
The same concept applies with the functions and all the other options available
with SQL. How you use functions in SQL depends mostly on you company's needs. As
long as you understand how functions work as a whole, you can apply the same
concepts to your own queries.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. Which function capitalizes the first letter of a character string and makes the
rest lowercase?

2. Which functions are also known by the name group functions?
3. Will this query work?

SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;

4. How about this one?

SQL> SELECT SUM LASTNAME) FROM CHARACTERS;

5. Assuming that they are separate columns, which function(s) would splice
together FI RSTNAME and LASTNAME?

6. What does the answer 6 mean from the following SELECT?
INPUT:

SQL> SELECT COUNT(*) FROVI TEAMSTATS;

OUTPUT:

COUNT(*)

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME, 1,5 FROM NAME_TBL;

Exercises

1. Using today's TEAMSTATS table, write a query to determine who is batting
under .25. (For the baseball-challenged reader, batting average is hits/ab.)

2. Using today's CHARACTERS table, write a query that will return the following:

INNTIALS CODE

K. A P. 32
1 row sel ect ed.

| ¢ Previous Chapter (& MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 5 -
Clausesin SQL

Objectives

Today's topic is clauses--not the kind that distribute presents during the holidays, but
the ones you use with a SELECT statement. By the end of the day you will understand
and be able to use the following clauses:

. WHERE

. STARTING WTH
. ORDER BY

. GROUP BY

. HAVI NG

To get a feel for where these functions fit in, examine the general syntax for a SELECT
statement:

SYNTAX:

SELECT [DI STINCT | ALL] { *
| { [schema.]{table | view | snapshot}.*
| expr } [[AS] c_alias]
[, { [schema.]{table | view | snapshot}.*

| expr } [[AS] c_alias]] ... }
FROM [schenma.] {table | view | snapshot}[@blink] [t_alias]
[, [schema.]{table | view | snapshot}[@blink] [t_alias]]
[WHERE condition]
[GROUP BY expr [, expr] ... [HAVING condition]]
[{UNION | UNION ALL | I NTERSECT | M NUS} SELECT command]
[ORDER BY {expr|position} [ASC | DESC]
[, {expr|position} [ASC | DESC]] ...]

NOTE: In my experience with SQL, the ANSI standard is really more of an
ANSI "suggestion.”" The preceding syntax will generally work with any SQL
engine, but you may find some slight variations.

NOTE: You haven't yet had to deal with a complicated syntax diagram.
Because many people find syntax diagrams more puzzling than il luminating
when learning something new, this book has used simple examples to

il lustrate particular points. However, we are now at the point where a
syntax diagram can help tie the familiar concepts to today's new material.

Don't worry about the exact syntax--it varies slightly from implementation to
implementation anyway. Instead, focus on the relationships. At the top of this statement
iIs SELECT, which you have used many times in the last few days. SELECT is followed by
FROM which should appear with every SELECT statement you typed. (You learn a new
use for FROMtomorrow.) WHERE, GROUP BY, HAVI NG, and ORDER BY all follow. (The
other clauses in the diagram--UNI ON, UNI ON ALL, | NTERSECT, and M NUS--were covered
in Day 3, "Expressions, Conditions, and Operators.") Each clause plays an important part
in selecting and manipulating data.

NOTE: We have used two implementations of SQL to prepare today's
examples. One implementation has an SQL> prompt and line numbers
(Personal Oracle7), and the other (Borland's ISQL) does not. You will also
notice that the output displays vary slightly, depending on the
implementation.

The WHERE Clause

Using just SELECT and FROM you are limited to returning every row in a table. For
example, using these two key words on the CHECKS table, you get all seven rows:

INPUT:

SQL> SELECT *
2 FROM CHECKS;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245. 34 Train to Chicago
3 Ma Bel l 200. 32 Cel | ul ar Phone
4 Local Utilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
16 Cash 25 WIld N ght Qut
17 Joans Gas 25.1 Gas

7 rows sel ected.

With VHERE in your vocabulary, you can be more selective. To find all the checks you
wrote with a value of more than 100 dollars, write this:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 WHERE AMOUNT > 100;

The WHERE clause returns the four instances in the table that meet the required
condition:

OUTPUT:
CHECK# PAYEE AMOUNT RENMARKS
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bel | 200. 32 Cel l ul ar Phone
5 Joes Stale $ Dent 150 Groceries

VWHERE can also solve other popular puzzles. Given the following table of names and
locations, you can ask that popular question, Where's Waldo?

INPUT:

SQL> SELECT *
2 FROM PUZZLE;

OUTPUT:

TYLER BACKYARD
MAJOR Kl TCHEN
SPEEDY L1 VI NG ROOM
WALDO GARAGE

LADDI E UTI LI TY CLOSET
ARNCLD TV ROOM

6 rows sel ected.
INPUT:

SQL> SELECT LOCATI ON AS "WHERE' S WALDO?"
2 FROM PUZZLE
3 WHERE NAME = 'WALDO ;

OUTPUT:

VWHERE' S WALDO?

Sorry, we couldn't resist. We promise no more corny queries. (We're saving those for that
SQL bathroom humor book everyone's been wanting.) Nevertheless, this query shows
that the column used in the condition of the WHERE statement does not have to be
mentioned in the SELECT clause. In this example you selected the location column but
used VWHERE on the name, which is perfectly legal. Also notice the AS on the SELECT
line. ASis an optional assignment operator, assigning the alias WHERE' S WALDQO? to
LOCATI ON. You might never see the AS again, because it involves extra typing. In most
implementations of SQL you can type

INPUT:

SQL> SELECT LOCATI ON "WHERE' S WALDO?"
2 FROM PUZZLE
3 WHERE NAME ="' WALDO ;

and get the same result as the previous query without using AS:

OUTPUT:

VWHERE' S WALDO?

After SELECT and FROM WHERE is the third most frequently used SQL term.

The STARTING WITH Clause

STARTI NG W THis an addition to the WHERE clause that works exactly like
LI KE(<exp>%) . Compare the results of the following query:

INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
VWHERE PAYEE LI KE(' Ca%) ;

OUTPUT:

PAYEE AMOUNT REMARKS

Cash 25 WIld N ght Qut
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

with the results from this query:
INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
VWHERE PAYEE STARTI NG WTH(' Ca');

OUTPUT:

PAYEE AMOUNT REMARKS

Cash 25 WIld N ght Qut
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

The results are identical. You can even use them together, as shown here:
INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS

VHERE PAYEE STARTI NG W TH(' Ca')
OR

REMARKS LI KE ' G% ;

OUTPUT:

Local Utilities
Joes Stale $ Dent
Cash

Joans (as

Cash

Cash

Joans (as

AMOUNT REMARKS
98 Gas
150 Groceries
25 WIld N ght Qut
25.1 Gas
60 Trip to Boston
34 Trip to Dayton
15. 75 Gas

WARNING: STARTI NG W THis a common feature of many implementations
of SQL. Check your implementation before you grow fond of it.

Order from Chaos. The ORDER BY Clause

From time to time you will want to present the results of your query in some kind of
order. As you know, however, SELECT FROMgives you a listing, and unless you have
defined a primary key (see Day 10, "Creating Views and Indexes"), your query comes out in
the order the rows were entered. Consider a beefed-up CHECKS table:

INPUT:
SQL> SELECT * FROM CHECKS;

OUTPUT:

1 Ma Bell

2 Reading R R
3 Ma Bell
4
5

Local Utilities
Joes Stale $ Dent
Cash
Joans (as
9 Abes Cl eaners
Abes (C eaners

8 Cash

21 Cash
11 rows sel ect ed.

ANALYSIS:

REMARKS

Have sons next tine
Train to Chicago

Cel | ul ar Phone
Gas

G oceri es

WIld N ght Qut
Gas

X-Tra Starch
Al Dry dean

Trip to Boston
Trip to Dayton

You're going to have to trust me on this one, but the order of the output is exactly the
same order as the order in which the data was entered. After you read Day 8,
"Manipulating Data," and know how to use | NSERT to create tables, you can test how

data is ordered by default on your own.

The ORDER BY clause gives you a way of ordering your results. For example, to order
the preceding listing by check number, you would use the following ORDER BY clause:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY CHECK#

OUTPUT:
CHECK# PAYEE

1 Ma Bell
2 Reading R R
3 Ma Bell
4 Local Uilities
5 Joes Stale $ Dent
8 Cash
9 Abes Cl eaners
16 Cash
17 Joans Gas
20 Abes O eaners
21 Cash

11 rows sel ect ed.

REMARKS

Have sons next tine
Train to Chicago
Cel | ul ar Phone
Gas

Groceries

Trip to Boston
X-Tra Starch
Wld N ght Cut
Gas

Al Dry Cean
Trip to Dayton

Now the data is ordered the way you want it, not the way in which it was entered. As
the following example shows, ORDER requires BY; BY is not optional.

INPUT/OUTPUT:

SQL> SELECT *

FROM CHECKS ORDER CHECK#

SELECT * FROM CHECKS ORDER CHECK#

ERRCOR at l|ine 1:
ORA- 00924: m ssi ng BY keyword

What if you want to list the data in reverse order, with the highest number or letter
first? You're in luck! The following query generates a list of PAYEEs that stars at the

end of the alphabet:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS

3 ORDER BY PAYEE DESC;

CHECK# PAYEE

2

1 Ma Bel
3 Ma Bel
4 Local
5

Readi ng R R

Uilities

Joes Stale $ Dent

Joans (as
Cash
8 Cash
Cash

9 Abes d eaners

20

11 rows sel ect ed.

ANALYSIS:

The DESC at the end of the ORDER BY clause orders the list in descending order instead
of the default (ascending) order. The rarely used, optional keyword ASC appears in the

following statement:

INPUT:

Abes C eaners

SQL> SELECT PAYEE, AMOUNT

2 FROM CHECKS

3 ORDER BY CHECK# ASC,

OUTPUT:

Ma Bel |

Readi ng R R

Ma Bel |

Local Utilities
Joes Stale $ Dent
Cash

Abes Cl eaners
Cash

Joans Gas

Abes Cl eaners
Cash

11 rows sel ect ed.

ANALYSIS:

The ordering in this list is identical to the ordering of the list at the beginning of the

REMARKS

Train to Chicago
Have sons next tine

Cel [ul ar Phone
Gas

Groceries

Gas

Wld N ght Qut
Trip to Boston
Trip to Dayton
X-Tra Starch

Al Dry C ean

section (without ASC) because ASC s the default. This query also shows that the
expression used after the ORDER BY clause does not have to be in the SELECT
statement. Although you selected only PAYEE and AMOUNT, you were still able to
order the list by CHECK#.

You can also use ORDER BY on more than one field. To order CHECKS by PAYEE and
REMARKS, you would query as follows:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY PAYEE, REMARKS;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

20 Abes d eaners 10.5 Al Dry d ean
9 Abes Cl eaners 24.35 X-Tra Starch
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
16 Cash 25 Wld N ght Qut
17 Joans Gas 25.1 Gas
5 Joes Stale $ Dent 150 Groceries
4 Local Uilities 98 Gas
3 Ma Bel | 200. 32 Cel | ul ar Phone
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago

ANALYSIS:

Notice the entries for Cash in the PAYEE column. In the previous ORDER BY, the

CHECK#s were in the order 16, 21, 8. Adding the field REMARKS to the ORDER BY clause
puts the entries in alphabetical order according to REMARKS. Does the order of multiple

columns in the ORDER BY clause make a difference? Try the same query again but
reverse PAYEE and REMARKS:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY REMARKS, PAYEE;

OUTPUT:

CHECK# PAYEE AMOUNT REMARKS

20 Abes O eaners 10.5 Al Dry C ean

3 Ma Bell 200. 32 Cel | ul ar Phone
17 Joans (Gas 25.1 Gas
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
1 Ma Bell 150 Have sons next tine
2 Reading R R 245. 34 Train to Chi cago
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
16 Cash 25 WIld N ght Qut
9 Abes Cl eaners 24.35 X-Tra Starch

11 rows sel ect ed.

ANALYSIS:

As you probably guessed, the results are completely different. Here's how to list one
column in alphabetical order and list the second column in reverse alphabetical order:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY PAYEE ASC, REMARKS DESC;

CHECK# PAYEE AMOUNT RENMARKS
9 Abes Cl eaners 24.35 X-Tra Starch
20 Abes O eaners 10.5 Al Dry d ean
16 Cash 25 Wld N ght Qut
21 Cash 34 Trip to Dayton
8 Cash 60 Trip to Boston
17 Joans Gas 25.1 Gas
5 Joes Stale $ Dent 150 G oceries
4 Local Uilities 98 Gas
1 Ma Bell 150 Have sons next tine
3 Ma Bell 200. 32 Cel | ul ar Phone
2 Reading R R 245.34 Train to Chicago

11 rows sel ect ed.

ANALYSIS:

In this example PAYEE is sorted alphabetically, and REMARKS appears in descending
order. Note how the remarks in the three checks with a PAYEE of Cash are sorted.

TIP: If you know that a column you want to order your results by is the
first column in a table, then you can type ORDER BY 1 in place of spelling
out the column name. See the following example.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY 1;

CHECK# PAYEE AMOUNT
1 Ma Bell 150
2 Reading R R 245. 34
3 Ma Bell 200. 32
4 Local Uilities 98
5 Joes Stale $ Dent 150
8 Cash 60
9 Abes Cl eaners 24. 35

16 Cash 25
17 Joans (Gas 25.1
20 Abes C eaners 10.5
21 Cash 34

11 rows sel ect ed.

ANALYSIS:

This result is identical to the result produced by the SELECT statement that you used

earlier today:

SELECT * FROM CHECKS ORDER BY CHECK#

The GROUP BY Clause

On Day 3 you learned how to use aggregate functions (COUNT, SUM AVG M N, and MAX).
IT you wanted to find the total amount of money spent from the slightly changed

CHECKS table, you would type:
INPUT:

SELECT *
FROM CHECKS,;

Here's the modified table:
OUTPUT:

CHECKNUM PAYEE AMOUNT

REMARKS

Have sons next tine
Train to Chicago
Cel [ul ar Phone

Gas

Groceri es

Trip to Boston

X-Tra Starch
WIld N ght Qut
Gas

Al Dry Cean
Trip to Dayton

REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 33 Cel lul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 G oceries
16 Cash 25 WIld Night Cut
17 Joans (Gas 25.1 Gas
9 Abes Cl eaners 24.35 X-Tra Starch
20 Abes O eaners 10.5 Al Dry dean
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
30 Local Utilities 87.5 Water
31 Local Utilities 34 Sewer
25 Joans (@Gas 15.75 Gas
Then you would type:
INPUT/OUTPUT:

SELECT SUM AMOUNT)
FROM CHECKS;

1159. 87

ANALYSIS:

This statement returns the sum of the column AMOUNT. What if you wanted to find out
how much you have spent on each PAYEE? SQL helps you with the GROUP BY clause. To
find out whom you have paid and how much, you would query like this:

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT)
FROM CHECKS
GROUP BY PAYEE

PAYEE SUM
Abes Cl eaners 34. 849998
Cash 119
Joans (as 40. 849998
Joes Stale $ Dent 150
Local Utilities 219.5
Ma Bel | 350. 33002
Readi ng R R 245. 34

ANALYSIS:

The SELECT clause has a normal column selection, PAYEE, fol lowed by the aggregate
function SUM AMOUNT). If you had tried this query with only the FROM CHECKS that
follows, here's what you would see:

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT)
FROM CHECKS;

Dynam ¢ SQ. Error
-SQL error code = -104
-invalid colum reference

ANALYSIS:

SQL is complaining about the combination of the normal column and the aggregate
function. This condition requires the GROUP BY clause. GROUP BY runs the aggregate
function described in the SELECT statement for each grouping of the column that
follows the GROUP BY clause. The table CHECKS returned 14 rows when queried with
SELECT * FROM CHECKS. The query on the same table, SELECT PAYEE, SUM AMOUNT)
FROM CHECKS GROUP BY PAYEE, took the 14 rows in the table and made seven
groupings, returning the SUMof each grouping.

Suppose you wanted to know how much you gave to whom with how many checks. Can
you use more than one aggregate function?

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE;

PAYEE SUM COUNT
Abes Cl eaners 34. 849998 2
Cash 119 3
Joans Gas 40. 849998 2
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bel | 350. 33002 2
Reading R R 245, 34 1
ANALYSIS:

This SQL is becoming increasingly useful! In the preceding example, you were able to
perform group functions on unique groups using the GROUP BY clause. Also notice that
the results were ordered by payee. GROUP BY also acts like the ORDER BY clause. What

would happen if you tried to group by more than one column? Try this:
INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE, REMARKS;

PAYEE SUM COUNT
Abes C eaners 10.5 1
Abes C eaners 24. 35 1
Cash 60 1
Cash 34 1
Cash 25 1
Joans @as 40. 849998 2
Joes Stale $ Dent 150 1
Local Utilities 98 1
Local Utilities 34 1
Local Utilities 87.5 1
Ma Bel | 200. 33 1
Ma Bel | 150 1
Reading R R 245, 34 1
ANALYSIS:

The output has gone from 7 groupings of 14 rows to 13 groupings. What is different
about the one grouping with more than one check associated with it? Look at the
entries for Joans Gas:

INPUT/OUTPUT:

SELECT PAYEE, REMARKS
FROM CHECKS
VWHERE PAYEE = ' Joans &as';

PAYEE REMARKS
Joans (@Gas Gas
Joans (@Gas Gas
ANALYSIS:

You see that the combination of PAYEE and REMARKS creates identical entities, which
SQL groups together into one line with the GROUP BY clause. The other rows produce
unique combinations of PAYEE and REMARKS and are assigned their own unique
groupings.

The next example finds the largest and smal lest amounts, grouped by REMARKS:
INPUT/OUTPUT:

SELECT M N(AMOUNT), MAX(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

M N MAX
245. 34 245. 34
10.5 10.5
200. 33 200. 33
15. 75 98
150 150
150 150

34 34

60 60

34 34
87.5 87.5
25 25

24. 35 24. 35

Here's what will happen if you try to include in the sel ect statement a column that
has several different values within the group formed by GROUP BY:

INPUT/OUTPUT:

SELECT PAYEE, MAX(AMOUNT), M N(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

Dynam c SQL Error
-SQL error code = -104
-invalid colunn reference

ANALYSIS:

This query tries to group CHECKS by REMARK. When the query finds two records with the
same REMARK but different PAYEEs, such as the rows that have GAS as a REMARK but
have PAYEEs of LOCAL UTI LI TI ES and JOANS GAS, it throws an error.

The rule is, Don't use the SELECT statement on columns that have multiple values for
the GROUP BY clause column. The reverse is not true. You can use GROUP BY on
columns not mentioned in the SELECT statement. For example:

INPUT/OUTPUT:

SELECT PAYEE, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE, AMOUNT;

PAYEE COUNT
Abes Cl eaners 1
Abes Cl eaners 1
Cash 1
Cash 1
Cash 1
Joans (as 1
Joans (as 1
Joes Stale $ Dent 1
Local Utilities 1
Local Utilities 1
Local Utilities 1
Ma Bel | 1
Ma Bel | 1
Readi ng R R 1
ANALYSIS:

This silly query shows how many checks you had written for identical amounts to the
same PAYEE. Its real purpose is to show that you can use AMOUNT in the GROUP BY
clause, even though it is not mentioned in the SELECT clause. Try moving AMOUNT out of
the GROUP BY clause and into the SELECT clause, like this:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE

Dynam c SQL Error
-SQ error code = -104
-invalid colum reference

ANALYSIS:

SQL cannot run the query, which makes sense if you play the part of SQL for a moment.
Say you had to group the following lines:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
VWHERE PAYEE =' Cash';

PAYEE AMOUNT REMARKS

Cash 25 WIld N ght Qut
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

IT the user asked you to output all three columns and group by PAYEE only, where
would you put the unique remarks? Remember you have only one row per group when
you use GROUP BY. SQL can't do two things at once, so it complains: Error #31.:
Can't do two things at once.

The HAVI NGClause

How can you qualify the data used in your GROUP BY clause? Use the table ORGCHART
and try this:

INPUT:

SELECT * FROM ORGCHART;

OUTPUT:

NAME TEAM SALARY S| CKLEAVE ANNUALLEAVE
ADAMS RESEARCH 34000. 00 34 12
W LKES MARKETI NG 31000. 00 40 9
STOKES MARKETI NG 36000. 00 20 19
VEZA COLLECTI ONS 40000. 00 30 27
MERRI CK RESEARCH 45000. 00 20 17
Rl CHARDSON MARKETI NG 42000. 00 25 18
FURY COLLECTI ONS 35000. 00 22 14
PRECOURT PR 37500. 00 24 24

If you wanted to group the output into divisions and show the average salary in each
division, you would type:

INPUT/OUTPUT:

SELECT TEAM AV SALARY)
FROM ORGCHART
GROUP BY TEAM

COLLECTI ONS 37500. 00
MARKETI NG 36333. 33

PR 37500. 00
RESEARCH 39500. 00

The following statement qualifies this query to return only those departments with
average salaries under 38000:

INPUT/OUTPUT:

SELECT TEAM AV SALARY)
FROM ORGCHART

VWHERE AVGE SALARY) < 38000
GROUP BY TEAM

Dynam c SQL Error
-SQL error code = -104

-l nval id aggregate reference

ANALYSIS:

This error occurred because WHERE does not work with aggregate functions. To make
this query work, you need something new: the HAVI NGclause. If you type the fol lowing
guery, you get what you ask for:

INPUT/OUTPUT:

SELECT TEAM AVG(SALARY)
FROM ORGCHART

GROUP BY TEAM

HAVI NG AVG(SALARY) < 38000;

TEAM AVG
COLLECTI ONS 37500. 00
MARKETI NG 36333. 33
PR 37500. 00
ANALYSIS:

HAVI NGenables you to use aggregate functions in a comparison statement, providing for
aggregate functions what WHERE provides for individual rows. Does HAVI NGwork with
nonaggregate expressions? Try this:

INPUT/OUTPUT:

SELECT TEAM AV SALARY)
FROM ORGCHART
GROUP BY TEAM

HAVI NG SALARY < 38000;

TEAM AVG
PR 37500. 00
ANALYSIS:

Why is this result different from the last query? The HAVI NG AVE SALARY) < 38000
clause evaluated each grouping and returned only those with an average salary of
under 38000, just what you expected. HAVI NG SALARY < 38000, on the other hand,
had a different outcome. Take on the role of the SQL engine again. If the user asks you
to evaluate and return groups of divisions where SALARY < 38000, you would examine
each group and reject those where an individual SALARY is greater than 38000. In each
division except PR, you would find at least one salary greater than 38000:

INPUT/OUTPUT:

SELECT NAME, TEAM SALARY
FROM ORGCHART
ORDER BY TEAM

NAME TEAM SALARY
FURY COLLECTI ONS 35000. 00
VEZA COLLECTI ONS 40000. 00
W LKES MARKETI NG 31000. 00
STOKES MARKETI NG 36000. 00
Rl CHARDSON MARKETI NG 42000. 00
PRECOURT PR 37500. 00
ADAMS RESEARCH 34000. 00
MERRI CK RESEARCH 45000. 00
ANALYSIS:

Therefore, you would reject all other groups except PR. What you really asked was
Select all groups where no individual makes nore than 38000. Don't you
just hate it when the computer does exactly what you tell it to?

WARNING: Some implementations of SQL return an error if you use
anything other than an aggregate function in a HAVI NGclause. Don't bet
the farm on using the previous example until you check the implementation
of the particular SQL you use.

Can you use more than one condition in your HAVI NGclause? Try this:

INPUT:

SELECT TEAM AV S| CKLEAVE) , AVG({ ANNUAL L EAVE)
FROM ORGCHART

GROUP BY TEAM

HAVI NG AVGE S| CKLEAVE) >25 AND

AVG(ANNUAL LEAVE) <20;

ANALYSIS:

The following table is grouped by TEAM It shows all the teams with SI CKLEAVE
averages above 25 days and ANNUALLEAVE averages below 20 days.

OUTPUT:

TEAM AVG AVG
MARKETI NG 28 15
RESEARCH 27 15

You can also use an aggregate function in the HAVI NGclause that was not in the
SELECT statement. For example:

INPUT/OUTPUT:

SELECT TEAM AV S| CKLEAVE) , AVG({ ANNUAL L EAVE)
FROM ORGCHART

GROUP BY TEAM

HAVI NG COUNT(TEAM) > 1;

TEAM AVG AVG
COLLECTI ONS 26 21
MARKETI NG 28 15
RESEARCH 27 15
ANALYSIS:

This query returns the number of TEAMs with more than one member. COUNT(TEAM is not
used in the SELECT statement but still functions as expected in the HAVI NGclause.

The other logical operators all work well within the HAVI NGclause. Consider this:
INPUT/OUTPUT:

SELECT TEAM M N(SALARY) , MAX(SALARY)

FROM ORGCHART
GROUP BY TEAM

HAVI NG AVG(SALARY) > 37000
R

M N(SALARY) > 32000;

TEAM M N MAX
COLLECTI ONS 35000. 00 40000. 00
PR 37500. 00 37500. 00
RESEARCH 34000. 00 45000. 00

The operator | Nalso works in a HAVI NGclause, as demonstrated here:
INPUT/OUTPUT:

SELECT TEAM AV SALARY)

FROM ORGCHART

GRCOUP BY TEAM

HAVING TEAM I N (' PR ,' RESEARCH) ;

TEAM AVG
PR 37500. 00
RESEARCH 39500. 00

Combining Clauses

Nothing exists in a vacuum, so this section takes you through some composite examples
that demonstrate how combinations of clauses perform together.

Example5.1

Find all the checks written for Cash and Gas in the CHECKS table and order them by
REMARKS.

INPUT:

SELECT PAYEE, REMARKS
FROM CHECKS

VWHERE PAYEE = ' Cash’
OR REMARKS LI KE' Ga%
CRDER BY REMARKS;

OUTPUT:

PAYEE REMARKS

Joans (@Gas Gas

Joans Gas Gas

Local Uilities Gas

Cash Trip to Boston
Cash Trip to Dayton
Cash WId N ght Qut
ANALYSIS:

Note the use of LI KE to find the REMARKS that started with Ga. With the use of OR,
data was returned if the WHERE clause met either one of the two conditions.

What if you asked for the same information and group it by PAYEE? The query would
look something like this:

INPUT:

SELECT PAYEE, REMARKS
FROM CHECKS

VWHERE PAYEE = ' Cash’
OR REMARKS LI KE' Ga%
GROUP BY PAYEE

CRDER BY REMARKS;

ANALYSIS:

This query would not work because the SQL engine would not know what to do with
the remarks. Remember that whatever columns you put in the SELECT clause must also
be in the GROUP BY clause--unless you don't specify any columns in the SELECT clause.

Example 5.2

Using the table ORGCHART, find the salary of everyone with less than 25 days of sick
leave. Order the results by NAME.

INPUT:

SELECT NAME, SALARY
FROM ORGCHART
WHERE S| CKLEAVE < 25
ORDER BY NAME;

OUTPUT:

NAME SALARY

FURY 35000. 00

MVERRI CK 45000. 00
PRECOURT 37500. 00
STCKES 36000. 00
ANALYSIS:

This query is straightforward and enables you to use your new-found skills with WHERE
and ORDER BY.

Example 5.3

Again, using ORGCHART, display TEAM AV SALARY), AV SI CKLEAVE), and
AVGE ANNUALLEAVE) on each team:

INPUT:

SELECT TEAM
AVG(SALARY) ,

AV SI CKLEAVE) ,
AVG(ANNUAL L EAVE)
FROM ORGCHART
GROUP BY TEAM

OUTPUT:

TEAM AVG AVG AVG
COLLECTI ONS 37500. 00 26 21
MARKETI NG 36333. 33 28 15
PR 37500. 00 24 24
RESEARCH 39500. 00 26 15

An interesting variation on this query follows. See if you can figure out what
happened:

INPUT/OUTPUT:

SELECT TEAM
AVG(SALARY) ,

AVG(SI CKLEAVE) ,
AVG(ANNUAL L EAVE)
FROM ORGCHART
GROUP BY TEAM
ORDER BY NAME;

RESEARCH 39500. 00 27 15

COLLECTI ONS 37500. 00 26 21
PR 37500. 00 24 24

MARKETI NG 36333. 33 28 15

A simpler query using ORDER BY might offer a clue:
INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME, TEAM

NANVE TEAM

ADAMS RESEARCH
FURY COLLECTI ONS
VERRI CK RESEARCH
VEZA COLLECTI ONS
PRECOURT PR

Rl CHARDSON MARKETI NG
STCKES MARKETI NG
W LKES MARKETI NG
ANALYSIS:

When the SQL engine got around to ordering the results of the query, it used the NAME
column (remember, it is perfectly legal to use a column not specified in the SELECT
statement), ignored duplicate TEAMentries, and came up with the order RESEARCH,
COLLECTI ONS, PR, and MARKETI NG Including TEAMin the ORDER BY clause is
unnecessary, because you have unique values in the NAME column. You can get the same
result by typing this statement:

INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME;

NAME TEAM

ADAMS RESEARCH
FURY COLLECTI ONS
MERRI CK RESEARCH
VEZA COLLECTI ONS
PRECOURT PR

Rl CHARDSON MARKETI NG
STOKES MARKETI NG

W LKES MARKETI NG

While you are looking at variations, don't forget you can also reverse the order:
INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME DESC;

NANVE TEAM

W LKES MARKETI NG
STOKES MARKETI NG
Rl CHARDSON MARKETI NG
PRECOURT PR

VEZA COLLECTI ONS
MERRI CK RESEARCH
FURY COLLECTI ONS
ADAMS RESEARCH

Example 5.4: TheBig Finale

Is it possible to use everything you have learned in one query? It is, but the results will
be convoluted because in many ways you are working with apples and oranges--or
aggregates and nonaggregates. For example, WHERE and ORDER BY are usually found in
gueries that act on single rows, such as this:

INPUT/OUTPUT:

SELECT *
FROM ORGCHART
ORDER BY NAME DESC;

NANVE TEAM SALARY S| CKLEAVE ANNUALLEAVE
W LKES MARKETI NG 31000. 00 40 9
STCKES MARKETI NG 36000. 00 20 19
Rl CHARDSON MARKETI NG 42000. 00 25 18
PRECOURT PR 37500. 00 24 24
VEZA COLLECTI ONS 40000. 00 30 27
MERRI CK RESEARCH 45000. 00 20 17
FURY COLLECTI ONS 35000. 00 22 14
ADAMS RESEARCH 34000. 00 34 12

GROUP BY and HAVI NGare normal ly seen in the company of aggregates:
INPUT/OUTPUT:

SELECT PAYEE,
SUM AMOUNT) TOTAL,
COUNT(PAYEE) NUMBER W\RI TTEN

FROM CHECKS
GROUP BY PAYEE
HAVI NG SUM AMOUNT) > 50;

PAYEE TOTAL NUVBER V\RI TTEN
Cash 119 3
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bel | 350. 33002 2
Reading R R 245, 34 1

You have seen that combining these two groups of clauses can have unexpected results,
including the following:

INPUT:

SELECT PAYEE,
SUM AMOUNT) TOTAL,

COUNT(PAYEE) NUMBER WRI TTEN
FROM CHECKS

WHERE AMOUNT >= 100

GROUP BY PAYEE

HAVI NG SUM AMOUNT) > 50;

OUTPUT:

PAYEE TOTAL NUMBER WRI TTEN
Joes Stale $ Dent 150 1
Ve Bel | 350. 33002 2
Reading R R 245, 34 1

Compare these two result sets and examine the raw data:
INPUT/OUTPUT:

SELECT PAYEE, AMOUNT
FROM CHECKS
ORDER BY PAYEE

PAYEE AMOUNT
Abes Cl eaners 10.5
Abes Cl eaners 24. 35
Cash 25
Cash 34
Cash 60
Joans Gas 15. 75
Joans Gas 25.1

Joes Stale $ Dent 150

Local Utilities 34

Local Utilities 87.5
Local Utilities 98
Ve Bel | 150
Ma Bel | 200. 33
Readi ng R R 245. 34
ANALYSIS:

You see how the WHERE clause filtered out all the checks less than 100 dollars before
the GROUP BY was performed on the query. We are not trying to tell you not to mix
these groups--you may have a requirement that this sort of construction will meet.
However, you should not casual ly mix aggregate and nonaggregate functions. The
previous examples have been tables with only a handful of rows. (Otherwise, you would
need a cart to carry this book.) In the real world you will be working with thousands
and thousands (or bil lions and bil lions) of rows, and the subtle changes caused by
mixing these clauses might not be so apparent.

Summary

Today you learned all the clauses you need to exploit the power of a SELECT
statement. Remember to be careful what you ask for because you just might get it. Your
basic SQL education is complete. You already know enough to work effectively with
single tables. Tomorrow (Day 6, "Joining Tables") you will have the opportunity to work
with multiple tables.

Q& A

Q | thought we covered some of these functions earlier this week? If so, why
are we covering them again?

A We did indeed cover WHERE on Day 3. You needed a knowledge of WHERE to
understand how certain operators worked. WHERE appears again today because it
is a clause, and today's topic is clauses.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises.”

Quiz

1. Which clause works just like LI KE(<exp>%) ?

2. What is the function of the GROUP BY clause, and what other clause does it
act like?

3. Will this SELECT work?

INPUT:

SQL> SELECT NAME, AV SALARY), DEPARTMENT
FROM PAY_TBL
VHERE DEPARTMENT = ' ACCOUNTI NG
ORDER BY NAME
GROUP BY DEPARTMENT, SALARY;

4. When using the HAVI NGclause, do you always have to use a GROUP BY also?

5. Can you use CRDER BY on a column that is not one of the columns in the
SELECT statement?

Exercises

1. Using the ORGCHART table from the preceding examples, find out how many
people on each team have 30 or more days of sick leave.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:
CHECK#__ PAYEE AMOUNT
1 MA BELL 150

| ¢ Previous Chapter (& MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 6 -
Joining Tables

Objectives

Today you will learn about joins. This information will enable you to gather and
manipulate data across several tables. By the end of the day, you will understand and
be able to do the following:

. Perform an outer join

. Performa left join

. Performaright join

. Perform an equi-join

. Perform a non-equi-join

. Join a table to itself

| ntroduction

One of the most powerful features of SQL is its capability to gather and manipulate
data from across several tables. Without this feature you would have to store all the
data elements necessary for each application in one table. Without common tables you
would need to store the same data in several tables. Imagine having to redesign, rebuild,

and repopulate your tables and databases every time your user needed a query with a
new piece of information. The JO Nstatement of SQL enables you to design smaller,
more specific tables that are easier to maintain than larger tables.

Multiple Tablesin a Single SELECT Statement

Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day 2,
"Introduction to the Query: The SELECT Statement,” when you learned about SELECT
and FROM Unlike Dorothy, you don't have to click you heels together three times to
perform a join. Use the following two tables, named, cleverly enough, TABLE1 and
TABLE2.

NOTE: The queries in today's examples were produced using Borland's ISQL
tool. You will notice some differences between these queries and the ones
that we used earlier in the book. For example, these queries do not begin
with an SQL prompt. Another difference is that ISQL does not require a
semicolon at the end of the statement. (The semicolon is optional in ISQL.)
But the SQL basics are still the same.

INPUT:

SELECT *

FROM TABLE1
OUTPUT:

ROW REVARKS
row 1 Table 1
row 2 Table 1
row 3 Table 1
row 4 Table 1
row 5 Table 1
row 6 Table 1
INPUT

SELECT *

FROM TABLE2
OUTPUT:

ROW REMARKS

row 1 table 2
row 2 table 2
row 3 table 2
row 4 table 2
row 5 table 2
row 6 table 2

To join these two tables, type this:
INPUT:

SELECT *
FROM TABLE1, TABLEZ2

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2
row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2
row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2
row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2
row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2
row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2
row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2
row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2
row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2
row 6 Table 1 row 1 table 2
row 6 Table 1 row 2 table 2

row 6 Table 1 row 3 table 2

row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from? And what kind of join is this?

ANALYSIS:

A close examination of the result of your first join shows that each row from TABLEL
was added to each row from TABLE2. An extract from this join shows what happened:

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

Notice how each row in TABLE2 was combined with row 1 in TABLEL. Congratulations!
You have performed your first join. But what kind of join? An inner join? an outer join?
or what? Well, actually this type of join is called a cross-join. A cross-join is not
normally as useful as the other joins covered today, but this join does il lustrate the
basic combining property of all joins: Joins bring tables together.

Suppose you sold parts to bike shops for a living. When you designed your database, you
built one big table with all the pertinent columns. Every time you had a new
requirement, you added a new column or started a new table with all the old data plus
the new data required to create a specific query. Eventually, your database would
collapse from its own weight--not a pretty sight. An alternative design, based on a
relational model, would have you put all related data into one table. Here's how your
customer table would look:

INPUT:

SELECT *
FROM CUSTOMER

OUTPUT:

NAME ADDRESS STATE ZIP PHONE REMARKS

TRUE WHEEL 550 HUSKER NE
Bl KE SPEC CPT SHRI VE LA
LE SHOPPE HOVETOMN KS
AAA BIKE 10 OLDTOAN NE
JACKS BI KE 24 EGIN FL

ANALYSIS:

58702
45678
54678
56784
34567

555-4545
555-1234
555-1278
555-3421
555- 2314

NONE
NONE
NONE
JOHN- MR
NONE

This table contains all the information you need to describe your customers. The items

you sold would go into another table:

INPUT:

SELECT *
FROM PART

OUTPUT:

PARTNUM DESCRI PTI ON

54 PEDALS
42 SEATS
46 TI RES

23 MOUNTAI N BI KE

76 ROAD BI KE
10 TANDEM

15. 25
350. 45
530. 00

1200. 00

And the orders you take would have their own table:

INPUT:

SELECT *
FROM ORDERS

OUTPUT:

ORDEREDON NAME

PARTNUM

QUANTI TY REMARKS

15- MAY- 1996 TRUE VHEEL
19- MAY- 1996 TRUE VHEEL
2- SEP-1996 TRUE WHEEL
30-JUN- 1996 TRUE WHEEL
30- JUN- 1996
30- MAY- 1996
30- MAY- 1996
17- JAN- 1996
17- JAN- 1996
1- JUN- 1996

Bl KE SPEC
LE SHOPPE
LE SHOPPE

= =
WUITR ONO®EE WO
Y
>
O

1- JUN- 1996 AAA BI KE 10 1 PAID

1-JUL- 1996 AAA BI KE 76 4 PAID
1-JUL- 1996 AAA BI KE 46 14 PAID
11-JUL-1996 JACKS BI KE 76 14 PAID

One advantage of this approach is that you can have three specialized people or
departments responsible for maintaining their own data. You don't need a database
administrator who is conversant with all aspects of your project to shepherd one
gigantic, multidepartmental database. Another advantage is that in the age of
networks, each table could reside on a different machine. People who understand the
data could maintain it, and it could reside on an appropriate machine (rather than that
nasty corporate mainframe protected by legions of system administrators).

Now join PARTS and ORDERS:
INPUT/OUTPUT:

SELECT O ORDEREDON, O. NAMVE, O PARTNUM
P. PARTNUM P. DESCRI PTI ON
FROM ORDERS O, PART P

ORDEREDON NAME PARTNUM PARTNUM DESCRI PTI ON
15- MAY- 1996 TRUE WHEEL 23 54 PEDALS
19- MAY- 1996 TRUE WHEEL 76 54 PEDALS

2- SEP- 1996 TRUE WHEEL 10 54 PEDALS
30-JUN- 1996 TRUE WHEEL 42 54 PEDALS
30-JUN- 1996 Bl KE SPEC 54 54 PEDALS
30- MAY- 1996 Bl KE SPEC 10 54 PEDALS
30- MAY- 1996 Bl KE SPEC 23 54 PEDALS
17-JAN-1996 Bl KE SPEC 76 54 PEDALS
17-JAN-1996 LE SHOPPE 76 54 PEDALS

1-JUN- 1996 LE SHOPPE 10 54 PEDALS

1- JUN- 1996 AAA BI KE 10 54 PEDALS

1-JUL- 1996 AAA BI KE 76 54 PEDALS

1-JUL- 1996 AAA BI KE 46 54 PEDALS
11-JUL-1996 JACKS BI KE 76 54 PEDALS
ANALYSIS:

The preceding code is just a portion of the result set. The actual set is 14 (number of
rows in ORDERS) x 6 (number of rows in PART), or 84 rows. It is similar to the result from
joining TABLEL and TABLEZ2 earlier today, and it is still one statement shy of being
useful. Before we reveal that statement, we need to regress a little and talk about
another use for the alias.

Finding the Correct Column

When you joined TABLE1 and TABLEZ2, you used SELECT *, which returned all the
columns in both tables. In joining ORDERS to PART, the SELECT statement is a bit more
complicated:

SELECT O ORDEREDON, O. NAVE, O PARTNUM
P. PARTNUM P. DESCRI PTI ON

SQL is smart enough to know that ORDEREDON and NAME exist only in ORDERS and that
DESCRI PTI ON exists only in PART, but what about PARTNUM which exists in both? If you
have a column that has the same name in two tables, you must use an alias in your
SELECT clause to specify which column you want to display. A common technique is to
assign a single character to each table, as you did in the FROMIclause:

FROM ORDERS O, PART P

You use that character with each column name, as you did in the preceding SELECT
clause. The SELECT clause could also be written like this:

SELECT ORDEREDCN, NAME, O PARTNUM P. PARTNUM DESCRI PTI ON

But remember, someday you might have to come back and maintain this query. It doesn't
hurt to make it more readable. Now back to the missing statement.

Equi-Joins

An extract from the PART/ ORDERS join provides a clue as to what is missing:

30-JUN- 1996 TRUE WHEEL 42 54 PEDALS
30-JUN- 1996 BI KE SPEC 54 54 PEDALS
30- MAY- 1996 BI KE SPEC 10 54 PEDALS

Notice the PARTNUMfields that are common to both tables. What if you wrote the
following?

INPUT:

SELECT O ORDEREDON, O. NAVE, O PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

OUTPUT:

ORDEREDON NAME PARTNUM PARTNUM DESCRI PTI ON

1- JUN- 1996 AAA BI KE 10 10 TANDEM

30- MAY- 1996 BI KE SPEC 10 10 TANDEM

2- SEP-1996 TRUE WHEEL 10 10 TANDEM

1- JUN- 1996 LE SHOPPE 10 10 TANDEM

30- MAY- 1996 BI KE SPEC 23 23 MOUNTAI N Bl KE
15- MAY- 1996 TRUE WHEEL 23 23 MOUNTAI N Bl KE
30-JUN- 1996 TRUE WHEEL 42 42 SEATS

1-JUL- 1996 AAA BI KE 46 46 TI RES

30-JUN- 1996 BI KE SPEC 54 54 PEDALS

1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE

17- JAN- 1996 BI KE SPEC 76 76 ROAD BI KE

19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL- 1996 JACKS BI KE 76 76 ROAD BI KE

17- JAN- 1996 LE SHOPPE 76 76 ROAD BI KE
ANALYSIS:

Using the column PARTNUMthat exists in both of the preceding tables, you have just
combined the information you had stored in the ORDERS table with information from the
PART table to show a description of the parts the bike shops have ordered from you. The
join that was used is cal led an equi-join because the goal is to match the values of a
column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE clause. For
example:

INPUT/OUTPUT:

SELECT O ORDEREDON, O. NAMVE, O PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND O. PARTNUM = 76

ORDEREDON NAME PARTNUM PARTNUM DESCRI PTI ON
1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE
17-JAN-1996 Bl KE SPEC 76 76 ROAD BI KE
19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL-1996 JACKS BI KE 76 76 ROAD BI KE
17-JAN-1996 LE SHOPPE 76 76 ROAD BI KE

The number 76 is not very descriptive, and you wouldn't want your sales people to have
to memorize a part number. (We have had the misfortune to see many data information
systems in the field that require the end user to know some obscure code for something
that had a perfectly good name. Please don't write one of those!) Here's another way to
write the query:

INPUT/OUTPUT:

SELECT O ORDEREDON, O. NAMVE, O PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE

ORDEREDON NAME PARTNUM PARTNUM DESCRI PTI ON

1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE
17-JAN-1996 Bl KE SPEC 76 76 ROAD BI KE
19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL-1996 JACKS BI KE 76 76 ROAD BI KE
17-JAN-1996 LE SHOPPE 76 76 RCOAD BI KE

Along the same line, take a look at two more tables to see how they can be joined. In
this example the enpl oyee_i d column should obviously be unique. You could have
employees with the same name, they could work in the same department, and earn the
same salary. However, each employee would have his or her own enpl oyee i d. To join
these two tables, you would use the enpl oyee_i d column.

EMPLOYEE_TABLE EMPLOYEE_PAY _TABLE
enpl oyee_id enpl oyee i d

| ast _nane sal ary

first_nanme depart nment

m ddl e_nane supervi sor

marital _status

INPUT:

SELECT E. EMPLOYEE_I D, E. LAST_NAME, EP. SALARY
FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL EP
VWHERE E. EMPLOYEE_ I D = EP. EMPLOYEE_I D
AND E. LAST_NAME = 'SM TH ;

OUTPUT:

E. EMPLOYEE_I D E. LAST_NAME EP. SALARY

13245 SM TH 35000. 00

TIP: When you join two tables without the use of a WHERE clause, you are

performing a Cartesian join. This join combines all rows from all the tables
in the FROMclause. If each table has 200 rows, then you will end up with
40,000 rows in your results (200 x 200). Always join your tables in the WHERE
clause unless you have a real need to join all the rows of all the selected
tables.

Back to the original tables. Now you are ready to use all this information about joins
to do something real ly useful: finding out how much money you have made from selling
road bikes:

INPUT/OUTPUT:

SELECT SUM O QUANTITY * P. PRI CE) TOTAL
FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE'

19610. 00

ANALYSIS:

With this setup, the sales people can keep the ORDERS table updated, the production
department can keep the PART table current, and you can find your bottom line
without redesigning your database.

NOTE: Notice the consistent use of table and column aliases in the SQL
statement examples. You will save many, many keystrokes by using aliases.
They also help to make your statement more readable.

Can you join more than one table? For example, to generate information to send out an
invoice, you could type this statement:

INPUT/OUTPUT:

SELECT C. NAME, C. ADDRESS, (O QUANTITY * P.PRICE) TOTAL
FROM ORDER O, PART P, CUSTOMVER C

VWHERE O PARTNUM = P. PARTNUM

AND O NAME = C. NAVE

NANVE ADDRESS TOTAL

TRUE WHEEL 550 HUSKER 1200. 00
Bl KE SPEC CPT SHRI VE 2400. 00
LE SHOPPE HOVETOMW 3600. 00
AAA BIKE 10 OLDTOMN 1200. 00
TRUE WHEEL 550 HUSKER 2102. 70
Bl KE SPEC CPT SHRI VE 2803. 60
TRUE WHEEL 550 HUSKER 196. 00
AAA BIKE 10 OLDTOMN 213. 50
Bl KE SPEC CPT SHRI VE 542. 50
TRUE WHEEL 550 HUSKER 1590. 00
Bl KE SPEC CPT SHRI VE 5830. 00
JACKS BI KE 24 EGIN 7420. 00
LE SHOPPE HOVETOMW 2650. 00
AAA BIKE 10 OLDTOMN 2120. 00

You could make the output more readable by writing the statement like this:
INPUT/OUTPUT:

SELECT C. NAME, C. ADDRESS,
O QUANTITY * P. PRI CE TOTAL

FROM ORDERS O, PART P, CUSTOMER C
VWHERE O PARTNUM = P. PARTNUM

AND O NAME = C. NAMVE

ORDER BY C. NAME

NANVE ADDRESS TOTAL
AAA BIKE 10 OLDTOWN 213. 50
AAA BIKE 10 OLDTOWN 2120. 00
AAA BIKE 10 OLDTOWN 1200. 00
Bl KE SPEC CPT SHRI VE 542. 50
Bl KE SPEC CPT SHRI VE 2803. 60
Bl KE SPEC CPT SHRI VE 5830. 00
Bl KE SPEC CPT SHRI VE 2400. 00
JACKS BI KE 24 EGLI N 7420. 00
LE SHOPPE HOVETOMW 2650. 00
LE SHOPPE HOVETOMW 3600. 00
TRUE WHEEL 550 HUSKER 196. 00
TRUE WHEEL 550 HUSKER 2102. 70
TRUE WHEEL 550 HUSKER 1590. 00
TRUE WHEEL 550 HUSKER 1200. 00

NOTE: Notice that when joining the three tables (ORDERS, PART, and
CUSTOMER) that the ORDERS table was used in two joins and the other
tables were used only once. Tables that will return the fewest rows with
the given conditions are commonly referred to as driving tables, or base
tables. Tables other than the base table in a query are usually joined to
the base table for more efficient data retrieval. Consequently, the ORDERS

table is the base table in this example. In most databases a few base tables
join (either directly or indirectly) all the other tables. (See Day 15,
"Streamlining SQL Statements for Improved Performance," for more on base
tables.)

You can make the previous query more specific, thus more useful, by adding the
DESCRI PTI ON column as in the fol lowing example:

INPUT/OUTPUT:

SELECT C. NAME, C. ADDRESS,

O QUANTITY * P. PRI CE TOTAL,

P. DESCRI PTI ON

FROM ORDERS O, PART P, CUSTOMER C
VWHERE O PARTNUM = P. PARTNUM

AND O NAME = C. NAVE

ORDER BY C. NAME

NAVE ADDRESS TOTAL DESCRI PTI ON
AAA BIKE 10 OLDTOMW 213.50 TI RES

AAA BIKE 10 OLDTOMW 2120. 00 ROAD BI KE
AAA BIKE 10 OLDTOMW 1200. 00 TANDEM

BI KE SPEC CPT SHRI VE 542.50 PEDALS

BI KE SPEC CPT SHRI VE 2803. 60 MOUNTAI N BI KE
BI KE SPEC CPT SHRI VE 5830. 00 ROAD BI KE

BI KE SPEC CPT SHRI VE 2400. 00 TANDEM

JACKS BIKE 24 EGLIN 7420. 00 ROAD BI KE

LE SHOPPE HOVETOWN 2650. 00 ROAD BI KE

LE SHOPPE HOVETOWN 3600. 00 TANDEM

TRUE WHEEL 550 HUSKER 196. 00 SEATS

TRUE WHEEL 550 HUSKER 2102. 70 MOUNTAI N BI KE
TRUE WHEEL 550 HUSKER 1590. 00 ROAD BI KE
TRUE WHEEL 550 HUSKER 1200. 00 TANDEM
ANALYSIS:

This information is a result of joining three tables. You can now use this information to
create an invoice.

NOTE: In the example at the beginning of the day, SQL grouped TABLE1 and
TABLEZ2 to create a new table with X (rows in TABLE1) X Y (rows in TABLE2)
number of rows. A physical table is not created by the join, but rather in a
virtual sense. The join between the two tables produces a new set that
meets all conditions in the WHERE clause, including the join itself. The
SELECT statement has reduced the number of rows displayed, but to

evaluate the WVHERE clause SQL still creates all the possible rows. The
sample tables in today's examples have only a handful of rows. Your actual
data may have thousands of rows. If you are working on a platform with
lots of horsepower, using a multiple-table join might not visibly affect
performance. However, if you are working in a slower environment, joins
could cause a significant slowdown.

We aren't telling you not to use joins, because you have seen the
advantages to be gained from a relational design. Just be aware of the
platform you are using and your customer's requirements for speed versus
reliability.

Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-equi-join.
You would be right! Whereas the equi-join uses an = sign in the WHERE statement, the
non-equi-join uses everything but an = sign. For example:

INPUT:

SELECT O NAME, O PARTNUM P. PARTNUM
O QUANTITY * P. PRI CE TOTAL

FROM ORDERS O, PART P

WHERE O. PARTNUM > P. PARTNUM

OUTPUT:

NANVE PARTNUM PARTNUM TOTAL
TRUE WHEEL 76 54 162. 75
Bl KE SPEC 76 54 596. 75
LE SHOPPE 76 54 271. 25
AAA BI KE 76 54 217.00
JACKS BI KE 76 54 759. 50
TRUE WHEEL 76 42 73.50
Bl KE SPEC 54 42 245. 00
Bl KE SPEC 76 42 269. 50
LE SHOPPE 76 42 122. 50
AAA BI KE 76 42 98. 00
AAA BI KE 46 42 343. 00
JACKS BI KE 76 42 343. 00
TRUE WHEEL 76 46 45. 75
Bl KE SPEC 54 46 152. 50
Bl KE SPEC 76 46 167. 75

LE SHOPPE 76 46 76. 25

AAA BI KE 76 46 61. 00

JACKS BI KE 76 46 213. 50
TRUE WHEEL 76 23 1051. 35
TRUE WHEEL 42 23 2803. 60
ANALYSIS:

This listing goes on to describe all the rows in the join WHERE O. PARTNUM >

P. PARTNUM In the context of your bicycle shop, this information doesn't have much
meaning, and in the real world the equi-join is far more common than the non-equi-join.
However, you may encounter an application in which a non-equi-join produces the
perfect result.

Outer Joinsversusinner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the inner
join. An inner join is where the rows of the tables are combined with each other,
producing a number of new rows equal to the product of the number of rows in each
table. Also, the inner join uses these rows to determine the result of the WHERE clause.
An outer join groups the two tables in a slightly different way. Using the PART and
ORDERS tables from the previous examples, perform the following inner join:

INPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE,
O NAME, O. PARTNUM

FROM PART P

JO N ORDERS O ON ORDERS. PARTNUM = 54

OUTPUT:

PARTNUM DESCRI PTI ON PRI CE NAME PARTNUM
54 PEDALS 54. 25 BI KE SPEC 54
42 SEATS 24.50 BI KE SPEC 54
46 TI RES 15. 25 BI KE SPEC 54
23 MOUNTAI N Bl KE 350. 45 BI KE SPEC 54
76 ROAD BI KE 530. 00 BI KE SPEC 54
10 TANDEM 1200. 00 BI KE SPEC 54

NOTE: The syntax you used to get this join--JO N ON--is not ANSI standard.
The implementation you used for this example has additional syntax. You
are using it here to specify an inner and an outer join. Most implementations
of SQL have similar extensions. Notice the absence of the WHERE clause in

this type of join.

ANALYSIS:

The result is that all the rows in PART are spliced on to specific rows in ORDERS where
the column PARTNUMIs 54. Here'sa Rl GHT OUTER JO N statement:

INPUT/OUTPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE,

O NAME, O. PARTNUM

FROM PART P

Rl GHT OQUTER JO N ORDERS O ON ORDERS. PARTNUM = 54

PARTNUM DESCRI PTI ON PRI CE NANVE PARTNUM
<nul | > <nul | > <nul | > TRUE WHEEL 23
<nul | > <nul | > <nul | > TRUE WHEEL 76
<nul | > <nul | > <nul | > TRUE WHEEL 10
<nul | > <nul | > <nul | > TRUE WHEEL 42

54 PEDALS 54. 25 BI KE SPEC 54
42 SEATS 24. 50 BI KE SPEC 54
46 Tl RES 15. 25 BI KE SPEC 54
23 MOUNTAI N BI KE 350. 45 Bl KE SPEC 54
76 ROAD BI KE 530. 00 BI KE SPEC 54
10 TANDEM 1200. 00 BI KE SPEC 54
<nul | > <nul | > <nul | > Bl KE SPEC 10
<nul | > <nul | > <nul | > Bl KE SPEC 23
<nul | > <nul | > <nul | > Bl KE SPEC 76
<nul | > <nul | > <nul | > LE SHOPPE 76
<nul | > <nul | > <nul | > LE SHOPPE 10
<nul | > <nul | > <nul | > AAA BI KE 10
<nul | > <nul | > <nul | > AAA BI KE 76
<nul | > <nul | > <nul | > AAA BI KE 46
<nul | > <nul | > <nul | > JACKS BI KE 76

ANALYSIS:

This type of query is new. First you specified a Rl GHT OUTER JQA N, which caused SQL to
return a full set of the right table, ORDERS, and to place nulls in the fields where
ORDERS. PARTNUM <> 54, Followingisa LEFT OUTER JO Nstatement:

INPUT/OUTPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE,

O NAME, O. PARTNUM

FROM PART P

LEFT OQUTER JO N ORDERS O ON ORDERS. PARTNUM = 54

PARTNUM DESCRI PTI ON PRI CE NAME PARTNUM

54 PEDALS 54. 25 BI KE SPEC 54

42 SEATS 24. 50 Bl KE SPEC 54

46 TI RES 15. 25 Bl KE SPEC 54

23 MOUNTAI N BI KE 350. 45 Bl KE SPEC 54

76 ROAD BI KE 530. 00 BI KE SPEC 54

10 TANDEM 1200. 00 BI KE SPEC 54
ANALYSIS:

You get the same six rows as the | NNER JO N. Because you specified LEFT (the LEFT
table), PART determined the number of rows you would return. Because PART is smaller
than ORDERS, SQL saw no need to pad those other fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine the
optimum JO N for your query. In fact, if you are placing your query into a stored
procedure (or using it inside a program (both stored procedures and Embedded SQL
covered on Day 13, "Advanced SQL Topics"), you should not specify a join type even if
your SQL implementation provides the proper syntax. If you do specify a join type, the
optimizer chooses your way instead of the optimum way.

Some implementations of SQL use the + sign instead of an OUTERJO Nstatement. The +
simply means "Show me everything even if something is missing.” Here's the syntax:

SYNTAX:

SQL> sel ect e.nane, e.enployee_id, ep.salary,
ep.marital _status
frome, pl oyee_ thl e,

enpl oyee_pay_tbl ep
where e. enpl oyee id = ep. enployee_id(+)
and e.nane like '%V TH ;

ANALYSIS:

This statement is joining the two tables. The + sign on the ep. enpl oyee_i d column
will return all rows even if they are empty.

Joining a Tableto Itself

Today's final topic is the often-used technique of joining a table to itself. The syntax of
this operation is similar to joining two tables. For example, to join table TABLEL to
itself, type this:

INPUT:

SELECT *
FROM TABLE1l, TABLE1l

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 Table 1
row 1 Table 1 row 2 Table 1
row 1 Table 1 row 3 Table 1
row 1 Table 1 row 4 Table 1
row 1 Table 1 row 5 Table 1
row 1 Table 1 row 6 Table 1
row 2 Table 1 row 1 Table 1
row 2 Table 1 row 2 Table 1
row 2 Table 1 row 3 Table 1
row 2 Table 1 row 4 Table 1
row 2 Table 1 row 5 Table 1
row 2 Table 1 row 6 Table 1
row 3 Table 1 row 1 Table 1
row 3 Table 1 row 2 Table 1
row 3 Table 1 row 3 Table 1
row 3 Table 1 row 4 Table 1
row 3 Table 1 row 5 Table 1
row 3 Table 1 row 6 Table 1
row 4 Table 1 row 1 Table 1
row 4 Table 1 row 2 Table 1
ANALYSIS:

In its complete form, this join produces the same number of combinations as joining two 6-
row tables. This type of join could be useful to check the internal consistency of data.
What would happen if someone fell asleep in the production department and entered a
new part with a PARTNUMthat already existed? That would be bad news for everybody:
Invoices would be wrong; your application would probably blow up; and in general you
would be in for a very bad time. And the cause of all your problems would be the
duplicate PARTNUMIn the following table:

INPUT/OUTPUT:

SELECT * FROM PART

PARTNUM DESCRI PTI ON PRI CE

54 PEDALS 54. 25
42 SEATS 24.50

46 TI RES 15. 25

23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00
76 CLI PPLESS SHCE 65. 00 <-NOTE SAME #

You saved your company from this bad situation by checking PART before anyone used it:
INPUT/OUTPUT:

SELECT F. PARTNUM F. DESCRI PTI ON,

S. PARTNUM S. DESCRI PTI ON

FROM PART F, PART S

WHERE F. PARTNUM = S. PARTNUM

AND F. DESCRI PTI ON <> S. DESCRI PTI ON

PARTNUM DESCRI PTI ON PARTNUM DESCRI PTI ON
76 ROAD BI KE 76 CLI PPLESS SHCE
76 CLI PPLESS SHCE 76 ROAD BI KE
ANALYSIS:

Now you are a hero until someone asks why the table has only two entries. You,
remembering what you have learned about JO Ns, retain your hero status by explaining
how the join produced two rows that satisfied the condition WHERE F. PARTNUM =

S. PARTNUM AND F. DESCRI PTI ON <> S. DESCRI PTI ON. Of course, at some point, the
row of data containing the duplicate PARTNUMwould have to be corrected.

Summary

Today you learned that a join combines all possible combinations of rows present in the
selected tables. These new rows are then available for selection based on the
information that you want.

Congratulations--you have learned almost everything there is to know about the
SELECT clause. The one remaining item, subqueries, is covered tomorrow (Day 7,
"Subqueries: The Embedded SELECT Statement").

Q& A

Q Why cover outer, inner, left, and right joins when | probably won't ever
use them?

A A little knowledge is a dangerous thing, and no knowledge can be expensive.

You now know enough to understand the basics of what your SQL engine might
try while optimizing you queries.

Q How many tables can you join on?

A That depends on the implementation. Some implementations have a 25-table
limit, whereas others have no limit. Just remember, the more tables you join on,
the slower the response time will be. To be safe, check your implementation to
find out the maximum number of tables allowed in a query.

Q Would it be fair to say that when tables are joined, they actual ly become
one table?

A Very simply put, that is just about what happens. When you join the tables, you
can select from any of the columns in either table.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

1. How many rows would a two-table join produce if one table had 50,000 rows and
the other had 100,000?

2. What type of join appears in the following SELECT statement?

sel ect e.nane, e.enployee id, ep.salary
fromenpl oyee thbl e,

enpl oyee _pay tbl ep
where e.enpl oyee id = ep. enpl oyee_i d;

3. Will the following SELECT statements work?

a.sel ect nane, enployee id, salary
from enpl oyee thbl e,

enpl oyee_pay tbl ep

where enpl oyee id = enployee id
and nanme |like "%V TH ;

b.sel ect e.nane, e.enployee id, ep.salary

from enpl oyee thbl e,

enpl oyee pay tbl ep
where nane |like '9%M TH ;

c.sel ect e.nane, e.enployee id, ep.salary
from enpl oyee thl e,

enpl oyee pay tbl ep

where e.enpl oyee id = ep. enpl oyee_ id

and e.nane like '%M TH ;

4. In the WHERE clause, when joining the tables, should you do the join first or
the conditions?

5. In joining tables are you limited to one-column joins, or can you join on more
than one column?

Exercises

1. In the section on joining tables to themselves, the last example returned two
combinations. Rewrite the query so only one entry comes up for each redundant
part number.

2. Rewrite the following query to make it more readable and shorter.
INPUT:

sel ect orders. orderedon, orders.nanme, part.partnum
part.price, part.description fromorders, part
where orders. partnum = part. partnum and
orders. order edon
bet ween ' 1- SEP-96' and ' 30- SEP- 96'
order by part. partnum

3. From the PART table and the ORDERS table, make up a query that will return
the following:

OUTPUT:
ORDEREDON NAME PARTNUM QUANTI TY
2- SEP- 96 TRUE WHEEL 10 1

| ¢ Previous Chapter (< MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 7 -
Subqueries: The Embedded SELECT
Statement

Objectives

A subquery is a query whose results are passed as the argument for another query.
Subqueries enable you to bind several queries together. By the end of the day, you will
understand and be able to do the following:

. Build a subquery
. Use the keywords EXI STS, ANY, and ALL with your subqueries

. Build and use correlated subqueries

NOTE: The examples for today's lesson were created using Borland's ISQL,
the same implementation used on Day 6, "Joining Tables.” Remember, this
implementation does not use the SQL> prompt or line numbers.

Building a Subquery

Simply put, a subquery lets you tie the result set of one query to another. The general
syntax is as fol lows:

SYNTAX:

SELECT *
FROM TABLE1

VWHERE TABLE1l. SOVECOLUWN =
(SELECT SOVEOTHERCCOLUWN

FROM TABLEZ2

VHERE SOVEOTHERCOLUWN = SOVEVALUE)

Notice how the second query is nested inside the first. Here's a real-world example that

uses the PART and ORDERS tables:

INPUT:

SELECT *
FROM PART

OUTPUT:

PARTNUM DESCRI PTI ON

PEDALS

SEATS

TI RES

MOUNTAI N Bl KE
ROAD BI KE
TANDEM

INPUT/OUTPUT:

SELECT *
FROM ORDERS

15- MAY- 1996
19- MAY- 1996
2- SEP- 1996
30- JUN- 1996
30- JUN- 1996
30- MAY- 1996
30- MAY- 1996
17- JAN- 1996
17- JAN- 1996
1- JUN- 1996
1- JUN- 1996
1-JUL- 1996
1-JUL- 1996

Bl KE
LE SHOPPE
LE SHOPPE
AAA BI KE
AAA BI KE
AAA BI KE

PARTNUM

QUANTI TY

= =
ARPRP WUORONO®RE WO®

H

REMARKS

11-JUL-1996 JACKS BI KE 76 14 PAID

ANALYSIS:

The tables share a common field called PARTNUM Suppose that you didn't know (or
didn't want to know) the PARTNUM but instead wanted to work with the description of
the part. Using a subquery, you could type this:

INPUT/OUTPUT:

SELECT *

FROM ORDERS

VWHERE PARTNUM =

(SELECT PARTNUM

FROM PART

VHERE DESCRI PTI ON LI KE " ROAD%)

ORDEREDON NAME PARTNUM QUANTI TY REMARKS
19- MAY- 1996 TRUE WHEEL 76 3 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN-1996 LE SHOPPE 76 5 PAI D

1-JUL- 1996 AAA BI KE 76 4 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAID
ANALYSIS:

Even better, if you use the concepts you learned on Day 6, you could enhance the
PARTNUMcolumn in the result by including the DESCRI PTI ON, making PARTNUMclearer
for anyone who hasn't memorized it. Try this:

INPUT/OUTPUT:

SELECT O ORDEREDQN, O PARTNUM

P. DESCRI PTI ON, O QUANTI TY, O. REMARKS
FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND
O PARTNUM =
(SELECT PARTNUM
FROM PART
VHERE DESCRI PTI ON LI KE " ROAD%)
ORDEREDON PARTNUM DESCRI PTI ON QUANTI TY REMARKS
19- MAY- 1996 76 ROAD BI KE 3 PAID
1-JUL- 1996 76 ROAD BI KE 4 PAID
17- JAN- 1996 76 ROAD BI KE 5 PAID

17- JAN- 1996 76 ROAD BI KE 11 PAID

11-JUL- 1996 76 ROAD BI KE 14 PAID

ANALYSIS:

The first part of the query is very familiar:

SELECT O ORDEREDQN, O PARTNUM
P. DESCRI PTI ON, O QUANTI TY, O. REMARKS
FROM ORDERS O, PART P

Here you are using the aliases Oand P for tables ORDERS and PART to select the five
columns you are interested in. In this case the aliases were not necessary because each
of the columns you asked to return is unique. However, it is easier to make a readable
guery now than to have to figure it out later. The first WHERE clause you encounter

VWHERE O PARTNUM = P. PARTNUM

Is standard language for the join of tables PART and ORDERS specified in the FROM
clause. If you didn't use this WHERE clause, you would have all the possible row
combinations of the two tables. The next section includes the subquery. The statement

AND

O, PARTNUM =

(SELECT PARTNUM

FROM PART

VHERE DESCRI PTI ON LI KE " ROADY%)

adds the qualification that O. PARTNUMmust be equal to the result of your simple
subquery. The subquery is straightforward, finding all the part numbers that are LI KE
" ROADY . The use of LI KE was somewhat lazy, saving you the keystrokes required to
type ROAD Bl KE. However, it turns out you were lucky this time. What if someone in the
Parts department had added a new part called ROADKI LL? The revised PART table
would look like this:

INPUT/OUTPUT:

SELECT *

FROM PART

PARTNUM DESCRI PTI ON PRI CE

54 PEDALS 54. 25
42 SEATS 24.50
46 TI RES 15. 25
23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00

10 TANDEM 1200. 00

77 ROADKI LL 7.99

Suppose you are blissfully unaware of this change and try your query after this new
product was added. If you enter this:

SELECT O ORDEREDQN, O PARTNUM

P. DESCRI PTI ON, O QUANTI TY, O. REMARKS
FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND

O PARTNUM =

(SELECT PARTNUM

FROM PART

VHERE DESCRI PTI ON LI KE " ROAD)

the SQL engine complains

multiple rows in singleton select

and you don't get any results. The response from your SQL engine may vary, but it still
complains and returns nothing.

To find out why you get this undesirable result, assume the role of the SQL engine. You
will probably evaluate the subquery first. You would return this:

INPUT/OUTPUT:

SELECT PARTNUM
FROM PART
VWHERE DESCRI PTI ON LI KE " ROADY%

PARTNUM

You would take this result and apply it to O. PARTNUM =, which is the step that causes
the problem.

ANALYSIS:

How can PARTNUMbe equal to both 76 and 77? This must be what the engine meant when
it accused you of being a simpleton. When you used the LI KE clause, you opened
yourself up for this error. When you combine the results of a relational operator with
another relational operator, such as =, <, or >, you need to make sure the result is
singular. In the case of the example we have been using, the solution would be to
rewrite the query using an = instead of the LI KE, like this:

INPUT/OUTPUT:

SELECT O ORDEREDQN, O. PARTNUM

P. DESCRI PTI ON, O QUANTI TY, O REMARKS
FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

AND
O. PARTNUM =
(SELECT PARTNUM
FROM PART
VWHERE DESCRI PTI ON = "ROAD BI KE")
ORDEREDON PARTNUM DESCRI PTI ON QUANTI TY REMARKS

19- MAY- 1996 76 ROAD BI KE 3 PAID

1-JUL- 1996 76 ROAD BI KE 4 PAID
17- JAN- 1996 76 ROAD BI KE 5 PAID
17- JAN-1996 76 ROAD BI KE 11 PAID
11-JUL- 1996 76 ROAD BI KE 14 PAID
ANALYSIS:

This subquery returns only one unique result; therefore narrowing your = condition to
a single value. How can you be sure the subquery won't return multiple values if you
are looking for only one value?

Avoiding the use of LI KE is a start. Another approach is to ensure the uniqueness of the
search field during table design. If you are the untrusting type, you could use the
method (described yesterday) for joining a table to itself to check a given field for
uniqueness. IT you design the table yourself (see Day 9, "Creating and Maintaining
Tables") or trust the person who designed the table, you could require the column you
are searching to have a unique value. You could also use a part of SQL that returns
only one answer: the aggregate function.

Using Aggregate Functionswith Subqueries

The aggregate functions SUM COUNT, M N, MAX, and AVGall return asingle value. To
find the average amount of an order, type this:

INPUT:

SELECT AVE O. QUANTITY * P. PRI CE)
FROM ORDERS O, PART P
VWHERE O PARTNUM = P. PARTNUM

OUTPUT:

2419. 16

ANALYSIS:

This statement returns only one value. To find out which orders were above average,
use the preceding SELECT statement for your subquery. The complete query and result
are as follows:

INPUT/OUTPUT:

SELECT O NAME, O. ORDEREDON,

O QUANTITY * P. PRI CE TOTAL

FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVGE O QUANTITY * P. PRI CE)
FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

NANVE ORDEREDON TOTAL
LE SHOPPE 1-JUN-1996 3600. 00
Bl KE SPEC 30- MAY- 1996 2803. 60
LE SHOPPE 17-JAN-1996 2650. 00
Bl KE SPEC 17-JAN-1996 5830. 00
JACKS BI KE 11-JUL-1996 7420. 00
ANALYSIS:

This example contains a rather unremarkable SELECT/ FROM WHERE clause:

SELECT O NAME, O ORDEREDON,

O QUANTITY * P. PRI CE TOTAL

FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

These lines represent the common way of joining these two tables. This join is necessary
because the price is in PART and the quantity is in ORDERS. The WHERE ensures that you
examine only the join-formed rows that are related. You then add the subquery:

AND

O QUANTITY * P.PRICE >

(SELECT AVG(O QUANTI TY * P. PRI CE)
FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

The preceding condition compares the total of each order with the average you
computed in the subquery. Note that the join in the subquery is required for the same
reasons as in the main SELECT statement. This join is also constructed exactly the same
way. There are no secret handshakes in subgueries; they have exactly the same syntax as
a standalone query. In fact, most subqueries start out as standalone queries and are
incorporated as subqueries after their results are tested.

Nested Subqueries

Nesting is the act of embedding a subquery within another subquery. For example:

Sel ect * FROM SOVETHI NG WHERE (SUBQUERY(SUBQUERY(SUBQUERY))) ;

Subqueries can be nested as deeply as your implementation of SQL allows. For example,
to send out special notices to customers who spend more than the average amount of
money, you would combine the information in the table CUSTOVER

INPUT:

SELECT *
FROM CUSTOMER

OUTPUT:

NANVE ADDRESS STATE ZIP PHONE REMARKS
TRUE WHEEL 550 HUSKER NE 58702 555- 4545 NONE

Bl KE SPEC CPT SHRI VE LA 45678 555-1234 NONE

LE SHOPPE HOVETOMW KS 54678 555-1278 NONE

AAA BIKE 10 OLDTOMWN NE 56784 555-3421 JOHN- MGR
JACKS BI KE 24 EGLI N FL 34567 555- 2314 NONE

with a slightly modified version of the query you used to find the above-average orders:
INPUT/OUTPUT:

SELECT ALL C. NAME, C. ADDRESS, C. STATE,C. ZIP
FROM CUSTOMER C

WHERE C. NAME | N

(SELECT O NAME

FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVGE O QUANTITY * P. PRI CE)
FROM OCRDERS O, PART P
VWHERE O PARTNUM = P. PARTNUM)

NANVE ADDRESS STATE ZIP
Bl KE SPEC CPT SHRI VE LA 45678
LE SHOPPE HOVETOMWN KS 54678
JACKS BI KE 24 EGIN FL 34567
ANALYSIS:

Here's a look at what you asked for. In the innermost set of parentheses, you find a
familiar statement:

SELECT AVE O. QUANTITY * P. PRI CE)
FROM ORDERS O, PART P
VWHERE O PARTNUM = P. PARTNUM

This result feeds into a slightly modified version of the SELECT clause you used before:

SELECT O NAME

FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM
AND

O QUANTITY * P.PRICE >

(...)

Note the SELECT clause has been modified to return a single column, NAME, which, not
so coincidentally, is common with the table CUSTOVER Running this statement by itself
you get:

INPUT/OUTPUT:

SELECT O. NAME

FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVG(O QUANTI TY * P. PRI CE)
FROM ORDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

LE SHOPPE
Bl KE SPEC
LE SHOPPE

Bl KE SPEC
JACKS BI KE

ANALYSIS:

We just spent some time discussing why your subqueries should return just one value.
The reason this query was able to return more than one value becomes apparent in a
moment.

You bring these results to the statement:

SELECT C. NAME, C. ADDRESS, C. STATE,C ZIP
FROM CUSTOMER C
VWHERE C. NAME | N

(...)

ANALYSIS:

The first two lines are unremarkable. The third reintroduces the keyword | N, last seen
on Day 2, "Introduction to the Query: The SELECT Statement.”" | Nis the tool that
enables you to use the multiple-row output of your subquery. I N, as you remember,
looks for matches in the following set of values enclosed by parentheses, which in the
this case produces the following values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS BI KE

This subquery provides the conditions that give you the mailing list:

NAME ADDRESS STATE ZIP

Bl KE SPEC CPT SHRI VE LA 45678
LE SHOPPE HOVETOMN KS 54678
JACKS BI KE 24 EGLIN FL 34567

This use of | Nis very common in subqueries. Because | Nuses a set of values for its
comparison, it does not cause the SQL engine to feel conflicted and inadequate.

Subqueries can also be used with GROUP BY and HAVI NGclauses. Examine the following
query:

INPUT/OUTPUT:

SELECT NAME, AVG QUANTI TY)
FROM ORDERS

GROUP BY NAME

HAVI NG AVG(QUANTI TY) >

(SELECT AVG QUANTI TY)

FROM ORDERS)

NANVE AVG
Bl KE SPEC 8
JACKS BI KE 14
ANALYSIS:

Let's examine this query in the order the SQL engine would. First, look at the subquery:
INPUT/OUTPUT:

SELECT AVG(QUANTI TY)
FROM ORDERS

By itself, the query is as follows:
INPUT/OUTPUT:

SELECT NAME, AVG(QUANTI TY)
FROM ORDERS
GROUP BY NAME

NANVE AVG
AAA BI KE 6
Bl KE SPEC 8
JACKS BI KE 14
LE SHOPPE 4
TRUE WHEEL S

When combined through the HAVI NGclause, the subquery produces two rows that have
above-average QUANTI TY.

INPUT/OUTPUT:

HAVI NG AVG({ QUANTI TY) >

(SELECT AVG({ QUANTI TY)

FROM ORDERS)

NANVE AVG
Bl KE SPEC 8
JACKS BI KE 14

Correlated Subgueries

The subqueries you have written so far are self-contained. None of them have used a
reference from outside the subquery. Correlated subqueries enable you to use an outside
reference with some strange and wonderful results. Look at the fol lowing query:

INPUT:

SELECT *

FROM ORDERS O

WHERE ' ROAD BI KE' =

(SELECT DESCRI PTI ON

FROM PART P

VWHERE P. PARTNUM = O PARTNUM

OUTPUT:

ORDEREDON NAME PARTNUM QUANTI TY REMARKS
19- MAY- 1996 TRUE WHEEL 76 3 PAID
17-JAN- 1996 Bl KE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAI D

1-JUL- 1996 AAA BI KE 76 4 PAlI D
11-JUL-1996 JACKS BI KE 76 14 PAID

This query actually resembles the following JO N:
INPUT:

SELECT O ORDEREDQON, O NAME,

O PARTNUM O QUANTI TY, O REMARKS
FROM ORDERS O, PART P

VWHERE P. PARTNUM = O. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE

OUTPUT:

ORDEREDON NAME PARTNUM QUANTI TY REMARKS

19- MAY- 1996 TRUE WHEEL 76 3 PAID

1-JUL- 1996 AAA BI KE 76 4 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
17-JAN-1996 Bl KE SPEC 76 11 PAID
11-JUL-1996 JACKS BI KE 76 14 PAID
ANALYSIS:

In fact, except for the order, the results are identical. The correlated subquery acts
very much like a join. The correlation is established by using an element from the query
in the subquery. In this example the correlation was established by the statement

VWHERE P. PARTNUM = O. PARTNUM

in which you compare P. PARTNUM from the table inside your subquery, to O. PARTNUM
from the table outside your query. Because O. PARTNUMcan have a different value for
every row, the correlated subquery is executed for each row in the query. In the next
example each row in the table ORDERS

INPUT/OUTPUT:
SELECT *
FROM ORDERS
ORDEREDON NAME PARTNUM QUANTI TY REMARKS
15- MAY- 1996 TRUE WHEEL 23 6 PAID
19- MAY- 1996 TRUE WHEEL 76 3 PAID
2- SEP-1996 TRUE WHEEL 10 1 PAID
30-JUN- 1996 TRUE WHEEL 42 8 PAID
30-JUN- 1996 BI KE SPEC 54 10 PAID
30- MAY- 1996 Bl KE SPEC 10 2 PAID
30- MAY- 1996 Bl KE SPEC 23 8 PAID
17-JAN-1996 Bl KE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
1-JUN- 1996 LE SHOPPE 10 3 PAID
1- JUN- 1996 AAA BI KE 10 1 PAID
1-JUL- 1996 AAA BI KE 76 4 PAI D
1-JUL- 1996 AAA BI KE 46 14 PAID
11-JUL-1996 JACKS BI KE 76 14 PAID

Is processed against the subquery criteria:

SELECT DESCRI PTI ON
FROM PART P
VWHERE P. PARTNUM = O. PARTNUM

ANALYSIS:

This operation returns the DESCRI PTI ON of every row in PART where P. PARTNUM =
O. PARTNUM These descriptions are then compared in the WHERE clause:

WHERE ' ROAD BI KE' =

Because each row is examined, the subquery in a correlated subquery can have more
than one value. However, don't try to return multiple columns or columns that don't
make sense in the context of the WHERE clause. The values returned still must match up
against the operation specified in the WHERE clause. For example, in the query you just
did, returning the PRI CE to compare with ROAD Bl KE would have the following result:

INPUT/OUTPUT:

SELECT *

FROM ORDERS O

VWHERE ' ROAD BI KE' =

(SELECT PRI CE

FROM PART P

VWHERE P. PARTNUM = O PARTNUM

conversion error fromstring "ROAD BI KE"

Here's another example of something not to do:

SELECT *

FROM ORDERS O

WHERE ' ROAD BI KE' =

(SELECT *

FROM PART P

WHERE P. PARTNUM = O. PARTNUM

ANALYSIS:

This SELECT caused a General Protection Fault on my Windows operating system. The
SQL engine simply can't correlate all the columns in PART with the operator =.

Correlated subqueries can also be used with the GROUP BY and HAVI NGclauses. The
following query uses a correlated subquery to find the average total order for a
particular part and then applies that average value to filter the total order grouped
by PARTNUM

INPUT/OUTPUT:

SELECT O PARTNUM SUM O. QUANTI TY*P. PRI CE), COUNT(PARTNUM
FROM ORDERS O, PART P

WHERE P. PARTNUM = O. PARTNUM
GROUP BY O. PARTNUM

HAVI NG SUM O. QUANTI TY*P. PRI CE) >
(SELECT AVE O1. QUANTI TY* P1. PRI CE)
FROM PART P1, ORDERS O1

WHERE P1. PARTNUM = Ol. PARTNUM
AND P1. PARTNUM = O. PARTNUM

PARTNUM SUM COUNT

10 8400. 00 4

23 4906. 30 2

76 19610.00 5
ANALYSIS:

The subquery does not just compute one

AVG(OL. QUANTI TY*P1. PRI CE)

Because of the correlation between the query and the subquery,
AND P1. PARTNUM = O. PARTNUM

this average is computed for every group of parts and then compared:

HAVI NG SUM O. QUANTI TY*P. PRI CE) >

TIP: When using correlated subqueries with GROUP BY and HAVI NG the
columns in the HAVI NGclause must exist in either the SELECT clause or the
GROUP BY clause. Otherwise, you get an error message along the lines of

I nval i d col unm ref er ence because the subquery is evoked for each
group, not each row. You cannot make a valid comparison to something that
Is not used in forming the group.

