
, ...

INCORPORATED

SEVENTEENTH SEMI-ANNUAL
CRAY USER GROUP MEETING

May 5-9, 1986
Seattle, Washington

cu~
INCORPORATED

PROCEEDINGS

Host: Boeing Computer Services Company

KAREN WINGET, EDITOR

CONTENTS

CRAY User Group, Inc. Board of Directors, 1986-1987 ••••••••••••••••••••••••••••••••• iv
Local Arrangements Committee ••• iv
Program ••• v

PRESENTATIONS
CRI Corporate Report, Marcelo Gumucio ••• 2
CRAY Software Status, Margaret Loftus •••• •••••••••••••••••••••••••••••••••••• ••••••••• 3
UNICOS on the Cray X-MP, Jim Miller •••••••••••••••••••••••••••••••••.•••••••••••••••• 5
COS to UNICOS Migration, Richard Lagerstrom •• ••• ••••••••• ••• •••••••••••• ••• ••• ••• ••• 9
The Supercomputer as an Experimental Apparatus, Ben Domenico ••••••••••••••••• 11
Cray-2 UNICOS Kernel Enhancements, Tom Hoel...................................... 18
Early Experiences with the NAS Cray-2, John Barton •••••••••••••••••••••••••••••••• 21
The Computation of:rr as a System Test of the Cray-2, David Bailey............... 25
User Requirements Committee Report, Steve Niver •••••••••.••••••••••••••••••••••••• 34

SHORT PAPERS
Performance of 00-229 versus 00-39, Mike Ess ••••••••••••••••••••••••••••••••••••••• 38
A Bad Experience with CFT 1.14, Chris Lazou •• 40
Batch Jobs on UNICOS, Clay Andreason •• 43

SPECIAL INTEREST COMMITTEE REPORTS
Softwa re Tools I, Mar y Zosel

The Status and Evolution of C, Larry RosIer.. 55
Exper ience at User Sites, Mart in Fouts, Rick Shultz, Robin O'Nei 1. •••••• ••• •••. 55
CRI Support and Plans for C, Tom MacDonal d.. ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••• 56

Software Tools II, Chris Lazou
FPV, A Floating-Point Validation Package, J e r emy DuC roz........................ 57

Softwa re Tools III, Elizabeth Will iams
A Compar ison of NAG, IMSL and Cray Libraries, Chr is Lazoll. ••• ••• ••• ••• ••• •••• 62
Static Debugging of Multitasking Programs, Bill Appelbe........................... 66
Dynamic Debugging for Multitasking, James Tabor................................ 74
Operating System Support for Parallel Processing, Steve Reinhardt. ••• ••••••••• 77

Performance I, Mostyn Lewi s
Experiences with a Schizophrenic X-MP, Tony Shober............................ 80
UNICOS Performance Enhancements, ,J im Harrell.................................. 86

Communications I, II, Dean Smith
Superlink 2.0, Stewart Ross, Brian Gaffey, Nic Catrambone..................... 100
Multiple Protocol Support, Tr icia Senn. ••• •••••• ••• ••• ••• •••.••••••••.••••• ••• ••• •••• 101

Communications III, Ronald Kerry
Supercomputer Networking at the University of Illinois, Sandy Moy •••••••••• 102
Cray Networking with JES3, Brian Vohs.. 102

Operating Systems I, Ray Benoit
How to write a Setuid Program, Matt Bishop....................................... 110

Operating Systems II, Ray Benoit
COS Experience Panel, Jim Sherin and Mostyn Lewis •••••••••••••••••••••••••••••• 113
A Report on the First Nat i ve X - M P Un icos Installation.... ••• ••• ••• •••••• ••• ••• ••• 122
Design for PSS Pre-emption, Tom Lanzatella.. 123

Graphics, Helene Kulsrud
3D Imaging and High Speed DMA Graphics, Robert W. Conley, Jr. ••••••••••••••• 129

ADDITIONAL REPORTS
President's Report, Helene Ku1srud ••• 133
Vice-President's Report, David Lexton ••• 135
Commi t tee Reports.... ••• •••••• •••••• ••••••••• •••••••••••• ••• ••• ••• ••• ••• ••• ••••••••• ••• •••• 136

ADDITIONAL INFORMATION
CUG Site Contact List •• 144
call for Papers •• ••• ••••••••• •••••• ••• ••••••••• ••• ••• ••• ••• •••••• ••• ••• ••••••••• •••••••••••••• 163

iii

CRAY USER GROUP, INCORPORATED

BOARD OF DIRECTORS

Title

President
Vice-Pres ident
Treasurer
Secretary
Member
Member
Member

PROGRAM COMMITTEE

David Lexton, Chair
Jerry Melendez
Stephen Niver
Margaret Simmons
Dean Smi th
Ann Cowley
Helene Kulsrud

Name

Helene Kulsrud
David Lexton
Robert Price
Karen Fr iedman
Stephen Niver
Sven Sandin
Michael Schomberg

Raymo n d Benoit
Gary Jensen
Ron Levine
Mostyn Lewi s
David Sadler
Mar y Zosel

LOCAL ARRANGEMENTS COMMITTEE

Stephen Ni ver
Mary McDonald
Sherr ie Kornel ison
Byron Stevenson
Annela Zamora
Am y Amiot

iv

Organization

IDA
ULCC
Westinghouse
NCAR
BCS
SAAB-Scan i a AB
7'l.ERE-Harwell

--

Monday, May 5 Tuesday, May 6 Wednesday, May 7 Thursday, May 8 Friday, May 9

10.00 Operating Systems 8.30 Welcome 8.30 Operating Systems I 8.30 Communications III 9.00 New Hardware Performance
-12.30 SIC Closed A.M. Erisman (Boeing) UNICOS User Presentations C. Diem (CRn

Meeting R. Benoit (EC) D. Smith (ARCO)

8.45 Keynote
10.00 Software Tools SIC D. Ritchie (Bell) Software tools III
-12.30 Closed Meeting Multitasking 9.30 Implementing UNICOS

E. Williams (LANL) J. Barton (NASA Ames)
9.15 CUG Report Operations II

10.00 Operations SIC H. Kulsrud (IDA) G. Jensen (NCAR)
-12.30 Closed Meeting

9.30 CRI Corporate Report Operations III
10.00 Communications M. Gumucio (CRI) G. Jensen (NCAR)
-12.30 SIC Closed

Meeting
10.00 Break 10.00 Break 10.00 Break 10.00 Break

I

11.00 Graphics and 10.30 CRI Software Report 10.30 COS-UNICOS migration 10.30 Cray-2 s/w enhancements 10.30 Reports from Special
-12.30 Databases SIC M. Loftus (CRn R. Lagerstrom (CRn T. Hoel (CRn Interest Committees

Closed Meeting and User Requirements
Committee

(Observers may 11.00 UNICOS on the 11.00 Aerospace & 11.00 Short Papers
attend SIC X-MP Supercomputing C. Kimble (Boeing) 11.15 29 Million digits of
meetings with J. Miller (CRI) P. Muzio (Grumman) D. Bailey (NASA Ames)
the prior
permission of 11.45 Next Conference
the SIC chair] 11.30 Cray-2 Development 11.30 The Supercomputer as P. Herchenbach (DFVLR)

Status an expmtl. apparatus
D. Judd (CRn B. Domenico (NCAR)

< 11.55 Closing Remarks

12.00 Lunch 12.00 Lunch 12.00 Lunch 12.00 Lunch (not sponsored)

1.30 CTSS SIC 1.30 Software Tools I 1.30 Communications I 1.30 Operating Systems II
-3.00 Closed Meeting C on the Cray UNICOS Station Software COS

M. Zosel (LLNL) D. Smith (ARCO) R. Benoit (EC) 2.00 Tour of 747 factory

1.30 Performance SIC
-3.00 Closed Meeting Performance I Graphics CTSS

10
M. Lewis (Chevron) H. Kulsrud (IDA) J. Melendez (LANL)

2.00 Aerospace
-5.00 Birds-of-a-Feather

3.00 Break 3.00 Break 3.00 Break
3.00 User Requirements
-5.00 Committee 3.30 Software Tools II 3.30 Performance II 3.30 Advisory Council

Libraries Performance Evaluation CFT77 Status
C. Lazou (ULCC) A. Cowley (NCAR) Karen Spackman (CRI)

4.00 User Requirements
Operations I Communications II Committee

Superlink
G. Jensen (NCAR) D. Smith (ARCO)

5.00 Advisory Council 5.00 Reception for New 5.00 Program Committee 5.00 UNICOS demonstration
-6.00 Members Software Tools SIC (CRn

UNICOS Demonstration
(CRn

Meeting

7.00 Cray Corporate 7.00 Conference Dinner 5.30 OSSIC Closed Meeting
Reception 8.00 Tour of Boeing

n::lt::l rpnh>r

PRESENTATIONS

MARKETING OVERVIEW

MARCELO A. GUMUCIO

CRAY RESEARCH, INc.

REVENUE

1981. 101.6

1982 141.1

1983 169.7

1984 228.8

1985 380.2

NET EARNINGS

1981. 18.2

1982 19.0

1983 26.1

1984 45.4

1985 75.6

R&D EXPENDITURES

1981. 17.0

1982 29.5

1983 25.5

1984 37.5

1985 49.2

WORKING CAPITAL

1981. 61.9

1982 98.6

1983 129.4

1984 115.8

1985 137.9

2

CAPITAL EXPENDITURES

1981. 9.3

1982 19.3

1983 14.9

1984 25.7

1985 49.7

TOTAL EMPLOYMENT

1981. 1,079

1'982 1,352

1983 1,551

1984 2,203

1985 3,187

CUSTOMER BASE

Total Customers Total Installs
1981 25 35

1982

1983

1984

1985

32

44

60

79

50

65

88

115

1985 INSTALLED BASE BY INDUSTRY

Petroleum 16%
Service Bureau 6%
Aerospace 13%
Weather 4%
Universities 6%
Automotive 3%
Electron 5%
Government 38%
Other 9%

CRAY SOFTI/ARE STATUS

Margaret A. Loftus

Cray Research, Inc.

Since the last User Meeting, we have distributed
22 software releases. This includes 12 major
releases and 10 minor releases. Eight releases
were distributed in March and April and includes
some of our major products.

The following are the major software projects
in progress today.

The following software has been released since
the last Users Meeting.

3.02 VAX/VMS Station
3.0 V~1 Station
1.15 NOS Station
Superlink/ISP 1.0
UNICOS 1.0
CAL 2.0
PASCAL 3.0
1.0 C Compiler
1.16 NOS Station
2.0 UNIX Station
COS 1.15
CFT77 1.0
PREMULT prereleased

October 1985
November 1985
December 1985
December 1985
March 1986
March 1986
April 1986
April 1986
April 1986
April 1986
April 1986
April 1986
January 1986

The following software is running at Cray
sites:

COS 1.15
CFT 1.15
COS 1.14
CFT 1.14
COS 1.13
COS 1.12
CFT 1.11
CFT 1.10
UNICOS
CFT2

No. of Machines

8
8 (prerelease)

67
72
22

6
24
1
9
6

COS and CFT 1.14 are being on most machines.

UNICOS use is just beginning but is increasing
rapidly. Last year we estimated 1986 UNICOS
users at all 1986 CRAY-2 customers and 3 X-MP
customers. The number of UNICOS X-MP customers
is already three and we have currently a total
of 14 strong prospects for 1986.

3

1.15 CFT planned for release in May.

1.16 COS/CFT will be released late
1986/early 1987. Major features include:

Guest operating system enhancements
Internal Station - COS to UNIX
Station
Ability to partititon the SSD and
onl ine tapes.
Microtasking officially released
SSD backdoor
SSD and buffer memory preemption or
roll ing
New NSC driver - improved error
recovery
Concatennated datasets
Also a significant emphasis on
reduction of SPRs.

CFT77 for the CRAY-2 will be released in
July. Beta testing at a CRAY-2 site has
begun.

1.15 NOS/BE Station to be released July
with dual state support.

Superlink/MVS 2.0 will be released 4Q86.
We have also begun a Superlink effort
under UNICOS.

2.01 MVS Station to be released in May with
interactive support. We have just finished
beta testing.

2.0 Apollo Station to be released May with
operator commands and control.

UNICOS 2.0 will be released 3Q86 with job
recovery, support for SCP protocol.

A major emphasis of our software is
transportability software. 1986 is the year \-/e

begin seeing results from that effort Hith CFT77
and UNICOS.

CFT77, a new FORTRAN compiler has been initially
released. Characteristics of CFT77 are:

Written in higher level language - PASCAL.

Base for improved performances
- incorporates new techniques for

vectorization/optimization
- improved scalar performances. Base

for automatic multitasking.
- Compatible with the existing

compi 1 er - CFT.

Our transportable operating system UNICOS 1.0
was released last month. Capabilities are:

Supports both the CRAY-2 and x-r~p.
Written in C
High performance - equivalent to COS
for I/O and CPU overhead for the X-MP.
Extensions to UNIX - I/O and batch
TCP/IP support

New releases of UNICOS will occur about every 6
months with mini releases every 2 to 3 months.

In early 1988 we expect UNICOS to have the
functionality of COS. UNICOS and TCP/IP both
require licenses.

The introduction of UNICOS requires a strong
migration effort. ~ligration provides a
bridge from COS to UNICOS for those customers
interested in migrating.

Our goal is to have a single product FORTRAN
compiler, CFT77, and a single operating system,
UNICOS, that runs on all the hardware that we
are offering.

Anothers major software emphasis is connectivity.
Connectivity is important because our software
must allow CRAY systems to fit easily into
diverse environments.

Stations will continue to be an important means
of connecting to CRAYs. Stations will provide
connections to both COS and UNICOS. Our
station products will continue to be enhanced
as needed.

4

Fitting into networks is a major effort. There
are two ways of fitting - as equal partners and
through a frontend gateway. Stations and the
Superl ink effort ~lill provide frontend gate\'/ays
to a variety of proprietary neblOrks such as
OECnet and SNA.

For true neblork environments, TCP/IP under
UNICOS is available for both the CRAY-2 and
X-f·1P.

A third major soft\lare emphasis is improved
quality. A number of changes are being made
to address quality:

~lore field testing prior to formal release.
Nore frequent bugfi xes (every 3 months).

There is a concentrated effort on
improving on-line tape reliability by
more field testing, improved testing in
Mendota Heights and improved access to a
variety of configurations.

Additional hardware in Mendota Heights.

Controlled introduction of major new
products.

Faster response to major SPRs.

A user survey has just been completed surveying
45 customers. We plan to respond to the
concerns highlighted in the survey and plan to
repeat the survey in 1987 to see if you think
we have improved.

UNICOS on the CRAY X-MP

Jim Miller

Manager, X-MP UNICOS Development, Cray Research, Inc., Mendota Heights,
Minnesota.

Introduction
" ... one of the most important
aspects of any computing tool
is its influence on the thinking
habits of those who try to use
it ... " E.W. Dijkstra.

UNICOS is Cray Research's operating
system for the Cray-2 and is available
for the Cray X-MP. UNICOS is based
on AT&T UNIXt System 5 but has
some software from 4.2bsd and many
changes and additions from Cray
Research to allow it to run successfully
in a supercomputer. The first release
and subsequent releases are common to
the Cray-2 and X-MP. There are
differences between the software that
run on the machines, but the bulk of the
code is common and offers a common
user interface to applications programs.

The first port to a Cray machine was
from source targeted for a Vax. The
software now runs on Cray X-MPs with
2, 4, 8, and 16 million words of
memory and 1, 2, or 4 processors; Cray
lIMs and Cray lISs as long as an I/O
Subsystem is attached; and also Cray-2s.

Release 1.0

UNICOS was released in March and is
available to Cray customers with the
necessary licenses. Some Cray-2 and

t UNIX is a trademark of AT&T Bell
Laboratories.

5

X-MP customers are using UNICOS at
this time. At this writing there are nine
Cray machines which are running
UNICOS under the Guest Operating
System or in native mode. The next
release of UNICOS will be in the third
quarter of 1986.

The major features that have been added
to the System 5 standards are:

TCP/IP protocol support. Software
to communicate with front ends
with similar support.

Network Queuing System. A sub
system that allows batch processing
under UNICOS.

Performance Enhancements.
Changes to allow better I/O
throughput and improved operating
system performance.

Multiprocessing support.

X-MP UNICOS Goals and Require
ments

UNICOS was modified to satisfy several
sometimes contradictory goals. The
main goals pursued are the following:

Stability.

Performance.

Compatibility with Cray-2.

Compatibility with AT&T System
5.
Common Products with COS for
migration purposes.

Stability

The structure of UNICOS is well suited
to avoid system interruptions. The small
kernel is easy to maintain. Implementa
tion in the higher level language, C,
gives us inherent features that grant
better stability; modular structure gives
ease of modification and localization of
functions.

Most errors are encountered as a result
of user action and therefore the typical
reaction at time of unrecovered errors is
to abort the user and allow the rest of
the system to continue. The UNICOS
command set includes a large share of
what is often considered operating sys
tem in other systems. Those commands
are essentially unchanged since the port
from the Vax, mostly as a result of the
effort to maintain a compatible user
interface with System 5. The com
mands are very mature software and
give us a predictably stable environ
ment.

Performance

Compute bound programs are able to
perform well because the hardware
features continue to be used by the COS
compilers and products that have been
moved to the UNICOS system. Code
produced by these compilers performs
virtually identically to the same code
running under COS. The performance
of UO devices is one of the most impor
tant concerns of an operating system.
For UNICOS most of the devices in use
are attached to the lOS which runs
mature software originally developed for
COS. For DD29s, DD39s, and DD49s
the performance delivered by UNICOS
equals that of COS. Software in sup
port of SSDs resides in the main frame,
but when compared to I/O done in COS
to SSDs, UNICOS performance is
measurably better. This is due to

6

shorter paths in UNICOS to get to the
device from 'the user request. UNICOS
is especially effective in smaller size
requests. Buffer memory resident data
sets are comparable to COS speeds
because they also use the lOS software
to drive the device. In addition, hyper
channel and basic on line tape software
support exists in the first relea~e via the
lOS.

Cray-2 Compatibility

Cray-2 compatibility is an important
goal. A single operating system across
all Cray main frames allows significant
economies of effort in producing and
supporting systems. The hardware
differences are significant so that several
software differences have been neces
sary.

The Cray X-MP has an lOS attached,
memory to 16 million words, SSDs, a
separate base address and limit fl)r code
and data, and cluster registers.

The Cray-2 has a front end processor,
immense memory (256 million words),
and a single base address and last
address register, in addition to a
different instruction set.

UNICOS for the X-MP will be compati
ble with UNICOS for the the Cray-2.
The goal is to have the same interface
for user calls, system calls, library calls,
and languages. Exceptions will occur
due to architectural differences or to
performance needs which are dependent
on architectural differences.

AT &T System 5 Compatible

Compatibility with System 5 is another
of the important goals of the project.
The user interfaces and general environ
mental structures of UNIX were
preserved in the port. UNICOS, like
UNIX, has a small kernel that is well
insulated from user activity. The bulk

of work is done at user level.

The System V Interface definition
(SVID) manual as written by AT&T is
being used in the project. It defines the
minimum set of functionality included
in a System 5 UNIX. We plan to meet
the criteria set out by AT&T.

The UNICOS system is based on a
UNIX that ran on a much smaller
machine and thus many changes were
necessary in the system to allow much
better performance. The following para
graphs describe the major changes to
accomplish this.

Asynchronous 110 was implemented in
UNICOS to allow a user to overlap
computational work with I/O. X-MP
UNICOS supports reada and writea
commands as well as a list directed call,
listio, which allows multiple distinct I/O
requests to be included in a single
request.

110 block size by file system is sup
ported. System 5 for the Vax uses a
block size of 1024 bytes which is too
small for good liD performance on a
Cray. For X-MP UNICOS the system
allows each file system to specify a
larger block size which is saved in the
file system descriptor and used in all I/O
requests on that file system. In practice
that block size is set to at least a sector
(4096 bytes) and for large files needing
good streaming rates it's set at a DD29
or DD49 disk cylinder (18 or 42 sec
tors)

File system changes have been made to
enhance the performance profile of the
system. The allocation mechanisms have
been changed to reduce file fragmenta
tion which, in turn, increases the
system's ability to stream data from
files. The maximum size of a file has
been greatly increased by software
which allows device overflow through
the use of the concept of a logical disk.

7

Raw I/O is extended to normal files by
the system. Raw I/O allows faster I/O
by movement of data directly to the user
buffer rather than via system buffers.
Transfers are done in whole sectors.
Raw I/O is selected at file open time
which causes all normal read and write
calls to be raw liD requests.

Multitasking and microtasking are sup
ported in a COS like implementation.
Both functions are effective means to
allow a single job to use the processing
power of more than one CPU con
currently. A preprocessor (PREMUL T)
for CFT is available by request and on a
prerelease basis to support microtasking.

Other Changes to UNICOS

Disk flawing support has been added to
let the system allow for imperfections in
the disk media.

Batch capabilities which are based on
Network Queuing System (NQS) are
included in the release. Capabilities to
submit, manage, status, and delete jobs
from queues are available via UNICOS
commands.

Accounting changes have been imple
mented to be more suitable for super
computer usage.

Terminal support in UNICOS is resident
in the front end and relies on TCP/IP to
get terminal input to the UNICOS sys
tem.

Common products with COS

CFT 1.15 and Fortran libraries. The
1.15 compiler is a prerelease which will
run under UNICOS.

C 1.0 compiler and libraries (libc) are
based on C language V.2 from AT&T.
Most differences arise from hardware
dependencies.

Pascal 3.0 and libraries. The compiler
has been enhanced over 2.0 and runs

under UNICOS.

CAL 2.0 is a new version of the Cray
assembler written in Pascal to allow it
to support all Cray machines. The com
mind name for CAL Version 2 under
UNICOS is as.

SEGLDR 2.1 is the COS SEGLDR
modified to run under UNICOS.

UPDATE 2.1. UPDATE under
UNICOS performs the same functions
as under COS and is used as source
control utility for some of the UNICOS
products.

APML, ADSTAPE, BIND. These pro
ducts are necessary to be able to build
the lOS software under UNICOS.

DEBUG 2.1 is the COS DEBUG pro
gram modified for UNICOS.

lOS software. The full set of lOS
software is able to run with UNICOS as
well as COS.

Commands and System Calls

The first release of UNICOS contains
over 250 commands including System 5
standard commands that are supported
on most UNIX main frames, and a set
of Cray specific commands that have
been produced to support specific
features that have been ported to
UNICOS or created to deal with specific
supercomputer related issues.

The standard commands include such
commands as awk, crypt, grep, and
man; a set of commands that is nor
mally found in every Unix implementa
tion; The list includes COS products:
apml, eft, debug, pascal, update, along
with several others. These are familiar
to COS users and perform as they do
under COS. The set of commands
created by Cray and ported to Cray
machines for specific uses include
TCP/IP commands (rep, telnet) and
NQS commands (qsub, qstat, qdel).

8

There are over 80 UNICOS system calls
that provide services to running pro
grams. They include standard calls and
some that have been added to get
specific functionality. Some examples
of system calls provided are open, close,
reada, writea, listio, fork, and wait.

COS TO UNICOS MIGRATION

Richard N. Lagerstrom

Cray Research, Inc.
Mendota Heights, MN

OVERVIEW

This paper will describe what Cray Research is doing to
help current COS users migrate to UNICOS. This is not
intended to be a technical overview but a general descrip
tion of what is or will be available from CRI. As of the
date of this paper little actual experience with migration
of users· exists. We intend to further develop migration
aids as needed and suggestions are welcome.
The subjects covered below are 1) What products are the
same between COS and UNICOS; 2) Migration Aids
available; 3) Training and 4) Migration Coordination.
Migration from COS assumes current use of Cray 1 or
Cray XM-P machines. The migration target includes the
Cray 2.

WHAT IS THE SAME?

The major products listed below are common between
COS and UNICOS. A common product is source compa
tible between operating systems and provides the max
imum degree of migration ease between systems.

Compilers
The CFT, Pascal and C compilers are common between
COS and UNICOS.

Libraries
The Fortran libraries are the same except where operating
system differences make that impossible. The names of
the libraries are different in the two systems as shown in
the following table

$SCILIB is named libsci on UNICOS
$ARLIB is named libm on UNICOS
FORTRAN-77 1/0 is named Iibio on UNICOS
$UTLIB is named Iibu on UNICOS

Loader
SEGLDR 2.1 is the common loader on COS and
UNICOS.

UPDATE
The source maintenance utility UPDATE is common
between COS and UNICOS. A utility named pIcopy is

9

used on UNICOS to convert a source file from COS for
mat.

MIGRATION AIDS

A number of migration aids are being developed to make
migratio~ from COS to UNICOS easier. This section of
the paper will describe the currently identified migration
aids in functional terms. More detail may be requested
from your field representative.

Guest Operating System
GaS is the Guest Operating System which is a feature of
COS released in 1.15. This feature allows UNICOS and
COS to run together in the same machine given that
sufficient resources are available. The general require
ment is that UNICOS requires one million words of
memory and at least one dedicated disk, one CPU and an
lOS. This means that the version of the Guest Operating
System available with COS 1.15 will not run on single'
CPU machines. The CPU assigned to UNICOS is
returned to COS when UNICOS is stopped.
To increase the utility of GaS a number of characteristics
have been changed and will be available with COS 1.16
and 1.17. The improved features allow use of GaS in
single CPU machines as well as providing demand
scheduling for mUltiple CPUs under installation control.
Also included is a COS to UNICOS connection for direct
communication between the systems using SCP and the
ability to partition disks and the SSD between systems.
Because some of these features depend on a specific ver
sion of UNICOS, please contact your field representative
for release details.
The COS 1.15 version of GaS has been designed to iso
late the two systems as well as feasible in the COS
environment. Each system has its own region of memory
protected by the system's BA and LA registers. The only
code able to access both portions of the machine is COS
EXEC. This is necessary since interrupt processing for
UNICOS is done in part by EXEC.
The fully protected mode of GaS mentioned above is the
only mode available in COS 1.15. This mode requires
memory allocation by STARTUP so the memory may not
be restored to COS unless STARTUP is run. Some
installations have indicated that it would be better to
dynamically allocate memory to UNICOS when it is

loaded thereby leaving the memory for the use of COS
when UNICOS is not in use. COS 1.16 will have this
feature so memory is allocated to UNICOS when it is
loaded and returned to COS when UNICOS is stopped.
Both modes are available in 1.16 but only one may be in
use at a time. The dynamic mode is not protected from
COS but this does not appear to be a serious problem.
Control of UNICOS is through a number of simple com
mands running on COS. The operator or a privileged
user may load, dump or stop UNICOS using the COS
commands. The COS operator also has access to
UNICOS through the lOS terminals.

JCL Conversion
A number of utilities are available on both COS and
UNICOS to help convert COS JCL to UNICOS scripts.
The output of JCL conversion is suitable for direct execu
tion or it may be submitted through NQS (the Network
Queuing System or batch execution facility).
The JCL conversion process takes a file of COS JCL as
input and produces a UNICOS script file as output. Pro
cedure libraries are also supported with a preprocessor
which converts a COS PROC library into a form useful to
the JCL converter. The translation of a JCL line uses a
set of directives referenced by the COS verb. The direc
tives are stored in a file and this file may be changed by
users to more closely reflect the specific environment.
The set of directives as released support standard COS
statements. These may be extended as needed to support
other commands.
Any statements not converted are marked in the output
and will be visible to the user. If a converted script with
unconverted commands is executed, an error will be
reported when an unconverted line is encountered. Error
checking is also available on a command basis. Either
cause of errors du~g execution will result in a message
telling on which line the error occurred if in the main
script or the line and PROC name if the error occurred in
a procedure.

PDSDUMP Conversion
Two utilities are available on UNICOS to convert COS
PDSDUMP files into UNICOS ar format files. The util
ity ptoa converts the file format itself while ctou is used
to convert blocked files, multifile datasets and files with
blank compression.

Documentation
A large amount of documentation has been written to
support UNICOS both for user, operator and site adminis
tration purposes. Common products such as compilers
and the loader have new documentation which describes
their use on both systems and notes differences between
systems.

For migration a series of case study technical notes is

10

being developed as information becomes available. The
purpose of this is to capture migration experiences of the
user community so information developed in one place
can be of benefit to all users. We rely on input from
field personnel for the content of these technical notes.
We encourage forwarding experiences (both good and
bad, successful and unsuccessful) to the field representa
tives for inclusion in technical notes. Exact technical
details are not always required - often ideas and sugges
tions in general terms are just as valuable. This means
that it is not necessary to include sensitive information to
contribute to this collection of experience.
Work is also in progress on conversion guides. The pur
pose of this type of documentation is to show how to go
about migration of such things as CFT programs and
JCL.

TRAINING
Since UNICOS is derived from UNIXt System V courses
available for that system are applicable to UNICOS.
These courses are often available from local sources and
are generally useful for UNICOS users.
Training courses have also been developed for UNICOS
and are integrated into the standard training program.
These are specifically targeted for UNICOS users and
emphasize the characteristics of the system specifically
designed to exploit the performance potential of Cray
computers. Training on the internals of UNICOS is also
a part of this series of courses and is important to anyone
having a need to know the implementation details of
UNICOS.
Migration training courses are aJso available.

COORDINATION
There is much going on within the company in the area
of migration so to keep track of what is happening a
Migration Team has been established to oversee this
work. The team includes members from the various
technical groups within Cray Research and at least one
member from each region and country. The region and
country members are the easiest path from the user com
munity to the Migration Team and we encourage them to
bring the needs of their user community to our attention.

t UNIX is a trademark of AT&T Bell Laboratories

The Supercomputer as an Experimental Apparatus:
Some Thoughts on Scientific Supercomputer Centers

Ben Domeni co*

Science Horizons, Inc.
7100 Encinitas Boulevard

Encinitas, CA 92024

OVERVIEW

The first-part of this paper is an attempt to
examine the role of a scientific supercomputer
center from a scientist's perspective. Initially
the guiding principles and overall goals are laid
out, followed by a discussion of the tasks per
formed by scientific research groups. The dis
cussion of these tasks focuses on areas where
computer automation might increase scientific
productivity. Based on the perceived needs of
the scientific user, the closing sections of the
paper propose a distribution of computing func
tions among a network which includes the
scientist's workstation, divisional or departmen
tal minicomputers, and supercomputer centers.

GUIDING PRINCIPLE

For the NCAR Scientific Computing Division (SCD)
as well as other groups providing and purveying
scientific computing services, the broad guiding
principle is to insure that, in the long term,
those services will increase scientific produc
tivity. While this may seem obvious, it.is not.
always obvious that concerns such as maklng effl
cient use of computing machinery and keeping up
with technological developments-while they are
certainly important-derive their importance from
the primary goal of improving scientific produc
tivity. If there is a trade off between wasting
machine cycles and requiring a scientist to spend
extra time to rework a program, one had better
carefully weigh the alternatives. Likewise, if a
long peri ad of retrai ni ng is necessary to take
advantage of a new technology, it' s h.~luftunt to
establish that the new approach will have a
long-term positive effect on scientific produc
tivi ty.

OVERALL PERSPECTIVE

A traditional approach to determining how comput
ing services can increase scientific productivity
is to examine the available technology first and
then try to determine how that technology can be
applied to scientific research. Another approach
is to examine what it is that a scientist and her
support staff do during their workdays. With
such a list of tasks, we can then look for com
puting services that might help the research
group get the work done more efficiently.

The approach taken here is to list the major
tasks performed by scientists, break down the

* Former affiliation: University Corporation
for Atmospheric Research.

11

tasks into components, and determine which
aspects of those tasks can be performed more
efficiently through some form of computerization.
One advantage of this approach is that tasks can
be prioritized and resources allocated according
to whether computerization would result in signi
fi cant increases in producti vi ty. AssulT. i ng that
some form of automation is possible and war
ranted, another issue is whether the cOlTputeriza
ti on shoul d be done at a central si te, ~i thi n the
scientist's division or department, or even on
the scientist's own personal computer. In cases
where the function or service itself should be
distributed, there is the question of whether a
central source of research, information, exper
tise, coordination, standardization, anc or pur
chasing power may be needed.

For Example

As an exampl e, at NCAR, there is general agree
ment that the production of technical documents
lends itself well to automation. Althou.gh there
seems to be a consensus that the functicn should
be performed on divisional minicomputers or per
sonal computers and workstations, an office auto-

-mation study group survey revealed a need for
standardization on products, a central ~ource of
documentation and consultation, as well as
cooperative projects involving the communication
of documents. This is a good example of an auto
mation function that should be distributed, but
which benefits from a central source of informa
tion and coordination.

SCIENl"IFIC TASKS

The appendix of this paper describes in some
detail the tasks that comprise the typical work
week of a scientific research group. Fer most
such groups, the week is taken up wi til IT.any of
the following endeavors:

1. Constructing scientific theories.

2. Teaching classes and managing graduate stu
dents.

3. Developing and running laboratory and field
experiments.

4. Developing and running modelling experi
ments.

5. Storing and accessing archived data.

6. Analyzing data from experiments, mcdels, and
archives.

7. Accessing information, reading literature,
reviewing publications and proposals.

8. Preparing presentations, proposals, and pub
lications.

9. Attending meetings and communicating with
colleagues and staff.

Task COOIponents

In breaking down these tasks into components,
certain characteristics warrant special atten
tion:

~ elements of tasks which lend themselves to
computerized automation.

8 requirements which span several of the
tasks. For example, improved data communi
cations facilities might improve produc
tivity in many of the tasks.

~ requirements of one task that might restrict
options in others. For example, real time
response needed for computer control of a
satellite experiment might have an impact on
use of a computer for time-shared interac
tive access.

8 items which are common needs of many scien
tists. For example, if many groups are
developing the same type of software, it
might make sense to centralize or at least
coordinated the development of a portable
version of the software to avoid duplication
of effort.

8 requirements that involve software that is
so expensive or rare that centralized
resources are needed.

e items which consume large percentages of
staff time. These are the ones where auto
mation can have a significant effect.

Refer to the appendix for more details.

DISTRIBUTION OF SERVICES

Certain patterns emerge when examining the com
puter automation associated with these scientific
research tasks. Perhaps the most obvious is that
many of the tasks that lend themselves well to
computerization are done best on a local machine,
where the scientist and support staff have more
control over the computing environment and have
convenient access to the final output.

Local Computing Services

The most obvious case of a local computing task
is the production of materials for presentations,
proposals and publications. Another task that is
often done more effectively on a local computer
is data analysis. If the data reside nearby, the
scientist can examine them interactively. For
example, a scientist looking through graphical

12

representations of data might find an interesting
feature in one picture that leads her to want to
view the same feature from a different angle, or
perhaps to look at the same phenomenon at an ear
lier time, or a different physical parameter at
the same place and time. This ability to decide
what you want to look at lion the fly" requi res
fast, interactive access to the scientific data
base.

In this category of tasks that can be done well
on local computer systems are the following:

~ Teaching classes and managing graduate stu
dents.

e Analyzing data.

e Preparing presentations, proposals, and pub-
1 icati ons.

Hybrid COOIputing Services

A second group of tasks falls into a category
that has aspects that are done best locally, but
requires some connectivity to other machines or
at least shared access to files. For example,
it's very handy to do a scientific paper on a
personal workstation, but it's also important to
be abl e to send a copy el ectroili cally to a col
league for expansion or revision. If both colla
borators share a minicomputer, this is usually
fairly simple. If they work on separate worksta
tions, it's important to have a some form of com
munications link that provides convenient file
sharing, file transfer or electronic mail.

The tasks in this category are:

~ Accessing literature, publications and pro
posal s.

e Communicating with colleagues and staff.

i Storing and accessing archived data.

Centralized or Specialized COOIputing Services

The remaining tasks, while they don't by their
nature imply a shared resource, often cannot be
done on the same computing system used for other
tasks because they require specialized or very
expensive equipment. These include:

~ Developing and running laboratory and field
experiments.

8 Developing and running supercomputer model-
ling experiments.

Even if a field or laboratory experiment is con
trolled by a computer, the requirements for the
control computer are often such that it may not
be suitable for the other tasks a scientific
group has to perform. For example, a computer
set up to ingest satellite data in real time, may
not be usable during those periods when the
satellite is sending its bursts of data.

Numerical modelling experiments often require
supercomputing resources. While some supercom
puter sites do in fact use supercomputers for the
majority of their scientific tasks, there are
certain tasks that today's supercomputers are
simply not very good at. In particular, super
computers are not very good at the fast context
switching required by interactive user input.
Rolling out a job that fills all of memory in
order to respond to cursor input from a user can
present some interesting problems on a supercom
puter. The simple requirement of refreshing the
screen for a full-screen editing session is for
midable enough that most supercomputer centers
don't have screen editors running on supercomput
ers. The result has been some of the first inno
vative distributed applications programs where
the supercomputer edits the file while a personal
computer edits a few screenfuls of the file on a
PC.

Others would argue that tasks like text process
ing should be done elsewhere in cases where
supercomputing resources are scarce.

RECENT lEYEUPfENTS

There are projects underway ~hat will.enable .
scientists to distribute the1r comput1ng load 1n
a way that suits their individual needs. Ven
dors, scientists, and computer center managers
should be aware of these developments, so that
they all can make use of the evolving technology.

The projects in question are:

e the UNIDATA Project at the University Cor
poration for Atmospheric Research,

e the USAN (University Satellite Network)
experiment in SCD at NCAR,

S Project Cypress run by a consortium of
universities and corporations,

s the NSF net initiative of the National Sci-
ence Foundati on.

The common element in all these projects is to
provide a standard mechanism for buildin~.a wide
area network by connecting local area netw9rks at
academic and research centers throughout the
nation. Initially all the projects are based on
the DARPA/TCP/IP protocols and eventually they
are all committed to the emerging ISO Open Sys
tems Interconnect (OSI) protocols. UNIDATA and
USAN are working toward relatively high-speed
satellite links between remote LANS, whereas
NSFnet is starting with land-line connections
between supercomputer center LANs. Cypress is
aimed at providing a lower speed, lower cost
alternative with similar functionality.

EfERGING PICTURE

As these experiments become operational, it will
be possible to experiment with a distribution of
tasks such as the ones described above. The net

13

result will be an environment in which the
scientist's workstations can be viewed as the
center of her computing universe.

8 Good electronic mail facilities will be easy
to build using standard protocols.

8 Relatively high-speed access to centralized
data sources are possible if the databases
are accessible on machines with the standard
protocols.

8 Access to supercomputers will b~ straight
forward if supercomputer vendors provide an
interface using standard communications pro
tocols.

8 If the scientist chooses a local computing
system that can be tied into a l~cal Ether
net with TCP/IP-based communications, that
LAN could be connected to a wide area net
work which will include computers control
ling field and laboratory experiments, major
data centers, supercomputer centers and pos
sibly most of the machines used ~y col
leagues at other institutions.

In this picture, the scientist can t~ilor the
working environment, so that papers and presenta
tions are prepared locally, possibly using shared
laser printers and color cameras on tile LAN.
Data from any experimental apparatus can be
brought to a fil e server on the LAN and exami ned
interactively on a local workstation. Machines
on the same local network can be used for
classes, demonstrations or student experiments.
Output from supercomputer models can Je compared
to satellite observational data, using scientific
graphics output on a local workstation.

From this viewpoint, the supercomputer, and the
supercomputer center become just another node on
the network. The scientist need only learn the
operating system on her own machine and that on
the supercomputer. There is no need for an
intervening frontend system at the supercomputer
center to complicate the picture by forcing the
scientist to learn yet another computing system.

Operating System Consistency

As more vendors standardize on operating system
interfaces and communications protocols, the pro
ductity gain for the scientist is even greater.
With UNIX* available on most hardware from PCs to
graphics workstations, through minicomputers, the
availability of UNIX on supercomputers completes
the picture and simplifies it greatly in the long
term for most scientific users. The advent of
real time UNIX machines makes it possible to have
the same operating system interface to the com
puters controlling experiments or receiving
experimental data. Since most UNIX machines now
come with the DARPA TCP/IP protocols, they fit
right in with the wide area networks being
developed.

* UNIX 1S a trademark of Bell Laboratcries.