Using EXISTS, ANY, and ALL

The usage of the keywords EXI STS, ANY, and ALL is not intuitively obvious to the
casual observer. EXI STS takes a subquery as an argument and returns TRUE if the
subquery returns anything and FALSE if the result set is empty. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON

FROM ORDERS
WHERE EXI STS

(SELECT *

FROM ORDERS

WHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
Bl KE SPEC 30- JUN- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 17-JAN-1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996
AAA BI KE 1- JUN- 1996
AAA BI KE 1-JUL- 1996
AAA BI KE 1-JUL- 1996
JACKS BI KE 11-JUL-1996

ANALYSIS:

Not what you might expect. The subquery inside EXI STS is evaluated only once in this
uncorrelated example. Because the return from the subquery has at least one row,

EXI STS evaluates to TRUE and all the rows in the query are printed. If you change the
subqguery as shown next, you don't get back any results.

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE EXI STS

(SELECT *

FROM ORDERS

WHERE NAME =' MOSTLY HARMLESS')

ANALYSIS:

EXI STS evaluates to FALSE. The subguery does not generate a result set because
MOSTLY HARMLESS is not one of your names.

NOTE: Notice the use of SELECT * in the subquery inside the EXI STS.
EXI STS does not care how many columns are returned.

You could use EXI STS in this way to check on the existence of certain rows and
control the output of your query based on whether they exist.

If you use EXI STS in a correlated subquery, it is evaluated for every case implied by the
correlation you set up. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS O

WHERE EXI STS

(SELECT *

FROM CUSTOMER C

WHERE STATE =' NE'

AND C. NAME = O. NAME)

NAME ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
AAA BI KE 1- JUN- 1996
AAA BI KE 1-JUL- 1996
AAA BI KE 1-JUL- 1996

This slight modification of your first, uncorrelated query returns all the bike shops
from Nebraska that made orders. The following subquery is run for every row in the
query correlated on the CUSTOMER name and ORDERS name:

(SELECT *

FROM CUSTOMER C
WHERE STATE =' NE'
AND C. NAME = O. NAVE)

ANALYSIS:

EXI STSis TRUE for those rows that have corresponding names in CUSTOVER located in
NE. Otherwise, it returns FALSE.

Closely related to EXI STS are the keywords ANY, ALL, and SOVE. ANY and SOVE are
identical in function. An optimist would say this feature provides the user with a choice.
A pessimist would see this condition as one more complication. Look at this query:

INPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME = ANY

(SELECT NAME

FROM ORDERS
VWHERE NAME =' TRUE WHEEL')

OUTPUT:

NANVE ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:

ANY compared the output of the fol lowing subquery to each row in the query,
returning TRUE for each row of the query that has a result from the subquery.

(SELECT NAME
FROM ORDERS
VWHERE NAME =' TRUE WHEEL')

Replacing ANY with SOVE produces an identical result:
INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME = SOMVE

(SELECT NAME

FROM ORDERS

WHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:

You may have already noticed the similarity to | N. The same query using | Nis as
follows:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME | N

(SELECT NAME

FROM ORDERS

WHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:

As you can see, | Nreturns the same result as ANY and SOME. Has the world gone mad?
Not yet. Can | Ndo this?

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME > ANY

(SELECT NAME

FROM ORDERS

WHERE NAME =' JACKS BI KE')

NANVE ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996

The answer is no. | Nworks like multiple equals. ANY and SOMVE can be used with other
relational operators such as greater than or less than. Add this tool to your Kit.

ALL returns TRUE only if all the results of a subquery meet the condition. Oddly
enough, ALL is used most commonly as a double negative, as in this query:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME <> ALL

(SELECT NAME

FROM ORDERS

WHERE NAME =' JACKS BI KE')

NAME ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
Bl KE SPEC 30- JUN- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 17-JAN-1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996
AAA BI KE 1- JUN- 1996
AAA BI KE 1-JUL- 1996
AAA BI KE 1-JUL- 1996

ANALYSIS:

This statement returns everybody except JACKS Bl KE. <>ALL evaluates to TRUE only if
the result set does not contain what is on the left of the <>.

Summary

Today you performed dozens of exercises involving subqueries. You learned how to use
one of the most important parts of SQL. You also tackled one of the most difficult parts
of SQL: a correlated subquery. The correlated subguery creates a relationship between
the query and the subquery that is evaluated for every instance of that relationship.
Don't be intimidated by the length of the queries. You can easily examine them one
subquery at a time.

Q& A

Q In some cases SQL offers several ways to get the same result. Isn't this
flexibility confusing?

A No, not really. Having so many ways to achieve the same result enables you to
create some really neat statements. Flexibility is the virtue of SQL.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the

answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. In the section on nested subqueries, the sample subquery returned several
values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS Bl KE

Some of these are duplicates. Why aren't these duplicates in the final result set?

2. Are the following statements true or false?

The aggregate functions SUM COUNT, M N, MAX, and AVGall return multiple
values.

The maximum number of subqueries that can be nested is two.

Correlated subqueries are completely self-contained.

3. Will the following subqueries work using the ORDERS table and the PART
table?

INPUT/OUTPUT:

SQL> SELECT *

FROM PART;

PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TIRES 15. 25
23 MOUNTAI'N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

6 rows sel ect ed.

INPUT/OUTPUT:

SQL> SELECT *

FROM ORDERS;
ORDEREDON NAME PARTNUM QUANI TY REMARKS
15- MAY- 96 TRUE WHEEL 23 6 PAD
19- MAY- 96 TRUE WHEEL 76 3 PAID

2- SEP- 96 TRUE WHEEL 10 1 PAD

30- JUN- 96 Bl KE SPEC 54 10 PAID
30- MAY- 96 Bl KE SPEC 10 2 PAD
30- MAY- 96 Bl KE SPEC 23 8 PAID
17- JAN- 96 Bl KE SPEC 76 11 PAID
17- JAN- 96 LE SHOPPE 76 5 PAID
1- JUN- 96 LE SHOPPE 10 3 PAID
1- JUN- 96 AAA BI KE 10 1 PAD
1- JUN- 96 AAA BI KE 76 4 PAID
1- JUN- 96 AAA BI KE 46 14 PAID
11-JUL- 96 JACKS Bl KE 76 14 PAID

13 rows sel ect ed.

a. SQL> SELECT * FROM ORDERS
WHERE PARTNUM =
SELECT PARTNUM FROM PART
WHERE DESCRI PTI ON = ' TRUE WHEEL' :

b. SQL> SELECT PARTNUM

FROM ORDERS

VWHERE PARTNUM =

(SELECT * FROM PART

VWHERE DESCRI PTI ON = ' LE SHOPPE');

c. SQL> SELECT NAME, PARTNUM

FROM ORDERS

VWHERE EXI STS

(SELECT * FROM ORDERS
VWHERE NAME = ' TRUE WHEEL');

Exercise

Write a query using the table ORDERS to return all the NAMEs and ORDEREDON
dates for every store that comes after JACKS BI KE in the alphabet.

(= MNextChapter

{ 4= Previous Cha pter-'

© Copyright, Macmil lan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 1 1n Review

After setting the stage with a quick survey of database history and theory, Week 1
moved right into the heart of SQL with the SELECT statement. The fol lowing summary
of the SELECT statement syntax includes cross-references to the days on which the
particular aspect was covered:

. SELECT [DI STINCT | ALL] (Day 2)--Columns (Day 1), Functions (Day 4)
. FROM(Day 2)--Tables or Views (Day 1), Aggregate Functions (Day 4)

. VHERE (Day 5)--Condition (Day 3), Join (Day 6), Subquery (Day 7)

. GROUP BY (Day 5)--Columns (Day 3)

. HAVI NG (Day 5)--Aggregate Function (Day 4)

« UNI ON | | NTERSECT (Day 3)--(Placed between two SELECT statements)
. ORDER BY (Day 5)--Columns (Day 1)

If you build a million queries in your programming career, more than 80 percent of them
will begin with SELECT. The other 20 percent will fall into the categories covered in
Week 2.

Preview

The new skills you learn in Week 2 cover database administration. During Week 2 you

will learn how to
. Create and destroy tables

. Assign permissions to your friends and prevent your enemies from even looking at
your data

. Update and delete data in tables

| ¢ Previous Chapter (& MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 2 At A Glance
What's Covered This Week

Week 1 covered the basic SQL query using the SELECT statement. Beginning with the
simplest SELECT statement, you learned how to retrieve data from the database. Then
you moved on to the SQL functions, which are useful in converting to money or date
formats, for example. You quickly learned that you can retrieve data from a database
in many ways. Clauses such as WHERE, ORDER BY, and GROUP BY enable you to tailor a
guery to return a specific set of records. You can use a join to return a set of data from
a group of tables. Subqueries are especial ly useful when you need to execute several
gueries, each of which depends on data returned from an earlier query.

Week 2 moves on to the more advanced uses of SQL.:

. Day 8 shows you how to modify data within a database. You may have been
dreading the idea of typing in all your data, but manually entering data is not
always necessary. Modern database systems often supply useful tools for
importing and exporting data from various database formats. In addition, SQL
provides several useful statements for manipulating data within a database.

. Day 9 teaches you how to create and maintain tables within a database. You also
learn how to create a database and manage that database's disk space.

. Day 10 explains how to create, maintain, and use views and indexes within a
database.

. Day 11 covers transaction control. Transactions commit and roll back changes to
a database, and the use of transactions is essential in online transaction

processing (OLTP) applications.

Day 12 focuses on database security. A knowledge of your database's security
capabilities is essential to manage a database effectively.

Day 13 describes how to use SQL within larger application programs. Embedded
SQL is often used to execute SQL within a host language such as C or COBOL. In
addition, the open database connectivity (ODBC) standard enables application
programmers to write code that can use database drivers to connect with many
database management systems. Day 13 also covers various advanced SQL topics.

Day 14 discusses dynamic uses of SQL and provides numerous examples that
illustrate how SQL is used in applications.

(& Previous Chapter JR.-> Mext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 8 -
Manipulating Data

Objectives

Today we discuss data manipulation. By the end of the day, you should understand:
. How to manipulate data using the | NSERT, UPDATE, and DELETE commands
. The importance of using the WHERE clause when you are manipulating data

. The basics of importing and exporting data from foreign data sources

Introduction to Data M anipulation Statements

Up to this point you have learned how to retrieve data from a database using every
selection criterion imaginable. After this data is retrieved, you can use it in an
application program or edit it. Week 1 focused on retrieving data. However, you may
have wondered how to enter data into the database in the first place. You may also be
wondering what to do with data that has been edited. Today we discuss three SQL
statements that enable you to manipulate the data within a database's table. The three

statements are as fol lows:

. The | NSERT statement

. The UPDATE statement

. The DELETE statement

You may have used a PC-based product such as Access, dBASE 1V, or FoxPro to enter your
data in the past. These products come packaged with excellent tools to enter, edit, and
delete records from databases. One reason that SQL provides data manipulation
statements is that it is primarily used within application programs that enable the user
to edit the data using the application's own tools. The SQL programmer needs to be able
to return the data to the database using SQL. In addition, most large-scale database
systems are not designed with the database designer or programmer in mind. Because
these systems are designed to be used in high-volume, multiuser environments, the
primary design emphasis is placed on the query optimizer and data retrieval engines.

Most commercial relational database systems also provide tools for importing and
exporting data. This data is traditionally stored in a delimited text file format. Often a
format file is stored that contains information about the table being imported. Tools
such as Oracle's SQL*Loader, SQL Server's bcp (bulk copy), and Microsoft Access
Import/Export are covered at the end of the day.

NOTE: Today's examples were generated with Personal Oracle7. Please
note the minor differences in the appearance of commands and the way data
Is displayed in the various implementations.

The INSERT Statement

The | NSERT statement enables you to enter data into the database. It can be broken
down into two statements:

| NSERT. . . VALUES

and

I NSERT. . . SELECT

The INSERT..VALUES Statement

The | NSERT. . . VALUES statement enters data into a table one record at a time. It is
useful for small operations that deal with just a few records. The syntax of this
statement is as fol lows:

SYNTAX:

| NSERT | NTO t abl e_nane

(coll, col2...)
VALUES(val uel, value2...)

The basic format of the | NSERT. . . VALUES statement adds a record to a table using the
columns you give it and the corresponding values you instruct it to add. You must
follow three rules when inserting data into a table with the | NSERT. . . VALUES
statement:

. The values used must be the same data type as the fields they are being added to.

. The data's size must be within the column's size. For instance, you cannot add an
80-character string to a 40-character column.

. The data's location in the VALUES list must correspond to the location in the
column list of the column it is being added to. (That is, the first value must be
entered into the first column, the second value into the second column, and so
on.)

Example 8.1

Assume you have a COLLECTI ON table that lists all the important stuff you have
collected. You can display the table's contents by writing

INPUT:

SQL> SELECT * FROM COLLECTI ON;

which would yield this:

OUTPUT:

| TEM WORTH REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET

If you wanted to add a new record to this table, you would write
INPUTOUTPUT:

SQ.> | NSERT | NTO COLLECTI ON
2 (ITEM WORTH, REMARKS)
3 VALUES(' SUPERVANS CAPE', 250.00, 'TUGGED ON IT");

1 row created.

You can execute a simple SELECT statement to verify the insertion:
INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON;

| TEM WORTH REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

ANALYSIS:

The | NSERT statement does not require column names. If the column names are not
entered, SQL lines up the values with their corresponding column numbers. In other
words, SQL inserts the first value into the first column, the second value into the
second column, and so on.

Example 8.2

The following statement inserts the values from Example 8.1 into the table:
INPUT:

SQL> I NSERT | NTO COLLECTI ON VALUES
2 ('STRING , 1000.00,"' SOVE DAY | T WLL BE VALUABLE');

1 row created.

ANALYSIS:

By issuing the same SELECT statement as you did in Example 8.1, you can verify that the
insertion worked as expected:

INPUT:
SQ.> SELECT * FROM COLLECTI ON;
OUTPUT:

| TEM WORTH REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES

MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

STRI NG 1000 SOVE DAY I T WLL BE VALUABLE

6 rows sel ected.

Inserting NULL Values

On Day 9, "Creating and Maintaining Tables," you learn how to create tables using the
SQ. CREATE TABLE statement. For now, all you need to know is that when a column is
created, it can have several different limitations placed upon it. One of these
limitations is that the column should (or should not) be al lowed to contain NULL
values. A NULL value means that the value is empty. It is neither a zero, in the case of
an integer, nor a space, in the case of a string. Instead, no data at all exists for that
record's column. If a column is defined as NOT NULL (that column is not allowed to
contain a NULL value), you must insert a value for that column when using the | NSERT
statement. The | NSERT is canceled if this rule is broken, and you should receive a
descriptive error message concerning your error.

WARNING: You could insert spaces for a null column, but these spaces will
be treated as a value. NULL simply means nothing is there.

INPUT:

SQ.> insert into collection val ues
2 ('SPORES M LDEW FUNGUS' , 50.00, ' ");

OUTPUT:
1 row inserted.

ANALYSIS:

Using' ' instead of NULL inserted a space in the col | ecti on table. You then can select
the space.

INPUT/OUTPUT:

SQ.> select * fromcollection
2 where remarks ="

| TEM WORTH REMARKS

SPCORES M LDEW FUNGUS 50. 00

1 row sel ect ed.

ANALYSIS:

The resulting answer comes back as if a NULL is there. With the output of character
fields, it is impossible to tell the difference between a null value and a mere space.

Assume the column REMARKS in the preceding table has been defined as NOT NULL.
Typing

INPUT/OUTPUT:

SQL> I NSERT | NTO COLLECTI ON
2 VALUES(' SPORES M LDEW FUNGUS' , 50. 00, NULL) ;

produces the following error:

I NSERT | NTO COLLECTI ON
*
ERROR at |ine 1:
ORA- 01400: mandatory (NOT NULL) columm is mssing or NULL during
i nsert

NOTE: Notice the syntax. Number data types do not require quotes; NULL
does not require quotes; character data types do require quotes.

I nserting Unique Values

Many database management systems also allow you to create a UNI QUE column
attribute. This attribute means that within the current table, the values within this
column must be completely unique and cannot appear more than once. This limitation
can cause problems when inserting or updating values into an existing table, as the
following exchange demonstrates:

INPUT:
SQL> | NSERT | NTO COLLECTI ON VALUES(' STRING , 50, 'MORE STRING);
OUTPUT:

| NSERT | NTO COLLECTI ON VALUES(' STRING , 50, ' MORE STRI NG)

*

ERROR at |ine 1:

ORA- 00001: uni que constrai nt (PERKINS. UNQ COLLECTION | TEM vi ol at ed

ANALYSIS:

In this example you tried to insert another | TEMcalled STRI NGinto the COLLECTI ON
table. Because this table was created with | TEMas a unique value, it returned the
appropriate error. ANSI SQL does not offer a solution to this problem, but several
commercial implementations include extensions that would allow you to use something
like the following:

| F NOT EXI STS (SELECT * FROM COLLECTI ON WHERE NAME = ' STRI NG

| NSERT | NTO COLLECTI ON VALUES(' STRING , 50, ' MORE STRING)
This particular example is supported in the Sybase system.

A properly normalized table should have a unique, or key, field. This field is useful for
joining data between tables, and it often improves the speed of your queries when using
indexes. (See Day 10, "Creating Views and Indexes.")

NOTE: Here's an | NSERT statement that inserts a new employee into a
table:

SQL> insert into enpl oyee_ tbl val ues
(' 300500177, "SMTHH , "JOHN);

1 row inserted.

After hitting Enter, you noticed that you misspelled SM TH. Not to fret!
All you have to do is issue the ROLLBACK command, and the row will not be
inserted. See Day 11, "Controlling Transactions,"” for more on the ROLLBACK
command.

TheINSERT..SELECT Statement

The | NSERT. . . VALUES statement is useful when adding single records to a database
table, but it obviously has limitations. Would you like to use it to add 25,000 records to
a table? In situations like this, the | NSERT. . . SELECT statement is much more
beneficial. It enables the programmer to copy information from a table or group of
tables into another table. You will want to use this statement in several situations.
Lookup tables are often created for performance gains. Lookup tables can contain data
that is spread out across multiple tables in multiple databases. Because multiple-table
joins are slower to process than simple queries, it is much quicker to execute a SELECT

guery against a lookup table than to execute a long, complicated joined query. Lookup
tables are often stored on the client machines in client/server environments to reduce
network traffic.

Many database systems also support temporary tables. (See Day 14, "Dynamic Uses of
SQL.") Temporary tables exist for the life of your database connection and are deleted
when your connection is terminated. The | NSERT. . . SELECT statement can take the
output of a SELECT statement and insert these values into a temporary table.

Here is an example:
INPUT:

SQ.> insert into tnp_tbl
2 select * fromtable;

OUTPUT:
19,999 rows inserted.

ANALYSIS:

You are selecting all the rows that are int abl e and inserting themintot np_t bl .

NOTE: Not all database management systems support temporary tables.
Check the documentation for the specific system you are using to determine
if this feature is supported. Also, see Day 14 for a more detailed treatment
of this topic.

The syntax of the | NSERT. . . SELECT statement is as fol lows:
SYNTAX:

| NSERT | NTO t abl e_nane
(coll1, col2...)

SELECT col 1, col2...
FROM t abl enane

WHERE search_condi ti on

Essentially, the output of a standard SELECT query is then input into a database table.
The same rules that applied to the | NSERT. . . VALUES statement apply to the

| NSERT. . . SELECT statement. To copy the contents of the COLLECTI ONtable into a
new table called | NVENTORY, execute the set of statements in Example 8.3.

Example 8.3

This example creates the new table | NVENTORY.
INPUT:

SQL> CREATE TABLE | NVENTORY
2 (I TEM CHAR(20),
3 COST NUMBER
4 ROOM CHAR(20),
5 REMARKS CHAR(40));

OUTPUT:

Tabl e creat ed.
The following | NSERT fills the new | NVENTORY table with data from COLLECTI ON.

INPUT/OUTPUT:

SQL> | NSERT I NTO | NVENTORY (I TEM COST, REMARKS)
2 SELECT | TEM WORTH, REMARKS
3 FROM COLLECTI ON;

6 rows created.
You can verify that the | NSERT works with this SELECT statement:

INPUT/OUTPUT:

SQ.> SELECT * FROM | NVENTORY;

| TEM COST ROOM REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPCKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

STRI NG 1000 SOVE DAY | T WLL BE VALUABLE

6 rows sel ected.

NOTE: The data appears to be in the table; however, the transaction is not
finalized until a COW T is issued. The transaction can be committed either
by issuing the COVM T command or by simply exiting. See Day 11 for more on
the COMM T command.

ANALYSIS:

You have successfully, and somewhat painlessly, moved the data from the COLLECTI ON
table to the new | NVENTORY table!

The | NSERT. . . SELECT statement requires you to follow several new rules:

. The SELECT statement cannot select rows from the table that is being inserted
into.

« The number of columns in the | NSERT | NTOstatement must equal the number of
columns returned from the SELECT statement.

. The data types of the columns in the | NSERT | NTOstatement must be the same as
the data types of the columns returned from the SELECT statement.

Another use of the | NSERT. . . SELECT statement is to back up a table that you are
going to drop, truncate for repopulation, or rebuild. The process requires you to create
a temporary table and insert data that is contained in your original table into the
temporary table by selecting everything from the original table. For example:

SQ.> insert into copy_table
2 select * fromoriginal _table;

Now you can make changes to the original table with a clear conscience.

NOTE: Later today you learn how to input data into a table using data
from another database format. Nearly all businesses use a variety of
database formats to store data for their organizations. The applications
programmer is often expected to convert these formats, and you will learn
some common methods for doing just that.

The UPDATE Statement

The purpose of the UPDATE statement is to change the values of existing records. The
syntax is

SYNTAX:

UPDATE t abl e_nane
SET col umnanel = val uel

[, columanme2 = value2]...
WHERE search_condition

This statement checks the WHERE clause first. For all records in the given table in
which the WHERE clause evaluates to TRUE, the corresponding value is updated.

Example 8.4

This example il lustrates the use of the UPDATE statement:
INPUT:

SQ.> UPDATE COLLECTI ON
2 SET WORTH = 900
3 WHERE I TEM = ' STRI NG ;

OUTPUT:

1 row updat ed.

To confirm the change, the query
INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON
2 VWHERE | TEM = ' STRI NG ;

yields
| TEM WORTH REMARKS
STRI NG 900 SOME DAY | T WLL BE VALUABLE

Here is a multiple-column update:
INPUT/OUTPUT:

SQ.> update collection
2 set worth = 900, item = ball
3 where item="'STRI NG ;

1 row updat ed.

NOTE: Your implementation might use a different syntax for multiple-row
updates.

NOTE: Notice in the set that 900 does not have quotes, because itis a
numeric data type. On the other hand, St ri ng is a character data type,
which requires the quotes.

Example 8.5

I the WHERE clause is omitted, every record in the COLLECTI ON table is updated with
the value given.

INPUT/OUTPUT:

SQL> UPDATE COLLECTI ON
2 SET WORTH = 555;

6 rows updat ed.

Performing a SELECT query shows that every record in the database was updated with
that value:

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON;

| TEM WORTH REMARKS

NBA ALL STAR CARDS 555 SOME STI LL I N Bl KE SPOKES
MALI BU BARBI E 555 TAN NEEDS WORK

STAR WARS GLASS 555 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 555 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 555 TUGGED ON I T

STRI NG 555 SOME DAY IT WLL BE VALUABLE

6 rows sel ected.

You, of course, should check whether the column you are updating allows unique
values only.

WARNING: If you omit the WHERE clause from the UPDATE statement, all
records in the given table are updated.

Some database systems provide an extension to the standard UPDATE syntax. SQL
Server's Transact-SQL language, for instance, enables programmers to update the

contents of a table based on the contents of several other tables by using a FROM
clause. The extended syntax looks like this:

SYNTAX:

UPDATE t abl e_nane

SET col umnanel = val uel
[, columane2 = val ue2]..
FROM tabl e_|i st

WHERE search_condition

Example 8.6

Here's an example of the extension:
INPUT:

SQL> UPDATE COLLECTI ON
2 SET WORTH = WORTH * 0. 005;

that changes the table to this:
INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON

| TEM WORTH REMARKS

NBA ALL STAR CARDS 775 SOME STILL I'N Bl KE SPOKES
VALI BU BARBI E 775 TAN NEEDS WORK

STAR WARS GLASS 775 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 775 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 775 TUGGED ON I T

STRI NG 775 SOMVE DAY IT WLL BE VALUABLE

6 rows sel ected.

ANALYSIS:

This syntax is useful when the contents of one table need to be updated fol lowing the
manipulation of the contents of several other tables. Keep in mind that this syntax is
nonstandard and that you need to consult the documentation for your particular
database management system before you use it.

The UPDATE statement can also update columns based on the result of an arithmetic
expression. When using this technique, remember the requirement that the data type of
the result of the expression must be the same as the data type of the field that is being
modified. Also, the size of the value must fit within the size of the field that is being

modified.

Two problems can result from the use of calculated values: truncation and overflow.
Truncation results when the database system converts a fractional number to an integer,
for instance. Overflow results when the resulting value is larger than the capacity of
the modified column, which will cause an error to be returned by your database system.

NOTE: Some database systems handle the overflow problem for you.
Oracle7 converts the number to exponential notation and presents the
number that way. You should keep this potential error in mind when using
number data types.

TIP: If you update a column(s) and notice an error after you run the
update, issue the ROLLBACK command (as you would for an incorrect insert)
to void the update. See Day 11 for more on the ROLLBACK command.

The DELETE Statement

In addition to adding data to a database, you will also need to delete data from a
database. The syntax for the DELETE statement is

SYNTAX:

DELETE FROM t abl enane
VWHERE condi ti on

The first thing you will probably notice about the DELETE command is that it doesn't
have a prompt. Users are accustomed to being prompted for assurance when, for instance,
a directory or file is deleted at the operating system level. Are you sure? (Y/N) isa
common question asked before the operation is performed. Using SQL, when you instruct
the DBMS to delete a group of records from a table, it obeys your command without
asking. That is, when you tell SQL to delete a group of records, it will really do it!

On Day 11 you will learn about transaction control. Transactions are database
operations that enable programmers to either COVW T or ROLLBACK changes to the
database. These operations are very useful in online transaction-processing applications
in which you want to execute a batch of modifications to the database in one logical
execution. Data integrity problems will occur if operations are performed while other
users are modifying the data at the same time. For now, assume that no transactions are
being undertaken.

NOTE: Some implementations, for example, Oracle, automatically issue a
COW T command when you exit SQL.

Depending on the use of the DELETE statement's WHERE clause, SQL can do the
following:

. Deletesingle rows
. Delete multiple rows
. Delete all rows
. Delete no rows
Here are several points to remember when using the DELETE statement:

. The DELETE statement cannot delete an individual field's values (use UPDATE
instead). The DELETE statement deletes entire records from a single table.

. Like I NSERT and UPDATE, deleting records from one table can cause referential
integrity problems within other tables. Keep this potential problem area in mind
when modifying data within a database.

. Using the DELETE statement deletes only records, not the table itself. Use the
DROP TABLE statement (see Day 9) to remove an entire table.

Example 8.7

This example shows you how to delete all the records from COLLECTI ONwhere WORTH is
less than 275.

INPUT:

SQ.> DELETE FROM COLLECTI ON
2 WHERE WORTH < 275;

4 rows del et ed.

The result is a table that looks like this:
INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON

| TEM WORTH REMARKS

NBA ALL STAR CARDS 300 SOME STI LL I'N Bl KE SPOKES

STRI NG 1000 SOVE DAY I T WLL BE VALUABLE

WARNING: Like the UPDATE statement, if you omit a WHERE clause from
the DELETE statement, all rows in that particular table will be deleted.

Example 8.8 uses all three data manipulation statements to perform a set of database
operations.

Example 8.8

This example inserts some new rows into the COLLECTI ON table you used earlier today.
INPUT:

SQ.> | NSERT | NTO COLLECTI ON
2 VALUES(' CHI A PET', 5,' \EDDI NG d FT");

OUTPUT:
1 row created.
INPUT:

SQL> I NSERT | NTO COLLECTI ON
2 VALUES(' TRS MODEL 111", 50, 'FIRST COWUTER);

OUTPUT:

1 row created.

Now create a new table and copy this data to it:
INPUT/OUTPUT:

SQL> CREATE TABLE TEMP
2 (NAVE CHAR(20),
3 VALUE NUMBER
4 REMARKS CHAR(40));

Tabl e creat ed.

INPUT/OUTPUT:

SQL> | NSERT | NTO TEMP(NAME, VALUE, REMARKS)
2 SELECT I TEM WORTH, REMARKS
3 FROM COLLECTI ON;

4 rows created.
INPUT/OUTPUT:

SQL> SELECT * FROM TEMP;

NANVE VALUE REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES
STRI NG 1000 SOVE DAY | T WLL BE VALUABLE
CH A PET 5 WEDDI NG G FT

TRS MODEL I11 50 FI RST COMPUTER

Now change some values:
INPUT/OUTPUT:

SQ.> UPDATE TEMP
2 SET VALUE = 100
3 VWHERE NAME = 'TRS MODEL 111"

1 row updat ed.
INPUT/OUTPUT:

SQL> UPDATE TEMP
2 SET VALUE = 8
3 WHERE NAME = 'CH A PET';

1 row updat ed.
INPUT/OUTPUT:

SQL> SELECT * FROM TEMP,

NAME VALUE REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES
STRI NG 1000 SOVE DAY | T WLL BE VALUABLE
CH A PET 8 WEDDI NG G FT

TRS MODEL I11 100 FI RST COVPUTER

And update these values back to the original table:

INPUT:

| NSERT COLLECTI ON
SELECT * FROM TEMP;
DROP TABLE TEMP;

ANALYSIS:

The DROP TABLE and CREATE TABLE statements are discussed in greater detail on Day
9. For now, these statements basically do what their names suggest. CREATE TABLE
builds a new table with the format you give it, and DROP TABLE deletes the table. Keep
in mind that DROP TABLE permanently removes a table, whereas DELETE FROM

<Tabl eName> removes only the records from a table.

To check what you have done, select out the records from the COLLECTI ON table. You
will see that the changes you made now exist in the COLLECTI ON table.

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTI ON;

NAME VALUE REMARKS

NBA ALL STAR CARDS 300 SOME STI LL I N Bl KE SPOKES
STRI NG 1000 SOVE DAY I T WLL BE VALUABLE
CH A PET 8 VEEDDI NG G FT

TRS MODEL 111 100 FI RST COWPUTER

ANALYSIS:

The previous example used all three data manipulation commands-- NSERT, UPDATE, and
DELETE--to perform a set of operations on a table. The DELETE statement is the easiest
of the three to use.

WARNING: Always keep in mind that any modifications can affect the
referential integrity of your database. Think through all your database
editing steps to make sure that you have updated all tables correctly.

|mporting and Exporting Data from Foreign Sour ces

The | NSERT, UPDATE, and DELETE statements are extremely useful from within a
database program. They are used with the SELECT statement to provide the foundation
for all other database operations you will perform. However, SQL as a language does
not have a way to import or export of data from foreign data sources. For instance, your

office may have been using a dBASE application for several years now that has
outgrown itself. Now your manager wants to convert this application to a client/server
application using the Oracle RDBMS. Unfortunately for you, these dBASE files contain
thousands of records that must be converted to an Oracle database. Obviously, the

| NSERT, UPDATE, and DELETE commands will help you after your Oracle database has
been populated, but you would rather quit than retype 300,000 records. Fortunately,
Oracle and other manufacturers provide tools that will assist you in this task.

Nearly all database systems al low you to import and export data using ASCII text file
formats. Although the SQL language does not include this feature, SQL will not do
you (or your boss) much good when you have an empty database. We will examine the
import/export tools available in the fol lowing products: Microsoft Access, Microsoft
and Sybase SQL Server, and Personal Oracle7.

M icrosoft Access

Microsoft Access is a PC-only database product that contains many of the features of a
relational database management system. Access also includes powerful reporting tools,
a macro language similar to Visual Basic, and the capability to import and export data
from various database and text file formats. This section examines this last feature,
particularly the capability to export to delimited text files. Delimited means that each
field is separated, or delimited, by some special character. This character is often a
comma, a quotation mark, or a space.

Access al lows you to import and export various database formats, including dBASE,
FoxPro, and SQL Database. The SQL Database option is actually an ODBC data source
connection. (Microsoft ODBC is covered on Day 13, "Advanced SQL Topics.") For this
discussion, you want to select the Export option and then choose the Text (Fixed Width)
option.

After opening an Access database (with the File | Open), select Export. A Destination
dialog box (for Exporting) is displayed. Select the Text (Fixed Width) option. This option
allows you to output your Access tables to text files in which each data type is a fixed
width. For example, a character data field of length 30 will be output to the file as a
field 30 characters long. I the field's data takes up less space than 30 characters, it
will be padded with spaces. Eventually, you will be asked to set up the export file
format. Figure 8.1 shows the Import/Export Setup dialog box.

Figure 8.1.
The Import/Export Setup dialog box.

Notice that in this dialog box you can select the Text Delimiter and the Field Separator
for your export file. As a final step, save the specification for use later. This
specification is stored internal ly within the database.

Microsoft and Sybase SQL Server

Microsoft and Sybase have jointly developed a powerful database system that is very
popular in client/server application development. The name of this system is SQL Server.
Microsoft has agreed to develop versions of the RDBMS for some platforms, and Sybase
has developed its version for all the other platforms (usually the larger ones).
Although the arrangement has changed somewhat in recent years, we mention this
agreement here to help you avoid confusion when you begin examining the various
database systems available on the market today.

SQL Server provides file import/export capabilities with the bcp tool. bep is short for
"bulk copy.” The basic concept behind bcp is the same as that behind Microsoft Access.
Unfortunately, the bcp tool requires you to issue commands from the operating system
command prompt, instead of through dialog boxes or windows.

Bcp imports and exports fixed-width text files. It is possible to export a file using the
Microsoft Access method described earlier and then import that same file directly into
an SQL Server table using bcp. bcp uses format files (usually with an . FMI extension) to
store the import specification. This specification tells bcp the column names, field
widths, and field delimiters. You can run bcp from within an SQL database build script
to completely import data after the database has been built.

Per sonal Oracle7

Personal Oracle7 allows you to import and export data from ASCII text files containing
delimited or fixed-length records. The tool you use is SQL*Loader. This graphical tool
uses a control file (with the . CTL extension). This file is similar to SQL Server's format
(FMT) file. The information contained in this file tells SQL*Loader what it needs to
know to load the data from the file.

The SQL*Loader dialog box appears in Figure 8.2.

Figure 8.2.
The SQL*Loader dialog box.

Summary

SQL provides three statements that you can use to manipulate data within a database.

The | NSERT statement has two variations. The | NSERT. . . VALUES statement inserts a
set of values into one record. The | NSERT. . . SELECT statement is used in combination
with a SELECT statement to insert multiple records into a table based on the contents
of one or more tables. The SELECT statement can join multiple tables, and the results

of this join can be added to another table.

The UPDATE statement changes the values of one or more columns based on some
condition. This updated value can also be the result of an expression or calculation.

The DELETE statement is the simplest of the three statements. It deletes all rows from a
table based on the result of an optional WHERE clause. If the WHERE clause is omitted,
all records from the table are deleted.

Modern database systems supply various tools for data manipulation. Some of these
tools enable developers to import or export data from foreign sources. This feature is
particularly useful when a database is upsized or downsized to a different system.
Microsoft Access, Microsoft and Sybase SQL Server, and Personal Oracle7 include many
options that support the migration of data between systems.

Q& A

Q Does SQL have a statement for file import/export operations?

A No. Import and export are implementation-specific operations. In other words,
the ANSI committee allows individual manufacturers to create whatever
features or enhancements they feel are necessary.

Q Can | copy data from a table into itself using the INSERT command? | would
like to make duplicate copies of all the existing records and change the
value of one field.

A No, you cannot insert data into the same table that you selected from.
However, you can select the original data into a temporary table. (True
temporary tables are discussed on Day 14.) Then modify the data in this temporary
table and select back into the original table. Make sure that you watch out for
unique fields you may have already created. A unique field means that the
particular field must contain a unique value for each row of data that exists in
its table.

Q You have stressed using caution when issuing INSERT, UPDATE, and DELETE
commands, but simple fixes seem to be available to correct whatever | did
wrong. Is that a fair statement?

A Yes. For example, a simple way to fix a misspelled name is to issue a ROLLBACK
command and redo the insert. Another fix would be to do an update to fix the
name. Or you could delete the row and redo the insert with the corrected
spelling of the name.

But suppose you inserted a million rows into a table and didn't notice that you
had misspelled a name when you issued the COMM T command. A few weeks later,
someone notices some bad data. You have had two weeks' worth of database
activity. You would more than likely have to issue individual updates to make
individual corrections, instead of making any type of global change. In most cases
you probably will not know what to change. You may have to restore the
database.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. What is wrong with the fol lowing statement?

DELETE COLLECTI ON,;

2. What is wrong with the following statement?

| NSERT | NTO COLLECTI ON
SELECT * FROM TABLE_2

3. What is wrong with the following statement?

UPDATE COLLECTI ON (" HONUS WAGNER CARD',
25000, "FOUND I T");

4. What would happen if you issued the fol lowing statement?

SQL> DELETE * FROM COLLECTI ON;

5. What would happen if you issued the fol lowing statement?

SQL> DELETE FROM COLLECTI ON;

6. What would happen if you issued the fol lowing statement?

SQ.> UPDATE COLLECTI ON
SET WORTH = 555
SET REMARKS = ' UP FROM 525';

7. Will the following SQL statement work?

SQ> | NSERT | NTO COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

8. Will the following SQL statement work?

SQL> UPDATE COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

Exercises

1. Try inserting values with incorrect data types into a table. Note the errors and
then insert values with correct data types into the same table.

2. Using your database system, try exporting a table (or an entire database) to
some other format. Then import the data back into your database. Familiarize
yourself with this capability. Also, export the tables to another database format
if your DBMS supports this feature. Then use the other system to open these files
and examine them.

(e Previous Chapter JRC> Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 9 -
Creating and Maintaining Tables

Objectives
Today you learn about creating databases. Day 9 covers the CREATE DATABASE,
CREATE TABLE, ALTER TABLE, DROP TABLE, and DROP DATABASE statements, which
are collectively known as data definition statements. (In contrast, the SELECT,
UPDATE, | NSERT, and DELETE statements are often described as data manipulation
statements.) By the end of the day, you will understand and be able to do the
following:

. Create key fields

. Create a database with its associated tables

. Create, alter, and drop a table

. Add data to the database

. Modify the data in a database

. Drop databases

You now know much of the SQL vocabulary and have examined the SQL query in some
detail, beginning with its basic syntax. On Day 2, "Introduction to the Query: The
SELECT Statement,” you learned how to select data from the database. On Day 8,

"Manipulating Data,"” you learned how to insert, update, and delete data from the
database. Now, nine days into the learning process, you probably have been wondering
just where these databases come from. For simplicity's sake, we have been ignoring the
process of creating databases and tables. We have assumed that these data objects
existed currently on your system. Today you finally create these objects.

The syntax of the CREATE statements can range from the extremely simple to the
complex, depending on the options your database management system (DBMS) supports
and how detailed you want to be when building a database.

NOTE: The examples used today were generated using Personal Oracle7.
Please see the documentation for your specific SQL implementation for any
minor differences in syntax.

The CREATE DATABASE Statement

The first data management step in any database project is to create the database. This
task can range from the elementary to the complicated, depending on your needs and
the database management system you have chosen. Many modern systems (including
Personal Oracle7) include graphical tools that enable you to completely build the
database with the click of a mouse button. This time-saving feature is certainly helpful,
but you should understand the SQL statements that execute in response to the mouse
clicks.

Through personal experience, we have learned the importance of creating a good SQL
install script. This script file contains the necessary SQL code to completely rebuild a
database or databases; the script often includes database objects such as indexes, stored
procedures, and triggers. You will see the value of this script during development as
you continual ly make changes to the underlying database and on occasion want to
completely rebuild the database with all the latest changes. Using the graphical tools
each time you need to perform a rebuild can become extremely time-consuming. In
addition, knowing the SQL syntax for this procedure enables you to apply your
knowledge to other database systems.

The syntax for the typical CREATE DATABASE statement looks like this:
SYNTAX:

CREATE DATABASE dat abase name

Because the syntax varies so widely from system to system, we will not expand on the
CREATE DATABASE statement's syntax. Many systems do not even support an SQL

CREATE DATABASE command. However, all the popular, more powerful, relational
database management systems (RDBMSs) do provide it. Instead of focusing on its syntax,
we will spend some time discussing the options to consider when creating a database.

CREATE DATABASE Options

The syntax for the CREATE DATABASE statement can vary widely. Many SQL texts skip
over the CREATE DATABASE statement and move directly on to the CREATE TABLE
statement. Because you must create a database before you can build a table, this section
focuses on some of the concepts a developer must consider when building a database. The
first consideration is your level of permission. If you are using a relational database
management system (RDBMS) that supports user permissions, you must make sure that
either you have system administrator-level permission settings or the system
administrator has granted you CREATE DATABASE permission. Refer to your RDBMS
documentation for more information.

Most RDBMSs also allow you to specify a default database size, usually in terms of
hard disk space (such as megabytes). You will need to understand how your database
system stores and locates data on the disk to accurately estimate the size you need. The
responsibility for managing this space falls primarily to system administrators, and
possibly at your location a database administrator will build you a test database.

Don't let the CREATE DATABASE statement intimidate you. At its simplest, you can
create a database named PAYMENTS with the following statement:

SYNTAX:

SQL> CREATE DATABASE PAYMENTS;

NOTE: Again, be sure to consult your database management system's
documentation to learn the specifics of building a database, as the CREATE
DATABASE statement can and does vary for the different implementations.
Each implementation also has some unique options.

Database Design

Designing a database properly is extremely important to the success of your application.
The introductory material on Day 1, "Introduction to SQL," touched on the topics of
relational database theory and database normalization.

Normalization is the process of breaking your data into separate components to reduce the
repetition of data. Each level of normalization reduces the repetition of data.

Normalizing your data can be an extremely complex process, and numerous database
design tools enable you to plan this process in a logical fashion.

Many factors can influence the design of your database, including the following:
. Security
. Disk space available
. Speed of database searches and retrievals
. Speed of database updates
. Speed of multiple-table joins to retrieve data
. RDBMS support for temporary tables

Disk space is always an important factor. Although you may not think that disk space is
a major concern in an age of multigigabyte storage, remember that the bigger your
database is, the longer it takes to retrieve records. If you have done a poor job of
designing your table structure, chances are that you have needlessly repeated much of
your data.

Often the opposite problem can occur. You may have sought to completely normalize
your tables' design with the database and in doing so created many tables. Although
you may have approached database-design nirvana, any query operations done against
this database may take a very long time to execute. Databases designed in this manner
are sometimes difficult to maintain because the table structure might obscure the
designer's intent. This problem underlines the importance of always documenting your
code or design so that others can come in after you (or work with you) and have some
idea of what you were thinking at the time you created your database structure. In
database designer's terms, this documentation is known as a data dictionary.

Creating a Data Dictionary

A data dictionary is the database designer's most important form of documentation. It
performs the following functions:

. Describes the purpose of the database and who will be using it.

. Documents the specifics behind the database itself: what device it was created on,
the database's default size, or the size of the log file (used to store database
operations information in some RDBMSSs).

. Contains SQL source code for any database install or uninstall scripts, including
documentation on the use of import/export tools, such as those introduced
yesterday (Day 8).

. Provides a detailed description of each table within the database and explains its
purpose in business process terminology.

. Documents the internal structure of each table, including all fields and their
data types with comments, all indexes, and all views. (See Day 10, "Creating Views
and Indexes.")

. Contains SQL source code for all stored procedures and triggers.

. Describes database constraints such as the use of unique values or NOT NULL
values. The documentation should also mention whether these constraints are
enforced at the RDBMS level or whether the database programmer is expected to
check for these constraints within the source code.

Many computer-aided software engineering (CASE) tools aid the database designer in
the creation of this data dictionary. For instance, Microsoft Access comes prepackaged
with a database documenting tool that prints out a detailed description of every object
in the database. See Day 17, "Using SQL to Generate SQL Statements," for more details
on the data dictionary.

NOTE: Most of the major RDBMS packages come with either the data dic-
tionary installed or scripts to install it.

Creating Key Fields

Along with documenting your database design, the most important design goal you
should have is to create your table structure so that each table has a primary key and a
foreign key. The primary key should meet the following goals:

. Each record is unique within a table (no other record within the table has all of
its columns equal to any other).

. For arecord to be unique, all the columns are necessary; that is, data in one
column should not be repeated anywhere else in the table.

Regarding the second goal, the column that has completely unique data throughout
the table is known as the primary key field. A foreign key field is a field that links one table
to another table's primary or foreign key. The fol lowing example should clarify this

situation.

Assume you have three tables: Bl LLS, BANK _ACCOUNTS, and COMPANY. Table 9.1 shows
the format of these three tables.

Table9.1. Table structurefor the PAYMENTS database.

Bills Bank Accounts Company

NAVE, CHAR(30) ACCOUNT I D, NUVBER |NAME, CHAR(30)

AMOUNT, NUMBER TYPE, CHAR(30) ADDRESS, CHAR(50)

ACCOUNT I D, NUMBER |BALANCE, NUMBER Cl TY, CHAR(20)
BANK, CHAR(30) STATE, CHAR(2)

Take a moment to examine these tables. Which fields do you think are the primary keys?
Which are the foreign keys?

The primary key in the Bl LLS table is the NAME field. This field should not be duplicated
because you have only one bill with this amount. (In reality, you would probably have a
check number or a date to make this record truly unique, but assume for now that the
NAME field works.) The ACCOUNT _| Dfield in the BANK _ACCOUNTS table is the primary
key for that table. The NAME field is the primary key for the COVPANY table.

The foreign keys in this example are probably easy to spot. The ACCOUNT _| Dfield in the
Bl LLS table joins the Bl LLS table with the BANK _ACCOUNTS table. The NAME field in
the Bl LLS table joins the BI LLS table with the COMPANY table. If this were a full-
fledged database design, you would have many more tables and data breakdowns. For
instance, the BANK field in the BANK_ACCOUNTS table could point to a BANK table
containing bank information such as addresses and phone numbers. The COVPANY table
could be linked with another table (or database for that matter) containing
information about the company and its products.

Exercise 9.1

Let's take a moment to examine an incorrect database design using the same information
contained in the Bl LLS, BANK _ACCOUNTS, and COVPANY tables. A mistake many
beginning users make is not breaking down their data into as many logical groups as
possible. For instance, one poorly designed Bl LLS table might look like this:

Column Names Comments
NAVE, CHAR(30) Name of company that bill is owed to
AMOUNT, NUMBER Amount of bill in dollars

Bank account number of bill (linked to
BANK ACCOUNTS table)

ADDRESS, CHAR(30) |Address of company that bill is owed to
CI TY, CHAR(15) City of company that bill is owed to
STATE, CHAR(2) State of company that bill is owed to

ACCOUNT_I D, NUMBER

The results may look correct, but take a moment to really look at the data here. If
over several months you wrote several bills to the company in the NAME field, each time
a new record was added for a bill, the company's ADDRESS, CI TY, and STATE information
would be duplicated. Now multiply that duplication over several hundred or thousand
records and then multiply that figure by 10, 20, or 30 tables. You can begin to see the
importance of a properly normalized database.

Before you actually fill these tables with data, you will need to know how to create a
table.

The CREATE TABLE Statement

The process of creating a table is far more standardized than the CREATE DATABASE
statement. Here's the basic syntax for the CREATE TABLE statement:

SYNTAX:

CREATE TABLE t abl e_nane

(fieldl datatype [NOT NULL],
field2 datatype [NOT NULL],
field3 datatype [NOT NULL]...)

A simple example of a CREATE TABLE statement fol lows.
INPUT/OUTPUT:

SQL> CREATE TABLE BILLS (
2 NAMVE CHAR(30),
3 AVOUNT NUMBER
4 ACCOUNT | D NUVBER);

Tabl e creat ed.

ANALYSIS:

This statement creates a table named Bl LLS. Within the Bl LLS table are three fields:
NAME, AMOUNT, and ACCOUNT _| D. The NAME field has a data type of character and can
store strings up to 30 characters long. The AMOUNT and ACCOUNT _| D fields can contain

number values only.

The following section examines components of the CREATE TABLE command.

The Table Name

When creating a table using Personal Oracle7, several constraints apply when naming
the table. First, the table name can be no more than 30 characters long. Because Oracle
IS case insensitive, you can use either uppercase or lowercase for the individual
characters. However, the first character of the name must be a letter between Aand Z.
The remaining characters can be letters or the symbols _, #, $, and @ Of course, the
table name must be unique within its schema. The name also cannot be one of the Oracle
or SQL reserved words (such as SELECT).

NOTE: You can have duplicate table names as long as the owner or schema
is different. Table names in the same schema must be unique.

The Field Name

The same constraints that apply to the table name also apply to the field name.
However, a field name can be duplicated within the database. The restriction is that the
field name must be unique within its table. For instance, assume that you have two
tables in your database: TABLEland TABLE2. Both of these tables could have fields
called ID. You cannot, however, have two fields within TABLEL called | D, even if they
are of different data types.

TheField'sData Type

If you have ever programmed in any language, you are familiar with the concept of data
types, or the type of data that is to be stored in a specific field. For instance, a
character data type constitutes a field that stores only character string data. Table
9.2 shows the data types supported by Personal Oracle?’.

Table 9.2. Data types supported by Personal Oracle?.

Data Type Comments

CHAR Alphanumeric data with a length between 1 and 255 characters.
Spaces are padded to the right of the value to supplement the
total allocated length of the column.

DATE Included as part of the date are century, year, month, day, hour,
minute, and second.

LONG Variable-length alphanumeric strings up to 2 gigabytes. (See the
following note.)

LONG RAW Binary data up to 2 gigabytes. (See the following note.)
NUMBER |Numeric 0, positive or negative fixed or floating-point data.
RAW Binary data up to 255 bytes.

ROW D Hexadecimal string representing the unique address of a row in a
table. (See the following note.)

VARCHARZ? |Alphanumeric data that is variable length; this field must be
between 1 and 2,000 characters long.

NOTE: The LONGdata type is often called a MEMOdata type in other
database management systems. It is primarily used to store large amounts of
text for retrieval at some later time.

The LONG RAWdata type is often called a binary large object (BLOB) in
other database management systems. It is typically used to store graphics,
sound, or video data. Although relational database management systems
were not original ly designed to serve this type of data, many multimedia
systems today store their data in LONG RAW or BLOB, fields.

The ROW D field type is used to give each record within your table a unique,
nonduplicating value. Many other database systems support this concept
with a COUNTER field (Microsoft Access) or an | DENTI TY field (SQL Server).

NOTE: Check your implementation for supported data types as they may
vary.

TheNULL Value

SQL also enables you to identify what can be stored within a column. A NULL value is
almost an oxymoron, because having a field with a value of NULL means that the field
actually has no value stored in it.

When building a table, most database systems enable you to denote a column with the
NOT NULL keywords. NOT NULL means the column cannot contain any NULL values for
any records in the table. Conversely, NOT NULL means that every record must have an
actual value in this column. The following example il lustrates the use of the NOT
NULL keywords.

INPUT:

SQL> CREATE TABLE BILLS (

2 NAMVE CHAR(30) NOT NULL,
3 AMOUNT NUMBER,

4 ACCOUNT_ID NOT NULL);

ANALYSIS:

In this table you want to save the name of the company you owe the money to, along
with the bill's amount. If the NAME field and/or the ACCOUNT | Dwere not stored, the
record would be meaningless. You would end up with a record with a bill, but you
would have no idea whom you should pay.

The first statement in the next example inserts a valid record containing data for a bill
to be sent to Joe's Computer Service for $25.

INPUT/OUTPUT:

SQL> | NSERT | NTO BI LLS VALUES("Joe's Conputer Service", 25, 1);

1 row inserted.
INPUT/OUTPUT:

SQL> I NSERT | NTO BI LLS VALUES("", 25000, 1);

1 row inserted.

ANALYSIS:

Notice that the second record in the preceding example does not contain a NAME value.
(You might think that a missing payee is to your advantage because the bill amount is
$25,000, but we won't consider that.) If the table had been created with a NOT NULL
value for the NAME field, the second insert would have raised an error.

A good rule of thumb is that the primary key field and all foreign key fields should
never contain NULL values.

Unique Fields

One of your design goals should be to have one unique column within each table. This
column or field is a primary key field. Some database management systems allow you to
set a field as unique. Other database management systems, such as Oracle and SQL
Server, allow you to create a unique index on a field. (See Day 10.) This feature keeps
you from inserting duplicate key field values into the database.

You should notice several things when choosing a key field. As we mentioned, Oracle
provides a ROW D field that is incremented for each row that is added, which makes this
field by default always a unique key. RON D fields make excellent key fields for
several reasons. First, it is much faster to join on an integer value than on an 80-
character string. Such joins result in smal ler database sizes over time if you store an
integer value in every primary and foreign key as opposed to a long CHAR value.
Another advantage is that you can use RON D fields to see how a table is organized.
Also, using CHAR values leaves you open to a number of data entry problems. For
instance, what would happen if one person entered 111 First Street,another
entered 111 1st Street,andyet another entered 111 First St.? With today's
graphical user environments, the correct string could be entered into a list box. When a
user makes a selection from the list box, the code would convert this string to a unique
ID and save this ID to the database.

Now you can create the tables you used earlier today. You will use these tables for the
rest of today, so you will want to fill them with some data. Use the | NSERT command
covered yesterday to load the tables with the data in Tables 9.3, 9.4, and 9.5.

INPUT/OUTPUT:

SQ.> create database PAYMENTS;
St at enent processed.

SQL.> create table BILLS (
2 NAME CHAR(30) NOT NULL,
3 AMOUNT NUMBER,
4 ACCOUNT_I D NUVBER NOT NULL);

Tabl e creat ed.

SQL> create table BANK_ACCOUNTS (
2 ACCOUNT_I D NUMBER NOT NULL,
3 TYPE CHAR(30),
4 BALANCE NUMBER,
5 BANK CHAR(30)) ;

Tabl e creat ed.

SQL.> create table COVWANY (
2 NAME CHAR(30) NOT NULL,
3 ADDRESS CHAR(50),
4 CITY CHAR(30),
5 STATE CHAR(2));

Tabl e creat ed.

Table 9.3. Sample data for the BILL Stable.

Name Amount Account_ID

Phone Company 125 1

Power Company 75 1

Record Club 25 2

Software Company 250 1

Cable TV Company 35 3
Table 9.4. Sample data for the BANK_ACCOUNT Stable.

Account_ID Type Balance Band

1 Checking 500 First Federal

2 Money Market 1200 First Investor's

3 Checking 90 Credit Union
Table9.5. Sample data for the COMPANY table.

Name Address City State

Phone Company 111 1st Street Atlanta GA

Power Company 222 2nd Street Jacksonville FL
Record Club 333 3rd Avenue Los Angeles CA
Software Company 444 4th Drive San Francisco CA
Cable TV Company 555 5th Drive Austin X

Table Storage and Sizing

Most major RDBMSs have default settings for table sizes and table locations. If you do
not specify table size and location, then the table will take the defaults. The defaults
may be very undesirable, especially for large tables. The default sizes and locations
will vary among the implementations. Here is an example of a CREATE TABLE statement
with a storage clause (from Oracle).

INPUT:

SQL> CREATE TABLE TABLENAME
2 (COLUMNL CHAR NOT NULL
3 COLUMN2 NUVBER,
4 COLUWN3 DATE)
5 TABLESPACE TABLESPACE NANE
6 STORAGE

7 | NI TI AL SI ZE,

8 NEXT Sl ZE,

9 M NEXTENTS val ue,
10 MAXEXTENTS val ue,
11 PCTI NCREASE val ue);

OUTPUT:

Tabl e creat ed.

ANALYSIS:

In Oracle you can specify a tablespace in which you want the table to reside. A decision
is usual ly made according to the space available, often by the database administrator
(DBA). | NI TI AL SI ZE is the size for the initial extent of the table (the initial
allocated space). NEXT Sl ZE is the value for any additional extents the table may take
through growth. M NEXTENTS and MAXEXTENTS identify the minimum and maximum
extents allowed for the table, and PCTI NCREASE identifies the percentage the next
extent will be increased each time the table grows, or takes another extent.

Creating a Table from an Existing Table

The most common way to create a table is with the CREATE TABLE command. However,
some database management systems provide an alternative method of creating tables,
using the format and data of an existing table. This method is useful when you want to
select the data out of a table for temporary modification. It can also be useful when
you have to create a table similar to the existing table and fill it with similar data.
(You won't have to reenter all this information.) The syntax for Oracle fol lows.

SYNTAX:

CREATE TABLE NEW TABLE(FI ELD1, FIELD2, FI ELD3)
AS (SELECT FI ELD1, FIELD2, FIELD3
FROM OLD TABLE <WHERE. . . >

This syntax allows you to create a new table with the same data types as those of the
fields that are selected from the old table. It also al lows you to rename the fields in
the new table by giving them new names.

INPUT/OUTPUT:

SQL> CREATE TABLE NEW BI LLS(NAME, AMOUNT, ACCOUNT_I D)
2 AS (SELECT * FROM BI LLS WHERE AMOUNT < 50);

Tabl e creat ed.

ANALYSIS:

The preceding statement creates a new table (NEW Bl LLS) with all the records from
the Bl LLS table that have an AMOUNT less than 50.

Some database systems also allow you to use the following syntax:
SYNTAX:

| NSERT NEW TABLE
SELECT <fieldl, field2... | *> from OLD TABLE
<WHERE. . . >

The preceding syntax would create a new table with the exact field structure and data
found in the old table. Using SQL Server's Transact-SQL language in the fol lowing
example illustrates this technique.

INPUT:

| NSERT NEW BI LLS
1> select * from BI LLS where AMOUNT < 50
2> go

(The GOstatement in SQL Server processes the SQL statements in the command buffer. It
is equivalent to the semicolon (;) used in Oracle7.)

The ALTER TABLE Statement

Many times your database design does not account for everything it should. Also,
requirements for applications and databases are always subject to change. The ALTER
TABLE statement enables the database administrator or designer to change the
structure of a table after it has been created.

The ALTER TABLE command enables you to do two things:
. Add a column to an existing table
. Modify a column that already exists

The syntax for the ALTER TABLE statement is as fol lows:

SYNTAX:

ALTER TABLE t abl e_nane
<ADD col umm_nane data_type; |
MODI FY col umm_nane data_type; >

The following command changes the NAME field of the Bl LLS table to hold 40
characters:

INPUT/OUTPUT:

SQL> ALTER TABLE BILLS
2 MODI FY NAMVE CHAR(40);

Tabl e al tered.

NOTE: You can increase or decrease the length of columns; however, you
can not decrease a column's length if the current size of one of its values is
greater than the value you want to assign to the column length.

Here's a statement to add a new column to the NEW Bl LLS table:
INPUT/OUTPUT:

SQL> ALTER TABLE NEWBILLS
2 ADD COWENTS CHAR(80):

Tabl e al tered.

ANALYSIS:

This statement would add a new column named COVVENTS capable of holding 80
characters. The field would be added to the right of all the existing fields.

Several restrictions apply to using the ALTER TABLE statement. You cannot use it to
add or delete fields from a database. It can change a column from NOT NULL to NULL,
but not necessarily the other way around. A column specification can be changed from
NULL to NOT NULL only if the column does not contain any NULL values. To change a
column from NOT NULL to NULL, use the following syntax:

SYNTAX:

ALTER TABLE table_nane MODI FY (col um_nane data_type NULL);
To change a column from NULL to NOT NULL, you might have to take several steps:
1. Determine whether the column has any NULL values.

2. Deal with any NULL values that you find. (Delete those records, update the

column's value, and so on.)

3. Issue the ALTER TABLE command.

NOTE: Some database management systems al low the use of the MODI FY
clause; others do not. Still others have added other clauses to the ALTER
TABLE statement. In Oracle, you can even alter the table's storage
parameters. Check the documentation of the system you are using to
determine the implementation of the ALTER TABLE statement.

The DROP TABLE Statement

SQL provides a command to completely remove a table from a database. The DROP TABLE
command deletes a table along with all its associated views and indexes. (See Day 10 for
details.) After this command has been issued, there is no turning back. The most common
use of the DROP TABLE statement is when you have created a table for temporary use.
When you have completed all operations on the table that you planned to do, issue the
DROP TABLE statement with the following syntax:

SYNTAX:

DROP TABLE t abl e _nane;

Here's how to drop the NEW Bl LLS table:
INPUT/OUTPUT:

SQ.> DROP TABLE NEW BI LLS;

Tabl e dr opped.

ANALYSIS:

Notice the absence of system prompts. This command did not ask Are you sure? (Y/N).
After the DROP TABLE command is issued, the table is permanently deleted.

WARNING: If you issue

SQL> DROP TABLE NEWBI LLS;

you could be dropping the incorrect table. When dropping tables, you
should always use the owner or schema name. The recommended syntax is

SQ.> DROP TABLE OMNER. NEW BI LLS

We are stressing this syntax because we once had to repair a production
database from which the wrong table had been dropped. The table was not
properly identified with the schema name. Restoring the database was an
eight-hour job, and we had to work until well past midnight.

The DROP DATABASE Statement

Some database management systems also provide the DROP DATABASE statement, which
is identical in usage to the DROP TABLE statement. The syntax for this statement is as
follows:

DROP DATABASE dat abase nane

Don't drop the Bl LLS database now because you will use it for the rest of today, as
well as on Day 10.

NOTE: The various relational database implementations require you to
take diff-erent steps to drop a database. After the database is dropped, you
will need to clean up the operating system files that compose the database.

Exercise 9.2

Create a database with one table in it. Issue the DROP TABLE command and the issue the
DROP DATABASE command. Does your database system allow you to do this? Single-file-
based systems, such as Microsoft Access, do not support this command. The database is
contained in a single file. To create a database, you must use the menu options provided
in the product itself. To delete a database, simply delete the file from the hard drive.

Summary

Day 9 covers the major features of SQL's Data Manipulation Language (DML). In
particular, you learned five new statements: CREATE DATABASE, CREATE TABLE,
ALTER TABLE, DROP TABLE, and DROP DATABASE. Today's lesson also discusses the
importance of creating a good database design.

A data dictionary is one of the most important pieces of documentation you can create

when designing a database. This dictionary should include a complete description of all
objects in the database: tables, fields, views, indexes, stored procedures, triggers, and so
forth. A complete data dictionary also contains a brief comment explaining the purpose
behind each item in the database. You should update the data dictionary whenever you
make changes to the database.

Before using any of the data manipulation statements, it is also important to create a
good database design. Break down the required information into logical groups and try
to identify a primary key field that other groups (or tables) can use to reference this
logical group. Use foreign key fields to point to the primary or foreign key fields in
other tables.

You learned that the CREATE DATABASE statement is not a standard element within
database systems. This variation is primarily due to the many different ways vendors
store their databases on disk. Each implementation enables a different set of features
and options, which results in a completely different CREATE DATABASE statement.
Simply issuing CREATE DATABASE dat abase_nane creates a default database with a
default size on most systems. The DROP DATABASE statement permanently removes that
database.

The CREATE TABLE statement creates a new table. With this command, you can create
the fields you need and identify their data types. Some database management systems
also allow you to specify other attributes for the field, such as whether it can allow
NULL values or whether that field should be unique throughout the table. The ALTER
TABLE statement can alter the structure of an existing table. The DROP TABLE
statement can delete a table from a database.

Q& A

Q Why does the CREATE DATABASE statement vary so much from one system
to another?

A CREATE DATABASE varies because the actual process of creating a database
varies from one database system to another. Small PC-based databases usually
rely on files that are created within some type of application program. To
distribute the database on a large server, related database files are simply
distributed over several disk drives. When your code accesses these databases,
there is no database process running on the computer, just your application
accessing the files directly. More powerful database systems must take into
account disk space management as well as support features such as security,
transaction control, and stored procedures embedded within the database itself.
When your application program accesses a database, a database server manages
your requests (along with many others' requests) and returns data to you
through a sometimes complex layer of middleware. These topics are discussed more

in Week 3. For now, learn all you can about how your particular database
management system creates and manages databases.

Q Can | create a table temporarily and then automatically drop it when | am
done with it?

A Yes. Many database management systems support the concept of a temporary
table. This type of table is created for temporary usage and is automatical ly
deleted when your user's process ends or when you issue the DROP TABLE
command. The use of temporary tables is discussed on Day 14, "Dynamic Uses of
SQL."

Q Can | remove columns with the ALTER TABLE statement?

A No. The ALTER TABLE command can be used only to add or modify columns
within a table. To remove columns, create a new table with the desired format
and then select the records from the old table into the new table.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

1. True or False: The ALTER DATABASE statement is often used to modify an
existing table's structure.

2. True or False: The DROP TABLE command is functionally equivalent to the
DELETE FROM <t abl e _nane> command.

3. True or False: To add a new table to a database, use the CREATE TABLE
command.

4. What is wrong with the following statement?
INPUT:

CREATE TABLE new table (
| D NUVBER,

FI ELD1 char (40),

FI ELD2 char (80),

| D char (40);

5. What is wrong with the following statement?
INPUT:

ALTER DATABASE BI LLS (
COMPANY char (80));

6. When a table is created, who is the owner?

7. If data in a character column has varying lengths, what is the best choice for
the data type?

8. Can you have duplicate table names?

Exercises

1. Add two tables to the Bl LLS database named BANK and ACCOUNT _TYPE using
any format you like. The BANK table should contain information about the BANK
field used in the BANK _ACCOUNTS table in the examples. The ACCOUNT _TYPE table
should contain information about the ACCOUNT _TYPE field in the

BANK ACCOUNTS table also. Try to reduce the data as much as possible.

2. With the five tables that you have created--Bl LLS, BANK ACCOUNTS, COVPANY,
BANK, and ACCOUNT _TYPE--change the table structure so that instead of using
CHAR fields as keys, you use integer | D fields as keys.

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several
queries to join the tables in the Bl LLS database.

(e Previous Chapter JRC> Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 10 -
Creating Views and | ndexes

Objectives

Today we begin to cover topics that may be new even to programmers or database users
who have already had some exposure to SQL. Days 1 through 8 covered nearly all the
introductory material you need to get started using SQL and relational databases. Day
9, "Creating and Manipulating Tables," was devoted to a discussion of database design,
table creation, and other data manipulation commands. The common feature of the
objects discussed so far--databases, tables, records, and fields--is that they are all
physical objects located on a hard disk. Today the focus shifts to two features of SQL
that enable you to view or present data in a different format than it appears on the
disk. These two features are the view and the index. By the end of today, you will know
the following:

. How to distinguish between indexes and views
. How to create views

. How to create indexes

. How to modify data using views

. What indexes do

A view is often referred to as a virtual table. Views are created by using the CREATE
VI EWstatement. After the view has been created, you can use the following SQL

commands to refer to that view:
. SELECT
« | NSERT
« | NPUT
. UPDATE
. DELETE

An index is another way of presenting data differently than it appears on the disk.
Special types of indexes reorder the record's physical location within a table. Indexes
can be created on a column within a table or on a combination of columns within a
table. When an index is used, the data is presented to the user in a sorted order, which
you can control with the CREATE | NDEX statement. You can usually gain substantial
performance improvements by indexing on the correct fields, particularly fields that
are being joined between tables.

NOTE: Views and indexes are two totally different objects, but they have
one thing in common: They are both associated with a table in the database.
Although each object's association with a table is unique, they both
enhance a table, thus unveiling powerful features such as presorted data
and predefined queries.

NOTE: We used Personal Oracle7 to generate today's examples. Please see
the documentation for your specific SQL implementation for any minor
differences in syntax.

Using Views

You can use views, or virtual tables, to encapsulate complex queries. After a view on a
set of data has been created, you can treat that view as another table. However, special
restrictions are placed on modifying the data within views. When data in a table
changes, what you see when you query the view also changes. Views do not take up
physical space in the database as tables do.

The syntax for the CREATE VI EWstatement is

SYNTAX:

CREATE VI EW <vi ew_nanme> [(col uml, colum2...)] AS
SELECT <t abl e _nane col utm_nanes>
FROM <t abl e_nane>

As usual, this syntax may not be clear at first glance, but today's material contains
many examples that il lustrate the uses and advantages of views. This command tells
SQL to create a view (with the name of your choice) that comprises columns (with the
names of your choice if you like). An SQL SELECT statement determines the fields in
these columns and their data types. Yes, this is the same SELECT statement that you
have used repeatedly for the last nine days.

Before you can do anything useful with views, you need to populate the Bl LLS database
with a little more data. Don't worry if you got excited and took advantage of your
newfound knowledge of the DROP DATABASE command. You can simply re-create it. (See
Tables 10.1, 10.2, and 10.3 for sample data.)

INPUTOUTPUT:

SQL> create database BILLS;

St at enent processed.
INPUTOUTPUT:

SQL> create table BILLS (
2 NAVE CHAR(30) NOT NULL,
3 AMOUNT NUMBER,
4 ACCOUNT_I D NUVBER NOT NULL);

Tabl e creat ed.
INPUTOUTPUT:

SQL> create tabl e BANK_ACCOUNTS (
2 ACCOUNT_I D NUMBER NOT NULL,
3 TYPE CHAR(30),
4 BALANCE NUMBER,
5 BANK CHAR(30)) ;

Tabl e creat ed.
INPUTOUTPUT:

SQ.> create table COWANY (
2 NAMVE CHAR(30) NOT NULL,
3 ADDRESS CHAR(50),

4 CI TY CHAR(30),

5 STATE CHAR(2));

Tabl e creat ed.

Table 10.1. Sample data for the BILL Stable.

Name Amount Account_ID
Phone Company 125 1
Power Company 75 1
Record Club 25 2
Software Company 250 1
Cable TV Company 35 3
Joe's Car Palace 350 5
S.C. Student Loan 200 6
Florida Water Company 20 1
U-O-Us Insurance Company 125 5
Debtor's Credit Card 35 4
Table 10.2. Sample data for the BANK_ACCOUNT Stable.
Account_ID Type Balance Bank
1 Checking 500 First Federal
2 Money Market 1200 First Investor's
3 Checking 90 Credit Union
4 Savings 400 First Federal
5 Checking 2500 Second Mutual
6 Business 4500 Fidelity
Table 10.3. Sample data for the COMPANY table.
Name Address City State
Phone Company 111 1st Street Atlanta GA
Power Company 222 2nd Street Jacksonville FL
Record Club 333 3rd Avenue Los Angeles CA
Software Company 444 4th Drive San Francisco CA
Cable TV Company 555 5th Drive Austin TX

Joe's Car Palace 1000 Govt. Blvd Miami FL

S.C. Student Loan 25 College Blvd Columbia SC
Florida Water Company 1883 Hwy 87 Navarre FL

U-O-Us Insurance 295 Beltline Hwy Macon GA
Company

Debtor's Credit Card 115 2nd Avenue Newark NJ

Now that you have successful ly used the CREATE DATABASE, CREATE TABLE, and
| NSERT commands to input all this information, you are ready for an in-depth discussion
of the view.

A Simple View

Let's begin with the simplest of all views. Suppose, for some unknown reason, you want
to make a view on the Bl LLS table that looks identical to the table but has a different
name. (We call it DEBTS.) Here's the statement:

INPUT:

SQ.> CREATE VI EW DEBTS AS
SELECT * FROM BI LLS;

To confirm that this operation did what it should, you can treat the view just like a
table:

INPUT/OUTPUT:

SQL> SELECT * FROM DEBTS;

NANVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Water Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.

You can even create new views from existing views. Be careful when creating views of
views. Although this practice is acceptable, it complicates maintenance. Suppose you
have a view three levels down from a table, such as a view of a view of a view of a table.

What do you think will happen if the first view on the table is dropped? The other two
views will still exist, but they will be useless because they get part of their
information from the first view. Remember, after the view has been created, it functions
as a virtual table.

INPUT:

SQL> CREATE VI EW CREDI TCARD_DEBTS AS
2 SELECT * FROM DEBTS
3 VWHERE ACCOUNT_I D = 4;

SQL> SELECT * FROM CREDI TCARD_DEBTS;

OUTPUT;:
NANVE AMOUNT ACCOUNT I D
Debtor's Credit Card 35 4

1 row sel ect ed.

The CREATE VI EWalso enables you to select individual columns from a table and place
them in a view. The following example selects the NAME and STATE fields from the
COMPANY table.

INPUT:

SQL> CREATE VI EW COVPANY_| NFO (NAME, STATE) AS
2 SELECT * FROM COVPANY;
SQL> SELECT * FROM COMPANY_| NFQ,

OUTPUT:

NANVE STATE
Phone Conpany GA
Power Conpany FL
Record C ub CA
Sof t war e Conpany CA
Cabl e TV Conpany TX
Joe's Car Pal ace FL
S.C. Student Loan SC

Fl ori da Water Conpany
U- O Us | nsurance Conpany
Debtor's Credit Card

€Q

10 rows sel ect ed.

NOTE: Users may create views to query specific data. Say you have a table
with 50 columns and hundreds of thousands of rows, but you need to see
data in only 2 columns. You can create a view on these two columns, and

then by querying from the view, you should see a remarkable difference in
the amount of time it takes for your query results to be returned.

Renaming Columns

Views simplify the representation of data. In addition to naming the view, the SQL
syntax for the CREATE VI EWstatement enables you to rename selected columns.
Consider the preceding example a little more closely. What if you wanted to combine
the ADDRESS, CI TY, and STATE fields from the COVPANY table to print them on an
envelope? The following example illustrates this. This example uses the SQL + operator
to combine the address fields into one long address by combining spaces and commas with
the character data.

INPUT:

SQL> CREATE VI EW ENVELOPE (COVPANY, NMNAI LI NG _ADDRESS) AS
2 SELECT NAME, ADDRESS + " " + CITY + ", " + STATE
3 FROM COVPANY;

SQL> SELECT * FROM ENVELOPE;

OUTPUT:

COVPANY MAI L1 NG_ADDRESS

Phone Conpany 111 1st Street Atlanta, GA
Power Conpany 222 2nd Street Jacksonville, FL
Record C ub 333 3rd Avenue Los Angeles, CA
Sof t war e Conpany 444 4th Drive San Francisco, CA
Cabl e TV Conpany 555 5th Drive Austin, TX

Joe's Car Pal ace 1000 Govt. Blvd Mam, FL

S.C. Student Loan 25 Col | ege Bl vd. Colunbia, SC
Fl ori da Wat er Conpany 1883 Hwy. 87 Navarre, FL

U- O Us I nsurance Conpany 295 Beltline Hw. Macon, GA
Debtor's Credit Card 115 2nd Avenue Newar k, NJ

10 rows sel ect ed.

ANALYSIS:

The SQL syntax requires you to supply a virtual field name whenever the view's virtual
field is created using a calculation or SQL function. This pro- cedure makes sense
because you wouldn't want a view's column name to be COUNT(*) or AVE PAYMENT) .

NOTE: Check your implementation for the use of the + operator.

SQL View Processing

Views can represent data within tables in a more convenient fashion than what
actually exists in the database's table structure. Views can also be extremely
convenient when performing several complex queries in a series (such as within a stored
procedure or application program). To solidify your understanding of the view and the
SELECT statement, the next section examines the way in which SQL processes a query
against a view. Suppose you have a query that occurs often, for example, you routinely
join the BI LLS table with the BANK _ACCOUNTS table to retrieve information on your
payments.

INPUT:

SQL> SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE
2 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS
3 VWHERE BI LLS. ACCOUNT_| D = BANK_ACCOUNTS. ACCOUNT_I D

OUTPUT:

Bl LLS. NAVE Bl LLS. AMOUNT BANK ACCOUNTS. BALANCE

BANK ACCOUNTS. BANK

Phone Conpany 125 500 Fi rst
Feder al

Power Conpany 75 500 First
Feder al

Record Cl ub 25 1200 First

I nvestor's

Sof t war e Conpany 250 500 First
Feder al

Cabl e TV Conpany 35 90 Credit
Uni on

Joe's Car Pal ace 350 2500 Second
Mut ual

S.C. Student Loan 200 4500

Fidelity

Fl ori da Water Conpany 20 500 First
Feder al

U- O Us | nsurance Conpany 125 2500

Second Mut ua

9 rows sel ect ed.

You could convert this process into a view using the following statement:
INPUT/OUTPUT:

SQ.> CREATE VI EW BI LLS_DUE (NAME, AMOUNT, ACCT_BALANCE, BANK) AS
2 SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE
3 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS

4 VWHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D

Vi ew cr eat ed.

If you queried the Bl LLS_DUE view using some condition, the statement would look like
this:

INPUT/OUTPUT:

SQ> SELECT * FROM BI LLS_DUE
2 WHERE ACCT_BALANCE > 500;

NANME AMOUNT ACCT_BALANCE BANK

Record Cl ub 25 1200 Fi rst

| nvestor's

Joe's Car Pal ace 350 2500 Second Mt ua
S.C. Student Loan 200 4500 Fidelity
U- O Us | nsurance Conpany 125 2500 Second Mt ua

4 rows sel ected.

ANALYSIS:

SQL uses several steps to process the preceding statement. Because Bl LLS DUE is a view,
not an actual table, SQL first looks for a table named Bl LLS DUE and finds nothing.
The SQL processor will probably (depending on what database system you are using) find
out from a system table that Bl LLS DUE is a view. It will then use the view's plan to
construct the following query:

SQL> SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE
2 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS
3 VWHERE BI LLS. ACCOUNT_| D = BANK_ACCOUNTS. ACCOUNT_I D
4 AND BANK_ACCOUNTS. BALANCE > 500;

Example 10.1

Construct a view that shows all states to which the bills are being sent. Also display
the total amount of money and the total number of bills being sent to each state.

First of all, you know that the CREATE VI EWpart of the statement will look like this:

CREATE VI EW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS...

Now you must determine what the SELECT query will look like. You know that you
want to select the STATE field first usingt he SELECT DI STI NCT syntax based on the
requirement to show the states to which bilIs are being sent. For example:

INPUT:

SQ.> SELECT DI STI NCT STATE FROM COVPANY;
OUTPUT:

STATE
GA

FL

CA
TX
SC

NJ

6 rows sel ected.

In addition to selecting the STATE field, you need to total the number of payments sent
to that STATE. Therefore, you need to join the Bl LLS table and the COVPANY table.

INPUT/OUTPUT:

SQL> SELECT DI STI NCT COVPANY. STATE, COUNT(BI LLS. *) FROM BI LLS, COVPANY
2 GROUP BY COMPANY. STATE
3 HAVI NG Bl LLS. NAVE = COVPANY. NAME;

STATE COUNT(BI LLS. *)
GA
FL
CA
TX
SC
NJ

P FRPFEPNODN

6 rows sel ected.

Now that you have successful ly returned two-thirds of the desired result, you can add
the final required return value. Use the SUMfunction to total the amount of money
sent to each state.

INPUT/OUTPUT:

SQL> SELECT DI STI NCT COVPANY. STATE, COUNT(BI LLS. NAME) ,
SUM BI LLS. AMOUNT)

2 FROM BILLS, COVPANY

3 GROUP BY COVPANY. STATE

4 HAVI NG BI LLS. NAVE = COVPANY. NAMNE;

STATE COUNT(BI LLS. *) SUM BI LLS. AMOUNT)
GA 2 250
FL 3 445

CA 2 275

TX 1 35
SC 1 200
NJ 1 35

6 rows sel ected.

As the final step, you can combine this SELECT statement with the CREATE VI EW
statement you created at the beginning of this project:

INPUT/OUTPUT:

SQL> CREATE VI EW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS
2 SELECT DI STI NCT COMPANY. STATE,
COUNT(BI LLS. NAME) , SUM BI LLS. AMOUNT)
3 FROM BI LLS, COVPANY
4 GROUP BY COVPANY. STATE
5 HAVI NG Bl LLS. NAME = COVPANY. NAME

Vi ew cr eat ed.
INPUT/OUTPUT:

SQL> SELECT * FROM EXAMPLE

STATE TOTAL_BI LLS TOTAL_AMOUNT
GA 2 250

FL 3 445

CA 2 275

X 1 35

SC 1 200

NJ 1 35

6 rows sel ected.

The preceding example shows you how to plan the CREATE VI EWstatement and the
SELECT statements. This code tests the SELECT statements to see whether they will
generate the proper results and then combines the statements to create the view.

Example 10.2

Assume that your creditors charge a 10 percent service charge for all late payments,
and unfortunately you are late on everything this month. You want to see this late
charge along with the type of accounts the payments are coming from.

This join is straightforward. (You don't need to use anything like COUNT or SUM)
However, you will discover one of the primary benefits of using views. You can add the
10 percent service charge and present it as a field within the view. From that point on,
you can select records from the view and already have the total amount calculated
for you. The statement would look like this:

INPUT:

SQL> CREATE VI EW LATE_PAYMENT (NAME, NEW TOTAL, ACCOUNT TYPE) AS
2 SELECT BILLS. NAVE, BILLS. AVOUNT * 1.10, BANK_ACCOUNTS. TYPE
3 FROM BI LLS, BANK_ACCOUNTS
4 WHERE Bl LLS. ACCOUNT | D = BANK_ACCOUNTS. ACCOUNT | D;

OUTPUT:

Vi ew cr eat ed.

INPUT/OUTPUT:

SQL> SELECT * FROM LATE_PAYMENT;

NAVE NEW TOTAL ACCOUNT_TYPE
Phone Conpany 137. 50 Checki ng
Power Conpany 82.50 Checki ng
Record C ub 27.50 Money WMar ket
Sof t war e Conpany 275 Checki ng
Cabl e TV Conpany 38. 50 Checki ng
Joe's Car Pal ace 385 Checki ng
S.C. Student Loan 220 Busi ness

Fl ori da Water Conpany 22 Checki ng
U- O Us | nsurance Conpany 137. 50 Busi ness
Debtor's Credit Card 38. 50 Savi ngs

10 rows sel ect ed.

Restrictionson Using SELECT

SQL places certain restrictions on using the SELECT statement to formulate a view. The
following two rules apply when using the SELECT statement:

« You cannot use the UNI ONoperator.

. You cannot use the ORDER BY clause. However, you can use the GROUP BY clause
in a view to perform the same functions as the ORDER BY clause.

Modifying Datain aView

As you have learned, by creating a view on one or more physical tables within a
database, you can create a virtual table for use throughout an SQL script or a database
application. After the view has been created using the CREATE VI EW .. SELECT
statement, you can update, insert, or delete view data using the UPDATE, | NSERT, and
DELETE commands you learned about on Day 8, "Manipulating Data."”

We discuss the limitations on modifying a view's data in greater detail later. The next
group of examples il lustrates how to manipulate data thatis in a view.

To continue on the work you did in Example 10.2, update the Bl LLS table to reflect

that unfortunate 10 percent late charge.
INPUT/OUTPUT:

SQL> CREATE VI EW LATE_PAYMENT AS
2 SELECT * FROM BI LLS;

Vi ew cr eat ed.

SQL> UPDATE LATE_PAYMENT
2 SET AMOUNT = AMOUNT * 1.10;

1 row updat ed.

SQ.> SELECT * FROM LATE_PAYMENT,;

NANVE NEW TOTAL
Phone Conpany 137. 50
Power Conpany 82. 50
Record Cl ub 27.50
Sof t war e Conpany 275
Cabl e TV Conpany 38. 50
Joe's Car Pal ace 385
S.C. Student Loan 220

Fl ori da Water Conpany 22
U- O Us | nsurance Conpany 137. 50
Debtor's Credit Card 38. 50

10 rows sel ect ed.

>
:
5
o

PO FRPOOOCTWEDNPRERPRE

To verify that the UPDATE actual ly updated the underlying table, Bl LLS, query the

Bl LLS table:

INPUT/OUTPUT:

SQ.> SELECT * FROM BI LLS;

NANVE NEW TOTAL
Phone Conpany 137. 50
Power Conpany 82. 50
Record Cl ub 27.50
Sof t war e Conpany 275

Cabl e TV Conpany 38. 50
Joe's Car Pal ace 385

S.C. Student Loan 220

Fl ori da Water Conpany 22

U- O Us | nsurance Conpany 137.50
Debtor's Credit Card 38. 50

>
:
5
o

PO PFRPOOOCTWEREDNRERPRE

10 rows sel ect ed.

Now delete a row from the view:

INPUT/OUTPUT:

SQL> DELETE FROM LATE_PAYMENT
2 VWHERE ACCOUNT_I D = 4;

1 row del et ed.

SQL> SELECT * FROM LATE_PAYMENT,

NANVE NEW TOTAL ACCOUNT_I D
Phone Conpany 137. 50 1
Power Conpany 82. 50 1
Record Cl ub 27.50 2
Sof t war e Conpany 275 1
Cabl e TV Conpany 38. 50 3
Joe's Car Pal ace 385 5
S.C. Student Loan 220 6
Fl ori da Water Conpany 22 1
U- O Us | nsurance Conpany 137.50 5

9 rows sel ect ed.

The final step is to test the UPDATE function. For all bills that have a NEW TOTAL
greater than 100, add an additional 10.

INPUT/OUTPUT:

SQL> UPDATE LATE_PAYMENT
2 SET NEWTOTAL = NEW.TOTAL + 10
3 WHERE NEW TOTAL > 100;

9 rows updat ed.

SQL> SELECT * FROM LATE_PAYMENT,;

NAVE NEW TOTAL ACCOUNT_I D
Phone Conpany 147. 50 1
Power Conpany 82. 50 1
Record C ub 27.50 2
Sof t war e Conpany 285 1
Cabl e TV Conpany 38.50 3
Joe's Car Pal ace 395 5
S.C. Student Loan 230 6
Fl ori da Wat er Conpany 22 1
U- O Us | nsurance Conpany 147. 50 5

9 rows sel ect ed.

Problemswith M odifying Data Using Views

Because what you see through a view can be some set of a group of tables, modifying the
data in the underlying tables is not always as straightforward as the previous
examples. Following is a list of the most common restrictions you will encounter while
working with views:

. You cannot use DELETE statements on multiple table views.

. You cannot use the | NSERT statement unless all NOT' NULL columns used in the
underlying table are included in the view. This restriction applies because the
SQL processor does not know which values to insert into the NOT NULL columns.

. Ifyou do insert or update records through a join view, all records that are
updated must belong to the same physical table.

. Ifyou use the DI STI NCT clause to create a view, you cannot update or insert
records within that view.

« You cannot update a virtual column (a column that is the result of an expression
or function).

Common Applications of Views

Here are a few of the tasks that views can perform:
. Providing user security functions
. Converting between units
. Creating a new virtual table format

. Simplifying the construction of complex queries
Views and Security

Although a complete discussion of database security appears in Day 12, "Database
Security," we briefly touch on the topic now to explain how you can use views in
performing security functions.

All relational database systems in use today include a full suite of built-in security
features. Users of the database system are general ly divided into groups based on their
use of the database. Common group types are database administrators, database

developers, data entry personnel, and public users. These groups of users have varying
degrees of privileges when using the database. The database administrator will probably
have complete control of the system, including UPDATE, | NSERT, DELETE, and ALTER
database privileges. The public group may be granted only SELECT privileges--and
perhaps may be allowed to SELECT only from certain tables within certain databases.

Views are commonly used in this situation to control the information that the database
user has access to. For instance, if you wanted users to have access only to the NAVE
field of the Bl LLS table, you could simply create a view called Bl LLS NAME:

INPUT/OUTPUT:

SQL.> CREATE VI EW BI LLS_NAME AS
2 SELECT NAME FROM BI LLS;

Vi ew cr eat ed.

Someone with system administrator-level privileges could grant the public group
SELECT privileges on the Bl LLS NAME view. This group would not have any privileges
on the underlying Bl LLS table. As you might guess, SQL has provided data security
statements for your use also. Keep in mind that views are very useful for implementing
database security.

Using Viewsto Convert Units

Views are also useful in situations in which you need to present the user with data that
is different from the data that actually exists within the database. For instance, if the
AMOUNT field is actually stored in U.S. dollars and you don't want Canadian users to
have to continually do mental calculations to see the AMOUNT total in Canadian
dollars, you could create a simple view called CANADI AN BI LLS:

INPUT/OUTPUT:

SQL> CREATE VI EW CANADI AN _BI LLS (NAME, CAN_AMOUNT) AS
2 SELECT NAME, AMOUNT / 1.10
3 FROM BI LLS;

Vi ew Creat ed.

SQL> SELECT * FROM CANADI AN_BI LLS;

NANVE CAN_AMOUNT
Phone Conpany 125
Power Conpany 75
Record Cl ub 25
Sof t war e Conpany 250
Cabl e TV Conpany 35

Joe's Car Pal ace 350

S.C. Student Loan 200
Fl ori da Wat er Conpany 20
U- O Us | nsurance Conpany 125

9 rows sel ect ed.

ANALYSIS:

When converting units like this, keep in mind the possible problems inherent in modifying
the underlying data in a table when a calculation (such as the preceding example) was
used to create one of the columns of the view. As always, you should consult your
database system's documentation to determine exactly how the system implements the
CREATE VI EWcommand.

Simplifying Complex Queries Using Views

Views are also useful in situations that require you to perform a sequence of queries to
arrive at a result. The following example illustrates the use of a view in this situation.

To give the name of all banks that sent bil s to the state of Texas with an amount less
than $50, you would break the problem into two separate problems:

. Retrieve all bills that were sent to Texas
. Retrieve all bills less than $50

Let's solve this problem using two separate views: Bl LLS 1 and BI LLS 2:
INPUT/OUTPUT:

SQL> CREATE TABLE BI LLS1 AS
2 SELECT * FROM BI LLS
3 WHERE AMOUNT < 50;

Tabl e creat ed.

SQL> CREATE TABLE BI LLS2 (NAMVE, AMOUNT, ACCOUNT_I D) AS
2 SELECT BILLS. * FROM BI LLS, COVPANY
3 WHERE BI LLS. NAME = COVPANY. NAME AND COWPANY. STATE = "TX"

Tabl e creat ed.

ANALYSIS:

Because you want to find all bills sent to Texas and all bills that were less than $50,
you can now use the SQL | Nclause to find which bills in Bl LLS1 were sent to Texas.
Use this information to create a new view called Bl LLS3:

INPUT/OUTPUT:

SQ.> CREATE VI EW BI LLS3 AS
2 SELECT * FROM BI LLS2 WHERE NAME | N
3 (SELECT * FROM BI LLS1);

Vi ew cr eat ed.

Now combine the preceding query with the BANK _ACCOUNTS table to satisfy the original
requirements of this example:

INPUT/OUTPUT:

SQL> CREATE VI EW BANKS | N_TEXAS (BANK) AS
2 SELECT BANK_ACCOUNTS. BANK
3 FROM BANK_ACCOUNTS, BILLS3
4 WHERE BI LLS3. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I b

Vi ew cr eat ed.
SQL> SELECT * FROM BANK | N_TEXAS;

BANK
Credit Union

1 row sel ect ed.

ANALYSIS:

As you can see, after the queries were broken down into separate views, the final query
was rather simple. Also, you can reuse the individual views as often as necessary.

The DROP VIEW Statement

In common with every other SQL CREATE... command, CREATE VI EWhas a corresponding
DROP... command. The syntax is as fol lows:

SYNTAX:

SQL> DROP VI EW vi ew_nane;

The only thing to remember when using the DROP VI EWcommand is that all other views
that reference that view are now invalid. Some database systems even drop all views
that used the view you dropped. Using Personal Oracle7, if you drop the view Bl LLS1,
the final query would produce the following error:

INPUT/OUTPUT:

SQL> DROP VI EW BI LLS1;
Vi ew dr opped.

SQL> SELECT * FROM BANKS | N TEXAS;
*

ERRCOR at |ine 1:
ORA- 04063: vi ew "PERKI NS. BANKS | N TEXAS" has errors

NOTE: A view can be dropped without any of the actual tables being
modified, which explains why we often refer to views as virtual tables. (The
same logic can be applied to the technology of virtual reality.)

Using I ndexes

Another way to present data in a different format than it physical ly exists on the disk
IS to use an index. In addition, indexes can also reorder the data stored on the disk
(something views cannot do).

Indexes are used in an SQL database for three primary reasons:
. Toenforce referential integrity constraints by using the UNI QUE keyword

. To facilitate the ordering of data based on the contents of the index's field or
fields

. To optimize the execution speed of queries
What Arelndexes?

Data can be retrieved from a database using two methods. The first method, often
called the Sequential Access Method, requires SQL to go through each record looking
for a match. This search method is inefficient, but it is the only way for SQL to locate
the correct record. Think back to the days when libraries had massive card catalog
filing systems. Suppose the librarian removed the alphabetical index cards, tossed the
cards into the air, then placed them back into the filing cabinets. When you wanted to
look up this book's shelf location, you would probably start at the very beginning, then
go through one card at a time until you found the information you wanted. (Chances
are, you would stop searching as soon as you found any book on this topic!)

Now suppose the librarian sorted the book titles alphabetically. You could quickly
access this book's information by using your knowledge of the alphabet to move through
the catalog.

Imagine the flexibility if the librarian was diligent enough to not only sort the books
by title but also create another catalog sorted by author's name and another sorted by
topic. This process would provide you, the library user, with a great deal of flexibility
in retrieving information. Also, you would be able to retrieve your information in a
fraction of the time it originally would have taken.

Adding indexes to your database enables SQL to use the Direct Access Method. SQL uses
a treelike structure to store and retrieve the index's data. Pointers to a group of data
are stored at the top of the tree. These groups are called nodes. Each node contains
pointers to other nodes. The nodes pointing to the left contain values that are less
than its parent node. The pointers to the right point to values greater than the parent
node.

The database system starts its search at the top node and simply follows the pointers
until it is successful.

NOTE: The result of a query against the unindexed table is commonly
referred to as a full-table scan. A full-table scan is the process used by the
database server to search every row of a table until all rows are returned
with the given condition(s). This operation is comparable to searching for a
book in the library by starting at the first book on the first shelf and
scanning every book until you find the one you want. On the other hand, to
find the book quickly, you would probably look in the (computerized) card
catalog. Similarly, an index enables the database server to point to specific
rows of data quickly within a table.

Fortunately, you are not required to actually implement the tree structure yourself,
just as you are not required to write the implementation for saving and reading in
tables or databases. The basic SQL syntax to create an index is as fol lows:

INPUT/OUTPUT:

SQL> CREATE | NDEX i ndex_nane
2 ON t abl e_nanme(col unmm_nanel, [colum_nane2], ...);

| ndex creat ed.

As you have seen many times before, the syntax for CREATE | NDEX can vary widely
among database systems. For instance, the CREATE | NDEX statement under Oracle7
looks like this:

SYNTAX:

CREATE | NDEX [schena.] i ndex
ON { [schema.]table (columm [!!under!! ASC| DESC|
[, colum [!!lunder!!ASC| DESC]] ...)
| CLUSTER [schena.]cluster }
[NI TRANS i nteger] [MAXTRANS i nteger]
[TABLESPACE t abl espace]
[STORAGE st orage_cl ause]
[PCTFREE i nt eger]
[NOSORT]

The syntax for CREATE | NDEX using Sybase SQL Server is as fol lows:
SYNTAX:

create [unique] [clustered | noncl ustered]
i ndex i ndex_name
on [[dat abase.]owner.]tabl e _nane (col um_nane
[, colum_nane]...)
[with {fillfactor = x, ignore_dup_key, sorted _data,
[ignore_dup_row | allow dup_row}]
[on segnent nane]

Informix SQL implements the command like this:
SYNTAX:

CREATE [UNI QUE | DI STINCT] [CLUSTER] | NDEX i ndex_nane
ON tabl e_nane (colum_nanme [ASC | DESC,
colum_name [ASC | DESC]...)

Notice that all of these implementations have several things in common, starting with

the basic statement

CREATE | NDEX i ndex_nane ON tabl e_nanme (colum_nane, ...)

SQL Server and Oracle allow you to create a clustered index, which is discussed later.
Oracle and Informix allow you to designate whether the column name should be sorted
in ascending or descending order. We hate to sound like a broken record, but, once
again, you should definitely consult your database management system's documentation

when using the CREATE | NDEX command.

For instance, to create an index on the ACCOUNT | Dfield of the BI LLS table, the

CREATE | NDEX statement would look like this:

INPUT:

SQL> SELECT * FROM BI LLS;

OUTPUT:

NANVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Water Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.

INPUT/OUTPUT:

SQL> CREATE | NDEX I D I NDEX ON BI LLS(ACCOUNT ID);
| ndex creat ed.

SQL> SELECT * FROM BI LLS;

NANVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Sof t war e Conpany 250 1
Fl ori da Water Conpany 20 1
Record Cl ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
Joe's Car Pal ace 350 5
U- O Us | nsurance Conpany 125 5
S.C. Student Loan 200 6

10 rows sel ect ed.

The Bl LLS table is sorted by the ACCOUNT _I Dfield until the index is dropped using the
DROP | NDEX statement. As usual, the DROP | NDEX statement is very straightforward:

SYNTAX:

SQL> DROP | NDEX i ndex_nane;

Here's what happens when the index is dropped:
INPUT/OUTPUT:

SQL> DROP | NDEX | D_I NDEX

I ndex dropped.

SQ.> SELECT * FROM BI LLS;

NAMVE AMOUNT ACCOUNT I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Wat er Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.

ANALYSIS:

Now the Bl LLS table isin its original form. Using the simplest form of the CREATE
| NDEX statement did not physical ly change the way the table was stored.

You may be wondering why database systems even provide indexes if they also enable
you to use the ORDER BY clause.

INPUT/OUTPUT:

SQ> SELECT * FROM BI LLS ORDER BY ACCOUNT_I D

NAVE AMOUNT ACCOUNT I D
Phone Conpany 125 1
Power Conpany 75 1
Sof t war e Conpany 250 1
Fl ori da Wat er Conpany 20 1
Record Cl ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
Joe's Car Pal ace 350 5
U- O Us | nsurance Conpany 125 5
S.C. Student Loan 200 6

10 rows sel ect ed.

ANALYSIS:

This SELECT statement and the | D_| NDEX on the Bl LLS table generate the same result.
The difference is that an ORDER BY clause re-sorts and orders the data each time you
execute the corresponding SQL statement. When using an index, the database system
creates a physical index object (using the tree structure explained earlier) and reuses
the same index each time you query the table.

WARNING: When a table is dropped, all indexes associated with the table
are dropped as well.

Indexing Tips
Listed here are several tips to keep in mind when using indexes:
. For small tables, using indexes does not result in any performance improvement.

. Indexes produce the greatest improvement when the columns you have indexed on
contain a wide variety of data or many NULL values.

. Indexes can optimize your queries when those queries are returning a small
amount of data (a good rule of thumb is less than 25 percent of the data). If you
are returning more data most of the time, indexes simply add overhead.

. Indexes can improve the speed of data retrieval. However, they slow data updates.
Keep this in mind when doing many updates in a row with an index. For very large
updates, you might consider dropping the index before you perform the update.
When the update is complete, simply rebuild your index. On one particular update,
we were able to save the programmers 18 hours by dropping the index and re-
creating it after the data load.

. Indexes take up space within your database. If you are using a database
management system that enables you to manage the disk space taken up your
database, factor in the size of indexes when planning your database's size.

. Always index on fields that are used in joins between tables. This technique can
greatly increase the speed of a join.

. Most database systems do not allow you to create an index on a view. If your
database system allows it, use the technique clause with the SELECT statement
that builds the view to order the data within the view. (Unfortunately, many
systems don't enable the ORDER BY clause with the CREATE VI EWstatement
either.)

. Do not index on fields that are updated or modified regularly. The overhead
required to constantly update the index will offset any performance gain you
hope to acquire.

. Do not store indexes and tables on the same physical drive. Separating these

objects will eliminate drive contention and result in faster queries.

Indexing on More Than One Field

SQL also enables you to index on more than one field. This type of index is a composite
index. The following code illustrates a simple composite index. Note that even though
two fields are being combined, only one physical index is created (called

| D_CMPD_| NDEX).

INPUT/OUTPUT:

SQL> CREATE | NDEX | D _CMPD_| NDEX ON BI LLS(ACCOUNT_ | D, AMOUNT);
| ndex creat ed.

SQ.> SELECT * FROM BI LLS;

NAVE AMOUNT ACCOUNT _I D
Fl ori da Water Conpany 20 1
Power Conpany 75 1
Phone Conpany 125 1
Sof t war e Conpany 250 1
Record C ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
U- O Us | nsurance Conpany 125 5
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6

10 rows sel ect ed.
SQ.> DROP | NDEX | D_CVPD | NDEX;

| ndex dropped.

ANALYSIS:

You can achieve performance gains by selecting the column with the most unique
values. For instance, every value in the NAME field of the Bl LLS table is unique. When
using a compound index, place the most selective field first in the column list. That is,
place the field that you expect to select most often at the beginning of the list. (The
order in which the column names appear in the CREATE | NDEX statement does not have
to be the same as their order within the table.) Assume you are routinely using a
statement such as the following:

SQL> SELECT * FROM BI LLS WHERE NAME = "Cabl e TV Conpany";

To achieve performance gains, you must create an index using the NAVME field as the
leading column. Here are two examples:

SQL> CREATE | NDEX NAME_I NDEX ON BI LLS(NAVE, AMOUNT) ;

or

SQL> CREATE | NDEX NANME_| NDEX ON Bl LLS(NAVE) ;

The NAME field is the left-most column for both of these indexes, so the preceding query
would be optimized to search on the NANME field.

Composite indexes are also used to combine two or more columns that by themselves may
have low selectivity. For an example of selectivity, examine the BANK _ACCOUNTS table:

ACCOUNT _I D TYPE BALANCE BANK

1 Checki ng 500 First Federal

2 Money Mar ket 1200 First Investor's
3 Checki ng 90 Credit Union

4 Savi ngs 400 First Federal

5 Checki ng 2500 Second Mut ual

6 Busi ness 4500 Fidelity

Notice that out of six records, the value Checki ng appears in three of them. This
column has a lower selectivity than the ACCOUNT _| Dfield. Notice that every value of
the ACCOUNT _I Dfield is unique. To improve the selectivity of your index, you could
combine the TYPE and ACCOUNT _| Dfields in a new index. This step would create a
unique index value (which, of course, is the highest selectivity you can get).

NOTE: An index containing multiple columns is often referred to as a
composite index. Performance issues may sway your decision on whether to use
a single-column or composite index. In Oracle, for example, you may decide
to use a single-column index if most of your queries involve one particular
column as part of a condition; on the other hand, you would probably
create a composite index if the columns in that index are often used
together as conditions for a query. Check your specific implementation on
guidance when creating multiple-column indexes.

Using the UNIQUE Keyword with CREATE INDEX

Composite indexes are often used with the UNI QUE keyword to prevent multiple records
from appearing with the same data. Suppose you wanted to force the Bl LLS table to
have the following built-in "rule"; Each bill paid to a company must come from a
different bank account. You would create a UNI QUE index on the NAME and

ACCOUNT _I Dfields. Unfortunately, Oracle7 does not support the UNI QUE syntax.
Instead, it implements the UNI QUE feature using the UNI QUE integrity constraint. The

following example demonstrates the UNI QUE keyword with CREATE | NDEX using
Sybase's Transact-SQL language.

INPUT:

1> create unique index unique_id name
2> on Bl LLS(ACCOUNT | D, NAMNE)

3> go

1> select * fromBILLS

2> go

OUTPUT:

NANVE AMOUNT ACCOUNT _I D
Fl ori da Water Conpany 20 1
Power Conpany 75 1
Phone Conpany 125 1
Sof t war e Conpany 250 1
Record C ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
U- O Us | nsurance Conpany 125 5
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6

Now try to insert a record into the Bl LLS table that duplicates data that already
exists.

INPUT:

1> insert BILLS (NAME, AMOUNT, ACCOUNT_ I D)
2> val ues(" Power Conpany", 125, 1)
3> go

ANALYSIS:

You should have received an error message telling you that the | NSERT command was
not allowed. This type of error message can be trapped within an application program,
and a message could tell the user he or she inserted invalid data.

Example 10.3

Create an index on the Bl LLS table that will sort the AMOUNT field in descending
order.

INPUT/OUTPUT:

SQ.> CREATE | NDEX DESC_AMOUNT

ON Bl LLS(AMOUNT DESC);

| ndex cr eat ed.

ANALYSIS:

This is the first time you have used the DESC operator, which tells SQL to sort the index
in descending order. (By default a number field is sorted in ascending order.) Now you
can examine your handiwork:

INPUT/OUTPUT:

SQ.> SELECT * FROM BI LLS;

NANVE AMOUNT ACCOUNT _I D
Joe's Car Pal ace 350 5
Sof t war e Conpany 250 1
S.C. Student Loan 200 6
Phone Conpany 125 1
U- O Us | nsurance Conpany 125 5
Power Conpany 75 1
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
Record C ub 25 2
Fl ori da Water Conpany 20 1

10 rows sel ect ed.

ANALYSIS:

This example created an index using the DESC operator on the column amount. Notice in
the output that the amount is ordered from largest to smallest.

| ndexes and Joins

When using complicated joins in queries, your SELECT statement can take a long time.
With large tables, this amount of time can approach several seconds (as compared to the
milliseconds you are used to waiting). This type of performance in a client/server
environment with many users becomes extremely frustrating to the users of your
application. Creating an index on fields that are frequently used in joins can optimize
the performance of your query considerably. However, if too many indexes are created,
they can slow down the performance of your system, rather than speed it up. We
recommend that you experiment with using indexes on several large tables (on the order
of thousands of records). This type of experimentation leads to a better understanding
of optimizing SQL statements.

NOTE: Most implementations have a mechanism for gathering the elapsed

time of a query; Oracle refers to this feature as timing. Check your
implementation for specific information.

The following example creates an index on the ACCOUNT _| Dfields in the BI LLS and
BANK _ACCOUNTS tables:

INPUT/OUTPUT:

SQL> CREATE | NDEX BI LLS | NDEX ON BI LLS(ACCOUNT_I D) ;

| ndex created.

SQL> CREATE | NDEX BI LLS | NDEX2 ON BANK_ ACCOUNTS(ACCOUNT_I D) ;
| ndex created.

SQ.> SELECT BI LLS. NAME NAME, BI LLS. AMOUNT AMOUNT,
BANK_ACCOUNTS. BALANCE

2 ACCOUNT_BALANCE

3 FROM BI LLS, BANK_ACCOUNTS

4 WHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D

NAVE AMOUNT ACCOUNT _BALANCE
Phone Conpany 125 500
Power Conpany 75 500
Sof t war e Conpany 250 500
Fl ori da Wat er Conpany 20 500
Record Cl ub 25 1200
Cabl e TV Conpany 35 90
Debtor's Credit Card 35 400
Joe's Car Pal ace 350 2500
U- O Us | nsurance Conpany 125 2500
S.C. Student Loan 200 4500

10 rows sel ect ed.

ANALYSIS:

This example first created an index for the ACCOUNT _I Don both tables in the associated
query. By creating indexes for ACCOUNT _| Don each table, the join can more quickly
access specific rows of data. As a rule, you should index the column(s) of a table that
are unique or that you plan to join tables with in queries.

Using Clusters

Although we originally said that indexes can be used to present a view of a table that
Is different from the existing physical arrangement, this statement is not entirely
accurate. A special type of index supported by many database systems al lows the
database manager or developer to cluster data. When a clustered index is used, the

physical arrangement of the data within a table is modified. Using a clustered index
usually results in faster data retrieval than using a traditional, nonclustered index.
However, many database systems (such as Sybase SQL Server) allow only one clustered
index per table. The field used to create the clustered index is usually the primary key
field. Using Sybase Transact-SQL, you could create a clustered, unique index on the
ACCOUNT _ I Dfield of the BANK ACCOUNTS table using the following syntax:

SYNTAX:

create unique clustered index id_index
on BANK_ACCOUNTS(ACCOUNT _| D)

go

Oracle treats the concept of clusters differently. When using the Oracle relational
database, a cluster is a database object like a database or table. A cluster is used to
store tables with common fields so that their access speed is improved.

Here is the syntax to create a cluster using Oracle7:
SYNTAX:

CREATE CLUSTER [schema.]cl uster

(colum datatype [, colum datatype] ...)
[PCTUSED i nteger] [PCTFREE i nteger]

[SIZE integer [KIM]

[Nl TRANS i nteger] [MAXTRANS i nteger]

[TABLESPACE t abl espace]

[STORAGE storage cl ause]

[!'!under!! | NDEX

| [HASH IS col um] HASHKEYS i nt eger]

You should then create an index within the cluster based on the tables that will be
added to it. Then you can add the tables. You should add tables only to clusters that
are frequently joined. Do not add tables to clusters that are accessed individually
through a simple SELECT statement.

Obviously, clusters are a very vendor-specific feature of SQL. We will not go into more
detail here on their use or on the syntax that creates them. However, consult your
database vendor's documentation to determine whether your database management
system supports these useful objects.

Summary

Views are virtual tables. Views are simply a way of presenting data in a format that is
different from the way it actual ly exists in the database. The syntax of the CREATE
VI EWstatement uses a standard SELECT statement to create the view (with some

exceptions). You can treat a view as a regular table and perform inserts, updates,
deletes, and selects on it. We briefly discussed the use of database security and how
views are commonly used to implement this security. Database security is covered in
greater detail on Day 12.

The basic syntax used to create a view is

CREATE VI EW vi ew_nane AS
SELECT field nane(s) FROM tabl e nane(s);

Here are the most common uses of views:
. To perform user security functions
. Toconvert units
. Tocreate a new virtual table format
. Tosimplify the construction of complex queries

Indexes are also database design and SQL programming tools. Indexes are physical
database objects stored by your database management system that can be used to
retrieve data already sorted from the database. In addition, thanks to the way indexes
are mapped out, using indexes and properly formed queries can yield significant
performance improvements.

The basic syntax used to create an index looks like this:

CREATE | NDEX i ndex_narme
ON tabl e_nane(field _nane(s));

Some database systems include very useful additional options such as the UNI QUE and
CLUSTERED keywords.

Q& A

Q If the data within my table is already in sorted order, why should | use an
index on that table?

A An index still gives you a performance benefit by looking quickly through key
values in a tree. The index can locate records faster than a direct access search
through each record within your database. Remember--the SQL query processor
doesn't necessarily know that your data is in sorted order.

Q Can | create an index that contains fields from multiple tables?

A No, you cannot. However, Oracle7, for instance, allows you to create a cluster.
You can place tables within a cluster and create cluster indexes on fields that
are common to the tables. This implementation is the exception, not the rule, so be
sure to study your documentation on this topic in more detail.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. What will happen if a unique index is created on a nonunique field?
2. Are the following statements true or false?

Both views and indexes take up space in the database and therefore must be
factored in the planning of the database size.

If someone updates a table on which a view has been created, the view must

If someone updates a table on which a view has been created, the view must

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 11 -
Controlling Transactions

You have spent the last 10 days learning virtually everything that you can do with
data within a relational database. For example, you know how to use the SQL SELECT
statement to retrieve data from one or more tables based on a number of conditions
supplied by the user. You have also had a chance to use data modification statements
such as | NSERT, UPDATE, and DELETE. As of today, you have become an intermediate-
level SQL and database user. If required, you could build a database with its associated
tables, each of which would contain several fields of different data types. Using proper
design techniques, you could leverage the information contained within this database
into a powerful application.

ODbjectives

If you are a casual user of SQL who occasionally needs to retrieve data from a
database, the topics of the first 10 days provide most of the information you will need.
However, if you intend to (or are currently required to) develop a professional
application using any type of relational database, the advanced topics covered over the
next four days--transaction control, security, embedded SQL programming, and database
procedures--will help you a great deal. We begin with transaction control. By the end
of the day, you will know the fol lowing:

. The basics of transaction control
. How to finalize and or cancel a transaction

. Some of the differences between Sybase and Oracle transactions

NOTE: We used both Personal Oracle7 and Sybase's SQL Server to generate
today's examples. Please see the documentation for your specific SQL
implementation for any minor differences in syntax.

Transaction Control

Transaction control, or transaction management, refers to the capability of a
relational database management system to perform database transactions. Transactions
are units of work that must be done in a logical order and successfully as a group or
not at all. The term unit of work means that a transaction has a beginning and an end.
If anything goes wrong during the transaction, the entire unit of work can be canceled
if desired. If everything looks good, the entire unit of work can be saved to the
database.

In the coming months or years you will probably be implementing applications for
multiple users to use across a network. Client/server environments are designed
specifical ly for this purpose. Traditionally, a server (in this case, a database server)
supports multiple network connections to it. As often happens with technology, this
newfound flexibility adds a new degree of complexity to the environment. Consider the
banking application described in the next few paragraphs.

The Banking Application

You are employed by First Federal Financial Bank to set up an application that handles
checking account transactions that consist of debits and credits to customers' checking
accounts. You have set up a nice database, which has been tested and verified to work
correctly. After calling up your application, you verify that when you take $20 out of
the account, $20 actual ly disappears from the database. When you add $50.25 to the
checking account, this deposit shows up as expected. You proudly announce to your
bosses that the system is ready to go, and several computers are set up in a local branch
to begin work.

Within minutes, you notice a situation that you did not anticipate: As one teller is
depositing a check, another teller is withdrawing money from the same account. Within
minutes, many depositors' balances are incorrect because multiple users are updating
tables simultaneously. Unfortunately, these multiple updates are overwriting each
other. Shortly thereafter, your application is pulled offline for an overhaul. We will
work through this problem with a database called CHECKI NG Within this database are
two tables, shown in Tables 11.1 and 11.2.

Table11.1. The CUSTOMERS table.

Name Address City State Zip |Customer_ID
Bill Turner |22 N- Deal Washington |DC (20085 |1
Parkway
John Keith Ezrzo Viabeluna |1 ksonville [FL [33581 2
Mary 482 Wannamaker |\ iy jiamshurg VA (23478 13
Rosenberg Avenue
David Blanken [“0° N- Davis Greenville |SC [29652 |4
Highway
Rebecca Little |7753 Woods Lane Houston TX 38764 |5

Table11.2. The BALANCES table.

Average_Bal Curr_Bal Account_ID
1298.53 854.22 1
5427.22 6015.96 2
211.25 190.01 3
73.79 25.87 4
1285.90 1473.75 5
1234.56 1543.67 6
345.25 348.03 7

Assume now that your application program performs a SELECT operation and retrieves
the following data for Bill Turner:

OUTPUT:

NAME: Bill Turner

ADDRESS: 725 N. Deal Parkway
CITY: Washi ngton

STATE: DC

ZI P: 20085

CUSTOVER ID: 1

While this information is being retrieved, another user with a connection to this
database updates Bill Turner's address information:

INPUT:

SQL> UPDATE CUSTOVERS SET Address = "11741 Ki ngstowne Road"

VWHERE Nanme = "Bill Turner";

As you can see, the information you retrieved earlier could be invalid if the update
occurred during the middle of your SELECT. If your application fired off a letter to be
sent to Mr. Bill Turner, the address it used would be wrong. Obviously, if the letter has
already been sent, you won't be able to change the address. However, if you had used a
transaction, this data change could have been detected, and all your other operations
could have been rolled back.

Beginning a Transaction

Transactions are quite simple to implement. You will examine the syntax used to perform
transactions using the Oracle RDBMS SQL syntax as well as the Sybase SQL Server SQL
syntax.

All database systems that support transactions must have a way to explicitly tell the
system that a transaction is beginning. (Remember that a transaction is a logical
grouping of work that has a beginning and an end.) Using Personal Oracle7, the syntax
looks like this:

SYNTAX:

SET TRANSACTI ON { READ ONLY | USE ROLLBACK SEGVENT segment}

The SQL standard specifies that each database's SQL implementation must support
statement-level read consistency; that is, data must stay consistent while one
statement is executing. However, in many situations data must remain valid across a
single unit of work, not just within a single statement. Oracle enables the user to
specify when the transaction will begin by using the SET TRANSACTI ONstatement. If
you wanted to examine Bill Turner's information and make sure that the data was not
changed, you could do the following:

INPUT:

SQ.> SET TRANSACTI ON READ ONLY;
SQ.> SELECT * FROM CUSTOMERS
VHERE NAME = "Bill Turner':

---Do O her Qperations---
SQL> COW T,
We discuss the COVWM T statement later today. The SET TRANSACTI ON READ ONLY

option enables you to effectively lock a set of records until the transaction ends. You
can use the READ ONLY option with the fol lowing commands:

SELECT

LOCK TABLE
SET ROLE
ALTER SESSI ON

ALTER SYSTEM

The option USE ROLLBACK SEGVENT tells Oracle which database segment to use for
rol Iback storage space. This option is an Oracle extension to standard SQL syntax.
Consult your Oracle documentation for more information on using segments to maintain
your database.

SQL Server's Transact-SQL language implements the BEG N TRANSACTI ON command
with the following syntax:

SYNTAX:

begin {transaction | tran} [transaction_nane]

This implementation is a little different from the Oracle implementation. (Sybase does
not allow you to specify the READ ONLY option.) However, Sybase does allow you to
give a transaction a name, as long as that transaction is the outermost of a set of
nested transactions.

The following group of statements il lustrates the use of nested transactions using
Sybase's Transact-SQL language:

INPUT:

1> begin transacti on new_account

2> insert CUSTOMERS val ues ("lzetta Parsons”, "1285 Pineappl e
H ghway", "G eenville", "AL" 32854, 6)

3> if exists(select * from CUSTOVERS where Nanme = "lzetta Parsons")
4> begin

5> begin transaction

6> i nsert BALANCES val ues(1250. 76, 1431.26, 8)

7> end

8> el se

9> rol | back transaction

10> if exists(select * from BALANCES where Account _ID = 8)
11> begin

12> begin transaction

13> insert ACCOUNTS val ues(8, 6)

14> end

15> el se

16> rol | back transaction

17> if exists (select * from ACCOUNTS where Account_ID = 8 and
Customer _ID = 6)

18> conmit transaction

19> el se

20> rol |l back transacti on

21> go

For now, don't worry about the ROLLBACK TRANSACTI ONand COYM T TRANSACTI ON
statements. The important aspect of this example is the nested transaction--or a
transaction within a transaction.

Notice that the original transaction (new_account) begins on line 1. After the first
insert, you check to make sure the | NSERT was executed properly. Another transaction
begins on line 5. This transaction within a transaction is termed a nested transaction.

Other databases support the AUTOCOWM T option. This option can be used with the SET
command. For example:

SET AUTOCOMWM T [ON | OFF]

By default, the SET AUTOCOVM T ONcommand is executed at startup. It tells SQL to
automatically commit all statements you execute. If you do not want these commands
to be automatical ly executed, set the AUTOCOWM T option to off:

SET AUTOCOW T COFF

NOTE: Check your database system's documentation to determine how you
would begin a transaction.

Finishing a Transaction

The Oracle syntax to end a transaction is as fol lows:
SYNTAX:

COW T [WORK]
[COWMENT 'text'
| FORCE "text' [, integer]]

Here is the same command using Sybase syntax:

SYNTAX:

COW T (TRANSACTI ON | TRAN | WORK) (TRANSACTI ON_NAME)

The COW T command saves all changes made during a transaction. Executinga COMWM T
statement before beginning a transaction ensures that no errors were made and no
previous transactions are left hanging.

The following example verifies that the COMM T command can be used by itself without
receiving an error back from the database system.

INPUT:

SQ.> COWM T;

SQL> SET TRANSACTI ON READ ON\LY;

SQ.> SELECT * FROM CUSTQOVERS
VWHERE NAME = 'Bill Turner';

---Do Ot her Operations---

SQ> COW T;
An Oracle SQL use of the COW T statement would look like this:

INPUT:

SQL> SET TRANSACTI ON;
SQL> | NSERT | NTO CUSTOVERS VALUES
("John MacDowel | ", "2000 Lake Lunge Road", "Chicago", "IL",
42854, 7);
SQL> COW T,
SQL> SELECT * FROM CUSTOMVERS;

The CUSTOMERS table.

Name Address City State |Zip |Customer_ID
Bill Turner 725 N. Deal Washington |DC 20085 |1
Parkway
John Keith 1D2r20 Via De Luna Jacksonville FL 33581 |2
Mary Rosenberg 482 Wannamaker Williamsburg VA (23478 |3
Avenue
David Blanken 495 N. Davis Greenville |SC 29652 |4
Highway
Rebecca Little |[7753 Woods Lane |Houston TX 38764 5

Izetta Parsons 12.85 Pineapple Greenville |AL 32854 |6
Highway

John 2000 Lake Lunge :

MacDowell Road Chicago IL 42854 |7

A Sybase SQL use of the COMM T statement would look like this:
INPUT:

1> begin transaction
2> insert into CUSTOVERS val ues

("John MacDowel | ", "2000 Lake Lunge Road", "Chicago", "IL", 42854,
7)
3> commt transaction
4> go
1> select * from CUSTOVERS
2> go

The CUSTOMERS table.

Name Address City State |Zip |Customer_ID

Bill Turner |22 N Deal Washington |DC (20085 |1
Parkway

John Keith E2r20 ViabDeluna |, \conville [FL (33581 2

Mary Rosenberg 482 Wannamaker Williamsburg VA (23478 |3
Avenue

David Blanken |+0° N- Davis Greenville |SC 29652 |4
Highway

Rebecca Little 7753 Woods Lane |Houston X 38764 |5

|zetta Parsons 12.85 Pineapple Greenville AL 32854 |6
Highway

John 2000 Lake Lunge :

MacDowell Road Chicago IL 42854 |7

The preceding statements accomplish the same thing as they do using the Oracle7
syntax. However, by putting the COVW T command soon after the transaction begins,
you ensure that the new transaction will execute correctly.

NOTE: The COM T WORK command performs the same operation as the
COW T command (or Sybase's COVMM T TRANSACTI ON command). It is

provided simply to comply with ANSI SQL syntax.

Remember that every COVM T command must correspond with a previously executed SET
TRANSACTI ONor BEG N TRANSACTI ONcommand. Note the errors you receive with the
following statements:

Oracle SQL.:
INPUT:

SQL> | NSERT | NTO BALANCES val ues (18765.42, 19073.06, 8);
SQL> COMM T WORK;

Sybase SQL.:
INPUT:

1> insert into BALANCES val ues (18765.42, 19073.06, 8)
2> commt work

Canceling the Transaction

While a transaction is in progress, some type of error checking is usually performed to
determine whether it is executing successfully. You can undo your transaction even
after successtul completion by issuing the ROLLBACK statement, but it must be issued
before a COMM T. The ROLLBACK statement must be executed from within a transaction.
The ROLLBACK statement rolls the transaction back to its beginning; in other words,
the state of the database is returned to what it was at the transaction's beginning. The
syntax for this command using Oracle7 is the following:

SYNTAX:

ROLLBACK [WORK]
[TO [SAVEPO NT] savepoi nt
| FORCE '"text']

As you can see, this command makes use of a transaction savepoint. We discuss this
technique later today.

Sybase Transact-SQL's ROLLBACK statement looks very similar to the COMM T command:

SYNTAX:

rol | back {transaction | tran | work}

[transaction_nane | savepoi nt_nane]

An Oracle SQL sequence of commands might look like this:
INPUT:

SQ.> SET TRANSACTI ON;
SQ.> | NSERT | NTO CUSTOVERS VALUES
(" Bubba MacDowel | ", "2222 Bl ue Lake Way", "Austin", "TX', 39874,
8);
SQL> ROLLBACK;
SQ.> SELECT * FROM CUSTOMERS

The CUSTOMERS table.

Name Address City State |Zip |Customer_ID

Bill Turner 725 N. Deal Washington DC 20085 |1
Parkway

John Keith 1D2r20 ViaDe Luna Jacksonville |FL 33581 |2

Mary Rosenberg 482 Wannamaker Williamsburg VA |23478 |3
Avenue

David Blanken 495 N. Davis Greenville |SC 29652 |4
Highway

Rebecca Little 7753 Woods Lane |Houston TX 38764 |5

Izetta Parsons 12.85 Pineapple Greenville |AL 32854 |6
Highway

John 2000 Lake Lunge :

MacDowell Road Chicago IL 42854 |7

A Sybase SQL sequence of commands might look like this:
INPUT:

1> begin transaction
2> insert into CUSTOVERS val ues
(" Bubba MacDowel | ", "2222 Bl ue Lake Way", "Austin", "TX', 39874, 8)
3> rol |l back transaction
4> go
1> SELECT * FROM CUSTOVERS
2> go

The CUSTOMERS table.

Name Address City State |Zip |Customer_ID

Bill Turner |22 N Deal Washington DC 20085 |1
Parkway

John Keith L220VIaBeLUNa packsonville FL (33581 2

Mary Rosenberg 482 Wannamaker Williamsburg VA |23478 |3
Avenue

David Blanken |-0° N- Davis Greenville |SC 29652 4
Highway

Rebecca Little 7753 Woods Lane |Houston X 38764 |5

Izetta Parsons 12.85 Pineapple Greenville |AL 32854 |6
Highway

John 2000 Lake Lunge :

MacDowell Road Chicago IL 42854 |7

As you can see, the new record was not added because the ROLLBACK statement rolled
the insert back.

Suppose you are writing an application for a graphical user interface, such as Microsoft
Windows. You have a dialog box that queries a database and allows the user to change
values. If the user chooses OK, the database saves the changes. If the user chooses
Cancel, the changes are canceled. Obviously, this situation gives you an opportunity to
use a transaction.

NOTE: The following code listing uses Oracle SQL syntax; notice the SQL>
prompt and line numbers. The subsequent listing uses Sybase SQL syntax,
which lacks the SQL> prompt.

When the dialog box is loaded, these SQL statements are executed:
INPUT:

SQ.> SET TRANSACTI ON,

SQ.> SELECT CUSTOVERS. NAME, BALANCES. CURR BAL, BALANCES. ACCOUNT_I D
2 FROM CUSTOMERS, BALANCES
3 WHERE CUSTOMERS. NAME = "Rebecca Little"
4 AND CUSTOVERS. CUSTOMER I D = BALANCES. ACCOUNT_I D

The dialog box allows the user to change the current account balance, so you need to
store this value back to the database.

When the user selects OK, the update will run.
INPUT:

SQ.> UPDATE BALANCES SET CURR BAL = 'new val ue’ WHERE ACCOUNT | D = 6;
SQL> COW T,

When the user selects Cancel, the ROLLBACK statement is issued.
INPUT:

SQL> ROLLBACK;

When the dialog box is loaded using Sybase SQL, these SQL statements are executed:
INPUT:

1> begin transaction

2> sel ect CUSTOMERS. Nane, BALANCES. Curr _Bal, BALANCES. Account |ID
3> from CUSTOVERS, BALANCES

4> where CUSTOVERS. Nanme = "Rebecca Little"

5> and CUSTOVERS. Cust onmer _| D = BALANCES. Account I D

6> go

The dialog box allows the user to change the current account balance, so you can
store this value back to the database.

Here again, when the OK button is selected, the update will run.
INPUT:

1> updat e BALANCES set Curr_ BAL = 'new val ue' WHERE Account ID = 6
2> commt transaction
3> go

When the user selects Cancel, the ROLLBACK statement is issued.
INPUT:

1> rol |l back transacti on
2> go

The ROLLBACK statement cancels the entire transaction. When you are nesting
transactions, the ROLLBACK statement completely cancels all the transactions,
rolling them back to the beginning of the outermost transaction.

If no transaction is currently active, issuing the ROLLBACK statement or the COM T
command has no effect on the database system. (Think of them as dead commands with no
purpose.)

After the COW T statement has been executed, all actions with the transaction are
executed. At this point it is too late to roll back the transaction.

Using Transaction Savepoints

Rolling back a transaction cancels the entire transaction. But suppose you want to
"semicommit” your transaction midway through its statements. Both Sybase and Oracle
SQL allow you to save the transaction with a savepoint. From that point on, if a
ROLLBACK is issued, the transaction is rolled back to the savepoint. All statements that
were executed up to the point of the savepoint are saved. The syntax for creating a
savepoint using Oracle SQL is as fol lows:

SYNTAX:

SAVEPQO NT savepoi nt _nane;

Sybase SQL Server's syntax to create a savepoint is the following:
SYNTAX:

save transaction savepoi nt _nane

This following example uses Oracle SQL syntax.
INPUT:

SQL> SET TRANSACTI ON;

SQL> UPDATE BALANCES SET CURR BAL = 25000 WHERE ACCOUNT I D = 5;
SQL> SAVEPO NT save_ it;

SQL> DELETE FROM BALANCES WHERE ACCOUNT I D = 5;

SQ.> RCOLLBACK TO SAVEPAO NT save it;

SQL> COW T;

SQL> SELECT * FROM BALANCES;

The BALANCEStable.

Average Bal Curr_Bal Account_ID
1298.53 854.22 1
5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4
1285.90 25000.00 5
1234.56 1543.67 6
345.25 348.03 7
1250.76 1431.26 8

This example uses Sybase SQL syntax:
INPUT:

1> begin transaction

2> updat e BALANCES set Curr_Bal = 25000 where Account ID =5
3> save transaction save_ it

4> del ete from BALANCES where Account ID =5

5> rol | back transaction save_ it

6> conmit transaction

7> go

1> sel ect * from BALANCES

2> go

The BALANCES table.

Average Bal Curr_Bal Account_ID
1298.53 854.22 1
5427.22 6015.96 2
211.25 190.01 3
73.79 25.87 4
1285.90 25000.00 5
1234.56 1543.67 6
345.25 348.03 7
1250.76 1431.26 8

The previous examples created a savepoint called SAVE | T. An update was made to the
database that changed the value of the CURR BAL column of the BALANCES table. You
then saved this change as a savepoint. Following this save, you executed a DELETE
statement, but you rolled the transaction back to the savepoint immediately
thereafter. Then you executed COM T TRANSACTI ON, which committed all commands
up to the savepoint. Had you executed a ROLLBACK TRANSACTI ON after the ROLLBACK
TRANSACTI ON savepoi nt _nane command, the entire transaction would have been
rolled back and no changes would have been made.

This example uses Oracle SQL syntax:

INPUT:

SQL> SET TRANSACTI ON;

SQL> UPDATE BALANCES SET CURR BAL = 25000 WHERE
SQ.> SAVEPO NT save it;

SQL> DELETE FROM BALANCES WHERE ACCOUNT_I D = 5;
SQ.> ROLLBACK TO SAVEPO NT save it;

SQL> ROLLBACK;

SQL> SELECT * FROM BALANCES;

The BALANCEStable.

ACCOUNT I D = 5;

Average Bal Curr_Bal Account_ID
1298.53 854.22 1
5427.22 6015.96 2
211.25 190.01 3
73.79 25.87 4
1285.90 1473.75 5
1234.56 1543.67 6
345.25 348.03 7
1250.76 1431.26 8

This example uses Sybase SQL syntax:

INPUT:

1>
2>
3>
4>
5>
6>
7>
1>
2>

begin transaction

updat e BALANCES set Curr_Bal = 25000 where Account ID =5

save transaction save_ it

del et e from BALANCES where Account ID =5
rol | back transaction save it

rol | back transaction

go

sel ect * from BALANCES

go

The BALANCEStable.

Average Bal Curr_Bal

Account_ID

1298.53 854.22

1

5427.22 6015.96

2

211.25 190.01 3
73.79 25.87 4
1285.90 1473.75 5
1234.56 1543.67 6
345.25 348.03 7
1250.76 1431.26 8
Summary

A transaction can be defined as an organized unit of work. A transaction usually
performs a series of operations that depend on previously executed operations. If one of
these operations is not executed properly or if data is changed for some reason, the rest
of the work in a transaction should be canceled. Otherwise, if all statements are
executed correctly, the transaction's work should be saved.

The process of canceling a transaction is called a rol lback. The process of saving the
work of a correctly executed transaction is called a commit. SQL syntax supports these
two processes through syntax similar to the following two statements:

SYNTAX:

BEG N TRANSACTI ON
statenent 1
statenent 2
statenent 3

ROLLBACK TRANSACTI ON

or
SYNTAX:

BEG N TRANSACTI ON
statenent 1
statenent 2
statenent 3

COMWM T TRANSACTI ON

Q&A

Q If I have a group of transactions and one transaction is unsuccessful, will
the rest of the transactions process?

A No. The entire group must run successfully.

Q After issuing the COMM T command, | discovered that | made a mistake. How
can | correct the error?

A Use the DELETE, | NSERT, and UPDATE commands.
Q Must | issue the COMM T command after every transaction?

A No. But it is safer to do so to ensure that no errors were made and no previous
transactions are left hanging.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. When nesting transactions, does issuing a ROLLBACK TRANSACTI ON command

cancel the current transaction and roll back the batch of statements into the
upper-level transaction? Why or why not?

2. Can savepoints be used to "save off" portions of a transaction? Why or why not?
3. Can a COW T command be used by itself or must it be embedded?

4. If you issue the COVM T command and then discover a mistake, can you still use
the ROLLBACK command?

5. Will using a savepoint in the middle of a transaction save all that happened
before it automatical ly?

Exercises

1. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> START TRANSACTI ON
| NSERT | NTO CUSTOVERS VALUES
("SMTH , "JOHN)

SQ.> COW T;

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTI ON;
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COMM T:

3. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTI ON,;
| NSERT | NTO BALANCES VALUES
('567.34", '230.00', '8");
SQL> ROLLBACK;

| ¢ Previous Chapter (& MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 12 -
Database Security

Today we discuss database security. We specifically look at various SQL statements and
constructs that enable you to administer and effectively manage a relational database.
Like many other topics you have studied thus far, how a database management system
implements security varies widely among products. We focus on the popular database
product Oracle7 to introduce this topic. By the end of the day, you will understand and
be able to do the following:

. Create users

. Change passwords

. Create roles

. Use views for security purposes

. Use synonyms in place of views

Wanted: Database Administrator

Security is an often-overlooked aspect of database design. Most computer professionals
enter the computer world with some knowledge of computer programming or hardware,
and they tend to concentrate on those areas. For instance, if your boss asked you to
work on a brand-new project that obviously required some type of relational database
design, what would be your first step? After choosing some type of hardware and
software baseline, you would probably begin by designing the basic database for the

project. This phase would gradual ly be split up among several people--one of them a
graphical user interface designer, another a low-level component builder. Perhaps you,
after reading this book, might be asked to code the SQL queries to provide the guts of
the application. Along with this task comes the responsibility of actual ly administering
and maintaining the database.

Many times, little thought or planning goes into the actual production phase of the
application. What happens when many users are allowed to use the application across a
wide area network (WAN)? With today's powerful personal computer software and with
technologies such as Microsoft's Open Database Connectivity (ODBC), any user with
access to your network can find a way to get at your database. (We won't even bring up
the complexities involved when your company decides to hook your LAN to the Internet
or some other wide-ranging computer network!) Are you prepared to face this situation?

Fortunately for you, software manufacturers provide most of the tools you need to
handle this security problem. Every new release of a network operating system faces
more stringent security requirements than its predecessors. In addition, most major
database vendors build some degree of security into their products, which exists
independently of your operating system or network security. Implementation of these
security features varies widely from product to product.

Popular Database Products and Security

As you know by now, many relational database systems are vying for your business.
Every vendor wants you for short- and long-term reasons. During the development
phase of a project, you might purchase a small number of product licenses for testing,
development, and so forth. However, the total number of licenses required for your
production database can reach the hundreds or even thousands. In addition, when you
decide to use a particular database product, the chances are good that you will stay
with that product for years to come. Here are some points to keep in mind when you
examine these products:

. Microsoft FoxPro database management system is a powerful database system that
Is used primarily in single-user environments. FoxPro uses a limited subset of SQL.
No security measures are provided with the system. It also uses an Xbase file
format, with each file containing one table. Indexes are stored in separate files.

. Microsoft Access relational database management system implements more of SQL.
Access is still intended for use on the PC platform, although it does contain a
rudimentary security system. The product enables you to build queries and store
them within the database. In addition, the entire database and all its objects exist
within one file.

. Oracle7 relational database management system supports nearly the full SQL

standard. In addition, Oracle has added its own extension to SQL, called PL*SQL.
It contains full security features, including the capability to create roles and
assign permissions and privileges on objects in the database.

. Sybase SQL Server issimilar in power and features to the Oracle product. SQL
Server also provides a wide range of security features and has its own extensions
to the SQL language, called Transact-SQL.

The purpose behind describing these products is to il lustrate that not all software is
suitable for every application. If you are in a business environment, your options may be
limited. Factors such as cost and performance are extremely important. However,
without adequate security measures, any savings your database creates can be easily
offset by security problems.

How Does a Database Become Secur e?

Up to this point you haven't worried much about the "security"” of the databases you
have created. Has it occurred to you that you might not want other users to come in
and tamper with the database information you have so carefully entered? What would
your reaction be if you logged on to the server one morning and discovered that the
database you had slaved over had been dropped (remember how silent the DROP
DATABASE command is)? We examine in some detail how one popular database
management system (Personal Oracle7) enables you to set up a secure database. You
will be able to apply most of this information to other database management systems, so
make sure you read this information even if Oracle is not your system of choice.

TIP: Keep the following questions in mind as you plan your security system:
. Who gets the DBA role?
. How many users will need access to the database?
« Which users will need which privileges and which roles?

. How will you remove users who no longer need access to the database?

Personal Oracle/ and Security

Oracle7 implements security by using three constructs:

. Users

. Roles

. Privileges
Creating Users

Users are account names that are allowed to log on to the Oracle database. The SQL
syntax used to create a new user follows.

SYNTAX:

CREATE USER user

| DENTI FI ED {BY password | EXTERNALLY}

[DEFAULT TABLESPACE t abl espace]

[TEMPORARY TABLESPACE t abl espace]

[QUOTA {integer [KIM | UNLIM TED} ON tabl espace]
[PROFI LE profile]

If the BY passwor d option is chosen, the system prompts the user to enter a password
each time he or she logs on. As an example, create a username for yourself:

INPUT/OUTPUT:

SQL> CREATE USER Bryan | DENTI FI ED BY CUTI GER;

User creat ed.

Each time | log on with my username Br yan, | am prompted to enter my password:
CUTI GER.

If the EXTERNALLY option is chosen, Oracle relies on your computer system logon name
and password. When you log on to your system, you have essentially logged on to
Oracle.

NOTE: Some implementations al low you to use the external, or operating
system, password as a default when using SQL (I DENTI FI ED externally).
However, we recommend that you force the user to enter a password by
utilizing the | DENTI FI ED BY clause (I DENTI FI ED BY password).

As you can see from looking at the rest of the CREATE USERsyntax, Oracle also allows
you to set up default tablespaces and quotas. You can learn more about these topics by
examining the Oracle documentation.

As with every other CREATE command you have learned about in this book, there is also
an ALTER USER command. It looks like this:

SYNTAX:

ALTER USER user
[1 DENTI FI ED {BY password | EXTERNALLY}]
[DEFAULT TABLESPACE t abl espace]
[TEMPORARY TABLESPACE t abl espace]
[QUOTA {integer [KIM | UNLIM TED} ON tabl espace]
[PROFI LE profile]
[DEFAULT ROLE { role [, role]
| ALL [EXCEPT role [, role] ...] | NONE}]

You can use this command to change all the user's options, including the password and
profile. For example, to change the user Bryan's password, you type this:

INPUT/OUTPUT:

SQL> ALTER USER Bryan
2 | DENTI FI ED BY ROSEBUD;

User altered.

To change the default tablespace, type this:
INPUT/OUTPUT:

SQL> ALTER USER RON
2 DEFAULT TABLESPACE USERS;

User altered.

To remove a user, simply issue the DROP USER command, which removes the user's entry
in the system database. Here's the syntax for this command:

SYNTAX:

DROP USER user nane [CASCADE] ;

IT the CASCADE option is used, all objects owned by username are dropped along with the
user's account. If CASCADE is not used and the user denoted by user _nane still owns
objects, that user is not dropped. This feature is somewhat confusing, but it is useful if
you ever want to drop users.

Creating Roles

A roleisaprivilege or set of privileges that allows a user to perform certain functions
in the database. To grant a role to a user, use the following syntax:

SYNTAX:

GRANT role TO user [WTH ADM N OPTI ON] ;

IfWTH ADM N OPTI ONis used, that user can then grant roles to other users. Isn't
power exhilarating?

To remove a role, use the REVOKE command:
SYNTAX:

REVOKE r ol e FROM user ;

When you log on to the system using the account you created earlier, you have
exhausted the limits of your permissions. You can log on, but that is about all you can
do. Oracle lets you register as one of three roles:

. Connect
. Resource
. DBA (or database administrator)

These three roles have varying degrees of privileges.

NOTE: If you have the appropriate privileges, you can create your own role,
grant privileges to your role, and then grant your role to a user for
further security.

The Connect Role

The Connect role can be thought of as the entry-level role. A user who has been
granted Connect role access can be granted various privileges that allow him or her to
do something with a database.

INPUT/OUTPUT:

SQL> GRANT CONNECT TO Bryan;

G ant succeeded.

The Connect role enables the user to select, insert, update, and delete records from
tables belonging to other users (after the appropriate permissions have been granted).
The user can also create tables, views, sequences, clusters, and synonyms.

The Resour ce Role

The Resource role gives the user more access to Oracle databases. In addition to the
permissions that can be granted to the Connect role, Resource roles can also be granted
permission to create procedures, triggers, and indexes.

INPUT/OUTPUT:

SQL> GRANT RESOURCE TO Bryan;

Grant succeeded.

The DBA Role

The DBA role includes all privileges. Users with this role are able to do essentially
anything they want to the database system. You should keep the number of users with
this role to a minimum to ensure system integrity.

INPUT/OUTPUT:

SQL> GRANT DBA TO Bryan;

Grant succeeded.

After the three preceding steps, user Bryan was granted the Connect, Resource, and
DBA roles. This is somewhat redundant because the DBA role encompasses the other two
roles, so you can drop them now:

INPUT/OUTPUT:

SQL> REVOKE CONNECT FROM Bryan;
Revoke succeeded.
SQL> REVOKE RESOURCE FROM Bryan;

Revoke succeeded.

Bryan can do everything he needs to do with the DBA role.

User Privileges

After you decide which roles to grant your users, your next step is deciding which
permissions these users will have on database objects. (Oracle7 calls these permissions
privileges.) The types of privileges vary, depending on what role you have been granted.
IT you actually create an object, you can grant privileges on that object to other users
as long as their role permits access to that privilege. Oracle defines two types of
privileges that can be granted to users: system privileges and object privileges. (See
Tables 12.1 and 12.2.)

System privileges apply systemwide. The syntax used to grant a system privilege is as
follows:

SYNTAX:

GRANT system privilege TO {user_nane | role | PUBLIC}
[WTH ADM N OPTI ON] ;

W TH ADM N OPTI ONenables the grantee to grant this privilege to someone else.

User Accessto Views

The following command permits all users of the system to have CREATE VI EWaccess
within their own schema.

INPUT:

SQL> GRANT CREATE VI EW
2 TO PUBLI G

OUTPUT:
Grant succeeded.

ANALYSIS:

The publ i ¢ keyword means that everyone has CREATE VI EWprivileges. Obviously,
these system privileges enable the grantee to have a lot of access to nearly all the
system settings. System privileges should be granted only to special users or to users
who have a need to use these privileges. Table 12.1 shows the system privileges you will
find in the help files included with Personal Oracle7.

WARNING: Use caution when granting privileges to publ i c. Granting
publ i ¢ gives all users with access to the database privileges you may not
want them to have.

Table12.1. System privilegesin Oracle?.

System Privilege
ALTER ANY | NDEX

ALTER ANY PROCEDURE

ALTER ANY ROLE

ALTER ANY TABLE

ALTER ANY TRI GGER

ALTER DATABASE
ALTER USER

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE
CREATE
CREATE

ANY | NDEX

ANY PROCEDURE

ANY TABLE

ANY TRI GGER

ANY VI EW

PROCEDURE

PROFI LE
ROLE
SYNONYM

Operations Permitted

Allows the grantees to alter any index in any
schema.

Allows the grantees to alter any stored
procedure, function, or package in any schema.

Allows the grantees to alter any role in the
database.

Allows the grantees to alter any table or view
in the schema.

Allows the grantees to enable, disable, or
compile any database trigger in any schema.

Allows the grantees to alter the database.

Allows the grantees to alter any user. This
privilege authorizes the grantee to change
another user's password or authentication
method, assign quotas on any tablespace, set
default and temporary tablespaces, and assign a
profile and default roles.

Allows the grantees to create an index on any
table in any schema.

Allows the grantees to create stored procedures,
functions, and packages in any schema.

Allows the grantees to create tables in any
schema. The owner of the schema containing the
table must have space quota on the tablespace to
contain the table.

Allows the grantees to create a database trigger
in any schema associated with a table in any
schema.

Allows the grantees to create views in any
schema.

Allows the grantees to create stored procedures,
functions, and packages in their own schema.

Allows the grantees to create profiles.
Allows the grantees to create roles.

Allows the grantees to create synonyms in their
own schemas.

CREATE TABLE

CREATE TRI GGER

CREATE USER

CREATE VI EW

DELETE ANY TABLE

DROP
DROP

ANY | NDEX

ANY PROCEDURE

ANY ROLE
ANY SYNONYM

ANY TABLE
ANY TRI GGER

ANY VI EW
USER

Allows the grantees to create tables in their
own schemas. To create a table, the grantees must
also have space quota on the tablespace to
contain the table.

Allows the grantees to create a database trigger
in their own schemas.

Allows the grantees to create users. This
privilege also allows the creator to assign
guotas on any tablespace, set default and
temporary tablespaces, and assign a profile as part
of a CREATE USERstatement.

Allows the grantees to create views in their own
schemas.

Allows the grantees to delete rows from tables
or views in any schema or truncate tables in any
schema.

Allows the grantees to drop indexes in any
schema.

Allows the grantees to drop stored procedures,
functions, or packages in any schema.

Allows the grantees to drop roles.

Allows the grantees to drop private synonyms in
any schema.

Allows the grantees to drop tables in any schema.

Allows the grantees to drop database triggers in
any schema.

Allows the grantees to drop views in any schema.
Allows the grantees to drop users.

EXECUTE ANY PROCEDURE Allows the grantees to execute procedures or

GRANT ANY PRI VI LEGE

GRANT ANY ROLE

| NSERT ANY TABLE

LOCK ANY TABLE

functions (standalone or packaged) or reference
public package variables in any schema.

Allows the grantees to grant any system
privilege.

Allows the grantees to grant any role in the
database.

Allows the grantees to insert rows into tables
and views in any schema.

Allows the grantees to lock tables and views in
any schema.

SELECT ANY SEQUENCE |Allows the grantees to reference sequences in
any schema.

SELECT ANY TABLE Allows the grantees to query tables, views, or
snapshots in any schema.

UPDATE ANY ROWS Allows the grantees to update rows in tables.

Object privileges are privileges that can be used against specific database objects. Table
12.2 lists the object privileges in Oracle?’.

Table 12.2. Object privileges enabled under Oracle?.

ALL

ALTER
DELETE
EXECUTE

| NDEX

| NSERT
REFERENCES
SELECT
UPDATE

You can use the fol lowing form of the GRANT statement to give other users access to
your tables:

SYNTAX:

GRANT {object _priv | ALL [PRIVILEGES]} [(colum

[, colum]...)]
[, {object priv | ALL [PRIVILEGES]} [(colum
[, colum] ...)]]

ON [schenma.] obj ect
TO {user | role | PUBLIC} [, {user | role | PUBLIC}]
[WTH GRANT OPTI ON|

To remove the object privileges you have granted to someone, use the REVOKE command
with the following syntax:

SYNTAX:

REVOKE {object _priv | ALL [PRI VI LEGES]}
[, {object priv | ALL [PRIVILEGES]}]
ON [schema.] obj ect

FROM {user | role | PUBLIC} [, {user | role | PUBLIC}]
[CASCADE CONSTRAI NTS]

From Creating a Tableto Granting Roles

Create a table named SALARI ES with the following structure:
INPUT:

NAVE, CHAR(30)
SALARY, NUMBER
AGE, NUMBER

SQL> CREATE TABLE SALARIES (
2 NAME CHAR(30),
3 SALARY NUMBER,
4 AGE NUMBER)

OUTPUT:

Tabl e creat ed.

Now, create two users--Jack and Jill:
INPUT/OUTPUT:

SQL> create user Jack identified by Jack;
User creat ed.

SQL> create user Jill identified by Jill;
User creat ed.

SQL> grant connect to Jack;

G ant succeeded.

SQL> grant resource to Jill;

Grant succeeded.

ANALYSIS:

So far, you have created two users and granted each a different role. Therefore, they
will have different capabilities when working with the database. First create the
SALARI ES table with the following information:

INPUT/OUTPUT:

SQ.> SELECT * FROM SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 61000 55

You could then grant various privileges to this table based on some arbitrary reasons
for this example. We are assuming that you currently have DBA privileges and can
grant any system privilege. Even if you do not have DBA privileges, you can still grant
object privileges on the SALARI ES table because you own it (assuming you just created
it).

Because Jack belongs only to the Connect role, you want him to have only SELECT
privileges.

INPUT/OUTPUT:

SQL> GRANT SELECT ON SALARI ES TO JACK;

Grant succeeded.

Because Jill belongs to the Resource role, you allow her to select and insert some data
into the table. To liven things up a bit, allow Jill to update values only in the SALARY
field of the SALARI ES table.

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON SALARIES TO Jill;

Grant succeeded.

Now that this table and these users have been created, you need to look at how a user
accesses a table that was created by another user. Both Jack and Jill have been granted
SELECT access on the SALARI ES table. However, if Jack tries to access the SALARI ES
table, he will be told that it does not exist because Oracle requires the username or
schema that owns the table to precede the table name.

Qualifying a Table
Make a note of the username you used to create the SALARI ES table (mine was Bryan).
For Jack to select data out of the SALARI ES table, he must address the SALARI ES table

with that username.

INPUT:

SQ.> SELECT * FROM SALARI ES;
SELECT * FROM SALARI ES

*

OUTPUT:

ERROR at |ine 1:
ORA-00942: table or view does not exi st

Here Jack was warned that the table did not exist. Now use the owner's username to
identify the table:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM Bryan. SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 61000 55
ANALYSIS:

You can see that now the query worked. Now test out Jill's access privileges. First log
out of Jack's logon and log on again as Jill (using the password Ji | |).

INPUT/OUTPUT:

SQL> SELECT *
2 FROM Bryan. SALAR! ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 61000 55

That worked just fine. Now try to insert a new record into the table.
INPUT/OUTPUT:

SQL> | NSERT | NTO Bryan. SALARI ES
2 VALUES(' JOE , 85000, 38) ;
| NSERT | NTO Bryan. SALARI ES
*

ERROR at |ine 1:

ORA- 01031: insufficient privileges
ANALYSIS:

This operation did not work because Jill does not have | NSERT privileges on the
SALARI ES table.

INPUT/OUTPUT:

SQL> UPDATE Bryan. SALARI ES
2 SET ACE = 42
3 WHERE NAME = ' JOHN ;
UPDATE Bryan. SALARI ES
*

ERRCOR at |ine 1:
ORA-01031: insufficient privileges

ANALYSIS:

Once again, Jill tried to go around the privileges that she had been given. Naturally,
Oracle caught this error and corrected her quickly.

INPUT/OUTPUT:

SQL> UPDATE Bryan. SALARI ES
2 SET SALARY = 35000
3 WHERE NAME = ' JOHN ;

1 row updat ed.

SQL> SELECT *
2 FROM Bryan. SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 95
ANALYSIS:

You can see now that the update works as long as Jil | abides by the privileges she has
been given.

Using Views for Security Purposes

As we mentioned on Day 10, "Creating Views and Indexes," views are virtual tables that

you can use to present a view of data that is different from the way it physical ly exists
in the database. Today you will learn more about how to use views to implement
security measures. First, however, we explain how views can simplify SQL statements.

Earlier you learned that when a user must access a table or database object that
another user owns, that object must be referenced with a username. As you can imagine,
this procedure can get wordy if you have to write writing several SQL queries in a row.
More important, novice users would be required to determine the owner of a table
before they could select the contents of a table, which is not something you want all
your users to do. One simple solution is shown in the fol lowing paragraph.

A Solution to Qualifyinga Tableor View

Assume that you are logged on as Jack, your friend from earlier examples. You learned
that for Jack to look at the contents of the SALARI ES table, he must use the following
statement:

INPUT:

SQL> SELECT *
2 FROM Bryan. SALARI ES;

OUTPUT:

NAME SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 55

If you were to create a view named SALARY VI EW a user could simply select from that
view.

INPUT/OUTPUT:

SQL> CREATE VI EW SALARY_VI EW
2 AS SELECT *
3 FROM Bryan. SALARI ES;

Vi ew cr eat ed.

SQL> SELECT * FROM SALARY_VI EW

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42

ANALYSIS:

The preceding query returned the same values as the records returned from
Bryan. SALARI ES.

Using Synonymsin Place of Views

SQL also provides an object known as a synonym. A synonym provides an alias for a table
to simplify or minimize keystrokes when using a table in an SQL statement. There are
two types of synonyms: private and public. Any user with the resource role can create a
private synonym. On the other hand, only a user with the DBA role can create a public
synonym.

The syntax for a public synonym fol lows.

SYNTAX:

CREATE [PUBLI C] SYNONYM [schena.] synonym
FOR [schema.] obj ect [@bl i nk]

In the preceding example, you could have issued the fol lowing command to achieve the
same results:

INPUT/OUTPUT:

SQL> CREATE PUBLI C SYNONYM SALARY FOR SALARI ES
Synonym cr eat ed.

Then log back on to Jack and type this:
INPUT/OUTPUT:

SQ.> SELECT * FROM SALARY;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 55

Using Viewsto Solve Security Problems

Suppose you changed your mind about Jack and Jill and decided that neither of them
should be able to look at the SALARI ES table completely. You can use views to change
this situation and allow them to examine only their own information.

INPUT/OUTPUT:

SQL> CREATE VI EW JACK_SALARY AS
2 SELECT * FROM BRYAN. SALARI ES
3 WHERE NAME = ' JACK' ;

Vi ew cr eat ed.
INPUT/OUTPUT:

SQL> CREATE VI EW JI LL_SALARY AS
2 SELECT * FROM BRYAN. SALARI ES
3 WHERE NAME = 'JILL';

Vi ew cr eat ed.
INPUT/OUTPUT:

SQ> GRANT SELECT ON JACK_SALARY
2 TO JACK;

Grant succeeded.
INPUT/OUTPUT:

SQL> GRANT SELECT ON JI LL_SALARY
2 TO JILL;

Grant succeeded.
INPUT/OUTPUT:

SQL> REVCOKE SELECT ON SALARI ES FROM JACK;

Revoke succeeded.
INPUT/OUTPUT:

SQ> REVOKE SELECT ON SALARI ES FROM JI LL;

Revoke succeeded.

Now log on as Jack and test out the view you created for him.
INPUT/OUTPUT:

SQ.> SELECT * FROM Bryan. JACK_SALARY;

NANVE SALARY AGE

INPUT/OUTPUT:

SQL> SELECT * FROM PERKI NS. SALARI ES;
SELECT * FROM PERKI NS. SALARI ES

*

ERROR at |ine 1:
ORA-00942: table or view does not exi st

Log out of Jack's account and test Jill's:
INPUT/OUTPUT:

SQ.> SELECT * FROM Bryan. JI LL_SALARY;

NANVE SALARY AGE
Jill 48000 42
ANALYSIS:

You can see that access to the SALARI ES table was completely controlled using views.
SQL enables you to create these views as you like and then assign permissions to other
users. This technique allows a great deal of flexibility.

The syntax to drop a synonym is
SYNTAX:

SQ.> drop [public] synonym synonym nane;

NOTE: By now, you should understand the importance of keeping to a
minimum the number of people with DBA roles. A user with this access level
can have complete access to all commands and operations within the
database. Note, however, that with Oracle and Sybase you must have DBA-
level access (or SA-level in Sybase) to import or export data on the
database.

Using the WITH GRANT OPTION Clause

What do you think would happen if Jil | attempted to pass her UPDATE privilege on to
Jack? At first glance you might think that Jill, because she was entrusted with the
UPDATE privilege, should be able to pass it on to other users who are allowed that
privilege. However, using the GRANT statement as you did earlier, Jill cannot pass her
privileges on to others:

SQL> GRANT SELECT, UPDATE(SALARY) ON Bryan. SALARI ES TO Jil | ;
Here is the syntax for the GRANT statement that was introduced earlier today:
SYNTAX:

GRANT {object _priv | ALL [PRIVILEGES]} [(col umm

[, colum]...)]
[, {object _priv | ALL [PRIVILEGES]} [(colum
[, colum] ...)]]

ON [schema.] obj ect
TO {user | role | PUBLIC} [, {user | role | PUBLIC}]
[WTH GRANT OPTI ON|

What you are looking for is the W TH GRANT OPTI ON clause at the end of the GRANT
statement. When object privileges are granted and W TH GRANT OPTI ONis used, these
privileges can be passed on to others. So if you want to allow Jill to pass on this
privilege to Jack, you would do the following:

INPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
2 ON Bryan. SALARI ES TO JI LL
3 WTH GRANT OPTI ON,

OUTPUT:

Grant succeeded.

Jill could then log on and issue the following command:
INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
2 ON Bryan. SALARI ES TO JACK;

Grant succeeded.

Summary

Security is an often-overlooked topic that can cause many problems if not properly
thought out and administered. Fortunately, SQL provides several useful commands for
implementing security on a database.

Users are original ly created using the CREATE USER command, which sets up a username
and password for a user. After the user account has been set up, this user must be
assigned to a role in order to accomplish any work. The three roles available within
Oracle7 are Connect, Resource, and DBA. Each role has different levels of access to
the database, with Connect being the simplest and DBA having access to everything.

The GRANT command gives a permission or privilege to a user. The REVOKE command can
take that permission or privilege away from the user. The two types of privileges are
object privileges and system privileges. The system privileges should be monitored
closely and should not be granted to inexperienced users. Giving inexperienced users
access to commands al lows them to (inadvertently perhaps) destroy data or databases
you have painstakingly set up. Object privileges can be granted to give users access to
individual objects existing in the owner's database schema.

All these techniques and SQL statements provide the SQL user with a broad range of
tools to use when setting up system security. Although we focused on the security
features of Oracle7, you can apply much of this information to the database system at
your site. Just remember that no matter what product you are using, it is important to
enforce some level of database security.

Q& A

Q I understand the need for security, but doesn't Oracle carry it abit too
far?

A No, especially in larger applications where there are multiple users. Because
different users will be doing different types of work in the database, you'll want
to limit what users can and can't do. Users should have only the necessary roles
and privileges they need to do their work.

Q It appears that there is a security problem when the DBA that created my
ID also knows the password. Is this true?

A Yesitis true. The DBA creates the IDs and passwords. Therefore, users should

use the ALTER USER command to change their ID and password immediately after
receiving them.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. What is wrong with the fol lowing statement?
SQL> GRANT CONNECTI ON TO DAVI D;

2. True or False (and why): Dropping a user will cause all objects owned by that
user to be dropped as well.

3. What would happen if you created a table and granted select privileges on the
table to publi c?

4. Is the following SQL statement correct?

SQL> create user RON
i dentified by RON,

5. Is the following SQL statement correct?

SQ.> alter RON
i dentified by RON,

6. Is the following SQL statement correct?

SQ.> grant connect, resource to RON;
7. If you own a table, who can select from that table?

Exercise

1. Experiment with your database system's security by creating a table and then by
creating a user. Give this user various privileges and then take them away.

| ¢ Previous Chapter B+ Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 13 -
Advanced SQL Topics

Objectives

Over the course of the past 12 days, you have examined every major topic used to write
powerful queries to retrieve data from a database. You have also briefly explored
aspects of database design and database security. Today's purpose is to cover advanced
SQL topics, which include the fol lowing:

. Temporary tables
. Cursors

. Stored procedures
. Triggers

. Embedded SQL

NOTE: Today's examples use Oracle7's PL/SQL and Microsoft/Sybase SQL
Server's Transact-SQL implementations. We made an effort to give examples
using both flavors of SQL wherever possible. You do not need to own a copy
of either the Oracle7 or the SQL Server database product. Feel free to
choose your database product based on your requirements. (If you are
reading this to gain enough knowledge to begin a project for your job,
chances are you won't have a choice.)

NOTE: Although you can apply most of the examples within this book to
any popular database management system, this statement does not hold for
all the material covered today. Many vendors still do not support
temporary tables, stored procedures, and triggers. Check your
documentation to determine which of these features are included with
your favorite database system.

Temporary Tables

The first advanced topic we discuss is the use of temporary tables, which are simply
tables that exist temporarily within a database and are automatical ly dropped when
the user logs out or their database connection ends. Transact-SQL creates these
temporary tables in the t enpdb database. This database is created when you install SQL
Server. Two types of syntax are used to create a temporary table.

SYNTAX:

SYNTAX 1:
create table #table nane (
fieldl datatype,

fieldn datatype)

Syntax 1 creates a table in the t enpdb database. This table is created with a unique
name consisting of a combination of the table name used in the CREATE TABLE command
and a date-time stamp. A temporary table is available only to its creator. Fifty users
could simultaneously issue the fol lowing commands:

1> create tabl e #al buns (
2> artist char(30),

3> al bum nane char (50),
4> nmedi a_type int)

5> go

The pound sign (#) before the table's name is the identifier that SQL Server uses to flag
a temporary table. Each of the 50 users would essential ly receive a private table for his
or her own use. Each user could update, insert, and delete records from this table
without worrying about other users invalidating the table's data. This table could be
dropped as usual by issuing the fol lowing command:

1> drop tabl e #al buns
2> go

The table could also be dropped automatical ly when the user who created it logs out
of the SQL Server. If you created this statement using some type of dynamic SQL
connection (such as SQL Server's DB-Library), the table will be deleted when that
dynamic SQL connection is closed.

Syntax 2 shows another way to create a temporary table on an SQL Server. This syntax
produces a different result than the syntax used in syntax 1, so pay careful attention
to the syntactical differences.

SYNTAX:

SYNTAX 2:
create table tenpdb..tabl enane (
fieldl datatype,

fieldn datatype)

Creating a temporary table using the format of syntax 2 still results in a table being
created in the t enpdb database. This table's name has the same format as the name for
the table created using syntax 1. The difference is that this table is not dropped when
the user's connection to the database ends. Instead, the user must actually issue a DROP
TABLE command to remove this table from the t enpdb database.

TIP: Another way to get rid of a table that was created using the cr eat e
t abl e tenpdb. . t abl enane syntax is to shut down and restart the SQL
Server. This method removes all temporary tables from the t enpdb
database.

Examples 13.1 and 13.2 il lustrate the fact that temporary tables are indeed temporary,
using the two different forms of syntax. Fol lowing these two examples, Example 13.3

il lustrates a common usage of temporary tables: to temporarily store data returned
from a query. This data can then be used with other queries.

You need to create a database to use these examples. The database MJSI Cis created
with the following tables:

. ARTI STS

. MED A

. RECORDI NGS

Use the following SQL statements to create these tables:
INPUT:

1> create table ARTISTS (
2> name char (30),

3> honebase char (40),

4> styl e char(20),

5> artist_id int)

6> go

1> create table MED A (
2> nmedia_type int,

3> description char(30),
4> price float)

5> go

1> create tabl e RECORDI NGS (
2> artist_idint,

3> nedia_type int,

4> title char(50),

5> year int)

6> go

NOTE: Tables 13.1, 13.2, and 13.3 show some sample data for these tables.

Table13.1. The ARTIST Stable.

Name Homebase Style Artist_ID
Soul Asylum Minneapolis Rock 1
Maurice Ravel France Classical |2
Dave Matthews Band Charlottesville Rock 3
Vince Gill Nashville Country 4
Oingo Boingo Los Angeles Pop 5
Crowded House New Zealand Pop 6
Mary Chapin-Carpenter Nashville Country 7
Edward MacDowell U.S.A. Classical |8

Table 13.2. The MEDIA table.

Media_Type Description Price

1 Record 4.99
2 Tape 9.99
3 CD 13.99
4 CD-ROM 29.99
5 DAT 19.99

Table 13.3. The RECORDINGS table.