Future Possibilities

In the UNIX world (and to some extent with
MSDOS** and VMS*** as well), facilities are

. available for building distributed applications.
One particular application that is gaining a
foothold is the Sun Network File System (NFS).
This network file system is based on a Remote
Procedure Call (RPC) and External Data Represen
tation (XDR). The NFS actually enables a user on
one machine to access files on another machine
transparently. In other words, you can run an
editor on your machine while you're actually
editing a file which resides on the disks of
another machine.

Furthermore the RPC enables the user to build
applications that in essence contain subroutine
calls for routines that run on another computer.
One can imagine such applications where the
graphics portion of the application runs on the
local workstation and the numerically demanding
routines run on a supercomputer. The XDR and RPC
have been demonstrated on both UNIX System V and
4.2 BSD as well as MSDOS and VMS. NFS also runs
on all these systems although only in client mode
on MSDOS. Whether these facilities ultimately
emerge as genuine industry standards remains to
be seen, but there is clearly a need for this
sort of functionality.

In the long term, the picture is one of a scien
tist logging into a personal workstation with
high-speed network access to supercomputers, data
archives, and observational experiments. The
access to the supercomputer is transparent in
that the applications program runs on the
scientist's own machine, but the computationally
intensive portions of the problems run on the
remote supercomputer. Likewise data archives on
other computers can be accessed as if they were
part of a database on the scientist's own
machine.

Time Frame

Given the current confusion and complication in
the area of computer communications systems, some
of this may seem a bit far-fetched, but the ini
tial USAN connections have already been made, so
testing has begun. The remaining USAN sites and
the initial set of NSFnet supercomputer sites
probably will online within a year. At that
point, it should be possible to evaluate the
feasibility and limitations of the system and
begin planning the expansion of the wide area
network. The NFS as well as other distributed
file systems (the Newcastle Connection and RFS
from ATT on UNIX systems) are already running on
hardware from many vendors. One would hope that
supercomputer vendors will follow the lead and
provide such an interface to their machines. At

** MSDOS is a trademark of Microsoft
Corporation.

*** VMS is a trademark of Digital Equipment
Corporation.

14

the same time, it seems likely that other distri
buted applications will be built on top of YDR
and RFS. It will be very interesting to see hO\'1
much of this is actually in place at the Cray
User Group meeting a year from now.

ACKNOWLED94ENTS

Thanks to Joe Choy, Ann Cowley, Margaret DraKe,
Buck Frye, Dave Fu1ker, and Bob Lackman both for
the many conversations on these topics and for
the ideas that I've probably incorporated that
were originally theirs.

APPENDIX: SCIENTIFIC TASKS

This appendix contains descriptions of tasks per
formed by scientists and their staff. The tocus
of the discussion is on areas where computerized
automation can lead to significant productivity
gains and where centralized resources are needed.

Constructing Scientific Theories

While this part of the scientific process is
arguably the most important, it is also 1ea~t
amenab 1 e to automati on. Some of the outli ni IIg
tools constructed for business executives (Think
Tank is an example) might be useful, but, wren
you get right down to it, this is mainly a human
cerebral process and is not susceptible to much
in the way of automation. However, computeriza
tion and automation can be quite useful for dl1
the other elements in the list, almost all of
which support this function in one way or
another.

Teaching

Many university departments are putting together
computer laboratories for conducting classes.
Others provi de or requi re mi crocomputers for' all
their students. The scientists at such institu
tions would very likely be interested in using
some of the same computer systems for accessing
archived data or for submitting jobs to supercom
puter centers. This means that communications
and networking facilities are an important con
si derati on.

Laborator,y and Field Experiments

Included in this category are all types of scien
tific observational experiments. Some examples
are simply routine gathering of weather data
throughout the world, remote sensing sate11it~
experiments, solar observations from earth or
from satellites, laboratory and balloon-born
chemistry experiments, etc. Increasingly, scien
tists are using computers to monitor and control
these experiments. Often the experimental
apparatus itself includes a microprocessor of
some sort. In terms of automation and computeri
zation, the important characteristics of this
type of work include the following:

~ Some form of local data storage is needed

~ In most case, mechanism for moving data to
an archival store or to another machine for
reduction and analysis is required.

• Real time response is often important for
computers receiving experimental data or
controlling the experiment.

• In some cases, computers are used to control
the experiment interactively. For example,
an observing program might be generated on a
computer and communicated to a satellite.

• Specialized computer expertise is often
needed in the areas of process control,
real-time operating systems, communications,
expert systems as well as traditional areas.

• Computers used to control experiments are
usually specialized in some way. They are
almost always associated with a specific
project or experiment, hence they are not
usually supported by computing centers, but
are the responsibility of a particular
department, division, project or individual
experiment.

e Scientists may want to use the computer that
controls their experimental apparatus to
perform some of their other scientific
tasks. This can put constraints on how some
of the other things are done. For example
the computer may not be available for data
reduction when it is busy recording experi
mental data from a satellite.

As in most other areas, it's important to be able
to move data between machines quickly and con
veniently.

Computer Modelling Experiments

While much modelling and simulation can be and is
done on computers of modest size and capability,
this field is often associated with supercomput
ing, because many scientific models can tax the
computing power and memory of the largest co~put
ers. Since this is especially true in the flelds
of meteorology, oceanography, and astronomy, we
will focus on supercomputer modelling here. The
important characteristics are:

~ High speed computing, fast I/O and large.
central external memory systems are cruclal.

• Facilities for archiving the output of
models are needed.

• Access to history or expermental data may be
needed to provide a starting point for the
model. The ability to store and share this
kind of data are important.

• Special expertise in numerical analysis is
always required, In many cases, knowledge of
particular architectures for parallel and
vector processing or using a floating point
accelerator is helpful.

15

• Libraries of mathematical and numerical
software are required.

• Program development tools, such as com
pilers, editors, debuggers, timing pro
filers, and the like, are needed. In so;ne
cases, some of these functions can be dis
tributed to a frontend computer, but access
to a good interactive debugger on the n;odel
ling computer itself is usually a boon to
productivi ty.

• Special modelling packages may be available
for some disciplines.

• In some cases, it can be important to exam
ine the state of a model interactively at
various points to determine whether anc! ho\'l
it shaul d conti nue.

Q While modelling in the atmospheric sciEnces
is usually very computer-intensive and trad
itionally has been done at central supercom
puter sites, the advent of minisupercomput
ers (e.g. Alliant and Convex), superfast
floating point processors and the like may
make it more reasonable for some scientists
to trade off some computing speed for local
access and control.

• For any individual scientist, the availabil
ity of multiple supercomputer sites may have
a bearing on where certain tasks are done.
For example it may make more sense to get a
departmental machine for data analysis
rather than relying on a machine at onE of
the supercomputing centers if you many end
up doing your supercomputing at another
center.

• Some scientists may want to use the model
ling computer to perform some of their other
scientific tasks as well. This can put con
straints on how some of the other things are
done. For example, a supercomputer that is
needed for a complicated model may not be
ideal for driving interactive graphics dev
ices for analyzing the output of the mcdel.

For many scientists, the supercomputer used for
modelling experiments is not suitable or avail
able for perfonming other tasks such as interac
tive graphical analysis or technical text pro
cessing. The implication is that good communica
tions are required between the supercomputer
center and the local computer system used for
other tasks.

Data Archiving and Retrieval

Computers are now used routinely to gather data.
from observational experiments and to generate lt
directly in numerical experiments. It's not
always immediately obvious how these vast collec
tions will be used. Even with careful selection
and screening processes, the amount of da~a that
is of potential interest can be overwhelmln~.
Many scientists want access to several archlves.

For example, most.will need a local datab~se for
interactive analys1s. In many cases, spec1al
group projects will have an archive.accessible on
a project minicomputer in a univers1ty depart
ment. Finally there are the massive, centralized
repositories that serve entire scientific discip
lines. The meteorological archives at NCAR are a
good example of the latter.

In addition to the obvious hardware requirements
for storing the data, scientists accessing the
data would benefit greatly from a convenient
cataloging procedure. Commercial database
management systems provide a mechanism for stor
ing the catalog of the data, if not the data
themselves. Some of the newer database systems,
which provide for large data fields, may even be
suitable for storing some of the data archives.

For scientists accessing multiple databases, a
consistent interface would lessen the time
required to learn an? relear~ the i~terface.to
each collection. Th1S area 1S a pr1me cand1date
for collaboration cooperation and perhaps some
informal standardization in the case of the large
collections within a scientific discipline.

Since the archives reside in many locations, it's
important to have up-to-date data communications
facilities for transferring the data to the
machine where the analysis will be done.

Data Analysi s

This can be an extremely labor-intensive task.
As such, scientists are using computers more and
more to increase productivity in this task. The
idea here is to use computer technology to speed
up the processes whereby a scientist gains
insight and understanding by investigating mas
sive amounts of numerical data.

Some of the more important aspects of this func
tion are:

e Access to data from many sources is impor
tant. Scientists may want to compare
resul ts of model s wi th experimental data, or
current experimental data with archived
data. These data may reside at many sites
in many different formats.

e Graphics software and hardware are crucial
for gaining rapid insight into large data
coll ecti ons.

• Interactive access is important. A scien
tist may want to decide what data to examine
next on the basis of an interesting feature
found in the current display. For example,
an anomaly in the temperature pattern for a
given time and area might warrant looking at
the previous day's temperature in the same
place or checking out the pressure at the
same place and time.

e Software and expertise in numerical analysis
and statistics is needed in most cases.

16

• Specialized software and expertise in signal
and image processing may be needed for
reduction of certain experimental data.

• Data processing packages may be useful, for
example, GENPRO, the CCM Processor, etc.

• "Turnkey" software and hardware systems are
available for certain datasets, e.g. McIdas
from Wisconsin, DSP from Miami,
TAE/GEr.pAK/GEWLT from NASA.

• Since the data to be analyzed may come from
many sources, it is often advantageous to
use a local divisional, departmental com
puter or a personal computer or workstation.
This approach means that connections to the
sources of the data are of added import as
are facilities for communicating with colla
borators and colleagues at other sites.

e It is especially true that scientists ~ould
like to use the data analysis computer for
many other tasks. For example it is
extremely useful to be able to communicate
interesting results to colleagues electroni
cally from the machine where the results are
first noticed. Likewise, it is helpful to
take numerical data, graphs and pictur~s and
immediately incorporate them into view
graphs, and papers without having to learn
an enti rely different system. If sci er.ti sts
can use this machine to access data
archives, run models on various supercomput
ers and control experiments as well, it can
make life much simpler.

Revi~ng Literature and Publications

The scientist's needs in this area are not that
much different from those of other professionals.
This is a case where scientists can take advan
tage of technology developed primarily with busi
ness applications in mind. Business applications
are typically not written with a supercomputer in
mind, so much of the available software for
library searches and online bibliographies is
written for minicomputers or microcomputers.

Here again, good communications facilities are a
key element in gaining electronic access to pub
lished information. These facilities include:

e connected computer networks,

• electronic mail,

e video conferencing.

As with many of the other tasks, the scientist
can be more productive if the same computer can
be used to access published information, to par
form data analysis, and to incorporate quota
tions, data, and graphics into publications.

Preparing Presentations and Publications

While wordprocessing software and hardware
abounds, much of it falls short in the demanding
area of technical text processing. The ability
to include equations in the text is essential for
most scientists and greatly limits the number of
useful software packages and output devices.
Likewise, it is especially important for scien
tists to incorporate complicated scientific
graphics in presentations and publications. This
is another area where many of the business
oriented packages fall short. On the other hand
the packages that work well for technical text
processing and graphics tend to be more compli
cated and less user-friendly. These are fields
in which centralized sources of standardized
software, training, consultation, and even output
devices can be used very effectively.

Here again it is often the case that scientists
would like to do their text processing and graph
ical presentation preparation on the same com
puter where their data analysis is done.

Coaauni cati ng wi th Col 1 eagues and Staff

Most of the requirements here are similar to
those listed under Reviewing Literature and Pub
lications. In this case, the scientlst"haS to be
able to send and receive messages among her own
workstation and those of other scientists.

The required technology includes:

e connected computer networks,

8 electronic mail,

• video conferencing.

17

eRA Y -2 UNICOS Kernel Enhancements

Timothy W. H oel

Cray Research, Inc.
Mendota Heights, MN

Introduction

This paper will describe the changes to the
CRA Y -2 UNICOS kernel which have
happened during the last year, May 1985 -
May 1986. To help place this year in context,
a few highlights from before this period will
first be mentioned. After describing this
year's changes in detail, some future plans will
be discussed.

Background

A single processor CRA Y -2 was installed at
Mendota Heights in August 1984. We had
prepared for its coming by modifying the
kernel to run on a CRA Y -2 simulator which
executed on a CRA Y X-MP. Actually, there
were two simulators: one for the foreground
processor and one for a background processor.
We had simulated the foreground code and
background code independently, but they first
came together on the real hardware. In
October 1984 we demonstrated UNICOS on a
CRA Y -2 running a few simple commands. By
November 1984 we were able to transfer files
across the HYPERchannel using our own
Simple, Effective Protocol (SEP). We also
had a very limited batch capability at this time
by having a daemon waiting on the CRA Y-2
ready to execute any shell script which
appeared in a special directory. It was the
user's responsibility to include commands to
send any output files back to the front end.
We added asynchronous 110 (reada/writea) by
February 1985. In March 1985 we

18

demonstrated UNICOS executing four separate
user processes on a four processor CRA Y -2 in
Chippewa Falls.

Track Allocation

The U nix@ System V operating system
allocates disk space sector-at-a-time from a
LIFO, push-down stack of available sectors.
This mechanism has the virtues that the
algorithms and data structures are simple and
the disk space is used efficiently, i. e. no more
than one sector is wasted per file due to
round-off. However, there are some
disadvantages to this mechanism as well.
Although the push-down stack starts out
ordered, it tends to become quite disordered
over time as files are randomly created and
deleted. Then when a new file is created the
sectors allocated to it tend to be scattered,
requiring a lot of relatively slow head motion
on the disk. This mechanism is quite
appropriate in a mini-computer environment
where the cpu's are not fast enough to
consume the data at disk rates anyway, and
further, with many users sharing a few drives
it is quite likely that a different user will make
an intervening disk request and "steal the
heads away". However, Cray computers are
quite capable of consuming several streams of
disk data so we had to choose a more
appropriate allocation mechanism.

The CRA Y -2 hardware and firmware are
especially good at reading (and writing) tracks
of data from the disks. After sensing the

Unix is a registered trademark of AT&T Bell Laboratories

rotational position of the disk, it transfers the
next sector to the corresponding position in the
memory buffer. In this way a track of data
can be moved in one revolution plus, on
average, one-half sector time of latency.

To take advantage of this capability, large files
are allocated and accessed track-at-a-time. A
bitmap is used to record available tracks so
that as a file grows, a "nearby" track can be
allocated to minimize seek time. Since
interactive systems typically have many small
files, we use a variation of the large
block/small block system to avoid wasting
excessive amounts of disk space. Files that are
eight sectors or less are extended sector-at-a
time from a push-down stack as in standard
Unix.

Partitions and Clusters

A Unix "file system" normally resides on a
single disk, and since a file is contained within
a file system, a single file can be no larger
than a single disk drive. We have extended
UNICOS so that a file system can be stored on
one or more disk drives.

A "partition" is a contiguous group of tracks
on a disk drive. In addition to the
major/minor device numbers, the special node
in /dev for a partition also contains other
information describing the partition, including
the starting track and number of tracks. At
mount time and/or device open time this
information is copied to system tables for use
by the disk driver. Previously this information
was hard-coded into the disk driver which
made it inflexible.

A file system resides within a "cluster", which
is a group of one or more partitions. The
partitions of a cluster need not have the same
size or placement, but it is expected that they
reside on different physical drives.

19

Disk 1/0

During this past year the DD-29 disk driver
has been improved to support CR C recovery.
Previously, we depended on retries with head
offset positioning which, in practice, was very
effective. Also during this past year we have
added support for DD-49 disk drives.
Currently, this driver does not support CRC
recovery, but we are planning to add that
capability during the coming year.

We have added "striping" for the swap file as a
special case since that is a very important
instance where high throughput is necessary.

Networking

We have added support for the TCP / IP
protocol family, a widely accepted standard.
In addition to the Transmission Control
Protocol (TCP) and Internet Protocol (lP), the
protocol family includes a number of services
which "run on top of" TCP and IP. These
services include file transfer (FTP and rcp) ,
interactive connections (TELNET), electronic
mail (SMTP), and remote execution. TCP / IP
is offered as an option for additional cost. We
have also added support for Cray's SCP
protocol which will be included in Release 2.0
of UNICOS.

Multitasking

Standard Unix has a system call, named fork,
which creates a new process and copies the
user address space from the original. To allow
a user program to execute concurrently on two
or more cpus, we have added a new system
call, named tfork, which also creates a new
process, but one which shares the same user
address space. The CRA Y -2 hardware
supports semaphores which these "Siamese
twins" may use to cooperate.

The Fortran Multitasking Library uses tfork
and semaphores to create a higher-level
abstraction of tasks, locks, and events. This
library interface is the same as that supported
on COS and X-MP UNICOS.

Crash

Crash is an interactive utility from System V
that can be used to display kernel data
structures, either from a live system or from a
saved dump file. We have ported crash to
work with CRA Y -2 UNICOS and found it to
be extremely useful for examining the kernel
and diagnosing failures.

On-line Diagnostics

There are two ways of running hardware
diagnostics with UNICOS. In the first mode
UNICOS continues to run in the suspect cpu
and the diagnostic program runs as a special
process. This mode is most useful when the
failure does not affect the operating system
(e.g. floating point errors) and the diagnostic
needs to read files and/or print messages. To
accomplish this, the bitmask defining publicly
available cpu's is changed to not include the
suspect cpu. Then the per process bitmask of
the diagnostic is set to indicate" only run in the
suspect cpu".

In the second mode UNICOS is turned off in
the suspect cpu(s) (or never turned on), but it
runs normally in the other, good cpu(s). A
monitor program is run under UNICOS which
loads the diagnostic program into its own data
space and then makes a special foreground call
to start the downed cpu executing the
diagnostic just loaded. To prevent the
diagnostic from interfering with the operating
system, BA and LA are set to limit memory
access and the foreground refuses to perform
any 110 requests. Almost every off-line
diagnostic can be run in this second mode.

20

Other Enhancements

We ported the accounting commands, e.g.
acctcom, and can now produce daily/monthly
reports and collect acccounting statistics for
billing purposes. The precision of statistics
was improved enormously by using the real
time clock instead of the sampling method of
standard Unix. We have also added new
statistics such as 110 wait time and a measure
of multitasking effectiveness, cpu time using N
cpus.

We added the capability to suspend / resume
one or more processes, to set per process
limits on cpu time and memory usage, and to
set the priority (nice value) of other processes.

Other Activities

Although we are primarily responsible for
software development, in fact our group
provides a variety of services. We spent a
great deal of time assisting in the hardware
and software installation of the first three
CRA Y -2 customers. We also spent a great
deal of time writing and reviewing
documentation for Release 1.0.

Future

We have several projects underway or planned
for the coming year. Users will be able to
place files on certain drives and/or stripe files
across drives by specifying a bit mask at file
creation time. The file system will be made
more robust by storing some critical directory
and inode information redundantly on two
different drives ("shadowing"). The swapping
and memory scheduling algorithms will be
modified to be more effective for our very
large memory machine. We plan to add a
recovery mechanism which will allow a
running process to be saved in a "dropfile" and
then be restarted at some later time.

Early Experiences with the NAS Cray-2

John T. Barton
Manager, High Speed Processor Subsystem

Systems Development Branch

Numerical Aerodynamic Simulation (NAS) Program
M/S 233-1

NASA Ames Research Center
Moffett Field, CA 94035

Introduction

The Numerical Aerodynamic Simulation (NAS) Project is creating a supercomputer
center at the NASA / Ames Research Center. Although NAS is composed of a large
collection of computers, the main computational engine for the project is a Cray-2. This
talk covers early experiences at the NAS project with a low serial number supercomputer.
The first topic will be networking, the second will be the performance of the CFT Fortran
compiler, and for the last a movie will be shown containing graphic output from early
scientific results on the Cray-2.

Some Early History

We first gained access to a Cray-2 computer in April 1985. A quadrant, or uni
processor, version of the machine had been shipped to the Magnetic Fusion Energy
Computer Center (MFECC) at the Lawrence Livermore National Laboratory. Some
preliminary systems development work was possible on the machine, but the Fortran
compiler CFT was missing. Cray Research was able to perform some of the contractual
requirements on a full 4 processor Cray-2 machine on June 4, after CRI delivered #2001
to MFE. The initial I/O test ran at just over 500 Mbit/sec streaming to 16 disks for over
20 seconds, and the standard SCILIB matrix multiply (MXM) ran at over 1 Gflops.

The pre-shipment factory trials on our machine (#2002) occured in Chippewa Falls
on September 18-19, and it arrived at Ames on September 30. At the time we were
rather concerned with the state of CFT. It would, for instance, fail to compile 25 out of a
selection of 32 codes. It would compile, rUTI, and correctly exeC1lte only 1 code of interest
to researchers (INS3D), even though it met. the contractual requirements of successfully
running vectorized versions of two standard benchmark codes (ARC3D and LES).

Although the machine was not a serial number 1 machine, it was the first shipped
with the full complement of 256 Megawords of memory, the first with pseudo-banking,
the first which ran the UNI-COS operating system full time, and the first to use the CFT
compiler. We had, therefore, the moral equivalent of a serial # 1 machine.

Early Networking

The system design for the NAS Processing System Network (NPSN) includes both
NSC hyperchannel and ethernet communications on all machines, running the TCP /IP
protocol. Since the Cray-2 does not as yet support ethernet, we currently have hyperchan
nel everywhere, and ethernet to all machines except the Cray-2. Our earliest networking
was between the Cray-2 uni-processor at MFE and a front-end VAX 11/750, using SEP,
the Simple Effective Protocol which Tim Hoel of CRI wrote. It was elementary, point
to-point, and had no checksumming capability . .It provided the necessary connectivity to
the uni-processor at MFE. After the delivery of our machine to Ames, SEP was ported
to a growing collection of front end machines. We were able to effectively use a VAX

21

11/780 running System V UNIX (UNIX is a trademark of AT&T). which CRI delivered
with the Cray-2. \Ve ported SEP to BSD 4.2 UNIX on another VAX 11/780, to our twin
Amdahl 5840 machines (with UTS on them) and to our SGI IRIS workstations. One of
the benefits of using the UNIX operating system so widely throughout the NPSN was
the ease with which we were able to propagate this useful piece of software.

Our present and future solution for networking is the TCP lIP protocol. This reliable
method of communication has been successfully used for years on the ARPAnet. Its
packet-based structure makes it possible to construct large networks, which are easily
re-configurable. If one has some machines in the network which are on hyperchannel
but not ethernet, and others on ethernet but whose hyperchannel functionality may be
currently down (or never present), then one may use some of the machines which are
on both networks as gateway machines. These gateways route packets from the sending
host to the recipient. The current gateway is a bsd 4.2 VAX 11 1780.

It is the intent of the NAS project that users not be subjected to a confusing as
sortment of disparate operating systems throughout the network. The UNIX operating
system provides a common user interface on all NPSN machines. In the case of the
Amdahls, UTS (a UNIX look-alike) runs as a virtual operating system under VM. On
the Cray-2, UNI-COS runs in native mode. The UNIX common interface has been ex
tended to the network by means of the Berkeley R-commands and the ARPAnet FTP
and TELNET. FTP, or File Transfer Protocol, provides for copying of files from any
system in the network to any other, and TEL NET provides for remote access through
a login procedure. In both cases a password for the remote machine must be passed at
the time of the invocation of the utility. The R-commands rlogin, rcp, and rsh do not
require any password between trusted hosts. They provide respectively for remote login,
copying of files between local and remote hosts, and the remote execution of a shell script
(a file containing commands to the operating system).

We have thus far been able to network all of our computers onto a network of machines
using TCP /IP. Any machine is a fully functional front-end to any other. In particular,
users can directly log into the Cray-2 interactively from wherever they might be. This
fosters the use of appropriate machines for front-end activities, such as editing. We do
not currently support a full-screen editor on the Cray-2, and do not plan to. We would
consider a distributed editor.

FORTRAN Performance - CFT

There was much concern in the Fall and early Winter that CFT would be a problem.
We have since had sufficient experience to draw some conclusions regarding what sort of
code will run well on the Cray-2 using CFT. We have seen examples of codes that run
quite well, and their characteristics have been noted. Those codes that make heavy use
of optimized library subroutines such as FFT or MXM (the latter is a matrix multiply)
can capitalize on their speed. A code that is either register intensive or local memory
intensive will profit from not having to make frequent accesses to main memory. Although
there are only 16K words in each of the 4 local memories, one can direct the compiler to
store some quantities there. The most recent version of the compiler (V.70) is sufficiently
sophisticated to place all scalars from the current subroutine into local memory, unless
they have been passed by that subroutine as parameters. Since scalar references are
more time-consuming than vector ones, this should be quite beneficial. Finally, those
codes which implement algorithms which fully utilize the large memory of the machine
are good candidates. We already have large memory algorithms; the unfactored Navier
Stokes code (which is really just a Newton's method) is such an example. It currently
uses over 100 Mwords of memory. Other users are scaling up present codes, or changing
their algorithms to do more in-memory storage and less recomputation.

Codes which do poorly on the Cray-2 include those that do scalar computations
with frequent fetches from and stores to main memory. Partially vectorized codes, by
Amdahl's law, fall in this class. The other major factor to be considered is the stride
with with calculations are done. If the skip difference (or stride) between consecutive

22

memory references is a power of 2, then memory bank conflicts can occur because the
banks have not had sufficient time to recover between accesses. This is easily remedied
by having an odd entry for initial array dimensions. For instance, an array previously
dimensioned (128,128) should be reset to (129,128).

To illustrate these points we compared the results of running 13 selected codes on
the NAS X-MP /12 and the NAS Cray-2. On the average, the codes ran faster on the
X-MP. However, those which had been coded specifically for the Cray-2 ran faster on the
Cray-2. The remaining 11 of the 13 were originally coded for the X-MP. The two new
codes were MATEST, which implements a new matrix multiplication algorithm of David
Bailey and Helaman Ferguson, and PITEST, which does a multiple precision calculation
of the transcendental constant PI. MATEST, which makes extensive use of the MXM
CRI-supplied SCILIB routine for matrix multiplication, ran at 395 Mflops on a dedicated
machine, and 244 Mflops on a loaded system. The difference in performance is due to
memory bank contention induced by codes running in the other 3 processors. PITEST
ran quickly because of its use of an extremely efficient FFT routine. It achieved 144
Mflops on a loaded system.

We anticipate that the performance gap will narrow between the Cray-2 and the X
MP as the compiler matures on the Cray-2. David Bailey presented results at the last
CUG meeting (NAS Kernel Benchmark Results, Fall 1985, Montreal) which show that
there was an 83% improvement in X-MP speed on the NAS Kernels between two versions
of CFT. Between CFT 1.12 and CFT 1.13 the speed rose from 24 to 44 Mflops for the
untuned Kernels. It is reasonable to expect advances in optimization will also occur on
CFT on the Cray-2, and that even further improvements will be forthcoming in CFT77.

Our History of CFT

There seem to be rumors that CFT is lacking in both robustness and performance on
the Cray-2. These rumors are unfounded. The cause for these feelings may well be the
state of CFT when we received our Cray-2. Of the 13 codes mentioned in the paragraph
before last, only 3 were running at the time of delivery of the Cray-2 in September. Of
these 3, 2 were contractually required. By October (CFT V.28) the number had risen
to 5, in November (CFT V.37) it was 8, and during the acceptance test in December
(CFT VA9) there were 9 out of 13 codes running correctly. By January (CFT V.59) the
preponderance of codes were running (11 out of 13), and in April (CFT V.70) all 13 were
running. As early as January we began to get very encouraging reports from early users
of the system. One of our remote users at Langley Research Center found that he had to
make only 4 attempts, all in the course of a single afternoon, to get his converted Cyber
205 code to compile l run, and produce correct answers on the Cray-2.

Although some of the experience this last Fall and \\Tinter with CFT was a bit trying,
the NAS project is now quite pleased with both the performance and ropustness of CFT
on the Cray-2.

Early Scientific Results

From the time that NAS took delivery of the Cray-2 in September, there has been an
increasing level of scientific work on the machine. N AS is chartered to support compu
tational fluid dynamics, and early results were made possible by the fact that the CFD
code INS3D, an incompressible Navier-Stokes 3-dimensional code, was one of the first
codes to correctly run. This work is part of a project at Ames that is studying the Space
Shuttle main engines by simulating the flow of fuel in the engine past the LOX posts

23

which carry liquid oxygen into the combustion chamber. The primary result of interest
in the calculation is to determine the pressure on those lox posts, for excessive pressure
could lead to failure at high power levels. This project was particularly apt for the Cray-2
because of its use of large memory. The early runs used 5 Mwords of main memory, later
cases were 8 Mwords, and future runs will be even larger. These calculations would not
have been made had the Cray-2 not been at the Ames Research Center.

While preparing the for the graphical viewing of the results, the scientist, Stuart
Rogers, was dismayed at the excessively long time that it took to do the particle tracing
calculations for the flow field. The IRIS workstation required about an hour of CPU
time for this task. The robustness of the CFT compiler is attested to by the ease with
which he was able to port those portions of the graphics package which did the particle
tracing. With reliable and rapid file transfer capability, and a supercomputer that took
only 5 seconds to do the particle tracing computations, the scientist was able to get more
effective work from both his graphics workstation. More significantly, the scientist was
able to accomplish more research.

Summary

While it is true that NAS has had its share of early vicissitudes with the Cray-2,
our experience to date has been very satisfactory. The plan to have all machines in
our network mutually communicating with TCP/IP has been successful in achieving
connectivity, and is rapidly becoming robust. The CFT Fortran compiler is now firmly
on its feet, producing respectably vectorized and optimized code for a wide variety of
input. Finally and most importantly, all of the components of the network, including
the graphics workstations, have functioned well enough to produce the scientific results
exemplified in the film that has been shown.

24

Abstract

The Computation of 7f to 29,360,000 Decimal Digits
As a System Test of the NAS Cray-2

David H. Bailey

Sterling Software, Inc.
NASA Ames Research Center

In a recent paper [5], Borwein and Borwein derived a class of algorithms based on the theory
of complete elliptic int.egrals that yield very rapidly convergent approximations to elementary
constants. The author has implemented Borweins' quartically convergent algorithm for 1i7r,
using an advanced prime modulus multi-precision technique, to compute over 29,360,000 digits
of the decimal expansion of 7r. The result was checked by using a different algorithm, also due to
the Borweins, that converges quadratically to 7r. These computations were performed as a system
reliability and performance test of the Cray-2 operated by the Numerical Aerodynamic Simulation
(NAS) Program at NASA Ames Research Center. The calculations were made possible by the
very large main memory of the Cray-2.

Until very recently the largest verified computation of the expansion of 7r was due to Kanada
and Tamura [11) of the University of Tokyo. In 1983 they computed approximately 16 million
digits on a Hitachi S-81O computer, of which 10 million were verified in an independent calcula
tion. Late in 1985 Gosper ~8] reported computing 17 million digits using a Symbolics workstation.
Samples of the author's calculated results have been compared with both of these previous cal
culations and is in agreement with them.

This paper describes the algorithms and techniques used in t.his computation, as well as the
performance results.

Introduction
The computation of the numerical value of the constant 7r has been pursued for centuries

for a variety of reasons, both practical and theoretical. Certainly a value of 7r correct to 10
decimal places is sufficient for most "practical" applications. Occasionally there is a need for
double-precision or even multi-precision computations involving 7r and other elementary constants
and functions in order to compensate for unusually severe numerical difficulties in an extended
computation. However, the author is not aware of even a single case of a "practical" scientific
computation that requires the value of 7r to more than about 100 decimal places.

Beyond immediate practicality, the decimal expansion of 7r has been of interest to mathemati
cians, who have still not been able to resolve the question of whether the digits in the expansion of
7r are "random". In particular, it is widely suspected that the decimal expansions of 7r, e, \12, v;Z;:,
and a host of related mathematical constants all have the property that the limiting frequency
of any digit is one tenth, and that the limiting frequency of any n-long string of digits is lO- n

.

Such a guaranteed property could, for instance, be the basis of a reliable pseudo-random number
generator. Unfortunately, this assertion has not been proven in even one instance. Thus there is a
continuing interest in performing statistical analyses on the decimal expansions of these numbers
to see if there is any irregularity that would suggest this assertion is false.

In recent years, the computation of the expansion of 7r has assumed the role as a standard test

25

of computer integrity. If even one error occurs in the computation, then the result will almost
certainly be completely in error after an initial correct section. On the other hand, if the result of
the computation of 7r to even 100,000 decimal places is correct, then the computer has performed
billions of operations without error. For this reason, programs that compute the expansion of 7r

are frequently used by both manufacturers and purchasers of new computer equipment to certify
system reliability.

History
The first serious attempt to calculate an accurate value for the constant 7r was made by the

Greeks, who approximated 7r by computing the areas of equilateral polygons with increasing
numbers of sides. More recently, infinite series have been used. In 1671 Gregory discovered the
series

-1 1 1 1) = 4tan (1)=4(1--+---+···
357

A more rapidly convergent variation was discovered by Machin in 1706, based on the identity

In the nearly 300 years since that time, most computations of the value of 7r, even those
performed by computer, have employed some variation of this technique. For instance, a series
based on the identity

7r = 24tan- 1(1/8)+8tan- 1(1/57)+4tan- 1(1/239)

was used in a computation of 7r to 100,000 decimal digits using an IBM 7090 in 1962 [15]. Readers
interested in the history of the computation 1i are referred to Beckman's entertaining book on
the subject [2].

New Algorithms for 1i

Only very recently have algorithms been discovered that are fundamentally faster than the
above techniques. In 1976 Brent [6] and Salamin [14: independently discovered an approximation
algorithm based on elliptic integrals that yields quadratic convergence to 1i. With all of the previ
ous techniques, the number of correct digits increases only linearly with the number of iterations
performed. With this new algorithm, each additional iteration of the algorithm approximately
doubles the number of correct digits. Kanada and Tamura employed this algorithm in 1983 to
compute 7r to over 16 million decimal digits.

More recently, J. M. Borwein and P. B. Borwein [4) discovered an even simpler quadratically
convergent algorithm for 7r, together with similar algorithms for fast computation of all the
elementary functions. Their quadratically convergent algorithm for 7r can be stated as follows:
Let au = J2, bo = 0, Po = 2 + J2. Iterate

Pk+1

(y''l.i'k T 1 ;\,I(ik)
2

v'·'l.i'k(l ..L bk)

ak + bk

Pk bd1 ak+d

26

Then Pk converges quadratically to 11": successive iterations of this algorithm yield 3, 8, 19, 41,
83, 170, 345, 694, 1392, and 2788 correct digits of the expansion of 11". However, it should be
noted that this algorithm is not self-correcting for numerical errors, so that all iterations must be
performed to full precision. In other words, in a computation of 11" to 2788 decimal digits using
the above algorithm, each of the ten iterations must be performed with more than 2788 digits of
precision.

Most recently the Borweins [5] have discovered a general technique for obtaining even higher
order convergent algorithms for certain elementary constants. Their quartic ally convergent algo
rithm for 1/11" can be stated as follows: Let ao = 6 - 4V2 and Yo = V2 - 1. Iterate

_ 1 - (1 - y:)l/4
Yk+! - 1 + {1 - y:P/4

ak+l = ak(1 + Yk+d 4
- 22

k+3 Yk+1 (1 + Yk+l + Y~+l)
Then ak converges quartically to 1/11": each successive iteration approximately quadruples the
number of correct digits in the result. As in the previous case, each iteration must be performed
to at least the level of precision desired for the final result.

Multi-Precision Arithmetic Techniques
A key element of a very high precision computation of this sort is a set of high-performance

routines for performing multi-precision arithmetic. A naive approach to multi-precision computa
tion would not only require a prohibitive amount of processing time, but would sharply increase
the probability that a hardware error would occur. In addition to employing advanced algorithms
for such key operations as multi-precision multiplication, it is imperative that these algorithms
be implemented in a style that is conducive for high-speed computation on the computer being
used.

The computer used for these computations is the Cray-2, part of the NAS Processing System
Network at the NASA Ames Research Center. This computation was performed to test the
integrity of the Cray-2 hardware, as well as the Fortran compiler and the Unix-based 1 operating
system. The Cray-2 is particularly well suited for this computation because of its very large main
memory, which holds 228 = 268,435,456 words (one word is 64 bits of data). This capacity is
more than the combined main memories of all previously delivered Cray computers. With this
huge capacity, all data for these computations can be contained entirely within main memory,
insuring ease of programming and fast execution.

No attempt was made to employ more than one of the four central processing units in the Cray-
2. Thus, at the same time these calculations were being performed, the computer was executing
other jobs on the other processors. However, full advantage was taken of the vector operations
and vector registers of the system. Considerable care was taken in programming to insure that
the multi-precision algorithms were implemented in a style that would admit vector processing.
Most key loops were automatically vectorized by the Cray-2 Fortran compiler. For those few that
were not automatically vectorized, compiler directives were inserted to force vectorization. As
a result of this effort, virtually all arithmetic operations were performed in vector mode, which
on the Cray-2 is approximately 20 times faster than scalar mode. Because of the high level of
vectorization that was achieved using the Fortran compiler, it was not necessary to use assembly
language, non-standard constructs, or library subroutines.

IUnix is a trademark of AT&T Bell Laboratories.

27

A multi-precision number is represented in these computations as an (n + 2)-long array of
floating-point whole numbers. The first cell contains the sign of the number, either 1, -1, or ° (re
served for an exact zero). The second cell of the array contains the exponent (powers of the radix)'
and the remaining n cells contain the mantissa. The radix selected for the multi-precision numbers
is 107 . Thus the number 1.23456789 is represented by the array 1,0,1,2345678,9000000,0,0,···,
0.

A floating-point representation was chosen instead of an integer representation because the
hardware of numerical supercomputers such as the Cray-2 is designed for floating-point com
putation. Indeed, the Cray-2 does not even have full-word integer multiply or divide hardware
instructions. Such operations are performed by first converting the operands to floating-point
form, using the floating-point unit, and converting the results back to fixed-point (integer) form.
A decimal radix was chosen instead of a binary value because multiplications and divisions by
powers of two are not performed any faster than normal on the Cray-2 (in vector mode). Since
a decimal radix is clearly preferable to a binary radix for program troubleshooting and for input
and output, a decimal radix was chosen. The value 107 was chosen because it is the largest power
of ten that will fit in half of the mantissa of a single word. In this way two of these numbers may
be multiplied to obtain the exact product using ordinary single-precision arithmetic.

Multi-precision addition and subtraction are not computationally expensive compared to mul
tiplication, division, and square root extraction. Thus simple algorithms suffice to perform ad
dition and subtraction. The only part of these operations that is not immediately conducive to
vector processing is releasing the carrys for the final result. This is because the normal "school
boy" approach of beginning at the last cell and working forward is a recursive operation. On a
vector supercomputer this is better done by starting at the beginning and releasing the carry only
one cell back for each cell processed. unfortunately, it cannot be guaranteed that one application
of this process will release all carrys (consider the case of two or more consecutive 9999999's,
followed by a number exceeding 107). Thus it is necessary to repeat this operation until all carrys
have been released (usually one or two additional times). In the rare cases where three appli
cations of this vectorized process are not successful in releasing all carrys, the author's program
resorts to the scalar "schoolboy" method.

Provided a fast multi-precision multiplication procedure is available, multi-precision division
and square root extraction may be performed economically using Newton's iteration, as follows.
Let XLI and YO be initial approximations to the reciprocal of a and to the reciprocal of the square
root of a. respectively. Then

Yk+l

xk(2 - aXk)

Yk(3 - ayD
2

both converge quadratically to the desired values. One additional full-precision multiplication
yields the quotient and the square root, respectively. What is especially attractive about these
algorithms is that the first iteration may be performed using ordinary single-precision arithmetic,
and subsequent iterations may be performed using a level of precision that approximately doubles
each time. Thus the total cost of computation is only about twice the cost of the final iteration,
plus the one additional multiplication. As a result. a multi-precision division costs only about
five times as much as a multi-precision multiplication. and a multi-precision square root costs
only about seven times as much as a multi-precision multiplication.