Artist_Id Media_Type Title Year
1 2 Hang Time 1988
1 3 Made to Be Broken 1986
2 3 Bolero 1990
3 5 Under the Table and Dreaming 1994
4 3 When Love Finds You 1994
5 2 Boingo 1987
5 1 Dead Man's Party 1984
6 2 Woodface 1990
6 3 Together Alone 1993
7 5 Come On, Come On 1992
7 3 Stones in the Road 1994
8 5 Second Piano Concerto 1985
Example 13.1

You can create a temporary table in the t enpdb database. After inserting a dummy
record into this table, log out. After logging back into SQL Server, try to select the

dummy record out of the temporary table. Note the results:

INPUT:

1> create tabl e #al buns (
2> artist char(30),

3> al bum nane char (50),
4> nmedi a_type int)

5> go
1> insert
2> go

Now log out of the SQL Server connection using the EXI T (or QUI T) command. After

#al buns val ues ("The Repl acenents",

"Pl eased To Meet Me", 1)

logging back in and switching to the database you last used, try the following
command:

INPUT:

1> select * from #al buns
2> go

ANALYSIS:
This table does not exist in the current database.
Example 13.2

Now create the table with syntax 2:
INPUT:

1> create table tenpdb..al buns (

2> artist char(30),

3> al bum nane char (50),

4> nmedi a_type int)

5> go

1> insert #al buns val ues ("The Repl acenents”, "Pleased To Meet MW", 1)
2> go

After logging out and logging back in, switch to the database you were using when
create table tenpdb. . al buns() was issued; then issue the fol lowing command:

INPUT:

1> select * from #al buns
2> go

This time, you get the following results:

OUTPUT:

arti st al bum nane nedi a_t ype
The Repl acenents Pl eased To Meet Me 1

Example 13.3

This example shows a common usage of temporary tables: to store the results of complex
queries for use in later queries.

INPUT:

1> create table #tenp_info (

2> nane char (30),

3> honebase char (40),

4> style char(20),

5> artist_id int)

6> insert #tenp_info

7> select * from ARTI STS where honebase = "Nashville"
8> sel ect RECORDI NGS. * from RECORDI NGS, ARTI STS

9> where RECORDINGS. artist _id = #tenp_info.artist_id
10> go

The preceding batch of commands selects out the recording information for all the
artists whose home base is Nashvil le.

The following command is another way to write the set of SQL statements used in
Example 13.3:

1> sel ect ARTISTS. * from ARTI STS, RECORDI NGS wher e ARTI STS. honebase =
"Nashvil |l e"
2> go

Cursors

A database cursor is similar to the cursor on a word processor screen. As you press the
Down Arrow key, the cursor scrolls down through the text one line at a time. Pressing
the Up Arrow key scrolls your cursor up one line at a time. Hitting other keys such as
Page Up and Page Down results in a leap of several lines in either direction. Database
cursors operate in the same way.

Database cursors enable you to select a group of data, scroll through the group of
records (often called a recordset), and examine each individual line of data as the
cursor points to it. You can use a combination of local variables and a cursor to
individually examine each record and perform any external operation needed before
moving on to the next record.

One other common use of cursors is to save a query's results for later use. A cursor's
result set is created from the result set of a SELECT query. If your application or
procedure requires the repeated use of a set of records, it is faster to create a cursor
once and reuse it several times than to repeatedly query the database. (And you have
the added advantage of being able to scroll through the query's result set with a
cursor.)

Follow these steps to create, use, and close a database cursor:

1. Create the cursor.
2. Open the cursor for use within the procedure or application.

3. Fetch a record's data one row at a time until you have reached the end of the
Cursor's records.

4. Close the cursor when you are finished with it.

5. Deallocate the cursor to completely discard it.

Creating a Cursor

To create a cursor using Transact-SQL, issue the following syntax:
SYNTAX:

decl are cursor_nane cursor
for sel ect_statenent
[for {read only | update [of colum_nanme |ist]}]

The Oracle7 SQL syntax used to create a cursor looks like this:
SYNTAX:

DECLARE cursor _nanme CURSOR
FOR { SELECT command | statenent_nanme | bl ock_nane}

By executing the DECLARE cur sor _nane CURSORstatement, you have defined the
cursor result set that will be used for all your cursor operations. A cursor has two
important parts: the cursor result set and the cursor position.

The following statement creates a cursor based on the ARTI STS table:

INPUT:

1> create Artists_Cursor cursor
2> for select * from ARTI STS
3> go

ANALYSIS:

You now have a simple cursor object named Arti sts_Cur sor that contains all the
records in the ARTI STS table. But first you must open the cursor.

Opening a Cur sor

The simple command to open a cursor for use is

SYNTAX:

open cursor_nane

Executing the following statement opens Arti st s_Cur sor for use:

1> open Artists_Cursor
2> go

Now you can use the cursor to scroll through the result set.
Scrolling a Cur sor

To scroll through the cursor's result set, Transact-SQL provides the following FETCH
command.

SYNTAX:
fetch cursor_nane [into fetch_target |ist]
Oracle SQL provides the fol lowing syntax:

FETCH cursor_nane {INTO : host _variable

[[1 NDI CATOR] : indicator_variable]
[, . host _variabl e
[[1NDI CATOR] : indicator_variable]]...

| USI NG DESCRI PTOR descri ptor }

Each time the FETCHcommand is executed, the cursor pointer advances through the
result set one row at a time. If desired, data from each row can be fetched into the
fetch_target |ist variables.

NOTE: Transact-SQL enables the programmer to advance more than one
row at a time by using the following command: set cursor rows number
for cursor_nane. This command cannot be used with the | NTOclause,
however. It is useful only to jump forward a known number of rows instead
of repeatedly executing the FETCHstatement.

The following statements fetch the data from the Arti sts_Cursor resultsetand

return the data to the program variables:
INPUT:

1> decl are @ane char (30)

2> decl are @onebase char (40)

3> declare @tyle char(20)

4> declare @rtist _id int

5> fetch Artists_Cursor into @ane, @onebase, @®tyle, @rtist _id
6> print @ane

7> print @uonebase

8> print @tyle

9> print char(@rtist_id)

10> go

You can use the VHI LE loop (see Day 12, "Database Security") to loop through the
entire result set. But how do you know when you have reached the end of the records?

Testing a Cursor's Status

Transact-SQL enables you to check the status of the cursor at any time through the
maintenance of two global variables: @®qgl st at us and @@ owcount .

The @@ gl st at us variable returns status information concerning the last executed
FETCHstatement. (The Transact-SQL documentation states that no command other than
the FETCH statement can modify the @®ql st at us variable.) This variable contains one
of three values. The following table appears in the Transact-SQL reference manuals:

Status Meaning

0 Successful completion of the FETCH statement.
1 The FETCHstatement resulted in an error.
2 There is no more data in the result set.

The @@ owcount variable contains the number of rows returned from the cursor's
result set up to the previous fetch. You can use this number to determine the number of
records in a cursor's resul t set.

The following code extends the statements executed during the discussion of the FETCH
statement. You now use the VVHI LE loop with the @®ql st at us variable to scroll the
cursor:

INPUT:

1> decl are @ane char (30)

2> decl are @onebase char (40)

3> declare @tyl e char(20)

4> declare @rtist _id int

5> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
6> while (@®qgl status = 0)

7> begin

8> print @ane

9> print @onebase

10> print @tyle

11> print char(@rtist_id)

12> fetch Artists_Cursor into @ane, @onebase, @®tyle, @rtist_id
13> end

14> go

ANALYSIS:

Now you have a fully functioning cursor! The only step left is to close the cursor.
Closing a Cur sor

Closing a cursor is a very simple matter. The statement to close a cursor is as fol lows:
SYNTAX:

cl ose cur SOor _nane

This cursor still exists; however, it must be reopened. Closing a cursor essentially closes
out its result set, not its entire existence. When you are completely finished with a
cursor, the DEALLOCATE command frees the memory associated with a cursor and frees
the cursor name for reuse. The DEALLOCATE statement syntax is as fol lows:

SYNTAX:

deal | ocate cursor cursor_nane

Example 13.4 illustrates the complete process of creating a cursor, using it, and then
closing it, using Transact-SQL.

Example 13.4
INPUT:

1> decl are @ane char (30)

2> decl are @onebase char (40)
3> declare @tyl e char(20)

4> declare @rtist_id int

5> create Artists Cursor cursor

6> for select * from ARTI STS

7> open Artists_Cursor

8> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
9> while (@®qgl status = 0)

10> begin

11> print @ane

12> print @onebase

13> print @tyle

14> print char(@rtist_id)

15> fetch Artists_Cursor into @ane, @onebase, @tyle,
@rtist_id

16> end

17> close Artists Cursor
18> deal | ocate cursor Artists_ Cursor
19> go

NOTE: The following is sample data only.

OUTPUT:

Soul Asyl um M nneapol i s Rock 1
Mauri ce Ravel France Cl assi cal 2
Dave Matthews Band Charlottesville Rock 3
Vince GII Nashvill e Country 4
G ngo Boi ngo Los Angel es Pop 5
Crowded House New Zeal and Pop 6
Mary Chapi n- Car pent er Nashvill e Country 7
Edwar d MacDowel | U S A C assi cal 8

The Scope of Cursors

Unlike tables, indexes, and other objects such as triggers and stored procedures, cursors
do not exist as database objects after they are created. Instead, cursors have a limited
scope of use.

WARNING: Remember, however, that memory remains allocated for the
cursor, even though its name may no longer exist. Before going outside the
cursor's scope, the cursor should always be closed and deal located.

A cursor can be created within three regions:

. In asession--A session begins when a user logs on. If the user logged on to an SQL
Server and then created a cursor, then cursor_name would exist until the user
logged off. The user would not be able to reuse cursor_name during the current

session.

. Stored procedure--A cursor created inside a stored procedure is good only during
the execution of the stored procedure. As soon as the stored procedure exits,
cur sor _nane is no longer valid.

. Trigger--A cursor created inside a trigger has the same restrictions as one created
inside a stored procedure.

Creating and Using Stored Procedures

The concept of stored procedures is an important one for the professional database
programmer to master. Stored procedures are functions that contain potentially large
groupings of SQL statements. These functions are called and executed just as C,
FORTRAN, or Visual Basic functions would be called. A stored procedure should
encapsulate a logical set of commands that are often executed (such as a complex set of
gueries, updates, or inserts). Stored procedures enable the programmer to simply call the
stored procedure as a function instead of repeatedly executing the statements inside
the stored procedure. However, stored procedures have additional advantages.

Sybase, Inc., pioneered stored procedures with its SQL Server product in the late 1980s.
These procedures are created and then stored as part of a database, just as tables and
indexes are stored inside a database. Transact SQL permits both input and output
parameters to stored procedure calls. This mechanism enables you to create the stored
procedures in a generic fashion so that variables can be passed to them.

One of the biggest advantages to stored procedures lies in the design of their execution.
When executing a large batch of SQL statements to a database server over a network,
your application is in constant communication with the server, which can create an
extremely heavy load on the network very quickly. As multiple users become engaged in
this communication, the performance of the network and the database server becomes
increasingly slower. The use of stored procedures enables the programmer to greatly
reduce this communication load.

After the stored procedure is executed, the SQL statements run sequentially on the
database server. Some message or data is returned to the user's computer only when the
procedure is finished. This approach improves performance and offers other benefits as
well. Stored procedures are actual ly compiled by database engines the first time they
are used. The compiled map is stored on the server with the procedure. Therefore, you do
not have to optimize SQL statements each time you execute them, which also improves
performance.

Use the following syntax to create a stored procedure using Transact-SQL.:

SYNTAX:

create procedure procedure_nane

[[(] @araneter _nane
datatype [(length) | (precision [, scale])
[= defaul t][output]

[, @araneter_nane
datatype [(length) | (precision [, scale])
[= default][output]]...[)]]

[with reconpil e]

as SQ._statenents

This EXECUTE command executes the procedure:
SYNTAX:

execute [@eturn_status = |
procedur e_nane
[[@ar anet er _nanme =] val ue
[@araneter _nane =] @ariable [output]...]]
[wWith recompil e]

Example 13.5

This example creates a simple procedure using the contents of Example 13.4.
INPUT:

1> create procedure Print_Artists_Nane
2> as

3> decl are @ane char(30)

4> decl are @onebase char (40)

5> declare @tyl e char(20)

6> declare @rtist_id int

7> create Artists_Cursor cursor

8> for select * from ARTI STS

9> open Artists_Cursor

10> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
11> while (@®ql status = 0)

12> begin

13> print @ane

14> fetch Artists_Cursor into @ane, @onebase, @tyle,
@rtist_id

15> end

16> cl ose Artists_Cursor
17> deal | ocate cursor Artists_ Cursor
18> go

You can now execute the Print Artists_Nanme procedure using the EXECUTE
statement:

INPUT:

1> execute Print_ Artists_Nane
2> go

OUTPUT:

Soul Asyl um

Mauri ce Ravel

Dave Matt hews Band
Vince G I

O ngo Boi ngo

Crowded House

Mary Chapi n- Car pent er
Edwar d MacDowel |

Example 13.5 was a small stored procedure; however, a stored procedure can contain
many statements, which means you do not have to execute each statement individually.

Using Stored Procedure Parameters

Example 13.5 was an important first step because it showed the use of the simplest
CREATE PROCEDURE statement. However, by looking at the syntax given here, you can
see that there is more to the CREATE PROCEDURE statement than was demonstrated in
Example 13.5. Stored procedures also accept parameters as input to their SQL
statements. In addition, data can be returned from a stored procedure through the use
of output parameters.

Input parameter names must begin with the @symbol, and these parameters must be a
valid Transact-SQL data type. Output parameter names must also begin with the @
symbol. In addition, the QUTPUT keyword must fol low the output parameter names. (You
must also give this OUTPUT keyword when executing the stored procedure.)

Example 13.6 demonstrates the use of input parameters to a stored procedure.
Example 13.6

The following stored procedure selects the names of all artists whose media type is a
CD.

1> create procedure Match_Nanes To Medi a @escription char(30)
2> as

3> sel ect ARTI STS. nane from ARTI STS, MEDI A, RECORDI NGS

4> where NMEDI A description = @lescription and

5> VEDI A. nedi a_type = RECORDI NGS. nedi a_t ype and

6> RECORDI NGS. artist_id = ARTISTS. artist _id

7> go
1> execute Match Nanes To Media "CD"
2> go

Executing this statement would return the following set of records:

OUTPUT:

NAVE

Soul Asyl um

Mauri ce Ravel

Vince G|

Crowded House

Mary Chapi n- Car pent er

Example 13.7

This example demonstrates the use of output parameters. This function takes the artist's
homebase as input and returns the artist's name as output:

INPUT:

1> create procedure Match_Honebase To Nane @ onebase char(40), @ane
char (30) out put

2> as

3> sel ect @ane = nane from ARTI STS where honebase = @onebase
4> go

1> declare @eturn_nane char (30)

2> execute Match_Honebase To Nane "Los Angel es", @eturn_nane = @ane
out put

3> print @ane

4> go

OUTPUT:

G ngo Boi ngo
Removing a Stored Procedure

By now, you can probably make an educated guess as to how to get rid of a stored
procedure. If you guessed the DROP command, you are absolutely correct. The following
statement removes a stored procedure from a database:

SYNTAX:

drop procedure procedure_name

The DROP command is used frequently: Before a stored procedure can be re-created, the
old procedure with its name must be dropped. From personal experience, there are few
instances in which a procedure is created and then never modified. Many times, in fact,
errors occur somewhere within the statements that make up the procedure. We
recommend that you create your stored procedures using an SQL script file containing
all your statements. You can run this script file through your database server to
execute your desired statements and rebuild your procedures. This technique enables
you to use common text editors such as vi or Windows Notepad to create and save your
SQL scripts. When running these scripts, however, you need to remember to always drop
the procedure, table, and so forth from the database before creating a new one. If you
forget the DROP command, errors will result.

The following syntax is often used in SQL Server script files before creating a database
object:

SYNTAX:
i f exists (select * from sysobjects where nanme = "procedure_nane")
begi n
drop procedure procedure_nane
end
go

create procedure procedure_nane
as

These commands check the SYSOBJECTS table (where database object information is
stored in SQL Server) to see whether the object exists. If it does, it is dropped before the
new one is created. Creating script files and fol lowing the preceding steps saves you a
large amount of time (and many potential errors) in the long run.

Nesting Stored Procedures

Stored procedure calls can also be nested for increased programming modularity. A
stored procedure can call another stored procedure, which can then call another
stored procedure, and so on. Nesting stored procedures is an excellent idea for several
reasons:

. Nesting stored procedures reduces your most complex queries to a functional
level. (Instead of executing 12 queries in a row, you could perhaps reduce these 12
queries to three stored procedure calls, depending on the situation.)

. Nesting stored procedures improves performance. The query optimizer optimizes
smaller, more concise groups of queries more effectively than one large group of

statements.

When nesting stored procedures, any variables or database objects created in one stored
procedure are visible to all the stored procedures it calls. Any local variables or
temporary objects (such as temporary tables) are deleted at the end of the stored
procedure that created these elements.

When preparing large SQL script files, you might run into table or database object
referencing problems. You must create the nested stored procedures before you can call
them. However, the calling procedure may create temporary tables or cursors that are
then used in the called stored procedures. These called stored procedures are unaware
of these temporary tables or cursors, which are created later in the script file. The
easiest way around this problem is to create the temporary objects before all the stored
procedures are created; then drop the temporary items (in the script file) before they
are created again in the stored procedure. Are you confused yet? Example 13.8 should
help you understand this process.

Example 13.8
INPUT:

1> create procedure Exanplel3 8b

2> as

3> select * from#tenp_table
4> go

1> create procedure Exanpl el3 8a
2> as

3> create #tenp_table (

4> data char (20),

5> nunbers int)

6> execut e Exanpl el3_8b

7> drop table #tenp_table

8> go

ANALYSIS:

As you can see, procedure Exanpl e13 8b uses the #t enp_t abl e. However, the

#t enp_t abl e is not created until later (in procedure Exanpl e13_8a). This resultsina
procedure creation error. In fact, because Exanpl e13 8b was not created (owing to the
missing table #t enp_t abl e), procedure Exanpl e1l3_8a is not created either (because
Exanpl e13 _8b was not created).

The following code fixes this problem by creating the #t enp_t abl e before the first
procedure is created. #t enp_t abl e is then dropped before the creation of the second
procedure:

INPUT:

1> create #tenp_table (
2> data char (20),
3> nunbers int)

4> go

1> create procedure Exanpl el3 8b
2> as

3> select * from#tenp_table
4> go

1> drop table #tenp_table

2> go

1> create procedure Exanpl el3 8a
2> as

3> Ccreate #tenp_table (

4> data char (20),

5> nunbers int)

6> execut e Exanpl el3_8b

7> drop table #tenp_table

8> go

Designing and Using Triggers

A trigger is essential ly a special type of stored procedure that can be executed in
response to one of three conditions:

. An UPDATE
. An | NSERT
. ADELETE

The Transact-SQL syntax to create a trigger looks like this:
SYNTAX:

create trigger trigger_nane
on tabl e _nane
for {insert, update, delete}
as SQL_Statenents

The Oracle7 SQL syntax used to create a trigger fol lows.
SYNTAX:

CREATE [OR REPLACE] TRI GGER [schenma.]trigger nane
{ BEFORE | AFTER}
{DELETE | I NSERT | UPDATE [OF columm[, columm]...]}
[OR {DELETE | I NSERT | UPDATE [OF columm [, colum] ...]}]..

ON [schera. | tabl e
[[REFERENCI NG { OLD [AS] old [NEW[AS] newj
| NEW[AS] new [OLD [AS] ol d]}]
FOR EACH ROW
[WHEN (condition)]]
pl/sqgl statenents..

Triggers are most useful to enforce referential integrity, as mentioned on Day 9,
"Creating and Maintaining Tables," when you learned how to create tables.
Referential integrity enforces rules used to ensure that data remains valid across
multiple tables. Suppose a user entered the fol lowing command:

INPUT:

1> insert RECORDI NGS values (12, "The Cross of Changes", 3, 1994)
2> go

ANALYSIS:

This perfectly valid SQL statement inserts a new record in the RECORDI NGS table.
However, a quick check of the ARTI STS table shows that thereisnoArtist _ID = 12,
A user with | NSERT privileges in the RECORDI NGS table can completely destroy your
referential integrity.

NOTE: Although many database systems can enforce referential integrity
through the use of constraints in the CREATE TABLE statement, triggers
provide a great deal more flexibility. Constraints return system error
messages to the user, and (as you probably know by now) these error
messages are not always helpful. On the other hand, triggers can print
error messages, call other stored procedures, or try to rectify a problem if
necessary.

Triggersand Transactions

The actions executed within a trigger are implicitly executed as part of a transaction.
Here's the broad sequence of events:

1. ABEG N TRANSACTI ONstatement is implicitly issued (for tables with triggers).
2. The insert, update, or delete operation occurs.
3. The trigger is called and its statements are executed.

4. The trigger either rolls back the transaction or the transaction is implicitly

committed.
Example 13.9

This example illustrates the solution to the RECORDI NGS table update problem
mentioned earlier.

INPUT:

1> create trigger check artists
2> on RECORDI NGS
3> for insert, update as

4> i f not exists (select * from ARTI STS, RECORDI NGS
5> where ARTI STS. artist_id = RECORDI NGS. arti st _id)
6> begi n

7> print "Illegal Artist _ID"

8> rol | back transaction

9> end

10> go

ANALYSIS:

A similar problem could exist for deletes from the RECORDI NGS table. Suppose that
when you delete an artist's only record from the RECORDI NGS table, you also want to
delete the artist from the ARTI STS table. If the records have already been deleted
when the trigger is fired, how do you know which Arti st _| Dshould be deleted? There
are two methods to solve this problem:

. Delete all the artists from the ARTI STS table who no longer have any
recordings in the RECORDI NGS table. (See Example 13.10a.)

. Examine the deleted logical table. Transact-SQL maintains two tables: DELETED
and | NSERTED. These tables, which maintain the most recent changes to the
actual table, have the same structure as the table on which the trigger is
created. Therefore, you could retrieve the artist IDs from the DELETED table and
then delete these IDs from the ARTI STS table. (See Example 13.10b.)

Example 13.10a
INPUT:

1> create trigger delete_artists

2> on RECORDI NGS

3> for delete as

4> begin

5> del ete from ARTI STS where artist _id not in
6> (select artist_id from RECORDI NGS)

7> end
8> go

Example 13.10b

1> create trigger delete artists
2> on RECORDI NGS
3> for delete as

4> begin

5> del et e ARTI STS from ARTI STS, del et ed

6> where ARTI ST.artist _id = deleted.artist_id
7> end

8> go

Restrictionson Using Triggers

You must observe the following restrictions when you use triggers:
. Triggers cannot be created on temporary tables.
. Triggers must be created on tables in the current database.
. Triggers cannot be created on views.

. When a table is dropped, all triggers associated with that table are
automatical ly dropped with it.

Nested Triggers

Triggers can also be nested. Say that you have created a trigger to fire on a delete, for
instance. IT this trigger itself then deletes a record, the database server can be set to
fire another trigger. This approach would, of course, result in a loop, ending only when
all the records in the table were deleted (or some internal trigger conditions were
met). Nesting behavior is not the default, however. The environment must be set to
enable this type of functionality. Consult your database server's documentation for
more information on this topic.

Using SELECT Commandswith UPDATE and
DELETE

Here are some complex SQL statements using UPDATE and DELETE:

INPUT:

SQ.> UPPDATE EMPLOYEE_TBL
SET LAST_NAME = 'SM TH
VWHERE EXI STS (SELECT EMPLOYEE_I D
FROM PAYROLL_TBL
VWHERE EMPLOYEE I D = 2);

OUTPUT:
1 row updat ed.

ANALYSIS:

The EMPLOYEE table had an incorrect employee name. We updated the EMPLOYEE table
only if the payroll table had the correct ID.

INPUT/OUTPUT:

SQL> UPDATE EMPLOYEE_TABLE
SET HOURLY_PAY = 'HOURLY_PAY * 1.1
VWHERE EMPLOYEE | D = (SELECT EMPLOYEE_I D
FROM PAYROLL_TBL
VWHERE EMPLOYEE_I D

'222222222"),

1 row updat ed.

ANALYSIS:

We increased the employee's hourly rate by 10 percent.
INPUT/OUTPUT:

SQ.> DELETE FROM EMPLOYEE_TBL
WHERE EMPLOYEE I D = (SELECT EMPLOYEE_ I D
FROM PAYROLL_TBL
WHERE EMPLOYEE_| D = ' 222222222"

1 row del et ed.

ANALYSIS:

Here we deleted an employee with the ID of 222222222.

Testing SELECT Statements Before | mplementation

If you are creating a report (using SQL*PLUS for an example) and the report is rather
large, you may want to check spacing, columns, and titles before running the program
and wasting a lot of time. A simple way of checking is to add where rownum < 3 to

your SQL statement:
SYNTAX:

SQL> sel ect *
from enpl oyee_t bl
where rownum < 5;

ANALYSIS:

You get the first four rows in the table from which you can check the spelling and
spacing to see if it suits you. Otherwise, your report may return hundreds or thousands
of rows before you discover a misspel ling or incorrect spacing.

TIP: A major part of your job--probably 50 percent--is to figure out what
your customer really wants and needs. Good communication skills and a
knowledge of the particular business that you work for will complement
your programming skills. For example, suppose you are the programmer at a
car dealership. The used car manager wants to know how many vehicles he
has for an upcoming inventory. You think (to yourself): Go count them.
Well, he asked for how many vehicles he has; but you know that for an
inventory the manager really wants to know how many types (cars, trucks),
models, model year, and so on. Should you give him what he asked for and
waste your time, or should you give him what he needs?

Embedded SQL

This book uses the term embedded SQL to refer to the larger topic of writing actual
program code using SQL--that is, writing stored procedures embedded in the database
that can be called by an application program to perform some task. Some database
systems come with complete tool kits that enable you to build simple screens and menu
objects using a combination of a proprietary programming language and SQL. The SQL
code is embedded within this code.

On the other hand, embedded SQL commonly refers to what is technically known as
Static SQL.

Static and Dynamic SQL

Static SQL means embedding SQL statements directly within programming code. This code
cannot be modified at runtime. In fact, most implementations of Static SQL require the
use of a precompiler that fixes your SQL statement at runtime. Both Oracle and
Informix have developed Static SQL packages for their database systems. These products

contain precompilers for use with several languages, including the following:
. C
. Pascal
. Ada
. COBOL
. FORTRAN
Some advantages of Static SQL are
« Improved runtime speed
. Compile-time error checking
The disadvantages of Static SQL are that
. Itisinflexible.
. It requires more code (because queries cannot be formulated at runtime).

. Static SQL code is not portable to other database systems (a factor that you
should always consider).

If you print out a copy of this code, the SQL statements appear next to the C language
code (or whatever language you are using). Program variables are bound to database
fields using a precompiler command. See Example 13.11 for a simple example of Static SQL
code.

Dynamic SQL, on the other hand, enables the programmer to build an SQL statement at
runtime and pass this statement off to the database engine. The engine then returns
data into program variables, which are also bound at runtime. This topic is discussed
thoroughly on Day 12.

Example 13.11

This example illustrates the use of Static SQL in a C function. Please note that the
syntax used here does not comply with the ANSI standard. This Static SQL syntax does
not actually comply with any commercial product, although the syntax used is similar
to that of most commercial products.

INPUT:

BOOL Print_ Enpl oyee Info (void)

{

int Age = O;

char Nane[41] = "\0";

char Address[81] = "\0";

/* Now Bind Each Field W WII| Select To a Program Vari able */
#SQL BI ND(AGE, Age)

#SQL BI ND(NAME, Nane) ;

#SQ. BI ND(ADDRESS, Address);

/* The above statenents "bind" fields fromthe database to variables
fromthe program

After we query the database, we will scroll the records returned
and then print themto the screen */

#SQL SELECT AGE, NAME, ADDRESS FROM EMPLOYEES;

#SQL FI RST_RECORD
I f (Age == NULL)

{
return FALSE

}

while (Age != NULL)

{
printf("AGE = %\ n, Age);
printf("NAME = %\ n, Nane),;
printf("ADDRESS = %\ n", Address);
#SQL NEXT_RECORD

}

return TRUE;

}

ANALYSIS:

After you type in your code and save the file, the code usually runs through some type
of precompiler. This precompiler converts the lines that begin with the #SQL precompiler
directive to actual C code, which is then compiled with the rest of your program to
accomplish the task at hand.

IT you have never seen or written a C program, don't worry about the syntax used in
Example 13.11. (As was stated earlier, the Static SQL syntax is only pseudocode. Consult
the Static SQL documentation for your product's actual syntax.)

Programming with SQL

So far, we have discussed two uses for programming with SQL. The first, which was the
focus of the first 12 days of this book, used SQL to write queries and modify data. The
second is the capability to embed SQL statements within third- or fourth-generation

language code. Obviously, the first use for SQL is essential if you want to understand
the language and database programming in general. We have already discussed the
drawbacks to using embedded or Static SQL as opposed to Dynamic SQL. Day 18, "PL/SQL.:
An Introduction,” and Day 19 "Transact-SQL: An Introduction," cover two extensions to
SQL that you can use instead of embedded SQL to perform the same types of functions
discussed in this section.

Summary

The popularity of programming environments such as Visual Basic, Delphi, and
PowerBuilder gives database programmers many tools that are great for executing
queries and updating data with a database. However, as you become increasingly
involved with databases, you will discover the advantages of using the tools and topics
discussed today. Unfortunately, concepts such as cursors, triggers, and stored
procedures are recent database innovations and have a low degree of standardization
across products. However, the basic theory of usage behind all these features is the
same in all database management systems.

Temporary tables are tables that exist during a user's session. These tables typically
exist in a special database (named t enpdb under SQL Server) and are often identified
with a unique date-time stamp as well as a name. Temporary tables can store a result set
from a query for later usage by other queries. Performance can erode, however, if many
users are creating and using temporary tables all at once, owing to the large amount of
activity occurring in the t enpdb database.

Cursors can store a result set in order to scroll through this result set one record at a
time (or several records at a time if desired). The FETCHstatement is used with a cursor
to retrieve an individual record's data and also to scroll the cursor to the next record.
Various system variables can be monitored to determine whether the end of the records
has been reached.

Stored procedures are database objects that can combine multiple SQL statements into
one function. Stored procedures can accept and return parameter values as well as call
other stored procedures. These procedures are executed on the database server and are
stored in compiled form in the database. Using stored procedures, rather than executing
standalone queries, improves performance.

Triggers are special stored procedures that are executed when a table undergoes an
| NSERT, a DELETE, or an UPDATE operation. Triggers often enforce referential
integrity and can also call other stored procedures.

Embedded SQL is the use of SQL in the code of an actual program. Embedded SQL consists
of both Static and Dynamic SQL statements. Static SQL statements cannot be modified
at runtime; Dynamic SQL statements are subject to change.

Q& A

Q If |l create a temporary table, can any other users use my table?
A No, the temporary table is available only to its creator.
Q Why must | close and deal locate a cursor?

A Memory is still allocated for the cursor, even though its name may no longer
exist.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. True or False: Microsoft Visual C++ allows programmers to call the ODBC API
directly.

2. True or False: The ODBC API can be called directly only from a C program.
3. True or False: Dynamic SQL requires the use of a precompiler.

4. What does the # in front of a temporary table signify?

5. What must be done after closing a cursor to return memory?

6. Are triggers used with the SELECT statement?

7. If you have a trigger on a table and the table is dropped, does the trigger still
exist?

Exercises

1. Create a sample database application. (We used a music collection to illustrate
these points today.) Break this application into logical data groupings.

2. List the queries you think will be required to complete this application,

3. List the various rules you want to maintain in the database.

4. Create a database schema for the various groups of data you described in step 1.
5. Convert the queries in step 2 to stored procedures.

6. Convert the rules in step 3 to triggers.

7. Combine steps 4, 5, and 6 into a large script file that can be used to build the
database and all its associated procedures.

8. Insert some sample data. (This step can also be a part of the script file in step 7.)

9. Execute the procedures you have created to test their functionality.

| ¢ Previous Chapter J.-> Mext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 14 -
Dynamic Uses of SQL

Objectives

The purpose of today's lesson is to show you where to start to apply what you have
learned so far. Today's lesson covers, in very broad strokes, practical applications of
SQL. We focus on applications in the Microsoft Windows environment, but the principles
involved are just as applicable to other software platforms. Today you will learn the
following:

. How various commercial products--Personal Oracle7, open database connectivity
(ODBC), InterBase ISQL, Microsoft's Visual C++, and Borland's Delphi--relate to
SQL

. How to set up your environment for SQL
. How to create a database using Oracle7, Microsoft Query, and InterBase ISQL
. How to use SQL inside applications written in Visual C++ and Delphi

After reading this material, you will know where to start applying your new SQL
skills.

A Quick Trip

This section examines several commercial products in the context of the Microsoft

Windows operating system and briefly describes how they relate to SQL. The principles,
iIf not the products themselves, apply across various software platforms.

ODBC

One of the underlying technologies in the Windows operating system is ODBC, which
enables Windows-based programs to access a database through a driver. Rather than
having a custom interface to each database, something you might very well have to
write yourself, you can connect to the database of your choice through a driver. The
concept of ODBC is very similar to the concept of Windows printer drivers, which
enables you to write your program without regard for the printer. Individual
differences, which DOS programming forced you to address, are conveniently handled by
the printer driver. The result is that you spend your time working on the tasks peculiar
to your program, not on writing printer drivers.

ODBC applies this idea to databases. The visual part of ODBC resides in the control
panel in Windows 3.1, 3.11, and Windows 95 and in its own program group in Windows NT.

We cover ODBC in more detail when we discuss creating the database later today.
Personal Oracle7

Personal Oracle7 is the popular database's latest incursion into the personal PC market.
Don't be put off by the number of programs that Oracle7 installs--we built all the
examples used in the first several days using only the Oracle Database Manager and
SQL*Plus 3.3. SQL*Plus is shown in Figure 14.1.

Figure 14.1.

Oracle7's SQL*Plus.
INTERBASE SQL (ISQL)

The tool used in the other examples is Borland's ISQL. It is essential ly the same as
Oracle7 except that Oracle? is character oriented and ISQL is more Windows-like.

An ISQL screen is shown in Figure 14.2. You type your query in the top edit box, and the
result appears in the lower box. The Previous and Next buttons scroll you through the
list of all the queries you make during a session.

Figure 14.2.

InterBase’'s Interactive SQL.

Visual C++

Dozens of books have been written about Visual C++. For the examples in this book, we
used version 1.52. The procedures we used are applicable to the 32-bit version, C++ 2.0. It
Is used here because of its simple interface with ODBC. It is not the only compiler with
the capability to connect to ODBC. If you use a different compiler, this section provides
a good point of departure.

Visual C++ installs quite a few tools. We use only two: the compiler and the resource
editor.

Delphi

The last tool we examine is Borland's Delphi, which is the subject of many new books.
Delphi provides a scalable interface to various databases.

Delphi has two programs that we use: the InterBase Server (Ibmgr) and the Windows
ISQL (Wisql).

Setting Up

Enough with the introductions--let's get to work. After you install your SQL engine or
your ODBC-compatible compiler, you must do a certain amount of stage setting before
the stars can do their stuff. With both Oracle7 and InterBase, you need to log on and
create an account for yourself. The procedures are essential ly the same. The hardest
part is sorting through the hard copy and online documentation for the default
passwords. Both systems have a default system administrator account. (See Figure 14.3.)

Figure 14.3.

InterBase Security manager screen.

After logging on and creating an account, you are ready to create the database.

Creating the Database

This step is where all your SQL training starts to pay off. First, you have to start up the
database you want to use. Figure 14.4 shows Oracle7's stoplight visual metaphor.

Figure 14.4.

Oracle7 Database Manager.

After you get the green light, you can open up the SQL*Plus 3.3 tool shown in Figure
14.5.

Figure 14.5.

Oracle SQL*Plus.

At this point you can create your tables and enter your data using the CREATE and

| NSERT keywords. Another common way of creating tables and entering data is with a
script file. A script file is usually a text file with the SQL commands typed out in the
proper order. Look at this excerpt from a script file delivered with Oracle7:

-- Script to build seed database for Personal Oacle
-- NTES
Called frombuildall.sq
-- MODI FI CATI ONS
- - rs 12/04/94 - Comment, clean up, resize, for production

startup nonount pfile=% dbnms71%init.ora

-- Create database for Wndows RDBMS

create dat abase oracle
controlfile reuse
| ogfile '%oracl e_home% dbs\wdbl ogl. ora' size 400K reuse,

" %0r acl e_honme% dbs\ wdbl og2. ora' size 400K reuse

datafile ' %oracl e_hone% dbs\wdbsys. ora' size 10Mreuse
character set WE8| SO8859P1,;

The syntax varies slightly with the implementation of SQL and the database you are
using, so be sure to check your documentation. Select File | Open to load this script into
your SQL engine.

Borland's InterBase loads data in a similar way. The following excerpt is from one of
the files to insert data:

/~k

* Add countries.
*/

| NSERT | NTO country (country, currency) VALUES (' USA
"Dollar');

| NSERT | NTO country (country, currency) VALUES (' Engl and',
" Pound') ;

| NSERT | NTO country (country, currency) VALUES (' Canada',
"CdnDir');

| NSERT | NTO country (country, currency) VALUES (' Sw tzerland',
" SFranc');

| NSERT | NTO country (country, currency) VALUES ('Japan', "Yen');
| NSERT | NTO country (country, currency) VALUES ('lItaly',

"Lira');

I NSERT | NTO country (country, currency) VALUES (' France',
"FFranc');

I NSERT | NTO country (country, currency) VALUES (' CGernmany', "D
Mar k') ;

| NSERT | NTO country (country, currency) VALUES ('Australia',
"ADol | ar');

I NSERT | NTO country (country, currency) VALUES (' Hong Kong',
"HKDol I ar");

| NSERT | NTO country (country, currency) VALUES (' Netherl ands',
"Cuilder');

I NSERT | NTO country (country, currency) VALUES (' Bel gi um ,
"BFranc');

| NSERT | NTO country (country, currency) VALUES ('Austria',
"Schilling);

| NSERT | NTO country (country, currency) VALUES ('Fiji',
"fdollar');

ANALYSIS:

This example inserts a country name and the type currency used in that country into
the COUNTRY table. (Refer to Day 8, "Manipulating Data," for an introduction to the
| NSERT command.)

There is nothing magic here. Programmers always find ways to save keystrokes. If you
are playing along at home, enter the following tables:

INPUT:

[* Tabl e: CUSTOVER, Omer: PERKINS */
CREATE TABLE CUSTOMVER (NAME CHAR(10),
ADDRESS CHAR(10),
STATE CHAR(2),
ZI P CHAR(10),
PHONE CHAR(11),
REMARKS CHAR(10));

INPUT:

/* Tabl e: ORDERS, Oaner: PERKI NS */
CREATE TABLE ORDERS (ORDEREDON DATE,
NAVE CHAR(10),
PARTNUM | NTEGER,
QUANTI TY | NTEGER,
REMARKS CHAR(10));

INPUT:

[* Tabl e: PART, Omer: PERKINS */
CREATE TABLE PART (PARTNUM | NTEGER,
DESCRI PTI ON CHAR(20) ,
PRI CE NUMERI C(9, 2));

Now fill these tables with the following data:
INPUT/OUTPUT:

SELECT * FROM CUSTOMER

NAVE ADDRESS STATE ZIP PHONE REMARKS
TRUE WHEEL 550 HUSKER NE 58702 555- 4545 NONE

BI KE SPEC CPT SHRIVE LA 45678 555- 1234 NONE

LE SHOPPE HOVETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOMN NE 56784 555-3421 JOHN- MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE
INPUT/OUTPUT:

SELECT * FROM ORDERS

ORDEREDON NAME PARTNUM QUANTI TY REMARKS

15- MAY- 1996 TRUE WHEEL 23 6 PAID
19- MAY- 1996 TRUE WHEEL 76 3 PAID

2- SEP- 1996 TRUE WHEEL 10 1 PAID
30-JUN- 1996 TRUE WHEEL 42 8 PAID
30-JUN- 1996 BI KE SPEC 54 10 PAID
30- MAY- 1996 BI KE SPEC 10 2 PAI D
30- MAY- 1996 BI KE SPEC 23 8 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
17-JAN- 1996 LE SHOPPE 76 5 PAID

1- JUN- 1996 LE SHOPPE 10 3 PAID

1-JUN- 1996 AAA BI KE 10 1 PAID

1-JUL-1996 AAA BI KE 76 4 PAID

1-JUL-1996 AAA BI KE 46 14 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAID
INPUT/OUTPUT:

SELECT * FROM PART

PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TI RES 15. 25

23 MOUNTAI N Bl KE 350. 45

76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

After you enter this data, the next step is to create an ODBC connection. Open the
Control Panel (if you are in Win 3.1, 3.11, or Windows 95) and double-click the ODBC
icon.

NOTE: Several flavors of SQL engines load ODBC. Visual C++, Delphi, and
Oracle7 load ODBC as part of their setup. Fortunately, ODBC is becoming
as common as printer drivers.

The initial ODBC screen is shown in Figure 14.6.

Figure 14.6.

ODBC's Data Sources selection.

This screen shows the current ODBC connections. You want to create a new connection.
Assuming you used InterBase and called the new database TYSSQL (give yourself 10
bonus points if you know what TYSSQL stands for), press the Add button and select the
InterBase Driver, as shown in Figure 14.7.

Figure 14.7.

Driver selection.
From this selection you move to the setup screen. Fill it in as shown in Figure 14.8.

Figure 14.8.

Driver setup.

You can use your own name or something short and easy to type, depending on the
account you set up for yourself. The only tricky bit here, at least for us, was figuring
out what InterBase wanted as a database name. Those of you coming from a PC or small
database background will have to get used to some odd-looking pathnames. These
pathnames tell the SQL engine where to look for the database in the galaxy of
computers that could be connected via LANS.

Using Microsoft Query to Perform a Join

Now that you have made an ODBC connection, we need to make a slight detour to a

rather useful tool called Microsoft Query. This program is loaded along with Visual
C++. We have used it to solve enough database and coding problems to pay for the cost
of the compiler several times over. Query normally installs itself in its own program
group. Find it and open it. It should look like Figure 14.9.

Figure 14.9.

Microsoft Query.

Select File | New Query. Your TYSSQL ODBC link does not appear, so click the Other
button to bring up the ODBC Data Sources dialog box, shown in Figure 14.10, and select
TYSSQL.

Figure 14.10.

Data Sources dialog box.

Click OK to return to the Select Data Source dialog box. Select TYSSQL and click Use,
as shown in Figure 14.11.

Figure 14.11.

Select Data Source dialog box.

Again, small database users aren't accustomed to logging on. Nevertheless, type your
password to move through the screen.

The Add Tables dialog box, shown in Figure 14.12, presents the tables associated with
the database to which you are connected. Select PART, ORDERS, and CUSTOVER, and
click Close.

Figure 14.12.

Selecting tables in Query.

Your screen should look like Figure 14.13. Double-click ADDRESS and NAME from the
CUSTOMER table. Then double-click ORDEREDON and PARTNUMfrom ORDERS.

Figure 14.13.

Visual representation of a table in Query.

Now for some magic! Click the button marked SQL in the toolbar. Your screen should

now look like Figure 14.14.

Figure 14.14.

The query that Query built.

This tool has two functions. The first is to check the ODBC connection. If it works here,
it should work in the program. This step can help you determine whether a problemisin
the database or in the program. The second use is to generate and check queries. Add the
following line to the SQL box and click OK:

WHERE CUSTOMER. NAME = ORDERS. NAME AND PART. PARTNUM = ORDERS. PARTNUM
Figure 14.15 shows the remarkable result.

Figure 14.15.

Query's graphic representation of a join.

You have just performed a join! Not only that, but the fields you joined on have been
graphically connected in the table diagrams (note the zigzag lines between NAME and
PARTNUM.

Query is an important tool to have in your SQL arsenal on the Windows software
platform. It enables you examine and manipulate tables and queries. You can also use it
to create tables and manipulate data. If you work in Windows with ODBC and SQL,
either buy this tool yourself or have your company or client buy it for you. It is not as
interesting as a network version of DOOM, but it will save you time and money. Now
that you have established an ODBC link, you can use it in a program.

Using Visual C++ and SQL

NOTE: The source code for this example is located in Appendix B, "Source
Code Listings for the C++ Program Used on Day 14."

Call up Visual C++ and select AppWizard, as shown in Figure 14.16. The name and
subdirectory for your project do not have to be identical.

Figure 14.16.

Initial project setup.

Click the Options button and fill out the screen as shown in Figure 14.17.

Figure 14.17.

The Options dialog box.

Click OK and then choose Database Options. Select Database Support, No File Support as
shown in Figure 14.18.

Figure 14.18.

The Database Options dialog box.
Click the Data Source button and make the choices shown in Figure 14.19.

Figure 14.19.

Selecting a data source.

Then select the CUSTOVER table from the Select a Table dialog box, shown in Figure
14.20.

Figure 14.20.

Selecting a table.

Now you have selected the CUSTOVER table from the TYSSQL database. Go back to the
AppWizard basic screen by clicking OK twice. Then click OK again to display the new
application information (see Figure 14.21), showing the specifications of a new skeleton
application.

Figure 14.21.

AppWizard's new application information.

After the program is generated, you need to use the resource editor to design your main
screen. Select Tools | App Studio to launch App Studio. The form you design will be
simple--just enough to show some of the columns in your table as you scroll through
the rows. Your finished form should look something like Figure 14.22.

Figure 14.22.

Finished form in App Studio.

For simplicity we named the edit boxes | DC_NAME, | DC_ADDRESS, | DC_STATE, and
| DC_ZI P, although you can name them whatever you choose. Press Ctr1+W to send the

Class Wizard page to the Member Variables and set the variables according to Figure
14.23.

Figure 14.23.

Adding member variables in Class Wizard.

NOTE: The program was nice enough to provide links to the table to which
you are connected. Links are one of the benefits of working through
Microsoft's wizards or Borland's experts.

Save your work; then press Alt+Tab to return to the compiler and compile the program.
If all went well, your output should look like Figure 14.24. If it doesn't, retrace your
steps and try again.

Figure 14.24.

A clean compile for the test program.

Now run your program. It should appear, after that pesky logon screen, and look like
Figure 14.25.

Figure 14.25.

The test program.

An impressive program, considering that you have written zero lines of code so far. Use
the arrow keys on the toolbar to move back and forth in the database. Notice that the
order of the data is the same as its input order. It is not alphabetical (unless you typed
it in that way). How can you change the order?

Your connection to the database is encapsulated in a class called Ct yssql set, which
the AppWizard created for you. Look at the header file (t yssqset . h):

/'l tyssqgset.h : interface of the CTyssqgl Set cl ass

/1

FEEEEEPEErrr bbb rrrrrrr
cl ass CTyssqgl Set : public CRecordset

{
DECLARE_DYNAM C(CTyssqgl Set)

publi c:

CTyssql Set (CDat abase* pDat abase = NULL);

/'l Fiel d/ Param Dat a

/1 {{ AFX_FI ELD(CTyssql Set, CRecordset)

Cstring m_NAME;

Cstring m_ADDRESS,

Cstring m STATE;

Cstring m ZI P,

Cstring m_PHONE;

Cstring m_REMARKS,

/1}}AFX_FI ELD

/1 1nplenmentation

pr ot ect ed:

virtual CString GetDefaultConnect();// Default connection string
virtual CString GetDefaul tSQ.();// default SQ. for Recordset
virtual void DoFi el deExchange(CFi el dExchange* pFX);// RFX support

}s
ANALYSIS:

Note that member variables have been constructed for all the columns in the table.
Also notice the functions Get Def aul t Connect and Get Def aul t SQL; here's their
implementations fromt yssqgset . cpp:

CString CTyssql Set: : Get Def aul t Connect ()

{
return ODBC, DSN=TYSSQ.; ";

}
CString CTyssql Set:: Get Def aul t SQL()

{
return " CUSTOVER":

}

CGet Def aul t Connect makes the ODBC connection. You shouldn't change it. However,
Get Def aul t SQL enables you to do some interesting things. Change it to this:

return "SELECT * FROM CUSTOMER ORDER BY NAME";
Recompile, and magical ly your table is sorted by name, as shown in Figure 14.26.

Figure 14.26.

Database order changed by SQL.

Without going into a tutorial on the Microsoft Foundation Class, let us just say that
you can manipulate CRecor dSet and Cdat abase objects, join and drop tables, update
and insert rows, and generally have all the fun possible in SQL. You have looked as far
over the edge as you can, and we have pointed the way to integrate SQL into C++

applications. Topics suggested for further study are CRecor dSet and Cdat abase (both
in the C++ books online that should come as part of the C++ software), ODBC API (the
subject of several books), and the APIs provided by Oracle and Sybase (which are both
similar to the ODBC API).

Using Delphi and SQL

Another important database tool on the Windows software platform is Delphi. The
splash that comes up as the program is loading has a picture of the Oracle at Delphi,
surrounded by the letters SQL. In the C++ example you rewrote one line of code. Using
Delphi, you will join two tables without writing a single line of code!

NOTE: The code for this program is located in Appendix C, "Source Code
Listings for the Delphi Program Used on Day 14."

Double-click Delphi's icon to get it started. At rest the program looks like Figure 14.27.

Figure 14.27.

The Delphi programming environment.

Delphi requires you to register any ODBC connections you are going to use in your
programming. Select BDE (Borland Database Environment) from the Tools menu and
then fill out the dialog box shown in Figure 14.28.

Figure 14.28.

Registering your connections.

Click the Aliases tab shown at the bottom of Figure 14.28 and assign the name TYSSQL,
as shown in Figure 14.29.

Figure 14.29.

Adding a new alias.

Select File | New Form to make the following selections. Start by choosing the Database
Form from the Experts tab, as shown in Figure 14.30.

Figure 14.30.

The Experts page in the Browse gallery.
Then choose the master/detail form and TQuer y objects, as shown in Figure 14.31.

Figure 14.31.

The Database Form Expert dialog box.

NOTE: Delphi enables you to work with either a query or a table. If you
need flexibility, we recommend the TQuer y object. If you need the whole
table without modification, use the TTabl e object.

Now select the TYSSQL data source you set up earlier, as shown in Figure 14.32.

Figure 14.32.

Choosing a data source.
Choose the PART table as the master, as shown in Figure 14.33.

Figure 14.33.

Choosing a table.
Choose all its fields, as shown in Figure 14.34.

Figure 14.34.

Adding all the fields.
Pick the Horizontal display mode, as shown in Figure 14.35.

Figure 14.35.

Display mode selection.

Then choose ORDERS, select all its fields, and select Grid for its display mode, as shown
in Figures 14.36, 14.37, and 14.38.

Figure 14.36.

Choosing the table for the detail part of the form.

Figure 14.37.

Selecting all the fields.

Figure 14.38.

Selecting the orientation.

Now the software enables you to make a join. Make the join on PARTNUM as shown in
Figure 14.309.

Figure 14.39.

Making the join.
Now go ahead and generate the form. The result looks like Figure 14.40.

Figure 14.40.

The finished form.

Compile and run the program. As you select different parts, the order for them should
appear in the lower table, as shown in Figure 14.41.

Figure 14.41.

The finished program.

Close the project and click one or both of the query objects on the form. When you
click an object, the Object Inspector to the left of the screen in Figure 14.42 shows the
various properties.

Figure 14.42.

The query in the TQuery object.

Try experimenting with the query to see what happens. Just think what you can do when
you start writing code!

Summary

Today you learned where to start applying SQL using the ordinary, everyday stuff you
find lying on your hard drive. The best way to build on what you have learned is to go
out and query. Query as much as you can.

Q& A

Q What is the difference between the ODBC API and the Oracle and Sybase APIs?

A On a function-by-function level, Oracle and Sybase are remarkably similar, which is
not a coincidence. Multiple corporate teamings and divorces have led to libraries that
were derived from somewhat of a common base. ODBC's API is more generic--it isn't
specific to any database. IT you need to do something specific to a database or tune the
performance of a specific database, you might consider using that database's API library
in your code.

Q With all the available products, how do | know what to use?

A In a business environment, product selection is usually a compromise between
management and "techies." Management looks at the cost of a product; techies will look

at the features and how the product can make their lives easier. In the best of all
programming wor lds, that compromise will get your job done quickly and efficiently.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. In which object does Microsoft Visual C++ place its SQL?
2. In which object does Delphi place its SQL?
3. What is ODBC?
4. What does Delphi do?
Exercises

1. Change the sort order in the C++ example from ascending to descending on the

St at e field.

2. Go out, find an application that needs SQL, and use it.

{4 Previous Chapter JER.—* Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 2 In Review

Week 1 spent a great deal of time introducing a very important topic: the SELECT
statement. Week 2 branched out into various topics that collectively form a thorough
introduction to the Structured Query Language (SQL).

Day 8 introduced data manipulation language (DML) statements, which are SQL
statements that you can use to modify the data within a database. The three commands
most commonly used are | NSERT, DELETE, and UPDATE. Day 9 described how to design
and build a database and introduced the commands CREATE DATABASE and CREATE
TABLE. A table can be created with any number of fields, each of which can be a
database-vendor-defined data type. The ALTER DATABASE command can change the
physical size or location of a database. The DROP DATABASE and DROP TABLE
statements, respectively, remove a database or remove a table within a database.

Day 10 explained two ways to display data: the view and the index. A view is a virtual
table created from the output of a SELECT statement. An index orders the records
within a table based on the contents of a field or fields.

Day 11 covered transaction management, which was your first taste of programming
with SQL. Transactions start with the BEA N TRANSACTI ONstatement. The COWM T
TRANSACTI ONsaves the work of a transaction. The ROLLBACK TRANSACTI ON command
cancels the work of a transaction.

Day 12 focused on database security. Although the implementation of database security
varies widely among database products, most implementations use the GRANT and REVOKE
commands. The GRANT command grants permissions to a user. The REVOKE command
removes these permissions.

Day 13 focused on developing application programs using SQL. Static SQL typically
involves the use of a precompiler and is static at runtime. Dynamic SQL is very flexible
and has become very popular in the last few years. Sample programs used Dynamic SQL
with the Visual C++ and Delphi development toolkits.

Day 14 covered advanced aspects of SQL. Cursors can scroll through a set of records.
Stored procedures are database objects that execute several SQL statements in a row.
Stored procedures can accept and return values. Triggers are a special type of stored
procedure that are executed when records are inserted, updated, or deleted within a
table.

| € Previous Chapter JE(-> MNext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 3 At A Glance
Applying Your Knowledge of SQL

Welcome to Week 3. So far you have learned the fundamentals of SQL and already
know enough to apply what you have learned to some real-life situations. This week
builds on the foundation established in Weeks 1 and 2. Day 15 shows you how to
streamline SQL statements for improved performance. Day 16 talks about the data
dictionary, or system catalog, of a relational database and shows you how to retrieve
valuable information. Day 17 extends the concept of using the data dictionary to
generate SQL as output from another SQL statement. You will learn the benefits of
this technigue and discover how generating SQL can improve your efficiency on the job.
Day 18 covers Oracle's PL/SQL, or Oracle procedural language. PL/SQL is one of the
many extensions to standard SQL. Another extension is Sybase's and Microsoft Server's
Transact-SQL, which is covered on Day 19. Day 20 returns to Oracle to cover SQL*Plus,
which allows you to use advanced commands to communicate with the database.
SQL*Plus also enables you to format query-generated reports in an attractive manner.
You can use SQL*Plus in collaboration with PL/SQL. Day 21 examines errors and logical
mistakes that relational database users frequently encounter. We provide brief
descriptions of the errors, solutions, and tips on avoiding errors.

| ¢ Previous Chapter B+ Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- 15 -
Streamlining SQL Statementsfor | mproved
Performance

Streamlining SQL statements is as much a part of application performance as database
designing and tuning. No matter how fine-tuned the database or how sound the
database structure, you will not receive timely query results that are acceptable to
you, or even worse, the customer, if you don't fol low some basic guidelines. Trust us, if
the customer is not satisfied, then you can bet your boss won't be satisfied either.

Objectives

You already know about the major components of the relational database language of
SQL and how to communicate with the database; now it's time to apply your knowledge
to real-life performance concerns. The objective of Day 15 is to recommend methods for
improving the performance of, or streamlining, an SQL statement. By the end of today,
you should

. Understand the concept of streamlining your SQL code

. Understand the differences between batch loads and transactional processing
and their effects on database performance

. Be able to manipulate the conditions in your query to expedite data retrieval

. Be familiar with some underlying elements that affect the tuning of the entire
database

Here's an analogy to help you understand the phrase streamline an SQL statement: The
objective of competitive swimmers is to complete an event in as little time as possible
without being disqualified. The swimmers must have an acceptable technique, be able to
torpedo themselves through the water, and use all their physical resources as
effectively as possible. With each stroke and breath they take, competitive swimmers
remain streamlined and move through the water with very little resistance.

Look at your SQL query the same way. You should always know exactly what you want
to accomplish and then strive to follow the path of least resistance. The more time you
spend planning, the less time you'l I have to spend revising later. Your goal should
always be to retrieve accurate data and to do so in as little time as possible. An end
user waiting on a slow query is like a hungry diner impatiently awaiting a tardy meal.
Although you can write most queries in several ways, the arrangement of the
components within the query is the factor that makes the difference of seconds, minutes,
and sometimes hours when you execute the query. Streamlining SQL is the process of
finding the optimal arrangement of the elements within your query.

In addition to streamlining your SQL statement, you should also consider several other
factors when trying to improve general database performance, for example, concurrent
user transactions that occur within a database, indexing of tables, and deep-down
database tuning.

NOTE: Today's examples use Personal Oracle7 and tools that are available
with the Oracle7.3 relational database management system. The concepts
discussed today are not restricted to Oracle; they may be applied to other
relational database management systems.

Make Your SQL Statements Readable

Even though readability doesn't affect the actual performance of SQL statements, good
programming practice calls for readable code. Readability is especial ly important if you
have multiple conditions in the WHERE clause. Anyone reading the clause should be able
to determine whether the tables are being joined properly and should be able to
understand the order of the conditions.

Try to read this statement:

SQL> SELECT EMPLOYEE_TBL. EMPLOYEE_I D,
EMPLOYEE_TBL. NAVE, EMPLOYEE_PAY_TBL. SALARY, EMPLOYEE_PAY_TBL. H RE_DATE
2 FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
3 WHERE EMPLOYEE_TBL. EMPLOYEE | D = EMPLOYEE_PAY_TBL. EMPLOYEE | D AND
4 EMPLOYEE_PAY_TBL. SALARY > 30000 OR (EMPLOYEE_PAY_TBL. SALARY
BETWEEN 25000

5 AND 30000 AND EMPLOYEE_PAY_TBL. H RE_DATE < SYSDATE - 365);

Here's the same query reformatted to enhance readability:

SQL> SELECT E. EMPLOYEE I D, E.NAME, P.SALARY, P.Hl RE_DATE
FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL P
WHERE E. EMPLOYEE_ | D = P. EMPLOYEE_| D
AND P. SALARY > 30000
OR (P. SALARY BETWEEN 25000 AND 30000
AND P. Hl RE_DATE < SYSDATE - 365);

~No ok WN

NOTE: Notice the use of table aliases in the preceding query.
EMPLOYEE_TBL in line 2 has been assigned the alias E, and
EMPLOYEE_PAY_TBL in line 3 has been assigned the alias P. You can see that
in lines 4, 5, 6, and 7, the E and P stand for the full table names. Aliases
require much less typing than spelling out the full table name, and even
more important, queries that use aliases are more organized and easier to
read than queries that are cluttered with unnecessarily long full table
names.

The two queries are identical, but the second one is obviously much easier to read. It is
very structured; that is, the logical components of the query have been separated by
carriage returns and consistent spacing. You can quickly see what is being selected (the
SELECT clause), what tables are being accessed (the FROMclause), and what conditions
need to be met (the WHERE clause).

The Full-Table Scan

A full-table scan occurs when the database server reads every record in a table in
order to execute an SQL statement. Full-table scans are normally an issue when
dealing with queries or the SELECT statement. However, a full-table scan can also
come into play when dealing with updates and deletes. A full-table scan occurs when
the columns in the WHERE clause do not have an index associated with them. A full-
table scan is like reading a book from cover to cover, trying to find a keyword. Most
often, you will opt to use the index.

You can avoid a ful l-table scan by creating an index on columns that are used as
conditions in the WHERE clause of an SQL statement. Indexes provide a direct path to the
data the same way an index in a book refers the reader to a page number. Adding an
index speeds up data access.

Although programmers usually frown upon full-table scans, they are sometimes

appropriate. For example:

. You are selecting most of the rows from a table.
« You are updating every row in a table.

. The tables are small.

In the first two cases an index would be inefficient because the database server would
have to refer to the index, read the table, refer to the index again, read the table
again, and so on. On the other hand, indexes are most efficient when the data you are
accessing is a small percentage, usually no more than 10 to 15 percent, of the total data
contained within the table.

In addition, indexes are best used on large tables. You should always consider table size
when you are designing tables and indexes. Properly indexing tables involves
familiarity with the data, knowing which columns will be referenced most, and may
require experimentation to see which indexes work best.

NOTE: When speaking of a "large table,” large is a relative term. A table
that is extremely large to one individual may be minute to another. The
size of a table is relative to the size of other tables in the database, to the
disk space available, to the number of disks available, and simple common
sense. Obviously, a 2GB table is large, whereas a 16KB table issmall. In a
database environment where the average table size is 100MB, a 500MB table
may be considered massive.

Adding a New I ndex

You will often find situations in which an SQL statement is running for an
unreasonable amount of time, although the performance of other statements seems to
be acceptable; for example, when conditions for data retrieval change or when table
structures change.

We have also seen this type of slowdown when a new screen or window has been added
to a front-end application. One of the first things to do when you begin to troubleshoot
is to find out whether the target table has an index. In most of the cases we have seen,
the target table has an index, but one of the new conditions in the WHERE clause may
lack an index. Looking at the WHERE clause of the SQL statement, we have asked,
Should we add another index? The answer may be yes if:

. The most restrictive condition(s) returns less than 10 percent of the rows in a
table.

. The most restrictive condition(s) will be used often in an SQL statement.
. Condition(s) on columns with an index will return unique values.

. Columns are often referenced in the ORDER BY and GROUP BY clauses.

Composite indexes may also be used. A composite index is an index on two or more columns
in a table. These indexes can be more efficient than single-column indexes if the indexed
columns are often used together as conditions in the WHERE clause of an SQL statement.
IT the indexed columns are used separately as well as together, especially in other
gueries, single-column indexes may be more appropriate. Use your judgment and run tests
on your data to see which type of index best suits your database.

Arrangement of Elementsin a Query

The best arrangement of elements within your query, particularly in the WHERE clause,
really depends on the order of the processing steps in a specific implementation. The
arrangement of conditions depends on the columns that are indexed, as well as on which
condition will retrieve the fewest records.

You do not have to use a column that is indexed in the WHERE clause, but it is obviously
more beneficial to do so. Try to narrow down the results of the SQL statement by using
an index that returns the fewest number of rows. The condition that returns the fewest
records in a table is said to be the most restrictive condition. As a general statement, you
should place the most restrictive conditions last in the WHERE clause. (Oracle's query
optimizer reads a WHERE clause from the bottom up, so in a sense, you would be placing
the most restrictive condition first.)

When the optimizer reads the most restrictive condition first, it is able to narrow down
the first set of results before proceeding to the next condition. The next condition,
instead of looking at the whole table, should look at the subset that was selected by
the most selective condition. Ultimately, data is retrieved faster. The most selective
condition may be unclear in complex queries with multiple conditions, subqueries,
calculations, and several combinations of the AND, OR, and LI KE.

TIP: Always check your database documentation to see how SQL statements
are processed in your implementation.

The following test is one of many we have run to measure the difference of elapsed time
between two uniquely arranged queries with the same content. These examples use
Oracle7.3 relational database management system. Remember, the optimizer in this
implementation reads the WHERE clause from the bottom up.

Before creating the SELECT statement, we selected distinct row counts on each
condition that we planned to use. Here are the values selected for each condition:

Condition Distinct Values
calc_ytd = '-2109490. 8' 13,000 +

dt _stnp = '01- SEP- 96’ 15

output _cd = '001 13
activity cd = "IN 10
status_cd = 'A 4
function_cd = '060'

NOTE: The most restrictive condition is also the condition with the most
distinct values.

The next example places the most restrictive conditions first in the WHERE clause:
INPUT:

SQL> SET TIM NG ON
SELECT COUNT(*)
FROM FACT _TABLE
WHERE CALC YTD = ' - 2109490. 8'
AND DT_STMP = ' 01- SEP- 96'
AND OUTPUT_CD = ' 001'
AND ACTIVITY. CD = 'IN
AND STATUS CD = ' A
AND FUNCTI ON_CD = ' 060' ;

OO ~NO O, WN

OUTPUT:

1 row sel ect ed.
El apsed: 00: 00: 15. 37

This example places the most restrictive conditions last in the WHERE clause:

INPUT/OUTPUT:

SQL> SET TIM NG ON
2 SELECT COUNT(*)

3 FROM FACT TABLE
4 WHERE FUNCTI ON CD = ' 060"

AND STATUS CD = ' A

AND ACTIVITY CD = 'IN

AND OUTPUT CD = ' 001'

AND DT_STMP = ' 01- SEP- 96'
AND CALC YTD = ' -2109490. 8' :

O 00 ~N O 01

COUNT(*)

1 row sel ected.
El apsed: 00: 00: 01. 80

ANALYSIS:

Notice the difference in elapsed time. Simply changing the order of conditions according
to the given table statistics, the second query ran almost 14 seconds faster than the
first one. Imagine the difference on a poorly structured query that runs for three
hours!

Procedures

For queries that are executed on a regular basis, try to use procedures. A procedure is a
potentially large group of SQL statements. (Refer to Day 13, "Advanced SQL Topics.")

Procedures are compiled by the database engine and then executed. Unlike an SQL
statement, the database engine need not optimize the procedure before it is executed.
Procedures, as opposed to numerous individual queries, may be easier for the user to
maintain and more efficient for the database.

Avoiding OR

Avoid using the logical operator ORin a query if possible. ORinevitably slows down
nearly any query against a table of substantial size. We find that | Nis generally much
guicker than OR This advice certainly doesn't agree with documentation stating that
optimizers convert | Narguments to OR conditions. Nevertheless, here is an example of a
guery using multiple ORs:

INPUT:

SQL> SELECT *
2 FROM FACT TABLE
3 WHERE STATUS CD
4 OR STATUS CD
5 OR STATUS CD
6 OR STATUS CD

QQm>

7 OR STATUS_CD = 'FE
8 OR STATUS_CD = 'F
9 ORDER BY STATUS_CD;

Here is the same query using SUBSTRand | N:
INPUT:

SQL> SELECT *
2 FROM FACT TABLE
3 WHERE STATUS CDIN (A ,'B,'C,'D,'E,'F)
4 ORDER BY STATUS CD;

ANALYSIS:

Try testing something similar for yourself. Although books are excellent sources for
standards and direction, you will find it is often useful to come to your own
conclusions on certain things, such as performance.

Here is another example using SUBSTRand | N. Notice that the first query combines
LI KEwith OR,

INPUT:

SQL> SELECT *

FROM FACT_TABLE

WHERE PROD CD LI KE ' AB%
OR PROD CD LI KE ' AC%
OR PROD CD LI KE ' BB%
OR PROD CD LI KE ' BC%
OR PROD CD LI KE ' CC%

ORDER B

Y PROD_CD;

coO~NO O hWN

> SELECT *
FROM FACT TABLE
WHERE SUBSTR(PROD CD, 1,2) IN (' AB','AC,'BB,'BC,'CC)
ORDER BY PROD CD;

-hwl\)p

ANALYSIS:
The second example not only avoids the ORbut also eliminates the combination of the

ORand LI KE operators. You may want to try this example to see what the real-time
performance difference is for your data.

OLAPVersusOLTP

When tuning a database, you must first determine what the database is being used for.

An online analytical processing (OLAP) database is a system whose function is to provide
guery capabilities to the end user for statistical and general informational purposes.
The data retrieved in this type of environment is often used for statistical reports that
aid in the corporate decision-making process. These types of systems are also referred to
as decision support systems (DSS). An online transactional processing (OLTP) database is
a system whose main function is to provide an environment for end-user input and may
also involve queries against day-to-day information. OLTP systems are used to
manipulate information within the database on a daily basis. Data warehouses and DSSs
get their data from online transactional databases and sometimes from other OLAP
systems.

OLTP Tuning

A transactional database is a delicate system that is heavily accessed in the form of
transactions and queries against day-to-day information. However, an OLTP does not
usually require a vast sort area, at least not to the extent to which it is required in an
OLAP environment. Most OLTP transactions are quick and do not involve much sorting.

One of the biggest issues in a transactional database is rol Iback segments. The amount
and size of rol Iback segments heavily depend on how many users are concurrently
accessing the database, as well as the amount of work in each transaction. The best
approach is to have several rollback segments in a transactional environment.

Another concern in a transactional environment is the integrity of the transaction logs,
which are written to after each transaction. These logs exist for the sole purpose of
recovery. Therefore, each SQL implementation needs a way to back up the logs for use in
a "point in time recovery." SQL Server uses dump devices; Oracle uses a database mode
known as ARCHIVELOG mode. Transaction logs also involve a performance
consideration because backing up logs requires additional overhead.

OLAP Tuning

Tuning OLAP systems, such as a data warehouse or decision support system, is much
different from tuning a transaction database. Normally, more space is needed for
sorting.

Because the purpose of this type of system is to retrieve useful decision-making data, you
can expect many complex queries, which normally involve grouping and sorting of data.
Compared to a transactional database, OLAP systems typical ly take more space for the
sort area but less space for the rolIback area.

Most transactions in an OLAP system take place as part of a batch process. Instead of
having several rollback areas for user input, you may resort to one large rollback area
for the loads, which can be taken offline during daily activity to reduce overhead.

Batch Loads Versus Transactional Processing

A major factor in the performance of a database and SQL statements is the type of
processing that takes place within a database. One type of processing is OLTP, discussed
earlier today. When we talk about transactional processing, we are going to refer to
two types: user input and batch loads.

Regular user input usual ly consists of SQL statements such as | NSERT, UPDATE, and
DELETE. These types of transactions are often performed by the end user, or the
customer. End users are normally using a front-end application such as PowerBuilder to
interface with the database, and therefore they seldom issue visible SQL statements.
Nevertheless, the SQL code has already been generated for the user by the front-end
application.

Your main focus when optimizing the performance of a database should be the end-user
transactions. After all, "no customer" equates to "no database," which in turn means
that you are out of a job. Always try to keep your customers happy, even though their
expectations of system/database performance may sometimes be unreasonable. One
consideration with end-user input is the number of concurrent users. The more
concurrent database users you have, the greater the possibilities of performance
degradation.

What is a batch load? A batch load performs heaps of transactions against the database
at once. For example, suppose you are archiving last year's data into a massive history
table. You may need to insert thousands, or even millions, of rows of data into your
history table. You probably wouldn't want to do this task manually, so you are likely
to create a batch job or script to automate the process. (Numerous techniques are
available for loading data in a batch.) Batch loads are notorious for taxing system and
database resources. These database resources may include table access, system catalog
access, the database rol lback segment, and sort area space; system resources may include
available CPU and shared memory. Many other factors are involved, depending on your
operating system and database server.

Both end-user transactions and batch loads are necessary for most databases to be
successful, but your system could experience serious performance problems if these two
types of processing lock horns. Therefore, you should know the difference between them
and keep them segregated as much as possible. For example, you would not want to load
massive amounts of data into the database when user activity is high. The database
response may already be slow because of the number of concurrent users. Always try to
run batch loads when user activity is at a minimum. Many shops reserve times in the
evenings or early morning to load data in batch to avoid interfering with daily
processing.

You should always plan the timing for massive batch loads, being careful to avoid

scheduling them when the database is expected to be available for normal use. Figure
15.1 depicts heavy batch updates running concurrently with several user processes, all
contending for system resources.

Figure 15.1.
System resource contention.

As you can see, many processes are contending for system resources. The heavy batch
updates that are being done throw a monkey wrench into the equation. Instead of the
system resources being dispersed somewhat evenly among the users, the batch updates
appear to be hogging them. This situation is just the beginning of resource contention.
As the batch transactions proceed, the user processes may eventually be forced out of
the picture. This condition is not a good way of doing business. Even if the system has
only one user, significant contention for that user could occur.

Another problem with batch processes is that the process may hold locks on a table that
a user is trying to access. If there is a lock on a table, the user will be refused access
until the lock is freed by the batch process, which could be hours. Batch processes
should take place when system resources are at their best if possible. Don't make the
users' transactions compete with batch. Nobody wins that game.

Optimizing Data L oads by Dropping | ndexes

One way to expedite batch updates is by dropping indexes. Imagine the history table with
many thousands of rows. That history table is also likely to have one or more indexes.
When you think of an index, you normal ly think of faster table access, but in the case
of batch loads, you can benefit by dropping the index(es).

When you load data into a table with an index, you can usual ly expect a great deal of
index use, especial ly if you are updating a high percentage of rows in the table. Look at
it this way. If you are studying a book and highlighting key points for future reference,
you may find it quicker to browse through the book from beginning to end rather than
using the index to locate your key points. (Using the index would be efficient if you
were highlighting only a small portion of the book.)

To maximize the efficiency of batch loads/updates that affect a high percentage of rows
in a table, you can take these three basic steps to disable an index:

1. Drop the appropriate index(es).
2. Load/update the table's data.

3. Rebhuild the table's index.

A Frequent COWM T Keepsthe DBA Away

When performing batch transactions, you must know how often to perform a "commit."
As you learned on Day 11, "Controlling Transactions,” a COMM T statement finalizes a
transaction. A COVWM T saves a transaction or writes any changes to the applicable
table(s). Behind the scenes, however, much more is going on. Some areas in the database
are reserved to store completed transactions before the changes are actually written
to the target table. Oracle calls these areas rollback segments. When you issue a COYM T
statement, transactions associated with your SQL session in the rollback segment are
updated in the target table. After the update takes place, the contents of the rollback
segment are removed. A ROLLBACK command, on the other hand, clears the contents of
the rollback segment without updating the target table.

As you can guess, if you never issue a COVM T or ROLLBACK command, transactions keep
building within the rol lback segments. Subsequently, if the data you are loading is
greater in size than the available space in the rollback segments, the database will
essentially come to a halt and ban further transactional activity. Not issuing COVWM T
commands is a common programming pitfall; regular COVWM Ts help to ensure stable
performance of the entire database system.

The management of rollback segments is a complex and vital database administrator
(DBA) responsibility because transactions dynamically affect the rol Iback segments,
and in turn, affect the overall performance of the database as well as individual SQL
statements. So when you are loading large amounts of data, be sure to issue the COWM T
command on a regular basis. Check with your DBA for advice on how often to commit
during batch transactions. (See Figure 15.2.)

Figure 15.2.
The rollback area.

As you can see in Figure 15.2, when a user performs a transaction, the changes are
retained in the rollback area.

Rebuilding Tables and Indexesin a Dynamic
Environment

The term dynamic database environment refers to a large database that is in a constant
state of change. The changes that we are referring to are frequent batch updates and
continual daily transactional processing. Dynamic databases usually entail heavy
OLTP systems, but can also refer to DSSs or data warehouses, depending upon the
volume and frequency of data loads.

The result of constant high-volume changes to a database is growth, which in turn

yields fragmentation. Fragmentation can easily get out of hand if growth is not
managed properly. Oracle allocates an initial extent to tables when they are created.
When data is loaded and fills the table's initial extent, a next extent, which is also
allocated when the table is created, is taken.

Sizing tables and indexes is essential ly a DBA function and can drastical ly affect SQL
statement performance. The first step in growth management is to be proactive. Allow
room for tables to grow from day one, within reason. Also plan to defragment the
database on a regular basis, even if doing so means developing a weekly routine. Here
are the basic conceptual steps involved in defragmenting tables and indexes in a
relational database management system:

1. Get a good backup of the table(s) and/or index(es).

2. Drop the table(s) and/or index(es).

3. Rebuild the table(s) and/or index(es) with new space allocation.
4. Restore the data into the newly built table(s).

5. Re-create the index(es) if necessary.

6. Reestablish user/role permissions on the table if necessary.

7. Save the backup of your table until you are absolutely sure that the new
table was built successfully. If you choose to discard the backup of the original
table, you should first make a backup of the new table after the data has been
fully restored.

WARNING: Never get rid of the backup of your table until you are sure
that the new table was built successfully.

The following example demonstrates a practical use of a mailing list table in an Oracle
database environment.

INPUT:

CREATE TABLE NAI LI NG _TBL_BKUP AS
SELECT * FROM MAI LI NG_TBL;

OUTPUT:
Tabl e Creat ed.

INPUT/OUTPUT:

drop table mailing_thbl;
Tabl e Dr opped.

CREATE TABLE MAI LI NG_TBL
(

| NDI VI DUAL_| D VARCHAR2(12) NOT NULL,
| NDI VI DUAL_NAME VARCHAR2(30) NOT NULL,
ADDRESS VARCHAR(40) NOT NULL,
cl TY VARCHAR(25) NOT NULL,
STATE VARCHAR(2) NOT NULL,
ZI P_CODE VARCHAR(9) NOT NULL,
)
TABLESPACE TABLESPACE_NAMVE
STORAGE (| NI TI AL NEW S| ZE,
NEXT NEW SI ZE);

Tabl e creat ed.

| NSERT | NTO MAI LI NG_TBL
select * frommailing tbl_ bkup;

93, 451 rows inserted.

CREATE | NDEX MAI LI NG_I DX ON MAI LI NG TABLE

(
| NDI VI DUAL_| D

)
TABLESPACE TABLESPACE_NAME

STORAGE (| NI TI AL NEW S| ZE,
NEXT NEW SI ZE);

| ndex Created.

grant select on nmailing tbl to public;
G ant Succeeded.

drop table mailing_tbl _ bkup;

Tabl e Dr opped.

ANALYSIS:

Rebuilding tables and indexes that have grown enables you to optimize storage, which
improves overall performance. Remember to drop the backup table only after you have
verified that the new table has been created successfully. Also keep in mind that you
can achieve the same results with other methods. Check the options that are available
to you in your database documentation.

Tuning the Database

Tuning a database is the process of fine-tuning the database server's performance. As a
newcomer to SQL, you probably will not be exposed to database tuning unless you are a
new DBA or a DBA moving into a relational database environment. Whether you will be
managing a database or using SQL in applications or programming, you will benefit by
knowing something about the database-tuning process. The key to the success of any
database is for all parties to work together. Some general tips for tuning a database
follow.

. Minimize the overall size required for the database.

It's good to allow room for growth when designing a database, but don't go
overboard. Don't tie up resources that you may need to accommodate database
growth.

. Experiment with the user process's time-slice variable.

This variable controls the amount of time the database server's scheduler
allocates to each user's process.

. Optimize the network packet size used by applications.

The larger the amount of data sent over the network, the larger the network
packet size should be. Consult your database and network documentation for
more details.

. Store transaction logs on separate hard disks.

For each transaction that takes place, the server must write the changes to the
transaction logs. If you store these log files on the same disk as you store data,
you could create a performance bottleneck. (See Figure 15.3.)

. Stripe extremely large tables across multiple disks.

If concurrent users are accessing a large table that is spread over multiple disks,
there is much less chance of having to wait for system resources. (See Figure 15.3.)

. Store database sort area, system catalog area, and rol lback areas on separate
hard disks.

These are all areas in the database that most users access frequently. By
spreading these areas over multiple disk drives, you are maximizing the use of

system resources. (See Figure 15.3.)

. Add CPUs.

This system administrator function can drastical ly improve database performance.
Adding CPUs can speed up data processing for obvious reasons. If you have multiple
CPUs on a machine, then you may be able to implement parallel processing
strategies. See your database documentation for more information on parallel
processing, if it is available with your implementation.

. Add memory.
Generally, the more the better.

. Store tables and indexes on separate hard disks.
You should store indexes and their related tables on separate disk drives when-
ever possible. This arrangement enables the table to be read at the same time the
index is being referenced on another disk. The capability to store objects on
multiple disks may depend on how many disks are connected to a controller. (See

Figure 15.3.)

Figure 15.3 shows a simple example of how you might segregate the major areas of your
database.

Figure 15.3.
Using available disks to enhance performance.

The scenario in Figure 15.3 uses four devices: disk01 through disk04. The objective when
spreading your heavy database areas and objects is to keep areas of high use away from
each another.

. Disk01-- The system catalog stores information about tables, indexes, users,
statistics, database files, sizing, growth information, and other pertinent data
that is often accessed by a high percentage of transactions.

. Disk02--Transaction logs are updated every time a change is made to a table
(insert, update, or delete). Transaction logs are a grand factor in an online
transactional database. They are not of great concern in a read-only
environment, such as a data warehouse or DSS.

. Disk03--RolIback segments are also significant in a transactional environment.
However, if there is little transactional activity (insert, update, delete),
rolIback segments will not be heavily used.

. Disk04-- The database's sort area, on the other hand, is used as a temporary area
for SQL statement processing when sorting data, as in a GROUP BY or ORDER BY
clause. Sort areas are typical ly an issue in a data warehouse or DSS. However,
the use of sort areas should also be considered in a transactional environment.

TIP: Also note how the application tables and indexes have been placed on
each disk. Tables and indexes should be spread as much as possible.

Notice that in Figure 15.3 the tables and indexes are stored on different devices. You
can also see how a "Big Table" or index may be striped across two or more devices. This
technique splits the table into smal ler segments that can be accessed simultaneously.
Striping a table or index across multiple devices is a way to control fragmentation. In
this scenario, tables may be read while their corresponding indexes are being referenced,
which increases the speed of overall data access.

This example is really quite simple. Depending on the function, size, and system-related
issues of your database, you may find a similar method for optimizing system resources
that works better. In a perfect world where money is no obstacle, the best
configuration is to have a separate disk for each major database entity, including large
tables and indexes.

NOTE: The DBA and system administrator should work together to balance
database space al location and optimize the memory that is available on the
server.

Tuning a database very much depends on the specific database system you are using.
Obviously, tuning a database entails much more than just preparing queries and letting
them fly. On the other hand, you won't get much reward for tuning a database when
the application SQL is not fine-tuned itself. Professionals who tune databases for a
living often specialize on one database product and learn as much as they possibly can
about its features and idiosyncrasies. Although database tuning is often looked upon as
a painful task, it can provide very lucrative employment for the people who truly
understand it.

Per for mance Obstacles

We have already mentioned some of the countless possible pitfalls that can hinder the
general performance of a database. These are typically general bottlenecks that
involve system-level maintenance, database maintenance, and management of SQL
statement processing.

This section summarizes the most common obstacles in system performance and database
response time.

Not making use of available devices on the server--A company purchases multiple
disk drives for a reason. If you do not use them accordingly by spreading apart the
vital database components, you are limiting the performance capabilities.
Maximizing the use of system resources is just as important as maximizing the use
of the database server capabilities.

Not performing frequent COMM Ts--Failing to use periodic COVM Ts or ROLLBACKs
during heavy batch loads will ultimately result in database bottlenecks.

Allowing batch loads to interfere with daily processing--Running batch loads
during times when the database is expected to be available will cause problems
for everybody. The batch process will be in a perpetual battle with end users for
system resources.

Being careless when creating SQL statements--Carelessly creating complex SQL
statements will more than likely contribute to substandard response time.

TIP: You can use various methods to optimize the structure of an SQL
statement, depending upon the steps taken by the database server during
SQL statement processing.

Running batch loads with table indexes--You could end up with a batch load that
runs all day and all night, as opposed to a batch load that finishes within a few
hours. Indexes slow down batch loads that are accessing a high percentage of the
rows in a table.

Having too many concurrent users for al located memory--As the number of
concurrent database and system users grows, you may need to allocate more
memory for the shared process. See your system administrator.

Creating indexes on columns with few unique values--Indexing on a column such
as GENDER, which has only two unique values, is not very efficient. Instead, try to
index columns that will return a low percentage of rows in a query.

Creating indexes on small tables--By the time the index is referenced and the
data read, a full-table scan could have been accomplished.

Not managing system resources efficiently--Poor management of system resources
can result from wasted space during database initialization, table creation,
uncontrolled fragmentation, and irregular system/database maintenance.

Not sizing tables and indexes properly--Poor estimates for tables and indexes that
grow tremendously in a large database environment can lead to serious
fragmentation problems, which if not tended to, will snowball into more serious
problems.

Built-In Tuning Tools

Check with your DBA or database vendor to determine what tools are available to you
for performance measuring and tuning. You can use performance-tuning tools to
identify deficiencies in the data access path; in addition, these tools can sometimes
suggest changes to improve the performance of a particular SQL statement.

Oracle has two popular tools for managing SQL statement performance. These tools are
expl ai n pl an andt kpr of . The expl ai n pl an tool identifies the access path that will
be taken when the SQL statement is executed. t kpr of measures the performance by time
elapsed during each phase of SQL statement processing. Oracle Corporation also
provides other tools that help with SQL statement and database analysis, but the two
mentioned here are the most popular. If you want to simply measure the elapsed time of a
guery in Oracle, you can use the SQL*Plus command SET TI M NG ON.

SET TI M NG ONand other SET commands are covered in more depth on Day 20,
"SQL*Plus."

Sybase's SQL Server has diagnostic tools for SQL statements. These options are in the
form of SET commands that you can add to your SQL statements. (These commands are
similar to Oracle's SET commands). Some common commands are SET SHOAPLAN ON, SET
STATI STIC 1 O ON,and SET STATI STI CS Tl ME ON. These SET commands display
output concerning the steps performed in a query, the number of reads and writes
required to perform the query, and general statement-parsing information. SQL Server
SET commands are covered on Day 19, "Transact-SQL: An Introduction.”

Summary

Two major elements of streamlining, or tuning, directly affect the performance of SQL
statements: application tuning and database tuning. Each has its own role, but one
cannot be optimally tuned without the other. The first step toward success is for the
technical team and system engineers to work together to balance resources and take
full advantage of the database features that aid in improving performance. Many of
these features are built into the database software provided by the vendor.

Application developers must know the data. The key to an optimal database design is
thorough knowledge of the application's data. Developers and production programmers
must know when to use indexes, when to add another index, and when to allow batch
jobs to run. Always plan batch loads and keep batch processing separate from daily
transactional processing.

Databases can be tuned to improve the performance of individual applications that
access them. Database administrators must be concerned with the daily operation and

performance of the database. In addition to the meticulous tuning that occurs behind
the scenes, the DBA can usual ly offer creative suggestions for accessing data more
efficiently, such as manipulating indexes or reconstructing an SQL statement. The DBA
should also be familiar with the tools that are readily available with the database
software to measure performance and provide suggestions for statement tweaking.

Q& A

Q If I streamline my SQL statement, how much of a gain in performance
should I expect?

A Performance gain depends on the size of your tables, whether or not columns in
the table are indexed, and other relative factors. In a very large database, a
complex query that runs for hours can sometimes be cut to minutes. In the case of
transactional processing, streamlining an SQL statement can save important
seconds for the end user.

Q How do | coordinate my batch loads or updates?

A Check with the database administrator and, of course, with management when
scheduling a batch load or update. If you are a system engineer, you probably will
not know everything that is going on within the database.

Q How often should | commit my batch transactions?

A Check with the DBA for advice. The DBA will need to know approximately how
much data you are inserting, updating, or deleting. The frequency of COWM T
statements should also take into account other batch loads occurring
simultaneously with other database activities.

Q Should I stripe all of my tables?

A Striping offers performance benefits only for large tables and/or for tables
that are heavily accessed on a regular basis.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What does streamline an SQL statement mean?

2. Should tables and their corresponding indexes reside on the same disk?
3. Why is the arrangement of conditions in an SQL statement important?
4. What happens during a full-table scan?

5. How can you avoid a full-table scan?

6. What are some common hindrances of general performance?

Exercises

1. Make the following SQL statement more readable.

SELECT EMPLOYEE. LAST_NAME, EMPLOYEE. FI RST_NAME, EMPLOYEE. M DDLE_NANME,
EMPLOYEE. ADDRESS, EMPLOYEE. PHONE_NUMBER, PAYROLL. SALARY,

PAYROLL. POSI TI ON,

EMPLOYEE. SSN, PAYROLL. START_DATE FROM EMPLOYEE, PAYROLL VWHERE
EMPLOYEE. SSN = PAYROLL. SSN AND EMPLOYEE. LAST_NAME LI KE ' S% AND
PAYROLL. SALARY > 20000;

2. Rearrange the conditions in the following query to optimize data retrieval
time. Use the following statistics (on the tables in their entirety) to determine
the order of the conditions:

593 individuals have the last name SM TH.
712 individuals live in | NDI ANAPCLI S.
3,492 individuals are MALE.

1,233 individuals earn a salary >= 30, 000.
5,009 individuals are single.

I ndi vi dual _i disthe primary key for both tables.

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI P_CODE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG_TBL M
| NDI VI DUAL_STAT_TBL S
VWHERE M NAME LI KE ' SM TH%
AND M CI TY = "I NDI ANAPCLI S
AND S. SEX = ' MALE
AND S. SALARY >= 30000
AND S. MARI TAL_STATUS = ' ¢

AND M I NDI VIDUAL_I D = S. | NDI VI DUAL_I D

{4 Previous Chapter JER.—* Next Chapter

© Copyright, Macmil lan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 16 -
Using Viewsto Retrieve Useful I nformation
from the Data Dictionary

Objectives

Today we discuss the data dictionary, also known as the system catalog. By the end of
the day, you should have a solid understanding of the fol lowing:

. The definition of the data dictionary
. The type of information the data dictionary contains
. Different types of tables within the data dictionary

. Effective ways to retrieve useful information from the data dictionary

Introduction to the Data Dictionary

Every relational database has some form of data dictionary, or system catalog. (We use
both terms in today's presentation.) A data dictionary is a system area within a database
environment that contains information about the ingredients of a database. Data
dictionaries include information such as database design, stored SQL code, user
statistics, database processes, database growth, and database performance statistics.

The data dictionary has tables that contain database design information, which are

populated upon the creation of the database and the execution of Data Definition
Language (DDL) commands such as CREATE TABLE. This part of the system catalog
stores information about a table's columns and attributes, table-sizing information,
table privileges, and table growth. Other objects that are stored within the data
dictionary include indexes, triggers, procedures, packages, and views.

User statistics tables report the status of items such as database connectivity
information and privileges for individual users. These privileges are divided into two
major components: system-level privileges and object-level privileges. The authority to
create another user is a system-level privilege, whereas the capability to access a table
is an object-level privilege. Roles are also used to enforce security within a database.
This information is stored as wel l.

Day 16 extends what you learned yesterday (Day 15, "Streamlining SQL Statements for
Improved Performance”). Data retrieved from the system catalog can be used to monitor
database performance and to modify database parameters that will improve database
and SQL statement performance.

The data dictionary is one of the most useful tools available with a database. It is a way
of keeping a database organized, much like an inventory file in a retail store. Itis a
mechanism that ensures the integrity of the database. For instance, when you create a
table, how does the database server know whether a table with the same name exists?
When you create a query to select data from a table, how can it be verified that you
have been given the proper privileges to access the table? The data dictionary is the
heart of a database, so you need to know how to use it.

Usersof the Data Dictionary

End users, system engineers, and database administrators all use the data dictionary,
whether they realize it or not. Their access can be either direct or indirect.

End users, often the customers for whom the database was created, access the system
catalog indirectly. When a user attempts to log on to the database, the data dictionary
is referenced to verify that user's username, password, and privileges to connect to the
database. The database is also referenced to see whether the user has the appropriate
privileges to access certain data. The most common method for an end user to access the
data dictionary is through a front-end application. Many graphical user interface (GUI)
tools, which allow a user to easily construct an SQL statement, have been developed.
When logging on to the database, the front-end application may immediately perform a
select against the data dictionary to define the tables to which the user has access. The
front-end application may then build a "local” system catalog for the individual user
based on the data retrieved from the data dictionary. The customer can use the local
catalog to select the specific tables he or she wishes to query:.

System engineers are database users who are responsible for tasks such as database
modeling and design, application development, and application management. (Some
companies use other titles, such as programmers, programmer analysts, and data
modelers, to refer to their system engineers.) System engineers use the data dictionary
directly to manage the development process, as well as to maintain existing projects.
Access may also be achieved through front-end applications, development tools, and
computer assisted software engineering (CASE) tools. Common areas of the system
catalog for these users are queries against objects under groups of schemas, queries
against application roles and privileges, and queries to gather statistics on schema
growth. System engineers may also use the data dictionary to reverse-engineer database
objects in a specified schema.

Database administrators (DBAs) are most definitely the largest percentage of direct
users of the data dictionary. Unlike the other two groups of users, who occasionally
use the system catalog directly, DBAs must explicitly include the use of the data
dictionary as part of their daily routine. Access is usually through an SQL query but
can also be through administration tools such as Oracle's Server Manager. A DBA uses
data dictionary information to manage users and resources and ultimately to achieve a
well-tuned database.

As you can see, all database users need to use the data dictionary. Even more important,
a relational database cannot exist without some form of a data dictionary.

Contents of the Data Dictionary

This section examines the system catalogs of two RDBMS vendors, Oracle and Sybase.
Although both implementations have unique specifications for their data dictionaries,
they serve the same function. Don't concern yourself with the different names for the
system tables; simply understand the concept of a data dictionary and the data it
contains.

Oracle's Data Dictionary

Because every table must have an owner, the owner of the system tables in an Oracle
data dictionary is SYS. Oracle's data dictionary tables are divided into three basic
categories: user accessible views, DBA views, and dynamic performance tables, which
also appear as views. Views that are accessible to a user allow the user to query the
data dictionary for information about the individual database account, such as
privileges, or a catalog of tables created. The DBA views aid in the everyday duties of a
database administrator, allowing the DBA to manage users and objects within the
database. The dynamic performance tables in Oracle are also used by the DBA and
provide a more in-depth look for monitoring performance of a database. These views
provide information such as statistics on processes, the dynamic usage of rol Iback
segments, memory usage, and so on. The dynamic performance tables are all prefixed V$.

Sybase's Data Dictionary

As in Oracle, the owner of the tables in a Sybase data dictionary is SYS. The tables
within the data dictionary are divided into two categories: system tables and database
tables.

The system tables are contained with the master database only. These tables define
objects (such as tables and indexes) that are common through multiple databases. The
second set of tables in a Sybase SQL Server data dictionary are the database tables.
These tables are related only to objects within each database.

A Look Inside Oracle's Data Dictionary

The examples in this section show you how to retrieve information from the data
dictionary and are applicable to most relational database users, that is, system
engineer, end user, or DBA. Oracle's data dictionary has a vast array of system tables
and views for all types of database users, which is why we have chosen to explore
Oracle's data dictionary in more depth.

User Views

User views are data dictionary views that are common to all database users. The only
privilege a user needs to query against a user view is the CREATE SESSI ONsystem
privilege, which should be common to all users.

Who AreYou?

Before venturing into the seemingly endless knowledge contained within a database,
you should know exactly who you are (in terms of the database) and what you can do.
The following two examples show SELECT statements from two tables: one to find out
who you are and the other to see who else shares the database.

INPUT:

SQL> SELECT *
2 FROM USER_USERS;

OUTPUT:

USERNANME USER I D DEFAULT_TABLESPACE TEMPORARY TABLESPACE
CREATED

14- MAR- 97

1 row sel ect ed.

ANALYSIS:

The USER_USERS view allows you to view how your Oracle ID was set up, when it was
set up, and it also shows other user-specific, vital statistics. The default tablespace and
the temporary tablespace are also shown. The default tablespace, USERS, is the
tablespace that objects will be created under as that user. The temporary tablespace is
the designated tablespace to be used during large sorts and group functions for JSMITH.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM ALL_USERS;

USERNANVE USER_| D CREATED
SYS 0 01- JAN- 97
SYSTEM 5 01- JAN- 97
SCOTT 8 01- JAN- 97
JSM TH 10 14- MAR- 97
TIONES 11 15- MAR- 97
VI OHNSON 12 15- MAR- 97

As you can see in the results of the preceding query, you can view all users that exist in
the database by using the ALL_USERS view. However, the ALL_USERS view does not
provide the same specific information as the previous view (USER_USERS) provided
because there is no need for this information at the user level. More specific
information may be required at the system level.

What AreYour Privileges?

Now that you know who you are, it would be nice to know what you can do. Several
views are collectively able to give you that information. The USER_SYS_PRIVS view
and the USER_ROLE_PRIVS view will give you (the user) a good idea of what authority
you have.

You can use the USER_SYS_PRIVS view to examine your system privileges. Remember,
system privileges are privileges that allow you to do certain things within the database
as a whole. These privileges are not specific to any one object or set of objects.

INPUT:

SQL> SELECT *
2 FROM USER_SYS PRI VS;

OUTPUT:

USERNANVE PRI VI LEGE ADM
JSM TH UNLI M TED TABLESPACE NO
JSM TH CREATE SESSI ON NO

2 rows sel ected.

ANALYSIS:

JSMITH has been granted two system-level privileges, outside of any granted roles.
Notice the second, CREATE SESSI ON. CREATE SESSI ONis also contained within an
Oracle standard role, CONNECT, which is covered in the next example.

You can use the USER_ROLE_PRIVS view to view information about roles you have been
granted within the database. Database roles are very similar to system-level privileges.
A roleis created much like a user and then granted privileges. After the role has been
granted privileges, the role can be granted to a user. Remember that object-level
privileges may also be contained within a role.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM USER ROLE PRI VS;

USERNANVE GRANTED_ROLE ADM DEF S
JSM TH CONNECT NO YES NO
JSM TH RESOURCE NO YES NO

2 rows sel ected.

ANALYSIS:

The USER_ROLE_PRIVS view enables you to see the roles that have been granted to
you. As mentioned earlier, CONNECT contains the system privilege CREATE SESSI QN as
well as other privileges. RESOURCE has a few privileges of its own. You can see that
both roles have been granted as the user's default role; the user cannot grant these
roles to other users, as noted by the Admin option (ADM); and the roles have not been
granted by the operating system. (Refer to Day 12, "Database Security.")

What Do You Have Access To?

Now you might ask, What do | have access to? | know who | am, | know my privileges, but
where can | get my data? You can answer that question by looking at various available
user views in the data dictionary. This section identifies a few helpful views.

Probably the most basic user view is USER_CATALOG, which is simply a catalog of the
tables, views, synonyms, and sequences owned by the current user.

INPUT:

SQL> SELECT *
2 FROM USER CATALOG

OUTPUT:

TABLE_NAME TABLE_TYPE
MAGAZI NE_TBL TABLE
MAG_COUNTER SEQUENCE
MAG_VI EW VI EW
SPORTS TABLE

4 rows sel ect ed.

ANALYSIS:

This example provides a quick list of tables and related objects that you own. You can
also use a public synonym for USER_CATALOG for simplicity's sake: CAT. That is, try
select * fromcat;.

Another useful view is ALL_CATALOG, which enables you to see tables owned by other
individuals.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM ALL_CATALOG

OMNNER TABLE_NANE TABLE_TYPE
SYS DUAL TABLE
PUBLI C DUAL SYNONYM
JSM TH MAGAZ| NE_TBL TABLE
JSM TH MAG_COUNTER SEQUENCE
JSM TH MAG_VI EW VI EW
JSM TH SPORTS TABLE

VI OHNSON TEST1 TABLE

VI OHNSON HCOBBI ES TABLE

VI OHNSON CLASSES TABLE

VI OHNSON STUDENTS VI EW

10 rows sel ect ed.

ANALYSIS:

More objects than appear in the preceding list will be accessible to you as a user. (The
SYSTEMtables alone will add many tables.) We have simply shortened the list. The
ALL CATALOG view is the same as the USER_CATALOG view, but it shows you all
tables, views, sequences, and synonyms to which you have access (not just the ones you
own).

INPUT:

SQL> SELECT SUBSTR(OBJECT TYPE, 1, 15) OBJECT_TYPE,

2 SUBSTR(OBJECT_NAME, 1, 30) OBJECT_NAME,

3 CREATED,

4 STATUS

5 FROM USER _OBJECTS

6 ORDER BY 1
OUTPUT:
OBJECT_TYPE OBJECT_NAME CREATED STATUS
| NDEX MAGAZI NE_| NX 14-MAR-97 VALID
| NDEX SPORTS_| NX 14-MAR-97 VALID
| NDEX HOBBY | NX 14-MAR-97 VALID
TABLE MAGAZI NE_TBL 01- MAR-97 VALID
TABLE SPORTS 14-MAR-97 VALID
TABLE HOBBY TBL 16-MAR-97 VALID

6 rows sel ected.

ANALYSIS:

You can use the USER_OBJECTS view to select general information about a user's
owned objects, such as the name, type, date created, date modified, and the status of the
object. In the previous query, we are checking the data created and validation of each
owned object.

INPUT/OUTPUT:

SQL> SELECT TABLE_NAME, | NI TI AL_EXTENT, NEXT_EXTENT
2 FROM USER_TABLES;

TABLE_NANE I NI TI AL_EXTENT NEXT EXTENT
MAGAZ| NE_TBL 1048576 540672
SPORTS 114688 114688
ANALYSIS:

Much more data is available when selecting from the USER_TABLES view, depending
upon what you want to see. Most data consists of storage information.

NOTE: Notice in the output that the values for initial and next extent are
in bytes. In some implementations you can use column formatting to make
your output more readable by adding commas. See Day 19, "Transact-SQL: An
Introduction,” and Day 20, "SQL*Plus."

The ALL_TABLES view is to USER_TABLES as the ALL_CATALOG view is to
USER_CATALOG. In other words, ALL_TABLES allows you to see all the tables to
which you have access, instead of just the tables you own. The ALL_TABLES view may
include tables that exist in another user's catalog.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OMNER, 1, 15) OMNER,

2 SUBSTR(TABLE_NAME, 1, 25) TABLE_NAME,

3 SUBSTR(TABLESPACE_NAME, 1, 13) TABLESPACE

4 FROM ALL_TABLES;
OMNER TABLE_NAME TABLESPACE
SYS DUAL SYSTEM
JSM TH MAGAZ| NE_TBL USERS
SM TH SPORTS USERS
VI OHNSON TEST1 USERS
VI OHNSON HOBBI ES USERS
VI OHNSON CLASSES USERS
ANALYSIS:

Again, you have selected only the desired information. Many additional columns in
ALL_TABLES may also contain useful information.

As a database user, you can monitor the growth of tables and indexes in your catalog by
querying the USER_SEGMENTS view. As the name suggests, USER_SEGMENTS gives you
information about each segment, such as storage information and extents taken. A
segment may consist of a table, index, cluster rollback, temporary, or cache. The

fol lowing example shows how you might retrieve selected information from the
USER_SEGMENTS view.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(SEGVENT_NAME, 1, 30) SEGVENT_NANME,

2 SUBSTR(SEGVENT_TYPE, 1, 8) SEG TYPE,
3 SUBSTR(TABLESPACE_NAME, 1, 25) TABLESPACE_NANME,
4 BYTES, EXTENTS

5 FROM USER_SEGVENTS

6 ORDER BY EXTENTS DESC,

SEGVENT_NAME
EXTENTS

MAGAZI NE_TBL
4292608
SPORTS_| NX
573440
SPORTS
344064
MAGAZI NE_ | NX
1589248

SEG TYPE
TABLE
.
| NDEX
4
TABLE
2
| NDEX
1

4 rows sel ected.

ANALYSIS:

TABLESPACE_NAME BYTES

USERS
USERS
USERS

USERS

The output in the preceding query was sorted by extents in descending order; the
segments with the most growth (extents taken) appear first in the results.

Now that you know which tables you have access to, you will want to find out what

you can do to each table. Are you limited to query only, or can you update a table? The
ALL_TAB_PRIVS view lists all privileges that you have as a database user on each table
available to you.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_SCHEMA, 1, 10) OMNER,

2

3 PRI VI LEGE

4 FROM ALL_TAB_ PRI VS;
OMER TABLE_NANVE
SYS DUAL
JSM TH MAGAZI NE_TBL
JSM TH MAGAZI NE_TBL
JSM TH MAGAZI NE_TBL
JSM TH MAGAZI NE_TBL
JSM TH SPORTS
JSM TH SPORTS
JSM TH SPORTS
JSM TH SPORTS
VI OHNSON TEST1
VI OHNSON TEST1
VI OHNSON TEST1
VI OHNSON TEST1
VI OHNSON HOBBI ES
VI OHNSON CLASSES

SUBSTR(TABLE_NAME, 1, 25) TABLE_NAME,

PRI VI LEGE

SELECT
| NSERT
UPDATE
DELETE
SELECT
| NSERT
UPDATE
DELETE
SELECT
| NSERT
UPDATE
DELETE
SELECT
SELECT

ANALYSIS:

As you can see, you can manipulate the data in some tables, whereas you have read-only
access (SELECT only) to others.

When you create objects, you usual ly need to know where to place them in the
database unless you allow your target destination to take the default. An Oracle
database is broken up into tablespaces, each of which are capable of storing objects.
Each tablespace is al located a certain amount of disk space, according to what is
available on the system. Disk space is usually acquired through the system
administrator (SA).

The following query is from a view called USER_TABLESPACES, which will list the
tablespaces that you have access to, the default initial and next sizes of objects
created within them, and their status.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME, 1, 30) TABLESPACE NAME,

2 | NI TI AL_EXTENT,

3 NEXT _EXTENT,

4 PCT_| NCREASE,

5 STATUS

6 FROM USER TABLESPACES;
TABLESPACE_NANME | NI TI AL_EXTENT NEXT_EXTENT PCT_| NCREASE
STATUS
SYSTEM 32768 16384 1
ONLI NE
RBS 2097152 2097152 1
ONLI NE
TEMP 114688 114688 1
ONLI NE
TOOLS 32768 16384 1
ONLI NE
USERS 32768 16384 1
ONLI NE

5 rows sel ect ed.

ANALYSIS:

This type of query is very useful when you are creating objects, such as tables and
indexes, which will require storage. When a table or index is created, if the initial and
next storage parameters are not specified in the DDL, the table or index will take the
tablespace's default values. The same concept applies to PCT | NCREASE, which is an

Oracle parameter specifying the percentage of allocated space an object should take
when it grows. If a value for PCT | NCREASE is not specified when the table or index is
created, the database server will allocate the default value that is specified for the
corresponding tablespace. Seeing the default values enables you to determine whether
you need to use a storage clause in the CREATE statement.

Sometimes, however, you need to know more than which tablespaces you may access, that
IS, build tables under. For example, you might need to know what your limits are within
the tablespaces so that you can better manage the creation and sizing of your objects.
The USER_TS QUOTAS view provides the necessary information. The next query displays
a user's space limits for creating objects in the database.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME, 1, 30) TABLESPACE_NAME,
2 BYTES, MAX_BYTES
3 FROM USER TS QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES
SYSTEM 0 0
TOOLS 5242880 16384
USERS 573440 -1

3 rows sel ected.

ANALYSIS:

The preceding output is typical of output from an Oracle data dictionary. BYTES
identifies the total number of bytes in that tablespace that are associated with the
user. MAX BYTES identifies the maximum bytes allotted to the user, or the user's quota,
on the tablespace. The first two values in this column are self-explanatory. The - 1 in
the third row means quota unlimited--that is, no limits are placed on the user for that
tablespace.

NOTE: The SUBSTR function appears in many of the preceding queries of
data dictionary views. You can use many of the functions that you learned
about earlier to improve the readablility of the data you retrieve. The use
of consistent naming standards in your database may allow you to limit the
size of data in your output, as we have done in these examples.

These examples all show how an ordinary database user can extract information from
the data dictionary. These views are just a few of the many that exist in Oracle's data
dictionary. It is important to check your database implementation to see what is
available to you in your data dictionary. Remember, you should use the data dictionary

to manage your database activities. Though system catalogs differ by implementation,
you need only to understand the concept and know how to retrieve data that is
necessary to supplement your job.

System DBA Views

The DBA views that reside within an Oracle data dictionary are usual ly the primary, or
most common, views that a DBA would access. These views are invaluable to the
productivity of any DBA. Taking these tables away from a DBA would be like depriving
a carpenter of a hammer.

As you may expect, you must have the SELECT _ANY_TABLE system privilege, which is
contained in the DBA role, to access the DBA tables. For example, suppose you are
JSMITH, who does not have the required privilege to select from the DBA tables.

INPUT:

SQL> SELECT *
2 FROM USER ROLE_PRI VS;

OUTPUT:

USERNANVE GRANTED_ROLE ADM DEF S
JIMTH comecr NO YES MO
JSM TH RESOURCE NO YES NO
INPUT/OUTPUT:

SQL> SELECT *
2 FROM SYS. DBA ROLES;
FROM SYS. DBA ROLES;

*

ERROR at |ine 2:
ORA-00942: table or view does not exist

ANALYSIS:

When you try to access a table to which you do not have the appropriate privileges, an
error is returned stating that the table does not exist. This message can be a little
misleading. Virtual ly, the table does not exist because the user cannot "see" the table.
A solution to the problem above would be to grant the role DBA to JSMITH. This role
would have to be granted by a DBA, of course.

Database User I nfor mation

The USER_USERS and ALL_USERS views give you minimum information about the users.
The DBA view called DBA_USERS (owned by SYS) gives you the information on all users
if you have the DBA role or SELECT_ANY_TABLE privilege, as shown in the next
example.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA USERS;

OUTPUT:

USERNANVE USER_| D PASSWORD

SYS 0 4012DA490794C16B

SYSTEM TEMP 06- JUN-
96

DEFAULT

JSM TH 5 A4A94B17405C10B7

USERS TEMP 06- JUN-
96

DEFAULT

2 rows sel ected.

ANALYSIS:

When you select all from the DBA_USERS view, you are able to see the vital
information on each user. Notice that the password is encrypted. DBA_USERS is the
primary view used by a DBA to manage users.

Database Security

Three basic data dictionary views deal with security, although these views can be tied
to-gether with other related views for more complete information. These three views
deal with database roles, roles granted to users, and system privileges granted to users.
The three views introduced in this section are DBA ROLES, DBA ROLE_PRIVS, and
DBA_SYS PRIVS. The following sample queries show how to obtain information
pertinent to database security.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA ROLES;

OUTPUT:

ROLE PASSWORD
CONNECT NO
RESOURCE NO
DBA NO
EXP_FULL_DATABASE NO
| MP_FULL_DATABASE NO
END_USER_ROLE NO

6 rows sel ected.

ANALYSIS:

The view DBA_ROLES lists all the roles that have been created within the database. It
gives the role name and whether or not the role has a password.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA ROLE_PRI VS
3 WHERE GRANTEE = ' RJENNI NGS' ;

GRANTEE GRANTED_RCLE ADM DEF
RIENNI NGS CONNECT NO YES
RIENNI NGS DBA NO YES
RIENNI NGS RESOURCE NO YES

3 rows sel ected.

ANALYSIS:

The DBA_ROLE_PRIVS view provides information about database roles that have been
granted to users. The first column is the grantee, or user. The second column displays
the granted role. Notice that every role granted to the user corresponds to a record in
the table. ADMidentifies whether the role was granted with the Admin option, meaning
that the user is able to grant the matching role to other users. The last column is
DEFAULT, stating whether the matching role is a default role for the user.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM SYS. DBA_SYS_PRI VS
3 WHERE GRANTEE = ' RJIENNI NGS' ;

GRANTEE PRI VI LEGE
ADM

RIENNI NGS CREATE SESSI ON

NO

RIENNI NGS UNLI M TED TABLESPACE
NO

2 rows sel ected.

ANALYSIS:

The DBA_SYS PRIVS view lists all system-level privileges that have been granted to
the user. This view is similar to DBA_ROLE_PRIVS. You can include these system
privileges in a role by granting system privileges to a role, as you would to a user.

Database Objects

Database objects are another major focus for a DBA. Several views within the data
dictionary provide information about objects, such as tables and indexes. These views
can contain general information or they can contain detailed information about the
objects that reside within the database.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA CATALOG
3 WHERE ROWNUM < 5;

OUTPUT:

OMNER TABLE_NANE

TABLE_TYPE

SYS CDEF$ TABLE
SYS TAB$ TABLE
SYS | ND$ TABLE
SYS CLU$ TABLE

4 rows sel ected.

ANALYSIS:

The DBA_CATALOG is the same thing as the USER_CATALOG, only the owner of the
table is included. In contrast, the USER_CATALOG view deals solely with tables that
belonged to the current user. DBA_CATALOG is a view that the DBA can use to take a
quick look at all tables.

The following query shows you what type of objects exist in a particular database.

TIP: You can use ROANUMto narrow down the results of your query to a
specified number of rows for testing purposes. Oracle calls ROANUMa
pseudocolumn. ROANUM like ROW D, can be used on any database table or
view.

INPUT/OUTPUT:

SQL> SELECT DI STI NCT(OBJECT_TYPE)
2 FROM SYS. DBA_OBJECTS;

OBJECT TYPE
CLUSTER
DATABASE LI NK
FUNCTI ON

| NDEX

PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE

TRI GGER

VI EW

12 rows sel ect ed.

ANALYSIS:

The DI STI NCT function in the preceding query lists all unique object types that exist in
the database. This query is a good way to find out what types of objects the database
designers and developers are using.

The DBA_TABLES view gives specific information about database tables, mostly
concerning storage.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWNER, 1, 8) OWKER,
2 SUBSTR(TABLE_NAME, 1, 25) TABLE_NAME,
3 SUBSTR(TABLESPACE_NAME, 1, 30) TABLESPACE NANE
4 FROM SYS. DBA TABLES
5 WHERE OMNER = 'JSM TH ;

ONNER TABLE_NANE TABLESPACE_NAME

JSM TH MAGAZ| NE_TBL USERS

JSM TH HOBBY_TBL USERS
JSM TH ADDRESS_TBL SYSTEM
JSM TH CUSTOMER_TBL USERS

4 rows sel ect ed.

ANALYSIS:

All tables are in the USERS tablespace except for ADDRESS TBL, which is in the SYSTEM
tablespace. Because the only table you should ever store in the SYSTEMtablespace is
the SYSTEMtable, the DBA needs to be aware of this situation. It's a good thing you ran
this query!

JSMITH should immediately be asked to move his table into another eligible tablespace.

The DBA_SYNONYMS view provides a list of all synonyms that exist in the database.
DBA_SYNONYMS gives a list of synonyms for all database users, unlike
USER_SYNONYMS, which lists only the current user's private synonyms.

INPUT/OUTPUT:

SQ.> SELECT SYNONYM_NANME,
2 SUBSTR(TABLE_OMNER, 1, 10) TAB_OWNER,
3 SUBSTR(TABLE_NAME, 1, 30) TABLE_NAME
4 FROM SYS. DBA_SYNONYMS
5 WHERE OMNER = 'JSM TH ;

SYNONYM_NAME TAB_OANNER TABLE_NAME

TRI VI A_SYN VJOHNSON TRI VI A_TBL

1 row sel ect ed.

ANALYSIS:

The preceding output shows that JSMITH has a synonym called TRI VI A_ SYNon a table
called TRI VI A_TBL that is owned by VJOHNSON.

Now suppose that you want to get a list of all tables and their indexes that belong to
JSM TH. You would write a query similar to the following, using DBA | NDEXES.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_OWNER, 1, 10) TBL_OMNER,
2 SUBSTR(TABLE_NAME, 1, 30) TABLE_NANME,
3 SUBSTR(| NDEX_NAME, 1, 30) | NDEX_NAME
4 FROM SYS. DBA | NDEXES
5 WHERE OMNER = 'JSM TH
6 AND ROMNUM < 5

7 ORDER BY TABLE_NAME;

TBL_OMER TABLE_NANVE I NDEX_NAME
JSM TH ADDRESS_ TBL ADDR_| NX
JSM TH CUSTOVER_TBL CUST_I NX
JSM TH HOBBY_TBL HOBBY_PK
JSM TH MAGAZ| NE_TBL MAGAZ| NE_I NX

4 rows sel ected.

ANALYSIS:

A guery such as the previous one is an easy method of listing all indexes that belong to
a schema and matching them up with their corresponding table.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_NAME, 1, 15) TABLE_NAME,
2 SUBSTR(| NDEX_NAME, 1, 30) | NDEX_NAME,
3 SUBSTR(COLUMN_NAME, 1, 15) COLUMN_NAME,
4 COLUWN_PCSI TI ON
5 FROM SYS. DBA | ND_COLUWNS
6 WHERE TABLE OANER = ' JSM TH
7 AND ROANUM < 10
8 ORDER BY 1,2, 3;

TABLE_NANE | NDEX_NANE COLUWN_NANVE
COLUWN_POSI TI ON

ADDRESS_TBL ADDR | NX PERS | D
i\DDRESS_TBL ADDR | NX NANVE
iDDRESS_TBL ADDR | NX a TY
?()ZUSTOVER_TBL CUST I NX CUST I D
(13USTOVER_TBL CUST I NX CUST_NAVME
éUSTOVER_TBL CUST I NX CUST ZI P
I?—)I(BBY_TBL HOBBY PK SAKEY
i/AGAZI NE_TBL MAGAZI NE_I NX | SSUE_NUM
i/AGAZI NE_TBL MAGAZI NE_I NX EDI TOR

2

9 rows sel ect ed.

ANALYSIS:

Now you have selected each column that is indexed in each table and ordered the
results by the order the column appears in the index. You have learned about tables,
but what holds tables? Tablespaces are on a higher level than objects such as tables,
indexes, and so on. Tablespaces are Oracle's mechanism for allocating space to the
database. To al locate space, you must know what tablespaces are currently available.
You can perform a select from DBA TABLESPACES to see a list of all tablespaces and
their status, as shown in the next example.

INPUT/OUTPUT:

SQL> SELECT TABLESPACE_NAME, STATUS
2 FROM SYS. DBA_ TABLESPACES

TABLESPACE_NAME STATUS
SYSTEM ONLI NE
RBS ONLI NE
TEMP ONLI NE
TOOLS ONLI NE
USERS ONLI NE
DATA_TS ONLI NE
I NDEX_TS ONLI NE

7 rows sel ected.

ANALYSIS:

The preceding output tells you that all tablespaces are online, which means that they
are available for use. If a tablespace is offline, then the database objects within it (that
IS, the tables) are not accessible.

What is JSMITH's quota on all tablespaces to which he has access? In other words, how
much room is available for JSMITH's database objects?

INPUT/OUTPUT:

SQL> SELECT TABLESPACE_NAME,
2 BYTES,
3 MAX_BYTES
4 FROM SYS. DBA TS QUOTAS
5 WHERE USERNAME = ' JSM TH

TABLESPACE_NAME BYTES MAX_BYTES
DATA_TS 134111232 -1
I NDEX_TS 474390528 -1

2 rows sel ected.

ANALYSIS:

JSMITH has an unlimited quota on both tablespaces to which he has access. In this case
the total number of bytes available in the tablespace is available on a first-come first-
served basis. For instance, if JSMITH uses all the free space in DATA TS, then no one else
can create objects here.

Database Growth

This section looks at two views that aid in the measurement of database growth:
DBA_SEGMENTS and DBA_EXTENTS. DBA_SEGMENTS provides information about each
segment, or object in the database such as storage allocation, space used, and extents.
Each time a table or index grows and must grab more space as identified by the

NEXT _EXTENT, the table takes another extent. A table usually becomes fragmented
when it grows this way. DBA EXTENTS provides information about each extent of a
segment.

INPUT:

SQL> SELECT SUBSTR(SEGVENT NAME, 1, 30) SEGVENT NAME,

2 SUBSTR(SEGVENT_TYPE, 1, 12) SEGVENT _TYPE,

3 BYTES,

4 EXTENTS,

5 FROM SYS. DBA_SEGVENTS

6 WHERE OWNER = ' TW LLI AVS'

7 AND ROANUM < 5;
OUTPUT:
SEGVENT _NAVE SEGVENT_TYPE BYTES EXTENTS
| N\VO CE_TBL TABLE 163840 10
COVPLAI NT_TBL TABLE 4763783 3
HI STORY TBL TABLE 547474996 27
HI STORY | NX | NDEX 787244534 31

4 rows sel ected.

ANALYSIS:

By looking at the output from DBA_SEGMENTS, you can easily identify which tables
are experiencing the most growth by referring to the number of extents. Both
H STORY_TBL and Hl STORY_I NX have grown much more than the other two tables.

Next you can take a look at each extent of one of the tables. You can start with
| N\VO CE_TBL.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OMNER, 1, 10) OANER

2 SUBSTR(SEGVENT_NAME, 1, 30) SEGVENT _NAME,

3 EXTENT | D,

4 BYTES

5 FROM SYS. DBA_EXTENTS

6 WHERE OWNER = ' TW LLI AVS'

7 AND SEGVENT NAME = ' | NVO CE_TBL'

8 ORDER BY EXTENT | D;
OANER SEGVENT_NAVE EXTENT | D BYTES
TWLLI AVB | NVOI CE_TBL 0 16384
TWLLI AVB | NVOI CE_TBL 1 16384
TWLLI AVB | NVOI CE_TBL 2 16384
TWLLI AVB | NVOI CE_TBL 3 16384
TWLLI AVB | NVOI CE_TBL 4 16384
TWLLI AVB | NVOI CE_TBL 5 16384
TWLLI AVB | NVOI CE_TBL 6 16384
TWLLI AVB | NVOI CE_TBL 7 16384
TWLLI AVB | NVOI CE_TBL 8 16384
TWLLI AVB | NVOI CE_TBL 9 16384

10 rows sel ect ed.

ANALYSIS:

This example displays each extent of the table, the ext ent _i d, and the size of the
extent in bytes. Each extent is only 16K, and because there are 10 extents, you might
want to rebuild the table and increase the size of thei ni ti al _ext ent to optimize
space usage. Rebuilding the table will allow all the table's data to fit into a single
extent, and therefore, not be fragmented.

Space Allocated

Oracle allocates space to the database by using "data files." Space logically exists
within a tablespace, but data files are the physical entities of tablespaces. In other
implementations, data is also ultimately contained in data files, though these data files
may be referenced by another name. The view called DBA DATA FILES enables you to
see what is actually allocated to a tablespace.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME, 1, 25) TABLESPACE_NAME,
2 SUBSTR(FI LE_NAME, 1, 40) FI LE_NAME,
3 BYTES
4 FROM SYS. DBA DATA FI LES;

TABLESPACE_NAME FI LE_NAME

SYSTEM / di sk01/ syst enD. dbf
41943040

RBS / di sk02/ r bs0. dbf
524288000

TEWMP / di sk03/t enpO0. dbf
524288000

TOOLS / di sk04/t ool s0O. dbf
20971520

USERS / di sk05/ user s0. dbf
20971520

DATA TS / di sk06/ dat a0. dbf
524288000

| NDEX TS / di sk07/i ndex0. dbf

524288000

7 rows sel ected.

ANALYSIS:

You are now able to see how much space has been allocated for each tablespace that
exists in the database. Notice the names of the data files correspond to the tablespace
to which they belong.

Space Available

As the following example shows, the DBA FREE_SPACE view tells you how much free
space is available in each tablespace.

INPUT:

SQL> SELECT TABLESPACE_NAME, SUM BYTES)
2 FROM SYS. DBA FREE_SPACE
3 GROUP BY TABLESPACE_NANME;

OUTPUT:

TABLESPACE_NANME SUM BYTES)
SYSTEM 23543040
RBS 524288000
TEMP 524288000
TOOLS 12871520
USERS 971520
DATA TS 568000
| NDEX_TS 1288000

7 rows sel ected.

ANALYSIS:

The preceding example lists the total free space for each tablespace. You can also view
each segment of free space by simply selecting bytes from DBA FREE SPACE instead of
SUM byt es).

Rollback Segments

As areas for rolling back transactions are a crucial part to database performance, you
need to know what rol Iback segments are available. DBA ROLLBACK _ SEGS provides
this information.

INPUT:

SQ.> SELECT OMER,
2 SEGVENT_NAME
3 FROM SYS. DBA ROLLBACK_SEGS;

OUTPUT:

OMER SEGVENT_NAME

SYS SYSTEM

SYS RO
SYS RO1
SYS RO2
SYS RO3
SYS RO4
SYS RO5

7 rows sel ected.

ANALYSIS:

This example performs a simple select to list all rol Iback segments by name. Much more
data is available for your evaluation as well.

Dynamic Performance Views

Oracle DBAs frequently access dynamic performance views because they provide greater
detail about the internal performance measures than many of the other data dictionary
views. (The DBA views contain some of the same information.)

These views involve extensive details, which is implementation-specific. This section
simply provides an overview of the type of information a given data dictionary contains.

Session | nformation

A DESCRI BE command of the V$SESSION views fol lows. (DESCRI BE is an SQL*Plus
command and will be covered on Day 20.) You can see the detail that is contained in the

view.

INPUT:

SQ.> DESCRI BE V$SESSI ON

OUTPUT:
Nane Nul | ? Type
SADDR RAW 4)
SID NUVBER
SERI AL# NUVBER
AUDSI D NUVBER
PADDR RAW 4)
USER# NUVBER
USERNAME VARCHARZ(30)
COVIVAND NUVBER
TADDR VARCHAR2(8)
LOCKWAI T VARCHAR2(8)
STATUS VARCHAR2(8)
SERVER VARCHAR2(9)
SCHENVA# NUVBER
SCHEMVANAME VARCHARZ (30)
OSUSER VARCHARZ2(15)
PROCESS VARCHAR2(9)
MACHI NE VARCHAR2(64)
TERM NAL VARCHARZ2(10)
PROGRAM VARCHAR2(48)
TYPE VARCHARZ2(10)
SQL_ADDRESS RAW 4)
SQL_HASH VALUE NUVBER
PREV_SQ._ADDR RAW 4)
PREV_HASH VALUE NUVBER
MODULE VARCHAR2 (48)
MODULE_HASH NUVBER
ACTI ON VARCHARZ2(32)
ACTI ON_HASH NUVBER
CLI ENT_I NFO VARCHAR2(64)
FI XED_TABLE_SEQUENCE NUVBER
ROW WAI T_OBJ# NUVBER
ROW VWAI T_FI LE# NUVBER
ROW WAI T_BL OCK# NUVBER
ROW WAI T_ROWH NUVBER
LOGON_TI ME DATE
LAST_CALL_ET NUVBER

To get information about current database sessions, you could write a SELECT
statement similar to the one that follows from V$SESSION.

INPUT/OUTPUT:

SQ.> SELECT USERNAME, COMVAND, STATUS
2 FROM V$SESSI ON
3 VWHERE USERNAME |'S NOT NULL

USERNANME COVMAND STATUS
TW LLI AMS 3 ACTI VE
JSM TH 0 | NACTI VE

2 rows sel ected.

ANALYSIS:

TWILLIAMS is logged on to the database and performing a select from the database,
which is represented by command 3.

JSMITH is merely logged on to the database. His session is inactive, and he is not
performing any type of commands. Refer to your database documentation to find out
how the commands are identified in the data dictionary. Commands include SELECT,

| NSERT, UPDATE, DELETE, CREATE TABLE, and DROP TABLE.

Performance Statistics

Data concerning performance statistics outside the realm of user sessions is also
available in the data dictionary. This type of data is much more implementation specific
than the other views discussed today.

Performance statistics include data such as read/write rates, successful hits on tables,
use of the system global area, use of memory cache, detailed rollback segment
information, detailed transaction log information, and table locks and waits. The well
of knowledge is almost bottomless.

ThePlan Table

The Pl an table is the default table used with Oracle's SQL statement tool, EXPLAI N
PLAN. (See Day 15.) This table is created by an Oracle script called UTLXPLAN. SQL,
which is copied on to the server when the software is instal led. Data is generated by the
EXPLAI N PLAN tool, which populates the PLAN table with information about the object
being accessed and the steps in the execution plan of an SQL statement.

Summary

Although the details of the data dictionary vary from one implementation to another,
the content remains conceptual ly the same in all relational databases. You must
follow the syntax and rules of your database management system, but today's examples
should give you the confidence to query your data dictionary and to be creative when
doing so.

NOTE: Exploring the data dictionary is an adventure, and you will need to
explore in order to learn to use it effectively.

Q& A

Q Why should I use the views and tables in the data dictionary?

A Using the views in the data dictionary is the most accurate way to discover the
nature of your database. The tables can tell you what you have access to and
what your privileges are. They can also help you monitor various other database
events such as user processes and database performance.

Q How is the data dictionary created?

A The data dictionary is created when the database is initialized. Oracle
Corporation provides several scripts to run when creating each database. These
scripts create all necessary tables and views for that particular database's system
catalog.

Q How is the data dictionary updated?

A The data dictionary is updated internal ly by the RDBMS during daily
operations. When you change the structure of a table, the appropriate changes
are made to the data dictionary internally. You should never attempt to update
any tables in the data dictionary yourself. Doing so may cause a corrupt database.
Q How can | find out who did what in a database?

A Normally, tables or views in a system catalog allow you to audit user activity.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you

have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. In Oracle, how can you find out what tables and views you own?
2. What types of information are stored in the data dictionary?
3. How can you use performance statistics?

4. What are some database objects?

Exercise

Suppose you are managing a small to medium-size database. Your job responsibilities
include developing and managing the database. Another individual is inserting large
amounts of data into a table and receives an error indicating a lack of space. You must
determine the cause of the problem. Does the user's tablespace quota need to be
increased, or do you need to allocate more space to the tablespace? Prepare a step-by-
step list that explains how you will gather the necessary information from the data
dictionary. You do not need to list specific table or view names.

| ¢ Previous Chapter B+ Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

-Day 17 -
Using SQL to Generate SQL Statements

Objectives

Today you learn the concepts behind generating one or more SQL statements from a
query. By the end of the day you should understand the following:

. The benefits of generating SQL statements from a query

. How to make the output from a query appear in the form of another SQL
statement

. How to use the data dictionary, database tables, or both to form SQL statements

The Purpose of Using SQL to Generate SQL Statements

Generating SQL from another SQL statement simply means writing an SQL statement
whose output forms another SQL statement or command. Until now, all the SQL
statements that you have learned to write either do something, such as manipulate the
data in a table, one row at a time, or produce some kind of report from a query. Today
you learn how to write a query whose output forms another query or SQL statement.

Why you would ever need to produce an SQL statement from a query? Initially, itis a
matter of simplicity and efficiency. You may never need to produce an SQL statement,
but without ever doing so you would be ignoring one of SQL's most powerful features,
one that too many people do not realize exists.

Generating SQL is rarely mandatory because you can manually create and issue all SQL
statements, although the process can be tedious in certain situations. On the same note
generating SQL statements may be necessary when you have a tight deadline. For
example, suppose your boss wants to grant access on a new table to all 90 users in the
marketing department (and you want to get home for dinner). Because some users of this
database do not work in marketing, you cannot simply grant access on the table to
public. When you have multiple groups of users with different types of access, you may
want to enforce role security, which is a built-in method for controlling user access to
data. In this situation you can create an SQL statement that generates GRANT
statements to all individuals in the marketing department; that is, it grants each
individual the appropriate role(s).

You will find many situations in which it is advantageous to produce an SQL statement
as output to another statement. For example, you might need to execute many similar
SQL statements as a group or you might need to regenerate DDL from the data
dictionary. When producing SQL as output from another statement, you will always get
the data for your output from either the data dictionary or the schema tables in the
database. Figure 17.1 illustrates this procedure.

As you can see in Figure 17.1, a SELECT statement can be issued to the database, drawing
its output results either from the data dictionary or from application tables in the
database. Your statement can arrange the retrieved data into one or more SQL
statements. For instance, if one row is returned, you will have generated one SQL
statement. If 100 rows are returned from your statement, then you will have generated
100 SQL statements. When you successfully generate SQL code from the database, you
can run that code against the database, which may perform a series of queries or
database actions.

The remainder of the day is devoted to examples that show you how to produce output
in the form of SQL statements. Most of your information will come from the data
dictionary, so you may want to review yesterday's material. (See Day 16, "Using Views to
Retrieve Useful Information from the Data Dictionary.")

Figure 17.1.

The process of generating SQL from the database.

NOTE: Today's examples use Personal Oracle7. As always, you should apply
the concepts discussed today to the syntax of your specific database
implementation.

Miscellaneous SQL * Plus Commands

Today's examples use a few new commands. These commands, known as SQL*Plus
commands, are specific to Personal Oracle7 and control the format of your output
results. (See Day 20, "SQL*Plus.") SQL*Plus commands are issued at the SQL> prompt, or
they can be used in a file.

NOTE: Although these commands are specific to Oracle, similar commands
are available in other implementations, for example, Transact-SQL. (Also
see Day 19, "Transact-SQL: An Introduction.")

set echo on/off

When you set echo on, you will see your SQL statements as they execute. Set echo
of f means that you do not want to see your SQL statements as they execute--you just
want to see the output.

SET ECHO[ON | OFF]
set feedback on/off

Feedback is the row count of your output. For instance, if you executed a SELECT
statement that returned 30 rows of data, your feedback would be

30 rows sel ect ed.

SET FEEDBACK ONdisplays the row count; SET FEEDBACK OFF eliminates the row
count from your output.

SET FEEDBACK [ON | OFF]
set heading on/off

The headings being referred to here are the column headings in the output of a SELECT
statement, such as LAST_NAME or CUSTOVER | D. SET HEADI NG ON, which is the
default, displays the column headings of your data as a part of the output. SET

HEADI NG OFF, of course, eliminates the column headings from your output.

SET HEADING [ON | OFF]

spool filename/off

Spooling is the process of directing the results of your query to a file. In order to open a
spool file, you enter

spool fil enane
To close your spool file, you would type
spool off

sartfi | enane

Most SQL commands that we have covered so far have been issued at the SQL> prompt.
Another method for issuing SQL statements is to create and then execute a file. In
SQL*Plus the command to execute an SQL file is START FI LENAME.

START FlI LENAMVE
edfil enanme

EDis a Personal Oracle7 command that opens a file (existing or file). When you open a
file with ed, you are using a full-screen editor, which is often easier than trying to
type a lengthy SQL statement at the SQL> prompt. You will use this command to modify
the contents of your spool file. You will find that you use this command often when
generating SQL script because you may have to modify the contents of the file for
customization. However, you can achieve most customization through SQL*Plus
commands.

ED FI LENAME

Counting the Rowsin All Tables

The first example shows you how to edit your spool file to remove irrelevant lines in
your generated code, thus allowing your SQL statement to run without being tarnished
with syntax errors.

NOTE: Take note of the editing technique used in this example because we
will not show the step in the rest of today's examples. We assume that you
know the basic syntax of SQL statements by now. In addition, you may
choose to edit your spool file in various ways.

Start by recalling the function to count all rows in a table: COUNT(*) . You already

know how to select a count on all rows in a single table. For example:
INPUT:

SELECT COUNT(*)
FROM TBL1;

OUTPUT:

That technique is handy, but suppose you want to get a row count on all tables that
you own or that are in your schema. For example, here's a list of the tables you own:

INPUT/OUTPUT:

SELECT * FROM CAT,

TABLE_NAME TABLE_TYPE
ACCT_PAY TABLE
ACCT_REC TABLE
CUSTQOVERS TABLE
EMPLOYEES TABLE
H STORY TABLE
I NVO CES TABLE
CRDERS TABLE
PRODUCTS TABLE
PRQIECTS TABLE
VENDCRS TABLE

10 rows sel ect ed.

ANALYSIS:

If you want to get a row count on all your tables, you could manually issue the
COUNT(*) statement on each table. The feedback would be

10 rows sel ect ed.

The following SELECT statement creates more SELECT statements to obtain a row
count on all the preceding tables.

INPUT/OUTPUT:

SQ> SET ECHO OFF
SQ.> SET FEEDBACK OFF

SQL> SET HEADI NG OFF
SQL> SPOOL CNT. SQL
SQL> SELECT ' SELECT COUNT(*) FROM' || TABLE_NAME ||
2 FROM CAT
3/

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC,
SELECT COUNT(*) FROM CUSTOVERS
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HI STORY;

SELECT COUNT(*) FROM I NVO CES;
SELECT COUNT(*) FROM ORDERS;

SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PRQIECTS;
sel ect count (*) FROM VENDORS;

ANALYSIS:

The first action in the preceding example is to use some SQL*Plus commands. Setting
echo off,feedback off,andheadi ng of f condenses the output to what is
actually being selected. Remember, the output is not being used as a report, but rather
as an SQL statement that is ready to be executed. The next step is to use the SPOCL
command to direct the output to a file, which is specified as cnt . sqgl . The final step is to
issue the SELECT statement, which will produce output in the form of another
statement. Notice the use of single quotation marks to select a literal string. The
combination of single quotation marks and the concatenation (| |) allows you to
combine actual data and literal strings to form another SQL statement. This example
selects its data from the data dictionary. The command SPOOL OFF closes the spool file.

TIP: Always edit your output file before running it to eliminate syntax
discrepancies and to further customize the file that you have created.

INPUT:

SQL> SPOOL OFF
SQL> ED CNT. SQL

OUTPUT:

SQL> SELECT ' SELECT COUNT(*) FROM ' || TABLE_NAME| | ' ;"
2 FROM CAT,

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS:
SELECT COUNT(*) FROM EMPLOYEES:

SELECT COUNT(*) FROM HI STORY;
SELECT COUNT(*) FROM | NVOI CES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PRQJECTS;
SELECT COUNT(*) FROM VENDORS;
SQL> SPOOL OFF

ANALYSIS:

The command SPOOL OFF closes the spool file. Then the ED command edits the file. At
this point you are inside the file that you created. You should remove unnecessary lines
from the file, such as the SELECT statement, which was used to achieve the results, and
the SPOOL OFF at the end of the file.

Here is how your file should look after the edit. Notice that each line is a valid SQL
statement.

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HI STORY;

SELECT COUNT(*) FROM | NVOI CES;
SELECT COUNT(*) FROM ORDERS;

SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PRQJECTS;
SELECT COUNT(*) FROM VENDORS;

Now, execute the file:
INPUT/OUTPUT:

SQL> SET ECHO ON
SQL> SET HEADI NG ON
SQL> START CNT. SQL

SQL> SELECT COUNT(*) FROM ACCT_PAY:

5
SQL> SELECT COUNT(*) FROM EMPLOYEES:

SQL> SELECT COUNT(*) FROM HI STCRY;

26
SQL> SELECT COUNT(*) FROM I NVO CES;

SQL> SELECT COUNT(*) FROM ORDERS;

SQL> SELECT COUNT(*) FROM PRODUCTS;

10
SQL> SELECT COUNT(*) FROM PRQIECTS;

16
SQL> SELECT COUNT(*) FROM VENDCRS,;

sQL>

ANALYSIS:

Set echo onenables you to see each statement that was executed. Set headi ng on
displays the column heading COUNT(*) for each SELECT statement. If you had included

set feedback on
then
1 row sel ect ed.

would have been displayed after each count. This example executed the SQL script by
using the SQL*Plus START command. However, what if you were dealing with 50 tables

instead of just 10?

NOTE: The proper use of single quotation marks when generating an SQL
script is vital. Use these quotations generously and make sure that you are
including all elements that will make your generated statement complete.
In this example single quotation marks enclose the components of your
generated statement (output) that cannot be selected from a table; for
example,' SELECT COUNT(*) FROM and';"'.

Granting System Privilegesto Multiple Users

As a database administrator or an individual responsible for maintaining users, you will
often receive requests for user IDs. In addition to having to grant privileges to users
that allow them proper database access, you also have to modify users' privileges to
accommodate their changing needs. You can get the database to generate the GRANT
statements to grant system privileges or roles to many users.

INPUT

sQL>
sQL>
sQL>
sQL>
sQL>
2

SET ECHO OFF

SET HEADI NG OFF
SET FEEDBACK COFF
SPOOL GRANTS. SQL

SELECT ' GRANT CONNECT, RESOURCE TO '

FROM SYS. DBA_USERS
3 WHERE USERNAME NOT | N
(" SYS',' SYSTEM , ' SCOIT' , ' RYAN , ' PO7' ,' DEMO)
4 |/

OUTPUT:

GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT

CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,
CONNECT,

INPUT/OUTPUT:

RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE
RESOURCE

TO KEVI N;
TO JOHN,

TO JUDI TH,

TO STEVE;
TO RON;
TO MARY;
TO DEBRA;
TO CHRI S;
TO CARCL;

TO EDWARD,;
TO BRANDON;

TO JACOB;

|| USERNAME || '

SQL> spool off

SQL> start grants. sql

SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,
G ant succeeded.
SQL> GRANT CONNECT,

Grant succeeded.

ANALYSIS:

In this example you saved many tedious keystrokes by generating GRANT statements
using a simple SQL statement, rather than typing each one manually.

RESCOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

RESOURCE

TO KEVI N;

TO JOHN,

TO JUDI TH,

TO STEVE;

TO RON;

TO MARY;

TO DEBRA;

TO CHRI S;

TO CARQL;

TO EDWARD,

TO BRANDON;

TO JACOB;

NOTE: The following examples omit the step in which you edit your output
file. You can assume that the files are already edited.

Granting Privilegeson Your Tablesto Another User

Granting privileges on a table to another user is quite simple, as is selecting a row
count on a table. But if you have multiple tables to which you wish to grant access to a
role or user, you can make SQL generate a script for you--unless you just love to type.

First, review a simple GRANT to one table:
INPUT:

SQL> GRANT SELECT ON HI STORY TO BRANDON;
OUTPUT:

Grant succeeded.

Are you ready for some action? The next statement creates a GRANT statement for each
of the 10 tables in your schema.

INPUT/OUTPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL GRANTS. SQL

SQL> SELECT ' GRANT SELECT ON ' || TABLE_NAME || ' TO BRANDON.'
2 FROM CAT
3

GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT
GRANT SELECT

ACCT_PAY TO BRANDON
ACCT_REC TO BRANDON
CUSTOVERS TO BRANDON
EMPLOYEES TO BRANDON
H STORY TO BRANDON

I NVO CES TO BRANDON
ORDERS TO BRANDON

PRODUCTS TO BRANDON
PROQIECTS TO BRANDON
VENDORS TO BRANDON

22222222292

ANALYSIS:

A GRANT statement has been automatical ly prepared for each table. BRANDON is to
have Select access on each table.

Now close the output file with the SPOOL command, and assuming that the file has been
edited, the file is ready to run.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET ECHO ON
SQL> SET FEEDBACK ON
SQL> START GRANTS. SQL

SQ> GRANT SELECT ON ACCT_PAY TO BRANDON;
G ant succeeded.

SQL> GRANT SELECT ON ACCT_REC TO BRANDON;
G ant succeeded.

SQL> GRANT SELECT ON CUSTOVERS TO BRANDON,
G ant succeeded.

SQ.> GRANT SELECT ON EMPLOYEES TO BRANDON,
G ant succeeded.

SQL> GRANT SELECT ON HI STORY TO BRANDON,
G ant succeeded.

SQ> GRANT SELECT ON | NVO CES TO BRANDON;
G ant succeeded.

SQL> GRANT SELECT ON ORDERS TO BRANDON,

G ant succeeded.

SQL> GRANT SELECT ON PRODUCTS TO BRANDON;
G ant succeeded.

SQ> GRANT SELECT ON PROJECTS TO BRANDON;
G ant succeeded.

SQL> GRANT SELECT ON VENDORS TO BRANDON,

Grant succeeded.

ANALYSIS:

Echo was set on and feedback was set on as well. Setting feedback on displayed the
statement G- ant succeeded. The Select privilege has been granted to BRANDON on
all 10 tables with very little effort. Again, keep in mind that you will often be dealing
with many more than 10 tables.

Disabling Table Constraintsto Load Data

When loading data into tables, you will sometimes have to disable the constraints on
your tables. Suppose that you have truncated your tables and you are loading data
into your tables from scratch. More than likely, your tables will have referential
integrity constraints, such as foreign keys. Because the database will not let you insert
a row of data in a table that references another table (if the referenced column does
not exist in the other table), you may have to disable constraints to initially load your
data. Of course, after the load is successful, you would want to enable the constraints.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQL> SPOOL DI SABLE. SQL
SQL> SELECT ' ALTER TABLE ' || TABLE_NAME | |
2 ' DI SABLE CONSTRAINT ' || CONSTRAI NT_NAME | |
3 FROM SYS. DBA_CONSTRAI NTS
4 \WHERE OMNER = ' RYAN
5 /

OUTPUT:

ALTER TABLE ACCT_PAY DI SABLE CONSTRAI NT FK_ACCT_I D
ALTER TABLE ACCT_REC DI SABLE CONSTRAI NT FK_ACCT_I D
ALTER TABLE CUSTOMVERS DI SABLE CONSTRAI NT FK_CUSTOMER I D
ALTER TABLE HI STORY DI SABLE CONSTRAI NT FK_ACCT_I D
ALTER TABLE | NVO CES DI SABLE CONSTRAI NT FK_ACCT_I D
ALTER TABLE ORDERS DI SABLE CONSTRAI NT FK_ACCT_I b

ANALYSIS:

The objective is to generate a series of ALTER TABLE statements that will disable the
constraints on all tables owned by RYAN. The semicolon concatenated to the end of
what is being selected completes each SQL statement.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQ.> SET ECHO OFF

SQ.> SET FEEDBACK ON
SQ.> START DI SABLE. SQL

Constraint D sabl ed.
Constrai nt D sabl ed.
Constraint D sabl ed.
Constraint D sabl ed.
Constraint Di sabl ed.

Constrai nt D sabl ed.

ANALYSIS:

Notice that echo is set to of f , which means that you will not see the individual
statements. Because feedback is set to on, you can see the results.

Constrai nt D sabl ed.

If both echo and feedback were set to of f , nothing would be displayed. There would
simply be a pause for as long as it takes to execute the ALTER TABLE statements and
then an SQL> prompt would be returned.

Now you can load your data without worrying about receiving errors caused by your
constraints. Constraints are good, but they can be barriers during data loads. You may
use the same idea to enable the table constraints.

Creating Numerous Synonymsin a Single Bound

Another tedious and exhausting task is creating numerous synonyms, whether they be
public or private. Only a DBA can create public synonyms, but any user can create
private synonyms.

The following example creates public synonyms for all tables owned by RYAN.
INPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL PUB_SYN. SQL

SQL> SELECT ' CREATE PUBLI C SYNONYM ' || TABLE_NAME || ' FOR' ||
2 OMER || '.' || TABLE_NAME || ';'
3 FROM SYS. DBA TABLES
4 \WHERE OMNER = ' RYAN

OUTPUT:

CREATE PUBLI C SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY;,
CREATE PUBLI C SYNONYM ACCT_REC FOR RYAN. ACCT_REC,
CREATE PUBLI C SYNONYM CUSTOVERS FOR RYAN. CUSTOVERS;
CREATE PUBLI C SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
CREATE PUBLI C SYNONYM HI STORY FOR RYAN. HI STORY;
CREATE PUBLI C SYNONYM | NVO CES FOR RYAN. | NVO CES;
CREATE PUBLI C SYNONYM ORDERS FOR RYAN. ORDERS;
CREATE PUBLI C SYNONYM PRODUCTS FOR RYAN. PRODUCTS;
CREATE PUBLI C SYNONYM PRQJECTS FOR RYAN. PRQJECTS;
CREATE PUBLI C SYNONYM VENDCORS FOR RYAN. VENDORS;

Now run the file.
INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> ED PUB_SYN. SQL
SQL> SET ECHO ON

SQL> SET FEEDBACK ON
SQL> START PUB_SYN. SQL

SQ.> CREATE PUBLI C SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY,
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM ACCT_REC FOR RYAN. ACCT_REC,
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM CUSTOVERS FOR RYAN. CUSTOMERS;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM HI STORY FOR RYAN. HI STCRY;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM | NVO CES FOR RYAN. | NvO CES;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM ORDERS FOR RYAN. ORDERS;
Synonym cr eat ed.

SQL> CREATE PUBLI C SYNONYM PRODUCTS FOR RYAN. PRODUCTS;

Synonym cr eat ed.

sQL>

CREATE PUBLI C SYNONYM PRQJECTS FOR RYAN. PRQAJECTS;

Synonym cr eat ed.

sQL>

CREATE PUBLI C SYNONYM VENDORS FOR RYAN. VENDORS;

Synonym cr eat ed.

ANALYSIS:

Almost instantly, all database users have access to a public synonym for all tables
that RYAN owns. Now a user does not need to qualify the table when performing a
SELECT operation. (Qualifying means identifying the table owner, as in RYAN. VENDORS.)

What if public synonyms do not exist? Suppose that BRANDON has Select access to all

tables owned by RYAN and wants to create private synonyms.

INPUT/OUTPUT:

sQL>

CONNECT BRANDON

ENTER PASSWORD: *******
CONNECTED.

sQL>
sQL>
sQL>
sQL>
sQL>
2
3
4

SET ECHO OFF

SET FEEDBACK OFF

SET HEADI NG OFF

SPOOL PRI V_SYN. SQL

SELECT ' CREATE SYNONYM ' || TABLE_NAME || ' FOR' ||
OMER || '.' || TABLE_NAME || ':°

FROM ALL_TABLES

/

CREATE SYNONYM DUAL FOR SYS. DUAL,;

CREATE SYNONYM AUDI T_ACTI ONS FOR SYS. AUDI T_ACTI ONS;
CREATE SYNONYM USER_PROFI LE FOR SYSTEM USER_PROFI LE;
CREATE SYNONYM CUSTOMERS FOR RYAN. CUSTOMVERS;
CREATE SYNONYM CRDERS FOR RYAN. ORDERS;

CREATE SYNONYM PRODUCTS FOR RYAN. PRCDUCTS;

CREATE SYNONYM | NVAO CES FOR RYAN. | NVO CES;

CREATE SYNONYM ACCT_REC FOR RYAN. ACCT_REC,

CREATE SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY,;

CREATE SYNONYM VENDORS FOR RYAN. VENDORS;

CREATE SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
CREATE SYNONYM PRQJIECTS FOR RYAN. PRAQJECTS;

CREATE SYNONYM HI STORY FOR RYAN. HI STORY,;

INPUT/OUTPUT:

sQL>
sQL>

SPOOL OFF

SQL> SET ECHO OFF
SQL> SET FEEDBACK ON
SQL> START PRIV _SYN. SQL

Synonym cr eat ed.

Synonym
Synonym
Synonym
Synonym
Synonym
Synonym
Synonym
Synonym
Synonym
Synonym

Synonym

creat ed.
creat ed.
creat ed.
creat ed.
creat ed.
creat ed.
creat ed.
creat ed.
creat ed.
creat ed.

created.

Synonym cr eat ed.

ANALYSIS:

With hardly any effort, BRANDON has synonyms for all tables owned by RYAN and no
longer needs to qualify the table names.

Creating Viewson Your Tables

If you want to create views on a group of tables, you could try something similar to the
following example:

INPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL VI EWB. SQL

SQL> SELECT ' CREATE VIEW' || TABLE_NAME | |

' VI EWAS SELECT * FROM'
2 TABLE_NAME | |

3 FROM CAT

4

OUTPUT:

CREATE VI EW ACCT_PAY_VI EW AS SELECT * FROM ACCT_PAY;
CREATE VI EW ACCT_REC_VI EW AS SELECT * FROM ACCT_REC;
CREATE VI EW CUSTOVERS_VI EW AS SELECT * FROM CUSTOVERS;
CREATE VI EW EMPLOYEES_VI EW AS SELECT * FROM EMPLOYEES;
CREATE VI EW HI STORY_VI EW AS SELECT * FROM HI STORY;
CREATE VI EW | NvO CES_VI EW AS SELECT * FROM | NVO CES;
CREATE VI EW ORDERS_VI EW AS SELECT * FROM ORDERS;
CREATE VI EW PRODUCTS_VI EW AS SELECT * FROM PRODUCTS;
CREATE VI EW PRQJECTS_VI EW AS SELECT * FROM PROJECTS;
CREATE VI EW VENDORS_VI EW AS SELECT * FROM VENDCRS;

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SET ECHO OFF

SQL> SET FEEDBACK ON
SQL> START VI EW8. SQL

Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.
Vi ew Creat ed.

Vi ew Cr eat ed.

ANALYSIS:

The file vi ews. sql was generated by the previous SQL statement. This output file has
become another SQL statement file and contains statements to create views on all
specified tables. After running vi ews. sql , you can see that the views have been
created.

Truncating All Tablesin a Schema

Truncating tables is an event that occurs in a development environment. To effectively
develop and test data load routines and SQL statement performance, data is reloaded

frequently. This process identifies and exterminates bugs, and the application being
developed or tested is moved into a production environment.

The following example truncates all tables in a specified schema.
INPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL TRUNC. SQL

SQL> SELECT ' TRUNCATE TABLE ' || TABLE NAME || ':'
2 FROM ALL_TABLES
3 WHERE OWKER = ' RYAN
4 |

OUTPUT:

TRUNCATE TABLE ACCT_PAY
TRUNCATE TABLE ACCT_REC;
TRUNCATE TABLE CUSTOVERS
TRUNCATE TABLE EMPLOYEES;
TRUNCATE TABLE HI STORY
TRUNCATE TABLE | NvA CES;
TRUNCATE TABLE ORDERS
TRUNCATE TABLE PRODUCTS;
TRUNCATE TABLE PRQJECTS;
TRUNCATE TABLE VENDCRS

Go ahead and run your script if you dare.
INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SET FEEDBACK ON
SQL> START TRUNC. SQL

Tabl e Truncat ed.
Tabl e Truncat ed.
Tabl e Truncat ed.
Tabl e Truncat ed.
Tabl e Truncat ed.
Tabl e Truncat ed.
Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

ANALYSIS:

Truncating all tables owned by RYAN removes all the data from those tables. Table
truncation is easy. You can use this technique if you plan to repopulate your tables
with new data.

TIP: Before performing an operation such as truncating tables in a schema,
you should always have a good backup of the tables you plan to truncate,
even if you are sure that you will never need the data again. (You will--
somebody is sure to ask you to restore the old data.)

Using SQL to Generate Shell Scripts

You can also use SQL to generate other forms of scripts, such as shell scripts. For
example, an Oracle RDBMS server may be running in a UNIX environment, which is
typically much larger than a PC operating system environment. Therefore, UNIX
requires a more organized approach to file management. You can use SQL to easily
manage the database files by creating shell scripts.

The following scenario drops tablespaces in a database. Although tablespaces can be
dropped using SQL, the actual data files associated with these tablespaces must be
removed from the operating system separately.

The first step is to generate an SQL script to drop the tablespaces.
INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQL> SPOOL DROP_TS. SQL

SQL> SELECT ' DROP TABLESPACE ' || TABLESPACE_NAME || ' | NCLUDI NG
CONTENTS; '

2 FROM SYS. DBA_TABLESPACES

3 |/
OUTPUT:

DROP TABLESPACE SYSTEM | NCLUDI NG CONTENTS;
DROP TABLESPACE RBS | NCLUDI NG CONTENTS;

DROP TABLESPACE TEMP | NCLUDI NG CONTENTS;
DROP TABLESPACE TOOLS | NCLUDI NG CONTENTS;
DROP TABLESPACE USERS | NCLUDI NG CONTENTS;

Next you need to generate a shell script to remove the data files from the operating
system after the tablespaces have been dropped.

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SPOOL RM FI LES. SH

SQL> SELECT 'RM -F ' || FILE_NAME
2 FROM SYS. DBA DATA FI LES
3

rm-f /diskO1l/orasys/ db0l/ systenD. dbf
rm-f /disk02/ orasys/db01/r bsO. dbf
rm-f /disk03/orasys/db01l/tenp0. dbf
rm-f /disk04/orasys/db01l/t ool sO. dbf
rm-f /di skO5/orasys/db01l/ usersO. dbf
SQ.> spool off

sQL>

ANALYSIS:

Now that you have generated both scripts, you may run the script to drop the
tablespaces and then execute the operating system shell script to remove the
appropriate data files. You will also find many other ways to manage files and generate
non-SQL scripts using SQL.

Reverse Engineering Tables and Indexes

Even though many CASE tools allow you to reverse-engineer tables and indexes, you
can always use straight SQL for this purpose. You can retrieve all the information that
you need from the data dictionary to rebuild tables and indexes, but doing so
effectively is difficult without the use of a procedural language, such as PL/SQL or a
shell script.

We usually use embedded SQL within a shell script. Procedural language functions are
needed to plug in the appropriate ingredients of syntax, such as commas. The script must
be smart enough to know which column is the last one, so as to not place a comma after
the last column. The script must also know where to place parentheses and so on. Seek
the tools that are available to regenerate objects from the data dictionary, whether
you use C, Perl, shell scripts, COBOL, or PL/SQL.

Summary

Generating statements directly from the database spares you the often tedious job of
coding SQL statements. Regardless of your job scope, using SQL statement generation
techniques frees you to work on other phases of your projects.

What you have learned today is basic, and though these examples use the Oracle
database, you can apply the concepts to any relational database. Be sure to check your
specific implementation for variations in syntax and data dictionary structure. If you
keep an open mind, you will continually find ways to generate SQL scripts, from simple
statements to complex high-level system management.

Q& A

Q How do | decide when to issue statements manual ly and when to write SQL
to generate SQL?

A Ask yourself these questions:

o How often will | be issuing the statements in question?

o Will it take me longer to write the "mother" statement than it would to
issue each statement manual ly?

Q From which tables may | select to generate SQL statements?

A You may select from any tables to which you have access, whether they are
tables that you own or tables that reside in the data dictionary. Also keep in
mind that you can select from any valid objects in your database, such as views or
snapshots.

Q Are there any limits to the statements that | can generate with SQL?

A For the most part any statement that you can write manually can be generated
somehow using SQL. Check your implementation for specific options for spooling
output to a file and formatting the output the way you want it. Remember that
you can always modify the generated statements later because the output is
spooled to a file.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. From which two sources can you generate SQL scripts?

2. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL CNT. SQL

SQL> SELECT ' COUNT(*) FROM ' || TABLE_NAME | |
2 FROM CAT

3

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF

SQL> SPOOL GRANT. SQL

SQL> SELECT ' GRANT CONNECT DBA TO ' || USERNAME | |
2 FROM SYS. DBA_USERS

3 WHERE USERNAME NOT IN (' SYS',' SYSTEM ,' SCOTT')
4

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SELECT ' GRANT CONNECT, DBA TO' || USERNAME ||
2 FROM SYS. DBA_USERS

3 WHERE USERNAME NOT IN (' SYS',' SYSTEM ,' SCOTT)

4 |

5. True or False: It is best to set feedback ONwhen generating SQL.

6. True or False: When generating SQL from SQL, always spool to a list or log file
for a record of what happened.

7. True or False: Before generating SQL to truncate tables, you should always
make sure you have a good backup of the tables.

8. What is the ED command?

9. What does the SPOOL OFF command do?

Exercises

1. Using the SYS.DBA_USERS view (Personal Oracle7), create an SQL statement
that will generate a series of GRANT statements to five new users: John, Kevin,
Ryan, Ron, and Chris. Use the column cal led USERNAME. Grant them Select access

tohistory_thbl.

2. Using the examples in this chapter as guidelines, create some SQL statements
that will generate SQL that you can use.

(e Previous Chaptar YR Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 18 -
PL/SQL: An Introduction

Objectives

PL/SQL is the Oracle technology that enables SQL to act like a procedural language.
By the end of today, you should

. Have a basic understanding of PL/SQL

. Understand the features that distinguish PL/SQL from standard SQL
. Have an understanding of the basic elements of a PL/SQL program

. Be able to write a simple PL/SQL program

. Understand how errors are handled in PL/SQL programs

. Be aware of how PL/SQL is used in the real world

| ntroduction

One way to introduce PL/SQL is to begin by describing standard Structured Query
Language, or SQL. SQL is the language that enables relational database users to
communicate with the database in a straightforward manner. You can use SQL commands
to query the database and modify tables within the database. When you write an SQL
statement, you are telling the database what you want to do, not how to do it. The

guery optimizer decides the most efficient way to execute your statement. If you send a
series of SQL statements to the server in standard SQL, the server executes them one at
a time in chronological order.

PL/SQL is Oracle's procedural language; it comprises the standard language of SQL and
a wide array of commands that enable you to control the execution of SQL statements
according to different conditions. PL/SQL can also handle runtime errors. Options such
as loopsand | F. . . THEN statements give PL/SQL the power of third-generation
programming languages. PL/SQL allows you to write interactive, user-friendly programs
that can pass values into variables. You can also use several predefined packages, one of
which can display messages to the user.

Day 18 covers these key features of PL/SQL.:
. Programmers can declare variables to be used during statement processing.

. Programmers can use error-handling routines to prevent programs from aborting
unexpectedly.

. Programmers can write interactive programs that accept input from the user.

. Programmers can divide functions into logical blocks of code. Modular
programming techniques support flexibility during the application development.

. SQL statements can be processed simultaneously for better overall performance.

Data Typesin PL/SQL

Most data types are obviously similar, but each implementation has unique storage and
internal-processing requirements. When writing PL/SQL blocks, you will be declaring
variables, which must be valid data types. The fol lowing subsections briefly describe the
data types available in PL/SQL.

In PL/SQL Oracle provides subtypes of data types. For example, the data type NUVBER has
a subtype called | NTEGER. You can use subtypes in your PL/SQL program to make the
data types compatible with data types in other programs, such as a COBOL program,
particularly if you are embedding PL/SQL code in another program. Subtypes are simply
alternative names for Oracle data types and therefore must follow the rules of their
associated data type.

NOTE: As in most implementations of SQL, case sensitivity is not a factor in
the syntax of a statement. PL/SQL allows either uppercase or lowercase
with its commands.

Character String Data Types

Character string data types in PL/SQL, as you might expect, are data types generally
defined as having alpha-numeric values. Examples of character strings are names, codes,
descriptions, and serial numbers that include characters.

CHAR stores fixed-length character strings. The maximum length of CHARIs 32,767 bytes,
although it is hard to imagine a set of fixed-length values in a table being so long.

SYNTAX:
CHAR (nmax_length)
Subtype: CHARACTER

VARCHARZ stores variable-length character strings. You would normally user
VARCHARZ instead of CHAR to store variable-length data, such as an individual's name.
The maximum length of VARCHARZ is also 32,767 bytes.

SYNTAX:

VARCHAR2 (max_l ength)

Subtypes: VARCHAR, STRI NG

LONGalso stores variable-length character strings, having a maximum length of 32,760
bytes. LONGis typically used to store lengthy text such as remarks, although VARCHAR2
may be used as well.

Numeric Data Types

NUMBER stores any type of number in an Oracle database.

SYNTAX:

NUVBER (max_| ength)

You may specify a NUMBER's data precision with the fol lowing syntax:
NUMBER (preci sion, scale)

Subtypes: DEC, DECI MAL, DOUBLE PRECI SI ON, | NTECGER, | NT, NUVERI C, REAL,

SMALLI NT, FLOAT

PLS | NTEGER defines columns that may contained integers with a sign, such as negative
numbers.

Binary Data Types

Binary data types store data that is in a binary format, such as graphics or photographs.
These data types include RAWand LONGRAW

The DATE Data Type

DATE is the valid Oracle data type in which to store dates. When you define a column as
a DATE, you do not specify a length, as the length of a DATE field is implied. The format
of an Oracle date is, for example, 01-OCT-97.

BOOLEAN

BOOLEAN S stores the following values: TRUE, FALSE, and NULL. Like DATE, BOOLEAN
requires no parameters when defining it as a column's or variable's data type.

ROWID

ROW Dis a pseudocolumn that exists in every table in an Oracle database. The RON Dis
stored in binary format and identifies each row in a table. Indexes use RON Ds as
pointers to data.

The Structure of a PL/SQL Block

PL/SQL is a block-structured language, meaning that PL/SQL programs are divided and
written in logical blocks of code. Within a PL/SQL block of code, processes such as data
manipulation or queries can occur. The following parts of a PL/SQL block are discussed
in this section:

. The DECLARE section contains the definitions of variables and other objects such
as constants and cursors. This section is an optional part of a PL/SQL block.

. The PROCEDURE section contains conditional commands and SQL statements and is
where the block is controlled. This section is the only mandatory part of a
PL/SQL block.

. The EXCEPTI ONsection tells the PL/SQL block how to handle specified errors and

user-defined exceptions. This section is an optional part of a PL/SQL block.

NOTE: A block is a logical unit of PL/SQL code, containing at the least a
PROCEDURE section and optional ly the DECLARE and EXCEPTI ONsections.

Here is the basic structure of a PL/SQL block:

SYNTAX:
BEG N -- optional, denotes begi nning of bl ock
DECLARE -- optional, variable definitions
BEG N -- mandatory, denotes begi nning of procedure section
EXCEPTION -- optional, denotes begi nning of exception section
END -- mandatory, denotes endi ng of procedure section
END -- optional, denotes endi ng of bl ock

Notice that the only mandatory parts of a PL/SQL block are the second BEG Nand the
first END, which make up the PROCEDURE section. Of course, you will have statements in
between. If you use the first BEG N, then you must use the second END, and vice versa.

Comments

What would a program be without comments? Programming languages provide commands
that allow you to place comments within your code, and PL/SQL is no exception. The
comments after each line in the preceding sample block structure describe each
command. The accepted comments in PL/SQL are as fol lows:

SYNTAX:
-- This is a one-line coment.