28

Multi-Precision Multiplication
It can be seen from the above that the key component of a high-performance multi-precision

arithmetic system is the multiply operation. For modest levels of precision (fewer than about
1000 digits), some variation of the usual "schoolboy" method is sufficient, although care must
be taken in the implementation to insure that the operations are vectorizable. Above this level
of precision, however, other more sophisticated techniques have a significant advantage. The
history of the development of high-performance multiply algorithms will not be reviewed here.
The interested reader is referred to Knuth [12]. It will suffice to note that all of the current
state-of-the-art techniques derive from the following fact of Fourier analysis: Let F(x) denote the
discrete Fourier transform of the sequence x = (XO, Xl, X2, ••• , X N -1), and let F- l (x) denote the
inverse discrete Fourier transform of x:

N-l

'" ·k L XjwJ

j=O

1 N-] _
_ '" x-w- Jk
NLJ

j=O

where w = e- 21ri / N is a primitive N-th root of unity. Let C(x, y) denote the convolution of the
sequences x and y:

N-l

Cdx, y) = L XjYk-j

j=O

where the subscript k- J. is to be interpreted as k- J·+N if k- J. is negative. Then the "convolution
theorem" (see [13]' p. 63) states that

F[C(x, y)] = F(x) '" F(y)

or expressed another way

C(x, y) = F- l [F(x) * F(y)]

This result is applicable to multi-precision multiplication in the following way_ Let x and y

be n-long representations of two multi-precision numbers (without the sign or exponent words).
Extend x and y to length 2n by appending n zeroes at the end of each. Then the multi-precision
product z of x and y, except for releasing the carrys, can be written as follows:

29

Zo

Zl

Zn-l

ZZn-Z

ZZn-1

XoYo

XOYI + XIYO

XOY2 + Xl Yl + X2YO

XOYn-1 + XIYn-2 + ... + Xn-IYO

X n -IYn-2 + Xn-ZYn-1

Xn-IYn-1

o

It can now be seen that this "multiplication pyramid" is precisely the convolution o·r the
two sequences X and y, where N = 2n. The convolution theorem states that the multiplication
pyramid can be obtained by performing two forward discrete Fourier transforms, one vector
complex multiplication, and one reverse transform, each of length N = 2n. Once the resulting
complex numbers have been rounded to the nearest integer, the final multi-precision product
may be obtained by merely releasing the carrys as described in the section above on addition and
subtraction.

The key computational savings here is that the discrete Fourier transform may of course be
economically computed using some variation of the "fast Fourier transform" algorithm. It is most
convenient to employ the radix two fast Fourier transform since there is a wealth of literature on
how to efficiently implement this algorithm (see [1], [7], and 116]). Thus it will be assumed from
this point that N = 2m for some integer m.

One useful "trick" can be employed to further reduce the computational requirement for
complex transforms. Note that the input data vectors x and yare purely real. There is a simple
procedure (see [7;, p. 169) for combining 1.\\'0 real vectors into one complex vector, performing
one transform, and then recapturing the separate complex transforms. Thus only one forward
transform and one reverse transform need to be performed.

One important item has been omitted from the above discussion. If the radix 107 is used,
then the product of two cells will be in the neighborhood of 1014 , and -the sum of a large number
of these products cannot be represented exactly in the 48-bit mantissa of a Cray-2 floating-point
word. In this case the rounding operation at the completion of the transform will no: be able
to recover the exact whole number result. As a result. for the complex transform method to
work correctly, it is necessary to alter the above scheme slightly. The simplest solution is to use
the radix 106 and to divide all input data into two words wit.h only three digits each. Although
this scheme greatly increases the memory space required. it does permit the complex transform
method to be used for multi-precision computation up to about one million digits.

Prime Modulus Transforms
Some variation of the above method has been used in almost all high-performance multi

precision computer programs, including the program used by Kanada and Tamura. However,

30

it appears to break down for very high precision computation (beyond about one million digits
on the Cray-2), due to the round-off error problem mentioned above. The input data can be
further divided into two digits per word or even one digit per word, but only with a substantial
increase in run time and in the already excessive memory requirement. Since a principal goal in
this computation was to remain totally within the Cray-2 main memory, a somewhat different
method was used.

It can readily be seen that the technique of the previous section, including the usage of a fast
Fourier transform algorithm, can be applied in any number field in which there exists a primitive
N-th root of unity w. This requirement holds for the field of the integers modulo p, where P is
a prime of the form P = kN + 1 (see [10], p. 85). One significant advantage of using a prime
modulus field instead of the field of complex numbers is that there is no need to worry about
round-off error in the results, since all computations are exact.

However, there are some difficulties in using a prime modulus field for the transform operations
above. The first is to find a prime P of the form kN + 1, where N = 2m . The second is to find
a primitive N-th root of unity modulo p. As it turns out, it is not too hard using a computer to
find both of these numbers by direct search. Thirdly, one must compute the multiplicative inverse
of N modulo p. This can be done using a variation of the Euclidean algorithm from elementary
number theory. Note that each of these calculations needs to be performed one time only.

A more troublesome difficulty in using a prime modulus transform is the fact that the final
multiplication pyramid results are only recovered modulo p. If p is greater than about 1024 then
this is not a problem, but the usage of such a large prime would require quadruple precision
arithmetic operations to be performed in the inner loop of the fast Fourier transform, which
would very greatly increase the run time. A simpler and faster approach to the problem is to use
two primes, PI and P2, each slightly greater than 1012 , and to perform the transform algorithm
above using each prime. Then the Chinese remainder theorem may be applied to the results
modulo PI and P2 to obtain the results modulo the product PIP2. Since PIP2 is greater than
1024 , these results will be the exact multiplication pyramid numbers. Unfortunately, double
precision arithmetic must still be performed in the fast Fourier transform and in the Chinese
remainder theorem calculation. However, the whole number format of the input data simplifies
these operations, and it is possible to program them in a vectorizable fashion.

Some authors (see [3], p. 90) have suggested using three transforms with three primes PI ,P2,
and P3, each of which is just smaller than half of the mantissa, and using the Chinese remain
der theorem to recover the results modulo PIP2P3. In this way double precision operations are
completely avoided in the fast Fourier transform. This scheme runs very fast, but unfortunately
the largest transform that can be performed on the Cray-2 using this system is N = 219 , which
corresponds to a maximum precision of about three million digits.

Readers interested in studying about prime modulus number fields, the Euclidean algorithm,
or the Chinese remainder theorem are referred to any elementary text on number theory, such as
[9] or [10]. Knuth [12J and Borodin [3] also provide excellent information on using these tools for
computation.

Computational Results
The author has implemented all three of the above techniques for multi-precision multipli

cation. The three-prime transform scheme appears to run the fastest, about 35% faster than
the complex transform scheme and 70% faster than the two-prime transform scheme. However,

31

the memory requirement of the two-prime scheme is significantly less than either the three-prime
or the complex scheme, and the maximum precision level of the two-prime scheme is over three
billion decimal digits. Thus the two-prime scheme was selected for the computations of 7f.

One of the author's computations used twelve iterations of Borweins' quartic algorithm for
1/7f, followed by a reciprocal operation, to yield 29,360,128 digits of 7f. In this computation
approximately 12 trillion arithmetic operations were performed. The run took 28 hours of pro
cessing time on one of the four Cray-2 central processing units and used 138 million words of
main memory. It was started on January 7, 1986 and completed January 9,1986. The program
was not running this entire time - the system was taken down for service several times, and the
run was frequently interrupted by other programs. Restarting the computation after a system
down was a simple matter since the two key multi-precision number arrays were saved on disk
after the completion of each iteration.

This computation was checked using 24 iterations of Bc·rweins' quadratically convergent al
gorithm for 7f. This run took 40 hours processing time and 147 million words of main memory.
A comparison of these output results with the first run found no discrepancies except for the last
24 digits, a normal truncation error. Thus it can be safely as~umed that at least 29,360,000 digits
of the final result are correct.

32

REFERENCES

1. Bailey, D. H., "A Fast Fourier Transform Without Power-of-Two Memory Strides", sub
mited to SIAM Statistical and Scientific Computing, 1985.

2. Beckman, P., A History of Pi, Golem Press, New York, 1971.

3. Borodin, A., Munro, 1., The Computational Complexity of Algebraic and Numeric Prob
lems, American Elsevier Publishing Co., New York, 1975.

4. Borwein, J. M., and Borwein, P. B., "The Arithmetic-Geometric Mean and Fast Computa
tion of Elementary Functions", SIAM Review, 26 (1984), pp. 351-366.

5. Borwein, J. M., and Borwein, P. B., "Elliptic Integrals ancJ Approximations to Pi", unpub
lished manuscript, 1985.

6. Brent, R. P., "Fast Multiple-Precision Evaluation of Elementary Functions" , Journal of the
Association of Computing Machinery, 23 (1976), pp. 242-251.

7. Brigham, E. 0., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.

8. Gosper, W., private communication.

9. Grosswald, EmiL Topics from the Theory of Numbers, Macmillan, NY, 1966.

10. Hardy, G. H., and \Vright, E., M., An Introduction to the Theory of Numbers, 5th edition,
Oxford University Press, London, 1984.

11. Kanada, Y., and Tamura, Y., "Calculation of 7r to 10,013,395 Decimal Places Based on the
Gauss-Legendre Algorithm and Gauss Arctangent Relation", Computer Centre, University
of Tokyo, 1983.

12. Knuth, D., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison
Wesley, Reading, MA, 1981.

13. Papoulis, A., Signal Analysis, McGraw-Hill, NY, 1977.

14. Salamin, E., "Computation of 7r Using Arithmetic-Geometric Mean", A1at,hematics of Com
putation, 135 (1976),' pp. 565-570.

15. Shanks, D., and Wrench, J. W., "Calculation of 7r to 100,000 Decimals" , Mathematics of
Computation, 16 (1962), pp. 76-79.

16. Swarztrauber, P. N., "FFT Algorithms for Vector Computers", Parallel Computing, 1
(1984), pp. 45-64.

33

USER REQUIREMENTS COMMITTEE REPORT

Stephen Niver

Boeing Computer Services
Seattle, Wa.

The role of the User Requirements Committee (URC)
is to act as a focal point for technical requests
beteween the Cray User Group (CUG) and Cray
Research, Incorporated (CRI). To this end the
URC collects requirements from CUG membership and
the Special Interest Committees (SICs) reviews
the requirements for general applicability and
suitability, conducts a ballot of the CUG
membership, presents the results to the CUG
membership and CRI and recommends to the CUG
Board of Directors (BOD) the items to be forwarded
to CRI for an official response. In addition to
balloting, the URC will, from time to time solicit
CRI response to various issues; in these cases the
URC will request an official CRI statement of
policy or intent. The URC is a15Q responsible
for mmaking the ballot results and the official
CRI response available to the CUG membership.

Following are the CRI response to the items that
were forwarded to CRI from the Winter 1985 ballot.

Job Dependencies

Provide the capability for an end user to define
the order in which a given set of jobs will execute,
regardless of the order of submission. The job
sequence should be alterable by user or system
operator; the sequence information should be
p~eserved across ·system recoveries. It should
also be possible to define the sequenc-e or op.fore
after all of the affected jobs have been submitted.

RESPONSE: We have no plans to implement a job
dependency capability.

Permanent Dataset Protection

The design of the CRI permanent dataset system is
powerful but provides a single point of catastrophic
failure, the dataset catalogue (DSC). Provide a
capability for significantly minimizing the
possibility of th~ DSC being corrupted or,
alternatively, minimizing the impact of the
destruction of the DSC.

RESPONSE: COS 1.15 STARTUP processing significantly
improves DSC error recovery. STARTUP will correct
block number errors when read~~~ the DSC and only
data sets described by actual bad blocks will be lost.

34

In addition, the COS 1.15 archiving feature
provides the capability to recover datasets
easily in case of catastrophic failure. After
restoration of the backup dataset catalog,
data sets can be loaded either as a utility
function, or alternatively they can be recalled
automatically as they are requested by users.

SCILIB Extensions

When the Cray systems were initially offered,
several mathematical libraries were offered for
use in attracting new programs and providing a
degree of optimization. Use of and demand for
these capabilities have grown to the extent
that their availability is now a requirement.
Please extend your existing SCILIB product to
include vectored versions of the more complex
mathematical functions such as those included
in EISPACK and LINPACK.

RESPONSE: The existing SCILIB product, which
includes LINPACK and EISPACK, comprises almost
250 mathematical subroutines. Of these, approx
imately 90 have been optimized for the CRAY l-S
and X-t~P and 70 for the CRAY-2. We are
continuing to optimize routines in LINPACK and
EISPACK, along with the others. However, since
the number of routines in these two libraries is
rather large (approximately 160) we are con
centrating our efforts on a few of the frequently
used subroutines. We would appreciate a
prioritized list of routines in LINPACK and
EISPACK to be optimized from the CUG Special
Interest Group. (I have committed to providing
to the software tools SIG a list of sites that
voted for this item on the ballot.)

In addition to the items from the ballot forwarded
to CRI, CUG requested a CRI statement of policy
on these items. Following are the items and the
CRI response:

(1) Provide customers at each site with inter
active access ot "the" SPR database. The current
method of relying upon an intermediate party
(local CRI analyst) or a local copy of the
database is not satisfactory. Among the cap
abilities desired are the ability to list SPRs
by many different criteria and keywords, list
suggested corrective code, append comments,
and submit SPRs.

RESPONSE: CRI does not plan to provide direct
access to its SPR database by other than Cray
employees. A new SPR database has recently been
created to provide more access capabilities to
SPR information.

The new SPR database, implemented with ORACLE,
a relational database system, provides a number
of enhancements including: searching by various
criteria (including keywords and text), field
entry of SPR's, fields for corrective code and
test cases, user definable reports, and expand
able descriptions (to append comments). For more
detailed information or other questions contact
your local Cray site analysts. The new database
will evolve over time to more closely meet the
needs of the users. Your comments and suggestions
are welcomed.

(2) While large computer memories are certainly
the trend, there are currently a large number of
CRI systems installed with significantly smaller
memory. To enable these sites to continue to
function effectively, CRI should adopt a policy of
containing the memory growth of system utilities
such as CFT, UPDATE, CAL. To support both future
large memories and existing smaller ones, perhaps
an installation parameter should determine whether
the utility uses overlays or expands.

RESPONSE: CRI is sensitive to the increasing size
of system utilities and is making efforts to make
them as small as possible. Unfortunately, in
order to develop utilities which produce better
code or provide better performance, it is likely
that these packages will continue to grow.
Frequently, the size is a function of required
data space not the actual utility code. Although
we will try to keep utilities small, we cannot
guarantee that there will be no further growth
in their size.

35

(3) Upward compatibility is an important issue
to all Cray customers. Source compatibility is
important, but it is equally unrealistic to
expect users to recreate their binaries for each
system upgrade. For customers who have regulated
applications, the cost is even greater. A major
reason for the lack of compatibility is the
changes to system tables that reside in a user
job's field length. Increases in table length or
moving fields usually invalidates older versions
and requires that new binaries be created. With
some foresight and critical review of changes, it
should be possible for CRI to make changes to
tables so that existing binaries are unaffected.

RESPONSE: CRr appreciates the difficulty assoc
iated with changes to system tables within the
user's field length and does not intend to
unnecessarily make changes with these tables.
Changes to these tables should only be made
when necessitated for reasons of performance or
as unavoidable to implement a new feature.

The Board of Directors disagrees with the CRI
response to item 1 (provide customers with
direct access to the SPR database) and will
request that CRI reconsider their position.

Table one (below) summarizes the results of the winter 1985 balloting. The items above the dashed line
are being forwarded to CRI for response. Those items below the solid line are being dropped. The items
between the lines will be forwarded to the next ballot, unless this was the third ballot that they
appeared on (in which case they will be dropped).

SPRING 1986 CUG USER REQUIREMENT SURVEY RESULTS

RESPONSES SORTED BY TOTAL POINTS

FEATURE
TITLE

CONTROL STATIONS

IMPROVED INTERACTIVE

FREEZE/THAW

ADA

BETTER OPERATOR VISIBILITY FOLLOWING

FASTER ROLL-IN AND ROLL-OUT

POSITION OF LOGFILE ON OUTPUT

ON-THE-FLY-DUMPS

JCL MULTI-TASKING

MULTI-LEVEL SECURITY

INT

ENHANCED PERMANENT DATASET MAINTENANCE

PROGRAM-RELATED ACCOUNTING

CRAY-TO-CRAY COMMUNICATIONS

IDENTITY OF JOBS INDEPENDENT OF STATION

USER INTERFACE FOR STATION MANAGER

BDT INTERFACE FOR FETCH/ACQUIRE

PSEUDO-STRIPING

UNASSIGNED

SHADOW VERSIONS OF PERMANENT DATASETS

TOTAL
POINTS

337.0

330.0

326.0

308.0

304.0

281.0

280.0

264.0

205.0

197.0

148.0

148.0

ll6.0

ll5.0

101.0

88.0

54.0

50.0

48.0

TABLE 1

36

PERCENT
POINTS

9.1

8.9

8.8

8.3

8.2

7.6

7.6

7.1

5.5

5.3

4.0

4.0

3.1

3.1

2.7

2.4

1.5

1.4

1.3

AVERAGE
RESP

17.7

27.5

17.2

51.3

17.9

17.6

15.6

13.2

14.6

19.7

12.3

9.2

16.6

9.6

10.1

11.0

6.7

50.0

9.6

NUMB
RESP

19

12

19

6

17

16

18

20

14

10

12

16

7

12

10

8

8

1

5

SHORT PAPERS

PERFORMANCE OF DD-29 VERSUS DD-39

Mike Ess

Mobil Oil Exploration & Production Services

Dallas, Texas

At our site we recently moved from a
Cray-1M with 16 DD-29s to aMOS X-MP with
8 DD-39s. The new disks are better on
paper (see figure 1) so we expected an
improvement in throughput. But the I/O·
wait time for jobs in batch now takes
longer than before. In defining this
problem we have had trouble because we
didn't expect performance to go down. We
have had to dig up old listings to see
just what the I/O performance had been on
our old system. Then because that system
was gone, we tried to reconstruct the old
jobs on the new system. Of course, there
have been a lot of changes besides the
DD-29s that could not be filtered out.
The whole experience brought home the need
for tools to measure the system perform
ance in batch. At our site, like most
every other site, more than 90% of the
wall clock time is spent running batch.
And the heavy batch usage from 8 AM to
5 PM is when most of our payroll is wait
ing for results. This lack of tools to
measure performance in batch is a seriou~
omission. Most likely the current bench
marks or the situation in Mendota Heights
has more effect on the changes to the
operating system than any results of a
simulated batch environment. The bench
mark results in dedicated mode can be
worlds apart from the real world in batch.
And the batch environment in Mendota
Heights is not a production site.

As an example of the need for such a tool
let me explain one reason that might
:account for the increase in I/O wait times
:from our old system to our-new system.
I'm not saying that this is the cause of
our problem, but only that there is a need
for tools to resolve this possibility. As
can be seen from figure I, we can see that,
the DD-39s are two times bigger, and'
except for maximum transfer rate, they
,should be two times faster. The 8 DD-39s
'would have the same volume as the 16
DD-29s, and given that the DD-39 charac
teristics are better, it seemed a reason
able way to go. One hardware difference
between the systems is that the number of
channels has decreased. This decrease in

38

the number of channels and an increase in,
channel activity is what I speculate is
the cause of increased I/O wait times.

On the hardware side there are just fewer
wires connecting 150 million word units
than there were on the old system.
Exactly half as many channels now service
the same volume of storage. There are two
reasons why the number of requests per 150
million words has increased on our new
system. One is that the DD-39s contain 3
spindles per drive and an I/O request is
made per drive rather than per device. On
the DD-29 there would be two drives hand
ling requests of the 150 million words so
the new system has 50% more requests per
150 million words of disk. The last two
reasons combine to say that there is just
'more contention for the disks. The other
hardware consideration is that the X-MP
·has a faster CPU than the 1M, so we now
expect more I/O requests per wall clock
second. Also because memory increased
from 2 million words to 4 million words
there are now more jobs in memory request-
ing service from the disks.

We are gradually moving our seismic work
load from the Cybers to the Cray and this
accounts for a continual increase in I/O
on our system. Seismic processing has
always been I/O intensive· because of the
volumes of data that must be used to make
up for inaccuracies in the data. Mos~
processing occurs on a trace by trace
basis, where a trace is a few sectors
long. This means a lot of relatively
small I/O operations. Another character
istic is that this trace by--trace -process
ing was well suited to small memory
machines but now that 2D and 3D techniques
are becoming more popular, rethinking has
to be done about the tradeoffs between
large memory usage and I/O. But any
change from the existing software must
first be justified with results from tools
measuring an improvement in performance.
An given how a production site runs, the
tool must show an improvement in batch
mode.

In conclusion, I wish to point out that
batch performance is more important than
dedicated performance on Cray machines.
This is simply because more Crays run
longer in batch than in dedicated mode.
So even though batch performance is hard
to measure that doesn't mean we shouldn't
try to measure it. Let's treat dedicated
mode results as interesting but not very
useful for how Crays are actually used.

00-29 00-39

DRIVES / DEVICE 1 3

WORDS / SECTOR 512 512

SECTORS/TRACK 18 24

TRACKS / CYLINDER 10 5

CYLINDERS / SPINDLE 822 840

TOTAL SECTORS 147,960 101,040
303,120

TOTAL DATA WORDS 75.7 51.7
(MEGA WORDS) 155.2

ROTATIONAL SPEED 3600 4000

MINIMUM SEEK TIME 15ms 5.5ms

A VERAGE SEEK TIME 50ms 18ms

MAXIMUM SEEK TIME 80ms 35ms

MAXIMUM TRANSFER RATE 38.8 52.4
(MEGABITS / SECOND)

FIGURE 1. DISK CHARACTERISTICS

39

A BAD EXPERIENCE WITH CFT 1.14

Chris Lazou

University of London

London, England

THE ULCC ENVIRONMENT

The University of London Computer Centre
provides large-scale computer services to
members of the academic community through
out Britain. These services are based on
a Cray-1S/l000 running COS 1.12 / CFT 1.14
BF3 and an Amdahl 470V/8 running MVS
SPl.3. Access to the centre is provided
over X25 - based wide - area networks in
conformity with the ISO model of Open
Systems Interconnection (OSI).

The user community consists of postgradu
ates and university teachers, and totals
over 6500 accounts. About 1800 of these
accounts are Cray-1S users. Most of the
users have to submit their work for a
"peer review", to establish whether their
work warrants a large-scale computer,
before they are allowed to use the
Cray-1S. This rather small system is
overloaded and our users' requirements are
one to two orders of magnitude larger than
the computational capacity of the Cray-1S.
The work simulated on the Cray-1S at ULCC
spans the complete range of academic
,disciplines from physical to biological
sciences on to humanities.

GFT VERSIONS

Apart from CFT 1.14 BF3 residing in the
system, we also have CFT 1.11 ('old calling·
sequence), CFT 1.11 (new calling
sequence), CFT 1.13 BF2, CFT 1.14 BF2X,

. CFT 1.14 BF4, and prerelease CFT 1.15 on
permanent data sets. Indeed many of the
other bug fix versions are also there,
which gives you an indication of the
inherent instability of eFT as a product.
In addition to the Cray Products, we sup
port the Cray Library, the mathematical
libraries N~G and IMSL, and some 35 pack
ages and other libraries including
graphics.

The size of user programs run on the sys
tem, range from small development jobs, to
large (several hundred thousand lines of
Fortran statements) production jobs,

40

partitioned to use
resources available.
typical job.

as much of "the Cray
Figure 1 shows a

MIGRATION PATH

As a matter of policy ULCC plans to effect
upgrades during the summer when University
teachers are free from undergraduate
teaching duties. Since our user popula
tion is spread around the country, we have
adopted the following migration path when
ever we wish to upgrade to a new version:

1. Document and distribute any external
user changes, noting their possible im
pact on running programs to the user
community.

2. Place CFT and associated products on
permanent data sets and provide a pro
cedure to access them.

3. Encourage application programmers at
ULCC and the users at large to try new
versions of CFT.

4. Generate new libraries on permanent
data sets for users to access on a
trial basis.

5. A stringent quality assurance exercise
is initiated with the aim of assuring
that all previous production programs
still function correctly with the new
versions (an impossible task with Cray
software) .

PROBLEMS ENCOUNTERED DURING MIGRATION

Once the user community started using CFT
1.14 the problems began to pop out of the
woodwork. Our Cray analyst verified and
submitted on ULCC's behalf, 11 critical,S
major, and 2 minor SPRs. There are 3 more
known problems which are currently under
investigation, not as yet isolated enough
to establish whether we have to issue new
SPRs for them. Figure 2 shows a list of
CFT 1.14 errors encountered. In addition
there were 6 errors in the mathematical
library $ARLIB. These consisted of errors

in (single and double precision) vector
SQRT, in double precision vector multiply,
and triple precision addition. On several
occasions errors were not reported if it
was known that the error was fixed at a
higher bugfix level. At present another
error with complex arithmetic is suspected
at CFT 1.14 BF4.

The problems encountered were mainly due
to the CFT compiler generating wrong code
or the functions in the $ARLIB library
having been "speeded up" by changing the
algorithms, but with scant respect to
accuracy. These problems were detected in
large codes such as the LUSAS package (5SK
lines of code), a computational chemistry
program (3S0K lines of code), a crystal
lography package, econometrics, GAUSSIAN
82, and the NAG tests. Figure 3 shows the
spread of problems in CFT 1.14 and the
instability of subsequent versions.

REMEMDIES

With such spread of problems encountered
at CFT 1.14, ULCC was unable to upgrade
last summer, but eventually upgraded in
February 1986. Another problem which may
be local to European sites, is that the
response to critical SPRs by Cray Research
is very slow. Even when code has been
developed to solve the critical problem it
is often not available to us for several
weeks rather than days.

• STATISTICS: 594 LOGFILE STATEMENTS

ACCESS, CFT, LDR, SAVE, ETC.

• 29 SEPARATE CFT COMPILATIONS

• 2 CAL COMPILATIONS

• 107,407 LINES OF FORTRAN

• 95.84 SECONDS TO COMPILE

RECOMMENDATIONS

1. CRI should do more testing before
releasing its products, if it wishes to
preserve the confidence of the user
community in their worthiness.

2. CRI should consider providing a mecha
nism for access of all current SPRs by
all sites to. enable installations to
ascertain whether a problem they are
hitting has previously been reported.
This has the added advantage, for
installation analysts, of providing
material hints to assist them when
trying to isolate problems in large
systems. Some of these problems take
days to isolate and any reduction of
this unnecessary cost would be
appreciated.

3. CRI should consider publishing any
changes to algorithms calculating
f"loating point numbers as results from
mathematical functions and should try
to conform to either IEEE or other
suitable standards where available.

4. CRI must do better as far as CFT is
concerned if it wishes to keep ahead of
its competitors in this field.

• IN ADDITION IT CALLS ON PRECOMPILED LIBRARIES AND CREATES AN OVERLAYED ABSOLUTE PROGRAM

• PRODUCTION RUNS ARE THEN DONE WITH DIFFERENT SETS OF DATA

• INTERMEDIATE RESULTS ARE STORED AND PICKED UP AGAIN FOR DIFFERENT RUNS

ENQUIRY:

MY RESULTS ARE NOW WRONG AT THE 6TH DECIMAL POINT WITH NEW VERSION OF CFT?

FIGURE 1. EXAMPLE OF PROGRAM COMPLEXITY

41

CRA Y SPR NO. CFT VERSION (DATE) PROBLEM

BAD CODE GENERATED FOR DO LOOP

ANSWER
LEVEL

1.14 (6/85) 12055

12179

12387

12400

12764

13007

13303

14193

14993

1.14 (4/85)

1.14 (4/85)

1.14 (5/85)

1.14 (6/85)

1.14

INEFFECTIVE CODE GENERATED FOR MULTIPLE DO LOOPS 1.15 (4/86)

1.14
1.14 BF2 (9/85)

1.14 BF4 (1/86)

1.14 BF4 (3/86)

1.14 BF3 (4/86)

BAD CODE GENERATED USING T-REGISTERS

BAD CODE WITH LARGE CONSTANT IN DO LOOP

BAD CODE USING WRONG T-REGISTER

BAD CODE GENERATED USING BUFFER IN

ASSOCIATION OF ENTITIES

CFT FAILS TO PRODUCE CODE

BAD REGISTER USAGE IN LOOP

B-REGISTER NOT SET UP

FIGURE 2. LIST OF PROBLEMS WITH CFT 1.14 AT ULCC

INSTITUTION CFT 1.13 CFT 1.14 CFT 1.14 CFT 1.14
BF2X BF3 BF4

KING'S (OK) (OK) X X

IC (OK) X X (OK)

YORK (OK) X X X

BIRKBECK (OK) X X X

READING (OK) (OK) X X

ULCC (OK) X X X

ULCC (OK) (OK) X X

CAMBRIDGE (OK) X X (OK)

ULCC (OK) (OK) (OK) (OK)

FIGURE 3. MATRIX OF PROBLEMS WITH CFT 1.14AT ULCC

42

CFT 1.15

1.14 BF2 (9/85)

1.14 BF2 (8/85)

1.14 BF3

10/85

PRE-RELEASE

X
(OK)

X (USER)

X

(OK)

BATCH JOBS ON UNICOS

Clay Andreason

Cray Research, Inc.

Mendota Heights, Minnesota

WHAT IS NQS?

First I'd like to say that the version of
NQS that I will be describing will be
available in release 2 of UNICOS.

The Network Queueing System is being
developed by a company called Sterling
Software under a contract with NASA.

It WILL be supported under UNICOS by Cray
Research.

It is based on
Queueing System
Research Lab.

the Multiple Device and
written at Ballistics

NQS is designed to allow users to submit,
terminate, monitor, and control their own
batch jobs.

NQS maintains several batch queues as
configured by the system administrator,
selects and schedules batch jobs for
execution, optionally notifies users of
job start and termination, and returns the
output to the point of submission.

NQS consists of several parts. They are:
nqsdaemon, netdaemon, qmgr, qsub, qstat,
and qdel. Figure 1 depicts the general
flow of a batch job under the control of
NQS.

Nqsdaemon

The NQS daemon spends most of its time
waiting for requests to perform functions.
Its jobs is to control all queues and
their contents. This includes the follow
ing functions:

o Creating,
queues.

modifying, and deleting

o Assigning of sequence numbers to
requests (j obs) .

o Entering requests into the queues.

o Moving requests within and between
queues.

43

o Updating memory and disk resident
queue structures.

o Spawning requests from queues.

o Removing completed requests.

Netdaemon

The network daemon is optionally started
when NQS is started. Its function is to
wait for requests sent from other
machines. It then maps the remote user id
into a local user id and submits the
request to the NQS daemon.

The qmgr program is the operator's inter
face to NQS. It cracks commands, formats
them and writes them to the nqsdaemon. It
then waits for a reply and tells the oper
ator of the success or failure of the com
mand. Qmgr also provides extensive help
facilities for all commands.

The qstat program provides status displays
of NQS queues and their contents. It pro
vides status information by queue name,
request name, or sequence number.

The qdel program provides a means to
delete requests from queues or to signal
all of the process associated with a
request.

I'll go into more detail on all of these
later.

Queues may
attributes.

be created with a number of
These include:

o Users allowed in the queue.

o Groups allowed in the queue.

o Default/maximum time limit.

o Default/maximum memory limit.

o Default/maximum nice value.

o Priority of queue.

o Maximum number of requests running in
the queue at one time (run limit).

These attributes are used to determine
which queue each request belongs in.

Any of these attributes may be changed at
any time via the qmgr program.

Normally NQS will initiate all requests in
a queue up to the run limit for the queue.

A new request will be initiated in a queue
whenever one completes in that queue
providing that run limits will not be
exceeded.

NQS also provides for the grouping of
queues into a queue complex.

A run limit may be specified for a queue
complex.

Figure 2 is a sample queue configuration
display.

"Qsub Command

The qsub command is used to submit the
script file along with any desired request
parameters to the NQS batch subsystem.

Parameters specified on the qsub command
override any in the script file.

Qsub validates all of the request parame
ters and builds a control file for the
request.

The NQS daemon is then notified.

Important parameters are:

-a time Time after which to run.
-j job-name Job name. (Default is

the script file name)
-1M mem-limit Limit of memory size per

job.
-In nice-limit Set a nice value for all

processes in a job.
-IT cpu-time Limit of CPU time per

job.
-mb Send mail at beginning

of job.
'-me Send mail at end of job.
-nr Declare the request

non-restartable.

Figure 3 shows all the qsub parameters.

44

WHAT IS A BATCH JOB?

There are many similarities and differ
ences between COS and UNICOS batch jobs.
Figure 4 summarizes the differences, which
are elaborated below.

Some of the differences are obvious in the
sample UNICOS and COS jobs in figures 5
and 6.

o Under UNICOS, the data for a command
immediately follows the command. COS
normally tacks data files onto the
end of the job.

o A job accounting report at the end of
your job is available under UNICOS,
but only if you ask for it.

One major difference between COS and
UNICOS is the user environment provided by
UNICOS.

o Every job or interactive session
begins by executing a file called
".profile" in the user's home direc
tory. This allows a user to have all
kinds of things done at every login~-

o This can include executing any UNICOS
commands and the setting of environ
ment variables. Environment varia
bles are similar to the symbolic var
iables in COS JCL, but more powerful
because they are available to every
program instead of just the command
line interpreter.

Another difference that comes to mind is
the lack of local or temporary files under
UNICOS. This has some interesting side
effects.

o Two copies of the same job running in
the same directory may easily inter
fere with each other.

o Because all files exist
itly removed, there can
garbage files staying
used to disappear under
job terminated.

until explic
be a lot of

around that
COS when the

Fortunately the flexibility of UNICOS pro
vides some solutions to the problem.

o It is possible to set up the user's
environment so that when a job is
started, a unique directory is cre
ated and the job begins executing
there. This means that each job has
a fresh slate to start from. A job
writing to file X won't interfere
with another copy of the job writing
to file X.

o It is also possible to set things up
so that the directory will be auto
matically removed when the job ter
minates. Sounds like COS temporary
files, doesn't it? The bonus is that
you could also login interactively
and look around at the job's files if
you wanted to.

One major difference that may cause some
problems for COS users is that the command
line interpreter (known as the shell)
under UNICOS essentially runs in a NO
ABORT mode. This means:

o The shell does not automatically ter
minate the job when there is an error
in some command. The job must
include an error check if desired.

o When each UNICOS process terminates
it may (but is not required to)
return an exit status to its parent.

Qstat Command

Figure 7 is an example of the output from
the qstat command.

The default display is one line for each
of your own jobs. Jobs owned by others
are indicated but not displayed.

You may ask for status of a particular job
or jobs, and may request an extended
status.

OPERATOR CONTROL

Operator control is accomplished via the
qmgr program. It has the following com
mands (summarized in figure 8).

Abort Queue

All requests in the named queue that are
currently running are aborted as follows.
A SIGTERM signal is sent to each process
of each request presently running in the
named queue. After a specified number of
seconds of real time have elapsed, a
SIGKILL signal is sent to all remaining
processes for each request running in the
named queue. All requests aborted by this
command are lost.

Create Batch queue

Define a batch queue with a specified
inter-queue priority. If pipeonly is
specified, then requests may enter this
queue only if their source is a pipe
queue. The specification of a run_limit
sets a ceiling on the maximum number of
requests allowed to run in the batch queue
at any given time.

45

Create Pipe queue

Define a pipe queue and associate it with
a server. This is done by specifying an
absolute path name to the program binary
server and any arguments required by the
program. A list of one or more destina
tion queues that requests from this pipe
queue may be sent to is specified.

Delete Queue

The specified queue is deleted. To delete
a queue, no requests may be present in the
queue and the queue MUST be disabled (see
"Disable Queue" below).

Delete Request

Delete the specified request(~). This
command can delete both running and non
r~nning requests. If a request is run
ning, then all processes of the request
are sent a SIGKILL signal.

Disable Queue

Prevent any more requests from
placed in this queue.

Enable Queue

being

If the queue is already enabled, then this
is a no-op. Otherwise, the queue is
enabled to accept new requests.

Get help information. Help without an
argument displays information about what
commands are available. Help with an
argument displays more detailed informa~

tion about that command. The command may
be partially specified as long as it is
unique. The more completely specified
your help request, the more detailed the
information that you will receive.

Purge Queue

All queued requests are purged (dropped)
from the queue and are irretrievably lost.
Running requests in the queue are allowed
to complete.

Set Nice value

Set a best nice-value for a batch queue,
against which the nice-value for a request
may be compared. If a request already in
the queue has asked for treatment more
favorable than the new nice-value, then it
will be given a grandfather clause. A
request specifying a nice-value may only
enter a batch queue if the queue's nice
value is numerically less than (more

willing to allow access to the CPU) or
equal to the request's nice value. A
nice-value is an integer preceded by an
optional negative sign.

Set Per Request Cpu limit

Set a per-request maximum CPU time limit
for a batch queue against which the
per-request maximum CPU time limit for a
request may be compared. If the local
host does not support per-request CPU time
limits, then this command will report an
error. If the local host does support
per-request CPU time limits, then every
batch queue on the local host will have a
per-request maximum CPU time limit associ
ated with it at all times. If a request
already in the queue has asked for more
than the new limit, then it will be given
a grandfather clause. A request speci
fying a per-request maximum CPU time limit
may only enter a batch queue if the
queue's limit is greater than or equal to
the request's limit.

Set Run limit

Change the run-limit of an NQS batch or
pipe queue. The run-limit determines the
maximum number of requests that will be
allowed to run in the queue at any given
time.

Show Queue

Display the status of the specified
queue(s). A standard amount of informa
tion for all queues is shown if no queue
names are given. If one or more queues
are named, then the standard information
and the queued request ordering are
displayed for the named queues.

46

Shutdown

Shutdown all moving parts of NQS on the
local host. A SIGTERM signal is sent to
each process of each request presently
running. After the specified number of
seconds of real time have elapsed, a
SIGKILL signal is sent to all remaining
processes for each request. Unlike Abort
Queue, Shutdown requeues all of the
requests it kills.

Start Queue

If the queue is already started, then
nothing happens. Otherwise, the queue is
started and requests in the queue are
eligible for selection.

Stop Queue

Any requests in the queue that are
currently running are allowed to complete.
All other requests are "frozen" in the
queue. New requests can still be
submitted to the queue, but will be
"frozen" like the other requests in the
queue.

Qsub

NQSdaemon

Pipe Server

A---------------~ NQSdaemon

TORTOISE HARE

Shepherd

Server

Shell

Shepherd

NQSdaemon

Figure 1. NQS Job Flow

47

Save copy of job.
Build control file.
Notify NQS daemon.

Assign a sequence number.
Enter job on queue "batch".
Start pipe server.

Decide which queue the job belongs
in based on attributes.
Notify NQS daemon.

Move the job to the new queue.
Start the shepherd process.

Start the server process.
Wait for the job to complete.

Send initiation mail to user.
Change identity to the user.
Set up environment.
Exec the batch shell.

Run the users job.

Send completion mail to user.
Return output files.
Notify NQS daemon.

Remove job from queue.

Queue Limit Priority Tlimit Mlimit Nice Groups Users

batch 2 200 -20
FAST1 5 90 20 1M -10 G1
NORM1 5 70 100 4M 0 G1
BIG1 3 50 100000 20M 10 G1
FAST2 5 90 20 1M -10 G2
NORM2 5 70 100 4M 0 G2
BIG2 3 50 100000 20M 10 G2
HUGE 2 50 100M 20 sam, joe, sue
ZIP 5 30 1000 8M -30 bang

Queue-complex Limit

FAST1, NORM1, BIG1 10
FAST2, NORMA2, BIG2 10
BIG1, BIG2 4

Figure 2. Sample Queue Configuration

48

qsub [parameters] file
The qsub command is used to submit the script file along with any desired request parameters
to the NQS batch subsystem.

parameters:

Job file:

-a time
-e stderr-file
-eo
-j job-name
-ke
-ko
-1m mem-limit
-1M mem-limit
-In nice-limit
-It cpu-time
-IT cpu-time
-mb
-me
-mu user
-nr
-0 stdout-file
-p priority
-q queue
-s shell-name
-z

Time after which to run.
Specify a standard error file name.
Combine standard error and standard output.
Job name. (Default is script file name)
Keep stderr file on machine where run.
Keep stdout file on machine where run.
Limit of memory size per-process.
Limit of memory size per-job.
Set a nice value for all processes injob.
Limi t of CPU time per-process.
Limit of CPU time per-job.
Send mail at beginning of job.
Send mail at end of job.
Send mail to another user.
Declare·the request non-restartable.
Specify a standard output file name.
Queueing priori ty.
Queue to submit to.
Run the request with a different shell.
Silent submit. No informational message.

All commands to NQS are optional, but must appear first.
#@$-j job-name
#@$-IT 10
#@$-me
#@$

(shell commands)

Figure 3. Submitting a Batch Job Request

• UNICOS commands are normally not echoed, but can be.

• Most UNICOS commands give no feedback when successful.
(No news is good news)

• UNICOS stderr and stdout files are kept separate.
COS $OUT and $LOG are concatendated.

• No temporary files in UNICOS.

• Shell runs in NO ABORT mode.

Figure 4. UNICOS / COS Differences

49

UNICOS job.

@$-j test
@$-eo
@$-lt 10
@$

set -x
jad
cat > f.f« EOF

program test
integer a(100)
do 10 i = 1, 100

a(i) = i
10 continue

end
EOF
cft f.f
ldr f.o
a.out
rm f.f f.o a.out
jar -chsf

*
*
*

COS job.

JOB,JN=TEST, T=10.
COPYF,O=F.
CFT, I=F, L=FL.
LDR,NX,AB=AOUT.
AOUT.
IEOF

program test
integer a(100)
do 10 i = 1, 100

a(i) = i
10 continue

end

NQS commands
Jobname is test
Combine standard error and ou tpu t
Time limit of 10 seconds per process
End ofNQS commands

Echo commands
Start job accounting daemon
Copy input to file f.f

Compile program f.f
Load relocatable f.o as a.out
Execute program a.out
Remove files
Ask for job accounting

Copy program to file F
Compile program F
Load relocatable $BLD as AOUT

. Execute program AOUT

Figure 5. Sample Batch Job Structure, UNICOS vs. COS

50

+ jad
+ cat

program test
integer a(100)
do 10 i = 1, 100

a(i) = i
10 continue

end
+ eft f.f
compiling --- f.f using compiler I cft21 public I cft68 --
CFOOO - CFT VERSION - 2.68
CFOOI - COMPILE TIME = 0.0083 SECONDS
CF002 - 6 LINES, 6 STATEMENTS
+ ldr f.o
+ a.out
libf @END called
+ rm f.f f.o a.out
+ jar -chsf
COMMAND REPORT
===========

COMMAND STARTED
NAME AT
====== =====
jad 14:39:26
cat 14:39:26
cft68 14:39:31

.sh 14:39:29
sh 14:39:29
ld 14:39:32
sh 14:39:32
a.out 14:39:37
rm 14:39:38

PROCESS FLOW CHART
=============

parent

jad
cat
sh
sh
a.out
rm

-> child

-> sh
-> ld

JOB ACCOUNTING REPORT

USER-CPU SYS-CPU
[SECONDS] [SECONDS]
====== ======

0.01 0.03
0.01 0.02
0.01 0.02
0.01 0.01
0.01 0.01
0.57 0.19
0.01 0.01
0.00 0.01
0.00 0.02

-> cft68

===============
Operating System
Job Name
User
Group
Report starts
Report ends
CPU Time (User)
CPU Time (System)
1/0 Wait Time
Elapsed Time
CPU Time Memory Integral
VO W-Time Memeory Integral
Data Transferred
Phys. VO Requests
No. of Commands
Billing Units

: Mendota Mendota sysV bak CRAY-2
: test
: cda (1019)
: cray2 (101)
: 03/24/86 14:39:26
: 03/24/86 14:39:38

0.6329 Seconds
0.3193 Seconds
0.0000 Seconds

12 Seconds
0.0310 MWords * Seconds
0.0000 MWords * Seconds
2.0087 Mbytes

36
9
0.0000

VO-WAIT ELAPSED
[SECONDS] [SECONDS]
====== ======

0.00 0.33
0.00 2.47
0.00 0.27
0.00 2.34
0.00 2.35
0.00 4.87
0.00 5.20
0.00 0.42
0.00 0.49

Figure 6. Sample UNICOS Batch Job Output

51

SBU'S

======
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

qstat

batch@navier; type = BATCH; [ENABLED, RUNNING]; pri=16
o exit; 1 run; 0 stage; o queued; 0 wait; 0 hold;

REQUESTNAME REQUESTID USER
< 2 Requests >

3: nqscheck 157.navier rowley

qstat -1

batch@navier; type = BATCH; [ENABLED, RUNNING]; pri=16
o exit; 1 run; 0 stage; 0 queued; 0 wait; 0 hold;

Request 3: Name=nqscheck Id=157.navier
Owner=rowley Priority=63 RUNNING Process-group=241

Created at Fri Apr 1114:48:19 PST 1986
Mail = [NONE]
Mail address = rowley@navier
Owner user name at originating machine = rowley

o arrive;
PRI STATE

63 RUNNING

o arrive;

Per-proc. permanent file size limit = [2 gigabytes, 2 gigabytes] <DEFAULT>
Per-proc. memory size limit = [2 gigabytes, 2 gigabytes] <DEFAULT>
Per-req. memory size limit = [2 gigabytes, 2 gigabytes] <DEFAULT>
Per-proc. execution nice priority = 4 <DEFAULT>
Per-proc. CPU time limit= [72000.0, 72000.0] <DEFAULT>
Per-req. CPU time limit = [360000.0, 360000.0] <DEFAULT>
Standard-error access mode = SPOOL
Standard-error name = navier:/u/nas/npo/rowley/nqs/nqschec.e157
Standard-output access mode = SPOOL
Standard-output name = navier:lulnaslnpo/rowley/nqslnqschec.o157
Shell = DEFAULT
Umask = 22

Figure 7. Qstat Examples

52

PGRP

241

Command

Abort Queue

Create Batch-queue

Create Pipe-queue

Delete Queue

Delete Request

Disable Queue

Enable Queue

Help

Purge Queue

Set Nice-value

Function

Signal all requests in a queue.

Prevent any more requests from being placed in this queue.

Queue is enabled to accept new requests.

All queued requests are purged (dropped) from the queue and are irretrievably lost.

Set a best nice-value for a batch queue.

Set Per-Request Cpu-limit
Set a per-request maximum CPU time limit for a batch queue.

Set Per-Request Memory-limit
Set a per-request maximum memory size limit for a batch queue.

Set Run-limit Change the run-limit of an NQS batch or pipe queue.

Show Queue

Shutdown

Start Queue

Stop Queue

Display the status of the specified queue(s).

Shutdown all moving parts ofNQS on the local host.

Queue is started and requests in the queue are eligible for selection.

Stop initialization of requests from a queue.

Figure 8. Qmgr Commands

53

SPECIAL INTEREST COMMITTEE REPORTS

Software Tools: C on the Cray

chaired by Mary Zosel

Lawrence Livermore National Laboratory
Livennore, California

C is a mature and widely used language, but it is new
to the Cray environment. This session included a talk
addressing the general direction of development and
standardization of C, a series of short reports on user
experience with a variety of preliminary versions of
the Portable C, and a description of the features in the
first release of a CRI supported C compiler. The talks
are summarized following. .

The Status and Evolution of C
Larry RosIer, AT&T

The C language was an outgrowth of B and BCPL. It
evolved through proliferation to diverse applications,
and after the development of the portable C compiler
PCC, through proliferation to different machines.
The porting and diversity led to a variety of
additions to the original C language. Remarkable
defacto standardization has arisen from conformance
of new implementations to the language and
environment defined in the book The C
Programming Language by Kernighan and Ritchie
(often referred to as K&R). Formal standardization
efforts are now in progress. Meanwhile development
in programming language design has led toward
many useful newer language concepts. At AT&T, the
design of the C++ preprocessor has addressed
addition of new features to the C language.

Standardization grew out of a lusr/ group effort. An
ANSI committee, X3Jll, has been working since
1983 and expects to release a proposed standard for
public comment later this year. The language
standardized has intentionally made it a goal ll..Q1 to
invalidate C programs. Some features which
"surprise", new C programmers remain because they
are considered part of the language. The committee is
adding a number of proven features such as
enumeration types and templates of expected function
parameter types to aid separate compilation type
checking. The definition of templates illustrates the

55

care taken to allow interface to older C programs
which lack template infonnation.

At the same time as the standardization effort, a "new
C" was developing at B ell Labs. There was- debate
about a name for the language and, in the spirit of C,
they decided the way to get the next name was C++.
This language has been described in the book The
C++ Programming Language by Stroustrup . It adds
many new language features for data abstraction,
type checking, and object-oriented programming,
such as classes and overloaded operators. C++ is a
preprocessor which turns programs written in the
extended language to C programs. (Before C++ can
be used on Crays, users will have to wait for
compiler and system support to remove the
restriction on 8 character external names. This is in
progress.)

Experience at User Sites
Martin Fouts, NASA Ames

Rich Schultz, IDA
Robin O'Neill, MFECC

Kelly O'Hair, LLNL

A variety of unsupported versions of the Portable C
compiler, preprocessor, and library have found their
ways to Cray machines. Martin Fouts, NASA Ames,
reported that NASA has been using a version of the
compiler on the Cray 2. They have found a
reasonable correspondence of the compiler to the
K&R standard, however they did find that the
implemencation dependent features were often
"backwards" from what they expected. Some of the
implementation decisions, especially for character
pointers have resulted in the requirement that the
user treat C like a strongly typed language, but
without any of the usual compiler diagnostics for type
violation. The lack of flex (long) names and a
debugger has also been a problem to them.

Rich Schultz, IDA, reported that they have been
porting Berkeley code for many tools such as LEX,
Y ACC, TCP/IP) etc. to their machine. They have run
into two classes of problems. Some problems
stemmed from differences between a Cray and a Vax,
such as, dependence on 32 bits for integers and the
assumption that integer pointers and character
pointers have the same format. They also found
malloc using the low bit of a word as a flag. Other
problems stemmed from implementation limitations,
such as the "silent equivalence" of flex names, case
insensitivity, loader problems with separately
compiled global names, structure packing, and
nonstandard calling sequences.

Robin O'Neill, MFECC, has been using the Protable
C compiler to port a Unix™ system that sits on top of
CTSS. He reported that basically the code was
correct, but not particularly efficient. They were
finding many problems with the library, such as
representation of end-of-file marks, lack of binary
file types, and compressed blanks. They were also
bothered by linkage incompatibility, lack of a symbol
table for debugging, and an incorrect load map.

Kelly O'Hair, LLNL, reported they are using a
modified version of the Portable C to write a new
ANSI C compiler. This hybrid compiler will use the
backend of the existing LLNL CIVIC compiler for
language independent code optimization and
generation of the existing compiler. The development
work is being done in C, on a VAX, and then
bootstrapped to the Cray with the Portable C. A
number of problems with the Portable C, similar to
those already reported, has been found and
documented. This list of the problems encountered is
available on request. The new compiler is nearing
initial release. It can compile a C library and a new
preprocessor is complete. The compiler produces
complete listings, debug symbol tables, and is
expected to vectorize simple loops. It implements
most of the features of the proposed ANSI standard.

A initial beta release of the compiler is planned for
the end of May, with the official "first" version
sometime later in the summer.

CRI Support and Plans for C
Tom MacDonald, CRI

The first release of the Cray C compiler (1.0) went
out with COS 1.15 and UNICOS 1.0. The Cray C
compiler is based on AT&T's Portable C compiler
and runs on Cray-1 and Cray X-MP machines.
Several changes to the compiler were necessary
before it could be released as a Cray supported

56

product. The first change made was to support a
calling sequence compatible with the newly
developed stack-based calling sequence developed for
COS 1.13. Support was added for extended memory
addressing on large memory machines. A source
listing option was added to the preprocessor that runs
under COS and all error messages were documented
and added to the C reference manual. The flowtrace
option is now fully supported. The memory manager
that came with the original C compiler would not
work properly with the COS heap and stack manager.
Calls to memory manager functions were replaced
with calls to equivalent heap and stack manager
functions.

The types lint', 'unsigned', and 'unsigned long'
needed to be changed. The type lint' was a 24 bit
entity in the original AT&T compiler. UNICOS
developers were porting codes that depended upon
having at least 32 bits of precision. The compiler was
modified to support 64 bit signed and unsigned
integers. The format of the character pointer was
changed in order to get the word address
right-justified. The byte offset is left-justified which
means all pointers in memory have the same internal
format.

Many performance issues were also addressed in the
first release of the C compiler. The switch statement
and long constant generation were the first
optimizations added because they were in very
localized places in the compiler. Further
optimizations required a two pass compiler. The two
pass compiler allowed us to perform funtion at a time
optimizations such as jump to jump eliminations, and
Band T register usage for "auto" variables. Next, the
compiler was changed to internally have an infinite
number of pseudo registers instead of a few fixed
hard registers. This allows for future optimizations
such as common subexpression elimination,
instruction scheduling, and automatic vectorization
of some loops.

Several options that are being studied are C and
multitasking, an ANSI standard C compiler,
flexnames (long variable names), and symbolic
debugging tools.

FPV - a Floating-Point Validation Package

by Jeremy Du Croz, Numerical Algorithms Group Ltd.

1. Motivation

FPV is a software package for validating an implementation of floating
point arithmetic. By 'validation' we mean simply an experimental
verification that floating-point arithmetic has been correctly implemented
according to its specification. FPV must be supplied with the essential
parameters of the specification and attempts to verify that the arithmetic
conforms to these parameters by probing for errors as best we know how.
Different implementations of arithmetic may pass the tests according to
more or less stringent criteria: the 'best' implementations (such as
those that conform to the IEEE standard) will satisfy the most stringent
criteria.

Floating-point arithmetic is the basis of almost all scientific and
engineering computation. Undetected errors in floating-point arithmetic
can lead to unexpected program-failures, many hours wasted on the invest
igation of puzzling results, and worst of all, to incorrect results being
accepted as valid.

Here are some examples of errors that have been detected in production
systems (most have now been corrected).

Example 1 (Interdata/32):

SMALL = 0.5**256

X 1.0

IF (X.LE.SMALL) GO TO 900

The branch to 900 was taken!

Example 2 (ICL 2988):

X 5.0 E-78

z X*X

The computed value of Z was 0.335 ••• !

57

Example 3 (CDC 7600, Cray-l, CDCCyber 205):

Occasional results in double precision have been no more accurate than
single precision: this undermines the reliability of using double precision
as a check on the accuracy of single precision.

Who needs to test floating-point arithmetic?

a.) Manufacturers of floating-point hardware:

* to test simulations of hardware designs
* to test prototypes of floating-point chips or boards
* to check the integrity and reliability of each production model

b.) Developers of floating-point software (including microcode):

* to debug their code
* for quality-assurance after each subsequent revision

c.) Managers of scientific computing installations:

* for benchmarking the accuracy of systems under evalua~ion
* as part of an acceptance test for newly acquired systems
* as a daily check against intermittent faults in the hardware
* to check that hardware and software upgrades have been correctly

installed

d.) Implementors of scientific software (e.g. NAG)

* to check the arithmetic characteristics of the systems on which
their software is mounted

* to ensure the reliability of those systems

NAG views FPV as the first of a suite of tools for checking various aspects
of the computing environment of any machine, to ensure that it can support
the implementation of NAG Scientific software.

2. Previous Work

Schryer (1981) developed a program FPTST (about 12,000 lines of Fortran)
which tests specifically for conformance with a model of floating-point
arithmetic developed by W.S. Brown (1981). Coonen (1984) developed test
programs and data designed specifically to test implementations of the
IEEE standard. Paranoia, by W. Kahan, (see Karpinski, 1985) is a program
which sets out to diagnose, and pass judgement on, the arithmetic
properties of a machine, about which nothing need be known in advance.

All the above adopt a highly selective approach to testing, as does FPV;
however, with care and good design, this is 'much more effective than
testing millions of operations chosen at random. Only empirical testing
is considered here: it offers no absolute guarantee of correctness, but
in practice can give a very high degree of assurance.

58

3. Design of FPV

FPV has been developed at NAG Central Office in collaboration with Dr.
B.A. Wichmann of the National Physical Laboratory, under a contract
funded by NAG Ltd., and the Department of Trade and Industry. It is
based on many of the ideas used by Schryer in FPTST (with advice and
encouragement from Schryer and with permission of A.T.& T. Bell
Laboratories).

In particular FPV follows Schryer in its strategy for selecting numbers
to use as test operands. On a binary machine Schryer uses numbers whose
mantissae (or fractions or coefficients) have the following patterns:

.100 ••• 00100 ••• 000

.111 ••• 11100 ••. 000

t
i

where the position of the i-th bit can range from 1 up to P (the number
of bits in the mantissa). FPV can use other patterns of mantissae,but
they have hardly ever revealed any properties of the arithmetic which
have not been revealed by the two patterns above.

FPV can test the following basic arithmetic operators:

addition and subtraction
multiplication
division
square root
negation
absolute value
comparisons

x +or- y
x*y
x/y
sqrt(x)
-x
Ixl
x=y, x.ne.y, x<y, x>y, x<=y, x>=y

Both scalar and vector operations can be tested.

FPV allows the floating-point number system to have arbitrary base,
precision and exponent range. The presumed values for these parameters
must be supplied to FPV which attempts to verify experimentally that
they are correct. If a few system-specific modifications are made to the
programs, FPV can test whether the overflow and underflow flags are set
correctly. FPV does not test integer arithmetic, conversions between
integer and floating-point formats, or floating-point operations in mixed
precision.

FPV can test whether the results are exactly correct according to one of a
choice of commonly used rounding rules - including all those specified in
the IEEE standard (IEEE, 1985). Alternatively, if the rounding rule is
unknown or not one of those provided, FPV tests whether the results lie
within the narrow bounds defined in the model of floating-point arithmetic
developed by W.S. Brown (the 'Brown model').

59

In order to facilitate testing in as wide a variety of environments
as possible, FPV allows the testing procedure to be split into two
phases. In 'two-phase' mode, one program FPVGEN generates a file of
test data; a second program FPVTGT, usually running on a different
machine, reads the file and performs the tests.

1 Machine A
1- -
II FPVGEN

I
I

I L_
li ______ J I
L ________________ J

- Data
file

1 Machine B I

I ----- I
I I FPVTGT I I
1 L ____ II
L ________________ I

The program FPVTGT is comparatively short and simple, and is not
difficult to adapt to different environments (even if this involves
translating it into a different language). FPV can also operate in
'all-in-one' mode, in which the program· FPVGEN does not write a file,
b~immediately performs the test itself, all on one machine.

The programs FPVGEN and FPVTGT are currently written in both standard
Fortran 77 and ISO standard Pascal, level 1. They therefore require
a suitable compiler to be available and they test the arithmetic as
'seen' through those languages. A few machine-specific modifications
may be needed to make the programs completely robust. In order to
test arithmetic on machines which do not have a Fortran or Pascal
compiler, or to test arithmetic as seen through a different language
(e.g. Basic, Ada), it is necessary to translate all or part of the
program FPVTGT into a suitable language.

4. Experience with FPV

Errors that have already been detected by FPV include:

1. DEC VAX-ll/750: error in division under VMS 3.7 in the emulation
software for arithmetic on G-floating and H-floating numbers.

2. ICL 2988: see Example 2 in Section 1.

3. IBM PC with 8087 co-processor and Microsoft 3.2 compiler: last-bit
errors in emulation software for square-root.

4. Cray-IS: the arithmetic had been tested by Schryer and was believed
to be free of errors but the routines for double precision arithmetic
were rewritten at COS 1.14: errors appeared in double precision vector
by-vector multiplication. Errors have also been detected in the single
precision vector square-root routine and in the triple precision
addition routine.

5. CDC 7600: error in double-precision comparison with the FTN 5 compiler
(this had been detected two years earlier by Schryer's program but not
yet corrected).

60

6. CDC Cyber 205: error in double precision comparison (essentially the
same as on the CDC 7600); also unnorma1ized results produced from
double precision multiplication, division and negation.

In addition to .detecting gross errors in the ~rithmetic, FPV has also
proved useful in determining the precise behaviour of the arithmetic
on machines for which the manufacturers' documentation is inadequate.
This second use is just as important as the first: while gross errors
can be corrected, the need to know the precise properties of the arith
metic will remain. FPV is a tool to help achieve both greater reliability
and more accurate information.

References

Brown W.S. (1981). A simple but realistic model of floating-point
computation. ACM Trans. Math. Software 1, 445-480.

Coonen J. T. (1984). A compact test suite for P754 arithmetic -
Version 2.0. Chapter 10 of Ph.D. Thesis, University of California,
Berkeley.

IEEE (1985). Standard for Binary Floating-point Arithmetic. ANSI/
IEEE Std 754-1985.

Karpinski R. (1985). Paranoia: a floating-point benchmark, Byte lQ,
no. 2, 223-235.

Schryer N.L. (1981). A test of a computer's floating-point unit.
Computer Science Technical Report No. 89. A.T. & T. Bell Laboratories,
Murray Hill, NJ.

Availability

Further information about the availability of FPV can be obtained
from:

Numerical Algorithms Group Inc.
1101 31st Street, Suite 100
Downers Grove, IL 60515-1263;

or, if outside N. America, from:

Numerical Algorithms Group Ltd.,
256 Banbury Road
Oxford OX2 7DE
England

61

COMPARISON OF NAG, IMSL AND CRAY LIBRARIES

Chris lazou & David Winstanley

University of London Computer Centre
England

The talk consisted of a comparison of IMSl 9.2,
NAG11F, Cray Applications. and SCILIB. A series of
PIE charts were presented showing the composition of
each library when classified under the headings of
Ar i thme ti c, other mathematical, statistics and
general.

SCILIB

The SCILIB library does not have any statistical
routines, the ones illustrated are in fact the
Random Number generator routines in ARLIB.
The strong Arithmetic content derives from the
BlAS routines and L1NPACK, the mathematical
content comes from EISPACK and L1NPACK and
the general content is from the Sorting and
Searching routines.

Cr~L~pJ?licati~~

The Cray Applications library has a
predominantly mathematical content with routines
from FITPACK, FFTPACK, EISPACK and
L1NPACK.

Note: Routines in these Public Domain software
libraries have been specially tailored for the
Cray and are in general CAL coded.

Some 0 f the EISPACK and L1NPACK routines are
in both the Cray Applications Library and
SCILIB.

IMSL

IMSl has a strong statistical bias and is
moderately well endowed in all the other areas.

NAG

The mathematical content is dominant here and
the Arithmetic and General subject areas are of
equivalent strengths to IMSL.

Combination

We should point out that both the NAG and IMSL
libraries have approximately equal number of user
callable routines:

NAG with 524
and IIvlSL with 517

62

whereas the Cray Applications (Maths and Stats
libraries) and SCILIB have 276 and 239 routines
respectively.

Bar Charts

The bar charts illustrated give a breakdown of
the number of routines from each of the libraries
within their subject heading.

Arithmetic

Figure 1 shows that IMSL is dominant in the
matrix arithmetic section. This is due to the
duplication of routines for the different storage
modes.

NAG has more decomposition routines than IMSL
with unique routines for the Hessenberg form.

NAG has unique headings for complex arithmetic
(with square root, modulus and quotient routines)
and also for orthogonalisation with its
GRAM-SCHMIDT routine.

IIVlSL has routines for scalar arithmetic, which
include the decomposition of an integer into its
prime factors and some extended precision
routines.

Only SCILIB and IMSL have a formal set of
BlAS routines, which includes the index of the
maximum absolute value of a vector, a vector
multiplied by a scalar (known as a SAXPY), the
Euclidean norm of a vector, the DOT product,
and the scaling and swapping of vector elements.
The BLAS also includes routines for Givens
Rotations. NAG, however, have defined a set of
Kernel routines which are documented in an
article by Jeremy Du Croz in issue 2 of the
1983 NAG Newsletter.

Mathematics

Figure 2 shows that NAG is particularly strong in
its Ordinary Differential Equations Chapter and
its Optimisation Chapter. It has unique headings
for Integral Equations and Summation of Series
(excluding Fourier Transforms which are included
under Filters and Transforms).

IMSL has no particularly strong subject here,
however it does have routines for nearly all the
subjects within this area.

The Cray libraries are strong for Eigen-System
Analysis, Filters and Transforms and Interpolation
and Approximation with EISPACK, FFTPACK and
FITPACK routines. The Cray Applications library
also includes' FISHPACK which is a set of
routines for evaluating Elliptical P .D.E.s.

Statistics

Figure 3 shows that IMSL is dominating with
unique headings for Categorical Data Analysis,
Multivariate Statistics and Sample Surveys. The
Regression routines also include unique routines
for Ll and norm Non-Linear regression. Both
NAG and IMSL will estimate Box-Jenkins Times
models as well as Frequency Domain models.

NAG has some unique routines in Operational
Research for Quadratic Programming and
Transportation problems.

IMSL has a full range of Statistical distributions.

General ---
Figure 4 shows that under special functions IMSL
has unique routines for Kelvin functions, whereas
NAG will evaluate Fresnel integrals.

IMSL has a number of useful utility routines for
printing matrices of various storage modes. Both
IMSL and NAG will produce line printer plots,
however NAG has a full Graphical Supplement
available on the Cray-1S with a GINO-F
interface.

When library routines are used in large scale
production runs, users are advised to check their
timings where duplicate routines are available, since
both improved performance and significant cost
reductions can be achieved.

Examples of how to achieve relative timings by using
CFT's Flow-trace, with library routines being called
from dummy user routines, were given and a few
results are listed in the following four examples.

63

Subject: Multiple Linear Regression

Library: Cray Appl. NAG/OF
Routine RGRSNl G02CJF

name:
For size: (P=4, n=21)
CPU time: 0.000717 0.002581
Time ratio: 1 3.5

For size: (P=4, n=150)
CPU time: 0.001926 0.014387
Time ratio: 1 7.5

For size: (P=6, n=150)
CPU time: 0.002436 0.018551
Time ratio: 1 7.6

Exam~-E.

Subject: Matrix Mul tiplication

Library: Cray Appl. NAGI0F
Routine: MXM FOICKF
For size: [20:30) [30: 20)
CPU time: 0.004114 0.018858
Time ratio: 1 4.6

For size: [200:300) [300:200)
CPU time: 0.167643 0.364754
Time ratio: 1 2.2

Example 3:

Subject: Quadrature

Library: Cray Appl. NAGIOF
Routine

name: ADQUAD DOIAHF
CPU time: 0.000251 0.000372
Time ratio: 1 1.5

Example 4:

IMSL 9.2
BECOVM &

RLMUL

0.001299
1.8

0.002130
1.1

0.003138
1.3

IMSL 9.2
VMULFF

0.065378
15.9

1.483208
8.8

IMSL 9.2

DCADRE
0.000307
1.2

Subject: Sort vector of 1000 real numbers

Library: Cray Appl.
Routirle

name:
CPU time:
Time ratio:

NAGI0F

MOIAAF
0.012941
1.7

IMSL 9.2

VSRTA
0.007592
1

Figure 1 Comparison of NAG I1F, IMSL9.2 and CRAY M&S libraries
APPl I C=A

fREO CUM. PERCENT CUM.

SUBJ
fREO PERCENT

.0.95 0.946

50 53 15.77 16.719

62 2.84 19.558

10 72 3.15 22.713

107 179 33.75 56.467

188 2.84 59.306

28 216 8.83 68.139

218 0.63 68.770

222 1.26 70.032

95 317 29.97 100.000

10 20 30 40 50 60 70 80 90 100 110

fREOUENCY

LlBS ISSSSI CRA Y AP IZZZZJ II.4Sl9. 2 ~ NAC"f IZZZZl SClllB

Figure 2 Comparison of NAGIIF, IMSL9.2 and CRAY M&S libraries
APPl I C=M

fREO CUM. PERCENT CUM.
fREO PERCENT

40 40 6.981 6.981

18 58 3.141 10.122

106 164 18.499 28.621

63 227 10.995 39.616

87 314 15.183 54.799

:z. 316 0.349 55.148

89 405 15.532 70.681

10 415 1.745 72.426

26 441 4.538 76.963

48 489 • 8. 377 85.340

33 522 5.759 91.099

45 567 7.853 98.953

573 1.047 100.000

10 20 30 40 50 60 70 80 90 100 110

FRE~UENCY

LlBS ISSSSI CRA Y AP IZZZZI IMSl9.2 ~ NACllf IZZZZl SC I LIB

64

Figure 3
Comparison of NAGllF, IMSL9.2 and CRAY M&S libraries

APPL I c=s

FREO cut.!. PERCEl-tT CUI.!.

SUBJ
FREO PERCENT

21 21 5.385 5.385

59 80 15.128 20.513

85 1.282 21.795

18 103 4.615 26.410

34 137 8.718 35.128

13 150 3.3J3 J8. 462

46 196 11.795 50.256

93 289 23.846 74.103

50 339 12.821 86.923

347 2.051 88.974

43 390 11.026 100.000

10 20 30 40 50 60 70 80 90 100

FREQUENCY

L IBS CSSSSI CRA Y AP IZZZZI II.!SL9.2 ~ NAGIIF IZZZZl SClllB

Figure 4 Comparison 'of NAGllF, IMSL9.2 and CRAY M&S libraries
APPL IC~G

FREO CUI.!. PERCENT CUI.!.

SUBJ FREO PERCENT

132 132 47.83 47.83

33 165 11.96 59.78

27 192 9.78 69.57

35 227 12.68 82.25

49 276 17.75 100.00

10 20 30 40 50 60 70 80 ~o 100 110 120 130 140

FREOUENCY

LI BS CSSSSI CRAY AP IZZZZI I I.!Sl 9.2 ~ NAGIIF IZZZZl sc I liB

65

STATIC DEBUGGING OF MULTITASKING PROGRAMS

Bill Appelbe

Electrical Engineering and Computer Sciences Dept. C-014
University of California, San Diego

La Jolla, CA 92093

Charlie McDowell

Computer and Information Sciences Dept.
University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

The use of asynchronous multi-tasking constructs in high-level languages to
increase performance has led to a new class of program 'bugs', including race conditions
when two tasks access/update shared variables. Such bugs are notoriously hard to detect
because they are non-deterministic, and can be obscured or undetectable by conventional
run-time dumps and traces.

We have developed a static analyzer for multi-tasking Fortran, which finds poten
tial bugs by simulating the execution of concurrent tasks. The analyzer also provides
information on the reachable states of a concurrent program, to assist in optimization and
algorithm analysis.

This talk will discuss the need for static debugging, and describe the design and
use of the debugger.

1. Introduction

The use of asynchronous multi-tasking constructs in high level languages to increase the amount of
exploitable parallelism has created a new class of program errors. These errors are particularly difficult to
find using conventional debugging techniques due to their frequently non-deterministic behaviour. A pro
gram may give one result for one execution and give a different result on a subsequent execution using the
same input data. These variations are due to uncontrollable timing interactions with other parts of the com
puter system. Even when the error can be reliably reproduced, when diagnostic code is inserted the error
may change in appearance or disappear entirely.

Data flow analysis techniques have been developed for conventional (synchronous) programs, to
detect certain types of errors and for performing program optimization. 1, 2 The primary errors detectable by
these techniques are references to undefined variables, and definitions of variables that are never refer
enced. Some preliminary work has been done in the area of extending these techniques to parallel pro
grams.3,4,5

This work was supported by DOE contract number W-7405-Eng-36 through Los Alamos National Laboratory.

1 L. J. Osterweil and L. D. Fosdick, "DAVE - A Validation, Error Detection, and Documentation System for Fortran
Programs," Software-Practice and Experience, vol. 6, pp. 473-486, 1976.

2 A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

3 R. N. Taylor and L. 1. Osterweil, "Anomaly Detection in Concurrent Software by Static Data Flow Analysis," IEEE
Trans. on Software Eng., pp. 265-278, May 1980.

4 G. Bristow, C. Drey, B. Edwards, and W. Riddle, "Anomaly Detection in Concurrent Programs," Proc. 4th Int. Con!
Software Eng., 1979.

66

A concurrent system consists of a collection of tasks and shared data. In analyzing a concurrent sys
tem our goal is to determine all statements which could potentially execute in parallel. When combined
with standard dataflow analysis, this will allow for the detection of the following additional anomalies, or
potential errors:

synchronization
These are errors that occur in the synchronization of task (or parts of task) execution, such as
deadlock.

parallel access
Two simultaneous accesses (other than two reads) to a piece of shared data by concurrently execut
ing processes. The result of such a parallel access is non-deterministic and in most situations is an
error.

Taylor and Osterweil have published a set of algorithms6 that operate on a flow graph that has been
augmented to handle parallel processes. These algorithms are very similar to conventional data flow
analysis algorithms. They claim that all of the above anomalies can be detected when the augmented flow
graph is suitably restricted. Their algorithm has several important restrictions:

"a process may not be scheduled to execute in parallel with itself'. This precludes directly imple
menting their algorithm for our target language (HEP Fortran), which allows multiple copies of a
task to be created at run-time.

A second restriction arises from the use of a "process augmented flowgraph" in which the flowgraphs
for each task are connected with special edges to indicate synchronization constraints. It is correctly
stated in the paper that "it is impossible to create a fixed static procedure capable of constructing the
P AF of any program written in a language which allows run-time determination of tasks to be
scheduled and waited for." In our algorithm a limited form of run-time task scheduling is supported.

An algorithm for the detection of parallel paths is fundamental to any analysis of anomalies resulting
from execution of parallel paths. The Taylor and Osterweil results assume the existence of such an algo
rithm. In a more recent paper,7 Taylor goes on to describe such an algorithm that is being implemented for
a subset of Ada.8 This recent algorithm by Taylor, served as the starting point for our work. The primary
addition is the notion of families and clans of tasks used to handle multiple (possibly arbitrarily many)
copies of a single task flowgraph executing concurrently.

Section 2 of this paper briefly describes the concurrency primitives that are supported by the analysis
algorithm. Sections 3, 4 and 5 describe the analysis algorithm.

2. Concurrency Primitives

The ideal characteristics of a set of concurrency primitives to support parallel algorithms are:

Completeness
The primitives should be sufficient for a wide range of parallel algorithms and environments. The
primary environment in which the primitives will be used is scientific programming. Parallelism
may occur at various levels, however the primitives are designed for task-level parallelism with
shared memory. Thus, there are no explicit operations for parallel or pipelined arithmetic units, and
data can be shared between tasks.

Efficiency
At compile-time - the primitives should be easily translated into code which executes efficiently on a
wide range of parallel architectures.

S R. N. Taylor, "A General-Purpose Algorithm for Analyzing Concurrent Programs," CACM, vol. 26, no. 5, pp. 362-
376, May 1983.

6 R. N. Taylor and L. J. Osterweil, "Anomaly Detection in Concurrent Software by Static Data Flow Analysis," IEEE
Trans. on Software Eng., pp. 265-278, May 1980.

7 R. N. Taylor, "A General-Purpose Algorithm for Analyzing Concurrent Programs," CACM, vol. 26, no. 5, pp. 362-
376, May 1983.

8 R. N. Taylor, personal communication, 1984.

67

Simplicity
The primitives should be easily understood, learnt, and used by programmers. This implies that the
primitives should have a simple syntax and semantics, and the primitives should not present users
with unnecessary options. The primitives should also be comparatively easy to treat analytically, su
that the parallel behaviour of algorithms can be determined automatically.

Obviously there is a conflict between such goals as simplicity and completeness, so that any set of
extensions must necessarily be a compromise. The following is a summary of the primitives supported in
the current algorithm and it's implementation at UCSD. The primitives are converted to the target
language (REP or CRA Y Fortran) by a preprocessor. A complete discussion of the primitives can be found
in another report by the authors.9 Similar sets of primitives have been reported elsewhere. 10, 11

3. Concurrency Analysis

For our analysis two classes of global data wjll be considered:

Atomic Data
Atomic Data, which is used for task synchronization, consists of data types such as events, counters,
and locks, which can be accessed only by means of indivisible concurrent operations such as
wait_event or increment_counter.

Non-Atomic Data
Non-Atomic Data, which is used for task communication, consists of data which can potentially be
concurrently read and written, such as a shared message pool.

The analysis is based upon the program controljlowgraph, in which each node represents a sequence
of 'straight-line' code terminated by a transfer of control, or a concurrent operation. Arcs in the control
flowgraph represent sequential and branch transfers of control, and task creation. The concurrent
behaviour of a concurrent system CS is defined by a synchronization graph SG. The synchronization
graph is a compressed version of the control flowgraph. All nodes in the control flowgraph can be
classified as either sequential or concurrent operations. A sequential path in the control flowgraph is a path
in which all intermediate nodes are sequential. The synchronization graph is the subgraph of the control
flowgraph consisting of all concurrent nodes, and arcs representing all the sequential paths between these
nodes. Each node in SG corresponds to an operation upon a shared atomic variable, or to task creation and
termination. Each arc in SG is labelled by operations upon local and shared non-atomic data.

Our goal is to determine the concurrency history graph CHG, whose nodes are concurrent states,
and whose arcs are history transitions. Each node in CHG describes one reachable concurrent state of the
system. A concurrency state S consists of two components: .

a control-state TS, and a

a data-state DS .

The control state consists of a dynamic list of taskfamilys. A task family Ti consists of a set of 'identical'
tasks. Each task has the same task type T~T and current state TiS. Each task also has a unique task id Til,
which is assigned when the task is created . The task count, TiC, denotes the number of tasks of this type
currently in the same state.

Every task has an entry point, at which it commences execution. The task type represents the syn
chronization graph entry point of the task family. Two tasks have the same type only if they have the same
subgraph. The task state represents the execution state, i.e., the current node in the synchronization graph

9 W. F. Appelbe and C. E. McDowell, "Language Primitives for Parallel Numerical Algorithms," unpublished.

10 E. L. Lusk and R. A. Overbeek, "An Approach to Programming Multiprocessing Algorithms on the Dene1cor HEP,"
ANL-83-96, Argonne National Laboratory.

11 H. F. Jordan, "Using the Force to Write Parallel HEP Programs," unpublished, June 1984.
1 Task id's are not normally considered as components of the task state, since two concurrency states with differing assign
ments of task id's are equivalent Task id's are assigned when a task is created, and may be used to distinguish between
tasks (e.g., when waiting for task termination).

68

executed by the task. Since nodes represent atomic concurrent operations, the task state may either be
before or after completing the operation. Each concurrent operation consists of two states, referred to as
pre- and post- transition states (to emphasize the distinction, pre-transition states are denoted by
state -'/.ame and post-transition states are denoted by state_name). At a pre-transition state a task is wait
ing to access the global state. At a post-transition state a tac;k has completed all accessing and updating of
the global state for the concurrent operation. Thus, the concurrent operation actually occurs during the
transition from a pre- to a post-transition state. Transitions from pre- to post-transition states are referred to
as atomic transitions, whereas transitions from post- to pre-transition states are referred to as non-atomic
transitions. A task thus executes an interleaved sequence of atomic and non-atomic transitions.

The entry point of any task is a post-transition state, as task creation is considered an atomic opera
tion. Also, task termination is also an atomic operation, but the post-transition state consists of removing
the task from the control state TS

The data state DS consists of a set of shared atomic variables (locks, events, barriers, and counters).
Thus, any concurrent state can be represented as follows:

S=(TS ,DS) where

TS =[Ti] where Ti =(TiT ,TiS ,TiC)

DS=([L_i :i=1..LMAX],[E _i :i=1..EMAX],

[B _i:i =1..BMAX],[C _i:i=1..CMAX])

The successors a concurrency history node are thus determined from the state of each Ti 2 as follows:

Atomic Transition
If TiS_is a pre-transition state, and the transition can be performed (based upon the data state DS),
generate a new state, by updating TiS_to the post-transition state TiS. The update of DS , and the
number of tasks in the family which advance to the new state depends on the semantics of the con
current operations as defined below.

Non-Atomic Transition
If TiS is a post-transition state, generate new states, by updating TiS to all successors states (each of
which is a pr~-~ansition state). If more than one task is at that state the rule for generating the suc
cessor states IS:

where

(TiT ,TiS ,TiC)~[(TiT ,TiS ,TiC 0), ...