/* This is a
mul tiple-line coment. */

NOTE: PL/SQL directly supports Data Manipulation Language (DML)
commands and database queries. However, it does not support Data
Dictionary Language (DDL) commands. You can generally use PL/SQL to
manipulate the data within database structure, but not to manipulate
those structures.

The DECLARE Section

The DECLARE section of a block of PL/SQL code consists of variables, constants, cursor
definitions, and special data types. As a PL/SQL programmer, you can declare all types of
variables within your blocks of code. However, you must assign a data type, which must
conform to Oracle's rules of that particular data type, to every variable that you
define. Variables must also conform to Oracle's object naming standards.

Variable Assignment

Variables are values that are subject to change within a PL/SQL block. PL/SQL
variables must be assigned a valid data type upon declaration and can be initialized if
necessary. The following example defines a set of variables in the DECLARE portion of a
block:

DECLARE
owner char (10);
t abl enanme char (30);
byt es nunber (10);
t oday dat e;

ANALYSIS:

The DECLARE portion of a block cannot be executed by itself. The DECLARE section
starts with the DECLARE statement. Then individual variables are defined on separate
lines. Notice that each variable declaration ends with a semicolon.

Variables may also be initialized in the DECLARE section. For example:

DECLARE
cust oner char (30);
fiscal _year nunber(2) :="'97";

You can use the symbol : = to initialize, or assign an initial value, to variables in the
DECLARE section. You must initialize a variable that is defined as NOT NULL.

DECLARE
cust oner char (30);
fiscal _year nunber(2) NOT NULL := '"97";

ANALYSIS:

The NOT NULL clause in the definition of fi scal _year resembles a column definition
in a CREATE TABLE statement.

Constant Assignment

Constants are defined the same way that variables are, but constant values are static;
they do not change. In the previous example, fi scal _year isprobably a constant.

NOTE: You must end each variable declaration with a semicolon.

Cursor Definitions

A cursor is another type of variable in PL/SQL. Usual ly when you think of a variable, a
single value comes to mind. A cursor is a variable that points to a row of data from the
results of a query. In amultiple-row result set, you need a way to scroll through each
record to analyze the data. A cursor is just that. When the PL/SQL block looks at the
results of a query within the block, it uses a cursor to point to each returned row. Here
is an example of a cursor being defined in a PL/SQL block:

INPUT:

DECLARE
cursor enployee cursor is
sel ect * from enpl oyees;

A cursor is similar to a view. With the use of a loop in the PROCEDURE section, you can
scroll a cursor. This technique is covered shortly.

The%TYPE Attribute

%'YPE is a variable attribute that returns the value of a given column of a table.
Instead of hard-coding the data type in your PL/SQL block, you can use % YPE to
maintain data type consistency within your blocks of code.

INPUT:

DECLARE
cursor enployee cursor is
select enp_id, enp_nane from enpl oyees;
i d_num enpl oyees. enp_i d%'YPE;
nane enpl oyees. enp_nane% YPE;

ANALYSIS:

The variable i d_numis declared to have the same data type asenp_i d in the
EMPLOYEES table. %0 YPE declares the variable nanme to have the same data type as the
column enp_nane in the EMPLOYEES table.

The % ROWTY PE Attribute

Variables are not limited to single values. If you declare a variable that is associated
with a defined cursor, you can use the “ROM YPE attribute to declare the data type of
that variable to be the same as each column in one entire row of data from the cursor.
In Oracle's lexicon the “ROM YPE attribute creates a record variable.

INPUT:

DECLARE
cursor enpl oyee _cursor is
sel ect enp_id, enp_nane from enpl oyees;
enpl oyee_record enpl oyee_cur sor ¥ROMYPE;

ANALYSIS:

This example declares a variable called enpl oyee _record. The YROMYPE attribute
defines this variable as having the same data type as an entire row of data in the

enpl oyee_cursor. Variables declared using the ROMYPE attribute are also called
aggregate variables.

The % ROWCOUNT Attribute

The PL/SQL YROWCOUNT attribute maintains a count of rows that the SQL statements in
the particular block have accessed in a cursor.

INPUT:

DECLARE
cursor enpl oyee cursor is
sel ect enp_id, enp_nane from enpl oyees;
records_processed : = enpl oyee_cur sor “RONCOUNT;

ANALYSIS:

In this example the variable r ecor ds_pr ocessed represents the current number of
rows that the PL/SQL block has accessed in the enpl oyee cur sor.

WARNING: Beware of naming conflicts with table names when declaring
variables. For instance, if you declare a variable that has the same name as
a table that you are trying to access with the PL/SQL code, the local
variable will take precedence over the table name.

The PROCEDURE Section

The PROCEDURE section is the only mandatory part of a PL/SQL block. This part of the
block calls variables and uses cursors to manipulate data in the database. The
PROCEDURE section is the main part of a block, containing conditional statements and
SQL commands.

BEGIN...END

In a block, the BEG Nstatement denotes the beginning of a procedure. Similarly, the
END statement marks the end of a procedure. The fol lowing example shows the basic
structure of the PROCEDURE section:

SYNTAX:

BEG N

open a cursor

condi tionl
statenent 1;

condi ti on2;
st at enent 2;

condi ti on3;
st at enent 3;

cl ose the cursor
END

Cursor Control Commands

Now that you have learned how to define cursors in a PL/SQL block, you need to know
how to access the defined cursors. This section explains the basic cursor control
commands: DECLARE, OPEN, FETCH, and CLOSE.

DECLARE

Earlier today you learned how to define a cursor in the DECLARE section of a block.
The DECLARE statement belongs in the list of cursor control commands.

OPEN

Now that you have defined your cursor, how do you use it? You cannot use this book
unless you open it. Likewise, you cannot use a cursor until you have opened it with the
OPEN command. For example:

SYNTAX:

BEG N
open enpl oyee_cursor;
statenent1;
st at enent 2;

END

FETCH

FETCHpopulates a variable with values from a cursor. Here are two examples using
FETCH: One populates an aggregate variable, and the other populates individual
variables.

INPUT:

DECLARE
cursor enployee cursor is
sel ect enp_id, enp_nane from enpl oyees;
enpl oyee_record enpl oyee_cur sor YROMYPE;
BEG N
open enpl oyee_cursor;
| oop
fetch enpl oyee cursor into enpl oyee record;
end | oop;
cl ose enpl oyee cursor;
END

ANALYSIS:

The preceding example fetches the current row of the cursor into the aggregate
variable enpl oyee_record. It uses a loop to scroll the cursor. Of course, the block is
not actually accomplishing anything.

DECLARE
cursor enployee cursor is
sel ect enp_id, enp_nane from enpl oyees;
i d_num enpl oyees. enp_i d%'YPE;
nane enpl oyees. enp_nanme% YPE;
BEG N
open enpl oyee_cursor;
| oop
fetch enpl oyee cursor into id _num naneg;
end | oop;
cl ose enpl oyee_cursor;

END

ANALYSIS:

This example fetches the current row of the cursor into the variablesi d_numand
name, which was defined in the DECLARE section.

CLOSE

When you have finished using a cursor in a block, you should close the cursor, as you
normally close a book when you have finished reading it. The command you use is CLOSE.

SYNTAX:

BEG N
open enpl oyee_cursor;
st atenent 1;
st at enent 2;

cl ose enpl oyee_cursor;
END

ANALYSIS:

After a cursor is closed, the result set of the query no longer exists. You must reopen
the cursor to access the associated set of data.

Conditional Statements

Now we are getting to the good stuff--the conditional statements that give you
control over how your SQL statements are processed. The conditional statements in
PL/SQL resemble those in most third-generation languages.

IF..THEN

The | F. .. THENstatement is probably the most familiar conditional statement to most
programmers. The | F. . . THEN statement dictates the performance of certain actions if
certain conditions are met. The structure of an | F. . . THENstatement is as fol lows:

SYNTAX:

| F conditionl THEN
statenment 1;
END | F;

If you are checking for two conditions, you can write your statement as fol lows:
SYNTAX:

| F conditionl THEN
statenent 1;

ELSE
st at enent 2;

END | F;

If you are checking for more than two conditions, you can write your statement as
follows:

SYNTAX:

| F conditionl THEN
statenent1;

ELSI F conditi on2 THEN
st at enent 2;

ELSE
st at enent 3;

END | F;

ANALYSIS:

The final example states: If condi ti onl is met, then perform st at enent 1; if
condi ti on2 is met, then perform st at enent 2; otherwise, perform st at enent 3.
| F. . . THENstatements may also be nested within other statements and/or loops.

LOOPS

Loops in a PL/SQL block allow statements in the block to be processed continuously for
as long as the specified condition exists. There are three types of loops.

LOOP is an infinite loop, most often used to scroll a cursor. To terminate this type of
loop, you must specify when to exit. For example, in scrolling a cursor you would exit
the loop after the last row in a cursor has been processed:

INPUT:

BEG N

open enpl oyee_cursor;

LOOP
FETCH enpl oyee_cursor into enpl oyee record;
EXIT WHEN enpl oyee_cur sor %NOTFOUND,
st at enent 1;

END LOOP;
cl ose enpl oyee_cursor;
END,;

%NOTFOUND is a cursor attribute that identifies when no more data is found in the
cursor. The preceding example exits the loop when no more data is found. If you omit this
statement from the loop, then the loop will continue forever.

The VHI LE- LOOP executes commands while a specified condition is TRUE. When the
condition is no longer true, the loop returns control to the next statement.

INPUT:

DECLARE
cursor paynent_cursor is
sel ect cust _id, paynent, total due from paynent table;
cust _id paynent table.cust i d%YPE;
paynent paynent tabl e. paynent %' YPE;
total due paynent table.total due%YPE;
BEG N
open paynent _cursor;
VWH LE paynent < total due LOOP
FETCH paynent cursor into cust _id, paynent, total due;
EXIT WHEN paynent _cur sor ¥8NOTFOUND;
insert into underpay_table
val ues (cust _id, 'STILL ONES');
END LOOP;
cl ose paynent _cursor;
END;

ANALYSIS:

The preceding example uses the WHI LE- LOOP to scroll the cursor and to execute the
commands within the loop as long as the condition paynment < total due ismet.

You can use the FOR- LOOP in the previous block to implicitly fetch the current row of
the cursor into the defined variables.

INPUT:

DECLARE
cursor payment _cursor is
sel ect cust _id, paynent, total due from paynent table;
cust _id paynent table.cust i d%YPE;
paynent paynent tabl e. paynent % YPE;
total due paynent table.total due%YPE;
BEG N

open payment _cursor
FOR pay_rec I N paynent _cursor LOOP
| F pay_rec. paynent < pay_rec.total due THEN
i nsert into underpay_table
val ues (pay_rec.cust _id, "STILL ONES');
END | F;
END LOOP
cl ose paynent _cursor;
END,;

ANALYSIS:

This example uses the FOR- LOOP to scroll the cursor. The FOR- LOOP is performing an
implicit FETCH, which is omitted this time. Also, notice that the ¥NOTFOUND attribute
has been omitted. This attribute is implied with the FOR- LOOP; therefore, this and the
previous example yield the same basic results.

The EXCEPTION Section

The EXCEPTI ONsection is an optional part of any PL/SQL block. If this section is omitted
and errors are encountered, the block will be terminated. Some errors that are
encountered may not justify the immediate termination of a block, so the EXCEPTI ON
section can be used to handle specified errors or user-defined exceptions in an orderly
manner. Exceptions can be user-defined, although many exceptions are predefined by
Oracle.

Raising Exceptions

Exceptions are raised in a block by using the command RAI SE. Exceptions can be raised
explicitly by the programmer, whereas internal database errors are automatically, or
implicitly, raised by the database server.

SYNTAX:

BEA N
DECLARE
excepti on_nanme EXCEPTI ON,
BEA N
| F condition THEN
RAI SE excepti on_nane;
END | F;
EXCEPTI ON
WHEN excepti on_nane THEN
st at enment ;
END;
END;

ANALYSIS:

This block shows the fundamentals of explicitly raising an exception. First

excepti on_nane is declared using the EXCEPTI ON statement. In the PROCEDURE
section, the exception is raised using RAI SE if a given condition is met. The RAI SE then
references the EXCEPTI ONsection of the block, where the appropriate action is taken.

Handling Exceptions

The preceding example handled an exception in the EXCEPTI ONsection of the block.
Errors are easily handled in PL/SQL, and by using exceptions, the PL/SQL block can
continue to run with errors or terminate gracefully.

SYNTAX:

EXCEPTI ON
WHEN exceptionl THEN
statenentl;
WHEN excepti on2 THEN
st at enent 2;
VWHEN OTHERS THEN
st at enent 3;

ANALYSIS:

This example shows how the EXCEPTI ONsection might look if you have more than one
exception. This example expects two exceptions (excepti onl and excepti on2) when
running this block. WHEN OTHERS tells st at enent 3 to execute if any other exceptions
occur while the block is being processed. WHEN OTHERS gives you control over any
errors that may occur within the block.

Executing a PL/SQL Block

PL/SQL statements are normally created using a host editor and are executed like
normal SQL script files. PL/SQL uses semicolons to terminate each statement in a block--
from variable assignments to data manipulation commands. The forward slash (/)is
mainly associated with SQL script files, but PL/SQL also uses the forward slash to
terminate a block in a script file. The easiest way to start a PL/SQL block is by issuing
the START command, abbreviated as STAor @

Your PL/SQL script file might ook like this:
SYNTAX:

/* This file is called procl.sqgl */

BEG N
DECLARE

BEGI N

st ;alt ement s;
EXCEiDTI ON
END;

END;
/

You execute your PL/SQL script file as fol lows:

SQ.> start procl or
SQ.> sta procl or

SQ.> @rocl

NOTE: PL/SQL script files can be executed using the START command or the
character @PL/SQL script files can also be called within other PL/SQL
files, shell scripts, or other programs.

Displaying Output to the User

Particularly when handling exceptions, you may want to display output to keep users
informed about what is taking place. You can display output to convey information, and
you can display your own customized error messages, which will probably make more
sense to the user than an error number. Perhaps you want the user to contact the
database administrator if an error occurs during processing, rather than to see the
exact message.

PL/SQL does not provide a direct method for displaying output as a part of its syntax,
but it does allow you to call a package that serves this function from within the block.
The package is called DBM5S_OUTPUT.

EXCEPTI ON
VWHEN zer o _di vi de THEN
DBMS OUTPUT. put _line(' ERROR DIVISOR IS ZERO. SEE YOUR DBA.');

ANALYSIS:
ZERQO DI VI DE is an Oracle predefined exception. Most of the common errors that occur

during program processing will be predefined as exceptions and are raised implicitly
(which means that you don't have to raise the error in the PROCEDURE section of the

block).

IT this exception is encountered during block processing, the user will see:
INPUT:

SQ.> @l ockl

ERROR: DI VISOR | S ZERO. SEE YOUR DBA.
PL/ SQL procedure successfully conpl et ed.

Doesn't that message look friendly than:

INPUT/OUTPUT:

SQ.> @l ockl
begi n

ERROR at |ine 1:
ORA-01476: divisor is equal to zero
ORA- 06512: at line 20

Transactional Control in PL/SQL

On Day 11, "Controlling Transactions," we discussed the transactional control
commands COMM T, ROLLBACK, and SAVEPQO NT. These commands al low the programmer
to control when transactions are actual ly written to the database, how often, and
when they should be undone.

SYNTAX:

BEG N
DECLARE

BEG N
statenents. ..
| F condition THEN
COW T;
ELSE
ROLLBACK;
END | F;

EXCEPTI ON

END;
END;

The good thing about PL/SQL is that you can automate the use of transactional control
commands instead of constantly monitoring large transactions, which can be very
tedious.

Putting Everything Together

So far, you have been introduced to PL/SQL, have become familiar with the supported
data types, and are familiar with the major features of a PL/SQL block. You know how
to declare local variables, constants, and cursors. You have also seen how to embed
SQL in the PROCEDURE section, manipulate cursors, and raise exceptions. When a cursor
has been raised, you should have a basic understanding of how to handle it in the
EXCEPTI ONsection of the block. Now you are ready to work with some practical
examples and create blocks from BEG N to END. By the end of this section, you should
fully understand how the parts of a PL/SQL block interact with each other.

Sample Tablesand Data

We will be using two tables to create PL/SQL blocks. PAYMENT TABLE identifies a
customer, how much he or she has paid, and the total amount due. PAY_STATUS_ TABLE
does not yet contain any data. Data will be inserted into PAY_STATUS TABLE
according to certain conditions in the PAYMENT _TABLE.

INPUT:

SQL> sel ect *
2 from paynent table;

OUTPUT:

CUSTOVER PAYMENT TOTAL_DUE

ABC 90. 50 150. 99
AAA 79. 00 79. 00
BBB 950. 00 1000. 00
CCC 27.50 27.50
DDD 350. 00 500. 95
EEE 67.89 67.89
FFF 555. 55 455. 55
cee 122. 36 122. 36
HHH 26. 75 0. 00

9 rows sel ect ed.

INPUT:

SQ.> descri be pay_status_table

OUTPUT:

Nane Nul | ? Type

CUST_I D NOT NULL CHAR(3)

STATUS NOT NULL VARCHARZ2(15)

AMTI_OWED NUVBER(8, 2)

AMI_CREDI T NUVBER(8, 2)
ANALYSIS:

DESCRI BE is an Oracle SQL command that displays the structure of a table without
having to query the data dictionary. DESCRI BE and other Oracle SQL*Plus commands
are covered on Day 20, "SQL*Plus."

A Simple PL/SQL Block

This is how the PL/SQL script (bl ockl. sql) file looks:
INPUT:

set serverout put on
BEG N
DECLARE
Amt Zer o EXCEPTI ON;
cCustld paynent table.cust i d%YPE;
f Paynment paynent _tabl e. paynent % YPE;
f Tot al Due paynent table.total due%lYPE;
cursor paynent_cursor is
sel ect cust_id, paynent, total due
from paynent _tabl e;
f Over Pai d nunber (8, 2);
f Under Pai d nunber (8, 2);
BEG N
open paynent _cursor;
| oop
fetch paynent _cursor into
cCustld, fPaynent, fTotal Due;
exit when paynent cur sor ¥8NOTFOUND;
if (fTotalDue = 0) then
rai se Ant Zero;
end if;
if (fPaynent > fTotal Due) then
fOverPaid := fPaynent - fTotal Due;
insert into pay_status table (cust _id, status, ant _credit)
val ues (cCustld, 'Over Paid , fOverPaid);
elsif (fPaynment < fTotal Due) then
fUnderPaid : = fTotal Due - fPaynent;
insert into pay_status_table (cust_id, status, ant_owed)
values (cCustld, "Still Omes', fUnderPaid);

el se
insert into pay_status_table
values (cCustld, '"Paid in Full', null, null);
end if;
end | oop;
cl ose paynent _cursor;
EXCEPTI ON
when Ant Zero then
DBVS_CQUTPUT. put _|i ne("' ERROR anmpbunt is Zero. See your
supervi sor.');
when OTHERS t hen
DBVS_QUTPUT. put _|i ne(" ERROR unknown error. See the DBA');
END;
END;
/

ANALYSIS:

The DECLARE section defines six local variables, as well as a cursor called

paynent cur sor. The PROCEDURE section starts with the second BEG Nstatement in
which the first step is to open the cursor and start a loop. The FETCH command passes
the current values in the cursor into the variables that were defined in the DECLARE
section. As long as the loop finds records in the cursor, the statement compares the
amount paid by a customer to the total amount due. Overpayments and underpayments
are calculated according to the amount paid, and we use those calculated amounts to
insert values into the PAY_STATUS TABLE. The loop terminates, and the cursor closes.
The EXCEPTI ONsection handles errors that may occur during processing.

Now start the PL/SQL script file and see what happens.
INPUT:

SQ.> @l ockl

OUTPUT:

I nput truncated to 1 characters
ERROR: anpbunt is Zero. See your supervisor.
PL/ SQL procedure successfully conpl et ed.

Now that you know that an incorrect amount appears in the total due column, you can
fix the amount and run the script again.

INPUT/OUTPUT:

SQL> updat e paynent tabl e
2 set total due 26. 75
3 where cust _id "HHH ;

1 row updat ed.

SQL> commit;

Commit conpl ete.

SQ.> truncate table pay_status_table;

Tabl e truncat ed.

NOTE: This example truncates the PAY _STATUS TABLE to clear the table's
contents; the next run of the statement will repopulate the table. You
may want to add the TRUNCATE TABLE statement to your PL/SQL block.

INPUT/OUTPUT:

SQ.> @l ockl

I nput truncated to 1 characters
PL/ SQL procedure successfully conpl et ed.

Now you can select from the PAY_STATUS TABLE and see the payment status of each
customer.

INPUT/OUTPUT:

SQ.> sel ect *
2 frompay_status_table
3 order by status;

CUSTOVER STATUS AMI_ ONED AMI_CREDI T
FFF Over Paid 100. 00
AAA Paid in Ful

CcCC Paid in Full

EEE Paid in Ful

GGG Paid in Ful

HHH Paid in Ful

ABC Still Owes 60. 49

DDD Still Owes 150. 95

BBB Still Owes 50. 00

9 rows sel ect ed.

ANALYSIS:

A row was inserted into PAY_STATUS_ TABLE for every row of data that is contained in
the PAYMENT _TABLE. If the customer paid more than the amount due, then the

difference was input into the ant _cr edi t column. If the customer paid less than the
amount owed, then an entry was made in the ant _owed column. If the customer paid in
full, then no dollar amount was inserted in either of the two columns.

Another Program

This example uses a table called PAY_TABLE:
INPUT:

SQL> desc pay_table

OUTPUT:
Nane Nul | ? Type
NAVE NOT NULL VARCHARZ2(20)
PAY_TYPE NOT NULL VARCHAR2(8)
PAY_RATE NOT NULL NUMBER(8, 2)
EFF_DATE NOT NULL DATE
PREV_PAY NUVBER(8, 2)

First take a look at the data:
INPUT:

SQ.> sel ect *
2 frompay_table
3 order by pay type, pay_rate desc;

OUTPUT:

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
SANDRA SAMUELS HOURLY 12.50 01-JAN-97

ROBERT BOBAY HOURLY 11.50 15- MAY-96

KEI TH JONES HOURLY 10. 00 31-OCT-96

SUSAN W LLI AMS HOURLY 9.75 01- MAY-97

CHRI SSY ZCES SALARY 50000. 00 01-JAN- 97

CLODE EVANS SALARY 42150. 00 01- MAR- 97

JOHAN SM TH SALARY 35000. 00 15-JUN- 96

KEVI N TROLLBERG SALARY 27500. 00 15-JUN- 96

8 rows sel ect ed.

Situation: Sales are up. Any individual who has not had a pay increase for six months
(180 days) will receive a raise effective today. All eligible hourly employees wil l
receive a 4 percent increase, and eligible salary employees will receive a 5 percent
increase.

Today is:
INPUT/OUTPUT:

SQL> sel ect sysdate
2 from dual

SYSDATE

20- MAY- 97

Before examining the next PL/SQL block, we will perform a manual select from the
PAY_TABLE that flags individuals who should receive a raise.

INPUT:

SQL> sel ect nane, pay_type, pay_rate, eff_date,

2 "YES' due

3 frompay_table

4 where eff_date < sysdate - 180

5 UN ON ALL

6 select nane, pay_type, pay_rate, eff_date,

7 "No' due

8 frompay_table

9 where eff_date >= sysdate - 180

10 order by 2, 3 desc;
OUTPUT:
NANME PAY TYPE PAY_ RATE EFF_DATE DUE
SANDRA SAMUELS HOURLY 12. 50 01-JAN-97 No
ROBERT BOBAY HOURLY 11.50 15- MAY-96 YES
KEI TH JONES HOURLY 10. 00 31-OCT-96 YES
SUSAN W LLI AMS HOURLY 9.75 01- MAY-97 No
CHRI SSY ZCES SALARY 50000. 00 01-JAN-97 No
CLODE EVANS SALARY 42150. 00 01- MAR-97 No
JOHN SM TH SALARY 35000. 00 15-JUN-96 YES
KEVI N TROLLBERG SALARY 27500. 00 15-JUN-96 YES

8 rows sel ect ed.

The DUE column identifies individuals who should be eligible for a raise. Here's the
PL/SQL script:

INPUT:

set serveroutput on
BEG N
DECLARE

UnknownPayType excepti on;
cursor pay_cursor is
sel ect name, pay_type, pay_ rate, eff_date,
sysdate, row d
from pay_tabl e;
I ndRec pay_cur sor YR0OMYPE
cd dDat e dat e;
f NewPay nunber (8, 2);
BEG N
open pay_cursor;
| oop
fetch pay_cursor into |IndRec;
exit when pay_cur sor ¥NOTFOUND
cO dDate : = sysdate - 180;
if (IndRec. pay_type = 'SALARY') then

f NewPay : = IndRec. pay_rate * 1.05;

el sif (I ndRec.pay_type = 'HOURLY') then
f NewPay : = IndRec. pay _rate * 1.04;

el se
rai se UnknownPayType;

end if;

if (IndRec.eff_date < cO dDate) then
updat e pay_table
set pay_rate = fNewPay,

prev_pay = |IndRec.pay_rate,
eff _date = I ndRec. sysdate
where rowid = I ndRec. row d;
conmi t;
end if;
end | oop;
cl ose pay_cursor
EXCEPTI ON
when UnknownPayType t hen
dbms_out put . put _| i ne(' =======================');

dbrs_out put . put _| i ne(' ERROR. Aborting program"’);
dbrs_out put . put _| i ne(' Unknown Pay Type for Nane');
when ot hers then
dbnms_out put . put _| i ne(' ERROR During Processing. See the DBA. ');
END,;
END,;
/

Are you sure that you want to give four employees a pay raise? (The final SELECT
statement has four Yes values in the DUE column.) Why not...1et's give all four
employees a raise. You can apply the appropriate pay increases by executing the PL/SQL
script file, named bl ock2. sql :

INPUT/OUTPUT:

SQL> @l ock2

I nput truncated to 1 characters

PL/ SQL procedure successfully conpl et ed.

You can do a quick select to verify that the changes have been made to the pay _rate
of the appropriate individuals:

INPUT:

SQ.> sel ect *
2 frompay_table
3 order by pay type, pay_rate desc;

OUTPUT:

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
SANDRA SAMUELS HOURLY 12.50 01-JAN-97

ROBERT BOBAY HOURLY 11. 96 20- MAY-97 11.5
KEI TH JONES HOURLY 10. 40 20- MAY-97 10
SUSAN W LLI AMVS HOURLY 9.75 01- MAY-97

CHRI SSY ZCES SALARY 50000. 00 01-JAN- 97

CLCDE EVANS SALARY 42150. 00 01- MAR-97

JOHAN SM TH SALARY 36750. 00 20- MAY-97 35000
KEVI N TROLLBERG SALARY 28875. 00 20- MAY-97 27500

8 rows sel ect ed.

ANALYSIS:

Four employees received a pay increase. If you compare this output to the output of the
original SELECT statement, you can see the changes. The current pay rate was updated
to reflect the pay increase, the original pay rate was inserted into the previous pay
column, and the effective date was updated to today's date. No action was taken on
those individuals who did not qualify for a pay increase.

Wait--you didn't get a chance to see how the defined exception works. You can test the
EXCEPTI ONsection by inserting an invalid PAY_TYPE into PAY_TABLE.

INPUT:

SQ.> insert into pay_table val ues
2 ("JEFF JENNI NGS', ' WEEKLY', 71.50, "' 01- JAN- 97" , NULL) ;

OUTPUT:

1 row creat ed.

The moment of truth:

INPUT/OUTPUT:

SQL> @l ock?2

I nput truncated to 1 characters

ERROR: Aborting program
Unknown Pay Type for: JEFF JENN NGS
PL/ SQL procedure successfully conpl et ed.

ANALYSIS:

An error message told you that JEFF JENNI NGS had a Pay Type with a value other
than SALARY or HOURLY. That is, the exception was handled with an error message.

Stored Procedures, Packages, and Triggers

Using PL/SQL, you can create stored objects to eliminate having to constantly enter
monotonous code. Procedures are simply blocks of code that perform some sort of specific
function. Related procedures can be combined and stored together in an object called a
package. A trigger is a database object that is used with other transactions. You might
have a trigger on a table called ORDERS that will insert data into a H STORY table
each time the ORDERS table receives data. The basic syntax of these objects fol lows.

Sample Procedure

SYNTAX:

PROCEDURE procedure_nane | S
vari abl el dat at ype;

BEG N
statenent 1;

EXCEPTI ON
when . ..
END procedur e_nane;

Sample Package

SYNTAX:

CREATE PACKACGE package_nane AS
PROCEDURE procedurel (gl obal variablel datatype, ...);
PROCEDURE procedure2 (gl obal variablel datatype, ...);
END package_ nane;
CREATE PACKAGE BODY package_nanme AS

PROCEDURE procedurel (gl obal variablel datatype, ...) IS
BEG N
statenent 1;

END procedurel;
PROCEDURE procedure2 (gl obal variablel datatype, ...) IS
BEG N
st at enent 1,

END procedure?2;
END package_nane;

Sample Trigger

SYNTAX:

CREATE TRI GGER trigger nane
AFTER UPDATE OF colunm ON t abl e_nane
FOR EACH ROW

BEG N
st at enent 1;

END;

The following example uses a trigger to insert a row of data into a transaction table
when updating PAY_TABLE. The TRANSACTI ON table looks like this:

INPUT:

SQ.> describe trans_table

OUTPUT:
Nanme Nul | ? Type
ACTI ON VARCHARZ2(10)
NAME VARCHARZ2(20)
PREV_PAY NUVBER(8, 2)
CURR_PAY NUVBER(8, 2)
EFF_DATE DATE

Here's a sample row of data:
INPUT/OUTPUT:

SQL> sel ect *
2 frompay_table
3 where nane = 'JEFF JENNI NGS';

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY

JEFF JENNI NGS VEEKLY 71.50 01-JAN-97

Now, create a trigger:

SQ.> CREATE TRI GGER pay_tri gger

2 AFTER update on PAY_TABLE

3 FOR EACH ROW

4 BEG N

5 insert into trans_table val ues

6 (' PAY CHANGE' , :new. nane, :old.pay_rate,
7 ' new. pay rate, :new eff _date);

8 END;

9 |/

Trigger created.

The last step is to perform an update on PAY_TABLE, which should cause the trigger to
be executed.

INPUT/OUTPUT:

SQ.> update pay_table
2 set pay_rate = 15.50,
3 eff _date = sysdate
4 where name = 'JEFF JENNI NGS' ;

1 row updat ed.

SQ.> sel ect *
2 frompay_table
3 where nane = 'JEFF JENNI NGS';

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY

JEFF JENNI NGS VEEKLY 15.50 20- MAY-97

SQL> sel ect *
2 fromtrans_table;

ACTI ON NANVE PREV_PAY CURR_PAY EFF_DATE
PAY CHANGE JEFF JENNI NGS 71.5 15.5 20- MAY-97
ANALYSIS:

PREV_PAY is null in PAY_TABLE but PREV_PAY appears in TRANS_ TABLE. This approach
isn't as confusing as it sounds. PAY_TABLE does not need an entry for PREV_PAY because
the PAY_RATE of 71. 50 per hour was obviously an erroneous amount. Rather, we
inserted the value for PREV_PAY in TRANS TABLE because the update was a

transaction, and the purpose of TRANS PAY is to keep a record of all transactions
against PAY_TABLE.

NOTE: If you are familiar with network technologies, you might notice
similarities between PL/SQL and Java stored procedures. However, some
differences should be noted. PL/SQL is an enhancement of standard SQL,
implementing the commands of a procedural language. Java, which is much
more advanced than PL/SQL, al lows programmers to write more complex
programs than are possible with PL/SQL. PL/SQL is based on the database-
intensive functionality of SQL; Java is more appropriate for CPU-intensive
programs. Most procedural languages, such as PL/SQL, are developed
specifically for the appropriate platform. As procedural language
technology evolves, a higher level of standardization will be enforced
across platforms.

Summary

PL/SQL extends the functionality of standard SQL. The basic components of PL/SQL
perform the same types of functions as a third-generation language. The use of local
variables supports dynamic code; that is, values within a block may change from time to
time according to user input, specified conditions, or the contents of a cursor. PL/SQL
uses standard procedural language program control statements. | F. . . THEN statements
and loops enable you to search for specific conditions; you can also use loops to scroll
through the contents of a defined cursor.

Errors that occur during the processing of any program are a major concern. PL/SQL
enables you to use exceptions to control the behavior of a program that encounters
either syntax errors or logical errors. Many exceptions are predefined, such as a divide-
by-zero error. Errors can be raised any time during processing according to specified
conditions and may be handled any way the PL/SQL programmer desires.

Day 18 also introduces some practical uses of PL/SQL. Database objects such as triggers,
stored procedures, and packages can automate many job functions. Today's examples
apply some of the concepts that were covered on previous days.

Q& A

Q Does Day 18 cover everything | need to know about PL/SQL?

A Most definitely not. Today's introduction just scratched the surface of one of
the greatest concepts of SQL. We have simply tried to highlight some of the major
features to give you a basic knowledge of PL/SQL.

Q Can | get by without using PL/SQL?

A Yes, you can get by, but to achieve the results that you would get with PL/SQL,
you may have to spend much more time coding in a third-generation language. If
you do not have Oracle, check your implementation documentation for
procedural features like those of PL/SQL.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. How is a database trigger used?
2. Can related procedures be stored together?
3. True or False: Data Manipulation Language can be used in a PL/SQL statement.
4. True or False: Data Definition Language can be used in a PL/SQL statement.
5. Is text output directly a part of the PL/SQL syntax?
6. List the three major parts of a PL/SQL statement.

7. List the commands that are associated with cursor control.
Exercises

1. Declare a variable called Hour | yPay in which the maximum accepted value is
99. 99/hour.

2. Define a cursor whose content is all the data in the CUSTOMVER TABLE where
the Cl TY is | NDI ANAPQOLI S.

3. Define an exception called UnknownCode.

4. Write a statement that will set the AMT in the AMOUNT _TABLE to 10 if CODE is

A, set the AMT to 20 if CODE is B, and raise an exception called UnknownCode if
CODE is neither Anor B. The table has one row.

| ¢ Previous Chapter (< MextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 19 -
Transact-SQL : An Introduction

Objectives

Today's material supplements the previous presentations, as Transact-SQL is a
supplement to the accepted SQL standard. Today's goals are to

. ldentify one of the popular extensions to SQL
. Outline the major features of Transact-SQL

. Provide practical examples to give you an understanding of how Transact-SQL is
used

An Overview of Transact-SQL

Day 13, "Advanced SQL Topics," briefly covered static SQL. The examples on Day 13
depicted the use of embedded SQL in third-generation programming languages such as C.
With this method of programming, the embedded SQL code does not change and is,
therefore, limited. On the other hand, you can write dynamic SQL to perform the same
functions as a procedural programming language and al low conditions to be changed
within the SQL code.

As we have mentioned during the discussion of virtual ly every topic in this book, almost
every database vendor has added many extensions to the language. Transact-SQL is the
Sybase and Microsoft SQL Server database product. Oracle's product is PL/SQL. Each of

these languages contains the complete functionality of everything we have discussed so
far. In addition, each product contains many extensions to the ANSI SQL standard.

Extensionsto ANSI SQL

To illustrate the use of these SQL extensions to create actual programming logic, we
are using Sybase and Microsoft SQL Server's Transact-SQL language. It contains most of
the constructs found in third-generation languages, as well as some SQL Server-specific
features that turn out to be very handy tools for the database programmer. (Other
manufacturers' extensions contain many of these features and more.)

Who Uses Transact-SQL ?

Everyone reading this book can use Transact-SQL--casual relational database
programmers who occasional ly write queries as well as developers who write
applications and create objects such as triggers and stored procedures.

NOTE: Users of Sybase and Microsoft SQL Server who want to explore the
true capabilities of relational database programming must use the Transact-
SQL features.

The Basic Components of Transact-SQL

SQL extensions overcome SQL's limits as a procedural language. For example, Transact-
SQL enables you to maintain tight control over your database transactions and to
write procedural database programs that practical ly render the programmer exempt
from exhausting programming tasks.

Day 19 covers the fol lowing key features of Transact-SQL.:
. A wide range of data types to optimize data storage
« Program flow commands such as loops and | F- ELSE statements
. Use of variables in SQL statements
. Summarized reports using computations
. Diagnostic features to analyze SQL statements

. Many other options to enhance the standard language of SQL

Data Types

On Day 9, "Creating and Maintaining Tables," we discussed data types. When creating
tables in SQL, you must specify a specific data type for each column.

NOTE: Data types vary between implementations of SQL because of the way
each database server stores data. For instance, Oracle uses selected data
types, whereas Sybase and Microsoft's SQL Server have their own data
types.

Sybase and Microsoft's SQL Server support the following data types.

Character Strings

. char stores fixed-length character strings, such as STATE abbreviations, when
you know that the column will always be two characters.

. var char stores variable-length character strings, such as an individual's name,
where the exact length of a name is not specified, for example, AL RAY to
WILLIAM STEPHENSON.

. text storesstrings with nearly unlimited size, such as a remarks column or
description of a type of service.

Numeric Data Types
. 1 nt storesintegers from-2,147,483,647 to +2,147,483,647.
. smal | i nt stores integers from- 32, 768 to 32, 767.
. tinyint storesintegers from O to 255.

. fl oat expresses numbers as real floating-point numbers with data precisions.
Decimals are allowed with these data types. The values range from +2. 23E- 308
to +1. 79E308.

. real expresses real numbers with data precisions from +1. 18E- 38 to +3. 40E38.

DATE Data Types

. datetinmevaluesrange fromJan 1, 1753 toDec 31, 9999.

. smal | dat eti ne values range fromJan 1, 1900 toJun 6, 2079.

Money Data Types
. noney stores values up to +922, 337, 203, 685, 477. 5808.
. smal | noney stores values up to +214, 748. 3647.

Money values are inserted into a table using the dollar sign; for example:

i nsert paynent tbl (custoner_id, paydate, pay_ant)
val ues (012845, "May 1, 1997", $2099.99)

Binary Strings
. bi nary stores fixed-length binary strings.
. var bi nary stores variable-length binary strings.

. 1 mage stores very large binary strings, for example, photographs and other
images.

bit: A Logical Data Type

The data type bi t is often used to flag certain rows of data within a table. The value
stored within a column whose data type is bi t is either a 1 or 0. For example, the value
1 may signify the condition true, whereas O denotes a false condition. The following
example uses the bi t data type to create a table containing individual test scores:

create table test flag

(ind_id int not null
test results int not null,
result flag bit not null)

ANALYSIS:

The columnresult _fl agisdefinedasabit column, where the bi t character
represents either a pass or fail, where pass is true and fail is false.

Throughout the rest of the day, pay attention to the data types used when creating
tables and writing Transact-SQL code.

NOTE: The code in today's examples uses both uppercase and lowercase.
Although SQL keywords are not case sensitive in most implementations of
SQL, always check your implementation.

Accessing the Database with Transact-SQL

All right, enough talk. To actually run the examples today, you will need to build the
following database tables in a database named BASEBALL.

The BASEBALL Database

The BASEBALL database consists of three tables used to track typical baseball
information: the BATTERS table, the PI TCHERS table, and the TEANMS table. This
database will be used in examples throughout the rest of today.

The BATTERSTABLE

NAME char (30)

TEAM i nt
AVERAGE f | oat
HOVERUNS i nt
RBI S int

The table above can be created using the fol lowing Transact-SQL statement:
INPUT:

1> create dat abase BASEBALL on default
2> go

1> use BASEBALL

2> go

1> create table BATTERS (
2> NAME char (30),

3> TEAM i nt,

4> AVERAGE f | oat,

5> HOMVERUNS i nt,

6> RBIS int)

7> go

ANALYSIS:

Line 1 creates the database. You specify the database BASEBALL and then create the
table BATTERS underneath BASEBALL.

Enter the data in Table 19.1 into the BATTERS table.

NOTE: The command go that separates each Transact-SQL statement in the
preceding example is not part of Transact-SQL. go's purpose is to pass each
statement from a front-end application to SQL Server.

Table19.1. Datafor the BATTERS table.

Name Team Average Homeruns RBIs
Billy Brewster 1 275 14 46
John Jackson 1 293 2 29
Phil Hartman 1 221 13 21
Jim Gehardy 2 316 29 84
Tom Trawick 2 258 3 51
Eric Redstone 2 305 0 28

ThePITCHERS Table

The PI TCHERS table can be created using the following Transact-SQL statement:
INPUT:

1> use BASEBALL

2> go

1> create table PITCHERS (
2> NAME char (30),

3> TEAM i nt,

4> WWON i nt,

5> LOST int,

6> ERA fl oat)

7> go

Enter the datain Table 19.2 into the Pl TCHERS table.

Table 19.2. Datafor the PITCHERStable.

Name Team Won Lost Era
Tom Madden 1 7 5 3.46
Bill Witter 1 8 2 2.75
Jeff Knox 2 2 8 4.82

Hank Arnold 2 13 1 1.93
Tim Smythe 3 4 2 2.76

TheTEAMSTable

The TEAMS table can be created using the following Transact-SQL statement:

INPUT:

1> use BASEBALL

2> go

1> create table TEAMS (

2> TEAM ID int,

3> CITY char(30),

4> NAME char (30),

5> WON i nt,

6> LOST int,

7> TOTAL_HOVE_ATTENDANCE i nt,
8> AVG HOVE_ATTENDANCE i nt)
9> go

Enter the data in Table 19.3 into the TEANS table.

Table 19.3. Datafor the TEAM Stable.

Team_ID City Name Won |Lost [Total Home Avg Home
_Attendance | Attendance

1 Portland Beavers 72 63 1,226,843 19,473

2 Washington |Representatives |50 (85 (941,228 14,048

3 Tampa Sharks 99 |36 2,028,652 30,278

Declaring Local Variables

Every programming language enables some method for declaring local (or global)
variables that can be used to store data. Transact-SQL is no exception. Declaring a
variable using Transact-SQL is an extremely simple procedure. The keyword that must be
used is the DECLARE keyword. The syntax looks like this:

SYNTAX:

decl are @ari abl e_nane data_type

To declare a character string variable to store players' names, use the fol lowing

statement:

1> decl are @ane char (30)

2> go

Note the @symbol before the variable's name. This symbol is required and is used by the

query processor to identify variables.

Declaring Global Variables

If you delve further into the Transact-SQL documentation, you will notice that the @@
symbol precedes the names of some system-level variables. This syntax denotes SQL

Server global variables that store information.

Declaring your own global variables is particularly useful when using stored

procedures. SQL Server also maintains several system global variables that contain
information that might be useful to the database system user. Table 19.4 contains the
complete list of these variables. The source for this list is the Sybase SQL Server System

10 documentation.

Table 19.4. SQL Server global variables.

Variable Name
@@ har convert
@xlient _csid
@l i ent _csnane
@onnecti ons

@@ pu_busy

@gerr or
@ dentity

@ dl e

@@ o0_busy

@ sol ati on

@ angi d
@ anguage
@axchar | en

Purpose

O if character set conversion is in effect.
Client's character set ID.

Client's character set name.

Number of logons since SQL Server was started.

Amount of time, in ticks, the CPU has been busy since
SQL Server was started.

Contains error status.
Last value inserted into an identity column.

Amount of time, in ticks, that SQL Server has been
idle since started.

Amount of time, in ticks, that SQL Server has spent
doing I/0.

Current isolation level of the Transact-SQL
program.

Defines local language ID.
Defines the name of the local language.
Maximum length of a character.

Maximum number of connections that can be made
with SQL Server.

@char si ze Average length of a national character.

@@ax_connecti ons

@est | evel Nesting level of current execution.

Number of input packets read by SQL Server since it

ack received
a@ - was started.

Number of output packets sent by SQL Server since it

ack sent
ap - was started.

Number of errors that have occurred since SQL

@packet _errors
- Server was started.

@opr oci d ID of the currently executing stored procedure.
@@ owcount Number of rows affected by the last command.
@ er ver nane Name of the local SQL Server.

@zpi d Process ID number of the current process.

@z ql st at us Contains status information.

Maximum length of text or image data returned
with SELECT statement.

Change in free space required to activate a
threshold.

@i neticks Number of microseconds per tick.

@@ ext si ze

@@ hresh_hysteresis

@otal errors Number of errors that have occurred while reading

or writing.
@@ ot al _read Number of disk reads since SQL Server was started.
@dotal wite Number of disk writes since SQL Server was started.

@ r anchai ned Current transaction mode of the Transact-SQL

program.

@@ r ancount Nesting level of transactions.

@@ ranst at e Current state of a transaction after a statement
executes.

@ er si on Date of the current version of SQL Server.

Using Variables

The DECLARE keyword enables you to declare several variables with a single statement
(although this device can sometimes look confusing when you look at your code later).
An example of this type of statement appears here:

1> declare @atter _nane char(30), @eamint, @uverage float

2> go

The next section explains how to use variables it to perform useful programming
operations.

Using Variablesto Store Data

Variables are available only within the current statement block. To execute a block of
statements using the Transact-SQL language, the go statement is executed. (Oracle
uses the semicolon for the same purpose.) The scope of a variable refers to the usage of
the variable within the current Transact-SQL statement.

You cannot initialize variables simply by using the = sign. Try the fol lowing statement
and note that an error will be returned.

INPUT:

1> decl are @ane char (30)
2> @ane = "Billy Brewster"
3> go

You should have received an error informing you of the improper syntax used in line 2.
The proper way to initialize a variable is to use the SELECT command. (Yes, the same
command you have already mastered.) Repeat the preceding example using the correct
syntax:

INPUT:

1> decl are @ane char (30)
2> select @ane = "Billy Brewster™
3> go

This statement was executed correctly, and if you had inserted additional statements
before executing the go statement, the @ane variable could have been used.

Retrieving Data into Local Variables

Variables often store data that has been retrieved from the database. They can be used
with common SQL commands, such as SELECT, | NSERT, UPDATE, and DELETE. Example 19.1
illustrates the use of variables in this manner.

Example 19.1

This example retrieves the name of the player in the BASEBALL database who has the
highest batting average and plays for the Portland Beavers.

INPUT:

1> declare @eam.id int, @l ayer_nane char(30), @muax_avg fl oat

2> select @eam.id TEAM I D from TEAMS where CITY = "Portl and”

3> sel ect @muax_avg max(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer _name = NAME from BATTERS where AVERAGE = @max_avg
5> go

ANALYSIS:

This example was broken down into three queries to il lustrate the use of variables.
The PRINT Command

One other useful feature of Transact-SQL is the PRI NT command that enables you to
print output to the display device. This command has the fol lowing syntax:

SYNTAX:

PRI NT character_string

Although PRI NT displays only character strings, Transact-SQL provides a number of
useful functions that can convert different data types to strings (and vice versa).

Example 19.2

Example 19.2 repeats Example 19.1 but prints the player's name at the end.
INPUT:

1> declare @eam.id int, @l ayer _nanme char(30), @mx_avg fl oat

2> select @eamid = TEAMID from TEAVMS where CITY = "Portl and"

3> select @mx_avg = max(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer _nane = NAME from BATTERS where AVERAGE = @max_avg
5> print @l ayer _nane

6> go

Note that a variable can be used within a WHERE clause (or any other clause) just as if
it were a constant value.

Flow Control

Probably the most powerful set of Transact-SQL features involves its capability to
control program flow. If you have programmed with other popular languages such as C,
COBOL, Pascal, and Visual Basic, then you are probably already familiar with control

commands such as | F. . . THEN statements and loops. This section contains some of the
major commands that allow you to enforce program flow control.

BEGIN and END Statements

Transact-SQL uses the BEA Nand END statements to signify the beginning and ending
points of blocks of code. Other languages use brackets ({ }) or some other operator to
signify the beginning and ending points of functional groups of code. These statements
are often combined with | F. . . ELSE statements and VWHI LE loops. Here is a sample block
using BEG Nand END:

SYNTAX:

BEG N
statenent 1
st at enent 2
statenent 3. ..
END

|F...EL SE Statements

One of the most basic programming constructs is the | F. . . ELSE statement. Nearly
every programming language supports this construct, and it is extremely useful for
checking the value of data retrieved from the database. The Transact-SQL syntax for
the | F. . . ELSE statement looks like this:

SYNTAX:

if (condition)
begi n

(statenent bl ock)
end
else if (condition)
begi n

st at enent bl ock)
end

el se
begi n

(statenent bl ock)
end

Note that for each condition that might be true, a new BEG N END block of statements
was entered. Also, it is considered good programming practice to indent statement blocks
a set amount of spaces and to keep this number of spaces the same throughout your

application. This visual convention greatly improves the readability of the program and
cuts down on silly errors that are often caused by simply misreading the code.

Example 19.3

Example 19.3 extends Example 19.2 by checking the player's batting average. If the
player's average is over .300, the owner wants to give him a raise. Otherwise, the owner
could really care less about the player!

Example 19.3 uses the | F. . . ELSE statement to evaluate conditions within the
statement. If the first condition ist r ue, then specified text is printed; alternative text
Is printed under any other conditions (ELSE).

INPUT:

1> declare @eam.id int, @l ayer_nane char(30), @muax_avg fl oat

2> select @eamid = TEAMID from TEAMS where CITY = "Portl and"

3> sel ect @mux_avg = max(AVERAGE) from BATTERS where TEAM = @eam. i d
4> sel ect @l ayer _name = NAME from BATTERS where AVERAGE = @max_avg
5> if (@max_avg > .300)

6> begin

7> print @l ayer_nane

8> print "Gve this guy a raise!"
9> end

10> el se

11> begin

12> print @l ayer_nane

13> print "Cone back when you're hitting better!"
14> end

15> go

Example 19.4

This new | F statement enables you to add some programming logic to the simple
BASEBALL database queries. Example 19.4 addsan | F. .. ELSE | F. .. ELSE branch to the
code in Ex- ample 19.3.

INPUT:

1> declare @eam.id int, @l ayer _nanme char(30), @mx_avg fl oat

2> select @eamid = TEAMID from TEAVMS where CITY = "Portl and"

3> select @mx_avg = max(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer _nane = NAME from BATTERS where AVERAGE = @max_avg
5> if (@max_avg > . 300)

6> begin

7> print @l ayer_nane

8> print "Gve this guy a raise!”
9> end

10> else if (@mx_avg > .275)

11> begin

12> print @l ayer_nane

13> print "Not bad. Here's a bonus!"

14> end

15> el se

16> begin

17> print @l ayer_nane

18> print "Cone back when you're hitting better!™
19> end

20> go

Transact-SQL also enables you to check for a condition associated withan | F
statement. These functions can test for certain conditions or values. If the function
returns TRUE, the | F branch is executed. Otherwise, if provided, the ELSE branch is
executed, as you saw in the previous example.

The EXISTS Condition

The EXI STS keyword ensures that a value is returned from a SELECT statement. If a
value is returned, the | F statement is executed. Example 19.5 il lustrates this logic.

Example 19.5

In this example the EXI STS keyword evaluates a condition in the | F. The condition is
specified by using a SELECT statement.

INPUT:

1> if exists (select * from TEAMS where TEAM I D > 5)
2> begin

3> print "I T EXISTS!'!"

4> end

5> el se

6> begin

7> print "NO ESTA AQUI!"

8> end

Testing a Query's Result

The | F statement can also test the result returned from a SELECT query. Example 19.6
implements this feature to check for the maximum batting average among players.

Example 19.6

This example is similar to Example 19.5 in that it uses the SELECT statement to define a
condition. This time, however, we are testing the condition with the greater than sign

(>).
INPUT:

1> if (select max(AVG from BATTERS) > . 400

2> begin

3> print "UNBELI EVABLE!!"

4> end

5> el se

6> print "TED WLLIAMS | S GETTI NG LONELY! "
7> end

We recommend experimenting with your SQL implementation's | F statement. Think of
several conditions you would be interested in checking in the BASEBALL (or any other)
database. Run some queries making use of the | F statement to familiarize yourself with
its use.

TheWHILE Loop

Another popular programming construct that Transact-SQL supports is the WHI LE loop.
This command has the following syntax:

SYNTAX:

VWHI LE | ogi cal _expression
statenent (s)

Example 19.7

The VHI LE loop continues to loop through its statements until the logical expression it
Is checking returns a FALSE. This example uses a simple VWHI LE loop to increment a local
variable (named COUNT).

INPUT:

1> decl are @OQOUNT i nt
2> select @OUNT = 1
3> while (@OUNT < 10)

4> begin

5> sel ect @OUNT = @OUNT + 1
6> print "LOOP AGAI N!'"

7> end

8> print "LOOP FI Nl SHED! "

NOTE: Example 19.7 implements a simple FOR loop. Other implementations of
SQL, such as Oracle's PL/SQL, actual ly provide a FOR loop statement. Check

your documentation to determine whether the system you are using
supports this useful command.

TheBREAK Command

You can issue the BREAK command within a VWHI LE loop to force an immediate exit from
the loop. The BREAK command is often used along with an | F test to check some
condition. If the condition check succeeds, you can use the BREAK command to exit from
the VHI LE loop. Commands immediately fol lowing the END command are then executed.
Example 19.8 illustrates a simple use of the BREAK command. It checks for some arbitrary
number (say @COUNT = 8). When this condition is met, it breaks out of the VWHI LE loop.

Example 19.8

Notice the placement of the BREAK statement after the evaluation of the first
condition in the | F.

INPUT:

1> declare @COUNT i nt
2> sel ect @OUNT = 1
3> while (@OUNT < 10)

4> begin

5> sel ect @OUNT = @OUNT + 1
6> if (@OUNT = 8)

7> begi n

8> br eak

9> end

10> el se

11> begi n

12> print "LOOP AGAI N "
13> end

14> end

15> print "LOOP FI NI SHED! "

ANALYSIS:

The BREAK command caused the loop to be exited when the @COUNT variable equaled 8.
The CONTINUE Command

The CONTI NUE command is also a special command that can be executed from within a
VHI LE loop. The CONTI NUE command forces the loop to immediately jump back to the
beginning, rather than executing the remainder of the loop and then jumping back to
the beginning. Like the BREAK command, the CONTI NUE command is often used withan | F

statement to check for some condition and then force an action, as shown in Example
19.9.

Example 19.9

Notice the placement of the CONTI NUE statement after the evaluation of the first
condition in the | F,

INPUT:

1> decl are @COUNT i nt
2> select @OUNT = 1
3> while (@OUNT < 10)

4> begin

5> sel ect @OUNT = @COUNT + 1
6> i f (@OUNT = 8)

7> begi n

8> conti nue

o> end

10> el se

11> begi n

12> print "LOOP AGAI N
13> end

14> end

15> print "LOOP FI Nl SHED! "

ANALYSIS:

Example 19.9 is identical to Example 19.8 except that the CONTI NUE command replaces
the BREAK command. Now instead of exiting the loop when @COUNT = 8, it simply jumps
back to the top of the VHI LE statement and continues.

Using the WHILE Loop to Scroll Through a Table

SQL Server and many other database systems have a special type of object--the cursor--
that enables you to scroll through a table's records one record at a time. (Refer to Day
13.) However, some database systems (including SQL Server pre-System 10) do not support
the use of scrollable cursors. Example 19.10 gives you an idea of how to use a WHI LE
loop to implement a rough cursor-type functionality when that functionality is not
automatical ly supplied.

Example 19.10

You can use the WHI LE loop to scroll through tables one record at a time. Transact-
SQL stores the r owcount variable that can be set to tell SQL Server to return only
one row at a time during a query. If you are using another database product, determine
whether your product has a similar setting. By setting r owcount to 1 (its defaultisO,

which means unlimited), SQL Server returns only one record at a time from a SELECT
guery. You can use this one record to perform whatever operations you need to perform.
By selecting the contents of a table into a temporary table that is deleted at the end
of the operation, you can select out one row at a time, deleting that row when you are
finished. When all the rows have been selected out of the table, you have gone through
every row in the table! (As we said, this is a very rough cursor functionality!) Let's run
the example now.

INPUT:

1> set rowcount 1

2> decl are @LAYER char (30)

3> create table tenp BATTERS (
4> NAME char (30),

5> TEAM i nt,

6> AVERACE f| oat,

7> HOVERUNS i nt,

8> RBIS int)

9> insert tenp_BATTERS

10> select * from BATTERS

11> while exists (select * fromtenp_ BATTERS)

12> begin

13> sel ect @LAYER = NAME from t enp_BATTERS

14> print @LAYER

15> del ete fromtenp BATTERS where NAME = @LAYER
16> end

17> print "LOOP |I'S DONE!"

ANALYSIS:

Note that by setting the r owcount variable, you are simply modifying the number of
rows returned from a SELECT. If the WHERE clause of the DELETE command returned
five rows, five rows would be deleted! Also note that the r oncount variable can be
reset repeatedly. Therefore, from within the loop, you can query the database for some
additional information by simply resetting r oncount to 1 before continuing with the
loop.

Transact-SQL Wildcard Operators

The concept of using wildcard conditions in SQL was introduced on Day 3, "Expressions,
Conditions, and Operators.” The LI KE operator enables you to use wildcard conditions
in your SQL statements. Transact-SQL extends the flexibility of wildcard conditions. A
summary of Transact-SQL's wildcard operators fol lows.

. The underscore character (_)represents any one individual character. For
example, M THtells the query to look for a five-character string ending with
M TH.

. The percent sign (99 represents any one or multiple characters. For example,
W LL%returns the value W LLI AMS if it exists. W LL%returns the value W LL.

. Brackets ([])allow aquery to search for characters that are contained within
the brackets. For example, [ABC] tells the query to search for strings containing
the letters A B, or C.

. The ”~ character used within the brackets tells a query to look for any
characters that are not listed within the brackets. For example, [*ABC] tells the
guery to search for strings that do not contain the letters A, B, or C.

Creating Summarized Reports Usng COMPUTE

Transact-SQL also has a mechanism for creating summarized database reports. The
command, COVPUTE, has very similar syntax to its counterpart in SQL*Plus. (See Day 20,
"SQL*Plus.")

The following query produces a report showing all batters, the number of home runs hit
by each batter, and the total number of home runs hit by all batters:

INPUT:

sel ect nane, honeruns
frombatters
conput e sun(honeruns)

ANALYSIS:

In the previous example, COMPUTE alone performs computations on the report as a whole,
whereas COMPUTE BY performs computations on specified groups and the entire report,
as the following example shows:

SYNTAX:

COVPUTE FUNCTI ON(expressi on) [BY expression]
where the FUNCTION m ght include SUM MAX, MN, etc. and
EXPRESSI ON i s usually a colum nane or ali as.

Date Conversions

Sybase and Microsoft's SQL Server can insert dates into a table in various formats; they
can also extract dates in several different types of formats. This section shows you how
to use SQL Server's CONVERT command to manipulate the way a date is displayed.

SYNTAX:

CONVERT (datatype [(length)], expression, format)

The following date formats are available with SQL Server when using the CONVERT
function:

Format code Format picture

100 non dd yyyy hh: m AM PM
101 nm dd/ yy

102 yy. mm dd

103 dd/ mi yy

104 dd. mrm yy

105 dd- m yy

106 dd non yy

107 non dd, yy

108 hh: m : ss

109 non dd, yyyy hh: m:ss: mmAM PM
110 nm dd- yy

111 yy/ mm dd

112 yynmdd

INPUT:

sel ect "PayDate" = convert(char(15), paydate, 107)
from paynent _t abl e
where custoner _id = 012845

OUTPUT:

May 1, 1997
ANALYSIS:

The preceding example uses the format code 107 with the CONVERT function. According
to the date format table, code 107 will display the date in the format non dd, vyy.

SQL Server Diagnostic Tools-SET Commands

Transact-SQL provides a list of SET commands that enable you to turn on various
options that help you analyze Transact-SQL statements. Here are some of the popular
SET commands:

. SET STATI STICS | O ONtells the server to return the number of logical and
physical page requests.

. SET STATI STI CS Tl ME ONtells the server to display the execution time of an
SQL statement.

. SET SHOAPLAN ON tells the server to show the execution plan for the
designated query.

. SET NOEXEC ONtells the server to parse the designated query, but not to
execute it.

. SET PARSONLY ONtells the server to check for syntax for the designated query,
but not to execute it.

Transact-SQL also has the following commands that help to control what is displayed
as part of the output from your queries:

. SET ROWCOUNT n tells the server to display only the first n records retrieved
from a query.

. SET NOCOUNT ONtells the server not to report the number of rows returned by
a query.

NOTE: If you are concerned with tuning your SQL statements, refer to Day
15, "Streamlining SQL Statements for Improved Performance."”

Summary

Day 19 introduces a number of topics that add some teeth to your SQL programming
expertise. The basic SQL topics that you learned earlier in this book are extremely
important and provide the foundation for all database programming work you
undertake. However, these topics are just a foundation. The SQL procedural language
concepts explained yesterday and today build on your foundation of SQL. They give you,
the database programmer, a great deal of power when accessing data in your relational

database.

The Transact-SQL language included with the Microsoft and Sybase SQL Server
database products provide many of the programming constructs found in popular third-
and fourth-generation languages. Its features include the | F statement, the VH LE
loop, and the capability to declare and use local and global variables.

Keep in mind that Day 19 is a brief introduction to the features and techniques of
Transact-SQL code. Feel free to dive head first into your documentation and experiment
with all the tools that are available to you. For more detailed coverage of Transact-
SQL, refer to the Microsoft SQL Server Transact-SQL documentation.

Q& A

Q Does SQL provide a FOR 1oop?

A Programming constructs such as the FOR loop, the WHI LE loop, and the CASE
statement are extensions to ANSI SQL. Therefore, the use of these items varies
widely among database systems. For instance, Oracle provides the FOR loop,
whereas Transact-SQL (SQL Server) does not. Of course, a WHI LE loop can
increment a variable within the loop, which can simulate the FOR loop.

Q I am developing a Windows (or Macintosh) application in which the user
interface consists of Windows GUI elements, such as windows and dialog
boxes. Can | use the PRINT statement to issue messages to the user?

A SQL is entirely platform independent. Therefore, issuing the PRI NT statement
will not pop up a message box. To output messages to the user, your SQL
procedures can return predetermined values that indicate success or failure.
Then the user can be notified of the status of the queries. (The PRI NT command is
most useful for debugging because a PRI NT statement executed within a stored
procedure will not be output to the screen anyway.)

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. True or False: The use of the word SQL in Oracle's PL/SQL and

Microsoft/Sybase's Transact-SQL implies that these products are fully compliant
with the ANSI standard.

2. True or False: Static SQL is less flexible than Dynamic SQL, although the
performance of static SQL can be better.

Exercises

1. If you are not using Sybase/Microsoft SQL Server, compare your product's
extensions to ANSI SQL to the extensions mentioned today.

2. Write a brief set of statements that will check for the existence of some
condition. If this condition is true, perform some operation. Otherwise, perform
another operation.

(e Previous Chaptar YR Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 20 -
SQL*Plus

Objectives

Today you will learn about SQL*Plus, the SQL interface for Oracle's RDBMS. By the
end of Day 20, you will understand the following elements of SQL*Plus:

. How to use the SQL*Plus buffer

. How to format reports attractively
. How to manipulate dates
. How to make interactive queries

. How to construct advanced reports

. How to use the powerful DECODE function

| ntroduction

We are presenting SQL*Plus today because of Oracle's dominance in the relational
database market and because of the power and flexibility SQL*Plus offers to the
database user. SQL*Plus resembles Transact-SQL (see Day 19, "Transact-SQL: An
Introduction”) in many ways. Both implementations comply with the ANSI SQL standard
for the most part, which is still the skeleton of any implementation.

SQL*PIus commands can enhance an SQL session and improve the format of queries from
the database. SQL*Plus can also format reports, much like a dedicated report writer.
SQL*Plus supplements both standard SQL and PL/SQL and helps relational database
programmers gather data that is in a desirable format.

The SQL*Plus Buffer

The SQL*Plus buffer is an area that stores commands that are specific to your
particular SQL session. These commands include the most recently executed SQL
statement and commands that you have used to customize your SQL session, such as
formatting commands and variable assignments. This buffer is like a short-term memory.
Here are some of the most common SQL buffer commands:

« LI ST |ine_nunber --Lists a line from the statement in the buffer and designates
it as the current line.

. CHANGE/ ol d_val ue/ new_val ue--Changes ol d_val ue to new _val ue on the
current line in the buffer.

. APPEND t ext --Appends t ext to the current line in the buffer.
. DEL-- Deletes the current line in the buffer.

. SAVE newf i | e--Saves the SQL statement in the buffer to a file.
. GET fil enanme--Gets an SQL file and places it into the buffer.

. [--Executes the SQL statement in the buffer.

We begin with a simple SQL statement:
INPUT:

SQ.> sel ect *
2 from products
3 where unit_cost > 25;

OUTPUT:

PRO PRODUCT NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P06 SQL COMMAND REFERENCE 29. 99

PO7 BLACK LEATHER BRI EFCASE 99. 99

The LI ST command lists the most recently executed SQL statement in the buffer. The
output will simply be the displayed statement.

SQL> |ist
1 select *
2 from products
3* where unit _cost > 25

ANALYSIS:

Notice that each line is numbered. Line numbers are important in the buffer; they act as
pointers that enable you to modify specific lines of your statement using the SQL*PLUS
buffer. The SQL*Plus buffer is not a full screen editor; after you hit Enter, you cannot
use the cursor to move up a line, as shown in the following example.

INPUT:

SQ.> sel ect *
2 from products
3 where unit_cost > 25
4 |/

NOTE: As with SQL commands, you may issue SQL*Plus commands in either
uppercase or lowercase.

TIP: You can abbreviate most SQL*Plus commands; for example, LI ST can be
abbreviated as | .

You can move to a specific line from the buffer by placing a line number after thel :
INPUT:

sQL> 13

3* where unit_cost > 25

ANALYSIS:

Notice the asterisk after the line number 3. This asterisk denotes the current line
number. Pay close attention to the placement of the asterisk in today's examples.
Whenever a line is marked by the asterisk, you can make changes to that line.

Because you know that your current line is 3, you are free to make changes. The syntax
for the CHANGE command is as fol lows:

SYNTAX:

CHANGE/ ol d_val ue/ new_val ue

or
C/ ol d_val ue/ new_val ue
INPUT:
SQ> ¢/ >/ <
OUTPUT:
3* where unit_cost < 25
INPUT:
SQL> |
OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

ANALYSIS:

The greater than sign (>) has been changed to less than (<) on line 3. Notice after the
change was made that the newly modified line was displayed. If you issue the LI ST
command or | , you can see the full statement. Now execute the statement:

INPUT:

sQL> /

OUTPUT:

PRO PRODUCT NAMVE UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1. 99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5

PO5 NATURE CALENDAR 12. 99

ANALYSIS:

The forward slash at the SQL> prompt executes any statement that is in the buffer.
INPUT:

SQL> |

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

Now, you can add a line to your statement by typing a new line number at the SQL>
prompt and entering text. After you make the addition, get a full statement listing.
Here's an example:

INPUT:

SQL> 4 order by unit_cost

SQL> 1
OUTPUT:
1 select *
2 from products
3 where unit _cost < 25
4* order by unit_cost

ANALYSIS:

Deleting a line is easier than adding a line. Simply type DEL 4 at the SQL> prompt to
delete line 4. Now get another statement listing to verify that the line is gone.

INPUT:

SQL> DEL4
sQL> |

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

Another way to add one or more lines to your statement is to use the | NPUT command.
As you can see in the preceding list, the current line number is 3. At the prompt type
input and then press Enter. Now you can begin typing text. Each time you press Enter,
another line will be created. If you press Enter twice, you will obtain another SQ.>
prompt. Now if you display a statement listing, as in the fol lowing example, you can see
that line 4 has been added.

INPUT:

SQL> i nput
4i and product _id = "'P0O1'
5

SQL> |

OUTPUT:

sel ect *
from products
where unit_cost < 25
and product _id = "'P0O1'
* order by unit_cost

a b wN -

To append text to the current line, issue the APPEND command fol lowed by the text.
Compare the output in the preceding example--the current line number is 5--to the
following example.

INPUT:

SQ.> append desc

OUTPUT:

5* order by unit_cost desc

Now get a full listing of your statement:

INPUT:
SQL> |
OUTPUT:
1 select *
2 from products
3 where unit_cost < 25
4 and product _id = "'P0O1
5* order by unit_cost desc

Suppose you want to wipe the slate clean. You can clear the contents of the SQL*Plus
buffer by issuing the command CLEAR BUFFER. As you will see later, you can also use
the CLEAR command to clear specific settings from the buffer, such as column
formatting information and computes on a report.

INPUT:

SQ.> cl ear buffer
OUTPUT:

buf fer cleared

INPUT:

SQ> |

OUTPUT:

No lines in SQ buffer.

ANALYSIS:

Obviously, you won't be able to retrieve anything from an empty buffer. You aren't a
master yet, but you should be able to maneuver with ease by manipulating your
commands in the buffer.

The DESCRIBE Command

The handy DESCRI BE command enables you to view the structure of a table quickly
without having to create a query against the data dictionary.

SYNTAX:

DESC[RI BE] tabl e_nane

Take a look at the two tables you will be using throughout the day.
INPUT:

SQL> descri be orders

OUTPUT:

Nanme Nul | ? Type

ORDER_NUM NOT NULL NUMBER(2)

CUSTOMER NOT NULL VARCHAR2(30)
PRODUCT | D NOT NULL CHAR(3)
PRODUCT_QTY NOT NULL NUVBER(5)
DELI VERY_DATE DATE

The following statement uses the abbreviation DESC instead of DESCRI BE:
INPUT:

SQL> desc products

OUTPUT:
Nane Nul | ? Type
PRODUCT_I D NOT NULL VARCHAR2(3)
PRODUCT _NAME NOT NULL VARCHARZ2(30)
UNI T_COST NOT NULL NUMBER(8, 2)
ANALYSIS:

DESC displays each column name, which columns must contain data (NULL/NOT NULL),
and the data type for each column. If you are writing many queries, you will find that
few days go by without using this command. Over a long time, this command can save you
many hours of programming time. Without DESCRI BE you would have to search through
project documentation or even database manuals containing lists of data dictionary
tables to get this information.

The SHOW Command

The SHOWcommand displays the session's current settings, from formatting commands to
who you are. SHOW ALL displays all settings. This discussion covers some of the most
common settings.

INPUT:
SQ.> show al |
OUTPUT:

appinfo is ON and set to "SQ*Pl us"
arraysi ze 15

aut ocomm t OFF

autoprint OFF

autotrace OFF

bl ockterm nator "." (hex 2e)
btitle OFF and is the 1st few characters of the next SELECT statenent
cl osecursor OFF

col sep

cndsep OFF

conmpati bility version NATIVE
concat "." (hex 2e)

copycommit O

copytypecheck is ON

crt ""

define "&" (hex 26)

echo OFF

editfile "afiedt. buf”

enbedded OFF

escape OFF

feedback ON for 6 or nore rows
fl agger OFF

flush ON

headi ng ON

headsep "|" (hex 7c)

l'i nesize 100

I no 6

| ong 80

| ongchunksi ze 80

maxdat a 60000

newpage 1
nul | ™"
nunt or mat
numa dth 9
pagesi ze 24

pause i s OFF

pno 1

recsep WRAP

recsepchar " " (hex 20)
rel ease 703020200
repheader OFF and is NULL
repfooter OFF and is NULL
serverout put OFF

shownode OFF
spool OFF

sql case M XED
sqgl code 1007
sqgl conti nue ">
sql nunber ON
sql prefix "#" (hex 23)

sql pronpt "SQ> "
sqgltermnator ";" (hex 3b)
suffix "SQ"

tab ON

ternout ON

time OFF

timng OFF

trinout ON

trimspool OFF

ttitle OFF and is the 1st few characters of the next SELECT statenent

underline "-" (hex 2d)

user i s "RYAN'

verify ON

wap : lines will be wapped

The SHOW command displays a specific setting entered by the user. Suppose you have
access to multiple database user IDs and you want to see how you are logged on. You
can issue the following command:

INPUT:

SQ.> show user

OUTPUT:

user i s "RYAN'

To see the current line size of output, you would type:
INPUT:

SQ.> show | i nesi ze

OUTPUT:

| i nesize 100

File Commands

Various commands enable you to manipulate files in SQL*Plus. These commands include
creating a file, editing the file using a full-screen editor as opposed to using the
SQL*Plus buffer, and redirecting output to a file. You also need to know how to
execute an SQL file after it is created.

The SAVE, GET, and EDIT Commands

The SAVE command saves the contents of the SQL statement in the buffer to a file
whose name you specify. For example:

INPUT:

SQL> sel ect *
2 from products
3 where unit_cost < 25

SQ.> save queryl. sq
OUTPUT:
Created file queryl.sq

ANALYSIS:

After a file has been saved, you can use the GET command to list the file. GET is very
similar to the LI ST command. Just remember that GET deals with statements that have
been saved to files, whereas LI ST deals with the statement that is stored in the buffer.

INPUT:
SQ.> get queryl
OUTPUT:

1 select *
2 from products
3* where unit _cost < 25

You can use the EDI T command either to create a new file or to edit an existing file.
When issuing this command, you are taken into a full-screen editor, more than likely
Notepad in Windows. You will find that it is usually easier to modify a file with EDI T
than through the buffer, particularly if you are dealing with a large or complex
statement. Figure 20.1 shows an example of the EDI T command.

INPUT:
SQL> edit queryl.sq

Figure 20.1.
Editing a file in SQL*Plus.

Starting a File

Now that you know how to create and edit an SQL file, the command to execute it is
simple. It can take one of the following forms:

SYNTAX:

START fil enane

or

STA fil enane

or
@i | ename

TIP: Commands are not case sensitive.
INPUT:

SQL> start queryl. sql

OUTPUT:

PRO PRODUCT_NAME UNI T_COST
PO2 NO 2 PENCILS - 20 PACK 1.99
PO3 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99

NOTE: You do not have to specify the file extension . sql tostarta file
from SQL*Plus. The database assumes that the file you are executing has
this extension. Similarly, when you are creating a file from the SQ.>
prompt or use SAVE, GET, or EDI T, you do not have to include the extension

ifitis. sql.
INPUT:
SQL> @ueryl
OUTPUT:
PRO PRODUCT_NAME UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR S| DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99

INPUT:

SQ> run queryl

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

PRO PRODUCT _NAVE UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1. 99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99

Notice that when you use RUN to execute a query, the statement is echoed, or displayed
on the screen.

Spooling Query Output

Viewing the output of your query on the screen is very convenient, but what if you
want to save the results for future reference or you want to print the file? The SPOCL
command allows you to send your output to a specified file. I the file does not exist, it
will be created. IT the file exists, it will be overwritten, as shown in Figure 20.2.

INPUT:

SQL> spool prod.| st
SQ.> sel ect *
2 from products;

OUTPUT:

PRO PRODUCT_NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCILS - 20 PACK 1.99
PO3 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99
PO6 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

INPUT:

SQ.> spool off
SQL> edit prod.| st

ANALYSIS:

The output in Figure 20.2 is an SQL*Plus file. You must use the SPOCL OFF command to
stop spooling to a file. When you exit SQL*Plus, SPOOL OFF is automatic. But if you do
not exit and you continue to work in SQL*Plus, everything you do will be spooled to
your file until you issue the command SPOOL OFF.

Figure 20.2.
Spooling your output to a file.

SET Commands

SET commands in Oracle change SQL*Plus session settings. By using these commands, you
can customize your SQL working environment and invoke options to make your output
results more presentable. You can control many of the SET commands by turning an
option on or off.

To see how the SET commands work, perform a simple sel ect :
INPUT:

SQL> sel ect *
2 from products;

OUTPUT:

PRO PRODUCT_NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCI LS - 20 PACK 1.99
PO3 COFFEE MUG 6. 95
PO4 FAR SI DE CALENDAR 10.5
PO5S NATURE CALENDAR 12. 99
PO6 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

The last line of output

7 rows sel ected.

is cal led feedback, which is an SQL setting that can be modified. The settings have

defaults, and in this case the default for FEEDBACK is on. If you wanted, you could type

SET FEEDBACK ON

before issuing your select statement. Now suppose that you do not want to see the
feedback, as happens to be the case with some reports, particularly summarized reports
with computations.

INPUT:

SQ.> set feedback off
SQ.> sel ect *
2 from products;

OUTPUT:

PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1. 99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99
P06 SQL COMMAND REFERENCE 29. 99
P07 BLACK LEATHER BRI EFCASE 99. 99
ANALYSIS;

SET FEEDBACK OFF turns off the feedback display.

In some cases you may want to suppress the column headings from being displayed on a
report. This setting is called HEADI NG which can also be set ONor OFF.

INPUT:

SQL> set heading off

SQL> /

OUTPUT:

PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCILS - 20 PACK 1.99
PO3 COFFEE MUG 6. 95
PO4 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99
PO6 SQ. COMIVAND REFERENCE 29. 99

PO7 BLACK LEATHER BRI EFCASE 99. 99

ANALYSIS:

The column headings have been eliminated from the output. Only the actual data is
displayed.

You can change a wide array of settings to manipulate how your output is displayed.
One option, LI NESI ZE, allows you to specify the length of each line of your output. A
small line size will more than likely cause your output to wrap; increasing the line size
may be necessary to suppress wrapping of a line that exceeds the default 80 characters.
Unless you are using wide computer paper (11 x 14), you may want to landscape print
your report if you are using a line size greater than 80. The following example shows
the use of LI NESI ZE.

INPUT:

SQ.> set linesize 40
sSQL> /

OUTPUT:

PO1 M CKEY MOUSE LAMP
29. 95

PO2 NO 2 PENCI LS - 20 PACK
1.99

PO3 COFFEE MUG
6. 95

PO4 FAR SI DE CALENDAR
10.5

P05 NATURE CALENDAR
12. 99

PO6 SQ. COVVAND REFERENCE
29. 99

PO7 BLACK LEATHER BRI EFCASE

99. 99

You can also adjust the size of each page of your output by using the setting PAGESI ZE.
If you are simply viewing your output on screen, the best setting for PAGESI ZE is 23,
which eliminates multiple page breaks per screen. In the following example PAGESI ZE is
set to a low number to show you what happens on each page break.

INPUT:

SQL> set |inesize 80
SQL> set headi ng on
SQL> set pagesize 7

SQL> /

OUTPUT:

PRO PRODUCT NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCILS - 20 PACK 1.99
PO3 COFFEE MJG 6. 95
PO4 FAR SI DE CALENDAR 10.5
PRO PRODUCT NAME UNI T_COST
PO5 NATURE CALENDAR 12. 99
PO6 SQ. COMIVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99
ANALYSIS:

Using the setting of PAGESI ZE 7, the maximum number of lines that may appear on a
single page is seven. New column headings will print automatically at the start of each
new page.

The TI ME setting displays the current time as part of your SQL> prompt.

INPUT:

SQ.> set tinme on

OUTPUT:

08:52: 02 SQ.>

These were just a few of the SET options, but they are all manipulated in basically the
same way. As you saw from the vast list of SET commands in the earlier output from the
SHOW ALL statement, you have many options when customizing your SQL*Plus session.
Experiment with each option and see what you like best. You will probably keep the

default for many options, but you may find yourself changing other options frequently
based on different scenarios.

LOGIN.SQL File

When you log out of SQL*Plus, all of your session settings are cleared. When you log
back in, your settings will have to be reinitialized if they are not the defaults unless

you are using al ogi n. sgl file. This file is automatical ly executed when you sign on to
SQL*Plus. This initialization file is similar to the aut oexec. bat file on your PC or
your . profil einaUNIX Korn Shell environment.

In Personal Oracle7 you can use the EDI T command to create your Logi n. sqgl file, as
shown in Figure 20.3.

Figure 20.3.
Your Logi n. sql file.

When you log on to SQL*Plus, here is what you will see:

SQL*Plus: Release 3.3.2.0.2 - Production on Sun May 11 20: 37:58 1997
Copyright (c) Oracle Corporation 1979, 1994. Al rights reserved.
Enter password: ****

Connected to:

Personal Oracle7 Release 7.3.2.2.0 - Production Rel ease
Wth the distributed and replication options

PL/ SQL Rel ease 2.3.2.0.0 - Production

HELLO !

20: 38: 02 SQL>

CLEAR Command

In SQL*Plus, settings are cleared by logging off, or exiting SQL*Plus. Some of your
settings may also be cleared by using the CLEAR command, as shown in the fol lowing
examples.

INPUT:

SQ.> cl ear col

OUTPUT:

col umms cl eared

INPUT:

SQ.> cl ear break

OUTPUT:

breaks cl eared
INPUT:

SQ.> cl ear conpute
OUTPUT:

conputes cl eared

Formatting Your Output

SQL*Plus also has commands that enable you to arrange your output in almost any
format. This section covers the basic formatting commands for report titles, column
headings and formats, and giving a column a "new value."

TTITLE and BTITLE

TTI TLE and BTI TLE enable you to create titles on your reports. Previous days covered
gueries and output, but with SQL*Plus you can convert simple output into presentable
reports. The TTI TLE command places a title at the top of each page of your output or
report. BTl TLE places a title at the bottom of each page of your report. Many options
are available with each of these commands, but today's presentation covers the
essentials. Here is the basic syntax of TTI TLE and BTI TLE:

SYNTAX:

TTITLE [center|left|right] "text' [&variable] [skip n]
BTI TLE [center|left|right] 'text' [&variable] [skip n]

INPUT:

SQL> ttitle "A LI ST OF PRODUCTS
SQL> btitle " THAT IS ALL'

SQ.> set pagesize 15

SQL> /

OUTPUT:

Wed May 07
page 1
A LI ST OF PRODUCTS

PRO PRODUCT_NAME UNI T_COST

PO1 M CKEY MOUSE LAMP 29. 95

PO2 NO 2 PENCI LS - 20 PACK 1.99
PO3 COFFEE MJUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5S NATURE CALENDAR 12. 99
PO6 SQ. COVVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99
THAT IS ALL

7 rows sel ected.

ANALYSIS:

The title appears at the top of the page and at the bottom. Many people use the bottom
title for signature blocks to verify or make changes to data on the report. Also, in the
top title the date and page number are part of the title.

Formatting Columns (COLUMN, HEADING, FORMAT)

Formatting columns refers to the columns that are to be displayed or the columns that
are listed after the SELECT in an SQL statement. The COLUMN, HEADI NG and FORMAT
commands rename column headings and control the way the data appears on the report.