(TiT ,TiS _ hTiC 1), ...

(TiT,TiS-.i,TiCj),·· .

(TiT,TiSJ/,TiCM)]

succ (TiS)=[TiS _ h ... ,TiS J/]

,tTiCj=TiC

Thus, each task in the family can advance to anyone of the M successor states TiS -.i' or remain in the ini
tial state. Because the number of concurrent successor states increases exponentially with M and TiC
(there are

[TiC:\f-1 1
2 The wait_barrier operation concurrently affects the state of several tasks, as defined below.
3 All tasks cannot advance, otherwise anomalies caused by the transition TiS ~ TiS -i and a later transition by a member
of this task family might not be detected.

69

successors), the exact number of tasks in each successor state are represented symbolically. Tasks
TiS ,TiS _10 ••• ,TiS _M, are said to be members of a task clan, subject to the clan size constraint that

,t TiCj=TiC and TiCi~O

Clans may consist of a single task family. Thus, every task is a member of a unique clan. In many cases
the number of tasks in a given state may be indeterminate. Such states are referred to as * states, and if
TiC=*, then TiCj=* for all successors. The basic rule governing the derivation of successor states is that
clan size constraints must be preserved, except for explicit task creation and termination operations. Task
clans can be represented by a list of task family members, together with the clan size (constant, or
unbounded, i.e., 00). Each member of the clan can either have a fixed task count, or more commonly an
indeterminate task count (denoted by *), but in either case these are no greater than the clan size. Task ids
are associated with task clans, as any permutation of task ids within a given clan is permitted.

4. State Transitions

The above rules determine how new concurrency states are generated. In addition, it is necessary to deter
mine when two concurrency states are identical. Two states are identical if their data states and control
states are identical. Control states are identical if there are the same number of tasks in each state, and if the
task clan constraints are identical. Two task families Ti and Tj in the control state TS can be merged if

the task types are the same, i.e., TiT=TjT, and

the task states are the same, i.e., TiS=TjS, and

either both task families are in the same clan, or neither task is in a clan.

In the either case, the task count of the merged task family is simply TiC + TjC (where * + N = * + *
= *), and in the former case the task clan constraint is updated by removing the two tasks and inserting the
merged task in the clan list.

The principle of task merging applies iteratively to more than two task families. Merging sequences
of task families is unnecessary in practice, because the control state is kept in a canonical form, by merging
families whenever a new state is generated.

The rules given below are for determining Atomic Transitions for each of the concurrent operations
currently supported. The rules consist of

an initial precondition on DS ,

an update to DS , and TS.

Unless otherwise stated, the default rule for task state updates applies as follows:

(TiT ,TiS _ ,TiC)~[(TiT ,TiS _ ,TiC o),(TiT ,TiS ,TiC I)]

where TiC=TiC rrtTiC I.
If TiC=1 then TiC 1=1 and TiC 0=0 (i.e., a single task advances to the new state, and hence the old family is
deleted).
If Ti was a member of a clan, then both successors are members of the same clan and the clan size con
straint is preserved.

4.1. Task Creation

1.
TiS=create _task (family size,fs = 1)
TiS =create _task Jamily
Pre-condition: NT ASKS+ TiC *fs < MAX_SYSTEM _TASKS
DS Update: NTASKS ~ NTASKS+TiC*fs, and

ETiI~CLEAR for each task id in the family.
TS Update: TS is updated by default, then

TS ~TS u[(Tjcreated _task _entry,Tj init_state,TjC)]
TjC = TiC*fs

70

2.

3.

The newly created tasks can be merged into an existing family if that family is not in a clan, other
wise they form a new family. Since the init state is post-transition state, the tasks in this state can be
immediately advanced by a non-atomic transition to the successor pre-transition states.

TiS =task return
Pre-condition: none
DS Update: NTASKS (- NTASKS-TiC ,andETi/(-POSTED for each task id in the family.
TS Update: TS is updated by default, except that the successor state Tj task Jeturn is a null state and
can be deleted from TS.

TiS=staticyarallel_do
TiS =dynamic yarrallel_ do
Pre-condition: NTASKS+TiC*loop tasks < MAX SYSTEM TASKS
DS Update: NT ASKS (- NTASKS+TiC *loop _tasks, and -

ETi/(-CLEAR for each task id in the family.
TS Update: TS is updated by default, then

TS (-TS U[(Tj loop_task _entry, Tj init _state,TjC)]
TjC = TiC * loop tasks
Static and dynruclc parallel do loop tasks are treated as conventional create_task Jamilys, except
insofar as anomaly detection and task termination are concerned.
Within the body of a loop task, the loop var will have a distinct value for each task. Thus, con
currently accessing locations alxloop_~ar+bl and a2xloop_var+b2 is anomalous only if
(a 2xn 2) - (a lxn l)=b 2-b 1 for some nl "* n2 in the range of the loop variable.
Static and dynamic parallel loops differ only in the implementation of loop incrementation. The
value of the loop _var is non-deterministic in both cases, but in the case of a static scheduled loop the
difference between successive values of the loop index is equal to the number of loop_tasks.
Static and dynamic parallel loop tasks have an implicit barrier upon task return (til all loop tasks have
completed).

4.2. Events

1.

2.

3.

TiS=clear event
Pre-condition: none
DS Update: E i (-CLEAR
TS Update: default

TiS =post _event
Pre-condition: none
DS Update: E i (-POSTED
TS Update: default

TiS =wait _event
Pre-condition: E i =POSTED
DS Update: non;
TS Update: default
This includes "wait _task_termination"

4.3. Common Do Loops

1.
TiS =initialize common do
TiS =begin co"7nmon do
TiS =end _ c~mmon _do

71

Pre-condition: none
DS Update: none
TS Update: default
A common do has no effect upon the data state, except insofar as anomaly detection is concerned.
The effect upon anomaly detection is as described above for pre- and self-scheduled do loops. It is
an error to begin a common do prior to initialization (which sets the common do loop bounds).

4.4. Locks

1.

2.

3.

TiS =clear _lock
Pre-condition: none
DS Update: L _i f-OFF
TS Update: default

TiS=lock_off
Pre-condition: none (though E_i == OFF is erroneous)
DS Update: E_if-OFF
TS Update: default

TiS=lock_on
Pre-condition: E_i=.OFF
DS Update: E_i f-ON
TS Update: default, except that
TiC 1=1 (i.e., only a single task advances to the new state).

4.5. Barriers

1.

2.

TiS =initialize barrier
Pre-condition:none (though it is erroneous if any task is waiting on the barrier)
DS Update: B j f-barrier _count
TS Update: default

TiS =wait _barrier
Pre-condition: none (though B _i un initialized is erroneous)
DS Update: B _i f-B _i-1
TS Update: if B _i =0 then every task at the barrier is advanced to a successor state, and the barrier is
reset (B _i f-barrier _count.

5. Anomaly Detection

The two types of parallel anomalies mentioned in the introduction are synchronization and parallel
access. Anomalies of both types can be detected by examining the concurrency history graph.

Deadlocks, the main form of synchronization anomaly, correspond to concurrent states with no suc
cessor states. Parallel access anomalies, (e.g. concurrent read/writes to the same variable) are detected by
examining in turn, each pre-transition concurrent state, or canonical concurrent state, in which all task
states are pre-transition states (post-transition states are reached when a single process updates the global
state atomically, no anomalies occur). Anomalies can exist if there are two or more task transitions which
gave rise to the same concurrent state. An anomaly exists if the intersection of all variables written in the
task transitions is non-empty, or if the intersection of variables written and read in the task transitions is
non-empty.

A third class of anomaly arises if a variable whose value is non-deterministic is used in a situation
where a deterministic value is expected. Such anomalies are difficult to detect, as they depend on the
semantics of the algorithm. For example, if I was a "common_do" index, then its value in a given loop

72

iteration is non-deterministic, and assignment of I to a local variable, or a conditional statement based on I
is probably an error and therefore should be reported as an anomaly.

The determination of anomalies for simple variables is straightforward, since Fortran uses static
storage allocation. The determination of anomalies for array references is simplified if the array index is a
counter, or a parallel or common do loop index (every such value is unique). Although array reference
anomalies are in general undecidable, our technique reports all such undecidable anomalies.

6. Conclusion

A technique for analyzing parallel programs to detect anomalies in concurrent algorithms has been
presented. The algorithm of R.N. Taylor has been significantly modified to allow for efficient representa
tion of concurrency histories when greater than one (possibly arbitrarily many) copies of a task may be
executing concurrently. This is precisely the situation that arises in most parallel numerical algorithms.

A prototype tool to perform the concurrency analysis has been developed at UCSD in cooperation
with Los Alamos Laboratories, and is currently being extended to generate reports of all anomalies
detected by the analysis. The tool is targeted to analyze programs written in Fortran-77 extended with the
concurrency primitives described. A macroprocessor has been developed to translate the extended fortran
into HEP-Fortran for the Denelcor HEP.

Acknowledgements

We would like to thank Olaf Lubeck at Los Alamos for getting us started on this work. Alan Finke
and Terri Liebowitz at UCSD have contributed greatly to the current implementation.

73

Dynamic Debugging for Multitasking

by

James Tabor

Los Alamos National Laboratory, Los Alamos, NM

ABSTRACT

Features for debugging a multitasking program have been added to the
Instant Graphics Package (IGP) and to the dynamic debugging tool (DDT).
These features include asynchronous breakpoints and multiple trace-back
capabilities.

I. INTRODUCTION

This paper presents a brief overview of the debugging effort
for multitasking at Los Alamos. Thus far, efforts have concentrated
on providing fundamental software to link the debugging tool to
the multitasking environment and avail the power of display and
manipulation that a dynamic debugger normally allows in a uniprocess
environment.

Basically, what we have done is to develop software links for
multitasking, first for the Instant Graphics Package (IGP), which
is a run-time graphics package that allows graphics and I/O to be
decoupled from a code and processed either separately or con
currently. This software was then bridged to Livermore National
Laboratory's dynamic debugging tool (DDT), giving us two forms
of multitasking debuggers.

Dynamic debugging in a multitasking environment will
require far more diligence and systems sophistication because
of multiple, non-deterministic, concurrent executing tasks and
their associated CPU connectors/exchange packages.

II. MULTITASKING COMMANDS

The following commands were added, modified or expanded
for IGP and DDT to meet our fundamental multitasking debugging
requirements.

74

CONNECT
TASK
BKP
LIST
DA

1. CONNECT - switches CPU connectors and reads in the executing
exchange package. Debugging can then be performed
in a normal manner.

2. TASK - switches to specified task and finds associated
CPU connector. Debugging can then be performed
in a normal manner.

3. BKP - this command has been modified to permit task
specific breakpoints.

4. LIST - this command has been expanded to include the
following:

a) LIST ERROR - scans flag field of each executing exchange
package for errors.

b) LIST CONNECT - displays CPU connectors and status.

c) LIST TRACE - performs trace backs for base level routines.

d) LIST TASK - displays all tasks created and their CPU
connector names and status.

e) LIST TIB - displays the entire task information block.
(not fully implemented)

f) LIST SEMAPHOR - displays semaphore bits.

5. DA - Displays symbol table attributes for a variable such
as class, equivalence, task common, storage length,
and number of dimensions.

III. OTHER SOFTWARE

The multitasking debugger has been modified to recognize the
UNICOS symbol tables.

IV. FUTURE MULTITASKING DEBUGGING PLANS

1. Merge certain IGP graphics capabilities, such as,
one and two dimensional slice plots, two dimensional
contour plots, and three dimensional perspective plots,
with DDT.

75

2. Research a watch feature that can detect memory reads/writes
for a specific variable.

3. Develop as needed features.

4. Develop a static control lee analyzer based on information
contained in the symbol table.

REFERENCES

1. Reference for the Instant Graphics Package (IGP), Los Alamos
National Laboratory, December 1985.

2. Dynamic Debugging Tool (DDT), Livermore National Laboratory,
July, 1981.

76

Operating System Support for Parallel Processing
Steve Reinhardt

Cray Research, Inc.

The operating system support necessary for parallel processing is largely the ability to support
multiple tasks/processes/logical CPUs (choose one) in one user memory area. Most of this work
involves swapping, aborting, and scheduling processes which happen to share one memory area. The
actual calls to work with the multiple processes are reasonably straightforward once the groundwork is
laid. The calls necessary for macro tasking are the ability to create an extra process (tfark in UNICOS,
TASK$CRE in COS), delete a process (exit, TASK$DEL), deactivate a process (pause, TASK$DEA),
and activate a process (signal, T ASK$ACT).

Once the support for macro tasking is in place, the extensions to support micro tasking are minor.
A quick review of the goals of microtasking may make the reasons for the as support clearer.

User Goals

(a) Microtasked code should be nearly as efficient on one processor as the original single-processor
code. Minimal code should be added to cater to additional processors.

(b) Microtasked programs should run as well in a mix as in a dedicated system. User code should
dynamically use any available processors. It should not depend on a specific number of proces
sors to complete work or to synchronize. Therefore, the leading processor should never wait for
trailing processors.

(c) The implementation should generate the minimum number of additional system calls.
Specifically, the user should not call the system to resolve inter-CPU data dependencies because
data dependencies induced by an as disconnect are infrequent enough to be resolved by the as
itself.

System Goals

(a) The most efficient way to use N CPUs is with N separate programs.

(b) If extra processors exist, they should go to efficient programs (those with highest percentage of
parallelism).

(c) The system should detect when any program has a data dependency on a processor which has
been removed and resolve the dependency.

(d) System scheduling even for microtasked programs should be simple. Connecting all processes
from a program at the same time does not help system performance. The above user goals
achieve high efficiency without simultaneous connection.

Meeting the Goals

The lead processor should never slow down for a chance of getting multiple processors. This
implies several things.

(a) The lead processor cannot notify the system when it enters a parallel section of code. The over
head to get the extra processors is too big for the size of the average loop.

(b) Similarly, the lead processor cannnot notify the system when it leaves a parallel section of code.
Gauging how long to hold processors before releasing them to the system is impossible in prac
tice. The system should determine when a processor is no longer being used.

The XMP implementation works by coordinating the shared register/semaphores, the deadlock
interrupt, and the wait-semaphore counter of the performance monitor. The lead processor puts loop
indices in shared B/T registers instead of local BIT registers so other processors have equal access to
remaining work. The lead processor uses several semaphores to signal any other processors when paral
lel sections of code are entered. Any waiting processors (which were waiting on a semaphore) would
then work on the loop. At the end of the parallel section, the extra processors go back to a "park"
point and wait on a semaphore. The lead processor continues through a non-parallel section.

77

OS Support Cor Microtasking

The two main pieces of support for the operating system are deadlock resolution and efficiency
monitoring.

Two kinds of deadlocks exist. The classic deadlock is a programmer error in which all processes
are unable to proceed. We call this a "hard" or "true" deadlock. A "soft" or "transient" deadlock
occurs when a processor is removed from a program when it is holding a semaphore.

The deadlock interrupt notifies the system that all connected CPUs for a program cannot proceed
and that some other process should be given the CPU. In a mix, a processor is commonly preempted
by the OS. If the lead processor is removed in a non-parallel section, all the waiting processors
immediately deadlock. If any processor is removed in the middle of a parallel section, the other proces
sors will finish the remaining work of the parallel section. If the removed process returns before the
others finish, all proceed normally, but if not the others will eventually wait for it. The deadlock signals
that they have a data dependency on a process removed by the OS. The deadlock cases all result from
OS intervention, which the OS resolves by rescheduling the deadlocking process after the disconnected
process. We call these deadlocks transient deadlocks.

Efficiency monitoring is necessary because a running program never signals for more or fewer
processors, so the system doesn't know which processors are really needed and which ones are expend
able. With many CPUs and many programs, the system should pull processors away from inefficient
programs and add them to efficient programs. On the XMP the wait-semaphore counter of the perfor
mance monitor provides a mechanism by giving an efficiency index. A process' priority is penalized
for time spent waiting on a semaphore. The wait-semaphore time also allows consistent billing; thus,
whether a microtasked program runs in a mix or by itself, it will always be charged the same amount.

78

PERFORMANCE I, I/O

Mostyn Lewis
Chevron Oil Field Research Company

La Habra, California

Three people spoke during this session:

1. Dan Cummings of Cray talked on I/O Performance Improve
ments. He covered enhancements made in the COS 1.15
release. These spanned changes to IDS, CIO/TIO in COS,
and support for the Model ClOP.

2. Tony Shober of ATT analyzed a "schizophrenic" X-MP. A
write-up of his talk follows after this item.

3. Jim Harrell of Cray went through changes to UNICOS made
for performance purposes. A write-up of his talk
follows after this item.

We extend thanks to the above for their work in preparing
their talks and their well-received presentations.

79

Experiences with a Schizophrenic X-MP: A Look at X-MP
Performance and Comments on the Coming of UNICOS

R. A. Shober

AT &T Bell Laboratories
Murray Hill, New Jersey 07974

The ftrst part of this paper reviews the performance impact of new X-MP hardware and
FORTRAN compiler features; such as Gather/Scatter and the vectorization of IF statement
constructs. Programming examples are taken from recently published supercomputer
newsletters, and the results obtained from those examples using "plain" FORTRAN using CFT
1.14 and CFT 1.15 are presented. The second part of the paper presents some personal
observations regarding the state of development of UNICOS for the X-MP, with emphasis on
the user perspective.

1. INTRODUCTION

This paper is divided into two sections. The ftrst section considers some performance
implications on the X-MP using the CFT 1.14 and CFT 1.15 compilers. The second section
reviews experience to date with UNICOS on our X-MP/24, with an emphasis on the user's
perspective of UNICOS.

2. PERFORMANCE IMPACT OF NEW COMPILER FEATURES

This section reviews four examples of FORTRAN operations whose performance has been
improved through recent CFT compiler updates. These examples are:

• Scatter/ Gather

• Computed GO TO

• IF-THEN-ELSE IF

• Sparse Matrix Code

These examples were inspired by References 1-3. References 1-3 deal with the use of library
routines to utilize the special features of the X-MP hardware. Recent compiler releases (CFT
1.14 and CFT 1.15) have made signiftcant improvements in vectorizing FORTRAN code, and
allow the FORTRAN user to access many of the same features from FORTRAN directly.

2.1 Scatter! Gather

The CRAY-l and early Cray X-MP supercomputers did not have a "hardware scatter/gather"
feature; that is, the ability to load or store vector registers from random locations within central
memory. The X-MP series of supercomputers now supports hardware scatter/ gather, and the
software in CFT 1.14 or 1.15 allows the user to take advantage of this hardware. Consider four
different ways to program a "SPAXPY"* operation:

• Case A - Gather-Saxpy-Scatter (SCILIB).

Perform discrete Gather, Saxpy, and Scatter operations using three distinct calls to the
SCILIB routines GATHER, SAXPY, and SCATTER.

• Case B - Gather-Saxpy-Scatter (FORTRAN).

'" ASP AXPY operation has the following form:
do 10 i= l,n

10 aG(i))= a(j(i))+ b"'c(i)

80

Perform discrete Gather, Saxpy, and Scatter operations using three distinct FORTRAN DO
loops.

• Case C - Spaxpy (SCILIB).

Perform one call to the SCILIB routine SP AXPY .

• Case D - Spaxpy (FORTRAN)

Perform one FORTRAN DO loop to accomplish the Spaxpy operation directly in
FORTRAN.

For this example, consider the performance on the X-MP of these four cases. The results
(performance measured in megaflops) are given in Table 1. Cases A and B (the GSS columns)
are not optimal for the X-MP. Before the hardware scatter! gather feature was available on the
X-MP, Case A was the only way to get any amount of vectorization for a SP AXPY operation;
only the middle SAXPY operation was vectorized, while the SCATTER and GATHER executed
assem bIer language code in scalar mode. On the X-MP with hardware scatter! gather, Cases 3
and 4 exhibit the best performance, and show equivalent asymptotic performance for long vector
lengths, however for the other vector lengths shown the FORTRAN results have better
performance than the (presumably assembler language) SCILIB SP AXPY routine. To
understand this, it must be remembered that the comparison is between in-line FORTRAN
code and out-oj-line (Le., using a subroutine call) assembler language. The overhead of the
subroutine call and arguments adds between 1.5 and 2.5 microseconds to the execution time of
the operation; these operations are sufficiently fast such that this overhead time is significant in
reducing the effective performance of the SCILIB SP AXPY routine. (These results are
essentially identical when using CFT 1.14 or CFT 1.15.)

TABLE 1 - SCATTERI GATHER EXAMPLE - RESULTS (MEGAFLOPS)
CASE

n
GSS (SCI) GSS (FORT) SP AXPY (SCI) SP AXPY(FORT)

10 4 7 11 15
25 10 14 24 31
64 21 26 41 54

100 25 30 45 58
500 45 43 68 74

10000 54 47 78 79

From these results, the Gather-Saxpy-Scatter cases should not be used on the X-MP. The
Saxpy operation written in FORTRAN yields the best performance as it does not suffer from
the penalty of subroutine linkage overhead. The asymptotic performance in megaflops of a CFT
FORTRAN Spaxpy operation is 79 megaflops (rather than the 55 megaflops quoted in Ref. 2).

2.2 Computed GO TO

The Computed GO TO example is shown in Figure 1. This Figure shows the original
implementation of a loop using a computed GO TO statement, as well as a revised
implementation using IF statements. The results for the original and revised implementations
are shown in Table 2, with the "CFT" results using CFT 1.14 or CFT 1.15 (results identical for
each). The results in Ref. 1 were obtained using assembler language library routines.

81

FIGURE 1 - COMPUTED GO TO EXAMPLE
Original Implementation Revised Implementation

do 10 i= l,n do 20 i= l,n
go to (1,2,3),itype(i) if(itype(i).eq.l) then

1 z(i)= a*x(i)+ y(i) z(i)= a*x(i)+ y(i)
go to 10 end if

2 z(i)= b*y(i)+ x(i) if(itype(i).eq.2) then
go to 10 z(i)= b*y(i)+ x(i)

3 z(i)= x(i)+ y(i) end if
w(i)= x(i)-y(i)+ c*z(i) if(itype(i).eq.3) then

10 continue z(i)= x(i)+ y(i)
w(i)= x(i)-y(i)+ c*z(i)

end if
20 continue

TABLE 2 - COMPUTED GO TO - RESULTS
Microseconds Per Iteration (n= 1000)

Original Revised
Implemen tat ion Implementation

Reference 1 1.5 0.15
CFT 1.3 0.12

Results in Table 2 show the CFT results (using either eFT 1.14 or 1.15) to be better than the
Reference 1 results (which used eFT 1.13). In addition, special routines were not required for
eFT to vectorize this loop.

2.3 IF-THEN-ELSE IF

The IF-THEN-ELSE IF example is shown in Figure 2. This Figure shows the original
implementation of a loop using an ELSE IF statement, as well as a revised loop using IF
statements. The results for the original and revised implementations are shown in Table 3.

FIGURE 2 - IF-THEN -ELSE IF EXAMPLE
Original Implementation Revised Implementation

do 10 i= l,n do 20 i= l,n
if(x(i).gt.y(i» then if(x(i).gt .y(i» then

z(i)= sin(x(i» z(i)= sin(x(i))
else if(x(i).lt.y(i» then end if

w(i)= cos(z(i» if(x(i).lt .y(i» then
end if w(i)= cos(z(i»

10 continue end if
20 continue

TABLE 3 - IF-THEN-ELSE IF - RESULTS
Microseconds Per Iteration (n= 1000)

Original Revised
Implemen tat ion Implemen tation

Reference 1 2.7 0.35
eFT 2.3 0.33

Results in Table 3 show the eFT results (using either eFT 1.14 or 1.15) to be better than the
Reference 1 results (which used eFT 1.13). As mentioned above, special routines were not

82,

required for CFT to vectorize this loop.

It should be pointed out that the above technique of dividing a complex IF test into several
individual IF tests works as long as the various tests are orthogonal. If the tests were not
orthogonal, the results using the different implementations may not be identical.

2.4 Sparse Matrix Code Example

The Sparse Matrix Code Example is shown in Figure 3. This Figure shows the original
implementation of two loops - an inner (dot product) loop and an outer loop - and a revised
implementation patterned after the implementation in Ref. 1. The results for the original and
the revised implementations are shown in Table 4.

FIGURE 3 - SPARSE MATRIX CODE EXAMPLE
Original Implementation Revised Implementation

do 9 i= l,n do 100 ni= 1,9
ni= num(i) nni= 0
iss= istart(i) do 10 i= l,n
iee: iss+ ni-l if(num(i).eq.ni) then
smm= 0.0 nni= nni+ 1
do 5 k= iss,iee list(nni)= i

smm= smm+ x(k) end if
5 continue 10 continue

z(i)= smm .do 11 i= l,nni
9 continue sum(i)= 0.0

is(i)= istart(list(i»-1
11 continue

do 20 k= l,ni
do 22 i= l,nni

sum(i)= sum(i)+ x(is(i)+ k)
22 continue
20 continue

do 23 i= l,nni
23 z(list(i»= sum(i)

100 continue

TABLE 4 - SPARSE MATRIX CODE EXAMPLE· RESULTS

Microseconds Per Iteration (n= 1000)
Original Revised

Implementation Implemen tation
Reference 1 3.8 0.6
CFT 1.14 2.6 3.9
CFT 1.15 2.5 0.6

Results in Table 4 show that the CFT 1.14 result for the Revised Implementation is very poor.
This is due to the "DO 10" loop in the Revised Implementation of Figure 3 that does not
vectorize under CFT 1.14. However, when the CFT 1.15 compiler is used, this loop does
vectorize and the results are comparable to the Reference 1 results.

2.5 Summary of Above Examples

When Supercomputers fIrst appeared on the scene, compilers were limited in their ability to
take full advantage of the vector hardware available. Special purpose libraries, such as Cray's
SCILIB and Boeing's VectorPak served valuable roles to help the user take as much advantage
as possible of the system. Recent improvements in the CFT compiler make the programmer's
job much easier, as more standard FORTRAN constructs will vectorize. The examples above

83

are illustrative of this point.

An even more interesting question is the role of such special purpose libraries in application
program development today. Unquestionably, examples exist today where special purpose
assembler language routines can substantially out-perform standard FORTRAN. For example,
operations such as reduction operations (dot products) and linear recurrences either do not
vectorize well or do not vectorize at all, thus the assembler language versions are clearly
superior. The real question here is the issue of transportability of software when special purpose
libraries are used. It is common for programs to be executed on a Cray computer, and as well
on other computers such as mainframes, minisupercomputers, or superminicomputers. In such
cases, it would be necessary to install the speciai purpose libraries on every system the program
would be executed. Not only is this costly (if the library had to be purchased externally), but
requires staff time to maintain the libraries, install bug fixes and new releases, and keep the
versions synchronized. It is therefore unclear if the performance improvement gained from the
special purpose libraries is worth the additional effort and expense if the programs must be
transportable across different computing environments. As each organization performs
computing in a somewhat different way, these issues must be considered with the local situation
in mind.

3. UNIX ON THE X-MP - EXPERIENCE FROM TIlE USER PERSPECTIVE

The UNICOS system at AT &T Bell Laboratories is running under the Guest Operating System
(GOS). Therefore, one processor is running COS in a batch environment with the other
processor running UNICOS interactively. Some user level software is still not available - such as
the "vi" editor - but with the standard UNICOS 1.0 recently installed such tools could be
brought up. As a "C" machine, the system seems to be 25 times faster than a VAX 11/750 - but
more than 25 times more expensive than a 750. Thus it appears that the real strength of the
system will remain scientific number crunching, as it always has been.

Specific problem areas are:

• Scheduler - the system seems to run slow with several large interactive jobs in the system at
once without an SSD for swapping.

• SEGLDR:

- Long execution (CPU) times.

- SEGLDR constructs an image of the a.out file in memory and then writes that image to
disk. Blocks of storage (DIMENSIONed arrays) have explicit storage reserved in the
a.out file. This causes lots of disk space used up to store blank words, and lots of time to
roll in such a large image when execution begins.

• Debugger - poor information on where programs fail - sometimes the line number where the
failure was supposed to be is wrong.

As an example of the above concerns, timing comparisons for several systems were done for a
small problem. The problem is to solve the matrix system Ax= b where A is a dense 500x500
matrix. Standard LU factorization and solution methods were used by the routine "GELE"
from the PORT3 library (4). The times for different systems are given in Table 5.

84

TABLE 5 - TIMING COMPARISON FOR FORTRAN PROGRAM
SYSTEM

X-MP X-MP 3081K VAX 11/785
COS UNIX UNIX UNIX

Compiler Used CFT CFT F77 F77
Execution Time (CPU sec.)

Compiler .02 .04 1.5 2.3
Load .4 4.0 1.1 7.0
Execute 1.09 1.1 160 624

The data in Table 5 show that the compilation and execution times under COS and UNIX for
the X-MP are essentially identical; the differences are due to the timing routines used rather
than real differences in performance. The SEGLDR under UNIX, however, has poor
performance in that it requires 10 times more CPU time to execute than the loader under COS.
In addition to this, the SEGLDR required at least 26 seconds of wall clock time regardless if
there were only one user on the system or more than one user. When the program was
executed, it required 3 seconds to "roll in" the program from the time you type "a.out" until the
time the program is entered and begins to run. These long times seem to be due to the length
of the "a.out" image on disk resulting from the problems noted above. This test problem
required about 288K words of memory. If the test problem were increased such that A was
1000xlOOO, the a.out file would be over one million words long and would require at least 20
seconds to roll the file into memory (regardless of the number of users on the system).

In discussing these problems with Cray staff, there is reason to hope that Cray is aware of the
problems and is in the process of addressing them. There are also reasons to believe that
performance on native UNICOS will be better than on UNICOS under GOS.

REFERENCES

[1] "Supercomputer Forum", Boeing Computer Services, November-December, 1985, pp 3-4.

[2] "Supercomputer Forum", Boeing Computer Services, January-March, 1986, pp 9-11.

[3] "Gather/Scatter", San Diego Supercomputer Center, March, 1986, pp 7-8.

[4] P. A. Fox, Ed., "The PORT III Mathematical Subroutine Library", AT&T Bell
Laboratories, May 8, 1984.

85

Introduction

Unicos Performance Enhancements

Jim Harrell

Unicos Development
Cray Research, Inc.

Mendota Heights, Minnesota 55120

Performance is a very broad topic. This is especially true since we are talking about a new operating
system, Unicos, that has run on other kinds of hardware. Unicos is based on System V Unix.1 There
are a number of design issues and architectural issues that are important and new. The range of issues
includes: comparisons of the other machines that run the Unix operating system, the architectural issues
of multi-CPU and multitasking implementations, and very simple things like disk block size changes.

Today I want to cover parts of one area of interest, I/O enhancements. We will look at some of the
enhancements we've made to the Unicos system, some of the issues involved, and current performance.
The information represents work done on the XMP series of machines but should not imply differences
from Cray 2 Unicos. Differences occur for architectural reasons in the kernel, but the user levels are the
same. Through all of this we will be looking at performance numbers that I refer to as "achievable"
rates. That is these numbers were taken from a current unmodified system on a quiet Cray XMP.

1.0 I/O Performance

The original port of Unix to a Cray machine did not modify the basic structure of Unix I/O. Changes
were generally made for architectural reasons. The disk block size is a good example; it was increased
from 512 bytes to 4096 bytes. This was possible because (like the rest of Unix) the structure of the I/O
handling is basically sound. It is small, and therefore fast. However, under this early system there were
a number of problems from a Cray performance standpoint. Disk files could not span devices, and no
"striping" was possible. Remember that performance is not just how fast can data be moved but also
how much data can be read or written. The disk allocation scheme for files did not attempt to keep
blocks within a file together so that files could potentially be scattered across a filesystem. This is
dis contiguous allocation. Contiguous allocation is important in achieving high disk transfer rates. There
was no asynchronous I/O support in System V which is important to allow computation to continue dur
ing I/O transfers. The Unix disk buffer cache mechanism was extremely suspcct, because for Cray
usage the extra memory copy seemed not in the best interests of performance.

1.1 Spanning and Striping Disk Devices

Allowing files to span disk devices was solved by changing the minor device number to point to a new
structure that contains a number of partitions instead of just one. This was a simple change without
repercussions through the system. Disk striping works because of the I/O Subsystem (lOS). By care
fully allocating partitions at the Unix configuration level, and notifying the lOS, striping worked. As an
aside, the lOS has proved to be very useful during the move from COS to Unix. The low level work
that it does simplifies many tasks. The change was simple, and it solved the problem. Remember it is
important that we haven't modified the user interface in an incompatible manner, just added capabili
ties.

1.2 Contiguous Disk File Allocation

Disk allocation changes can be broken into two distinct phases. The first was done to achieve disk
streaming rates. In part this was experimentation with Unix to see if high disk throughput was possible

1 Unix is a trademark of AT&T.

86

simply. The second phase changed the allocation method for the disk files. While the second phase
took longer neither were significant in terms of time to implement. The phases also neatly fit the
releases. Phase 1 is release 1.0 of Unicos. Phase 2 is release 2.0.

1.2.1 Initial enhancements to achieve disk streaming rates

A set of experiments were done changing the "block" size from one sector to one entire cylinder. This
sets the default size of any disk file to at least the "block" size. The cylinder transfers are exciting. The
testing was very simple to do. The filesystem with the target block size was created, and a simple user
program reads and writes the disk. Unix is a very good for measuring performance. User programs can
be used in most circumstances, and timings are available from a program (time) called to monitor the
user program. The results showed that streaming rates were possible for single devices even at four
sector allocation levels. The performance at the four sector level was surprising, because the size was
so small. The four sector size works because fewer requests to the lOS were necessary than at the 1
sector allocation, and the allocation size was adequate to keep up with the disks. However, track and
cylinder allocation did give better overall performance, with more than one device. The downside is
that performance is paid for with more limited disk utilization. Slide 8 shows the transfer rates for
large block filesystems.

1.2.2 Contiguous Disk File Allocation Enhancements

File allocation under standard Unix does not attempt to allocate space on disk contiguously. Initial
allocation might be contiguous but after many files have been deleted and created files tend to be
extremely fragmented. This is a problem because in order to achieve maximum throughput blocks
within files must be allocated contiguously. This must be for every file every day. This is a simple
method to achieve disk throughput. The original enhancements to allow multiple disk filesystems
forced files to be allocated in the first partition until that was full, and then into the second, and so on.
This worked best with small partitions but did not use the multiple disks wisely. The new scheme uses
a bit map to force contiguous allocation, and to put files on different devices if at all possible. More
over because the contiguous allocation speeds transfers the large block file systems are no longer neces
sary. The speedup was visible. The transfer rates were up and the system overhead was down. Slides
10 through 13 show the transfer rates and system overhead for contiguous allocation enhancements.

1.3 Asynchronous I/O

One of the familiar features needed in System V was asynchronous I/O. This feature was added in two
ways. The first was to port the reliable COS style "listio". This provided a well known interface for
COS programs that used asynchronous I/O. The second method added is the Cray2 "readalwritea"
mechanism. The third method of handling asynchronous I/O is with the BSD "select" system call. This
is the only method indigenous to Unix of handling asynchronous I/O. Currently the select system call is
available through the Wollengong TCP/IP package. These three mechanisms each provide the user with
the ability issue I/O requests and continue computing.

1.4 Unix Disk Cache

Standard Unix provides a set memory buffers for use as an I/O cache. The cache holds much valuable
information in terms of directories and inode blocks which point to files on disk. In addition, if at all
possible, the data from pipe transfers are also held in the cache. This is significant for interprocess com
munication. That is, the way that two programs communicate to each other. This is a wonderful little
feature that if you don't already know about is well worth investigation. The cache also allows a pro
cess to read and write, reread and rewrite disk data before it ever leaves memory. The performance
advantages are obvious. For short transfers, those that can remain in cache, I/O bandwidth is not tied to
disk speeds. The size of cache is of course one limiting factor. Cache size must be large enought to
provide room for necessary data but not so big as to restrict the size of programs unnecessarily. The
wildcard in cache performance is the amount of simultaneous usage by other processes. Slides 16 and
17 show cache transfer rates for a simple test that overflows the disk cache using various increments in
request size. What this shows is that the write transfers are faster. The program writes, and then reads.
The writes can complete independently of the actual I/O. The reads must wait for some of the data to
be fetched from disk, although the cache does hold most of the file. Thus the reads in this test are
slightly slower. The write rates are actually faster than the theoretical maximum for DD49's. But they

87

are still relatively slow because the actual requests must be satisfied one 4k block at a time. This
accounts for the flat rates. The second set of tests, shown in slide 18, are for a short file of 200 sectors.
The rates are substantially higher because the cache is not over filled. The extra figure between the
write and read rates is the second run effect. Usually repeating a test ensures that the rates are correct.
Since the file is in cache much of the early set up processing is bypassed. The rate shows how much
the set up time effects the transfer rates. One other note about the numbers is that the drop in system
overhead from release 1.0 to release 2.0 is attributable to the allocation enhancement changes discussed
earlier.

1.5 Other "Disk Devices"

Some other interesting test results come from using various devices as "disk" in Unix. This is again
very simple to do, and very easy to test. The slides 21, 22, and 23 show rates for BMR, SSD, and
pipes.

88

slide #8

Disk Streaming

• "Large Block" filesystems
release 1.0, 1 stream, raw I/O, 1000 sectors
transfer rates in megabytes

sectors/req 1 4
write 5.84 9.1
read 5.35 8.9

track cylinder
9.4 9.7
8.7 8.5

No measurements for release 2.0

89

slide #10

Contiguous File Allocation

release 1.0, 1 stream, raw I/O, 2000 sectors

sectors/req 1
write 5.2
read 5.1

4 8
5.3 5.5
5.8 5.8

32
5.9
5.5

release 2.0, 1 stream, raw I/O, 2000 sectors

sectors/req 1
write 5.6
read 5.2

4 8
9.5 9.7
9.2 9.2

90

32
9.6
9.2

slide #11

Contiguous File Allocation

release 1.0, 4 stream, raw I/O, 2000 sectors
transfer rates in megabytes

sectors/req 1
write 2.8
read 2.7

4 8
3.3 3.4
3.2 3.4

32
3.6
3.4

release 2.0, 4 stream, raw 110, 2000 sectors
transfer rates in megabytes

sectors/req 1
vvrite 3.5
read 3.4

4 8
8.1 9.5
7.6 9.4

91

32
9.5
9.3

slide #12

Contiguous File Allocation

release 1.0, 1 stream, raw I/O, 2000 sectors
times in seconds

sectors/req 1
elapsed 3.15
user 0.13
sys 0.86

4 8
2.98 2.96
0.03 0.02
0.72 0.70

32
2.93
0.005
0.67

release 2.0, 1 stream, raw I/O, 2000 sectors
times in seconds

sectors/req 1
elapsed 3.29
user 0.05
sys 0.76

4 8
1.75 1.75
0.02 0.008
0.17 0.09

92

32
1.75
0.003
0.02

slide #13

Contiguous File Allocation

release 1.0, 4 streams, raw I/O, 2000 sectors
times in seconds

sectors/req 1
elapsed 6.31
user 0.50
sys 1.21

4 8
5.15 4.88
0.18 0.14
0.94 0.87

32
4.77
0.049
0.77

release 2.0, 4 streams, raw I/O, 2000 sectors
times in seconds

sectors/req 1
elapsed 4.86
user 0.16
sys 1.19

4 8
2.38 1.97
0.03 0.014
0.26 0.099

93

32
1.98
0.003
0.026

slide #16

Unix Disk Cache

release 1.0, 1 stream, 2000 sectors
transfer rates in megabytes

sectors/req 1 4 8 32
write 4.4 4.1 4.2 3.9
read 3.2 3.4 3.4 3.2

release 2.0, 1 stream, 2000 sectors
transfer rates in megabytes

sectors/req 1 4 8 32
write 11.7 11.7 11.7 11.4
read 5.9 7.6 7.8 7.9

94

slide #17

Unix Disk ·Cache

release 1.0, 1 stream, 2000 sectors
times in seconds

sectors/req 1
elapsed 4.60
user 0.14
sys 0.80

4 8
4.60 4.53
0.04 0.02
0.63 0.61

release 2.0, 1 stream, 2000 sectors
times in seconds

sectors/req 1
elapsed 2.29
user 0.06
sys 0.66

4 8
2.00 1.97
0.02 0.01
0.54 0.52

95

32
4.77
0.006
0.59

32
1.95
0.003
0.50

slide #18

Unix Disk Cache

release 1.0, 1 stream, 200 sectors
transfer rates in megabytes

sectors/req 1 4 8 32
write 15.8 59.6 64.7 69.1

29.3
read 34.8 48.8 51.9 54.3

release 2.0, 1 stream, 200 sectors
transfer rates in megabytes

sectors/req 1 4 8 32
write 39.9 91.2 115.9 121.4

49.3
read 42.8 70.1 81.2 83.9

96

slide #21

Other "Disk" Devices

-BMR

No measurements available for release 1.0

release 2.0, 1 stream, raw I/O, 400 sectors
transfer rates in megabytes

sectors/req 1 2 4 8 32
. write 7.0 12.3 17.8 22.9 30.2

read 7.5 12.7 19.2 25.8 34.8

• SSD

release 1.0, 1 stream, async I/O, 1.7MW, 128MW SSD
transfer rates in megabytes

sectors/req
rate

4 18 36 1864
64.78 260.98 468.57 1974.32

No measurements available for release 2.0

97

slide #22

Other "Disk" Devices

• Pipes

reI 2, 1 connection, 1000 transfers
transfer rates in megabytes

sectors/req 1 2 4 8
write 18.7 26.5 31.5 34.4
read 18.6 26.4 31.4 34.3

reI 2, 1 connection, 1000 transfers
transfer rates in megabytes

sectors/req 1 2 4 8
write 24.3 35.8 44.5 46.9
read 24.1 35.6 44.3 46.9

98

slide #23

Other "Disk" Devices

• Pipes

reI 2, 1 connection, 1000 transfers
times in seconds

sectors/req 1
elapsed 0.30
user 0.11
sys 0.08

4 8
0.41 0.59
0.17 0.15
0.12 0.22

reI 2, 1 connection, 1000 transfers
times in seconds

sectors/req 1
elapsed 0.22
user 0.01
sys 0.07

4 8
0.34 0.46
0.01 0.01
0.10 0.17

99

32
1.12
0.10
0.44

32
0.87
0.01
0.33

NETWORKING SESSION I

Dean W. Smith

ARCO Oil and Gas Company
Plano, Texas

This session consisted entirely of a
number of talks by Cray Research per
sonnel responsible for the development
and support of Cray's station products.
Presentations were made on Superlink
and a Multiple Frontends Support
Facility. This report is based on my
notes and overheads provided.

SUPERLINK 2.0

The Superlink 2.0 status presentations
were made by Stewart Ross (Cray
Research U.K.), and Brian Gaffey and
Nic Catrambone of Cray Research Inc.,
Mendota) .

The Superlink product family is
designed to meet the expanding applica
tion and data accessibility needs of
the super-computing community. Provid
ing a high performance data pipe, new
external interface for applications,
standard data access, and access of all
peripherals of the host system.

The stated direction of Superlink is 4
fold: 1) to provide an OPEN systems
approach based on ISO OSI, 2) common
interface for all applications, 3)
alignment with industry standards, 4)
commitment to both performance and
functionality.

The current Superlink product is Super
link/ISP release 1.0 and is available
for the COS/MVS environments. Super
link 2.0 is scheduled for availability
in the COS/MVS environments in late
1986, UNICOS in 1987, COS support in
COS 1.16. Superlink 2.0 beta testing
is scheduled for year end 1986.

Multiple Frontends Support

The problem addressed by Multiple
Frontends Support (MFS) is that of
identifying a user and their CRAY job's
privileges across any number of front-

100

ends (i.e. a job submitted from a work
station might require datasets from a
VAX, tape support from an IBM, and have
the printed output sent to another
system). This problem is being seen
increasingly as more and more sites try
to provide all components of their
system's networking resources to CRAY
jobs. MFS is seen as a system which
can address and resolve the conflicts
inherent in networking jobs across
multiple systems.

MFS, as it is being conceived, will
provide user oriented information that
will enable the frontend environments
to resolve the conflicts that arise in
a networking environment (i.e. what
identifies a VAX user and their
security privileges to an IBM database
- and whose information can a frontend
system trust). MFS will accomplish
this by maintaining a database of user
characteristics on the CRAY and provide
those characteristics to frontends as
services are required.

The development for MFS is by no means
complete and the parties within Cray
Research responsible for its develop
ment encourage any input on require
ments.

NETWORKING SESSION II

Dean W. Smith

ARCO Oil and Gas Company
Plano, Texas

This session consisted entirely of a
number of talks by Cray Research person
nel. Presentations were made on TCP/IP
support and the Multiple Protocol
Support (USCP).

Bryan Krok's (Cray Research Inc.,
Mendota) report on his presentation of
TCP/IP support follows this report. A
report on Tricia Senn's presentation is
based on my notes of her presentation
and her overheads.

Multiple Protocol Support

Tricia Senn's report on Multiple Proto
col Support detailed the Station Call
Processor (SCP) of UNICOS. The UNICOS
Station Call Processor (USCP) implemen
tation will be critical providing a
smooth migration path to UNICOS in
existing systems.

The current features supported by USCP
are dataset staging, interactive, job
submission, and job status and control.
Features of SCP not yet supported are
system operator commands and tape
message support.

An important feature of USCP support
will be the degree of transparency that
user's will experience using USCP and
their experiences with SCPo In this
regard, the JCL interfaces of USCP will
be very familiar to the user of SCPo
USCP's provided FETCH, ACQUIRE, and
DISPOSE statements are all much the same
as SCP's statements. However, program
call interfaces will not be supported.

Supported dataset formats include SCP's
supported formats of CB, BB, TR, CD, and
BD. Additional support for UD (UNICOS
data) has been included.

Supported operator commands include:
ENTER (modifies jobs attributes), DROP
(cancels an active job), ROUTE (changes

a job's routing), KILL (cancels a job or

101

output), and STREAM (modifies a stations
staging attributes).

Hardware support will be provided for
NSC and FEI interfaces.

Communications III - User Presentations

Ronald Kerry

General Motors Research Labs

This session consisted of two user presenta
tions followed by an open forum for discussion
of communications issues. Brian Vohs of EXXON
Corporation presented two topics: "Adding Com
mands to the MVS Station" and "JES3 Dependent
Job Networking on a CRAY". Sandy Moy of the
University of Illinois at Urbana-Champaign pre
sented a talk on the "University of Illinois
Network". The following sections are based on
the notes and overheads from the individual
presentations.

Adding Commands to the MVS Station
Brian Vohs

EXXON

EXXON processes many CRAY jobs through the MVS
station. Often the job load is large enough to
cause a backlog of jobs on the MVS front end,
especially when the CRAY is not in service.
The CRAY supplied MVS station provides no way
to tell how many jobs are backlogged waiting
for the station to reconnect to the CRAY.
Therefore a new station command was written.
Adding station commands to the MVS Station is a,
fairly simple process. It can be done using
three modifications to the station (included at
end of paper).

The first modification adds the command name to
the CRAYCMD command processor used by TSO
users.

The second modification adds the command name
to the table of operator commands (CRCTABL).
This table defines the name of the module which
is used to process the command as well as
whether or not the command can be acces sed frOlr,
TSO.

The final modification Simply adds the command
processor named above to the MVS Station.
Before this can be done the module must be
added as an entry point in MVS Station load
module CSSOOl using SMP UCLIN.

102

JES3 Dependent Job Networking on a CRAY
Brian Vohs

EXXON

EXXON uses the Dependent Job Control (DJC)
facility of JES3 on their IBM front end
machines extensively. This facility allows a
user to specify the order of execution for mul
tiple jobs. A set of such jobs is known as a
DJC network. Each job in the network can have
predecessor jobs and successor jobs. A job
will not run until all of its predecessor jobs
have completed successfully. When EXXON
obtained the CRAY, this facility had to be
extended so that CRAY jobs could be part of a
DJC network.

The implementation of this function involves
one modification to the EXP task of COS and two
modifications to the MVS station support for
JES3. The text for these modifications is
included at the end of this paper.

In the future, EXXON plans to extend this con
cept so that a single job having multiple steps
can have some steps run on the CRAY while other
run on the front end. This facility is much
more difficult to implement, but will give user
even greater flexibility in the type of work
that they can do.

University of Illinois Networks
Sandy Moy

University of Illinois at Urbana-Champaign

The University of Illinois at Urbana-Champaign
is the home of the National Center for Super
computing Applications (NCSA). NCSA is funded
primarily by the National Science Foundation
(NSF). The NCSA is a national center on which
time is allocated through peer review by the
NSF or NCSA Peer Review Board. It is a place
where supercomputer users come together to
learn, experiment, and exchange ideas about new
research and new computational techniques. It
is a training ground for graduate and post-doc
toral students, faculty, and visiting research
ers and serves as an interdisciplinary clear
inghouse dedicated to creating new

computational disciplines, eliminating common
computational bottlenecks, and improving code
efficiency. Supercomputer users from around
the country are encouraged to spend some time
at the center.

The center is supported by a comprehensive,
networked computing environment including the
latest in workstation capabilities, both hard
ware and software. Every office has one or
more workstations for interactive work on the
CRAY and for other research purposes such as
editing, preparing proposals and papers, and
graphic and image processing.

The NCSA CRAY has 2 CPUs, 4 million words of
memory, a 32 million word solid state disk
(SSD) and 7200 million bytes of online disk
storage. This configuration will be upgraded
during 1986 to a CRAY XMP/48 with a 128 Mword
SSD and increased disk storage capacity. The
operating system is CTSS, an interactive times
haring system developed to increase programming
and scientific productivity in the supercomput
ing environment.

The front end machine is a VAX 11/785 which
handles CRAY interactive traffic, provides a
limited mail service for NCSA users, and acts
as a temporary staging device for file
exchange. The operating system is VMS. A sec
ond VAX 11/785 will be available in 1986 to
form a VAX cluster to handle an increasing num
ber of users.

The Common File System (CFS) is a hierarchical
multimedia storage system used for file storage
and archiving of data. It is supported by an
IBM mainframe, a disk farm, a 55 billion byte
mass storage system and 4 IBM cartridge tape
drives.

The CRAY, the front end VAX, and CFS are con
nected via Network Systems Corporation's HYPER
channel, which has a bandwidth of 50 million
bits per second. The VAX provides a gateway to
the CRAY for the PROTEON campus fiber optic
backbone network, a Vitalink satellite network
and a series of 56 Kbps links to other national
centers and campuses. Other remote network
capabilities include INWATS, BITNET, Telenet
and ARPAnet.

NCSA uses the TCP/IP protocol to interconnect
workstations, the VAX and the CRAY. The CRAY
Operating System (COS) had to be modified to
support this interconnection. The reasons for
this decision include:

103

* Existing networking protocols are chaotic

* Too much work required by front ends for
protocol conversion

* TCP is a standard. NSF likes it.
Furthermore, TCP provides a migration path
to the future ISO protocols.

* TCP is widespread; virtually every UNIX
machine in the world, including most
workstations, understands it.

* TCP is more general purpose than NSP or
SIMP.

Current CRAY network services include:

* Remote login to CTSS (local)

* File transport (local)

* File archival

* Standard DARPA services (local)

Services to be provided in the near future
include:

* Remote login via TELNET

* File transport to anywhere via FTP

* VMS mail on CTSS via POP

* High speed file transport to the front ends
and CFS via NETBLT/IP

* Ability to communicate arbitrarily and
reliably to any machine on the network

* TCP/IP and friends on any machine, with
optional transport level and presentation
level gateways to other networks

NCSA networking goals include the integration
and coordination of multiple networks, state of
the art network services and flexibility for
the future.

++U5ERHOD(MODID#1) /*
ADD BLOG TO CRAYCMD COMMAND PROCESSOR IN
CRAY MVS WORKSTATION PACKAGE

*/ 0

++VER (Z03B) FMID(#CSS003) /* CRAY WORKSTATION PACKAGE Vlo13 */ 0

++SRCUPD (CRAYCMD) 0

0/ CHANGE NAME=CRAYCMD
DC CL11'BLOG',AL1(3),V(PCLNULL),A(PANULL) MODID#l 11101000

++USERMOD(MODID#2) /*
ADD BLOG TO TABLE OF COMMANDS IN
CRAY MVS WORKSTATION PACKAGE
COMMAND NAME = BLOG
MINIMUM LENGTH = 4
MODULE TO PROCESS COMMAND = CRXCRAY
FUNCTION CODE FOR MODULE = 0
COMMAND IS ACCESSIBLE TO TSO USERS

*/ 0

++VER (Z03B) FMID(#CSS003) /* CRAY WORKSTATION PACKAGE V1.13 */ 0

++SRCUPD (CRCTABL) 0

./ CHANGE NAME=CRCTABL
CCBLOG CMD BLOG,4"MODULE=CRXBLOG,FC=0,TSO=YES MODID#200311000

++USERMOD(MODID#3) /*

UCLIN CDS.

COMMAND PROCESSOR TO OPERATE WITHIN THE
'CRAY MVS WORKSTATION PACKAGE.
BEFORE THIS MODULE CAN BE ADDED TO THE
LOAD MODULE, THE FOLLOWING UCLIN MUST
BE RUN TO DEFINE THIS MODULE IN LOAD
MODULE CSS001:

ADD SRC(CRXBLOG) DISTLIB(CRAYSRC) FMID(#CSS003)
ADD MOD(CRXBLOG) DISTLIB(CRAYSRC) FMID(#CSS003) LMOD(CSS001) .

ENDUCL 0

UCLIN ACDS.
ADD SRC(CRXBLOG) DISTLIB(CRAYSRC) FMID(#CSS003)
ADD MOD(CRXBLOG) DISTLIB(CRAYSRC) FMID(#CSS003) LMOD(CSS001) .

ENDUCL 0

*/ 0

++VER (Z03B) FMID(#CSS003) /* CRAY WORKSTATION PACKAGE Vl.13 */ .
++SRC (CRXBLOG) 0

104

*ID EXXEXP,DC=EXP
*/
*/ MODS TO EXP
*/
*/
*/ MOD TO SUPPORT CRAY/IBM JOB NETWORKING
*/
*1 M06586KA.5873 AFTER LABEL 'TRM'

GETF,SO S7,JTABTC,A2 GET ABORT CODE
JSN SKPRESET ABORTING - SKIP THIS MESS
GETF,A3 57,JTJXT,A2 GET POINTER TO JXT
GETF,A7 S7,JXSDT,A3 GET OFFSET WITHIN SDT
A3 B@SDT GET POINTER TO SDT
A7 A7+A3 POINT TO SDT ENTRY (OFFSET+BASE)
GETF,A3 57,SDTXT,A7 GET POINTER TO TEXT AREA
GETF,A4 S7,5DTXC,A7 GET INCREMENT TO SLOT (TEXT LENGTH)
A7 0'40 OFFSET TO 'NETJOB' IN SLOT
A3 A3+A4 POINT A3 AT THE SLOT
A3 A3+A7 POINT A3 AT 'NETJOB'
S6 O,A3 PICK UP , NETJOB '
S7 1,A3 PICK UP NEXT WORD
A7 D'8 AMOUNT FOR SHIFT
56 S6,S7<A7 SHIFT OFF 1 BYTE
57 NETJOBC,O GET LITERAL 'NETJOB C'
SO 57-S6 GET DIFFERENCE
JSN 5KPRESET NO - SKIP RESET CODE
56 NETJOBD,O PICK UP 'NETJOB D'
S7 1,A3 RELOAD ORIGINAL WORD
S7 57<A7 SHIFT OFF THE 'c'
57 S6,S7>A7 OVERLAY THE 'c' WITH A 'D'
l,A3 S7 SAVE IT BACK

5KPRESET = * COMMON EXIT POINT
*1 M06586KA.6513
NETJOBC CON
NETJOBD CON

E'NETJOB C'
E'NETJOB D'

*/
*/
*/

END OF MOD EXXEXP

105

C'NETJOB C' IN EBCDIC
C'NETJOB D' IN EBCDIC

++ USERMOD (EXJ0105) /* THE FOLLOWING FUNCTIONS IS SUPPORTED:
CRAY WORKSTATION PACKAGE SUPPORT

*/ .
++ VER (Z038) FMID(HJS2327) /* JES3 SP1.3.1 $$$ XA $$$ */ .
++ SRCUPD (IATGRWQ) DISTLIB(AJES3SRC) .
. / CHANGE NAME=IATGRWQ

TITLE 'MAP NCB - NETWORK CONTROL BLOCK' EXJ3S01 11372600
IATYNET TYPE=DSECT,BLOCK=NCB EXJ3S01 11372700
MYI SJ3RLNET,C' I SET IN CASE IT IS NOT A DJC JOB 3S01 14562410
TM JCTDJFL1,JCTDJJOB IS IT A DJC JOB? EXJ3S01 14562420
BC ALLOFF,JCTBLD2 NO - SKIP KEEPING THE NETID EXJ3S01 14562430
MVC SJ3RLNET(L'JCTDJNET),JCTDJNET KEEP NETID EXJ3S01 14562440

JCTBLD2 DS OH EXJ3S01 14562450
--- EXJ3S01 14563805 * EXTRACT FIELDS FROM THE JNCB/NCB AREA * EXJ3S01 14563810
--- EXJ3S01· 14563815

CLI SJ3RLNET,C" IS IT REALLY THERE? EXJ3S01 14563817
BC EQ,JDABBLD NO - GO ON AROUND THIS STUFF EXJ3S01 14563819
JNCBHLD ID=SJ3RLNET,NORMAL=GOTJNCB GET/HOLD THE JNCB EXJ3S01 14563820
B JDABBLD GET OUT NOW - JNCB NOT FOUND EXJ3S01 14563825

GOTJNCB DS OH EXJ3S01 14563830
LTR R3,R1 SAVE IT AGAIN (JUST IN CASE) EXJ3S01 14563840
BC ZERO,JDABBLD NOT A NET - GET OUT EXJ3S01 14563842
NCBTAFND ENTRY=(R3),NCB=SJ3JBNAM,NORMAL=FOUNDNCB EXJ3S01 14563845
B RELJNCB BAD - GO RELEASE THE JNCB EXJ3S01 14563850

FOUNDNCB DS OH EXJ3S01 14563855
LTR R1,Rl IS IT REALLY THERE? EXJ3S01 14563857
BC ZERO,RELJNCB NO - GO RELEASE THE HELD JNCB EXJ3S01 14563858
USING NCBENTRY,Rl SET BASE FOR NCB EXJ3S01 14563860
MVC SJ3RLJOB{L'NCBRLJOB),NCBVEND MOVE 1ST RELEASE JOBEXJ3S01 14563865
MVC SJ3ICTCH(8),=CL8'NETJOB C' MOVE IN ICATCHER/STAT EXJ3S01 14563867
DROP R1 DROP BASE FOR NCB EXJ3.S01 14563870
NCBTAREL ENTRY={R3) RELEASE THE NCB WE GO BEFORE EXJ3S01 14563880

RELJNCB DS OH EXJ3S01 14563885
JNCBREL ID=SJ3RLNET RELEASE THE JNCB EXJ3S01 14563895

* THIS LINE DELETED BY EXJ3S01 EXJ3S01 14568900 * THIS LINE DELETED BY EXJ3S01 EXJ3S01 14568950 * THIS LINE DELETED BY EXJ3S01 EXJ3S01 14569000

106

++USERMOD (EXJ0335) /* CRAY STATION JES3 SUPPORT --
HODS TO IATCR29 TO SUPPORT NETWORKING
BETWEEN CRAY AND IBM

++VER (Z038) FMID(HJS2327) .
++SRCUPD (IATCR29) DISTLIB(AJES3SRC) .

IATYNET TYPE=DSECT,BLOCK=NCB
SR R4,R4 ZAP R4 FOR LATER
CLC SJ3ICTCH(L'NETJOB).NETJOB IS IT NETJOB?
BC NE,NOTNETJB NO - CONTINUE PROCESSING
LA RO,80 GET LENGTH OF GETMAIN
AGETMAIN SIZE=(RO),BUSY=NOTNETJB IF BUSY - BYPASS ALL
LR R4,Rl SAVE BUFFER ADDRESS
XC 0(80,R4),0(R4) CLEAR BUFFER OUT NOW
MYC 1(L'HODNET,R4),HODNET BUILD '*F.N,ID=' PART
HVC L'MODNET+l(8,R4),SJ3RLNET MOVE IN NETID
LA Rl,8 MAX LENGTH OF NETID

ENDJOBLP DS OH
LA R9,L'HODNET(Rl,R4)
CLI 0(R9),C"
BNE JOBLPOUT
BCT R1,ENDJOBLP
B NOTNETJB

JOBLPOUT DS OH

POINT TO END OF STRING
IS IT A BLANK?
NO - GET OUT
LOOP FOR ALL 8 SPOTS
BLANK NET ID - GET OUT

MYI 1(R9),C',' MOVE IN A COMMA
LA R9,2(,R9) POINT PAST THE COMMA
CLI SJ3STAT,C'D' IS IT A DECREMENT?
BNE TRYNET@ NO - MUST FLUSH LATER
HVC 0(L'ENDNET,R9),ENDNET BUILD 'J=XXXX,'
LA R9,2(,R9) POINT TO THE XXXX

TRYNET@ JNCBHLD ID=SJ3RLNET,NORMAL=GOTJNCB GET JNCB
B NOTNETJB JNCB NT FND - NOT A NET

GOTJNCB DS OH
LTR R3,R1 SAVE IT AGAIN (JUST IN CASE)
BC ZERO, NOTNETJB NOT FOUND - GET OUT NOW
CLI SJ3STAT,C'D' IS IT A DECREMENT?
BNE RELJNCB NO - MUST RELEASE JNCB
NCBTAFND ENTRY=(R3),NCB=SJ3RLJOB,NORMAL=FOUNDNCB
B RELJNCB BAD - GO RELEASE THE JNCB

107

*/ .

EXJ3S01 00016500
EXJ3S01 00026900
EXJ~BOl 00027000
EXJ3S01 00027100
EXJ3S01 00027200
EXJ3S01 00027300
EXJ3S01 00027400
EXJ3S01 00027500
EXJ3S01 00027600
EXJ3S01 00027700
EXJ3S01 00027800
EXJ3S01 00027900
EXJ3S01 00028000
EXJ3S01 00028100
EXJ3S01 00028200
EXJ3S01 00028300
EXJ3S01 00028400
EXJ3S01 00028500
EXJ3S01 00028600
EXJ3S01 00028700
EXJ3S01 00028800
EXJ3S01 00028900
EXJ3S01 00029000
EXJ3S01 00029100
EXJ3S01 00029200
EXJ3S01 00029300
EXJ3S01 00029400
EXJ3S01 00029500
EXJ3S01 00029600
EXJ3S01 00030000
EXJ3S01 00030100
EXJ3S01 00030200
EXJ3S01 00030300

FOUNDNCB DS OH EXJ3S01 00030400
LTR R1,R1 DID WE FIND ONE? EXJ3S01 00030500
BC ZERO,RELJNCB NO - GET OUT NOW EXJ3S01 00030600
USING NCBENTRY,Rl SET BASE FOR NCB EXJ3S01 00030700
LH R15,NCBJOBNO GET JOB NUMBER TO BE RELEASED EXJ3S01 00030800
DROP Rl DROP BASE FOR NCB EXJ3S01 00030900
CVD R15 , 72 (, R4) CONVERT IT TO PACKED DECIMAL EXJ3S01 00031000
UNPK 48(15,R4),72(8,R4) CONVERT IT TO ZONED DECIMAL EXJ3S01 00031100
01 62 (R4) , C ' 0 ' MAKE IT ALL PRINTABLE EXJ3S01 00031200
mc 0(4,R9),59(R4) MOVE RESULTS INTO MESSAGE TEXTEXJ3S01 00031300
LA R9,5('R9) POINT TO STATUS FIELD EXJ3S01 00031400
NCBTAREL ENTRY=(R3) RELEASE THE NCB BEFORE WE GO EXJ3S01 00031500

RELJNCB DS OH EXJ3S01 00031600
JNCBREL ID=SJ3RLNET RELEASE THE JNCB EXJ3S01 00031700

DOFLUSH DS OH EXJ3S01 00031800
mc 0(1,R9),SJ3STAT AND MOVE IN THE STATUS BYTE EXJ3S01 00031900
SR R9,R4 GET LENGTH OF DATA IN BUFFER EXJ3S01 00032000
STC R9,0(R4) SAVE LENGTH IN MESSAGE EXJ3S01 00032100

NOTNETJB DS OH EXJ3S01 00032200
LTR R4,R4 DID WE DO A GETMAIN EXJ3S01 00041500
BZ UX29RET IF NOT, GET OUT EXJ3S01 00041600
INTERCOM CONS=DUMMY,TEXT=(R4) EXJ3S01 00043100
LA RO,80 GET LENGTH TO GIVE BACK EXJ3S01 00043200
APUTMAIN SIZE=(RO),AREA=(R4),SP=0 EXJ3S01 00043300
B UX29RET RETURN TO IATISEN EXJ3S01 00043400

NETJOB DC C'NETJOB' EYE CATCHER IN THE SLOT EXJ3S01 00048000
MODNET DC C' *F, N, ID= ' HEADER FOR MESSAGE EXJ3S01 00048100
ENDNET DC C' J=XXXX, , END OF MESSAGE EXJ3S01 00048200

108

OPERATING SYSTEMS SESSION I

Raymond Benoit

Environnement Canada
Montreal, Canada

Three presentations were made in the ope
rating systems session I which was devoted
entirely to UNICOS. In the first presenta
tion Denis Ritchie talked about Bell Labs
experience in implementing and using UNI
COS on their X-MP 24. Martin Fouts, from
NASA Ames, then reported some preliminary
findings and made some recommendations
regarding UNICOS disk I/O on the Cray-2.
In the last half hour of the session Matt
Bishop, of NASA Ames, talked about Unix
security issues and in particular those
related to writing setuid programs.

I would to thank the speakers for partici
pating in this OSC session and for the
fine job they did in presenting thelr
papers.

109

How To Write a Setuid Program

Matt Bislwp

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field. CA 94035

EXTENDED ABSTRACT

A typical problem in systems programming is often posed as a problem of keeping
records [ALEP71]. Suppose someone has written a program and wishes to keep a record of
its use. This file. which we shall call the history file. must be writable by the program (so it
can be kept up to date). but not by anyone else (so that the entries in it are accurate.) UNIXt

solves this problem by providing two sets of identifications for processes. The first set.
called the real user identification and group identification (or UID and GID. respectively).
indicate the real user of the process. The second set. called the effective UID and GID. indi
cate what rights the process has. which may be. and often are. different from the real UID
and GID. The protection mask of the file which. when executed. produces the process con
tains a bit which is called the setuid bit. (There is another such bit for the effective GID.) If
that bit is not set. the effective UID of the process will be that of the person executing the
file: but if the setuid bit is set (so the program runs in setuid TTWde). the effective UID will
be that of the owner of the file. not that of the person executing the file. In either case. the
real UID and GID are those of the person executing the file. So if only the owner of the his
tory file (who is the user with the same UID as the file) can write on it. the setuid bit of the
file containing the program is turned on. and the UIDs of this file and the history file are
the same. then when someone runs the program. that process can write into the history file.

These programs are called setuid programs. and exist to allow ordinary users to per
form functions which they could not perform otherwise. Without them. many UNIX sys
tems would be quite unusable. An example of a setuid program performing an essential
function is a program which lists the active processes on a system with protected memory.
Since memory is protected. normally only the privileged user root could scan memory to list
these processes. However. this would prevent other users from keeping track of their jobs.
As with the history file. the solution is to use a setuid program. with root privileges. to read
memory and list the active processes.

Setuid programs introduce many security problems [TRUS80]: many of these can be
dealt with by programming very carefully. The reader should bear in mind that on some
systems. the mere existence of a setuid program introduces security holes: however. it is pos
sible to eliminate the obvious ones.

By following some simple rules. programmers can decrease the danger of a setuid pro
gram being able to compromise system safety. These rules are:

tUNIX is a Trademark of Bell Laboratories.

110

-2-

1. Be as restrictive as possible in choosing the UID and GID of the setuid program.

2. Do not write interpreted setuid or setgid scripts.

3. Do not use creat(2) for locking.

4. Catch all signals.

5. Check data for consistency.

6. Take extreme care when recovering from errors.

7. Close all but necessary file descriptors before calling exec(2).

8. Reset effective UIDs and GIDs before calling. exec(2).

9. Check the environment of the process.

10. Be careful with 1/0 operations.

Setuid programs explicitly violate the protection scheme designed into UNIX. On sys
tems where security is not a problem. this is a blessing. since it enables many things to be
done easily that would otherwise be very difficult: but on systems where security is a prob
lem. these programs also pose very real threats. Unfortunately. they are very necessary: so.
the designers and implementors of setuid programs should take great care when writing
them.

Acknowledgements: Thanks to Bob Brown. Peter Denning. George Gobel. Chris Kent. Rich
Kulawiec. Dawn Maneval. and Kirk Smith. who made many constructive suggestions.

References

[ALEP71] Aleph-Null. "Computer Recreations." Software - Practise and Experience 1(2)
pp. 201 - 204 (April - June 1971)

[TRUS80] Truscott. Tom and Ellis. James. "On the Correctness of Set-User-ID Programs."
Department of Computer Science. Duke University (unpublished)

111

OPERATING SYSTEMS SESSION II

Raymond Benoit

Environnement Canada
Montreal, Canada

The second operating systems session con
sisted of an experience panel, a presenta
tion by Cray Research and a report from
the operating systems committee chairman.

In the experience panel part Jim Sherin
talked about Westinghouse's experiences in
installing COS 1.14 on their Cray 1-S and
on the Cray X-MP 48 they are managing for
the Pittsburg NSF site. Mostyn Lewis then
shared the experience he acquired during
the installation of COS 1.15 and the
testing out of the permanent file archi
ving package on Chevron's machine. Kent
Koeninger, from Apple Computer Inc., also
reported his findings on the first instal
lation of UNICOS in native mode on their
brand new X-MP 48.

Tom Lanzatella, from Cray Research Inc.,
gave a presentation on FSS pre-emption, a
COS feature that will be released soon and
will help manage Fast Secondary Storage
devices such as Buffer Memory and SSD. In
the last part of the session I gave a
status report on the committee's activi
ties, this report is integrated with the
final committee's report found at the end
of these proceedings.

I would like to thank all the speakers for
the fine job they did in presenting their
papers and for participating in this OSC
session.

112

COS 1.14 Experiences at Westinghouse from
June 1985 to May 1986.

Over the past 11 months at Westinghouse, our software team
has installed COS l.14 on several different mainframes. We feel
that our experiences may be of use to those who have not done this
and bring back memories (both good and bad) for those who have
already done this.

As a review Westinghouse installed its first Cray-1 S in June
1981. This Cray was without an lOP and ran COS 1.10/CFT 1.10(prerelease).
In February 1983, Westinghouse went to COS 1.1l/CFT 1.10 and installed
lOP SN 11 with STC on-line tape drives. In April 1984 SN40/11 CRAY-1S
was installed at Westinghouse for COS 1.12/CFT 1.11 use. COS 1.12/CFT
1.11 was installed into production use by the end of February 1985.

As we as a software group have to provide to our users equal or
greater functionality whenever we upgrade operating systems. Because
of this we've made special efforts to drag along older versions of the
Cray compilers and libraries for those codes who have 'teething' problems
with the newer Cray versions.

The conversion of our users to COS 1.12 was especially painful as
some changes had to be made to library routines because of the intro
duction of the Time-Stamp-Unit concept. Since many of our codes are
Configuration controlled because of their use in Nuclear work, this
meant a lot of paper work for our users to justify reloading their
codes and many hours of reverifying their work so that it would be
acceptable to the NRC.

So far we do not have COS 1.14 in production use on our CRAY -1 S'
because of the need to provide for the older C,Q.Q1pilers and utilities and
a period of time for our users to convert to the newer compilers and
test out their codes. Our projected schedule for this is May 27, 1986.
COS 1.14/CFT 1.14 is now in production use at the NSF site in Pittsburgh
managed by Westinghouse for the Mellon-Carnegie-Pitt Corporation as
, The Pittsburgh Super Computing Center'. Getting this software ready
was an adventure in itself, which will be detailed below.

In the process of preparing COS 1,14 for the Cray-1 S' the following
problem areas were discoverd and overcome:

1) The base line of COS 1.14 was changed from a Cray-l s without an
lOS to a Cray XMP-l with an lOS. '

2) Security was automatically invoked.
3) The default values of other installation parameters were

also changed.
4) Evidentally Cray must assume that everyone runs with the

default loader setting core to zero. Because of NRC rules
our default loader is set to indefinite so as to catch those
people who don't bother to initialize their variables. If
zero is what Cray expects to be used to build their products.
then it should be placed on every LOR statement in their

113

build procedures.
5) Once we got a useful version of COS 1.14 ready for user testing

we found that we had some problems running codes which used a
library routine called SYSINFO. It turned out that in COS 1.14
the Data Name Table (DNT) increased in size to D'24 words from
D'20 words. In order not to affect already running absolutes,
a kludge had to be concocted to pass back to the use only D'20
whenever the Dataset Name happened to be SOUTo Also, the start
of the DNT chain in the JTA was moved which caused some head
aches. A local mod was necessary to make an EXP call so that
the DNT start could be identified.

6) Once around this hurdle we found that users running CFT 1.11
absolutes with FORTRAN 77 OPENs had problems in aborting with
operand range errors in F$OPN inside EXP. Analysis of this problem
revealed that if the second word of the Open Dataset Name entry
was non-zero, then this value was assumed to be the pOinter to
the DNT entry. Again this was caused by our need to initiate
core to an indefinite value. After two attempts to resolve this
dilemma, the solution was to test the second word for indefinite'
and if it was then to clear the word to zero so that the EXP code
could proceed as if nothing had happened.

7) The next adventure occurred when CFT 1.10 absolutes were tried
under COS 1.14. The error that occurred was that thejobs aborted
with the arcane message 'Invalid Dataset Name'. Investigation of
this problem revealed that at COS whatever EXP function code 0'11
was the call to the EXP function F$MEM. At COS 1.14 this function
was now a call to F$OIO. The fix for this was relatively simple:
namely to let it fail the test for file name and jump to an area
where the call was transferred to F$MEM in COS 1.14. This code
got us around the original problem, but another one was now reveal
ed. This error occurred in $TMGR in $SYSLIB. A request was being
made for the maximum memory available in the machine. This was
not being returned to the user at all. This citised a lot of
calculations to become negative and hence stop program execution.
Once again code could not be inserted in the loader, because our
current CFT 1.10 absolutes had to run. Once again a kludge was put
into EXP to trap out this call and return the maximum available
memory to the users. This has caused our CFT 1.10 absolutes to
execute in a proper fashion.

8) We cannot read COS 1.14 written tapes on a COS 1.12 system due
to a label problem. When attempts are made to read the tape,
the message 'WRONG LABEL TYPE (FRN)' appears and the job must
be aborted. TOM was rewritten for COS 1.14 because of the new
features to be provided.

9) After we had converted our local mods over to COS 1.14, it was
thought that configuring an XMP would be a simple exercise. This
was not to be. The sample XMP-48 configuration from Mendota was
used to put together a configuration for the NSF machine prior to
our early March 1986 trip to test out SN 211/105 in Chippewa Falls.
After floundering for two days trying to get this to successfully
work, this effort was abandoned in favor of using the methodology
used by the folks in Chippewa to generate systems for many differ-

114

ent Cray systems. This allowed a useful system to be generated for
the Pittsburgh install. The effort to decode what was
necessary for the lOS configuration of VAX stations consumed
several more days. A completely useful system is now in use on the
the NSF machine.

As one can tell we've had an exciting time at Westinghouse with
COS/CFT 1.14. As a point of interest, the following attachments
are made to this report:

1) Attachment A details the Westinghouse Engineering Local Area
Network. Work has commenced to link all the CRAYs to the
RHF network as co-equal nodes withe the NOS machines.

2) Attachment B details the configurations of the CRAY-1 S' in the
ESCC (Energy Systems Computer Center).

3) Attachment C details the configuration of the XMP-48 installed in
the Pittsburh Supercomputing Center.

115

..
en

Ethernet

A VAX 8650 (VMS)
B VAX 8650 (VMS)
o CYBER 855 (NOS)
E CRAY 1S/1300 (COS)
F CYBER 855 (NOS)
G CRAY 1S/2300 (COS)
I IBM 4381-3 (VM)
N CRAY X-MP/48 (COS)
P CYBER 8300 (NOS/VE)
S CYBER 7300 (NOS)
V CYBER 825 (NOS/VE)
X VAX 750 (VMS)
6 IBM 3084 (MVS

Engineering Computer Local Area Network
04/17/86 RRP

~
-\ ..,
~
:t
!

~
-4
1>

--.......

CRRY-1SI his 7 9 Iii

SN30/22
1 MW
MFE

CRRY-1S
SN40/11

2 MW
MFG his

Buffer
Memory

1 MW

Buffer
Memory

1 MW

CRAY Channel Configuration

To To
HYPERchonnel MFS(2SJ

To To
HYPERchannel MFS!24J

7 9

02/12/86

~
-\

1
.1
\

~
~

MIOP

--CX)

CRAY X-MP/48
SN 211/105

8 MWord, MFN

To
HYPERchannel

To
l-lYrCRchanne I

BIOP

1Q_qO~B

1006 M8

100 MB

SSO-5
SN 32

128 MWord

OIOP

Buffer Memory
4 MWord

Pittsburgh Supercomputing Center
CRAY Configuration

XIOP

02/20/86

~
-I
-I
;t
l.
~

l
-\
(:)

COS 1.15 EXPERIENCE

Mostyn Lewis
Chevron Oil Field Research Company

La Habra, California

This experience covers a "pre-release" of COS 1.15 (actually
three versions designated D, M, and Q) used over two months.
It was run on an X-MP/48 using four DD-49 disks exclusively
reserved for 1.15 testing.

First, we found we could not make PASCAL without having the
1.14 BF4 PASCAL. (We were running a 1.14 BF1.) PASCAL was
necessary as part of $UTLIB is written in it. Also, PASCAL
had a peculiarity where it internally checked its SEGRES
consistency with the system's SEGLDR. So, to get around all
this, we first made $UTLIB without the PASCAL content and
then built SEGLDR. Next, PASCAL was built with an appropri
ate PASCAL and $UTLIB redone with the new PASCAL and with
its PASCAL content intact. Then we went around again for
safety.

Our first 1.15 crash was a reoccurrence of an old bug. We
had buffer memory as the first entry in the EQT and startup
crashes when it tries to use it for parameter file work.

Our major purposes in testing COS 1.15 were to be ready and
familiarize ourselves with Space Management/Dataset Archiving
and GOS (for UNICOS testing). COS 1.15 has a plethora of
catalogs, the $MCD, $DSC, $BCD, $BVCD, and the $DXT. First
time you need to create catalogs with GENCAT. The documen
tation was erroneous in its use. Also, you can NOT recover
the $MCD as advertised and have to re-create it every
restart. There were hassles with the $BVCD (which lists
tape volumes). You need to tell it the length of a tape in
megawords but the manual said megabytes -- imagine the
consequences I

The backup job (master job) needs to access all the datasets
it is going to backup in UQ mode at the same time -- this
can need gigantic PDS sizes (which now have two word
entries). Datasets are sorted by size so they fit tape
volumes efficiently (if you get the length of the tape
right). Jobs are spun off but only two at a time (system
job limits).

We found various essential parameters undocumented in
manuals but present in the code. For example, $ADMLIB (from
UTILPL) contains a routine called spintape. Spintape shoots
off JCL with JOB and ACCOUNT cards which have been modified
at many sites. We had to modify the code to suit our own
operating parameters. The backup jobs call two verbs, BUPIO
and RECIO, which needed to be in the system directory but
were not (again, no documentation).

119

2

Then, the $BCD catalog (defined to be 200 sectors long)
filled up with 800 dataset entries. It was increased to
1000 sectors. Really, we expected some meaningful para
meter, such as number of files, not size in sectors! We
were disappointed in the lack (deferred implementation) of
front-end migration because of the excellent match this
would have made with IBM's TMS and/or HSM.