The COL[UWN] command is usual ly used with either the HEADI NGcommand or the

FORMAT command. COLUWN defines the column that you wish to format. The column that
you are defining must appear exactly as it is typed in the SELECT statement. You may use
a column alias instead of the full column name to identify a column with this command.

When using the HEADI NG command, you must use the COLUVWN command to identify the
column on which to place the heading.

When using the FORMAT command, you must use the COLUMN command to identify the
column you wish to format.

The basic syntax for using all three commands fol lows. Note that the HEADI NGand
FORMAT commands are optional. In the FORMAT syntax, you must use an a if the data has
a character format or use 0Os and 9s to specify number data types. Decimals may also be
used with numeric values. The number to the right of the a is the total width that you
wish to allow for the specified column.

SYNTAX:

COL[UW] colum_nanme HEA[DI NG "new _headi ng" FOR[MAT] [al]| 99.99]

The simple SELECT statement that fol lows shows the formatting of a column. The
specified column is of NUVBER data type, and we want to display the number in a decimal
format with a dollar sign.

INPUT:

SQL> col umm unit_cost heading "PRICE" format $99. 99
SQL> sel ect product _name, unit_cost
2 from products;

OUTPUT:

PRODUCT_NAME PRI CE
M CKEY MOUSE LAMP $29. 95
NO 2 PENCI LS - 20 PACK $1. 99
COFFEE MUG $6. 95
FAR S|l DE CALENDAR $10. 50
NATURE CALENDAR $12. 99
SQL COMWAND REFERENCE $29. 99
BLACK LEATHER BRI EFCASE $99. 99

7 rows sel ected.

ANALYSIS:
Because we used the format 99. 99, the maximum number that will be displayed is 99. 99.

Now try abbreviating the commands. Here's something neat you can do with the
HEADI NG command:

INPUT:

SQL> col wunit_cost hea "UN T| COST" for $09.99
SQ.> sel ect product _nane, unit_cost
2 from products;

OUTPUT:

PRODUCT_NAME UNI T COST
M CKEY MOUSE LAMP $29. 95
NO 2 PENCI LS - 20 PACK $01. 99
COFFEE MJUG $06. 95
FAR S|l DE CALENDAR $10. 50
NATURE CALENDAR $12. 99
SQ. COMWAND REFERENCE $29. 99

BLACK LEATHER BRI EFCASE $99. 99

7 rows sel ected.

ANALYSIS:

The pipe sign (]) in the HEADI NG command forces the following text of the column
heading to be printed on the next line. You may use multiple pipe signs. The technique is
handy when the width of your report starts to push the limits of the maximum available
line size. The format of the unit cost column is now 09. 99. The maximum number
displayed is still 99. 99, but now a O will precede all numbers less than 10. You may
prefer this format because it makes the dollar amounts appear uniform.

Report and Group Summaries

What would a report be without summaries and computations? Let's just say that you
would have one frustrated programmer. Certain commands in SQL*Plus allow you to
break up your report into one or more types of groups and perform summaries or
computations on each group. BREAK is a little different from SQL's standard group
functions, such as COUNT() and SUM). These functions are used with report and
group summaries to provide a more complete report.

BREAK ON

The BREAK ONcommand breaks returned rows of data from an SQL statement into one
or more groups. If you break on a customer's name, then by default the customer's name
will be printed only the first time it is returned and left blank with each row of data
with the corresponding name. Here is the very basic syntax of the BREAK ONcommand:
SYNTAX:

BRE[AK] [ON columl ON colum2...][SKI P n| PAGE] [DUP| NODUP]

You may also break on REPORT and ROW Breaking on REPORT performs computations on
the report as a whole, whereas breaking on ROMNperforms computations on each group of
Fows.

The SKI P option allows you to skip a number of lines or a page on each group. DUP or
NODUP suggests whether you want duplicates to be printed in each group. The default is
NCDUP.

Here is an example:
INPUT:

SQ.> col wunit_cost head 'UNI T| COST' for $09.99

SQL> break on custoner
SQL> sel ect o.custoner, p.product_nane, p.unit_cost
2 fromorders o,
3 products p
4 where o.product _id = p.product _id
5 order by custoner;

OUTPUT:

CUSTOVER PRODUCT_NAME UNI T COST

JONES and SONS M CKEY MOUSE LAMP $29. 95
NO 2 PENCI LS - 20 PACK $01. 99
COFFEE MUG $06. 95

PARAKEET CONSULTI NG GROUP M CKEY MOUSE LAMP $29. 95
NO 2 PENCI LS - 20 PACK $01. 99
SQL COMVAND REFERENCE $29. 99
BLACK LEATHER BRI EFCASE $99. 99
FAR S| DE CALENDAR $10. 50

PLEWSKY MOBI LE CARWASH M CKEY MOUSE LAMP $29. 95
BLACK LEATHER BRI EFCASE $99. 99
BLACK LEATHER BRI EFCASE $99. 99
NO 2 PENCI LS - 20 PACK $01. 99
NO 2 PENCI LS - 20 PACK $01. 99

13 rows sel ect ed.

Each unique customer is printed only once. This report is much easier to read than one in
which duplicate customer names are printed. You must order your results in the same
order as the column(s) on which you are breaking for the BREAK command to work.

COMPUTE

The COMPUTE command is used with the BREAK ONcommand. COVPUTE al lows you to
perform various computations on each group of data and/or on the entire report.

SYNTAX:

COWP[UTE] function OF columm_or_alias ON colunm_or_row or _report
Some of the more popular functions are

. AVG-Computes the average value on each group.

. COUNT--Computes a count of values on each group.

. SUM-Computes a sum of values on each group.

Suppose you want to create a report that lists the information from the PRODUCTS
table and computes the average product cost on the report.

INPUT:

SQL> break on report
SQL> conpute avg of unit_cost on report
SQL> sel ect *

2 from products;

OUTPUT:

PRO PRODUCT_NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCI LS - 20 PACK 1.99
PO3 COFFEE MUG 6. 95
PO4 FAR SI DE CALENDAR 10. 50
PO5S NATURE CALENDAR 12. 99
PO6 SQ. COVIVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99
avg 27.48
ANALYSIS:

You can obtain the information you want by breaking on REPORT and then computing
the avg of theuni t _cost on REPORT.

Remember the CLEAR command? Now clear the last compute from the buffer and start
again--but this time you want to compute the amount of money spent by each customer.
Because you do not want to see the average any longer, you should also clear the
computes.

INPUT:

SQ.> cl ear conpute

OUTPUT:

conputes cl eared

Now clear the last BREAK. (You don't really have to clear the BREAK in this case
because you still intend to break on report.)

INPUT:

SQ.> cl ear break
OUTPUT:

breaks cl eared

The next step is to reenter the breaks and computes the way you want them now. You
will also have to reformat the column uni t _cost to accommodate a larger number
because you are computing a sum of the uni t _cost on the report. You need to allow
room for the grand total that uses the same format as the column on which it is being
figured. So you need to add another place to the left of the decimal.

INPUT:

SQ.> col unit_cost hea 'UNI T| COST' for $099. 99
SQ.> break on report on custoner skip 1

SQ.> conpute sum of unit_cost on custoner

SQ.> conpute sum of unit_cost on report

Now list the last SQL statement from the buffer.
INPUT:

SQL> |

OUTPUT:

1 select o.custoner, p.product _nane, p.unit_cost
2 fromorders o,

3 products p

4 where o.product _id = p.product _id

5* order by custoner

ANALYSIS:

Now that you have verified that this statement is the one you want, you can execute it:

INPUT:
sSQL> /
OUTPUT:

UNIT
CUSTOVER PRODUCT _NANE cosT

JONES and SONS M CKEY MOUSE LAMP $029. 95

NO 2 PENCI LS - 20 PACK $001. 99

COFFEE MUG $006. 95
khkkkkhkdkkhkdhkrkhkdrkrxddrxrkdrkrxrkdkrxrcx
sum $038. 89
PARAKEET CONSULTI NG GROUP M CKEY MOUSE LAMP $029. 95

NO 2 PENCI LS - 20 PACK $001. 99

SQL COVWAND REFERENCE $029. 99

BLACK LEATHER BRI EFCASE $099. 99

FAR S| DE CALENDAR $010. 50
khkkkkhkdkkkdhkrhkdrkrxddkrxrkdrkrxrkdkrxrkx
sum $172. 42
PLEWSKY MOBI LE CARWASH M CKEY MOUSE LAMP $029. 95

BLACK LEATHER BRI EFCASE $099. 99

BLACK LEATHER BRI EFCASE $099. 99

NO 2 PENCI LS - 20 PACK $001. 99

NO 2 PENCI LS - 20 PACK $001. 99
khkkkkhkdkkhkdhkrhkdrkrddkrxrkdrkrxrkdrxrcx

UNI T
CUSTOMVER PRODUCT _NAME COST
sum $233. 91
sum $445. 22

13 rows sel ect ed.

ANALYSIS:

This example computed the total amount that each customer spent and also calculated
a grand total for all customers.

By now you should understand the basics of formatting columns, grouping data on the
report, and performing computations on each group.

Using Variablesin SQL*Plus

Without actually getting into a procedural language, you can still define variables in
your SQL statement. You can use special options in SQL*Plus (covered in this section) to
accept input from the user to pass parameters into your SQL program.

Substitution Variables (&)

An ampersand (&) is the character that calls a value for a variable within an SQL
script. If the variable has not previously been defined, the user will be prompted to
enter a value.

INPUT:

SQ.> sel ect *
2 from &TBL
3 /

Enter value for tbl: products
The user entered the val ue "products.™
OUTPUT:

ol d 2: from &TBL
new 2: from products

PRO PRCDUCT_NAME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCILS - 20 PACK 1.99
PO3 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99
PO6 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

The value pr oduct s was substituted in the place of &TBL in this "interactive query."

DEFINE

You can use DEFI NE to assign values to variables within an SQL script file. If you define
your variables within the script, users are not prompted to enter a value for the
variable at runtime, as they are if you use the & The next example issues the same
SELECT statement as the preceding example, but this time the value of TBL is defined
within the script.

INPUT:

SQ.> define TBL=products
SQL> sel ect *
2 from &TBL;

OUTPUT:

ol d 2: from &TBL
new 2: from products

PRO PRODUCT NAVE UNI T_COST

PO1 M CKEY MOUSE LAMP 29. 95
PO2 NO 2 PENCI LS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5S NATURE CALENDAR 12. 99
PO6 SQ. COVVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

Both queries achieved the same result. The next section describes another way to prompt
users for script parameters.

ACCEPT

ACCEPT enables the user to enter a value to fill a variable at script runtime. ACCEPT
does the same thing as the & with no DEFI NE but is a little more controlled. ACCEPT
also allows you to issue user-friendly prompts.

The next example starts by clearing the buffer:
INPUT:

SQ.> clear buffer

OUTPUT:

buffer cl eared

Then it uses an | NPUT command to enter the new SQL statement into the buffer. If you
started to type your statement without issuing the | NPUT command first, you would be
prompted to enter the value for newt i t | e first. Alternatively, you could go straight
into a new file and write your statement.

INPUT:

SQL> i nput
1 accept newmtitle pronpt "Enter Title for Report:
ttitle center newitle
sel ect *
from products

N

3
4
5
SQL> save prod

OUTPUT:

File "prod.sqgl" already exists.
Use anot her nane or "SAVE fil enane REPLACE".

ANALYSIS:

Whoops...the file pr od. sql already exists. Let's say that you need the old pr od. sql
and do not care to overwrite it. You will have to use the replace option to save the
statement in the buffer to pr od. sql . Notice the use of PROVPT in the preceding
statement. PROVPT displays text to the screen that tells the user exactly what to
enter.

INPUT:

SQ.> save prod replace

OUTPUT:

Wote file prod

Now you can use the START command to execute the file.
INPUT:

SQ.> start prod

Enter Title for Report: A LIST OF PRODUCTS

OUTPUT:

A LI ST OF PRODUCTS
PRO PRODUCT NAMVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1. 99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10. 5
PO5 NATURE CALENDAR 12. 99
P06 SQL COMMAND REFERENCE 29. 99
P07 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

The text that you entered becomes the current title of the report.

The next example shows how you can use substitution variables anywhere in a
statement:

INPUT:
SQ.> i nput
1 accept prod_id pronpt 'Enter PRODUCT ID to Search for:
2 select *
3 from products
4 where product _id = "&prod_ id
5

SQ.> save prodl
OUTPUT:

Created file prodl
INPUT:

SQ.> start prodl

Enter PRODUCT ID to Search for: POl

OUTPUT:
ol d 3: where product _id = "&prod_ id
new 3: where product _id = "'P01

A LI ST OF PRODUCTS

PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
ANALYSIS:

You can use variables to meet many needs--for example, to name the file to which to
spool your output or to specify an expression in the ORDER BY clause. One of the ways
to use substitution variables is to enter reporting dates in the WHERE clause for
transactional quality assurance reports. If your query is designed to retrieve
information on one particular individual at a time, you may want to add a substitution
variable to be compared with the SSNcolumn of a table.

NEW_VALUE

The NEW VALUE command passes the value of a selected column into an undefined
variable of your choice. The syntax is as fol lows:

SYNTAX:

COL[UMWN] col umm_nanme NEW VALUE new_nane

You call the values of variables by using the & character; for example:

&new nane

The COLUMN command must be used with NEW VAL UE.

Notice how the & and COLUVN command are used together in the next SQL*Plus file. The
CGET command gets the file.

INPUT:
SQ.> get prodl
OUTPUT:

line 5 truncat ed.
1 ttitle left 'Report for Product: &rod_title skip 2
2 col product_nane new value prod title
3 select product_name, unit_cost
4 from products
5* where product_nanme = ' COFFEE MJG

INPUT:
SQL> @prodl
OUTPUT:

Report for Product: COFFEE MUG

PRODUCT _NANE UNI T_COST
COFFEE MJG 6. 95
ANALYSIS:

The value for the column PRODUCT _NAME was passed into the variable prod titl e by
means of new_val ue. The value of the variable prod_tit| e was then called in the
TTI TLE.

For more information on variables in SQL, see Day 18, "PL/SQL: An Introduction,” and
Day 19.

The DUAL Table

The DUAL table is a dummy table that exists in every Oracle database. This table is
composed of one column cal led DUMWY whose only row of data is the value X The DUAL
table is available to all database users and can be used for general purposes, such as
performing arithmetic (where it can serve as a calculator) or manipulating the format
of the SYSDATE.

INPUT:

SQ.> desc dual;

OUTPUT:

Nane Nul | ? Type

ooy VARCHAR2(1)
INPUT:

SQ.> sel ect *
2 from dual

OUTPUT:

D

X

Take a look at a couple of examples using the DUAL table:
INPUT:

SQL> sel ect sysdate
2 from dual

OUTPUT:

SYSDATE

08- MAY- 97
INPUT:

SQ.> select 2 * 2

2 fromdual;

OUTPUT:

Pretty simple. The first statement selected SYSDATE from the DUAL table and got
today's date. The second example shows how to multiply in the DUAL table. Our answer
for2 * 2is4.

The DECODE Function

The DECODE function is one of the most powerful commands in SQL*Plus--and perhaps
the most powerful. The standard language of SQL lacks procedural functions that are
contained in languages such as COBOL and C.

The DECCDE statement is similar toan | F. . . THENstatement in a procedural
programming language. Where flexibility is required for complex reporting needs,
DECCDE is often able to fill the gap between SQL and the functions of a procedural
language.

SYNTAX:

DECODE(col umm1, val uel, outputl, value2, output2, output3)

The syntax example performs the DECCDE function on col umml. If col uim1 has a value
of val uel, then display out put 1 instead of the column's current value. If col unm1 has
a value of val ue2, then display out put 2 instead of the column's current value. If

col um1l has a value of anything other than val uel or val ue2, then display out put 3
instead of the column's current value.

How about some examples? First, perform a simple select on a new table:
INPUT:

SQ.> select * from states;

OUTPUT:

ST

IN

FL

KY
L
OH
CA
NY

7 rows sel ected.

Now use the DECODE command:
INPUT:

SQL> sel ect decode(state,"IN,"'INDIANA ,' OTHER) state
2 fromstates

OUTPUT:

I NDI' ANA
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER

7 rows sel ected.

ANALYSIS:

Only one row met the condition where the value of state was | N, so only that one row
was displayed as | NDI ANA. The other states took the default and therefore were
displayed as OTHER

The next example provides output strings for each value in the table. Just in case your
table has states that are not in your DECODE list, you should still enter a default
value of ' OTHER .

INPUT:

SQL> sel ect decode(state,' I N ,'|1ND ANA",
2 "FL',' FLORI DA',
3 "KY', " KENTUCKY" ,
4 "IL","ILLINO S,
5 "OH, " H O,
6 "CA',' CALI FORNI A",
7 "NY',"' NEW YORK' , ' OTHER)
8 fromstates

OUTPUT:

DECODE(STATE)
| NDI ANA

FLORI DA
KENTUCKY

| LLINOI S

OH O

CALI FORNI A
NEW YORK

7 rows sel ected.

That was too easy. The next example introduces the PAY table. This table shows more of
the power that is contained within DECODE.

INPUT:

SQL> col hour_rate hea "HOURLY| RATE" for 99.00
SQ.> col date_| ast_rai se hea "LAST| RAl SE"
SQ.> sel ect nane, hour rate, date | ast _raise

2 from pay;
OUTPUT:
HOURLY LAST

NANVE RATE RAI SE
JOHN 12. 60 01- JAN- 96
JEFF 8.50 17- MAR- 97
RON 9. 35 01- OCT-96
RYAN 7.00 15- MVAY-96
BRYAN 11. 00 01-JUN- 96
MARY 17.50 01-JAN- 96
ELAI NE 14. 20 01- FEB- 97

7 rows sel ected.

Are you ready? It is time to give every individual in the PAY table a pay raise. If the year
of an individual's last raise is 1996, calculate a 10 percent raise. If the year of the
individual's last raise is 1997, calculate a 20 percent raise. In addition, display the
percent raise for each individual in either situation.

INPUT:

SQL> col new_pay hea ' NEW PAY' for 99.00

SQ.> col hour _rate hea ' HOURLY| RATE' for 99.00
SQ.> col date_ | ast_raise hea ' LAST| RAlI SE

SQ.> sel ect nane, hour _rate, date | ast _raise,

2 decode(substr(date_ | ast_raise, 8,2),'96", hour _rate * 1.2,

3 "97' ,hour _rate * 1.1)
new_pay,

4 decode(substr(date_ |l ast _raise, 8,2),"96","' 20%,

5 97, 10% , nul l)
i ncrease

6 from pay;
OUTPUT:

HOURLY LAST

NAVE RATE RAI SE NEW PAY | NC
JOHN 12.60 01-JAN-96 15.12 20%
JEFF 8.50 17- MAR-97 9.35 10%
RON 9. 35 01-COCT-96 11. 22 20%
RYAN 7.00 15- VAY-96 8.40 20%
BRYAN 11.00 01-JUN-96 13.20 20%
MARY 17.50 01-JAN-96 21.00 20%
ELAI NE 14. 20 01- FEB-97 15.62 10%

7 rows sel ected.

ANALYSIS:

According to the output, everyone will be receiving a 20 percent pay increase except
Jeff and Elaine, who have already received one raise this year.

DATE Conversions

If you want to add a touch of class to the way dates are displayed, then you can use the
TO_CHAR function to change the "date picture.” This example starts by obtaining today's
date:

INPUT:

SQL> sel ect sysdate
2 from dual

OUTPUT:

SYSDATE

08- MAY- 97

When converting a date to a character string, you use the TO CHAR function with the
following syntax:

SYNTAX:
TO CHAR(sysdate, 'date picture')

dat e pi ctur e is how you want the date to look. Some of the most common parts of the
date picture are as follows: Mont h The current month spelled out.

Mon The current month abbreviated.

Day The current day of the week.

mm The number of the current month.

yy The last two numbers of the current year.
dd The current day of the month.

yyvyy The current year.

ddd The current day of the year since January 1.
hh The current hour of the day.

m The current minute of the hour.

SsS The current seconds of the minute.

a. m Displays a.m. or p.m.

The date picture may also contain commas and literal strings as long as the string is

enclosed by double quotation marks " " .
INPUT:

SQ.> col today for a20
SQL> select to_char(sysdate,' Mon dd, yyyy') today
2 from dual

OUTPUT:

May 08, 1997

ANALYSIS:

Notice how we used the COLUWN command on the aliast oday.
INPUT:

SQ.> col today hea ' TODAYs JULI AN DATE for a20
SQ.> select to_char(sysdate,'ddd') today

2 from dual
OUTPUT:

TODAYs JULI AN DATE

ANALYSIS:

Some companies prefer to express the Julian date with the two-digit year preceding the
three-digit day. Your date picture could also look like this: ' yyddd' .

Assume that you wrote a little script and saved it as day. The next example gets the
file, looks at it, and executes it to retrieve various pieces of converted date
information.

INPUT:
SQL> get day
OUTPUT:

line 10 truncat ed.

1 set echo on

2 col day for alo

3 col today for a25

4 col year for a25

5 col time for al5
6 select to_char(sysdate,' Day') day,
7 to_char(sysdate,' Mon dd, yyyy') today,
8 to_char(sysdate,' Year') year
9 to_char(sysdate,'hh:m:ss a.m') tine
10* from dual

Now you can run the script:
INPUT:

SQL> @lay

OUTPUT:

SQ.> set echo on

SQ.> col day for alO
SQ.> col today for a25
SQ.> col year for a25
SQ.> col tine for alb

SQL> sel ect to_char(sysdate,' Day') day,

2 to_char(sysdate,' Mon dd, yyyy') today,
3 to_char(sysdate, ' Year') year
4 to_char(sysdate,"hh:m:ss a.m"') tine
5 from dual
DAY TODAY YEAR TI VE
Thur sday May 08, 1997 Ni net een Ni nety- Seven 04:10: 43
p. M
ANALYSIS:

In this example the entire statement was shown before it ran because ECHOwas set to
ON. In addition, sysdate was broken into four columns and the date was converted into
four formats.

The TO _DATE function enables you to convert text into a date format. The syntax is
basically the same as TO_CHAR.

SYNTAX:

TO DATE(expression, ' date_picture')

Try a couple of examples:
INPUT:

SQ.> select to_date('19970501',"'yyyymudd') " NEW DATE"
2 from dual

OUTPUT:

NEW DATE

01- MAY- 97
INPUT:

SQL> select to date('05/01/97","' nmi'/"dd"/"yy"') "NEW DATE"
2 from dual

OUTPUT:

NEW DATE

01- MAY- 97

ANALYSIS:

Notice the use of double quotation marks to represent a literal string.

Running a Series of SQL Files

An SQL script file can include anything that you can type into the SQL buffer at the
SQL> prompt, even commands that execute another SQL script. Yes, you can start an SQL
script from within another SQL script. Figure 20.4 shows a script file that was created
using the EDI T command. The file contains multiple SQL statements as well as commands
to run other SQL scripts.

INPUT:

SQL> edit nmain. sql
OUTPUT:

SQL> @min

ANALYSIS:

By starting mai n. sgl , you will be executing each SQL command that is contained
within the script. Quer y1 through quer y5 will also be executed, in that order, as
shown in Figure 20.4.

Figure 20.4.
Running SQL scripts from within an SQL script.

Adding Commentsto Your SQL Script

SQL*Plus gives you three ways to place comments in your file:
. -- places a comment on one line at a time.
. REMARK also places a comment on one line at a time.
. I * *| places a comment(s) on one or more lines.

Study the fol lowing example:

INPUT:

SQ.> i nput

REMARK this is a comrent
-- this is a comment too
REM

-- SET COVWANDS

set echo on

set feedback on

-- SQL STATENMENT

sel ect *

from products

O©CoO~NOOOLE, WDN P

10
sQL>

To see how comments look in an SQL script file, type the fol lowing:

SQL> edit querylO

Advanced Reports

Now let's have some fun. By taking the concepts that you have learned today, as well
as what you learned earlier, you can now create some fancy reports. Suppose that you
have a script named r eport 1. sql . Start it, sit back, and observe.

INPUT:
SQL> @eportl
OUTPUT:

SQ.> set echo on
SQ.> set pagesi ze 50
SQ.> set feedback off
SQL> set newpage O
SQ.> col product _nane hea ' PRODUCT| NAME' for a20 trunc
SQL> col wunit_cost hea 'UNI T| COST' for $99.99
SQ.> col product_qty hea 'QrY" for 999
SQL> col total for $99, 999. 99
SQ.> spool report
SQ.> conpute sum of total on custoner
SQ.> conpute sum of total on report
SQ.> break on report on custoner skip 1
SQ.> sel ect o.custoner, p.product_nane, p.unit_cost,
0. product _qty, (p.unit_cost * o.product_qty) total

fromorders o,

products p
where o.product _id = p.product _id
order by custoner
/

~No obh WN

UNI T

CUSTOVER PRODUCT

NANVE COosT
JONES and SONS M CKEY MOUSE LAMP
$1, 497. 50

NO 2 PENCILS - 20 PA
$19. 90

COFFEE MJUG
$69. 50
kkhkkkkhhkkhkkhkkhhkhkkhhkkhkhkhkkhhkhkkhhkhkhkkirkhk*x
sum
$1, 586. 90

PARAKEET CONSULTI NG GROUP M CKEY MOUSE LAMP
$149. 75
NO 2 PENCILS - 20 PA

$29. 85

SQL COWAND REFERENC
$299. 90

BLACK LEATHER BRI EFC
$99. 99

FAR S| DE CALENDAR
$231. 00
ER R R S b I S I S R S
sum
$810. 49
PLEWSKY MOBI LE CARWASH M CKEY MOUSE LAMP
$29. 95

BLACK LEATHER BRI EFC
$499. 95

BLACK LEATHER BRI EFC
$99. 99

NO 2 PENCILS - 20 PA
$19. 90

NO 2 PENCILS - 20 PA
$19. 90
ER R R I b I I S S
sum
$669. 69
sum
$3, 067. 08
SQL> I nput truncated to 9 characters
spool off

ANALYSIS:

$29.

$1.
$29.
$99.

$10.

$29.
$99.
$99.
$1.
$1.

.95

.99

.95

95

99

99

99

50

95

99

99

99

99

50

10

10

15

10

22

10

10

QTY TOTAL

Several things are taking place in this script. If you look at the actual SQL statement,
you can see that it is selecting a data from two tables and performing an arithmetic
function as well. The statement joins the two tables in the WHERE clause and is ordered
by the customer's name. Those are the basics. In addition, SQL*Plus commands format the
data the way we want to see it. These commands break the report into groups, making
computations on each group and making a computation on the report as a whole.

Summary

Day 20 explains Oracle's extension to the standard language of SQL. These commands
are only a fraction of what is available to you in SQL*Plus. If you use Oracle's
products, check your database documentation, take the knowledge that you have
learned here, and explore the endless possibilities that lie before you. You will find
that you can accomplish almost any reporting task using SQL*Plus rather than by
resorting to a procedural programming language. If you are not using Oracle products,
use what you have learned today to improve the ways you retrieve data in your
implementation. Most major implementations have extensions, or enhancements, to the
accepted standard language of SQL.

Q& A

Q Why should I spend valuable time learning SQL*Plus when | can achieve
the same results using straight SQL?

A If your requirements for reports are simple, straight SQL is fine. But you can
reduce the time you spend on reports by using SQL*Plus. And you can be sure that
the person who needs your reports will always want more information.

Q How can | select SYSDATE from the DUAL table ifitisnotacolumn?

A You can select SYSDATE from DUAL or any other valid table because SYSDATE is
a pseudocolumn.

Q When using the DECODE command, can | use a DECODE within another
DECCDE?

A Yes, you can DECODE within a DECODE. In SQL you can perform functions on
other functions to achieve the desired results.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the

material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. Which commands can modify your preferences for an SQL session?

2. Can your SQL script prompt a user for a parameter and execute the SQL
statement using the entered parameter?

3. If you are creating a summarized report on entries in a CUSTOVER table, how
would you group your data for your report?

4. Are there limitations to what you can have in your LOd N. SQL file?

5. True or False: The DECODE function is the equivalent of a loop in a procedural
programming language.

6. True or False: ITf you spool the output of your query to an existing file, your
output will be appended to that file.

Exercises

1. Using the PRODUCTS table at the beginning of Day 20, write a query that will
select all data and compute a count of the records returned on the report
without using the SET FEEDBACK ONcommand.

2. Suppose today is Monday, May 12, 1998. Write a query that will produce the
following output:

Today is Monday, May 12 1998

3. Use the following SQL statement for this Exercise:

1 select *

2 fromorders

3 where custoner_id = '001
4* order by custoner _id;

Without retyping the statement in the SQL buffer, change the table in the FROM
clause to the CUSTOVER table.

Now append DESC to the ORDER BY clause.

{4 Previous Chapter JER.—* Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Day 21 -

Common SQL MistakesErrorsand
Resolutions

Objectives

Welcome to Day 21. By the end of today, you will have become familiar with the
following:

. Several typical errors and their resolutions
. Common logical shortcomings of SQL users

. Ways to prevent daily setbacks caused by errors

| ntroduction

Today you will see various common errors that everyone--from novice to pro--makes
when using SQL. You will never be able to avoid all errors and/or mistakes, but being
familiar with a wide range of errors will help you resolve them in as short a time as

possible.

NOTE: We used Personal Oracle7 for our examples. Your particular

implementation will be very similar in the type of error, but could differ in
the numbering or naming of the error. We ran our SQL statements using
SQL*PLUS and set ECHOand FEEDBACK to on to see the statement.

Keep in mind that some mistakes will actually yield error messages, whereas others may
just be inadequacies in logic that will inevitably cause more significant errors or
problems down the road. With a strict sense of attention to detail, you can avoid most
problems, although you will always find yourself stumbling upon errors.

Common Errors

This section describes many common errors that you will receive while executing all
types of SQL statements. Most are simple and make you want to kick yourself on the
hind side, whereas other seemingly obvious errors are misleading.

Tableor View Does Not Exist

When you receive an error stating that the table you are trying to access does not
exist, it seems obvious; for example:

INPUT:
SQ.> @ abl es. sql
OUTPUT:

SQ.> spool tables.|st
SQ.> set echo on
SQ.> set feedback on
SQ.> set pagesi ze 1000
SQ.> select owner|]| '.' || table_nane
2 fromsys.dba table
3 where owner = 'SYSTEM
4 order by table nane
5 /
from sys. dba table
*
ERROR at |ine 2:
ORA-00942: table or view does not exi st
SQ.> spool off

sQL>

ANALYSIS:

Notice the asterisk below the word t abl e. The correct table name is sys. dba_t abl es.

An s was omitted from the table name.

But what if you know the table exists and you still receive this error? Sometimes when
you receive this error, the table does in fact exist, but there may be a security problem--
that is, the table exists, but you do not have access to it. This error can also be the
database server's way of saying nicely, "You don't have permission to access this table!"

TIP: Before you allow panic to set in, immediately verify whether or not
the table exists using a DBA account, if available, or the schema account.
You will often find that the table does exist and that the user lacks the
appropriate privileges to access it.

| nvalid Username or Password

INPUT:

SQ*Plus: Release 3.2.3.0.0 - on Sat May 10 11:15:35 1997
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.
Ent er user-nane: rplew
Ent er password:

OUTPUT:

ERROR ORA-01017: invalid usernane/ password; | ogon denied
Ent er user - nane:

This error was caused either by entering the incorrect username or the incorrect
password. Try again. If unsuccessful, have your password reset. If you are sure that you
typed in the correct username and password, then make sure that you are attempting to
connect to the correct database if you have access to more than one database.

FROM Keyword Not Specified

INPUT:
SQ.> @bl spc. sql
OUTPUT:

SQL> spool thlspc.|st

SQ.> set echo on

SQ.> set feedback on

SQL> set pagesi ze 1000

SQL> sel ect substr(tabl espace_nane, 1, 15) a,

2 substrfile_nane, 1,45) c, bytes
3 fromsys.dba data files
4 order by tabl espace_nane;

substrfile_nanme, 1,45) c, bytes

*

ERROR at |ine 2:
ORA- 00923: FROM keyword not found where expected
SQL> spool off

sQL>
ANALYSIS:

This error can be misleading. The keyword FROMis there, but you are missing a left
parenthesis between substr andfi | e_nane on line 2. This error can also be caused by
a missing comma between column names in the SELECT statement. If a column in the
SELECT statement is not fol lowed by a comma, the query processor automatically looks
for the FROMkeyword. The previous statement has been corrected as fol lows:

SQ.> sel ect substr(tabl espace_nane, 1, 15) a,
2 substr(file_nane, 1,45) c, bytes
3 fromsys.dba data files
4 order by tabl espace_nhane;

Group Function IsNot Allowed Here

INPUT:

SQL> sel ect count(last_nane), first_nane, phone_numnber
2 from enpl oyee_tbl
3 group by count(last_nane), first_nane, phone_nunber
4 |/

OUTPUT:

group by count(last_nane), first_nane, phone_nunber

*

ERRCR at |ine 3:
ORA- 00934: group function is not allowed here

sQL>
ANALYSIS:

As with any group function, COUNT may not be used in the GROUP BY clause. You can
list only column and nongroup functions, such as SUBSTR, in the GROUP BY clause.

TIP: COUNT is a function that is being performed on groups in the query.

The previous statement has been corrected using the proper syntax:

SQL> sel ect count(last_nane), first_nane, phone_nunber
2 from enpl oyee_tbl
3 group by last_nane, first_name, phone_nunber;

| nvalid Column Name

INPUT:
SQ.> @ abl es. sql
OUTPUT:

SQL> spool tables.| st
SQ.> set echo on
SQ.> set feedback on
SQL> set pagesi ze 1000
SQL> select owner|| "." || tabl enane
2 fromsys.dba_tables
3 where owner = 'SYSTEM
4 order by table_nane
5 /
select owner|| '.' || tablenane
ERROR at |ine 1:
ORA-00904: invalid colum nane
SQL> spool off

sQL>

ANALYSIS:

In line 1 the column t abl enane is incorrect. The correct column name ist abl e _nane.
The underscore was omitted. To see the correct columns, use the DESCRI BE command.
This error can also occur when trying to qualify a column in the SELECT statement by
the wrong table name.

Missing Keyword
INPUT:

SQL> create view enp_view
2 select * from enpl oyee_t bl
3 /

OUTPUT:

sel ect * from enpl oyee_t bl

*

ERROR at |ine 2:
ORA- 00905: m ssing keyword
SQL>

ANALYSIS:

Here the syntax is incorrect. This error occurs when you omit a mandatory word with
any given command syntax. If you are using an optional part of the command, that
option may require a certain keyword. The missing keyword in this example is as. The
statement should look like this:

SQL> create view enp_view as
2 select * from enpl oyee_t bl
3/

Missing L eft Parenthesis
INPUT:

SQ.> @nsert.sql
OUTPUT:

SQ.> insert into people_tbl values
2 '303785523', '"SMTH , '"JOHN, "'JAY', 'MALE', '10-JAN-50")
3 /
*303785523', 'SMTH , '"JOHN, 'JAY', 'MALE', '10-JAN-50')
*
ERROR at |ine 2:
ORA-00906: m ssing left parenthesis

sQL>

ANALYSIS:

On line 2 a parenthesis does not appear before the Social Security number. The correct
syntax should look like this:

SQ.> insert into people_tbl val ues
2 ('303785523', "SMTH, 'JOHN, "'JAY', 'MALE , '10-JAN-50")
3/

Missing Right Parenthesis

INPUT:

SQL> @ bl spc. sql
OUTPUT:

SQ.> spool tblspc.|st
SQ.> set echo on
SQ.> set feedback on
SQ.> set pagesi ze 1000
SQ.> sel ect substr(tabl espace_nane, 1, 15 a,
2 substr(file_nane, 1,45) c, bytes
3 fromsys.dba data files
4 order by tabl espace_nane;
sel ect substr(tabl espace_nane, 1, 15 a,
*
ERRCOR at |ine 1:
ORA-00907: m ssing right parenthesis
SQ.> spool off
SQL>

ANALYSIS:

On line 1 the right parenthesis is missing from the subst r . The correct syntax looks like
this:

SQ.> sel ect substr(tabl espace_nane, 1, 15) a,
2 substr(file_nane, 1,45) c, bytes
3 fromsys.dba data files
4 order by tabl espace_nane;

Missing Comma
INPUT:

SQL> @zinsert. sql
OUTPUT:

SQL> spool ezinsert.|st
SQ.> set echo on
SQ.> set feedback on
SQ.> insert into office _tbl val ues

2 ('303785523" 'SMTH , 'OFFICE OF THE STATE OF | NDI ANA, ADJUTANT
GENERAL')

3 |/

(' 303785523' 'SM TH , ' OFFI CE OF THE STATE OF | NDI ANA, ADJUTANT
GENERAL')
*

ERRCOR at |ine 2:
ORA- 00917: m ssing comma
SQL> spool off

sQL>

ANALYSIS:

On line 2 a comma is missing between the Social Security number and SM TH.

Column Ambiguously Defined

INPUT:

SQ.> @npl oyee_t bl
OUTPUT:

SQ.> spool enpl oyee. | st
SQ.> set echo on
SQ.> set feedback on
SQ.> sel ect p.ssn, nane, e.address, e.phone
2 fromenployee thl e,
3 payroll _tbl p
4 where e.ssn =p.ssn;
sel ect p.ssn, nane, e.address, e.phone
*
ERRCR at |ine 1:
ORA- 00918: col um anbi gously defi ned
SQ.> spool off

sQL>

ANALYSIS:

On line 1 the column name has not been defined. The tables have been given aliases of e
and p. Decide which table to pull the name from and define it with the table alias.

SQL Command Not Properly Ended

INPUT:

SQ.> create view enp_tbl as
2 select * from enpl oyee_t Dbl
3 order by nane
4 |/

OUTPUT:

order by nane
*
ERRCOR at |ine 3:
ORA- 00933: SQ@. command not properly ended

sQL>

ANALYSIS:

Why is the command not properly ended? You know you can use a/ to end an SQL
statement. Another fooler. An ORDER BY clause cannot be used in a CREATE VI EW
statement. Use a GROUP BY instead. Here the query processor is looking for a
terminator (semicolon or forward slash) before the ORDER BY clause because the
processor assumes the ORDER BY is not part of the CREATE VI EWstatement. Because the
terminator is not found before the ORDER BY, this error is returned instead of an error
pointing to the ORDER BY.

Missing Expression
INPUT:

SQ.> @ abl es. sql
OUTPUT:

SQL> spool tables.| st
SQ.> set echo on
SQ.> set feedback on
SQL> set pagesi ze 1000
SQL> select owner|| "." || table,
2 fromsys.dba_ tables
3 where owner = 'SYSTEM
4 order by table_nanme
5 [/
from sys. dba_t abl es

*

ERROR at |ine 2:

ORA- 00936: m ssing expression
SQL> spool off

SQL>

ANALYSIS:
Notice the comma after t abl e on the first line; therefore, the query processor is

looking for another column in the SELECT clause. At this point, the processor is not
expecting the FROMclause.

Not Enough Argumentsfor Function
INPUT:

SQL> @ bl spc. sql

OUTPUT:

SQ.> spool tblspc.|st

SQ.> set echo on

SQ.> set feedback on

SQ.> set pagesi ze 1000

SQ.> sel ect substr(tabl espace_nane, 1, 15) a,
2 decode(substr(file_nane, 1,45)) c, bytes
3 fromsys.dba data files
4 order by tabl espace_nane;

decode(substr(file_nane, 1,45)) c, bytes
*

ERRCR at |ine 2:

ORA- 00938: not enough argunents for function

SQ.> spool off

sQL>

ANALYSIS:

There are not enough arguments for the DECODE function. Check your implementation
for the proper syntax.

Not Enough Values

INPUT:
SQ.> @zinsert. sql
OUTPUT:

SQL> spool ezinsert.|st
SQ.> set echo on
SQ.> set feedback on
SQ.> insert into enployee_tbl val ues
2 ('303785523', "SMTH , "JOHN, 'JAY', 'MNALE)
3 /
insert into enployee_tbl val ues

ERROR at |ine 1:

ORA-00947: not enough val ues
SQL> spool off

SQL>

ANALYSIS:

A column value is missing. Perform a DESCRI BE command on the table to find the missing
column. You can insert the specified data only if you list the columns that are to be
inserted into, as shown in the next example:

INPUT:

SQL> spool ezinsert.| st
SQ.> set echo on
SQ.> set feedback on
SQL> insert into enployee tbl (ssn, |ast_nane, first_nanme, m d_nane,
sex)
2 values ('303785523", "SMTH , "JOHN , 'JAY', 'MALE)
3 /

Integrity Constraint Violated--Parent Key Not Found

INPUT:

SQ.> insert into payroll _tbl val ues
2 ('111111111', "SMTH, "JOHN)
3 /

OUTPUT:

insert into payroll _tbl val ues

*

ERRCOR at |ine 1:
ORA-02291: integrity constraint (enployee cons) violated - parent
key not found

sQL>

ANALYSIS:

This error was caused by attempting to insert data into a table without the data
existing in the parent table. Check the parent table for correct data. If missing, then
you must insert the data into the parent table before attempting to insert data into the
child table.

Oracle Not Available

INPUT:

(sun_su3)/ honme> sql pl us

SQ*Plus: Release 3.2.3.0.0 - Production on Sat May 10 11:19:50 1997
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.
Ent er user-nane: rplew

Ent er password:

OUTPUT:

ERROR: ORA-01034: ORACLE not avail abl e

ORA-07318: snsget: open error when openi ng sgadef.dbf file.

ANALYSIS:

You were trying to sign on to SQL*PLUS. The database is probably down. Check status
of the database. Also, make sure that you are trying to connect to the correct database
iIf you have access to multiple databases.

Inserted Value Too Large for Column

INPUT:
SQL> @zinsert. sql
OUTPUT:

SQ.> spool ezinsert.|st
SQ.> set echo on
SQ.> set feedback on
SQ.> insert into office_tbl values

2 ('303785523', "SMTH , 'OFFI CE OF THE STATE OF | NDI ANA, ADJUTANT
GENERAL')

3 |/

insert into office_tbl val ues

*

ERROR at |ine 1:

ORA- 01401: inserted value too large for colum
SQ.> spool off

SQL>

ANALYSIS:

One of the values being inserted is too large for the column. Use the DESCRI BE
command on the table for the correct data length. If necessary, you can perform an
ALTER TABLE command on the table to expand the column width.

TNS:listener Could Not Resolve SID Given in Connect Descriptor

INPUT:
SQLDBA> connect rplew xxxx@lat abasel
OUTPUT:

ORA- 12505: TNS:listener could not resolve SID given in connect
descri ptor
SQLDBA> di sconnect

D sconnect ed.
SQLDBA>

ANALYSIS:

This error is very common in Oracle databases. The listener referred to in the preceding
error is the process that allows requests from a client to communicate with the
database on a remote server. Here you were attempting to connect to the database.
Either the incorrect database name was typed in or the listener is down. Check the
database name and try again. If unsuccessful, notify the database administrator of the
problem.

| nsufficient Privileges During Grants

INPUT:
SQL> grant select on people_tbl to ron;
OUTPUT:

grant select on people_tbl to ron

*

ERRCOR at |ine 1:
ORA-01749: you may not GRANT/ REVOKE privil eges to/from yourself

sQL>
INPUT:

SQ.> grant sel ect on deno. enpl oyee to ron;
OUTPUT:

grant sel ect on denp. enpl oyee to ron

*

ERROR at |ine 1:
ORA- 01031: insufficient privileges
SQL>

This error occurs if you are trying to grant privileges on another user's table and you
do not have the proper privilege to do so. You must own the table to be able to grant
privileges on the table to other users. In Oracle you may be granted a privilege with the
Admin option, which means that you can grant the specified privilege on another user's
table to another user. Check your implementation for the particular privileges you
need to grant a privilege.

Escape Character in Your Statement--Invalid Char acter

Escape characters are very frustrating when trying to debug a broken SQL statement.
This situation can occur if you use the backspace key while you are entering your SQL
statement in the buffer or a file. Sometimes the backspace key puts an invalid character
in the statement depending upon how your keys are mapped, even though you might not
be able see the character.

Cannot Create Operating System File

This error has a number of causes. The most common causes are that the associated disk is
full or incorrect permissions have been set on the file system. If the disk is full, you
must remove unwanted files. If permissions are incorrect, change them to the correct
settings. This error is more of an operating system error, so you may need to get advice
from your system administrator.

Common Logical Mistakes

So far today we have covered faults in SQL statements that generate actual error
messages. Most of these errors are obvious, and their resolutions leave little to the
imagination. The next few mistakes are more (or less) logical, and they may cause
problems later--if not immediately.

Using Reserved Wordsin Your SQL statement

INPUT:

SQ.> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE
*

ERROR at |ine 1:
ORA- 00923: FROM keyword not found where expected

ANALYSIS:

In this example the query processor is not expecting the word DATE because it is a
reserved word. There is no comma after the pseudocolumn SYSDATE; therefore, the next
element expected is the FROMclause.

INPUT:

SQ.> sel ect sysdate "DATE"

2 fromdual;

OUTPUT:

15- MAY- 97
ANALYSIS:

Notice how the reserved word problem is al leviated by enclosing the word DATE with
double quotation marks. Double quotation marks allow you to display the literal
string DATE as a column alias.

NOTE: Be sure to check your specific database documentation to get a list
of reserved words, as these reserved words will vary between different
implementations.

You may or may not have to use double quotation marks when naming a column alias. In
the following example you do not have to use double quotation marks because TODAY is
not a reserved word. To be sure, check your specific implementation.

INPUT:

SQ.> sel ect sysdate TODAY
2 fromdual;

OUTPUT:

15- MAY- 97
sQL>

TheUse of DISTINCT When Selecting Multiple Columns

INPUT:

SQ.> select distinct(city), distinct(zip)
2 from address thbl;

OUTPUT:

sel ect distinct(city), distinct(zip)

ERROR at |ine 1:
ORA- 00936: m ssing expression
SQL>

ANALYSIS:

A city can have more than one ZIP code. As a rule, you should use the DI STI NCT
command on only one selected column.

Dropping an Unqualified Table

Whenever dropping a table, always use the owner or schema. You can have duplicate
table names in the database. If you don't use the owner/schema name, then the wrong
table could be dropped.

The risky syntax for dropping a table:
SYNTAX:
SQ.> drop table people _thbl;

The next statement is much safer because it specifies the owner of the table you want to
drop.

SYNTAX:

SQ.> drop table ron. people_thbl;

WARNING: Qualifying the table when dropping it is always a safe practice,
although sometimes this step may be unnecessary. Never issue the DROP
TABLE command without first verifying the user id by which you are
connected to the database.

The Use of Public Synonymsin a Multischema Database

Synonyms make life easier for users; however, public synonyms open tables that you
might not want all users to see. Use caution when granting public synonyms especial ly
in a multischema environment.

The Dreaded Cartesian Product

INPUT:

SQL> select a.ssn, p.last_n
2 from address thl a,

3 peopl e tbl p;
OUTPUT:
SSN LAST NANVE

303785523 SM TH
313507927 SM TH
490552223 SM TH
312667771 SM TH
420001690 SM TH
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES
303785523 OSBORN
313507927 OSBORN
490552223 OSBORN
312667771 OSBORN
420001690 OSBORN
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES

16 rows sel ect ed.

This error is caused when you do not join the tables in the WHERE clause. Notice how
many rows were selected. Both of the preceding tables have 4 rows; therefore, we
wanted 4 rows returned instead of the 16 rows that we received. Without the use of a
join in the WHERE clause, each row in the first table is matched up with each row in the
second. To calculate the total number of rows returned, you would multiple 4 rows by
4 rows, which yields 16. Unfortunately, most of your tables will contain more than 4
rows of data, with some possibly exceeding thousands or millions of rows. In these cases
don't bother doing the multiplication, for your query is sure to become a run-away

guery.
Failureto Enforce Input Standards

Assuring that input standards are adhered to is commonly known as quality assurance
(QA). Without frequent checks on the data entered by data entry clerks, you run a very
high risk of hosting trash in your database. A good way to keep a handle on quality
assurance is to create several QA reports using SQL, run then on a timely basis, and
present their output to the data entry manager for appropriate action to correct errors
or data inconsistencies.

Failureto Enforce File System Structure Conventions

You can waste a lot of time when you work with file systems that are not standardized.
Check your implementation for recommended file system structures.

Allowing Large Tablesto Take Default Storage Parameters

Default storage parameters will vary with implementations, but they are usually
rather small. When a large or dynamic table is created and forced to take the default
storage, serious table fragmentation can occur, which can severely hinder database
performance. Good planning before table creation will help to avoid this. The
following example uses Oracle's storage parameter options.

INPUT:

SQ.> create table test thbhl

(ssn nunmber (9) not null,
name varchar2(30) not null)
st or age

(initial extent 100M

next extent 20M

m nextents 1

maxextents 121

pcti ncrease 0};

O©CoOoO~NOOTLh,WN

Placing Objectsin the System T ablespace

The following statement shows a table being created in the SYSTEMtablespace.
Although this statement will not return an error, it is likely to cause future problems.

INPUT:

SQ.> create table test thbhl

2 (ssn nunmber (9) not nul |

3 nane varchar2(30) not null)
4 tabl espace SYSTEM

5 storage

6 (initial extent 100M

7 next extent 20M

8 mnextents 1

9 maxextents 121

10 pctincrease 0};

The next example corrects this so-called problem:

INPUT:

SQL> create table test _thbhl

2 (ssn nunber (9) not nul |
3 name varchar2(30) not null)
4 tablespace linda_ ts
5 (initial extent 100M
6 next extent 20M
7 mnextents 1
8 nmaxextents 121
9 pctincrease 0};
ANALYSIS:

In Oracle, the SYSTEMtablespace is typically used to store SYSTEMowned objects, such
as those composing the data dictionary. If you happen to place dynamic tables in this
tablespace and they grow, you run the risk of corrupting or at least filling up the free
space, which in turn will probably cause the database to crash. In this event the
database may be forced into an unrecoverable state. Always store application and user
tables in separately designated tablespaces.

Failureto Compress L arge Backup Files

IT you do large exports and do not compress the files, you will probably run out of disk
space to store the files. Always compress the export files. If you are storing archived log
files on hard disk instead of on tape, these files can be and probably should be
compressed to save space.

Failureto Budget System Resour ces

You should always budget your system resources before you create your database. The
result of not budgeting system resources could be a poorly performing database. You
should always know whether the database is going to be used for transactions,
warehousing, or queries only. The database's function will affect the number and size
of rollback segments. The number of database users will inevitably affect the sizing of
the USERS and TEMP tablespaces. Do you have enough space to stripe your larger
tables? Tables and indexes should be stored on separate devices to reduce disk
contention. You should keep the redo logs and the data tablespaces on separate devices
to alleviate disk contention. These are just a few of the issues to address when
considering system resources.

Preventing Problemswith Your Data

Your data processing center should have a backup system set up. If your database is
small to medium, you can take the extra precaution of using EXPORT to ensure that
your data is backed up. You should make a backup of the export file and keep it in

another location for further safety. Remember that these files can be large and will
require a great deal of space.

Sear ching for Duplicate Recordsin Your Database

If your database is perfectly planned, you should not have a problem with duplicate
records. You can avoid duplicate records by using constraints, foreign keys, and unique
indexes.

Summary

Many different types of errors--literal ly hundreds--can stand in the way of you and
your data. Luckily, most errors/mistakes are not disasters and are easy to remedy.
However, some errors/mistakes that happen are very serious. You need to be careful
whenever you try to correct an error/mistake, as the error can multiply if you do not
dig out the root of the problem. When you do make mistakes, as you definitely will, use
them as learning experiences.

TIP: We prefer to document everything related to database errors,
especial ly uncommon errors that we happen to stumble upon. A file of
errors is an invaluable Troubleshooting reference.

NOTE: Day 21 provides you with a sample of some of the most common
Personal Oracle7 errors. For a complete list of errors and suggested
resolutions, remember to refer to your database documentation.

Q& A

Q You make it sound as if every error has a remedy, so why worry?

A Yes, most errors/mistakes are easy to remedy; but suppose you drop a table in a
production environment. You might need hours or days to do a database recovery.
The database will be done during this time, and your company will be paying
overtime to several people to complete the fix. The boss will not be happy.

Q Any advice on how to avoid errors/mistakes?

A Being human, you will never avoid all errors/mistakes; however, you can avoid
many of them through training, concentration, self-confidence, good attitude,

and a stress-free work environment.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz
1. A user calls and says, "l can't sign on to the database. But everything was

working fine yesterday. The error says invalid user/password. Can you help me?"
What steps should you take?

2. Why should tables have storage clauses and a tablespace destination?
Exercises

1. Suppose you are logged on to the database as SYSTEM and you wish to drop a
table called Hl STORY in your schema. Your regular user id is JSM TH. What is the
correct syntax to drop this table?

2. Correct the following error:
INPUT:

SQL> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE

ERROR at |ine 1:
ORA- 00923: FROM keyword not found where expected

| € Previous Chapter JE(-> MNext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

Week 31n Review

This week should have been very productive. Week 3 shows you the flexibility of SQL,
explains how you can apply these features to real-world problems, and introduces some
popular extensions to SQL. You should know how to use the tools that are available
with your implementation of SQL to make your code more readable. By now you realize
that all implementations of SQL share the same general concepts, although the syntax
may differ slightly.

You should have a clear understanding of the data dictionary, what data it contains,
and how to retrieve useful information from it. If you understand how to generate SQL
from another SQL statement, you should be ready to fly to unlimited heights.

What about errors? You will never be immune from syntax errors or logical mistakes,
but as you gain experience with SQL, you will learn how to avoid many problems. But
then again, errors can be excellent learning opportunities.

(e Previous Chapter JRC> Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Appendix A -
Glossary of Common SQL Statements

ALTER DATABASE
ALTER DATABASE dat abase nane;

ALTER DATABASE command changes the size or settings of a database. Its syntax varies
widely among different database systems.

ALTER USER
ALTER USER user

ALTER USER statement changes a user's system settings such as password.

BEGIN TRANSACTION

1> BEGA N TRANSACTI ON transacti on_nane
2> transaction type

3> if exists

4> begin

BEG N TRANSACTI ONstatement signifies the beginning of a user transaction. A
transaction ends when it is either committed (see COVM T TRANSACTI ON) or canceled
(see ROLLBACK TRANSACTI ON). A transaction is a logical unit of work.

CLOSE CURSOR

cl ose cursor_nane

CLOSE cur sor _nane statement closes the cursor and clears it of data. To completely
remove the cursor, use the DEALLOCATE CURSCR statement.

COMMIT TRANSACTION
SQL> COW T,

COW T TRANSACTI ONstatement saves all work begun since the beginning of the
transaction (since the BEG N TRANSACTI ONstatement was executed).

CREATE DATABASE
SQ.> CREATE DATABASE dat abase nane;

dat abase_nane creates a new database. Many different options can be supplied, such as
the device on which to create the database and the size of the initial database.

CREATE INDEX

CREATE | NDEX i ndex_narme
ON tabl e_nane(col um_nanel, [colum_nane2], ...);

the contents of the indexed field(s).

CREATE PROCEDURE

create procedure procedure_nane

[[(] @araneter _nane
datatype [(length) | (precision [, scale])
[= defaul t][output]

[, @araneter_nane
datatype [(length) | (precision [, scale])
[= default][output]]...[)]]

[with reconpil e]

as SQL _statenents

CREATE PROCEDURE statement creates a new stored procedure in the database. This
stored procedure can consist of SQL statements and can then be executed using the
EXECUTE command. Stored procedures support input and output parameters passing and
can return an integer value for status checking.

CREATE TABLE

CREATE TABLE t abl e_nane

(fieldl datatype [NOT NULL],
field2 datatype [NOT NULL],
field3 datatype [NOT NULL]...)

CREATE TABLE statement creates a new table within a database. Each optional field is
provided with a name and data type for creation within that table.

CREATE TRIGGER

create trigger trigger_nane
on tabl e_nane
for {insert, update, delete}
as SQ._Statenents

CREATE TRI GGERstatement creates a trigger object in the database that will execute

its SQL statements when its corresponding table is modified through an | NSERT,
UPDATE, or DELETE. Triggers can also call stored procedures to execute complex tasks.

CREATE USER
CREATE USER user

CREATE USERstatement creates a new user account complete with user ID and
password.

CREATE VIEW

CREATE VI EW <vi ew_nane> [(col uml, colum2...)] AS
SELECT <t abl e_nane col unm_nanes>
FROM <t abl e_nane>

using the CREATE VI EWstatement. After a view is created, it can be queried and data
within the view can be modified.

DEALLOCATE CURSOR

deal | ocate cursor cursor_nane

DEALLOCATE CURSORstatement completely removes the cursor from memory and frees
the name for use by another cursor. You should always close the cursor with the
CLOSE CURSORstatement before deallocating it.

DECLARE CURSOR

decl are cursor_nanme cursor
for sel ect _statenent

DECLARE CURSORstatement creates a new cursor from the SELECT statement query.

The FETCH statement scrolls the cursor through the data until the variables have
been loaded. Then the cursor scrolls to the next record.

DROP DATABASE

DROP DATABASE dat abase_ nane;

DROP DATABASE statement completely deletes a database, including all data and the
database's physical structure on disk.

DROP INDEX
DROP | NDEX i ndex_nane;

DROP | NDEX statement removes an index from a table.

DROP PROCEDURE

drop procedure procedure_nane

DROP PROCEDURE statement drops a stored procedure from the database; its function is
similar to the DROP TABLE and DRCOP | NDEX statements.

DROP TABLE

DROP TABLE t abl e_nane;

DROP TABLE statement drops a table from a database.

DROP TRIGGER
DROP TRI GGER tri gger _nane

DROP TRI GGER statement removes a trigger from a database.

DROP VIEW

DROP VI EW vi ew_narne;

DROP VI EWstatement removes a view from a database.

EXECUTE

execute [@eturn_status = |
procedur e_nane
[[@yar anet er _nanme =] val ue
[@araneter_nane =] @ariable [output]...]]

EXECUTE command runs a stored procedure and its associated SQL statements.

Parameters can be passed to the stored procedure, and data can be returned in these
parameters if the out put keyword is used.

FETCH

fetch cursor_nane [into fetch_target |ist]

FETCH command loads the contents of the cursor's data into the provided program
variables. After the variables have been loaded, the cursor scrolls to the next record.

FROM
FROM <t abl eref> [, <tableref> ...]

FROM specifies which tables are used and/or joined.

GRANT
GRANT role TO user

or

GRANT system privilege TO {user_nane | role | PUBLIC}

GRANT command grants a privilege or role to a user who has been created using the
CREATE USER command.

GROUP BY

GROUP BY <col > [, <col> ...]

GROUP BY statement groups all the rows with the same column value.

HAVING

HAVI NG <search_cond>

HAVING is valid only with GROUP BY and limits the selection of groups to those that
satisfy the search condition.

INTERSECT
| NTERSECT

INTERSECT returns all the common elements of two SELECT statements.

ORDER BY
ORDER BY <order |ist>

ORDER BY statement orders the returned values by the specified column(s).

ROLLBACK TRANSACTION

ROLLBACK TRANSACTI ONstatement effectively cancels all work done within a
transaction (since the BEG N TRANSACTI ONstatement was executed).

REVOKE
REVCKE rol e FROM user;

or

REVOKE {object_priv | ALL [PRI VI LEGES]}

[, {object priv | ALL [PRIVILEGES]}]

ON [schema.] obj ect

FROM {user | role | PUBLIC} [, {user | role | PUBLIC}]

REVOKE command removes a database privilege from a user, whether it be a system
privilege or a role.

SELECT

SELECT [DI STINCT | ALL]

SELECT statement is the beginning of each data retrieval statement. The modifier
DI STI NCT specifies unique values and prevents duplicates. ALL is the default and
allows duplicates.

SET TRANSACTION
SQL> SET TRANSACTI ON (READ ONLY | USE ROLLBACK SEGVENT);
SET TRANSACTI ONenables the user to specify when a transaction should begin. The

READ ONLY option locks a set of records until the transaction ends to ensure that the
data is not changed.

UNION

UNI ON

UNI ON statement returns all the elements of two SELECT statements.

WHERE

WHERE <sear ch_cond>

WHERE statement limits the rows retrieved to those meeting the search condition.

*

* gets all the columns of a particular table.

| ¢ Previous Chapter B+ Next Chapter

MACMILLAN COMPUTER PUBLISHING USA
1 A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

| ¢ Previous Chapter

(= MNextChapter

- Appendix B -
Source Code Listingsfor the C++ Program
Used on Day 14

/'l tyssgvw. h :
Il

interface of the CTyssql Vi ew cl ass

FEEEEEErrr i i b rr i rrrrrrrr

cl ass CTyssql Set;

cl ass CTyssql View : public CRecordVi ew

{
protected: // create fromserialization
CTyssql View);
DECLARE_DYNCREATE(CTyssql Vi ew)
public:

/1 {{ AFX_DATA(CTyssql Vi ew)

enum { 1 DD = | DD _TYSSQ._FORM };
CTyssql Set* m pSet;
/1}}AFX_DATA

Il Attributes
public:
CTyssql Doc* Get Docunent () ;

/'l Operations
public:

only

virtual CRecordset* OnCet Recordset();

/1 1 nplenentation
public:

virtual ~CTyssqgl View);
#i f def _DEBUG

virtual void AssertValid() const;

virtual void Dunp(CDunpCont ext & dc) const;
#endi f

pr ot ect ed:
virtual void DoDat aExchange(CDat aExchange* pDX);// DDX/ DDV support
virtual void OnlnitialUpdate(); // called first time after

const ruct

/'l Generated nessage nmap functions

pr ot ect ed:
/1 {{ AFX_NMSE CTyssql Vi ew)
/'l NOTE - the CassWzard will add and renove nenber functions
her e.
Il DO NOT EDI T what you see in these bl ocks of generated
code !
/1}} AFX_NMSG

DECLARE_MESSAGE MAP()
}s

#i fndef _DEBUG // debug version in tyssqvw. cpp
inline CTyssql Doc* CTyssqgl Vi ew: : Get Docunent ()

{ return (CTyssql Doc*)m pDocunent; }
#endi f

FEEEEEEEEE bbb bbb bbb r e rrr i rrrrrr

/'l tyssqgl.h : main header file for the TYSSQ. application
/1

#i fndef _ AFXWN H
#error include 'stdafx.h' before including this file for PCH
#endi f

#i ncl ude "resource. h" /'l main synbol s

FEEEEEEE i rrrrr bbb rr i rrrrrrrrr
/'l CTyssql App:

/Il See tyssql.cpp for the inplenentation of this class

/1

cl ass CTyssqgl App : public CW nApp

{
publi c:

CTyssql App();

/1 Overrides
virtual BOOL Initlnstance();

/1 1nplenmentation
/1 {{ AFX_MSE CTyssql App)

af x_msg voi d OnAppAbout () ;
[/ NOTE - the CassWzard will add and renove nenber functions

her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code !
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()

b

FEEEEEEE bbb rr i rrirrrrrirr
/'l tyssqgset.h : interface of the CTyssql Set cl ass

/1

FEEEEEEE bbb rr i rrrrrrrr

cl ass CTyssqgl Set : public CRecordset

{
DECLARE_DYNAM C(CTyssqgl Set)

publi c:
CTyssql Set (CDat abase* pDat abase = NULL);

/'l Fi el d/ Param Dat a
/1 {{ AFX_FI ELD(CTyssql Set, CRecordset)
CString m_NAME;
CString m_ADDRESS;
CString m_STATE;
CString m ZI P;
CString m_PHONE
CString m_REMARKS;
/1}} AFX_FI ELD

/1 1nplenmentation

pr ot ect ed:
virtual CString GetDefaul t Connect (); /| Default connection
string
virtual CString GetDefaultSQ.(); /] default SQ. for Recordset
virtual void DoFi el dexchange(CFi el dExchange* pFX); /'l RFX
support
1
/'l tyssqdoc.h : interface of the CTyssqgl Doc cl ass
/1

FEEEEEEEEE bbb bbb rr bbb r b rrrrrrrrrrr

cl ass CTyssqgl Doc : public CDocunent
{

protected: // create fromserialization only
CTyssql Doc();
DECLARE_DYNCREATE(CTyssql Doc)

/'l Attributes
publi c:
CTyssqgl Set m tyssql Set;

/'l Operations
publi c:

/1 1nplenmentation
publi c:
virtual ~CTyssqgl Doc();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f

pr ot ect ed:
virtual BOOL OnNewDocunent () ;

/'l Generated nessage nmap functions

pr ot ect ed:
/1 {{ AFX_MSE CTyssql Doc)
/'l NOTE - the ClassWzard will add and renove nmenber functions
her e.
Il DO NOT EDI T what you see in these bl ocks of generated
code !
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()
1
FEEEEEEE i r b rr i rrrrrrrrr
/'l stdafx.h : include file for standard system i ncl ude files,
/'l or project specific include files that are used frequently, but
Il are changed infrequently
/1
#i ncl ude <af xwi n. h> /'l MFC core and standard comnponents
#i ncl ude <af xext. h> /'l MFC extensions (including VB)
#i ncl ude <af xdb. h> /'l MFC dat abase cl asses

FHETEEEEE bbb b r bbb bbb rrirrrrnly

/1 {{ NO_DEPENDENCI ES} }
/'l App Studio generated include file.
/'l Used by TYSSQ.. RC

/1

#defi ne | DR_MAI NFRAME 2
#defi ne | DD_ABOUTBOX 100
#define | DD_TYSSQL_FORM 101
#defi ne | DP_FAI LED_OPEN_DATABASE 103
#defi ne | DC_NAVE 1000
#defi ne | DC_ADDRESS 1001
#defi ne | DC_STATE 1002
#define 1 DC_ZI P 1003

/'l Next default values for new objects
/1

#i f def APSTUDI O_| NVOKED

#i f ndef APSTUDI O READONLY_SYMBOLS

#define _APS_NEXT RESOURCE VALUE 102
#define _APS_NEXT COVMAND VALUE 32771
#define _APS_NEXT CONTROL_VALUE 1004

#defi ne _APS NEXT_SYMED VALUE 101
#endi f
#endi f

FEETEEEEEE bbbt b rrri i rrrrly

[/ mainfrmh : interface of the CMii nFranme cl ass
/1]
LLLLTIILLI i rirrirrrrrrrirrrrrrri

cl ass CMai nFrane : public CFranmeWhd

{

protected: // create fromserialization only
CMai nFrame() ;
DECLARE_DYNCREATE(CMai nFr ane)

/1l Attributes
publi c:

/'l QOperations
publi c:

/1 1nplenentation
publi c:
virtual ~CMai nFrane();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f

protected: // control bar enbedded nenbers
CSt atusBar m wndSt at usBar ;
CTool Bar m wndTool Bar;

/'l Generated nessage map functions
pr ot ect ed:
I 1 {{ AFX_NMSGE CMai nFr ane)
af x_msg int OnCreat e(LPCREATESTRUCT | pCreateStruct);
/'l NOTE - the ClassWzard will add and renove nmenber functions
her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()

}s
JILTTILTT LTI LTI LTIl I LIl I LTIl iliiiiiiiiii1

/'l tyssqvw.cpp : inplenentation of the CTyssql Vi ew cl ass
/1

#i ncl ude "stdaf x. h"
#i ncl ude "tyssqgl.h"

#i ncl ude "tyssgset. h"

#i ncl ude "tyssqgdoc. h"
#i ncl ude "tyssqvw. h"

#i f def _DEBUG

#undef THI S _FI LE

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

FEEEEEEE bbb rr i rrirrrrrirr
/'l CTyssql Vi ew
| MPLEMENT _DYNCREATE(CTyssqgl Vi ew, CRecor dVi ew)

BEG N_MESSAGE _MAP(CTyssgl Vi ew, CRecor dVi ew)
/1 {{ AFX_NMSG_MAP(CTyssql Vi ew)
/'l NOTE - the CassWzard will add and renbve mappi ng nacros
her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_MSG_NAP
END_MESSAGE_MAP()

FEEEEEEE bbb rrrrrrrrr
/'l CTyssql Vi ew construction/ destruction

CTyssql Vi ew. : CTyssql Vi ew()
CRecor dVi ew(CTyssql Vi ew. : | DD)

{
/1 {{ AFX_DATA | NI T(CTyssqgl Vi ew)
m pSet = NULL;
1} }YAFX_DATA INIT
// TODO add construction code here

}

CTyssql Vi ew. : ~CTyssql Vi ew()

{

}

voi d CTyssql Vi ew. : DoDat aExchange(CDat aExchange* pDX)

{
CRecor dVi ew. : DoDat aExchange(pDX) ;
I 1 {{ AFX_DATA MAP(CTyssql Vi ew)
DDX_Fi el dText (pDX, | DC_ADDRESS, m pSet->m ADDRESS, m pSet);
DDX_Fi el dText (pDX, 1 DC_NAME, m pSet->m NAME, m pSet);
DDX_Fi el dText (pDX, | DC_STATE, m pSet->m STATE, m pSet);
DDX_Fi el dText (pDX, I1DC ZI P, mpSet->mZI P, mpSet);
/1}} AFX_DATA_NAP

}

voi d CTyssqgl View : Onlnitial Updat e()

{

m pSet = &Get Docunent ()->m tyssql Set;
CRecordView. : Onlnitial Updat e();

FEEEEEEE i rr b rr i rrrrrrrr
/'l CTyssql Vi ew di agnosti cs

#i f def _DEBUG
voi d CTyssqgl Vi ew. : AssertVal i d() const

{
CRecordVi ew. : AssertValid();
}
voi d CTyssql Vi ew: : Dunp(CDunpCont ext & dc) const
{
CRecor dVi ew. : Dunp(dc);
}

CTyssql Doc* CTyssql Vi ew. : Get Docunent () // non-debug version is inline

{
ASSERT(m _pDocunent - >| sKi ndOF (RUNTI ME_CLASS(CTyssql Doc))) ;

return (CTyssql Doc*) m pDocunent ;

}
#endi f // _DEBUG

FEEEEEEE bbb rrrrrrrrr
/'l CTyssql Vi ew dat abase support

CRecordset* CTyssql Vi ew. : OnGet Recor dset ()
{

}

return mpSet;

FEEEEEEE b r bbb rrrrrirrrrr
/'l CTyssql Vi ew nessage handl ers

/'l tyssqgset.cpp : inplenmentation of the CTyssql Set cl ass
/1

#i ncl ude "stdaf x. h"
#i ncl ude "tyssqgl.h"
#i ncl ude "tyssgset. h"

FEEEEEEE i rrrr i r i r i rr i rrrrrrrrr
/'l CTyssql Set i npl enentation

| MPLEMENT _DYNAM C(CTyssqgl Set, CRecordset)

CTyssql Set : : CTyssql Set (CDat abase* pdb)
CRecor dset (pdb)
{

/1 {{ AFX_FI ELD_|I NI T(CTyssql Set)
m NAME = "";

m ADDRESS = "";

m STATE = "";

mzip ="";

m PHONE = "";

m REMARKS = "";
m nFi el ds = 6;
[1}}AFX_FIELD INI'T

}
CString CTyssqgl Set: : Get Def aul t Connect ()
{
return "ODBC, DSN=TYSSQ.; ";
}
CString CTyssqgl Set:: Get Def aul t SQL()
{
return "SELECT * FROM CUSTOVER ORDER BY NAME'
}
voi d CTyssql Set: : DoFi el dExchange(CFi el dExchange* pFX)
{
/1 {{ AFX_FI ELD_MAP(CTyssqgl Set)
pFX—>SetF|eIdType(CFleIdExchange out put Col um) ;
RFX_Text (pFX, "NAVE', m NAME);
RFX_Text (pFX, "ADDRESS m_ADDRESS) ;
RFX_Text (pFX, "STATE", nLSTATE);
RFX_Text (pFX, "ZIP', mZI P);
RFX_Text (pFX, "PHONE", m PHONE)
RFX_Text (pFX, "REMARKS', m REMARKS);
/1}}AFX_FI ELD_NAP
}

/'l tyssqgl.cpp : Defines the class behaviors for the application.
/1

#i ncl ude "stdaf x. h"
#i ncl ude "tyssqgl.h"

#i ncl ude "mai nfrmh"
#i ncl ude "tyssgset. h"
#i ncl ude "tyssqgdoc. h"
#i ncl ude "tyssqvw. h"

#i f def _DEBUG

#undef THI S _FI LE

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

FEEEEEEE i rrrr i r i r i rr i rrrrrrrrr
/'l CTyssql App

BEG N_MESSAGE _MAP(CTyssgl App, CW nApp)
|1 {{ AFX_NMSG_MAP(CTyssql App)
ON_COVVAND(| D_APP_ABQUT, OnAppAbout)
/'l NOTE - the CassWzard will add and renbve mappi ng nacros
her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_MSG_NMAP

END_MESSAGE_MAP()

FEEEEEEE i rr i rr i rr i rrirrirr
/'l CTyssql App construction

CTyssql App: : CTyssql App()
{
/1 TODO add construction code here,
/'l Place all significant initialization in Initlnstance

}

FEEEEEEE i rr i rr i rr i rrirrrrr
/'l The one and only CTyssqgl App obj ect

CTyssqgl App NEAR t heApp;

FEEEEEEE b r i rr i rrirrrrr
/'l CTyssql App initialization

BOOL CTyssql App::Initlnstance()

{
/1 Standard initialization
/1 1f you are not using these features and wi sh to reduce the size
/1 of your final executable, you should renpove fromthe follow ng
/'l the specific initialization routines you do not need.

Set Di al ogBkCol or () ; /'l Set dial og background color to gray
LoadStdProfileSettings(); // Load standard INl file options
(i ncluding MRU)

/'l Register the application's docunent tenplates. Docunent
tenpl at es

/! serve as the connection between docunments, frane w ndows and
Vi ews.

CSi ngl eDocTenpl at e* pDocTenpl at e;
pDocTenpl ate = new CSi ngl eDocTenpl at e(
| DR_MAI NFRAME,
RUNTI ME_CLASS(CTyssql Doc) ,
RUNTI ME_CLASS(CMVai nFr ane) , /1 main SDI franme w ndow
RUNTI ME_CLASS(CTyssql Vi ew)) ;
AddDocTenpl at e(pDocTenpl at e) ;

/'l create a new (enpty) docunent
OnFi | eNew() ;

if (mlpCndLine[0] '="\0")
{

}

/1 TODO add conmand |ine processing here

return TRUE;
}

FEEEEEEEEE e r bbb bbb bbb r b rr i rrr i rrrrrrr

/1 CAbout DI g dial og used for App About

cl ass CAboutDi g : public CD al og
{
publi c:

CAbout DI g() ;

/'l Dialog Data
I 1 {{ AFX_DATA(CAbout DI g)
enum { 1 DD = | DD_ABOUTBOX };
/1}} AFX_DATA

/1 1nplenmentation
pr ot ect ed:

virtual void DoDat aExchange(CDat aExchange* pDX); /| DDX/ DDV
support

11 {{ AFX_NM5QE CAbout D g)

/'l No nessage handl ers
/1}} AFX_NMSG
DECLARE_MESSAGE_MAP()

1
CAbout DI g: : CAbout DI g() : CDi al og(CAbout DI g: : 1 DD)
{
I'1 {{ AFX_DATA | NI T(CAbout DI g)
[1}}AFX_DATA INI'T
}
voi d CAbout DI g: : DoDat aExchange(CDat aExchange* pDX)
{
CDi al og: : DoDat aExchange(pDX) ;
/1 {{ AFX_DATA_NAP(CAbout DI g)
/1}} AFX_DATA NAP
}

BEG N_MESSAGE MAP(CAbout DI g, CDi al 0og)
1 {{ AFX_NMSG_NMAP(CAbout DI g)
/'l No nessage handl ers
/1}} AFX_MSG_NMAP
END_MESSAGE_MAP()

/'l App command to run the dial og
voi d CTyssql App: : OnAppAbout ()
{

CAbout DI g about DI g;

about Dl g. Dovbdal () ;

}

FEEEEEEE i rr i rrrrr i rrrrrr
/'l CTyssql App comands

/'l tyssqdoc.cpp : inplenentation of the CTyssql Doc cl ass
/1

#i ncl ude "stdafx. h"
#i ncl ude "tyssqgl.h"

#i ncl ude "tyssgset. h"
#i ncl ude "tyssqgdoc. h"

#i f def _DEBUG

#undef THI S _FI LE

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

FEEEEEEE bbb rr i rrirrrrrirr
/'l CTyssql Doc

| MPLEMENT _DYNCREATE(CTyssqgl Doc, CDocunent)

BEG N_MESSAGE _MAP(CTyssgl Doc, CDocunent)
/1 {{ AFX_NMSG_MAP(CTyssql Doc)
/'l NOTE - the CassWzard will add and renbve mappi ng nacros
her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code!
/1}} AFX_MSG_NAP
END_MESSAGE_MAP()

FEEEEEEE bbb rrrrrrrrr
/'l CTyssql Doc construction/ destruction

CTyssql Doc: : CTyssql Doc()

{
/1 TODO add one-tine construction code here
}
CTyssql Doc: : ~CTyssql Doc()
{
}
BOOL CTyssqgl Doc: : OnNewDocunent ()
{
i f (!CDocunent:: OnNewDocunent ())
return FALSE
/1 TODO add reinitialization code here
/1 (SDI docunments will reuse this docunent)
return TRUE;
}

FEEEEEEE i rr i rrrrr i rrrrrr
/'l CTyssql Doc di agnostics

#i f def _DEBUG
voi d CTyssql Doc: : AssertValid() const

{

}
voi d CTyssql Doc: : Dunp(CDunpCont ext & dc) const

CDocunent : : Assert Val i d();

{

}
#endi f // _DEBUG

CDocunent : : Dunp(dc);

FEEEEEEE i rr bbb rr i irrirrrrrrrr
/'l CTyssql Doc comands

/'l stdafx.cpp : source file that includes just the standard incl udes
/'l stdafx.pch will be the pre-conpiled header
/'l stdafx.obj will contain the pre-conpiled type informtion

#i ncl ude "stdafx. h"

/1 mainfrmcpp : inplenentation of the CMai nFrame cl ass
/1

#i ncl ude "stdaf x. h"
#i ncl ude "tyssqgl.h"

#i ncl ude "rmai nfrm h"

#i f def _DEBUG

#undef THI S _FI LE

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

LD rrrrrrirrrrrrri
/1 CMai nFr ane

| MPLEMENT _DYNCREATE(CMai nFr ame, CFr ameWid)

BEG N_MESSAGE _MAP(CMai nFr ane, CFr ameWhd)
/1 {{ AFX_NMSG_MAP(CMVai nFr ane)
/'l NOTE - the CassWzard will add and renbve mappi ng nacros
her e.
Il DO NOT EDIT what you see in these bl ocks of generated
code !
ON_WM CREATE()
/1}} AFX_MSG_NMAP
END_MESSAGE_MAP()

FEEEEEEE bbb rr i rrrrrrrr
/'l arrays of IDs used to initialize control bars

/1l toolbar buttons - IDs are command buttons
static U NT BASED CODE buttons[] =
{
/'l same order as in the bitmap 'tool bar. bnp'
| D EDIT_CUT
| D_EDI T_COPY,
| D EDI T_PASTE,
| D_SEPARATOR,
| D_FI LE PRI NT,
| D_SEPARATOR,
| D RECORD FI RST,

| D_RECORD_PREV,
| D_RECORD_NEXT,
| D_RECORD_LAST,

| D_SEPARATOR,
| D_APP_ABOUT
}
static U NT BASED CODE indicators[] =
{
| D_SEPARATOR, /'l status line indicator
| D_| NDI CATOR_CAPS,
| D_| NDI CATOR_NUM
| D_| NDI CATOR_SCRL,
}

LD rirrrrrrrrrrirrrrrrri
/1 CMai nFranme construction/destruction

CMai nFrane: : CMai nFrane()

{
/1 TODO add menber initialization code here
}
CMai nFrane: : ~CMVai nFrane()
{
}
i nt CMai nFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)
{
i f (CFrameWhd: : OnCreate(l pCreateStruct) == -1)
return -1;
if (!mwndTool Bar. Create(this) ||
I'm wndTool Bar . LoadBi t map(| DR_MAI NFRAME) |
I'm wndTool Bar . Set But t ons(butt ons,
si zeof (buttons)/si zeof (U NT)))
{
TRACE("Failed to create tool bar\n");
return -1; /1 fail to create
}
if (!mwndStatusBar.Create(this) ||
I'm wndSt at usBar . Set | ndi cat or s(i ndi cat ors,
si zeof (i ndi cators)/sizeof (U NT)))
{
TRACE("Failed to create status bar\n");
return -1; /1 fail to create
}
return O;
}

FEEEEEEE i rr i rrrrr i rrrrrr
/| CMai nFrane di agnostics

#i f def _DEBUG
voi d CMai nFrane: : AssertValid() const

{
CFrameWhd: : AssertValid();
}
voi d CMai nFrane: : Dunp(ChunpCont ext & dc) const
{
CFr ameWnd: : Dunp(dc) ;
}

#endi f // _DEBUG

FEEEEEEE bbb rrr i rrirrrrr
/1 CMai nFranme message handl ers

{4 Previous Chapter JER.—* Next Chapter

A MACMILLAN COMPUTER PUBLISHING USA
('.' A Y1 ACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

| ¢ Previous Chapter (< MextChapter

- Appendix C -
Source Code Listingsfor the Delphi
Program Used on Day 14

program Tyssql ;

uses
For ns,
Unitl in 'UNIT1. PAS {Fornil},
Unit2 in "UNIT2. PAS {Fornt};

{$R *. RES}

begi n
Appl i cation. Creat eFor n{ TFor n2, FornR);
Appl i cation. Creat eFor n{ TFor niL, Forml);
Appl i cati on. Run;

end.

unit Unitl;

i nterface

uses
SysUils, WnTypes, WnProcs, Messages, C asses, Gaphics, Controls,
Fornms, Di al ogs;

type
TFormL = cl ass(TForm
private
{ Private declarations }
public
{ Public declarations }
end;
var

Fornml: TFor ni;
i npl enent ati on
{$R *. DFM
end.

unit Unit2;
i nterface
uses
SysUtils, WnTypes, WnProcs, Messages, C asses, G aphics, Controls,
StdCrls, Forns, DBCtrls, DB, DBGids, DBTables, Gids, Mask,
ExtCtrls;
type
TForn2 = cl ass(TForm
Scrol | Box: TScrol | Box;
Label 1: TLabel ;
Edi t PARTNUM TDBEdi t ;
Label 2: TLabel ;
Edi t DESCRI PTI ON: TDBEdi t ;
Label 3: TLabel ;
Edi t PRI CE: TDBEdi t ;
DBGi dl: TDBG i d;
DBNavi gat or: TDBNavi gat or ;
Panel 1: TPanel ;
Dat aSour cel: TDat aSour ce;
Panel 2: TPanel ;
Panel 3: TPanel ;
Queryl: TQuery;
Query2: TQuery;
Dat aSour ce2: TDat aSour ce;
procedure FornCreate(Sender: TObject);

private
{ private decl arations }
public
{ public declarations }
end;
var

Forn2: TFor ng;
i mpl enent ati on
{$R *. DFM
procedure TFor nR2. For nCr eat e(Sender: TQbj ect);
begi n
Queryl. Open;
Query2. Open;
end;
end.