It was necessary to always exclude certain datasets from
backup such as $VALIDATION, $ACCOUNT, and $BULLETIN (again,
not in any documentation) as UQ mode on any of these stops
the system. All catalogs need to be omitted as well.
(Also, leave out the SDR entries if you don't like error
messages.)

Whatever you do, don't drop any GENCAT/BACKUP/MANAGE/RECALL
jobs or their spawn, else you will suffer a PDM hang. There
are warnings in the manual on this but is a dangerous
operational aspect.

Only non-accessed datasets can be backed up. Hence, beware
the wrath of a user whose dataset was not backed up because
he was using it. (Long-running jobs are obviously prone to
this.)

There is a danger in assigning very large chunks of disk
space (by mistake or by design) because if not enough space
is left, many migrated datasets will be deleted until there
is enough space to satisfy the assign, leaving other users
and not to mention a disgruntled Operations staff to poor
turnaround while their datasets are reloaded off tape.

Off the subject of datasets, we noticed excessive wait for
memory states when the machine was not very busy; jobs
seemed to be ignored by the job scheduler. We had trouble
with a new security privilege, SCWNSC, which got in the way
of random use of disk (not writing sequentially). We had to
remove checking for this from EXP.

Tapes seemed to work fine with auto volume recognition and
multi-volume along as they were transparent. However, our
long-standing grief with VBS tapes returned. We could not
accomplish EOV processing and jobs aborted with uncleared
DSP errors. We received various mods but none that fixed
the problems.

The MVS station showed up a degradation in interactive
response -- under 1.14 we could get about half a screen of
data at a time back from interactive but under 1.15, we got
a "klunky" one line at a time!

It should be pointed out that all the above was with pre
release software and we expect Cray to fix it. However,
there is no better test or feedback than a willing user for
future software. We hope Cray continues to allow pre
releases to sites so there can be mutual benefits. Beta
testing is generally too restrictive and the more people who
can try a system before it is released, the better.

120

A Report on the First Native X-MP
Unicos Installation

R. Kent Koeninger
Cray Evangelist

Apple Computer, Inc.
Cupertino, California

Why a Cray for Apple?

Apple Computer, Inc. purchased a
Cray X-MP/48 to shorten the
development time necessary to get a
new product to market. The Cray
will be used to simulate the
"desktop look and feel" of Apple
products early in their development
cycle, before the product is
physically prototyped. It will also
be used for VLSI and logic
simulations.

With the X-M P, developing new
revolutionary Apple products will ~e
easier. It will provide Apple
engineers with state-of-the art
tools.

Operating Systems and
Languages

Apple chose the Unicos operating
system because our most important
applications are interactive and
Unicos was in the process of being
released. "C" is the dominant
language on Apple's Cray because
this is the development language in
use by the software engineers on the
project. Both Unicos and Cray-C are
very young and have much room for
improvement.

Graphics

121

Apple's Cray will have a graphics
frame buffer attached to the HSX
channel on the lOS. This will be a
high resolution, dense color, rapidly
refreshed, graphics display.

The graphics resolution will exceed
the human eye's ability to resolve
pixels. The display will have
variable resolution up to 1280 by
1024 pixels, with 24 bits of color.
It will be updated at least 20 times
a second and will be refreshed 60
times a second. The HSX channel will
provide 850 megabits/second
bandwidth for refreshing the screen.
The graphics will be computed in
real time on the Cray.

Security

The new revolutionary Apple
products require higher computer
security than has been traditional at
Apple. With Unix it is difficult to
prevent unauthorized access from
determined hackers. Unauthorized
access will be prevented with
physical security; Phones
connections will not be allowed to
the network on which the Cray is a
node. With this physical security,
only engineers on the Apple campus
will have access to the Cray.

The operating system security will
be improved over time.

Installation

The Cray X-MP/48 with Unicos
running native was installed on
March 26, 1986, three months after
it was ordered, and one month after

Apple decided to use Unicos. Gray
provided sufficient support to get
Unicos up in a relatively short time.
The machine was up 98.6% of the
acceptance period. The Gray is not
yet stressed. Apple is preparing new
codes, preparing hardware, and
preparing communication networks
for the Gray.

Unicos Performance

Gray has done ~nd excellent job in
maintaining the flavor of Unix. It
looks, smells and tastes like Unix.

One of the few statistics available
now is an unoptimized dhrystone
benchmark of the G compiler
performing 9259 dhrystones/second
(6.5 faster than the same benchmark
on a VAX 750).

With moderate use, no performance
problems have arisen that Gray has
not solved quickly. Release 2.0 of
Unicos promises to be performance
oriented.

Pending Issues

No HYPERchannel driver was
available for Ultrix on the VAX 785.
Gray is not responsible for other
Unix network connections, and DEG
has not yet released their
HYPERchannel driver for Ultrix.
Apple had a BSD 4.2 based
HYPERchannel driver at NASA Ames
ported to Ultrix. It is working well.

Unicos, release 1.0, does not support
single character I/O, preventing
users from running visual editors on
the Gray. The development of new

codes would proceed faster if visual
editors were available on the X-MP.
Gray has short and long term
solutions for the single character
feature.

122

Unicos G compiles very slowly and
produces unoptimized code. We
recently discovered that compiling
one megabyte of G code on Unicos
1.0 takes over 10 minutes. Gray
expects to make major
improvements in this area soon,
reducing the compile time and
generating vectorized and optimized
code.

The "C" compiler supports only eight
character variable names. Most of
the codes Apple is porting to the
Cray use names that require
uniqueness beyond eight characters.
Apple is developing a preprocessor
to make long tokens unique in the
first eight characters, and Gray is
working on expanding C, CAL, and
SEGLDR, to use 32 character names.

No symbolic debuggers are currently
available for C under Unicos.

Macintosh Distributed Editor
and Engineering Workstation

Apple has a cooperative effort with
universities in progress to produce a
workstation environment that runs
on a standard Macintosh and
interacts with Unix. The
workstation will provide distributed
editing and network communications
from the Mac to the Cray via
AppleTalk, Ethernet, and
HYPERchannel. The workstation will
use the TCP/IP protocol.

Conclusion

The Gray X-MP/48 runs Unicos well
and will be an excellent tool for
engineers at Apple to produce new
revolutionary products.

Design for FSS Preemption

Thomas W. Lanzatella

Development Analyst, COS Features Group, Cray Research, Inc., Mendota
Heights, Minnesota

Introduction

The term Fast Secondary Storage (FSS)
refers to either Solid State Disk (SSD)
or Buffer Memory (EBM). These dev
ices are characterized by extremely high
transfer rates and are useful to I/O
bound applications in the Cray environ
ment. Since FSS devices were origi
nally made available, COS has been
enhanced to treat them in such a way
that a user job can obtain guaranteed
access. The amount of space needed is
specified on the JOB command and the
job is allowed to initiate when the space
is available. The term generic resource
is used to describe a device or group of
devices whose access is regulated by the
system in order to provide guaranteed
access or to protect against deadlock.

FSS devices are treated as disk devices
by COS. They are accessed through
customary use of the COS I/O routines.
Recently, COS was changed to distin
guish between disk and FSS for charg
ing and statistics gathering purposes.
Although the means of access has not
changed, usage information related to
FSS devices, whether configured as gen
eric resources or not, is now accrued
separately from disk usage information.

As the utility of FSS devices increases,
their popUlarity among the user com
munity also increases. Sites with mod
estly sized FSS devices are faced with
the administrative problem of control
ling who accesses the device, for how
long and at what priority. Since early

in 1983, various sites have requested a
mechanism in COS which relieves the
administrative burden associated with
managing FSS devices. The extent of
the desired mechanism varies from site
to site. The basic need reflected by all
sites is an ability to suspend an execut
ing job in such a way that the FSS in
use by the job is freed and made avail
able for some other job. Beyond the
basic capability, sites would like to have
the operating system automatically
enforce priority access to an FSS device
in the same manner that central memory
is shared among all executing jobs.

This design proposes a mechanism, sys
tem changes and publications changes
needed to support automatically
preemptable FSS devices.

Requirements

1. All FSS devices configured must
be (optionally) preemptable.

2. The site must be able to specify
the degree to which FSS devices
are oversubscribed. The operating
system refrains from initiating jobs
which cause the amount of disk
needed to store preempted dataset
images from exceeding the amount
implied by the degree of oversub
scription.

3. The site must be able to specify
which disk devices are preferred
for holding dataset images swapped
from FSS devices.

123

4. The site must be able to control the
preemption process on a global
basis or for a specific job.

5. The operator must have access to
displays which tell how FSS is
being used.

6. Preemption frequency must be a
tunable option.

7. A site should always (within rea
son) be able to initiate a high
priority job needing FSS.

8. System performance statistics
related to the amount of I/O time
spent swapping and the number of
swaps are available to the site
analyst.

Design Overview

This section illustrates the preemption
capability in a broad nonspecific way
with emphasis on the design com
ponents and how they fit together. The
ability to preempt FSS devices in COS
is divided into several parts.

1. Organization of disk space for
preempted datasets (swap space).

2. Enforcement of oversubscription
and job initiation

3. FSS space contention algorithm

4. Data transfer

5. Operator commands and displays

6. Job recovery

Swap space is organized in a way which
satisfies requirements 2, 3 and 7. The
startup parameter file is the place where
a generic resource is declared preempt
able, the extent of oversubscription,
swap frequency, preferred devices and
the way that swap space is partitioned.

Swap space is the volume of disk which
the site needs to accommodate an over
subscription factor. Swap space is not
isolated from use by the rest of the sys
tem unless preferred devices which are

request-by-name are included in the
swap space declaration directives.
Users must be urged not to use these
devices to achieve isolation. The sys
tem does nothing to guarantee that the
volume of swap space implied by the
oversubscription factor is available.

The operator is informed continuously
through the SWAP display as to the
availability of swap space. If local and
permanent datasets grow so that swap
space is not available, a mandatory
response message is sent to the operator
at five minute intervals and a warning is
placed on the SWAP display.
Meanwhile, jobs needing preemptable
generic resources are not allowed to ini
tiate until the full volume of swap space
is available. Jobs in execution continue
to share device residency as long as disk
space is available for preempted
datasets. If disk space is low enough
that preemptable generic resources can
not be cleared of datasets, a warning is
placed on the SWAP display and
preemption is suspended until space is
available.

Swap space partitioning is an attribute
of swap space which is important in the
following situation. Disk is the system
resource used to store FSS datasets
which are waiting their turn to reside on
the FSS device. Due to the size of FSS
devices, disk is a limited resource which
can be consumed by a relatively few
number of FSS images. The extent of
oversubscription is therefore a constrain
ing factor for the site analyst. A prom
inent need among the user community is
the ability to always be able to intro
duce a high priority job needing FSS, to
have the device freed by the operating
.system and to have the job execute.
Since the amount of swap space is itself
limited, a large number of· medium and
low priority jobs could consume the

1.24

available swap space leaving the site
unable to deliver prompt service to a
high priority job. For this reason, an
ability to partition swap space is
included in this design. The analyst has
the ability to associate a certain percen
tage of swap space to jobs of a certain
priority range.

The following rule is used when allocat
ing swap space. When a job needing
resources enters the system, swap space
is allocated from the partition associated
with the priority of the job. The
volume of swap space allocated is equal
to the number of sectors declared as the
job limit on the JOB command. If the
partition is full, space is sought in parti
tions of lower priority. If space cannot
be found in a partition of the same or
lower priority, the job does not initiate.
Space is never allocated from partitions
with a higher priority than the incom
ming job. This scheme has a minimal
impact on the total amount of swap
space required and still allows the site a
means of delivering prompt service to
high priority jobs.

The priority of a job can be changed by
the operator. When a job needs
preemptable resources, a priority change
causes the system to look in a different
partition for swap space. When a job is
executing and already has a swap space
allocation, a priority change can cause
the allocation to violate the partitioning
rules, particularly if a job's priority is
reduced. On this occasion, the system
will attempt to realign the swap space
allocation so that it adheres to the parti
tioning rules. However, this may not
always be possible since a lower priority
partition may be full. When a realign
ment cannot be performed, an indicator
is set on the RST A T display and the job
continues executing. Jobs needing
space from the partition occupied by the

job must wait for the realignment to
occur or for the job to terminate.

The operator has the ability to remove a
preemptable resource from use (require
ment 4). A new operator command,
SWEEP, is installed for this purpose.
When a resource is removed from use,
the resident datasets are removed and
stored in swap space. Swap space must
be sufficient to accommodate a sweep
resource request from the operator. An
oversubscription factor of one reserves a
volume of swap space equal to one
image of the resource. The resource
can then be swept but it cannot be over
subscribed. An oversubscription factor
of two reserves a volume of space equal
to two images of the resource allowing
an oversubscription ratio of 2: 1.

This aspect of the design conflicts with
an existing mechanism in COS, flush
volatile device. The flush device
mechanism makes a literal copy of a
volatile device on a preallocated area of
disk. The flush mechanism is useful
when an FSS device is not configured as
a generic resource or as a nonpreempt
able generic resource. The flush
mechanism must be left intact. Sites
choosing preemption need a method of
disabling the redundant flush mechan
ism. An option is therefore included
among the STARTUP parameter direc
tives which turns off the reservation of a
flush area.

The SWEEP command has three forms.
The first allows all preemptable generic
resources to be emptied and left ineligi
ble for use. The second form is identi
cal to the first except it is specific to a
single resource. The third form causes
datasets associated with an individual
job residing on any preemptable
resource to be moved to swap space and
the job to be operator suspended. If a
job which has been individually swept

125

by the operator is resumed, the operator
suspend state is rescinded and the job
becomes eligible to use the device at its
current priority.

A new operator command, RESTORE,
is installed which rescinds the effects of
the SWEEP command. The first two
forms of the command are identical in
syntax to the first two forms of the
SWEEP command and serve to reinstate
resource availability. The third form is
specific to an individual job and causes
an immediate effort to restore swapped
datasets to the appropriate resource.
The command does not rescind an
operator suspend and has no effect on
the priority of the job. If space is not
available on the resource needed, jobs
are removed in priority order, lowest
priority first, until space is available.

Job initiation occurs when swap space is
available. The job is allowed to execute
up to the point where it makes its first
request to open a dataset on any of its
preemptable resources. The system
decides if enough space to satisfy the
jobs requested limit from the JOB com
mand is available. If the device if full,
the task associated with the request is
placed in a special category of the
event-wait state and contends for space.

Space contention is mediated by the job
scheduler. The process is governed by
three objectives.

1. The highest priority jobs have
access to the device before low
priority jobs.

2. A job which succeeds in gaining a
device allocation is guaranteed
residency for a set period of time
(thrash lock) or until manual inter
vention.

3. Jobs of equal priority share the
device in a round-robin fashion.

These objectives result in a process
where priority access to a device
outweighs maximum device utilization.
Additionally, due to the requirement that
all FSS devices be (optionally) preempt
able (requirement 1), situations arise
where a high priority job needing access
to all preemptable devices can block
access to an empty device while waiting
for a full device to become available.

These disadvantages are offset by
observing that an aggressive effort to
maximize device utilization through
occupancy would result in a certain
number of low priority jobs with device
access. Since low priority jobs are not
in memory as often as high priority
jobs, device utilization would suffer.
Regarding the device blockage problem,
sites may opt to configure only one
preemptable device.

Several events cause the scheduler to
seek canditates for device residency.

1. Manual commands, SWEEP and
RESTORE, from the operator

2. Initial space requests originating
from user tasks

3 Dataset release without HOLD

4. Job termination

5. Thrash lock expiration

The thrash lock is specified among the
startup parameter file directives and is
universal for all preemptable devices.

The job scheduler manages the data
transfer process. When a swap is neces
sary, a current roll image of the job is
produced and the ITA of the job is
placed in memory. The DNT chain is
scanned for data sets residing on the
affected device. When a dataset is
found, only the data corresponding to
the DAT partition associated with the
device is moved. If a new DAT parti
tion must be larger than the old, the
new partition is placed in the STPDAT

126

pool. Each ONT in the chain is exam
ined and processed in this way. When
the swap is complete, the new JTA is
written back to the roll image. The job
is then rolled-in so that OAT's left in
the STPOAT pool can be moved into
the ITA. Although individual datasets
belonging to a job are transferred
sequentially, several jobs can be
swapped in parallel. The process of
producing a roll image before and after
a dataset swap ensures job recoverabil
ity.

Because track sizes vary among the
types of disks and FSS devices which
can be connected to the CRA Y, a prob
lem is apparent in the data transfer
mechanism. The difficulty is that the
track size of a disk device is not neces
sarily the same as that of an FSS dev
ice. Consequently, if only the partition
associated with the FSS device is
copied, the last track of data on the des
tination device will not be full. The
representation of a partial track within
the OAT partition is straight-forward but
requires minor changes in STARTUP
and the disk queue manager (DQM). In
order that datasets generated with partial
tracks can be accomodated on a prede
cessor system without the FSS Preemp
tion feature, a bridging mod is required.
A bridging mod will be installed for this
purpose in COS 1.15.

The RSTA T display is altered in several
ways to provide information about
preemptable resources. The RSTA T P
display indicates total swap space com
mitted for each preemptable resource as
well as the resource status
(SWEEPIRESTORE). The RSTAT ON
grn display indicates swap space avail
able, swap space allocated, resource
status, flush space, current oversubscrip
tion ratio and thrash lock value. Addi
tionally, each job listed on the display

has a status field describing device
residency and swap space alignment.
The changes made to the station seg
ment used to generate the RSTAT
display constitute a protocol change.

127

1

Graphics Session

H. E. Kulsrud

IDA/CRD
Princeton, New Jersey

The Graphics Session consisted of four presentations. The first two papers covered
the state of the art in graphics as used for scientific computation. "3D Imaging and
High Speed DMA Graphics" by Robert W. Conley of AFWL and "Vectorization of Graphics"
by Gerald Edgar of BCS are described in detail by their authors.

Robert L. Judd, of LANL described the need for ultra high speed graphics and plans
for obtaining it. LANL users have been hampered by slow response times in their use
of computer graphics. Much higher data rates are needed to satisfy the graphics
requirements of the supercomputer user. This need presents several problems to the
computer scientist that involve the design of operating systems, networks, graphic
devices and other components of the total system. The presentation covered some of
the key issues involved in building a system for ultra speed graphics and ideas that
are being considered to extend these high data rates into the offices of the users.

The goal for supercomputer graphics was demonstrated by Larry Yaegar of Digital Productions.
He showed several short films and videos illustrating what his company can do when
interfacing a supercomputer to the best graphic output devices. The high technical
quality of these films and the merging of art and computation was very impressive.

128

3D IMAGING AND HIGH SPEED DMA GRAPHICS

Robert W. Conley, Jr.

Air Force Weapons Laboratory

Kirtland Air Force Base, New Mexico

INTRODUCTION

Several projects were begun at the AFWL in
1981 to provide new computer graphics
capability for the research scientists at
the laboratory. These coincided with the
introduction of CTSS as the operating sys
tem for the Cray-ls; the computer itself
had been installed early in 1980. The
interactive computing environment of CTSS
has the potential to support raster graph
ics display hardware and powerful image
rendering programs. In the intervening
years raster graphics has emerged as a
significant capability for the display of
scientific data, but at the cost of severe
requirements placed on computing engines,
disk storage, communications bandwidth,
and software support.

The projects centered around the concept
of a color graphics workstation. Two
kinds of workstation can be defined. A
close proximity, very high speed work
station can be installed near (or on) the
computer floor and serviced with direct
channel connections to the computing
engine. A remotely installed workstation
can be located in the office or laboratory
and connected to the computer facility
with lower speed communications. To date
our workstations have been of the second
kind.

The function of the workstation is to pro
vide a scientist with shaded color graph
ics images quickly enough that they are
useful in the feedback loop of the
research process. To be useful at all the
images must be viewable within minutes of
their computation; it is preferable that
they be viewable within seconds. Key
attributes of significant value to the
scientist are having the display station
placed in his or her work area, and limit
ing it to single (or few) user access.

It requires little experience with a
supercomputer to become aware of its
inherent and significant limitations.
Although the CPU engine may be among the

129

fastest available, ehere is a conspicuous
lack of productivity enhancing support
facilities for code development and infor
mation transfer in and out of the super
computer. This is not a characteristic
unique to our site. Surmounting these
shortcomings can involve large amounts of
money and human resources. Improvements
in several areas would ease the task of
integrating computer graphics into a
supercomputing environment.

COMPUTING ENGINES

Of the several CPU classes available at
the AFWL, the Cray was the natural choice
to compute raster images. Because of com
munications limitations, display resol
ution was selected to be 512 lines by 512
pixels, with 8 to 24 bits per pixel. Work
began with two AED 512's (8 bits per pix
el); within a year two Raster Technolo
gies Model One/20 frame buffers (24 bits
per pixel) were acquired. The displays
are supported as DMA peripherals on LSI-II
microcomputers. The microcomputer work
stations each have 30 megabytes of online
hard disk storage. Typically 200 to 300
single frames can be available on the
workstation, with display times averaging
a few seconds per frame.

Images are calculated on the Cray at 24
bits per pixel using any spatial resol
ution up to 2048 by 2048, and written to a
device independent META file. The final
device driver employs coordinate transf
ormations and dithering, if necessary, to
map the spatial and color resolution to
fit the device.

The calculation of a 512 by 512 by 24 bit
image requires the computation of about
0.75 megabytes of graphics· information.
Most image calculations can employ bounded
extents or scan line coherence to reduce
the number of computations, but even then
the calculation is quite large. Minutes
of computing time on the Cray-1 are typi
cal. It is not uncommon to consume 50 to

100 CPU hours to compute an animation
requ1r1ng 10 to 100 megabytes of image
storage in compressed form. No other com
puter at the laboratory can approach the
productivity of the Cray in this applica
tion.

GRAPHICS SOFTWARE

The central site computer graphics support
is the AFWL META system, a device inde
pendent graphics system introduced in
1975. Limited raster graphics capability
(monochrome, six bits per pixel) was added
in 1977. Using the FR80 film recorder 18
bits per pixel could be generated with
three passes, one pass for each primary
color. This was superseded in 1982 with
the definition of raster line primitives
supporting 24 bits per pixel in any image
dimension up to 2048 lines of 2048 pixels.

The META file supports absolute raster
lines in which each pixel is represented,
and relative raster lines in which only
those pixel values which have changed from
the previous raster line are represented.
The device drivers generate command
sequences using absolute raster lines or
run length encoded lines as supported by
the particular device. In building the
META file and in generating the device
command sequences, that format is selected
which minimizes the number of bytes to
represent each raster line. Reduction of
the volume of information by a factor of
ten is common.

The utility software available for raster
graphics includes Movie.BYU, locally
developed ray tracing programs, an appli
cations library with a memory resident 512
by 512 virtual raster interface, and the
META library raster primitives. These
tools support the display of scientific
data using raster graphics. Both exper
imental data and computational models have
been used to generate single frame and
animated sequences.

COMMUNICATIONS

The fundamental obstacle to be overcome
has always been the communications bottle
neck; this is no less so today than in
1981. One of the greatest enhancements to
a supercomputing environment would be the
support of a standard hardware and soft
ware protocol for high speed information
transfer.

The AFWL computers are connected by a 50
megabit per second HyperChannel. With it
files may be transferred between main
frames and to and from the mass storage
facility. Data paths to offices are TTY

130

connections via Ethernet, twisted pair, or
telephone cable running at 9600 baud maxi
mum. It is this bandwith that severely
restricts the productivity potential of
raster graphics. Even with the reduced
number of bytes resulting from data com
pression, a raster image can take several
minutes to transfer.

Several Cray sites have designed and built
special purpose hardware and software to
increase the transfer rate to and from the
computer. This is at best a marginal sol
ution because the level of communications
available for use at other sites is not
raised. Most sites lack the fabrication
facilities to support custom hardware.

Given the low cost coaxial cable standards
now emerging (e.g,., EtherNet), it is time
ly to have the mainframe vendor adopt such
a standard for DMA speed information
transfers. Off the shelf technology can
support burst rate transfers in the range
of 1 to 10 megabaud. This needs to be as
commonly available as TTY hardware.

With the introduction of computers as pow
erful as the Cray 2, another two orders of
magnitude increase in information transfer
becomes mandatory. Here too a standard -
as opposed to custom built -- I/O con
nection is needed. Computational models
in three spatial dimensions and time
(i.e., animation) are now possible as nev-
er before. Transfer of an image in less
than one second is needed to put animation
in the feedback loop of a scientific
research project.

A typical animation computed at the AFWL
uses 30 megabytes. 9600 baud communi
cations with a mainframe rarely averages
more than 200 bytes per second due to sys
tem loading and transfer protocol over
head. Days of transfer time are required
to move an animation to the workstation
for viewing or filming.

LANGUAGE ENVIRONMENT

It is unfortunate that today almost any
microcomputer has a better code develop
ment environment than any supercomputer.
No supercomputer, for example, has the
integrated environment support of a high
level, algorithmic language that

-approaches that of Turbo Pascal, a product
costing less than $100. The resulting
loss of productivity in any research
endeavor which depends on supercomputers
is enormous. A ray tracing code, for
example, centers around an inherently
recursive algorithm best suited for imple
mentation in a language such as Pascal.

It is time to bring the supercomputer out
of the dark ages. What is needed is an
integrated environment for an algorithmic
language; Modula-2 would be a good choice.
The environment should include such fea
tures as a language sensitive editor,
interactive access to the execution envi
ronment at multiple levels, an incremental
compiler, and access to the vector capa
bilities of the machine. The customary
edit-compile-link-run sequence should be
abandoned.

As envisioned here, the code developer
would enter a session in the editor. Com
ponents (i.e., partial programs) could be
executed as they are constructed. One
should not have to wait until the code is
complete to begin execution tests. Source
code should be compiled up to the cursor
location, so that the press of a key would
begin execution at once.

Multiple windows would highlight the
sequence of execution at the source code
level all the way down to the machine lev
el. It should be possible to interrupt
the execution to reenter the editor at any
point, and any execution error should
automatically invoke the editor with the
cursor at the suspected point of failure.
An interrupted execution should allow data
structures to be modified and execution
resumed. Vector computations should be
available explicitly using procedure
calls, or implicitly through automatic
compiler vectorization.

Because supercomputers typically route
interactive traffic through front-end com
puters, this environment truly involves a
new level of distributed processing
sophistication combined with high speed
data paths. Graphics output could be
routed through the same path to appear on
a separate display or on a window of the
main display. This level of access to a
supercomputer requires attention during
hardware and software design by the man
ufacturer to be successful.

131

CONCLUSIONS

Our experience shows that advancing compu
tational power brings with it an increas
ing dependence on color raster graphics to
visualize the complex scientific phenomena
being studied. Raster graphics in turn
places new and especially stringent
requirements on the communications and
language capabilities of the supercomput
er. (Graphics is not unique in this
regard, as almost all scientific use of
supercomputers could benefit from improve
ments in communications and integrated
environments.) The full potential of the
supercomputer cannot be approached without
serious attention being concentrated on
improving its subsidiary components.

ADDITIONAL REPORTS

Report of the CUG President

H. E. Kulsrud

IDA/CRD

Princeton, New Jersey

Welcome to the seventeenth meeting of the CRAY User Group, Incorporated. During these
seventeen meetings, CUG has experienced rapid growth. Though this growth may be due
to the sale and installation of supercomputers by CRI, the generally upward trend in
the number of attendees seem to closely resemble the price fluctuations of CRI stock
on the New York Stock Exchange. Our first meeting was attended by sixteen people and
the current meeting in Seattle by approximately three hundred. We now have enrolled
86 member sites in our society. We have collected dues for this year from 61 and I
hope that the deliquent members will dispatch their checks to the Treasurer immediately.

Since the last meeting in Montreal, the various Boards and Committees have been extremely
busy. The Finance Committee has prepared a budget and the Treasurer claims our bank
balance is $16,219. The Board of Directors have prepared a document called the CUG
Members' Handbook which contains the By-laws, Policy Statements and Guidelines for
the Installation Delegates and Committees working within CUG. The Handbook has been
sent to all Installation Delegates and we suggest that Installation Delegates read
and circulate this set of documents, and that Installation Representatives request
to see the Handbook if they have not yet seen it. We plan to update this document
from time to time and will be issuing some additions before the Fall general meeting.

The number of Special Interest Committees (SICs) has been increased to eight. Ken
Neves of Boeing will be the Chair of the Applications SIC. This group will also cover
Algorithms and Data Bases. We have been trying to organize this SIC for some time
and are really pleased that Ken has accepted this position. We hope that many people
will join this committee. The list of the other SICs and their current Chairs is as
follows:

Communications SIC Dean Smith ARCO
CTSS SIC Jerry Melendez LANL
Graphics SIC Ron Levine NASA/Ames
Operating Systems SIC Ray Benoit EC
Operations SIC Gary Jensen NCAR
Performance/Evaluation SIC Mostyn Lewis CHEVRON
Software Tools SIC Mary Zosel LLNL

All these SICs encourage attendees to join.

In addition to the SIC, we have formed a new entity in CUG called the Mutual Interest
Group (MIG). The first of these is the Aerospace MIG. This group has met s~veral
times already and has as its President Jack Sherman of Lockheed.

Requests for new and improved software are coordinated by the User Requirements Committee.
Steve Niver of Boeing is the Chair and he will be reporting to you on the status of
these requests.

The Program Committee, Chaired by David Lexton of ULCC, was very busy preparing for
this conference. The printed program indicates what an excellent job they have done.
There are many interesting talks and it is difficult to choose which parallel session
to attend. We particularly want to thank Dennis Richie of AT&T Bell for being the keynote
speaker of a conference whose theme is UNIX. This committee has begun preparing for
the Fall meeting in Garmisch-Partenkirchen, West Germany (September 29 - October 3).
DFLVR is the sponsoring site and Peter Herchenbach will be the Local Arrangements Chair.

133

2

The Seattle Local Arrangements Committee with Steve Niver of Boeing as its Chair, has
been extremely busy. Their arrangements including hotel, meeting facilities and Night
Out have been wonderful and we thank them appropriately.

The CUG Board of Directors has accepted the offer of Toshiba and a CUG meeting is now
being planned for Toyko in the Fall 1988. We intend to issue registration information
well in advance for this meeting. However, anyone interested in attending should begin
maneuvering now for their trip to the Orient.

My personal thanks to all the members of all the committees especially the Advisory
Council and the Board of Directors who have been working continuously behind the scenes.
I also thank the attendees for their enthusiasm which makes a CUG meeting so profitable
and enjoyable.

350.

300.

~ 250.
w
o
z
w
~ 200.
c::::c:

u..
o 150.
e::::
w
~
:E:
~ 100.

50.

°78 . 79 . 80 . 81. 82 . 83 . 84 . 85 . 86 "

Year
75) 75

1
~

dll'
60

.....
45 >-0

1'1
"5

"'..,
11111 ;1

.30

1\1111""'10
I IPI Jill 130

II IhJlll1 11111• .
'" ...

15 ./ 1111,1 11 15
'hI' :11

TRADING VOLUME
THOUSAND SHARES

7,.500 7,.500

5,000 "h'i ~ Hili
5,000

''''~ Iuj z.soo 11111111 11I,lh,1I1 .1111, [U 2.500

1980 11981 1982 11983' 1984 1985 11986.

Common Share Earnings ($)

134

Vice-President's Report

David Lexton

ULCC

The main task of the Vice-President continues to be the preparation of the program and, using the pattern
established by my predecessor, Laney Kulsrud, this went quite smoothly for Seattle. All members of the
Program Committee, which consists of SIC chairs, local arrangements committee chairs and CRI representatives,
attended the meeting of the committee on 7th May. The following items were discussed:

Seattle CUG

The overall organisation, with Steve Niver (Boeing) responsible for local arrangements, was excellent. However,
some attendees found the accommodation too expensive although an alternative cheaper hotel had been arranged.
The possibility of specifying an all-inclusive conference fee was raised. The format and production of the
Proceedings were discussed, the latter because Karen Friedman (NCAR) will no longer be able to do them. Her
successor as Pr6ceedings Editor will have a high standard to follow.

Garmisch-Partenkirchen CUG

The theme of the meeting was confirmed to be Applications and Algorithms with the new Application Special
Interest Commi ttee under Ken Neves (Boeing) organising some of the parallel sessions. A range of topics was
suggested and SIC chairs specified their requirements for parallel sessions.

Planned Future Meetings of CUG

Spring 1987, New York, Grumman. (Reliability of Software and Hardware)

Fall 1987, Bologna, CINECA. (Distributed Computing)

Spring 1988, Minneapolis, University of Minnesota.

Fall 1988, Tokyo, Toshiba.

135

COMMITTEE REPORTS

Communications (CSIC)

Dean Smith (ARCa)

Deals with issues of networking, station products, protocols and hardware linking Cray computers to other
computer systems.

Recognised areas of concern include, and are not limited to:

• Networking management
• Networking
• Superlink
• Hardware requirements
• Station software

I invite all interested parties to involve themselves in the CSIC.

Those people responsible

Members

Annabella Deck - Chevron
Sue Greenburg - Univ. of Illinois
Ron Kerry - General Motors
Don Mackenzie - Grumman
Sven Sandin (Co.) - SAAB
Regis Schonneere - CUE RAM
Dave Thompson - CRI

CTSS SIC

Jerry Melendez (LANL)

Observers

Eugene Siciunas - Univ. of Toronto
Marco Lanzarini - CINECA
Robert Benway - REI
Sandy Moy - Univ. of Illinois
Arve Dispen - Univ. of Trondheim
Dave Lexton - ULCC

Other interested parties

Kurt McMillen - Boeing
Richard Herndon - Apple
Juha Doctor - KF A
Kapl Auerbach
Dieter Raith
Michel Valin - Environment

Canada
Dan Drobnis - San Diego

Supercomputer
Carlos Dangelo - Fairchild

The CTSS SIC is interested in software written for the CTSS operating system. This includes, but is not limited
to, CRI product set converted to run on CTSS. The CTSS SIC will attempt to be a focal point to bring
together all the sites using the CTSS operating system.

Activity since the Montreal CUG

The CTSS SIC has not been very active since the last CUG. However, at the Montreal CUG the CTSS
community agreed to hold a meeting in San Diego to exchange ideas and software that can be shared among all
CTSS sites. The CTSS SIC will participate in future CTSS meetings and will attempt to identify needs which
can be satisfied by CRI.

CTSS SIC Members

Jerry Melendez (Chair)
Hilary Jones (Vice Chair)
Ken Mortensen
Sid Karin
Jerry Berkman
Sandy Moy

or Willi am Bernhard
Larry Burdhal
Pat Gray
Bing Young

Los Alamos National Laboratory
Sandia National Laboratory, Livermore
Air Force Weapons Laboratory
San Diego Supercomputer Center
U.C. Berkeley

University of Illinois
NMFECC
Lawrence Livermore National Laboratory
CRI

136

Graphics SIC (GRAPHSIC)

Ron Levine (NASAl Ames)

GRAPHSIC met on May 5, 1986.

Members of SIC present:

Laney Kulsrud (IDA), Richard Schultz (IDA), Fred McLain (SDSC), Bob Conley (AFWL), Gerald Edgar (BCS), Bob
Judd (LANL), Carol Hunter (LLNL), Ron Levine (NASAl Ames), John Aldag (CRI).

Not present, but known to count themselves as members:

Gene Miya (NASAl Ames), Kent Koeninger (Apple), Jerry Owens (LLNL), Mostyn Lewis (Chevron OFRC). Mostyn
will find an alternate representative from his site.

Others volunteering since this meeting: Jean Shuler (LLNL). Also, representatives of several sites indicated
that they wanted to be kept informed for the benefit of other interested people at their sites: CINECA
(Bologna), University of Illinois, University of California.

This was the first meeting of this SIC. The initiating chairman Laney Kulsrud passed the reins to the new
chairman, Ron Levine. It was expressed by John Aldag that the heavy weighting of the members present by US
Government Laboratories is a shortcoming. (The addition of representatives from Chevron and Apple partially
ameliorates it). A more serious shortcoming in the membership is the absence of European representation. A
first action item for the chairman is to canvass the European sites to recruit some members and, hopefully to
find a European deputy chairman. Failing this, the chairman will seek to find a non-European deputy chairman
who is fairly certain of being able to go to Garmisch. Bob Judd is provisional deputy chairman.

There was discussion of the functions of the SIC, its relations to CUG and to CRI. The chairman has tried to
capture this in the statement of terms of reference of the SIC appended to this report. There was discussion
of possible topics for the graphics session at the next CUG and for agenda items for the next meeting of the
SIC. Topics under consideration are: Graphics Tutorial, graphics standards (including graphical communications
standards), the role of hardwired graphics processing in supercomputer installations, and more on
high-performance high-bandwidth interactive supercomputer graphics.

The main agenda item at this meeting was a presentation by John Aldag and discussion of a paper entitled
"Requirements, Status and Plans for Graphics on Cray Computers". This paper has been distributed to the
members about a week before the meeting. It is evidently part of a larger document which is a sort of CRI
working paper on user requirements. Some material contained in the paper as subset of the larger document are
deemed proprietary and were deleted from the version give to the SIC.

The paper usefully partitions the graphics requirements into three bins by the parameter "bandwidth per graphics
device". Probably, the majority of the user sites are interested mostly in the "Traditional Bandwidth", and "High
Bandwidth" domains. However, the present committee is dominated by the sites planning or pushing for
"Ultra-High Bandwidth" systems. Therefore, the Committee was highly interested in one topic discussed by John
but not detailed in the paper, viz. the several high and ultra-high bandwidth "experiments" in progress:
VME-based interfaces and the definition of the HSX 100 MBls channel spec and its release to a few selected
vendors and customers.

The report was generally well received by the SIC as a positive step, but there was a considerable criticism in
details, suggestions for making it more complete, and complaints about deletion of material. A second meeting
was held in the afternoon at which a substantial subcommittee (more than half the people) reviewed the paper
page by page. From notes of this meeting the chairman will prepare a short written response of the SIC to the
paper, and will forward it to CRI, after having first circulated it to the members of the SIC.

The chairman has taken the liberty of coining the acronym GRAPHSIC, which is also an anagram, if not a state.
He will happily withdraw the suggestion if it causes a public outcry.

TERMS OF REFERENCE OF GRAPHSIC

The Special Interest Commitee on Graphics is to serve as a resource for communication among users sharing
interests in computer graphics associated with Cray systems and applications. In the relations among its user
members, GRAPHSIC expedites the sharing of public domain information about graphics hardware and software
systems. In its relation to the rest of CUG, GRAPHSIC has a similar role as an information resource, expanded
by a promotional function, with the aim of increasing interest in and awareness of the uses of computer
graphics in supercomputer applications. In its relation to CRI,' GRAPHSIC is to represent, both through the User
Requirements Committee and directly, user needs and priorities for graphics products and support.

137

Operations SIC (OPSIC)

Gary Jensen (NCAR)

The Seattle sessions of the Operations SIC set a new standard which will be hard to match at future meetings.

If there had been a pre-determined theme for our sessions, it would have been "Reliability and Maintenance".
Fran Pellegrino presented the results of his Hardware Reliability Survey in which 52 systems were represented.
That is a "fair" response and we hope to do better next time. Gary Shorrel of Cray Research Inc. (CRn
presented Trends in Reliability obtained from his Data Base of all Cray Systems and it must be noted that the
results were close to those in our survey. Stewart Drayton (CRI) explained how CRI is dealing with the problem
of providing engineers in a period of extreme growth - he also presented a status report on concurrent
maintenance and the hardware failure escalation clause. While it was not impressed that we will not have
problems in these areas in the future, I am somewhat relieved that they do have plans and goals.

Karen Schaefer of GMR explained her role and that of the Cray in the research function at GM and discussed
the working relationship between GMR and EDS, who supplies the labour force of operators.

Don Whiting of CRI explained the differences in the manufacturing process of building Cray X!MP's versus the
older systems. He went into detail regarding parts counts, solder joints etc.

Jerry Stirret of BCS presented facts and diagrams that made the tour of the BCS Computer Center easier to
comprehend. A walking tour of BCS was not enough for me to understand the full relationship of all that
hardware.

The main event of the conference was the back to back discussion of the PM issue from the viewpoint of
Marilyn Richards of NMFE, who practises a policy of no PM on a Cray lA, Cray IS and an XMP. Stewart
Drayton explained his and Cray's feelings regarding the need and benefits of PM. The Chairman assumed the
role of referee for these presentations, although no action on his part was required.

That well describes the activities of the sessions of the Operations SIC except for the following information
regarding a new committee formed to give aid· and support to the SIC.

The new committee is called the "Executive Committee for the Operations SIC" and is chaired, for meetings in
America, by Fran Pellegrino of Westinghouse.

We will be asking for at least one representative from each Cray site as well as CRI representatives. All
interested parties are invited. The meeting of this Committee will be on the day prior to the start of the
Conference, in this case, Monday. It will be approximately 2 hours long and round table format. The
Committee will provide the SIC with direction for the meeting program, support the Hardware Reliability Survey
and determine the theme for own next meeting.

I feel that there should be more interaction between the site representatives and our program and welcome
suggestions that would better ensure that we are covering the topics of most interest.

The operations site representatives will be receiving more information on this, in the mail.

The theme for the meeting in Germany will be "Operating UNICOS". See you there.

Performance and Evaluation SIC (PESIC)

Mostyn R. Lewis (Chevron)

PESIC covers the areas of:

Peformance
Optimization
I/O

Performance includes

Performance data acquisition and subsequent analysis; this includes workload and throughput analysis,
system tuning and modelling, benchmarking and user program profiling.

Optimization includes

Techniques to improve system performance, general optimization techniques, machine specific
optimization and program optimization techniques.

138

1/0 includes

Methods to improve I/O throughput at the system and user level, 1/0 techniques in user programs,
comparison of I/O methods and I/O benchmarks. User experiience with new peripheral devices such as
disks, SSD, tapes and optical devices and exotica and any supporting code. Particularly, pioneering user
experience with the latest Cray (or otherwise) peripherals.

The committee is non-partisan with respect to machine type or software.

Since the last CUG we have formed a working group on performance measurement. The group intends to have
results, for the next CUG in the fall of 1986, presenting a benchmark comparison between COS 1.15 and
UNICOS (Native) and perhaps embracing the GOS environment.

Ann Cowley has resigned the deputy chair and we wish her well in the future. We have volunteers for the
deputy chair and will announce the replacement at a future date. We are seeking a European co-chair from
KF A, Julich for the next meeting.

Already we have enough speakers for two sessions at the next CUG and have reserved three parallel sessions to
accommodate the expected expansion.

Walt Anderson of Cray Research is our Cray representative for COS and related subjects and we are expecting
to have a UNICOS contact in the future.

We had 17 attendees at the 'open' meeting and intend to stay 'open' unless we discuss Cray confidential
information. There are 14 members and 7 observers identified.

Software Tools (SWSIC)

Margaret Simmons (LANL)

The purpose of the Software Tools Special Interest Committee is to serve as a focal point for technical interest
in software tools from Cray Research that make up a programmer's environment. This environment includes
languages, compilers, libraries, editors, debuggers, multitasking tools, etc. We also plan to review such tools as
well as requirements for new tools, as appropriate. The committee will be both a technical interface to Cray
Research and will plan software tools sessions at CUG meetings.

The Montreal CUG meeting was an organisational one for software tools. We held two meetings and sponsored
three technical sessions in Seattle. One of our meetings was a technical session where we focused on debuggers
and on table formats. We requested and received high-level informative presentations on both subjects from
Peter Rigsbee, our CRI member. The second meeting was held to consider requests for modifications to Cray
supported language products. Previously, a long list of requested changes was kept by the CUG and dealt with
in a manner similar to user requirements. We feel that such a forum is still needed, and therefore, the
committee will serve as a "filter" for such requests. Small items will be handled directly by the committee and
Cray Research; larger items will be forwarded to the User Requirements Committee. The three technical
sessions in Seattle on Software Tools were organized and chaired by Christopher Lazou, Mary Rosel and
Elizabeth Williams. We want to thank them for their hard work. The sessions were of a uniform high quality.

We are currently seeking members from unrepresented sites, especially those in Europe and Japan. Anyone who
is interested or who knows of someone who is interested should contact Mary Rosel at LLNL or Margaret
Simmons at LANL. A current list of members is attached.

Members

Giovanni Erbacci
or
Elda Rossi
Peter Rigsbee
Jerry Berkman
Laney Kulsrud
Karen Pischel
John Barton
Michel Valin
Chris Lazou
M. Simmons
M. Zosel
Peter Nelson

CINECA

Cray
UC Berkeley
IDA
Nasa-Lewis
Nasa-Ames
Environment Canada
ULCC
LANL
LLNL
AT & T

139

OPERATING SYSTEMS COMMITTEE REPORT

Raymond Benoit

Environnement Canada
Montreal, Canada

TERMS OF REFERENCE

The general goal of the Operating Systems
Committee or OSC is to favor the exchange
of information between users and between
users and CRI. Our role is to provide a
detailed technical interface with CRI and
assist in planning the technical content
of CUG general meetings. The committee's
areas of interest are numerous, varied and
cover both the COS and UNICOS operating
systems. They include maintenance and ins
tallation of systems (configuration, ge
neration, modification, testing, tu
ning ••• etc), data center support (dumps,
validation, accounting and resource con
trol, scheduling, conversion ••• etc) and
many others (security, benchmar
king ••• etc). Some overlap with other com
mittees is unavoidable but is kept to a
minimum.

The main tools the committee has to meet
its objectives are as follows.

- General conference sessions where users
and/or CRI can make presentations to all
users on subjects of interest to the OSC.

OSC sponsored sessions or workshops
normally held in parallel with other ses
sions and attended by a smaller number of
users.

OSC closed meetings held during the CUG
conference to facilitate planning and de
tailled discussions with CRI. These mee
tings are attended by committee members
only. Any CUG .site can join the committee
and attend the closed meetings by making
prior arrangements with the committee
chair. Normally there should not be more
than one permanent member per installation
and a minimum level of activity (attendan
ce at meetings,responding to communica
tions ••• etc) is required of any OSC mem
ber.

- All other OSC activities that take place
between CUG conferences. These can take
the form of design document reviews, mai
lings, phone calls ••• etc.

140

BUSINESS SINCE LAST MEETING

Supplying papers and reports for last
conference proceedings (D.Lexton).

Reception from CRI of three design
documents (one on FSS premption, one on
ressource management and one on user
exits) and a request for input on UNICOS
features.

- Two mailings were sent out to members
containing various information and re
quests for input on user requirements,
design documents ••• etc.

- Planning the current
(the OSC I and OSC II
closed sessions).

conference sessions
sessions plus two

CURRENT BUSINESS

The operating systems committee met on
Monday the 5th and on Thursday the 8th, no
changes were made to the agenda and there
were no outstanding action items from the
last conference.

Chairman report

I gave a report on the status of the
committee. This included a presentation of
new and old committee members, a discus
sion of the new committee guidelines, a
discussion of the documents received from
Don Mason (CRI) and the two mailings sent
out to committee members.

CRI report

Don Mason (CRI) and Jim Miller (CRI) then
gave a detailled report on COS and UNICOS.
It was suggested that some of this infor
mation be given to all users in the OSC
parallel sessions to complement the more
general overview usually given by M.Loftus
(CRI) in the conference opening sessions.

OSC user requirements

The OSC then examined in some detail CRI's
response to some operating systems requi
rements and policy issues stemming from a
request by Steve Niver, chair of the User
Requirements committee (see report from
that committee for details). The majority
of the discussions were on the following
three main issues:

-Customer access to the SPR database.
CRI's responded that it did not plan to
provide access to the database by other
than Cray employees. The Committee had
very strong feelings about this issue and
felt it should be pursued further. It was
brought up at the User Requirements com
mittee and it will be handled by higher
instances of CUG and CRI.

-Memory growth of system utilities. CRI
indicated that they were sensitive to the
issue and efforts were being made to keep
them as small as possible. Menbers of the
committee also mentionned that memory in
creases in system code, in libraries and
tables were a problem. Suggestions were
made to use more assembly parameters for
conditional code (such as ISP library
code), to advertise increases in the re
lease bulletins (how much, where and how
to reduce it), to also indicate when
options are turned on (release,bug
fix) ••• etc. The concept had already been
accepted by CRI following a winter 84
ballot requirement? If you have any speci
fic suggestions send them to me.

- Binary compatibility. CRI responded that
they did not intend to unnecessarly make
changes that render binaries incompatible.
The Committee felt that a stronger and
more positive committement by CRI was
necessary. It is not sufficient to not
intentionnaly make incompatible changes,
one must intend to make things compatible
in the first place if any progress is to'
be made. Several users have done simple
bridging mods in the past to insure this
compatibility and CRI could make the same
efforts. Several members also complained
that some incompatibilities are not adver
tised in release bulletins or communicated
to users even after several sites have
encountered them during system upgrades.

Concerning the old requirements on user
exits and installation table space a pro
posed design overview was received from
CRI and distributed to OSC members. Conrad
Kimball (Boeing) will be coordinating the
OSC working group on these issues.

141

Half a dozen new operating system user
requirements were brought up for discus
sion at the User Requirements committee
(check your next ballot). It was agreed
that more time was required during the OSC
parallel sessions for open discussion of
new and old user requirements. It was also
agreed with Don Mason that requirements
submitted to CRI should be considered as
applying to both COS and UNICOS except
where obviously unapplicable.

CRI requirements

Two design papers were received from CRI,
one on FSS preemption (Fast Secondary
Storage) preemption and one on Job Res
source management. Both were bulky and
received too late for distribution before
the conference. Gary Smith (U of Texas)
will be coordinating the working group on
F S Sand I will t a k e car e 0 f the 0 n eon Job
Res sou r c e mana g em en t. At the 1 a s t co nf e
rence CRI had requested some input on
certain UNICOS features, additional input
was requested on other features just befo
re this conference. Answers to all the
above papers and requests for input will
be sent to CRI before the Garmish confe
renc e.

Miscelaneous

The Committee discussed the difficulties
in 'reaching a faster and more efficient
exchange cycle between CRI and the OSC
committee (conferences are held only
every six months, some design documents
received relate to features that are for
all practical purposes already implemen
ted ••• etc) and suggestions are welcomed.

It was decided that a short committee
closed session was necessary towards the
end of the conference (Thursday) to finish
our business (new requirements, next
conference ••• etc). The Committee also de
cided to meet without the presence of CRI
for part of that meeting. This seemed
necessary to discuss more freely certain
delicate issues (policy, CRI/CUG rela
tionships ••• etc).

The idea of splitting up the committee
along COS and UNOCOS lines or forming
subcommittees was also discussed. This was
jugded premature for the time being. Seve
ral committee members are interested in
both systems and would have difficulties
attending both committee meetings. Paral
lel sessions, workshops and working groups
will however be organized along those
lines whenever possible.

NEXT CONFERENCE

We are planning three OSC sponsered ses
sions at the next conference. Two of these
will be workshops, one devoted to COS and
one devoted to UNICOS, with an experience
panel part, a CRI discussion of the latest
release and it's features and a problem
discussion/user requirements part. The
other session will be left for papers and
presentations on COS and UNICOS. Some of
the possible topics of interest for those
sessions would be (for COS and UNICOS):
sec uri t y, a c c 0 u n t i ng , res sou r c e con t r 0 I ,
tuning, scheduling ••• etc. If you want to
present a peper at the next conference
please contact Dave Lexton (ULCC) or my
self. Two closed sessions are also planned
for the Garmish meeting, check the Garmish
meeting schedule for the exact dates and
times. Some of the issues we will pursue
with CRI at the closed meetings will be
Beta site testing and COS/UNICOS migra
tio n.

CONCLUSION

I want to thank all the speakers for the
fine job they did in the OSC sessions and
all the OSC committee members for their
support and contribution in making this a
productive and enjoyable meeting.

The current committee members are:

Raymond Benoit, chair (EC,
Dave Lexton, deputy-chair (ULCC),
Don Mason, CRI interface (CRI),
Co nrad Kimball (Bo ei ng) ,
Jim Sherin (Westinghouse),
Mostyn Lewis (Chevron),
Claus Hilberg (ECMWF),
Kent Koeninger (Apple),
Larry Yaeger (Digital),
Charles Slocomb (LANL),
Lothar Wollschlager (KFA).

Members who have joined at this meeting:

Gary Smith (U.of Texas),
Brian Vohs (Exxon),
Sanzio Bassini (CINECA),
Urszula Frydman (U. of California).

Regular contacts, attendees, help ••• etc:

Jim Miller (CRI),
Walt Anderson (CRI),
Ronald Kerry (GM),
Regis Schoonheere (CISI),
Serge Hardoin (CCVR),
Tony Hackenberg (NASA/Lewis).

142

ADDITIONAL INFORMATION

CUG Site Contact List
August 14, 1986

Adam Opel AG (OPEL CRAY)
Bahnhofsplatz
Russelsheim
D-6090
Germany

Installation Delegate
T. Zimmerschied

Air Force Global Weather Central (AFGWC)
AFGWC/SD
Offutt AFB, NE 68113

Installation Delegate

0049-6142-663797

Charles Cook (402)294-5884

Technical Contact
Lt. Rand Huso (402)294-4671
AFGWC/SDDN

Operations Contact
Joe Luteran (402)294-2889
AFGWC/CMO

Air Force Weapons Laboratory (AFWL AD)
AFWL/SI
Kirtland AFB, NM 87117-6008

Installation Delegate
Larry Rapagnani

Technical and Operations Contact
Mi~Gleicher

Apple Computer (APPLE)
20575 Mariani Avenue
MIS fl32-E
Cupertino, CA 95014

(505)844-0441

(505)844-9964

Installation Delegate and Operations Contact
Richard Herndon-- (408)973-6278

Technical Contact
Kent Koeninger (408)996-1010

Arabian American Oil Company (ARAMCO)
EXPEC Computer Center
Box 5000
Dhahran 31311, Saudi Arabia

TELEX: 601220 ARAMCO SJ

Installation Delegate
M. Sadlowski

Technical Contact
Alfred Anderson
X-2690

Operations Contact
Gene McHargue
Box 10356

(011)966-3-87-61188

(011)966-3-874-1945(or 3830)

144

Arnold Engineering Development Center (AEDC-CCF)
Central Computer Facility
Arnold Air Force Station, TN
37389

Installation Delegate
Larry Cunningham (615)454-7263
AEDC MS 100

Technical Contact
Wayne Neese (615)454-4294
AEDS MS 100

Atlantic-Richfield Oil & Gas Company (ARCO)
2300 Plano Parkway
Plano, TX 75075

TWX 910 861 4320

TELEX 73-2680

Facsimile Transmission DMS 1000(214) 422-3657

Installation Delegate
Dean Smith (214)754-6415
PRC - C2292

Technical Contact
B.Y. Chin (214)422-6627
PRC - 2211

Operations Contact
Chuck Murphy (214)422-6612
PRC - 5141

Atlas Centre (ACUK)
Rutherford Appleton Laboratory
Chilton, Didcot, OXfordshire
OX 11 OQX
England

TELEX: 83159

Facsimile Transmission: 0235-44-5808

Installation Delegate and Operations Contact
D.G. House - 0235-44-5515
Room F18

Technical Contact
T. Daniels 0235-44-5755
Room F12

Atomic Energy Research Establishment (HARWELL)
Harwell, Oxfordshire
OX11 ORA, England

TELEX 83135 ATOM HA G

Installation Delegate
A. E. Taylor
H 7.12

Technical Contact
Don Sadler
Bldg. 8.12

Operations Contact
Michael Schomberg
Bldg. 8.12

0235-24141, x.3053

0235-24141, x.3227

0235-24141, x.3263

145

Atomic Weapons Research Establishment (AWRE)
Aldermaston
Reading, RG7 4PR
England

TELEX 848104 or 848105

Installation Delegate
L. M. Russell

Technical Contact
P. A. Janes

Operations Contact
M.D.P Fasey

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

(ATTBLMH)

TELEX 13-8650
Facsimile (201)582-2608

(201)582-6934

07356-4111, x.6678

07356-4111, x.4045

07356-4111, x.6491

Installation Delegate and Technical Contact
Peter Nelson - (201)582-6078
Room 2F-225A

Operations Contact
R.A. (Tony) Shober (201)582-2608
Room 2F-247

Boeing Computer Services Company (BCS)
Post Office Box 24346
Seattle, WA 98124

Installation Delegate
Stephen Niver (206)763-5073
MS 7A-23

Operations Contact
Jim Roetter (206)763-5510
MS 7C-12

BP Exploration (BPLONDON)
Moor Lane
London EC2Y 9BU
United Kingdom

Installation Delegate, Technical and Operations Contact
M.P. Stanyer - (44)1-920-6156

Centre de Calcul EPFL (EPFL)
Batiment du DMA
Ecublens
CH-1015 Lausanne
Switzerland

TELEX: 25 934 EPFV CH

Installation Delegate
Pierre Santschi

Technical and Operations Contact
Michel Jaunin

021/47.22.11
011/41/21/47.22.11 (from USA)

011/41/21/47.22.02

146

Centre de Calcul Vectoriel Pour la Recherche (CCVR)
Ecole Poly technique
91128 Palaiseau Cedex
France

TELEX: 691596

Installation Delegate
Tor Bloch

60 19 41 53

Technical Contact
Maurice Benoit

69 41 82 00, x.2534 '

Operations Contact
Paulette Dreyfus

Centre Informatique de Dorval (CID)
(Environment Canada)
2121 Trans-Canada Highway
Dorval, Quebec
Canada H9P1J3

Installation Delegate and Technical Contact
Raymond Benoit- (514)683-9414

Operations Contact
Gary Cross (514)683-8152

Century Research Center Corporation (CRCC)
3, Nihombashi Honcho 3-chome,Chuo-ku
Tokyo, Japan 103

TELEX 252-4362 CRCNET J

Installation Delegate
Mike(Mitsuru) Maruyama

Technical Contact
Kazuyoshi Fukushima

CERN (CERN)
European Laboratory for Particle Physics
1211 Geneva 23
Switzerland

TELEX: 419000 CER CH

Installation Delegate
Jean-Claude Juvet

Chevron Geosciences
2811 Hayes Road
Houston, TX 77082

(CHEV-TEX)

(03) 665-9901

(03) 665-9901

022-834935

Installation Delegate and Technical Contact
William Kimbal--l-- (713)596-2520
Room 1114

Operations Contact
Juan Cruz
Room 3302

(713)596-2523

147

Chevron Oil Field Research Company (CHEVRON)
3282 Beach Blvd.
La Habra, CA 90631

TELEX: 176967 via San Francisco

Installation Delegate and Technical Contact
Mostyn Lewis - (213)694-9235

Operations Contact
John Kunselman

CIFRAM (CIFRAM)
(CiSi-Framatome)
BP 24
Gif-sur-Yvette
91190
France

TELEX CISIPSC 691 597 F

Installation Delegate

(213)694-7029

Louis Bosset 69-08-42-03

Technical Contact
Philippe Van Surrell 69-08-67-05

Operations Contact
Regis Schoonheere 69-08-63-19

Commissariat a l'Energie Atomique/CEL-V (CEA-CEL)
BP 27
94190 Villeneuve St. Georges
France

Installation Delegate
Henri Dauty (1)569-96-60, x.6386

Technical Contact
Martine Gigandet (1)569-96-60, x.6184

Operations Contact
Claude Riviere (1)569-96-60, x.6484

Commissariat a L'Energie Atomique/CEV (CEAT)
Centre D'Etudes de Vaujours
Unite de Calcul
BP 7
77181 Courtry
France

Installation Delegate
Bruno Compoint (1) 868-8413

Technical and Operations Contact
Joseph Harrar

Compagnie Generale de Geophysique (CGG)
1, Rue Leon Migaux
BP 56
Massy CEDEX
91301
France

TELEX: CGGEC 692442F

Installation Delegate
Claude Guerin

(1) 868-8688

(6) 920.84.08

148

The Computing Centre at The University of Trondheim (RUNIT)
N-7034 Trondheim NTH
Norway

TELEX: 55620 sintf n

Installation Delegate
Karl Georg Schjetne

Technical Contact
Arve Dispen

Operations Contact
Kristian Kuikne

Conoco, Inc. (CONOCO)
1000 South Pine
Ponca City, OK 74603

47-7-593100

47-7-592989

47-7-593020

Installation Delegate and Technical Contact
Julian Ford (405)767-3360
394 Park Building

Operations Contact
David Mohler
394 Park Building

(415)767-2813

Consorzio Interuniversitario per la Gestione
Del Centro di Calcolo Elettronico dell'Italia
Nord-Orientale (CINECA)

6/3 Magnanelli
Casalecchio di Reno
40033
Bologna, Italy

Installation Delegate
Marco Lanzarini

Cray Research, Inc.
608 2nd Avenue South
Minneapolis, MN 55402

Administrative Contact
Mary Amiot

Technical and Operations Contact
Dave Sadler

David Taylor Naval Ship R&D Center (DTNSRDC)
Bethesda, MD 20084

39-51-576541

(612)333-5889

(612)452-6650

Installation Delegate and Technical Contact
Robert Tinker - (301)227-1428
Code 18923
Bldg. 17, Rm 105B

Operations Contact
Gil bert Gray
Code 189

(301)227-1270

149

Deutsche Forschungs- und Versuchs-anstalt fur Luft-
und Raumfahrt (DFVLR)

Oberpfaffenhofen
Muncher Strasse 20
8031 Wessling
West Germany

Telephone: (0)8153/281
TELEX: 526401

Installation Delegate
Peter Herchenbach

Digital Productions (DIGIPROD)
3416 S. La Cienega Blvd.
Los Angeles, CA 90016

Installation Delegate
Gary Demos

Technical Contact

(0)8153/28954

(213)938-1111

Larry Yaeger (213)938-1111

Operations Contact
Gordon Garb (213)938-1111

E.I. DuPont de Nemours, Inc. (DUPONT)
Experimental Station
Wilmington, DE
19803

Installation Delegate
David Filkin (302)772-3970

Operations Contact
James Chang
Bldg. 320

Electricite de France (EDF)
1 Avenue du General de Gaulle
A2-004
92140 Clamart
France

TELEX 270 400 F EDFERIM

Installation Delegate
Yves Souffez

Technical Contact
Bertrand Meyer

European Centre for Medium Range (ECMWF)
Weather Forecasts

Shinfield Park
Reading RG2 9AX
Berkshire, England

TELEX 847908

Installation Delegate
Geerd-R. Hoffmann

Technical Contact
Claus Hilberg

Operations Contact
Eric Walton

(1) 765 40 18

(1) 765 41 50 or
(1) 765 41 05

44-734-876000, x.340

44-734-876000, x.323

44-734-876000

150

Exxon Co. USA - EDPC (EXXONUSA)
3616 Richmond
Houston, TX 77046

TWX: (713) 965-7310

Installation Delegate
Michael Beddingfield

Technical Contact
Brian Vohs
107ST

Operations Contact
Don Smith
245 ST

Exxon Production Research Company (EPRCO)
P. O. Box 2189
Houston, TX 77001

(713)966-6134

(713)965-7534

(713)965-7514

TELEX: 910-881-5579 (Answer back: USEPRTX HOU)

Installation Delegate
T.A. Black
N-121

Technical Contact
J.E. Chapman
N-121

Operations Contact
D.N. Turner
N-180A

Fairchild (COMUN)
Gate Array Division
1801 McCarthy Blvd.
Milpitas, CA 95035

Installation Delegate
Carlos Dangelo

Technical Contact
Carlos Dangelo
Hassan Nosrati

Operations Contact
Hassan Nosrati

Ford Motor Company (FORD)
Engineering Computer Center
MD-1, Room 208
PO Box 2053
Dearborn, MI 48121

Installation Delegate
Neil St. Charles

(713)965-4203

(713)965-4689

(713)965-4407

(408)942-2587

(408)942-2680

(313) 845- 8493

151

General Dynamics Corporation (CF)
Data Systems Division
Central Center
PO Box 748
Fort Worth, TX 76101

TELEX: 768231

Installation Delegate and Technical Contact
M.H. Pittman - (817) 777-3102
Mail Zone 11 75

Operations Contact
H.D. Hollingsworth
Mail Zone 2169

General Motors Research (GM)
General Motors Technical Center
12 Mile and Mound Roads
Warren, MI 48090-9055

(817) 777-3238

Installation Delegate and Operations Contact
Ronald Kerry - (313) 575-3208

Technical Contact
Dean Hammond (313) 575-3372

Operations Contact
Karen Schaefer (313) 575-3237
270 R.AN.B.

Government Communications Headquarters (GCHQ)
Priors Road
Cheltenham, England

Installation Delegate and Technical Contact
Alan Phillips - 0242-521491, x.3185
X34

Operations Contact
R. Medley
F/1208

Grumman Data Systems (GDS)
1111 Stewart Avenue
Bethpage, NY 11714

0242-521491, x.3185

Installation Delegate and Technical Contact
James Poplawsk-i - (516)575-2934
MS B34-111

Operations Contact
Steven Hornacek, Jr.

Institute for Defense Analyses (IDA)
Communications Research Division
Thanet Road
Princeton, NJ 08540

(516)575-4273

Installation Delegate and Operations Contact
Robert Cave - (609)924-4600

Technical Contact
Helene Kulsrud (609)924-4600

152

Institute for Defense Analyses
Supercomputing Research Center (SRC)
4380 Forbes Blvd.
Lanham, MD 20706

Installation Delegate
Arthur Lazanoff

KFA Julich (KFA)
Postfach 1913
5170 Julich 1
West Germany

TELEX: 833556 KFA D

Installation Delegate
Friedel Hossfeld

Technical and Operations Contact
L.-wDllschlaeger

(301)731-3725

02461-61-6402

02461-61-6420

Koninklijke/Shell Exploratie & Produktie Laboratorium (KSEPL)
Volmerlaan 6
2288 GD Rijswijk (Z.H.)
The Netherlands

TELEX KSEPL NL 31527

Installation Delegate and Technical Contact
A.E. Stormer - 070-112741
LS-219

Operations Contact
A.A.H. Kardol
LS-208

070-112601

Konrad Zuse-Zentrum fur Informationstechnik Berlin (BERLIN)
Heilbronnerstrasse 10
D 1000 Berlin 31
West Germany

TELEX: 183798

Installation Delegate
Jurgen Gottschewski (030)-3032-233

Lawrence Livermore National Laboratory (LLNL)
PO Box 808
Livermore, CA 94550

TWX 910 386 8339 UCLLL LVMR

Installation Delegate
Joseph Requa
L-61

Technical Contact
Patrick H. Gray
L-60

Operations Contact
Pierre Du Bois
L-67

(415)422-1100

(415)422-4007

153

Lockheed Advanced Aeronautics Company (XMP24110)
Dept. 60-40, Unit 50, Plant 2
PO Box 551
Burbank, CA 91520

Installation Delegate and Technical Contact
Howard Weinberger (805)257-5725

Operations Contact
Doug Ford

Lockheed Missile and Space Co.
1111 Lockheed Way
Sunnyvale, CA 94086

TELEX: 346409

Installation Delegate

(805)257-5720

(LOCKHEED)

Jack Sherman (408)742-8993

Technical Contact
Doug Telford (408)742-0948

Operations Contact
Jerry Honinger (408)742-5831

'Los Alamos National Laboratory (LANL)
P. O. Box 1663
Los Alamos, NM 87545

Installation Delegate
Charles Slocomb (505)667-5243
MS B294

Technical Contact
Margaret Simmons (505)667-1749
MS B265

Christopher Barnes (505)667-5000
Group X-1, MS E531

Operations Contact
Tom Trezona (505)667-4890
MS 252

Max Planck Institute fur Plasmaphysik (MPI)
8046 Garching
Bei Munchen
West Germany

TELEX 05/215 808

Installation Delegate and Technical Contact
Johann Gassmann-- 089-3299-340

154

McDonnell-Douglas Corporation (MDC)
PO Box 516
St. Louis, MO 63166

Facsimile Transmission: (314)233-6149

Installation Delegate
James R. McCoy
Dept. W512 - 306/3

Technical Contact
James Miget
W532 - 306/3/395

Operations Contact
F. Brian Hunt
W270 - 306/2E/290

Merlin Profilers Limited
1 Duke Street
Woking, Surrey
Uni ted Kingdom

Installation Delegate
Paul Blundell

Technical Contact
Andy Wright

Mitsubishi Research Institute, Inc. (MIRI)
2-3-6, Otemachi
Chiyoda-ku
Tokyo, Japan 100

TELEX 222-2287 MRI J

Installation Delegate
Nobuhide Hayakawa

Technical and Operations Contact
Shuichi Yamagishi

(314)233-3425

(314)234-3326

(314)233-4900

(03) 270-9211

(03) 270-9211

Mobil Exploration & Producing Services, Inc. (MEPSI)
PO Box 900
Dallas, TX 75221

Installation Delegate
Beverly Jackson

MOD (P.E.), RARDE (RARDE)
Fort Halstead
Sevenoaks, Kent, TN14 7BP
England

TELEX: 95267

(214)658-4409

Installation Delegate and Technical Contact
Bob Youldon 0732-55211, x.3086
Bldg. 511

NASA/Ames Research Center (NAS)
NAS Projects Office
Moffett Field, CA 94035

Installation Delegate
John Barton
MS 233-1

(415)694-6837

155

NASA/Lewis Research Center (NASA/LE)
21000 Brookpark Road
Cleveland, OH 44135

Installation Delegate
William McNally
MS 142-2

National Cancer Institute (FCRF) .
Frederick Cancer Research Facility
Advanced Scientific Computing Laboratory
PO Box: B
Frederick, MD 21701

Installation Delegate

(216)433-4000, x.6650

Charles Crum (301)695-2765

Technical Contact
Jacob Maizel (301)695-2532

Operations Contact
Steve Karwoski (301)695-2775

National Center for Atmospheric Research (NCAR)
P. O. Box 3000
Boulder, CO 80307

TELEX 45694

Installation Delegate
Bernie O'Lear

Technical Contact
Eugene Schumacher

Operations Contact
Gary Jensen

National Magnetic Fusion Energy
Computer Center (NMFECC)

P. O. Box 5509, L-561
Livermore, CA 94550

TELEX 910-386-8339

Installation Delegate
Hans Bruijnes

Technical Contact
F. David Storch

Operations Contact
Marilyn Richards

National Security Agency
Ft. George G. Meade, MD

(NSA)
20755

Installation Delegate
Bruce Steger
T335

Technical Contact
C. Thomas Myers
T335

Operations Contact
Maureen McHugh
T152

(303)497-1268

(303)497-1264

(303)497-1289

(415)422-4012

(415)422-4004

(415)422-4397

(301)688-6275

(301)688-6275

(301)688-6198

156

Naval Research Laboratory
4555 Overlook Avenue S.W.
Washington, DC 20375

(NRL)

Installation Delegate
Harvey Brock

Nissan Motor Company (NISSAN)
Nissan Technical Center
560-2, Okatsukoku
Atsugi, Kanagawa
243-01
Japan

Telex: J47980

(202)767-3886

Installation Delegate, Technical and Operations Contact
Mizuho Fukuda ---- 0462-47-5523
Engineerng Computer Applications Section No. 1
Product Development Systems Department

Northrop/Advanced Systems Division (NORTHROP)
8900 E. Washington Blvd.
Pico Rivera, CA 90660-3737

Installation Delegate
Kay D. Barnier

Technical Contact

(213)948-7845

John Lehmann (213)948-0213

Operations Contact
Paul Lee (213)942-4718

NTT Electrical Communications Laboratories (NTT)
Nippon Telegraph and Telephone Corporation
3-9-11 Midori-cho
Musashino city, Tokyo 180
Japan

Installation Delegate and Technical Contact
Mikio Sasaki ---- (011) 81-0422-59-2261
Information Processing Services Section
Engineering Department

Operations Contact
Hideaki Maeda (011) 81-0422-59-3845
Information Processing Services Section
Engineering Department

ONERA - Calculateur Aeronautique (ONERA)
BP 72
Chat ilIon Sous Bagneux
92322
France

TELEX: ONERA 260 907F

Installation Delegate
Jean-Pierre Peltier

Technical Contact
Daniel Colin

Operations Contact
Jean Erceau

(1) 6571160, x.2094

(1) 6571160, x.3098

(1) 6571160, x.2465

157

Phillips Petroleum Company
418 Information Systems Bldg.
Bartlesville, OK 74004

Installation, Technical and Operations Contact
Arvin Todd --- (918)661-6426

Pittsburgh Supercomputing Center (PITTSCC)
Carnegie-Mellon University
Mellon Institute 409C
4400 Fifth Avenue
Pittsburgh, PA 15231

Installation Delegate
Michael Levine (412)268-4960

Technical Contact
Beverly Clayton (412)268-4960

Operations Contact
Fran Pellegrino (412)374-4281
Westinghouse Electric Corp.
Monroeville Nuclear Center

Rechenzentrum der Universitat Stuttgart
Pfaffenwaldring 57

(RUS)

7000 Stuttgart 80
West Germany

TELEX: 07255445

Installation Delegate
Walter Wehinger 0711-685-5391

Rockwell International Information Systems Center (RI)
PO Box 2515
Mail Code SH10
Seal Beach, CA 90740

TELEX: 910-341-6801 (ROCK ISCW SLBH)

Installation Delegate and Technical Contact
Abraham Levine--- (213)594-2740

Operations Contact
Joe Henderson (213)594-2283

Royal Aircraft Establishment (RAE)
Bldg. P70
Farnborough, Hants
GU14 6TD
England

TELEX: 858134

Installation Delegate
J.M. Taylor

Technical Contact
B.E. Taylor

Operations Contact
A.J. Chamberlain
Bldg. Ql08

(0252)24461, x.3042

(0252)24461, x.3853

(0252)24461, x.2375

158

SAAB-Scania (SAAB)
Aircraft Division
S-58188 Linkoping
Sweden

TELEX: 50040 SAABLGS

Installation Delegate and Technical Contact
Sven Sandin 4613 182357

Operations Contact
Stig Logdberg 4613 182371

Sandia National Laboratories (SNLA)
Albuquerque, NM 87185

Installation Delegate
Melvin Scott
Department 2641

Technical Contact
Frank Mason
Division 2641

Operations Contact
Kelly Montoya
Department 2630

Sandia National Laboratories (SNLL)
PO Box 969, East Avenue
Livermore, CA 94550

(505)844-4075

(505)844-2332

(505)844-1234

Installation Delegate and Technical Contact
Dona Crawford (415)422-2192
D8235

Operations Contact
M.H. Pendley (415)422-2965
D8236

San Diego Supercomputer Center (SDSC)
GA Technologies
PO Box 85608
San Diego, CA 92138

TELEX: 695065

Installation Delegate and Technical Contact
Fred McClain (619)455-4597

Operations Contact
Dan Drobnis

Schlumberger-Doll Research
Old Quarry Road
PO Box 307
Ridgefield, CT 06877

TELEX: 643359

(SCHLUMBE)

Installation Delegate
Bob Snow

Technical Contact
Raymond Kocian

Operations Contact
Josephine Murray

(619)455-5020
(619)534-5020 (after 7/1/86)

(203)431-5527

(203)431-5522

(203)431-5524

159

Shell Oil Company (SHELLOIL)
PO Box 20709
Houston, TX 77025

TELEX: 71-378-7530 (answer back - Shell MTM HOU)

Installation Delegate
L.J. Kealy

Technical Contact
B.D. Huff
Rm. 5B48

Operations Contact
C.D. Smith
Rm. 1812

Shell U. K. (SHELLUK)
Rowlandsway Wythenshawe
Manchester M22 5SB
Uni ted Kingdom

TELEX: 668613

Installation Delegate
David Cheater

SNEA (ELF)
Rue Jules Ferry
Pau 64000
France

TELEX: Petra 560 804F

(713)795-3320

(713)795-3193

(713)795-1696

061-499-4357

Installation Delegate, Technical and Operations Contact
Michel Morin - 59-834146

SOHIO
Geophysical Data Center
1 Lincoln Center
5400 LBJ Freeway
Suite 1200-LB 25
Dallas, TX 75240

Installation Delegate, Technical and Operations Contact
Mark Rehrauer - (214)960-4336

SVERDRUP Technology, Inc. (SVERDRUP)
Arnold Air Force Station, TN 37389

Installation Delegate and Operations Contact
John L. Roberson- (615)455-2611, x-5294
ASTF MS900

Toshiba Corporation (TIS)

TELEX: J22587

Installation Delegate
Kenjo Yoshimura
TIS Division
1-1, Shibaura
Minato-Ku, Tokyo, 105
Japan

Technical and Operations Contact
Kyosuke Tsuruta
TIS Division
Computer Center
72 Horikawa-cho, Saiwai-ku
Kawasaki 210, Japan

044-541-1743

044-541-1743

160

U.C. Berkeley (UCBERK)
259 Evans Hall
Berkeley, CA 94720

Installation Delegate
Urszu1a Frydman (415)643-6097

United Information Services, Inc. (UISCO)
2525 Washington
Kansas City, MO 64108

Installation Delegate and Operations Contact
Nate Losapio (816)221-9700, x.6535

Technical Contact
John McComb (816)221-9700

University of Illinois at Urbana-Champaign (UIUCNCSA)
National Center for Supercomputing Applications
1011 W. Springfield
Urbana, IL 61801

Installation Delegate and Technical Contact
Win Bernhard - (217) 333-8049

Operations Contact
Mike Smith

University of London
Computer Center
20 Guilford Street
London WC 1N 1DZ
England

TELEX: 8953011

(ULCC)

Installation Delegate
Richard Field

Technical Contact
Harald Kirlanan

Operations Contact
Lawrie Tweed

(217)244-0708

(01)4058400

University of Minnesota Computer Center (MINN)
2520 Broadway Drive
Lauderdale, MN 55113

Installation Delegate
John Sell (612)373-7878

Technical Contact
Linda Gray (612)376-5603

Operations Contact
Elizabeth Stadther (612)373-4920

161

University of Texas System (UTXCHPC)
Center for High Performance Computing
Commons Building, Balcones Research Center
PO Drawer S
Austin, TX 78713-7388

Installation Delegate
Charles Warlick

Technical Contact
William Bard

Operations Contact
Robert Baker

University of Toronto (UTORONTO)
Computing Services
255 Huron St.
Toronto, Ontario M5S1A1
Canada

(512)471-2472

(512)471-2472

(512)471-2472

Installation Delegate and Technical Contact
Edmund West - (416)978-4085
MPP 331

Operations Contact
Bob Chambers
MP 350

(416)978-7092

Westinghouse Electric Corporation
Energy Systems Computer Center

(WESTESCC)

P. O. Box 355
Pittsburgh, PA 15146

TELEX: 234992503 USA

Installation Delegate
Robert Price
MNC 206E

Technical Contact
Jerry Kennedy
Nuclear Center 180

Operations Contact
R.W. Kunko
Fran Pellegrino

Zentralstelle fur das Chiffrierwesen (ZfCh)
am Nippenkreuz 19
Bonn 5300
West Germany

Installation Delegate
Engelbert Tausch

ZeroOne Systems, Inc. (ZERO)
NASA Ames Research C :;nter
MIS 233-3
Moffett Field, CA 9'- 35

J

(412)374-5826

(412)374-4399

(412)374-4674

Installation Delegate, Technical and Operations Contact
Glenn Lewis - (415)694-6550

162

University of London Computer Centre,
20 Guilford Street,
London, WCIN IDZ.
England.
Tel: 01-405-8400
Telex: 8953011

CALL for PAPERS
NEW YORK

April 21-25, 1987
THEME: Reliability of Software and Hardware

NAME:

ORGANIZA TION:

ADDRESS:

TELEPHONE: I TELEX:

ELECTRONIC MAIL ADDRESS:

TITLE OF PAPER:

TWO OR THREE SENTENCE ABSTRACT:

EQUIPMENT REQUIRED OTHER THAN 35MM SLIDE PROJECTOR OR
OVERHEAD PROJECTOR:

SUGGESTED SESSION:

GENERAL SESSION
I/O
FRONT ENDS
NETWORKING
OPERATIONS
OPERA TING SYSTEMS
GRAPHICS

RETURN BY 1 December 1986 to:
DAVID LEX TON . at the above address

LANGUAGES
LIBRARIES
MULTITASKING
OPTIMIZA TION
PERFORMANCE EV ALUA TION
APPLICA nONS
DATA MANAGEMENT

OTHER ____________________ _

163