{4 Previous Chapter JER.—* Next Chapter

A MACMILLAN COMPUTER PUBLISHING USA
—‘4‘ A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

[& Previous Chapter JER.—* MNext Chapter

- Appendix D -
Resour ces

Books

. Developing Sybase Applications

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30700-6

. Sybase Developer's Guide

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30467-8

. Microsoft SQL Server 6.5 Unleashed, 2E

Imprint: Sams
Author: David Solomon, Ray Rankins, et al.
ISBN: 0-672-30956-4

. Teach Yourself Delphi in 21 Days

Imprint: Sams
Author: Andrew Wozniewicz
ISBN: 0-672-30470-8

. Delphi Developer's Guide

Imprint: Sams
Authors: Steve Teixeira and Xavier Pacheco
ISBN: 0-672-30704-9

. Delphi Programming Unleashed

Imprint: Sams
Author: Charlie Calvert
ISBN: 0-672-30499-6

. Essential Oracle 7.2

Imprint: Sams
Author: Tom Luers
ISBN: 0-672-30873-8

. Developing Personal Oracle7 for Windows 95 Applications

Imprint: Sams
Author: David Lockman
ISBN: 0-672-31025-2

. Teach Yourself C++ Programming in 21 Days

Imprint: Sams
Author: Jesse Liberty
ISBN: 0-672-30541-0

. Teach Yourself Tansact-SQL in 21 Days

Imprint: SAMS
Author: Bennett Wm. McEwan and David Solomon
ISBN: 0-672-31045-7

. Teach Yourself PL/SQL in 21 Days

Imprint: SAMS
Author: Tom Luers, Timothy Atwood, and Jonathan Gennick
ISBN: 0-672-31123-2

Please check the Information SuperLibrary at www.mcp.com for further information

http://www.mcp.com/

and new releases.
Magazines

. DBMS

P.O Box 469039
Escondido, CA 92046-9039
800-334-8152

. Oracle Magazine

500 Oracle Parkway
Box 659510 Redwood Shores, CA 94065-1600
415-506-5304

Internet URLsfor the Keyword SQL

. http://ww. asl ani nc. com

Aslan Computing Inc.: Specializes in SQL databases, Windows development tools,
Windows NT networking, and Web services.

. http://ww.radi Xx. net/ ~abl aze/

Ablaze Business Systems, Inc.: A leading Microsoft Solution Provider specializing
in Visual Basic, MS Server, PowerBuilder, and the Internet.

. http://ww.fourgen. conl

FourGen: Open systems software supporting Windows, 4GL, UNIX, SQL, and OLE
standards.

. http://wwv. innovi sionl.con steel epd/ ddi . ht m

Digital Dreamshop: Providers of innovative client/server applications, computer
graphics services, and commercial software programming in Visual Basic, Access,
Transact-SQL, C++, and Delphi.

. http://ww. noval i nk. com bachman/ i ndex. ht i

Bachman Information Systems: Vendor of database design tools for Sybase and

http://www.aslaninc.com/
http://www.radix.net/%7eablaze/
http://www.fourgen.com/
http://www.indirect.com/www/steelep4/ddi.html
http://www.novalink.com/bachman/index.html

Microsoft SQL Server databases and other development tools.

http://ww. everyware. conl

EveryWare Development Corp.: Developers of Butler SQL, the SQL database
server for Macintosh.

http://ww. edb. com nb/i ndex. ht m

Netbase: Netbase provides a low-cost client/server SQL database for UNIX.

http://ww. qguadbase. conf quadbase. ht m

Quadbase: Quadbase-SQL is a high-performance, full-featured, industrial-
strength SQL relational DBMS.

http://ww. sagus. conl

Software AG of North America (SAGNA): Develops and markets open,
multiplatform product solutions in the areas of distributed computing (ENTIRE),
application engineering (NATURAL), SQL querying and reporting (ESPERANT),
database management (ADABAS), and data warehousing.

http://ww. ni s. net/sqgl power/

Sgl Power Tools: Second-generation tools for SQL developers and database
administrators.

http://worl d.std. conl ~engw z/

English Wizard: English Wizard translates plain English into SQL for access to
your database.

http://wwv. nm crosoft. conl SQL/

Microsoft.

http://ww. |cc.com sgl stnd. ht m

SQL Standards: The central source of information about the SQL standards
process and its current state.

http://www.everyware.com/
http://www.edb.com/nb/index.html
http://www.quadbase.com/quadbase.htm
http://www.sagus.com/
http://www.nis.net/sqlpower/
http://world.std.com/%7eengwiz/
http://www.microsoft.com/SQL/
http://www.jcc.com/sql_stnd.html

. http://ww. sybase. coni WW

Connecting to Sybase SQL Server via the World Wide Web.

. http://ww. ncsa. ui uc. edu/ SDE Peopl e/ | ason/ pub/
gsql / start here. ht ni

GSQL: A Mosaic-SQL gateway.

FTP Sites

. ftp://ftp.cc.gatech. edu/ pub/ gvu/ ww pi t kow qgsqgl -oracl e/ oracl e-

backend. ht ni

GSQL.: Oracle Backend.
Newsgroups

. hews: conp. dat abases. oracl e

Usenet: The SQL database products of the Oracle Corporation.

. hews: conp. dat abases. sybase

Usenet: Implementations of the SQL Server.

| ¢ Previous Chapter (< MextChapter

MACMILLAN COMPUTER PUBLISHING USA
1L A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.sybase.com/WWW/
http://www.ncsa.uiuc.edu/SDG/People/jason/pub/gsql/starthere.html
http://www.ncsa.uiuc.edu/SDG/People/jason/pub/gsql/starthere.html
ftp://ftp.cc.gatech.edu/pub/gvu/www/pitkow/gsql-oracle/oracle-backend.html
ftp://ftp.cc.gatech.edu/pub/gvu/www/pitkow/gsql-oracle/oracle-backend.html
news:comp.databases.oracle
file:///D|/UncleVan/Current/(ebook%20-%20html)%20Teach%20Yourself%20SQL%20in%2021%20Days/ news:comp.databases.sybase

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

(= MNextChapter

-Appendix E -
ASCII| Table

IDec Hexr Rinary ASCIT D¢ Hex Rinary ASCIT
X, % % X, % %

OO DD D000 QOO0 ruall 0B 1A D001 1010 .
| 01 00D 0001 L 0ZF 1B 0001101

ooz 02 D000 001D i 0 1C D00l 1100 -
o3 03 0ooDoolLL ¥ 0X 1D 0001 11m

OOd 0% DDOD D100 + A 1E 0001 1110 a
ood 0% 000D 0101 £ oM 1F 00Dl 1111 -
oS DE D000 11D 3 (S I v 3] e space
ooF o7 ooDOolll . R I N) [T e s) !
ooE 08 D0OD 1000 v L34 22 CO10 0oL "
EE2 09 Do0D 1001 " a3 23 ooloooll ¥
Ol DA 000D 1010 2 0T O S o 3 1]) [-
011 OB 000D 1011 o 037 I Lolboim H
iz o2 000D 1100 2 (T O v 3 [0) B [&
014 0D 0OOD 1101 + [R v o) (e T v § B :
Ol CE 000D 1110 h G0 2R D010 1000 [
o1% OF 000D 1111 = S I T v 1 LR (V)]
DlE 10 0001 000D - g2 A D010 1010 *
17 11 00 0oL - S I O v 3 [l 3 § +
oig 12 o001 0ol0 i dd 2T D010 1100 ’
] 12 000l 001l I T v S (R R] -
o2 14 0001 0100 L | 45 ZE 001D 1110

il 15 0001 010t 7 IF 0010111 i
0z 16 00010110 - 04 AD D011 00Co 0
D3 17 o001 oid i oS A oolloool 1
0B 18 D001 1000 i D 3z D011 00l z
L2 19 0001 1001 ! 03l A3 Lollooll a

D:c Hex Bimary ASCIT Dec Hex Bimary ASCIT
X, % % % % %

052 34 00110100 & 078 4E 010D 1110 I
032 33 00110101 5 079 4F 0100 1111 o
0% 3 00110110 6 080 S D101 0000 P
055 37 00110111 7 081 S1 01010001 Q
055 3% 0O11 1000 g 082 52 0101 001D F
057 39 0011 1001 9 083 53 01010011 §
058 AA 0011 101D o8 5% 01010100 T
(03 2B D011 10l 083 3 [v o) L)
DED AC 0011 1100 < oEE 56 D101 0110 v
el Al 0011 1101 = 087 57 piploi W
0E2 AE 00111110 > 088 58 D101 1000 X
DEA AF 0011 1111 # 089 S 0101 1001 Y
O8F 40 D100 00D @ o0 SA 0101 1010 Z
0E5 & 01000001 A 91 SBE 0101 1011 [
DG 42 DL0D0OLD B 092 SC 0101 1100 |
0EF 4 o100 0011 c 083 S0 01011101]
08 4 01000100 D 9% SE 0101 1110 A
032 45 0100 010 E 9% 5F 0lbd 1111 -
o7 48 D100 0110 F 096 G0 01100000

671 4 0100011l I 097 61 01100001 a
OFZ 48 0100 1000 H 098 6z 01100010 b
073 49 D100 1001 I 099 G2 01100011 c
O7% &A D100 1010] w0 68 01100100 d
075 4B 0100 1011 E 1 I S N T | .
OFE &C D100 1100 L w0z Ge 01001 £
077 4D 0100 1101 I 02 &7 D1n0l1l =

Drse H= Einary ASCIT Dt H= Rinary ASCIT
X X X e TR TR

10& 68 D110 1000 k 130 82 1000 Lh10 £
105 (o] G110 1000 L 131 23 TG0 011 E
106 A D110 1010 J 132 B4 1000 DL i
107 GB Ciiee 1011 k 133 25 600 0i0Y &
104 G D10 1100 | 134 e AChCay Gl 1 i
109 (= R Bl BY L) o 133 &7 Ibodr od 11 g
110 GE D100 1110 n 136] DGy LG £
111 6F Dlle 1111) 137 22 00D 1001 z
112 o D111 DG E 13 A 10y 1L L
113 71 Dill Do q 132 1 [0 U [N i
11% T2 0111 Codn E 140 BC 10CEr 1800 i

=r

1£1 1 I LR B

L.

113 73 D111 0011

116 74 D111 DICO % 142 2E 100D 1110 A
117 75 011101l -1 152 ZF 10c 1111 A
11% e D111 oo v 1485 0 1001 OO0 E
119 Fooinoin w 1£5 0 1051 Cho S
1:0 78 D111 1000 H 145 s 1001 GOl Fid
121 72 0111 1001 ¥ 147 83 1001 0011 &
1:2 A D111 1010 z 145 a4 1000 CA D &
123 7B D111 1011 { 149 25 00l ©Io] &
1:i% JC0 D111 1100 : 150 . 100G CL 1 i
123 L D1l 11 } 151 o 0ol o111 i
126 7E 0111 1110 - 152 98 1001 1000 ¥
1:7 7E D1l 111 fal 152 = 001 100 0
128 #1000 D000 [15¢ 24 1001 1010 i
132 81 1000 Lo id 153 B 0ol 1011 #

Do H= Einary ASCIT Drec Ha Emary ASCIT
X X X XL % X

156 9C 1001 1100 £ 152 BE 1011 0110 q
157 8D 1001 110 ¥ 183 B7 1011 odid 7
158 SE 1001 1110 P, 186 B8 1011 1000 1
159 SF 1001 1111 f 185 B9 1011 1001 1
160 AD 1010 000D] 186 BA 1011 1010 I
161 Al 1010000 i 157 BB 1011 1011 7
162 AL L0 DG 10 & 1E8 B 010 10800 4
163 Ad 0 L0dn D011 i 188 BD 101N 1101

164 A& 10100100 3 190 BE 1011 1110

165 A 1010 01M0 i 191 BF 1011 1111 1
166 AG 1010 0110 J 192 OO 1100 0000 L
167 A7 10100111 v 194 C1 1100 0001 L
168 A% 101D 1000 i 196 Cz 1100 001D T
169 AD 1010 100 - 195 C3 11000011 F
170 AA 1010 1010 - 196 C& 1100 0100 -
171 AR 1010 1011 % 197 C3 1100 010l +
172 AC 101D 1100 % 198 C5 1100 0110 E
173 AD 1010 1101 i 199 C7 H000ill (§
174 AE 1010 1110 u o CE 1100 1000 L
175 AF 10M0 1111 . oL CH 1100 1001 T
176 BO 1011 0000 ™I CA 1100 101D L
177 El 1001 DO [| i EE] CE P10 1011 i
174 B 1011 0010 | MmE OO 1100 1000 IF
79 B3 10110011 | ™S CD 1100 1101 =
130 B4 1011 0100 i WE CE 1100 1110 I
131 BS 1011 010d { w7 CF 1100 1111 <

D Hm Bimaxy ASCTL Do Hmx Binaxry ALSCTE
x A X X X X

. ik LD 1100 Q000 * s EA L0 1010 [,
o9 DI 1101 0001 T Bs OB 11101011 3
Hi L2 110d Dol0 ™ e EC 1110 1100 o
A1 L3 1ol 0ol L 37 EL 1110 110d U
Hi D 1104 O10D k 7 L EE 1146 1146 =
Hi 0 DS 1101 0101 F e EF 11101111 A
Ha D& 11D o1 m e F 18 10 Doy -
25 o o1 i 'H' 1 Fi 1011 Gl E
Hi Do 1101 10D + M2 Fz 1010 Gl 1 =
Hy 0= 1 i Lk 4 43 E2 1017 o1 £
He LA 1101 1040 r 24 Fi 1010 el 0)
H9 DB 1101 1011 [| %5 F3 1111 0dmd J
Ty DT 1101 1100 e OFe 1111010 +
Xl Lo ol 1 1 %7 F7 1017 11 =
i CE 1104 1110 | %48 Fa 1011 Qe *
23 DF 1101 1111 - 39 OFD 1111 1001

24 ED LR IER L] o 0 EaA 111 Do

25 El 1110000 i I FB 111 Wil

e EX 1110 0010 r Iz FC 1111 100 o
7 E3 1110 0011 m %3 FD 1111 U ¥
g E4 B0 D00 L % FE 111 1110]
s E3 1110 0idd & #»™% FF L1111

e OBES 11100110 i

21 E7 R IER KRR] T

B Eg E1 ARG 1000 i

23 OE3 1110 1001 8

| ¢ Previous Chapter (& MextChapter

A MACMILLAN COMPUTER PUBLISHING USA
/1 A YIACOM COMPANY

© Copyright, Macmil lan Computer Publishing. All rights reserved.

SAMS

PUBLISHING

Teach Yourself SQL in 21 Days, Second
Edition

(e Previous Chapter

- Appendix F -
Answersto Quizzes and Exercises

Day 1, " Introduction to SQL"

Quiz Answers

1. What makes SQL a nonprocedural language?

SQL determines what should be done, not how it should be done. The database
must implement the SQL request. This feature is a big plus in cross-platform, cross-
language development.

2. How can you tell whether a database is truly relational?
Apply Dr. Codd's 12 (we know there are 13) rules.

3. What can you do with SQL?

SQL enables you to select, insert, modify, and delete the information in a
database; perform system security functions and set user permissions on tables and
databases; handle online transaction processing within an application; create
stored procedures and triggers to reduce application coding; and transfer data
between different databases.

4. Name the process that separates data into distinct, unique sets.
Normalization reduces the amount of repetition and complexity of the structure
of the previous level.

Exercise Answer

Determine whether the database you use at work or at home is truly relational.
(On your own.)

Day 2, " Introduction to the Query: The SELECT
Statement”

Quiz Answers

1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
sel ect * from checks; ?

The only difference between the two statements is that one statement isin
lowercase and the other uppercase. Case sensitivity is not normally a factor in
the syntax of SQL. However, be aware of capitalization when dealing with data.

2. None of the following queries work. Why not?

a.Sel ect *

The FROM clause is missing. The two mandatory components of a SELECT
statement are the SELECT and FROM

b.Sel ect * from checks
The semicolon, which identifies the end of a SQL statement, is missing.

c.Sel ect anmount nane payee FROM checks;
You need a comma between each column name: Sel ect anount, nane, payee
FROM checks;

3. Which of the following SQL statements will work?

a.sel ect *
from checks;

b. select * from checks;

c.select * from checks
/

All the above work.

Exercise Answers

1. Using the CHECKS table from earlier today, write a query to return just the
check numbers and the remarks.

SELECT CHECK#, REMARKS FROM CHECKS;

2. Rewrite the query from exercise 1 so that the remarks will appear as the first
column in your query results.

SELECT REMARKS, CHECK# FROM CHECKS;
3. Using the CHECKS table, write a query to return all the unique remarks.

SELECT DI STI NCT REMARKS FROM CHECKS;

Day 3, " Expressions, Conditions, and Operators'

Quiz Answers

Use the FRI ENDS table to answer the following questions.

LASTNANVE FI RSTNAME AREACCDE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

VERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

1. Write a query that returns everyone in the database whose last name begins
with M

SELECT * FROM FRI ENDS WHERE LASTNAME LI KE ' M% ;

2. Write a query that returns everyone who lives in I1linois with a first name of
AL.

SELECT * FROM FRI ENDS
VWHERE STATE = "I L'
AND FI RSTNAME = "AL';

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how
would you find out which part numbers are in both tables? Write the query.

Use the | NTERSECT. Remember that | NTERSECT returns rows common to both
gueries.

SELECT PARTNO FROM PART1
| NTERSECT
SELECT PARTNO FROM PARTZ;

4. What shorthand could you use instead of WHERE a >= 10 AND a <=307?

VWHERE a BETWEEN 10 AND 30;

5. What will this query return?

SELECT FI RSTNAME

FROM FRI ENDS

VWHERE FI RSTNAME = " AL’
AND LASTNAME = ' BULHER ;

Nothing will be returned, as both conditions are not true.
Exercise Answers

1. Using the FRI ENDS table, write a query that returns the following:

INPUT:

SQL> SELECT (FIRSTNAME || ' FROM) NAME, STATE
2 FROM FRI ENDS
3 WHERE STATE = 'IL'
4 AND
5 LASTNAME = ' BUNDY' ;

2. Using the FRI ENDS table, write a query that returns the following:

NAME PHONE
MERRI CK, BUD 300- 555- 6666
MAST, JD 381-555-6767

BULHER, FERRI S 345-555-3223

INPUT:

SQL>SELECT LASTNAME | | || FI RSTNAVE NAME,
2 AREACODE || '-' || PHONE PHONE
3 FROM FRI ENDS
4 \WHERE AREACODE BETWEEN 300 AND 400;

Day 4, " Functions: Molding the Data You Retrieve"

Quiz Answers

1. Which function capitalizes the first letter of a character string and makes the
rest lowercase?
| NI TCAP

2. Which functions are also known by the name ?
Group functions and aggregate functions are the same thing.

3. Will this query work?

SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;

Yes, it will return the total of rows.
4. How about this one?

sql > SELECT SUM LASTNAME) FROM CHARACTERS
No, the query won't work because LASTNANME is a character field.

5. Assuming that they are separate columns, which function(s) would splice
together FI RSTNAME and LASTNANME?
The CONCAT function and the | | symbol.

6. What does the answer 6 mean from the following SELECT?
INPUT:

SQL> SELECT COUNT(*) FROMI TEAMSTATS;

OUTPUT:

COUNT(*)

6 is the number of records in the table.

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME, 1,5 FROM NAME_TBL;

No, missing () around | ast nane, 1, 5. Also, a better plan is to give the column an
alias. The statement should look like this:

SQL> SELECT SUBSTR(LASTNAME, 1,5) NAME FROM NAME TBL;
Exercise Answers

1. Using today's TEAMSTATS table, write a query to determine who is batting
under .25. (For the basebal l-challenged reader, batting average is hits/ab.)

INPUT:

SQL> SELECT NAMVE FROM TEAMSTATS
2 WHERE (HI TS/ AB) < . 25;

OUTPUT:

2. Using today's CHARACTERS table, write a query that will return the following:

OUTPUT:
INNFTIALS CODE
K A P. 32

1 row sel ect ed.
INPUT:

SQL> sel ect substr(firstnanme,1,1)]||"’
substr(m ddl enane, 1, 1) | | |
substr(lastnane, 1,1)||"." I N

fromcharacters
where code = 32

Day 5, " Clausesin SQL"

I
| TIALS, code

Quiz Answers

1. Which clause works just like LI KE(<exp>%) ?
STARTI NG W TH

2. What is the function of the GROUP BY clause, and what other clause does it
act like?

The GROUP BY clause groups data result sets that have been manipulated by
various functions. The GROUP BY clause acts like the ORDER BY clause in that it
orders the results of the query in the order the columns are listed in the GROUP
BY.

3. Will this SELECT work?

SQL> SELECT NAME, AV SALARY), DEPARTMENT
FROM PAY_TBL
VHERE DEPARTMENT = ' ACCOUNTI NG
ORDER BY NAME
GROUP BY DEPARTMENT, SALARY;

No, the syntax is incorrect. The GROUP BY must come before the ORDER BY. Also,
all the selected columns must be listed in the GROUP BY.

4. When using the HAVI NGclause, do you always have to use a GROUP BY also?
Yes.

5. Can you use CRDER BY on a column that is not one of the columns in the
SELECT statement?

Yes, it is not necessary to use the SELECT statement on a column that you putin
the ORDER BY clause.

Exercise Answers

1. Using the ORGCHART table from the preceding examples, find out how many
people on each team have 30 or more days of sick leave.

Here is your baseline that shows how many folks are on each team.
INPUT:

SELECT TEAM COUNT(TEAM
FROM ORGCHART
GROUP BY TEAM

OUTPUT:

TEAM COUNT
COLLECTI ONS 2
MARKET! NG 3
PR 1
RESEARCH 2

Compare it to the query that solves the question:
INPUT:

SELECT TEAM COUNT(TEAM
FROM ORGCHART

WHERE S| CKLEAVE >=30
GROUP BY TEAM

OUTPUT:

TEAM COUNT
COLLECTI ONS 1
MARKETI NG 1
RESEARCH 1

The output shows the number of people on each t eamwith a SI CKLEAVE balance
of 30 days or more.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:

CHECK#__ PAYEE__ AMOUNT__
1 MA BELL 150

INPUT:

SQL> SELECT CHECK#, PAYEE, AMOUNT
FROM CHECKS
VWHERE CHECK# = 1,

You can get the same results in several ways. Can you think of some more?

Day 6, " Joining Tables"

Quiz Answers

1. How many rows would a two-table join produce if one table had 50,000 rows and
the other had 100,000?

5,000,000,000 rows.

2. What type of join appears in the following select statement?

sel ect e.nane, e.enployee_id, ep.salary
from enpl oyee_thl e,

enpl oyee_pay_thbl ep
where e. enployee_ id = ep. enpl oyee_i d;

The preceding join is an equi-join. You are matching all the enpl oyee_i dsin the
two tables.

3. Will the following SELECT statements work?

sel ect nanme, enployee id, salary
fromenpl oyee thl e,

enpl oyee _pay tbl ep
where enpl oyee id = enpl oyee_ id
and nane |like "% TH ;

No. The columns and tables are not properly named. Remember column and table
aliases.

sel ect e.nane, e.enployee_ id, ep.salary
fromenpl oyee_thl e,

enpl oyee_pay_thbl ep
where nane |ike "% TH ;

No. The j oi n command is missing in the wher e clause.

sel ect e.nane, e.enployee id, ep.salary
fromenpl oyee thl e,

enpl oyee _pay tbl ep
where e.enpl oyee id = ep. enpl oyee id
and e.nane |like '%M TH ;

Yes. The syntax is correct.

4. In the WHERE clause, when joining the tables, should you do the join first or
the conditions?

The joins should go before the conditions.

5. In joining tables are you limited to one-column joins, or can you join on more
than one column?

You can join on more than one column. You may be forced to join on multiple
columns depending on what makes a row of data unique or the specific conditions
you want to place on the data to be retrieved.

Exercise Answers

1. In the section on joining tables to themselves, the last example returned two
combinations. Rewrite the query so only one entry comes up for each redundant
part number.

INPUT/OUTPUT:

SELECT F. PARTNUM F. DESCRI PTI ON

S. PARTNUM S. DESCRI PTI ON

FROM PART F, PART S

VHERE F. PARTNUM = S. PARTNUM

AND F. DESCRI PTI ON <> S. DESCRI PTI ON
AND F. DESCRI PTI ON > S. DESCRI PTI ON

PARTNUM DESCRI PTI ON PARTNUM DESCRI PTI ON

76 ROAD BI KE 76 CLI PPLESS SHCE

2. Rewrite the following query to make it more readable and shorter.
INPUT:

sel ect orders. orderedon, orders.nane, part.partnum
part.price, part.description fromorders, part
where orders. partnum = part. partnum and
orders. order edon
bet ween ' 1- SEP-96' and ' 30- SEP- 96’
order by part. partnum

Answer:

SQL> sel ect o0.orderedon ORDER _DATE, o.nane NAME, p.partnum PART#,
p.price PRICE, p.description DESCRIPTI ON
fromorders o,

part p
wher e o. partnum = p. partnum

and o.orderedon |ike ' Y%SEP%
order by ORDER _DATE;

3. From the PART table and the ORDERS table, make up a query that will return
the following:

OUTPUT:

ORDEREDON NANVE PARTNUM QUANTI TY
2- SEP- 96 TRUE WHEEL 10 1
Answer:

sel ect o0.orderedon ORDEREDON, o0.nane NAME, p.partnum PARTNUM
0.quanity QUANI TY
fromorders o,

part p
where o.partnum = p. partnum

and o. orderedon |ike ' %SEPY% ;

Many other queries will also work.

Day 7, " Subqueries. The Embedded SELECT
Statement”

Quiz Answers

1. In the section on nested subqueries, the sample subquery returned several
values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS Bl KE

Some of these are duplicates. Why aren't these duplicates in the final result set?
The result set has no duplicates because the query that called the subquery

SELECT ALL C. NAME, C. ADDRESS, C. STATE,C. ZIP
FROM CUSTOMER C
VWHERE C. NAME | N

returned only the rows where NAVE was in the list examined by the statement | N.

Don't confuse this simple | Nstatement with the more complex join.

2. Are the following statements true or false?

The aggregate functions SUM COUNT, M N, MAX, and AVGall return multiple

values.

False. They all return asingle value.

The maximum number of subqueries that can be nested is two.

False. The limit is a function of your implementation.
Correlated subqueries are completely self-contained.
False. Correlated subqueries enable you to use an outside reference.

3. Will the following subqueries work using the ORDERS table and the PART

table?

INPUT/OUTPUT:

SQL> SELECT *

FROM PART;
PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TI RES 15. 25
23 MOUNTAI N Bl KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00
6 rows sel ected.
INPUT/OUTPUT:
SQL> SELECT *
FROM ORDERS;
ORDEREDON NAME PARTNUM
15- MAY- 96 TRUE WHEEL 23
19- MAY- 96 TRUE WHEEL 76
2- SEP- 96 TRUE WHEEL 10
30-JUN- 96 BI KE SPEC 54
30- MAY- 96 BI KE SPEC 10
30- MAY- 96 BI KE SPEC 23
17- JAN- 96 Bl KE SPEC 76
17- JAN- 96 LE SHOPPE 76
1- JUN- 96 LE SHOPPE 10
1- JUN- 96 AAA BI KE 10
1- JUN- 96 AAA BI KE 76
1- JUN- 96 AAA BI KE 46
11-JUL-96 JACKS BI KE 76

13 rows sel ect ed.

QUANI TY
6

3

1

10

REMARKS
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D
PAI D

a.SQL> SELECT * FROM ORDERS
VWHERE PARTNUM =

SELECT PARTNUM FROM PART

VWHERE DESCRI PTI ON = ' TRUE WHEEL' ;

No. Missing the parenthesis around the subquery.

b. SQL> SELECT PARTNUM

FROM ORDERS

VWHERE PARTNUM =

(SELECT * FROM PART

VWHERE DESCRI PTI ON = ' LE SHOPPE');

No. The SQL engine cannot correlate all the columns in the part table with the
operator =.

c. SQL> SELECT NAME, PARTNUM
FROM ORDERS

VWHERE EXI STS

(SELECT * FROM ORDERS
VWHERE NAME = ' TRUE WHEEL') ;

Yes. This subquery is correct.

Exercise Answer

Write a query using the table ORDERS to return all the NAMEs and ORDEREDON dates
for every store that comes after JACKS Bl KE in the alphabet.

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

VWHERE NAME >

(SELECT NAME

FROM ORDERS

VWHERE NAME =' JACKS BI KE')

NAME ORDEREDON

TRUE WHEEL 15- MAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
LE SHOPPE 17-JAN-1996

LE SHOPPE 1- JUN- 1996
Day 8, " Manipulating Data"

Quiz Answers

1. What is wrong with the fol lowing statement?

DELETE COLLECTI ON,

If you want to delete all records from the COLLECTI ON table, you must use the
following syntax:

DELETE FROM COLLECTI ON;

Keep in mind that this statement will delete all records. You can qualify which
records you want to delete by using the fol lowing syntax:

DELETE FROM COLLECTI ON
VWHERE VALUE = 125

This statement would delete all records with a value of 125.

2. What is wrong with the following statement?

| NSERT | NTO COLLECTI ON SELECT * FROM TABLE_2

This statement was designed to insert all the records from TABLE 2 into the
COLLECTI ON table. The main problem here is using the | NTOkeyword with the
| NSERT statement. When copying data from one table into another table, you
must use the following syntax:

| NSERT COLLECTI ON
SELECT * FROM TABLE_2;

Also, remember that the data types of the fields selected from TABLE 2 must
exactly match the data types and order of the fields within the COLLECTI ON
table.

3. What is wrong with the fol lowing statement?

UPDATE COLLECTI ON (" HONUS WAGNER CARD', 25000, "FOUND IT");

This statement confuses the UPDATE function with the | NSERT function. To

UPDATE values into the COLLECTI ONS table, use the following syntax:

UPDATE COLLECTI ONS

SET NAME = "HONUS WAGNER CARD',
VALUE = 25000,
REMARKS = "FOUND | T";

4. What would happen if you issued the fol lowing statement?

SQL> DELETE * FROM COLLECTI ON;
Nothing would be deleted because of incorrect syntax. The * is not required here.

5. What would happen if you issued the fol lowing statement?

SQL> DELETE FROM COLLECTI ON;
All rows in the COLLECTI ON table will be deleted.

6. What would happen if you issued the fol lowing statement?

SQ.> UPDATE COLLECTI ON
SET WORTH = 555
SET REMARKS = ' UP FROM 525" ;

All values in the COLLECTI ON table for the worth column are now 555, and all
remarks in the COLLECTI ON table now say UP FROM 525. Probably not a good
thing!

7. Will the following SQL statement work?

SQL> I NSERT | NTO COLLECTI ON
SET VALUES = 900
VHERE | TEM = ' STRI NG ;

No. The syntax is not correct. The | NSERT and the SET do not go together.

8. Will the following SQL statement work?

SQL> UPDATE COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

Yes. This syntax is correct.

Exercise Answers

1. Try inserting values with incorrect data types into a table. Note the errors and
then insert values with correct data types into the same table.

Regardless of the implementation you are using, the errors that you receive
should indicate that the data you are trying to insert is not compatible with the
data type that has been assigned to the column(s) of the table.

2. Using your database system, try exporting a table (or an entire database) to
some other format. Then import the data back into your database. Familiarize
yourself with this capability. Also, export the tables to another database format
If your DBMS supports this feature. Then use the other system to open these files
and examine them.

See your database documentation for the exact syntax when exporting or
importing data. You may want to delete all rows from your table if you are
performing repeated imports. Always test your export/import utilities before using
them on production data. If your tables have unique constraints on columns and
you fail to truncate the data from those tables before import, then you will be
showered by unique constraint errors.

Day 9, " Creating and Maintaining Tables"

Quiz Answers

1. True or False: The ALTER DATABASE statement is often used to modify an
existing table's structure.

False. Most systems do not have an ALTER DATABASE command. The ALTER TABLE
command is used to modify an existing table's structure.

2. True or False: The DROP TABLE command is functionally equivalent to the
DELETE FROM <t abl e _nanme> command.

False. The DROP TABLE command is not equivalent to the DELETE FROM

<t abl e_nanme> command. The DROP TABLE command completely deletes the table
along with its structure from the database. The DELETE FROM .. command
removes only the records from a table. The table's structure remains in the
database.

3. True or False: To add a new table to a database, use the CREATE TABLE
command.
True.

4. What is wrong with the following statement?
INPUT:

CREATE TABLE new table (
| D NUVBER

FI ELD1 char (40),

FI ELD2 char (80),

| D char (40);

This statement has two problems. The first problem is that the name | Dis repeated
within the table. Even though the data types are different, reusing a field name
within a table isillegal. The second problem is that the closing parentheses are
missing from the end of the statement. It should look like this:

INPUT:

CREATE TABLE new table (
| D NUVBER

FI ELD1 char (40),

FI ELD2 char (80));

5. What is wrong with the following statement?
INPUT:

ALTER DATABASE BI LLS (
COVPANY char (80));

The command to modify a field's data type or length is the ALTER TABLE command,
not the ALTER DATABASE command.

6. When a table is created, who is the owner?
The owner of the new table would be whoever created the table. If you signed on

as your ID, then your ID would be the owner. If you signed on as SYSTEM, then
SYSTEM would be the owner.

7. If data in a character column has varying lengths, what is the best choice for
the data type?

VARCHARZ is the best choice. Here's what happens with the CHAR data type when
the data length varies:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM NAMVE_TABLE;

LAST NAVE FI RST_NAME
JONES NANCY
SM TH JOHN

2 rows sel ected.

SQ> SELECT LAST_NAME
2 FROM NAME_TABLE
3 VWHERE LAST_NAME LI KE ' %M TH ;

No rows sel ect ed.

ANALYSIS:

You were looking for SM TH, but SM THdoes exist in our table. The query finds
SM THbecause the column LAST_NANME is CHAR and there are spaces after SM TH.
The SELECT statement did not ask for these spaces. Here's the correct statement
to find SM TH:

INPUT/OUTPUT:

SQL> SELECT LAST NAME
2 FROM NAME_TABLE
3 VHERE LAST NAME LI KE ' 9%V TH%

LAST NAME
SM TH
1 row sel ect ed.

ANALYSIS:

By adding the %after M TH, the SELECT statement found SM TH and the spaces
after the name.

TIP: When creating tables, plan your data types to avoid this type of
situation. Be aware of how your data types act. If you allocate 30 bytes for
a column and some values in the column contain fewer than 30 bytes, does
the particular data type pad spaces to fill up 30 bytes? If so, consider how
this may affect your select statements. Know your data and its structure.

8. Can you have duplicate table names?

Yes. Just as long as the owner or schema is not the same.

Exercise Answers

1. Add two tables to the Bl LLS database named BANK and ACCOUNT _TYPE using
any format you like. The BANK table should contain information about the BANK
field used in the BANK _ACCOUNTS table in the examples. The ACCOUNT_TYPE table
should contain information about the ACCOUNT_TYPE field in the

BANK _ACCOUNTS table also. Try to reduce the data as much as possible.

You should use the CREATE TABLE command to make the tables. Possible SQL
statements would look like this:

SQL> CREATE TABLE BANK

2 (ACCOUNT ID NUMBER(30) NOT NULL,
BANK_NAVE VARCHAR2(30) NOT NULL,
ST _ADDRESS VARCHAR2(30) NOT NULL,
cl TY VARCHAR2(15) NOT NULL,
STATE CHAR(2) NOT NULL,
ZI P NUMBER(5) NOT NULL;
SQL> CREATE TABLE ACCOUNT TYPE
(ACCOUNT ID NUMBER(30) NOT NULL,
SAVI NGS CHAR(30),
CHECKI NG CHAR(30) ;

2. With the five tables that you have created--Bl LLS, BANK ACCOUNTS, COVPANY,
BANK, and ACCOUNT _TYPE--change the table structure so that instead of using
CHAR fields as keys, you use integer | D fields as keys.

SQL> ALTER TABLE BILLS DROP PRI MARY KEY;
SQL> ALTER TABLE BILLS ADD (PRI MARY KEY (ACCOUNT ID));
SQL> ALTER TABLE COVPANY ADD (PRI MARY KEY (ACCOUNT |ID));

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several
gueries to join the tables in the Bl LLS database.

Because we altered the tables in the previous exercise and made the key field the
ACCOUNT _I Dcolumn, all the tables can be joined by this column. You can join the
tables in any combination; you can even join all five tables. Don't forget to
qgualify your columns and tables.

Day 10, " Creating Views and | ndexes"

Quiz Answers

1. What will happen if a unique index is created on a nonunique field?

Depending on which database you are using, you will receive some type of error
and no index at all will be created. The constituent fields of a unique index must
form a unique value.

2. Are the following statements true or false?

Both views and indexes take up space in the database and therefore must be
factored in the planning of the database size.

False. Only indexes take up physical space.

If someone updates a table on which a view has been created, the view must have
an identical update performed on it to see the same data.

False. If someone updates a table, then the view will see the updated data.

I you have the disk space and you really want to get your queries smoking, the
more indexes the better.

False. Sometimes too many indexes can actually slow down your queries.

3. Is the following CREATE statement correct?

SQ.> create view credit_debts as
(select all from debts
where account _id = 4);

No. You do not need the parentheses; also the word al | should been an *.

4. Is the following CREATE statement correct?

SQL> create uni que view debts as
select * fromdebts_thl;

No. There is no such thing as a unique view.
5. Is the following CREATE statement correct?
SQ.> drop * from view debts;

No. The correct syntax is

drop view debts;

6. Is the following CREATE statement correct?

SQL> create index id_index on bills
(account _id);

Yes. This syntax is correct.
Exercise Answers

1. Examine the database system you are using. Does it support views? What options
are you allowed to use when creating a view? Write a simple SQL statement that
will create a view using the appropriate syntax. Perform some traditional
operations such as SELECT or DELETE and then DROP the view.

Check your implementation's data dictionary for the proper tables to query for
information on views.

2. Examine the database system you are using to determine how it supports indexes.
You will undoubtedly have a wide range of options. Try out some of these options
on a table that exists within your database. In particular, determine whether you
are allowed to create UNI QUE or CLUSTERED indexes on a table within your
database.

Microsoft Access al lows developers to use graphical tools to add indexes to a
table. These indexes can combine multiple fields, and the sort order can also be
set graphically. Other systems require you to type the CREATE | NDEX statement
at a command line.

3. If possible, locate a table that has several thousand records. Use a stopwatch
or clock to time various operations against the database. Add some indexes and see
whether you can notice a performance improvement. Try to follow the tips given
to you today.

Indexes improve performance when the operation returns a small subset of
records. As queries return a larger portion of a table's records, the performance
improvement gained by using indexes becomes negligible. Using indexes can even
slow down queries in some situations.

Day 11, " Controlling Transactions'

Quiz Answers

1. When nesting transactions, does issuing a ROLLBACK TRANSACTI ON command
cancel the current transaction and roll back the batch of statements into the
upper-level transaction? Why or why not?

No. When nesting transactions, any rollback of a transaction cancels all the
transactions currently in progress. The effect of all the transactions will not
truly be saved until the outer transaction has been committed.

2. Can savepoints be used to "save off" portions of a transaction? Why or why not?
Yes. Savepoints al low the programmer to save off statements within a
transaction. If desired, the transaction can then be rolled back to this savepoint
instead of to the beginning of the transaction.

3. Can a COW T command be used by itself or must it be embedded?
A COW T command can be issued by itself or in the transaction.

4. If you issue the COVM T command and then discover a mistake, can you still use
the ROLLBACK command?
Yes and No. You can issue the command, but it will not roll back the changes.

5. Will using a savepoint in the middle of a transaction save all that happened
before it automatical ly?

No. A savepoint comes into play only if a ROLLBACK command is issued--and then
only the changes made after the savepoint will be rolled back.

Exercise Answers

1. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> START TRANSACTI ON
| NSERT | NTO CUSTOVERS VALUES
("SMTH, "JOHN)

SQ.> COW T;

Answer:

SQL> SET TRANSACTI ON,;
| NSERT | NTO CUSTOMERS VALUES
("SMTH , "JOHN);

SQL> COW T,

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTI ON.
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COWM T

Answer:

SQL> SET TRANSACTI ON;
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COWM T:

This statement is correct and will work quite well; however, you have just
updated everyone's current balance to $25,000!

3. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTI ON,;
| NSERT | NTO BALANCES VALUES
('567.34", '230.00", '8");
SQL> ROLLBACK;

This statement is correct. Nothing will be inserted.

Day 12, " Database Security"

Quiz Answers

1. What is wrong with the fol lowing statement?
SQL> GRANT CONNECTI ON TO DAVI D;
There is no CONNECTI ON role. The proper syntax is

SQL> GRANT CONNECT TO DAVI b

2. True or False (and why): Dropping a user will cause all objects owned by that
user to be dropped as well.

This statement is true only if the DROP USER user name CASCADE statement is
executed. The CASCADE option tells the system to drop all objects owned by the
user as well as that user.

3. What would happen if you created a table and granted select privileges on the
table to publ i c?

Everyone could select from your table, even users you may not want to be able to
view your data.

4. Is the following SQL statement correct?

SQL> create user RON
i dentified by RON,

Yes. This syntax creates a user. However, the user will acquire the default
settings, which may not be desirable. Check your implementation for these
settings.

5. Is the following SQL statement correct?

SQ.> alter RON
I dentified by RON,

No. The user is missing. The correct syntax is

SQ.> alter user RON
i dentified by RON;

6. Is the following SQL statement correct?

SQ.> grant connect, resource to RON;
Yes. The syntax is correct.
7. 1f you own a table, who can select from that table?

Only users with the select privilege on your table.

Exercise Answer

Experiment with your database system's security by creating a table and then by
creating a user. Give this user various privileges and then take them away.

(On your own.)

Day 13, " Advanced SQL Topics"

Quiz Answers

1. True or False: Microsoft Visual C++ allows programmers to call the ODBC API
directly.

False. Microsoft Visual C++ encapsulates the ODBC library with a set of C++
classes. These classes provide a higher-level interface to the ODBC functions,
which results in an easier-to-use set of functions. However, the overall
functionality is somewhat limited. I you purchase the ODBC Software
Development Kit (SDK) (you can obtain the SDK by joining the Microsoft
Developers Network), you can call the API directly from within a Visual C++
application.

2. True or False: The ODBC API can be called directly only from a C program.
False. The ODBC API resides within DLLs that can be bound by a number of
languages, including Visual Basic and Borland's Object Pascal.

3. True or False: Dynamic SQL requires the use of a precompiler.
False. Static SQL requires a precomplier. Dynamic SQL is just that: dynamic. The
SQL statements used with Dynamic SQL can be prepared and executed at runtime.

4. What does the # in front of a temporary table signify?
SQL Server uses the # to flag a temporary table.

5. What must be done after closing a cursor to return memory?
You must deal locate the cursor. The syntax is

SQ.> deal | ocate cursor cursor_nhane;
6. Are triggers used with the SELECT statement?
No. They are executed by the use of UPDATE, DELETE, or | NSERT.

7. If you have a trigger on a table and the table is dropped, does the trigger still
exist?

No. The trigger is automatical ly dropped when the table is dropped.

Exercise Answers

1. Create a sample database application. (We used a music collection to illustrate
these points today.) Break this application into logical data groupings.

2. List of queries you think will be required to complete this application.
3. List the various rules you want to maintain in the database.

4. Create a database schema for the various groups of data you described in step 1.

5. Convert the queries in step 2 to stored procedures.
6. Convert the rules in step 3 to triggers.

7. Combine steps 4, 5, and 6 into a large script file that can be used to build the
database and all its associated procedures.

8. Insert some sample data. (This step can also be a part of the script file instep 7.)

9. Execute the procedures you have created to test their functionality.
(On your own.)

Day 14, " Dynamic Uses of SQL"

Quiz Answers

1. In which object does Microsoft Visual C++ place its SQL?
In the CRecor dSet object's Get Def aul t SQL member. Remember, you can change
the string held here to manipulate your table.

2. In which object does Delphi place its SQL?
In the TQuer y object.

3. What is ODBC?
ODBC stands for open database connectivity. This technology enables Windows-
based programs to access a database through a driver.

4. What does Delphi do?
Delphi provides a scalable interface to various databases.

Exercise Answers

1. Change the sort order in the C++ example from ascending to descending on the
St at e field.

Change the return value of Get Def aul t SQL as shown in the fol lowing code
fragment:

CString CTyssql Set: : Get Def aul t SQL()

{
return " SELECT * FROM CUSTOMER ORDER DESC BY STATE ";

}

2. Go out, find an application that needs SQL, and use it.
(On your own.)

Day 15, " Streamlining SQL Statementsfor Improved
Perfor mance"

Quiz Answers

1. What does streamline an SQL statement mean?

Streamlining an SQL statement is taking the path with the least resistance by
carefully planning your statement and arranging the elements within your
clauses properly.

2. Should tables and their corresponding indexes reside on the same disk?
Absolutely not. If possible, always store tables and indexes separately to avoid
disk contention.

3. Why is the arrangement of conditions in an SQL statement important?
For more efficient data access (the path with the least resistance).

4. What happens during a full-table scan?
A table is read row by row instead of using an index that points to specific rows.

5. How can you avoid a full-table scan?
A full-table scan can be avoided by creating an index or rearranging the
conditions in an SQL statement that are indexed.

6. What are some common hindrances of general performance?
Common performance pitfalls include

o Insufficient shared memory

o Limited number of available disk drives

o Improper usage of available disk drives

o Running large batch loads that are unscheduled
o Failing to commit or rollback transactions

o Improper sizing of tables and indexes

Exercise Answers

1. Make the following SQL statement more readable.

SELECT EMPLOYEE. LAST_NAME, EMPLOYEE. FI RST_NAME, EMPLOYEE. M DDLE_NANME,
EMPLOYEE. ADDRESS, EMPLOYEE. PHONE_NUMBER, PAYROLL. SALARY,

PAYROLL. POSI TI ON,

EMPLOYEE. SSN, PAYROLL. START_DATE FROM EMPLOYEE, PAYROLL VWHERE
EMPLOYEE. SSN = PAYROLL. SSN AND EMPLOYEE. LAST_NAME LI KE ' S% AND
PAYROLL. SALARY > 20000;

You should reformat the SQL statement as follows, depending on the consistent
format of your choice:

SELECT E. LAST_NAME, E. FI RST_NAME, E. M DDLE_NAME,
E. ADDRESS, E. PHONE_NUMBER, P. SALARY,
P. POSI TI ON, E. SSN, P. START_DATE
FROM EMPLOYEE E,
PAYROLL P
VWHERE E. SSN = P. SSN
AND E. LAST_NAME LI KE ' S%
AND P. SALARY > 20000;

2. Rearrange the conditions in the fol lowing query to optimize data retrieval
time.Use the following statistics (on the tables in their entirety) to determine
the order of the conditions:

593 individuals have the last name SM TH.
712 individuals live in | NDI ANAPQOLI S.
3,492 individuals are MALE.

1,233 individuals earn a salary >= 30, 000.
5,009 individuals are single.

I ndi vi dual _i dis the primary key for both tables.

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI| P_CCDE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG _TBL M
| NDI VI DUAL_STAT_TBL S

VWHERE M NAME LI KE ' SM TH%

AND M CI TY = ' NDI ANAPCLI S

AND S. SEX = ' MALE'

AND S. SALARY >= 30000

AND S. MARI TAL_STATUS = ' ¢
AND M I NDI VIDUAL_I D = S. | NDI VI DUAL_I D,

Answer:

According to the statistics, your new query should look similar to the fol lowing
answer. Nanme |i ke ' SM TH% is the most restrictive condition because it will
return the fewest rows:

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI P_CODE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG_TBL M
| NDI VI DUAL_STAT_TBL S
VWHERE M I NDI VIDUAL_ID = S. I NDI VIDUAL_I D
AND S. MARI TAL_STATUS = ' ¢
AND S. SEX = ' MALE
AND S. SALARY >= 30000
AND M CI TY = "I NDI ANAPCLI S
AND M NAME LI KE ' SM TH% ;

Day 16, " Using Viewsto Retrieve Useful I nformation
from the Data Dictionary"

Quiz Answers

1. In Oracle, how can you find out what tables and views you own?

By selecting from USER_CATALOGor CAT. The name of the data dictionary object
will vary by implementation, but all versions have basical ly the same information
about objects such as tables and views.

2. What types of information are stored in the data dictionary?
Database design, user statistics, processes, objects, growth of objects, performance
statistics, stored SQL code, database security.

3. How can you use performance statistics?

Performance statistics suggest ways to improve database performance by modifying
database parameters and streamlining SQL, which may also include the use of
indexes and an evaluation of their efficiency.

4. What are some database objects?
Tables, indexes, synonyms, clusters, views.

Exercise Answers

Suppose you are managing a small to medium-size database. Your job responsibilities
include developing and managing the database. Another individual is inserting large
amounts of data into a table and receives an error indicating a lack of space. You must
determine the cause of the problem. Does the user's tablespace quota need to be
increased, or do you need to allocate more space to the tablespace? Prepare a step-by-
step list that explains how you will gather the necessary information from the data
dictionary. You do not need to list specific table or view names.

1. Look up the error in your database documentation.

2. Query the data dictionary for information on the table, its current size,
tablespace quota on the user, and space allocated in the tablespace (the
tablespace that holds the target table).

3. Determine how much space the user needs to finish inserting the data.

4. What is the real problem? Does the user's tablespace quota need to be increased,
or do you need to allocate more space to the tablespace?

5. If the user does not have a sufficient quota, then increase the quota. If the
current tablespace is filled, you may want to al locate more space or move the
target table to a tablespace with more free space.

6. You may decide not to increase the user's quota or not to al locate more space
to the tablespace. In either case you may have to consider purging old data or
archiving the data off to tape.

These steps are not irrevocable. Your action plan may vary depending upon your
company policy or your individual situation.

Day 17, " Using SQL to Generate SQL Statements"

Quiz Answers
1. From which two sources can you generate SQL scripts?
You can generate SQL scripts from database tables and the data dictionary.

2. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF
SQL> SPOOL CNT. SQL
SQL> SELECT ' COUNT(*) FROM ' || TABLE_NAME | |
2 FROM CAT
3

Yes the SQL statement will generate an SQL script, but the generated script will
not work. You need sel ect 'sel ect' infrontofcount (*):

SELECT ' SELECT COUNT(*) FROM' || TABLE_NAME | |

Otherwise, your output will look like this:

COUNT(*) FROM TABLE_NANE;
which is not a valid SQL statement.

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANT. SQL

SQL> SELECT ' GRANT CONNECT DBA TO ' || USERNAME | |
2 FROM SYS. DBA_USERS
3 WHERE USERNAME NOT IN (' SYS',' SYSTEM ,' SCOTT')
4

Once again, yes and no. The statement will generate an SQL script, but the SQL
that it generates will be incomplete. You need to add a comma between the
privileges CONNECT and DBA:

SELECT ' GRANT CONNECT, DBA TO ' || USERNAME | |

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SELECT ' GRANT CONNECT, DBA TO ' || USERNAME | |
2 FROM SYS. DBA_USERS
3 WHERE USERNAME NOT IN (' SYS',' SYSTEM,' SCOTT')
4 |

Yes. The syntax of the main statement is valid, and the SQL that will be
generated will grant CONNECT and DBA to all users selected.

5. True or False: It is best to set feedback on when generating SQL.

False. You do not care how many rows are being selected, as that will not be part
of the syntax of your generated statements.

6. True or False: When generating SQL from SQL, always spool to a list or log file
for a record of what happened.

False. You should spool to an . sqgl file, or whatever your naming convention is
for an SQL file. However, you may choose to spool within your generated file.

7. True or False: Before generating SQL to truncate tables, you should always
make sure you have a good backup of the tables.

True. Just to be safe.
8. What is the ed command?

The ed command takes you into a full screen text editor. ed is very similar to vi
on a UNIX system and appears like a Windows Notepad file.

9. What does the spool of f command do?
The spool of f command closes an open spool file.

Exercise Answers

1. Using the SYS.DBA _USERS view (Personal Oracle7), create an SQL statement
that will generate a series of GRANT statements to five new users: John, Kevin,
Ryan, Ron, and Chris. Use the column cal led USERNAME. Grant them Select access
tohistory_thbl.

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANTS. SQL

SQL> SELECT ' GRANT SELECT ON HI STORY_TBL TO ' || USERNAME | |
2 FROM SYS. DBA_USERS
3 WHERE USERNAME IN (' JOHN ,'KEVIN ,' RYAN ,'RON ,' CHRI S')
4 |

grant select on history tbl to JOHN;
grant select on history tbl to KEVIN,
grant select on history tbl to RYAN
grant select on history tbl to RON;
grant select on history tbl to CHR S

2. Using the examples in this chapter as guidelines, create some SQL statements
that will generate SQL that you can use.

There are no wrong answers as long as the syntax is correct in your generated
statements.

WARNING: Until you completely understand the concepts presented in this
chapter, take caution when generating SQL statements that will modify
existing data or database structures.

Day 18, " PL/SQL: An Introduction”

Quiz Answers

1. How is a database trigger used?

A database trigger takes a specified action when data in a specified table is
manipulated. For instance, if you make a change to a table, a trigger could insert
a row of data into a history table to audit the change.

2. Can related procedures be stored together?
Related procedures may be stored together in a package.

3. True or False: Data Manipulation Language can be used in a PL/SQL statement.
True.

4. True or False: Data Definition Language can be used in a PL/SQL statement.

False. DDL cannot be used in a PL/SQL statement. It is not a good idea to automate
the process of making structural changes to a database.

5. Is text output directly a part of the PL/SQL syntax?
Text output is not directly a part of the language of PL/SQL; however, text
output is supported by the standard package DBMS OUTPUT.

6. List the three major parts of a PL/SQL statement.
DECLARE section, PROCEDURE section, EXCEPTI ONsection.

7. List the commands that are associated with cursor control.
DECLARE, OPEN, FETCH, CLCSE.

Exercise Answers

1. Declare a variable called Hour | yPay in which the maximum accepted value is

99. 99/hour.

DECLARE
Hour | yPay nunber (4, 2);

2. Define a cursor whose content is all the data in the CUSTOMVER TABLE where
the Cl TYis | NDI ANAPCLI S.

DECLARE
cursor cl is
select * fromcustoner _table
where city = "1 NDI ANAPCLI S';

3. Define an exception called UnknownCode.

DECLARE
UnknownCode EXCEPTI ON

4. Write a statement that will set the AMT in the AMOUNT _TABLE to 10 if CODE is
A, set the AMT to 20 if CODE is B, and raise an exception called UnknownCode if
CODE is neither Anor B. The table has one row.

IF (CODE = 'A) THEN

updat e AMOUNT_TABLE
set AMI = 10;

ELSIF (CODE = "B) THEN

updat e AMOUNT_TABLE

set AMI = 20;

ELSE
rai se UnknownCode;

END | F;

Day 19, " Transact-SQL : An Introduction”

Quiz Answers

1. True or False: The use of the word SQL in Oracle's PL/SQL and
Microsoft/Sybase's Transact-SQL implies that these products are fully compliant
with the ANSI standard.

False. The word is not protected by copyright. The products mentioned do comply
with much of the ANSI standard, but they do not fully comply with everything in
that standard.

2. True or False: Static SQL is less flexible than Dynamic SQL, although the
performance of static SQL can be better.

True. Static SQL requires the use of a precompiler, and its queries cannot be
prepared at runtime. Therefore, static SQL is less flexible than dynamic SQL, but
because the query is already processed, the performance can be better.

Exercise Answers

1. If you are not using Sybase/Microsoft SQL Server, compare your product's
extensions to ANSI SQL to the extensions mentioned today.

Because nearly all of Day 19 deals with Transact-SQL, we did not explore the
many other extensions to ANSI SQL. Most documentation that accompanies
database products makes some effort to point out any SQL extensions provided.
Keep in mind that using these extensions wil Il make porting your queries to other
databases more difficult.

2. Write a brief set of statements that will check for the existence of some
condition. If this condition is true, perform some operation. Otherwise, perform
another operation.

This operation requires an | F statement. There are no wrong answers as long as
you follow the syntax for logical statements (I F statements) discussed today.

Day 20, " SQL *Plus"

Quiz Answers
1. Which commands can modify your preferences for an SQL session?
SET commands change the settings available with your SQL session.

2. Can your SQL script prompt a user for a parameter and execute the SQL
statement using the entered parameter?

Yes. Your script can accept parameters from a user and pass them into variables.

3. If you are creating a summarized report on entries in a CUSTOVER table, how
would you group your data for your report?

You would probably break your groups by customer because you are selecting
from the CUSTOVER table.

4. Are there limitations to what you can have in your LOd N. SQL file?

The only limitations are that the text in your LOGd N. SQL file must be valid SQL
and SQL*Plus commands.

5. True or False: The DECODE function is the equivalent of a loop in a procedural
programming language.

False. DECODE is likean | F. . . THEN statement.

6. True or False: If you spool the output of your query to an existing file, your
output will be appended to that file.

False. The new output will overwrite the original file.

Exercise Answers

1. Using the PRODUCTS table at the beginning of Day 20, write a query that will
select all data and compute a count of the records returned on the report
without using the SET FEEDBACK ONcommand.

conmpute sum of count(*) on report
break on report
sel ect product _id, product_name, unit_cost, count(*)
from products
group by product _id, product_name, unit_cost;

2. Suppose today is Monday, May 12, 1998. Write a query that will produce the
following output:

Today is Monday, May 12 1998

Answer:

set headi ng off
select to_char(sysdate,' "Today is "Day, Mnth dd yyyy')
from dual ;

3. Use the following SQL statement for this exercise:

select *

fromorders

where custoner_id = '001
* order by customer _id;

A OWNBE

Without retyping the statement in the SQL buffer, change the table in the

FROMclause to the CUSTOVER table:

| 2
c/ order s/ cust omer

Now append DESC to the OCRDER BY clause:

| 4
append DESC

Day 21, " Common SQL Mistakes/Errorsand
Resolutions'

Quiz Answers

1. A user calls and says, "l can't sign on to the database. But everything was
working fine yesterday. The error says invalid user/password. Can you help me?"
What steps should you take?

At first you would think to yourself, yeah sure, you just forgot your password.
But this error can be returned if a front-end application cannot connect to the
database. However, if you know the database is up and functional, just change the
password by using the ALTER USER command and tell the user what the new
password is.

2. Why should tables have storage clauses and a tablespace destination?

In order for tables not to take the default settings for storage, you must include
the storage clause. Otherwise medium to large tables will fill up and take
extents, causing slower performance. They also may run out of space, causing a
halt to your work until the DBA can fix the space problem.

Exercise Answers

1. Suppose you are logged on to the database as SYSTEM and you wish to drop a
table called H STORY in your schema. Your regular user ID is JSM TH. What is
the correct syntax to drop this table?

Because you are signed on as SYSTEM be sure to qualify the table by including
the table owner. If you do not specify the table owner, you could accidentally
drop a table called H STORY in the SYSTEMschema, if it exists.

SQ.> DROP TABLE JSM TH. HI STORY;

2. Correct the following error:
INPUT:

SQL> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE
*

ERROR at |ine 1:
ORA- 00923: FROM keyword not found where expected

DATE is a reserved word in Oracle SQL. If you want to name a column heading
DATE, then you must use double quotation marks: " DATE" .

[4= Previous Cha pter-'

MACMILLAN COMPUTER PUBLISHING USA
Sl A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

oue

Teach Yourself SQL in 21 Days, Second
Edition

(4 Comtents

©Copyright, Macmillan Computer Publishing. All rightsreserved.

No part of this book may be used or reproduced in any form or by any means, or
stored in a database or retrieval system without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles and
reviews.

For information, address Macmillan Publishing, 201 West 103rd Street,
Indianapolis, IN 46290.

Thismaterial isprovided "asis' without any warranty of any kind.

(4 Contents

© Copyright, Macmillan Computer Publishing. All rights reserved.

Back

Root node

Level 1
Childran of Root

Lewal 2
Children of Level 1

Level 3
Children of Level 2

Set A Set B

JOIN

Back

UNION

Back

Oracle SGL«Plus

File Edit Search Optlons Help

+
OL=Plus: Release 3.1.3.5.4 - Production on Hon May 29 20:20:35 1395 ||
opyright (¢) Orecle Corporation 1973, 1384, All rights reserved,
nter password: |

O
«| | |+

Back

Microsoft Query
File Edit View Format Table Criteria Records Window Help

Micknams

Murnbeer

CTR Test Step
200 Function
=00 Module

] (1] (Sl (=[=] [241E)) [i) N2
e Hel

p v | &

SDD Module | QTP Test Step

wnitl 4
unit 2 5
Uirt3 7

M| 4 |Facord F M =

Gethelp on & menu command, boal, or screen region

I I [[LA |

Back

Application

(Calls ODBC functions)

v

Driver Manager

(Loads ODBC driver)

v

ODBC Driver
(Processes ODBC calls,
Submits SQL request,

Returns results)

v

Data Source

(Underlying DEMS)

Back

Import/Export Setup

Specitication Nome: MM | o
File Type: [Windows (ANSI) El [cancel

Text Delimiter: [~ [*] Field Separator: I B T

Eigld Information: (fixed width onhy) |

B [Damiaps [Stat [Widh |+ Ll

‘Dates, Times, and Mumbers

Date Order: |MD‘r" |:I
Date Delimiter: |!_.

[Leading Zeros in Dates
[T Four Digit Years

Time Delimiter: |:

— Decimal Separator;

I I

| Fill Gpecification Grid from Table...

Back

SGEL=Loader

Uzemame: Load
Password: Advanced...
Dntnhnse: <local host> Cancel
Control File: Browsa... Help
rOptional Files-

Data Browse...

Log; Dejaulis g

Had

Digcard:

Back

Oracle SQL*Plus
File Edit Search Options Help

OL> SELECT =
2 FROM BIKES;

HAME FRAMESIZE COMPOSITIOHN MILERIDDEH TYPE
TREK 2388 22.5 CARBON FIBER 4500 RALIHG
BURLEY 22 STEEL 2008 TAHDEM
IANHT 19 STEEL 1500 COMMUTER
uJ1 28 STEEL 08 TOURIHG
PECTIALIZED 16 STEEL 108 HOUHTAIHN
ICANHOHDALE 22.5% ALUMIHUH 3008 RACIHNG

«.] [+

Back

File Edit Sessjion

InterBase Interactive S0l1

View Extract Help

SHL Statement:

SELECT =

* B
FROM CUSTOMER =
FPrevious
[tew |
ISOL Output: Save Result
SELECT = -
FROM CUSTOMER
HAME ADDRESS STATE ZIP PHONE REMARES 1
TRUE WHEEL 550 HUSKER MNE 58702 555-4545 HOME
BIKE SPEC CPT SHRIVE LA 45678 5551234 HOHE
IF SHOPPE HOMETOWN — KS 54678 EE5-1278 HONE
AAA BIKE 10 OLDTOWH HE 56784 5553421 JOHH—MGR
JACKS BIKE 24 EGLIN FL 34567 5552314 HOHE
-
= 1 [+
|Databage: ¥¥S5QL Local Serves

= InterBase Security

-Server: Local Server

Uzer Name:

HAGTALE . | Add User. |

SYSDBA
Modify User.__. I
Delete User I

| 1] 4 l | Help I

Back

= Oracle Database Manager
Database: | E

Configuration: Windows 7.1 PL/SOL Startup
o e Shutdown
te g = Configure...
~ ﬂ'} o Aliases. ..

Closze

Host status: Available, running Help

Back

= Oracle SQL*Plus -

File Edit 5earch Options Help

SQL>

Back

e DataSouces |

Data Sources [Dnver): Closa
CFPS [Microzoft Access Dnver [*.mdb]] [1 Help
InterBasze [Borland Interbase) <= berd
MNEMOMNIC [Microsoft Access Dnver [*.mdb]] Satu
Oracle? [Oracle?1) p...

{ |PROTRACE [Microsoft Access Dniver [*.mdb))

| |RS_Buieve [Btieve Data (file. ddf)) Delete

{ |RS5_dBASE [dBasze Files [*.dbf])

| {RS Excel [Excel Files [*.xlz]] Add...

| RS FoxPro [FoxPro Files [*.dbf]) __T_j

| Dovers...
Options. .. e

Back

= Add Data Source

Select which ODBC driver you want to OK I
use from the list, then choose OK.

Cancel I
Installed ODBC Drivers:

Help I
Acceszs Data [*.mdb]

Access Files [“.mdb]
iBorland InterB aze
Btrieve Data [fle_ddf]
Btrieve Files [file_ddf)
dBasze Files [*.dbf]
Excel Files [xlz]

Back

E|'_='| Data Sources

= ODBC Interbase Driver Setup
Data Source Name: |TYSSOL 1] 4 i

Descrnption: Teach pourself 5GL Cancel

Database Name: DASAMSATYSSOL/TYSSAL Help

Dptional Seltings

Default Logon 1D: PEREKINS

Back

:_ Microsoft Querny |_|_]
EEEETEEREERRR RS

Back

= ODBC Data Sources

Enter Data Source:

TY550L

CFPS

AR5 M5 _Access
SYSA
PROTRACK
Oracle/
MNEMONIC

Cancel

Bemove

Back

= Select Data Source

Available Data Sources:

CFP5

SY5SA - admin
CFPSCARD
CARD - admin
PROTRACE - admin Other. ..
Oraclef - PERKINS
MHNEMOMNIC Remove

IYSS50L - PEBEINS

Uze

Cancel

Back

= Add Tables

Table:
CHECEKS

ORDERS
ORGCHART
PART
TABLE1
TABLEZ

Owner:

Database:

Back

File

Edit Yiew Formal Tahle

e) e L e
=]

Microsoff Queny

Criteria

Hueryl

PART

Becards

HAKE
ORDEREDDN
FARTHLIM
QUANTITY

{REMaRKs

DESCRIFTION
PARTHUM
FREICE

Window gclp

| Drag fiskd from one table bo celsted field in another

Back

I I el T

— SAL

SOL Statement:

SELECT CUSTOMER.ADDRESS, CUSTOMER.NAME.,
ORDERS.ORDEREDON. ORDERS.PARTNUM

FROM CUSTOMER CUSTOMER, ORDERS ORDERS. PART
PART

Back

Microsoft Query - [Queny]
=| File Edit Wiew Formai Table Criteria Hecords Window Help

D@ [[FlaF] [[v=[=] [24]E] [2]0)])

[

DESCRIPTIORM
FARTHLIM
FEICE

- | ADDRESS HAME |ORDEREDON PARTHUM
C 1 OLDTOWH | AdA BIKE 1536-06-0n 10
1HOLDTOWH | &b4 BIKE 1560000 46
1R OLDTOWH | Add BIKE 1536-07-0n Fi
CFT SHRVE BIKE 5PEC [1996-05-30 10
CFT SHRVE | BIKE SPEC 15960630 23
CFT SHRWVE | BIKE SPEC 19960830 |54
CPT SHANVE | BIKE SPEC [1996-M-17 | 7B
24 EGLIMN JACKS BIEE 15350711 7B
HOMETINM | LE SHOFFE | 1566-05-00 0
HOMETIWM | LE SHOFPE | 19360017 |7k
250 HUSEER | TRUEWHEEL 1550842 10
[550 HUSEER TRUE “WHEEL 19360515 |23
| 550 HUSEER | TRUE WHEEL 19960630 42
S50 HUSKER | TRUE'WHEEL 15960513 |76

Mi[Record] [ofw]
" Select View Coters bo shovw/edd cotens iming iecords shown [T . wWr_r .

Back

-

Microsoft Visual C++ - TYSSOL.MAK

5]

LIS

E“I.‘ Edit III:H Project Hrowse [Debug

Tools Oplions Window Help

Back

] Multiple Document Interface 1] 4
[Initial Toolbar

] Printing and Print Preview
[] Custom ¥YBx Controls

[] Context Sensitive Help

Cancel

Help

Memory Model
O Medium

] External Makefhile
< Generate Source Comments

Back

= Database Options

O Mo Database Support
O Include Header Files

Help

{_) Database and File Support

Data Source._.

Back

= S0QL Data Sources

Select Data Source:

[vssaL
RS _Excel +
R5_FoxPro
R5 M5 Access
RS5_Paradox
R5_Text

SYSA

| 1] 4 I| New. .. I| Cancel

Back

= Select a table

Data Source: TYS50L (1] 4

T ables:
CHECKS

ORDERS
ORGCHART
PART
TABLE1
TABLE?2

Back

—| Microsoft Visual C++ - TYSS0L.MAR

-
[=12]

File Edit Yiew Project Browse Debug Tools Oplions Window

Mew Application Information

Appwizard will create a new skolelon apphcalion with the fodloweinig
specification::

Help

Clatzes lo be ciaated:
Apphcation: LT yssglapp e TYS5ULH and TY55ULCFF
Frame: CHainFrame in MAINFRM . H and MAINFRMW.CPP
Document: CTezzgiloc in TYSSQDOC. H and TYSSQD0OC.CPP
HecondVeew; CTyssgView i IYS50VW.H and TYS50WVW.CPF
Recosdest: CTyseqlSet in TYSSOSET.H and TYSSGSET.CPP
[conmected la Eable CUSTOMER in data source TYSS0L)

Featmes:
+ Suppoite the Smmgle Document Inleillace [SDI)
+ MSYL Compatible project hile [TYSSL. MAE]
+ Initial toolbar and stalus bar v main frame
+ Dalabaces cupport, wilbhoul file supgodl
+ llzes shased DLL implementation [MFCZ50,DLL]

Install Dinectody: B ASAMSAMSYEATYSSOL

Back

NIk

App Studio - TYS50L.RC - IDD_TYS550L_FORM [Dislog)
=\ File Edit Besource Layoul ‘YWindow Help

[

O] (=] | (MR o o [as[==] 7 =[] (W2

7
5 r r=
H ama: Addrezs State Lo £

¥
"
i]
]]
:
] 13
- -
" 3
:]
] i
.- 13
< 9
: W
5 1}
] 3
] -
" &
.]
.- i
5 1}
] 13
] =
5 -4
ERR RN ERS R EFRE R EFREREN ERREEN TR LR R ERS R EFRE R EFRERRY |

Fleady

Back

FO0D | ees

= Add Member Yariable

Member Yarnable Hame:
m_pSet->m_ZIP *
Property:

Yalue

Yanable Type:

CString *

Description: CString with length validation

Back

Microsoft Visual C++ - TSSO L MAK

File Edit Yiew Project Browse Debug Tools Options Window Help

o it e

B] [BIE) [oossvos] o] (3 CTE1E [C1)

<15 Ouitput

Initializing

Complling reasourees

Compiling

d: wsans-asrchtyssqlistdaiz . cpp

Comnpiling

d - wsansuasvostyssglstyssgl cpp

d: “sans“rsrc-tyssqlimainfcs. cpp
Kxanulnsvuhiyxsqllly5=qduu [o Ja)

d - swmanswasvostyssglhstyssgew . cpp
“sansasvcxtyssglhtyssgsst . cpp

Linking

Binding rescurces

Creating brovser database

TSSOl EXE - 0 errori{s). 0 warning(s)

«[] L4

TYSS0LEAE - 0 emor(s), 0 waming(s) READ NLIM 00015 D01

Back

Tyssqgl Windows Applicalion - Tyssq|
File Edit Hecord Yiew Help

Hame Addrezs Siate Zin
|TRUE WH | |550 HUSK | [NE | |sB702
Ready T NUM]|

Back

Microsoft Visual C++ [run] - TYSSOL.EXE <1> Output
= EII: Edit Yiew Project ﬂmwu: Debug IunIE Dptions !ﬂnduw Help

I'-. """ sl --rllll!qrw ;-||]r||| -|I||||r| |'g,|'!'i!i|]|

iosdeq File Edit Record View Help

wrcor] Ll el) A [P I [B]

Hama Addrezs 5 Laste Zin
|AAA BIKE | |10 OLDTOD | NE | |56784

T
T oM [ooogd ot

Back

S Detphi - Projett BE
File Edit Search WYiew Compile Bun OQplions Toeols Help

o] o] [[ETRA[w]E]m]] e [Ea="[E] [

- . ‘0" |\ Standud f{ddtonal 10 st Access AU ol Conircls | Disogs fSysem VBN
==| Object Inspector | = fi=sj== i
[Feemn: TFeemi [elftt oo
AgireCorol e
AndoSerol True T T IR L S b Rttt Pt L
sBoiderdeons | IS pstei ey e
bifisgable S P P P I b S L L
Caplion (= | | B Co-cccocoocooCcOo0OOCOOCCOOOOOOOOOO0OOOO0OOOO0OO0000000 000000
CheniHeight | 273 Pr ErraeraaariaEriTariiariaara s aritEriTariiarae;
Chenfwfich | 427 R S
Coke cHirFace SRR AL L R S R S A L L LR,
| O30 True R R
Cuesor caDefank SRR AL L R S R S A L L LR,
Eniabled Toum R R
B O | L3 I— It
| Fombtyle tsHomal R
[Heighe 0 LMl
| HeipConlest 1D T T IR L S b Rttt Pt L
B e e | BRI TR P E LT P RSP RIS
Dataflase EHP&H
+
‘—

+
[Page 18 Sec TBAE [R78 Lnd Col10 237 AW [FEC [RAK EXT I0WE Raisl

Back

= BDE Configuration Utility - D:\IDAPRIDAPLCFG

File Pages Help

N cp437

SOL Link Driver: ODBC_|TYSsS0L
Detault ODBC Driver: Borland InterBase 3
Default Data Source Name: | TYSS0L *
(1] 4 I | Cancel Help
SDESTITPATOT.

dBASE Dinver Configurabon

[\ Drivers § Akases § Sysiem jDate f Time 4 bumber
il

Back

= Add New Alias

MNew alias name:

TYSS50L

Alias type:

ODBC_TYS50L *
0K | Cancel I | Help

Back

|; Browse Gallery

" DK
| " -E; X Cancel
Databaze Form Dialog E wpe
7 Help

Cieates 5 new lomm rom local o remabe data

{ \Expests A Templates /

Back

= Database Form Expert

' Choose the type of form that the Expert will create
from the optionz below.

Foim Options
(' Create a simple form

(® Create a master/detail form

— DataSet Options
(" Create a form using TTable objects

@ Create a Form using 1 Query objects|

|x Cancel I | ? Help FPrev } Hext |

Back

=' Database Form Expert

’ Chooze a table to use with the master querny

Table Name:
- d: Ldelphiibin

= TYSS50OL

List Files of Type: Drive or Akas name:
¢User Tables» '

L]

* Cancel ? Help |‘ Piev | Hext |

Back

= Database Form Expert

' Choose a table to use with the master query

Table Name:

Biii pre—- PART
LT —
a=8 CHECKS :
m CUSTOMER
m ORDERS
1 DRGCHART

TABLE1 n
List Files of Type: me or Alias name:
<User Tables>» | 2 TYSs50L +

|x Eam:el”? Help " Prey } Heutl

Back

= Database Form Expert

To add fields to the form. click each one in the
Awailable Fields list and then click the ">" button.

i E To choose all fields. click the ">>" button.

........... ﬁ‘l’ﬂiﬂhh Fiﬂldl;: nldElEd 5 EIE[:I:Ed FEEId-I:

............................ E PARTHNLIM
i DESCRIPTION
PRICE

[t e

|x Eam:el”? Help " Prey } Heutl

Back

Database Form Expert

Choose the way you want the Expert to layout
fields on the form by clicking one of the options

(" Horzontal
 — m— Place each keld side-by-zide starting at the left comer
working towards the bottom nght.
" Vertical
Flace sach hald directly balow the previous one
wiorking from the top down to the bottom.

! Grid

Place each hald within its own column nzide & grid object
working frorm keft to right,

| X cancel || 7 Help | [4 Prev | [D Nem |

hiiisiisiis

Back

= Database Form Expert

' Choose a table to use with the detail query

Table Name:

Y ORDERS
rbyottt] e——
BEl ChECKS :
m CUSTOMER
i ORDERS
@ ORGCHART
@ PART
TABLET +
List Files of Type: me or Alias name:
¢<User Tables> * | 2 TYSs50L +

hiiisiisiis

| X cancel || 7 Help | [4 Prev | [D Nem |

Back

= Database Form Expert

To add fields to the form. click each one in the
Awailable Fields list and then click the ">" button.

i E To choose all fields. click the ">>" button.

........... ﬁ‘l’ﬂiﬂhh Fiﬂldl;: nldElEd 5 EIE[:I:Ed FEEId-I:

............................ E ORDEREDON
" NAME
PARTHUM

QUANTITY

<] [REMARKS
it

|x Eam:el”? Help " Prey } Heutl

Back

=' Database Form Expert

Chooze the way you want the Expert to layout
fieldz on the form by clicking one of the options

(" Horizontal
Flace each field side-by-zide starting at the keft comer
working towards the bottom right.
(" Vestical
Flace sach field deectly below the previous one
waorkireg from the top down to the bottom.
® Grid
Flace sach field within 2 own column inside a gnd objeck
working from left to nght.

* Cancel ? Help |‘ Prev

Back

= Database Form Expert

Select pairs of fields from the field lists that will join the
two guernes. Usze the add button to add the selected pair

to the lst.

=
T

e Detail Fields Master Fields
i P - ORDEREDOM DESCRIPTION
NAME PRICE
QUANTITY Add
REMARKS -

Joined Fields

PARTHUM -> PARTHUM Dbty |
Clear |

|x Eam:el”? Help " Prey }

Back

tm)

i [111]
—

tm)

i [111]
—

PARTNUM DESCRIPTION

FPRICE

Back

PARTNUM DESCRIPTION FPRICE
101 |TANDEM 1200
ORDEREDOM [MAME FARTHUM |LUANTITY |REMARKS
| 3/2/96 TRUE WHEE 10 1 FaID
_|5/30/36 EIKE SPEC 10 2 FalD
_|BA1/96 LE SHOFFE 10 3 FAID
_|BA/96 A8 BIKE 10 1 FAID
(I +

Back

= string list editor

b lines

Select _ﬂ
o

PART.PARTHUM,
PART.DESCRIPTIOM.
PART.PRICE

From PART

| | +

Load... I | Save._. I ||.|f’ [1] 4 I | x Cancel I | ? Help I

Back

Lisir
procass

Back

Liser
process

N

Lsear
transaction

Back

\..__________.-r’
Rollback COMMIT
segment
‘-..._________..-‘
ROLLBACK
Y

Changes
discarded

Changes
made to

target
table

A
~—

Systern catalog
Tables
BigTable la

N—

disk01

Back

AN
]

Transaction logs
Tables
BigTable Ib

~

diskD2

N
N

Rollback segments
Indaxes
Biglndex la

S~

disk03

AN
~—

Sort area
Indexas
Bigindex Ib

—

disk04

user

Back

SELECT statement Data dictionary

or
application tables

Generates SCL
SQL - staterments
Code from SELECT
slalements

Generated SQL can be
used to query or madify 3 Database
the database

select = =
from products [
where unit_cost £ 2%
!

] prod - Hotepad

Fle Edt Semch Help

S0L» select = ;l
2 From products;
FRO PRODUCT_HAME UHIT_CDST
P HMICKEY HOUSE LAMP 29.95
P2 HO 2 PEHCILE - 28 PACK 1.99
P COFFEE HUG 6.95
FiMs FAR SIDE CALEHDAR 1.5
Fis HATURE CALEHDAR 12.99
P SOL COHMAMD REFEREMCE 29.99
FOF BLACK LEATHER BRIEFCASE 09.99
7 rows selected.
S0L> spool off
i
BAStart| £ Oracke SOLPhs | 5y Exporing - 3¢ Floppy 1) | (5] prod - Nokepad | 8 saspm

Back

] main. 2gl - Holepad

Fle Edt Semch Help

set echo on

set feedback on
seleck 5ysdal:e
From dual

!

B start| G Oracke SOLPhs

| 53 Evpiorng - 35 Fioppy (4| (<] main sal- Notepad

| [© smem

Back

	Local Disk
	Table of Contents
	Introduction
	Week 1 at a Glance
	Day 1 -- Introduction to SQL
	Day 2 -- Introduction to the Query: The SELECT Statement
	Day 3 -- Expressions, Conditions, and Operators
	Day 4 -- Functions: Molding the Data You Retrieve
	Day 5 -- Clauses in SQL
	Day 6 -- Joining Tables
	Ch 7 -- Subqueries: The Embedded SELECT Statement
	Week 1 In Review
	Week 2 at a Glance
	Ch 8 -- Manipulating Data
	Day 9 -- Creating and Maintaining Tables
	Day 10 -- Creating Views and Indexes
	Day 11 -- Controlling Transactions
	Day 12 -- Database Security
	Day 13 -- Advanced SQL Topic
	Ch 14 -- Dynamic Uses of SQL
	Week 2 In Review
	Week 3 At A Glance
	Ch 15 -- Streamlining SQL Statements for Improved Performance
	Ch 16 -- Using Views to Retrieve Useful Information from the Data Dictionary
	Ch 17 -- Using SQL to Generate SQL Statements
	Ch 18 -- PL/SQL: An Introduction
	Ch 19 -- Transact-SQL: An Introduction
	Ch 20 -- SQL*Plus
	Ch 21 -- Common SQL Mistakes/Errors and Resolutions
	Week 3 In Review
	Appendix A -- Glossary of Common SQL Statements
	Appendix B -- Source Code Listings for the C++ Program Used on Day 14
	Appendix C -- Source Code Listings for the Delphi Program Used on Day 14
	Appendix D -- Resources
	Appendix E -- ASCII Table
	Appendix F -- Answers to Quizzes and Exercises
	Copyright

